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PREFACE 

This work contains an investigation of boiling of n-hexane and water 

in a coil. 

The flow of liquid inside a coil under boiling conditions was ex­

plored and tested. Design details and results of the experimental runs 

are presented in this thesis. 

An additional variable--the radial acceleration--was., introduced to 

explain some of the phenomena of boiling in this system. 

It has become almost a tradition that any work dealing with the 

subject of boiling heat transfer should start by recognizing the com• 

plexity of the phenomenon. This complexity is especially what makes 

boiling heat transfer so challenging. I am deeply indebted to Dr. 

Kenneth J. Bell who helped me so much to face this challenge, by his 

most useful advice, encouragement and inspiration. I am also grateful 

to the members of the thesis committee Dr. J. H. Erbar and Dr. J. w. 

Fulton for their helpful remarks and aid. 

I wish to express my gratitude to Black, Sivalls & Bryson Inc., 

which supplied the boiler shell for this experiment. 

I am also indebted to the School of Chemical Engineering,\ Oklahoma 

State University which granted me financial support during the course of 

this work. 

iii 



Chapter 

I. 

II. 

III. 

IV. 

v. 

VI. 

VII. 

VIII. 

TABLE OF CONTENTS 

Page 

INTRODUCTION$ • ~ fl .. • • a e • • • • o ~ • ~ ~ ~ • • • • ~ e ' i. 

FUNDAMENTALS OF BOILING 

Boiling Regions •• 
Burnout •••• & • 

SURVEY OF LITERATURE. • "1 • .. .. 

3 

3 
4 

6 

Boiling and Boiling Mechanisms o •• , •••• ®. ,, •• 6 
Boiling and Gravity Fields ••• ~ ••• " ••••• G • 8 

THEORETICAL ANALYSIS OF BOILING IN A COIL .. 11 

The Effect of Radial Acceleration on Boiling Inside a 
Tu be ii, o i:· • • " " ... I)' "' .. ~ • It) .. 11- . ~ . . .. . . " . 1.2 

Heat Transfer Mechanism in a Coi 1& • e ~ •••••••• 16 
Boiling Heat Flux Determination •••••• ~ •••••• l9 
Experimental.Testing of the Theoretical Model •••••• 20 

EXPERIMENTAL APPARATUS •• 21 

Auxilary Equipment ••••••••••• ~ •••••• 

EXPERIMENTAL PROCEDURE~ 11. 29 

'Start-Up Procedure /JI e "' • • e • ,.. ., • ,, ~ ~ e , • ~ 111 ., 29 
Measurement and Data Recording Procedure • ~ ••• $ •• 30 

EXPERIMENTAL RESULTS AND CORRELATED DATA. 

Ex?erimental Results o 

Correlation of Data •• 
Experimental Errors. 

32. 

32 
33 

DISCUSSION OF RESULTS, CONCUJSIONS AND RECOMMENDATIONS. • • $ 

Recommendations. • . . • .. l't • • • • • • • 46 

BIBLIOGRAPHY • • • • " . . . . ~ • • • 4 7 

APPENDIX A - EXPERIMENTAL AND CALCULATED DATA. "' ....... ~o-··~ 49 

iv 



APPENDIX B - SAMPLE CALCULATIONS• •• • • • • • • • • • • • • • •• 70 

Estimation of Boiling Heat Flux •••••••••••••••• 7:t. 
Dimensionless Radial Acceleration ••••••••••••••• 73 

APPENDIX C - THERMOCOUPLE CALIBRATION PROCEDURE. • • • • • • • • • • 74 

Calibration of the Reference Thermocouple. • • • • • • • • • • 75 

APPENDIX D - ROTAMETER AND ORIFICE CALIBRATION. • • • • • • • • • • 79 

NOMENCIATURE • • • • • • • • • • • • • • • • • • • • • • • • • • • • 86 

v 



LIST OF TABLES 

Table Page 

I. Flow Rates and Tempe~atures Data for n-Hexane. • . • • • • • 50 

II. Flow Rates and Temperatures Data for Water • • • • • • • • • 51 

III. Heat Balance Data for n-Hexane • • • . • • • • • • • . • • • 52 

IV. Heat Balance Data for Water. • • . . • • • • • • • • • • • • 53 

v. Heat Transfer Data--n-Hexane. • • . . . • • • . . • • • • • 54 

VI. Heat Transfer Data--Water ••• • • • • • • • . . . . . . • • 55 

VII. Radial Acceleration and Boiling Heat Fluxes for n-Hexane •• 56 

VIII. Radial Acceleration and Boiling Heat Fluxes for Wate r at 
Partial Evaporization ••••••••••••••• •••• 57 

IX. Radial Acceleration and Boiling Heat Fluxes for Wate r at 
Total Evaporization ••••••••••••••• ••••• 57 

x. Pressures at Boiler Inlet. • • • • • • • • • • • • • • • • • 58 

XI. Thermocouple Reading Along the Coil. • • • • • • • • • • • • 59 

XII. Temperature Distribution Along the Coil. • • • • • • • • • • 63 

XIII. Cali brat ion of the Reference Thermocouple. • • • • • • • • • 75 

XIV. Thermocouple Reading ~orrection--Low Temperature • • • • • • 77 

xv. Thermocouple Reading Correction--High Temperature • • • • • 78 

XVI. Cooling Water Orifice Flow Meter Calibration • • • • • • • • 80 

XVII. Rotameter Cali brat ion for n-Hexane • • • • • • • • • • • • • 82 

XVIII. Rotameter Cali bra ti on for Water. • • • • • • • • • • • • • • 84 

vi 



LIST OF FIGURES 

Figure Page 

1. Boiling Curve •••••••••••••••••••••• ••• 3 

2. Radial Acceleration in Flow in a Coil. • • • • • • • • • • • • 13 

3. Regimes of Flow and Heat Transfer in a Vertical Tube. • • • •• 14 

4. Flow and Heat Transfer Model for a Coil. • • • • • • • • • • • 15 

5. Temperature Difference in a Cross Section of the Tubing •••• 18 

6. Flow Sheet Diagram ••••••••••••••••••••••• 23 

7. The Coil and the Thermocouple Connections ••••••••••• 24 

B. General View of Apparatus and Auxiliary Equipment ••••••• 25 

9. Boiler Shell, Steam Demister and Flow Meters •• • • • • • • • • 25 

10. Instrument Panel •• • • • • • • • • • • • • • • • • • • • • • • 26 

ll. Boiler Shell Insulation and Thermocouple Wiring • • • • • • • • 26 

12. Piping. • • • • • • • • • • • • • • • • • • • • • • • • • 0 •• 27 

13. Boiling Fluid Tank and Vapor Condenser ••••••••••••• 27 

14. Temperature Difference Between Steam and OJtlet Stream for 
n-Hexane • •••••••••••••••••••••••••• 34 

15. Temperature Difference Between Steam and OJtlet Stream for 
Water • • • • • • • • • • • • • • • • • • • • • • • • • • • • 35 

16. Boiling Heat Flux of n-Hexane vs. ·Flow Rate •••••••••• 36 

17. Boiling Heat Flux of Water vs. Flow Rate. • • • • • • • • • • • 37 

18. Temperature Profile Along the Coil •• • • • • • • • • • • • • • 38 

19. Dimensionless Radial Acceleration vs. Per Cent of Vapor for 
n-Hexane and Water ••••• • • • • • • • • • • • • • • • •• 39 

20. Boiling Heat Flux of n-Hexane vs. Dimensionless Radial 
Acceleration ••••••••••••••••••••••••• 40 

vii 



21. 

22. 

23. 

Boiling Heat Flux of Water vs. Dimensionless Radial 
Acceleration ••••••• o •••••••••• o • 

Boiler Inlet Pressure vs. Flow Rate of n-Hexane • • • 

• • 

. .. 

Boiler Inlet Pressure vs. Flow R.;tte of Water •• . . . "' . 

• • • 4.1 

• • 0 42 

• • • 42 

24. Cooling Water Orifice Calibration Curve •••••••••• $ • 81 

25. Rotameter Calibration Curve for n-Hexane •••• • • • 0 • • •• 83 

26. Rotameter Calibration Curve for Water •• • • • • • • • • ••• 86 

viii 



CHAPTER I 

INTROIX.JCTION 

Heat transfer to fluids in a condition involving more than one 

fluid phase is probably of greater industrial significance than any 

other heat transfer process. Boiling heat transfer is widely employed 

in high performance systems owing to the fact that extremely high heat 

transfer fluxes may be obtained with relatively low surface to fluid 

temperature differenceso 

The effect of high gravitational fields on boiling has some technical 

importance where boiling occurs in a rapidly accelerating system. Modern 

highaperformance devices such as rockets and missiles in the initial 

stages of flight or a space craft during its re-entry to earth are ex­

amples of such systemso With various new problems encountered in space 

technology it may be expected that boiling will occur in force fields 

other than that of earth. 

Little information has been published on the influence of gravi­

tational and other acceleration forces on boiling. In the few papers 

published recently on this subject the researchers are not i n much 

agreement as far as the influence of gravitation on boiling is concerned 

(6 9 7~ 8» 19j 28» 33j 349 35). 

The main purpose of the present work was to gain some insight into 

the mechanism of boiling in a coil 9 in which the fluid experiences radial 

acceleration. 

l 



The following goals were set for this project: 

(1) Design an apparatus which may be used to study the boiling of 

nwhexane and water in a coil using low pressure steam as the 

heating medium. 

2 

(2) Using the apparatus, obtain information on boiling of nmhexane 

and water such as exit vapor fractions, surface temperature 

distribution and heat loads at various liquid inlet velocities. 

(3) Analyze and correlate these data. 



CHAPTER II 

FUNDAMENTALS OF BO!LING 

BoH:l!.ng Regions 

When a liquid at its saturation temperature T t at a given pressure sa. 

is bci Ung on an he.aiter surface at temperature T which supplies q/A BTU w . 

per hour per square foot 9 and the heat flux h varied~ it :l.s observed 

that the temperature difference between the heater surface arid the satu-

rated liquid varies also. When the heat flux is plotted versus the 

temperature dHferenc:e the followh'ng boil.ling curve wil.11 be obtainedg 

c 

A 

Figure l. Boiling Curve 
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In the region AB 1n Figure 1 the heat is transferred by conduction 

through the liquid and natural convection currents. 

The region BC in Figure 1 is nucleate boiling. Here bubbles form 

at specific p~eferred points on the hot surface, called active nucleation 

sites. 

The boiling so i mproves the efficiency of the heat transfer process 

that the amount of heat transferred now rises rapidly with only a small 

further increase of surface temperature. 

As the surface temperature is increased still further however , a 

point is reached (at point C Figure 1) where the heat flux reaches a 

maximum. The heat flux at which this condition occurs is called the 

"peak heat flux." The temperature difference at point C is called the 

"critical temperature difference." In this region the bubbles begin to 

coalesce to give a partial vapor blanketing. In the partial vapor 

blanketing regi on , (region CD in Figure 1) the heat transfer ls poor 

since the vapor is a poor heat conductor. The vapor blanketing becomes 

complete at point D Figure ! . The region CD Figure 1 ls cotr111only termed 

the transition region. From point D in Figure 1 on. beyond indefinitely 

to increasing temperature differencesp film boiling exists. In film 

boili ng a layer of vapor coats the hot surface and the heat is transferr ed 

thr ough the film by conduction and rad lat i on. 

Burnout 

Nucleate boiling from a soild surface takes place within a certain 

temperature difference range only. As the temperature-difference in-

creases p the heat transfer increasesp up to a point (point C in Figure 1). 

Thi s point ls called the burnout point. The existence of an upper limit 
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to nucleate boiling is of extreme importance to engineers. If for a 

short time the heat supplied to the heater exceeds the heat transferred 

to the boiling liquid 9 heat would accumulate in the heater surface and 

its temperature would rise . The heat source plays a dominant role in the 

burnout phenomenon~ i .e. the result of exceeding the critical temperature 
' 

difference. If the heat is supplied from a condensing vapor or from a 

hot flui d» the unsteady state is selfwregulating. Any decrease in hB 

causes an increase in the wall temperature and a decrease in the driving 

force from the solid surface to the boiling fluid. The heat flux decreases 

and a new steady state is established. This results i n a more or less 

smooth operation in the transition region of boiling. The heat transfer 

surface wi ll not be overheated and destroyed, but the operation conditions 

will be inefficient. 

If the heat is generated by chemical D nuclear or electri cal sources 

in which the heat flux is fixed» the results are entirely different. The 

unsteady-state condition resulting from slightly exceeding the crit ical 

temperature difference is not se l f controlled. If hB decreases, the 

surface temperature will incr ease » but this will have no effect on the 

heat flux. Heat will accumulate in the surface until it melts or until 

the value of hBAT increases sufficiently to equal the heat flux and 

re-establish a new steady state in the f ilm boiling regime. 



CHAPTER III 

SURVEY OF LITERATURE 

Bo:li Ung and Boi Ung Mechan:l.sms 

A survey of the Uterlli.t.ut'e reveals th.at t.he first information on 

boiling was published by Leidenfrost in 1756 (10~ 23). Lang in 1888 (22) 

had been awa:i::·e of the existence of mi1:m'l.mum and ma:id.umum heat flux rates 

in boll.Ung., But the existence of several regimes of boiling was fi·rst 

clee:rly dhiciJssed by Nuk:l.yama (29)o 

Photography, espec:i..dly wHh. lildgh speed cameras~ has cont:d.buted 

substantially to a better understanding of bolling mechanism (5 9 10, 20 1 

36). 

BonHlla and Perry 0) 9 Cic·yder and F:linalbrairgo (9) 1 Insinger and BUss 

(],8) iEl.iri\d oth.e:rs developed emp:It':llcl;ll)l ,:orrelciJi.t.i\on:s fat" nuc.le:S1te bollUng. 

'I'hese c0it·reh1Uons were de1t'i''ll'ed bsts:lic:a11y from dime.ns2remel aJ:11.alysh. 

The wa:chnlls authoir:'s are lln rmo agiteemellllt on the relatJ.ve hnportance of 

irat·11.ab1es hitwolved in b0Uh11g such as v11:scosU;y~ densllty 9 SIU\rface. tension 

.and templ.'lrail:ulC'e dli.ffet'ences. The abcive me:nti oned corre lat:i ons ha:ve met 

with p©or success. 

Nulcle.a.te bo11. Ulrllg 9 wMch is the most common type of boi Ung 9 has 

rece:i. ved much more atte:rnti«:m lln the literature compared to the other 

types of boilinge 

The two preved Ung approaches to the mechanism of nucleate bioi ling 

are those of Rohsenow and co .. workers (30 9 31 9 32) and Forster~ Zuber 

6 
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.an.d co-workers (11 9 12 9 139 14 9 37 ). 

Both approaches are theoretical in part and empirical in part. Both 

assume that during nucleate boiling heat flows from the hot solid surface 

into the l!quid and from thence to vapor bubbles. 

Accordi ng to Rohenow (30) the controlling step in nucleate boiling 

is the movement of bubbles at t he instant of breaking away from the hot 

surface . Th!s movement of bubbles is presumed to give agitation~ i m~ 

proving convection currents and consequently i ncreasing the heat transfer 

coefficient . 

Forster and 1"ber on the other hand have postulated that the size of 

the bubbles at the instant of their departure is of prime importance and 

the movement of the bubbles up into the bulk of liquid has little in-

fluence on the rate of heat transfer. 

Forstez and Greif ( 14) suggested that the bubbles act in a mechanical 

manner to pump superheated liquid into the colder region ~ and the heat 

transferred by each bubble qb io given by the following proportionalitys 

qb d\ CL ft R!ax f .tlT (1 ) 

(in which f is the bubble departur.·e f requency )o Jakob (21) observed the 

frequency of bubble fo:r·mation in nucleat~ boi HJng of a poo l of water ar.d 

found th~t t he time was in the order of 0.05 se~ . 

McFadden and Grassman (25) stud! d the relation between the bu bble 

frequency and db.met.er during boil ing of Uquid nitrogen and found exped· 

menta lly that the frequency of bubble departure from its site can be 

expressed by the following relationship& 

f D~ ~ 0.56 g~ (2) 

By a force balance on the departing bubb l e the following relation was 

obtained g 



8 

1, 
f 0 2 = constant (3) 

which agreed with the experimental results. 

Two usefu 1 corre lat1 ons for the nucleate boiling regime were given 

by Zuber (37) and by McNelly (26)o 

N.lmerous studies have been made recently on the peak heat flux due 

to the great development in nuclear technology (5~ 16 9 17)o 

Film boiling has received less attention in the literature than 

nucleate boiling. It is characterized by its slower action and better 

defined compared to nucleate boiling. Film boiling is the first type of 

boH:i.ng to be attackedl) with successl) from a theoretical standpo:hlto 

Boiling heat transfer in most of the film region is described fairly 

well by the equations of Bromley (2 9 3). Bromley derived a semi• 

theoretical equation for film boiling assuming laminar flow of vapor 

and heat transfer by conduction through the film. 

An experiment by Westwater (36) using a high speed motion picture 

camersi. showed that during fillm boi Ung no active centers exht and no 

vapor was generated on the soUd surface~ but all bubble.s were generated 

Boiling and Gravity Fields 

The study of the influence of a force field on boiling has been 

receiving some attention in the last few years and reports on that subject 

are found recently in the U teratureo 

Costello and Adams (8) ran a pool boiling test wherein the pool was 

rotated to produce radial accelerations normal to a flat surface up to 

40 go Their data for peak heat flux showedg 

( /A) ....<. ("'/g)o. 1s q p ... (4) 
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for a/ g ~ iO and~ 

(q / A) -<. (a/ g)0.25 
p 

(5) 

for a/ g > 10. Equation (5) is in fair agreement with the proposed 

burnout pred~ction equations suggested by Zuber (37). 

Ivey (19) conducted similar tests using a high speed centrifuge and 

found that equation (4) held over the range l ~ a/g ~ 160. 

Costello and Tuthill (7) tested the effect of acceleration on 

nucleate boiling under similar conditions, using heat fluxes from 

l OO jOOO BTU/hr-sq ft to 200 9 000 BTU/hrQsq ft and acceleration from 1 g 

up to 40 g. They observed an increase in AT with acceleration. These 

researchers concluded that the boili ng heat transfer coefficient is 

adversely affected by acceleration. 

Pool boiling experiments in accelerating systems have been conducted 

also by Merte and Cl.ar k (28) P using a centrifuge to produce acceleration 

up to 20 g. In this work temperature differences have been measured at 

various heat fluxes. Merte and Cl ark reported that the influence of 

acceleration was greatest at heat f luxes up to 50 0000 BTU / hr-sq ft ; 

within this rengej acce lerat ion decre~sed the ~T. But with higher heat 

fluxe sD from 50 0000 BTU/ hrQsq ft to 200 0 000 BTU/hr wsq ft a reversal of the 

effect of acceleration was observed 0 i.e. tiT increased with accelex·ation 9 

which was :l.n .agreement with the experiments of CcsteUo and Tu th.1 U (7). 

An experimental study of boiling in reduced and zero gravity f i elds 

have been conducted by Us:l.skin and Siegel (35). The effect of reduced 

gravity on nucleate boiling bubble dynamics in water has been studied by 

Siegel and Keshock (34) ; in t hese studies it was observed that the burnout 

heat flux decreased with decrease in gr avity. The existence of steady· 

state was uncertain in the experi ments of Usiskin and Siege l and their 
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c~nclusions should be :regarded as possibly questionable. 

A photographic study of boiling in absence of gravity has been 

conducted by Siegel and Usisk:11.n (33) and indicated that gravity field 

pll.ayed. a very important role in the removal of vapor from the surface. 

GamM U and Greene (15) stud:ll.ed heat tran:!.lfer and boi Ung burnout 

with subcooled water in vortex flow 9 where high values of acceleration 

were induced owing to the vortex motion of water. They found a marked 

improvement in heat transfet' behaviour and a great increase in peak heat 

flux with ac~eleration according to& 

(q/A) o< (a/g)0.43 - 0.48 
p 

(6) 

In Gambill and Greene 0s experiment the water was below its saturation 

tempe:ratureo Also~ extremely large effects of forced circulation were 

superimposed upon the boiH.rng and the increase in (q/A)P cannot be 

pos:il.tlively ascribed to acceleration effects only. 



CHAPTER IV 

THEORETICAL ANALYSIS OF BOILING IN A COIL 

In th:i.s chapter the ei,,,<llllysh of boH:lng :i.ns:i.de a coU w:ill be 

d:i.scussed. A theoret::i.ca.1 model wi 11 be :suggested introducing the effect 

of rad:i.al ac~e:U.eration on bo:i.1:i.ngo The discussion w:i.1:U. be confined to 

the case of condensing steam outs:i.de the coile 

The foUowling assumpt:n.l()Jns were made in this work g 

(1) Steady-state conditions existo 

(2) Om:imd:i.mens:l!.onall. flow iin the direction perpendicull.ar to the 

radius of the co:1.1. 

(3) The volume occupied by the 1:i.quid is negligible compared to 

that of the vapor. 

(4) The vaporr and the Uqu:i.cl flow at the same l:!lnea:r velocity .. 

A qualitative picture of the boil:i.ng :i.n a coil can be obtained by 

il.ntroduc:l.ng a new varil.,able P t1ru~ radhil ac~elerait:l.on acUng perpendkuhir 

to the surf ace .eind t,oward the center of the coi ll.e Because of the suib~ 

stantial d:i.fference betwee.n the dend I.ties: of the Uquld and the vap10Jr 

(iat modeira.te pressm;,es:) 9 the acc:elleieat:l!.1cm. acthng on the boiUng fluid 

m:i.ght influence the How amd heat transfer pattern$ as postulated :l.n the 

followlngo The radial acceleration induced by the fluid will establish 

radial transport of liquid in the direction of the radius vector of the 

coil and of vapor in the opposH.e direction .. 

The radial ac~eleration is given byg 
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(7) 

where U :lls the local linear velocity of the boiling fluid, or the 

tangential velocity~ and is given byg 

(8) 

H the Uquid and vapor are at the same veloc:!.tyo The dimensionless 

(9) 

For an exper:11.ment with srndlL pressure differences (<t/QV) can be taken 

as constant 9 and equation (9) can be w:rd. tten in the follow:l.ng form 9 

a /g c u2 2 
"" x 

r 0 
(10) 

and for a given inlet velocity U0 i, 

ar/g co 2 
"" x (11) 

Equation (H) shows that for a g:llven flow :rate the acceleration is 

a function of the vapor fraction (or quality) Xo The vapor fraction x 

increases conUnuous ly with the distance along the coil tubll.ng~ thus 

a /g is a mirnll.rnum at the begirm:llng of the boillll.ng section (x.., 0) 9 and r 

a maximum at the beginning of t:.ne vapo:r superheat:llng section (x ,,., i.o). 

In thh secUon the dM1.nge in a,/g is neglleg:i.blle compared to that of 

the boHing section and depends upon the change in the superheated~ 

vapor density. 

Flgure 2 shows the d:llrectiion of the radhlll acceleraUon and the 

position of the liquid and v1apor inside the co:1.1. 

The Effect of Radial Acceleration on BoiUng Inside a Tube 

Boiling heat transfer to a fluid flowing inside a tube 9 is affected 

by the various flow parameters and the quality~ as well as by the paraQ 
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Figure 3 illustrates the wide range of local conditions and different 

flow regimes which could exist along the length of a vertical tube. Figure 

4 shows an idealized boiling situation in a coil. 

In Figure 3 and Figure 4 a.re shown the d:l.fferences in flow pattern 

and heat transfer mechanism between a liquid boi Ung :l.n a straight tube 

and in a coil. The slug flow 9 annular flow and mist flow regimes pre• 

sumably do not exist in the coil due to the radial acceleration. 

Heat Transfer Mechanism i.n a Coil 

In the single phase flow sections there is no difference between the 

flow mechanism in a coil and that of a straight tube. 

As the liquid proceeds up the coilj subcooled nucleate boiling 

starts 9 and vapor bubbles form on the wall and condense in the liquid. 

In a straight tube~ the vapor bubbles will collapse and condense very 

close to the heated surfacej thus transferring their latent heat mainly 

to the liquid layer near the surface. In a coil~ it is assumed that 

the bubbles will be driven far away from the surface into the bulk of 

the liquid before condensing and thereby increase the transport of heat 

in the fluid. 

In the nucleate boiling region in a straight tube~ vapor bubbles 

are formed on the wall; some of them cling to the wa.U and some coalesce 

to form slugs~ As the amount of vapor increases, the velocity of the 

liquid-vapor mixture increases. In the coil on the other hand~ the 

radial acceleration increases the buoyant forces acting on the vapor 

bubbles in the direction toward the center of the coil. Consequently the 

contact time of the bubbles with the wall wi 11 be shortened and their 

critical diameter (:1.e~ the bubble diameter at :its departure) wi 11 be 
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smaHer. The bubbles w:1.U move in the direction of the radial acceller= 

ation as they detach from the surface 9 and two separate continuous 

phases will be fo:rmedo The radial acceleration increases continuously 

wlith inc:ceas,1.ng vapor f:ract::J.ono The heat transfer area between the hot 

Sc.llrface and t.he fluid increases for vapor and decreases for l:i.quido 

It is postulated that there are two basic mechanisms which take 

pa.I't in heat transfer for boi Ung of liquids with flow.. These are O) 

the ord.:l.r,1a:ry ma.c:rocomrective mechanism of heat transfer, and (2) the 

:m:l.crocori:vective mechan:i.sm .associated w:i.th bubble nucleat:i,on and growth. 

It is further postulated that the radial acceleration affects the macro= 

coniwec:Uon palt't by time de .. entrahliment of the dhpersed Uquid in the 

vapor phase and the va:i.ous flow characteristics 1 and the microconvection 

part due to the change l1.n vapor bubble cont.act time~ departure velocil.ty 

a.nd cdtical dhmieter. It is also assumed that the neat fluxes associa.ted 

with those two mechtu1Jisms are additive in their contdbution to the total 

boll Ung heat H1uxe The boiling heat flux is therefore obtained es the 

+ 02) 

A change in t:.be flow pattern 9 such as change hi fll:uid velL,rJ1dty 9 or deu 

entr'air.i\ment of the Hquid piartllcles from the vapot' phasev wlllU affect the 

macrocoirnvect:ion heat flux and consequently the total boli.Hng heat flltrn.o 

SimUar1y 9 a change in the boiling cha:racter:i.st:ics such. as a change fm the 

hot su:rfa.ce textu:re 9 surface tension of the Uquid 9 vapor bubble she ,and 

velodty at d('.!parture f:eom the hot surface:,., and vapor bubble frequency 

wUl affect the mkroconvection heat flux and consequently the total 

boiling heat fhll:¥:o The boiling of a Hqu:ld flowing inside a tube at the 

annular part is an example of boiling due to rnacroconvection heat transfer 
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only. Pool boiling on the other hand 9 is an example of boiling due to 

microconvection heat transfer only. Boiling heat transfer in the nucleate 

boiling portion for a liquid flowing inside a heated tube is an example 

of a combination of macro• and microconvection boilingo 

At low quality the deQentrainment effect and its influence on the 

macroconvective part is smaller than at high quality.. Whether (q/A)mic 

woulLd increase or decrease due to the radial acceleration li.mposed on the 

boiling liquid is to be determinedo 

At high quality 9 the de-entrainment is of great advantage$ In the 

mist flow region and the upper part of the plug flow (see Figure 3) the 

vapor blankets the wall almost completely 9 and consequently the heat 

transfer is poor. The centrifugal force will push the dispersed liquid 

particles to the hot surface improving the heat transfer. 

Since two separate phase flow is foreseen the wall temperature on 

the vapor side is therefore expected to be higher than that on the liquid 

side 9 referring to Figure 4o T2 > T1 and the vapor close to the wan 

---'--­Flow of , · 
heat 

Vapor· 

Flow of 
~ heat 

Figure 5. Temperature Difference in a Cross-Section of the Tubing 
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will be superheated. The difference between T2 and T1 might be great 

when usirng fixed heat flux heater. It should be mentioned that in such 

a case heat wllll flow from the high temperature area of the tubing to the 

low tempe1eature area as shown in Figure S. Useful information on th.is 

point would be obtained by measuring the temperatures T1 and T2 along 

the coi 1. 

Boiling Heat Flux Determination 

The coil can be divided into the following three sections~ according 

t:o the state of the fluidg preheating section~ boiHng section and vapor 

superhe~ti~g sectiono By heat balance the heat loads qPHj qB and qSH can 

be evaluated. There is no way to calculate the heat transferred by 

subcooled boiling and it is included in the preheating heat load. The 

boiling section is taken as the section in which the liquid boils regardless 

of the spec:l.fic boiling mechanism which might take place in the va:ri ous 

parts of the boiU.ng section. As stated previously~ the heat. transfe:r 

area between the liquid and the wall surface changes continuously as the 

boHi ng mixture progresses up the coil o In evaluating the boi Ung heat 

flLux 9 the apparent area~ i.e. the entire inner surf.ace of the co:U :l.n the 

boiUng sect:i.on wHl be considered. 

The liquid preheating heat transfer area 9 APH and the vapor superw 

heating area ASH can be calculated using the respective apparent ovet'-aJl 

mean temperature differences between the steam and the liquid or vaporo 

The coefficients can be calculated using the Sieder··Tate and Dittus­

Boelter correlat:lonso 

The boiling heat transfer area A8 and thence the boiling heat flux 

(q/A)B is then obtained by subtracting APH and ASH from the total coil 
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inner surface (see Appendix B)o 

Experimental Testing of the Theoretical Model 

In tM.s wcr.tk only part of the assumptions outlined in this ch.apter 

cari be tested. There is no means to check the effect of the radial 

accelera.t:l.ori or,\ (q/A)m:ic with the available apparatus. Sin.ce this effect 

,ls beUevE:d. to be smaH compared to the effect of the radial acceleration 

on (q/A) ~ only the over-all change in boiling heat flux will be ex.-mac 

aminede 

It is impossible to differentiate between the mixture velocity and 

the radial accelerat:l.on 9 because their effects on boi Ung are supet':l.mposed, 

ther·efore the boiling heat fluxes will be correlated for a/g and for G 

separately. The temperature difference between the tube wall on the 

vapor side~ T2 and that on the liquid side)) T1 (see Figure 5) will give 

a strong indication of the existence of two separate-phase flow. The 

existence of two separated phases flowing inside the coH ha key 

a.ssumption in this model (see Figure 4) since deQent:rai:n:ment wi 11 take 

place only when t.wo separated phases exist. At high qua.Jl:i.ty the Uquid 

def:i.cie:ncy zone is greater than at low quaHty~ and consequently the dea 

entrainment effect is expected to be more substantial :l.n the formeiq 

therefore measurements of boiling heat fluxes wi H be conducted in two 

sepa:.cate se:r:l.es~ i.e. low and high quaHty. The theoretical model pre· 

sented in this chapter gives a qualitative model of boiling of a fluid 

inside a coil. In order to verify this model quantitatively a more 

sophisticated apparatus than used in this work is required~ (see Chapter 

V and recommendations in Chapter VIII). The experimental procedure and 

measurements are given in details in Chapter VI. 



CHAPTER V 

EXPERIMENTAL APPARATUS 

The test apparatus was constructed to investigate the behaviour of 

boi11ng water and n~hexane in a coil using condensing steam as the heat 

sour·ce. 

The ~pparatus consisted of a boiler shell~ a copper coil for the 

test section~ a shell and tube type condenser 9 Uquid sux·ge tankv 

connecting piping and dry steam supply. A flow diagram. is shown in 

Figure 6. 

~oiler !hell (see Figure 8 and Figure 9) 

mater1elg steel 

dimensionsg height 3 feet l•l/16 inches 

o. D. 10~3/4 inches. 

The sheU was supported by a steel ft:ame 9 see F:!.gu·re 9. 

Thermocouple 

tublngg 1/2 inch BWG type K (soft) copper. 

total tubing lengths 23 feet lO•l/4 Inches 

coil dimenslonu out.side diameter '7.,.1/8 Inches 

height 2 feet 6 Inches 

Twelve copper .. constantan thermocouples were placed in pairs, at 

seve·x-al points dong the tubing (see Figure 7). T.he thermocouple 
I 

pairs were 20 inches apart. One of the pair was soldered on the 
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inside of the coil (called vapor side) and the other on the outside 

of the coil (called liquid side). Each thermocouple was placed into 

a small groove made in the tubing wall. The depth of the groove 

was about one-half of the wall thickness. 

The thermocouples were copp~r~constantanj gauge 20, Servo-Rite 

No. T24·2·504, Claud s. Gordon Co., insulated with double nylon 

coating. The thermocouples were connected through two selector 

multi-switches to a portable Leeds and Northrup potentiometer cat. 

no. 8686. 

Auxiliary Equipment 

Pump: A centrifugal pump driven by an 1/8 HP electric motor forced 

the test fluid through the coil. 

Container: A five-gallon container was used to hold the liquid 

being circulated (see Figure 13h 

Condenser: A 1:1 shell and tube exchanger using tap water as the 

cooling fluid in the tubes, condensed and subcooled the test fluid~ (see 

Figure 13). 

· Pressure gauge: A bourdon type pressure gauge» 0 psig to 60 psig 

range, was used to measure the pressure at the boiling liquid inlet~ 

(see Figure 10). 

Flow meters: A rotameter was used to measure the test liquid flow 

rate. An orifice and a U-tube manometer were used to measure cooling 

water flow rate to the condenser, (see Figure 9). 

Thermometers: Eight mercury thermometers with temperature range of 

25 degrees F to 240 degrees F were used to record the inlet and outlet 

temperatures of boiling liquid, steam, condensate and condenser cooling 



COOLING WATER 1X1 • , 

STEAM~ 

• -:- TEMPERATURE CHECK-POINT 

Ci) - COi L 

@- BOILER SHELL 

@ - CONDENSER 

@ - BOILING FLUID TANK 

@ - FLOW METERS 

@ 

@ - CENTRIFUGAL PUMP 

(Z) - PRESSURE GAUGE 

@) -DEMISTER 

®) - STEAM TRAP 

(@ - VENT 

Figure 6. Flow Sheet Diagram. 

@ ® 

@) 

N 
Vo) 



FLUID OUT 

It. 
THERMOMETER ~. 

3011 

Ji=. THERMOMETER 

.·~~·· 

~7J. .· 
8 

•-THERMOCOUPLE CONNECTION 

Figure 7. The Coi I and the Thermocouple Connections 
~ 



Figure 8. General View of Apparatus 
and Auxiliary Equipment. 

Figure 9. Boiler Shell, Steam Demister 
and Flow Meters • N 

Vl 



Figure 10. Instrument Panel Figure 11. Boiler Shell Insulation 
and Thermocouple Wiring. 

l\) 
a-



Figure J2. Piping. 

Figure 13. Boiling Fluid Tank and Vapor 
Condenser. 

l\) 
....;J 



28 

water. 

Insulations The shell boiler was insulated by two layer,s of fiber 

glass mats and insulating cement, (see Figure 11). The condenser and 

all the pipes were insulated with fiber glass tape, (see Figure 12). 



CHAPTER VI 

EXPERIMENTAL PROCEDURE 

The rotameter, the orifice flow meter and the thermocouples had 

been previously calibrated (see Appendix D). 

Start a Up Procedure 

Before beginning the experimental work the system was thoroughly 

checked for leakage. When the apparatus and all the auxiliary instruments 

were found to function properly, the system w.as operated for three suc• 

cessive days in order to age the copper tubing in an attempt to reduce 

variation in surface texture and scale deposit which might affect the 

boiling inside the coil and the condensation 'of steam outside it. The 

heat losses of the system were estimated by heating up the system to the 

working temperature in absence of the boiling liquid and measuring the 

amount of condensate per unit time. 

After the s'team valve had been opened and the system had been heated 

for an hour the condenser cooling water valve and the· boiling liquid 

valve were opened. The cooling water flow was adjusted to get at least 

10 degrees F subcooled liquid in the case of n•hexane for precaution 

reasons. 

After the boiling liquid had been flowing for half an hour the 

system was checked for steady-state as ~ollowing: flows and temperatures 

were recorded every two to three minutes for the next 30 minutes. The 
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steady-state criterion was: no variation in at least six successive sets 

of measurements during a period of at least 15 minutes, (after the system 

had been running for 45 minutes). 

All measurements reported in this thesis were recorded after steady· 

state condi t.i ons had been obtained. 

Measurement and Data Recording Procedure 

The following measurements were made and recorded 

(a) General measurements: lo Time 

2. Room temperature 

(b) Boiling liquid: 1. Flow rate 

2. Temperature at boiler inlet 

3. Temperature at boiler outlet 

4. Temperature at condenser inlet 

5. Temperature at condenser outlet 

6. Temperature of liquid in tank 

(c) Cooling water: 1. Flow rate 

2. Temperature at condenser inlet 

3. Temperature at condenser outlet 

(d) Heating steam: 1. Temperature of steam at evaporator inlet 

2. Temperature of condensate at evaporator 

outlet 

3. Weight of condensate per hour 

(e) Pressure: 1. Pressure of the boiling liquid at evaporator 

inlet 

(f) Wall temperatures of the coil i 1. The wall temperatures along 

the wall were measured by the thermocouples and 
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the 24 potentiometer readings were recorded. 



CHAPTER VII 

EXPERIMENTAL RESULTS AND CORRELATED DATA 

The experimental program was devised to investigate the boiling of 

n-hexane and water in a coil heated by condensing steam outside the coil. 

A summary and discussion of the results are presented in this chapter. 

It was discussed in Chapter IV how the selfainduced radial accelerQ 

ation perpendicular to the hot surface might affect the boiling due to 

the de-entrainment of the liquid and the change in the boiling character• 

istics. The results given in the following section will show the de· 

pendence of liquid out let temperatures, wall temperature distribution, 

and boiling heat fluxes upon the liquid flow rates and the linear 

velocities, In the section after the following the data will be correlated 

in the light of the theoretical model outlined in Chapter IV. 

Experimental Results 

Figure 14 shows the increase of outlet temperatures with the increase 

of flow rate for n-hexane. 

In Figure 15 is shown the increase of outlet temperatures v.1ith the 

increase of water flow rate in the range of 5.1 lbs/hr up to 17. 5 lbs/hr 

and complete vaporization, and for water flow rate in the range of 34.5 

lbs/hr up to 113.5 lbs/hr and partial vaporization. 

Figure 16 and Figure 17 show the relationship between boiling heat 

fluxes based upon the outside surface of the boi Ung section of the coil 
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and flow rates of n-hexane and water, (see Appendix B for a sample 

calculation for boiling heat fluxes). 
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Figure 18 shows a typical temperature profile along the coil wall 

for run no. 4,(see also Appendix A for tabulation of temperature dis­

tribution data). The heat balance on the boiling liquid, heating steam 

and cooling water are given in Tables III and IV in Appendix A. 

The pressure at the boiling liquid inlet increased slightly with 

flow rate. The maximum pressure recorded was 6.0 psig with n•hexane and 

water at high flow rates, (up to 113.S lbs/hr), the outlet pressure was 

nearly atmospheric. The pressure data are plotted versus flow rates in 

Figure 22 and Figure 23 and given in Table X in Appendix A. 

Correlation of Data 

The theoretical model described in Chapter IV was formulated to 

relate the combined influence of the de-entrainment of the liquid and the 

change in boiling characteristics to the radial acceleration acting on 

the boiling liquid, 

Figure 19 shows the dimensionless radial accelet·a.Uon versus quaUty 

for n•hexane. and water. 

In Figure 20 are shown the boiling heat fluxes for n .. hexarAe versus 

dimensionless acceleration computed assuming 50 per cent quality. Figure 

21 shows the same for water (Series D). 

Experimental Errors 

There are two kinds of error involved, those due to uncertainty in 

the measurements, and inherent error involved in the particular method 

of calculation used. The experimental errors in the various measurements 
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Figure 19. Dimensionless Radial Acceleration Versus Per Cexit of Vapcr 
for n-Hexane and Water 
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are the following: 

Cooling water: ± 30 lbs/hr 

N•hexane flow rate: ! 0.3 lb/hr 

Water flow rate: ! 0.3 lb/hr 

Mercury thermometer: ! o.s degree F 

Thermocouple: ± o.os degree F 

Inlet pressure: ! 0.25 psi 

Condensate: 0.110 lb/hr 
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The absolute maximum error interval as a result of the above experi~ 

mental error are: 

Steam enthalpy: + 105 BTU/hr -
qB for n•hexane : ! 42.S BTU/hr 

qB for water: ! 291 BTU/hr 

Inherent error. The heat transfer areas for preheating and superg 

heating were calculated via the Siede.r-Tate correlation (for laminar 

flow Re< 2100) and Dittus-Boelter correlation for turbulent flow. The 

accuracy of those correlations are! 25 per cent. This introduces an 

uncertainty in all the boiling heat transfer areas AB and consequently in 

the boiling heat flux, (q/A) 8• 



CHAPTER VIII 

DISCUSSION OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS 

It has been determined experimentally that when liquid n•hexane and 

water flow under boiling conditions through a coiled copper tubing heated 

by steam the boiling heat flux increased with flow rate fox· n ... hexane in 

the range of 4.2 lbs/hr to 37.S lbs/hr and for water in the range of 5.1 

lbs/hr to 17.S lbs/hr. For water at flow rates range of 34.5 lbs/hr to 

113.S lbs/hr the change of boiling heat flux did not follow the same 

pattern. 

It was also shown that for then-hexane runs and for water runs :in 

the range of 5.1 lbs/hr to 17.5 lbs/hr at 100 per cent quality the temperM 

ature of the superheated vapor leaving the coil increased with increase 

of flow rate. Temperature differences between the vapor side and liquid 

side, though small were recorded for all the runs 9 (see Appendix A). 

The above might indicate strongly that two separate phase flow does exll. s:t 

in boiling in a coil, 

Sufficient data are not available from the present work to make 

generalized conclusions as to the role of the radial accelerat:ion on 

boiling at low quality, nor to obtain a quantitative picture for high 

quality. However the substantial increase of boiling heat fluxes at 

100 per cent vapor, and the increase of superheating- temperatures with 

increase of flow rate for n•hexane and water runs strengthen the assumption 

that de-entrainment of the. dispersed liquid in the liquid deficient zone 
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is of prime importance especially at high quality. 

The relatively small boiling heat fluxes in water runs of series 

"C," might be explained by the pressure drops (9.0 psig to 11.0 psig) 

in these runs, (see Table K ). The higher pressure tends to increase 

the saturation temperature and thus suppresses the boiling. 
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It is the feeling of the experimenter that at very high radial 

acceleration and moderate vapor quality, the influence of the acceleration 

on the boiling characteristics (such as vapor bubble diameter and velocity 

at its departure from the wall) predominates~ and that the boiling heat 

transfer in this case is adversely affected by the acceleration. 

In nucleate boiling the increased buoyancy force will increase the 

initial velocity of the bubble but will decrease its size at the departure 

from the hot surface. Thus there should be some optimum acceleration from 

the standpoint of heat transfer behavior at which the net impo:rovement 

of boiling heat transfer is maximized, 

It can be concluded that the main advantage of radial acceleration 

in boiling inside a coil is through changing the flow characteristics 

rather than the boiling ch.aracteristics. 

If the increase in boiling heat flux at 100 per cent vapor quality 

is attributed solely to the increase in radial acceleration~ then the data 

obtained indicate the following: 

For n-hexane : 

(q/A)B ~ (a/g)o. 770 u 0.835 

For water: 

(q/A)B ~ (a/g)o. 620 

In terms of flow rates the data indicate: 

For n-hexane: 



(q/A)B o< (G)l.545 • 1.580 

For water in flow rate range of 5.1 lbs/hr to 17.S lbs/hr: 

(q/A) ~ (G)l.265 
B 

Recomrnendati ons 

It is recommended that the following studies will be carried out 

in the future: 

(1) Photographic and visual study of boiling in a coil using an 

electrically-heated coil made out of electrical-conductive 

glass (manufactured by Corning Glass Works, Corning, N. Y.) 
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as heat' source. and a dyed liquid as the test fluid. In this 

study the various flow regimes and the two-separate phase flow 

could be observed and photographed. 

(2) An experiment using an electrically-heated coil as heat source. 

In this kind of experiment the local heat fluxes can be 

measured accurately. 

Industrial applications of an apparatus of this kind or similar 

might be considered after the technical and economic aspects have been 

studied thoroughly. 
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TAB~ I 

FLOW RATES AND TEMPERA.TURES DATA FOR N•HEXANE 

Run Flow Rate Li~uid Inlet Tin Tout Ts team Tsteam ·Tout 
No. lbs/hr Veloci ty.;ft/sec OF OF . 0 OF F 

Series A: 

l 4.2 0.0188 83 156 242 86 

2 9.0 0.0403 88 216 242 26 

3 15.3 0.0685 98 224 244 20 

4 19.8 0.0887 94 224 242 18 

5 32o4 0.1450 99 226 242 16 

6 37.5 0.1680 105 229 240 11 

7 42 ,'t 0. J.885 * 99 234 242 8 

Series B: 

8 8.4 0.0339 108 218 242 . 24 

9 13.6 0.0609 111 225 242 17 

10 2.2. 5 0.1010 109 ,.226 240 14 

11 32.4 0.1450 116 228 242 14 

12 38.7 0.1730 114 230 240 10 

~'<Approximately 
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TABLE II 

FLOW RATES AND TEMPERATURES DATA FOR WATER 

Run Flow Rate Liquid Inlet Tin T Ts5eam T -T 
out steam out 

No. .~bs/hr Ve loci ty•ft/sec OF OF F OF 

~~._'-, 
Series C: 

13 34.5 0.1030 172 212 240 28 

14 50.5 0.1514 185 212 240 28 

15 63.0 0.1890 164 212 242 30 

16 78.0 
. 

0.2340 166 212 242 30 

17 113.5 0.4040 168 212 240 28 

Series D: 

18 5.1 0.0153 180 216 244 28 

19 7.2 0.0216 154 218 242 24 

20 10.2 0.0303 154 222 240 18 

21 14.4 0.0431 168 223 240 lL 7 

22 17.5 0.0525 165 224 240 16 
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TABLE III 

HEAT BALANCE DATA FOR N-HEXANE 

Run Flow Rate Enthalpy - BTU/hr % Vapor 
No. lbs/hr Hexane Steam Cooling Water in Outlet 

Series A: 

1 4.2 510 49.8 

2 9.0 1970 2190 100 

3 15.3 3310 2975 100 

4 19.8 4531 4200 100 

5 32.4 7010 6545 100 

6 37.S 8025 7835 100 

7 42 ,'r 100 

Series B: 

8 8.4 1724 2260 2170 100 

9 13.6 2380 3030 2960 100 

10 22.s 4720 4940 4760 100 

11 32.4 6675 6300 6340 100 

12 38.7 8070 7920 7720 100 

'l':Approximately 
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TABLE IV 

HEAT BAI.ANCE DATA FOR WATER 
'.'· 

Run Flow Rate Enthalpy - BTU/hr % Vapor 
No. lbs/hr Water St,eam Cooling Water in Q.ltlet 

Series C: 

13 34.5 16,000 15,300 44~0 

14 50.5 14, 500 14,370 27.0 

15 63.0 16,600 16,150 22.2 

16 78.0 16,200 15,850 16.6 
' 

17 113. 5 16,700 17,020 10.5 

Series D:: 

18 5.1 5, 130 5,250 5,200 100 

19 7.2 7,440 7,600 7,100 100 

20 10.2 10, 572 10,700 10,800 100 

21 14.4 14,730 14,900 14,500 100 

22 17.5 17,976 18, 100 18, 100 100 
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TABLE V 

HEAT TRANSFER DATA··N·HEXANE 

Run Flow Rate Liquid qPH qSH qB AB (q/A)B 
No. lbs/hr Re Pr - BTU/hr BTU/hr BTU/hr sq ft BTU/sq ft hr 

Series A: 

1 4.2 198 4.25 207 303 3.126 97.2 

2 9.0 426 4.24 415 250 1,305 2.490 525 

3 15.3 725 4.20 605 485 2,220 2.170 1,022 

4 19.8 936 4.21 837 624 2,870 1.878 1,520 

5 32.4 1,530 4.20 1,260 1,050 4,700 1.420 3,310 

6 37.5 1,780 4.10 1,310 1,275 5,440 1.110 4,900 

Serie_s B: 

8 8.4 397 4.10 266 240 1,218 2.571 473 

9 13.6 645 4.09 420 435 1,975 2.287 865 

10 22.5 1,072 4.10 728 722 3,270 1.898 1»730 

11 32 •. 4 1,530 4.00 890 1,085 4,700 1. 545 3,040 

12 38.7 1,830 4.00 1, 115 1,335 5,620 1.130 41)980 
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TABLE VI 

HEAT TRANSFER DATA··=WATER 

Run Flow Rate Liquid qPH qSH qB AB (q/A)B 

No. lbs/hr Re Pr BTU/hr BTU/hr BTU/hr SQ ft BTU/sq ft hr 
--rec :r:= = , 

Series Cg 

13 34.5 19 370 1.75 149 540 3.120 49660 

14 50.5 29070 1.70 139020 2.990 49360 

15 63.0 29300 1.ss 13A30 2. mo 69400 

16 78.0 2,380 1.85 12A30 2.,435 59120 

17 113.5 49120 1.85 U. ~450 2.630 49360 

Series Dg 

18 5.1 191 1.88 175 5 49950 :3~200 l "545 

19 7.2 256 2.00 M,.o 20 6 9 980 3.050 29280 

20 10.2 36!+ 2.00 626 46 99900 20740 39510 

21 14.4 522 1.85 678 n 13 9 980 2 .. 580 v.: 
.I 

;f2 17 .5 635 1.84 880 96 '! "j 
,!!., II$> 2.370 7:; mo 

c··r·-:r···-~:<Qt'~-=~== :::C.::JI:!::: ·-~= ·-=·-·...a~ ·~=s::..-.:ca=::c:--·· ·~·-·rr:-:r ---~ 
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TABLE VII 

RADIAL ACCELERATION AND BOILING HEAT FllJXES FOR N·HEXANE 

Run No. Flow Rate a /g 
r (q/A)B 

lbs/hr @ 50% Vapors BTU/sq ft hr 

Series Ag 

1 4.2 97.2 

2 9.0 1.95 525 

3 15.3 5.60 1,022 

4 19.8 9.46 1,520 

5 32.4 25.20 39310 

6 37.5 33.90 4~900 

Series Bg 

8 8.4 1.38 473 

9 13.6 4.44 865 

10 22.5 12.20 1~730 

11 32.4 25.20 39040 

12 38.7 35.85 4~980 
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TABLE VIII 

RADIAL ACCELERATION AND BOILING HEAT FLUXES 
FOR WATER AT PARTIA.L EVAPORATION 

Run No. Flow Rate Average % a /g 
r (q/A)B 

lbs/hr Vapors @ Ave. Vapors BTU/sq ft hr 

Series C: 

13 34.5 22.0 138 4,660 

14 50.5 13.50 112.8 4~360 

15 63.0 11.10 118 6,400 

16 78.0 8.30 101.2 5~120 

17 113. 5 5.25 120.5 4~360 

TABLE IX 

RADIAL ACCELERATION AND BOILING HEAT FLUXES 
FOR WATER AT TOTAL EVAPORATION 

R:un No. Flow Rate ar/g (q/A)B 

lbs/hr @ 50% Vapors BTU/sq ft h;; 

Series D: 

18 5.1 J.6. 2 1, 545 

19 7.2 30.1 2,280 

20 10.2 61.5 3~510 

21 14.4 124.,5 5iA30 

22 17.5 185.5 7~180 
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TABLE X 

PRESSURES AT BOILER INLET 

N~Hexane Water 
Run No. Pressure psig Run No. Pressure ps:i._g_ 

1 0.20 13 9o0 

2 1.20 14 lOoO 

3 2.00 15 10.0 

4 2.30 16 10.0 

5 5.10 17 11.0 

6 5.30 18 LS 

7 19 2.0 

8 1.0 20 3o0 

9 1.75 21 5.0 

10 2.50 22 6.0 

11 s.oo 
12 6.00 



Thermocouple 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Thermocouple 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
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TABJ..,E XI 

THERMOCOUPLE READING ALONG THE COIL 

n-Hexane 

Series A 

Thermocouple Reading• mv 

Run No. 1 Run No. 2 Run No. 3 
Liquid Vapor Liquid , Vapor Liquid Vapor 
Side Side Side Side Side Side 

5.048 5.048 4.956 4.968 , 4.980 4.980 
5.048 5.048 4.960 4.973 4.986 4.986 
5.040 5.040 4.965 4.990 4.990 4.995 
5.038 4.976 4.994 
5.053 5.030 4.979 4.996 5.000 5.002 
5.030 5.030 4.984 5.000 s.002 5.004 
5.028 5.028 4.990 s.010 5.004 5.006 
5.023 4.995 5.014 
5.019 5.000 5.019 
5.015 5.015 5.002 5.034 5.024 5.025 
5.014 5.014 5.009 5.036 5.030 5.030 
5.009 5.015 5.035 

Run No. 4 Run No. 5 Run No. 6 
Liquid Vapor Liquid Vapor Liquid Vapor 

Side Side Side Side Side Side 

4.908 4.950 4.925 4.936 4.954 4.958 
4.914 4.955 4.930 4.994 4.960 4.962 
4.918 4.970 4.942 4.960 4.965 4.970 
4.926 4.950 4.968 
4.930 4.975 4.960 4.964 4.973 4.974 
4.935 4.979 4.968 4.970 4.975 4.975 
4.942 4.984 4.973 4.980 4.981 4.985 
4.948 4.985 4.985 
4.955 4.980 4.992 
4.960 4.990 4.984 4.990 4.996 4.998 
4.966 4.995· 4.988 4.995 5.000 s.ooo 
4.972 5.000 4.004 
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TABLE XI (continued) 

Series A Series B 

Thermocouple Run No. 7 Run No. 8 Run No. 9 
No. Liquid · Vapor Liquid Vapor Liquid Vapor 

Side Side Side Side Side Side 

1 4.972 4.974 4.984 4.997 4.986 L~. 990 
2 4.975 4.977 4.992 s.010 4.994 s.ooo 
3 4.980 4.985 4.997 5.030 5.010 5.015 
4 4.985 5.004 5.004 
5 4.995 5.012 5.014 5.025 5.014 s.020 
6 5.000 5.025 5.019 5.029 5.018 5e025 
7 5.006 5.036 5.025 5.040 5~022 5. 0lf0 
8 5.015 5.030 5.030 
9 5.020 5.038 5.036 

10 5.026 5.042 5.044 5.050 5.045 5.050 
11 5.035 5.048 5.050 5.054 5.050 5.056 
12 5.039 5.056 5.055 

Series B 

Thermocouple Run No. 10 Run No. 11 Rum No. 12 
No. Liquid Vapor Liquid Vapor Liquid Vapor 

Side Slide Side Side Sfld1e Side 

1 4.894 4.898 4.980 4.980 t'.i •• 740 t+. '742 
2 4-.905 4.910 L~.983 4-.98.5 L, .• 7,~.8 4,750 
3 4.910 4.916 l~.990 s.002 l: .• 7 55 4.764 
4 4.930 4.992 49761 
5 4.942 4.950 4.997 5.,010 li.172 4-~ 788 
6 4.948 Li .• 9 54 5.000 s.020 l~. 785 ~-.802. 
7 4.955 4.960 5.006 5.030 l+. 806 4.812 
8 4.962 s.012 ,!i,.820 
9 4 .. 975 5.019 4.890 

10 4.988 4.992 5.025 5.040 ~-.932 4.942 
11 4.995 4.998 5.034 5.049 4. 960 4.970 
12 5.000 5e04Q 4.965 
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TABLE XI (continued) 

Water 

Series C 

Thermocouple Run No. 13 Run No. 14 Run No. 15 
No.· Liquid Vapor Liquid Vapor Liquid Vapor 

Side Side Side Side Side Side 

1 4.935 4.950 4.945 4.960 4.950 4.965 
2 . 4.945 4.955 4.954 4.963 4.958 4.970 
3 4.945 4.958 4.970 4.975 4.975 4.980 
4 4.945 4.970 
5 4.945 4.958 4.967 4.965 4.965 4.985 
6 4.950 4.963 4.960 4.965 4.970 4.987 
7 4.950 4.963 4.965 4,975 4.980 40987 
8 4,950 4.975 4.980 
9 4.950 • 4.975 4.980 

10 4.950 4.965 4.975 4.990 4~980 4.990 
11 4.970 4.978 4.985 4.990 4.990 4.995 
12 4.970 4.987 4.990 

Thermocouple Run No. 16 Run No. 17 
No. Liquid Vapor Liquid Vapor 

Side Side Side Side 

1 4,937 4,940 4.940 4,950 
2 4,940 4.952 4.~50 4.970 
3 4.955 4,965 4.968 4.975 
4·' 4,952 4.965 • 
5 4.945 4,965 4,960 4,975 
6 4,940 4,965 4,960 4,975 
7 4.950 4,968 4.965 4,977 
8 4,970 • 4.977 
9 4,980 4.980 

10 4.986 s.002 4.980 4.990 
11 4.995 5.014 4.983 4,995 
12 5.000 4.985 
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TABLE XI (continued) 

Series D 

Thermocouple Run No. 18 Run No. 19 Run No. 20 
No. Liquid Vapor Liquid Vapor Liquid Vapor 

Side Side Side Side · Side Side 

1 5.095 5.110 4.960 4.968 4.970 4.976 
2 5.093 5.100 4.970 4.975 4.965 4.970 
3 5.092 5.095 4.982 4.990 4.962 4.968 
4 5.090 4.985 4.960 
5 5.085 5.090 4.985 4.993 4.960 4.965 
6 5.080 5.085 4.987 4-.995 4.952 4.960 
7 5.080 5.085 4.985 4.990 4.950 4.960 
8 5.075 4.980 4.942 
9 5.070 4.975 4.940 

10 5.065 5.079 4.985 4.990 4.935 4.945 
11 5.065 5.074 4.990 s.ooo 4.930 4.945 
12 5.065 s.012 4.930 

Thermocouple Run No. 21 Run No. 22 
No. Liquid Vapor Liquid Vapor 

Side Side Side Side 

1 4.960 4.970 4.952 4.965 
2 4.965 4.967 4.950 4.960 
3 4.960 4.965 4.945 4.957 
4 4.960 4.942 
5 4.952 4.954 4.935 4.954 
6 4.950 4.952 4.930 4.950 
7 4.945 4.950 4.930 4.950 
8 4.940 4.928 
9 4.933 4.925 

10 4.930 4.943 4.923 4.938 
11 4.930 4.944 4.920 4.935 
12 4.925 4.918 

Ranarl<: No response from thermocouples No. 4, 8, 9, and 12 on the vapor 
side. 



No. 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

No; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
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TABLE XII 

TEMPERATURE DISTRIBUTION ALONG THE COIL 

n-Hexane 

Series A 

241.30 241.30 o.oo 237.93 238.30 0.47 
241.30 241.30 o.oo 238.00 238.48 o .• 48 
241.00 241.00. o .. oo 238.17 239.U 0.94 
240.92 238.52 
240.82 240.62 -0.20 238.70 239.32 0.62 
240.62 240.62 o.oo 238.89 239.48 0.59 
240. 54 240.54 o.oo 239.11 239.85 o.74 
240.35 239.30 
240.20 239.48 
240.05 240.05 o.oo 239.58 240. 77 1.19 
240.02 240.02 o.oo 239.76 240.85 1.09 
239. 76 _ 240.06 

Run No. 3 Run No. 4 
ui it' 1 = 0.0685 ft/sec uinitial a 0.0887 ft/sec on ia o o 0 0 0 T - F T - F (T -T )- F T - F T • F (T ·T )- F L V V L L V V L 

238.74 238.74 o.oo 236.04 237.62 1.58 
238.96 238.96 o.oo 236.25 237.81 1.56 
239.11 239.30 0.19 236.39 238.38 1.99 
239.28 236.68 
239.48 239.58 0.10 236.85 238.50 1.65 
239.58 239.63 0.04 237.07 238.70 1.63 
239.63 239.70 0.07 237.31 238.89 1.58 
240.02 237.54 
240.20 237.81 
240.37 240.42 o.os 238.00 239.11 1.11 
240.62 240.62 238.22. 239.30 1.08 
240.82 238.47 



64 

TABLE XII (continued) 

Run No. 5 Run No. 6 
Uinitial = 0.1450 ft/sec Uinitial = 0.1680 ft/sec 

No. T °F L. T °F v· (T ·T )-°F V L T -°F L T -°F v (T ·T )-°F V L 

l 236.67 237.08 0.41 237078 237.95 0.17 
2 236.85 237.38 0.53 238.00 238.11 0.11 
3 237.31 238.00 0.69 238.17 238.38 0.21 
4 237.62 238.30 
5 238.00 238.15 0.15 238.48 238.49 0.01 
6 238.30 238.38 0.08 238.50 238.50 0.45 
7 238.48 238.74 0.26 238. 72 239.93 1.21 
8 238.93 238.93 
9 238.74 239.15 

10 238.89 239.11 0.22 239.28 239.36 0.08 
11 239.04 239.30 0.26 239.48 239.48 o.oo 
12 239.48 !" 239.53 

Run No. 7 
01nitial = 0•1885 (approximately) 

No. T -°F T -°F (Tv-TL).oF L V 

l 238.40 238.46 0.06 
2 238.50 238.56 0.06· 
3 238.74 238.93 0.19 
4 238.93 
5 239.30 239.93 0.63 
6 239.48 240.42 0.94 
7 239.70 240.85 1.15 
8 240.06 
9 240.24 

10 240.42 241.06 0.64 
11 240.82 241.29 0.47 
12 240.98 
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TABLE XII (continued) 

Series B 

Run No. 8 Run No. 9 
Uinitial ~ 0.0339 ft/sec Uinitial = 0.0609 ft/sec 

No. 0 0 ) 0 0 0 .. 
(Tv-TL).oF TL- r Tv· F (Tv-TL - F TL· F Tv· F 

1 238.89 239.34 0.45 238.96 239 .11 0.15 
2 239.15 239.85 0.10 239.11 239.48 0.37 
3 239.32 240.32 1.00 239.85 240~05 0.20 
4 239.63 239.63 
5 240.02 240.42 0.40 240.02 240.24 0.22 
6 240.20 240.57 o.37 240.15 240.42 0.27 
7 240.42 241.00 o.58 240.30 241.00 0.70 
8 240.62 240.62 
9 240.90 240.85 

10 241.15 241.38 0.23 241.20 241.38 0.18 
11 241.38 241.52 0.14 241.38 241. 59 0.21 
12 241.59 241.55 

Run No. 10 Run No. 11 
Uinitial = 0.1010 ft/sec Uinitial = 0.1450 ft/sec 

No. T °F 0 0 0 0 . ( ) O Tv· F (T ·TL). F TL· F Tv· F TV-TL - F L- V. 

1 235.52 235.67 0.15 238.74 238.74 o.oo 
2 235.85 236.11 0.26 238.85 238.93 o.os 
3 236.93 236.33 0.40 239.11 239.58 0.47 
4 236.85 239.18 
5 237.31 237.62 0.31 239.31 239.80 0.49 
6 237.54 237.78 0.24 239.48 240.24 0.16 
7 237.81 238.00 0.19 239.70 240.62 0.92 
8 238.11 239.92 
9 238.50 240.20 

10 239.04 239.18 0.14 240;42 241.00 0.58 
11 239.30 239.36 0.06 240.77 241.33 0.56 
12 239.48 241.00 
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TABLE XII (continued) 

Run No. 12 

No. 
Uinitial • 0.1730 ft/sec 

0 0 ' 0 
TL.; F Tv· F (TV-TL)· F 

l 230.35 230.42 0.01 
2 230.50 230.81 0.31 
3 230.00 230.58 0.58 
4 230.64 
5 230.89 231.50 0.61 
6 231.39 232.04 o.65 
7 232.19 232.42 0.23 
8 232.73 -· 
9 236.38 

10 237.08 237.31 0.23 
11 238.00 238.38 0.38 
12 238.17 

Water 

Series c 

Run No. 13 Run No. 14 
Uinitial = 0.1030 ft/sec Uinitial = 0.1514 ft/sec 

No. 0 0 ( ) 0 0 0 0 
T • F T - F T -T - F T • F T • F (T -T )- F L V V L L V V L 

1 237..04 237.62 0.58 237.42 238.00 0.58 
2 237.42 237.81 0.39 237.78 238.11 0.33 
3 237.42 237.92 0.50 238.37 238.50 0.13 
4 237.42 238.27 
5 237.42 237.92 o.·50 238.00 238.19 0.19 
6 237.62 238.11 0.49 238.00 238.19 0.19 
7 237 •. 62 238.11 0.49 238.19 238~50 0.31 
8 237.62 238.50 
9 237.62 238.50 

10 237.62 238.19 0.57 238.93 239011 0.61 
11 238.37 238.67 0.30 238.99 239.11 0.12 
12 238.37 
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TABLE XII (continued) 

Run No. 15 Run No. 16 
Uinitial = 0.1890 ft/sec Uinitial = 0.2340 ft/sec 

0 0 . 0 0 T °F (Tv-TL).oF No. TL· F Tv· F . (TV-TL)• F TL· F v· 

1 237.62 238.19 0.57 237 .11 237.23 0.12 
2 -237.92 238.37 0.45 237.23 237.69 0.46 
3 238.50 238.74 0.24 237.81 238.19 0.38 
4 238.37 237.69 
5 238.19 238.93 0.74 237.42 238.19 0.77 
6 238.37' 238.99 0.62 237.23 238.19 0.96 
7 238.74 238.99 0.25 237.62 238.19 0.57 
8 238.74 238.32 
9 238.74 238.74 

10 238.74 239.11 0.37 238.96 239.76 0.80 
11 239.11 239.30 0.19 239.30 240.00 0.70 
12 239.11 239.48 

Run No. 17 
Uinitial = 0.4040 ft/sec 

No. 0 T -°F (TV-TL)• oF . TL·· F v 

1 237.23 237.62 0.39 
2 237.62 238.37 o.75 
3 238.30 238.50 0.20 
4 238.19 
5 238.00 238.50 0.50 
6 238.00 238.50 0.50 
7 238 •. 19 238.63 0.44 
8 238.63 
9 23~.74 

10 238.74 239.11 0.37 
11 238.85 239.30 0.45 
12 238.93 
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TABLE XII (continued) 

Series D 

Run No. 18 Run No. 19 

No. 
U!nitial • o.0153 ft/sec 0 

TL- F Tv·~F (Tv-TL)- F 
u!nitial • 00.0216 ft/sec 

TL-. F Tv· F (Tv-TL) .. °F 

1 243.04 243.62 0.58 238.00 .238. 30 0.30 
2 242.96 243.23 0.27 238.37 238.50 0.13 
3 242. 93 243.04 0.11 238~82 239 .11 0.29 
4 242.85 • 238.93 
5 242.67 242.85 0.18 238.93 239.22 0.29 
6 242.48 242.67 0.19 238.99 239.30 0.31 
7 242.48 242.67 0.19 238.93 239.11 0.18 
8 242.~0 238.74 
9 242~ 11 .238.50 

10 241..93 242.44 0.51 238.95 239.11 0.16 
11 241.93 242.26 0.33 239.11 239.48 o.37 

· 12 241.93 • 239.92 .. . 

Run No. 20 Run No. 21 
uinitial • 0.0303 ft/sec U. "t' 1 = 0.0431 ft/sec 1n1 1a 

No. T -°F T -°F (Tv-TL).oF 0 T.-°F (T ·T )-°F L . v T1- F ·V V L 

1 238.37 238.59 0 •. 22 238.00 238.37 0.37 
2 238.19 238~37 0.18 238.19 238.27 o.q8 
3 238.11 238.30 0.19 238.00 238.19 0.19 
4 238.00 238.00 
5 238.00 238.19 0.19 237.69 237. 77 0.08 
6 237.69 238.00 0.31 237.62 237.69 0.07 
7 237.62 238.00 0.38 237.42 237c62 0.20 
8 237.31 237.23 .. 
9 237.23 236.96 

10 237. 04 237.42 0.38 236.85 237.33 0.48 
11 236.85 237.08 0.23 236.85 237.34 0.49 
12 236.85 236.67 
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... -··-·- ·- . ___ ... TABLE XII (con_tin\il.ed) _ 

Run No. 22 
Uinitial·= 0.0525 ft/sec 

No. 0 T -°F ,. (Tv·Ty)·°F TL• F v 

1 237.69 238.19 o.50 
2 237.62 238.00 0.38 
3 237.42 237.89 0.47 
4 237.31 
5 237.04 237. 77 o.73 
6 236.85 237.62 0~77 
7 236.85 237.62 o. 77 
8 236.78 • 
9 236.67 

10 236.59 237,15 o.s6 
11 236.48 237.04 0.56 
12 236.41 

·. 

Remark: No respons·e from thermocouples No. 4, 8, 9 and 12 on the vapor 
side. 
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SAMPLE CALCUI.ATl.ONS 

Estimation of Boiling Heat Flux 

Run No. 6 

Estimation of APH• Since the wa1; is ~t about 240° F, subcooled 

boiling wi 11 occur. The following calculations are based upon Dittus 

Bolter Correlation and will only estimate APH• 

Basis for calculations. The heat transfer area is taken as the 

inside area of the tubing. Over .. all temperature difference ls used. The 

copper tubing wall resistance to heat transfer is negligible and the 

coefficient of steam condensation outside the wall is very big compared 

to any other coefficient. 

Tin .. 105° F e .. 39.3 lb /cu ft m. . 

T - 156° F ft. • 1.68 x 10·4 lb /ft sec out I . m 

Tav - 130.5° F k • 0.08 BTU/hr sq ft °F/ft 

D • 0.044 ft s .. 0.1382 sq ft/ft 

00 • 0.168 ft/sec (or 605 ft/hr) 

Nu am 

Re ouQ - - -.,µ. 

Pe • 

· 1/3 
Pe · • 20. 7 

l/3 D 1/1--1.~0.14 
1. 62 C,?e) · i. ~} . 

(0.044)(0. l68~t39.3) • 1730 . 
l.68 x 10 

(0.044)(605)(39.3)(0.680) • 8900 
o.os 
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(1) 



~tt-'w)O. l4 = (O. 25/0. 24)0. l 4 = 1 .0025 

(D/0.08)h = (l.62)(20.7)(1.0025)(D/L) 1/ 3 
am 

h am 
= (2.68/D)(D/L)l/3 

1310 = (h )(i'T)(D)(L)(~T ) am . am 

6T = am 
(240 • 156) + (240 • 105) = 1100 F 

2 

from equation (3) 

h am 
1310 

= (110) (71')(0) (L) 
3.79 =-DL 

equating equations (2) and (4) 

(2.68/D)(D/L)l/3 = 3.79/(D)(L) 

(L) 213 (o) 113 = 1.47 

(L)Z/3 = (l.47)(0.044)•(l/3) ~ 4.15 

L = 8.45 ft 

APH = (L)(S) = (8.45)(0.1382) ~ 1.17 sq ft 

Estimation of ASH" 

For n-hexane vapor: 

k = 0.0109 BTU/(hr)(sq ft)(°F)/ft 

Re = SS, 600 

Pr= 0.925 

T. = 156 °F 
:i.n 

T "" 229 °F out 

Nu = 0.023(Re)O.S(Pr)0. 4 

Nu = hD/k = (0.023)(55~600)0.S(0.925)0. 4 

From equation (9) 

72 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

h = (0.023)(55!600)0.8(0.925)0.4(0.0109) = 34o3 BTU/(hr)(sq ft)(oF) 
0.044 

qSH = 1275 BTU/hr = ASHh(~T)U1 



(AT)LM = (240 • 156) • (240 • 229) 

ln ~:g: ~~~ 
0 = 36.2 F 

= 1.02 sq ft 

Estimation of (q/A)B. 

Total inside area: A total = 3.3 sq ft 

AB = 3.3 • (1.17 + 1.02) = 1.11 sq ft 

qB ... 5440 BTlJ /hr 

and, 

(q/A)8 = 5440/1.11 = 4900 BTU/(sq ft)(hr) 

Dimensionless Radial Acceleration 

For n•hexane, run no. 6 and vapor fraction of 50%. 

U0 = 0,168 ft/sec 

(\ ... 40.8 = 214 
~ 0.191 

x = o.s 

g 

,R = 0.297 ft 

g = 32.17 ft/sec2 

2 
(214)(0.168)(0.5) ... 33 9 

(0.297)(32.17) • 

For water, run no. 22 and vapor fraction of 50%. 

U0 = 0.0525 ft/sec 

<\ vv 26.8 
~ = ~ = 0.01672 

g 

= 1600 

x = 0.5 

R = 0.297 ft 

2 
... 185. 5 
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THERMOCOUPLE CALIBRATION PROCEDURE 

One thermocouple, designated as '~eference thermocouple" was cali-

brated at two fixed temperatures. This "reference thermocouple" was 

inserted into the evaporator and the potentiometer readings of the 24 

thermocouples attached to the coi 1 wal 1 were corrected accordi.ng to the 

"reference thermocouple" for two constant temperatures (see Table XIII 

and Table XIV). 

The two temperatures mentioned above were obtained by: (1) evapo• 

rator at room temperature, (no steam was used) and (2) evaporated heated 

by steam at 240° F to steady state (no liquid introduced) •. 

Calibration of the Reference Thermocouple 

The two constant temperatures were the temperature of boiling water 

0 at absolute pressure of 739.5 mm Hg and of water at 77.95 F. The 

calibr·ation data are given in the table below: 

TABLE XII I 

CAiIBRATION OF THE REFERENCE THERMOCOUPLE 

Potentiometer 
Reading~mv 

4.242 

1.012 

Temperature 
OF 

210.65 

77.95 

75 

Reference Thermocouple 
0 Temperature .. F 

210.65 

78. 00 
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Then the thermocouple calibration table can be used. The temperature 

recording procedure is as follows: 

(a) record potentiometer reading 

(b) correct this reading according to the "reference thermocouple" 

(c) obtain the temperature in °F. 

Reference thermocouple reading inside the evaporator. 

High. Temperature: 

(Evaporator at steam temperature) 

Low temperature: 

(Evaporator at room temperature) 

4.992 mv 

5.000 mv 

average: 4,996 mv 

0.868 mv 

0.888 mv 

averages 0.878 mv 
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TABLE XIV 

THERMOCaJPLE READING CORRECTION 

Low Temperature 
.. 

Liquid Side Vapor Side 

Point Potent. Ave. Correction Potent. Ave. Corre c t:i on 
No. Reading Reading rnv Reading Reading rnv 

rnv rnv rnv rnv 

0.879 0.882 
1 0.899 0.889 -0.011 o •. 899 0.891 -0.013 

0.880 0.882 
·2 0,899 0,890 -0.012 0,899 0.891 -0.013 

0,880 0,882 
3 0.899 0,890 -0.012 0.899 .0.891 ,.o. 013 

0,880 0.882 
4 0,899 0,890 -0.012 0.899 0.891 ~0.013 

0.880 0.882 
5 0.899 0.890 -0.012 0.899 0.891 g0.013 

0.877 0.882 
6 0.899 0.888 -0.010 0.899 0.891 0 0,Ql3 

0.877 0.880 
7 0.899 0.888 -0.010 0.902 o.891 =0.013 

0.877 0.880 
8 0.899 0,888 -0.010 0.902 0.902 ... 0.013 

0.877 ,'r 

9 0.899 0.888 -0.010 

0.879 0,880 
10 0.899 0.889 -0.011 0.900 0.885 ... Q.007 

0.879 0.880 
11 0.899 0,889 -0.011 0,900 0.885 -0.007 

0,879 * 
12 0.895 0.887 -0.009 . 'l'r(Xit of order. 
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TABLE XV 

THERMOCCX.JPLE READING CORRECTION 

High Temperature 

Liquid Side Vapor Side 

Point Potent. Ave. Correction Potent. Ave. Correction 
No, Reading Reading mv Reading Reading mv 

mv JPY mv mv 

4.993 4.975 
l 4.999 4.996 o.o 4.988 4.982 +0.014 

4,993 4.975 
2 4,999 4,996 o.o 4.988 4.982 +o,014 

4.994 4.977 
3 4.999 4.997 -0.001 4.990 4,984 +o.012 

4,995 'Ir 

4 5.000 4.998 -0.002 

4.995 4.978 
5 5.002 4.999 -0.003 4.990 4,984 +o.012 

4.996 4.977 
6 5.002 4.999 -0.003 4.994 4.986 +o.010 

4.996 4.983 
7 5.005 5.001 -0.005 4.994 40989 +0.007 

4.987 4.985 
8 5.005 5.001 -0.005 1( 

4.997 'Ir 

9 5.007 5.002 -0.006 

5.000 4.983 
10 5.007 5,004 -0.008 4.994 4.989 +o.007 

5.000 4.985 
11 5.001 5.004 -0.008 4.995 4.990 +o.006 

5.000 1, 

12 5.012 6.006 -0.010 ,',(lit of Order 
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TABLE XVI 

COOLING WATER ORIFICE FLOW METER CALIBRATION 

Orifice Cooling 
Manometer Water Water 

Reading Time Weight Flow Rate 
inch ·Hs; sec lbs lbslmin 

1.10 71.2 14.06 11.85 

2.35 46.5 13 .. 65 17.61 

3.15 32.2 11.01 20.55 

4.80 34.2 13.80 24.20 

5.35 33.7 15.06 26.80 

5.75 33.3 15.54 28.00 

8.00 23.2 12.61 32.60 

9.60 26.7 16.02 36.00 

11.00 24.6 15.64 38.15 

12.7 20.6 15.16 44.2 
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Figure 24. Cooling Water Orifice Calibration Curve 
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TABLE XVII 

ROTAMETER CALIBRATION FOR N•HEXANE 

Black Float White Float Time Volume Flow Rate 
Scale Division Scale .Di.vision min liter literlmin 

1.9 0.9 4.292 0.250 0.058 

4.4 2.3 2.142 0.440 0.205 

5.0 2.7 2.150 0.500 0.233 

6.6 3.5 2.117 0.675 0.319 

8.3 4.4 1.192 o. 500 0.419 

10 5.3 1.183 0.630 0.533 

12.6 6.8 1.170 0.808 0.691 
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Figure 25. Rota.meter Calibration Curve for n-Hexane 
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TABLE XVIII 

ROTAMETER CALIBRATION FOR WATER 

Black Float White Float Time Volume Flow Rate 
Scale Di vision Scale Division min liter liter/min 

2.0 1.1 9 0.290 0.032 

4.0 2.0 10 1.105 O.lH 

5.0 2.4 3 0.418 0.139 

6.0 2.9 10 1.755 Oo1'76 

8.0 3.9 8 2.035 0.254 

9.9 4.9 3 1.010 0.337 

12.0 6.0 3 L290 0.430 

13.9 6.9 4 2.080 0.520 

14.8 7.3 2 loD3 0.565 

11.0 2.s 2.141 0.856 
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0,.._ _ _._ __ _._ __ .__ _ _._ __ ....1-__ .1...-_---1. __ ....1-__ ..__ _ __. 
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Figure 26. Rotameter Calibration Curve for Water 
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a 
r 

A 

D 

g 

h 

k 

L 

q 

p 

s 

T 

u 

v 

NOMENCLATURE 

radial acceleration, ft/sec 2 

area, sq ft 

constants 

coil tubing diameter, ft 

2 gravitational acceleration, ft/sec 

2 conversion factor, 32.17 (lbm)(ft)/(lbf)(sec) 

- mass flow rate, lbm/hr 

heat transfer coefficient, BTU/(hr)(sq ft)(°F) 

thermal conductivity, BTU/(hr)(sq ft)(°F)/ft 

coi 1 length, ft 

rate of heat transfer, BTU/hr 

pressure, lbf/sq in 

tubing cross-section area, sq ft 

0 temperature, F 

- velocity, ft/hr 

specific volume, cu ft/lb 
m 

Greek 

o( angle , degree 

jJ density, lb /cu ft m 
µ. - viscosity , 1 b m/ ft sec 

LIP pressure difference, lb I sq in m 

AT temperature difference, °F 
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Subscripts 

am - arithmetic mean 

B boiling 

b bubble or bulk 

L liquid 

PH - preheating 

SH superheating 

0 initial value 

r radial direction 

v - vapor 


