By
FREDRICK CHARLES VEATCH
!
Bachelor of Science Northwestern State College
Alva, Oklahoma
1962

Submitted to the faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

May, 1966

Thesis Approved:

$281856_{\text {ii }}$

PREFACE

In the area of analytical data interpretation computer applications are becoming necessarily more and more frequent. The cause of this phenomenon is a result of modern day analytical chemistry. More data of a more complex nature are available for interpretation now than ever before. The computer can be a most helpful. and powerful tool for the modern analytical chemist in many areas of research.

This thesis presents several applications of computer analysis in areas where manual interpretation of the large amount of data would require many hours of painstaking work. A study of the hafnium-chloranilic acid complex system in three molar perchloric acid.is presented in which the computer is used for determining the number, metal to ligand ratio, and formation constants of the complexes.

Indebtedness is acknowledged to my adviser, Dr. L. P. Varga, for his valuable guidance and most appreciated assistance in the experimental work and computer interpretations. The Job plot program and the iterative program were written by Dr. Varga. The advice and assistance of Dr. Richard M. Wallace, E. I. duPont de Nemours \& Company, Savannah River Laboratory, Aiken, South Carolina, who provided the original matrix rank program, is also gratefully acknowledged. Acknowledgment is also made to Mr. W. V. Accola and the Oklahoma State University Computer Center for their assistance and patience in all program rewriting and modification; and to my wife, Linda Ann, who provided encouragement and patience during the course of the work; and to the typist Mrs. Sharon Cranston.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. REVIEW OF THE LITERATURE 2
III. EXPERIMENTAL 4
Reagents 4
Apparatus 6
Preparation of Solutions. 7
Procedure 16
IV. COMPUTER PROGRAMS USED IN THE ANALYSIS OF DATA 22
Rank of a Matrix 22
Three Dimensional Plotting Routine 29
Job Plots of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ and $\mathrm{H}_{2} \mathrm{Ch}$ Data. 33
Iterative Machine Calculations 34
V. INTERPRETATION OF RESULTS 37
Summary and Conclusions 37
Suggestions for Future Study. 38
BIBLIOGRAPHY 59
APPENDIX A. 60
APPENDIX B. 63
APPENDIX C. 67

LIST OF TABLES

Table Page
I. Stoichiometry of $1.00 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$: Solutions and $\mathrm{H}_{2} \mathrm{Ch}$ Solutions in 3 M Perch1oric Acid in the Absence of Fluoride 9
II. Stoichiometry of $1.00 \times 10^{-4} \mathrm{M} 4: 1 \mathrm{H} \mathrm{Ch}-\mathrm{Hf}$. Solutions and 0.80 $x 10^{-4} \mathrm{M} \mathrm{H}_{0} \mathrm{Ch}$ Solutions in 3 M Perchloric Acid in the Pre- sence of Fluoride 15
III. Stoichiometry of $1.00 \times 10^{-4} \mathrm{M} 7.33: 1 \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Solutions and $0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ in 3 M Perchloric Acid in the Presence of Fluoride 2 17
IV. Error Size and Its Relationship to the Rank of an Absorp- tion Matrix. 26
V. H_{2} Ch Absorbance Matrix For Solutions of Table I and S Error Matrix 39
VI. Reduced $\mathrm{H}_{2} \mathrm{Ch}$ and S Matrix. 40
VII. $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Absorbance Matrix For Solutions of Table I 42
VIII. Reduced $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ and S Matrix 43
IX. 4:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus F^{-}Absorbance Matrix For Solutions of Table II? 46
X. Reduced $4: 1: \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ and S Matrix 47
XI. $\quad 0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus F^{-}Absorbance Matrix For Solutions of Table I 49
XII. Reduced $0.80 \times 10^{-4} \mathrm{M}_{2} \mathrm{Ch}$ Plus F^{-}and S Matrix. 50
XIIT. 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus F^{-}Absorption Matrix For Solutions of Table III 52
XIV. Reduced 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ and S Matrix 53
XV. $0.88 \times 10^{-4} \mathrm{H}_{2} \mathrm{Ch}$ Plus F^{-}Absorbance Matrix For Solutions of Table III... 55 55
XVI. Reduced $0.88 \times 10^{-4} \mathrm{M}_{2} \mathrm{H}_{2} \mathrm{Ch}$ Plus : F^{-}and S Matrix

LIST OF: FIGURES

Figure Page

1. Plot of Log, C_{A} vs. Hydrogen Ion Concentration 13
2. Spectral Scans of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ System in 3 M Perchloric Acid. 20
3. Contour Map of the $\mathrm{H}_{2} \mathrm{Ch}$ Absorbances of Table 41
4. Contour Map of the $\mathrm{H}_{2} \mathrm{Ch}$-Hf Absorbances of Table VII 44
5. Contour Map of the $\mathrm{H}_{\mathrm{h}} \mathrm{Ch}-\mathrm{Hf}$ Absorbances of Table VII Minus the $\mathrm{H}_{2} \mathrm{Ch}$ Absorbances of Table 45
6. Contour Map of the $4: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus: F^{-}Absorbances of Table IX. 48
7. Contour Map of $0.80 \times 10^{-4} \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{Ch}$ Plus F^{-}Absorbances of Table XI. 51
8. Contour Map of the $7.33: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus F^{-}Absorbances of
Table XIII 54
9. Contour Map of the $0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus F^{-}Absorbances of Table XV 57
10. Job Plots of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Systems at Selected Wavelengths 58

CHAPTER I

INTRODUCTION

Many spectrophotometric methods used in quantitative analysis have been developed without a complete knowledge of the nature and properties of the absorbing species or the effect of many solution variables on the analysis. Unambiguous and straightforward methods for the determination of the number, nature and stabilities of several absorbing species in solution with related equilibria generally are not available. This thesis was concerned with the interpretation of spectrophotometric data in such a multicomponent system.

The hafnium-chloranilic acid complex system:in three molar perchloric acid was studied in this work with the help of three computer programs. A large amount of spectrophotometric data was analyzed and interpreted on the basis of:
(1) The number of absorbing species found in the system.
(2) The ligand to metal ratio of the chloranilic acidhafnium complexes.
(3) The formation constants of the complexes.

The continuous variation method of Job (5) was used also for comparison with earlier work done in this laboratory (13). In this work fluoride ion was added to the hafnium-chloranilic acid system in three molar perchloric acid solvent and some comparison with the earlier work was made.

CHAPTER II

REVIEW OF THE LITERATURE

Chloranilic acid (1,4 dichloro-2,5 dihydroxyquinone), as a chromogenic agent in the determination of hafnium, is of considerable interest because of its ability to form the colored complex at high acidities where the hydrolysis of hafnium does not interfere. Previous studies of hafnium $(9,10)$ had shown that hydrolysis was negligible in 3 M perchloric acid and this medium at $25^{\circ} \mathrm{C}$ was used throughout this work.

In studies on the zirconium chloranilate complex in 2 M perchloric medium, Thamer and Voigt (6) had found evidence for species containing 1 and 2 chloranilic acid groups per metal atom. The principal species was the $1: 1$ complex with an absorption maximum at $328 \mathrm{~m} \mu$. Frost-Jones, Yardley (4) and Bricker, Waterbury (2) had found that the absorbance of the zirconium-chloranilic acid complex decreased markedly in the range $0-3.5 \mathrm{M}$ perchloric acid, but for the present studies of $1, \mathrm{x} \cdot 10^{-4} \mathrm{M}$ hafnium in 3.0M perchloric acid sufficient intensity remained.for the study to be completed.

The masking effect of the fluoride ion upon highly acid, aqueous solutions of the hafnium-chloranilic acid complexes had been established previously. Varga and Hume (9) had found the formation constants of the various hafnium fluoride complexes and it was assumed in this work that they could be used to describe the behavior of hafnium (IV) and fluoride. Varga, Zumwalt and Wyatt (13), using the continuous variation method of

Job (5) and iterative machine calculations on a relatively small amount of data, had postulated the existence of two absorbing species of haf-nium-chloranilic acid complexes, namely, species with chloranilic acid to hafnium mole ratios of $2: 1$ and $4: 1$.

Wa11ace and Katz (15) had developed. a method for the determination of rank of a matrix in the analysis of absorption spectra of multicomponent systems. Earlier work by Wallace (14) and Ainsworth (1) also described methods by which the number of absorbing species in a system of absorbance data could be determined from matrix rank calculations. In this thesis the method of Wallace and Katz (15) was used exclusively for the determination of the number of species in solution from absorption data.

The machine calculation of formation constants of the hafniumchloranilic acid complexes by least squares methods was based upon the work of Varga, Zumwalt and Wyatt (13).

The computer plotting subroutine used in this work had been developed by E. J. Kobetich, Department of Physics, Kansas:State University, Manhattan, Kansas, in 1964. It was revised for use on the IBM 1410 by R. W. Whitney and C.F. Cromwell, Jr., at Oklahoma State University. Further modification of the routine for the IBM 7040 was completed by W. V. Accola, OSU Computer Center, Dr. L. P. Varga and the author.

GHAPTER III

EXPERIMENTAL

Reagents

Hafnium.
Potassium hexafluorohafnate, $\mathrm{K}_{2} \mathrm{HfF}_{6}$, had been prepared previous ly (9) from reactor grade hafnium metal manufactured by the Wah Chang Corporation. The major non-gaseous impurities were $\mathrm{Zr} 3 \%, \mathrm{Ta}<200$ p. p.m., $\mathrm{Nb}<100$ p.p.m., and $\mathrm{Fe} 150-200$ p.p.m. A 25 g. sample of stock $\mathrm{K}_{2} \mathrm{HfF}_{6}$ salt was dissolved in approximately 50 ml of 3 M hydrofluoric acid at about 100° using a polypropylene beaker in a hot water bath (9). The Hf concentration at this point was about 0.8 M . (8). The hot solution was then filtered rapidly through a coarse filter paper using a steam jacketed polypropylene funnel. After the filtrate cooled it was filtered, and the colorless, recrystallized $\mathrm{K}_{2} \mathrm{HfF}_{6}$ salt (mol. wt. 370.86) recovered, air dried, and stored in a desiccator.

A 0.03709 gram sample of the $\mathrm{K}_{2} \mathrm{HfF}_{6}$ was weighed into a platinum crucible, dissolved in 70% reagent grade perchloric acid and evaporated twice almost to dryness. The resulting mass was then dissolved in concentrated reagent grade hydrofluoric acid, evaporated almost to dryness, and again evaporated almost to dryness twice with 70% perchloric acid. The additional hydrofluoric acid fuming had been found in previous work to insure reproducible results, presumably by destroying hafnyl bonds present in the original salt. The mass was then dissolved in 3 M
perchloric acid and transferred quantitatively to a 100 ml volumetric flask to make a stock solution $1.00 \times 10^{-3} \mathrm{M}$ in hafnium. The solution was found to be stable for three to four days: as described in the section Preparation of Solutions.

Ch1oranilic Acid.

Fisher certified reagent grade chloranilic acid, $\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, mol. wt. 208.996 (lot 非714466) : was used throughout this work. Without further purification 0.02090 g of the ch1oranilic acid were weighed into a small beaker, transferred quantitatively to a 100 ml volumetric flask and made almost to volume with 3 M perch1oric acid. After shaking for two to three hours on a Burrell "wrist action" shaker at room temperature, complete dissolution seemed apparent due to the disappearance of any particles of the acid. The solution was then made exactly to volume with 3 M perchloric acid and shaken once more for an hour giving a stock solution $1.00 \times 10^{-3} \mathrm{M}$ in chloranilic acid (henceforth referred to as $\mathrm{H}_{2} \mathrm{Ch}$). Attempts to prepare $5 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ failed after 24 hours of shaking. Perch1oric Acid.

The 70-72\% perchloric acid used throughout the work was Baker's Analyzed Reagent grade. A stock solution of about 5M was prepared by diluting the concentrated acid with distilled water which had been passed through a bed of Fisher mixed cation and anion exchange resin, Rexyn*RG502 ($\mathrm{H}-\mathrm{OH}$). The 5 M acid was then standardized against primary standard sodium carbonate and subsequently diluted to exactly 3.00 M in a 2 liter volumetric flask.

Hydrofluoric Acid.
The hydrofluoric acid used in this work was Bakers Analyzed Reagent grade, $48.7 \% \mathrm{HF}$. The reagent was handled at all times in Nalgene or other
plastic: ware.

Apparatus

Spectrophotometers.
The Beckman DK-1 spectrophotometer used in this work consisted of the basic DK-1 with a Brown strip-chart recorder. The hydrogen lamp source was used for all measurements made in the UV range. The slit width was set at 0.2 mm .

The battery powered Beckman DU fitted.with a photomultiplier attachment gave the necessary stability and reproducibility required for precision measurements in the latter part of this work. A hydrogen lamp was used throughout. The slit width maintained on the DU was 0.2 mm . Glass and Plastic Ware.

A11 glassware used was Pyrex and volumetric glassware met A.C.S. re~ quirements for precision and accuracy. Plastic ware used was Nalgene, polyethylene, polypropylene and polystyrene. Nalgene pipets and calibrated tubes were used for volumetric work. A polystyrene buret, available from Fisher Scientific Company, was used for accurately dispensing fluoride solutions.

Cel1s.
One cm matched silica cells were used throughout this work for both the DK-1 and DU. Etching of the cells by: F^{-}, which ranged up to about $2 \times 10^{-4} \mathrm{M}$, was not discernible, either by eye or instrumental means. Computers.

A11 computer work was done at the Oklahoma State University Computer Center. Initial calculations were made using an IBM 1410 , and the "work was completed on an IBM 7040.

Preparation of Solutions

$\underline{\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf} \text { Containing No Fluoride. }}$

In the process of deciding what concentrations of Hf and $\mathrm{H}_{2} \mathrm{Ch}$ were to be used in this work, several solutions of various concentrations were prepared and scanned on the Beckman DK-1 from 380 to. $240 \mathrm{~m} \mathrm{\mu}$ using 1 cm silica cells with 3 M perchloric acid as a reference. It was found that $\mathrm{H}_{2} \mathrm{Ch}$ solutions of over $1.00 \times 10^{-4} \mathrm{M}$ gave absorbances of over 2.00 at the absorption maximum of about $300 \mathrm{~m} \mu \mathrm{\omega}$. Solutions containing up to 1.00 x $10^{-3} \mathrm{M}$ Hf were also scanned but no apparent absorption occurred in the range from 380 to $240 \mathrm{~m} \mu$. Several other solutions containing both $10^{-4} \mathrm{M}$ $\mathrm{H}_{2} \mathrm{CH}$ and $10^{-3} \mathrm{M}$. Hf were run but none gave absorption values of over 2.00 between 380 and $240 \mathrm{~m} \mu$. It was decided, therefore, to restrict concentrations of $\mathrm{H}_{2} \mathrm{Ch}$ and Hf to 1.00×10^{-4} and less.

Two series of solutions were then made up in 3 M perch1oric acid, one containing $\mathrm{H}_{2} \mathrm{CH}$ only at various concentration levels and the other series containing both Hf and $\mathrm{H}_{2} \mathrm{Ch}$. The first series of twelve solutions containing $\mathrm{H}_{2} \mathrm{Ch}$ only was prepared using 1.00×10^{-4} molar $\mathrm{H}_{2} \mathrm{Ch}$ which was made up by diluting 25 ml of the 1.00×10^{-3} stock to exactly 250 ml in a Pyrex volumetric flask. The solutions were prepared by using a 25 m 1 precision buret to introduce $2,4,6,8,10,12,14,16,18,20,22$, and 24 ml of $1.00 \times 10^{-4} \mathrm{M} \mathrm{H}_{2}$ Ch into 25 ml Pyrex volumetric flasks. The flasks were then filled to the mark with 3 M perchloric acid. This procedure gave solutions in which the concentration of $\mathrm{H}_{2} \mathrm{Ch}$ ranged from: 0.08 to 0.96×10^{-4} molar in steps of $0.08 \times 10^{-4} \mathrm{M}$.

The second series of solutions containing $\mathrm{H}_{2} \mathrm{CH}$ and Hf was made up in exactly the same manner except $1.00 \times 10^{-4} \mathrm{M}$ Hf in 3 M perchloric acid
was used to make the dilutions in the 25 ml volumetric flasks instead of just 3 M perchloric acid. The $1.00 \times 10^{-4} \mathrm{M}$ Hf in 3 M perchloric acid was prepared by diluting 25 ml of the previously mentioned $1.00 \cdot \mathrm{x} \cdot 10^{-3} \mathrm{M}$ stock solution of $H f$ to 250 ml with 3 M perchloric acid. This procedure of make-up gave a series of 12 solutions in which the total molar concentration of Hf plus $\mathrm{H}_{2} \mathrm{CH}$ was $1.00 \times 10^{-4} \mathrm{M}$ and the molar concentration ratio of $\mathrm{H}_{2} \mathrm{CH}$ to Hf ranged from. $0.087: 1$ to $24: 1$. As noted above, in both series of solutions, the total $\mathrm{H}_{2} \mathrm{Ch}$ concentration was the same for corresponding solutions, namely from 0.08 to $0.96 \times 10^{-4} \mathrm{M}$ in steps of $0.08 \mathrm{x} \cdot 10^{-4}$. The stoichiometry of all twenty-four solutions is given in Table I.
$\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Containing Fluoride.
After interpretation and evaluation of the results of the preceding section it was decided to approach the fluoride masking effect in much the same manner. In order to facilitate comparison of the data, the solutions investigated should have the same stoichiometry except for the presence of F^{-}.

In order to effectively see the masking effect of F^{-}, that is, the exchange of chloranilate for F^{-}, the ratio of $\mathrm{H}_{2} \mathrm{Ch}$ to Hf must be sufficiently high for formation of higher ordered $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ complexes. In view of this, it was decided to study two of the solutions described in the previous section, namely, the $4: 1$, and $7.33: 1 \mathrm{H}_{2} \mathrm{Ch}$ to Hf.solutions.

Volumetric ware resistant to fluoride was required for make-up of fluoride solutions. A 50 ml volumetric tube consisting of a 50 ml Nalgene centrifuge tube fitted with a narrow tubular neck had been constructed by a fellow graduate student. The tube was recalibrated at

TABLE I
STOICHIOMETRY OF $1.00 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ SOLUTIONS AND $\mathrm{H}_{2} \mathrm{Ch}$ SOLUTIONS IN 3 M PERGHLORIC ACID IN THE ABSENCE OF FLUORIDE

Millilit stock.ad volumetr	$\begin{aligned} & \mathrm{x} 10^{-4} \mathrm{M} \\ & 25 \mathrm{ml} \end{aligned}$	$1.00 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus Hf			$\mathrm{H}_{2} \mathrm{Ch}$ Without Hf
$\mathrm{H}_{2} \mathrm{CH}$	Hf	Molarity of $\underline{\mathrm{H}_{2} \mathrm{Ch} \times 10^{-4}}$	Molarity of Hf x 10^{-4}	$\begin{aligned} & \text { Molar Ratio } \\ & \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf} \end{aligned}$	$\begin{aligned} & \text { Molarity of } \\ & \mathrm{H}_{2} \mathrm{Ch} \times 10^{-4} \\ & \hline \end{aligned}$
2	23	. 08	. 92	. 087	. 08
4	21	. 16	. 84	. 190	. 16
6	19	. 24	. 76	. 316	. 24
8	17	. 32	. 68	. 471	. 32
10	15	. 40	. 60	. 667	. 40
12	13	. 48	. 52	. 923	. 48
14	11	. 56	. 44	1.28	. 56
16	9	. 64	. 36	1.79	. 64
18	7	. 72	. 28	2.59	. 72
20	5	. 80	. 20	4.00	. 80
22	3	. 88	. 12	7.33	. 88
24	1	. 96	. 04	24.0	. 96

exactly 50.00 ml using distilled water and used throughout the F^{-}work. Periodic checking of the calibration proved the tube to be highly reliable, $\pm 0.07 \mathrm{ml}$.

4:1 $\mathrm{H}_{2} \mathrm{Ch}$:Hf Solutions Containing F^{-}. Since the volume of each sample was set at 50.00 ml , it was decided to pipet 10.00 ml of $\mathrm{H}_{2} \mathrm{Ch}$ and 10.00 ml of Hf solution into the 50 ml Nalgene volumetric tube, add the appropriate amount of hydrofluoric acid and dilute to volume with 3 M perch1oric acid.

For a $4: 1$ molar ratio of $\mathrm{H}_{2} \mathrm{Ch}$ to Hf at a total concentration of $\mathrm{H}_{2} \mathrm{Ch}$ plus Hf of $1.00 \times 10^{-4} \mathrm{M}$ the concentration of $\mathrm{H}_{2} \mathrm{Ch}$ was $0.80 \times 10^{-4} \mathrm{M}$ and Hf $0.20 \times 10^{-4} \mathrm{M}$. In order to pipet 10.00 ml of each $\mathrm{H}_{2} \mathrm{Ch}$ and. Hf the molarity of each stock solution had to be 4.00×10^{-4} and 1.00×10^{-4} respectively. The $H_{2} \mathrm{Ch}$ stock solution was prepared from the original stock solution of $1.00 \times 10^{-3} \mathrm{M}$ by pipetting 200 ml into a 500 ml volumetric flask and diluting to the mark with 3.00 M perchloric acid, thus giving the desired $4.00 \times 10^{-4} \mathrm{M}_{2} \mathrm{Ch}$ in 3 M perchloric acid. The Hf stock solution was prepared by pipetting 20.00 mls of the original 1.00 $\times 10^{-3}$ M.stock into a 200 ml volumetric flask and diluting to the mark with 3.00 M perch1oric acid giving the desired $1.00 \times 10^{-4} \mathrm{M}$ Hf in 3.00 M perchloric acid.

The fluoride ion concentration range used in this study was from zero to an experimental limit of about $2.00 \times 10^{-4} \mathrm{M}$. This choice was based upon previous :work (13) (11) and some unpub1ished work by Nicolson (7), in 1962. After the addition of the 10 ml of $4.00 \times 10^{-4} \mathrm{M}$ $\mathrm{H}_{2} \mathrm{Ch}$ and $1.00 \times 10^{-4} \mathrm{M}$ Hf to the 50.00 ml volumetric tube the appropriate amount of hydrofluoric acid was added before addition of the 3.00 M perchloric acid to the mark.

In order to determine the amount of hydrofluoric acid to be added to each solution the following calculations were necessary. Based on the work of Caglioti (3), Varga and Hume: (9) had given the stepwise dis sociation constants for the HF system as follows:

$$
\begin{aligned}
& \mathrm{HF}=\mathrm{H}^{+}+\mathrm{F}^{-} \quad \mathrm{Ka}=5.37 \times 10^{-4} \\
& \mathrm{HF}_{2}^{-}=\mathrm{HF}+\mathrm{F}^{-} \quad \mathrm{Ka}_{2}=8.1 \times 10^{-2}
\end{aligned}
$$

where:

$$
\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]} \text { and } \mathrm{Ka}_{2}=\frac{[\mathrm{HF}]\left[\mathrm{F}^{-}\right]}{\left[\mathrm{HF}_{2}\right]}
$$

At low HF concentrations, below 0.2 M , the free hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$was taken as 3.00 M . The fluoride ion concentration was calculated according to the following equation given by Varga (12):

$$
\begin{equation*}
[\mathrm{F}]=\frac{\mathrm{C}}{\frac{\mathrm{~A}}{\left.\frac{+}{+}\right]}} \frac{\mathrm{Ka}}{\mathrm{Ka}}+1+\frac{2}{\mathrm{Ka}_{2}}\left(\mathrm{C}_{\mathrm{H}}-\left[\mathrm{H}^{+}\right]\right) \tag{1}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{A}}=$ total F^{-}concentration $=[\mathrm{HF}]+2\left[\mathrm{HF}_{2}{ }^{-}\right]+\left[\mathrm{F}^{-}\right]$

$$
\mathrm{C}_{\mathrm{H}}=\text { total } \mathrm{H}^{+} \text {concentration }=\left[\mathrm{H}^{+}\right]+[\mathrm{HF}]+\left[\mathrm{HF}_{2}^{-}\right]
$$

At low fluoride as stated above $\left.\mathrm{C}_{\mathrm{H}}{ }^{-\left[H^{+}\right.}\right]$can be considered equal. to C_{A} which reduces equation 1 above to the following:

$$
\begin{equation*}
\left[\mathrm{F}^{-}\right]=\frac{\mathrm{C}_{\mathrm{A}}}{\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{Ka}}+1+\frac{2}{\mathrm{Ka}_{2}}\left(\mathrm{C}_{\mathrm{A}}\right)} \tag{2}
\end{equation*}
$$

In this work it was desired to have a selected F^{-}concentration, therefore a calculation of C_{A} was necessary. Rearrangement of 2 gave the following which was used in calculating C_{A} in all F^{-}containing solutions except where the $\left[\mathrm{F}^{-}\right]$was above $5.00 \times 10^{-5} \mathrm{M}$.
(3)

$$
\mathrm{C}_{\mathrm{A}}=\frac{\left[\mathrm{F}^{-}\right] \frac{\left[\mathrm{H}^{+}\right]}{\mathrm{Ka}}+1}{1-\frac{2\left[\mathrm{~F}^{-}\right]}{\mathrm{Ka}_{2}}}
$$

Where the $\left[\mathrm{F}^{-}\right]$was above $5.00 \times 10^{-5}\left(\mathrm{C}_{\mathrm{A}}\right.$ above 0.2 M) another equation given by Varga (12) was used.

$$
\begin{equation*}
\frac{\left.2 \mathrm{H}^{+}\right]}{\mathrm{KaKa}_{2}}\left[\mathrm{~F}^{-}\right]^{2}+\left[\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{Ka}}+1\right]\left[\mathrm{F}^{-}\right]-\mathrm{C}_{\mathrm{A}}=0 \tag{4}
\end{equation*}
$$

This equation can be developed knowing the following:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{A}}=[\mathrm{HF}]+2\left[\mathrm{HF}_{2}^{-}\right]+\left[\mathrm{F}^{-}\right] \\
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=\mathrm{Ka} \text { and } \frac{\left[\mathrm{HF}^{-}\right]\left[\mathrm{F}^{-}\right]}{\left[\mathrm{HF}_{2}^{-}\right]}=\mathrm{Ka}_{2} \cdot
\end{gathered}
$$

When C_{A} exceeds $0.2 \mathrm{M},\left[\mathrm{H}^{+}\right]$cannot be considered 3.00 M just from the 3 M perchloric acid solvent because of the contribution of $\left[\mathrm{H}^{+}\right]$from the HF present. Thus to solve equation 4 , which contains 3 unknowns, some method had to be developed to evaluate the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$since the F^{-}concentration was set for convenience and C_{A} was to be calculated.

For the evaluation of the hydrogen ion concentrations of 3.00 M perchloric acid solutions containing more than 0.2 M . HF a plot of $\log \mathrm{C}_{\mathrm{A}}$ versus $\left[H^{+}\right]$was made of data obtained by Nicolson referenced above. These data had been obtained by measuring the $\left[H^{+} \cdot\right]$, potentiometrically at various levels of C_{A} in 3 M perchloric acid solvent. The $\left[H^{+}\right]$for this work was then evaluated from the experimental curve. This graph and the data of Nicolson are given in Figure 1.

After evaluation and calculation of the C_{A} and $\left[H^{+}\right]$for the various levels of fluoride given in Table II solutions of $H F$ in water were made

Figure 1. Plot of Log C_{A} vs. Hydrogen Ion Concentration
up to facilitate addition of small amounts to the volumetric tube containing the $\mathrm{H}_{2} \mathrm{Ch}$ and Hf . These amounts were necessarily kept small so as to prevent the $\left[\mathrm{H}^{+}\right]$from being changed by dilution. To facilitate addition of HF solutions, calibrated plastic or Nalgene Mohr pipets were used. In cases where more than 2 ml were added a polystyreneburetewas used. -

The HF solutions were prepared using the 48.7% HF described earlier. One liter of approximately 10M HF was made up using 330 ml of concentrated HF and diluting to one liter with deionized water. This solution was then standardized against 1.184 M sodium hydroxide which had been standardized against potassium acid phthalate. After standardization of the 10.16 M HF , one húndred $m l$ of this solution was diluted with deionized water to 1 liter. This solution was standardized and the process of dilution and standardization repeated until five solutions of HF were obtained with the following molarities: 10.16, 0.9398, 0.0997, 0.0102 and 0.00106. The various amounts of HF needed in each $\mathrm{Hf}-\mathrm{H}_{2} \mathrm{Ch}$ solution were then calculated as described above and added to the $\mathrm{Hf}-\mathrm{H}_{2} \mathrm{Ch}$ solutions as shown in Table II. Twelve solutions were prepared with the $\left[\mathrm{F}^{-}\right]$ranging from 0.0 to $1.83 \times 10^{-4} \mathrm{M}$ and the $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ molar ratio. 4:1 in all twelve solutions. Since it was expected that fluoride ion would have little or no effect on solutions containing just $\mathrm{H}_{2} \mathrm{Ch}$, only five solutions were prepared containing no Hf. These solutions were made up exactly as the 12 solutions containing Hf but the 10 ml of $1.00 \times 10^{-4} \mathrm{M}$ Hf was omitted. These solutions contained fluoride concentrations ranging from 0.0 to $1.83 \times 10^{-4} \mathrm{M}$ as shown in Table II. 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Solutions Containing Fluoride.

In the preparation of the $7.33: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ at a total concentration of $\mathrm{H}_{2} \mathrm{Ch}$ plus Hf equal to $1.00 \times 10^{-4} \mathrm{M}$, the same concentrations of stock

TABLE II

STOICHIOMETRY OF $1.00 \times 10^{-4} \mathrm{M} .4: 1 \mathrm{H}_{2} \mathrm{Ch}$-Hf SOLUTIONS AND $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ SOLUTIONS IN : 3M PERCHLORATE ACID IN THE PRESENCE OF FLUORIDE

```Volume and Molarity of HF Added to 50.00 ml. Calibrated Tube```		$\begin{aligned} & 1.00 \times 10^{-4} \mathrm{M} 4: 1 \mathrm{H}_{2} \mathrm{Ch} \text {-Hf Containing } \\ & 0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch} \text { Plus } 0.2 \times 10^{-4} \mathrm{M} \mathrm{Hf} \end{aligned}$			$\begin{gathered} 0.80 \times 10^{-4} \mathrm{M} \\ \mathrm{H}_{2} \mathrm{Ch} \\ \hline \end{gathered}$
$\begin{aligned} & 1.00 \times 10^{-4} \mathrm{M} \\ & 4: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf} \end{aligned}$	$0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$	$\left[\mathrm{H}^{+}\right]$	$\begin{gathered} \text { Molarity of } \\ \mathrm{HF} \\ \hline \end{gathered}$	$\frac{\text { Molarity of }}{\mathrm{F}}$	$\begin{gathered} \text { Molarity of } \\ \hline \end{gathered}$
0	0	3.00	0	0	0
. 0.264 ml 0.00106 M	0.264 ml .0 .00106 M	3.00	$5.59 \times 10^{-6}$	$1.00 \times 10^{-9}$	$1.00 \times 10^{-9}$
$2.64 \mathrm{ml} \mathrm{0.00106M}$	-	3.00	$5.59 \times 10^{-5}$	$1.00 \times 10^{-8}$	-
2.74 ml 0.0102 M	-	3.00	$5.59 \times 10^{-4}$	$1.00 \times 10^{-7}$	-
2.80 ml ( 0.0997 M	-	3.00	$5.59 \times 10^{-3}$	$1.00 \times 10^{-6}$	-
5.60 ml .0 .0997 M	-	3.00	$1.12 \times 10^{-2}$	$2.00 \times 10^{-6}$	-
1.48 ml 0.9398 M	1.48 ml .0 .9398 M	3.00	$2.80 \times 10^{-2}$	$5.00 \times 10^{-6}$	$5.00 \times 10^{-6}$
2.97 ml 0.9398 M	-	3.00	$5.59 \times 10^{-2}$	$1.00 \times 10^{-5}$	-
5.94 ml 0.9398 M	-	3.00	$1.12 \times 10^{-1}$	$2.00 \times 10^{-5}$	-
1.38 ml 10.16 M	-	3.06	$2.80 \times 10^{-1}$	$4.91 \times 10^{-5}$	-
$2.76 \mathrm{ml} \mathrm{10.16M}$	$2.76 \mathrm{ml} \mathrm{10.16M}$	3.14	$5.60 \times 10^{-1}$	$9.56 \times 10^{-5}$	$9.56 \times 10^{-5}$
5.51 m 110.16 M	$5.51 \mathrm{ml} \mathrm{10.16M}$	3.28	1.12	$1.83 \times 10^{-4}$	$1.83 \times 10^{-4}$

solutions used in the $4: 1$ preparation were used, namely $1.00 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ and Hf. From the $1.00 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$, a $4.00 \times 10^{-4} \mathrm{M}$ stock solution of $\mathrm{H}_{2} \mathrm{Ch}$ was prepared as described in the $4: 1$ make-up. A. $2.00 \times 10^{-4} \mathrm{M}$ stock solution of Hf was prepared using. 40 ml of $1.00 \cdot \mathrm{x} 10^{-3} \mathrm{M}$ Hf diluted to 200 m1.

For a 7.33:1 ratio of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ the molarity of the $\mathrm{H}_{2} \mathrm{Ch}$ had to be $0.88 \times 10^{-4}$ and that of the Hf $0.12 \times 10^{-4}$ giving the desired $\mathrm{H}_{2} \mathrm{Ch}$ plus Hf molarity of $1.00 \times 10^{-4}$. Since the volume of each solution to be prepared was $50.00 \mathrm{ml}, 11 \mathrm{ml}$ of $4.00 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ and 3 ml of $2.00 \times 10^{-4} \mathrm{M}$ Hf were required to give the desired concentrations. Therefore, 11 ml of $4.00 \times 10^{-4} \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{Ch}$ were added to the 50.00 ml volumetric tube using a precision 25 ml buret and three ml . of the $2.00 \times 10^{-4} \mathrm{M}$ Hf were added using a pipet. The HF concentrations were exactly the same as in the case of the $4: 1 \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions, therefore these additions were made as described in the $4: 1$ make-up section.

The twelve solutions prepared in this manner gave a 7.33:1 molar ratio of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ at a total concentration of $\mathrm{H}_{2} \mathrm{Ch}$ plus Hf equal to 1.00 $\times 10^{-4} \mathrm{M}$ with the $\left[\mathrm{F}^{-}\right]$ranging from 0.00 to $1.83 \times 10^{-4} \mathrm{M}$ as shown in Table III.

A similar set of 2 solutions was prepared in exactly the same manner but without the 3 ml of $2.00 \times 10^{-4} \mathrm{M} \mathrm{Hf}$. These 2 solutions were used to determine if fluoride ion had any effect upon the $\mathrm{H}_{2} \mathrm{Ch}$.

The stoichiometry of all 14 solutions is given in Table III.

## Procedure

## Solutions With Fluoride Absent.

${\underset{2}{ }{ }_{2} \mathrm{Ch} \text { Solutions. To determine the absorption characteristics of the }}^{\text {then }}$

## TABLE III

STOICHIOMETRY OF $1.00 \times 10^{-4} \mathrm{M} 7.33: 1 \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ SOLUTIONS AND $0.88 \times 10^{-4} \mathrm{M}$ $\mathrm{H}_{2} \mathrm{Ch}$ SOLUTIONS IN 3M PERCHLORIC ACID IN THE PRESENCE OF FLUORIDE

Volume and Molarity of HF Added to 50.00 ml Calibrated Tube		$\begin{aligned} & 1.00 \times 10^{-4} \mathrm{M} 7.33: 1 \mathrm{H} 2 \mathrm{Ch}: \mathrm{Hf} \\ & \text { Containing } 0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch} \text { plus } \\ & 0.12 \times 10^{-4} \mathrm{M} \mathrm{Hf} \end{aligned}$			$\begin{gathered} 0.88 \times 10^{-4} \mathrm{M} \\ \mathrm{H}_{2} \mathrm{Ch} \end{gathered}$
$\begin{aligned} & 1.00 \times 10^{-4} \mathrm{M} \\ & 7.33: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf} \end{aligned}$	$\begin{gathered} 0.88 \times 10^{-4} \mathrm{M} \\ \mathrm{H}_{2} \mathrm{Ch} \end{gathered}$	$\left[\mathrm{H}^{+}\right]$	Molarity of HF	$\underset{F}{\text { Molarity of }}$	Molarity of ${ }_{F}$
0	0	3.00	0	0	0
0.264 ml 0.00106 M	-	3.00	$5.59 \times 10^{-6}$	$1.00 \times 10^{-9}$	-
2.64 ml 0.00106 M	-	3.00	$5.59 \times 10^{-5}$	$1.00 \times 10^{-8}$	-
2.74 ml 0.0102 M	-	3.00	$5.59 \times 10^{-4}$	$1.00 \times 10^{-7}$	-
$2.80 \cdot \mathrm{ml} \mathrm{0.0997M}$	-	3.00	$5.59 \times 10^{-3}$	$1.00 \times 10^{-6}$	-
$5.60 \mathrm{ml} \mathrm{0.0997M}$	-	3.00	$1.12 \times 10^{-2}$	$2.00 \times 10^{-6}$	-
$1.48 \mathrm{ml} \mathrm{0.9398M}$	-	3.00	$2.80 \times 10^{-2}$	$5.00 \times 10^{-6}$	-
2.97 ml 0.9398 M	-	3.00	$5.59 \times 10^{-2}$	$1.00 \times 10^{-5}$	-
5.94 ml 0.9398 M	-	3.00	$1.12 \times 10^{-1}$	$2.00 \times 10^{-5}$	-
1.38 ml 10.16 M	-	3.06	$2.80 \times 10^{-1}$	$4.91 \times 10^{-5}$	-
$2.76 \mathrm{ml} \mathrm{10.16M}$	-	3.14	$5.60 \times 10^{-1}$	$9.56 \times 10^{-5}$	-
$5.51 \mathrm{ml} \mathrm{10.16M}$	$5.51 \mathrm{ml} \mathrm{10.16M}$	3.28	1.12	$1.83 \times 10^{-4}$	$1.83 \times 10^{-4}$

$\mathrm{H}_{2} \mathrm{Ch}$ dissolved in 3 M perchloric acid, several solutions at various concentration levels of $\mathrm{H}_{2} \mathrm{Ch}$ were scanned on the Beckman $\mathrm{DK}-1$ recording spectrophotometer. Three molar perchloric acid was used as the reference solution in all runs. Using 1 cm matched silica cells, scanning was performed from 380 to $240 \mathrm{~m} \mu$. Previous workers (13) had shown the absorption maximum for $\mathrm{H}_{2} \mathrm{Ch}$ in 3 M perchlorate was $302 \mathrm{~m} \mathrm{\mu}$ and this was found to be the case in this work, also. A portion of the absorption curve of $4.80 \times 10^{-5} \mathrm{M} \mathrm{H} \mathrm{Ch}$ is presented in Figure 2 .

During the course of this preliminary work it was discovered that solutions of $\mathrm{H}_{2} \mathrm{Ch}$ in 3 M perchloric acid were stable for only three to four days. After this period absorption values decreased rapidly, Therefore, all subsequent absorption measurements on all solutions were completed within two to three days after make-up.

The absorbances of the twelve solutions of $\mathrm{H}_{2} \mathrm{Ch}$ in 3 M perchloric acid listed in Table $I$ were then measured as carefully as possible on a Beckman $D U$ spectrophotometer using 1 cm silica cells with 3 M perchloric acid as a reference. Absorbances were measured in steps of $5 \mathrm{~m} \mu$ from 360 to $260 \mathrm{~m} \mu$. This range was based upon the curves obtained on the DK-I which indicated most of the absorbance occurred between 360 and 260. After runs of several sets of solutions prepared identically to determine the reproducibility of the system, the absorbance data for one of the sets was arranged in matrix form. This was accomplished by listing the 21 wavelengths vertically from 260 upward to $360 \mathrm{~m} \mu$ and the solution stoichiometry horizontally from left to right on the page. The 252 absorbance values gave a $21 \times 12$ matrix in Table $V$ which was used in all interpretation of results.
$\mathrm{H}_{2} \mathrm{Ch}$ Plus Hf Solutions. The absorption characteristics of several $\mathrm{H}_{2} \mathrm{Ch}$ plus Hf solutions listed in Table I were measured on the DK-1 as described above for the $\mathrm{H}_{2} \mathrm{Ch}$ solutions. Three molar perchloric acid was again used as a reference solution and scanning was performed from $38 \theta$ to $240 \mathrm{~m} \mu \mathrm{using}$ matched 1 cm silica cells. The same peak at $302 \mathrm{~m} \mu$ was observed in these solutions indicating free $\mathrm{H}_{2} \mathrm{Ch}$ but a shoulder on the curve was noted at about $325 \mathrm{~m} . \mathrm{H}_{\text {. Previous work (13) had indicated a }}$ maximum for the $H_{2} \mathrm{Ch}-\mathrm{Hf}$ complex should occur at $32 \mathrm{~T} m$, therefore it was desired to verify this observation. This was accomplished by measuring the absorption on the $\mathrm{DK}-1$ from 360 to 260 mH of a $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solution, in which Hf was $5.2 \times 10^{-5} \mathrm{M}$ and the free $\mathrm{H}_{2} \mathrm{Ch}$ was originally $4.8 \times 10^{-5} \mathrm{M}$, and the absorption of the $4.8 \times 10^{-5} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ solution described in the previous section. The resulting absorption values are plotted in Figure 2. The $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ complex absorption values were then obtained by subtracting the free $\mathrm{H}_{2} \mathrm{Ch}$ absorbances at every $5 \mathrm{~m} \mu$ from the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ absorbances and plotting, the resulting values which gives the absorption maximum at 327 m山 as shown in Figure 2 。

Solution aging also occurred in the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ system and absorption loss of the solutions was even more apparent than in the $\mathrm{H}_{2} \mathrm{Ch}$ solutions. Consequently, all measurements were made within two days of the make-up.

The absorbances of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions were measured on the DU from 360 to $260 \mathrm{~m} \mu$ in $5 \mathrm{~m} \mu$ steps in the same manner as the $\mathrm{H}_{2} \mathrm{Ch}$ solutions above. One cm silica cells were used with $3 M$ perchloric acid as a reference. Several sets were run and then the last set, which was run the same day as the last set of $\mathrm{H}_{2} \mathrm{Ch}$ solutions, was used to construct a 21 x 12 matrix of absorbance values as was done for the $\mathrm{H}_{2} \mathrm{Ch}$ system. This matrix is shown in Table VII.


Figure 2. Spectral Scans of the $H_{2} C h-H f$ System in $3 M$ Perchloric Acid

## Solutions With Fluoride Present.

Hf Present. The two sets, $4: 1$ and $7.33: 1$, of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions containing $\mathrm{F}^{-}$were evaluated in much the same manner as the solutions without fluoride. The absorbances were measured on the DU from 345 to $245 \mathrm{~m}_{\mu}$ in $5 \mathrm{~m} \mathrm{\mu}$ steps using silica cells and with $3 M$ perchloric acid as a reference. The wavelength span used in this case was shifted, based upon an observation in the previous data which was indicated in the three dimensional plots. A growing peak was noted in the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ plots along the lower $m_{\mu}$ limit of 260 , therefore a shift was made in order to more closely observe the phenomenon.

The absorbance data for each of the two sets of solutions was then arranged as before in a 21 x 12 matrix. The $4: 1$ matrix is given in Table IX and the 7.33:1 in Table XIII.

Hf Absent. The companion sets of solutions containing no Hf were also treated in the same manner as before. However only 5 solutions of $\mathrm{H}_{2} \mathrm{Ch}$ at $0.80 \times 10^{-4} \mathrm{M}$ were used. The various amounts of $\mathrm{F}^{-}$added were not expected to affect the absorbance, therefore, the average of the absorbances of the 5 solutions at each wavelength was used to form the 21 x 12 matrix in Table XI. The resulting matrix consists of 21 rows of wavelengths and 12 columns of identical absorption values. Measurements were made as before on the $D U$ using $3 M$ perchlaric acid as a reference, 1 cm silica cells, and from 345 to $245 \mathrm{~m}_{\mu}$ in 5 m m steps.

The two solutions in which the $\mathrm{H}_{2} \mathrm{Ch}$ concentration was $0.88 \times 10^{-4}$ were handled exactly as above. After averaging the absorbances at each wavelength, the data were used to form the matrix in Table $X V$.

## CHAPTER IV

## COMPUTER PROGRAMS USED IN THE ANALYSIS OF DATA

## Rank of a Matrix

A method for the determination of the rank of a matrix has been developed by Wallace and Katz (15) to determine the number of independent absorbing species in a series of solutions from absorption spectra. Absorption spectra are recorded for a series of solutions containing absorbing species whose relative concentrations change from one solution to the next. These absorbances as functions of wavelength and solution make-up are then arranged in a rectangular matrix and the number of components or absorbing species is determined by the rank of the matrix.

## General Outlining of Rank Method

The method for the determination of the rank of the matrix consists of setting up, in addition to the absorbance matrix, A, a similar matrix, $S$, in which the elements, $S_{i j}$, are the estimated errors of the measured $A_{i j}$. A is then reduced by a series of elementary operations to an equivalent matrix, whose elements below the principal diagonal are all zero. The error matrix, $S$, is also transformed continuously during the reduction of $A$ by computing new values of $S_{i j}$ based on the propagation of errors in transforming $A_{i j}$. The rank of A is then found from the number of rows in the reduced matrix in which the absolute value of the first
element above the principal diagonal exceeds or is equal to the corresponding absolute value of the element in the reduced, $S$, matrix. In this work the value of the reduced matrix element, $A_{i j}$, on the diagonal had to be equal to or greater than three times the absolute value of $\mathrm{S}_{\mathrm{ij}}$. This requirement, that $A_{i j}$ be at least three times its error to be called significant, is a normal criteria in spectrophotometric and other analytical calculations.

Detailed Description of Method

In performing this reduction of the matrices several elementary operations were performed. The A matrix was pivoted by an interchange of rows and columns to place the element whose absolute value was the largest in the matrix in the 1,1 position. The: $S$ matrix was at the same time transformed by the same row-column interchanges made in A. The resulting A matrix was then transformed to an $A^{\prime}$ matrix by the following operation performed on all rows except the first.

$$
\begin{equation*}
A_{i j}^{\prime}=A_{i j}-\frac{A_{i 1}}{A_{11}} A_{l j} \tag{1}
\end{equation*}
$$

By this operation all elements of the first column are zero except of course the first row. S was transformed to $S^{\prime}$ by the equation for the propagation of errors in equation 1.

$$
\begin{equation*}
S_{i j}^{\prime}=\left[S_{i j}^{2}+S_{1 j}^{2}\left(\frac{A_{i 1}}{A_{11}}\right)^{2}+S_{i 1}^{2}\left(\frac{A_{1 j}}{A_{11}}\right)^{2}+S_{11}^{2}\left(\frac{A_{i 1} A_{1 j}}{A_{11}^{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

The submatrices formed by deleting the first row and column of $A^{\prime}$ and $S^{\prime}$ were then treated in the same manner to give $A^{\prime \prime}$ and $S^{\prime \prime}$. This process of deleting rows and columns was then repeated until all elements of the transformed. A matrix below the principal diagonal were identically
zero. The rank was then taken as the number of rows in which the $A^{\prime}$ element was equal or greater than three times the corresponding $S^{\prime}$ element.

## Fortran Program

Wallace and Katz had written a "Fortran" program for an IBM 704 computer and a copy was obtained from them for use in this work. The program was modified to fit the IBM 1410 and one change was made in the program so that, after each step in the reduction of A, each element was compared with the product of the corresponding element in $S$ and some preselected criterion. If the absolute value of the element in $A$ was less than or equal to that product, it was set identically equal to zero. This was necessary to prevent the computer from writing very small, insignificant values below the principal diagonal. This criterion was kept necessarily small to prevent an A element from being set arbitrarily equal to zero. In this work the criteria was 0.001 . A listing of the computer program is presented in Appendix A.

## Significance of Rank

The rank of a matrix indicates the number of absorbing species present in the system when the matrix is made up of absorbance data taken from solutions where the concentration of the absorbing species varies from solution to solution. The rank, then, is a measure of the number of independent peaks and valleys present in an array of absorbance values when these values are arranged in ordered matrix form.

As the concentrations of the absorbing species changed from one solution to the next, it was necessary to distinguish the peaks and valleys caused by significant concentrations of the species from ripples caused
by random errors in the experimental data. If no lower 1imit were set on the significance of a change in the absorption spectra from one solution to the next, the number of solutions present in the system, i.e., the number of columns in the matrix, would be the rank of the matrix.

It was, therefore, necessary to limit the lower level of the error in the $S$ matrix so that the rank of the $A$ matrix was really a measure of the independent absorbing species and not just a measure of differences in absorption values due to these errors in solution make-up, handing and absorbance measurements .

## Error Evaluation

Preliminary work on the computer using the $\mathrm{H}_{2}$ Ch data of Table V gave a rank of five, indicating the presence of five independent peaks and valleys in the twelve solutions of $\mathrm{H}_{2} \mathrm{Ch}$ in 3 M perch1oric acid. Since a rank of one was expected, indicating one species, an evaluation of the error was deemed necessary.

The error used in the pre1iminary work had been $\pm 0.003$ absorbance units, which Wallace and Katz had used in their work. It was decided to do an error study in which the error ranged from $\pm 0.002$ to a 1 imit of $\pm 0.050$ absorbance units and observe the rank as a function of error. A loop was inserted in the program to accomplish this and the results of this study are given in Table IV.

As shown in Table IV the rank remained constant in the range of error from $\pm 0.10$ upward for the $H_{2} C h$ data of Table $V$. Later work is also presented in Table IV for the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ and $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}-\mathrm{HF}$ systems in which the rank was constant over the range of error from $\pm 0.016$ to $\pm 0.040$. This evaluation of error led to the decision that the ideal
tabee IV
ERROR SIZE AND ITS RELATIONSHIP TO THE RANK OF AN ABSORBPTION MATRIX

$\begin{aligned} & \mathrm{H}_{2} \text { Ch Matrix } \\ & \text { of Table } \mathrm{V} \end{aligned}$		$\begin{aligned} & \mathrm{H}_{2} \mathrm{Ch} \text {-Hf Matrix } \\ & \text { of Table VII } \\ & \hline \end{aligned}$		$\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf} \text { Plus } \mathrm{F}^{-}$   matrix of Table IX	
Error	Rank	Error	Rank	Error	Rank
. 003	5	. 002	5	. 002	5
. 006	4	. 004	5	. 004	5
. 010	1	. 006	4	. 006	4
. 015	1	. 008	4	. 010	4
. 020	1	. 010	4	. 015	3
. 025	1*	. 012	4	. 020	3
. 030	1	. 014	4	. 025	3*
. 035	1	. 016	3	. 030	3
. 040	1	. 018	3	. 035	3
. 045	1	. 020	3	. 040	3
. 050	1	. 022	3	. 045	2
-		. 024	3	. 050	2
		. 025	3*		
		. 026	3		
		. 028	3		
		. 030	3		
		. 035	3		
		. 040	3		
		. 045	2		
		. 050	2	*Mean	

error for the systems in this thesis: was $\pm 0.025$ absorbance units which was the mean for all systems where the rank remained constant. Therefore all subsequent rank determinations were made using 0.025 as the error matrix as shown in Table $V$.

Rank of Experimentally Measured Absorbance Matrices
$\mathrm{H}_{2} \mathrm{Ch}$ in 3 M Perchloric Acid
The matrix of Table $V$ for the solutions of $H_{2}$ Ch in which the concentration ranged from 0.08 to $0.96 \times 10^{-4} \mathrm{M}$ in 3 M perch1oric acid was then subjected to the rank determination on the computer. The error matrix used is given in Table $V$ also. By comparing the reduced $A^{\prime}$ and $S^{\prime}$ matrices for this system in Table VI, it can be seen that only the first value in row 1 of $A^{\prime}$ exceeds three times the corresponding value in row 1 of $S^{\prime}$. The value of row 2 first above the diagonal does not exceed three times the value of row 2 just above the diagonal. Thus this system has a rank of one, indicating one absorbing species. $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}(\mathrm{IV})$ in 3 M Perch1oric Acid

The $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}(\mathrm{IV})$ system in which the molar concentration of $\mathrm{H}_{2} \mathrm{Ch}$ plus $\mathrm{Hf}^{+4}$ was $1.00 \times 10^{-4} \mathrm{M}$ and the molar ratio of $\mathrm{H}_{2} \mathrm{Ch}$ : Hf was from $0.087: 1$ to 24:1 produced the matrix given in Table VII. After subjecting this matrix to machine calculations; using the same error matrix given in Table $V$, the reduced $A^{\prime}$ and $S^{\prime}$ were produced and are given in Table VIII. Here it can be seen, as was described above, that three rows in $A^{\prime}$ have values just above the diagonal which exceed or are equal to three times the corresponding values in S'. The rank, then, of this matrix was three.

4: $1 \mathrm{H}_{2} \mathrm{Ch}:$ Hf Plus $\mathrm{F}^{-}$in 3 M Perchloric Acid
In this system where the $\mathrm{H}_{2} \mathrm{Ch}$ concentration was $0.80 \times 10^{-4} \mathrm{M}$ and the total $\mathrm{Hf}^{+4} 0.20 \times 10^{-4} \mathrm{M}$ in all twelve solutions, only the amount of $\mathrm{F}^{-}$ varied. This produced a change in solution absorbance as the amount of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ (IV) complex was reduced by the added $\mathrm{F}^{-}$which formed a non-absorbing complex. As the fluoride concentration increased from zero to 1.83 x $10^{-4} \mathrm{M}$ absorbances decreased as shown in Table IX. This system gave a rank of three as can be seen by inspection of the reduced $A^{\prime}$ and $S^{\prime}$ matrices in Table $X$.
$0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus $\mathrm{F}^{-}$in 3 M Perchloric Acid
In this system no effect was expected upon addition of fluoride, therefore only five solutions were made up and their absorbance values at each wavelength averaged to give the matrix of Table XI. The rank of this matrix was one as expected. In this case, as shown in Table XII, the reduced $A^{\prime}$ and $S^{\prime}$ matrices looked a bit different. A11 values below row 1 are zero in the $A^{\prime}$ and only the first column of $S^{\prime}$ is zero below row 1. This phenomena is due to all values at each of the 21 vertically listed wavelengths being the same for each solution. Therefore after the first reduction of $A$ all values of $A^{\prime}$ are zero below the first row and the operation is terminated by the computer. Zeroing of all values below the principal diagonal in $S$ is then prevented because of the zeros encountered in. A. 7.33:1 H2 Ch:Hf Plus $\mathrm{F}^{-}$in 3 M Perchloric Acid

The matrix of Table XIII obtained from solutions where the $\mathrm{H}_{2} \mathrm{Ch}$ concentration was $0.88 \times 10^{-4} \mathrm{M}, \mathrm{Hf}(\mathrm{IV}) 0.12 \times 10^{-4} \mathrm{M}$ and $\mathrm{F}^{-}$varying from zero to $1.83 \times 10^{-4} \mathrm{M}$ gave a rank of two as is shown in Table XIV of the
reduced $A^{\prime}$ and $S^{\prime}$ matrices.
$0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus $\mathrm{F}^{-}$in 3 M Perch1oric Acid
In this matrix only two solutions were used to give the absorbance values. The average of the absorbances of these two solutions at each wavelength produced the matrix in Table XV. A rank of one was obtained as is shown in Table XVI. The same phenomenon in the $A^{\prime}$ and $S$ ' matrices occurred here as was described earlier in the case of the $0.80 \times 10^{-4} \mathrm{M}$ $\mathrm{H}_{2} \mathrm{Ch}$ in Table XII.

## Three Dimensiona1 Plotting Routine

In the previous section the matrix rank gave the number of absorbing species or complexes in a given matrix of absorbance measurements, The obvious course now would be to identify these species by some manner. As was stated earlier the rank indicated the number of significant peaks and valleys in an absorbance matrix. Then with a contour map or plot of this matrix these valleys or peaks should be discernible.

As mentioned in the section, Review of the Literature, a computer program for a three dimensional plot was available for use on the IBM 1410. Although initial plots were made on the 1410 , all final contour maps were plotted by the IBM 7040. The 1410 could hande only one half of the data for each matrix at a time, therefore to avoid cumbersome maps, the 7040 was used. Al1. 252 points of each matrix could be plotted at once on the larger 7040. The Fortran 1isting of the program for the 7040 is given in Appendix B.

The method of plotting the absorbance data for each matrix is quite unique. The absorbance range can be chosen for any reasonable limit,
say from 0.000 to 2.000 , which was used for the greater part of the matrices. This range can then be divided up into any number of sma11er increments of absorbance, as long as the computer has a symbol for that increment. For this work the absorbance range was divided up into 40 increments, thereby giving an increment of 0.050 absorbance units to each symbol. The 40 symbols were arbitrarily chosen as follows from a lower limit of 0.000 to an upper 1 imit of 2.000 :

$$
*, 1 \text { thru } 9,0,+ \text {, A thru } z, /, \$
$$

In choosing the correct symbol for a given absorbance value the computer simply selects the one whose value is closest to it. For example, an absorbance value of 0.012 might be represented by a 1 , while 0.013 might be a 2 .

The program output was a plot of wavelength on the vertical vs. solution stoichiometry on the horizontal vs. absorbance coming out of the page toward the observer. By drawing in the contour lines the individual peaks and valleys could be more closely observed. By observing the solution stoichiometry at the point where a peak or valley occurred, the ratio of $\mathrm{H}_{2} \mathrm{Ch}$ to $\mathrm{Hf}(\mathrm{IV})$ could be ascertained. The contour maps then were used to find the $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ complex ratios. $\mathrm{H}_{2} \mathrm{Ch}$ Solution Absorbances of Table V .

The absorbances of Table $V$ for the $\mathrm{H}_{2} \mathrm{Ch}$ solutions given in Table I are plotted in Figure 3. In this figure a very high ridge occurs along the maximum absorption peak of $302 \mathrm{~m} \mu \mathrm{H}$. The ridge also rises as the concentration increases to the right. The presence of one species, which was also the case in the rank calculations; was supported by the three dimensional plot of the same data.

## Absorbances of Table VII for the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ System

The addition of $\mathrm{Hf}^{+4}$ to the solution of $\mathrm{H}_{2} \mathrm{Ch}$ listed in Table I gave the contour map of absorbances in Figure 4. In addition to the $\mathrm{H}_{2} \mathrm{Ch}$ characteristics of Figure 3, two other very important features are present. A very long peak centered over about $0.5 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ is evident. In addition, a ridge has formed near the top of the map centered over about $0.75 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$. These two features were interpreted as $1: 1$ and $3: 1$ complexes of $\mathrm{H}_{2} \mathrm{Ch}$ with $\mathrm{Hf}(\mathrm{IV})$.

Absorbances of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ System Minus $\mathrm{H}_{2} \mathrm{Ch}$ Absorbances
In order to verify the above interpretations, a contour map was made in Figure 5 of just the features due to the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ (IV) complexes. This was accomplished by taking each absorbance value of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ (IV) solutions in Table VII and subtracting the corresponding absorbance value of the $\mathrm{H}_{2} \mathrm{Ch}$ solutions in Table V . In cases where the net absorbance was negative the computer was instructed to set this value equal to zero.

The resulting map very clearly shows the existence of two very sharp features. The large "loaf" shaped peak is centered over the solution concentration where the molar ratio is $1: 1$ for $H_{2} C h: H f$. This indicates the presence of a $1: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$. The other obvious feature is a sharp ridge present in the upper right hand section of the map. The center of this ridge is situated at a solution stoichiometry where the $H_{2}$ Ch:Hf ratio is $3: 1$. This indicates the presence of a $3: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$.
4:1 $\mathrm{H}_{2} \mathrm{Ch}$;Hf Plus $\mathrm{F}^{-}$Absorbances of Table IX
The effect of the presence of $\mathrm{F}^{-}$in the $4: 1$ molar ratio of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$
system is shown in Figure 6 for the solutions of Table II. As mentioned earlier, $\mathrm{F}^{-}$masks the absorbance of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ system by replacing the chloranilate. At the lower left hand corner a gradual decrease in absorbance was apparent as the $\mathrm{F}^{-}$concentration increased toward the right. This was interpreted as the decreasing concentration of the 1:1 complex due to $\mathrm{F}^{-}$masking. Two other ridges can be seen in the upper part of the map. These are probably due to higher ordered complexes of Hf with chloranilic acid as the ratio of free $H_{2} \mathrm{Ch}$ to Hf increases as the $\mathrm{F}^{-}$ concentration increases. The free $\mathrm{H}_{2} \mathrm{Ch}$ concentration increase arises from the replacement of the $\mathrm{H}_{2} \mathrm{Ch}$ with $\mathrm{F}^{-}$in the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ complex. This system was given a rank of 3 , therefore two absorbing species besides free $\mathrm{H}_{2}$ Ch were indicated. Since other work in this laboratory (13) had shown an increase in the concentration of a higher ordered $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ (IV) complex as the $F^{-}$concentration increased, it was assumed that the peaks in the upper portion of the map represented a $3: 1 \mathrm{H}_{2} \mathrm{Ch}$ - Hf complex. At the higher $\mathrm{H}_{2} \mathrm{Ch}$ concentrations, the possible presence of a $4: 1$ complex could be a contributing factor in the appearance of the two upper peaks in Figure 6. Future studies, beyond the scope of this thesis, will decide this point. $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus : $\mathrm{F}^{-}$Absorbances of Table XI.

Figure 7 shows a map of absorbance data obtained from the solutions of Table II where $\mathrm{F}^{-}$ranged from zero to $1.83 \times 10^{-4} \mathrm{M}$. As the $\mathrm{F}^{-}$concentration was increased noeffect was noted. Thus the map shows only the sharp ridge at $302 \mathrm{~m} \mu$, at which $\mathrm{H}_{2} \mathrm{Ch}$ exhibited its maximum absorbance. 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus $\mathrm{F}^{-}$Absorbances of Table XIII

These data from the solutions of Table III where $\mathrm{F}^{-}$ranged from zero
to $1.83 \times 10^{-4} \mathrm{M}$ indicated one other species besides $\mathrm{H}_{2} \mathrm{Ch}$. The disappearance of this species was indicated in Figure 8 by the decreasing absorbance in the lower left hand corner. This feature was the only obvious one in the map and it was interpreted as the $1: 1$ complex of $\ldots$ $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$.
$0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus $\mathrm{F}^{-}$Absorbances of Table XV
As in the case of $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ this map in Figure 9 simply shows the absorbance maximum of $\mathrm{H}_{2} \mathrm{Ch}$ at $302 \mathrm{~m} \mu$. These data were taken from the solutions of Table. III in which fluoride concentrations were zero and $1.83 \times 10^{-4} \mathrm{M}$.

Job Plots of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ and $\mathrm{H}_{2} \mathrm{Ch}$ Data

Other work in this laboratory (13) had used the continuous variation method of Job (6) to determine the $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ ratios of the complex. The data of Tables V and VII were used to prepare Job plots for comparison with the earlier work.

The Job plots used consisted of plots of $A-(X / 10) \cdot A_{X}=10$ vs. (X/10) where

A $\quad=$ Absorbance of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions at a given wavelength.
$A_{X}=10=$ Absorbance of $H_{2} \mathrm{Ch}$ solutions at a mole fraction of one at the same wavelength.
$(X / 10)=$ Mole fraction of $\mathrm{H}_{2} \mathrm{Ch}$ in the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions.
In order to determine $A_{X}=10$ a calculation was done at each of the 21 wavelengths by the following equation:

$$
A_{X}=10=\left(\frac{1.00}{0.96}\right) \cdot A \text { of } H_{2} C h \text { at } 0.96 \times 10^{-4} \mathrm{M}
$$

where:

- $\frac{1.00}{0.96} \cdot \mathrm{~A}$ of $\mathrm{H}_{2} \mathrm{Ch}$ at $0.96 \times 10^{-4} \mathrm{M}$ gives the absorbance values of a 1.00 $\times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ solution at each of the 21 wavelengths from 260 to $360 \mathrm{~m} \mu$ in steps of $5 \mathrm{~m} \mathrm{\mu}$. A values for this calculation are given in the last column of the $\mathrm{H}_{2} \mathrm{Ch}$ matrix of Table V.

A Fortran program was written for the IBM 1410 which computed and plotted the Job curves. Interpretation of the 21 resulting curves was then possible by observation of the minimums and maximums and the corresponding mole fractions of $\mathrm{H}_{2} \mathrm{Ch}$. Five of the resulting curves are given in Figure 10 for $265,285,305,325$, and $345 \mathrm{~m} \mu$.

A maximum occurred at a mole fraction of about 0.5 in the 325 and $345 \mathrm{~m} \mu$ curves indicating a $1: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$. The occurrence of a minimum at 0.5 mole fraction in the $305 \mathrm{~m} \mu$ curve was also interpreted as caused by a $1: 1$ complex.

At 265 and $285 \mathrm{~m} \mu$ the curves showed a maximum at about 0.75 mole fraction of $\mathrm{H}_{2} \mathrm{Ch}$. Although these curves are somewhat abnormal for Job plots, it was assumed tentatively that the maximums were due to a $3: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}$ to Hf .

Since this abnormality was observedand since the Job method was designed primarily for a $1: 1$ complex in a simple system no further interpretations based on this method were made:


An iterative program was written for the IBM 1410. With this program a machine calculation of the formation constants, $\beta_{1}$ and $\beta_{3}$, for the $1: 1$ and $3: 1$ ch1oranilic acid: hafnium complexes were completed using the data and some preliminary calculations of the author.

For the calculations to be completed several known quantities were read into the computer as shown in the flowsheet of Appendix $C$. These values are defined as follows:

$$
\begin{aligned}
\mathrm{Ab}(21,12)= & \text { The } 252 \text { absorbance values for the } \\
& 12 \mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf} \text { solutions at the } 21 \\
& \text { wavelengths given in Table VII: } \\
\mathrm{MA}_{3}(12)= & \text { The estimated concentrations of the } \\
& 3: 1 \text { complex in each of the } 12 \text { solu- } \\
& \text { tions. } \\
\mathrm{Ab}_{4}(12)= & \text { The absorbance values of the fourth } \\
& \text { solution in Table VII where no inter- } \\
& \text { ference of a } 3: 1 \text { complex was assumed. } \\
\mathrm{C}_{\mathrm{A}}(12) \quad= & \text { The total concentration of } \mathrm{H}_{2} \mathrm{Ch} \text { in } \\
& \text { each of the } 12 \text { solutions. } \\
\mathrm{C}_{\mathrm{M}}(12) \quad= & \text { The total concentration of } \mathrm{Hf} \text { in } \\
& \text { each of the } 12 \text { solutions. } \\
\varepsilon_{\mathrm{A}}(12)= & \text { The molar absorptivity of the } \mathrm{H}_{2} \mathrm{Ch}
\end{aligned}
$$

With the data read in calculations of $A(12)$ were made, where $A(12)$ was the concentration of free $\mathrm{H}_{2} \mathrm{Ch}$ in each of the 12 solutions of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$. Knowing these values $\bar{n}(12)$, the average ligand number for each of the solutions, was calculated. A value for $M A$, the concentration of the $1: 1$ complex, was then calculated for the fourth solution in Table VII knowing $\overline{\mathrm{n}}_{4}$ and $\mathrm{CM}_{4}$.

The next calculation in the program produced a value for $\varepsilon_{1}$, where $\varepsilon_{1}$ was the molar absorptivity of the $1: 1$ complex of solution 4 at the first
wavelength. A value for $\epsilon_{M}$, the molar absorptivity of the metal in the first solution at the first wavelength, was then determined.

With the previous calculations and data available the program then entered its first iteration. In this loop values of $M A, M A_{3}$ and $M$, the free Hf concentration, were calculated and used to calculate the first estimate of $\beta_{1}$ and $\beta_{3}$. These values in turn were used to calculate a value of $\varepsilon_{3}$ which in turn was used for calculations of better values of $\bar{n}$ and $\mathrm{MA}_{3}$. At that point the computer returned to the beginning of the loop. After 25 iterations the first values for $M, M A, M A_{3}, \beta, \beta_{3}, \bar{n}$ and $\epsilon_{3}$ for the first solution and first wavelength were ready for printout. This same loop was then repeated for the remaining eleven solutions and printout for the first wavelength ( $360 \mathrm{~m} \mu$ ) was completed. At that point the average values of $\varepsilon_{3}, \beta_{1}$ and $\beta_{3}$ for the first wavelength were also computed and printed out.

The computer was then instructed to return to the first calculation of $\epsilon_{1}$ and cpmpute all the values stated above for the next wavelength. This loop, with its loops within loops, was completed for all 21 wavelengths from 360 to $260 \mathrm{~m} \mu$ in steps of $5 \mathrm{~m} \mu$.

After completion of the wavelength loop the 21 values of $\beta_{1}$ and $\beta_{3}$. were averaged to give a grand average value for $\beta_{1}$ and $\beta_{3}$. These values and the reactions they represent were as follows:

$$
\begin{aligned}
& \mathrm{Hf}^{+4}+\mathrm{H}_{2} \mathrm{Ch} \not \mathrm{Hf}\left(\mathrm{H}_{2} \mathrm{Ch}\right) \beta_{1}=5.77 \times 10^{3} \\
& \mathrm{Hf}^{+4}+3 \mathrm{H}_{2} \mathrm{Ch} \not \mathrm{Hf}\left(\mathrm{H}_{2} \mathrm{Ch}\right)_{3} \beta_{3}=8.50 \times 10^{11}
\end{aligned}
$$

Varga, Zumwalt and Wyatt (13) had reported values for $\beta_{2}$ and $\beta_{4}$ of $4.06 \times 10^{7}$ and $3.10 \times 10^{14}$ respectively. The values calculated by the method above and the species they represent are preferred over the previous results.

## CHAPTER V

## INTERPRETATION OF RESULTS

## Summary and Conclusions

The matrix rank analysis of the spectrophotometric data provided a very concise method by whiç the number of absorbing components in a system could be determined. In the systems where fluoride was absent one component was present in the $\mathrm{H}_{2} \mathrm{Ch}$ system and three in the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ solutions. Thus two absorbing $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ complexes were found. In the fluoride containing systems one absorbing species, $\mathrm{H}_{2} \mathrm{Ch}$, was found in the two sets of solutions containing no Hf. Where Hf was present three absorbing species were found in the $4: 1 \mathrm{H}_{2} \mathrm{Ch}$ : Hf solutions and two in the $7.33: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$. Thus in the $4: 1$ solutions two complexes of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ were present and in the $7.33: 1$ solutions only one $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ complex could be found.

Contour maps of the absorption matrices provided a very simple method for the identification of the complexes found above. i
In the absence of $\mathrm{F}^{-}$the two complexes were identified as the $1: 1$ and $3: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$. This was shown very clearly in Figure 5. The Job plots of this same data also indicated the existance of a $1: 1$ and $3: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ although some reservation was made in this interpretation.

In the presence of $\mathrm{F}^{-}$the contour maps indicated a decreasing concentration of the $1: 1$ complex of $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ in both sets of data. In the
case of the $4: 1 \mathrm{H}_{2} \mathrm{Ch}$ :Hf solutions, some evidence was shown for the formation of a higher complex at the expense of the $3: 1$ complex as fluoride was added, but this was not observed in the 7.33:1 series. No explanation was put forth and work beyond the scope of this thesis was indicated.

The iterative calculations of the formation constants for the two complexes found by the above methods gave:

For the $1: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$,

$$
\beta_{1}=5.77 \times 10^{3}
$$

For the $3: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$,

$$
\beta_{3}=8.50 \times 10^{11}
$$

Suggestions for Future Study

In view of the success of the computer applications presented in this thesis many more complex systems, which have resisted other means of interpretation, might we11 be approached in this manner. The on1y requirement for this approach is the collection of good, detailed data in large amounts.

The fluoride masking effect should be studied in greater detail then was presented here. The possibility of higher ordered $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ complexes and even mixed $\mathrm{F}^{-}$and $\mathrm{H}_{2} \mathrm{Ch}$ complexes of Hf should provide incentive for future work in this area. Varga, Zumwalt and Wyatt (13) had calculated the formation constants and the concentrations of complexes at one wavelength. If this were done for many more wavelengths using the data given in this thesis or new data, a more complete interpretation of the $\mathrm{Hf}-\mathrm{H}_{2} \mathrm{Ch}^{-\mathrm{F}^{-}}$system should be possible.

## $\mathrm{H}_{2} \mathrm{Ch}$ ABSORBANCE MATRIX FOR SOLUTIONS OF TABLE I


#### Abstract

360 .007000000 .007000000 $\begin{array}{r}.007000000 .007000000 \\ .007000000 \\ \hline 007000000\end{array}$ $.0007000000 \quad .007000000$ .007000000 .008000000 .010000000 $=013000000.016000000$   $310 \quad .114800000 \cdot .317000000 .473000000 \quad .627000000 .782000000 .9350000001 .0980000001 .2370000001 .4300000001 .5360000001 .7340000001 .808000000$  .014000000 .024000000 .011000000 .012000000 .02 $008000000.009000000-012000000.012000000 .012000000 .012000000 .031000000 .023000000 .031000000 .027000000$ 




## TABLE VI

## REDUCED $\mathrm{H}_{2} \mathrm{Ch}$ MATRIX

$1.8930000001 .7570000001 .1180000001 .573000000 \cdot 6420000001.4640000001 \cdot 273000000 \cdot 324000000 \cdot 960000000 \cdot 803000000 \cdot 163000000 \cdot 487000000$ $.000000000 .055893292 .030200740 .033631274 .013827258 .031736926 .021160592 \cdot 007548336 \cdot 018106180.015056524-002319070.007867406$
 00000000000000000 000000000 000000000-024615895-009588792-009274947-002772188-005585418 0001007227-002019539-.005773631-003641723 $000000000.000000000-000000000.000000000 .000000000-013873939-.010132383 .003015311-.002440022 .000936915-001984805-.001267875$ $.000000000 .000000000 .000000000 .000000000 .000000000 .00000000-.007188360-.004338185-.002011284-000683742-.001289638-.002875165$ .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .007634952 .001996753 . .003094388 .005188504 .003885578
 $.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .005639441-.001868532 .000752713$ .000000000 .000000000 .000000000 . 000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 . 0000000000 .000000000 . 000000000 000000000.000000000 000000000.000000000 000000000.000000000

.000000000 .000000000 .0000000000 .000000000 000000000 000000000 . 000000000.000000000 . 00000000000 . .000000000 .000000000 .000000000 .000000000 .000000000
.000000000 .000000000
000.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 000000000.000000000 .000000000
.000000000 .000000000 000000000.000000000 .000000000 .000000000 .000000000.000000000
0000000.000000000

000000000 . 000000000
.000000000 .0000000000
000000000.00000000

000000000 . 0000000000 .000000000 . 0000000000
.000000000 .000000000 .000000000 .000000000 $.000000000 \quad .000000000$
 $.000000000 .000000000 \cdot .000000000 .000000000 .004130819$ .000000 .000000000 .000000000 .001597053 $.00000000 .000000000-000000000.000000000 .003245302$ .0000000000 .000000000 . 000000000 . 00000000000001013100 $.000000000 \cdot 000000000 \cdot .000000000 .000000000 .003124048$ $\begin{array}{rllll}.000000000 & .000000000 & .000000000 & .0000000000 & .002706501 \\ .000000 \\ .000000000 & .000351250\end{array}$ .000000000 .000000000 . $0000000000 \cdot 000000000 \cdot .000351250$

REDUCED S MATRIX

. 025000000	. 025000000	. 0	. 025000000	. 02500000	-043703004	041660559	. 035073398	038762085	037552436	98608	
. 0	. 047166810	. 0	. 044948381	. 036504725	. 043703004	. 041660559	. 035073398	. 038762085	6	8	80
. 000000000	. 000000000	. 048075669	. 053739934	. 038743533	. 051817228	. 045822148	. 036037134	. 042120650	. 040077420	035133979	64
. 000000000	. 000000000	. 000000000	. 0665446515	. 046601459	. 064833399	. 063009323	. 042847757	. 057899071	. 050632561	. 038524517	. 041986548
. 000000000	. 000000000	. 000000000	. 000000000	. 047913420	. 069228535	. 066449709	. 044272005	. 059475527	. 051957236	. 039869208	045553489
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 068952237	. 066219245	. 042890236	. 058143686	. 050001410	. 038526832	044334734
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 098058873	. 053552342	. 070009457	. 059192327	. 046876953	.052783112
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 078015291	. 073500884	058573658	. 048942168	. 064279382
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 118355453	. 103278381	. 111952679	117226654
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 0000000000	. 000000000	. 087731560	. 110331248	092025590
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. $0000000 \overline{0}$	. 151547425	. 123217828
0	. 00	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 102702004
. 000000000	. 00	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	. 000000000	. 000000000	. 151885095
. 000000000	. 0	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 102915413
000	. 000000	.	. 00	. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000	000000000	. 093929568
0000000	. 00000000	. 00000	.	. 000000000	. 000000000	. 000000000	. 000000000	000000000	. 000000000	. 000000000	. 140696331
. 0000000	. 00000000	. 000000	. 000000000	. 000000000	. 050376515	. 000000000	000000000	000000000	-000000000	000000000	. 065251752
. 0000000	. 00000000	. 00	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	000000000	000000000	000000000	129404641
. 000000000	. 00	. 000000000	000000000	000000000	000000000	000000000	00000000	000000	. 000000000		
. 000000000	. 0	-	. 000000000	. 000000000	000000000	000000000	000	. 000000000	. 000000000	000000000	125800309
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000		. 058087449			



Figure 3. Contour Map of the $H_{2} \mathrm{Ch}$ Absorbance of Table $V$

## TABLE VII

## $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ ABSORBANCE MATRIX FOR SOLUTIONS OF TABLE I


#### Abstract

$360-.020000000 .024000000 .034000000 .038000000 .042000000 .042000000 \cdot 0430000000.038000000 .037000000 \quad .0320000000 .022000000 \quad .018000000$   $345-053000000-088000000-114000000-136000000.145000000 \quad .154000000 \quad .150000000 \quad .143000000 \quad .128000000 \quad .105000000 \quad .075000000 \quad .040000000$      $315-096000000 \cdot 178000000 \cdot 252000000 \cdot 321000000 \cdot 388000000 \cdot 443000000 \cdot 494000000 \cdot 541000000 \cdot 582000000 \cdot .613000000 \cdot 625000000 \cdot 670000000$   $295 \cdot 109000000.202000000 .302000000 .382000000 .534000000 .663000000 .803000000 .9440000001 .1610000001 .3170000001 .4780000001 .630000000$ $290-112000000.186000000-268000000.359000000 .459000000 .573000000 .686000000 .8050000001 .0260000001 .1630000001 .2930000001 .425000000$   $275-127000000.156000000 .184000000 .213000000 .249000000 .282000000 .314000000 .350000000 \quad .633000000 \quad .675000000 \quad .673000000 \quad .720000000$   


## REDUCED $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ MATRIX



``` \(\begin{array}{lllllllllll}.000000000 & .245765070 & .175846197 & .062129577 & .219448450 & .126748169 & .186102535 & .237491831 & .139913802 & .232042253 & .078265352 \\ .000000000 & .000000000 & .183354549 & .013685739 & .054852881 & .131903375 & .077594065 & .033308305 & .095394298-.035396547 & .109510786-.076291805\end{array}\)
```



``` \(.000000000 .000000000 .000000000 \quad .000000000-.041206586,009648818-.010151890-.006245421-.007975076-.005998780-.004831918-.007195663\) \(-.000000000 .000000000 .000000000 .000000000 .0000000 \cdot .013000659-.000750087-.003050298 \cdot .001249812-.008214410 .005154763-.011729526\)
```




``` \(.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000-.008086339 .000639746-.005688011\)
```







``` \(.000000000 .000000000 .000000000 .000000000 .000000000 \quad .000000000 \quad .000000000 \quad .000000000 .000000000 .000000000 \quad .000000000-.004295587\)
```





``` \(.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000-.002048822\) \(.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000-.001161726\)
```


## REDUCED S MATRIX

[^0]

Figure 4. Contour Map of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Absorbances of Table VII


Figure 5. Contour Map of the $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{Hf}$ Absorbances of Table VII Minus the $\mathrm{H}_{2} \mathrm{Ch}$
Absorbances of Table $V$

## TABLE IX

## 4:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ PLUS $\mathrm{F}^{-}$ABSORBANCE MATRIX FOR SOLUTIONS OF TABLE II



TABLE X

## REDUCED 4: $1 \mathrm{H}_{2} \mathrm{Ch}$ :Hf MATRIX

1.570000000											
. 000000000	. 208491719	. 009081528	. 008364968	. 009834394	. 00655095	. 108328662	. 009231210	. 007251592	. 172389809	. 026628025	. 005437577
. 000000000	. 000000000	. 124724695	. 001669057	. 090172485	. 077233096	. 028152566	. 108394095	. 057643053	. 018312404	. 044093324	. 077207092
-00COOCOCO	.0000c0CCO	. 000000000	. 050110681	.006073636	. 00452294	. 00468853	. 010589240	. 025850178	. 000953462	. 023930664	.001745935
-000000000	. 0coccocoo	. 000000000	.000000000-	. 28979344	. 009942892	. 017911789	. 003349484	. 021767186	. 012464619	. 002128382	. 002397669
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 036437758	. 00392645	. 005597624	. 01375637	029369088	. 008895092	. 007775979
. 000000000	. 000000000	. 0 COCOCOOO	. 000000000	. 000000000	. 000000000	. 026946952	. 009992103	. 00639056	. 0111562	. 00085597	.005913944
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	. 02586950	. 010588855	. 00319869	. 00072776	. 011395105
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 023542729	. 007441420	. 006257927	-.0100412i:
. 000000000	.000000C00	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 02084767	. 014586373	. 005912784
. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	- 000000000	. 008905036	. 002160854
. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 003645865
. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 001309693
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 004354166
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000823942
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.00206511
. 000000000	. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000754506
-000000000	.000060000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 006914923
. 000000000	. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 000870100
. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000247175
. 000000000	. 000000000	.00000000	.000000000	. 000000000	. 000000000	. 00000000	.000000000	. 000000000	. 00000000	. 0000000	. 001282712

REDUCED S MATRIX

.025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	0
.00C000000	. 032837879	. 034609630	. 034554628	. 034852775	. 034908291	. 034368347	. 034775211	. 034576617	. 033784251	. 034697833	. 034930524
. 000000000	.000000000	. 036051598	. 035989735	. 036309713	. 036347555	. 039935062	. 036224801	. 036006117	. 045110056	. 036375492	. 036365753
. 000000000	. 000000000	.000000000	. 049113651	. 060989402	. 058205259	. 055612575	. 065353705	. 054136995	. 061976541	. 052594184	. 058221054
. 000000000	. 000000000	. 000000000	. 000000000	. 089489057	. 085246161	. 081490553	. 096635188	.087288323	. 090517674	. 084097131	. 085059781
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 112563238	. 122355519	. 120737841	. 136866962	. 122196943	. 104794384	. 106071301
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 073726413	. 073135532	. 085933027	. 091259364	. 064961098	. 065213034
. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	-000000000	. 000000000	. 105633436	-118642680	. 130189705	. 0887944310	. 090956993
.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 124040214	. 128526783	. 086436636	. 100358732
-000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 085358130	. 000000000	. 000000000	-137474570	. 097650095	-117267319
. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 153463688	.139087803
. 000000000	. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 102035056
. 00C00c000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 078247043	. 070984742
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000	. 162174507
.000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 086281906
. 060000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 111920707
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 133438359
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-120584620
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 113018435
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 174152326
. 000000000	. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 127801353



Figure 6. Contour Map of the $4: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus $\mathrm{F}^{-}$Absorbances of Table IX

## TABLE XI

## $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ PLUS $\mathrm{F}^{-}$ABSORBANCE MATRIX FOR SOLUTIONS OF TABLE II

345	. 018000000	. 018000000	. 018000000	. 018000000	. 018000000	. 018000000	.018000000	.018000000	.0180000	. 018000000	.018000000	8000000
340	. 018000000	. 018000000	.018Cccooo	. 018000000	. 018000000	. 018000000	. 018000000	. 018000000	. 018000000	. 018000000	- 018000000	.018000000
335	. 025000000	.025000000	. 025000000	. 025000000	. 025000000	. 025000000	.025000000	. 025000000	. 025000000	. 025000000	. 025000000	.025000000
330	42000000	.042000c00	. 042000000	. 042000000	. 042000000	. 042000000	. 042000000	. 042000000	.042000000	. 042000000	.042000000	042000000
325	.088000000	.088000000	. 088000000	. 088000000	. 088C00000	. 088000000	. 088000000	. 088000000	. 088000000	. 088000000	. 088000000	. 088000000
320	216000000	. 216000000	. 216000000	. 216000000	. 216000000	-216000000	. 216000000	. 216000000	. 216000000	-216000000	. 216000000	. 216000000
315	.545000000	. 545000000	. 5450	. 545000000	. 545000000	.545000000	.545000000	. 545000000	. 545000000	. 545000000	. 545000000	.545000000
310	1.064000000	.06400000	. 0640000	06	06							0
305	45	451000000	. 45100000	451000000	45100000	45100000	45100000	. 45100000	4510000	45100000	4510000	00
300	1.494000000	.49400c000	. 494000000	. 494000000	49400000	49400000	4940000	494000	4940000			494000000
295	1.388000000	. 388000000	. 388	. 38	. 38	. 38	. 38	. 38	38	. 38800000	. 38	.3880 C 0000
290	1.178000001	178000000	1780	178000	1780	178	178	17	. 17800000	. 178000000	. 1780000	17
285	.905000000	. 905000000	. 905000000	. 905000000	. 90500000	. 90500000	. 90500000	. 905000000	. 90500000	. 905000000	. 9050000	. 905000000
280	.6360C0000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000	. 636000000
275	.438000000	. 438 COOCOO	. 438000000	. 438000000	.438000000	. 438000000	.438000000	. 438000000	.438000000	.438000000	. 438000000	. 438000000
70	. $30000 \mathrm{C000}$	. 300000000	. 300000000	. 300000000	. 300000000	. 300000000	. 300000000	. 300000000	. 300000000	.3300000000	- 300000000	. 300000000
265	. 208000000	. 208000000	. 208C00000	. 208000000	.208000000	. 208000000	. 208000000	. 208000000	. 208000000	.208000000	. 208000000	208000000
260	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	. 160000000	160000000
	.128000000	.128000000	. 128ccanon	. 128000000	.128000000	. 128000000	.128000000	.128000000	.128000000	.128000000	.128000000	.128000000
	. 118000000	. 118000000	.118CC0000	. 118000000	. 118000000	. 118000000	. 118000000	. 118000000	. 118000000	. 118000000	. 118000000	. 11800000
	. 12700 C	. 12	.127000000	127000000	.127000000	.127000000	.127000000	. 127000000	. 127000000	.127000000	.127000000	.127000000

TABLE XII
REDUCED $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ PLUS $\mathrm{F}^{-}$MATRIX

. 000000000	. 000000000	.0000C0000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	00000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	000000000
- C0CCOOOCO	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	000000000
. 00000000	. 000000000	. 000000000	.000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
-000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	-000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	000000000	000000000
. 000000000	. OCO	. 0	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	.0000000	. 00	. 000000000	000000000	. 000000000	000000000	000000000	. 000000000	. 000000000	. 000000000	000000000
.000000000	. 00	. 000000	. 000000000	. 000000000	. 000000000	. 0000000	. 000000000	. 00000000	. 0000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000	. 000000000	. 000000000	. 000000000	. 00000000	. 000000000	. 000000000	-00000000	. 000000000	000000000
- COC000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 060000000	. 000000000	. 000000000	.000000000	.000000000	. 000000000	. 000000000	.000000000
-000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000
- OCCCOCOCO	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
- OCCG00000	. 100000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 000000000	.0000000000	. 000000000
. 000000000	$.0000 c 0000$	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000600	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000	.000000000	.000000000	. 000000000	. 000000000	.000000000	.000000000

REDUCED S MATRIX

. 025000000	. 025000000	. 025000000	. 025000000		. 025000000	. 025000000	. 025000000		. 025000000	. 025000000	. 025000000
. 000000000	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905
. 00000000	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288	. 035360288
. 000000000	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 035369307	. 0353369301
. 000000000	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618	. 035416618
. 000000000	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942	. 035722942
. 000000000	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318	. 037634318
. 000000000	. 0443405116	. 043405116	. 0443405116	. 043405116	. 043405116	. 043405116	. 043405116	. 043405116	. 043405116	. 0434405116	. 043405116
. 000000000	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707	. 049285707
. 000000000	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 035357905	. 0353557905	. 03535790	. 035357905
. 000000000	. 048258846	. 048258846	. 048258846	. 048258846	.048258846	. 048258846	. 048258846	. 048258846	. 048258846	. 048258846	. 048258846
. 000000000	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774	. 045023774
. 000000000	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133	. 041336133
. 000000000	. 0388425624	. 038425624	. 038425624	. 0338425624	. 038425624	. 038425624	. 038425624	. 038425624	. 038425624	.038425624	. 038425624
. 00000000	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422	. 036843422
. 000000000	.036061092	. 036061092	. 036061092	. 036061092	.036061092	. 036061092	. 036061092	. 036061092	. 036061092	. 036061092	. 036061092
. 000000000	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344	. 035696344
. 000000000	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512	. 035557512
. 000000000	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862	. 035484862
. 000000000	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445	. 035465445
. 000000000	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850	. 035482850



Figure 7. Contour Map of $0.80 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus $\mathrm{F}^{-}$Absorbances of Table XI

## TABLE XIII

### 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}:$ Hf PLUS $\mathrm{F}^{-}$ABSORPTION MATRIX FOR SOLUTIONS OF TABLE III


#### Abstract

$345 \ldots .088000000 .082000000 .056000000 .024000000 .021000000 .018000000 .018000000 .018000000 .019000000 \quad .022000000 \quad .021000000 .017000000$  $335-.138000000 .128000000 .088000000 .042000000 .031000000 .031000000 .031000000 .031000000 .031000000 \quad .032000000 \quad .028000000 \quad .028000000$    $315-.657000000 .650000000 .623000000 .610000000 .603000000 .609000000 .607000000 .600000000 .605000000 .595000000 .590000000 .577000000 \quad .6$ 3051.6050000001 .522000001 .4720000001 .5780000001 .5770000001 .5370000001 .5260000001 .5440000001 .5220000001 .5150000001 .4380000001 .456000000  $2951.436000 C 001.434000 C 001.413000001 .5150000001 .4750000001 .4880000001 .4660000001 .4940000001 .59500000001 .4700000001 .4350000001 .456000000$          245 $.188000000 .166000000 .14000 \mathrm{COO} \quad .100000000 .116000000 .114000000 .117000000 .122000000 .130000000 .123000000 .115000000 \quad 114000000$


## REDUCED 7.33:1 $\mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ MATRIX

$\quad .6420000001 .568000 C 001.4940 C 00601.5680000001 .5950000001 .5300000001 .6210000001 .5240000001 .6030000001 .6000000001 .5900000001 .534000000$




 $.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 \cdot .000000000 .012428885-.002928016-.007969745-.002207250$
1730 .004234515




 $.000000000 .000000000 .000000000 .000000000 .000000000 \cdot 000000000 \cdot 000000000 \cdot 000000000 \cdot 000000000 \cdot 000000000-000000000.005640977$



## REDUCED S MATRIX

. 025000000	. 025000000		. 025000000	. 02500000	. 025000000	.025000000	. 025000000				u
. 000000000	. 034649601	. 033873500	. 034649601	. 034935447	. 034251655	. 035213071	. 034189297	. 035020625	. 034988658	. 034882322	. 034293300
. 000000000	. 000000000	. 0440330 d 7	. 060750084	. 045445769	. 044574099	. 045891526	. 044436119	. 045600584	. 045662243	. 045394684	. 050146798
. 000000000	. 000000000	. 000000000	. 078204371	. 059249136	. 068460437	. 059081340	. 071853174	. 058808832	. 0593885604	. 058106072	. 066468373
. 000000000	. $000000 c c 0$	. 000000000	. 000000000	. 051746109	. 060467933	. 057515046	. 076874375	. 051143798	. 053352159	. 050603325	. 075971961
. 000000000	. 000000000	. 000000000	. 00000000 C	. 000000000	. 068503154	. 072750495	. 083949053	. 063765790	. 071167072	. 067491500	. 083178645
. 000000000	. 000000000	. 00000000	. 000000000	. 000000000	. 0000000000	. 079184195	. 10588624	. 069718481	. 076678047	. 072833954	. 090251293
. 000000000	. 000000000	. 000000060	. 000000000	. 000000000	$\because 000000000$	. 000000000	. 12932245	. 084441618	. 092344768	. 098541404	-109733917
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 117979347	. 115693671	. 112380556	. 142119012
. 000000000	. 000000000	. 000000006	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 162272667	. 184756657	. 195917387
.000000000	. 000000000	. 0 cccccooo	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 106805729	. 000000000	. 191965711	-184269794
. 000000000	- 00000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 000000000	. 0000000000	. 0000000000	. 000000000	. 000000000	. 123065829
. 000000000	. 000000000	. $0000 c 0 c u 0$	. 000000000	.000000000	. 000000000	. 0c0000000	. 000000000	. 000000000	. 000000000	. 000000000	. 10756891 u
. 0	. 00	. 000000000	. 00000000	. 000000000	-000000000	. 000000000	. 000000000	. 0000000000	. 000000000	. 000000000	. 279544979
. 000000000	.000000000	. 000 coccua	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 112551373
. 00000000	. 000000000	. 000000000	.0000C0000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	. 000000000	. 230506194
. 000000000	. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 1113585344
. 000000000	. 0000C0000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 000000000	. 000000000	. 20579354 9
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 206545085
. 000000000	. 000000000	. 0 coocrano	. 000000000	. 000000000	.000000000	. 0000000000	. 000000000	. 000000000	-000000000	. 000000000	.194851535
.000000000	.000000000	.000000000	. 000000000	. 000000000	. 00000000	. 000000000	.000000000	. 000000000	.000000000	. 000000000	. 109552072



Figure 8. Contour Map of the $7.33: 1 \mathrm{H}_{2} \mathrm{Ch}: \mathrm{Hf}$ Plus $\mathrm{F}^{-}$Absorbances of Table XIII

## $0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ PLUS $\mathrm{F}^{-}$ABSORBANGE MATRIX FOR SOLUTIONS OF TABLE III

												00
340	. 022000000	. 022000000	. 022000000	. 0222000000	. 022000000	. 022000000	. 02200000	. 02	. 022000000	. 022000000	. 022000000	. 022000000
335	. 031000000	. 031000000	. 031000000	.031000000	. 031000000	. 031000000	. 03100000	. 03100000	. 031000000	. 031000000	. 031000000	. 031000000
330	. 052000000	. 052000000	. 052000000	. 052000000	. 052000000	. 052000000	. 052000000	. 05200000	. 052000000	. 05200000	-0520000	. 052000000
325	. 100000000	.100000000	. 100000000	. 100000000	. 100000000	. 100000000	. 100000000	. 10000000	. 100000000	.100000000	. 10000000	. 10000000
320	. 235000000	. 235000000	. 23500000	. 235000000	. 235000000	- 235000000	. 23500000	. 23500000	. 235000000	. 23500000	. 23500000	. 235000000
315	. 575000000	. 575000000	. 575000000	. 575000000	. 57500000	. 575000000	. 575000.00	.57500000	. 57500000	. 57500000	. 5750000	.575000000
310	1.0940000001	094000000	. 09400000	. 094000000	. 09400000	. 09400000	. 09400000	. 09400000	1.09400000	1.094000	. 09	060000
305	1.4180000001	. 418000000	. 418000 C 0	. 418000000	. 4180000	4180000	4180000	4180000	. 4180000	4180000	. 41	00
	1.484000000	. 48400000	4840 CUO	48400000	4840000	48400000	4840000	4840000	4840000	48400000	48	000
	1.427	. 42700	. 427000	42700000	42700000	42700000	42700000	. 42700000	. 4270000	4270000	. 427000	0000
	1.26	.	. 26	26000	. 2600000	26000000	26000000	260	260		26	
	. 976000000	. 970000000	. 970000000	. 970000000	. 970000000	. 970000000	. 970000000	. 970000000	. 97000000	. 970000000	. 970000000	. 970000000
	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 678000000	. 67800000	. 678000000
	. 460000000	. 460000000	. 460000000	.460000000	. 460000000	. 460000000	.460000000	. 460000000	. 460000000	.460000000	. 460000000	.460000000
270	. 297000000	. 297000000	. 297C0C000	. 297000000	. 297000000	. 297000000	. 297000000	. 297000000	. 297000000	-297000000	. 297000000	. 297000000
265	.194000000	.194000000	. 194600000	.194000000	.194000000	.194000000	.194000000	. 194000000	.194000000	.194000000	.194000000	.194000000
260	. 137000000	.137000000	.137000000	.137000000	.137000000	. 137000000	-137000000	. 137000000	. 137000000	.137000000	. 137000000	. 137000000
255	.107000000	. 107000000	.107C00000	.107000000	.107000000	.107000000	. 107000000	.107000000	. 107000000	. 107000000	.107000000	. 107000000
250	. 097000000	. 097000000	. 097000000	. 097000000	. 097000000	. 097000000	. 097000000	. 09700000	. 097000000	. 097000000	. 09	. 097000000
245	.115000000	.115000000	.115000000	.115000000	. 115000000	. 115000000	. 11500000	. 1150000	. 115000000	.115000000	.11500000	.115000000

## TABLE XVI

## REDUCED $0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ PLUS $\mathrm{F}^{-}$MATRIX

. 000000000	- 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	0
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 0000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
.0C0006000	.000000C00	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
-00000C000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	-000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 0	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 00	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 00000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 0000000000	. 0000000000	. 000000000	. 0000000000	. 0000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 0000000000	. 000000000	.000000000	.000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	-000000000	. 000000000	. 000000000
- 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000
. 000000000	.000000000	. 000000000	. 000000000	.000000000	.000000000	.000000000	. 000000000	. 000000000	.000000000	. 000000000	. 000000000

## REDUCED S MATRIX

. 025000000	00000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	. 025000000	.025000000
-000000000	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223	. 035359223
. 000000000	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052	. 035363052
. 000000000	.035377037	. 0353377037	. 035377037	. 035377037	. 035377037	. 035377037	. 035377037	. 035377037	. 0353777037	. 035377037	. 035377037
. 000000000	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518	. 035435518
. 000000000	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889	. 035795889
. 000000000	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522	. 037916522
-000000000	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069	. 043924069
. 000000000	. 048900782	. 048900781	. 048900782	. 048900782	. 048900782	. 048900781	. 048900782	. 048900782	. 048900782	. 048900782	. 048900781
. 000000000	. 035357939	. 03535793	. 03535	. 035	. 035	. 035357939	. 035357939	. 035357939	. 035357939	. 0335357939	. 035357937
. 000000000	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157	. 049049157
. 000000000	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	. 046380183	.046380183
. 000000000	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070	. 042238070
. 000000000	. 038870509	. 038870509	. 038870509	. 038870509	.038870509	. 0388870509	. 038870509	. 038870509	. 038870509	. 038870509	. 038870509
. 000000000	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917	. 037014917
. 000000000	. 036056447	. 036056447	. 036056447	. 036056447	.036056447	. 036056447	. 036056447	. 036056447	. 0336056447	. 036056447	. 036056447
. 000000000	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166	. 035656166
. 000000000	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679	. 035505679
. 000000000	. 035447121	. 035447121	. 035447121	. 035447121	. 035447121	. 035447121	. 035447121	-035447121	. 035447121	. 035447121	. 035447121
. 000000000	. 035430785	. 035430785	. 035430785	. 035430785	.035430785	. 035430785	. 035430785	. 035430785	. 035430785	.035430785	. 0.035430785
.000000000	. 035461338	. 035461338	. 035461338	. 035461338	. 035461338	. 035461338	. 035461338	. 035461338	. 035461338	.035461338	. 035461338



Figure 9. Contour Map of the $0.88 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{Ch}$ Plus $\mathrm{F}^{-}$Absorbances of Table XV


Figure 10. Job Plots of $\mathrm{H}_{2} \mathrm{Ch}-\mathrm{H} f$ Systems at Selected Wavelengths

## SELECTED BIBLIOGRAPHY

1．Ainsworth，S．g．J．Phys．Chem． 651968 （1961）．
2．Bricker，C．E．，Waterbury，G．R。，Anal．Chem．29， 558 （1957）．
3．Cagliati，V．，Ciavatta，L．，and Liberti，A．，J．Inorg．Nuc1。 Chem． 15，115．（1960）．

4．Frost－Jones，Yardly，J．T．，Analyst 77，468（1952）．
5．Job，P．，Ann．chim．，［10］9， 113 （1928）．
6．Thamer，B．J．，Voigt，A．F．，J．Am．Chem．Soc．73， 3197 （1951）．
7．Nicolson，L．S．，Interim Report，Oklahoma State Chem。 Dept。（1962）．
8．Thomas，D．E．，Hays，E．I．，Ed．，＂The Metallurgy of Hafnium＂，U．S． Atomic Energy Commission，U．S．Printing Office，Washington 25， D．C．

9．Varga，L．P．，Hume，D．N．，Inorg．Chem 2， 201 （1963）．
10．Ibid．， 3,77 （1964）．

11．Varga，L．Po，et al。，Anal．Chem．37， 1003 （1965）．
12．Varga，Le Po，The Nature and Stabilities of the Fluorocomplexes of Tantalum（Ph．D．thesis）Oregon State College，Corvallis，Oregon， 1960。

13．Varga，Le P．，Zumwalt，W．E．，Wyatt，W．Go，Abstracts of Papers， 148th Meeting，ACS，Chicago，Illinois，August－September，1964， p．34－0。

14．Wallace，R．Mo，J．Phys，Chem。64， 899 （1960）．
15．Wallace，R．M．，Katz，S．M．，J．Phys．Chem．68， 3889 （1964）．

Appendix A

## Rank Program for 1410





## Appendix B

## Plot Program for 7040






ENO
ABSORBANCE DATA
ABSORBANCE VERSES WAVELENGTH AND SOLUTION CONC HF-CH SYSTEM
 \$1BSYS

## Appendix C

## Flow Diagram of Iterative Program





Fredrick. Charles:Veatch<br>Candidate for Degree of<br>Master of Science

## Thes is: COMPUTER INTERPRETATION OF SPECTROPHOTOMETRIC DATA OF HAFNIUMCHLORANILIC ACID COMPLEXES IN 3M PERCHLORIC ACID MEDIUM

## Major Field: Chemistry

Biographical:
Personal Data: Born in Cherokee, Oklahoma, November 28, 1939, the son of Howard and Mildred. E. Veatch

Education: Attended grade and high school in Burlington, Oklahoma; graduated from Burlington High School in. 1958; received the Bachelor of Science degree from:Northwestern State College, Alva, Oklahoma, with a major in Chemistry, in May, 1962; completed requirements for the Master of Science degree in May, 1966。

Professional experience: Member of American Chemical Society and Phi Lambda Upsilon; served as teaching assistant for five years; worked in industrial research and development laboram tory eighteen months while completing Master of Science degree.


[^0]:    $.025000000 .025000000 .025000000 .025000000 .025000000 .025000000 .025000000, .025000000 .0250000000 .025000000 .025000000 .0250000000$ .000000000 .027203181 .030813810 .034669100 .025915802 .032393759 .025523814 . 026498842 . 025270376.028112182 .025124933 .029232946
     $.000000000 .000000000 .000000000 .045205447 .047381434 .056075293 .046220171 .048341694 .044868750 .049380514 \quad .043808210 \quad .051605695$
     .000000000 .000000000 .000000000 .000000000 .000000000 .071396377 .058631708 .059201218 .056113189 .060567862 .053844470 .063280379
    
    
    
    
    
    
    
    
    
    
    
     $.000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 \quad .000000000 \quad .000000000 \quad .103517769$
    

