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APPLICATION OF MATRIX METHOD TO
GENERAL ENGINEERING STRUCTURES

INCLUDING SPACE MEMBERS
CHAPTER I
INTRODUCTION

Most of the materials used in building structures
are elastic, such as steel, wrought iron and wood, and
follow Hooke's law when the stress does not exceed the pro-
portional limit.

Reinforced concrete may even be considered elastic
if the stresses are not too great. Structures composed of
elastic members which are subjected to forces or to imposed
deformations will undergo deformations (or small changes in
shape). This will cause points within the structure to be
displaced to new positions. In general, all points of the
structure except immovable points of support will undergo
such displacements. The calculation of these displacements
is an essential part of structural analysis. Therefore,
"the objective in analyzing a structure is the determination
of stresses and displacements of all points of the material "

(6).
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"In the matrix method of analysis, an essential
step in .developing the matrix method of analysis is the
development of the relations between the loads and the
deflections of the individual elements"(10). When the
relations between the end actions and the end displace-
ments are established, the end actions can be determined
through the relations when the end displacements are given
or vice versa. And when both the end actions and the end
displacements are known, the stress and deflection condi-
tions can be obtained to meet the purpose of the analysis
of a structure.

"Under the actions applied to itsAends a member
undergoes deformation. For any member, relationships will
exist between the end actions, p, and end displacements, u,
and these will be functions of the shape, size and elastic
properties of the member" (6)., The resulting relations
between the end actions and the end displacements are rep-
resented by stiffness and flexibility matrices. Thus
stiffness and flexibility matrices are the objectives of

the matrix method of analysis of a structure.

Four Kinds of Stiffness under Consideration

The most common stresses under consideration for a
structure are normal stress, transverse shearing stress,

bending stress, and torsional stress. These stresses are
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due to axial load, transverse load, bending load, and tor-
sional load respectively.

A structure is built to perform a certain function.
In order to perform this function satisfactorily it must
have sufficient strength and rigidity; the kinds of stiff-
nesses which have to be developed for the structural analy-
sis must correspond to the above mentioned stresses, i.e.,
axial stiffness, shearing stiffness, bending stiffness and
torsional stiffness. In other words, the relations between
loads and deflections "are dependent on the type of loading
to which the element is subjected. The types of member
loading to be considered are axial, bending and twist" (10).

All framed structures consist of members and joints,
which are points of interséction of the members, points of
support, and free ends of members. Therefore, when one
analyzes a framed structure by the'matrix method, he can
consider a framed structure as an assembly of structural
members connected at a finite number of points, which will
be referred to as nodel points.

Owing to the -existing reality, for the purpose of
analysis and using the concept of free bodies one may break
a framed structure into smaller sections or directly intq
individual members, i.e., for the simplicity of analysis
one may consider each structural member as a unit to be

analyzed. It is evident in the matrix theory that any
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matrix can be partitioned into submatrices of different
orders by passing through it some horizontal and vertical
lines.

Using the idea of breaking down the members of a
framed structure and the idea of partitioning a matrix into
any number of submatrices of different orders, one may
isolate each member of the frame as an individual unit and
thus find the stiffness matrix for each of them by either
the displacement method or the force method based on their
own local axes. By the transformation of axes, which may
be easily done with matrix rotation operations, one may
transfer the established stiffness matrices based on the
local axes of each member to the stiffness matrices based
on the reference axes system for the frame as a whole,

Then, when one combines all the stiffness matrices
for the individual elements of the sﬁructure, he will get
the stiffness matrix for the whole structure. This will
relate the displacement vector to the load vector, i.e.,
by means of the stiffness matrix of a structure one may
find the nodal actions from the given nodal displacements,
or using the flexibility matrix one may find the nodal
displacements from the given nodal actions. 1If it is
necessary, one may invert the stiffness matrix into the
flexibility matrix because of the reciprocal relation

between stiffness and flexibility. Therefore, with either
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of these two matrices one may find the other by matrix
inversion.

As has been mentioned above, for the purpose of
analysis, any framed structure may be considered as an
assembly of structural members connected at a finite num-
ber of points, and each structural member may be taken as
a unit to be analyzed. It has also been pointed out above
that any matrix may be partitioned into any number of sub-
matrices of any size. With these two things in mind, one
may take just one member for general investigation. Either
the stiffness matrix or the flexibility matrix of this mem-
ber will be used universally on any other members of the
same type with some modifications, such as the modulus of
elasticity in tension, compression and shearing of mate-
rial, member size, and the loading type. In other words, .
the author is replacing the actual cohtinuous structure
by a mathematical model made up of structural elements of
finite size which are in systematic combination.

By definition a matrix is a rectangular array of
numbers arranged in rows and columns. In the array each
number which is called an element or quantity in the matrix
algebra may be addressed by double subscripts. Therefore,
if one considers a system of simultaneous linear equations,
it is apparent that one may put all the coefficients in one

array, addressed with double subscripts, and the constant
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terms in another array, addressed with one subscript.
Then all investigations of the system may be carried out
by working only with the array of coefficients and the
array of constant terms by matrix operations.

In the process of analyzing a structure, no matter
whether one is dealing with a problem of analysis of a
highly statically indeterminate structure to find the
redundant components, or with the problem of determining
the stress elements and deflection components at the dif-
ferent points of a simply supported beam, one always deals
with a system of simultaneous linear equations in which
the number of equations can be rather large. With the
benefit of the matrix approach and the operations that
are performed on a matrix, this can be done rapidly.
Besides, in the problems of finding out redundants, stress
components, and deflection components; one always needs to
indicate each of those quantities with double subscripts
when they are analyzed by structural theories, and matrix
algebra will meet this need.

The solution of these equations which are used to
express the theory that is used to analyze a highly indeter-
minate structure can be best achieved as a sequence of num-
erical matrix calculations. Since the elements in a matrix
are in systematic arrangement and are addressed with double

subscripts, matrices are useful not only in expressing the
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theory to analyze a structure, but also in providing con-
venient means for carrying out the numerical calculations.
The high speed digital computer is ideally adopted to carry-
ing out the matrix operation needed in the solution of the
equations which express the structural theory used to ana-
lyze highly indeterminate structures.

Therefore, once the total stiffness or flexibility
matrices for a whole structure are available, the complete
solution to the structural analysis problem follows from
a routine set of numerical matrix calculations with the use
of the high speed digital computer which provides high
accuracy and speed to meet the requirements of the design

of complex structures.

Representative Problem in Research

Space frames are the most general type of framed
structures, inasmuch as there are no restrictions on the
locations of joints, directions of members or directions
of loads. The individual members of a space frame may
carry internal axial forces, bending couples, torsional
couples and shearing forces in both principal directions
of the cross-section. The members are assumed to have two
axes of symmetry in their cross-sections.

The reason the author has chosen this problem for

research is that it represents the most general situations

in frame structural analysis.
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How to Set the Matrix Egquation for Matrix Methods
of Structural Analysis

"Simultaneous linear equations occur very frequently
in structural analysis, . . ." (18) "In the analysis of
linear structures. . .we shall also require the solution
of linear equations" (18). For instance, "When the forces
at the coordinates are given, we shall solve for the corre-
sponding displacements, and when the displacements are
given we shall solve for the corresponding forces" (18).

No matter whether the energy method or the elastic weight
~method is going to be used, a set of linear equations will
be set up.

If n known displacements are given, then a set of

n linear equations can be established, as:

Zkygu; = Fy



i=

With the convenience of the matrix theory,

1,2...n.

Zkyju; = Fp
zk i = Fn
(n = total

equation can be set up as

[k]fu]

= [F])

number of displacements)

a matrix

in which [k] is a coefficient matrix which is called a

stiffness matrix in the matrix method of structural analysis,

[u] is a column matrix containing all given displacements,

[F] is a column matrix containing the required actions.

"Example"

This example is used to show how to establish a stiffness

matrix.

(a)

|"—'—l'..eng’t:l'i—_"">
(b) a——\/\/\/\/\/\/

—> k
12
(C)q—\/\/\/\/\/\/\'—g——\/\/\/\/\/\/

Unstrained

—Q

Unstrained
<—Tengt
k11
e !

(Fig. 2)
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D
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First a unit displacement is applied at 1 only,
Fig. (b), and the required forces at 1 and 2 are designated
as kl,l and k2,l respectively. Similarly in Fig. (c), forces

kl 2 and k2 o are required to cause a unit displacement at
4 ’

2 only. In other words,
ul=1, all other ui=0 generates ki1(1=l,2). The
forces required to cause displacement u, are kilul(i=l'2)'
u2=1, all other ui=0 generates kiz(i=l'2)' The
forces required to cause displacement u, are kizuz(i=l,2).
The forces required to produce displacements uy and
u, simultaneously are obtained by a superposition of Figures

(b) and (c) which yields the following 2 simultaneous linear

equations:

F. =k + k

1 11 ¢

1 12 Y2

F, =k + k

21 W1 22 Y2

The above 2 simultaneous linear equations can be

put in matrix equation as
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In order to generate a stiffness matrix in n coor-
dinates, the steps proceed as follows:
"Appiy a unit displacement at coordinate 1 only and com-
pute the forces kil(i =1,2,...n) required at all the coor-
dinates; this yields the first column of the stiffness

th column apply a

matrix. . . . Finally, to generate the n
unit.displacement.at coordinate n only.and compute

kin(i =1,2,...n). In general, to generate the jth column

.of-the stiffness matrix, —apply a.unit..displacement at coor-

dinate j only and compute the required forces kij(i=1,2,...n)"

(18).

On the other hand, if the action informations are
given, the displacements at all the nodal points are
required; then a set of simultaneous linear equations can

be established, as:

ZEF 7Yy
2EHFy = Uy
ZfiFy = Uy

i=1,2,...n (n=total number of actions)

A matrix equation can be formed for the n linear equations

as
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[£]{F] = [u]

in which .[f] is the coefficient matrix which is called the
flexibility matrix in the matrix method of structural analy-
-sis, -[F] is a column matrix containing the given actions,
[u] is the required displacement matrix.

Example:

This example is used to show how to establish a flexibility

matrix.

i i : "35‘2
H

Ban
EI = coustant

(Fig. 3)

The virtual work method is used to find the flexi-

bility matrix for the end j as follows:




" 3
L {~x) (-F;x) IS Fi [ 3)" FyL
“11=f ET d"‘ﬁf (")d"‘ﬁ‘T)o‘sEz
0 0
F
1 . .
()i f ; O e se—

Sz
(@) i ‘ sz

i ] i 5
(&) © &) ° m O S —

]'L (-1) (-F,) F, j’L F,L
“22 =)y TE ™ cE ) *=m

(Fig. 4)



14

The final total displacement at coordinate 1 is uy

3 2
FlL F2L

Uy =Wyt W38T Y T2ET

The final total displacement at cobrdinate 2 is u,

The above two equations can be put in a matrix

equation as

I O [ %l I
1 3EI 2EI 1l
. 22 L ||,
2 2EI EI 2

Generally, in order to generate a flexibility matrix
in n coordinates, one should proceed as follows:
' "Apply a unit force at coordinate 1 only and compute the
displacements ail(i =1,2,...n) at all the coordinates;
this yields the first column of the flexibility matrix. . .

th

Finally, to generate the n column apply the unit force at

coordinate n only and compute ain(i =1,2,...n). In generaL

then, to gonerate the jth

column of the flexibility matrix
apply a unit force at coordinate j only and compute

aij(i =1,2,...n)" (18).
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Method of Analysis

In this dissertation, the method which is adopted
by the author to find the relations between the actions and
the displacements is the displacement method.

In the process of using the displacement method for
the matrix method of structural analysis, "We focus our
attention on displacements at selected coordinates and pro-
duce them separately one at a time, then apply superposition
to yield a final configuration. The stresses and displace-
ments at any point on the structufe in the final configura-
tion will be equal to the sum of the corresponding values
in the superposed configurations" (18). In general, the
displacements at the coordinates of a member are introduced
separately one at a time, and then the actions are computed
at the coordinates of the member at each stage of displace-
ment in terms of the displacement iﬁtroduced. By the super-
position of all the displacements at the different stages,
the final total stiffness at each coordinate of the final
displaced configuration is obtained by summing up the corre-
sponding values in the superposed configuration. The
method used to find the stiffness coefficients at each
stage of displacement can be either the elastic weight method 6:
the strain energy method. In this dissertation, the elastic
weight method, such as the conjugate beam method, was
adopted by the author. The procedure of the analysis of a

framed structure is performed member by member. This means
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that the member stiffness matrix of each individual member
which is considered as a submatrix of the overall stiffness
matrix of the whole structure is obtained first; then the
forming of the total structure stiffness matrix is most
conveniently accomplished by superimposing the stiffness
matrices of the individual structural members.

Since ". . . the rigid body in space, . . . has
six degrees of freedom, . . ." (18) the member stiffness
matrix of a member in space will be of the size 12 x 12,
which is usually shown as the notation on page 17, Table 1.

The meaning of the two subscripts of each stiffness
coefficient is that the first subscript is the coordinate
where the force is measured, and the second subscript is
the coordinate where the unit displacement is applied.

"Since the loading sequence has no effect on the
final value of the strain energy, U, this same energy will
be obtained in the following two loading sequences in which
all forces are applied gradually" (18). "We can use the fact
that the strain energy in a structure is independent of the
loading history to prove that the stiffness and flexibil-
ity matrices are symmetrical" (18).

Oowing to the property of symmetry of a stiffness ma-
trix, Prof. L A. Comp made an abbreviation for the stiffness
matrix of a member in space, in order to save some labor in

doing the computations, as shown on page 18, Table 2.



TABLE 1
NOTATION OF MEMBER STIFFNESS MATRIX OF'A MEMBER IN SPACE

LT

i T i i i 3 3 3 3 3 i
Ax.Ay .Az . ex . ey . ez .Ax .Ay .Az . ex’. ey . ez
1
Ve 1 ¥, ¥2 Fs K, K s kg Ko Kg kg kg5 Ky gy Koo
i .
Vo [ ¥1 Ko kg Ky, K g Ky Ky, Kyg Ko Kyap Ko Koo
i
Ve | %3,1 X320 K33 K3, K35 Ky Ky Kgg Ky Kgogn Kggq Ky,
i
Mo %1 X0 B3 K4 kKoo Ko ko K g kg Ky g kg Ko
i N
Mo | k51 K59 kg3 kg, kg g Ky ks, kg g kg g Ky g5 K5 g3 K549
i T
Mo | %1 X2 Y3 K4 Kes o kg  Kg o e g Koo o Kgag Kgqq Kgoqp
|
Ve [ %71 %90 X3 Ky, Ky s koo Ky Ky g ko9 Kygg Kgqq Kygg
3 1
Vo (%1 kg0 kg3 kg, Kz  Kgg kg kgg kKgg kg kg1 Xg 1o
3 ~ '
Vo %1 Kgo ko3 Ky, Kgs Ky o kg, kgg kg o kg5 Kgo37 Ky og9
J
1M 1 %01 Xo,2 0,3 ¥o0,4 %o,5 ¥o,6 ¥0,7 ¥0,8 0,0 ¥10.10 ¥10,11 ¥10,12
x .
Mool Rp1 R Bias ®i1s Kais Faie Fiay Fiis Xiio Bagoap Kaziia Muaan
3 ' .
M, | ®p3 Moo K3 Ko Fias Kiog Kyp7 Kipg Kip9 Fipo10 Fioo11 Fioi12

Note: . i-.‘EEE‘EEE_.j




TABLE 2 .

ABBREVIATED NOTATION-OF MEMBER STIFFNESS MATRIX OF A MEMBER IN SPACE
(Abbreviated by Prof. L. A. Comp)

a7 AL . Al o o} of Al Al Al o o)
v; k1,:!. k1,2 k1,3 k1,4 k:I.Js k1,6 ‘kl,l 'kl,z _le3 k1,4 kl,s k;gs
V;r Kyo X3 Fpg4 Fys Kpg TKyp Ky Kez Ky, o 0O Ky
V; | k33 K34 k3 Kyg Ky 3 Kyg kg Ky, K35 K54
M, Mas a5 Mae R o4 Eys Xi0 K1 %410
M kss ks Hps 0 Ry Kiayp K513 K510
M, kee Kis Ko Ky  Kyi1o K530 Kgo3o
Vi Ky g Ko Ky g Ky, Ky g Ky g
v; koo K3 Ky 0. -k
v, kg3 Ky, K35 Kyg
) Koo ®us K
M k55 K56
) X6 6
Note: kij = kj:i. , i, # 3 .
member 3

8T




CHAPTER II

NOTATION CONVENTION

.Since in the matrix method of structural analysis

there are a large number of symbols to be used, it is nec-

essary to have a notation convention set up in order to

have the symbols organized so that readers have a system

to follow.

The notations that are to be used in this disserta-

tion, arranged in alphabetical order are as follows:

-As

Alz

7w P o

cross-sectional area of a member.

the area of the elastic weight diagram with the
bending moment applied at the end i of the
member i-j.

the area of the elastic weight diagram with the
bending moment applied at the end j of the
member i-j.

equivalent load vector in structure-axes system.
action matrix based on local axes system.
action matrix based on structure-axes system.
displacement matrix based on the local axes
system.

19




Mo

20

displacement matrix based on the structure-axes
system.

axial deformation at the end i of the member i-j.
axial deformation at the end j of the member i-j.
modulus of elasticity.

shearing modulus of elasticity.

identity matrix

polar moment of inertia of the cross-section

of the member i-j. (circular only)

moment of inertia w.r.t. the Y-axis of the cross-
section of the member i-j.

moment of inertia, w.r.t. the Z-axis of the
cross-section of the member i-j.

stiffness coefficient at the coordinate n due

to a unit displacement at the coordinate m.

the length of the member i-j.

moment about the X-axis at the end i of the
member i-j.

moment about the X-axis at the end j of the
member i-j.

moment about the Y-axis at the end i of the
member i-j.

moment about the Y-axis at the end j of the
member i-j.

moment about the Z~-axis at the end i of the

member i-j.
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moment about the Z-axis at the end j of the

member i-j.

~submatrix of the action matrix based on the

local axes system at the end i of the member
i-j (for moment actionmns).

submatrix of the action matrix based on the
local axes system at the end j of the member
i-j (for moment actions).

couple applied at one end of the conjugate beam
to balance the couple formed by the two elastic
weights acting on the conjﬁgate beam.

submatrix of the action matrix based on the
structure-axes system at the end i of the
member i-j (for the moment actions).

submatrix of the action matrix based on the
structure-axes system at the end j of the
member i-j (for moment actions).

the radius of the cross-section at the end i

of a nonprismatic member with circular cross-
section.

the radius of the cross-section at the end j of
a nonprismatic member with circular cross-
section.

the radius of a cross-section which is x dis-
tance from the origin which is taken at the

left end of the member i-j.
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rotational transformation matrix about Y-axis.
rotational transformation matrix about Z-axis.
rotational transformation matrix about both y-
and Z-axes.
transpose of R.
inverse of R.
rotational transformation matrix for the three
orthogonal axes at the end i of the member i~j.
total rotational transformation matrix for the
end i of the mgmber,i-j.
rotational trénsformation matrix for the three

orthogonal axes at the end j of the member i~j.

total rotational transformation matrix for the
end j of the member i-j.
total rotational transformation matrix for the

member i-j.

~submatrix of a stiffness matrix of a member i-j

which relates the stiffnesses at the coordinates
at the end i to the unit displacements at the
coordinates at the end 1i.

submatrix of a stiffness matrix of a member i-j
which relates the stiffnesses at the coordi-

nates at the end i to the unit displacements at

the coordinates a£ the end j.
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s3-3,

23
submatrix of a stiffness matrix of a member i-j

which relates the stiffnesses at the coordi-

‘nates at the end j to the unit displacements

at the coordinates at the end i.

submatrix of a stiffness matrix of a member i-j
which relates the stiffnesses at the Eoordinates
at the end j to the unit displacements at the

coordinates at the end j.

stiffness matrix of a member i-j based on the
local axes system.

stiffness matrix of a member i-j based on the
structure-axes system.

force in the X-direction at the end i of the

member i-j.

force in the X-direction at the end j of the

member i-j.

force in the Y-direction at the end i of the

menber o5 v .

force in the Y-direction at the end j of the

member i-j.

. force in the Z-direction at the end i of the

member i-j.
force in the Z-direction at the end j of the

member i-j.
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submatrix of the action matrix based on the

local axes system at the end i of the member

i~j (for linear actions).

submatrix of the action matrix based on the

local axes system at the end j ~f the member

i-j (for linear actions).

submatrix of the action matrix based on the

structure-axes system at the end i of the

member i-j (for linear actionms).

submatrix of the action matrix based on the

structure-axes system at the end j of the

member i-j (for linear actionms).

linear displacement
end i of the member
linear displacement
end j of the member
linear displacement
end i of the member
linear displacement
end j of the member
linear displacement
end 1 of the member
linear displacement

end j of the member

in the X-direction
i=j.
in the X-direction
i-j.v
in the Y-direction
i-j.
in the Y-direction

i-j L]

in the Z-direction:

i_j -
in the Z-direction

i-j.

of the member i-j (twisting angle).

at

at

at

at

at

at

the

the

the

the

the

the

-angular displacement about X-axis at the end i
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angular displacement about X-axis at the end j

of the member i-j (twisting angle).

-angular displacement about Y-axis at the end i

of the member i-j (bending angle).

angular displacement about Y-axis at the end j
of the member i-j (bending angle).

angular displacement about Z-axis at the end i
of the member i-j (bending angle).

angular displacement about Z-axis at the end j
of the member i-j (bending angle).

direction cosine of the direction angle between
g-axis of the structure-axes system and p-axis
of the local axes system.

Xh. Ym and zm,axes of the local axes system).
Xs, Ys and ZS axes of the structure-axes system).
distance from the centroid of the elastic weight
diagram with bending moment applied at the end-i
of the member i-j to the origin, which is at
the initial end i of the member.

distance from the centroid of the elastic weight
diagram with bending moment applied at the end-j
of the member i=-j to the origin, which is at
the initial end i of the member.

with respect to.



CHAPTER III

STIFFNESS MATRIX FOR A PRISMATIC MEMBER

IN THREE-DIMENSIONAL SPACE

Coordinate System

The coordinate system is employed both to system-
atize the action.and displacement systems of a structure and
to make it easy to build up the correspondencé-relation
between the action system and the displacement system.

Thus, with the help of the coordinate system, the measure-
ments (actions or displaéements) in a structure, for the
purpose of structural analysis, can be easily identified,
at which point and in which direction.

In addition to identifying measurements in a struc-
ture, the coordinate system can also be used to indicate
the address of an element in either a stiffness matrix or
a flexibility matrix. Since the matrix method of structural
analysis = deals with actions and displacements that corre-
spond to one another, one coordinate system in each problem
is good for both actions and displacements. Therefore, in

the matrix method of structure analysis, a coordinate system

26
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must be set up for each problem.

Since a rigid body ‘in a three-dimensional space has
sixvdegrées of freedom--that is each end of a member can
have six possiblé components of displacement--a beamlike
structural element which is a part of a space frame is
defined for 12 coordinates as shown in the following

figures.

Coordinate System

End i is the initial end, and end j is the terminal
end. By the framework sign convention, all the vectors are

pointing in the positive directions.
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The single arrow-headed vector indicates a linear
action or displaéement; the double arrow-headed. vectors
indicate: moments or angular displacements. The referring
of the coordinate system to the axes system is shown in

the following figure

~ Axes System

To make it easier to calculate the stiffness
coefficients of a member in a three-dimensional space,
two kinds of axis systems can always be set up: one is
a member-axes system; the other is a structure-axes
system. Although it is convenient to describe the internal
forces and displacements in terms of a member-axes system,
the structure-axes system will be required for the con-
sideration of the structure as a whole.

In the member-axes system, the X-axis will be
taken along the axis of the member, while the other two
axes will constitute the Y- and Z-axes. The structure-
axes system is the reference axes system which is conve-
niently oriented w.r.t. the overall structure.

If the member-axes system for a member is not

coincident with the structure-axes system for the structure
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of which the member is an element, then the rotational

transformation of the member-axes system is needed.

Development of Stiffness Coefficients of a
Prismatic Member in Space

It is obviously known that the common objective in
the analysis of structures is to find the internal forces
which result from the application of external loads. Know-
ing all the internal forces, we can compute the displace-
ments at any point on the structure. 1In a word, the goal
of analyzing a structure is to determine the stress and
strain conditions of the structure under a given loading
condition. To reach this goal, one should start with the
study of the conditions of the actions and displacements at
the ends of the members of the structure. When actions are
exerted upon a joint by the adjacent members, equal and
opposite reactions will be exerted on the members by the
joint. Under reactions of this nature at both ends of any
given member, .the member will suffer deformation, i.e.,
under the action exerted by the joints on both ends of a
member, it will undergo deformation. For any member the
relationships will exist between the actions on the ends
of the member and the end displacements of the member.
Therefore, the main objective of studying the matrix method
to analyze a structure is to establish the relationships

between the actions and their corresponding displacements
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at the nodal points, usually the ends of the member. 1In

other words, the relationships which are expressed either
in stiffness coefficients or flexibility coefficients
between the actions and their corresponding displacements
of the nodal points of a member are the results of the
matrix method of structural analysis.

Because in the matrix method of structural analysis
the relationships between the actions and the corresponding
displacements at the ends of a member must be investigated,
each member must be investigated individually. As a matter
of fact, actual structures consist of structural components,
such as tension rods, compression members, and beams prop-
erly fastened together. Therefore, by using the matrix
method for analysis, the structure can be considered as
an assembly of structural components connected at a finite
number of points referred to as nodal points. And in the
process of analysis, each member must be taken off as a
free body; that is, each member is considered as a unit for
the purpose of analysis.

When each member is taken off as a free body for
analysis, each individual member will have its own axis.
For the sake of convenience and ease, it is not only nec-
essary but also more convenient to use the member-axes
system to develop the stiffness coefficients. In the member-

axes system, one of the three axes which constitutes a
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space is representing the member, usually the X-axis.

The stiffness coefficients the author is working
on are therefore developed on the basis of the member-axes
system, and the unit displacements are introduced in the
positive directions of the coordinates. The principle of
superposition of the displacements is the basic idea for
finding the final total stiffness at each coordinate.

The principal types of deformations to be considered
are axial, flexural, torsional, and shearing deformations.
The stiffness coefficients to be developed are therefore

axial, bending, torsional and shearing.

Axial Stiffness

i .
Vi |4 i3V
—— oo —
L e |
- e
case 2 l L
i J
Vx i i 3 Vx
—_—'-—- _ﬁ l_.__
e L=-e
:4
case 1
i — — — J X
L
- -
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th

it is assumed that the i end of the member is the

th

initial end and the j end the terminal end.

The axial stiffness at both ends can be developed

in two cases:

Case 1

th

It is assumed that the i end is free to have an

axial displacement in the positive direction of the X-axis

th

by the amount, e and j end is restrained from displacing.

Assume that the cross-sectional area of the bar is A.
Due to the contraction of the total amount, ei, there must

th

be a force, P.. applied at the i~ end in the same direc-

tion as the contraction e.

1 _ Stress
By Hookes' Law E = strain
+"Pi.
stress:-—A—
+ei
strain = T
Therefore,
+Pi
—_— P.L .
- A _ 1 _ AE _ At
E= +e, - Aei ’ Pi T L (ei)’ ?1 - Ax
L

Let e, be a unit displacement,
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then

P, = =k

AE
i L

1,1

where kl 1 is the axial stiffness coefficient in the dir-
’

ection of coordinate 1 due to a unit displacement in the

direction of coordinate 1 at the ith end. To satisfy the

requirement of equilibrium of the member, there must be a
force Pj which is equal in magnitude, opposite in direction,

and acting collinear with the force Pi' i.e.,

-AE _
I = k

7,1

where k7 1 is the axial stiffness coefficient in the direc-
,

tion of coordinate 7 at the jth end due to a unit displace-

ment in the direction of coordinate 1 at the ith end.

Case 2

th

Next let the j end of the member be free to dis-

place axially in the positive direction of the X-axis by

th

the amount of ej and the i end is kept from displacing.

The positive direction of displacement along the X-axis at

h

the jt end will be an elongation.

Using the same idea applied previously there must

be a force, ?j’ acting axially to respond to the elonga-

tion e, at the jth end.

J



if ej is unit,

EA
then Pj =T = k7'7
where k7 7 is the axial stiffness coefficient in the direc-
’
tion of coordinate 7, due to a unit displacement in the
direction of coordinate 7 at the jth end.

To satisfy the equilibrium condition of the member,
there must be a force, Py which is equal, opposite, and

collinear with Pj' i.e.,

_ o . =—EA
Py =By = =K 4

where k is the axial stiffness coefficient in the direc-

1'7
th

tion of coordinate 1 at the i end due to a unit displace-

ment in the direction of coordinate 7 at the jth end.

Bending Stiffness Coefficients:

Bending Stiffness Coefficients due to End Rotation

Case 1
Suppose the end-j of the member i-j is fixed, and

the rotational restraint at end-i is released, i.e., the



35
end-i is free to rotate when an externally applied rota-
tional action is applied. Now there is a moment Mi acting
at the end-i to cause an end rotation ei and fhere is a
moment Mg induced at the end-j. The relations between the

e; and M; as well as Mg can be developed as follows:

i J
Z

|
-

By conjugate beam method, the conjugate member is loaded

M
with :E-]Z?— diagram as shown below:
z . .
J ]
.
EI
: ir(// , . Z
i t 5§
Eg- /
I, .
al

wijt
—r
w|t
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M
j_1 _Z_
AT =g (W (g)
z
i .
Bz aJl
.li
i _ i L]
ez = A A
i j
. M
i 1 4 1 2
8, =3 (L) (55) - 5 (L) (55—
4 2 EIZ 2 EIz
i i i

1 4 Z 2
=3 (L) () -5 () ( ) = o
2 EIz 2 2EIz 4EIz

. il i

from which M, L = 4EI, (ez£>
i GBI, 4
or M, = —F (ez)

If let e; be unit (one radian), then
Mi_4EIZ_k
z L '~ 76,6

where k6 6 is the bending stiffness coefficient at the coor-

dinate 6 due to a unit displacement at coordinate 6.
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Since

SR S | Jo_ -
My =2 (Mz)' My =" = k12,6

where k12 6 is the bending stiffness coefficient at coor-
’

dinate 12 due to a unit displacement at coordinate 6.

Case 2

Suppose the member i-j is fixed at end-i and simply
supported at end j; then, when one releases the rotational
restraint at end-j, there is a moment Mg acting at end-j to
cause a rotation eg, as well as a moment Mi indﬁced at
end~i. The relations between.eg and Mg and Mi can be

developed as follows:

M‘; Glj /51%;
/ »

By the gonjugate beam method, the conjugate member
M

is loaded with E%—-diagram as shown below:
Z
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M M
2E§ ) (L) = 4§I
2 Z

J 3 J
J 5 i WL WL ML )
8z = = 2EI AET_ -~ 4EI
2 Z z

i 1
AT = 3 (

Jp = 3
M, L = 4EI, o,

. 4EI .
i o_ zZ ]
M, = — (ez)
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4EI

j _ . rad. jo_ z _
If ez =1 ’ then Mz =5 = k12,12

where k12 12 is the bending stiffness coefficient at coor-
14
dinate 12 due to a unit displacement at coordinate 12.

Since

i Z
Z L

M =12'-MJ. M

where k6 12 is the bending stiffness coefficient at the coor-

dinate 6 due to a unit displacement at coordinate 12,

Bending Stiffness Coefficients due to End
Transverse Deflection

e

Case 1

[
QN

SN

Let the end-i of the member i-j be free to displace ver-
tically in the X-Y plane by the amount A; w. r. t. the end-j.
It can be assumed that there is an induced moment Mi acting
at the end-i which is corresponding to the vertical dis-

placement A; as shown in the following sketch:



~
~N
N
N -
J
i4 —~A\j M
74
i J
1 \'%
\Y
£ k

By the conjugate beam method, the relations between.A; and

M; as well as Mg can be derived. Let the conjugate beam be
. 1 J
M M
loaded with the diagrams of Ei and Ei .
z z

i _ \J
My, =M

aJ
3
-z
‘ EIZ
i ‘ .
. i /J
Me=pl MZ 1/
Y\ B, L—]
L L
3 . 3 N
al
L
M4 = A; = moment applied at the end i of the conjugate beam

i i
al =L (n) (2 = o2
-2 EI - 2EI

Z V4




a* = aJ
i 5 My L o M 1.2
A" and A’ form a couple of the value 2EIZ 03) = EEI;_

To keep this conjugate beam in equilibrium condition, there
must be a moment of the wvalue A; acting at the end i in the

direction of the deflection. Therefore,

2

i
. M L . 6EI .
i_ Tz i_ z i
Ay = GET, , and M, —'f;i— (AY)
i . i OEI,
Let AY be of unit value, then Mz = L2 = k6,2

wherek6 2 is the bending stiffness coefficient at the coor-
’
dinate 6 due to a unit displacement at coordinate 2.

Since

where k12 2 is the bending stiffness coefficient at the

coordinate 12 due to a unit displacement at coordinate 2.
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Case 2

T
\

\

\

=
|
|

Let the end-j of the member i-~j be free to displace ver-
tically in the X-Y plane by the amount A;. It is apparent.

that an induced moment M; is acting at the end-j which is

corresponding to the vertical displacement A% as shown in

the following sketch.

]
MZ
//
~
~
7~ . s
/’/ AJ
Mi -~ Y
2/ . -
13 e T Kj |
L | 4
| . ol

By the conjugate beam method the relations between
the A; and M; and M; can be developed.

Let the conjugate beam be loaded with the diagrams

of =—— and =/ .
EIZ EIZ




i i
Mz A
EIZ \ MA=AJ
. ‘\"w
1._.==;__~__; . J .
, MY
2Z_
L L EI
3 L 3 z
R
L A
i
. M
i_1 —Z_
At =5 Mg
2
3
M
j_1 2
AT =3 W (g
z
At = aJ
i . M) 1.2
A" and a7 form the couple of the value 6Bl °
z

To keep the conjugate beam in the equilibrium position,
there must be a moment of the value A; acting at the end-j

in the direction of the end deflection, i.e.,
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Let A; be of unit value, then

3 6EIz
Mz = L2 = k12,8 (in clockwise direction)
where k12 8 is the bending stiffness coefficient at the

coordinate 12 due to a unit displacement at the coordinate 8.

By the framework sign convention, M; is negative;

therefore,
k12,8 =~ GE;Z
! L
Since Mi = Mg ’ M; = —6322 = k6,8
where k6,8 is the bending stiffness cgefficient at the

coordinate 6, due to a unit displacement at the coordinate 8.
Using the same idea the bending stiffness coeffi-
cients at both ends around the Y-axis due to the end rota-
tions at both ends around the Y-axis and due to the end
transverse displacements at both ends in the direction of

Z-axis can be developed.

End Shearing Stiffness
Using the idea that the end shears are forming a

couple to balance the effects of the moments acting at both
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ends of a member to keep the member in rotational equilibrium,
one can find the end shearing stiffness coefficients with the

solved bending stiffness coefficients.

End Shearing Stiffness Coefficients in the
Y¥-Direction at Both Ends of the Member due

to the End Rotations 9; and e;

Case 1: End Shearing Stiffness Coefficients
due to the End Rotation.e;

When the unit angular displacement 9; is occurring
at the end-i of the member i-j, there will be two moments

induced at both ends as the bending stiffness coefficients.

G ok

i J
\Y/
Vv | | v

As has been developed, M; due to the unit wvalue of 6; was
4ET . . 2EI
Lz R Mg due to the unit value of 9; was Lz , and both

were in positive direction.

Therefore, i j
Vi_Mz+ MZ__Z_L_ (4EIZ+ 2EIZ) _6EIZ_k
y L T L L L - Lz - 72,6

To keep the member i-j in rotational equilibrium, V; and V;

must be equal and opposite so that they can form a couple to
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balance the rotational effect of M; and Mg. Therefore,

where V; ' k2,6 , due to e; is called the end shearing stiff-
ness coefficient at the end-i in the direction of Y due to

a unit rotation at end-i around Z-axis and Vg due to ei is
called the end shearing stiffness coefficient at the end-j

in the direction of Y due to a unit rotation at the end-i

around Z-axis.

Case 2: End Shearing Stiffness Coefficients
due to End Rotation eg

In a like manner, when the end angular displacement
6; is occurring at the end-j of the member i-j, there will
be two moments induced at both ends of the member as the

bending stiffness coefficients.

- S

Both M; and M; have been developed for the unit value of e;

as . 2EI . 4EI
i_ """z j _ z
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and both are in the positive direction. Similarly, to
satisfy the requirement of the equilibrium condition, V;
and Vg. due to eg, must be equal in magnitude and opposite

in direction to form a couple to balance the moments M; and

5
Mz' l.e" Mi+Mj
Vl___.v =Z__g_
Y L
Therefore,
Vi 1 (ZEIZ . 4EIZ) _ 6EIz .
y L L L T2 T2,12
and
Vj _ ;-(ZEIZ N 4EIz) _ EEEE Cx
y L L L L2 8,12

where V; due to 9; is called k2 12 ¢ end shearing stiffness
coefficient at end-i in the direction of Y due to a unit
rotation at end;j around Z-axis, and V; due to eg is called

k end shearing stiffness coefficient at the end-j in

8,12 '
the direction of Y due to a unit rotation at end-j around

the Z-axis.

End . Shearing Stiffness Coefficients in the
Y-Direction at Both Ends of the Member due to

the End Transverse Displacements, A; and Ag

Case 1l: The End Shearing Stiffness Coefficients
in the Y-Direction at Both Ends due to the End
Transverse Displacement at the End-i in the
Direction of Y-axis

The development of the end shearing stiffness coef-

ficients due to the end transverse displacement can be
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accomplished in the same manner as they were done due to the

end angular displacement. As previously developed, both

. . 6EI _ . \
M* and M} due to AL were 2 ; therefore V' due to At will be
z z Y 1,2 y Y
.l. GEIZ 6EIZ
L L2 L2
1281
i vV = Z - k . ey s .
o€ Yy L3 2,2 (in positive direction)

where k2 2 is the end shearing stiffness coefficient at the
2 T
end-i in the direction of the Y-axis due to a unit trans-

verse displacement at the end-i in the direction of the

Y-axis,
. . -12E1
J=—1=——-—£=k
and Vy VY L3 8,2
where k8 2 is the end shearing stiffness coefficient at
’

the end-j in the direction of the Y-axis due to a unit
transverse displacement at the end-i in the direction of
the Y-axis.
Case 2: The End Shearing Stiffness Coefficients in the
Y-Direction at Both Ends due to the End Transverse
Displacement at the End-j in the Direction of Y-axis

When the end-j displaces in the positive direction

of the y-~axis, there will be moments M; and M; induced as

shown in the following sketch:



49

M )
i1 ]
Cr jQ
v \Y
L
R ¥
I |
i . 6EIz
where M: =MJ = (in negative direction)
-4 -4 LZ
i -lZEIZ
Vy = —-I?-= k2'8(1n negative direction)

where k2 8 is the end shearing stiffness coefficient at the
’
end-i in the direction of the Y-axis due to a unit trans-

verse displacement at the end-j in the direction of the

Y-axis,
and 3j i 12EIz
V) = -V = =k
y Yy L3 8,8
where k8 8 is the end-shearing stiffness coefficient at the

end~j in the direction of the Y-axis due to a unit transverse
displacement at the end-j in the direction of the Y-axis.

In the same way, the end shearing stiffness coef-
ficients at both ends in the direction of the Z-axis due to
the end rotations at both ends around the Y-axis and the
end transverse displacements at both ends in the direction

of the ‘Z-axis can be developed.

Torsional Stiffness
To find the torsional stiffness of a member, it is

assumed that the member is completely fixed at one end, and
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the other end is free to rotate only about its axis. 1In
this consideration, the member axis is coincident with the

X-axis and the member is of a circular cross section.

The ithzgnd of Member i-j Free to Twist
ut
X
4
i — - —__{a_ 5
8x\)— t 2
L. L
I
th

Take the i end of the member as a free body as shown in

the following sketch:

It is known that when a member is subjected to a torsion,
there will be shearing stress developed in each cross sec-

tion, and each cross-section will turn through an angle with

reference to the fixed end.
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Take a hollow cylinder of radius r and thickness dr
for investigation. This hollow cylinder can be developed
into a rectangular solid of width 2mr and thickness dr. The
area of the cross-section of this hollow cylinder is (2mnr)dr.
Suppose that there is an element of area dA at the position
P on the hollow cylinder. When a torque Mi is applied at
the end-i and the end-i is turned through an angle @,
radians, this area dA is moved to P'. 1Its displacement

is X8 . and the unit shearing displacement is given by

L,
s L °
rex
The unit shearing stress on dA is given by T = T (G)

in which G is the shearing modulus of elasticity. Therefore,
the shearing force required to deform this hollow cylinder
is given by

rg_ -G 211Go
_ X (.2
) =" (&

dr)

The moment of this shearing force w.r.t. the axis of the

cylinder is given by

2nGH
L

X (r3dr).

The entire member may be regarded as being composed of a
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series of concentric hollow cylinders of thickness dr. The
total moment of the shearing stress over the entire cross-
section will be equivalent to the externally applied torque

which is given by

2nGex 4 GIx 4
=L (4)=T(ex) (I, = =37

If ex be unit (one radian), then

GI
i_ Zx
Me="T =5%4,4
4

in which I, represents E%— which is the polar moment of in-
ertia of a member of circular cross-section of radius R,
where k4'4 is the torsional stiffness coefficient at the
coordinate 4 due to a unit displacement at the coordinate 4.

\ i_ o i
Since Mx = Mx'

i -GIx
My =—"T =Ko0,4
where k is the torsional stiffness coefficient at the

10,4
coordinate 10 due to a unit displacement at the coordinate 4.

Following this idea exactly, one has

GIx

Ki0,10 = T
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where k10 10 is the torsional stiffness coefficient at the
[
coordinate 10 due to a unit displacement at the coordinate
-GI
10, and k4,10 =1 where k4,10 is the torsional stiff-

ness coefficient at the coordinate 4 due to a unit displace-
ment at the coordinate 10.

When the member is of any cross-section other than
circular, then I, will not be the polar moment of inertia.
Consider, for example, a rectangular shaft; Ix is equal to
"Bbc3" (22). In this expression b is the longer and c is
the shorter side of the rectangular cross-section, and "B"
(22) is a namerical factor depending upon the ratio %u

Using the idea of superposition of the displacements,
the collection of the stiffness coefficients at each coor-
dinate which are the relations between the stiffness of the
coordinate and the unit displacements at all the coordinates
of the member can be made to give ﬁhe final total stiffness
at the coordinate which is a row in the stiffness matrix.

Expression of a Stiffness Matrix of a Prismatic
Member in Three-Dimensional Space

Using the coordinate system, one can express the
stiffness matrix of a member in a three-dimensional space
in a partitioned matrix and conveniently write the stiff-
ness matrix.

Each submatrix indicates which two ends are related

in the action-displacement relationship.
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The convention of expressing a member, coordinate

system and the submatrices is given as follows:

10

end i = initial end of a member,

end j

terminal end of a member,
each arrowed direction represents the positive direction of
the coordinate for both action and displacement.
The total stiffness matrix of a member is arranged
by the sequence of coordinate number and is partitioned by the

ends of the member which matrix is shown as follows:
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From the superscripts of each submatrix, one can
easily tell which two ends are involved in it.

The total stiffness matrix of a prismatic member in
a three-dimensional space is expressed in the following

four separate submatrices.
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TABLE 3

SUBMATRIX s~ OF A MEMBER STIFFNESS MATRIX OF A
PRISMATIC MEMBER IN SPACE

EA
X h
I 0 0 0 0 0
12EI 6EI
0 3Z 0 0 0 5
L L
12ET -6EI
0 0 — 0 5 0
. L L
st GI
X
0 0 0 I 0 0
-6EI 4EI
0 0 > 0 —< o
L
6ET AFI
0 Lz 0 0 0 T~
N 1, )
TABLE 4
SUBMATRIX s~ J OF A MEMBER STIFFNESS MATRIX OF A
PRISMATIC MEMBER IN SPACE
(_EA
- \
X
. 0 0
- 0 0 0
. -12EI,, , ; ; 6EI,
L3 1.2
-12ET. ~6ET
o o —t 0o o0
L | L
i-j-
s ~GI,,
) 0 0 = 0 0
6EI 2ET
o o —* o 5 0
L
. ~6ET 2EI
Z VA
0 5 0 0 0 T
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TABLE 5

. SUBMATRIX s3™* OF A MEMBER STIFFNESS MATRIX OF A
PRISMATIC MEMBER IN SPACE

(
~EA 7
X : :
= 0 0 0 0 0
-12E1 -6ET
0 3 2 0 0 0 22
L L
-12E1 6EL
0 0 3 0 —5 0
. . L L
sd™t=
-GI
X
0 0 0 - 0 0
~6EI 2ET
0 0 it 0 —Y 0
L
L
6EI 2ET
0 ——55 0 0 0 Lz
L
\ Pd
TABLE 6
SUBMATRIX sJ~J OF A MEMBER STIFFNESS MATRIX OF A
PRISMATIC MEMBER IN SPACE
== 0 0 0 0 0
12EI —-6ET
0 3z 0 0 0 22
| L L
j
‘ 12EI . 6EI
|
| w . L 1L
sd =
GI
X
0 0 0 - 0 0
GEI 4EX
0 0 —t 0 —X 0
L L
~6EI 4EI,
0 5 0 0 0
L L
q /
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Member Stiffness Matrix of a Prismatic Member
in Space with the Consideration of
Shearing Deformations

By definition, "A beam is the name given to any
member of a structure which is exposed to transverse
stresses" (24). From the definition, it is obvious that
"there are usually shearing forces as well as bending
moments acting on the cross-section of a beam" (5). "Usually
the effects of shear are small compared to the effects of
bending and can be neglected; . . ." (5). If the shearing
deformation of a member is considered, then the total trans-
verse displacement at any point along a member will be
influenced by both flexural and shearing deformations. 1In
other words, "the unit displacement consists of two parts
« . . . The first part is due to the flexural deformations
in the member, and the second part is due to shear deforma-
tions. . ." (5). Therefore, the stiffness coefficients
that relate the.linear end displacements in the direction
perpendicular to the member axis and the angular end dis-
placement rotating about the axis perpendicular to the mem-
ber axis to the actions induced at the member ends by these
displacements, should be modified by considering the shear-
ing deformations. Modification can be accomplished by
adding the shearing effects to the stiffness coefficients
due to the bending effects.

For the sake of simplicity, how to find the stiff-

ness coefficients at the coordinates of a member in space
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for the introduction of unit displacements in the X-Y
plane is illustrated. The numbering system of the coor-
dinates and the subscript system for the stiffness coef-
ficients in a member stiffness matrix of a member in space

remain the same as before.

Stiffness Coefficients Induced by the Transverse
End Displacement due to Bending Deformations
and Shearing Deformations

Introduction of A;

When the settlement or the relative displacement
between the two ends of a member exists, there will be
two fixed end moments which are equal and of the same
sense induced at both ends of the member; they are denoted

as M; in this dissertation. As derived,

i J
Mi _ Mﬂ _ 6EI, (Ai) vi _ Mo + My
z Tz 1,2 v'' Ty L :
i 1 12E1
Therefore, vV, == ( 5 ) ,» i.e.,
y L L
i 12EIz i
V. = 3 (A -b)' . . end action induced by end
Y L Y displacement due to bending
deformation.
i L3 i
b, 4 = (V.). . . end displacement due to
y-b — 12E1, "y bending deformation.
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Ay-v=f GAdx
0
v: LE
= —gx-— . « « end displacement due to shearing
deformation.
3 .1 i ,
Ai + Ai = - VY + = Vy = L3 + L-El) vi
yv~b Y=V lZEIz GA 12EIz GA" 'y
i i _
Let Ay-b + Ay-v = 1, then
vi o 12EIz GA o
y 37 72,2
12EIZ Lf + GAL
By equilibrium condition, V%::-V;
3 -12EIz GA
Therefore, V& = 3= k8,2

12EIZ Lf + GAL

i GEIZ i
as mentioned above, M, = 2 (Ay_b)

. 2 .
l—b = E%E—-(M;). . . end displacement due to bend-
Y z ing deformation.

b, v = %ﬁ:(vl). . . end displacement due to shear-
y Y ing deformation.

i
. 2M
Ve = =2

y L



_ L 2, i
+ 4 = (6EIZ + ga) Mz

i i _
Let Ay-b + Ay-v = 1, then

6EIz GA
2

i—
Y\

M
+ lZfEIZ

GEIz GA

32 -
» My = —5 =k
GAL® + 12fEI,

i
2

. J_
Since M2 =M

Introduction of Ag

Using the similar idea, when the A% is introduced,

12EI_ GA

vd = 2 3=k

Y 12EI, Lf + GAL 8,8
Yy 12E1, LE + car> 2,8
. -6EI_ GA
M = 2 = k

Zz  gan? + 12£E1 12,8

and

. -6EI, GA .

Z 2 - 76,8

GAL + 12fEIZ
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.Stiffness Coefficients Induced by the End Rotational
Displacement due to:Bending Deformations
and Shearing Deformations

Introduction of e;

8
‘beJ :
X

EI constant

Find the stiffness factors by the virtual work method.

Rotation due to X.JO

u=1l ei
. z=b
]
L
0 0
-1 u=1 Xb—l :
m= -1
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Since the member is subjected to pure bending, there is

neither shearing stress nor shearing strain energy.

e — L.‘.i_x.__._L_ . ei — ( ) _.}i];_'
bb =] Er_ - Er ' %2-b = %plbpp) = BT
0 Z Z VA

Rotation .due to xa

1]
l-—l
()
[<>]
N e
1
<
N\
.

L —
xa
0 0
u=1
-1
m= -1
+1,
4 M= +x
L 2
5 - f -xXdx _ -L2 91 X8 xa(-L )
ba 0 EIz 2EI 2 Z=v a“ba 2ET 2
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2
L XQ

2EIz

-

-V EI z

i_ i i
ez - ez-b + az

+ =1 (1)

Deflection at joint i due to X,, is equal to the rotation:

at the joint i due to Xa, i.e.,

ax _ . L
0 AWG 3EIz AwG

i
Ay—v = Xaaaa ! A}'-'b = X'baab )
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3 2
. . . L™ X LX L Xb
Therefore, A* = 2%  + a2 =2, 3. ___R.
b4 y-b y=v 3EIZ P\”G 2EIz
. EI, LX,
From Equation (1) xb ==+ 5=
EIZ LXa
Substitute X =T t+t 3 into the equation (2)
Xy G+ i) = (24
z A z
3
L L L
X ( + =)= =
a 12EIz AWG 2
3
. AGL + 12EI_Lf
a 12EIz A G 2
. 6EI, A G ook
2 acr? + 12681, ¥ 2,6
. . . 6EI_ A G
: J 1 J Z
Since Ve ==V. , V5= ~- =k
Y 4 Y acr? + 12£ET, 8,6
EI
R )
xb =T *3 Xa
x - EI, . L GEIZ AG |
L " 2\ae? + 1281
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EI 3EI, AGL 4EIZAGL2 + 12fE21§

}(b= + ) = 3 =M =k
L AG L + lZfEIz AGL  + lZfEIZL

J_ i _ ol
Mz =V, L Mz

g
: 6EI AGL
Vi (L) = 3
Yy AGL® + 12fEI,
2ET acL? - 12fE%1?
Ml = —2 2 -x
b4 3 ~12,6

AGL +-12fEIzL

Introduction to.e;

Using the similar idea, when e; is introduced, the
following actions are obtained:
6EIZAG

V. = = k
Y acn? .4 12£ET, 2,12

i

s GEIZ AG
'\}'J = =V = = 3 =k
Y AGL  + 12fEIZ

8,12

. 4EI 1.2aG + 12fFE°T°
M = z Z__ x
z acr> + 12EI L 12,12

2 2.2
2EIZAGL - 12fE I,

M = 3 = k
AGL  + 12fEIZL

N

6,12

By the same procedure, the stiffness factors due to

the unit displacements in the X-Z plane can be obtained.
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Note:

"f is a form factor that is dependent upon the shape
of the cross-section" (5). The value of £ is the ratio of
the area of the gross cross-section of a member to the area
of the portion of the éross-section assumingly subjected to

shearing stress, i.e., £ = X;'

Stiffness Matrix for a Curved-Beam Element

"Many important engineering structures either repre-
sent a curved beam or else contain curved-beam elements
used in conjunction with other structural units" (11).
Because of the actual need in the engineering structures,
the stiffness coefficients for curved-beam elements are
necessarily required. The basic idea of deriving the stiff-
ness coefficients for a curved-beam element follows that
used for a straight member.

The requirements of satisfying the equilibrium and
compatibility conditions are used to solve the different
values of stiffness coefficients. The method given in
Ref. (11) in paragraph 5.6, page 144, used to derive the
relations between the introduced displacements and the
corresponding actions at the nodal points is an energy
method, such as Castigliano's second theorem.

From the point of view of mathematics in the process
of doing calculations, the function of the curved-beam
element should be defined; that is, the geometric property

of the curved-beam element should be explained.



CHAPTER IV

ROTATIONAL TRANSFORMATION OF A STIFFNESS MATRIX

OF A MEMBER IN THREE-DIMENSIONAL SPACE

Define the Direction Cosines of a Member
in Three-Dimensional Space

Direction cosines are the cosine values of the di-
rection angles of a vector, in a three-dimensional space,
w.r.t. the three reference axes which form the space.

By taking advantage of double subscripts, the Greek
letter A with two subscripts can be used to represent direc-
tion cosines of a vector, in any orientation, in a three-
dimensional space. From the two subscripts of each direction
cosine, it is very obvious that a direction cosine is used
as a transforming coefficient; between the two vectors (or
axes) specified by the two subscripts. 1In this disserta-
tion the author defines the direction angles of the axes in
member-axes system w.r.t. the structure-axes system as
follows:

a refers to an angle w.r.t. xs

B refers to an angle w.r.t. Ys

and y refers to an angle w.r.t. Zs

68
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The subscripts of the direction angles are used as
the code numbers for the three axes of member-axes system
such as

1 represents Xm

2 represents Ym

3 represents Zm.
Wwith the above mentioned information, one can tell which
two axes of the two axes systems are transformed to each

other by the direction angle and its subscripts shown as

follows:

S
Yy [B3
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al ths az = mes a3 = Zme
B = X¥s By = Y ¥ By = 2 ¥
Y1 < X&Zs Y2 = Yézs Y3 = Z;Zs

Then the direction cosines of the member-axes system w.r.t.

the structure-axes system can be defined as follows:

kll = cosa; = cos ths = cosypcosg
Ay, = cosB, = cos XY = cos(90° - o)

12
h13 = cosy, = cos X Z_ = cosypcos (90° - @)
A, = cosa, = cos Y*X = cos(90° + ©)coss
122 = c0582 = cos Y. Y = cos®p

Ap3 = cosy, = cos Y'2 = cos(90° + ®)cos(920° - @)

A

3] = Cosd, = cos Z&X = cos(90° + @)
— —_ — [+]

k32 = cosB3 = cos 2. Y = cos(907)

k33 = Ccosy; = cos Zmz = Ccos$

Thus, whenever the orientation of a member in a three-

dimensional space is known, the direction cosines of the




71
member-axes system w.r.t. the structure-axes system can be

easily obtained by applying the above equations.

To Prove the Rotational Transformation Matrix
to Be an Orthogonal Matrix

The rotational transformation matrix for two orthog-
onal sets of axes is formed with the direction cosines, which
are used as the elements in the matrix, of one set of orthog-
onal axes w.r.t. the other. 1In this consideration, the
former set of orthogonal axes are the axes of the member-
axes system, while the latter are the axes of the structure-
axes system. The X-axis of the member-axes system, which is
usually taken as the member-axis, can be assumed to be
oriented from the X-axis of the structure-axes system with

two rotations as follows:

Rotation about Ys-Axis
In this stage of rotation, the Ys—axis is kept fixed,
and both X and Z, axes rotate about Ys—axis by the same

angle g, as shown in the following sketch:
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The rotation relation can be expressed in a matrix equation

as follows:

ey
Xh
Ym =
)
-Zm.
[] —
(Ym = Ys)
Let R, =

~ cosg

-sing

~ cosf

-sing

0 sing X

0 cosg Z

0 sine_
1 0
0 cosg

By the definition of orthogonal matrix, it is obvious that

-Ri is an orthogonal matrix.

Rotation about Z&-Axis

In this stage of rotation, the Zﬁ-axis is kept fixed,

and both x& and Yﬁ axes rotate about the Zﬁ-axis by the

same angle @, as shown in the following sketch:

Y
m

1
Ym
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The rotation relation can also be expressed in a matrix

equation as follows:

. p— . a— el '—
X%J cosy singp O Xﬁ
Ym =|-sin® cosp O Yﬁ
Zm 0 0 1l z'

T-cosw sinp O

Let R, = -siny cosp O

Also by the definition of orthogonal matrix, R, is an orthog-
onal matrix. If the orthogonal set of axes of the structure-
axes system is rotationally transformed into the orthogonal
set of axes of the member-axes system, it must undergo two

rotational transformations R, and R2 i,e.,

1
. ( )
EN ES
Y |= [Rz:l “:Rl:l Y | )
z z
s \ Y

By the associative property of matrix multiplication.
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X X

Y | = [R2:I LRl:I Y

Z, ’ Z
Let [R] =[R,] { Rl] .

Therefore,
fFcosep sing 0] [cosg O sing]
[R]= |[-sin®p cosp O 0 1 o0
0 0 ;4 -sing O cosp
[ cosfcosy sin® singcosy
R =) -cos@sing cosp =-sin@singy

_jsine 0 cos§

[R] is the rotational transformation matrix which is

orthogonal.

To Prove the Inverse of a Rotational

Transformation Matrix Equal to
Its Transpose

Using the definition of the nonsingularity of a

matrix, if a matrix A is said to be nonsingular, then the
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determinant of A is not equal to O, and A must be 'square. .
With this idea, rotation matrix, R, can be proved nonsingular.
As it is shown, the rotational transformation matrix
R is a square matrix; therefore, if the determinant of the
rotational transformation matrix R can be proved not equal
to 0, then the matrix R can be proved nonsingular.

I1f the determinant of the matrix R is denoted by

| R| then
cosgcos® sin® singcos®
| R| = -cos@sing cos® -sin@sing
-sing 0] cos§p

Expand |R| by cofactor method,

sin® singcosy ' cosgcosy sing@

|R| = (-sing) +cosg

cos®p -singsin® —cosfsiny cos®

=(-sine)(-sin2m sing - sing coszw)+(cose)(cose coszm +
cosesinzw)

= sinze(sinzw + coszw) + cosze(sinzw + coszm) =1#0

Therefore, the matrix R is nonsingular.
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By the theorem of the nonsingularity of a matrix, if a
matrix A is said to be nonsingular, its inverse A-l is unique.
With this idea,. fotation matrik R can be proved to have an .in-
verse, As proved above, the matrix R is nonsingular; there-
fore [R] must have an inverse which is unique.
By definition, a matrix A which is square and non-

singular there must be a matrix B such that
AB=I=BA

any such matrix B is called an inverse of [A].
Now let the rotation matrix [R] be A and the trans-

pose, R?, of matrix R be B. 1If RRT = I; then by definition,

R' must be equal to R~ and also by the theorem R® is the
only inverse of R.
It can be proved by direct matrix multiplicatidn as

follows:

[ cosgcosy sin® sinpcos®]Jcosgcosp -cospsing -sing]

R R = |=cos@gsingy cos® =-singsin® sing cosy 0

| -sing 0 cos® __Lginecosm -singsing cosg|
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F;oszm(cosze+sin29)+ sinzw ~-cosmsinm(cosze+sin29) + d-
cos®Psin®
-cosmsinm(cosze+siﬁze) + sinzm(cosze+sin29)+coszm 0
cos®Psing o

0 0 1
ad -

1 0 0

= 0 1 0 =1
0 0 1
T -1

Therefore, R™" = R ~.

To_Develop the Matrix Equation for the Rotational
Transformation of a Stiffness Matrix of a
Member Skew in Any Direction in a
Three-Dimensional  Space

Using the definition of the rotational transformation

matrix R, one can set up the following two matrix equations:

[a,] = [RI[A]] (1)

[D,]

[RI[D,] (2)

Using the definition of a stiffness matrix of a member, and
the action-displacement equation, one can set up the follow-

ing two matrix equations:
[a,]

[a_]

[s,1(D,] (3)

(5,10, ] (4)
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Substitution:

[s,){D,] = [RI[S,1[D,]

premultiply both sides by the inverse of the rotation

matrix R

[R1108,1D,;] = [S,1(D,]
substitute [R}[D_] for [D ]
[R™108,I[RI[D,] = [S.1(D,]
post-multiply both sides by the inverse of [D.]
(R[S 1[R] = [S,]
as previously proved [R -] = [RT]

Therefore, [Ss] = [R?][Sm][R]

Development of a Rotational Transformation Matrix
for a Member Skew in a Three-
Dimensional Space

With the advantage of partitioning a matrix, one can
develop the rotational transformation matrix for almember
skew in a three-dimensional space joint by joint.

For the sake of simplicity, one can perform the
rotational transformation upon the end actions of each
end of a member skew in a three-dimensional space instead

of upon the stiffness matrix of the member.
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To Transform the End Actions at the Initial
Joint-i from the Structure-Axes System
into the Member-Axes System
By applying the direction cosine to get the projec-
tion of one vector upon the other, one can get the projec-
tions of all the end actions at the joint-i, which are in
the directions of the structure axes, upon the member axes

by the direction cosines as shown in the following simul-

taneous equations:

=i i i i
Ve = V5 M1t Yy Mot Vz A3
=3 i i i

z x "31 y 32 z "33

X x 11 y 12 z “13

Y x 21 y 22 z 23

z x 31 Y z 33



The matrix equation for the above simultaneous equations is

I gy

‘71
X

=i
\Y
Y

=1
Ve

=i
My

.

hll A

A A

21
Ao

If let R* be the rotation matrix for 1 set of orthogonal

components at joint i, then

12

22

32
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A

A

A

M3

23 0

A33
M1 M2 M
M1 A2z A
A31 Mz Aas

11

21

31

A

A

A

12

22

32

A

A

13

23

33

<
xl-'-l

'<EL- xEL- N<L-*<ﬁ%

=
lN |

And if let R; be the rotation matrix for 2 sets of orthog-

onal components at joint i, then
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The above matrix equation . can be abbreviated as
il 0 vt

o | =] [t

S

Premultiply both sides of the above abbreviated matrix

equation with the inverse of R; one can get

since (R = ®HT, @)= (®)T
Therefore,
Vl
; =
L S
i.e., vt
mt




82

To Transform the End Actions at the Terminal ;
Joint-j from the Structure-Axes System i
.into the Member-Axes System :

Based on the same idea used on joint-i, one can

have the following simultaneous equations:

= [ | 3 ]
Tho=vIAgy + VI A, 4 V) Ay
s | 3 j
Vg = Vi Aay + V5 Agp + V3 Ay
ey [ j J
W= vy vlag, e g,

i _ 3 3 j
M) =M Agg o+ My Mg+ My A g

il = mI 3. j
My = M Ay + My Aoy + M A23
#) = M 3 I
My = My A+ My'>‘32 + M3 A3

‘Matrix .equation for the above simultaneous equations is

‘-’3; VRS PRRSEY V}J:
‘-’33_; A1 Aoz Ao 0 ng
Bl Pt e v
I Rt
ﬁgr 0 : ‘a1 raa a3 Mf;
i, | Fa1 a2 tag ]
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If let R} be the rotation matrix for 1 set of orthogonal

components at joint j, then

X1 ra M3
i_
Ri= [Ay3 Agy Aps
A3y r3p Aas

And if let R% be the rotation matrix for 2 sets of orthog-

onal components at joint j, then

Premultiply both sides of the above abbreviated matrix

equation with the inverse of R,%, one can get

-1 _

Since (RJ, )
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Therefore,
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- S

The rotation matrix required to transform the orthogonal

components of the structure-axes system into the orthog-

onal components of the member-axes system is RT:

— 4 | N
R'{0,0,0
- sl it
R, 0 o, & o!lo
Re= FLZrs| =FA-4-5-
0 1Ry P4 O4RLO
) | | I3
0, 04 0 (R
l.€.,
11 212 A13] | !
Aoy Aoz A3y 0 l 0 |
A3y Agp Aas! J i
““““ ccoond--——-=--
%11 *12 “131 |
Ry = o | 21 ‘22 tas, o
I A3 232 Aa3l |
r 7M1 R el
0 | 0 | Aoy Aop Aoz
ey
| n |
J
0 ! 0 , 0 !
[ J |
_ | | |

0
0
0
A1 %2 M
Aa1 Aoz Aoz
Aor Ao A

31 ™32 "33
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The rotational transformation matrix required to
transform the orthoéonal components of the member-axes
system into the orthogonal components of the structure-

axes system is (RT)T:

. i) T o 0 ]
&7 = (Rp)™ O o &HT o 0
Rp)™ = j,T 3, T
o (&) 0 o ®HT o
0 0 o ®HT
5 . ' ' )
M1 rag e \ |
PR PR PY o | o 0
Aon Amn A
13 23 331 | |
S ST FeTT T
|23 |
0 I 12 %22 "321 0 : 0
b Ann Aon Anql
T 13 23 A33
( ) = o ome o www - L— ————— -l —— -— —L ——————
o l | %11 %21 A314
0 : RS PRSPPI P 0
Ao oo A
o | (%13 *23 33+
L K ST IR T IS
Ao Ao A
0 | 0 ( 0 I %12 *22 *32
| i
_ : , | 13 P23 Aa3)

Rotationally Transformed Stiffness Matrix of a
Prismatic Member Skew' in a Three-
" Dimensional. Space

The stiffness matrix of a prismatic member skew in
a three-dimensional space established on the basis of local

axes will be rotationally transformed into a matrix on the
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basis of reference axes which will be expressed in the
same way as it was in Chapter III; that is, the rotationally
transformed stiffness matrix of a prismatic member i-j is

expressed as

_si-i si-j
. .
s37t ¢T3
and
S = [kn m] nm=1,2,....12

in which the s's are the submatrices of the stiffness
matrix, i, j represent the two ends of the member, and n
and m are the numbers of the coordinates at the two ends of

the member. The s's are expressed in the following tables:
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OF A ROTATIONALLY TRANSFORMED STIFFNESS MATRIX
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SUBMATRIX s~ J OF A ROTATIONALLY TRANSFORMED STIFFNESS MATRIX |
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~/2E Ty 2

=42 E &
7L Aaf

-——é‘-é (/\ll )('\12)
-_/-_zgg_ A2 ) A22)

.:i:lx_ (27} (As3)
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‘—'L‘ffl- 31 (A 33)

G;—tf C)\Zl )(')\31)

——G-zéav-b\zl ) ()\31)

"G___%*IL (Azz)(Az1)
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:-6—5211- Az3) (A=)

EAZ (AN YHrr2)

i L i f__ Zx (n21)A22)

=£ f" Nz )

25T,
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-_/f_-f_’_-f_e_ PA22)(Az3)
V4
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A2 (A2 )A3)
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Rotation Matrix for a Vertical Member

Y — —— —

Zy

Ys | *m

lo
|

Let member i-j be a vertical member which is perpendicular

to the Xs—zs plane.

Then it can be assumed that, §, the

angle of rotation about the Ys-axis is 0° and ,®, the angle

of rotation about the Zm

90° counter clock-wise.

follows:

11

12

13

21

22

23

cosa
1

cosBl

cosy,

COSG.Z

c0582

cosy,

axis which is also the Zs-axis is

The direction cosines are as

cos 0° cos 90° = 0

cos (90°-90°) =1

cos 90° cos 90° = 0

cos (90°+90°) cos0°® = -1

cosyp = cos 90° = 0

cos (90°+90°)cos 90° = 0O
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Ay = cosag = cos(90°+0°) = 0
— — o_
k32 = cosB3 =cos 900 =0
A;3 = COSy; = COS§ = cos 0° =1

The rotation matrix, R, which is formed with the A's,

would appear as

TIRSY .>\13‘ —0 1 O
R=[Ay; Ay, Aggf= |-1 0 0
Aaq A A 0 0 1
*31 t32 “33 i |
R' = g3 = R
.
1
o r*
i RI 0 |
0 RJ

RT=

R,; 0
0 R'JEJ
In conclusion, the developed rotational transformation rela-

tion in A system is good for a member skew in any direction,

including a vertical member, in a three~dimensional space.



CHAPTER V

"NUMERICAL EXAMPLE" (5)--PLANE FRAME WITH
DISTRIBUTED LOAD AND INTERMEDIATE

CONCENTRATED LOAD

A plane frame having two members, three joints,
six restraints, and three degrees of freedom is. to be

analyzed by the displacement method.

| P=10klps
; y
/] P
= 2-4
aZ hd L B
/ 2p
PL 3z
4
L L
L 2 | 2 : x
7

For the purpose of analysis, it is assumed that the
cross-sectional area A and the moment of inertia I, are con-
stant throughout the structure, and units of kips, inches

and radians are used throughout the analysis.

93
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The procedure to be followed in the analysis is as follows:

Numbering Svstem

The numbering system for members, joints, and dis-

placement is given in the following figure.

Numbers in circles are the numbers for the joints.
Numbers in squares are the numbers for the members. Numbers
with the arrow heads are the numbers for the coordinates

at the ends of the members, and they are pointing in the

positive directions.
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Information

Joint Information for the Frame

Coordinates (in) Restraint List
Joints
X Y X Z
1 100 75 0 0
2 0] 75 1 1
3 200 0] 1 1l
Member Information for the Frame
Member | Initial | Terminal |Length | Area| I, E
Numbers |. End End (in) |(in?) | (in%) | (xsi)
1 2 1 100 10 | 1,000 | 10,000
2 1l 3 125 10 1,000 | 10,000

the origin of the axes for the whole structure is taken at
the point which is on the same vertical line with the joint
2 and on the same horizontal line with the joint 3.

the member-~axes system, the origin is taken at the initial

Member Analvsis

For the convenience in the processes of analysis,

end of each member.

cessing each of the members of the frame separately and is

The analysis of the whole structure is done by pro-

For
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based on the local axes system of each of the members. The
displacement method is employed for the analysis of each of

the members of the frame as follows:

Analysis of Member 1

——

L

Calculations—--Section Properties

EA = 10,000(10) = 100,000

EI, = 10,000(1,000) = 10,000,000

12 = (100)% = 10,000
3 = (100)3 = 1,000,000
EA _ 100,000 _ ; 000

L 100

2EI
z 2(10'000,000) =
"2 . 000 = 200,000
4FI
z _ 4(10,000,000) =
e 000 = 400,000
®El, _ 6(10,000,000) _ 6,000

2 10,000
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3 =

L

12(10,000,000) _
1,000,000 - 120

Since the member-axis of member 1 is coincident with the

X-axis of the structure-axes system, no rotational trans-

formation is needed, i.e., [S;] = [Si].

Formulation of Stiffness Matrix on the Basis

of Member-Axes System (Also on Structure-

Axes -System).

EA -EA )
. X
? 0 0 = 0 0
. 12EI, 6EI, . -12EI, 6EIz
3 2 3 2
L L L L
0 6EIz 4EIz o -6EIz 2EIZ
L2 L L2 L
-EA_ EA_
[sm]- T 0 0 - 0 0
-12EI_ -6EI 12EI_ -6EI
0 B 5= 0 = 5
L L L L
. 6EI, 2EI, 0 -6EL, 4EIZ
= 1.2 L .2 L
Substitution:
1,000 0 0 -1,000 0 0
0 120 6,000 0 -120 6,000
|§;]=E%]= 0 6,000 400,000 0 -6,000 200,000
-1,000 0 0 1,000 0 0
0 -120 -6,000 0 120 -6,000
0 6,000 200,000 0 -6,000 400,000
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Analysis of Member 2

Calculations

Section Properties

EA = 10,000(10) = 100,000
EI, = 10,000(1,000) = 10,000,000
2

12 = (125)2 = 15,625
13 = (125)3 = 1,953,125
EA _ 100,000 _

L = T 125 - 800
2T, _ 20,000,000 _ 160 000
L = 125 = 160,
4EI

z _ 40,000,000 _

—2 - 40,008,000 _ 329,000

6EI

z _ 60,000,000
L 15,625

= 3,840
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120,000,000

L3

Direction Cosines

= 61,44
1,953,125

For the calculation of the direction cosines, the

origin for the two kinds of axis systems is taken at the

joint 1. The coordinates of the joint 3 w.r.t. the struc-

_ 3L

ture axes orientated at the joint 1 are c, =L, C_ =T

Y

It can be assumed that the angle § is 0 and the

angle ® is negative.

cos(-¢) = 0.8, sin(-9)

Ma

M2

M3

‘a1

APy

A3

A
31

A3z

33

cosay
cosal
cOsYl
cosa.,
cosB2
cosy,
cosa,
cosf,

cosyg

Therefore, cosf =1, sin § = O:

= =0,6. The \A's are as follows:
cosgcos (=) = 0.8

cos[90°-(-p) ] = -0.6

]
o

cos (90°-g) cos (-v)

cospcos[90°+(-9p)] = 0.6

cos(-p) = 0.8

c0s(90°-8) cos[90°+ (~p) ] = 0
(o]

cos(90 +¢) =0

cos 90° =0

cosg =1
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Formulation of Rotational Matrix
The rotational transformation matrix of member 2,
which is composed of the direction cosines of the member
w.r.t. the structure axes, is the combination of the rota-

tion matrices [le and [R3] of the ends 1 and 3 respectively.

0.8 -0.6 0 0.8 -0.6 0
('] = 0.6 0.8 o], (R’1=| 0.6 0.8 0O
0 0o 1 0 o 1

Therefore, the rotational transformation matrix for the

member 2 is R%:

0.8 -0.6 ol
i
1 0.6 0.8 0, 0
R- 10
(R2] =} — - — B L N
bR 1 0.8 -0.6 0
0O 106 0.8 0
|
; 0 0 1

Stiffness  Matrix of Member 2

The stiffness matrix for the member 2 based on the

local axes system is [S;]:

800 O 0O -800 O 0
0 61.44 3840 O -61.44 3840
(s2]=| © 3840 320000 © -3840 160000
m° l-800 © 0 800 0 0
0 -61.44 -3840 O 61.44 -3840
| 0 3840 160000 O -3840 320000




Rotational Transformation
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The stiffness matrix for the member based on the

structure-axes system can be obtained by the following rota-

tional transformation equation:

T
S =,
(8,3 = (Ryl IS, ] [Rp]

The result of this rotational transformation is

given as follows:

64
-48
T
R[S 1=
T "m5 [ea
48

[ 534.12
-354.51
2304.00
-534.12
354,51
2304.00

(851

0.00 36.86  2304.00 -640.00
0.00 49,15 3072.00 480.00
0.0 3840.00 320000.00 0.0
0.00 -36.86 =-2304.00 640.00
0.00 =-49.15 -3072.00 -480.00
0.0 3840.00 160000.00 0.0

-354.51
327.32
3072.00
354.51
-327.32
3072.00

2304.00 =534.12
3072.00 354.51
320000.00 -2304.00
-2304.00 534.12
-3072.00 =354.51
160000.00 -2304.00

-36.86
-49,15
-3840.00
36.86
49,15
-3840.00

354.51
-327.32
-3072.00
=354.51
327.32
-3072.00

2304.06-
3072.00
160000.00
-2304.00
-3072.00
320000.09d

2304.06-
3072,00
160000.00
-2304.00
-3072.00
320000.00]




TABLE 11

Joint Stiffness Matrix for the Frame
(in structure axes system)

1534.12 -354.51 2304.0 -1000.0 0.0 0.0 -534.12 354.51 2304.0
-354.51 447.32 =-2928.0 0.0 -120.0 =-6000.0 354.51 =327.32 3072.0
2304.0 -2928.0 720000.0 0.0 6000.0 200000.0 -2304.0 =3072.0 160000.0
-1000.0 0.0 0.0 1l000.0 0.0 0.0 0.0 0.0 0.0
0.0 -120.0 6000.0 0.0 120.0 6000.0 0.0 0.0 0.0

0.0 -6000.0 200000.0 0.0 6000.6 400000.0 0.0 0.0 0.0
-534.12 354.51 =-2304.0 0.0 0.0 0.0 534.12 =354,51 -2304.0
354,51 =327.32 -3072.0 0.0 0.0 0.0 =354.51 327.32 -=3072.0

2304.0 3072.0 160000.0 0.0 0.0 0.0 -2304.0 ' -3072.0 320000.0

ot
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Joint Stiffness Matrix of Joint 1
Since only joint 1 will have displacements, the
stiffness matrix for joint 1 is needed and can be obtained
by combining the stiffness at all the coordinates at joint
1 6n member 1 with that on member 2, as shown in the follow-

ing submatrix [S%] of [SJ]:

1534.1 -354.5  2304.0
[s%] - |-354.5  447.3 -2928.0
2304.0 =-2928.0 720000.0

-1
Let [S;] be the inverse of [S%], then

0.79799129E-03 0.63255767E-03 0.18829034E-07
-1

l] = |0.63255767E~03 0.27981977E-02 0.93551516E~05

o

0.18828966E-07 0.93551516E-05 0.14268728E-05

Loading'Analysis

Loading System on Member 1

P=10klps

£
[}
(N

L[]

'S
o

@

®

pL=10001n"KiPs
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Nodal Actions

P=10kips

: I
////),,CD

PL=1000

in-kips

Nodal action vector on member 1 iszH:
tal] = (o, -10, -1000, O, 0, 0].....Column Matrix

Distributed lLoading System

Mi"' _2001n-k1psh ﬂmi= +200inkips
o w=l2.42
Q
2_ _..kips 1 _ _..kips
1" 12 v, = 12

Since member 1 is parallel to the X-axis of the
structure—axes system, the equivalent nodal action vector
on member 1 can be directly obtained as the following

matrix:

(az1 = [0, -12, 200, O, -12, =-200]
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Loading System on Member 2

2p=20KiPS
@ 125 in
\ 4
L L |
2 2
L=100""
Nodal Actions
@
€)

Nodal action vector on member 2 is[Az}

(a2y=1p[0, 0, 0, 0, 0, 0]

Distributed Loading System
(Intermediate Loading.System)




106
The converted nodal action.vector on the basis of member-

o
axes system.is-[A%]:

22

[Az) = [6, -8, -250, 6, -8, 250]

The equivalent nodal action vector on member 2, based on the

structure-axes system, is [Aﬁ]:
(227 = [R217[A2]

The result of the above matrix multiplication is given as

the following matrix:

fr

0.07] ...in the direction of coordinate X at joint 1
-10.00] ...in the direction of coordinate Y at joint 1
2. | =250.00 ...in the sense of coordinate Z at joint.1l
[AE&= 0.0 | ...in the direction of coordinate X at joint 3

-10.00} ...in the direction of coordinate Y at joint .3

| 250.00§ ...in the sense of coordinate Z at joint 3
The final equivalent actions at all the nodal points of the

frame ‘is the combination of Aé and Ag, which is expressed

as [AE]:

[A;] = [0, -22, -50, O, -12, -200, O, -10, 250]

The final nodal actions at all the nodal points of the frame

is the combination of A and Ay which is expressed as [Ac]:

Ac = [o, -32' -1050' ] 0' -12’ —200’ 0' -10' 250]
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The joint displacements at the rigid joint 1 is cal-

culated by the folloWing matrix equation:
1. _ ~1.,1
(051 = [s17°[A;]

where [D;] is the matrix of the joint displacements at

joint 1, [S]-l is the inverse of the submatrix of the joint
stiffness matrix for the whole frame based on the structure-
axes system, which relates the nodal actions at the coor-
dinates 1, 2, 3 to the joint displacements at the coordinates
1, 2, 3, [Ai] is the matrix of the nodal actions 'at joint 1

shown below.

_ - .

O}l ....nodal action at coordinate 1 of joint 1

Ai = -32| ....nodal action at coordinate 2 of joint 1

~1050| ....nodal action at coordinate 3 of joint 1
Therefore, -0.0202597|

[DJH = |-0.0993653

-0.0017976

The matrix of the joint displacements for the whole

frame is [Dj]:

Dj = [~0.02026, -0.09936, =-0.001797, O, O, O, O, O, O]

The nodal actions at the other two ends due to the

given externally distributed loads are shown in the following



o
column matrix ARL:

The reactions at the two fixed ends of the

the supports are contained in the column matrix [AR].

[ )
~-12
-200

0

-10

...nodal
...nodal
...nodal
...nodal

.. .nodal

_25% ...nodal

108

action at coordinate 4 of joint 2
action at coordinate 5 of joint 2
action at coordinate 6 of joint 2
action at coordinate 7 of joint 3
action at coordinate 8 of joint 3
action at coordinate 9 of joint 3

frame from

[Ag]

is obtained from the following matrix equation:

where

(A, 1=(-1) [R 1=

[Ag] = [2g ] + [Sp,1(D5)

0.0] ...reaction force due to load on
member 1 at the coordinate 4
of joint 2
12.0f ...reaction force, due to load on
member 1, at the coordinate 5
of joint 2
200.0| ...reaction couple, due to load on
member 1, at the coordinate 6
of joint 2
0.0| ...reaction force, due to load on
member 2, at the coordinate 7
of joint 3
10.0] ...reaction force, due to load on
member 2, at the coordinate 8
of joint 3
-250.0| ...reaction couple, due to load on
member 2, at the coordinate 9
J of joint 3
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[SRD] is the submatfix of the joint stiffness matrix of the
whole frame based on the structure-axes system which relates
the joint displacements at the coordinates 1, 2, 3 to the
nodal actions at the coordinates 4, 5, 6, 7, 8, 9, [D%] is
the matrix of the joint displacements at joint 1.

20.25

1.13
1 236.67

[Sgpl(D3] =

-20.26

30.86

-639.54

e —

Therefore,

d

20.25] ..Reaction force at the coordinate 4 of joint 2

13.13} ..Reaction force at the coordinate 5 of joint 2

[AR]= 436.67] ..Reaction moment.at the coordinate 6 of
joint 2
-20.26} ..Reaction force at the coordinate 7 of joint 3

40.86] ..Reaction force at the coordinate 8 of joiﬁt 3

-889.54]| ..Reaction moment at the coordinate 9 of
joint 3

The last step in the process of analysis is to determine the
end—actions of the members of the frame. The member end—
actions on each member is obtained by adding the actions act-

ing on the member ends due to the displacements at the joint 1
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to the actions due to the externally applied loading system

on each member. The actions acting at both ends of each

member due to the joint displacements is obtained by the

matrix expression [Sm]i[RT]i[Dj]i, where i is the member

number in the numbering system. The

actions acting at

both ends of member 1 are [Smjl[RT]l[Dj]l:

[Sm]l[RT]l[Dj]l
-1000 0 0
0 -120 600011y o o] [-0.0202597
= | O ~6000 200000ff, ; o |-0.0993653
1000 0 © llo o 1| [-0.0017976
0 120 -6000
| 0 -6000 400000
—1000 0 0 ] ~  20.2597008]
0 -120 60000 5202597 1.1382343
_| o -6000 200000| o o03es3|_| 236.6716617
0 120 -6000 ~1.1382343
0  -6000 400000 ~122.8483430
- . -l

The actions acting at both ends of member 1, due to loads,

are [AML]l:

-~ 0] ...in the

12 ...in the

[AML]1= 200] ...in the
0] ...in the
12} ...in the

-200f ...in the

direction of
direction of

the coordinate 4
the coordinate 5

sense of the coordinate 6

direction of
direction of

the coordinate 1
the coordinate 2

sense of the coordinate 3
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Therefore, the final actions acting at both ends of member 1

are [AM]1:

20.259;
13.1382
436.6717
=20.2597
10.8618

|-322.8483]

Similarly, the actions acting

[AM]l = [AML]I + [Sm]l[RT]l[Dj]l

0
12
200

12
=200

eeeln
ee.ln
.e.in
ee.in
ee.din
...1in

2 are [SmjztRTJZEDj%f

the
the
the
the
the
the

20.259;
1.1382
236.6717
-20.2597
-1.1382
-122.8483

direction of
direction of
sense of the
direction of
direction of
sense of the

800 0 0
0 61.44 3880|[5 5 06 o
- 0 3840 320000 0.6 0.8 0
-800 0 0 0 0 1

0 -61.44 -3840

0 3840 160000

the coordinate 4
the coordinate
coordinate 6
the coordinate
the coordinate
coordinate 3

at both ends of member

-0.0202597
-0.0993653
-0.0017976
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800 0 0  34.7201]

0 6l.44 3840| [ 1434174 ~12.5336

_| o 3840  320000| |_5 5916480] =|-927-1606
-800 0 ol |-0.0017976 -34.7291

0 -6l.44 -3840 12.5336

0 3840 160000 |-639.5446

The actions acting at both ends of member 2 due to

the externally applied load on the member are [AMLJZ:

-6 .. in the dirgction of the coordinate 1

8 ... in the direction of the coordinate 2
[AML]Z - 250 ... in the sense of the coordinate 3

-6 ... in the direction of the coordinate 7

8 ... in the direction of the coordinate 8

[-250 | ... in the sense of the coordinate 9

The final actions acting at both ends of member 2

are [AM]Z:
I:AMJZ = [AMLJZ + [Sm]2[RT]2[Dj]1

-6 [~ 34.7291]

8 -12,5336

= | 250] , |-927.1606
-6 -34,7291

8 12.5336

| -250 | ~639.5446

28.729f ... in the direction of the coordinate 1
-4.,5336 ... in the direction of the coordinate 2
-677.1606 ... in the sense of the coordinate 3
-40.7291 ... in the direction of the coordinate 7

20.5336 ... in the direction of the coordinate 8
| -889.5446]_ ... in the sense of the coordinate 9




CHAPTER VI

NUMERICAL EXAMPLE: SPACE FRAME

A frame, including a space member, having three
members, four joints and twelve degrees of freedom is

analyzed by the displacement method.

Y
[/Vi

3 50" F

My v3 14
Yy
2 50"
MY 2 Cy. = 24"
4 50" Vx Cx = 40 %

@ 0.095"

Cross—Section of 2"-0,095" Tube

113
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in2
A = 0.5685 EA = 16486500.0
L = 50" 'Eié = 329730
. 4 ,
I = 0.2586" ET = 7499400
4
J = 2I = 0.5172™" (1) GJ = 5689200
2
g = 29(10%)1%/in 12 = (50)2 = 2500
2 :
¢ = 11(10%)¥/in 13 = (50)3 = 125000
2EI _
lg.= 21.05 T = 299976
2 1b AET _
v2 = 6,000 4EL _ 599952
2 - in-‘lb
M, = 4,800 ~ %EL . 17998.56
M2 = 3,600"""1P L
3 1b
Vg = =1,200 L2EL _ 719.9424
vz = -9001P L
Mi = 10,0007"1P (p) %J = 113784

The procedure of analysis to be followed is as follows:

Numbering. System

The numbering system for the members, joints, and
the displacements is given in the following figure. Num-
bers in circles are the numbers for the joints, and numbers
in squares are the numbers for the members. The coordinates

at every joint are indicated by the arrow headed lines.
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5
4 1 2
3
6
Information
Member Information for the Frame
o ls Length A2 Ix=iJ) Iy=Iz E G
(in) (in”) | (in7) (in ) (psi) (psi)
1|1l 2] 50 | o0.5685| 0.5172 | 0.2586| 29(10%)| 11(10°)
212 50 0.5685 | 0.5172 | 0.2586 29(106) 11(106)
3 13| 4 50 0.5685| 0.5172 | 0.2586 29(106) 11(106)
Notes:
N = member number
i = initial end
j = terminal end
A= cross-sectionél area
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Loading Information for the Frame--
Given Nodal Actions

Joint| Linear . Actions Moment
(1Db) (in-1Db)
2 v2 = 6000 M2 = 4,800
X v 4
2
M2 = 3,600
3 v3 = -1200 | M3 = 10,000
y b3 !
3
v2 = -900

Member Analysis

For the purpose of analysis, the origin of the
structure-axes system for the whole structure is taken at
the joint 1. vThe origin for the local axes system
for each member is taken at the initial end of each of
them. The analysis of the whole frame is done by pro-
cessing each of the members of the frame sepafately, and

is based on the local axes system of each of the members.

Analysis of Member 1
04 &z

2 @
l-e L = 50" J

13 Y A T e Fe erte et B



117

Calculations

Section Properties

EA = 29(10°) (0.5685) = 16,486,500.00

EA _ 16,486,500 _
= 22 = 329730

EI = 29(10°) (0.2586) = 7,499,400.00

GI. = 11(10%)(0.5172 in%) = 5,689, 200.00

X
. 2
12 = (50%) = 2500.00%"
+ 3
13 = (50%) = 125,000.00%"
2ET _ 2(7,499,400) _
I 22 = 299,976.00
4EI _ 4(7,499,400) _
Z - 2% = 599,952.00
6EI%_ 6(7,499,400) _
SEL°. 5225 = 17,998.56
1221 _ 12(7,499,400) _ 19 9424
L 125000
GI
X _ 5,689,200
= = =2 = 113,784.00

Direction Cosines

For the calculation of the direction cosines, the
origins of both the structure-axes system and the local
axes system are taken at joint 1. The direction cosines
are indicated as the A's as presented by the author in

Chapter 1IV. Thevcalculation of the A's is as follows:

g = 0° ©=0°% cosp=1, cosp =1
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A2

Xl3

A1

M2

Aas3

A3y

A3z

A3z

cosa,
cosBl
cosy,
cosa,

cosB2

cosy,
cosaq
coss3

cosy;
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cosgcosy =1

cos (90° - g¢) =0

cos (90°~g)cosyp = O
cosgcos (90° + @) = 0

cos o =1

cos(90° = g) cos(90° + @) = O

cos(90° + g) = O
cos 90° = 0
cosg =1

Formulation of Rotation Matrix R

From the above values of the direction cosines, it

shows that

as follows:

={A

Ma
21

A3y

Therefore,

the rotation matrix R is an identical matrix

- - -

12 M3 1 0 0
22 Ma3l = [0 1 O
A 0 0 1

32 %33 L L

the stiffness matrix of member 1 in the

member-axes system is identical to that in the structure-

axes system, as shown on page 119, Table 12.




TABLE 12

MEMBER STIFFNESS MATRIX OF A HORIZONTAL MEMBER OF A SPACE FRAME

% oy al ok oy | o5 a2 a2 22 02 62 | o
V:IE 329730 0 0 0 0 -329730 o 0 0 g o
V:; 0 719, 9424 o 0 o 17998.56 4 NP GF24 o o 7 17798.56
V; 0 0 719, 9424 0 -17998.56 0 0 0 -719. 9424 o -17998.56 74
ek 0 0 0 113784 0 0 0 0 0 \-mrsa o 0
Mll, 0 0 ~17998.56 0 599952 o 0 0 17998.56 0 299975 0
Mi 0 1799856 0 0 0 599952 0 |-r7e9s858| 0 0 0 |29997e
vi -329730 0 0 0 0 0 329730 0 o 0 o 0
V?, 0 -G 9424 0 0 0 -17978.56 0 9. 424 0 0 0 —17998.56
vi 0 0 -7/9. 9424 0 1799856 0 0 0 71G. Q24 0 17998.56 o
M;’; 0 0 0 -1378 4+ 0 0 0 0 0 13784 0 0
Mlz, 0 0 -17998.56 0 299976 0 0 0 17978.56 o 59995 2 0
Mi 0 179985 0 .0 0 299976 0 ~17978.56 4 0 0 599352

611
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Analysis of Member ‘2

(CpsCyrCy)

Calculations

Section Properties
Since the member size and the material of member 2
are the same as that of member 1, the section properties of

these two members are the same.

Direction Cosines

To calculate the direction cosines the author chose
the initial end which is the left end of the member as the
origin for both the member-axes system and the structure-
axes system. The direction cosines are calculated on the
basis of the origntations:ﬁ the axes of the member-axes

system w.r.t. the structure-axes system. The orientation
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of the member 2 w.r.t. the structure-axes system .is shown

in the following sketch.

(The coordinates, C

<’ Cy, and Cz' of

the member can be taken as the ratio numbers, 0.8, 0.48, and

0.36 respectively.)

Ys

X5
C, Cx
sing = ————= cosg = ——— C_.C._ = (0.8)(0.48) = 0.384
2 Xy
/CX+CZ /C§+c%
sing = C cosy = jc2+c®  C.C.=(0.48) (0.36) = 0.1728
y x z y z [ ] L ] .
*11 = cosq, = cosfcosyp = Cx = 0.8
Mg = cosg; = cos(90°- @) = Cy = 0.48
Kl3 = cosy; = (singcosy) = Cz = 0.36
—Cx C
A21 = cosa, = (cospgcos (90°+@)) = —X Y - -0.4377
2 2
CX+Cz
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A22 = cos, = cosp = [C +C, = 0.8773

-C._C
Aoy = cosy, = (cos (90°-g) cos (90°+9)) = —==== -0.1970
C2+C2
Xz
Ay = cosa, = cos(90°+8) = = -0,4103
2
CxiC
Ay, = cosB, = cos 90° = 0
Cx
x33 = COSyy = COs§ = —— = 0.9119
2 2
Cx-l—CZ

Calculation of the Combinations of the A's

(A = (0.8)2 = 0.64

2
11!
(A7) (A1,) = (0.8)(0.48) = 0.384

(A1) (A;3) = (0.8)(0.36) = 0.288

2 2
(Xlz) = (0.48)° = 0,.2304
(Alz)(Kl3) = (0.48) (0.36) = 0.1728

(0.36)% = 0.1296

2
(A,3)

(A21)2 (-0.4377)2 = 0.1916



123

(Ay1) (A5,) = (-0.4377) (0.8773) = -0.3840

(Ay1) (Ay3) = (=0.4377)(-0.1970) = 0.0862
(Ay7) (A37) = (~0.4377)(-0.4103) = 0.1796
(Ay7) (A33) = (-0.4377) (0.9119) = -0.3991
(Ay0)% = (0.8773)2 = 0.7697

(Ay5) (A,3) = (0.8773)(-0.1970) = -0.1728
(Ay5) (A5y) = (0.8773) (=0.4103) = -0.360

(0.8773) (0.9119) = 0.8

(hg2) (A33)

(A = (-0.1970)2 = 0.0388

2
23)

(~0.1970) (-0.4103) = 0.0808

(Aa3) (A31)

(Ay3) (A53) = (-0.1970) (0.9119) = -0.1796
(hgp)? = (-0.4103)% = 0.1683
(A37) (A3,) = (~0.4103) (0) =0
(A37) (A33) = (~0.4103) (0.9119) = -0.3742

2
(X32) =0

(Ay5)% = (0.9119)2 = 0.8316
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Calculation of the Stiffness Coefficients in the
Stiffness Matrix, [Si], in the Stucture-Axes System

With the advantage of the abbreviation of the stiff-

ness matrix for a member in space proposed by Professor

L. A. Comp, only twenty-seven elements need to be calculated

instead of 144. These twenty-seven elements are as follows:

11

12

13

14

15

12ET 12ET
EA 2 z 2 Y 2
L ()7 3 (Ap) 7+ 3 (A33)

329730(0.64)+(719.9424) (0.1916)+(719.9424) (0.1683)

211286.3073
12ET

EA —_—_2

T (M) (Agp) + N (Ap1) (Ay))

329730(0.384)~(719.9424) (-0.3840) = 126339.8621

Ba - 12EI1, 12E1
T (1) Ogz) + 37 (yy) gt =37 (h3) (33)

329730(0.288)+719.9424(0.0862)+719.9424(-0.3742)

94854 .8975
-0ET 6EI
Ry i
2 (A1) (Agp)+=—=3= (A1) (A54)

L
~17998.56 (0.1796)+17998.56 (0.1796) = 0
-6EI

= 6479.4816

—_Y = - -
2 (Ay5) (A7) = -17998.56(-0.36)
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22

23

24
25

26

33

34

35

i

- 125

6EI ~6ET
g Ry
2 (Apq) (Ag3) + iy (Ay3) (Agy)

17998.56 (=0.3991) -17998.56 (0.0808) = -8637.5089

EA 12ET
X (A 2 z
L L
76523.9317
EA 12E1,
T () (Ay3) + 3 (hyp) (A,3)

L

329730(0.1728)+719.9424 (-0.1728)

6:22 (Ayp) (Agq) = 17998.56 (~0.356) = ~6479.48L6
0

6EI,

Tz (a2)(gy) =

EA , l2EI 2 12EI

2
12) + —3" (lzz) = 329730(0.2304)+719.9424(0.7697)

56852.937

17998.56 (0.8) = 14398.848

—E g+ 3 9"+ 35 ()

L L L

329730(0.1296)+719.9424 (0.0388)+719.9424 (0.8316)

43359.6459

6EI -6EI

Z 2
7 (Aa3) (Agy) + === (A7) (Ag3)

L L

17998.56 (0.0808) -1798.56 (-0.3991)

-EI
— = =
L2 (K22)(l33) = -17998.56(0.8)

8637.5089

-14398.848
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44

45

46

55

56

66
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GEIz -6EI

2 (Ap3) (Ag3) + 2 " (Ay3) (Ag3)

17998.56(=-0.1796)-17998.56 (-0.1796) = O

GI 4BET 4ET
% 2 2 2 2
T (A)" + = g7+ 5 (Ry,)

113784 (0.64)+599952(0.1683)+599952(0.1916) = 288744.4848

GI 4EI
X y
T (Agp) gy =7 (A) (Ay))

113784 (0.384)+599952(~0.384) = -186688.512

o1, 4E1 4E1
T (g (yg) + g Bgp) (pg) + =7 () ()

113784 (0.288)+599952(0.0862)+599952 (-0.3742)

-140016.384
GI AEI
X 2 V4 2

113784 (0.2304)+599952(0.7697) = 487998.888
eI, AEI

T (App) g+ =57 (A55) (Ay5)

113784 (0.1728)+599952 (<0.1728) = -84009.8304

GI 4E1

4E1
X
L (A

2 )4 2 4 2
130 7+ (Ay3)7 + — (Ag3)
113784 (0.1296)+599952 (0.0391)+599952 (0.8316)
537124.6128
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-GI 2EI 2EI

_ X 2 Y 2 2 2
kp,10 =7 )7+ T Q)7+ 7 (Rg,)

= =-113784(0.64)+299976 (0.1916)+299976(0.1683)

= 35139.6024
-e1,, 2ET
ko,11 = 7 (A1) (Agp) + 7 (A59) (A55)

= =113784(0.384)+299976 (-0.384) = -158883.84

-GIx 2EI 2EI

2
kg2 = T (an) (padt B (gp) Bgg) + T () (gy)

= -~113784(0.288)+299976(0.0862)+299976(-0.3742)

= -119162.88
-GI 2ET
_ X 2 2
kg 11 =7 (o) + T (Ry))

= =113784(0.2304)+299976(0.7697) = 204675.6936

-GIx 2EI

kg 12 = 7 () (Ap3) + —57 (Ay5) (Ay5)

-113784(0.1728)-299976(-0.1728) = =-71497.728

—GI 2ET 2ET
X 2 Y 2 z 2
6,12 T (M3) "+ 7 (Ay3) 7 + = (A33)

o
Il

= =113784(0.1296)+299976 (0.0388)+299976(0.8316)
246352.704

With these elements the stiffness matrix for member 2 in
the structure-axes system can be established and is shown

on page 142, Table 13.
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Analysis of Member 3

<) B

.

Since member 3 is of the same size and material as

L &

that of member 1, the stiffness coefficients in the member
stiffness matrix for member 3 are the same as that for
member 1. In addition, because the direction of the mem-
ber axis of this member is coincident with the X-axis of
structure-axes system, no rotation transformation needs

be performeqd,i.e., [SZ] = [Si]. By the inversion of
2-3.-1
5 ]

joint stiffness matrix, [Sj], is obtained as shown on

matrix, the inverse, [S , of the submatrix, [83_3], of the

page 144, Table 15.

Loading Analysis

Since there is no distributed load or intermediate
concentrated loads on any of the three members of the
structure, the equivalent load vector is a 0 vector, i.e.,

AE = [ai,l] and a; 1 = 0, i=1....24

A A= [0,0,0,0,0,0, 6000, 0,0,0, 4800, 3600, O, =-1200,

c

-900' 10000' 0'0,0'010'050,0]

The nodal actions at the joints 2 and 3 are contained in A§-3:
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Ag_3 = [6000, 0,0,0, 4800, 3600, 0, -1200, =900, 10000, 0,0, ]
A, = (0], i.e., the column matrix which contains the nega-

tive values of the elements contained in AE is a

null matrix.

The joint displacements at joints 2 and 3 are given
by.the matrix equation [D?‘B] = 527371

T 1
[D§-3] is the displacement vector containing the dis-

[A%_Bj in which

placement components at the coordinates at the joints

-1

2 and 3, [83-3] is the inverse of the submatrix of the

joint stiffness matrix of the structure corresponding to
the joints 2 and 3, [Ag—3] is the action vector containing

the nodal actions at the coordinates at the joints 2 and 3.

™ 0.1529456E-0T]
-0.1353106E 01
-0.1676577E 01
0.3278675E-01
0.4245323E-01
~0.2008140E-01
0.2902009E-02
-0.1800001E 01
-0.1063856E 01
0.5886848E-01
~0.1715996E~01
| 0.3936479E-01

Note:
The numbers in the above displacement vector are the
components of the displacements in the directions of the
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coordinates at the joints 2 and 3 of the framed structure
in the order from 7 to 18 numbered from the top to the

bottom.

Reactions at the Member Ends of Members 1 and 3

On member 1, since the joint 2 is a rigid connec-
tion, there is no reaction that can be developed. The only
reactions which can be developed are therefore at the end 1,

and are given as the following matrix equation:

A = (5530051

in which A; is an action vector containing the reaction com-
ponents in the directions of the coordinates at joint 1,
[Si°2] is the sub-matrix of the member stiffness matrix of
member 1 containing the stiffnesses relating the actions

in the directions of the coordinates at joint 1 to the dis-
placements at joint 2, [ﬁ?] is the displacement vector con-

taining the displacement components at the joint 2.

~0.5043075E 047]... reaction at coordinate 1
0.6127219E 03 |... reaction at coordinate 2

1 0.4429416E 03 |... reaction at coordinate 3
AR = -0.3730607E 04 |... reaction at coordinate 4
-0.1744101E 05 |... reaction at coordinate 5

| 0.1833001E 05 ... reaction at coordinate 6
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Similarly, the reactions acting at the end 4 of member 3 are

given in the following matrix equation:

Ay = [5,>100]]

in which Ai is an action vector containing the reaction
components at joint 4, [Si-Bj is the submatrix of the member
stiffness matrix of member 3 containing the stiffnesses
relating the actions at joint 4 to the displacements at
joint 3, [Dg] is the displacement vector containing the

displacement components at joint 3.

[=0.9568793E 03] ... reaction at coordinate 19
0.5873874E 03] ... reaction at coordinate 20
0.4570604E 03] ... reaction at coordinate 21

-0.6698291E 04| ... reaction at coordinate 22
0.1400029E 05} ... reaction at coordinate 23

| -0.2058893E 05| ... reaction at coordinate 24

Member End Actions

Since there is no distributed load or intermediate
concentrated load on any of the three members of the framed
structure, the member end-actions on each member are just
the reaction forces due to the joint displacements of the
ends of each member.

Therefore, the member end-actions on the member 1
are obtained by the matrix equation:

=21 .
Apyp = 10 o [D5]




in which AéND is an action vector containing the actions at

both ends of member 1,

Sm

1-
2-
Sm

[D?] is the displacement vector containing the displacement

components at joint 2.

Note:

action vector are in the directions of the coordinates

ordered from 1 to 12 from the top to the bottom.

2
2

is the submatrix of the member stiffness matrix
of member 1 which relates the actions at both ends

of member 1 to the displacement components at

joint 2,

The member end-actions in the above member end-

132

-0.5043075E
0.6127219E
0.4429416E

-0.3730607E

-0.1744101E
0.1833001E
0.5043075E

-0.6127220E

-0.4429416E
0.3730607E

-0.4706065E

| 0.1230608E

04
03
03
04
05
05
04
03
03
04
04
05
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The member end-actions on member 2 are obtained from the

matrix equation

[—0.1240822E 01|  0.1267549E 04]
~0.8634884E 00 0.4897520E 01
~0.1535145E 01 -0.1487442E 02
0.3937764E-01 -0.1553342E 04
0.2684949E-01 0.1168477E 05
[R%][D?“%F ~0.3176462E-01 'AéN _ |-0.6403190E 04
J 7 |-0.1244666E 01 D 1.0.1267551E 04
~0.1370831E 01| -0.4897521E 01
~0.9713208E 00 0.1487441E 02
0.5302932E-01 0.1553342E 04
~0.4857601E-01 -0.1094106E 05

| 0.1174301E-01 | 0.6648052E 04

Notes:

2

a2up = [SallR, 21005 7]

The member end-actions, in the above member
end~action vector, are in the directions of the
coordinates in the order from 7 to 18 numbered
from the top of the column matrix to the
bottom,

[s2] is the member stiffness matrix of member 2.

(1)

(2)
(3)
(4)

[R%] is the rotation matrix for member 2.
[D§'3] is the displacement vector continuing
the displacements at joint 2 and 3 which are
both ends of this member.
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The member end-actions on member 3 are obtained from the

matrix equation:

3-3
m 3
4-3 [DJ]

3 S

AEnd =

S
in which A%ND is an action vector containing the member

end-actions at both ends of member 3,

-

S 3

i

3] is the submatrix of the member stiffness matrix of
S

= IV N

member 3 which relates the actions at both ends of
member 3 to the displacement components at joint 3,
[D?] is the displacement vector containing the displacement

components at joint 3.

-0.9568793E 03
-0.5873874E 03
~0.4570604E 03
0.6698291E 04
0.8852720E 04
AEND = |=-0.8780441E 04
~0.9568793E 03
0.5873874E 03
0.4570604E 03
-0.6698291E 04
0.1400029E 05

-0.2058893E 05
e o

Note:
The member-end actions in the above member end-
action vector are in the directions of the coordinates in
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the order from 13 to 24 numbered from the top of the matrix

to . the bottom.

Check the Margin of Safety

To check the margin of safety the comparison of the
member end-actions of all the members that compose this
frame is necessary. It is necessary because through the com-
parison an investigation will be made of the maximum combi-
nation of the member end-actions that occur at a member of

the structure.

Member 1l 2 3
v; -5043 1268 957
i
v, 613 5 -587
Initial v; 443 -15 -457
End
M; -3731 | -1553 6698
M; -17441 | 11685 8853
M; 18330 | -6403]| -8780
v; 5043 | -1268 -957
v§ -613 -5 587
il -
rerminal | Va 443 15 457
End .
M; 3731 1553 -6698

-4706 |-10941] 14000

<

=
NG

12306 6648| -20589
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The numbers in the above table are rounded off to
the nearest whole number from the computed numbers given by
the digital computer.
From the above table, it is seen that the maximum
combination of the member end-actions is occurring at the
joint 4 of the member 3. Therefore, the check of the mar-

gin of safety will be undergone by the member 3 as follows.

6698 957 =957 e =6698

> -
sy 7/ } 587
-8780 8853 14000

The resultant bending moment of M; and M: is expressed

4
as Mr'
4 4.2 4.2
M. = J(My) + (MZ)
Mi = vﬂl4000)2 + (20589)2 = J€96,000,000+423,906,921

24898
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From Mill Handbook 5A, Heat Treated AiSI 4130

_ psi
F,, = 125,000
F, = 149,000P%%  (pg. 211) (D/t =
F, = 63,000  (pg. 218) (L/D =
"By Shanley Stress Ratio Method" (16)
u?
_ _r _ 24898 _ psi
£ = ~ = 9.2586 - 96280 (96279.969)
c
T _-6698 _ _ psi
fs¢ = T=0.5177 = ~12951 (12950.5027)
C
- B_ =957 _ _ psi
£, = % = g cags = -1683 (1683.3773)
R = fo _ _-less _ -0.0135
c = F, 125,000
- éﬁ = 26280 _  g462
% = F, = 149,000 -~ °°
R o Sst _ 12951 | o ,u0e
st ~ F__ _ 63,000
Rﬁ = (0.6461)2 = 0.4176
2 _ 2 _
RS, = (-0.2056)° = 0.0423

0.4174 + 0.0422 = 0.4599

o
+
=

0

(wd
]

21.05)

50/2 = 25)
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2. .2 _
an + RS, Jo.4599 = 0.6782

WM.S. = L -1 (16)

/ 2 2
Rc + Rb + Rst

- 1
- =0.0135 + 0.6782

-1 =0.445

Check the Axial-Flexural Interaction

From the member end-actions of each member of the
frame, it is seen that all of them have the axial end-
actions at both ends which will change both the bending
moments and bending deflections at the cross sections of
each member. Since the axial end-actions on member 1 are
tensile forces which will decrease the bending deflection
at each cross-section, no attention should be paid to the
axial-flexural interaction of the tensile axial forces. 1In
contrast, the axial end-actions of ﬁhe members 2 and 3 are
compressive which will increase the bending deflections of
them. The investigation of the change of the bending stiff-
ness factor of each of the two members due to the effect of
the axial-flexural interaction of the compressive axial end~

actions should be made as follows:

Check Member 2

P = 1268
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/1268
= &= —— - 728 - 0.013
J129x106)(0.2586)

KL = (0.013) (50) = 0.65
(k)2 = (0.65)% = 0.4225
sin kL = sin(0.65) = 0.60518641
cos kL, = cos{0.65) = 0,79608380
. X 1
csc kL = ST = 0.60518641 ~ 1-65238343
_cos kI _ 0.7960838 _
cot kL = 55T = 0.6051864L — L-31543568
ne = 6 (kL_csc ];L -1) (16)
(kL)
_ 6(0.65x1.65238343-1) _
@ = KL oo = 1.0516
wa - 3(1-kL cot kL) ,
= 2 (16)
(kL)
_ 3(1-0.65x1.31543568) _
g = L gaxl. 3 = 1.0294
___ 3B
"C = g 2 " (16)
(487 - a”)
o - —3x1.0294 - 0.9857

4(1.0294)2%-(1.0516) 2
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l-c = 0.0143 . . . the amount of the percentage by which the

stiffness factor is decreased.

Modified k12 12 = (599952) (0.9857) = 591372.6864
ol

Check Member 3

P = 957
P
k [
EIz
< b 957

J 6 = 0.0113
(29x107) (0.2586)

kL = (0.0113) (50) = 0.565

a4 = 6(0.565x1.8677073-1) _ 1.0385389

0.319225 B

3(1-0.565x1.5774442)

c = 3(1.0219539) 5 = 0.989313
4(1.0219509)“~-(1.0385389)
l-c = 0.010687 . . . the amount of the percentage by which
the stiffness factor is decreased.
4EI
Modified k = ———5-(c) = (599952) (0.989313) = 593540.313
12,12 L

It is shown in the above calculations that none of
the axial-flexural interactions of the compressive axial end-

actions on the two members has resulted in a change of the
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bending stiffness factor which needs to be considered. The
change of the bending stiffness factors of the two members
due to the axial-flexural interactions on them are small
enough to be neglected. 1In general, when the value of kL
is less than or equal to 1, the effect of the axial-flexural
interaction of the compressive axial end-action upon the mem-
ber can be neglected.

If the value of kL is bigger than 1, then the effect
of the axial flexural interaction of the compressive axial
end-actions should be considered. "If axial-flexural inter-
actions are to be taken into account in the analysis of
plane or space frames, it is necessary to make other modifi-
cations of the stiffness method in addition to those already
described. The analysis is complicated by the fact that
the axial forces in the members are related to the joint
displacements. Therefore, the analysis must be conducted
in a cyclic fashion. 1In the first cycle of analysis the
stiffness method is applied as explained’in Chapter 4. 1In
the second cycle, the axial forces in the members, as
obtained from the first cycle, are used in determining the
modified member stiffnesses given in Table 6-7, and also
in determining the modified fixed-end actions. The second
cycle is then completed, using the modified stiffnesses and
fixed=-end actions, and new values for the axial forces are
obtained. This process is repeated until two successive

analyses yield approximately the same results" (5).
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MEMBER STIFFNESS MATRIX OF AN INCLINED MEMBER OF A SPACE FRAME
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6479.4816 ~-8637.,5089-211268.3073-126339,8621
94854,8975 0.0 6479.4816 -8637.5089
126339.8621 77243.8741 56852.937 ~6479.4816

0.0 -3599.712 ~126339.8621 -76523,9317
568520937 -6479.4816 0.0 14398.,848
94854.8975 56852.937 4407945863 8637.5089
3599.712 0.0 ~-94854.8975 -56852.937
- 4335%9.6459 8637.5089 -14398.846% 0.0
‘ 0.0 ~6479.4816 8637.5089 402528,4848
1866880512 -140016.3284 0.0 6479.,4816
. 8637.5089 35139.6024-158883.84 -119162.88
6479.4816 0.0 3599.712 -186688.512
1087950.888 -84009.8304 ~647%9.4816 0.0
14398.848 -~158883.84 20467566936 ~71497.728
8637.5089 -3599.712 0.0 -140016.384
84009.83041137076.6128 86375089 -14398,848
0.0 ~119162.8856 ~71497.726 246352.,704
21128663073~1263239,8621 -94854.8975 0.0
6479.4816 8637.5089 54101603073 126339C8621
. 94854,8975 6.0 ~6479+4816 8637.5089
126339.862)1 ~76523.9317 -56852.,937 6479.,4816
0.0 ~14398.848 1263398621 T7243.,874]
. 56852.937 6479.4816 0.0 3599.712
948548975 ~568524937 =~42359,6459 -—B637.5089
14398.848 0.0 9485408975 568524937
. 44079.5883 ~8637.5089 =3599.712 0.0
0.0 ~-6479.4816 8637.5089 35139.6024
158883.84 +~119162.88 0.0 6479.,4816

8637.5089 402528.4848-186688.512 -140016.384

6479.4816 0.0 ~14398. 848 —-158883.84
204675.6936 ~71497.728 -6479C481 6 0.0

'3599.712 -~186688.512 1087950.88& -~84009.83204

8637.5089 .14398.848 0.0 -119162.88
71497.728 246352.704 8367.5089 35994712

0.0 ~140016,384 —84009.,83041137076.6128
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LE 14

. JOINT STIFFNESS MATRIX OF A SPACE FRAME

54101643037 126339.8621

9485448975

0.0

THE JOINT STIFFNESS MATRIX 1S READ IN ROW-WISE,s
AND IT STARTS WITH THE SEVENTH COORDINATE AND
ENDS WITH THE EIGHTEENTH COORDINATEs ACCORDING TO
THE NUMBERING SYSTEM DEFIMED FOR TH1S PRORBLEM,
EVERY THREE ROWS REPRESENT THE STIFFNESS OF ONE
"COORDINATE. THE STIFFNESS OF EACH COORDINMATE 1S
STARTED WITH THE DIRECTION OF THE X-AXIS.



INVERSE OF THE JOINT STIFFNESS MATRIX OF A SPACE FRAME

0.30144169E-05
0.15957926E-07
0.18228195E-07
0.15958278E-07
- =0.14337777E-05
0.21690040E-04
0.14125957E-05
" . 0e18317547E-04
~0413912974E-05
~0,28955950E~-04
0.13892267E-05
=0624458036E-04
0.15961187E-07
- 0452720815E-05
-0.15465875E-07
0.25288982E-05
~018672114E-07
0.99074918E~-06
0.18813768E-07
0,81083067E-06
0.30783610E-07
0.74347656E-06
~0.31317164E-07
0.60857905E~-06
0.18366506E-07
~0.15957599E~07
0.20143924E~05

. =0415957848E-07

0.14334125E-05
-0,18318769E-04
-0.:14590152E-05
~0.21691306E-04
0.13914200E~05
0.24459401E-04
~0.13878147E-05
0.28957372E~-04
0.15962132E-07
0.25288986E-05
-~0.15356143E-07
- 0.52720852E-05
-0.,18669389E~07
0.81085954E-06
"0418872256E-07
0.99077852E--06
0.30796613E-07
0.60859952E~06
~0.29462068E-07
0.74349748E~06
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~014337172E-05
-0.186746526E-07
0414336492E-05
~0418671137E-07
0415990519E-02
0«45095585E-05
0¢12134518E-02
0426505445E-05
-0e27436693E-03
-0.33736010E-04
0.22789972E~03
0.24301214E-04
021690360E-04
0.99076192E-06
-0+18318929E-04
0.81085386E-06
0.45100787E-05
0417743627E-05
-0426504112E-05
-0.54713280E-06
0.31094961E-04
0.24674318E-06
0.25841458E-04
0417235561E-06
0.14335978E~05
0.,18673418E~07
-0.14336046E-05
0.18670053E-07
0412134262E-02
~0426510038E-05
0415990990€-02
~0445102033E-05
0.22789894E~03
-0+24301080E-04
~0.27429527E-03
0.33736389E-04
0418317867€E-04
0.81084533E-06
~021691590E-04
0.99077306E-06
0.26505126E-05
-0.54712904E-06

-0.45105835E-05"

0.17743707E~05
—042584044TE~04
0617237113E-06
-0¢31096293E-04
024676154E-06

-0413913111E-05
0.30788250E-07
0.13914761E-05
0.30789699E-07

~0427435942E-03
0.31095434E-04
0,22791905E-03

-0,25840909E-04
0417599633E-02

-0,45204560E-05
0.10799595E-02

~0426609477E-05

~0428956179E-04

0.74347281E-06
0.24458735E-04
0.60859736E-06
~0.33735887E-04
0.24675216E-06
-0,24301360E-04
0,17235191E-06
~0445203642E-05
'0,16301985E-05
0.26613752E-05
-0,64718028E-06
0613912422E-05
-0,30787404E-07
~0413914066E-05
-0,30787333E-07
0.22791215E-03
0,25841403E~-04
-0427436111E-03
-0+31095376E-04
0.10799486E-02
0.26608272E-05
0.17599856E-02
0.45209253E-05
~0.24458280E-04
0.60857326E-06
0.28956619E-04
0474349566E-06
0424301105E-04
0,17235123E-06
0,33736309E-04
0424675966E-06
-0.,26608381E-05
~0.64719836E-06
0445199576E-05
0.16301869E-05

THE INVERSE OF THE JOINT MATRIX 1S KEAD IN ROW W1SE,
AND IT STARTS WITH THE SEVENTH COORDINATE AND ENDS
WITH THE EIGHTEENTH COORDINATEs ACCORDING TO THE
NUMBERING SYSTEM DEFINED FOR THIS PRORLEM. EVERY
FOUR ROWS REPRESENT THE FLEXIBILITY OF OME COORDI-
"NATE. THE FLEXIBILITY OF EACH COORDINATE IS STARTED
WITH THE DIRECTION OF THE X~AXISe.



CHAPTER VII

STIFFNESS MATRIX FOR A TAPERED MEMBER
OF CIRCULAR CROSS—~SECTION IN

THREE-~-DIMENSIONAL SPACE

Development of Stiffness Coefficients

The development of the stiffness coefficients of
a tapered member of circular cross-section in a three-
dimensional space is based on the member-—-axes system, and
the member axis will be coincident with the X-axis. The
displacements at the coordinates are introduced in the
positive directions of the coordinates. The framework
sign convention is used for the end-actions and end
displacements.

As it was in the case for a prismatic member,
there are four kinds of stiffness coefficients under con-
sideration. The development of these four stiffness coef-

ficients is given as follows:

145
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Axial Stiffness

dx
P i /l\ \jll.,: X
|1
VNN
ety X
g L =

From direct experiment, it has been established by
Robert Hooke that within the elastic limit of a given mate-
rial of a structural member there is a linear relationship
between the axial force and axial strain. And if struc-
tural members of a given material and of different lengths
and cross-sectional areas are experimented with, it will
be found that the axial strain of the member will be pro-
portional to the axial force and to the length of the
member and inversely proportionallto the cross-sectional
area as well as the elastic property in tension and com-

PL

pression, i.e., AL = EA

The above relation can be derived algebraically as shown:

By Hooke's Law, E = %- in which

_ B - AL
U—-A, € = L
therefore, p
_ A _ _PL _BL
E = AL = AL ° and AL = AR
T .
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where P

axial force (tension or compression),

o = axial stress due to axial force,
A = the cross-sectional area of the member,
E = modulus of elasticity.

Since the cross-section of the member under consid-

eration is circular, A = nrz

, where r is the radius of a
cross section, and is a function of the coordinate of the
cross-section along the member-axis, i.e., r, = r(x), as

indicated in the following equation:

' v k=-x
r(x) = .(rj) (1-c) =%
where

k = IL— , and ¢ =

BIw

Therefore, since the cross-sectional area is given
in term of radius, it also can be expressed as a function
of the coordinate of the cross-section along the member

axis, i.e.,-A.,x = A(®), and is given by

ne?

A(x) = (1-c) 2 (k-x) 2

(cL)?

Let the axial strain for a differential length dx

of the member x distance away from the joint i be dL. By

the stress strain relation as mentioned, dL = P dx ’

A(X)E
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therefore,
2
_ 1 Pdx _ P (cL)
v = § 2 = P 2 7 |9
IS 2 2 Enr’ (k=x) " (l=c)
5 (k=x) *(1-c) ]
(cL)

If let AL be the total axial displacement of the member i-j,

then AL = jﬁdL

L L
_ p (cL) 2 __p(en)? dx
AL = 2 p 7 dx = — 2 2
0 Enrj(k-x) (1-c) Enrj(l-c) 0 (k-x)

e [l - et o]
cL) 1 - P(cL) L
Enra?‘(l-c)2 (k=x) 14 Eﬁri(l-c)2 k (k-L)

Let AL = 1, then
Enr§ k (k-L) (1=c) 2

’

P =
213

where P is the required axial stiffness.
By the idea of superposition of displacements, the

member can be released in the following procedure:

Member Released at Initial End-i with pt Applied at End-i

. Enr% k(k-L)(l-c)2
Pl = =k
1,1

%3
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where kl,l is the required axial stiffness coefficient at
the coordinate 1 due to a unit axial displacement at the
coordinate 1.

By the equilibrium condition of the member, pl= -p*,

therefore
-Enr;‘-’k(k-L)(l-c)2
P’ = =k
c2L3 7,1
vhere k. ; is the axial stiffness coefficient at the coor-
'

dinate 7 due to a unit axial displacement at the coordinate 1.

Member Released at Terminal End-j with pJ Applied at End-j

Enrj?k(k-L)(l-c)2

pd = =k

c2L3 7,7

where k7 7 is the axial stiffness coefficient at the coor-
, :

dinate 7 due to a unit axial displacement at the coordinate 7.
Since P* = -pJ,
 -Emrd k(k-1) (1-c)?

P = =k
02L3

1,7

where k1 7 is the axial stiffness coefficient at the coor-
’

dinate 1 due to a unit axial displacement at the coordinate 7.
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Torsiqnal Stiffness

Y
1 -—,.-dix .
p M;
y .
i / \ X
4 ' /
4 7/
y
Y,
_y_ X
s = —>
dx

Let the end-j be released first, and a couple Mi is
applied at end-j. From Castigliano's theorem, it is known
that the angle of twist at any cross-section of a shaft is

given by

3

8 = &=

U
3
My

’

[« 24

where M; is a fictitious torsional couple applied at the
section where the angle of twist is desired, U is the strain
energy in the shaft as a result of the application of all

the external forces, including the fictitious torsional
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couple Mi, to the member. The expression for the strain
energy, U, due to torsional load Mi can .be derived as
follows:

Let Mi be the torsional load acting at the free
end of the shaft. Take an element of the shaft of length
dx which is x distance away from the fixed end i. The
torsional load M.X in the element causes the right face of
the element to rotate through a small angle dg relative
to the left face. Let the strain energy in the element
be represented by dU. Since the material is constant and
within the elastic limit of the material the angle of twist
is directly proportional to the torsional load M. du=%dee.

If § be the angle of twist of a cylindrical bar of

length L subjected to a constant torsional load M, then

M. L Mx dx
8 = R and d8 = GT
Therefore,
lM}z{dx jLMidx
dv = 3(—7~) and U= o 263
Substitution:

L M 3M,
g = 350“?) dx
0 BM}J{

Since M; is the torsional load applied at the free end of

the shaft, M; is real and M; = M,x = constant.



Therefore,

Oowing to the fact that the member is tapered of
which J is given in terms of radius of a cross-section, J
for each cross-section is a function of the coordinate of
the cross-section along the member axis, i.e., J, = J(x),

and is given by

4
J
J(x) = (1 c) (k-x)
2c4%
r.
wherek:li_c, andc=??-.
i
Therefore, L
. M 4 4
j_ X 2 ¢ L
LY 7 ax
0 nrj (k-x) (1-c)
4 4 L
_ 2c¢c L MX f dx
Gm:';.1 (l-c)4 0 (k-x)4
4 _4 L
_ 2 c¢c L M, l: 1 "'I
- 4 4 3
BGm’::l (1-c) (k=x) _I 0
4 _4
2 ¢ L Mx 1 4

3Gn(r§)(l-c)4 k-3 %3

Let 93{ be the angle of twist of a unit value, then

3enrd k3 (k-1)3(1- c)
M, = = =k
% T4 .3 % = *10,10

2c L kT~ (k-L)
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where Mi is the required torsional stiffness, G is the shear-
ing modulus oﬁ elasticity, L is the length of the member,
klO,lO is the torsional stiffness coefficient at the coor-
dinate 10 due to a unit angle of twist at the coordinate 10.
By the equilibrium condition of the member, Mi = -M;,

therefore v
-3Gnrj4k3(k-L)3(l-c)4

Mt = =k

x T 0840 - (k1) 37 4,10

where k4 10 is the torsional stiffness coefficient at the
coordinate 4 due to a unit angle of twist at the coordinate
10. Similarly, if the end i is freed and end j is fixed,

then

3Gnr54k3(k-L)3(l-c)4
My = —7 473 3= X440
2 ¢ L4x® - (x-1) 3] '

where k4 a is the torsional stiffness coefficient at the
’

coordinate 4 due to a unit angle of twist at the coordinate 4.
By the equilibrium condition of the member, Mi = —M;,

therefore
—3Grrrj‘4k3(k-L)3(1-c)4

Ml = =k

X7 0e% 1% (K0 — (kD) 3] 10,4

where klO 4 is the torsional stiffness coefficient at the
’
coordinate 10 due to a unit angle of twist at the coordinate

4.
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"Bending Stiffness due tovEnd Rotation" (26)

Y
i ] X
i .
. MZ Mj Avj
i Ayi //ﬂﬁﬁ z Y
z
z Y ..
. J
IA; E = constant Ay

Since member i-j is tapered and of circular éross
section, I, varies along the member axis.

Suppose that the member is supported on hinges on
both ends and a unit moment, in the counter clockwise direc-

tion, is applied at both ends separately, as follows:

Unit Moment Applied at End i
The diagrams of the moment and moment over the

variable moment of inertia are given as follows:

unit. i j
moment

moment-diagram

-

al

moment

Iz

- diagram
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By the conjugate beam method, the loading of elastic weight

and the.end reactions are shown in the following sketch:
i

lA
i , ]

Ee;

The end reactions of the conjugate beam loaded with the

elastic weight, a%, are given by

. L“X- s
Eo, =g (A)
' X o.d
Eg%:—-ﬂ—(A)

Unit Moment Applied at End i

The diagrams of the moment and moment over the

variable moment of inertia are given as follows:

i/lj

moment diagram

moment

g

- diagram
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By the ¢onjugate beam method, the loading of elastic weight,

AJ, and the end-reactions are shown in the following sketch:

i
Eez

aJ Eeg

The end-reactions of the conjugate beam loaded with the

elastic weight, al, are given by

i L=-x_. .
E6, = - '15;1 (ad)
R —X. .

Eo) = +| - (&)

Unit Moment Applied at Both Ends Simultaneously

The loading condition of the conjugate beam will

be the combination of the previous two cases.

| 3
] ,
Eg -1Ee;

Eg

N H N K
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The final end reactions of the conjugate beam will be given

by
. L-X, . L-x, .
B, =T () - ()
-X

. . . X. .
Egy = - (A7) + T (&)
By the idea of superposition of displacements, there is

established the state of displacement separately, as follows:

Fix End j

If end—j is fixed and end-i is left hinged, then

only end—i will have end rotation about z-axis, that is,
i s I

Therefore,

i = _ak R
+ T =0 or A X, + A xj =0

EB; =

If an end rotation e; is introduced at end-i, then

there will be moments M; and CijM; induced at the ends-i and

j, respectively.

Then,
_al i i .3 -
A xiMZ + Cij MZ A Xij 0
i i - i,3
or Mz A xi = Cij MZA xj
from which i i i
A" X. A" x,
C.. = ? - L = - L
1j 1.3 J ’
M A7 Xx. CAY X,
z ] J
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where cij is the carry-over factor from end-i to end-j.

Thus, the end reaction at end-i of the conjugate beam is

given by
i
2 ) A X- ] . .
1 _ 1 |_o 3 i i - 1 .1
Eg, = & [(L %3 87 (55 M, + (D-x;)A Mz]
]
i i i
A" M -xX. (L=-X.) A. M
_ Z i 9 - _ 1 'z -
=TT =, +L=xy) = = (xyexy)
] . J
from which i
Ex. 8
Mt 1 "=z
2 Al(x.-x.)
j i

If the 9; is of unit value, then

Mi=—mj_=k
Z Al(xj-xi) 6,6

where k6,6 is the bending stiffness coefficient at the coor-
dinate 6 due to a unit rotation at the coordinate 6.

The moment induced at end—j due to the introduced
unit rotation ei is Mg.

J -
M) =C

A”x, Exj Ex

J 1w o
A'x. | A (xj xi?
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where k is the bending stiffness coefficient at the coor-

12,6
dinate 12 due to a unit rotation at the coordinate 6.

Fix End i

In the like manner, only end—j has an end rotation

about Z-axis, i.e., Ea; =0,

Therefore,
L-X. . L—X. .
—_ i, _ 1 Jy
= () -t @) =o
or
L-x. . i & .
i i, _ J j
== (%) = 5 (a))

Similarly, if an end rotation eg is introduced at
end-j, then there will be moments M; and Cji M; induced at

the ends j and i respectively.

Then,
. (L=x,) . . (L=x.) .
s R Ly ol — 1 Jy =
Cji MZ I (™) Mz I (A7) 0
or
3 L--xi i i L-x. i
Cji MZ T (A7) = Mz (jE-l)(A )

from which .
aJ (L=%5)

Jji T i,
A" (L xi)

Likewise, the end reaction at end-i of the conjugate beam is

given by 3
. N A’ (L=-x.) .
Eei:% Ml 2l x. ——i—-——J—MJ At x;
J a (L-%;)
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E(L-xi)e;
from WhiCh, MJ = ——
z J
A (xj-xi)

If let 9; be of unit value, then

M = ——-—F(L-xi) =k
Z 3j -
A (xj xi)

12,12 °
where k12 12 is the bending stiffness coefficient at the
’
coordinate 12, due to a unit rotation at the coordinate 12,

The moment induced at end—i is M;:

i_ J
Mz —Cji Mz
P - -
Mi ) A° (L xj) _ E(L xi) _ E(L xj) x
z 6,12 '

B . N S
A (L xi) A (xj xi) A (xj xi)

where k6 12 is the bending stiffness coefficient at the
’

coordinate 6 due to a unit rotation at the coordinate 12.
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"Bending Stiffness due to End Deflection" (26)
The diagram of the moment of inertia of a tapered
member of circular cross-section is shown in the following

diagram:

L

tapered member

i I —"

L

I, - diagram

First let end-i of the member be released and have a deflec-
tion introduced in the positive direction of coordinate 2.
By the conjugate beam method, the relations between the
deflection A; and the Mi and Mg can be developed as follows:

Since the deflection at the end i is introduced in
the positive direction of the coordinate 2, i.e., A; is
upward, there must be fixed end moments Mi and Mg induced
at the ends i and j respectively, as shown in the following

sketch:

i
Mz<:{~ af?> pA
L

—3
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M

Conjugate beam loaded with 55
z

Since the conjugate beam is in equilibrium, there
must be a moment which is equivalent to A; E to balance the
effect of the two elastic loads A?M; and AJM;. By'EMJ =0,
it yields

i Ligd -
EAy = A Mz(xj Xi)

from which,

. EAT
M = T——
A (xj-xi)

if A; is of a unit value, then

whio——E

z Ai(x.—x.) 6,2
j i

where k6 2 is a bending stiffness coefficient at the coor-
’

dinate 6, due to a unit deflection at the coordinate 2.
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s C o it v R B
Similarly, by IM; = 0, it yields EAy = A Mz(xj X, )

from which

. Eal
M = —Y
z Ag(x -X.)
j Ui

If A; is allowed to deflect a unit, then

MJ..—.—_E_..___k

2 Al (x.-x,) 12,2
j Ui

where k12,2 is a bending stiffness at the coordinate 12 due
to a unit deflection at the coordinate 2, |

Secondly, by the similar method if the deflection
at end—j is introduced in the positive direction of the
coordinate 8, then the fixed end moments Mi and Mg at the

ends i and j are induced.

Loy

M
conjugate beam loaded with ;E
~z




le4

In order to keep the conjugate beam in an equilibrium con-
dition, there must be a couple equivalent to EA§ applied at
end-j in the counter clockwise direction. By ZMI = 0, it
: J 2 ad MI(x.-
yields EAy = A .Mz(xj xi)

from which,

. EAg
M; = — (in clockwise direction)
A](xj-xi)

If let A; be a unit value, then

E

j_ B
M2 = —~
J -
A (xj xi)

2 =Kki2,8

where k12 8 is a bending stiffness at the coordinate 12,
’

due to a unit deflection at the coordinate 8.

I _ . . Jo_ Rl ile. o
Similarly, by Z‘.MJ = 0, it yields EAY = A Mz(xj xi)

from which,

. EAj
M; = —Ej—JL———— (in clockwise direction)

If let A% be a unit value, then

M; = _I_—E_—_— =kg g v (by frame-work convention, M; takes
- ’
A (xj %;) negative value)
where k is the bending stiffness coefficient at the coor-

6,8
dinate 6, due to a unit deflection at the coordinate 8.
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End Shearing Stiffness
The end shearing stiffness at both ends of the mem-
ber due to either end rotation or end deflection can be
obtained by applying the equilibrium condition of the forces
acting on the member. The end shearing stiffness can be

developed in two cases, as follows:

End Shearing Stiffness due to End Rotation

As it has been shown that the moments at both ends
due to a unit rotation in the positive direction of coor-

dinate 6 at end-i, about the Z-axis are

Ex. EX.

Ml =‘—T———-l—— and MJ = _,___L___
2 Al(x -X.) z AJ(x -X.)
j i i
Therefore,
A (xj-xi) A (xj—xi)
j i
_ E A xj+A Xy ok
ratal (xj-xi) 2,6
w'here.k2 6 is the end shearing stiffness coefficient at the
’

coordinate 2, due to a unit angular displacement at the
coordinate 6. By the equilibrium condition of the member,

VJ = = Vl, therefore,
Y Y
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i I
Vj _ _-E [.A xi+A X4 o
Y LAlAJL- (x.=x.) 8,6
j i
where k8 6 is the end shearing stiffness coefficient at

the coordinate 8 due to a unit angular displacement at the
coordinate 6.

Similarly, the end shearing stiffnesses at both
ends of the member due to a unit rotation of end-j about

the Z-axis are

i
A (L-xi)+Aj(L-xj)

i_ E - x
Y palald xi-xj 2,12

where k2 12 is the end shearing stiffness coefficient at

14
the coordinate 2, due to a unit rotation at the coordinate
12, and

i,._ 3r.—
AT (L xi)+A(L xj)

-E
Lalad xi-xj 8,12

vi =
Y

where k8 12 is the end shearing stiffness coefficient at
’
the coordinate 8, due to a unit rotation at the coordinate

12,
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End Shearing Stiffness due to End Deflection

By following the same idea and procedure in the preced-
ing case, one can obtain the end shearing stiffnesses at
both ends due to the end deflections of both ends of the
member as follows:

When end-i deflects in the positive direction of

the coordinate 2, then

Vi_;_l' E N E -|_ E adent | _

y L} i 30 _ T oAl (x=x) T 72,2

A (xj xi) A (xj xiil LAA j i

where k2 2 is the end shearing stiffness coefficient at the
’

coordinate 2, due to a unit deflection at the coordinate 2.

. . j . a1
3 i -E AJ+A
V = -V = 0 [} = k
Y Y patad | (%57%;) 8,2
where k8 2 is the end shearing stiffness coefficient at the

coordinate 8, due to a unit deflection at the coordinate 2.
When end=-j has a deflection in the positive direction of

coordinate 8, then

J_E 1 . 1 _ _E alial | - kg g
y L |,i,_ _ 3y T oalnj _ '
A (xj xi) A (xj xi) LATA (xj xilj
where k8 8 is the end shearing stiffness coefficient at the

coordinate 8, due to a unit deflection at the coordinate 8.
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. . i
1 J -E A +A -}
V = _V = 3 O = k
Y Y LAlAJ (xj _xi)_l 218

'where k2,8 is the end shearing stiffness coefficient at
the coordinate 2, due to a unit deflection at the coordinate
8.

The stiffness matrix for the whole member is given

in the following four tables:




TABLE 16

SUBMATRIX s*~ %+ OF A MEMBER STIFFNESS MATRIX OF A TAPERED MEMBER

E A #-Lyr-¢f

Y

by g E_| Ax A%
z:; | _AA LATA x‘:-l’a
LAA Z - 4
(X~Y Plane) (X-Y Plane)
E | ab+A -E | Axtaly
LATAY | -2y LAYAS X=X,
(X=Z Plane) (X=~Z Plane)
3G ”')J:d/-fe”(,f..L )30-:)4
2c*L2(H L (#-4)]
-£ £ X
A (&= 4) AL (Z-2)
(X-Z Plane) (X=Z Plane)
E E X
AC(Z-x) At (z-4)
{X~Y Plane)

(X-Y Plane)

691




i-3_

TABLE 17

SUBMATRIX s 7 OF A MEMBER STIFFNESS MATRIX OF A TAPERED MEMBER

—ETF R (£-1) (1-c)*

cel?

£ | Abrig )4l

LI Y 7
LATAY - LACAY X -%;
(X~Y Plane) (X~Y Plane)
£ [ Al A -£ f A‘(t-z';HA"rt-ljf‘
LA { X~ zA'Flz % -2; |
(X-Z Plane (X-Z Plane)
3GrELW-1)0-c)*
2c% [£L8-27)
£ E(4-%)
A %K) AT (%)
(X-Z Plane (X~Z Plane)
—E £ (4-%)
AL (=) Al -x)
(X-Y Plane)

(X~Y Plans)

OLT




j-i

SUBMATRIX S

j-1i

TABLE 18

OF A MEMBER STIFFNESS MATRIX OF A TAPERED MEMBER

-En2BE-L)(/-c)?

ci &

-£ A"' + A
LAA! J;’, —ZL'

-E Azl’;,-fA';{;
a9
LAA %-ZL

(X-Y Plane) (X-Y Plane) -
—E- r A"'+A"' £ rA'.'X,;+AJo.§
LA L X% -2 7
(X-Z Plane) (X~2 Plane)
3GTE B BLU-07
2c%L%[£1 k1))
l ’
-£ £ X
AV~ A% (5-2)
(X-Z Plane) (X-Z Plane)
£ EX
AT -%) A7 (5-%)
(X-Y Plane) (X~Y Plane)

L1
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TABLE 19

SUBMATRIX s°_J OF.A MEMBER STIFFNESS MATRIX OF A TAPERED MEMBER

EnyBthes) (r-c )

c2?

£ AZ'PAJ
LAAS l.’i'ki

-F [A‘(L-)ﬁ )+ &tt=%) ]

ZA‘A"[ k- J

(X-Y Plane) ( X~Y Plane)
E f Ab+p? £ rA‘/t-&’z A=)
2w | %%, RS
(X=-Z Plane) (X-Z Plane)
3G 5 R NA L) - T
2c414[,g£(j.1)‘ﬂ
E £(4-2;)
AT%-%) AT(Z; -2
(X~Z Plane) (X~Z Plane)
-z £14-2;)
AT (Z5=2) Alix-z)
(X~Y Plane) |

(X=Y Plane)

LT
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To Define the Section Properties

When a member of which the cross—section is of a
regular shape is nonprismatic, the section properties are
variable along the length of the member. Therefore, when
the different kinds of stiffness coefficients are desired,
the section properties, which are related to the stiffness
coefficients, have to be expressed in terms of the location
of the cross-section along the member axis. The procedure
to define the section properties in general expressions is

as follows:

To Define the Radius of a Cross-Section

Y
'\
lrl rx__ - ] -T ---- ' x
O /’————‘
" |
X e
L ] a

Front View of a Tapered Member

Let the origin be at joint-i, i.e., joint—-i is
taken as the initial joint. Let the member axis be the

X-axis of the member-axes system. Extend both edges to the
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Y.
point 0'., Let ¢ = ;l . in which r, and rj are the radii
i _

.0f the two end cross-sections. Then the unknown length a

is given by

from which

Therefore, the radius, Ty of any cross-section, which is
X distance away from the origin, can be given as follows:

By two similar triangles,

55 _ _a
r, - at+e
in which a = %%E , and e = L=-x
therefore .. cL
3 _ l-c - cL
. 132 + (L-x) L-(l-c)x
- L = k=% (1_
If let k = T-c * then r, = rj( cL)(l c)

It means that the radius of any cross-section is a function

of the location of the cross-section along the X-axis.

. To Define the Area of a Cross~Section
Since the member under discussion is of a circular
cross~section, the area, Ax, of any cross-section of the mem-

ber, which is x distance away from the origin, can be given

by

2
AX = ‘I'I'I'x
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wvhere r_=1r (E:E)(l-c) k = L and c¢ = fi
X 3j cL ’ l-c r,
Therefore, 9 2
Y.
a =1 | EXl 1-0?= L5 x-xn?1-0?
X J 'cL (cL)

It means that Ax is a function of its location along the mem-

ber axis.

To Define the Polar Moment of Inertia
of a Cross=Section

)

For the purpose of finding the polar moment of

an)

inertia of a circular cross-section, "it is conceivable
that the circular cross-section is divided into concentric
elements of area" (24). Let dy be the width of one of
these elements of area whose distance from the center of
the circular cross-section is y. Let dA be the element

area, then

da = (2my)dy = 2mydy

r
J = [ ysz
o
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WY
1'rr4

o~ 2

r r 4
J =f YZ (2mydy) = 211'] Y3dy = 21 y—4
(o] (o] .

As has been found in the previous article, the radius, Lo

for any cross-section of this tapered member is

T (1-¢c) (-]%

Therefore, if let the polar moment of inertia of any cross-

section along the member axis is Jx' then JX is given by

i 4
Ix = 2 (rx)
4 4
mr]
_ Ty 4 k-x)
Ix = 72 (1=c) cL

It means that the polar moment of inertia of any cross-
section of this tapered member can be expressed in terms
of the location of the cross~section along the member axis.
Define the Moment of Inertia of a Cross—Section
of a Nonprismatic Member i-j with

Circular Cross—Section of Length L

Y

(A,
N

Cross Section of Member
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For a circular cross-section, "all axes through the
center of the cross-section are principle axes, and the
moments of inertia about these axes are all equal" (24).
And as it is known that the polar moment of inertia of an
area w.r.t. the member axis is the sum of the moments of

inertia about the two rectangular axes through the center

of gravity of the area, i.e., Ty = 2Ix or I, = %-(Jx),
where
mr
- —1 _ 4 [k=x
Jx 2 (1-c) ( cL,
Therefore, 4
mr. k-x4
I, =70 &= CE) .

It shows that the moment of inertia of a circular cross-
section is also a function of the location of the section

along the member axis.

To Define the Curve of g3

EI

Y

\\\

i rl rx _ rjj \~\§~ o' X

o JE—r—

/

X‘ e
L a

Front View of a Tapered Member
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The discussion is made on each case as follows:.

Unit Couple Applied at Joint-i

unit C , 3
couple
M
1
\j X

e P 4

O |-

Mi - diagram
The Mi curve can be written as a function of x coordinate

of the section as follows:

- - =1
Ml—x = Ml(x) = T (x) + 1
4 4
mra
_ J 4 [k-x
Ix = I(x) = v (1=-c) o
M. (x)

=
If let fi(x) = B (=) ' then

:%1x)+1
fi(x) = ) )
mr.
(B) =% (1-c)* (KX
- 4c4L3 L=-X
Enr‘j‘(l-c)“ (k=%)%
L-x A B C D
= + + +
k-x?  k0? kx> k-x?  (k-x)
L% = A+B(k=-x)+C (k=-x) 2+D(k=x) >



179

L=x = A+Bk--Bx+Ck2--2Ckx+0x2+Dk3-3Dk2x+3Dkx2-Dx3

= (A+Bk+Ck2+Dk>) - (B+2Ck+3Dk ?) x+ (C+3Dk ) x2—Dx°
(A+Bk+Ck2+Dk>) = L
- (B+2Ck+3Dk?) = -1
C+3Dk = O
-D =0
c=0
B=1
A+k =1L
A = L=k
L-x _ _L=k + 1
4~ 4 3
(k=-x) (k-x) (k-x)
Therefore, ,
4 4.3
i 4 3
Enrj(l-c) (k=-x) (k-x)

If let A" be the area of fi(x), then

L I— L
_ 4c L -k ax

Eﬂr (1=c) k-x) 0 (k=x)

L
al = 4c4L3 [ (L=k) _I l:_______l ]
4 3 2

Enrj(l—c) 3(k-x)__|0 2 (k=x) 0
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i _ach® Lok _ (L-k) 1 1

—3 + -—
Enr;.l(l-c)‘l 3(k-n)>  3x3 2

a 3
2 (k-L) 2k

If let the distance of the centroid of A’ from the origin be

xi, then L
- 1 f
X, = == Xf. (x)dx
1 Al 0 1

as derived previously,

4_3
4¢c’'L L=-X
f.(x) = ( )
- Errr‘jl(l-c)4 (k—x)4
then
4_3
dc’L Lx-X
xf. (x) =
1 Enr‘j‘(l-c)4 (k-x) %

Referring to the previous integral,

LX-XZ

A.+B(k-x)+C(k—x)2-+D(k—x)3

2

Lx—x2 A+Bk-Bx+Ck2-2Ckx+Cx +Dk3-3Dk2x+3Dkx2-Dx3

2 3

= (A+Bk+Ck +Dk3)-(B+2ck+3Dk2)x+(C+3Dk)x2-Dx

A+Bk+ck2+Dk3

I
o

~ (B+2Ck+3Dk2)

n
=

(c+3Dk) = -1

D=0



C = -1
B = 2k-L
A = kL-k>
Therefore,
actt? KL~k 2k-L 1
xf, (%) = —= 2 zt 3 - 3
:E:Trrj (l-c) (k=x) (k-x) (k=-x)
and
L L
4_3 2 :
I xfi(x)dx =[ 42 L - kL-k4 + 2k-L - 1 > dx
0 0 Enrj(l—c) (k=x) (k-x) (k=x)

4

4c’'L kL-k 2k-L dx
=_4'_'4< 7 dx + —3 & - )
Eﬁrj(l-c) 0 (k-x) 0 (k-x) 0 (k-x)

\

[ L oL L
ac*L3 ﬂcL-—kz)—l . |2k-L -I

1
4 4 3 2| ~ | (k=x)
Enrj(l-c) _§(k-X)_]0 2(k-x)"_|, ( x_]o

y

ac’’® KI-k?  kL-k? 2k-L _ _ _2k-L

+
Eﬂr‘; (1-)% ) 3(x-1)3 33 2 (k-L) 2 ok 2
n .

, L

k-L k




182

ke-k? _ keek? k-l k-1, 1
3" 3 2 2 - +

- - 3(k-L) 3k 2 (k-L) 2k k-L
*i Lk -k 1 1

Py el mlh 5" 3

3(k-L) 3k 2 (k-L) 2k

Unit Couple Applied at Joint-j
M
h .
i
0 X

Mj - diagram

The Mj curve can be written as a function of x coordinate of

the section as follows:

My_y = M;(x) =3 (x)
nr4 4 k-x 4
I, = I(x) =—4— (1-0)° (=) »
M. (%)
If let fj(x) =-§%T§T , then
X
T 4c4L3 p.4
fj(X) —(E)nr4 4 B ETrr4(1-c)4 (k—x)4
—-(1-)* EE .
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X - A p + Bl 3 + C + D
(k-x) (k-x) ~

(k-x)%  (k—x)

x = A+B(k-x)+C (k-x) 2+D (k=x) 3

2 3 2 2 3

x = A+Bk-Bx+Ck2-2Ckx+Cx>+Dk>-3Dk *x+3Dkx>~Dx

2 3

x = (A+Bk+Ck2+Dk>) - (B+2Ck+3Dk?) %+ (C+3Dk) x°-Dx

2 3

A+Bk+Ck“+Dk™ = 0
2
- (B+2Ck+3Dk") = 1
+(C+3Dk) = 0
-D =0
cC=0
B = -1
A=k
Therefore,
X _ kK _ 1
k0%  xk=x? &=

If let AJ be the area of fj(x), then

Aj=fo-(x)dx=fL 4241'3 2 dex
o o Emry(l-c) (k-x)4|
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4c L
dx
Enr (l-c)4 jO (k X)
L L -
act’ f X f dx
=4, 1 7 & - 3
Errrj (l=c) 0 (k=x) 0 (k-x)

L L
ac?® ( k |1 )
Enrj(l-c,4 3(k-x)> o \2x-x)%/0

‘ 1
ac?3 K k 1 _1:l

j
al = - -
Enz 00t ) 3k 3 %3] |2k-1) 2 22

If let ;{j be the distance of the centroid of AJ from the

origin, then L
- 1 .
, = = . dx.
5T a4 F 75 (x)
5 xf.(x)dx = (x)EI %) dx
L
_ f 4c4L3 x2 ax
- 4
0 Errrj (1-c) (k-x)
2
X = A B + C + D

+
k-x)*  (k-x)?* (kx)° (k)% (k-x)
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Referring to the previous integral,

x% = (B+Bk+Ck2+Dk>) - (B+2Ck+ 3Dk2) x+ (C+3Dk) x2~Dx>
(A+Bk+Ck24Dk>) = 0
~(B+2Ck+3Dk%) = 0
(c+3Dk) ‘= 1
D=0
c=1
B = -2k
A= k2
x* __ k& 1
4 - 4 3 2
(k=-x) (k=x) (kx=x) (k=-x)
Therefore,
L L i 'I
4.3 2
[xf.(x)dx: [ 421‘ 7| 27| ax
0 J "0 Errrj(l-c) ,(k—x)_l
L
4.3 2 -l
_ f acty k 2k 1| o

- +
0 Enr‘j‘(l-c)"‘ k0% kxd (kx?
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L L
_ _ach3 Kk 2k
= 4 4 3 2]t
Enrj(l-c) 3(k=x)~10 2(k=-x)“10

1

k-x

0

_ a3 || & |
Enr‘j‘(l-c)4 3(k-1)> 3k 2(k-1)%  2(x)%| | ¥T

w

and

x> x> 2k 2k 11

- - +
3(k-)°  3%x® 2x-1)% 2k)% k- k

*5= k k1 1

+
3(k-1)° 3% 2(k-1)? 22

X2 k 1 1

- + - —
3(k-1)°  (k-L)® k-L 3k
= k 1 1

- +
3(k-1)>  2(k-1)% ex®

-1
k

If the moment of inertia, I, of a structural segment

is hard to express in terms of distance along the member

length, x, then the author suggests that the semigraphical

integration method be used to calculate area and centroid

of the %% diagram. A numerical example of semigraphical
integration applied to a beam of circular cross-section

varying in radius follows,

¥
3" 2"

1

- 10"
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L = 10"

o}
[t}
i
L
i
wino

(]

i
Q
i
'—l
1
win
]
W[

= L =
k =125 = 30

20
cL = 3
4 4
20 4(10)
(37)
when x = 0, Ix = ——E—ez-(30)4 = %%E==63.6
4(10)
20 411
wvhen x = 10, Ix = 7 = 47 = 12.6
4 (10)
a, = 3-8 _ 01343 (in?)
10
£ .
= _ 1°% _Moment _ 57.25 _ .
X; = A, = 13.43 = 4-27 (in)

1

(These results refer to Tables 20-A and 20-B on page 188.)
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TABLE 20

(a)
§3O—-x)4 M
Station M [30-x 4 Ix T
10 X
0 1.0] 30 81.1 63.6 | 0.0157
2 0.8] 28 61.5 48.3 | 0.0165
4 0.6| 26 45.9 36.1 | 0.0166
6 0.4] 24 33.2 26.1 { 0.0153
8 0.2 22 | 23.4 |is.4 |o0.0109
10 0.0{ 20 16.0 12.6 | 0.0
(B)
Station (%1—) (lO)2 sSum-1 Aaz(- AA(lO)2 A(lO)2 Sum-2 lSt—Mo- 2
X ment (10)
0 1.57 13.43
3.22 1] 3.22 23.64 | 23.64
2 1.65 10.21
3.31 1] 3.31 17.11 | 17.11
a 1.66 | 6.90
3.19 11 3.19 10.61 | 10.61
6 1.53 3.71
2.62 1| 2.62 4.80 4.80
8 1.09 | 1.09 .
| 1.09 11{ 1.09 1.09 1.09
10 0.0 0.0
13.43 57.25




CHAPTER VIII
CONCLUSION

It has been shown that the analysis of a framed
structure, in either a plane or a space, can be performed
by analyzing each member as a unit to simplify the process
of establishing either the stiffness matrix or the flexi-
bility matrix. 1In this dissertation, establishing the
stiffness matrix of a member by the displacement method
was the objective. The dissertation has demonstrated that
by the advantage of partitioning a matrix into its sub-
matrices, the overall stiffness matrix for a frame can be
obtained by joining the stiffness matrix, considered as
submatrix, of each of the members that compose the whole
frame with the notation suggested by the author. Using
the theory of the rotation of a vector in space, the
stiffness matrix in structure-axes system of a member of
any orientation in space can be obtained by transforming
the stiffness matrix of the member to member-axes system.
Especially, the A system the author adopted for the trans-
formation of the stiffness matrix of a member in member-

axes system into structure-axes system can be done without

189
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undergoing the rotational transformation matrix equation.

The stiffness of a nonprismatic member in space and
the idea, as well as the reference, of how to set a stiffness
matrix of a curved member have been presented. With this
information it should be possible to aﬁalyze most framed
structures. Following this, how membrane structures, such
as plates and shells, can be analyzed with the advantage
and convenience of matrix theories and the support of digital
computer should be a further milestone in the matrix method

of structural analysis.
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