This dissertation has been microfilmed exactly as received

70-4460

CHAPELLE, René Adrien, 1933-LOCATION OF CENTRAL FACILITIES--HEURISTIC ALGORITHMS FOR LARGE SYSTEMS.

The University of Oklahoma, Ph.D., 1969 Engineering, industrial

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

LOCATION OF CENTRAL FACILITIES HEURISTIC ALGORITHMS FOR LARGE SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

RENÉ ADRIEN CHAPELLE

Norman, Oklahoma

LOCATION OF CENTRAL FACILITIES HEURISTIC ALGORITHMS FOR LARGE SYSTEMS

!

DISSERTATION COMMITTEE

PLEASE NOTE: Appendix pages are not original copy. Print is indistinct on many pages. Filmed in the best possible way.

UNIVERSITY MICROFILMS.

11

ACKNOWLEDGMENT

I wish to express grateful appreciation to all who have made this undertaking possible.

In particular I extend thanks to my committee chairman Dr. Robert A. Shapiro for his guidance and suggestions. Special gratitude is due to all other members of my committee consisting of Professors Robert J. Block, Rodney L. Boyes, Bobbie L. Foote, Raymond P. Lutz.

I first became interested in location of central facilities during a summer employment with the Post Office Department in Washington, D.C. The motivation provided by the director of the Industrial Engineering Bureau, Mr. Alvin P. Hanes, has been instrumental in the development of this study. I am also grateful for the communication with Professor Leon Cooper of Washington University at St. Louis.

iii

ABSTRACT

This study deals with the optimization of location of multiple central facilities in a large system of dependent elements connected by communication links.

This problem is of major importance in the location of service facilities. The function to optimize is a minimization of link costs due to time delay or connection expenses.

The case of small systems with one central location is a time-honored problem solved in the case of Euclidean distances by analog, geometric and numerical methods. The exact solution of the problem in a closed and explicit form has not yet been found. It often deals with the problems of industries or warehouses or communication center locations connected by straight links, and it has been extensively studied by Launhardt, Weber, Isard, and Cooper to mention a few. Other investigators have considered the case of a Manhattan metric in which the connecting links are perpendicular segments, and the results are tentatively applied to plant or city layouts.

The case of large systems and multiple central locations leads to excessive computing efforts often im-

iv

possible even on the largest computers. Some algorithms are available but are somewhat inflexible. It is for this reason that new algorithms were developed; the variable grid algorithms and the variable discrimination algorithm. Whatever the size of the system, the combination of these algorithms allows a possible and rapid location of central facilities within the constraints of computer time and memory expenditure. A complete study and programming of these algorithms are presented to allow direct application by the engineer or the economist. Some possible applications to the Post Office Department are shown for the location of the sectional centers serving the numerous post offices of any given state.

It is shown that those algorithms may be extended to n dimensional space and can be used to large cluster analysis.

V

TABLE OF CONTENTS

							Page
LIST OF	ILLUSTRATIONS			• •	•	•	ix
LIST OF	TABLES			• •	0	•	xiii
LIST OF	LOGIC DIAGRAMS		• • •	• •	•	•	xiv
LIST OF	COMPUTER PROGRAMS		• • •	• •	e	÷	xv
Chapter							
I.	INTRODUCTION	• • • •	• • •	• •	•	٠	1
	I.1 Generalities . I.2 Plan of Studie I.3 Possible Appli	s		•••	0 0	• • •	1 6 9
II.	LOCATION OF CENTRAL F DISCRETE, TWO-DIMENSI EUCLIDEAN DISTAN ONE CENTRAL LOCATION	ACILITIES ONAL SPAC CES	5 CE,	• •		•	12
	II.1 ANALOG SOLUTIO	N	a • 0	• •	•	•	14
	II.1.1 Light II.1.2 Weigh II.1.3 The L II.1.4 Elect	s and Min ts and Pu ink-lengt rical Fie	rrors. illeys th Min eld	imiz	er	•	14 16 20 21
	II.2 GEOMETRIC SOLU	TION		• •	• •	٠	23
	II.2.1 The F II.2.2 The I	orce Poly aunhardt-	ygon -Palan	der	• •	•	23 :
	II.2.3 Isove	Construct	tion d Isod	apar	ies	•	28 30
	II.2.4 Topog	costs.	apping	of • •	••	•	36
		Geometric	cal Co	nstr	uc-	-	['] 38

Chapter

II.3 ALGEBRAIC SOLUTION

		II.3.1	Determi Mi	nation nimum]	of Point	• • •	• •	39
		II.3.2 II.3.3	Geometr Expendi	ic Prog ture a	grammin t Verti	.ଟେ • .Ce	•	51
		TT.3.4	Po Case of	ints . Varial	hle ¶ra	nsnor1	°.	52
			Ra	te		• • •		54
		11.3.5 II.3.6	Bounds The Con	on Sum straine	of Dis ed Prob	lem .	•	58
III.	LOCATI DISCRE E MULTIP	ON OF CENI TE, TWO-DI UCLIDEAN I LE CENTRAI	RAL FAC IMENSION DISTANCE LOCATI	ILITIE: AL SPA(S ONS	5 CE,	0 0 0	0	66
	III.1	ANALOG SC	LUTION			• • •	•	66
		III.1.1 III.1.2	The Soa The Lin	p.Film k-Leng	Method th Mini	mizer	•	66 68
	III.2	ALGEBRAIC	SOLUTI	on		0 0 0	٠	69
		III.2.1	Central	Facil:	ities L	oca-	5	71
		III.2.2	Bounds	on Sum	of Dis	tances	5	75
IV.	HEURIS DISCRE E	TIC ALGORI TE, TWO-DI UCLIDEAN I	THMS MENSION	AL SPAC	CE,		•	78
	IV.1	ONE CENTR	LOCA	TION .			•	81
		IV.1.1	One Cen He	tral Fa uristic	acility c Algor	ithm	•	81
	IV.2	MULTIPLE	CENTRAL	LOCAT	IONS .	• • •	•	95
	•	IV.2.1	Multipl He	e Centi uristi	ral Fac c Algor	ilitie ithm	•	95
		10.2.2	Destina ri	tion So thm .		• • •	•	96
		IV.2.3 IV.2.4	Variabl Variabl wi	e Grid e Grid th Line	Algori Algori ear	thm . thm	•	105
		ти 2 Б	Co	nstrain	its .	6 0 0	•	106
		⊥⊻₀≤₊♪	Al	gorith		• • •	•	109

Page

.

Chapter

.

TV 2.6 Rendom Grid Location	
	114
IV.2.7 Random Grid Algorithm with	110
TV.2.8 Successive Approximation	119
Algorithm	124
IV.2.9 Grid Successive Approxi-	121
IV.2.10 Alternate Location and	164
Allocation Algorithm .	125
IV.2.11 Variable Discrimination	126
Argur unn	120
V. ANALYSIS OF RESULTS	134
V.1 RANDOM DESTINATION ALGORITHM	136
DISTRIBUTION OF DISTANCES	
V.1.1 Small System: $n = 20$, $m = 3$	136
V.1.2 Large System: $n = 125$, $m = 3$	140
V.2 RANDOM GRID LOCATION ALGORITHM	143
DISTRIBUTION OF DISTANCES	0
V = 2 from $n = 20$ m $= 3$	1/3
$V_{2.2}$ Large System: $n = 125$, $m = 3$	149
	150
V.3 RANDOM GRID WITH LINEAR CONSTRAINTS	152
V.3.1 Small System: $n = 20$, $m = 3$	152
V.3.2 Large System: $n = 125$, $m = 3$	158 160 a
A*2*2 200001 01 HERT PR * * * *	100.44
V.4 VARIABLE DISCRIMINATION ALGORITHM .	161
VI. CONCLUSION	164
VI.1 RECOMMENDED FUTURE RESEARCH	164
VI.2 SUMMARY	168
BIBLIOGRAPHY	174
	101
APPENDIX	101

· .

Page

viii

LIST OF ILLUSTRATIONS

Figure		Page
1.	Discrete, Two-Dimensional Space	12
2.	Discrete, Two-Dimensional Space, Euclidean	
	Distances, One Central Location	13
3.	Light and Mirror	14
4.	Light and Mirror, Minimum Distance Path	15
5.	Light and Mirror, Central Location of	
	3 Facilities	16
б.	Weight and Pulleys, Central Location of	
	3 Facilities	17
7.	Weight and Pulleys, Minimization of	
•	Potential Energy	18
8.	Weight and Pulleys, Central Location of	
	4 Facilities	19
9.	Link-Length Minimizer, Location of One	
	Central Facility	20
10.	Electrical Field Analogue Computer	22
11.	The Force Polygon	23
12.	Construction of Supplemental Angles	24
13.	Geometric Location of a Central Facility	24
14.	Case of Negligible Weight	25
15.	The Central Facility as a Center of Mass	26
16.	Case of a Very Large Weight	27
17.	Locational Triangle, One Angle is Greater	
	than 120°	27
18.	The Launhardt-Palander Construction	28

Figure	Page Page
19.	Influence of Markets and Raw Material
•	Sources on Industry Location 29
20,	Inconsistency in the Launhardt-Palander
•••••	Construction
21.	Isovectures and Isodapanes of Distances 32
.22.	Isovectures and Isodapanes of Costs or Time, . 33
23.	Isovectures and Isodapanes of Costs, Case of
	3 Facilities
24.	Cost Function and Topographic Mapping 36
25.	Digital Mapping of Cost Function
26.	Error Closure Vector
27.	Expenditure at Vertice Points
28.	Variable Transport Rate in Congested Area 55
29.	Shortest Network Joining More Than 3 Points 67
30.	Network Not Uniquely Defined 67
31.	Link-Length Minimizer, Multiple Central
•	Facilities
32.	Total Cost, Global Minimum 70
33.	Case of Extreme Locations in the Determination
	of One Central Facility
34.	Location of One Central Facility, Heuristic
	Algorithm, N = 20
35.	Location of One Central Facility, Heuristic
	Algorithm, N = 125
36.	Destination Subset Algorithm, One Facility
•	Taken as a Center, $N = 20 \dots 103$
	Destination Subset Algorithm, One Facility
•	Taken as a Center, $N = 125$
38.	Variable Grid Algorithm, with Linear
•	Constraints
39.	Investigation Procedure to Define the Convex
•	Hull

Figure

.

٠

.....

40.	Irrational-Choice of Central Facilities	110
42.	Variable Discrimination Algorithm	127
43.	Variable Discrimination Algorithm, Blurred	
	Areas	128
44.	Variable Discrimination Algorithm,	
	Underlying Assumption	128
45.	The Discriminating Power is Proportional	
	to the Respective Weights	129
46.	Variable Discrimination Algorithm,	
	Agglomeration by Closeness of Coordinates .	130
47.	Random Destination Algorithm, Distribution	
	of Distances, Small System	138
48.	Random Destination Algorithm, $N = 20$, $M = 3$.	139
49.	Random Destination Algorithm, Distribution	
	of Distances, Large System	141
50.	Random Destination Algorithm, $N = 125$, $M = 3$.	142
51.	Random Grid Location Algorithm, Distribution	
	of Distances, Small System	146
52.	Random Grid Location Algorithm, $N = 20$, $M = 3$	148
53.	Random Grid Location Algorithm, Distribution	
	of Distances, Large System	150
54.	Random Grid Location Algorithm, $N = 125$, $M = 3$	151
55.	Random Grid with Linear Constraints,	
	Distribution of Distances, Small System	155
56.	Random Grid with Linear Constraints, $N = 20$,	•
	M = 3	157
57.	Random Grid with Linear Constraints,	
	Distribution of Distances, Large System	159
58.	Random Grid with Linear Constraints, $N = 125$: -
	$M = 3 \cdot \cdot$	160

Figure		Page
59.	Variable Discrimination Algorithm	163
60.	Convergent Iterative Process	166
61.	Example of Polygonal Demand Distribution,	
	Location of Central Facility	171

LIST OF TABLES

De

Table

NYLC,	•	
1,	Location-Allocation Problems	.8
2.	Applications of Locational Problem	10
3.	Computation Time Requirement - One Central	
•	Location	90
4.	Postal System. Optimum Location of One	
:	Central Facility	92
5.	Errors in Algorithms	134
6.	Random Destination Algorithm, Distribution of	
	Distances, Small System	137
7.	Random Destination Algorithm, Distribution of	
	Distances, Large System	140
8.	Random Grid Location Algorithm, Ranges and	
-	Class Intervals	143
9.	Random Grid Location Algorithm, Distribution	•
	of Distances, Small System	144
10.	Random Grid Location Algorithm, Distribution	
• •	of Distances, Large System	149
11.	Random Grid with Linear Constraints, Ranges	
	and Class Intervals	152
12.	Random Grid with Linear Constraints,	
· ·	Distribution of Distances, Small System	153
13.	Random Grid with Linear Constraints,	• •
	Distribution of Distances, Large System	158
14.	Random Grid with Linear Constraints, versus,	· •
	Random Destination Subset Algorithm	160.8

LIST OF LOGIC DIAGRAMS

Diagram

1.	One Central Facility, Heuristic Algorithm	86
2.	Destination Subset Algorithm, One Facility	
	is used as a Central Location	101
3.	Random Destination Subset Algorithm	112
4.	Random Grid Location Algorithm	116
5.	Random Grid Algorithm with Linear Constraints	121
6.	Variable Discrimination Algorithm	131

t.

LIST OF COMPUTER PROGRAMS

Program		Page
1	Location of one Central Facility,	
	Heuristic Algorithm	182
1 A	Case of Weight Dominance in the Location	
	of One Central Facility	188
2	Destination Subset Algorithm, One Facility	
	is used as Central Location	190
3	Multiple Central Facilities, Random	
	Destination Subset Algorithm	194
4	Multiple Central Facilities, Random	
	Grid Location Algorithm	201
5	Multiple Central Facilities, Random	
	Grid with Linear Constraints	218
6	Variable Discrimination Algorithm,	
	Agglomeration of a Large System	235

xv

..

I.1. LOCATION OF CENTRAL FACILITIES

CHAPTER I

INTRODUCTION

Generalities

Our physical, social and economical behavior depends on a set of networks: biological networks to control our thoughts and motions, social networks allowing interchange of ideas and generation of actions, and economical networks to sustain our wants and distribute our goods.

These networks are limited in connection richness and flow capacity. To connect various elements of the system it may take time and it may generate cost. We are familiar with the old adage that "time is money", a more appropriate statement should be distance is money.

For the housewife it takes time to go shopping, time to take the children to school, time to prepare the dinner. For the engineer it takes time to materialize an idea into a design, time to do some market research, time to analyze a feasible production method, time to receive the material, time to route it through the plant, time to eval-

uate, organize, implement. We behave to create a comfortable balance with our environment, but it takes time to respond to environmental changes because of spatial limitation in our information network and a delayed reaction might be uncomfortable or even fatal.

Distance is the constraining element in most of our The daily commuter complains about the long ride to actions. work, the housewife considers that the shopping center is too far from home, that the kitchen is poorly laid out; the child does not appreciate the long walk to school on a chilly morning. The postman would prefer a shorter route, the fireman less hurry on a long stretch, the salesman less territory to cover and the wounded less distance to the hospital. The industrialist would like the markets to be situated close to the resources, the store manager would offer a better service if the warehouse were a block from his retail store, the weatherman could be more accurate if the data gathering station were in his backyard, the engineer more inventive if a well furnished library were in his office and more effective if he could communicate readily without ambiguity with his staff of foremen in the shop or salesmen in the field.

It takes time and effort because of distances, messages are distorted and goods are scarce because of long network branches with constrained capacity. The problem of time is often a problem of space and the problem of space a problem of location.

I.1. LOCATION OF CENTRAL FACILITIES

CHAPTER I

INTRODUCTION

Generalities

Our physical, social and economical behavior depends on a set of networks: biological networks to control our thoughts and moticns, social networks allowing interchange of ideas and generation of actions, and economical networks to sustain our warts and distribute our goods.

These networks are limited in connection richness and flow capacity. To connect various elements of the system it may take time and it may generate cost. We are faniliar with the old adage that "time is money", a more appropriate statement should be distance is money.

For the housewife it takes time to go shopping, time to take the children to school, time to prepare the dinner. For the engineer it takes time to materialize an idea into a design, time to do some market research, time to analyze a feasible production method, time to receive the naterial, time to route it through the plant, time to eval-

uate, organize, implement. We behave to create a comfortable balance with our environment, but it takes time to respond to environmental changes because of spatial limitation in our information network and a delayed reaction might be uncomfortable or even fatal.

raining element in most of our Distance actions. The lains about the long ride to the shopping center is too work. the h poorly laid out: the child far from h b school on a chilly does not a: a shorter route, the firemorning. TÈ man less hurry the salesman less territory distance to the hospital. to cover and the wow The industrialist would like the markets to be situated close to the resources, the store manager would offer a better service if the warehouse were a block from his retail store, the weatherman could be more accurate if the data gathering station were in his backyard, the engineer more inventive if a well furnished library were in his office and more effective if he could communicate readily without ambiguity with his staff of foremen in the shop or salesmen in the field.

It takes time and effort because of distances, messages are distorted and goods are scarce because of long network branches with constrained capacity. The problem of time is often a problem of space and the problem of space a problem of location.

In all our previous examples we had these constraints because of space requirements. It takes time to think and act because our nervous system is formed of multiple paths of finite lengths, traversed by pulses of finite velocity, we have a finite number of neurones with finite number of interconnections. The computer manufacturer has quickly realized the importance of space on the computation time of their machines, and made their circuits with microelements. With our brain we must be able to control the writing on this page or the movement of our foot; the computer may have to drive a printer as well as disc packs or tape reels. To minimize message transmission to tape outputs it is wise to think that a central location of the main processor would be advisable. Nature has furnished us with a central processor shrinking nervous paths into some of our mental processes but also peripheral processes for our reflexes. In the operation of our processing system we must ingest some input data or raw materials, for example the design problem we expect to solve requires the use of a book in fluid mechanic at the University library, a similar design has been used on a machine in Japan, a technical study of this machine has been published in Russia. Similarly the computer may have to use a magnetic tape in the computing room, punch card readers from the manufacturing plant, light pen oscilloscopes from the various engineering departments, punched tape transmitted by teletype from remote terminals across the country. It is

a problem of space allocation to define the location of our laboratory in function of the available literature and expertise on the subject. It is a problem of space allocation to install our computer at the right place so as to minimize message delays and cost of wiring and transmission.

In a manufacturing environment for example the economic factor of time is often a disguised problem of space. Labor and overhead costs accumulate with time and it takes time for procurement of raw material, time to transform the input into finished products, time to move parts from one work station to another, time to move carriages, slides, tables, spindles, tools into working position, time to gather components to assemble a final product. It takes time because new materials must be produced in distant markets, the tools must be moved along a cutting path, the assembly components must be handled from the storage bins. To minimize time is to minimize the space transport of materials or messages. This is the problem of plant location with respect to raw material input and market output for the finished product. Plant layout deals with the problem of geometrical arrangements of machines and men to decrease distances, and motion study tries to simplify work station to reduce body displacements and fatigue.

In a community environment we rély on a multitude of county, state, or national service agencies. Their location should allow a rapid contact in case of need.

Who cares about an excellent fire department if our house has time to burn to the ground while the fire truck is on the road: who likes a modern hospital so far out that the patient may die en route? To minimize time we must minimize space. This is clearly evident in our modern societies in the tremendous rate of growth of urban communities and high-rise buildings where space is hopefully condensed so as to simplify our constant communications. The city service agencies cater to the people and they must be situated so as to please the largest number of citizens by a correct location of their premices. However, no city is independent, no country is autonomous and the optimum location of a facility will be different if we are only concerned with a restricted environment or of the whole possible interconnections. Service agencies respondent to many cities or many countries are part of a very large system and the optimum location of center minimizing transmission time of message or goods deals with a multitude of elements,

Therefore the problems of location that we consider to tackle in this dissertation are closely related to the theory of graphs and circuits, to the theory of flow and transportation and to the theory of information. We will limit this study to the location of central facilities and the corresponding rational clustering of satellites which will be serviced in the optimum manner within the physical or economical constraints imposed on the system.

- 5

I.2. Plan of Study

In the general problem we define the location of n elements with their respective requirements or supplies. These n elements are involved in transaction with a set of m elements.

The set of n elements may be restricted in size and the elements sufficiently apart to consider space as discrete; on the other hand, the set may be extremely large and the n elements so closely located that a measure of density in this continuous space will have to be introduced.

The set of m elements may be a subset of the n elements or may be a completely different set.

To the transaction is affixed a figure of merit: time, distance, cost, etc., which must be optimized by the proper choice of the set of m elements with respect to their location, constraints of capacity, characteristics of the connecting channels and economic constraints.

تى تى

> When a central facility must be reached by depending satellites, the means of connection may be direct along geometric straight lines. This is the case, for example, of airfreight with straight paths between the central suppliers and the various cities, the case also of telecommunication between central emitters and related receptors, etc.

Quite often in practice the transportation network between central facilities and related elements must be done through a maze of streets, roads and sinuous paths. At the scale of a city the connecting links may be a succession of perpendicular streets and avenues that a citizen, for example, must follow to reach the closest post office. At the scale of the United States it is a set of road elements often oriented North-South and East-West, that a delivery truck must drive to reach the city of the retail store. In a plant it is the nicely aligned aisles along which are lined the machines and which are crisscrossed by forklifts or other material handling equipment.

Our n elements not only have spatial characteristics but they may have a complete vector of characteristics and we might be interested not in the location of various central facilities but in the grouping of elements with nearly similar entities. We are no longer dealing in space allocation but in cluster analysis or entity allocation.

Our investigation could therefore consider various levels of complexity. We could look first at a discrete space with an interconnecting network of straight lines between satellite elements and central facilities. In this Euclidean space we would study the location of one central facility deserving few elements then we would extend our study to the problem of multiple central locations. We

could note the possible expansion to an N dimensional space by a brief mention of clusters. We could then tackle the problem of a Manhattan space of intersecting streets and avenues or a network of roads properly aligned along longitude and latitude. We could then consider the case of a dense set of elements to be served in a continuous space of given density. Table 1 represents most of the possible combinations which may occur in locational theory.

Space (elements to serve)	Discrete	,	Continuous (large number)
Central Facilities (or clusters)	One	3	Multiple
Distances	Euclidean , Man 1 dimensional N dimensional	hattan	, Sinuous Paths
Transactions	Equal	,	Unequal
Constraints	Constrained	, <u>,</u>	Unconstrained

Table 1. Location-Allocation Problems

This dissertation cannot deal with all the possible combinations of problems presented in the figure above; therefore, some areas will be emphasized at the expense of others and the concluding chapter will show possible areas for future research. The optimal location of central facilities is an ageold problem which attracted many mathematicians of reknown since the 17th century, however, the simplified assumptions lead to mathematical models which do not really apply to some common complex situations. In our large communities and at the scale of our country it is rare to find only one centralized facility serving the individuals. Cities have many fire stations, states have many central post offices, countries have multiple centralized data gathering and distributing locations. With the advent of the computer, heuristic solution of the locational problem becomes possible but we are still limited in our theoretical study by the immensity of the problem. Flexible heuristic algorithms for very large systems will be emphasized to allow direct application by the engineer or economist.

I.3. Applications

A tentative tabulation of possible applications follows. It is quite incomplete but will give an idea of the problems which may be tackled with the present algorithms.

Elements	Centralized Facilities
Requiring Service	or Clusters
Individual as a member of a community	For Transportation taxi stations bus stations railway stations air terminals airports
	For Communication post offices public telephones telegraph offices
• _	For Education schools libraries churches
	For Security police stations fire stations hospitals, doctors
	For Supplies stores
	For Entertainment theaters stadiums TV & radio stations
	For Administration city govt. agencies county govt. agencies state govt. agencies federal govt. agencies

;

ł

4Ì

Table 2. Applications of Locational Problems

10

-	
Resources and Markets	Industrial Plants
	Warehouses
	Distribution Centers
	Communication Centers
	Data Gathering Centers
	Production Centers
	Regulating Centers
	Group of Markets with similar characteristics
Entities	
Machines, controls,	Central Processors and
organizations, elements	Regulators
etc.	Management Centers
	Taxonomy, etc.

.

CHAPTER II

LOCATION OF CENTRAL FACILITIES DISCRETE, TWO-DIMENSIONAL SPACE, EUCLIDEAN DISTANCES ONE CENTRAL LOCATION

We are considering in this case a finite set of n discrete elements associated with a set of two characteristics which may be their cartesian coordinates in a plane, or a set of two entities X_1 and X_2 .

Fig. 1. Discrete Two-dimensional Space

In considering a network of straight lines connecting these points, we try to optimize the layout of this network of lines with respect to a figure of merit. In the case of one central location the network of straight lines must be connected to one central node through which all transfers will be made.

Fig. 2. Discrete Two-dimensional Space Euclidean Distances 1 Central Location

There is no lateral transfer between 2 elements except through the common central facility.

The problem is often considered as the minimization of the sum of Euclidean distances joining each facility to the central location. However, the amount of transfer along each line may be variable in size, the branches and facilities may have limit in capacities and what may appear to be the shortest route may not be the optimum one when considering time or cost of communication. In this case, weighted distances will have to be introduced and sets of constraints will be added to the problem.

When constraints are ignored, the problem in this

simplest form may be solved by various methods which will be described in the sections which follow.

II.1. ANALOG SOLUTION

12

II.1.1. Lights and Mirrors

When light is emitted from point A and impinges on a flat mirror to reach point B it follows a minimum distance path. The problem is to find the point of incidence. A similar problem was solved by the ancient Greeks to find the shortest path between 2 locations close to a stream if on the way a pail of water had to be fetched.

Fig. 3. Light and Mirror

When the distance AP+PB is given, P is located on an ellipse of loci A and B. The set of ellipses with loci A and B represent the possible location of point P. As the distance AP+PB decreases, it reaches a minimum value for which the ellipse is tangent at point P which is the solution to our problem

Fig. 4. Light and Mirror Minimum Distance Path

In the case of 3 points A,B,C which must be connected by a network to a central facility so as to minimize distances, Polya [48] shows that a similar physical approach involving light can be made. In that case if we assume that the central facility P is located at a distance r from C, then it must be on a circle centered on C and of radius r. The minimization of distance AP+PB corresponds to a path of light impinging on a circular mirror. According to the laws of reflection $\alpha_1 = \alpha_2$ and due to the symmetry of the situation a similar reasoning undertaken from C can be done from A, then B. Therefore, all angles α , β and γ are equal to 60° and the central facility is at the intersection of the network of links oriented at 120°.

II.1.2. Weights and Pulleys

This solution is not historically the first one, but it allows a visualization which aids greatly in comprehension as the problem gains in complexity.

Let us first consider 3 locations A, B, C engaged in transaction with a central facility P. If the volume of transaction to and from these three locations are identical and if the links are not constrained in capacity then the optimum location of the central facility will minimize the sum of distances PA+PB+PC. If the 3 points are plotted on a vertical plane and equipped with small pulleys, the optimum location of the central facility is given by the position of equilibrium of a knot connecting 3 strings passing over the pulleys and carrying 3 equal weights at their extremities.

. .

We will prove that equilibrium is reached when the potential energy of the system is at a minimum, that is when all the weights are in the lowest position possible. This corresponds to the maximum of AA'+BB'+CC' or the minimum of PA+PB+PC. Through static consideration the equilibrium is obtained when the system of forces are equally inclined at 120° to each other.

If the transactions from point A, B and C to point P are not identical, proportional weights could be used. For example, if costs are to be minimized in the transport of a, b, c tons of materials respectively from A,B,C to P, then we should minimize a (AP)+b (BP)+c (CP) with weights m, m, m at A, B, C proportional to the transport weights a, b, c. In this general case, the system of mass in equilibrium gives the minimization of link distances [47].

Minimization of Potential energy

With L: length of the string at each respective point d: length of the string from the pulley to the weight l: length of the string from the pulley to the knot H: distance of the pulley to the reference horizontal plane

m : weight at end of string

$$\sum_{i}^{i} m_{i} H_{i} = \sum_{i}^{i} m_{i} h_{i} + \sum_{i}^{i} m_{i} d_{i}$$

$$\sum_{i}^{i} m_{i} L_{i} = \sum_{i}^{i} m_{i} d_{i} + \sum_{i}^{i} m_{i} l_{i}$$

$$\sum_{i}^{i} m_{i} L_{i} - \sum_{i}^{i} m_{i} H_{i} = \sum_{i}^{i} m_{i} l_{i} - \sum_{i}^{i} m_{i} h_{i}$$

$$\sum_{i}^{i} m_{i} L_{i} - \sum_{i}^{i} m_{i} H_{i} + \sum_{i}^{i} m_{i} h_{i} = \sum_{i}^{i} m_{i} l_{i}$$
as
$$\sum_{i}^{i} m_{i} L_{i} = Constant$$
and
$$\sum_{i}^{i} m_{i} H_{i} = Constant$$

the minimization of $\sum_{i} m_{i} l_{i}$ corresponds to the minimization of $\sum_{i} m_{i} h_{i}$ which is at the minimum of potential energy.

In 1775 Fagnano studied the location of a point minimizing distances in a system of 4 elements. In the case of equal transaction, the central facility was found at the intersection of the segments connecting opposite points. The result can be seen immediately by using our analog weight system.

Fig. 8. Weight and Pulleys Central Location of 4 Facilities

A similar central facility would be found if we had identical transaction from opposite points $m_A = m_D$, $m_B = m_C$ with $m_A \neq m_B$.

This analog approach can be used, theoretically, for any set of n facilities; however, it is, in practice, restricted by the following limitations: the strings are not perfectly flexible and the friction is not negligible. It is interesting to note that the location of the central facility as found by this model is not the center of masses as one might subjectively assume. A clever use of this analog procedure may be extremely useful in complex problems, it has already been used in a number of practical problems [16] [33] [8].

II.1.3. The Link-Length Minimizer

 \hat{F} :

In 1957 Michle [43] under contract with the Department of the Army designed a mechanical device able to define the central location of a relatively large system. On a horizontal surface are installed some fixed pegs with pulleys at the location of elements to be serviced, a movable peg represents the central facility. The interconnections are made with a loop of string. By pulling the end of the string, because of potential energy consideration the movable peg will be positioned to minimize the total string length.

Location of One Central Facility

This method is relatively simple; however, it requires a physical model and the friction at the pulleys may be large and the movable peg must be manually positioned in order to retrieve the slack on the string. A relatively large system can be treated and we will see in Chapter III that the device may be applied to the location of multiple central facilities. Transaction weight on a given link may be added to the model by multiple increments created by multiple looping.

II.1.4. Electrical Field

Electrodes connected to a DC power source through a resistive network are located on a plane map of facility locations. At a given point of this plane, the total field is the sum of the elementary fields weighted by the proper resistances. This total field may be measured by an omni-directional detector and, with a scale factor, is analogous to the total transport cost. Equi-field lines can then be constructed representing iso-cost lines, these are concentric around the optimum location and converge toward that optimum when the detector sensitivity is increased. The method is relatively simple but lacks accuracy as we shall see later (II.2.3). An ingenious electrical analogue machine has been developed by Mr. William Bernard under Air Force contract AF18(600)-125 [7].

Fig. Electric Field Analogue Computer

•

. .

II.2. GEOMETRIC SOLUTION

II.2.1. The Force Polygon

In the analog model of weight and pulleys the forces acting on the common string knot are in equilibrium and form a force parallelogram. The study of which is put to use in the following geometric construction defining the position of the central facility P.

Fig. 11. The Force Polygon

The angles β_A , β_B , β_C are the supplements of the respective angles α_A , α_B , α_C . The following construction is suggested by George Pick in the mathematical appendix of Weber's theory on location of industries [54] [26]. In a circle sustaining the arc \widehat{AB} , the angle β is the supplement of α , and the point C can be anywhere on the arc \widehat{ACB} .

Knowing the weights acting at each location, a polygon of force may be built, thus defining the angles β_i . The supplemental angles α_i are found on circles sustending β_i on one side.

Fig. 13. Geometric Location of a Central Facility

For computational ease we will mention the trigo- nometric formulation of angles $\beta_{_1}\cdot$

. با 1995 ماری ور در مارد و در از ای With $2p = m_A + m_B + m_C$

$$\sin \frac{\beta_A}{2} = \left(\frac{(p - m_B)(p - m_C)}{m_B m_C}\right)^{\frac{1}{2}}$$
$$\sin \frac{\beta_B}{2} = \left(\frac{(p - m_C)(p - m_A)}{m_C m_A}\right)^{\frac{1}{2}}$$
$$\sin \frac{\beta_C}{2} = \left(\frac{(p - m_A)(p - m_B)}{m_A m_B}\right)^{\frac{1}{2}}$$

In the case of a negligible weight m_i at one location i, the corresponding angle β_i is negligible and α_i is practically 180°, the location of the central facility is then on the opposite line.

Fig. 14. Case of a Negligible Weight

The location of P on that particular line, according to Pick, is then at the center of mass so that:

Fig. 15. The Central Facility as a Center of Mass

Even Yassen in 1956 [58] uses this principle of center of moments to optimize the facility location, but a simple numerical example shows that this reasoning is false.

If for example $m_A = 8$ $m_B = 12$ AB = 10

the equality of moments would give

$$m_{A} x_{A} = m_{B} x_{B} = m_{B} (AB - x_{A})$$

$$8 x_{A} = 12(10 - x_{A})$$

$$x_{A} = 6$$

$$x_{B} = 4$$

and the total weight distance is (8x6) + (12x4) = 96. However, if the central facility is located at B the total of weight distance is only 8x10 = 80, which is an improvement. The central location should therefore be located at the point of maximum weight in the case of 2 facilities. In the case of a very large weight, for example if

 $m_A > m_B + m_C$

it is then impossible to build the weight triangle and the geometric construction is impossible. In our case, point A has so much weight that it is necessary to locate the central facility at that point.

Fig. 16. Case of a very large weight in A

The polygon of forces cannot be constructed

If one angle of the triangle is greater than 120° there is no point at which each side subtends 120°, hence the minimum point P coincides with the vertex [A].

One angle is greater than 120°

II.2.2. The Launhardt-Palander Construction

In 1882 Launhardt [37] developed a graphical solution to define the central facility for a set of 3 locations, which is making use also of the force polygon.

On one of the triangle sides is built a force polygon, the intersection P of the circumscribed circle with a segment joining the third triangle corner to the so-called "pole" F of the circle defines the location of the central facility.

Fig. 18. The Launhardt-Palander Construction

It is to be noted that no geometrical reasoning was given for this particular construction.

Using this simple construction Tord Palander [46] developed a diagram which depicts the influence of the location of a consumer C using the products manufactured at a central facility P from raw materials coming from sources

Fig. 19. Influence of Markets and Raw Material Sources on Industry Location

The production facility deserving C_1 or C_2 should be at P_1 . If the consumer were at C_3 , he could be best served by a production center at P_3 . Similarly B is the best location to serve C_4 or C_5 . If the customer were at C_6 , he would be served best by a production facility at C_6 itself. On the other hand, a customer at C_7 would be served best by a facility located at A.

This construction gives a good insight into locational shifts in case of weight changes in A and B, however if we look at Figure 20, we will see that the point M_A found by using the Launhardt-Palander construction is far from being the optimum location. In fact, we may obtain 3 locations M_A , M_B , M_C , if we use the different sides of the triangle as a base for our force polygon, all of them sharing an increased sum of weighted distances compared to the optimum facility P.

Fig. 20. Inconsistency in the Launhardt-Palander Construction

II.2.3. Isovectures and Isodapanes

All points situated on a circle centered on a facility are equidistant from that facility in Euclidean space. It is

a line of equipotential for distances, but also for costs if transportation rates are identical in all azimuths, and for time if the straight distance is covered at equal speed in all directions from the facility. If a particular azimuth is advantaged because of the location of a cheap line of transport by railroad or canal for example, the line of equal cost will be a distorted circle in that particular direction. Similarly the isochrone circles may be distorted by the presence of a faster transportation system in a given direction. The set of lines representing equal distances, costs or transportation time will be representing a family of isovectures. If we consider 2 facilities A and B and their respective families of distance isovectures we obtain a set of intersecting circles. If a facility is set at a point M on one of these circle interceptions the sum of distances PA+PB = D can be read directly by summing the corresponding radii. For example in Figure 21, $R_{A3} + R_{B7} = D = 10$. Another facility M' set at the intersection of $R_{A3} + \triangle R = R_{A4}$ and $R_{B7} - \Delta R = R_{B6}$ will be connected to A and B by an identical sum of distances

$$(R_{A3} + \triangle R) + (R_{B7} - \triangle R) = R_{A3} + R_{B7} = D = 10$$

 $R_{A4} + R_{B6} = D = 10$

The location of the point P_1 , P_2 , P_3 , etc., are on a curve of equal sum of distances and called isodapane.

Fig. 21. Isovectures and Isodapanes of Distances

Similarly if we consider costs, these are proportional not only to distances but to the volume of freight and the transportation rate, the isovectures will be modified accordingly. Also, isovectures corresponding to time may have different spacing when corresponding to one facility or another because of limitations in channel capacity or slower transmission means. However, isodapanes of total equal costs or equal time can be readily constructed.

Fig. 22. Isovectures and Isodapanes of Costs or Times

When looking at the isodapanes we see that when the costs (or distances, or times) decrease, they converge toward the optimum location of the central facility. This comstruction could then be readily used in the case of multiple facilities to locate an optimum central location [31] [32].

A construction of the isovectures and isodapanes is given in Figure 23 in the case of 3 facilities. It may be readily seen that this construction is very long and grossly inaccurate as we get closer to the optimum central location. It is of very little use to locate the optimum point except if the plot is accelerated by means of a Computer. This construction is, however, self-explanatory with respect to

...**.**

Case of 3 facilities

sensitivity analysis, if the center must be located in another area for economic reasons or other types of constraints, the construction can readily inform us of the penalty we would have to pay in this suboptimum location.

II.2.4. Topographic Mapping of Costs

The locations being defined by x and y in a system of rectangular coordinates, we may consider a third axis of costs perpendicular to the plane of facilities. For each point P taken as a candidate for the central facility we can compute the corresponding total transportation cost which then can be plotted vertically above the point P. If the computation of cost is repeated for a certain number of points, we obtain a three dimensional convex surface, whose minimum distance to the plane of facilities gives the optimum location of the central facility. If this topographical map of cost is cut by parallel planes corresponding to given differences in costs, we obtain the set of isodapanes which can be projected on the plane x,y.

Fig. 24. Cost Function and Topographic Mapping

If the plane x,y is divided into a checker-work and if we consider the central facility to be successively located at each line intersection we could obtain a matrix of total transportation costs which could be used to visually delineate the isodapanes and therefore define the optimum central location [45].

Fig. 25. Digital Mapping of Cost Function

II.2.5. Extension of the Geometrical Construction

The extension of Pick's graphical method to a set of multiple facilities is impossible because the various orientations of the force polygon segments are unknown.

Launhardt has extended his construction to a larger set of facilities however its inadequacy has been shown in Figure 20.

The limitation is created by the indetermination in the orientation of the force polygon. If a central point is chosen intuitively from which the polygon is built, it will close through an error vector. We should investigate the possibility of reducing this closure vector by a rational rule to relocate our first estimated central location. No sure convergent method has been found to date by the author.

Fig. 26. Error Closure Vector

In 1810 Tedenat found a trigonometric relationship between the angles formed by an arbitrary line intersecting all segments connecting n points to a central facility. In 1837 Steiner gave the formal demonstration of this relation. However, this relation is interesting as long as the central facility is located but it is of no help in locating it.

II.3. ALGEBRAIC SOLUTION

II,3.1. Determination of Minimum Point

In the locational problem, we know the location of each facility and their corresponding requirements as well as the set of shipping rates (or speed of transport). In the most general problem we must define the number of central facilities as well as their location so as to minimize transportation costs (or communication time).

A comprehensive study in the case of a single central facility is presented by Walter Isard [33].

For example in the case of n facilities: i = 1,2,3,...,n; the transport costs to the central facility P is given by

$$C = \sum_{i=1}^{n} r_{i} m_{i} D_{i}$$

where r : represents the transport rate on the route from P to i

m : represents the quantity to transport from P to i
 D : represents the distance connecting P to i.

The distance D_i is function of the location of the central facility of coordinates (X,Y). The cost function C will also vary according to the location of the central facility.

$$C(\mathbf{X},\mathbf{Y}) = \sum_{i=1}^{n} \mathbf{r}_{i} \cdot \mathbf{m}_{i} \cdot \mathbf{D}_{i}(\mathbf{X},\mathbf{Y})$$

We are looking for the minimum of the function C as it varies with the locational vector (X,Y) of the central facility. A stationary point of this function C is obtained by equating to zero the first partial derivatives of C with respect to X and Y. For example a stationary point for a set of 3 facilities is given by

$$dC = 0 = d(r_{1} m_{1} D_{1} + r_{2} m_{2} D_{2} + r_{3} m_{3} D_{3})$$
$$= r_{1} d(m_{1} D_{1}) + r_{2} d(m_{2} D_{2}) + r_{3} d(m_{3} D_{3})$$

since r are fixed, we have

$$\frac{r_{1}}{r_{2}} = -\frac{d(m_{2} D_{3})}{d(m_{1} D_{1})} | (m_{3} D_{3} = C^{st})$$

$$\frac{r_{1}}{r_{2}} = -\frac{d(m_{2} D_{1})}{d(m_{1} D_{1})} | (m_{2} D_{2} = C^{st})$$

$$\frac{r_{3}}{r_{3}} = -\frac{d(m_{2} D_{2})}{d(m_{2} D_{2})} | (m_{1} D_{1} = C^{st})$$

This represents a set of 3 equations with 3 unknowns D, D, D. For this stationary point to be a minimum of cost it is sufficient that the second derivative of C with respect to an arbitrary line passing through P of arc length u be positive to prove that the transport cost surface is convex downward

> $\frac{d^3C}{d^3C} = \sum r_i m_i \frac{d^3D}{du^3}$ that is $\frac{d^2 D}{du} \ge 0$ so $\frac{d^2 C}{du} > 0$

In the general case of n points it is enough to define D from 2 facilities to find the location of the central one.

As previously, P will give a stationary point to the function

$$\frac{r_{i}}{r_{j}} = -\frac{d(m D_{j})}{d(m D_{i})}$$

$$\sum_{k=1}^{T_{k}} r_{k} D_{k} = C^{st}$$
for $i \neq j \neq k$

In a system of cartesian coordinates with Euclidean distances connecting the facilities to the central location we may write the following equations

$$D^{i} = [(X - x^{i})_{s} + (X - \hat{\lambda}^{i})_{s}]_{x}$$

 $C(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} D_{i}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} [(X-x_{i})^{2} + (Y-y_{i})^{2}]^{\frac{1}{2}}$

C if
$$\frac{d(m D)}{1} = -\frac{d(m D)}{d(m D)}$$

X,Y : represent the cartesian coordinates of the central facility

x, y: represent the cartesian coordinates of the facility i.

To prove that C has a minimum we must consider the Hessian matrix

$$H = \begin{bmatrix} \frac{9X \ 9X \ 9X \ 9X \ 9}{9_{5}C} & \frac{9X_{5}}{9_{5}C} \\ \frac{9X_{5}}{9_{5}C} & \frac{9X \ 9X}{9_{5}C} \end{bmatrix}$$

and prove that C_{XX} as well as $C_{XX}C_{YY} - C_{XY}^2$ are always positive, then it will be necessary to check that C can have at most one minimum and at least one minimum.

$$C(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}$$

$$C_{X}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \frac{1}{2} 2(X-x_{i}) \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{-\frac{1}{2}}$$

$$C_{XX}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \left\{ (1) \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{-\frac{1}{2}} + (X-x_{i})(-\frac{1}{2}) 2 (X-x_{i}) \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{-\frac{2}{2}} \right\}$$

$$C_{XX}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \left[\frac{1}{D_{i}} - \frac{(X-x_{i})^{2}}{D_{i}^{3}} \right]$$

$$C_{XX}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \left[\frac{D_{i}^{2} - (X-x_{i})^{2}}{D_{i}^{3}} \right]$$

$$C_{XX}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \frac{(X-x_{i})^{2} + (Y-y_{i})^{2} - (X-x_{i})^{2}}{D_{i}^{3}}$$

$$C_{XX}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \frac{(Y-y_{i})^{2}}{D_{i}^{3}}$$

 $C_{XX}(X,Y)$ is therefore always positive because r_{i}, m_{i}, D_{i} are always positive and the numerator is a square. Similarly

$$C_{\underline{YY}}(\underline{X}_{g}\underline{Y}) = \sum_{i=1}^{n} r_{i} m_{i} \frac{(\underline{X}-\underline{x}_{i})^{2}}{D_{i}^{3}}$$

, and

$$C_{XY}(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \frac{(X-x_{i})(Y-y_{i})}{D_{i}^{3}}$$

. So

$$C_{XX}C_{YY} - C_{XY}^{2} = \begin{bmatrix} \sum_{i=1}^{n} \frac{r_{i}m(Y-y_{i})^{2}}{D_{i}^{3}} \end{bmatrix} \begin{bmatrix} \sum_{j=1}^{n} \frac{r_{i}m(X-x_{j})^{2}}{D_{j}^{3}} \end{bmatrix} - \begin{bmatrix} \sum_{i=1}^{n} \frac{r_{i}m(X-x_{i})^{2}}{D_{j}^{3}} \end{bmatrix} - \begin{bmatrix} \sum_{i=1}^{n} \frac{r_{i}m(X-x_{i})(Y-y_{i})}{D_{j}^{3}} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} \frac{r_{i}m(X-x_{i})(Y-y_{i})}{D_{j}^{3}} \end{bmatrix}$$

$$C_{XX}C_{YY} - C_{XY}^{2} = \sum_{i,j=1}^{n} \frac{r_{i}r_{j}m_{i}m_{j}}{D_{i}^{3}D_{j}^{3}} \left[(Y-y_{i})^{2}(X-x_{j})^{2} - (X-x_{j})(Y-y_{i})(Y-y_{j}) \right]$$

if $i = j$ the term in the bracket is zero
if $i \neq j$

$$C_{XX}C_{YY} - C_{XY}^{2} = \sum_{i\neq j}^{n} \frac{r_{i}r_{j}m_{j}m_{j}}{D_{i}^{3}D_{j}^{3}} \left[(Y-y_{i})^{2}(X-x_{j})^{2} - (X-x_{i})(X-x_{j})(Y-y_{i})(Y-y_{j}) + (Y-y_{j})^{2}(X-x_{i})^{2} - (X-x_{i})(X-x_{i})(Y-y_{i})(Y-y_{i}) + (Y-y_{j})^{2}(X-x_{i})^{2} - (X-x_{i})(X-x_{i})(Y-y_{i})(Y-y_{i}) + (Y-y_{i})^{2}(X-x_{i})^{2} - (X-x_{i})(X-x_{i})(Y-y_{i})(Y-y_{i}) + (Y-y_{i})(X-x_{i}) - (Y-y_{i})(X-x_{i}) \right]$$

$$C_{XX}C_{YY} - C_{XY}^{2} = \sum_{i\neq j}^{n} \frac{r_{i}r_{j}m_{i}m_{j}}{D_{i}^{3}D_{j}^{3}} \left[(Y-y_{i})(X-x_{j}) - (Y-y_{i})(X-x_{i}) \right]$$

$$C_{XX}C_{YY} - C_{XY}^{2}$$
 is therefore always positive because r_{i}, m_{i}, D_{i}
are always positive and the numerator is a square.

3

The stationary point obtained by differentiation is therefore a minimum point.

Palermo [47] has proven that C can have at most one minimum on the plane and that the function C has at least a minimum.

This minimum occurs at

$$C_{X}(X,Y) = 0$$
$$C_{Y}(X,Y) = 0$$

That is

$$\sum_{i=1}^{n} \frac{r_{i} m_{i} (X-x_{i})}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}} = 0$$

$$\sum_{i=1}^{n} \frac{r_{i} m_{i} (Y-y_{i})}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}} = 0$$

This is a set of two non-linear equations which cannot be explicitly solved. An iterative method is necessary such as the Newton-Raphson procedure.

If the 2 equations are independent, the coordinates of the central facility are given by

$$X = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{x_{i}}}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{i} m_{x_{i}}}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}}} = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{x_{i}}}{D_{x_{i}}}}{\sum_{i=1}^{n} \frac{r_{i} m_{x_{i}}}{D_{x_{i}}}}$$

$$Y = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{i} y_{i}}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2}\right]^{\frac{1}{2}}}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2}\right]^{\frac{1}{2}}} = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{i} y_{i}}{D_{i}}}{\sum_{i=1}^{n} \frac{r_{i} m_{i}}{\left[(X-x_{i})^{2} + (Y-y_{i})^{2}\right]^{\frac{1}{2}}}$$

As D_{1} is a function of X and Y these equations cannot be solved directly, they must be solved by iteration. A set of starting values $X^{(0)}$ and $Y^{(0)}$ must be assumed a priori and they are used to compute $X^{(1)}$ $Y^{(1)}$ using the equations above, and so on $X^{(1)}$ $Y^{(1)}$ is used to compute $X^{(2)}$ $Y^{(2)}$ etc. The process hopefully converges if the starting values are chosen adequately.

We are now going to consider a method to derive a plausible iterative starting value $X^{(o)}$ and $Y^{(o)}$.

It happens quite frequently that transportation costs may be proportional to distances raised to some power k

$$C = \sum_{i=1}^{n} W_{i} D_{i}^{k} \qquad k > 1$$

w being the weighted index bearing on the location of the center. It can be proven [9] that for $k \ge 1$ the function C is convex. Being a convex function, every local minimum is a global minimum.

$$C(X_{9}Y) = \sum_{i=1}^{n} W_{i} \left[(X-X_{i})^{2} + (Y-Y_{i})^{2} \right]^{\frac{k}{2}}$$

$$C_{X}(X_{9}Y) = \sum_{i=1}^{n} k W_{i} (X-X_{i}) \left[(X-X_{i})^{2} + (Y-Y_{i})^{2} \right]^{\frac{k}{2}-1} = 0$$

$$C_{Y}(X_{9}Y) = \sum_{i=1}^{n} k W_{i} (Y-Y_{i}) \left[(X-X_{i})^{2} + (Y-Y_{i})^{2} \right]^{\frac{k}{2}-1} = 0$$

if
$$L_{i} = [(X-x_{i})^{2} + (Y-y_{i})^{2}]^{\frac{k}{2}-1}$$

 $C_{X}(X_{9}Y) = k X \sum_{i=1}^{n} w_{i} L_{i} - k \sum_{i=1}^{n} w_{i} x_{i} L_{i} = 0$
 $C_{Y}(X_{9}Y) = k Y \sum_{i=1}^{n} w_{i} L_{i} - k \sum_{i=1}^{n} w_{i} y_{i} L_{i} = 0$
and

.

$$X = \frac{\sum_{i=1}^{n} W_{i} X_{i} L_{i}}{\sum_{i=1}^{n} W_{i} L_{i}}$$

· .

.

. .

46 (

.

As previously, if we had a set $X^{(\circ)}$, $Y^{(\circ)}$ of good starting values giving us convergence, we could solve by iteration

$$X^{(k+1)} = \frac{\sum_{i=1}^{n} W_{i} X_{i} L_{i}^{(k)}}{\sum_{i=1}^{n} W_{i} L_{i}^{(k)}}$$

$$Y^{(k+1)} = \frac{\sum_{i=1}^{n} W_{i} Y_{i} L_{i}^{(k)}}{\sum_{i=1}^{n} W_{i} L_{i}^{(k)}}$$

the superscript (k) meaning the kth iteration.

In this general case also we are faced with the problem of finding the starting values.

Let us consider the particular case where k = 2, then

$$C = \sum_{i=1}^{n} W_{i} \left[(X-X_{i})^{2} + (Y-Y_{i})^{2} \right]$$

$$C_{X} = \sum_{i=1}^{n} 2w_{i} (X - x_{i}) = 0$$
$$C_{Y} = \sum_{i=1}^{n} 2w_{i} (Y - y_{i}) = 0$$

This set of 2 linear equations can be explicitly solved:

$$X = \frac{\sum_{i=1}^{n} W_{i} X_{i}}{\sum_{i=1}^{n} W_{i}}$$

$$Y = \frac{\sum_{i=1}^{n} W_{i} Y_{i}}{\sum_{i=1}^{n} W_{i}}$$

It has been proven by McHose [42] that this solution of the second degree equation is a good first approximation for the location of the central facility when $k \ge 1$. Therefore we can take these values as starting solution of our iterative process and experience proves that the procedure rapidly converges.

In our original problem of Euclidean distance our

$$X^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{r_{i}m_{i}x_{i}}{\left[(X^{(k)}-x_{i})^{2} + (Y^{(k)}-y_{i})^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{i}m_{i}}{\left[(X^{(k)}-x_{i})^{2} + (Y^{(k)}-y_{i})^{2}\right]^{\frac{1}{2}}}}$$

$$Y^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{r_{i}m_{i}y_{i}}{\left[(X^{(k)}-X_{i})^{2} + (Y^{(k)}-y_{i})^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{i}m_{i}}{\left[(X^{(k)}-X_{i})^{2} + (Y^{(k)}-y_{i})^{2}\right]^{\frac{1}{2}}}}$$

۰.

with

÷

$$X^{(o)} = \frac{\sum_{i=1}^{n} r_{i} m_{i} x_{i}}{\sum_{i=1}^{n} r_{i} m_{i}}$$

$$Y^{(\circ)} = \frac{\sum_{i=1}^{n} r_{i} m_{i} y_{i}}{\sum_{i=1}^{n} r_{i} m_{i}}$$

This starting value is the weighted mean coordinate. An example of computer program to solve that algorithm is given in Chapter 1V.

It must be kept in mind that before beginning the algorithm solution each facility should be checked for weight dominance, that is the central location may be located at point $k = 1, 2, \cdots, n$ only if

$$\mathbf{w}_{\mathbf{k}} \geq \left[\left(\sum_{j \neq \mathbf{k}} \mathbf{w}_{j} \cos \theta_{j} \right)^{2} + \left(\sum_{j \neq \mathbf{k}} \mathbf{w}_{j} \sin \theta_{j} \right)^{2} \right]^{\frac{1}{2}}$$

with
$$\cos \theta_{j} = \frac{x_{j} - x_{k}}{D_{kj}}$$

 $\sin \theta_{j} = \frac{y_{j} - y_{k}}{D_{kj}}$

This check may become quite cumbersome computationally when dealing with a very large number n of facilities. We should ignore this test unless we become suspicious of a weight dominance creating a convergence of the algorithm to a close proximity of a facility k, then the check is only necessary on that particular facility k.

II.3.2. Geometric Programming

Minimization of the function

$$D(X,Y) = \sum_{i=1}^{n} \left[(x_{i}-X)^{2} + (y_{i}-Y)^{2} \right]^{\frac{1}{2}}$$

may be done by minimizing the related function

$$G = \sum_{i=1}^{n} t_{oi}^{\frac{1}{2}}$$

subject to the constraints

$$t_{oi} \ge (x_i - X)^2 + (y_i - Y)^2$$
 i=1, 2, ..., n

where toi are additional independent variables.

There are 6n terms in the constraint inequalities put in canonical form :

$$1 \ge x_{i}^{2} t_{0i}^{-1} - 2x_{i} X t_{0i}^{-1} + y_{i}^{2} t_{0i}^{-1} - 2y_{i} Y t_{0i}^{-1} + Y^{2} t_{0i}^{-1} \qquad i=1, 2, \dots, n$$

and n terms in the function G. There are n variables t_{oi} and 2 variables: X,Y. Even if the function G were a posynomial, which it is not, we would expect 6n-3 degrees of freedom.

When considering a relatively small system of 50 facilities, the problem involves a minimum of 297 degrees of difficulty which is equivalent to the optimization of a function of 297 variables, a problem which is theoretically possible but economically infeasible.

II.3.3. Expenditures at Vertice Points

In the above algorithm we have assumed that money or time costs were proportional to distances. This is not always the case and some fixed charges of loading and unloading must be added. Under such a case the function C becomes discontinuous.

then the function C is given by

$$C = \sum_{i=1}^{n} (1_{i} + r_{i} m_{i} D_{i} + u_{i})$$

It may be assumed that the loading and unloading costs are directly proportional to the amount transited : m

$$l_i = a_i m_i$$
$$u_i = b_i m_i$$

a and b being factors of proportionality then the function C is given by

$$C(X_{9}Y) = \sum_{i=1}^{r} \left(a_{i}m_{i} + r_{i}m_{i}D_{i} + b_{i}m_{i}\right)$$

$$C(X_{9}Y) = \sum_{i=1}^{n} a_{i} m_{i} + \sum_{i=1}^{n} r_{i} m_{i} D_{i} (X,Y) + \sum_{i=1}^{n} b_{i} m_{i}$$
$$C(X,Y) = C_{I} + C_{II}(X,Y) + C_{III}$$

Mathematically speaking, as the cost C_{I} and C_{III} are not functions of the location of the central facility, a differentation of the function C will give an identical set of equations as derived above and their solution will give the same central location coordinates. However, some fallacy appears in this reasoning; for example: if facility j has an extremely large cost of loading and unloading its own goods, shown by the importance of the coefficients a_{j} and b_{j} , this cost may outweigh all transportation costs and therefore it might be more economical to locate the central facility at point j in order to eliminate the transfer cost of its own goods, and also drastically lower the loading and unloading unit cost by the corresponding modernization and mechanization imparted to this center.
A procedure to avoid this pitfall will be to derive the coordinates X and Y obtained by the solution of the set of equations of the partial derivatives of C_{II} , compute the corresponding cost C then check the various transportation costs C_k using one of the locations as central facility.

$$C_{k} = \sum_{i=1}^{n} m_{i} r_{i} D_{i} + \sum_{i \neq k}^{n} (a_{i} + b_{i}) m_{i} \\ k = 1, 2, \dots, n$$

if one of the C_k is less than C then the central facility must be located at that particular k place.

II.3.4. Case of Variable Transport Rate

It is common in practice to deal with transportation media where the rate of transport decreases with distance. Accordingly this complicates the cost function. Timewise also it is quite frequent to use for example, slower aircrafts on shorter routes than on longer ones.

When the transportation rate is function of distance, then

$$r_{i} = f_{i}(D_{i})$$

$$C = \sum_{i=1}^{n} f_i(D_i) \cdot m_i \cdot D_i$$

Stationary points may be derived by differentiation:

$$dC = \sum_{i=1}^{n} m_{i} \left[f_{i} (D_{i}) + D_{i} f_{i}' (D_{i}) \right] dD_{i}$$

and

$$\frac{\mathbf{f}_{i} (\mathbf{D}_{j}) + \mathbf{D}_{i} \cdot \mathbf{f}_{i}' (\mathbf{D}_{j})}{\mathbf{f}_{j} (\mathbf{D}_{j}) + \mathbf{D}_{j} \cdot \mathbf{f}_{j}' (\mathbf{D}_{j})} = -\frac{\mathbf{d} (\mathbf{m}_{j} \mathbf{D}_{j})}{\mathbf{d} (\mathbf{m}_{i} \mathbf{D}_{i})} \\ \sum_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} (\mathbf{D}_{\mathbf{k}}) \cdot \mathbf{m}_{\mathbf{k}} \cdot \mathbf{D}_{\mathbf{k}} = \mathbf{C}^{\text{st}} \\ \mathbf{i} \neq \mathbf{j} \neq \mathbf{k}$$

The development of these equations may lead to multiple optima. The function C should be evaluated at all of these optima to find the best one.

If the route passes through a congested area the expenditure in time and money per unit carried versus distance may not follow a linear function. Extra costs due to obstacles like towns and rivers in the case of ground transportations for example, must be taken into consideration [8].

When considering a central location P minimizing the sum of distances, we consider a network with branches of length D_i , from P to the facility i. The total length of the network is

$$D = \sum_{i=1}^{n} D_{i}$$

Considering a pair of vertices : i, j

For each pair of vertices the following inequality holds

$$\mathbf{D}_{\mathbf{i}} + \mathbf{D}_{\mathbf{j}} \geq \mathbf{D}_{\mathbf{i},\mathbf{j}}$$

In a locational problem of n vertices, there are

$$\sum_{i=1}^{n-1} n - i = \frac{n (n-1)}{2}$$

distances D

The distance D connecting P to the facility i is a part of (n-1) triangles on which can be applied the triangle inequality.

In the case of 4 facilities, for example, we can write the following set of inequalities

On the right-hand side are the possible combinations of distances connecting n facilities taken 2 at a time.

The left-hand side

$$3(D_1 + D_3 + D_3 + D_4) = 3 \sum_{i=1}^{4} D_i = 3D$$

corresponds to (n-1)D.

Therefore

$$D \ge \frac{1}{n-1} \sum_{i=2}^{n} \sum_{j=1}^{i-1} D_{ij}$$

The right-hand side is then a lower bound of the sum of distances [10].

In our iterative process we took the weighted average as a starting value, the

$$D \leq \sum_{i=1}^{n} \left[(X-\overline{x})^{3} + (Y-\overline{y})^{3} \right]^{\frac{1}{3}}$$

in which

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$
$$\overline{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}$$

This is therefore a possible upper bound for the sum of distances.

The n distinct locations form a convex hull H limited by linear boundaries. Either P is located at a facility, in case of weight dominance, and is trivially an element of H or it is first obtained by a weighted sum of facility coordinates and therefore is an interior point. We will use this convex hull in the heuristic algorithm with variable grid and linear constraints (Chapter IV) to limit our investigation.

Sometimes the location of a facility is restrained within a given space limited by physical boundaries. Sometimes the facilities generally considered as punctual may have a spatial area or a zone of influence and cannot be located too close because of possible interference.

We could be faced by the following constraints

$$\begin{bmatrix} (X - x_i)^2 + (Y - y_i)^2 \end{bmatrix}^{\frac{1}{2}} \ge \Phi_i$$

$$x_{\min} \le X \le x_{\max}$$

$$y_{\min} \le Y \le y_{\max}$$

This is an example of optimization theory in which the objective function and some of the constraints are non-linear. The following possible solutions should be considered: the method of Lagrangian multipliers in which the inequalities would be investigated in turn in their equality sense, or using the Khun-Tucker conditions.

It must be noted that according to the demonstration of Kuhn and Kuenne [36], the coordinates X and Y of P are necessarily elements of the convex hull and the set of 2 inequalities $x_{min} \le X \le x_{max}$

$$y_{\min} \le Y \le y_{\max}$$

are automatically met and are therefore redundant constraints. The minimization problem is then limited to

minimize
$$C(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}}$$

subject to $\left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right]^{\frac{1}{2}} \ge \Phi_{i}$ $i = 1, 2, \cdots, n$

then we have a set of n inequalities.

In the Lagrangian method the inequality constraints are considered by including one active constraint at a time. Thus for

$$\left[\left(\mathbf{X}_{-\mathbf{X}_{1}}^{\mathbf{x}} \right)^{2} + \left(\mathbf{Y}_{-\mathbf{y}_{1}}^{\mathbf{x}} \right)^{2} \right]^{\frac{1}{2}} \geq \phi_{1}$$

to be active the corresponding Lagrangian function becomes

$$L(X,Y,\lambda_{1}) = C(X,Y) + \lambda_{1} \left(\left[(X-x_{1})^{3} + (Y-y_{1})^{3} \right]^{\frac{1}{2}} - \Phi_{1} \right)$$

the necessary conditions are given by

$$\frac{9X}{9T} = 0 \qquad \frac{9X}{9T} = 0 \qquad \frac{9y'}{9T} = 0$$

$$\frac{\partial X}{\partial L} = \sum_{i=1}^{n} \frac{\left[(X-X_{i})^{2} + (Y-Y_{i})^{2} \right]_{i}^{2}}{r_{i} m_{i} (X-X_{i})} + \frac{\lambda_{1} (X-X_{1})}{\left[(X-X_{1})^{2} + (Y-Y_{1})^{2} \right]_{i}^{2}} = 0$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{L}} = \sum_{i=1}^{n} \frac{\mathbf{r}_{i} \ \mathbf{m}_{i} (\mathbf{Y} - \mathbf{y}_{i})}{\left[(\mathbf{X} - \mathbf{x}_{i})^{2} + (\mathbf{Y} - \mathbf{y}_{i})^{2} \right]^{\frac{1}{2}}} + \frac{\lambda_{1} \ (\mathbf{Y} - \mathbf{y}_{1})}{\left[(\mathbf{X} - \mathbf{x}_{1})^{2} + (\mathbf{Y} - \mathbf{y}_{1})^{2} \right]^{\frac{1}{2}}} = 0$$

$$\frac{9y^{T}}{9T} = \left[(X-x^{T})_{s} + (A-h^{T})_{s} \right]_{\frac{1}{2}} - \Phi^{T} = 0$$

The solution of these 3 equations should give X, Y and $\lambda_{1,0}$. Then it should be necessary to check if the

solution violates the other inequality constraints. A similar computation should be undertaken for the n inequalities. If the three above equations were linear, still the computational effort would be large and the procedure computationally unattractive. But, moreover, the implicit nature of these equations cannot give a direct solution, except through an iterative process. In this rigorous form the method should be abandoned. However, we have seen that in the unconstrained problem a good approximation of X and Y is given by considering

$$C(X,Y) = \sum_{i=1}^{n} r_{i} m_{i} D^{2}_{i} (X,Y)$$

In this particular case the Lagrangian equations become

$$L(X,Y,\lambda_{1}) = \sum_{i=1}^{n} r_{i} m_{i} \left[(X-x_{i})^{2} + (Y-y_{i})^{2} \right] + \lambda_{1} \left[(X-x_{1})^{2} + (Y-y_{1})^{2} - \Phi_{1}^{2} \right]$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{X}} = \sum_{i=1}^{n} 2\mathbf{r}_{i} \mathbf{m}_{i} (\mathbf{X}-\mathbf{x}_{i}) + 2\lambda_{1} (\mathbf{X}-\mathbf{x}_{1}) = 0$$
$$\frac{\partial \mathbf{L}}{\partial \mathbf{Y}} = \sum_{i=1}^{n} 2\mathbf{r}_{i} \mathbf{m}_{i} (\mathbf{Y}-\mathbf{y}_{i}) + 2\lambda_{1} (\mathbf{Y}-\mathbf{y}_{1}) = 0$$

$$\frac{9y^{1}}{9T} = (X - x^{1})_{s} + (A - A^{1})_{s} - \Phi_{s}^{1} = 0$$

An explicit solution is possible in that case, but the final solution is not exact and must be improved by iterative process to correspond to the effective Euclidean distances. If the initial approximation is known to be $X^{(0)}$ and $Y^{(0)}$ then a better solution is determined by the equations

$$X^{(n+1)} = X^{(n)} - u \left| \frac{\partial C(X,Y)}{\partial X} \right|^{(n)}$$
$$Y^{(n+1)} = Y^{(n)} - u \left| \frac{\partial C(X,Y)}{\partial Y} \right|^{(n)}$$

the u value : distance to move in the good direction to improve the value of the variable, if taken too small may produce slow convergence or if taken too large may miss the optimum solution altogether. Moreover, u may be positive or negative and a trial and error procedure will be necessary.

A procedure used by Stewart [45] considers all the inequalities in their equality sense and he uses a plotting technique to check that the results given by iteration do not violate the constraints.

We could also apply the Kuhn-Tucker conditions for P to be a stationary point of the minimization problem

$$C(\underline{X}) = \sum_{i=1}^{n} r_{i} m_{i} \left[(\underline{X}_{1} - \underline{X}_{i})^{2} + (\underline{X}_{2} - \underline{y}_{i})^{2} \right]^{\frac{1}{2}}$$

subject to

.

ï,

$$\underline{g}(\underline{X}) = -\left[(\underline{X}_{1} - \underline{x}_{1})^{2} + (\underline{X}_{2} - \underline{y}_{1})^{2} \right]^{\frac{1}{2}} + \Phi_{1} \leq 0$$

These conditions are summarized below

1) $\underline{\lambda} \leq \underline{0}$ 2) $\underline{\nabla} C(\underline{X}) - \underline{\lambda} \underline{\nabla} \underline{g}(\underline{X}) = \underline{0}$ 3) $\underline{\lambda} \underline{g}(\underline{X}) = \underline{0}$ 4) $\underline{g}(\underline{X}) \leq \underline{0}$

Developing these conditions will lead to

1)
$$(\lambda_{1}, \lambda_{2}, \lambda_{3}, \dots, \lambda_{n}) \leq 0$$

2) $\left(\frac{\partial C}{\partial X_{1}}, \frac{\partial 0}{\partial X_{2}}\right) - (\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$

$$\begin{bmatrix} \frac{\partial g_{1}(\underline{X})}{\partial X_{1}} & \frac{\partial g_{1}(\underline{X})}{\partial X_{2}} \\ \frac{\partial g_{2}(\underline{X})}{\partial X_{1}} & \frac{\partial g_{2}(\underline{X})}{\partial X_{2}} \\ \frac{\partial g_{n}(\underline{X})}{\partial X_{1}} & \frac{\partial g_{n}(\underline{X})}{\partial X_{2}} \end{bmatrix} = 0$$

3)
$$(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

$$\begin{bmatrix} g_1(\underline{X}) \\ g_2(\underline{X}) \\ \vdots \\ g_n(\underline{X}) \end{bmatrix} = \underline{0}$$

4) <u>g(</u><u>X</u>) ≤ <u>0</u>

When developed we obtain

1) $(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{n}) \leq 0$ 2) $\sum_{i=1}^{n} \frac{r_{i} m_{i} (X_{1} - x_{i})}{\left[(X_{1} - x_{i})^{2} + (X_{2} - y_{i})^{2}\right]^{\frac{1}{2}}} + \sum_{i=1}^{n} \lambda_{i} \frac{x_{1} - x_{i}}{\left[(X_{1} - x_{i})^{2} + (X_{2} - y_{i})^{2}\right]^{\frac{1}{2}}} = 0$ $\sum_{i=1}^{n} \frac{r_{i} m_{i} (X_{2} - y_{i})}{\left[(X_{1} - x_{i})^{2} + (X_{2} - y_{i})^{2}\right]^{\frac{1}{2}}} + \sum_{i=1}^{n} \frac{r_{i} m_{i} (X_{2} - y_{i})}{\left[(X_{1} - x_{i})^{2} + (X_{2} - y_{i})^{2}\right]^{\frac{1}{2}}} + \sum_{i=1}^{n} \lambda_{i} \frac{x_{2} - x_{i}}{\left[(X_{1} - x_{i})^{2} + (X_{2} - y_{i})^{2}\right]^{\frac{1}{2}}} = 0$

3)
$$\lambda_{i} \left(\Phi_{i} - \left[(X_{1} - X_{i})^{2} + (X_{2} - Y_{i})^{2} \right]^{\frac{1}{2}} \right) = 0$$

for $i = 1, 2, 3, \cdots, n$
4) $- \left[(X_{1} - X_{i})^{2} + (X_{2} - Y_{i})^{2} \right]^{\frac{1}{2}} \leq -\Phi_{i}$
for $i = 1, 2, 3, \cdots, n$

which we must solve for X_1 , X_2 and λ_1 (i = 1,2,...,n). This method is also not very attractive computationally and the quadratic formulation of C should be used to obtain approximative but useful results.

• .

CHAPTER III

LOCATION OF CENTRAL FACILITIES DISCRETE, TWO-DIMENSIONAL SPACE, EUCLIDEAN DISTANCES MULTIPLE CENTRAL LOCATIONS

The location of the n facilities to service, the requirement at each destination as well as the rate of shipping in a particular region are known. The problem is to determine the number m and location of central facilities supplying the service and their corresponding set of satellites.

It is assumed that the number m of central locations is less than the number n of facility locations. If not, it would be possible to have a zero total transport cost by putting a center at each facility.

III.1. ANALOG SOLUTION

III.1.1. The Soap Film Method

Plane films of soap bubbles formed between 2 close planes and a set of posts connecting them gives surfaces of minimum potential energy. The lines connecting the posts are then of minimum total length through a network of 120° angle boundaries.

Fig. 29. Shortest Network Joining More Than 3 Points

The necessary junction points cannot be specified but are automatically created. The method gives unreliable results when the number of points is above 15 to 20 because of variable drainage as the model is pulled out of the soap-forming solution. Moreover, the solution of the problem is not uniquely defined.

Fig. 30. Network Not Uniquely Defined

. 84

III.1.2. The Link-Length Minimizer

The mechanical system developed by Miehle [43] can be applied to multiple central facilities but the number of these central facilities and their dependent satellites must be known. This choice has to be made subjectively by looking at the concentration of points in a given area and it is never certain that the choice will bring the minimum circuit length. However, during the minimization process if one central facility is brought closer to a point than the central facility on which it depends, then a change in connections may improve the minimization.

Fig. 31. Link-Length Minimizer Multiple Central Facilities

Constraints of distance between central facilities may be obtained by connecting them with a rigid spacing bar. Constraints of minimum distance between central location and satellite facility may be obtained by installing a corresponding round base of given radius at the base of the facility constrained.

Transaction weights on a given link may be added to the model by multiple increments created by multiple looping.

It may take about an hour to find the optimum location of 17 central facilities in a system of 62 fixed points.

III.2. ALGEBRAIC SOLUTION

Even if we assume no restriction on the capacity of the central facility and if the shipping costs are supposed to be independent of the total central facility supply, we still are faced with a very large problem. If we arbitrarily decide on the number m of central facilities, there are S(n,m) possible assignments of n destinations to m sources [11], where S is the Stirling number of the second kind:

$$S(n_{g}m) = \frac{1}{m!} \sum_{k=0}^{m} {\binom{m}{k}} (-1)^{k} (m-k)^{n}$$

These possible assignments are enormously large for large n. Moreover, we might find that another value of m may lead to smaller total transportation costs. Each value of m brings a new arrangement of satellite locations and we cannot tell a priori without exhaustive study what will be the optimum value m giving a global minimum of transaction costs. Moreover, as the number of central facilities increases, the cost of invested capital and operating costs increase at the same time.

Fig. 32. Total Cost Global Minimum

If we refer to the above figure we see that a minimum transportation cost is reached with 6 central facilities, but the optimum number minimizing the total cost is 4. Our cost function C(m) is the sum of transportation costs $C_{n}(m)$ and the depreciation and operating costs $C_{n}(m)$

 $C(m) = C_1(m) + C_3(m)$

The shipping costs are proportional to distances as well as to quantity shipped, this cost may be discontinuous in the case, for example of quantity discount.

The cost of invested capital and operating costs

could readily be estimated by standard economic analysis if we knew the corresponding satellites and their respective demand or supply. The location of the central facilities and their respective assignments must first be solved.

II.2.2.1. Central Facility Location and Assignment

The transportation cost is function of the location of the n facilities (x_i, y_i) i = 1, 2, 3, ..., n as well as the number m and location of the central facilities (x_j, Y_j) j = 1, 2, ..., m. We will assume that each facility is connected only to a unique central point, therefore, only the distances connecting a central point to its respective satellites should be considered. A facility i may or may not be connected to a central location j and we will use the Kronecker delta δ_{ij} of value 1 if i is connected to j or value 0 if it is not.

Therefore, the transportation cost in Euclidean space can be written as

$$C = \sum_{j=1}^{m} \sum_{i=1}^{n} \delta_{ij} W_{ij} \left[(X_j - x_i)^{2} + (Y_j - y_i)^{2} \right]^{\frac{1}{2}}$$

A set of m stationary points is found by solving the m equations in X_{j} and m equations in Y_{j}

$$C_{X_j} = 0$$

 $C_{Y_j} = 0$

or for $j = 1, 2, 3, \cdots, m$

$$\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} (X_{j} - X_{i})}{\left[(X_{j} - X_{i})^{2} + (Y_{j} - Y_{i})^{2} \right]^{\frac{1}{2}}} = \sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} (X_{j} - X_{i})}{D_{ij}} = 0$$

$$\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} (Y_{j} - Y_{i})}{\left[(X_{j} - X_{i})^{2} + (Y_{j} - Y_{i})^{2} \right]^{\frac{1}{2}}} = \sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} (Y_{j} - Y_{i})}{D_{ij}} = 0$$

Following the same development as for one central facility we must prove that the principal minor determinants of the Hessian matrix are all positive for the stationary point to be a minimum.

$$C_{X_{j}X_{j}} > 0$$

 $C_{X_{j}X_{j}} C_{Y_{j}Y_{j}} - C_{X_{j}Y_{j}}^{a} > 0$ for $j = 1, 2, 3, ..., m$

This minimum is then found by solving the extremal equations

$$\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} X_{j}}{D_{ij}} - \sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} X_{i}}{D_{ij}} = 0$$

$$\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} Y_{j}}{D_{ij}} - \sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} Y_{i}}{D_{ij}} = 0$$

which lead to

$$X_{j} = \frac{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} X_{i}}{D_{ij}}}{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij}}{D_{ij}}} = \frac{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} Y_{i}}{D_{ij}}}{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} Y_{i}}{D_{ij}}}$$

As D_{ij} is a function of X_j and Y_j , these equations cannot be solved directly, they must be solved by iteration. We will assume as starting values of the iterative process the values $X_j^{(0)}$ and $Y_j^{(0)}$ obtained by using the quadratic formulation of distances

$$C = \sum_{j=1}^{m} \sum_{i=1}^{n} \delta_{ij} W_{ij} \left[(X_j - X_i)^2 + (Y_j - y_i)^2 \right]$$

$C_{X_{j}} = \sum_{i=1}^{n} 2 \delta_{i,j} W_{i,j} (X_{j} - X_{i}) = 0$ $C_{Y_{j}} = \sum_{i=1}^{n} 2 \delta_{i,j} W_{i,j} (Y_{j} - y_{i}) = 0$ $X_{j}^{(\circ)} = \frac{\sum_{i=1}^{n} \delta_{i,j} W_{i,j} X_{i}}{\sum_{i=1}^{n} W_{i,j}}$ $Y_{j}^{(\circ)} = \frac{\sum_{i=1}^{n} \delta_{i,j} W_{i,j} Y_{i}}{\sum_{i=1}^{n} W_{i,j}}$ $J = 1, 2, \cdots, m$

then the solution of the exact Euclidean distances is given by the iterative process

$$X_{j}^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} X_{i}}{\left[(X_{j}^{(k)} - X_{i})^{2} + (Y_{j}^{(k)} - Y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij}}{\left[(X_{j}^{(k)} - X_{i})^{2} + (Y_{j}^{(k)} - Y_{i})^{2} \right]^{\frac{1}{2}}}$$

$$Y_{j}^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij} Y_{i}}{\left[(X_{j}^{(k)} - X_{i})^{2} + (Y_{j}^{(k)} - Y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{ij} W_{ij}}{\left[(X_{j}^{(k)} - X_{i})^{2} + (Y_{j}^{(k)} - Y_{i})^{2} \right]^{\frac{1}{2}}}$$

for $j = 1, 2, \cdots, m$ and all possible combinations of Kronecker $\delta_{j,1}$.

We are quickly limited by the size of the problem and it may become uneconomical to use this exhaustive technique for more than 10 facilities. We must in fact, not only compute all the possible assignments for m central locations which may run easily into many million combinations but also we must investigate the variation of total cost as m is varied, the development of other techniques is necessary when we must deal with some common problems involving many hundred elements.

III.2.2. Bound on Sum of Distances

When considering a set of m central locations. P is minimizing the sum of distances, we consider a network with branches of length D_{ij} from P to the facility i. The total length of the network is

$$D = \sum_{j=1}^{m} \sum_{i=1}^{n} \delta_{ij} D_{ij}$$

We have evaluated the bounds for the sum of distances in the case of one central facility. In the case of m central facilities we do not have a priori the value of the Kronecker delta δ_{ij} nor the satellites assigned to a given central facility. However, if we knew this allocation of satellites we could apply to that particular set the triangle inequality relating the distance between 2 facilities i and k (D_{ik}) and the distances of these facilities i and k to the central one j (D_{ij} and D_{kj}). We have

$$D_{ij} + D_{kj} \ge D_{ik}$$

If h facilities are satellites of the central location j then for this set of satellites the total optimum distance is D

$$D_{j} = \sum_{i=1}^{h} D_{ij}$$

In the case of 4 satellite facilities, for example

$$D_{1j} + D_{2j} \ge D_{12}$$

$$D_{2j} + D_{3j} \ge D_{23}$$

$$D_{3j} + D_{4j}^{2} \ge D_{34}$$

$$D_{4j}^{4} + D_{1j}^{2} \ge D_{4j}^{2}$$

$$2D_{1j}^{4} + 2D_{2j}^{2} + 2D_{3j}^{2} + 2D_{4j}^{2} \ge D_{12}^{2} + D_{34}^{2} + D_{41}^{2}$$

$$2\sum_{i=1}^{4} D_{ij}^{2} \ge D_{12}^{2} + D_{33}^{2} + D_{34}^{2} + D_{41}^{2}$$

$$D_{j}^{4} = \sum_{i=1}^{4} D_{ij}^{2} \ge \frac{1}{2}(D_{12}^{2} + D_{23}^{2} + D_{34}^{2} + D_{41}^{2})$$

Then in a generalized problem

18.15

$$D = \sum_{j=1}^{m} D_{j}$$

.

will be greater or equal to one half of n distances of the $\frac{D_{ik}}{1 \text{ east distances}}$ matrix and certainly greater than one half of the n

CHAPTER IV

HEURISTIC ALGORITHMS

DISCRETE - TWO DIMENSIONAL SPACE - EUCLIDEAN DISTANCES

When considering the unconstrained or constrained locational problem with single or multiple central facilities we always reach a point at which an iteration technique is required because of the implicit nature of the equations. Manual computation in such a case is quite tedious; computer programming is necessary when dealing with a large set of facilities. In the previous chapter we dealt at length on the mathematical reasoning supporting our method. It is often found in practice that working tools are also necessary and the development of these tools is rarely presented in the literature. This explains why a large amount of valuable research is frequently wasted or ignored because of a missing link between the scientist and the potential user. The following programs have been developed to be applied as an easy tool by any prospective user. Some of these algorithms have been studied extensively by Kuehn and Hamburger [35], Cooper [10], Feldman, Lehrer and Ray [24], Vergin and Rogers [53], but if their range of accuracy is discussed at

length, their innerworkings are not directly available to the user. Some other programs are new approaches giving more flexibility for the particular case of very large systems often present in federal government locational problems.

For each heuristic algorithm we shall study the general principle, the detailed logic diagram, some characteristics of programming, an application to an actual problem and a discussion on the results obtained and the corresponding expenses in computer time and memory.

The programs are written in FORTRAN which is a very known language but expensive in memory and computational requirements, a more careful programming or the use of AUTO-CODER might be necessary in some cases.

Terminology of variables in the following algorithms and computer programs. Some of these variables will be more fully explained in the corresponding algorithms using them.

x, y, or X(I), Y(I): Cartesian coordinates of facilities i r or XR(I): Rate of transport from facility i

> If we try to minimize a cost function it might be in dollar per pound per mile for example. If we try to minimize a time function it might be in nanosecond per bit per meter for example.

It might represent for example the poundage of goods to carry or the number of digitized bits of a message to transmit.

- N : Number of facilities
- M : Number of central facilities
- ITERA : Number of iterations in random search of facilities
- IGRID : Initial number of grid divisions on each X and Y axis
- ITGRD : Number of grid size changes
- INC : Incremental number of divisions on each X and Y axis when passing from one grid size to the next
- DOLD(I), DNEW(I): Old and new Euclidean distances from facility I to optimum central location
- SDOLD, SDNEW: Old and new sum of distances to the central facilities
- COLD(I), CNEW(I): Old and new transportation costs from facility I to optimal central location
- SCOLD, SCNEW: Old and new sum of transport cost to the central facility
- JOSAV(I), JNSAV(I): Old and new code number allocation of the facility I

- IOSAV(J), INSAV(I): Old and new code number of the randomly selected central location
- RAINC : Class width on cumulative distribution of locations
- RAD(I) : Class boundaries on cumulative distribution of locations
- KITER : Iteration counter
- YFL : Random number between 0 and 1.000
- D(I,J) : Euclidean distances from facility I to central location J
- L : Grid spacing counter
- XMIN, XMAX: Minimum and maximum values of X(I)
- YMIN, YMAX: Minimum and maximum values of Y(I)

IV.1. ONE CENTRAL LOCATION

IV.1.1. One Central Facility Heuristic Algorithm

The program is based on the iterative algorithm presented on page 50.

$$X^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{i} x_{i}}{\left[(X^{(k)} - x_{i})^{2} + (Y^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{i} m_{i}}{\left[(X^{(k)} - x_{i})^{2} + (Y^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}}$$

$$Y^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{r_{i} m_{i} y_{i}}{\left[(X^{(k)} - x_{i})^{2} + (Y^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{i} m_{i}}{\left[(X^{(k)} - x_{i})^{2} + (Y^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}$$

with

1

1

$$X^{(o)} = \frac{\sum_{i=1}^{n} r_{i} m_{i} x_{i}}{\sum_{i=1}^{n} r_{i} m_{i}}$$

$$Y^{(o)} = \frac{\sum_{i=1}^{n} r_{i} m_{i} x_{i}}{\sum_{i=1}^{n} r_{i} m_{i} x_{i}}$$

The logic diagram of the program is given on pages 86-87. The computer print-out and a set of results corresponding to 50 hypothetical facilities are given from page 182 to page 187.

It is to be noted that there is no built-in check for weight dominance and the user should scrutinize more thoroughly a solution which would be very close to an existing facility. The case of weight dominance of one facility is however, quite improbable when studying a large system.

The iterative process was stopped when

$$X^{(k+1)} - X^{(k)} \le ERR$$

 $Y^{(k+1)} - Y^{(k)} \le ERR$

the value of ERR being read in as a problem variable.

The algorithm was run with problems of various sizes from n = 3 to n = 500. It is to be noted that with ERR = 0.01, in the case of 3 facilities the central location was found in 23 iterations while for a problem of 500 facilities it required 28 iterations. The number of iterations depends largely on the extreme locations of some facility as the weighted distances will give a poor first estimate [36] and the number of steps of the iterative search are not necessarily more numerous with a large system than with a small one.

Fig. 33. Case of Extreme Locations in the Determination of One Central Facility

When looking at the variation of total transportation costs during the iterative process on the computer print-out, we can see that there is a lack of sharp minimum, which means that a rough location of the central facility, as given for example by the starting value in the case of nonextreme locations may be sufficient in practical use.

The program was run in the case of weight dominance and the algorithm rapidly converges toward the dominant facility, however, never exactly reaching it. (see page 189)

Computational time on an electronic digital computer may be quite expensive and a tally of time was kept to try to derive a relation between the number of facilities investigated and the corresponding computational time on IBM 360/40. In the particular system used the computer an operates on two problems at a time (mode MFP2) and the variable demands on its elements and stored sub-routines do not allow a time print-out reliable for each of the problems。 This inconsistency can be readily seen on the following Table 3, where compilation time varies drastically from one run to the next. There is no sure trend, but it can be considered that computational time is of insignificant importance in the total economics of most of the problems.

The total memory requirement in the case of 1000 facilities is 66F2 or 26,354 bytes of which 742 are

used for the program.

Real life data were used in the computation of one optimum central facility for the postal system, considering the continental 50 states of the union and their corresponding output in first class letter mail in the year 1965 [52]. This output volume was assumed to be originating from the capital city of the state the longitudes and latitudes of which were given [23]. With this particular limitation in the type of mail and assuming plane geometry, an optimum location for a postal institute for example, should be at 39°39'N and 83°27'W around Columbus, Ohio.

The program was also run for the sets of 20 facilities and 125 facilities which are used later on, in the analysis of the multiple central facilities algorithms. The results are shown in Figure 34 and Figure 35.

One Central Facility Heuristic Algorithm

Fig. 35 Location of one central facility Heuristic algorithm, N = 125
Table 3 - Computation Time Requirement -Discrete - Two Dimensional Space - Euclidean Distances Algorithm to Locate One Central Facility

Computer: IBM 360/40, Printer IBM 1403 N1, Computer Operating, Under MFP2

Time in Hours.Minutes.Seconds (Sexagesimal)

No. of	No. of	Time	Time	Time CO END	Total
Facil- ities	Itera- tions	Compilation	Subroutine Ass.	Oper.Time	Time
5	14	00.01.10	00.01.42	00.00.50	00.03.42
15	10	00.00.47	00.01.58	00.00.21	00.01.56
15	10	00.00.50	00.01.03	00.01.33	00.03.26
25	10	00.01.35	00.01.41	00.00.52	00.04.08
50	24	00.01.47	00.01.33	00.00.29	00.03.49
75	13	00.01.00	00.00.47	00.01.03	00.02.50
125	19	00.01.01	00.00.49	00.00.39	00.02.29
500	28	00.01.21	00.02.04	00.02.35	00.05.60

a l

Table 3a - Computation Time Requirement -Discrete - Two Dimensional Space - Euclidean Distances

Algorithm to Locate One Central Facility

Computer: IBM 360/40, Printer IBM 1403 N1, Computer Operating, Under MFP2

Number of Facilities	Begin Time JOB	Begin Step LKED	Begin Step GO	End JOB
5,	11.06.20	11.07.30	11.09.12	11,10,02
15	04。11。05	04.11.52	04.12.40	04.13.01
15	20.11.10	20.12.00	20.13.03	20.14.36
25	11.10.15	11.11.50	11.13.31	11,14,23
50	04.13.09	04.14.56	04.16.29	04.16.58
75	1 4 .14.50	14.15.50	14.16.37	14.17.40
125	12.49.26	12.50.27	12.51.16	12.51.55
500	20.05.04	20.06.25	20.08.29	20.11.04

Time in Hours. Minutes. Seconds (Sexagesimal)

Table 4 Postal System

Optimal Location of One Central Facility Processing All States Daily Output of First Class Mail

#	State	Capital	L <u>a</u> t. Deg-Min	Long. Deg-Min	Mail Output Pounds
1	Alabama	Montgomery	32° 23 'N	86° 17 ' W	62,650
2	Alaska	Juneau	58° 25 'N	134° 30 'W	1,163
3	Arizona	Phoenix	33° 30' N	112°00'W	22,288
.4	Arkansas	Little Rock	34° 42'N	92° 16 'W	20,916
5	California	Sacramento	38° 35 'N	121° 30 'W	394,139
6	Colorado	Denver	39° 44 ' N	104° 59 ' W	47,453
7	Connecticut	Hartford	41° 45 ' N	72° 40 'W	74,813
8	Delaware	Dover	39° 10 'N	75° 30 'W	15,863
9	Washington, D.C.	Washington	38° 50 ' N	77° 00 'W	238,476
10	Florida	Tallahassee	30° 25 'N	84• 17 'W	80,791
11	Georgia	Atlanta	33° 45 ' N	84° 23 'W	79,198
12	Idaho	Boise	43° 38'N	116° 12'W	9,502
13	Illinois	Springfield	39° 46 'N	89° 37 ' W	387,961
14	Indiana	Indianapolis	39° 45 'N	86°08'W	91,294
15	Iowa	Des Moines	41° 35 ' N	93° 37 'W	60,204
16	Kansas	Topeka	39°02'N	95° 41 ′₩	47,086

Optimal Central Location: 39°39'N, 83°27'W

#	State	Capital	Lat. Deg-Min	L <u>o</u> ng. Deg-Min	Mail Output Pounds
17	Kentucky	Frankfort	38° 10 'N	84°55′W	41,344
18	Louisiana	Batan Rouge	30° 28 'N	91° 10 ′ W	52 , 978
19	Maine	Augusta	4 4° 19 ′ N	69° 42′W	17 , 631
20	Maryland	Annapolis	39°00 'N	76° 25 ' W	73,834
21	Massachusetts	Boston	42° 15 'N	71°07'W	153,409
22	Michigan	Lansing	42° 45 'N	84° 35 ′ W	127 , 187
23	Minnesota	St. Paul	44° 57 'N	93° 05 ′ W	90,323
24	Mississipp i	Jackson	32° 17 'N	90° 10 'W	24,448
25	Missouri	Jefferson City	38°34'N	92° 10 ' W	139,140
26	Montana	Helena	46° 35 'N	112°01 ′ W	17,322
27	Nebraska	Lincoln	40° 49 'N	96° 43 ′ W	35 , 658
28	Nevada	Carson City	39° 10 'N	119° 45 ′ W	9,207
29	New Hampshire	Concord	43° 10 'N	71°30'W	11,631
30	New Jersey	Trenton	40° 13 'N	74° 46 'W	184,397
31	New Mexico	Sante Fe	35° 10 'N	106°00'W	17 , 645
32	New York	Albany	42° 40 'N	73°50'W	662 , 584
33	North Carolina	Raleigh	35° 45 'N	78°39′₩	73,749
34	North Dakota	Bismark	46° 48'N	100° 46 'W	11,646
35	Ohio	Columbus	40° 00 'N	83°00 ′ W	219,330
36	Oklahoma	Oklahoma City	35° 27 'N	97°32′W	59 , 159
37	Oregon	Salem	44° 55 'N	123°03′W	45 , 733

Optimal Central Location: 39°39'N, 83°27'W

.

#	State	Capital	Lat. Deg-Min	Long. Deg-Min	Mail Output Pounds
38	Pennsylvania	Harrisburg	40° 15 'N	76°50'W	302,933
39	Rhode Island	Providence	41° 50 'N	71°23′W	22 , 769
40	South Carolina	Columbia	34° 00 'N	81°00 'W	28,434
41	South Dakota	Pierre	44° 22 'N	100° 20 'W	10,292
42	Tennessee	Nashville	36° 10 'N	86° 48 'W	68,770
43	Texas	Austin	30° 15 'N	97° 42′W	233,041
44	Utah	Salt Lake City	40° 45 'N	111°52'W	23,110
45	Vermont	Montpelier	44° 20 'N	72°35′W	14,082
46	Virginia	Richmond	37° 35 'N	77° 30 'W	74,408
47	Washington	Olympia	47°02'N	122°52'W	53,472
48	West Virginia	Charleston	38° 20 'N	81° 35 'W	23,240
49	Wisconsin	Madison	43°05'N	89° 23 ′ W	86,544
50	Wyoming	Cheyenne	41° 10 'N	104° 49 ′₩	7,489

Optimal Central Location: 39°39'N, 83°24'W

IV.2. MULTIPLE CENTRAL LOCATIONS

IV.2.1. Multiple Central Facilities Heuristic Algorithm

The program should be based on the iterative algorithm presented on page 74.

$$X^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{\delta_{ij} r_{i} m_{i} x_{i}}{\left[(X_{j}^{(k)} - x_{i})^{2} + (Y_{j}^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{ij} r_{i} m_{i}}{\left[(X_{j}^{(k)} - x_{i})^{2} + (Y_{j}^{(k)} - y_{i})^{2} \right]^{\frac{1}{2}}}$$

$$\mathbf{Y}^{(k+1)} = \frac{\sum_{i=1}^{n} \frac{\delta_{i,j} \mathbf{r}_{i} \mathbf{m}_{i} \mathbf{y}_{i}}{\left[(\mathbf{X}^{(k)} - \mathbf{x}_{i})^{2} + (\mathbf{Y}^{(k)} - \mathbf{y}_{i})^{2} \right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{i,j} \mathbf{r}_{i} \mathbf{m}_{i}}{\left[(\mathbf{X}^{(k)}_{j} - \mathbf{x}_{i})^{2} + (\mathbf{Y}^{(k)}_{j} - \mathbf{y}_{i})^{2} \right]^{\frac{1}{2}}}$$

for $j = 1, 2, 3, \dots, m$ and $\delta_{ij} = 0, 1$ with

$$X_{j}^{(\circ)} = \frac{\sum_{i=1}^{n} \delta_{ij} r_{i} m_{i} x_{i}}{\sum_{i=1}^{n} r_{i} m_{i}}$$

 $=\frac{\sum_{i=1}^{n}\delta_{ij}\mathbf{r}_{i}\mathbf{m}_{i}\mathbf{y}_{i}}{\sum_{i=1}^{n}\mathbf{r}_{i}\mathbf{m}_{i}}$

The amount of computation becomes rapidly prohibitive even for less than 10 facilities and it is of little interest to develop such an algorithm. Other procedures must be sought to reduce the computational effort. In some practical problems we might know the set of satellite facilities depending on one central location, we are then brought back to the previous case of locating only one central facility. Such a simplification is often realistic, for example several market areas may have their own individual source. In some other cases we might know the position of all the facilities as well as the central ones but we do not know the value of the Kronecker delta, that is, we must find the set of appropriate satellites connected with each central facility.

IV.2.2. Destination Subset Algorithm [10]

In some practical problems one often considers enlarging or modifying an existing facility so as to use it as a central location for a set of satellites. We must then consider a subset m of the n facilities such that it minimizes transportation costs when connected to the proper set of satellites.

There are

$$\frac{n!}{m! (n - m)!}$$

possible choices of n facilities taken m at a time. For each of these combinations of m central facilities we must consider all the distances to all the other points and allocate the satellites which give the minimum distances.

It is to be noted that for m = 1 the method is trivial. Every location is tried as a candidate for a central facility and the sum of transportation costs computed for each of them, the location giving the least transportation cost is chosen as central location. A program was written for this particular case of one facility used as central location. The logic diagram is shown on pages 101-102. The program was applied to a set of 20 facilities with equal weight as per Figure 36. The computer print-out and results are given from page 190 to page 193 and the problem was processed in 3 minutes 49 seconds on the IBM 360/40 computer. The program uses 542 bytes, the total memory requirement varies with the size of the problem but in the particular case of 50 facilities it takes 418 bytes more.

In the case where m is relatively large, the amount of computation may be cumbersome because of the large

number of combinations: $\binom{n}{m}$. It is also complicated to make a general computer program which is able to consider all the possible combinations for all m. In the case where m is known a program can be readily developed using reference [38].

In practice, this assumption of using an existing facility as a central location is quite realisitc and it is not uncommon, for example, in the postal system to enlarge and mechanize an existing post office to use it as a "sectional center" handling mail of satellite post offices.

If because of the structure of the problem or its economic constraints the central facilities must be separate entities, then the use of the subset algorithm would not be correct. However, this algorithm allows the definition of the optimum δ_{ij} , that is the optimum set of satellites best served by one central location. For this particular set taken alone we may then compute the exact location of the central facility by using the program developed in paragraph IV.1.1. using the extremal equations found for the location of one and only center.

We are not sure however, that the method gives us the absolute minimum, first of all because we assume a priori a value of m, and secondly, because we intuitively decide that the set of satellites found by the subset algorithm are the best ones, even after correction is made to locate exactly the central facility. We also assume that

the corrected algorithm will bring some improvement which is not necessarily the case. In fact, in case of partial weight dominance from some facilities then chosen as central one by the subset algorithm, the exact solution may increase substantially the total cost of transport. A high loading and unloading cost at the chosen center may also create higher total cost using the algorithm IV.1.1.

In the destination subset algorithm we do not have any choice in the length of the investigation procedure. It is only through exhaustive enumeration of all the combinations that a correct allocation may be found. We should keep in mind for example, that for n = 100, m = 10 there are

 $\binom{n}{m} = \binom{100}{10} = \frac{100!}{10! 90!} = 17,310$ billion combinations of

10 central facilities. Then for each of these centers

(n - m) = 100 - 10 = 90 distances must be computed, that is m(n - m) = 900 distances are computed then compared for each allocation. This represents for example, 15,579 trillion computations involving square and square roots to find the right set of central facilities and satellites in the case of 100 facilities and 10 centers.

We have seen in section II.3.5. that the central facilities will be definitively situated within the convex hull defined by straight lines connecting extreme points.

. ..

Except in very rare cases of weight dominance or large obtuse angles of the convex hull, the central facilities will be found at the extreme points, we could then make abstraction of these k extreme points, thus reducing our possible combinations from $\binom{n}{m}$ to $\binom{n-k}{m}$.

Fig. 37 Destination Subset Algorithm One facility taken as a center N = 125

IV.2.3. Variable Grid Algorithm

When considering many hundred facilities and numerous central ones, the destination subset algorithm, although practical in assumption, may be too cumbersome to use because of the length of exhaustive computations.

We know that the optimum location of all the j centers (X, Y), must satisfy the system of inequalities

> $x_{minimum} \le X_{j} \le x_{maximum}$ $y_{minimum} \le Y_{j} \le y_{maximum}$

The area delimited by $x_{minimum}$, $x_{maximum}$ and $y_{minimum}$, $y_{maximum}$, can be divided into a mesh of large or fine spacing. The N intersection points of our mesh can then be treated as possible central facilities, m subsets of these N points can be found using a similar algorithm as in IV.2.2., so as to define the proper satellites minimizing transportation costs. In substance, this grid algorithm is similar to the destination subset algorithm but it is much more flexible. The choice of spacing will definitively influence our computing time (and possibly our locational accuracy), but at least we have a means of control on our computer time expenditure.

This algorithm is attractive as long as N < n, because it reduces the number of possible combinations to $\binom{N}{m}$. With this algorithm we are not too much interested in finding

the correct location of the central facility but the correct subset of allocations, once these subsets are known they can be studied independently and the algorithm IV.1.1. can give us for each one the correct location of the center. We can start with a very loose mesh containing at least m intersection points, define from it the corresponding δ_{ij} . A new mesh is then re-defined with a tighter spacing; if the new subsets of allocations remain the same, then it is probable that these allocations are correct. Similarly as with the destination subset algorithm we are never sure that these allocations are the best ones.

IV.2.4. Variable Grid Algorithm with Linear Constraints

The central facilities being located within the convex hull, a more efficient variable grid algorithm should discard the mesh points outside this convex hull. The linear constraints defining this convex hull can be found by a relatively involved separate sub-routine program, but it must be kept in mind that these facilities will have to be plotted sooner or later in order to present the results to management, then it is quite easy on that plot to locate the extreme points.

For this particular figure with n = 50 facilities, if we try to find the location of m = 3 central locations, we must consider $\binom{50}{3} = 19,600$ combinations or 2,763,600 computations. In the case of the variable grid algorithm with linear constraints only $\binom{14}{3} = 364$ combinations or 51,324 computations would be necessary. It is possible that the set of assignments in both cases may be identical and consequently the location of the central facility for each subset would be the same using the correcting algorithm IV,1.1. Inversely, in the case of very few facilities, the variable grid algorithm can present many more intersecting points and consequently the use of algorithm IV.1.1. might not be necessary in the final analysis and the optimum set of grid points might be accurate enough. This case is somewhat realistic as centers are sometimes located at the intersection of ranges and townships.

Some extra effort is necessary to define the convex hull. In the case of a large system the plot can be done quite rapidly for example, with a Calcomp plotter at the output of an IBM 1130 computer using the plotting sub-routines or the powerful "data presentation system". Another method would not use any plot but would define the hull by the following procedure. The points are ordered by increasing values of x. The point corresponding to xminimum is definitively an extreme point. The set of lines connecting this extreme point to the other points of the set will have facilities located above and below them, except for two lines which delineate a part of the convex boundary. These extreme lines are connected to new extreme points; from these, new sets of lines are defined, new boundary lines are found, some of these boundary lines will give new extreme points not previously defined. Furthermore, the method allows the definition of all the bounding lines and extreme points.

Fig. 39. Investigation Procedure to Define the Convex Hull

This particular grid algorithm with linear constraints may appear somewhat cumbersome to use. It may be pointed out that the destination subset algorithm by its very nature, automatically defines points within the convex hull. However, by using this variable grid, we have a direct handle on our computational effort and we may stop at any level of accuracy without having to go through the exhaustive set of $\binom{n}{m}$ combinations which might become enormous in the case of a very large system.

IV.2.5. Random Destination Algorithm [10]

The problem with the destination algorithm and even the variable grid algorithm is that the amount of computational effort may be very large. Also quite a number of combinations of grid points or destinations "rationally"

chosen by a replacement process can easily be recognized as poorly chosen when considering the layout of facilities.

Fig. 40. Irrational Choice of Central Facilities

If for example, we consider the "rational" set of combination $\binom{20}{3}$ 1, 2, 3; 1,2,4; 1,2,5; etc. we can readily see from Fig. 40 that they are poor contenders for the title of optimum central locations. A possible random choice of these combinations could lead more rapidly to a better solution. To avoid duplication of computational effort we could input all possible combinations from a pack of nicely shuffled cards. However, if we can write all the combinations it means that the problem is small enough to easily allow an exhaustive computation of all the combinations in any order presented. When the system becomes too large, then a sampling procedure might be advantageous, the subset of m facilities being chosen at random through a Monte Carlo technique from the set of n facilities. For this particular subset, allocations can be determined and the corresponding sum of weighted distances evaluated. During the sampling procedure it is possible to keep in the computer memory the set of m facilities with the best characteristics. As with every Monte Carlo procedure it is of utmost importance to know when to stop the procedure so as to obtain an acceptable level of error. A simple criterion would be to stop after a given number of samplings. A more sophisticated method would be to look at the distribution of weighted distances by maintaining a running talley of mean, μ , and standard deviation, σ , and stop the sampling if the allocation falls below $\mu = x\sigma_9$ x being determined through experience.

The logic diagram of a possible computer program is given on page 112. The program was applied to a set of 20 facilities as per Fig. 48, to be served by 3 central locations. The computer print-out and results are given from page 194 to page 200 and the 500 iterations were processed in 6 minutes 27 seconds on an IBM 360/40 computer. The program uses 1264 bytes. The total memory requirement varies with the size of the problem; for example, the variables occupy 1286 bytes more when sampling 20 facilities with 5 central locations. The program was also applied to 4 large systems of 125 facilities each; the results for the first system are shown on figure 50, and the quantitative results for all are given on page 160.a.

Diagram 3. Random Destination Subset Algorithm

IV.2.6. Random Grid Location Algorithm

When we are using the random destination algorithm, we are sampling from a population of $\binom{n}{m}$ combinations. We have seen that this set might be enormous if n and m are ralatively large (17 trillions in the case of $\begin{pmatrix} 100\\ 10 \end{pmatrix}$). Consequently the results given by a relatively small amount of sampling may be very much suboptimal. To avoid this pitfall we could take a much larger sample but this goes against our intent to reduce our computational effort. We could also divide the facility space into a mesh with a spacing such that the number of mesh intersection points is much smaller than n. In this last case, we are sampling from a reduced population of N mesh intersecting points still covering the whole area to be investigated. We are assuming in these grid algorithms that the distribution of facilities in space is uniformly spread, which is frequently the case for large systems. This method however, would not be very efficient in the case of remote clusters.

The logic diagram of a possible computer program is given on page 116. The program was applied to the same set of 20 facilities served by 3 central locations of algorithm IV.2.5. The computer print-out and results are given from page 201 to page 217. Five possible grid spacings were investigated by dividing the circumscribed rectangle in 3, 4, 5, 6, then 7 divisions on each axis.

For each grid spacing 100 samplings were made. The corresponging 500 samplings were done in 6 minutes 33 seconds on an IBM 360/40 computer. The program uses 1694 bytes. The total memory requirement varies with the size of the problem, for example, the variables occupy 1494 bytes more when sampling 20 facilities with 5 central locations and 50 possible grid intersection points.

Diagram 4. Random Grid Location Algorithm

IV.2.7. Random Grid Algorithm with Linear Constraints

This algorithm is very similar to the random grid location algorithm. A mesh is defined to cover the facility space and the mesh intersection points selected at random as possible central facilities. To decrease further the number of combinations we exclude from our sampling process the mesh intersection points which fall outside the convex hull enclosing the facilities. Definition of the hull can be done by the methods described under paragraph IV.2.4.

The logic diagram of a possible computer program is given on page 121. The program was applied to the same set facilities served by 3 central locations of algoof 20 rithm IV.2.5. The computer print-out and results are given from page 218 to page 234 . Five possible grid spacings were investigated by dividing the circumscribed rectangle in 3, 4, 5, 6 then 7 divisions on each axis. The linear constraints are defined and during sampling each grid intersection is checked against these constraints, this intersection point is rejected if it violates any one of the constraints. For each grid spacing 100 samplings were made. The corresponding 500 samplings were done in 5 minutes 59 seconds on an IBM 360/40 computer. The program uses 2052 bytes. The total memory requirement varies with the size of the problem: for example, the variables occupy 1742 bytes more when sampling 20 facilities with 5 central loca-

tions and 50 possible grid intersection points.

Every point (x,y) of the linear constraint passing through the extreme points (x, y) and (x, y), is subjected to the equation:

$$\frac{\mathbf{y} - \mathbf{y}_{i}}{\mathbf{y}_{i} - \mathbf{y}_{i}} = \frac{\mathbf{x} - \mathbf{x}_{i}}{\mathbf{x}_{i} - \mathbf{x}_{i}}$$

A part of the data input includes the number of linear constraints (NC), number relatively small even for large sets, and the extreme points defining each constraint. The constraints are grouped in two classes: first the one "smaller than or equal to" (MC of them), then the one "larger than or equal to". The program automatically defines the elements of the linear equation: angular coefficient and ordinate at origin, and rejects the random grid points violating any of the constraints.

The program was also applied to 4 large systems of 125 facilities each; the results for the first system are shown on figure 58 and the quantitative results for all are given on page 160.a.

Diagram 5. Random Grid Algorithm with Linear Constraints

IV.2.8. Successive Approximation Algorithm [10]

The complexity of the locational problem increases with n but even more drastically with m. It is a relatively small problem to find the optimum allocation when m = 2because of the limited number of combinations $\binom{n}{2}$. If the allocation were found for such a set we could then try to introduce a third center by placing it for example, at one of the facilities. Then we would have to test each facility to see if it could not be better served from the new central one, and re-allocate accordingly. The process can then be carried up to m centers.

In this method the problem is to choose adequately each new center. In some practical problems the subjective choice may be sufficient to lead to the optimum allocation, however, in most cases it is difficult to pick good contenders and the resulting allocation may be suboptimal. After the 1st approximation we still must consider (n - 2) facilities as possible centers, and this number may be quite large.

IV.2.9. Grid Successive Approximation Algorithm

In a like manner to the successive approximation algorithm of paragraph IV.2.8, we choose to select two grid intersection points as central facilities, and once the best allocations are defined a third grid point is introduced for an improved re-allocation. The process is carried until m

sets of allocations are defined, then each subset may be processed with the algorithm IV.1.1. to find the exact center locations.

In this case we are limiting our investigation to a set of grid points N which are directly under our control. Once 2 optimum grid points are defined, we can more easily investigate all the remaining grid points as possible third center. The program can also be devised as to reject grid points violating the linear constraints of the convex hull.

IV.2.10. Alternate Location - Allocation Algorithm

The set of n locations is divided into m sets of approximately identical number of points, and for each of these subsets the best central location is defined. Each point is then tested to see if it is closer to its central facility than the neighboring one. If the neighboring one is closer, new subsets are defined and new central locations computed. The process is combined until further improvement is not possible.

The method is sometimes known as the ALA Algorithm and was suggested by both Cooper [10], Vergin and Rogers [52]. This algorithm has been applied to some practical problems, for example, it was used by Devine and Lesso [17] in the optimization of offshore oil fields.
IV.2.11. Variable Discrimination Algorithm

When we look at a very large system of facilities we might consider reducing our power of discrimination. In so doing, we are assuming that in a set of facilities the locations are so closely located that they may be considered as a single entity.

This set of n_k facilities will have a corresponding mean weight

$$\mathbf{w}_{\mathbf{k}} = \frac{1}{\mathbf{n}_{\mathbf{k}}} \sum_{\mathbf{i}=1}^{\mathbf{n}_{\mathbf{k}}} \mathbf{r}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}}$$

acting at a point

$$\mathbf{x}(\mathbf{n}_{k}) = \frac{\sum_{i=1}^{n_{k}} \mathbf{r}_{i} \mathbf{m}_{i} \mathbf{x}_{i}}{\sum_{i=1}^{n_{k}} \mathbf{r}_{i} \mathbf{m}_{i}}$$

$$y_{(n_k)} = \frac{\sum_{i=1}^{n_k} r_i m_i y_i}{\sum_{i=1}^{n_k} r_i m_i}$$

If the system is very large we might use a very small power of discrimination and therefore include large clusters of facilities into the same set. If on the other hand the problem is relatively small we might increase our power of discrimination and include only very few facilities in each set.

Once all the sets n_1, n_2, \dots, n_k are defined, we may apply any one of the previous algorithms to solve the locational problem. The only purpose of our method is to condense the total number of facilities into a smaller set.

Fig. 42. Variable Discrimination Algorithm

We will assume that each facility is surrounded by a blurry area, if another facility is present in this area it is not recognized as separate. If two or more facilities have intersecting blurred areas they will be considered as a single one.

Fig. 43. Variable Discrimination Algorithm Blurred Areas

We have direct control over the size of the blurr and accordingly over the size of the problem.

In this process we make the assumption that closely located facilities will finally depend on the same center. In theory it might be wrong (see Fig. 44.), but in practice it is highly improbable that closely located facilities will depend on different centers, if only for avoiding disruption created by discontinuity of management or operation.

Fig. 44. Variable Discrimination Algorithm Underlying Assumption

It is to be noted that we would like to discriminate more sharply the facilities with heavy weight and more loosely the facilities with little weight; the blurred area should then be inversely proportional to the facility weight.

Fig. 45. The Discriminating Power is Proportional to the Respective Weights

In practice the problem is to define the subsets n, n, ", "", "k"

In a large system it is highly improbable that the plot will be found to be of much help as every facility must be scrutinized independently, we must then be able to automatically define these subsets. Two approaches are possible. For each facility we may compute all the corresponding Euclidean distances to all other facilities and select the shortest one within a given value 2ε , this would amount to computing $\frac{n(n-1)}{2}$ distances. We may also order the abcissae of our facilities and check the one with corresponding x and y falling less than 2ε apart; in this particular case the blurred areas would be assimilated to Squares.

Fig. 46. Variable Discrimination Algorithm Agglomeration by Closeness of Coordinates

The value of ϵ depends on the size of the set we want finally to handle with the previous algorithms. The computer program could be built in such a manner that we would define the size of the desirable set, a given ϵ would be tested and increased if the agglomerated set was found to be too large, or decreased in the other case.

With this algorithm we can reduce a very large set to a smaller one easier to handle and although the results of the locational problem may be approximate, we can deal with any size problem and we will not be stopped by the computer memory or computational time. In some cases the problems may be so large that it is not even possible to store all the facilities coordinates and weights in the computer memory space, it is then necessary to partition the problem and agglomerate the sets successively in each partition.

Diagram 6. Variable Discrimination Algorithm

CHAPTER V

ANALYSIS OF RESULTS

Some of the previous algorithms have been extensively studied by Leon Cooper and applied to 100 locational problems with 60 facilities and 4 central locations. In one of his research papers [12] he gives the following percent deviation from the lower bound (ref: II.3.5, III.2.2).

Table 5. Errors in Algorithms

(Applied to 100 Problems, n = 60, m = 4)

	Mean Percent Error	Mean Percent Deviation from Lower Bound
Destination Subset	0.948	360.1
Random-Destination	2.518	367.2
Successive-Approximation	7.086	387.9
Alternate Location- Allocation	2.582	367.7

In judging these methods we should not be comparing only the minimum sum of distances that they give, but mainly how fast they offer the correct set of satellites, as each of these sets gives the exact solution very rapidly and with little memory requirement by applying algorithm IV.1.1. With these criteria, the destination subset algorithm with the lowest mean percentage error is one of the poorest, while the variable grid algorithm is much better.

We should also look at the memory requirement and computing time, above 50 facilities the destination subset algorithm is not practical, above a few hundred facilities the random destination and random grid may reach the limit of memory space (around 1,000 bytes of memory is required for each facility with the random grid algorithm and linear constraints in the search for 5 central locations). For larger systems of many thousand facilities the use of the discrimination algorithm is a necessity, it may rank poorly in mean percent error but it is the only method now available which can solve such a system.

The valuable grid algorithms and discrimination algorithms have been mainly devised for large systems. However, to compare with existing algorithms they were tested for a set of 20 facilities and 3 central locations (Fig. 48). Then to compare the results in the case of a larger system it was applied to 125 facilities served by 3 centers. Because of computer time limitations it was not possible to make a more exhaustive study.

V.1. <u>RANDOM DESTINATION ALGORITHM</u> Distribution of Distances

V.1.1. Small System: n = 20, m = 3500 Samples

Range

98.009 - 43.927 = 54.082

Number of classes

;

Sturges rule: $k = 1 + 3.3 \log_{10} N$

k: number of classes to use

N: total number of data

 $k = 1 + 3.3 \times 2.69897 = 1 + 8.9 \cong 10 \text{ classes}$ Class interval

.

.

54.082/10 = 5.4082

Table 6. Random Destination Algorithm

Distribution of Distances

Small System

	Class Boundaries	Frequency
1	43.927 - 49.335	53
2	49.336 - 54.743	154
3	54.744 - 60.151	97
4	60.152 - 65.559	80
5	65.560 - 70.968	56
6	70.969 - 76.376	26
7	76.377 - 81.784	17
8	81.785 - 87.192	6
9	87.193 - 92.600	5
10	92.601 - 98.009	6
		500

Mean: 59.629

Standard Deviation: 9.928

The distribution of distances has a positive skewness, the optimum assignment lies at 1.58σ from the mean, while poor assignments extend up to 3.86σ from the mean.

140

V.1.2. Large System: n = 125, m = 325 Samples

Range

r.

6186.930 - 3323.594 = 2863.336

Number of classes

 $k = 1 + 3.3 \log_{10} 25 = 1 + 3.3 \times 1.39794 = 5.6 \cong 6$ Class Interval

2863.336/6 = 477.2226

Table 7. Random Destination Algorithm Distribution of Distances Large System

•	Class Boundaries	Frequency
1	3323.594 - 3800.816	6
2	3800.817 - 4278.039	7
3	4278.040 - 4755.261	7
4	4755.262 - 5232.484	3
5	5232 . 485 - 5709.707	0
6	5709.708 - 6186.930	2
		25

Mean: 4331.586

Standard Deviation: 750.026

The distribution of distances has a positive skewness, the optimum assignment lies at 1.34σ from the mean, while poor assignments extend up to 3.86σ from the mean.

The 25 iterations were made in 4 minutes 31 seconds on an IBM 360/40 computer.

V.2. RANDOM GRID LOCATION ALGORITHM DISTRIBUTION OF DISTANCES

V.2.1. Small System: n = 20, m = 3

100 Samples per Grid Division

5 Grid Divisions from 3 to 7

Number of classes

 $k = 1 + 3.3 \log_{10} 100 = 1 + 3.3 \times 2 \cong 8$ classes

Table 8. Random Grid Location Algorithm

Grid Divisions	Range	Class Interval
3	116.045 - 57.769 = 63.276	63.276/8 = 7.9095
4	104.580 - 53.128 = 51.452	51.452/8 = 6.4315
5	108.658 - 50.847 = 57.811	57.811/8 = 7.2263
6	102.296 - 52.866 = 49.430	49.430/8 = 6.1787
7	119.858 - 61.436 = 58.422	58.422/8 = 7.3027

Ranges and Class Intervals

Total distribution

Number of classes: $k = 1 + 3.3 \log_{10} 500 \approx 10$ Range: 119.858 = 50.847 = 69.011 Class interval: 69.011/10 = 6.9011

Table 9. Random Grid Location Algorithm

Distribution of Distances

Small System

r

	Grid Division						
C 3		4			5		
4 00 00 00	Class Boundaries	F req •	Class Boundaries	Fi fi e c' •	Class Boundaries	F req∘	
1	52.769- 60.678	22	53 . 128- 59 . 559	14	50.847- 58.073	5	
2	60 . 679 - 68.588	32	59.560- 65.991	21	58.074- 65.299	18	
:3	68.589 - 76 .497	16	65.992- 72.422	22	65.300- 72.526	28	
4	76.498- 84.407	8	72.423- 78.854	19	72.527- 79.752	20	
5	84.408- 92.316	7	78.855- 85.285	11	79.753- 86.978	19	
6	92.317-100.226	1	85.286-91.717	8	86.979- 94.205	5	
7	100.227-108.135	2	91.718- 98.148	3	94.206-101.431	4	
8	108.136-116.045	2	98.149-104.580	2	101.432-108.658	1	
	Mean: 70.727	Mean: 71.946		Me	an: 73.414		
	Std. Dev.: 12.781	Std. Dev.:10.920		St	d. Dev.:11.347		

Table 9. Random Grid Location Algorithm

Distribution of Distances

Small System

	Grid Division					
C	6		7		Total	
⊥ a ∽ ∽ e ∽	Class Boundaries	Ęне а °	Class Boundaries	۴ ۲e ۹	Distritution Class Boundaries	F r e q °
1	52.866- 59.044	13	61.436- 68.738	21.	50.847- 57.748	36
2	59.045- 65.223	24	68.739- 76.041	37	57.759- 64.649	87
3	65.224- 71.402	31	76.042- 83.344	27	64.650- 71.550	136
4	71.403- 77.581	27	83.345- 90.647	5	71.551- 78.451	122
5	77.582- 83.759	1	90.648- 97.949	1	78.452- 85.352	62
6	83.760- 89.938	0	97.950-105.252	3	85.353- 92.253	27
7	89.939- 96-117	3	105.253.112.555	2	92.254-99.154	12
8	96.118-102.296	1	112.556-119.858	4	99.155-106.055	10
9					106.056.112.956	3
10					112.957-119.858	5
	Mean: 67.792	*	Mean: 78.153		Mean: 72.405	
	Std. Dev.: 8.233 St		Std. Dev.:12.108		Std. Dev.:11.655	

In this particular layout of facilities, whatever the grid division may be, the mean sum of distances, the standard deviation and the minimum sum are all larger than the ones found with the random destination algorithm. It took 43 samplings to reach the minimum with the random destination method. With the random grid method only the division in 3 offered a total number of grid points less than 20 and, in this particular case, the minimum distance was reached in 2 samplings. The other grid division required an average of 47 samplings before reaching optimum. This single problem is not enough to bear any definite judgment on the speed of the method except that it consistently gives larger error than the random destination algorithm; we must then consider that the random grid algorithm is inadequate for a small number of facilities. We will show that for a larger set this method becomes more and more efficient.

V.2.2. Large System: n = 125, m = 325 Samples per Grid Divisions One Grid Division in 5

Range

6064.238 - 3387.996 = 2676.242

Number of classes

$$k = 1 + 3.3 \log_{10} 25 \cong 6$$

Class interval

2676.242/6 = 446.0403

Table 10. Random Grid Location Algorithm

Distribution of Distances

Large System

	Class Boundaries	Frequency
1	3387.996 - 3834.036	6
2	3834.037 - 4280.076	6
3	4280.077 - 4726.116	4
4	4726.117 - 5172.157	3
5	5172.158 - 5618.197	5
6	5618.198 - 6064.238	1
		25

Mean: 4459.856

Standard Deviation: 770.290

The optimum assignment lies at 1.39σ from the mean, while poor assignments extend up to 2.08σ from the mean. It is to be noted that although the minimum sum of distances is nearly identical to the random destination algorithm, the assignment is quite different. We must apply the exact re-location (IV.1.1.) to find out what is the optimum method of the two.

The 25 iterations were made in 5 minutes 42 seconds on an IBM 360/40 computer.

V.3. RANDOM GRID WITH LINEAR CONSTRAINTS

V.3.1. Small System, n = 20, m = 3100 Samples per Grid Division 5 Grid Divisions from 3 to 7

Table 11. Random Grid with Linear Constraints Ranges and Class Intervals

Grid Divisions	Range	Class Interval
3	76.490 - 52.941 = 22.549	22.549/8 = 2.8186
4	73.176 - 46.781 = 26.395	26.395/8 = 3.2992
5	88.660 - <u>5</u> 0.051 = 38.609	38.609/8 = 4.8261
6	81.441 - 54.283 = 27.158	27.158/8 = 3.3947
7	121.155 - 64.102 = 57.053	57.053/8 = 7.1316

Total Distribution

Number of classes:	10		
Range :	121.155 - 46.781	=	74.374
Class interval :	74.374/10	=	7。4374

Table 12. Random Grid with Linear Constraints

Distribution of Distances

Small System

:

	Grid Division					
C	C 3		4	4		
& s s s e s	Class Boundaries	Fre o .	Class Boundaries	Freq.	Class Boundaries	F req °
1	52.941- 55.759	53	46.781- 50.080	7	50.051- 54.877	17
2	55.760- 58.578	15	50.081- 53.379	9	54 . 878- 59.703	24
3	58.579- 61.396	0	53.380- 56.679	21	59.704- 64.529	20
4	61.397- 64.215	5	56.680- 59.978	27	64.530- 69.355	15
5	64.216- 67.034	24	59.979- 63.277	11	69.356- 74.181	11
6	67.035- 69.852	2	63.278- 66.577	15	74.182- 79.007	7
7	69.853- 72.671	0	66.578- 69.876	5	79.008- 83.833	4
8	72.672- 75.490	1	69.877-73.176	5	.83.834- 88.660	2
Mean: 57.901		Mean: 58.767		Mean: 63.731	<u> </u>	
	Std. Dev.: 5.368		Std. Dev.: 5.852		Std. Dev.: 8.708	

Table 12. Random Grid with Linear Constraints

154

Distribution of Distances

Small System

-

C.

	Grid	. Div	ision		Total	
Ċ	б		7		Distribution	
⊣ ൽ ଉ ଉ ଢ ଉ	Class Boundaries	Freq.	Class Boundaries	Fre q.	Class Boundaries	Freq.
1	54.283- 57.677	9	64.102- 71.233	30	46.781- 54.218	64
2	57.678- 61.072	28	71.234- 78.365	52	54.219- 61.655	154
3	61.073- 64.467	19	78.366- 85.496	17	61.656- 69.093	154
4	64.468- 67.862	16	85.497- 92.628	0	69.094- 76.530	81
5	67.863- 71.256	12	92.629- 99.760	0	76.531- 83.968	42
6	71 .257-74.6 51	10	99.761-106.891	0	83.969- 91.405	4
7	74.652- 78.046	2	106.892-114.023	0	91.406- 98.842	0
8	78.047- 81.441	4	114.024-121.155	1	98.843-106.280	0
9					106.281-113.717	0
10					113.718-121.155	1
	Mean: 64.680	<u></u>	Mean: 74.576		Mean: 63.930	
Std. Dev.: 6.230		Std. Dev.: 6.937 Std. Dev.: 8.959				

In this particular layout of facilities, the variability in the sum of distances is less with the random grid with linear constraints than with the random destination method. When the number of grid points is smaller than the number of facilities, the mean value of the sum of distances is definitively improved (57.9 and 58.7 compared to 59.6). The optimum value of 46.781 obtained with a grid division of 4 is still larger than 43.927 given by the random destination method, however, the assignment in satellites is the same and consequently after final location with algorithm IV.1.1. the sum of distances will be identical.

It is interesting to note that when the number of grid points is too small the distribution becomes multimodal, for example, 2 modes appear at 54 and 65 for a grid division of 3. As the number of grid points increases the distribution gets skewed more and more to the right; this is due to the fact that we take percentagewise fewer and fewer samples as the population increases. This fact explains why the random destination algorithm will not be efficient when used with a very large system, because it will then be necessary to take also very large samples from the population to finally get a point near optimum.

IV.3.2. Large System, n = 125, m = 325 Samples per Grid Division One Grid, Division in 6

Range

4922.980 - 3082.082 = 1840.898

Number of classes

 $k = 1 + 3.3 \log_{10} 25 \cong 6$

Class interval

1840.898/6 = 306.8163

Table 13. Random Grid with Linear Constraints Distribution of Distances

. ..

Large System

	Class Boundaries	Frequency
1	3082.082 - 3388.898	7
2	3388 .899 - 3 695 . 714	7
3	3695.715 - 4002.530	3
4	4002.531 - 4309.347	5
5	4309.348 - 4616.163	2
6	4616.164 - 4922.980	1
	<u></u>	25

Mean: 3754.705

Standard Deviation: 504.635

The optimum assignment lies at 1.33σ from the mean, while poor assignments extend up to 2.32σ from the mean. It is to be noted that for such a small number of samples, this method gives the best assignment of any other method. (8% better than the random destination subset algorithm)。 Moreover the spread of results is not so large, there is a drastic improvement in the value of the standard devia-504 compared to 750 for the tion of the sum of distances: random destination subset algorithm. This improvement is easily understood by looking at Figure 40 where it is shown the possible irrationality of the sampling made with the random destination method. When the set of N facilities increases, the random grid with linear constraints will improve with it as it spreads the limited number of sampling points all over the facility space.

Table 14

Random Grid with Linear Constraints versus Random Destination Subset Algorithm Application to 4 Different Systems N = 125, M = 3, 25 Random Samples

Computer: IBM 360/40

Printer: IBM 1403 N 1

The exact minimum sum of distances is computed by applying algorithm IV.1 to the sets of satellites defined by the corresponding algorithms.

Sys- tem #		Random Destination Subset Algorithm	Random Grid with Linear Constraints
1	Minimum sum of distances Mean sum of distances Standard deviation of sum of distances Exact minimum sum of distances	3323.594 4331.586 750.026 3122.075	3082.082 3754.705 504.635 3000.712
. 2	Minimum sum of distances Mean sum of distances Standard deviation of sum of distances Exact minimum sum of distances	3147.336 4362.776 938.340 2890.957	3290.181 4277.913 790.590 2837.912
3	Minimum sum of distances Mean sum of distances Standard deviation of sum of distances Exact minimum sum of distances	3048.011 3726.594 532.571 3061.424	3063.494 3779.001 542.535 3030.233
4	Minimum sum of distances Mean sum of distances Standard deviation of sum of distances Exact minimum sum of distances	3010.937 3987.171 848.243 2966.200	3050.184 3609.579 505.884 2953.828

160.a Summary of Results
V.4. VARIABLE DISCRIMINATION ALGORITHM

The discrimination algorithm is to be used when the size of the problem is sc large that it cannot be handled by the computer facility because of the memory requirement.

Using FORTRAN to program all the previous algorithms made the tools easy to use with any make of computer; however, it drastically reduces our memory space. For example, a problem with 500 facilities could not be handled with our 122K computer facility. At the national scale it is common to be faced with problems involving many thousands of facilities; the discrimination algorithm can then be used to condense this set to a smaller size of easier manipulation.

The simple variable discrimination program given on page 235 to page 237 was used to cluster a set of 125 facilities into a set of 75, using a storage space of 1062 bytes for the program and approximately 1.5 bytes per facility considered. When the facilities are not plotted it is difficult to guess correctly a good starting value for the discriminating power and its possible variations. It is wise to start with a large value of discriminant DISCR, large variation steps DINC, and wide open tolerances NERR. With a very small number of loops: NLOOP, the investigator can rapidly see how the set behaves under the clustering program; it is then easy to adjust properly the discrimination argument, its variations, and the range of

tolerance for the expected subset. The program does not have a built-in system to compute the new weighted location, transport rate and amount to be transported for the generated cluster, an easily developed sub-routine could be devised to do such a computation; time was not available to develop it.

Figure 59 shows the clustering effect of the algorithm as applied to our set of 125 facilities. It would be interesting to apply any one of the previously developed algorithms to study the variation in total sum of distances and corresponding loss in accuracy (if any) created by this clustering. It is to be noted also, that with our available memory space of 122K we could easily condense sets containing up to 10,000 facilities.

Fig. 59 Variable Discrimination Algorithm

CHAPTER VI

CONCLUSION

IV.1. Recommended Future Research

In the preceding chapters we covered some of the highlights of the state of the art in some of the methods which have been used to solve the two dimensional locational problem in Euclidean space, and we expanded some new computational methods adjustable to large systems. When reviewing these methods we find many areas which would require further research.

The analog method first appealed to the author many years ago while measuring electrical fields in oil well surveying, but it must be granted that the method involves the possibility of large errors and is relatively inflexible as the facilities must be physically plotted and fitted with mechanical or electrical devices. It is undoubtedly possible to find a better instrumentation and technique but the analog method will remain cumbersome and will have mostly a demonstration purpose.

Very little has been done with the geometric method in the case of multiple vertices, although historically it

was the first one to be developed for few vertices. It is to be noted that many complex problems in the field of mechanics or electricity may be solved graphically with enough accuracy for practical purpose. The author has tried many geometrical constructions to reduce the force closure vector by a hopefully convergent procedure but to date nothing of value has been found.

The drawing of isodapanes and the mapping of costs has been undertaken on a digital computer but all the results presented in the literature show painfully hand-drawn curves from points of equal costs plotted by the computer. It seems quite feasible to devise a Calcomp plotter sub-routine for example, to trace and interpolate automatically these curves.

In the iterative algorithm of the algebraic solution as applied to one central facility we could have used the conventional approach of varying X to reduce $\partial C/\partial X$, then modify Y to reduce $\partial C/\partial Y$ and continue the process hopefully toward convergence, however, the optimum may be too long to reach or may be missed altogether if the steps are not adequate and these steps cannot be defined a priori without having an insight on how the derivatives behave.

Fig. 60. Convergent Iterative Process

We preferred to use a method which starts at the weighted mean of distances and it has successfully converged all the time, however, no formal proof of this convergence is still available.

Moreover, we have found that the starting value we used may be far from the optimal location in case of weight dominance, we should then consider the use of a more heavily weighted arithmetic mean to encompass for this error. For example, it would be interesting to study the optimum value of the power k > 1 in the following starting values so as to obtain an accelerated convergence or even a good enough optimum location without iteration.

;

It is probable also that the use of the Holder inequality could lead us to a more restrictive bound than the triangle inequality.

Quite a number of non-linear problems are successfully solved by the use of geometric programming. It has been previously demonstrated that the method could solve exactly the single-center locational problem. In practice, however, the method becomes rapidly infeasible because of the very large degree of difficulty encountered, even with relatively small systems.

The constrained problem has been mentioned but no exact solution computationally attractive has been found to date with the Lagrangian or Khun-Tucker methods.

In the study of multiple central facilities we tried to develop a few algorithms computationally attractive for the case of large systems. Because of time and computer

expenditures limitations we barely developed and tested three algorithms and the very few cases run were not enough to statistically prove the superiority of the variable grid algorithm with linear constraints over the random destination algorithm in the case of large systems. It seemed that above 100 facilities the variable grid with linear constraints gave a better allocation in less time and with less spread in results than the random destination algorithm but this statement must be supported by future substantial statistics and further research.

VI.2. Summary

In Table 1 of the introductory chapter we had listed most of the types of locational problems we are faced with in practical life. In our study we limited ourselves to the expansion of some computational techniques applied to large systems of facilities located in a discrete space and interconnected by Euclidean distances. Even under such drastic limitations we only developed three new methods: the random grid location, the random grid with linear constraints and the variable discrimination algorithms. The testing and debugging of these programs are complete, but due to limitations in time and computer expenditure the complete statistical study of results is quite incomplete.

Our effort is not in vain however, and adds to the multiple research done in locational theory. We may look

down on the analogue methods of solution but in some practical problems these are the only techniques self-explanatory to management and of recommended use by Haley [30] in 1963 or Eilon and Deziel [22] in 1966.

Some researchers, on the other hand, are very oriented to theory and try to reduce the locational problem to a more manageable mathematical model, or to connect it more closely to the extensively studied transportation and transhipment problems [3] [25] [29].

For some other researchers, an approximate answer is quite sufficient for the practical use it will be made of it. Although it has been shown that the definition of the center of mass is erroneous, it will give in practice a result with acceptable accuracy, mostly if there is no undue weight dominance or extreme locations. The optimal location in the case of one center is then found at the intersection of the weighted arithmetic means of the demand points along two orthogonal axis and the problem is identical to the definition of the center of gravity of a two-dimensional object in mechanic [19] [44].

When faced with equations of implicit nature, some researchers will try to find some heuristic algorithms, that is to say some numerical methods of iterative or simulative nature contributing to a reduction in the average search for the optimum solution. This is the method that I have adopted because it is flexible enough to adjust to all the problems

and realistic enough to approach real life problems. Some of these methods are presented in the literature [10] [24] [35] [50] [53], and although they are logically complete they require extensive programming and testing to be duplicated by a potential user. Some of these heuristic methods may even attempt some non-linear cost functions or some large systems [24]. Most of these methods have some simplifying assumptions: Kuehn and Hamburger [35], as well as Feldman, Lehrer and Ray [24] read in all the potential central locations sites and use the add or "Drop" approach to eliminate the ones which are not economically interesting transportationwise; they may even consider some unified transport rates which are far from real world situations. Nor do any of them take into account the type of road system, inaccessible areas, labor costs and site costs, etc., but even with these drastic restrictions the results could be useful, but it is the extreme exception rather than the rule when the computer program is made public [18].

Up to now, we have not even mentioned the very important case in which the elements to service are so numerous that they may be considered as part of a continuum with a given density per unit area. This is the case for example, of locating city service centers and is of very practical nature. Some approaches to this problem have been treated by Witzgall [56] in the case of a Manhattan metric of streets and perpendicular avenues, or in the case of a city beltway

and radial streets. For example, a computer program in FORTRAN was devised [57] to locate a central facility serving a polygonal demand distribution that is a superposition of many distributions each bounded by a polygon with constant density inside and vertices following in counterclockwise direction.

Fig. 61. Example of Polygonal Demand Distribution Location of Central Facility

The locational problem in Manhattan metric has a great potential application in optimal plant layout and has been studied, for example, by Bindschedler and Moore [5] [44] and a computer program devised by Armour [1] to mention just a few.

In our study we have always assumed a value of m, without knowing if it were the most appropriate and the one leading to an absolute minimum cost. Bender, Goldman and Levin [4] [39] have done some research in that area to find the necessary "degree of centralization" that is the optimum number of centers to be located in a given area.

Our study was considering only a two-dimensional space with each facility bearing 2 attributes of cartesian coordinate location; however, in numerous practical problems of sorting and classification it is common to find elements with multiple characteristics. In taxonomy for example, n species may be scored for m characters. In these particular problems it is desirable to cluster large number of objects, symbols or persons into smaller numbers of mutually exclusive groups, each having members that are as much alike as possible. In two dimensional space our Euclidean distances represented the minimization of weighted sum of squares about the group mean. Similarly in multi-dimensional space we will consider the minimization of the function:

$$C = \sum_{i=1}^{n} w_{i} \left[\sum_{j=1}^{m} (x_{ij} - x_{j})^{2} \right]^{\frac{1}{2}}$$

and it represents the "loss of information" as reflected by the error sum of squares. This cluster analysis is very common in social sciences, psychology, biology and marketing. Much has been written on this subject but we will mention just a few [27] [2] [20]. The theory is very nicely covered by Cooper [14] and a selection of computer programs to solve this generalized locational problem are available [6] [49] [40].

Even though the amount of literature is impressive in the field of locational theory and spans over many centuries

of research little has been achieved. The geometric solution did not lead to anything of much value, the proof of a convergent algorithm has never been done completely [34] and the various investigative algorithms become rapidly impossible over few hundred facilities. The main goal of this dissertation was to decrease the computational requirement of some of the methods. The variable grid algorithms and the variable discrimination method allow the condensation of a very large set into a smaller one easier to manipulate. In the process of agglomeration some of the information is lost and the final solution may be only suboptimum; however, the result will be better than nothing at all. In multi-dimensional problems the variable grid algorithms will also be applicable, the grid points will be multi-dimensional and the linear constraints will be changed into planes and hyperplanes; similarly the discrimination algorithm will have to screen through all the attributes to condense close points. Although we limited ourselves to discrete space and Euclidean distances, it would be a great engineering achievement to compile in an orderly manner all the accomplishments in the field of locational theory into a set of tools directly and easily available to the practicing engineer, economist or social and government worker.

BIBLIOGRAPHY

- Armour, G. C., "A Heuristic Algorithm and Simulation approach to relative location of facilities", Unpublished Ph.D. Dissertation, Department of Industrial Engineering, University of California at Los Angeles, 1961.
- Bah, G. H., "Data Analysis in the Social Sciences: What about the Details?", <u>Proceedings - Fall Joint Computer</u> <u>Conference</u>, Stanford Research Institute, Menlo Park, California, 1965.
- 3. Baumol, W. J. and P. Wolfe, "A Warehouse Location Problem", <u>Operations Research</u>, V. G., March - April, 1958 pp. 252-258.
- 4. Bender, B. K. and A. J. Goldman, "<u>Optimization of Dis-</u> <u>tribution Networks</u>. <u>Mathematical Development</u>", Unpublished report #6930, National Bureau of Standards, July 13, 1960.
- 5. Bindschedler, A. E. and J. M. Moore, "Optimal Location of New Machines in Existing Plant Layouts", <u>Journal</u> <u>of Industrial Engineering</u>, 12:1, January, 1961, pp. 41-48.
- 6. Bonner, R. E., "<u>Clustering Program</u>", International Business Machine Corporation, Yorktown Heights, New York, May, 1964.

- 7. Brink, E. L. and J. S. De Cani, "An Analogue Solution of the Generalized Transportation Problem with Specific Application to Marketing Location", <u>Proceedings -</u> <u>First International Conference on Operational Re-</u> search, Wiley, New York, 1961, pp. 123-137.
- Burstall, R. M., R. A. Leaver and J. E. Sussams, "Evaluation of Transport Costs for Alternative Factory Sites....A Case Study", <u>Operational Research Quarterly</u>, 13:4, December, 1962, pp. 345-354.
- 9. Cooper, L., "An Extension of the Generalized Weber Problem", Unpublished paper, Washington University, School of Engineering and Applied Science, St. Louis, 1967.
- 10. Cooper, L., "Heuristic Methods for Location Allocation Problems", SIAM Review, 6:1, January, 1964, pp. 37-53.
- 11. Cooper, L., "Location Allocations Problems", Operations Research, 11:3, 1963, pp. 331-343.
- 12. Cooper, L., "The Optimal Location of Facilities", School of Engineering and Applied Science, Washington University, St. Louis, <u>E & AS Research</u>, Number 1, April, 1969.
- 13. Cooper, L., "Solutions of Generalized Locational Equilibrium Models", Journal of Regional Science, 7:1, 1967.
- 14. Cooper, L., "An n-Dimensional Extension of Locational Equilibrium Models", Unpublished paper, Washington University, School of Engineering and Applied Science, St. Louis, 1968.

- 15. Courant, R. and H. Robbins, "What is Mathematics", Oxford University Press, New York, 1963.
- 16. Dean, W. H. Jr., "The Theory of the Geographic Location of Economic Activities", Unpublished Ph.D. Dissertation, Ann Arbor, 1938.
- 17. Devine, M. D. and W. G. Lesso, "Optimization Studies in the Development of Offshore Oil Fields", Unpublished report, Department of Mechanical Engineering, The University of Texas at Austin, 1968.
- 18. Durbin, E. P. and D. M. Kroenke, "The Out of Kilter Algorithm: A Primer", RAND Corporation Memorandum, RM-5472-PR, December, 1967.
- 19. Eddison, R. T., K. Pennycuick and B. H. P. Rivett, "Operational Research in Management", English Union Press, London, 1962, Chapter 8.
- 20. Edwards, A. W. and L. L. Cavilli-Sforza, "A Method for Cluster Analysis", <u>Biometrics</u>, 21, June, 1965, pp. 362-375.
- 21. Efroymson, M. A. and T. L. Ray, "A Branch-Bound Algorithm for Plant Location", Journal of the Operations <u>Research Society of America</u>, Vol. 14, No. 3, May-June, 1966, pp. 361-368.
- 22. Eilon, S. and D. P. Deziel, "Sitting a Distribution Center, An Analogue Computer Application", <u>Management</u> <u>Science</u>, Vol. 12, No. 6, February, 1966, pp. B245-B254.
- 23. Espenshade, E. B. Jr., "Goode's World Atlas", Rand McNally & Company, Chicago, 1965.

- 24. Feldman, E., F. A. Lehrer and T. L. Ray, "Warehouse Location under Continuous Economics of Scale", <u>Management</u> Science, Vol. 12, No. 9, May, 1966, pp. 670-684.
- 25. Ford, L. R. and D. R. Fulkerson, "Flows in Networks", Princeton University Press, Princeton, New Jersey, 1962.
- 26. Friedrich, C. J., "<u>Alfred Weber's Theory of Location of</u> <u>Industries</u>", The University of Chicago Press, 1929, pp. 230-231.
- 27. Green, P. E., R. E. Frank and P. J. Robinson, "Cluster Analysis in Test Market Selection", <u>Management Science</u>, 13:8, April, 1967.
- 28. Greenhut, M., "<u>Plant Location in Theory and in Practice</u>", University of North Carolina Press, 1956.
- 29. Hadley, G., "Linear Programming", Reading, Massachusetts, Addison-Wesley, 1962.
- 30. Haley, K. B., "The Siting of Depots", <u>International</u> <u>Journal of Production Research</u>, Vol. 2, No. 1, March, 1963, pp. 41-45.
- 31. Hoover, E. M., "Location Theory and the Shoe and Leather Industries", Unpublished Ph.D. Dissertation, Cambridge, Massachusetts, 1937, pp. 42-52.
- 32. Hoover, E. M., "The Location of Economic Activity", McGraw-Hill Book Company, New York, 1948.
- 33. Isard, W., "Location and Space Economy", Technology Press, M.I.T., Cambridge, 1956.

- 34. Katz, I. N., "On the Convergence of a Numerical Scheme for Solving the Generalized Weber Problem and Some of its Extensions", Unpublished Report No. AM-68-4, Department of Applied Mathematics and Computer Science, Washington University, St. Louis, 1968.
- 35. Kuehn, A. A. and M. J. Hamburger, "A Heuristic Program for Locating Warehouses", <u>Management Science</u>, Vol. 9, No. 4, July, 1963, pp. 643-668.
- 36. Kuhn, H. W. and R. E. Kuenne, "An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics", Journal of Regional Science, 4:2, 1962, pp. 21-33.
- 37. Launhardt, W., "<u>Matematische Begrundung der</u> Volskswirtschaftslehre", Leipzig, 1885.
- 38. Lehmer, D. H., "Teaching Combinatorial Tricks to a Computer", Proceedings of Symposia in Applied Mathe-<u>matics</u>, Vol. X, Combinatorial Analysis, American Mathematical Society.
- 39. Levin, B. M., "Optimization of Distribution Networks", Unpublished Technical Report No. 6930 of the National Bureau of Standards to the U.S. Post Office Department, July 13, 1960.
- 40. Lingoes, J. C., "Multivariate Analysis of Contingencies: an IBM 7090 Program for Analyzing Metric/Non-Metric or Linear/Non-Linear Data", Unpublished Computation Report, University of Michigan Computing Center, June, 1966.

- 41. Manne, A. S., "Plant Location Under Economies-of-Scale-Decentralization and Computation", <u>Management Science</u>, Vol. 11, November, 1964.
- 42. McHose, A. H., "A Quadratic Formulation of the Activity Location Problem", Journal of Industrial Engineering, 12:5, September, 1961, pp. 334-337.
- 43. Miehle, W., "Link-length Minimization in Networks", Operations Research, March - April, 1958, pp. 232-243.
- 44. Moore, J. M., "<u>Plant Layout and Design</u>", New York, The Macmillan Company, 1962, p. 39.
- 45. Moore, J. M. and M. R. Mariner, "Layout Planning: New Role for Computers", <u>Modern Materials Handling</u>, 18:3, March, 1963, pp. 38-42.
- 46. Palander, T., "Beitrage zur Standortstheorie", Almquist and Wikselts, Uppsala, Chapter IX, 1935.
- 47. Palermo, F. P., "A Network Minimization Problem", <u>IBM</u> Journal of Research and Development, 5, 1961, pp. 335-337.
- 48. Polya, G., "Induction and Analogy in Mathematics", Princeton University Press, 1954, pp. 145-146.
- 49. Rubin, J., "Optimal Taxonomy Program (7090-IBM-0026)", International Business Machine Corporation, Program Information Department, Hawthorne, New York, 1965.
- 50. Shycon, H. N. and R. B. Maffei, "Simulation Tool for Distribution", <u>Harvard Business Review</u>, Vol. 41, No. 6, November - December, 1960, pp. 65-74.

- 51. Stewart, D. W. Jr., "The Development of a Quantitative Method for the Optimization of the Facilities Location Problem", Unpublished M.S. Thesis, Georgia Institute of Technology, January, 1963.
- 52. U.S. Post Office Department, "First Class and Air Mail Volume Flow Information, Vol. 2, November 16-18, 1965, Sectional Center to Destination State, Average Daily Pounds and Pieces", Unpublished report from the Research Branch of the Bureau of Transportation and International Services, Washington, D.C., 1965.
- 53. Vergin, R. C. and J. D. Rogers, "An Algorithm and Computational Procedure for Locating Economic Facilities", <u>Management Science</u>, Vol. 13, No. 6, February, 1967, pp. B240-B253.
- 54. Weber, A., "<u>Uber den Standort der Industrien</u>", Tubingen, 1909.
- 55. Wimmert, R. J., "A Mathematical Model of Equipment Location", Journal of Industrial Engineering, Vol. 9, No. 6, November - December, 1958, pp. 498-510.
- 56. Witzgall, C., "Optimal Location of a Central Facility. Mathematical Models and Concepts", Unpublished Technical Report No. 8388 of the National Bureau of Standards to the U.S. Post Office Department, June 30, 1964.
- 57. Witzgall, C., "Computer Routines for Optimally Locating a Central Facility Serving a Polygonal Demand Distribution", Unpublished Working Paper No. 3-65 of the National Bureau of Standards to the U.S. Post Office Department, Project 4230450, January 7, 1965.
- 58. Yassen, L. C., "Plant Location", American Research Council, New York, 1958, pp. 220.

Ĩ

APPENDIX

COMPUTER PROGRAMS FOR THE LOCATION OF CENTRAL FACILITIES

The following programs have been written in FORTRAN IV with control cards for the IBM 360/40 or the IBM 1130 computers.

Please refer to the comment cards to modify the dimension statements according to the size of the problem. The input/output codes for R(Read) and W(Write) should also be changed to fit the available computer connections. Note also the format input, and punch the data accordingly. The terminology of variables is given on the comment cards.

The appendix includes the following programs:

1 - Location of one central facility

- 1A Location of one central facility in case of weight dominance
- 2 Destination subset algorithm, one facility is used as central location
- 3 Random destination subset algorithm
- 4 Random grid location algorithm
- 5 Random grid with linear constraints
- 6 Variable discrimination algorithm

ONE CENTRAL FACILITY HEURISTIC ALGORITHM

,

DATE 04/13/30 PAGE 0001 FORTRAN IV G LEVEL 1, MOD 3 MAIN С LOCATION OF ONE CENTRAL FACILITY SPRING 1959 С DEFINITION OF MACHINE INPUT/OUTPUT :R READ С W WRITE INTEGER R.W С CHANGE THE DIMENSION CARD IF MORE THAN 1000 FACILITIES ARE CONSIDERED DIMENSION X(1000), Y(1000), XR(1000), XM(1000), D(1000), C(1000) R=5W = 6READ N :NUMBER OF FACILITIES С FERR: ADMISSIBLE DISTANCE ERROR IN LOCATING A CENTRAL FACILITY С THE MACHINE WILL STUP AFTER ITER ITERATIONS IF OPTIMUM IS NOT Y С REMARK С R EACHED READ(R, 10) N, ERR, ITER 10 FORMAT(I10,F10.0,I10) С READ VARIABLES X(1), Y(1): CARTESIAN COORDINATES OF FACILITIES С XR(I):TRANSPORT RATE ON FOUTE I С XM(I):QUANTITY TO TRANSPORT ON ROUTE I READ(R, 20)(X(I), Y(I), XR(I), XM(I), I=1, N)20 FORMAT(10F7.0) WRITE(W, 30)N 30 FORMAT(1H1,//,35X,15HLOCATION OF THE,15,2X,10HFACILITIES,//,24X, 121HCARTESIAN COORDINATES, 6X, 14HTRANSPORT RATE, 3X, 11HQJANTITY 10, /, 269X,9HTRANSPORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HH,//) DO 40 I=1, NWRITE(W, 35)I, X(I), Y(I), XR(I), XN(I) 35 FORMAT(13X+2HI≈+15+F13+3+F15+3+F14+3+F16+3) 40 CONTINUE WRITE(W, 50) 50 FURMAT(1H1,//,35X,32HLOCATION OF ONE CENTRAL FACILITY,/,30X, 141HCARTESIAN COORDINATES - EUCLIDEAN SPACE,//,27X,1HX,14X,1HY, 27X, 25HTOTAL TRANSPORTATION COST,//) XDELT=ERR+1.0 YDELT=ERR+1.0 K = 1С COMPUTE STARTING VALUES OF CENTRAL FACILITY COORDINATES: XC,YC SRM = 0.0SRMX=0.0 SRMY=0:0 DO 60 I=1,NRM = XR(I) * XM(I)SRM=SRM+RM $SRMX = SRMX + RM \approx X(I)$ 60 SRMY=SRMY+RM*Y(1)XC=SRMX/SRM YC=SRMY/SRM COMPUTE EUCLIDEAN DISTANCES TO CENTRAL FACILITY С 70 DO 80 I=1.N 80 D(I)=(((XC-X(I))**2)+((YC-Y(I))**2))**0.5 С COMPUTE TOTAL TRANSPORTATION COST: SC SC = 0.0DD 90 I=1,N C(I) = XR(I) * XM(I) * D(I)90 SC=SC+C(I)95 IF(100-K)106,106,100

 	•••••••••	 •	 ·	 	 	 	

PAGE 0002

100 IF(XDELT-ERR)105,105,120 105 IF(YDELT-ERR)106,106,120 106 WRITE(W, 110)XC, YC, SC, K 110 FORMAT(3X,15HLUCATION OF THE,/,3X,16HCENTRAL FACILITY, 2X,F12.3, 1F15.3,7X,E15.7,/,1X,GHAT_THE,I4,1X,9HITERATION) WRITE(W,115) 115 FORMAT(1H1,//,34X,34HDISTANCES AND TRANSPORTATION COSTS,/,40X, 123HTO THE CENTRAL FACILITY, //, 35X, 8HDISTANCE, 11X, 219HTRANSPORTATION CUST,//) DO 118 I=1.N WRITE(W, 116) I, D(I), C(I) 116 FORMAT(13X,2HI=,15,F23.3,E25.7) 118 CONTINUE GO TO 1000 120 WRITE(W, 130) XC, YC, SC 130 FORMAT(21X, F12, 3, F15, 3, 7X, E15, 7) COMPUTE NEW VALUES OF CENTRAL FACILITY COORDINATES: XCN, YCN С SDEND=0.0 SXNUM=0.0 SYNUM=0.0 DO 140 I=1.N $DENU = (XR(I) \times XM(I))/D(I)$ SDEN0=SDEN0+DEN0 XNUM=DENG*X(I) SXNUM=SXNUM+XNUM YNUM=DENO*Y(I) 140 SYNUM=SYNUM+YNUM XCN=SXNUM/SDENO YCN=SYNUM/SDENO XDEL T=ABS(XCN-XC) YDEL T=ABS(YCN-YC) XC=XCN YC=YCN K = K + 1GU TU 70 1000 CALL EXIT END

185

ТНЕ 50 FACILITIES

165.000	26.000	58.000	115.000	50 0	H
2.000	14.000	1619.000	1249.000	49	11
	59,000	18.000	318-000	48	11 1
132.000	000.867		000.261	40	1
17.000	18.000	105.000	15.000	45	i II
1184.000	: 374.000	165.000	410.000	44	- II
107.000	132.000	11.000	676.000	43	H
121.000	261.000	136.000	272.000	42	11
1012.000	13.000	4.000	215.000	41	ī
203.000	111.000	15.000	84.000	40	H
117.000	626.000	8042.000	86.000	39	ii
5.000	248.000	280.000	53.000	38	11
247.000	82.000	12.000	226.000	37	11
935.000	92.000	54.000	38.000	36	'n
16.000	546.000	173.000	246.000	35	11
628.000	55.000	62.000	1253.000	34	11
557.000	238.000	25.000	205.000	ω ····	11
139.000	125.000	505.000	42.000	2	11
350.000	450.000	201.000	144.000	31	H
20.000	77.000	119.000	243.000	30	II.
000-562	000 865	1221.000	75.000	29	11
	84 000	197.000	182.000	28	11
14.000	126.000	619.000	4736.000	27	11
172.000	5156.000	000.6	74,000	26	11
	5-000	000-822	10-000	ז כ ד ד	11
2.000	6 - DDD	000 F	7-000	7 C V C	11
	2000 - 21 2000 - 21	4 000		ין רי ייר	11
		000.52	- 5000 - 5000	22	h i
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				21	ui i
3 000				20	1
13.000	11.000	32 000		10 La	
8.000	000	000.6	000.41	1)	11
. 38.000	000 6		000.6	10	n
12.000	24.000	. 1.000	11.000	, 1 .	11
19.000	114.000	4.000	8.000	14	11
150.000	6.000	299.000	233.000	13	Î
140.000	590,000	28.000	41.000	12	u
1278.000	2927.000	34.000	564.000	11	11
75.000	1030.000	C00.6L	293.000	10	11
1386.000	28.000	0.00 888	2363.000	9	ŧi
71.000	616.000	28.000	23.000	8	h
148.000	23.000	COO 699	2289.000	7	B
521.000	000 - 5 2 8	485.000	555.000	ዮ	11
57.000	1714.000	000.686	242.000	თ	11
315.000	804 000	2167.000	23.000	Ŷ	H
18.000	5853.000	3621.000	483.000	ωı	11
61.000	345.000	000 880	000.500	0	11
323.000	119.000	000.65	25165.000	L	ii ii
2	7	-	>		
TRANSPORT	U	<	<		
QUANTITY TO	TRANSPORT RATE	DORDINATES	CARTESIAN C		

.

LOCATION OF

LOCATION OF ONE CENTRAL FACILITY CARTESIAN COORDINATES - EUCLIDEAN SPACE

Х	Y	TOTAL TRANSPORTATION	COST
556.274	323.658	0.4850975E 10	
477.053	141.980	0.4170824E 10	
487.000	88.940	0.4080162E 10	
509.750	70.027	0.4038015F 10	
527.149	58.731	0.4009905E 10	
539.161	50.929	0.3991098E 10	
547.296	45.513	0.3978548E 10	
552.779	41.794	0.3970146E 10	
556.467	39.260	0.3964532E 10	•
558.945	37.542	0.3960774E 10	
560.602	36.382	0.3958258F 10	
561.718	35.602	0.3956569E 10	
562.474	35.078	0.3955432E 10	
562.979	34.722	0.3954670E 10	
563.315	34.484	0.3954158E 10	
563.542	· 34.324	0.3953819E 10	
563.693	34.217	0.3953592E 10	
563.790	34.145	0.3953444E 10	
563.857	34.099	0.3953341E 10	•
563.907	34.067	0.3953267E 10	
563.939	34.045	0.3953222E 10	
563.960	34.029	0.3953193F 10	
563.974	34.019	0.3953170E 10	
563.983	34.013	0.3953154E 10	

LOCATION OF THE CENTRAL FACILITY AT THE 24 ITERATION

DISTANCES AND TRANSPORTATION COSTS TO THE CENTRAL FACILITY

DISTANCE

TRANSPORTATION COST

• • •

I =	1	24601.000	0.9455885E 09
I =	2	393.102	0.8272822E 07
I =	3	3587.384	0.3779978E 09
I =	4	2200.523	0.5573043E 09
I =	5	1007.806	0.9846064E 08
I =	6	451.077	0.1934140E 09
I =	7	1838.176	0.6257151E 07
1 =	8	541.016	0.2366189E 08
I =	9	2452.504	0.9517677E 08
I =	10	274.691	0.2121990E 08
I =	11	0.021	0.8023719E 05
I =	12	523.017	0.4320120E 08
I =	13	423.990	0.3815912E 06
I	14	556.792	0.1206011E 07
I =	15	553.967	0.1595425E 06
I =	16	555.848	0.1901001E 06
I =	17	549.552	0.3517134E 05
I =	18	558.789	0.7990681E 05
I =	19	546.115	0.3713579E 05
I =	20	552.462	0.9944312E 04
I =	21	544.653	0.1906286E 06
I =	22	559.305	0.3825644E 06
I =	23	545.808	0.5458082E 04
I =	24	557.005	0.6684059E 04
I =	25	586.965	0.4108754E 05
1 =	26	490.621	0.4350979E 09
I =	27	4212.516	0.7431408E 07
I =	28	415.302	0.4186244E 06
I =	29	1283.760	0.1507263E 09
I =	30	332.043	0.5113461E 06
I =	31	451.963	0.7118411E 08
I =	32	703.061	0.1221568E 08
I =	33	358.096	0.4747134E 08
I =	34	689.586	0.2381829E 08
I =	35	347.031	0.3031662E 07
I =	36	526.362	0.4527766E 08
I =	37	338.698	0.6859999E 07
I =	38	562.608	0.6976341E 06
I =	39	. 8022.195	0.5875615E 09
[=	40	480.359	0.1082393E 08
I =	41	350.271	0.4608162E 07
I =	42	309.282	0.9767426E 07
I =	43	114.357	0.1615174E 07
I =	44	202.159	0.8951931E 08
I =	45	553,553	0.1693872E 06
I =	46	414.016	0.4142482E 08
I =	. 47	685.423	0.2731410E 08
I =	48	246.503	0.2763302E 06
I =-	49	1726.583	0.4834712E 05
I =	50	449.623	0.1928881E 07

187

•

CASE OF WEIGHT DOMINANCE

•

.

ONE CENTRAL FACILITY

189

		CARTESIAN	LOCATION OF THE COORDINATES	3 FACILITIES TRANSPORT RATE	QUANTITY TO TRANSPORT
		x	Y	R	М
. I =	1	11.000	2.000	1.000	10.000
I =	2	4.000	1.200	1.000	5.000
I =	3	1.500	5.500	1.000	3.000

LOCATION OF ONE CENTRAL FACILITY CARTESIAN COORDINATES - EUCLIDEAN SPACE X Y TOTAL TRANSPORTATION COST

	7.472	2.361	74.008
<u>י</u> -	8.023	2.100	72.466
	8.516	2.091	. 71.272
	8.951	2.086	70.243
	9.326	2.077 .	69.370
	9.644	2.067	68.639
	9.910	2.056	68.034
	10.129	2.046	67.540
	10.307	2.038	67.139
	10.451	2.030	66.817
	10.567	2.024	66.559
	10.659	2.019	66•355
	10.732	2.015	66.192
	10.790	2.012	65.064
	10.835	2.009	65.964
	10.871	2.007	65.884
	10.899	2.006	65.822
	10.921	2.004	65.774
	10.938	2.003	65.736
	10.952	2.002	65.706
	10.962	2.002	65.683
	10.970	2.001	65.664

LOCATION OF THE CENTRAL FACILITY AT THE 22 ITERATION

. • •

DISTANCES	AND	TRANSPO	RTATIO	N COSTS	
TO T	HE C	CENTRAL	FACILI	TY'	
DISTANCE		T	RANSPO	RTATION	COST

I =	1	•	0.029	0.292
I =	2		7.016	35.083
I =	3		10.096	30•288

ONE CENTRAL FACILITY DESTINATION SUBSET ALGORITHM ONE FACILITY IS USED AS CENTRAL LOCATION

.

1.

FORTRAN	IV G LEVEL 1, MOD	3 MAIN	DATE 20/51/0	00 PAGE 0001
C C	LOCATION OF DI THE I	VE CENTRAL FACI DESTINATION SUB	LITY SET ALGORITHM	SPRING 1969
C	ONE	FACILITY IS USE	D AS CENTRAL LOCATI	O'N
C	DEFINITION OF	MACHINE INPUT/	OUTPUT: R READ	
C			W WRITE	
C	INTEGER R.W CHANGE THE DI	MENSION CARD IF	MORE THAN 50 FACTL	ITIES ARE CONSIDERED
	DIMENSION XI	50),Y{ 50),XR	1 50),XM(50)	
	R=5			
	W=6			
	READ(R,10)N	•	•	
	TO FORMAT(110)			a na an ann an ann an ann an ann an ann ann ann an a
C	READ VARIABLE	S X(I),Y(I):CAR	TESIAN COORDINATES	OF FACILITIES
C	•	· XR(I):TRA	NSPORT RATE ON ROUT	EI
C		XM(I):QUA	NTITY TO TRANSPORT	ON ROUTE I
	READ(R,20)(X(I) ₂ Y(I) ₅ XR(I) ₇ X	$M(I)_{g}I=1_{g}N$	
	20 FORMAT(4F15.0	}		
	WRITE(W, 30)			
	30 FORMAT(1H1,//	,39X,32HLOCATIO	IN DE DNE CENTRAL FA	$CILIV_{9}/_{9}41X_{9}$
	128HDESIINAIIO	N SUBSET ALGORI	THM, /, 35X, 40HUNE FA	CILITY IS USED AS C
	ZENIRAL LUCATI	UN, //, 27X, 21HCA	RIESIAN COORDINATES	16X14HIKANSPURI KA
	31E+3X+11HUUAN	111Y TUp/572X59	HIRANSPURT 7 / 729X 7 1H	X 0 14X 0 1 MY 0 1 3X 0 1 HR 0
	415X;1HM;//)			
	DU 40 1=19N WDTTCIW 2CVT		VH F T S	
	25 CODMAT(127.20	AIL/FIL/FAK(1/	9749127 5 7 516 7 516 71	
		1-9199519039519	0 2 2 1 4 0 2 4 1 1 0 2 2 1	
	WRITE(W-50)			
	50 EDRMAT(1H1.//	. 39X. 32HI OCATIC		CILITY-/.35X.
	139HCARTESTAN	COORDINATES	UCLIDEAN SPACE / 241	X.28HDESTINATION SU
4	2BSET ALGURITH	M./.35X.40HONE	FACILITY IS USED AS	CENTRAL LOCATION:
	- 3//,26X,28HCEN	TRAL FACILITY C	ODRDINATES 6X 25HT0	TAL TRANSPORTATION
· · · · · · · · · · · · · · · · · · ·	4COST ,/, 32X,1H	X,14X,1HY,24X,1	HC,77)	
	CSAV=0.0		• • • •	
	DO 100 J=1,N	• • • • •		
	C=0.0		م الم الم الم الم الم الم الم الم الم ال	
•	DO 60 $I=1, N$			
•	DP=11(X(J)-X(I))**2)+{(Y(J)-	-Y{I))**2))**0。5	
	DC=XR(I)*XM(I)*DP		
	C=C+DC			•
	60 CONTINUE			
	WRITE($W_{7}70$) J ₇	X(J), Y(J), C		
	70 FURMAT(15X,2H	J=, I5, F14.3, F15	5.3,F25.31	
	IFIJ-1180,90,	08		
	80 1FIL-LSAV190,	100+100		
	90 CSAV=L			•
		CAN VEICAUS VE	ICANA CCAN	
•		SHUDALJSHUJSTL	J J A Y I † L J A Y F T D N . J . R Y - J U A T - R Y - J L	11=15-514 2-515 2-
	1626 21	ONCENTRAL LUCA	LUNGF 90AD CHAID DAD 2F	10-96391 14639713439:
	· 1 2 2 • 21 CALL EVIT			
	END			

.

LOCATION OF ONE CENTRAL FACILITY DESTINATION SUBSET ALGORITHM ONE FACILITY IS USED AS CENTRAL LOCATION

Same Kouster

,

			CARTESIAN	COORDINATES	TRANSPORT	RATE QUANTITY TO
			×	Y	R	TRANSPORT M
	I = I =	1 2	7.190 9.070	5.490 9.940	1.000	2.0 00 2.0 00
	1= I= I=	3 4 5	4.610 4.940 0.470	6.490 8.250 0.690	1.000 1.000 1.000	2.000 2.000 2.000
	I= I=	67	6.180 1.130	3.570 9.810	1.000 1.000 1.000	2.000 2.000 2.000
	I= I= I=	8 9 10	8.000 8.230 9.600	4.350 8.060 9.280	1.000	2.000 2.000 2.000
]=]=]=	11 12 13	2.310 2.530	9.880 0.390 4.570	1.000 1.000 1.000	2.000
	1 = 1 = 1 =	14 15 16	4.440 8.530 2.290	1.490 7.030	1.000 1.000 1.000	2.000 2.000 2.000
	I = I = I = I =	17 18 19 20	8.830 2.620 3.820 7.550	7.120 9.410 2.420 1.970	1.000 1.000 1.000 1.000	2.000 2.000 2.000 2.000
• •	•					
,						
						
		•				

•				193	
	•		L Carte	OCATION OF ONE CENSIAN COORDINATES	NTRAL FACILITY - EUCLIDEAN SPACE
			ONE F	DESTINATION SUBS	ET ALGORITHM S CENTRAL LOCATION
		С	ENTRAL FACILI	TY CODRDINATES	TOTAL TRANSPORTATION CO
			X	Y	C
•	J=	1	7.190	5.490	169.706
	J=	2	9.070	. 9.940	250.014
	_j=	3	4.610	6.490	155+955
	J= 1~	4 5	4.940	8-250	109.634
		<u>ک</u>	6 1 00	3 630	177 446
	.1≃	7	1,130	9.810	254,922
	.l=	8	6.000	4.360	165,387
]=	ğ	8,230	8-960	198,313
	J=	10	9,600	9,280	248.497
	J=	11	3.460	9.680	208.244
		12	2.310	0.390	274.667
	J=	13	2.530	4.570	190.018
	J=	14	4.440	7.990	167.346
	J=	15	8.530	1.490	254.922
· · · · · · · · · · · · · · · · · · ·	J=	16	2.290	7.030	189.366
	J=	17	8.830	7.120	203.038
	J≃	18	2.620	9.410	213.579
	J=	19	3.820	2.420	204.816
	J=	20	7.550	1.970	225.713
CENTRAL LOC	ΔΤΙΠΝ			•	
AT	J=	3	4.610	6.490	155.955
	· · · · · · · · · · · · · · · · · · ·		, ann aite an a- an a- an a- an		
				•	••• · · · •
······································	· · · · ·				
· · · · · · · · · · · · · · · · · · ·				α τη παραγιατική του που που τη τη χριματική που ματική ματική του του που που τη τη ¹ άλου στη του ^{το} του που	
·					
•	the second				
	100 a 194				상태에는 활동을 갖춘지 않는 것이 가지 않는
		·····			······································
	·				· .
	1. A A A A A A A A A A A A A A A A A A A		and the state of the state		그는 그는 것 같은 것 같은 것 같은 것 같아.
		•	17		i. i
			· · · · · · · · · · · · · · · · · · ·		e Na secondario de la companya de la c
					· 밝힌 한 한 산 가 한 한 것 같은 것
				•	

MULTIPLE CENTRAL FACILITIES

RANDOM DESTINATION SUBSET ALGORITHM

FORT	RAN	IV G	LEVEL 1	. MOD 3	MAIN		DATE	05/38/55	PAGE 00	221
C C	•	LOC	ATION OF THE		E CENTR	AL FACILIT	IES ET ALGO	RITHM	SPRING 1969	
C		DEFI	INITION C	DF MACHI	NE INPU	T/OUTPUT:	R READ			
C		TNT	CED D.W				W WRITE			
C C	· · · · · · · · · · · · · · · · · · ·	CHAN CHAN DIME	IGE THE D IGE THE D IGE THE D	DIMENSIO DIMENSIO (20), Y	N CARD N CARD (20).	IF MORE TH IF MORE TH XR(20).X	IAN 20 F IAN 5 C M(20)	ACILITIES ENTRAL LOI	ARE CONSIDERED CATIONS ARE DESIRED	
		DIME DIME DIME	NSION DO NSION JO NSION RA	DLD(20 DSAV(2 ND(20)),DNEW(0),JNSA ,XC(5	20),CDLD V(_20),ID),YC(_5),	0(20), SAV(. D(20,	CNEW(20 5),INSAV(20)) 5)	and the second se
		R≈5 ⊌=6		.•		ter en ge Anna anti-Anna anti-Anna anti-Anna anti-Anna anti-Anna anti-Anna anti-Anna anti-Anna anti-Anna anti- Anna anti-Anna anti-A	•			
C		TERM	INGLOGY	DF VARI	ABLES					
ն Շ			N M	:NUMBE	R OF FA R OF CE	CILITIES NTRAL EACI	LITIES		· · ·	Alteritiet
Č			ITERA	:NUMBE	R OF IT	ERATIONS I	N RANDO	M SEARCH (DF FACILITIES	
C		•	X(I),Y(I	():CARTE	SIAN CO	ORDINATES	OF FACI	LITIES		
с С	d de		XR(1) XM(1)	:QUANT	ITY TO	TRANSPORT		EI		
C			DOLD(I),	DNEW(I)	OLD AN	D NEW EUCL	IDEAN D	ISTANCES I	FROM FACILITY I TO	
C C			Shain, St	OPTIM NEW:DUD	UM CENT	RAL LOCATI		S TO THE	CENTRAL FACILITIES	
C C	·····		COLD(I),	CNEW(I)	: JLD AN	D NEW TRAN	SPORTAT	ION COSTS	FROM FACILITY I TO	
C	· · ·			OPTIM	AL CENT	RAL LOCATI	ON -	T COET TO		TV
<u> </u>			JUSAV(I)	.JNEW: ULU	$\frac{\text{AND}}{\text{I}} \frac{\text{NE}}{\text{OLD}}$	AND NEW CO	DE NUMB	ER ALLOCA	TION OF THE FACILIT	Y
0 0			IOSAV(J)	,INSAV(CENTR	I):DLD Al LOCA	AND NEW CO TIGN	DE NUMB	ER OF THE	RANDOMLY SELECTED	
C C	• • •	•	RAINC RAD(1)	CLASS:CLASS	WIDTH BOUNDA	ON CUMULAT RIES ON CU	IVE DIS MULATIV	TRIBUTION E DISTRIBU	OF LOCATIONS JTION OF LOCATIONS	
<u> </u>	• •	•	KITER	: ITERA	TION CO	UNTER	0 410 1			
C C			XC(J),YC	(J) :CA	RTESIAN	COORDINAT	ES DE R	ANDOMLY SI	ELECTED CENTRAL	
<u> </u>				FACIL	ITIES					
C		2 E AD	D(I,J)	EUCLI	DEAN DI	STANCES FR	DM FACI	LITY I TO	CENTRAL LOCATION J	
	10	FORM	AT (3110)							
		READ	(R,20)(X	([],Y(]),XR(I)	, XM(I), I = 1	,N)			i there
r	20	FURM	AIL4E15. T TABULA	.0) (TION: 1	IST GIV	EN VARTABL	FS			
`		WRIT	E(W, 30) M	1. N						
	30	FORM	AT (1H1, /	1,35X,3	9HLOCAT	ION OF MUL	TIPLE C	ENTRAL FAC	CILITIES,/,	
		<u>1378</u> 218HC	ENTRAL F	ACILITI	ES. / . 46	$\frac{\text{SUBSET}}{X \cdot 15 \cdot 1 \times 10}$	HFACILI	TIES.//.24	▶1 X • Dellig fan it Stednie of de potentije 4X •	
		321HC	ARTESIAN	I COORDI	NATES,6	X,14HTRANS	PORT RA	TE, 3X, 11H	QUANTITY TO,/,	
		469X,	9HTPANSP	ORT,/,2	7X,1HX,	14X,1HY,15	X,1HR,1	4X,1HM,//) The second s	
	35	WRIT FORM	E.(W,35) AT (10X,	I,X(I) 3HI =,I	,Y(I),X 5,4(4X,	R(I),XM(I) F11.3))				
· ·	36	CONT		DHTATIO		IABLES				
L.			0 I=1, N	IC UTATIU	GAL VAR	I ADLE J		· .		No.
		DOLD	(1)=0.0							
										ale ale
				· · · ·						

		PAGE 0002
		DNE ((I)=0.0 CULD(I)=0.0
<u></u>		CNEW(I)=0.0 JOSAV(I)=0
	40	DU 45 J=1,M IOSAV(J)=0
	45	1NSAV(J)=0 SDULD=0.0 SDNEW=0.0
r		SCOLD=0.0 SCNEW=0.0 ZERD ITERATION COUNTER
C		KITER=0 DEFINITION OF CLASS INTERVALS FOR 0 TO 1 RANDUM NUMBER DEFINING THE 0 TO N INTEGERS
		XN=N RAINC =1.0/XN
	50	$\begin{array}{c} UU 50 I=1, N \\ X I=I \\ \hline R AD(I)=X I * F A I N C \end{array}$
C	-	RANDOM GENERATOR STARTING VALUE IY=21735 STARTING DE ITERATION COUNTER
	60	KITER=KITER+1 IF (KITER-ITERA)70,70,275
с 	70 <u>7</u> 5	KANDUM UMUICE UF M CENIRAL FACILITIES DO 100 J=1.M CALL RANDU(IY,IY,YFL)
	80	DO 90 [=1,N IF (YFL-RAD(I))80,80,90 XC(J)=X(I)
		YC(J) = Y(I) INSAV(J) = I IF(J-1)82.100.82
C	82	K=J-1 CHECK THAT RANDOMLY CHOSEN FACILITY HAS NOT BEEN ALREADY PICKED AS CENTRAL
<u>لي الم</u>		DO 34 KJ=1,K IF(XC(J)-XC(KJ))100,83,100
	<u>83</u> 84 90	IF (YC(J)-YC(KJ))100,75,100 CONTINUE CONTINUE
С	100	COMPUTE ARRAY OF EUCLIDEAN DISTANCES TO RANDOMLY CHOSEN CENTRAL FACILITIES DO 110 I=1,N
аа С (110	DO 110 J=1,M D(I,J)=(((XC(J)-X(I))**2)+((YC(J)-Y(I))**2))**0.5 FOR EACH FACILITY SELECT THE CLOSER CENTRAL LOCATION (IF DISTANCE IS ZERD
C		IT MEANS THAT THE FACILITY HAS BEEN CHOSEN AS CENTRAL LOCATION) DO 170 I=1,N SHORT=D(I,1)
	<u></u>	J=1 DD 160 K=2, M

196

۰.
PAGE 0003

e e constantes en la constante de la constante Constante de la constante de la		TEIDIT 21 CUCOT1150 140 140
•	150	IF(U(1,K)-SHUK1/12U,10U,10U, CHOPT-O(1,K)
	190	
	160	CONTINUE
2	T ** ~	DNEW(T)=SHDRT
		CNFW(1)=XR(1)*XM(1)*DNEW(1)
· ·	• .	JVSAV(I) = J
· · · ·	170	CONTINUE
c		COMPUTE SUM OF OPTIMAL DISTANCES AND TOTAL TRANSPORTATION COST
		SDNEW=0.0
		SCN0/=0.0
		DD 130 I=1,N
	2.2	SDNEW=SDNEW+DNEW(I)
<u> </u>	<u>180</u>	SCNEW=SCNFW+CNEW(1)
r		1F(KITER-1)190,190,210
ل د	100	TITLE OF SECUND TABULATION
	190	WRITE(W, 200)
	200	FURMALLINLY// 37X / 30MA AND TO DESIGNATION SUBSET ALGUMETTINS
		141H0151K150110N OF TOTAL DISTANCES AND COSTS, / JEAR / TELEGATES,
	<u> </u>	25X114HSUP OF DETINORITATIONS OF TRANSFORTITIONS OF TRANSFORTING DETAILS
Ç	-	SYMULSTANCESTICATONUSTSTATA
	21.0	UPITEIM. 2201KITER.SDNEW.SCNEW
	220	EDRMAT(30X.17.8X.F13.6.7X.E13.6)
	6	IF THIS IS THE FIRST ITERATION REPEAT RANDOM CHOICE ANOTHER TIME
	<u></u>	IF(SCALD)230,240,230
С		CHECK IF NEW CHOICE OF CENTRAL FACILITIES GIVES BETTER RESULTS
	230	IF(SCNEW-SCOLD)240,240,270
	240	SDOL D=SDNEW
 	· · · ·	SCOLD=SCNEW
		DO 250 I=1,N
<u></u>		OOLO(I) = ONEW(I)
		COLD(I) = CNEW(I)
	250	JOSAV(I) = JNSAV(I)
	240	DO 260 J=1.M
an an an an an An an An An An An	205	IUSAV(J)=INSAV(J) CONTO (O)
С	210	LU HU OU TAPHATION + OTIMHM ALLOCATION
<u> </u>	275	HIRD LADGEATION + OFFINGE ALLOCATION DOITE/U 2001TEDA
	280	GORMATIJHJ_//-37X-35HRANDOM DESTINATION SUBSET ALGORITHM://35X;
	6	124HOPTIMUM ALLOCATION AFTER, 15, 1X, 10HITERATIONS, //, 35X,
· ·		239HCODE AND LOCATION OF CENTRAL FACILITIES,/,45X,4HCODE,8X,
	· · · ·	38HFACILITY,/,44X,6HNUMBER,8X,6HNUMBER,//)
		DD 295 J=1,M
		WRITE(W,290)J,IDSAV(J)
	29.0	EORMAT(44x.2H.1=.14.8X.2HI=.14)
	L 7 0	
	295	CONTINUE
	295	CONTINUE WRITE(W, 300)
	<u>295</u> 300	CONTINUE WRITE(W,300) FORMAT(//,46X,13HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S,
	<u>295</u> 300	CONTINUE WRITE(W,300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, 110X,16HCENIRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/,
	<u>295</u> 300	CONTINUE WRITE(W,300) FORMAT(//,46X,13HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, 110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/, 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X,
	<u>295</u> 300	CONTINUE WRITE(W, 300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, <u>110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/,</u> 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X, 316HCENTRAL LOCATION,9X,5HCOSTS,/,25X,1HX,13X,1HY,//)
	295	CONTINUE WRITE(W, 300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, <u>110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/,</u> 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X, 316HCENTRAL LOCATION,9X,5HCOSTS,/,25X,1HX,13X,1HY,//) WRITE(W,310)(I,X(I),Y(I),JOSAV(I),OOLD(I),COLD(I),I=1,N)
	<u>295</u> 300 <u></u> <u>310</u>	CONTINUE WRITE(W, 300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, 110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/, 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X, 316HCENTRAL LOCATION,9X,5HCOSTS,/,25X,1HX,13X,14Y,//) WRITE(W,310)(I,X(I),Y(I),JOSAV(I),DOLD(I),COLD(I),I=1,N) FORMAT(11X,3HI =,14,2X,F11.3,3X,F11.3,7X,I3,10X,E16.6,4X,E15.6)
	<u>295</u> 300 <u></u> <u>310</u>	CONTINUE WRITE(W,300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, 110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/, 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X, 316HCENTRAL LOCATION,9X,5HCOSTS,/,25X,1HX,13X,1HY,//) WRITE(W,310)(I,X(I),Y(I),JOSAV(I),DOLD(I),COLD(I),I=1,N) FORMAT(11X,3HI =,14,2X,F11.3,3X,F11.3,7X,I3,10X,E16.6,4X,E15.6)
	<u>295</u> 300 <u>310</u>	CONTINUE WRITE(W,300) FORMAT(//,46X,18HOPTIMUM ALLOCATION,//,18X,19HF A C I L I T I E S, 110X,16HCENTRAL LOCATION,6X,11HDISTANCE TO,7X,14HTRANSPORTATION,/, 212X,6HNUMBER,4X,21HCARTESIAN COORDINATES,9X,4HCODE,11X, 316HCENTRAL LOCATION,9X,5HCOSTS,/,25X,1HX,13X,1HY,//) WRITE(W,3LO)(I,X(I),Y(I),JOSAV(I),OOLD(I),COLD(I),I=1,N) FORMAT(11X,3HI =,14,2X,F11.3,3X,F11.3,7X,I3,10X,E16.6,4X,E15.6)

•

•

and the second

19 	:	198	· .	
•				PAGE 0004
WRIT 320 FORM CALL END	E(W,320)SDULD,SCOL AT(/,62X,5HTOTAL,E EXIT	D 14.6,4X,F15.6)		
		LOCATION OF MU RANDOM DESTI	LTIPLE CENTRAL FA NATION SUBSET ALG	CILITIES ORITHM
		· 3 CE	NTRAL FACILITIES	
	CARTESIAN	COORDINATES	TRANSPORT RATE	QUANTITY TO TRANSPORT
	X	Y	R	М
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.490 9.940 6.490 8.250 0.690 3.570	1.000 1.000 1.000 1.000 1.000 1.000	2.000 2.000 2.000 2.000 2.000 2.000 2.000
	7 1.130 8 6.000 9 8.230 10 9.600 11 3.460	9.810 4.360 8.060 9.280 9.680	1.000 1.000 1.000 1.000 1.000 1.000	2.000 2.000 2.000 2.000 2.000 2.000
	12 2.310 13 2.530 14 4.440 15 8.530 16 2.290	0.390 4.570 7.990 1.490 7.030	$ \begin{array}{r} 1.000 \\ $	2.000 2.000 2.000 2.000 2.000
	17 9.830 18 2.620 19 3.820 20 7.550	7.120 9.410 2.420 1.970	1.000 <u>1.000</u> 1.000 1.000	2.000 2.000 2.000 2.000
			· · · ·	

. •

•

.

.

	R DIST	ANDOM DESTI RIBUTION OF	NATION S TOTAL D	UBSET AL	SORITHM	5 T S			
	TTERATI			IUM S	UM DE T	RANSPO	RT		<u>, , , , , , , , , , , , , , , , , , , </u>
	NUMBER	DI	STANCES		COST	S		•	
								n en el factorio de la composición de l Esta el composición de la composición de	
	1	0.4	94680E 0	2	0.9893	61E 02) 		
	2	0.6	22942E 0	2	0.1245	89E 03	3		
	3	0.5	12428E 0		0.1024	86E 03	5		
	4	0.5	22075E 0)2	0.1044	15E 03	.		
	5	0.5	73191E 0	2	0.1146	38E 03	5		
	6	0.6	29998E 0)2	0.1260	00E 03	5		
	7	0.4	82333E 0	2	0.1252	68E 02	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	8	0.6	20195E U	12	0.1200	29E 03 29E 03)		
	10	0.4	44000F U		0.1245	725 U2 725 D3	2		
	10	0.0	220001 U	12	0.1212	705	, 		
	12	0.8	101836 0	12	0.12.12	•		• en artina. Esta	
	13	0.6	33401E 0	2	•				
······································	14	0.4	64821-	 Reserve and a set of the set of					
·	15	^							and the second second
	16	and the second second		•					
	······································	• **					3		
and a second				· · .		47E 0	2		
and the second					0.1207	42E 0	3		
			- ++t (02	0.1385	89E 0	3		· · ·
		U.4	+99599E (02	0.9991	98E 0	2		
		0.5	<u>597973E</u> (02	0.1195	<u>95E ()</u>	3		
	479	0.7	'00885E (02	0.1401	778 0	3		
	480	0.5	999969E (02 20	0.1199	945 0	3 7		
	481	0.5	<u>152149E (</u>	<u>J2</u>	0.1104	30E 0	<u>3</u>		
	482	0.5	183724E (560737E (J2	· 0 1001	45E 0	<i>ב</i>		
·	405	0.5	14V121E (J2 72	0.1001	40E U	2 2		
	404	0.4	82701E (02	0 1165	<u>585 0</u>	2		
	486	0.5	542777E (02	0.1085	56E 0	2 3		
	487	0.5	525178F (12	0.1050	36F 0	3		
	488	0.6	55060E (02	0.1310	12F 0	3	•	
	489	0.4	+90505E (02	0.9810	11E 0	2		1
	490	0.6	22432E	02	0.1244	86E 0	3		
	491		58385E	02	0.1116	77E 0	3		
	492	0.5	30840E (02	0.1061	68E 0	3		
	493	0.4	<u>+91263E</u>	02	0.9825	27E 0	2		
	494	0.7	/16451E (02	0.1432	90E 0	3		
	495	0.5	\$28780E (02	0.1057	'55E 0	3		
	496	0.5	36986E (02	0.1073	97E 0	3		
	497	0.5	90859E (02	0.1181	72E 0	3		
	498	0.6	00908E 0	02	0.1201	82E 0	3		
	499	0.8	18133E (02	0.1536	275 0	3	<u> </u>	
•	. 500	0.7	UZ464E (32	0.1404	97E 0.	5		
:									
			land of the			en del contra		1997 - Ald Fr	
	an a								
									원 전 관계
and the set of the second s					<u> </u>			<u></u>	

.

.

•

▲	· · · ·					· · · · · · ·		
			RANDOM DES OPTIMUM ALLO	TINATION SUBS CATION AFTER	FT ALGORI 500 ITER	ITHM ATIONS		
			CODE AND LOC	ATION OF CENT	RAL FACIL	_ ITIFS		
					ILIIY MRED			and the second
			NOR	JER NU	HUEN			
· · · · · · · · · · · · · · · · · · ·			•					
······································			J=	1 I =	14	······	· · · · · · · · · · · · · · · · · · ·	
				2 I=	17	;		
	•		J=	3 1=	19			
	•			•				
			0	PTIMUM ALLOCA	TION			
		······································	:	· · · · · · · · · · · · · · · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	F /	CILITI!	E S	CENTRAL LOCAT	IDN	DISTANCE TO	TRANSPORTATIO	JN
·	NUMBER	V	V	UUVE	ر ل مراجع	ENTRAL LULATIO	N LUSIS	
		^	and the second sec	e de la deserva de la deser En esta de la deserva de la		•		
	.1 = 1	7.190	5.490	2	·····	0.231225E 01	0.452450E 01	L
	I = 2	9.070	9.940	. 2		0.283019E 01	0.566039E 01	L 20
	1 = 3	4.610	6.490	1		0.150960E 01.	0.331921E 01	<u> </u>
	1 = 4	4.940	8.250	1		0.563560E 00	3.112712E 01	1
	1 = 2	6 180	0+590	3		0.262528E 01	0.5250565 01	L
	$\frac{1}{1} = .7$	1.130	9.810	1	<u></u>	0.377737E 01	0.755473E 01	<u>4 - mar baskas - 50 ate</u> 1 .
	I = 8	6.000	4.360	3	•	0.291822E 01	0.583644E 01	L
	I = 9	8.230	8.060	2		0.111517E 01	0.223034E 01	L
	I = 10	9.600	9.280	2		0.229314E 01	0.458628F 01	L
	I = 11	3.460	9.680	1.		0.195359E 01	0.390717E 01	1
<u></u>	I = 12	2.310	0.390	3	· · · · · · · · · · · · · · · · · · ·	0.253002E 01	0.506004E 01	L
	I = 13	2.530	4.570	3		0.250731E 01	0.501462E 01	Ĺ
	1 = 14	4.440	1.990	1				•
·····	$\frac{1}{1} = \frac{10}{16}$	2 200	7 030	2		0 2354595 01	0 6709185 01	L 1
	1 = 17	8-820	7.124	2	•	_0.0 _0.0		• Alternation of the second
	I = 18	2.620	9.410	1		0.230842E.01	0.451684F 01	1
· · · · · · · · · · · · · · · · · · ·	1 = 19	3.820	2.420	3		0.0	0.0	<u></u>
	I = 20	7.550	1.970	3		0.375704E 01	0.751409E 01	L
			<u> </u>				·	
				•	TOTAL	0.439270E 02	0.878539E 02	2
en e								an a
•	· · · · · · · · · · · · · · · · · · ·		·····				<u></u>	
			•					

MULTIPLE CENTRAL FACILITIES RANDOM GRID LOCATION ALGORITHM

FORTRAN	IV G LEVEL 1, MOD 3 MAIN DATE, 06/18/15 PAGE 0001
• •	CONTROL OF MULTIOLE CONTONE EACTUATIES
່ ເ ເ	LUCATION OF MULTIPLE CENTRAL FACILITIES SPEINS 1959
<u> </u>	DEFINITION OF MACHINE INPUT/OUTPUT: R READ
C C	W WRITE
	INTEGER R.W
C	CHANGE THE DIMENSION CARD IF MORE THAN 20 FACILITIES ARE CONSIDERED
	DIMENSION X(20), Y(20), XR(20), XM(20), D(20, 20)
	DIMENSION DULD(20), DNEW(20), CDLD(20), CNEW(220) and Compare Address and Addre
· ·	DIMENSION JOSAV(20), JNSAV(20), RAD(20)
C	CHANGE THE DIMENSION CARD IF MORE THAN 5 CENTRAL LOCATIONS ARE DESIRED
	DIMENSION IDSAV(5), INSAV(5), XC(5), YC(5)
C	CHANGE THE DIMENSION CARD IF MURE THAN LOO GRID INTERSECT. ARE CONSIDERED
	DIMENSION XG(100),YG(100)
	R=5
ſ	WED TEDMINDLOOV OF VARIES
c .	N SNIMPER OF FACILITIES
<u> </u>	M INUMBER OF CENTRAL FACILITIES
č	TTERA :NUMBER OF ITERATIONS IN RANDOM SEARCH OF FACILITIES
C	IGRID :INITIAL NUMBER OF GRID DIVISIONS ON EACH X AND Y AXIS
C	ITGRD :NUMBER OF GRID SIZE CHANGES
C	INC INCREMENTAL NUMBER OF DIVISIONS ON EACH X AND Y AXIS WHEN
С	PASSING FROM ONE GRID SIZE TO THE NEXT
C	X(1),Y(1):CARTESIAN COURDINATES OF FACILITIES
C	XR(I) :TRANSPORT RATE ON ROJTE I
<u> </u>	XM(I) :QUANTITY TO TRANSPORT ON RUDIE 1
	DULD(1), DNEW(1): ULD AND NEW EUCLIDEAN DISTANCES FRUM FAULLITT I IJ
L r	UPTIMUM CENTRAL LUCATION SDOLD SDNEW-DLO AND NEW SHM DE DISTANCES TO THE CENTRAL EACTLETIES
	COLDISCHEWOLD AND NEW TRANSPORTATION COSTS FROM FACTLITY LIDE
	OPTIMAL CENTRAL INCATION
Č Č	SCOLD-SCNEW: OLD AND NEW SUM OF TRANSPORT COST TO THE CENTRAL FACILITY
C	JOSAVII), JNSAVII) FOLD AND NEW CODE NUMBER ALLOCATION DESTHE FACILITY
C	IDSAV(J), INSAV(I): OLD AND NEW CODE NUMBER OF THE RANDOMLY SELECTED
С	CENTRAL LOCATION
С	RAINC :CLASS WIDTH ON CUMULATIVE DISTRIBUTION OF LOCATIONS
C	RAD(I) :CLASS BOUNDARIES ON CUMULATIVE DISTRIBUTION OF LOCATIONS
<u> </u>	KITER : ITERATION COUNTER
C	YFL :RANDUM NUMBER BETWEEN O AND 1.000
և Ր	XU(J),YU(J) JUARTESIAN GUUKUINATES UP RANDUMET SELECTED CENTRAL
	FAGILITIES PTT IN FERENDERAN DISTANCES FROM FACILITY I TO CENTRAL LOCATION 1
c ·	I I I I I I I I I I I I I I I I I I I
č	XMIN.YMAX: MINIMUM AND MAXIMUM VALUES OF X(1)
	YMIN.YMAX:MINIMUM AND MAXIMUM VALUES OF Y(I)
	READ(R.10)N.M.ITERA,IGRID,INC,ITGRD
1	O FORMAT(6110)
•	READ(R,20)(X(I),Y(I),XR(I),XM(I),I=1,N)
2	O FORMAT(4F15.0)
C	FIRST TABULATION: LIST GIVEN VARIABLES
_	WRITE(W, 30) ITGRD, ITERA, IGRID, INC, M, N
3	D FORMAT(1H1+//, 35X, 39HLUCATION OF MULTIPLE LENTRAL FAUTLITIES,/,
	140X, 30HR ANDUM GRID LUCATION ALGUNITTM, //, 24X, 10, 14, 2006 (U. SPACING)

'202

P	Δ	5	<u>(</u>)	0	0	2
		•					

		2 CHANGES 44. T4. 14. 19HTTERATIONS PER GRID. 7.15X.33HINITIAL NUMBER D
		3E BRID DIVISIONS _14_4X.36HDIVISION INCREMENTS PER GRID CHANGE ,14
		4.//.43X.I3.IX.IBHCENTRAL FACILITIES./,46X,15,1X,10HFACILITIES,//)
		WRITE(W.32)
	32	FORMAT (24X, 21HCARTESIAN COORDINATES, 6X, 14HTRANSPORT RATE, 3X,
		111HQUANTITY T0,/,69X,9HTRANSPORT,/,27X,1HX,14X,1HY,15X,1HP,14X,1HM
		2,//)
· · · · · · · · · · · · · · · · · · ·		DO 36 I=1,N
		WRITE (W,35) 1,X(1),Y(1),XR(1),XM(1)
	35	FORMAT $(10X, 3HI =, 15, 4(4X, F11, 3))$
<u> </u>	30	CONTINUE
U U		GRID COUNTER SET FOR FIRST GRID INVESTIGATION
ſ		
<u> </u>		DEFINE X MAXIMUM; Y MAXIMUM
		$\frac{1}{1} \frac{1}{1} \frac{1}$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\frac{11}{(X)} \frac{1}{(X)} 1$
	80	CONTINUE CONTINUE AND A
		YMAX=Y(1)
	•	DO 100 I=2,N
•		IF(Y(I)-YMAX)100,90,90
• . 	90	YMAX=Y(I)
	100	CONTINUE
L _		DEFINE X MINIMUM, Y MINIMUM
		XMIN = X(1)
	110	LEUX(1)=XM1N)11091209120 C MATRI-V(T)
	120	
	<u>k</u>	CUNTINGE VMTN=V(1)
· · ·		$D\Pi$ 140 I=2.N
		IF(Y(I)-YMIN)130,140,140
	130	YMIN=Y(I)
	140	CONTINUE
Ç		DEFINE RANCE OF X AND Y
		RANGX=XMAX-XMIN
· · · · · · · · · · · · · · · · · · ·		RANGY=YMAX-YMIN
U	150	COMPUTE NUMBER OF GRID INTERSECTION POINTS
	170	
C		CHECK TE NUMBER OF GRID INTERSECTION POINTS IS LARGE ENDUGH
		UF(NG-M)160.160.170
•	160	IGRID=IGRID+INC
<u></u>		GO TO 150
C		DEFINE GRID SPACING
1	170	GRID=IGRID
		XINC=RANGX/GRID
~	•	YINC=RANGY/GRID
<u> </u>		DEFINE GRID. INTERSECTION PUINTS as the first weather the second strength of the second strength of the second sec
		DO 180 I=1,NBER
		[X=1-1]
		DU 180 JEL;NDCK VV-1_1 v v v v v v v v v v v v v v v v v v
		그는 이는 것 같은 것 같은 것을 하는 것 같은 것을 알려야 한 것을 것 같아요. 것 같은 것 같은 것을 하는 것을 같이 없는 것 같은 것 같은 것을 알려야 한 것을 했다. 것 같은 것 같은 것을 알려야 한 것을 했다. 것 같은 것 같은 것을 알려야 한 것을 알려야 한다. 것을 알려야 한 한 한 것 같다. 것 같이 않다. 것 같이 않다. 것 같이 같이 같이 같이 같다. 것 같이 같이 같이 같이 않다. 것 같이 같이 같이 같이 같다. 것 같이 않다. 것 같이 않다. 것 같이 않다. 것 같이 않다. 것 같이 않 않다. 않다. 것 같이 않 같이 않 않다. 않다. 않다. 않 않다. 않 같이 않 않다. 않 않다. 않다
<u></u>		

		PAGE DOD
		$\mathbf{K} = 1 + \mathbf{I} \mathbf{X} \times \mathbf{N}^{2} + \mathbf{F} \mathbf{P}$
		XG(K)=XMIN+{XK*XINC}
	180	YG(K)=YMIN+(IX *YINC)
C		ZERU ALL CUMPUTATIONAL VARIABLES
		DDLD(1)=0.0
		DNEW(1)=0.0
		COLD(I)=0.0
		JOSAV(I) = 0
•	50	JNSAV(I)=0
		$DD \ 60 \ J=1, M$
n Alexandria	60	IUSAV(J) = 0
		SDOLD=0.0
		SDNEW=0.0
C		ZERO ITERATION COUNTER
		KITER=0
C		DEFINITION OF CLASS INTERVALS FOR O TO I RANDUM NUMBER DEFINING THE
C		O ID NG INTEGERS
		RAINC=1.0/XNG
		DD 190 I=1,NG
		X I = I
c	190	RAD(I)=XI*RAINC RANDOM CENERATOR STARTING VALUE
ل د		IY=21735
C		STARTING OF ITERATION COUNTER FOR A GIVEN GRID
	200	KITER=KITER+1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		PANDUM CHOICE DE M CENTRAL FACTULITES (POM THE NG CRID POINTS
C	210	DO 240 $J=1.M$
	215	CALL RANDUILY, IY, YFL)
		DO 230 I=1,NG
	220	1F (YFL-KAD(1))220,220,230
		YC(J)=YG(I)
		INSAV(J)=I
· · · · · · · · · · · · · · · · · · ·	222	IF(J-1)222,240,222
C	222	CHECK THAT RANDOMLY CHOSEN GRID POINT HAS NOT BEEN ALREADY PICKED AS
		CENTRAL LOCATION
		DO 224 KJ=1,K
	224	1F (1NSAV (J) – 1NSAV (KJ)) 240, 215, 240 CONTINUE
	230	CONTINUE
• • •	240	CONTINUE
<u> </u>		COMPUTE ARRAY OF EUCLIDEAN DISTANCES TO RANDOMLY CHOSEN CENTRAL FACILITIE
		DD 250 1=1,N DD 250 1=1.M
•	250	D(I,J)=(((XC(J)-X(I))**2)+((YC(J)-Y(I))**2))**0.5
C		FOR EACH FACILITY SELECT THE CLOSER CENTRAL LOCATION
		에는 것은

n	A	^	E.	<u></u>	2	h	18
٣.	щ	7	<b>-</b>	.,	-, š	୍ତ	- H-

استوبا والمتعاد المراجع		
		DD 230 I=1,N planteter and the regulation of the type of the second state of the secon
		SHORT=D(I+1)
		1=]
		$DU \ge 70$ K=2 $M$
:		IF(D(I,K)-SHORT)260,270,270
	260	SHORT=0(1,K)
	270	CUNTINUE
		-DNEW(I)=SHORT
• • •	•	CNEW(I)=XR(I)*XM(I)*ONEW(I)
		NSAVII  = 1
· · · · · · · · · · · · · · · · · · ·	200	
	200	CONTINUE
· ·		CUMPUTE SUM OF OPTIMAL DISTANCES AND IDIAL TRANSPORTATION COST
		SDNEW=0.0
		SCNEW=0_0
		SDNEW=SDNEW+DNEW(I)
	290	SCNEW=SCNEW+CNEW(1)
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		IF(KITER-1)300,300,320
· · · · · · · · · · · · · · · · · · ·	•	TITLE OF SECOND TABLE ATTOM
1	300	WRITE(W, 310)
	310	FORMAT(1H1,//,40X,30HRANDON GRID LOCATION ALGORITHM,/,34X,
	•	141HDISTRIBUTION OF TOTAL DISTANCES AND COSTS,//,31X,9HITERATION,
		25X.14HSUM OF OPTIMUM.5X.16HSUM OF TRANSPORT./.32X.6HNUMBER.9X.
		20 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
		JANUISIANCESTIAN AND ATTOM
(	<u> </u>	BUDY OF SECOND TABULATION
· .	320	WRITE(W,330)KITER,SDNEW,SCNEW
	330	FORMAT (30X, 17, 9X, E13.6, 7X, E13.6)
Ċ		IF THIS IS THE FIRST ITERATION REPEAT RANDOM CHOICE ANOTHER TIME
		[E[SC(1)]]]340-350-340
		CHECK IE NEW CHOICE OF CENTRAL FACILITIES CIVES BETTED RECHTS
· · · · · · · · · · · · · · · · · · ·	•	CHECK IF NEW CHOICE OF CENTRAL FACILITIES GIVES BELLEN RESOLTS
	34()	IF(SCNEW-SCOLD)350,350,380
	350	SDDLD= SDNE W
		SCOLD=SCNEW
		DOLD(I)=DNEW(I)
	n an	<cold(1)=cnew(1)」においていた。これにはないなどはなどのなどを認定ななができた。またが必要ななななななななななななな< th=""></cold(1)=cnew(1)」においていた。これにはないなどはなどのなどを認定ななができた。またが必要ななななななななななななな<>
	360	·JOSAV(I)=JNSAV(I)。在这些中国的中国中国的中国中国的大学的教育教育教育教育和中国的中国中国的中国中国的中国中国的
		DO 370 J=1.M
	370	$I \cap S \land V(.1) = I \cap S \land V(.1)$
	390	
		THEOR TARGED ATTOM & ODTIMENTALLOCATION AND ADDRESS AN
t de la C	• •	- FOINU FADULATIUN F UMITHUM ALLUUATIUN, M. MARKANA ALLUNA ALLUNA ALLUNA ALLUNA ALLUNA ALLUNA ALLUNA ALLUNA ALL
	390	-WRITE(W,400)L,ITERA [For a second of the second field and second to the second s
	400	FORMAT(1H1;//;40X;30HRANDOM_GRID_LOCATION_ALGORITHM;/;40X;
		128H)PTIMUM ALLOCATION ON GRID #.13./.45X.5HAFTER.1X.T4.1X.
		210HITERATIONS // 35X 39HCODE AND LOCATION DE CENTRAL EACHITLES./.
		210HITERATIONS////////////////////////////////////
		333X, IIHCUJE NUMBER, IXX, ZINCARTESTAN COURDINATES, 7, 37X, IHX, 14X, 14Y,
		4//) 그는 이 집안 이 많은 것 같은 것 같이 있는 것 같은 것을 많은 형태를 많이 없을 것 같은 것 같은 것을 것 같은 것 같이 나라?
		- DD-415、J=1,M。这些是,可是从在中国的特征出现的资源和选择组织的资源还在中国的发展中的是否正确是不是非常非常
		「JJ=IOSAV(J)」(「「「」」」(「」」)(「」」)(「」」)(「」」)(「」」)(」)(U)AZOI=LU
		WRITF(W.410)J.XG(JJ).YG(JJ)
	<u>, , , , , , , , , , , , , , , , , , , </u>	EDD AAT (24Y, 2H) = 14.0Y, E11.2.4Y, E11.21
	410	$\frac{1}{2} \frac{1}{2} \frac{1}$
	415	CUNIINUE
		WRITE(W, 420) Control of the second state of t
		그는 것 같아요. 그는 방법을 통하는 것은 것을 해외에 들었다. 물건에 물건을 통해 물건을 하는 것을 통하는 것을 수 없을까?
		아는 이 것이 이 것은 것은 것을 알았는 것이 같은 것이 같은 것을 만들고 있는 것을 많은 것을 많은 것이 없는 것이 같다. 것이 없는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 없다.
	<u></u>	ne oli na serie en la presenta de la construcción de la serie de la construcción de serie de la definidad de l La construcción de la construcción de la construcción de la construcción de la definidad de la construcción de l
and the second		a na sa kana ang kanakana kana kana kana kana

•

•

		· ·	206		•	
				,		PAGE 000
42(	D FORMAT(//,46 110X,13HCENTR 212X,6HNUM3ER 316HCENTRAL L WRITE(W,430)	X,18HOPTIMUM AL LOCATION,6 ,4X,21HCARTES OCATION,9X,5H (I,X(I),Y(I),	ALLOCATIO X,11HDIST IAN COORD ICOSTS,/,2 JOSAV(I),	N,//,13X,19H ANCE T0,7X,1 INATES,9X,4H 5X,1HX,13X,1 DOLD(1),COLD	F A C I L I I 4 HTRANSPORTAT CODE, 11X, HY, //) (1), I=1, N)	T I E S, IJN,/,
430 435 C 440	D FORMAT(IIX,3 WRITE(W,435) 5 FORMAT(/,62X CHECK IF ALL IF(L-ITGRD)4 D L=L+1	HI =, I4, 2X, F1 SDOLD, SCOLD , 5HTUTAL, E14. GRID CHANGES 40,450,450	1.3,3X,F1 5,4X,F15. HAVE BEE	1.3,7X,13,10 6) V DONE	X,E16.6,4X,E1	5.5)
450	GO TO 160 D CALL EXIT END					
		:				
					and the second secon	
	<u>le de la constant</u> e de la constante Internet				19 - 19 - 20 - 20 - 20 - 20 - 20 	
			· .			

					÷.			
			· .					
			LOC/	TION OF MULTI	PLE CENTRAL FACI	LITIES		
		• •		RANDOM GRID L	OCATION ALGORIT	НМ		
		· ·	5 GRID S	PACING CHANGES	S LOO ITERAT	TONS PER GR	10	
4		INITIA	L NUMBER OF GRID D	IVISIONS 3	DIVISION INC	REMENTS PER	GRID CHANGE	1
				3 CENTR/ 20 1	AL FACILITIES FACILITIES			
<u></u>			<u>, de la composition de</u>			<u> 41.189.2018.2018</u>	<u>. 19 </u>	<u>1991), 1997, 1988, 1988, 1988</u> , 19
					DANCOOUT DATE	OUNNELEV TO		
	·		CARTESTAN COURT	INAILS II	MINSFULL NATE	TRANSDART	n an	
	•		<b>X</b>	Y	R	M		
	I =	1	7.190	5.490	1.000	2.000		·
	I =	2	9.070	9.940	1.000	2.000		
	1 =	3	4.610	6.490	1.000	2.000		<b>N</b> 1
	I =	4	4.940	8.250	1.000	2.000 -		Ö
	I =	5	0.470	0.690	1.000	2.000		~
· · · · · · · · · · · · · · · · · · ·	I =	6	6.180	3.570	1.000	2.000	· · · · · · · · · · · · · · · · · · ·	
	I =	7	1.130	9.810	1.000	2.000		
-	I =	. 8	6.000	4.360	1.000	2.000		
	1 =	9	8.230	8.060	1.000	2.000		
•	I =	10	9.600	9.280	1.000	2.000		
· · · ·	<u>I =</u>	11	3.460	9.680	1.000	2.000		
	I =	12	2.310	0.390	1.000	2.000		
. •	I =	13	2.530	4.570	. 1.000	2.000	•.	
	I =	14	4.440	7.990	1.000	2.000		
	1 =	15	8.530	1.490	1.000	2.000		
	1:=	16	2.290	7.030	1.000	2.000		
	<u>.1</u> ,=,	11	8.830	7.120	1.000	2.000		
	1 =	18	2.620	9.410	1.000	2,000		
	1 =	19	3.820	2.420	1.000 .	2.000		
	1 =	20	1.000	T•210		2.000		
				and the second		•		
								• • • • • • • • • • • • • • • • • • •
		· · · · · · · · · · · · · · · · · · ·	·	м. 	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
•	•			•				

•

.

•

	RA DISTRIBU	NDOM GRID LOCATION A	ALGORITHM NCES AND COSTS	
· ·	ITERATION NUMBER	SUM OF OPTIMUM DISTANCES	SUM OF TRANSPORT COSTS	
	1	0.720299E 02	0.144060E 03	
•	2	0.626835E )2	0.125367E 03	
	3	0.7041485.02	0.1544435 03	
		0.732473E 02	0.145495E 03	an a
	6	0.663145E 02	0.132629E 03	
	. 7	0.711765E 02	0.142353E 03	
	8	0.914100E 02	0.182320E 03	
	9	0.652524E U2	0.128109E 03	
	10	0.7329516 02	0.156570E 03	
	12	0.874874E 02	0.174975E 03	
	13	0.588681E 02	0.117736E 03	
	14	0.935630E 02	0.197126F	
	15	0.6133798-02	() - ⁽	
	10	0.6581115	n 1997 - Andreas Martin, andreas Andreas (1997) 1997 - Andreas Martin, andreas (1997)	
	18	0		
	19			
			-03	· · ·
and the second			0 1131955 03	
Na secto de la comencia de la comenc		· · · · · · · · · · · · · · · · · · ·	0.155366E 03	
		J.685871E 02	0.1371748 03	
		0.702514E 02	0.140503E 03	
	92	0.878319E 02	0.175664E 03	
	93	0.594903E 02	0.1189815 03	
	95	0.781114F 02	0.150223E 03	
	96	0.850261E 02	0.170052E 03	
e parte de la selación de	97	0.874333E 02	0.174367E 03	
	98	0.809427E 02	0,161885E 03	•
•	99	0.576836E 02	0.114967E 03	
	:		·	•
			성 : : : : : : : : : : : : : : : : : : :	
•	. ,			
·			and the second	
		사실 전 사실에 가지 가지 않는 것은 가지 않는 것이다. 2013년 - 1월 17일 - 19일 : 19일		

- .

.

.

							· .		
						•			•
-					RANDOM	GRID LOC	ATION ALGORI	THM	
<u> </u>					UPTIMU	IM ALLUCAI	TUN UN GRID	# 1	
					<i>F</i>	FIER IUU	TIERVETON2		
•				C				TITTES	
		······		COO	F NUMBER	CATEGR OF	ARTESTAN COD		
						<b>.</b>	X	Y	
							<u></u>		··
				J	= 1 .		6.557	6.757	
				, J	= .2		3.513	0.390	
			· . ·	J	= 3		3.513	9.940	
	•		•						
			· .			ODTINUM			
				•	:	UPTIMUM A	LLUCATION		•
	-		F		c	CENTRAL		DISTANCE TO	TRANSDORTATION
		NITM	HFR		EDINATES	<u> </u>	F	CENTRAL LOCATION	COSTS
				X	Y				
			· •						
				<u> </u>	<del></del>		<u></u>		
÷		I =	1	7.190	5.490	L		0.141617E 01	0.283235F 01
· 		[ =	2	9.070	9.940	L	·	0.4055925 01	0.811184E 01
		I =	- 3	4.610	6.490	1		0.196484E 01	0.392969E 01
		I =	4	4.940	8.250	1		0.220083E 01	0.440166E 31
<u></u>		<u>I =</u>	5	0.470	0.690	2		<u>9.305808F 01</u>	0.6116165 01
		1 =	6	5.180	3.570	1		0.320885E 01	0.641769E 01
		1 =	(	1.130	9.810	. 3		0.238688E 01	9.477375E 91 ·
		1 -	0	9 230	4.300	J. 1			0.4920925 01
		1 — 1 —	10	9 400	0.000	1		1 3053365 01	0 7006735 01
		I —	11		9.200	1		0.265411E 00	0.5308225 00
		$\frac{1}{T} =$	12	2 310	0.390	2	<u>i de la constance de la constan La constance de la constance de</u>	0.120333E 01	0.2406575 01
•		5. — 1 =	13	2.530	4.570	2		0.429410E 01	0.8588205 01
		I =	14	4.440	7.990	. 3		0.2158735 01	0.431796E 01
	· · · · · · · · · · · · · · · · · · ·	I =	15	8.530	1.490	2		0.513585E 01	0.102717E 02
•		[ =	16	2.290	7.030	3	ر معنی کرد کرد. را میں سر انکسی کر اور اور اور اور	0.315668E 01	0.631335F 01
	* 1.4.4 1	I =	17	3.830	7.120	1		0.230219E 01	0.450437F 01
		[. =	18	2.620	9.410	3	,	0.103872E 01	0.207744F 01
		1 =	19	3.820	2.420	2	•	0.205303E 01	0.410605E 01
	•	I =	20	7.550	1.970	2		0.433486E 01	0.856973E 01
		· · .	А. 25.				τοται	0.527695E 0?	0.105539E 03
÷.			er de la s					en de la Calendaria de la companya de la companya El companya de la comp	

•

· · · · · · · · · · · · · · · · · · ·		· · ·		
	· · · · · · · · · · · · · · · · · · ·	OM GRID LOCATION	ALCORITHM	
	DISTRIBUTI	ON OF TOTAL DISTA	NCES AND COSTS	
			TOLNEDON	·
	NU/IBER	DISTANCES	COSTS	
	1	0 7256705 02	0 1/513/5 03	
مراده این مربوع می وارد این این این می وارد این این این می این این این این این این این این این ای	2	0.527695E 02	0.105539E 03	<u> </u>
•	3	0.608446E 02	0.121689E 03	
	4	0.754811E 02.	0.150962E 03	
	5	0.7811141 02		
	7	0.542861E 02	0.108572E 03	
	8	0.805535E 02	0.161107E 03	<u>and a saint and an </u>
	9	0.763510E 02	0.152702E 03	
	10	0.722993E 02	0.144599E 03	
	11	0.645500F 02	0.129100E 03	
	13	0.110114E 03	0.220228E 03	
	14	0.595514E 02	0-1191036	
	15	0,779213E 02		
	10	0.125010E 02		
	18	ō		
	19			
		·		
			0.112681E 03	
		2.E 02	0.131510E 03	
		J.623930E 02	0.124785E 03	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.797754E 02	0.159551E 03	
	85 87	0.708918E 02	0.141784E 03	
and the second	88	0.577336E 02	0.115467E 03	
	89	0.736609E 02	0.147322E 03	
	90	0.640542E 02	0.128109E 03	
	91	0.926379E 02	$\frac{0.185275E}{0.185275E}$	
	93	0.648323E 02	0.1295655 03	
	94	0.925606E 02	0.185121F 03	
	95 04	0.586081E 02	0.117?16E 03	
	96 97	0.731762E 02	0.1553578 03	
	98	0.576437E 02	0.115239E 03	
	99	0.866447E 02	0.173290E 03	
	100	0.778810E 02	0.155762E 03	
		en e		
				and the second

									-
					RANDOM OPTIMUM	GRID LOCATION ALC ALLOCATION ON G	GORITHM RID # 2		
					Ar	TER 100 TTERATI	182	•	
					CODE AND LOC	ATION OF CENTRAL	FACILITIES		
			· · · · · · · · · · · · · · · · · · ·	03	DE NUMBER	CARTESIAN	COORDINATES		
• 			1			X	Ŷ		
				ل ار	= 1 = 2	5.035	2.777		
				J		7.317	5.155		
					<u> </u>	PTIMUM ALLOCATION	u kana kana tahun kana kana kana kana kana kana kana ka		
			•	•		, FINDE ALLOON IN	•		
•			F	ACILITIE	S	CENTRAL LOCATION	DISTANCE	TO TRANSPORTATIO	N
		NUT	MBER	CARTESIAN COD	RDINATES	CODE	CENTRAL LIDG	VTIDN COSTS	
	•			X	Y				
i .		I =	1	7.190	5.490	3.	0.349115E	00 0.698229E 00	23
		I =	2	9.070	9.940	2	0.468843E	01 0.937686F 01	<u>د۔</u>
		I =	3	4.610	6.490	2	0.114435E	01 0.2288595 01	
			4	4.940	8.250	2	U.703941E	01 0.100393E 02	
		$\frac{1}{1} =$	6	6.180	3,570	<u>teri idae til 4 e il e iliado.</u> 1	0.1392515	01 0.278502F 01	
		I =	7	1.130	9.810	2	0.451058E	01 0.902115E 01	
		I =	8	6.000	4.360	3	0.154396E	01 0.308793E 01	
		I =	9	8.230	8.060	3	0.303541E	01 0.607081E 01	
		I =	10	9.600	9.280	3	0.4705648	01 0.941128E 01	
<u> </u>		I =	11	3.460	9.680	2	0.254705E	01 0.529410F 01	
		I =	12	2.310	0.390	1	0.362295E	01 0.724590E 01	•
		1 =	13	2.530	4.570	1	0.308027E	01 0.616054E 01	
		1 =	14	4.440	7.995	2	0.7385325	0.0 0.47(0.55)	
		1 =	15	8.530	1.490		0.3724502	01 - 01 - 01 - 01 - 01 - 01 - 01	
		1 = · · · _	10	2.290	7 120		- Selange - (J・219423E) - 1995年 - ハーウムフ170日	01 01 0 4043545 01	
		1 =	18	2 620	9 410	2	0.3046725	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u></u>
		1 =	10	3.820	2.420	1	0.1266506	01 0.2533005 01	
		I =	20	7.550	1.970	1 .	0.264145E	01 0.528291E 01	
						n na standing sa standing s			
						Ĵ.	DTAL 0.531276E	02 0.106255E 03	
		- +							

	•	212		
• • • • •				, ,
	РА	NDOM COTO LOCATION		
	DISTRIBU	TION OF TOTAL DISTAN	NCES AND COSTS	
	TTERATION		SIM DE TRANS	PUBT.
	NUMBER	DISTANCES	COSTS	
	1	0.854613E 02	0.170923E	03
	2	0.663508F 02	0.132702E	03
	3	0.601718E 02	0.159619E	03
······································	5	0.751462E 02	0.150293E	03
	6	0.593459E 02	0.1186926	03
<u></u>	7	0.672455E 02	0.134491F	03
	8 9	0.594032E 02	0.1528415	03
	10	0.836103E 02	0.177221E	03
	11	0.836693E 02	0.167339E	03
	12	0.863575E 02	0.1727155	03
	1.5	0.054655F 02	0.1329315	
	15	0.912603E 02	0 1	
	16	0.771456E 02		
	18	0.617236 0.517236		
	19			
- <u></u>			······································	03
			0.101(055	03
		-upt 02	0.156473E	03
		0.816075E 02	0.163215E	03
		0.656188E 02	0.131233E	03
	86	0.631850E 02 0.674561E 02	0.134312E	03
and a survey of the second	8 8	0.691661E 02	0.138332E	03
······································	89	0.807124E 02	0.161425E	03
	90	0.764203E 02	0.1528416	03
	92	0.9 5000E 02	0.199200E	03
	93	0.69+505E 02	0.138901F	03
-	94	0.658127E 02	0.131526E	03
	95	0.618181F 02	0.134154E	03
	97	0.831058E 02	0.166212E	03
	98	0.634162E 02	0.126332E	03 .
	100	0.804885E 02 0.620358E 02	0.1609775	03
• <u>••••••••••••••••••••••••••••••••••••</u>	100		9 • LC +916.E	
<u></u>	,			
<u>na na sana kaominina mpika na mpika mpika na kaominina dia mpika na kaominina dia mpika na kaominina dia mpika</u>				

	•		the second se		the according to the state of the	and the second secon	
				RANDOM GR OPTIMUM A	ID LOCATION A	LSORITHM GRID # 3	
				AFIE	R 100 LIERAT	IUNS .	
· · ·			C	DE AND LOCAT	ION DE CENTRA	L FACILITIES	
			CODE	NUMBER	CARTESIA	N COORDINATES	
· .					X	\mathbf{Y} is a final second seco	
			J =	- 1	0.470	9.940	
······	-	<u></u>	Ĵ.	3	7.174	8.030	
			<u> </u>	OPT	IMUM ALLOCATI	0N	
	. •	F	ACILITIES	C FI	NTRAL LOCATIO	N DISTANCE TO	TPANSPORTATION
	NUM	BER	CARTESIAN COORT	DINATES	CODE	CENTRAL LOCATION	COSTS
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
	= I	1	7.190	5.490	3	0.260627E 01	0.521254E 01
	I =	2	9.070	9.940	3	0.230819E 01	0.451637E 01
· · ·	1 = 1 =	3	4.010	8 250	3 3	0.351857E 01 = 0.00000000000000000000000000000000	0.548505E 01
· · · ·	I =	- 5	0.470	0.690	2	0.399114E 01	0.798227E 01
•	1 =	6	6.180	3.570	2.	2.241832F 01	0.493664F 01
	I =	7	1.130	9.810	1	. 0.672680E 00	0.134536E 01 ·
·	I =	.8	6.000	4.360	2	0.278756E 01	0.557512E 01
	I =	9	8.230	8.060	3	0.456989E 00	0.913978E 00
· .	I =	10	9.600	9.280	.3	0.221287E 01	0.442574E 01
·	= 1	11	3.460	9.680	1.	0.300128E_01	0.600256E 01
	I =	12	2.310	0.390	2	0.263276E 01	0.526552E 01
	[=	13	. 2.530	4.570	2	· 0.277261E 01	0.554521F 01
	I =	<u> 14 </u>	4.440	7.990	3	0.333424E 01	0.666847E 01
	[=	15	8.530	1.490	2	0.448180F.01	0.896360F-01
	I =	16	2.290	7.030	1	0.343227E 01	0.686454E 01
• • • • • • • • • • • • • • • • • • •	I = 1	17	8.830	7.120	3	0.139400E 01	0.273800E 01
	I =	18	2.520	9.410	. 1	0.221436F 01	0.442872E 01
	I =	19	3.820	2.420	2	. 0.324966E 00	0.649932E 00
· ·	<u>I =</u>	20	7.550	1.970	2	0.344385E 01	0.688770E 01
						TOTAL 0.508474E 02	0.101695E 03

N .,

	RA DISTRIBUT	NDOM GRID LOCATION	ALGORITHM
		SUM OF OPTIMUM	SUM OF TRANSPORT
		DISTANCES	
	<u> </u>	0.656294E 02	0.131259E 03
•	2	0 6298395 02	
	4	0.715650F 02	0.143130F 03
	5	0.656213E 02	0.133243F 03
	6	0.539547E 02	0.107709E 03
	• 7	0.634637E 02	0.126927E 03
	8	0.728945F 02	0.145789E 03
	У 10	U. (16677E 02	0.143336E 03
	10	0.7168805-02	0.1420341 03
	12	0.6939065 02	0.138781F 03
	13	0.612919E 02	0.122584F 03
	14 .	0.683918E 02	0.1367845
	15	0.539547E 02	
	. 16	0.654310F 02	
	17	0./17295	: 영상 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
	10		
	L	<u></u>	
			0.1156485 03
			0.153768E 03
		-635449E 02	0.127090E 03
		0.730849E 02	0.146170E 03
	86	0.717007102	0.1435342 03
	88	0.613199F 02	0-1226405 03
	89	0.738285E 02	0.1476575 03
	90	0.7166778 02	0.143336E 03
	91	-0.717667E 02	0.143534E 03
	92	0.720453E 02	0.144091E_03
	93	0.645060F 02	0.129212F 03
	94	0.654171F02	0.130334E 03
	95	0.8144095 02	0.152892F 03
	97	0.716134E 02	0.143227E 03
· ·	98	0.634033E 02	0.126807E 03
	99	0.731541E 02	0.146308E 03
	100	0.585288E 02	0,117058E 03
	, , , , , , , , , , , , , , , , , , ,	n ga na an	
	······		
			방법 문제 전체 전체 문제로 가을 즐겨서 가 많 것
and a second second Second second		an ann a suige gealtair 1946 (1976) an San San Anns an San San San San San San San San San	

•

									· · · · · · · · · · · · · · · · · · ·
			RANDOM OPTIMUM	GRID LOC 4 ALLOCAT FTER 100	ATION ALGO ION ON GR ITERATIO)RIJHM ID # 4 NS			
		CODE	AND LOG	CATION OF	CENTPAL	FACILITIES			•
		CODE N	UMBER	C	ARTESIAN (X	CUORDINATES Y			
		= J J =	1 2		3.513	6.757 0.390			
		J =	.		0.301	3.7/3			
		•	i i	JPIIMUM A	LEUCATION				
	F	ACILITIES		CENTRAL	LOCATION	DISTANCE	re	FRANSPORTAT	TON
	NUMBER	X	ATES Y		E	CENTRAE LUC		CUSTS	N
	I = 1	7.190	5.490	3	•	0.201859E	01	0.403719E	ش 10
	I = 2	9.070	9.940	1	•	0.640392E	01	0.128073E	02
	[= 3	4.610	6.490	1		0.112862F	01	0.225724F	91
	1 = 4	4.940	8.250	1		0.206529E	01	0.1167(05	01
	1 = -5	6 180	3 570			0.3766915	00	0 7532625	00
	$I = 0^{-1}$	1 130	9 810	· .1		0.387330E	01	0.774677E	01
	I = 3	6.000	4.360	4		0,963703E	00	0.192740E	01
	1 = 9	8,230	8.060			0.4788555	01	0.957709E	<u>01</u>
	I = 10	9.600	9.280	3		0.646745F	ົ້າເ	0.129349E	02
	I = 11	3.460	9.680	1		0.292382E	01	0.584764E	01
	1 = 12	2.310	0.390	2		0.135032E	01	0.270163F	01
la i i i i i i i i i i i i i i i i i i i	I = 13	2.530	4.570	1		0.239759E	01	0.479518E	01
	I = 14	4.440	7.990	1	· •	0.1542675	01	0.308534E	01
<u>.</u>	1 = 15	8.530	1.490	3		0.2869555	01	0.573910F	D1
	I = 16	2.290	7.030	1		0.125350E	01	0.250699E	01
	1 = 17	8.830	7.120	3		0.421271E	01	0.842542E	01
la la constanta da constanta da cons tanta da constanta da constanta da constanta da constanta da constanta da Nacional	I = 18	2.620	9.410	1	· · · · · · · · · · · · · · · · · · ·	0.279963F	01	0.559936F	<u> </u>
	I = 19	3.820	2.420	3	•	3.296976E	01	0.593953E	01
	I = 20	7.550	1.970	3	5	0.138610E	01	0.377221E	01
					τŋ	TAL 0.528661E	02	0.105732E	n 3

	•	216		
	RA DISTRIBU	ANDOM GRID LOCATION A UTION OF TOTAL DISTAN	LGORITHM ICES AND COSTS	
	ITERATION NUMBER	SUM OF OPTIMUM DISTANCES	SUM OF TRANS COSTS	SPORT (
	1	0.641018E 02	0.128204E	03
•	2	0.794937E 02	0.158988E	03
	3 4	0.795612E 02	0.159123E	03
	5	0.777540E 02	0.155508E	03 •
	6	0.705469E 02	0.141094E	03
		0.793529E 02	0.1357235	03
	9	0.831784E 02	0.166357E	03
	10	0.832447E 02	0.166490E	03
	11	0.614353E 02	0.1223725	.03
	12	0.119858E 03	0.239717E	03
	13	0.6714655 02	0.134293F	
	15	0.705469E 02	0-1	
	16	0.657394E 02	• • • • • • • • • • • • • • • • • • •	
	17	0.8327125		
	10			
	en de la companya de	<u>i le lign alt title e gidane ling fildrice fr</u>	ر میں دور دیکرونٹ کو میں اوروں میکرور کے ** ماہ م ر مر	03
and the second			-133795E	03
مستنب مستنب . من المراجع الم	and the second		0.166406E	<u>/) 3</u>
		326 02	0.146135E	03
		0.832283E 02	0.166457E	03
	86	0.755538E 02	0.151108E	03
and the second se	87	0.749800E 02	0.149960E	03
	88	0.118726E 03	0.1397745	03 03
	90	0.778401E 02	0.155580E	03
	91	0.119693E 03	0.239397E	03
	92	0.657542E 02	0.131508E	03
•	93	0.754223± 02	0.150845E	03
	95	0.834971E 02	0.176994E	03 10 10 10 10 10 10 10 10 10 10 10 10 10
	96	0.752929E 02	0.150586E	03
	97	0.657327E 02	0.131466E	03
	98	0.714335E 02	0.1423675	03
	100	0.777695E 02	0.1555395	03

						· · ·			:
	•			RANDOM OPTIMUM AF	GRID LOCATION ALLOCATION C TER 100 ITER	ALGORITHM IN GRID # 5 ATIONS			
			CC	DE AND LOC	ATION DE CENT	PAL FACILITIE	S	, ·	
			CODE	NUMBER	CARTES	TAN COORDINAT	ES		
		: <u>.</u>			X	Υ			
			= ل ≂ ل	1	0.71	9 0. 0 9.	390 940		
)	3	8 • 2 •	6 4.	483		
	•			· ()	PTIMUM ALLOCA	TION			
		F	ACILITIES	:	CENTRAL LOCAT	IDN DIST	ANCE TO	TRANSPORTAT	ION
	NUM	BER	CARTESIAN COORD X	NATES Y	CODE	CENTRA		IN COSTS	
	I = I =	1 2	7.190 9.070	5.490 9.940	3 3	0.14 0.55	9564E 01 1180E 01	0.2991285 0.1102365	01 217 02 77
	<u>[= :</u>	3	4.510	6.490	3	J.41	9679E 01	0.839358F	01
	1 = 1 =	- 4-	4•940 0.470	8.250	2 1	0.47	7880E_01 9713E_00	0.779427E	01
	<u>I = 1</u>	6	6.180	3.570	3	0.23	0424F 01	0.450849E	01
· · ·	= I	7	1.130	9.810	2	0.67	2680E 00	0,134536F	01
	I =	8	6.000	4.360	3	0.22	9899E 01	0.459799E	01.
	1 =	9	8.230	8.060	3	0.35	7774E 01	0.7155495	01
	1 =	10 0	9.600	9.280	3 7	0.49	1129E 01	0.4002565	01
	1 -	12	2 310	0.390	<u> </u>	<u>0.15</u>	9125F 01	0.318251F	$\frac{0}{0}$
	T =	13	2.530	4.570	1	0.45	5554E 01	0.911109F	01
	Î ≠	14	4.440	7.990	2	0.44	2305E 01	0.884610E	01
	<u> </u>	15	8.530	1.490	3		0201E 01	0.600402F	01
	I =	16	2.290	7.030	2	0.34	3227E 01	0.686454E	01
	I =	17	8.830	7.120	3	0.26	9072E 01	0.538145F	.01
· · · · ·	I =	18	2.620	9.410	2	0.22	1436E 01	0.442872E	01
	I =	19	3.820	2.420	1	0.37	0657E 01	0.741314E	01
	I =	20	7.550	1.970	3	0.26	2117E 01	0.524234E	01
	•					TOTAL 0.61	4358E 02	0.122872E	03

•

MULTIPLE CENTRAL FACILITIES

RANDOM GRID WITH LINEAR CONSTRAINTS

5

· · · · · · · · · · · · · · · · · · ·		· · ·	219			
FORTRAN	IV G LEVEL	1, MOD 3 MAIN	D	ATE 22/35/1	2 P A	GE 000
C C C	LOCATION O	F MULTIPLE CENTRA THE RANDOM GR	L FACILITIES ID LOCATION DNSTRAINTS	ALGORITHM	SPRING 1969	
C C	DEFINITION	OF MACHINE INPUT	/OUTPUI: R R W W	EAD RITE		
c	CHANGE THE DIMENSION DIMENSION	DIMENSION CARD I X(20),Y(20),X DOLD(20),DNEW(F MORE THAN R(20),XM(20),COLD(20 FACILITIE 20),D(20, 20),CNEW(2	S ARE CONSIDERED 20) 0)	
C	DIMENSION CHANGE THE DIMENSION	JÜSAVI 20),JNSAV DIMENSION CARD I IDSAVI 5),INSAVI	(20),RAD(F MURE THAN 5).XC(5)	20) 5 CENTRAL L • YC(5)	DCATIONS ARE DES	IRED
C C	CHANGE THE DIMENSION CHANGE DIM	DIMENSION CARD I XG(100),YG(100) ENSION CARD IF MO	F MORE THAN	100 GRID INT	ERSECT. ARE CUNS	IDERED
	DIMENSION R=5 W=6	A(10),B(10)				
с с с	TERMINOLOG N M	Y OF VARIABLES :NUMBER OF FAC :NUMBER OF CEN	ILITIES TEAL FACILIT	1FS		
С С С	I TER A I GR I D I TGR D	NUMBER OF ITE INITIAL NUMBE NUMBER OF GRI	RATIONS IN RA R OF GRID DI D SIZE CHANGI	ANDOM SEARCH VISIONS ON E. ES	OF FACILITIES ACH X AND Y AXIS	
C C C	I NC <u>X (I) , Y</u>	INCREMENTAL N PASSING FROM (1):CARTESIAN COD	UMBER OF DIV ONE GRID SIZI RDINATES OF	ISIDNS ON EAU E TO THE NEX EACILITIES	CH X AND Y AXIS T	WHEN
С С С	XR(1) XM(1) NC	TRANSPORT RAT QUANTITY TO T TOTAL NUMBER	E ON ROUTE I RANSPORT ON I OF LINEAR COM	ROUTE I NSTRAINTS ON	CONVEX HULL	
C C C	MC K I1,12	:NUMBER OF LIN CODE NUMBER O CODE NUMBER O	EAR CONSTRAIN F LINEAR CONS F THE 2 FACTO	NTS WITH LESS STRAINT IILES DEFIN	S THAN OR EQJAL Ing the line con	TC STRAIN
С С С	A (KC) B (KC) DOLD (1	ANGULAR COEFF CORDINATE AT O DATE AND	ICIENT OF LIM RIGIN OF LINE NEW EUGLIDE	NEAR CONSTRA EAR CONSTRAI(AN DISTANCES	INT NT <u>FROM FACILITY I</u>	
C C C	SDOLD, COLD(I	OPTIMUM CENTR SDNEW:OLD AND NEW .CNEW(11:OLD AND	AL LOCATION SUM OF DIST NEW TRANSPOR	ANCES TO THE RTATION COST	CENTRAL FACILIT S. FROM FACILITY	IFS I_TN
С С С	SCULD, JUSAVI	OPTIMAL CENTR SCNEW:OLD AND NEW L),JNSAV(L):OLD A	AL LOCATION SUM OF TRANS ND NEW CODE	SPORT COST TO	D THE CENTRAL FA	CILITY
C C C	IOSAV(J),INSAV(I):OLD A CENTRAL LOCAT :CLASS WIDTH O	ND NEW CODE 1 ION N CUMULATIVE	NUMBER OF THE DISTRIBUTIO	E RANDOMLY SELEC	TFD
С С 	RAD(I) KITER <u>YEL</u>	CLASS BOUNDAR ITERATION COU RANDUM NUMBER	IES ON CUMULA NTER <u>BETWEEN O A</u> M	ATIVE DISTRIE	SUTION OF LOCATI	ON'S
10	READ(R,10) FORMAT(611) READ(R,20)	N,M,ITERA,IGRID,I) (X(I),Y(I),XR(I),	NC, ITGRD XM(I), I=1, N)			
20	FORMAT(4f1) READ(R,21)	5.0) :C,MC				

	. 220
	PAGE 000
21	FORMAT(2110) DO 23 KC=1,NC READ(8,22)KC,11,12
22 C	FORMAT(3110) ANGULAR COEFFICIENT OF LINEAR CONSTRAINT A(KC) = (Y(11) - Y(12))/(Y(11) - X(12))
C 23	ORDINATE AT ORIGIN OF LINE CONSTRAINT B(KC)=Y(II)-A(KC)*X(II) MCl=MC+1
C 30	FIRST TABULATION: LIST GIVEN VARIABLES WRITE(W,30)ITGRD,ITERA,IGRID,INC,M,N EDRMAT(1H1.//.35Y.39HLOCATION DE MULTIPLE CENTRAL EACLITIES./.
	140X, 30HRANDOM GRID LOCATION ALGORITHM,/,43X,23HWITH LINEAR CONSTRA 2INTS,//,29X,I3,1X,20HGRID SPACING CHANGES, 3 4X,14,1X,19HITERATIONS PER GRID,/,15X,33HINITIAL NUMBER D
	<pre>4P GRID DIVISIONS ,14,4X,35HDIVISION INCREMENTS PER GRID CHANGE ,14 5,//,43X,13,1X,18HCENTRAL FACILITIES,/,46X,15,1X,10HFACILITIES,//)</pre>
32	FORMAT(24X,21HCARTESIAN_COORDINATES,6X,14HTRANSPORT_RATE,3X, 111HQUANTITY_T0,/,69X,9HTRANSPORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM 2,//)
	DO 36 I=1,N WRITE (W,35) I,X(I),Y(I),XR(I),XM(I) FORMAT (10X,3HI =,15,4(4X,FL1.3))
36 	CONTINUE WRITE(W,40) FORMAT(///,46X,18HLINEAR_CONSTRAINTS,//)
42	DO 43 KC=1,MC WRITE(W,42)KC,A(KC),KC,B(KC) EDRMAT (22X,2HY(,[3,3H] -,E14,6,5H * X(,[3,23H] LESS THAN DR EQUA
43	1L TO,E17.6) CONTINUE DD 45 KC=MCL.NC
44	WRITE(W,44)KC,A(KC),KC,B(KC) FORMAT {22X,2HY(,I3,3H) -,E14.6,5H * X(,I3,26H) GREATER THAN DR E LQUAL TD,E14.6}
45 C	CONTINUE GRID COUNTER SET FOR FIRST GRID INVESTIGATION L=1
C .	DEFINE X MAXIMUM, Y MAXIMUM XMAX=X(1) _DD_80_L=2.N
70 80	IF(X(I)-XMAX)30,80,70 XMAX=X(I) CONTINUE
	YMAX=Y(1) DO 100 I=2,N IE(Y(1)-YMAX)100,90.90
90 100 C	YMAX=Y(I) CONTINUE DEFINE X MINIMUM, Y MINIMUM
• • • • • •	XMIN=X(1) DO 120 I=2,N IF(X(1)-XMIN)110,120,120
	이 가지 않는 것 같은 것이 있는 것이 있다. 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 가 같은 것이 있는 것이 같은 것이 있는 것 같은 것이 있는 것이 같은 것이 있는 것이 같이 있는 것이 있

F.

р	Δ	G	F	0	0	3	1
	-4	.,	L.		<i>i</i> U		

11 12	10 XMIN=X(I) 20 CONTINUE
	YMIN = Y(1)
	DO 140 I=2.N
17	1 + (Y(1) - YMIN) + 20, 140, 140 RO $YMIN = Y(1)$
12	to CONTINUE
C	DEFINE RANGE OF X AND Y
	<u> RANGX=XMAX-XMIN</u>
r ·	RANGY=YMAX-YMIN Compute Number of Crid Intersection Roints
<u>1'</u>	50 NBER=IGRID+1
	NG=(NBER)**2
C	CHECK IF NUMBER OF GRID INTERSECTION POINTS IS LARGE ENOUGH
14	$\frac{1 + 1 \times 10}{1 \times 10} = 1 \times 10 \times 10$
~ ~	GO TO 150
C	DEFINE GRID SPACING
17	
	U XINC=RANGX/GRID → YINC=RANGY/GRID
С	DEFINE GRID INTERSECTION POINTS
	DO 130 I=1,NBER
	de DO 180 J=1,NBER de la construcción de la construcción de la construcción de la construcción de la construcción A la ve−t−1 a construcción de la con
	K=J+IX*NBER
	XG(K) = XMIN + (XK * XINC)
18	0 YG(K)=YMIN+(IX *YINC)
	$\frac{7 \text{ (ERU ALL CUMPUTAT HINAL VARIABLE)}}{\text{ DO SO } I=1-\text{N}}$
an a	DOLD(I)=0.0
<u>e Carl Altra Storage de la</u>	DNEW(I)=0.0
	COLD(I)=0.0
	UOSAV(T)=0
5	0 JNSAV(I)=0
n barre yn ei geregen i de geregen. F	LOSA LUSA V (L) ≕O = CARRARE SELE ANTELEMENTE ANTELE ENTRE ENTRE ENTRE ENTRE ENTRE ENTRE ENTRE ENTRE ENTRE EN NO INSA V (L) ≕O
-	SDDLD=0.0
	SDNEW=0.0
<u> </u>	7 FRD (IFRATION COUNTER
· · ·	KITER=0
c	DEFINITION OF CLASS INTERVALS FOR 0 TO 1 RANDUM NUMBER DEFINING THE
	O TO NG INTEGERS
	RAINC = 1.0/XNG
	DO 190 I=1, NG
	XI=I
С Т Я	O RAD(I)=XI#RAINC PANDOM CENEDATOD STADIINC VALUE
	KANDUT BENENALLA SIAATILAB YALM

PAGE 0004

·

•

· · · · · · · · · · · · · · · · · · ·	
	IY=21735
C	STARTING OF ITERATION COUNTER FOR A GIVEN GRID
200-	KITER=KITER+1
~ ·	IF(KITER-ITERA)210,210,390
L 210	RANDUM CHUICE UP M CENTRAL FACILITIES FRUM THE NG GRID PUINTS
215	$C \Lambda U = P \Lambda U D U (TV = V + V + V)$
	DO 230 $I=1$ NG
	IF [VF1 - RAD(1)]220,220,230
C	CHECK THAT RANDOMLY CHOSEN GRID POINTS SATISFY THE LINEAR CONSTRAINTS
C	CONSTRAINTS LESS THAN OR EQUAL TO
220_	DO 1220 KC=1.MC
	ERROR=(YG(I)-Å(KC)*XG(I))-B(KC)
	IF(ERROR)1220,1220,215
1220	CONTINUE
C	CONSTRAINTS GREATER THAN UR EQUAL TO
r -	$\frac{DU}{D} = \frac{1222}{K} \frac{K}{K} \frac{M}{K} \frac{M}{K$
	EKRUK=1Y0(1/-AINU/MA01//-DINU/
1222	CONTINUE
	YC(1)=YG(1)
	YC(.1)=YG([)
	INSAV(J) = I
 	_LF(J=1)222,240,222
222	$[\hat{K}=J-1]$ is the first of the state of t
C	CHECK THAT RANDOMLY CHOSEN GRID POINT HAS NOT BEEN ALREADY PICKED AS
<u></u>	CENTRAL LOCATION
	DO 224 KJ=1,K
. 774	$IF(1NSAV(J)-1NSAV(KJ)) \ge 40, \ge 10, \ge 40$
230	
240	CONTINUE CONTINUE
c i i i	COMPLIE ARRAY DE EUCLIDEAN DISTANCES TO RANDOMLY CHOSEN CENTRAL FACILITIE
	DD 250 J=1.N
	DO 250 J=1,M
250	D(I,J) = (((XC(J) - X(I)) + + 2) + ((YC(J) - Y(I)) + + 2)) + + 0.5
C	FOR EACH FACILITY SELECT THE CLOSER CENTRAL LOCATION
	DO 280 I=1,N
	SHORT=D(1,1)
l	DU 270 K=21M TETOTT.KI-SHORT1260.270.270
260	SHUBT=U(1.K)
	I=K
270	CUNTINUE
	DNEW(I)=SHORT
	CNEW(I)=XR(I)*XM(I)*DNEW(I)
280	CONTINUE DESCRIPTION OF OPTIMINE OF TOTAL TRANSPORTATION COST
	COMPUTE SUM OF OPTIMAL DISTANCES AND IDTAL TRANSPORTATION COST COMPANY
	SDNEWED. D. C.
- -	
а 1977 — Полоника 1977 — Поло	DU 290 1-1,1N SDNEW=SONEW+DNEW(1)
	사망하는 사람을 통해 있는 것이 가지 않았는 것이 같은 것이 있는 것이 같은 것이 있는 것이 같이 있는 것이 같은 것이 있는 것이 있는 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 같은 것은 것이 같은 것이 있었다. 이 것이 같은 것이 있다. 것이 같은 것은 것이 같은 것이 같은 것이

222

. .

Ċ,

	290	SCNFW=SCNFW+CNFL(1)
		IF (KITER-11300.300.320
C .		TITLE OF CECOMD TABLE ATTOM
	200	
	200	WK1151W())
	310	FURMALEIHI,//,40%,30HKANDUM GRID LUCATION ALGUKITHM,/,45%,
A . A LA LANCE AND A		123HWIIH LINEAR CONSTRAINTS, //, 34X,
		241HDISTRIBUTION OF TOTAL DISTANCES AND COSTS,//,31X,9HITERATION,
	-	35X,14HSUM DF DPTIMUM,5X,16HSUM DF TRANSPORT,/,32X,6HNUMBER,9X,
		49HDISTANCES, 12X, 5HCDSTS, //)
C	_	BODY OF SECOND TABULATION
•	320	WRITE IW_330)KITER.SONEW.SCNEW
	330	= COPMAT I 2 OY = 17 - RY - E12 - A - 7Y - E12 - A - 2 - E12 -
r and a c		TE THE IS THE ETHET ITEDATION DEDEAT DAMONM CHOICE ANOTHER TIME
•	· · ·	TELECOLORATE PER DIC
·		1FISCULUI340, 300, 340
		CHECK IF NEW CHUILE OF LENIRAL FAULTILES DIVES BELLES RESULTS
	340	IF(SCNEW-SCULD)350,350,380
	350	SDOLD=SDNEW
		SCOLD=SCNFW
	•	DD 360 I=1.N
		ອ ກກະກິ())= ກຸກສູຟ()) - ປີມີໃຫ້ສະຫຼຸດມີເປັນສູນ ມີຄຸມ ສີຍຄູ່ສິນທີ່ເອຍ ການສີຍຄູ່ສະຫຼຸດ ສີຍຄູ່ສະຫຼຸດ ສີຍຄູ່ສະຫຼຸດ
		COLD(I)=CNEW(I)
	240	DCAVITI-MCAV(T)
	300	
· .	270	DU = 3 T U = 1 M
		10SAV(J) = [NSAV(J)]
	380	GO TO 200
C .	1 . • .	THIRD TABULATION : OPTIMUM ALLOCATION CONTRACT STREET
	390	WRITE(W, 400)L, LIERA
	400	FORMAT (1H1,//,40X,30HRANDOM GRID LOCATION ALGORITHM,/,43X,
		123HWITH LINFAR CONSTRAINTS.//.40X.
		228HOPTIMUM ALLOCATION ON GRID #.13./.45X.5HAFTER.1X.14.1X.
		RIGHTTERATIONS // BEX BOHCODE AND LOCATION OF CENTRAL FACILITIES //
		422Y TILCONE NUMBED TOY 21HOADTECTAN CONRDINATES. 4.57X.1HX.14X.1HY.
		EXVV ADDVITTUR ONE URBENITRVISTURARIEDIAN COUNTINGEEDIA ISTVISTURE UNITALIS ADDVITTUR
<u>, Andre Stander</u>		
		JJ=IUSAV(J)
		WRITE(W,410) J, XG(JJ), YG(JJ)
	410	FORMAT(34X,3HJ =,14,9X,F11.3,4X,F11.3) (000000000000000000000000000000000000
	415	CONTINUE - Reader to strong the line of the second strong the second strong the second strong to the
	<u>.</u>	WRITE(W.420)
	420	FORMAT(//.46X.18HOPTIMUM ALLOCATION.//.18X.19HF A C I L I T I E S.
	• -	110X. LEHCENTRAL LOCATION.6X.11HDISTANCE TO.7X.14HTRANSPORTATION./.
		212Y_6HMUMBER.4Y.21HCARTESIAN_COOPDINATES.9X.4HCODE.11X.
		21440 ENTRAL LOCATION BY SUCOCTS / 254 144 124 144 //
		STORLENINAL LUCATIONISATORCOSTST/JZDAJINAJIDAJINIJ/77
<u></u>	4.50-	= HURMAI(LLX, 3HI) = 3 + 4 + 2X + E + (-3 + 3X + E + (-3 + 1X + 13 + UX + E + D + 0) + 4 + (-12 + D + 1) + (-12
		WRITE(W,435)SDOLD,SCOLD
•	435	FORMAT(/,62X,5HTOTAL,E14.6,4X,E15.6)
C		CHECK IF ALL GRID CHANGES HAVE BEEN DONE
		IF(L-ITGRD)440,450,450
	440	在#L+1 网络小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小
		GO TO 160 PARTICIPATION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
•	450	
	720	
		가는 것이 같은 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 있다. 것이 있는 것이 가지 않는 것이 같은 것이 있는 것이 않는 것이 있는 것이 같 같은 것이 같은 것
		물건에 다시 같은 것을 하는 것이 사람들에 가지 않는 것을 수 없는 것을 알았다. 귀엽에는 가슴을 물건을 다 한 물건을
<u>, 1945 - 1771 - 1845</u>		under Allen eine Berlingen under Allen eine Berlingen eine Berlingen auf der Berlingen verschen Berlingen under Berlingen

· •

•

LOCATION OF MULTIPLE CENTRAL FACILITIES RANDOM GRID LUCATION ALGORITHM WITH LINEAR CONSTRAINTS

5 GRID SPACING CHANGES 100 ITERATIONS PER GRID INITIAL NUMBER OF GRID DIVISIONS 3 DIVISION INCREMENTS PER GRID CHANGE

3 CENTRAL FACILITIES	
20 FACILITIES	

						•	
·····			CARTESIAN CODRDI	NATES J	RANSPORT RATE OL	JANTITY TO	·
						TRANSPORT	
			X	Y	\mathbf{R}	ole Ministeration	
			<i>•</i>				•
	I. =	L	7.190	5.490	. 1.000	2.000	•
· ·	1 =	2	9.070	9.940	1.000	2.000	
	I =	3	4.610	6.490	1.000	2.000	말 여름 물 물 수 있는 것을 가지 않는 것을 가 있다.
	I =	4	4,940	8.250	1.000	2.000	
	1 =	5	0.470	0.690	1.000	2.000	
	I =	6	6.180	3.570	1.000	2.000	
	I =	7	1.130	9.810	1.000	2.000	
	.i =		6.000	4.360	1.000	2.000	·
	I =	9	8.230	8.060	1.000	2.000	Ň
	1 =	10	9.600	9.280	1.000	2.000	1
	<u> </u>	11	3.460	9,680	1.000	2.000	
•	1 =	12	2.310	0.390	1.000	2.000	
	I =	13	2.530	4.570	1.000	2.000	
	<u> </u>	14	4.440	7.990	1.000	2.000	
	I =	15	8•530	1.490	1.000	2.000	
	I =	16	2 • 290	7.030	1.000	2.000	
	T =	17	8.830	7.120	1.000	2.000	
	I =	18	2.620	. 9.410	1.000	2.000	
	I =	19	3.820	2.420	1.000	2.000	
· · ·	1=	20_	7.550	1.970	1.000	2.000	
							유민들은 승규는 것을 가 없는 것이다.
		1. A.A.		 A second sec second second sec		and the second	

LINEAR CONSTRAINTS

				·	•	
	Y (1) - 0.163728E	-01 * X(1)	LESS THAN OR FOUAL	TO 0.979150E C1	
	Y (2)0.124528E	01 * X(2)	LESS THAN OR EQUAL	TO 0.212347F 02	
	Y1 3) <u>- 0.138182</u> E	02 * X(3)	LESS THAN OR FOUND	TO	
	Y(4) - 0.728038E	01 * X(4)	GREATER THAN OR EQU	AL TO -9.606116E 02	
	Y(5) - 0.1768498	00 * X(5)	GREATER THAN OR EQU	AL TO -0.185194E-01	
	<u> </u>	10.163043E	$00 \approx \chi(-6)$	GREATER THAN OR FOU	AL TO 0.766630E CO	
مرايي الأرباب الأبري ورايدهان بالاختصاف فيناتحها الأراب بالأعطية ووستتعطيه المستعطية بغيه فتحاصب ويتعايه	and the second state of the second	and the second concernence of the second second second	et anno sea an tha			

RAN	DOM GRID LOCATION WITH LINEAR CONST	ALGORITHM RAINTS	
DISTRIBUT	ION OF TOTAL DIST	ANCES AND COSTS	
I TERATION	SUM OF OPTIMUM	SUM OF TRAN	SPORT
NUMBER	DISTANCES	COSTS	
1,	0.644550E 02	0.128910E	03
2	0.629839E 02	0.125969E	03
<u> </u>	0.652284F 02	0,130457E	03
5	0.529413E 02	0.105883E	03
6	0.529413E 02	0.105983E	_03
. 7	0.652284E 02	0.1304576	03
8	0.529413E 02	0.105883E	03
10	0.529413F02	0.1304575	03
	0.644550F 02	0.1289105	03
<u>12</u>	0.652284E 02	0.130457E	03
. 13	0.529413E 02	0.105807	· · · · ·
14	0.629839E 02	and the second	
Personal and the second s	0.529413E 02		
10			
			03
Company and an and a second		U.111526E	03
		<u>0.125963F</u>	03
	0.5294136 02	0.1058835	03
	0.529413E 02	0.105883E	03
85	0.557631E 02	0.111526E	03
86	0.644550E 02	0.128910E	03
87	· 0.656294E 02	<u>0.131259E</u>	03
	0.5544045 02	0.1058835	
90	0.529413E 02	0.1054935	03
91	0.656294E 02	0.131259E	03
92	0.6562948 02	0.131259E	03
93	0.557631E 02	0.111526F	03
94 0 5	0.557631E 02	0.111526E	03
90	0.5576316 02	0.111524E	1) 1)3
97	0.656294E 02	0.131259E	03
98	0.529413E 02	0.105883E	03
99	0.545271F 02	0.109054E	03
100	0.545271E 02	0.109054E	03
가장 같은 것은 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있다. 이 같은 것은 것이 있는 것이 있다.			
		· · · · · · · · · · · · · · · · · · ·	
	•		
		an an an an Araban an an an an Araban	
- 가지, 2014년 2017년 - 1917년 1월 1917년 1월 1917년 - 1917년 1 1917년 - 1917년 1			
가는 것은 영향에 있는 것은 것이 있는 것이 있는 것이 가지 않는다. 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이 있는 것이 있다.			
		· · · · ·	· · · · · · · · · · · · · · · · · · ·

				•				
		RANDOM WIT	GRID LOCAT H LINEAR CO	TÓN ALGORITI DNSTRAINTS	ĪM			
		OPTIMU A	M ALLOCATIC FTER 100 I	DN ON GRID # TERATIONS	1			
		CODE AND LO CODE NUMBER	CATION DF C CAP	CENTRAL FACIN	.ITIES DINATES			
		1 = 1	3	2.512	6 757			
		J = 2 J = 3	6	••557 ••557	3.573 6.757			
		· · · · · · · · · · · · · · · · · · ·	OPTIMUM ALL	UCATION				·
NUMI	FACILI BER CARTESIA	T I F S N COORDINATES	CENTRAL LO CODE	NCATION 10	DISTANCE ENTRAL LOC	TO ATION	TRANSPORTAT COSTS	INN
1 -	1 7 19	5 490	. 3		0 1414175	01	0 2022255	226
	2 9.07(3 4.61(9.940 6.490	3 1		0.405592E 0.112862E	01 01	0.811184E 0.225724E	01 01
I = I = I =	5 0.47 6 6.18 7 1.12	0.690 0.690 0.3.570	2	:	0.673506E 0.376681E	01 00 01	0.134701E 0.753362F	02 00
	8 6.000 9 8.230	4.360 9.060 9.200	2 3		0.963703E 0.212102E	00 01	0.192740E 0.424204E	01 01 01
I = I =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.680 0 0.390	1		0.292382E 0.530733E	01 01	0.100873E 0.584764F 0.106147E	01 02
I = I =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.990 1.490	1		0.154267E 0.286955E	01 01 01	0.308534E 0.573910F	01 01
I = I = I =	10 2.290 17 8.833 18 2.620	7.120 7.120 9.410	3		0.230219E 0.279968E	01 01 01	0.460437F 0.559936F	01
<u>I =</u> I =	<u>19</u> <u>3.82</u> 207.55	<u> </u>	· 2		0.198610E	01	0.593953F 0.377221F	01
<u>愛知られていた。 第1985年</u> 19 第495年19			· · · · · · · · · · · · · · · · · · ·	FOTAL	<u>-).529413E</u>		0.1058835	03

RANDOM GRID LOCATION ALGORITHM WITH LINEAR CONSTRAINTS

DISTRIBUTION OF TOTAL DISTANCES AND COSTS

	ITERATION	SUM OF OPTIMUM	SUM OF TRANSPORT	•
	NUMBER	DISTANCES	COSTS	
•	L	0.625649E 02	0.125130E 03	
	2	0.522644E 02	· 0.104529E 03	
	3	0.635649F 02	0.127130F 03	
	4	0.551998E 02	0.110400E 03	
	5	0.558664E 02	0.111733E 03	
	6	0.555647E 02	0.113129E 03	
	7	0.6356498 02	0.127130E 03	
	8	0.486947E 02	0.973895E 02	
· · · · · · · · · · · · · · · · · · ·	9	0.535199E 02	0.117040F.03	
	10	0.522878E 02	0.104576E 03	
	11	0.631104E 02	0.136221E 03	
	12	0.605081F 02	0.121016F 03	
	13	0.603747E 02	0.1207/5	-
	14	0.565647E 02	and the second	
	1.5	0.574391E 02	-	
	16	0.52?		
	17			
	1.9			
			(4E 03	
			0.968786F 02	
		· · · · · · · · · · · · · · · · · · ·	0.1094335 03	
		•	0.117659E 03	

		ΨZ	U LIUJU		
	0.647847E	02	0.129570E	03	
	0.623605E	_02_	0.1247215	03	
85	0.648323E	02	0.129665E	03	· .
86	0.569812E	02	0.1139625	03	
87_	0.544376E	02	0.112875E	03	·
88	0.619273E	02	0.1238555	03	
89	0.559812E	02	0.113962E	03	
90	0.535917E	02	0,1171845	_03	e in teache anna e tha Baile anna anna
. 91	0.564917E	02	0.1129835	03	
92	0.576692E	02	0.115338E	03	
93	0.657648E	02	<u>0.131530E</u>	03	
94	0.494325E	02	0.988651E	02	
95	0.504782E	02	0.100957E	03	
96	0.541615E	02	0.108323E	73	
. 97	0.5393876	02	0.107877E	03	
98	0.537629E	02	0.107526E	03	
99	0.608083E	02	0,121517E	03	
100	0.592391E	02	0.118478E	03	

				•		
		RANDOM G WITH	RID LOCATION LINEAR CONSTR	ALGORITHM AINTS		
· · · · ·		OPTIMUM AFT	ALLOCATION OF ER 100 ITER/	GRID # 2 TIONS		
	CO	CODE AND LOCA DE NUMBER	TION OF CENTE CARTES X	AL FACILITIES AN COORDINATES		
	ل ز ر	= 1 = 2 = 3	5.03 7.31 2.752	2.777 7.552 7.552 7.552		
		ÓP	TIMUM ALLOCAT	ION	· .	
FAC NUMBER CA	I L I T I E RTESIAN COO X	S C IRDINATES	ENTRAL LOCAT	DN DISTANCE CENTRAL LOCA	TO TR/ NTION	ANSPORTATION COSTS
1 = 1	7,190	5,490	2	0.2066445	01 0.	01 01 01
I = 2 I = 3 I = 4	9.070 4.610 4.940	9.940 6.490 8.250	2 3 3	0.296166F 0.213991E 0.229601F	01 0. 01 0. 01 0.	592332E 01 427932E 01 459202E 01
I = 5 $I = 6$ $I = 7$	0.470	0.690 3.570 9.810	1 1 3	0.501964E 0.139251E 0.278007E	01 0. 01 0. 01 0.	100393E 02 278502E 01 556015E 01
I = 8 $I = 9$ $I = 10$	6.000 8.230 9.600	4.360 8.060 9.280	1 2 2	0.185352E 0.104413E 0.286253E	01 C. 01 0 01 0	370704E 01 208827E 01 572505E 01
I = 11 I = 12 I = 13	3.460 2.310 2.530	9.680 0.390 4.570	3 1 	0.224206E 0.362295E 0.299079E	01 0. 01 0. 01 0.	.448411E 01 .724590E 01 .598157E 01
I = 14 I = 15 I = 16	4.440 8.530 2.290	7.990 1.490 7.030	3 1 3	0.174329E 0.372460E 0.697789E	01 0. 01 0. 00 0.	.348658E 01 .744921E 01 .139558E 01
I = 17 I = 18 I = 19	8.830 2.620 3.820	7.120 9.410 2.420	2 3 1	0.157312E 0.186222E 0.126650E	01 0. 01 0. 01 0.	.314625F 01 .372444E 01 .253300E 01
1 = 20	7.550	1.970		0.264145E	01 0. 02 0.	528291E 01 935623E 02

<u>``</u>

RANDOM GRID LOCATION ALGORITHM WITH LINEAR CONSTRAINTS DISTRIBUTION OF TOTAL DISTANCES AND COSTS <u>LIERATION</u> SUM OF TRANSPORT NUMBER DISTANCES COSTS

			<u> </u>							
•		1		0.5565	97E 02	(0.111319E	03		
		2	•	0.5360	16E 02	• (0.107203E	03		
·				0,5940	32F 02_	(118806E	_03_		
		4		0.7588	92E 02	(0.151778E	03		
		. 5		0.6321	44E 02	().1264295	03		
<u> </u>		5		0.5767	32E 02	().115347E	03	· · · · · · · · · · · · · · · · · · ·	- 123
•		7		0.5325	43E 02	(0.106509E	03		
		8		0.8866	03E 02	().177321F	03		
	· ·	9		0.5877	78E 02	(),117556E	03		
		10		0.5005	12E 02	() 	.100103E	03		
		11		0.8310	58E 02	C	.166212E	03		
		12_		0.6124	1.65.02		1,122483E	_03_	•	
		13		0.6321	44E 02	Ċ	126422			
		14		0.6334	77E 02	•	•			
	·	15		0.5392	63E 02					
		16		0.5800	- 14					
		17		요즘가 다 되는다. 고양 가 나는 상태는다 같고 있는						

<u> </u>						
	and the second	· ·		03		
	C. Server and		0-132327E	03		
and the second			0 144980F	02		
			<u> </u>	02		
		2385E UZ	U+1344//E	03		
		0,725148E 02	0.1450305	03		•
		0.572565E_02	0.1145135	_03		
	85	0.507136E 02	0.101427E	03		
	86	. 0.630383E 02	0.126077E	03		
	87	0.673329E 02	0.134666E	<u> </u>	•	
	88	0 5471115 02	0_109422F	03		7
	00		0 1630046			
	7 0		U.1330900	0.5		
<u>al de secteur de la composition de</u>	<u> </u>	0.550851E UZ	0.1121/0E			
	91	0.619687E 02	0.123937E	03		
	92	0.550851E 02	0.112170E	03		
	93	0.724897F 02	0.144980E			
	94	0.594032E 02	0.118906F	03		
	95	0 553205E 02	0 110659F	กร		
	4		0 116000F	03		
			<u> </u>			
:	. 91	0.594032E 02	0.1188065	03		
	98	0.846596E 02	0.169319E	03		
	99	0.547111E_02	0.1094225	03		
	100	0.672767E 02	0.134553F	03		
		 A state of the sta				and the state of the second

RANDOM GRID LUCATION ALGORITHM WITH LINEAR CONSTRAINTS	
OPTIMUM ALLOCATION ON GRID # 3 AFTER 100 ITERATIONS	````````````````````````````````
CODE AND LOCATION OF CENTRAL FACILITIES CODE NUMBER CARTESIAN COORDINATES	
1 = 1 7.774 8.030	
$ \begin{array}{cccc} J &=& 2 \\ J &=& 2 \\ J &=& 3 \end{array} & \begin{array}{c} 2.296 \\ 5.948 \\ 2.300 \end{array} \\ \end{array} $	
OPTIMUM ALLOCATION	
FACILITIES CENTRAL LOCATION DISTANCE TO TRANSPORTATION NUMBER CARTESIAN COORDINATES CODE CENTRAL LOCATION COSTS	
	230
I = 1 (.190 5.490 1 0.260627E 01 0.521254E 01 0.461637E 01 0.461637E 01 0.461637E 01 0.461637E 01 0.468679E 01 0.468679E	
I = 4.940 8.250 1 $0.238252E_01$ $0.558505E_01$ I = 5 0.470 0.690 3 $0.570968E_01$ $0.114194E_02$ I = 6 6.180 3.570 3 $0.129102E_01$ $0.258203E_01$	- <u></u>
$\frac{1}{1} = \frac{1}{1} + \frac{1}$	
I = 8 - 6.000 + .380 - 3 - 0.208086E 01 - 0.412131E 01 - 0.412121E 01 - 0.412121E 01 - 0.412121E 01 - 0.412121E 01 - 0.4121E 00 -	
I = 8 6.000 4.380 3 0.208086E 01 0.412131E 01 $I = 9$ 8.230 8.060 1 0.456989E 00 0.913978E 00 $I = 10$ 9.600 9.280 1 0.221287E 01 0.442574E 01 $I = 11$ 3.460 9.680 2 0.374546E 01 0.749092E 01 $I = 12$ 2.310 0.390 3 0.410890E 01 0.821781E 01	
I = 8 - 6.000 - 4.380 - 3 - 0.208086E 01 - 0.412131E 01 - 0.412131E 01 - 0.456989E 00 - 0.913978E 00 - 0.221287E 01 - 0.442574E 01 - 0.44400 - 0.4440 - 0.44400 - 0.4440 - 0.44400 - 0.44400 - 0.4	
I = 8 6.000 4.380 3 0.206086E 01 0.412131E 01 $I = 9$ 8.230 8.060 1 0.456939E 00 0.913978E 00 $I = 10$ 9.600 9.280 1 0.221287E 01 0.442574E 01 $I = 11$ 3.460 9.680 2 0.374546E 01 0.749092E 01 $I = 12$ 2.310 0.390 3 0.410890E 01 0.821781E 01 $I = 13$ 2.530 4.570 2 0.156756E 01 0.313513E 01 $I = 14$ 4.440 7.990 2 0.284493E 01 0.568986E 01 $I = 15$ 8.530 1.490 3 0.270607E 01 0.568986E 01 $I = 16$ 2.290 7.030 2 0.910021E 00 0.4182004E 01 $I = 17$ 8.830 7.120 1 0.139400E 01 0.278800F 01 $I = 18$ 2.620 9.410 2 0.330591E 01 0.661183E 01 $I = 19$ 3.820 2.420 3 0.213138E 01 0.426276E 01	

RAN	IDOM GRID LOCATION A WITH LINEAR CONSTRA	L GOR I THM I NT S	
DISTRIBUT	ION OF TOTAL DISTAN	CES AND COSTS	
ΙΤΕΡΑΤΙΟΝ		SUM. OF TRANSPORT	
NUMBER	DISTANCES	COSTS	
1	0.656294E 02	0.1312592 03	
2	0.543087E 02	0.108613E 03	
4	0.676936F 02	0.135387E 03	
5. State 1997	0.616904E 02	0.123381E 03	
- <u></u>	0.633277E 02	0.126655F 03	<u> </u>
8	0.738285E 02	0.147657E 03	
9	0.738285F 02	0.147657E 03	
10 Nasara 20	0.597720E 02	0.141603E 03	
12	0.633277E 02	0.125655E 03	
13	0.669555E 02	0.1339175	
15	0.588689E 02		
16	0.6970		
17			
A contraction of the second		-143E 03	
		0.129558E 03	
		<u>0.162382E 03</u>	t Biographic and the second second
	0.6648555 02	0.132971E 03	
	0.636705E 02	0.127341E 03	
85	0.665534E 02	0.133107E 03	
87	0.696991E 02	0.139398E 03	
83	0.603119E 02	0.120524E 03	
89	0.605868E 02	0.121174E 03	
91	0.809727E 02	0.161946E 03	
. 92	0.571633E 02	0.114327E 03	
93	<u>0.539596E 02</u>	0.117919E 03	
95	0.598216E 02	0.119643E 03	
96	0.696991E 02	0.139398E 03	
97	0.734318E 02 0.603119E 02	0.146864E 03 0.120624E 03	
99	0.604502E_02	0.120901E 03	
100	0.577034E 02	0.115407E 03	
4 			

.

•

•

.

e - Dei hort vietnemer al 🕯

						•		
		RANDOM (WITH	GRID LOCA LINEAR C	TION ALGORIT ONSTRAINTS	HM			
		OPTIMUM AF	ALLOCATI TER 100	ON ON GRID # ITERATIONS	4			
		CODE AND LDC/ Code Number	ATION DF CA	CENTRAL FACI RTESIAN COOR X	LITIES DINATES Y			
		1 1		2 612	6 757			
		$ \begin{array}{cccc} \mathbf{J} &= & 2 \\ \mathbf{J} &= & 3 \\ \end{array} $		1.000 6.557	1.982 3.573			
		. OF	PTIMUM AL	LOCATION				
'NUM	FACILIT IBER CARTESIAN	I E S C COORDINATES	CENTRAL L CODE	OCATION C	DISTANCE ENTRAL LOCA	TO ATION	TRANSPORTATI COSTS	ארי
							······	23 23 23
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.490 9.940 6.490 8.250	· · · · · · · · · · · · · · · · · · ·		0.040392E 0.112862E 0.206529E	01 01 01 01	0.403719F (0.128078E (0.225724F (0.413058E () ?) 1
I = I = I =	5 0.470 6 6.180 7 1.130	0.690 3.570 9.810	2 3 1	•	0.139617E 0.376681E 0.387339E	01 00 01	0.279235E (0.753362E (0.774677E ()1).())1
	8 6.000 9 8.230 10 9.600	4.360 8.060 9.280	3 3		0.963703E 0.478855E 0.646745E	00 01 01	0.192740E 0.957709E 0.129349E)1)1)2
I = I = I =	11 3.460 12 2.310	9.680 0.390 <u>4.570</u>	1 2 1		0.292382F 0.206143E 0.239759E	01 01 01	0.584764E 0 0.412286F 0 0.479518E 0)1)1)1
	14 15 16 	7.990 1.490 7.030	1 3 1		0.154267E 0.286955E 0.125350E	01 01 01	0.308534E (0.573910E (0.250699E ()1)1
	17 8.830 18 2.620 19 3.820	7.120 9.410 2.420	3 1 2		0.421271E 0.279968E 0.285386E	01 01 	0.842542E (0.559936E (0.570772E () [) 1) 1
	20 7.550	1.979 .	3	TOTAL	0.188610E	02	0.377221E (3

••

المأمين في المان المراجعة في المتحد معتمداً المنهمة المناصب ومنابعة المتحدي
na National and a state of the second state of the		
KA?	NDOM GRID LOCATION WITH LINEAR CONST	ALGORITHM RAINTS
DISTRIBUT	FION OF TOTAL DIST	ANCES AND COSTS
ITERALION	SUM DE OPTIMUM	SUM OF TRANSPORT
NUMBER	DISTANCES	CDSTS
1	0.641018E 02	0.128204E 03
2 3	0.754149E 02 0.754223E 02	0.150830E 03 0.150845E 03
4	0.779967E 02	0.155994E 03
n an Anna Anna an Anna an Anna an 5 50. An Anna Anna an	0.668643E 02	0.133729E 03
<u>, and a second se</u>	0.779961E UC	0.155994F 03 0.135764E 02
8	0.668584E 02	0.133717E 03
9	0.754950F 02	0.150992E 03
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.755897E 02	0.151180E 03
	0.804386E 02	0.160377E 03
13	0.678399E 02	0.13540
14	0.717151E 02	
1.5	0.779476E 02	
16	0.757	
		U.161122E 03
	North Contraction of the Contrac	0.133.754F 03
	0011E UZ	0.151302F 03
	0.206317 <u>F 02</u>	0.141244F 03
85	0.658758E 02	0.133754E 03
86	0.677577E 02	0.135515E 03
87 	0.805705F 02	0.161141F 03
	0.756726E 02	0.151345E 03
90	0.500904E 02	U.133781E U3
91	0.668835E 02	0.133767E 03
. 92	0.668584E 02	0.133717E 03
93	0.753817E 02	0.150763E 03
	0.154223E UZ	0.150845E.03
96	0.717344E 02	0.1434 <u>69E 03</u>
. 97	0.754223E 02	0.150345E 03
98	0.779967E 02	0.155994E 03
99	0.717950E 02	0.143590E 03
	0.155057E UZ	9.151134E US and the second seco

			f in the second s		
		RANDOM GRID L WITH LINEA	.DCATION ALGORITHM NR CONSTRAINTS		
		UPTIMUM ALLOC AFTER 1	CATION UN GRID # 5 LOO ITERATIONS		
	C COI	ODE AND LOCATION DE NUMBER	DF CENTRAL FACILITIFS CARTESIAN COORDINATES		
	J	= 1	3.079 7.211		
	J J	= 2 = 3	8.296 8.296 4.483 4.483		
		OPTIMUN	ALLOCATION		
FNUMBER	A C I L I T I E CARTESIAN COOF	S CENTRA RDINATES C	AL LUCATION DISTANCE CODE CENTRAL LOC	TO TRANSPOR CATION COS	TATION TS
<u> </u>	7.190	5.490	0.1495641	F_010,29912	28F_01
$\begin{array}{c} \mathbf{I} = 2\\ \mathbf{I} = 3\\ \mathbf{y} = 4 \end{array}$	9.070 4.610 4.940	9.940 6.490 8.250	2 0.551180F 1 0.169285F 1 0.2131561	E 01 0.11023 E 01 0.33856 E 01 0.42631	16E 02 59F 01
I = 5 $I = 6$	0.470 6.180	0.690 3.570	1 0.702379E 2 0.2304241	E 01 0.14047	76E 02
I =7	1.130	9.810	0.3268001	F 010.64960	10F_01
I = 7 $I = 8$ $I = 9$ $I = 10$	<u> </u>	9.810 4.360 8.060 9.280	1 0.3248001 2 0.2298991 2 0.3577741 2 0.4971291	E 01 0.64960 E 01 0.45979 E 01 0.71554 E 01 0.99425	00F 01 29E 01 19E 01
I = 7 I = 8 I = 9 I = 10 I = 11 I = 12 I = 13	1.130 6.000 8.230 9.600 3.460 2.310 2.530	9.810 4.360 8.060 9.280 9.680 0.390 4.570	1 0.3248001 2 0.2298991 2 0.3577741 2 0.4971291 1 0.2497876 1 0.6364581 1 0.2597796	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00E 01 29E 01 19E 01 58E 01 73E 01 22E 02 58E 01
I = 7 $I = 8$ $I = 9$ $I = 10$ $I = 11$ $I = 12$ $I = 13$ $I = 14$ $I = 15$ $I = 16$	$ \begin{array}{r} 1.130 \\ 6.000 \\ 8.230 \\ 9.600 \\ 3.460 \\ 2.310 \\ 2.530 \\ 4.440 \\ 8.530 \\ 2.290 \\ \end{array} $	9.810 4.360 8.060 9.280 9.680 0.390 4.570 7.990 1.490 7.030	1 0.3248001 2 0.2298991 2 0.3577741 2 0.4971291 1 0.2497871 1 0.6364581 1 0.2597791 1 0.1568331 2 0.3002011 1 0.3002011	E 01 0.64960 F 01 0.45979 E 01 0.71554 F 01 0.99429 E 01 0.99429 E 01 0.49957 E 01 0.13729 E 01 0.31366 E 01 0.60040 E 01 0.60040 E 01 0.60040	00F 01 29E 01 39E 01 38E 01 73E 01 32E 02 38F 01 37E 01 37E 01 37E 01 37E 01 37E 01
I = 7 I = 8 I = 9 I = 10 I = 11 I = 12 I = 13 I = 14 I = 15 I = 16 I = 17 I = 18 I = 19	$ \begin{array}{r} 1.130 \\ 6.000 \\ 8.230 \\ 9.600 \\ 3.460 \\ 2.310 \\ 2.530 \\ 4.440 \\ 8.530 \\ 2.290 \\ 8.830 \\ 2.620 \\ 3.820 \\ \end{array} $	9.810 4.360 8.060 9.280 9.680 0.390 4.570 7.990 1.490 7.030 7.120 9.410 2.420	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E 01 0.64960 F 01 0.45979 E 01 0.71554 F 01 0.99425 E 01 0.99425 E 01 0.31366 E 01 0.31366 E 01 0.60040 E 01 0.60040 E 01 0.53814 F 01 0.44917 F 01 0.44917 F 01 0.46966	0F 01 29E 01 19E 01 38E 01 32E 02 58E 01 57E 01 34E 01 55E 01 77E 01 34E 01

VARIABLE DISCRIMINATION ALGORITHM AGGLOMERATION OF A LARGE SYSTEM

// J	2B 비사용 사건을 알았는 것은 것은 것은 것은 것은 것을 하고 말을 주도하는 것을 것 것을 알았다. 것은 것은 것을 하는 것은 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다.
// FI 8.8	
	S(CARD. 1132 PRINTER. DISK)
*ONE	WORD INTEGERS
*LIS	T SOURCE PROGRAM
C	VARIABLE DISCRIMINATION ALGORITHM SPRING 1969
C	AGGREGATION OF A LARGE SYSTEM OF N1 FACILITIES INTO A SET OF N2
<u> </u>	TERMINOLOGY OF VARIABLES
	N2 • EXPECTED NUMBER OF CLUSTERED FACILITIES
Č	NERR ACCEPTABLE VARIATION OF N2
C	N
C	DISCR •RANGE OF AGGLOMERATION•X(1) OR Y(1) + OR - DISCR
C	DINC INCREMENTAL DECREASE OR INCREASE OF DISCR TO OBTAIN N IN
C	THE NEIGHBORHOOD OF N2
Ċ	X(1), Y(1), CARTESTAN COORDINATES OF FACILITIES
$\frac{c}{c}$	XM(I) OHANTITY TO TRANSPORT ON ROUTE I
<u> </u>	NLOOP MAXIMUM NUMBER OF TIMES WE WANT THE PROGRAM TO RUN
c	THROUGH A CLUSTERING LOOP. IF N2 + OR - NERR IS NOT REACHE
. C	DURING THESE NLOOP, MODIFY INC OR NERR BY CHECKING BEHAVIO
C	OF OUTPUT N
C	KN •MAXIMUM NUMBER OF POINTS IN A CLUSTER
	INTEGER ROW
	CHANGE THE DIMENSION CARD IF MORE THAN 125 FACILITIES ARE CONSIDERED
C	DIMENSION AT 1257911 12579ART 12579AMT 1257915AVT 1257 DIMENSION OF ICH=KN=(N1/N2) $*5$. OF ISAV=NIC= $2*N1$
· · · · · · · · · · · · · · · · · · ·	DINEROION OF DENERNEYNEYNEYNEYNEYNY OF DUNY-MIC-Z-MI
	DIMENSION JCH(30), JSAV(250)
	DIMENSION JCH(30), JSAV(250) R=2
	DIMENSION JCH(30); JSAV(250) R=2 W=3
	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC
- 10	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC D FORMAT(4110,2F10.0)
- 10	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC DFORMAT(4110,2F10.0) DO 25 I=1,N1 PEAD(R,20)X(1), X(1),
1(DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC DFORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I) LORMAT(4E15.0)
- 1(DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC DFORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I) DFORMAT(4F15.0) SCONTINUE
- 10 - 20 	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1:N2:NERR:NLOOP:DISCR:DINC DFORMAT(4110:2F10:0) DO 25 I=1:N1 READ(R:20)X(I):Y(I):XR(I):XM(I) DFORMAT(4F15:0) SCONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES
10 20 21 C	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC D FORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I) O FORMAT(4F15.0) CONTINUE FIRST TABULATION, LISTING OF KNOWN VARIABLES WRITE(W,30)N1
10 20 21 C 30	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1:N2:NERR:NLOOP:DISCR:DINC DFORMAT(4110;2F10:0) DO 25 I=1:N1 READ(R:20)X(I):Y(I):XR(I):XM(I) FORMAT(4F15:0) CONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES WRITE(W:30)N1 DFORMAT(1H1://:35X:33HVARIABLE DISCRIMINATION ALGORITHM:/:31X;
1(2(2) C 3(DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1:N2:NERR:NLOOP:DISCR:DINC D FORMAT(4110;2F10:0) DO 25 I=1:N1 READ(R:20)X(I):Y(I):XR(I):XM(I)) FORMAT(4F15:0) 5 CONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES WRITE(W:30)N1 D FORMAT(1H1://:35X:33HVARIABLE DISCRIMINATION ALGORITHM:/:31X; 124HLOCATION OF THE ORIGINAL:I5:2X:10HFACILITIES://:24X:21HCARTESIA
- 10 20 22 C 30	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC D FORMAT(4110,2F10.0) D0 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I)) FORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1 D FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL, I5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY T0,/,69X,9HTRANS
10 20 22 C 30	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1;N2;NERR;NLOOP;DISCR;DINC) FORMAT(4110;2F10;0) DO 25 I=1;N1 READ(R:20)X(I);Y(I);XR(I);XM(I)) FORMAT(4F15;0) 5 CONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES WRITE(W;30)N1) FORMAT(1H1;//;35X;33HVARIABLE DISCRIMINATION ALGORITHM;/;31X; 124HLOCATION OF THE ORIGINAL;15;2X;10HFACILITIES;//;24X;21HCARTESIA 2N COORDINATES;6X;14HTRANSPORT RATE;3X;11HQUANTITY TO;/;69X;9HTRANS 3PORT;/;27X;1HX;14X;1HY;15X;1HR;14X;1HM;//) WENTE(W;0)(L;Y(L);YR(L);YR(L);YR(L);YR(L);YR(L);XM(L);1=1;N1)
1(2(25 C 3(DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC) FORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(1),Y(I),XR(I),XM(I)) FORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1) FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL,I5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY TO,/,69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),I=1,N1)) FORMAT(13X,3HL =,15,F13,3,F15,3,F15,3,F16,3)
10 20 25 C 30 40 C	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC D FORMAT(4110,2F10.0) D0 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I)) fORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1 D FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL,I5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY TO,/,69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),I=1,N1) D FORMAT(13X,3HI =,15,F13.3,F15.3,F14.3,F16.3) SECOND TABULATION.
	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1:N2:NERR:NLOOP:DISCR:DINC) FORMAT(4110;2F10:0) DO 25 I=1:N1 READ(R:20)X(I):Y(I):XR(I):XM(I)) FORMAT(4F15:0) 5 CONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES WRITE(W:30)N1) FORMAT(1H1://:35X:33HVARIABLE DISCRIMINATION ALGORITHM:/:31X; 124HLOCATION OF THE ORIGINAL:I5:2X:10HFACILITIES://:24X:21HCARTESIA 2N COORDINATES:6X:14HTRANSPORT RATE:3X:11HQUANTITY TO:/:69X:9HTRANS 3PORT:/:27X:1HX:14X:1HY:15X:1HR:14X:1HM://) WRITE(W:40)(I:X(I):Y(I):XR(I):XM(I):I=1:N1)) FORMAT(13X:3HI =:15:F13:3:F15:3:F14:3:F16:3) SECOND TABULATION: HEADING WRITE(W:50)N1:N2:NERR
1(2) 2) C 3(4(C 5)	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R+10)N1+N2+NERR+NLOOP+DISCR+DINC DFORMAT(4110,2F10+0) DO 25 I=1+N1 READ(R+20)X(I)+Y(I)+XR(I)+XM(I)) FORMAT(4F15+0) 5 CONTINUE FIRST TABULATION+LISTING OF KNOWN VARIABLES WR-TE(W+30)N1 D FORMAT(1H1+//,35X+33HVARIABLE DISCRIMINATION ALGORITHM+/+31X+ 124HLOCATION OF THE ORIGINAL+I5+2X+10HFACILITIES+//+24X+21HCARTESIA 2N COORDINATES+6X+14HTRANSPORT RATE+3X+11HQUANTITY TO+/+69X+9HTRANS 3PORT+/+27X+1HX+1HY+15X+1HR+14X+1HM+//+) WRITE(W+40)(I+X(I)+Y(I)+XR(I)+XM(I)+I=1+N1+) D FORMAT(13X+3HI =+I5+F13+3+F15+3+F14+3+F16+3) SECOND TABULATION+HEADING WRITE(W+50)N1+N2+NERR D FORMAT(1H1+33X+33HVARIABLE DISCRIMINATION ALGORITHM+/+35X+
10 20 25 C 30 40 C 50	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R+10)N1+N2+NERR+NLOOP+DISCR+DINC DO 25 I=1+N1 READ(R+20)X(I)+Y(I)+XR(I)+XM(I)) FORMAT(4F15+0) 5 CONTINUE FIRST TABULATION+LISTING OF KNOWN VARIABLES WRITE(W,30)N1 D FORMAT(1H1+//+35X+33HVARIABLE DISCRIMINATION ALGORITHM+/+31X+ 124HLOCATION OF THE ORIGINAL+I5+2X+10HFACILITIES+//+24X+21HCARTESIA 2N COORDINATES+6X+14HTRANSPORT RATE+3X+11HQUANTITY T0+/+69X+9HTRANS 3PORT+/+27X+1HX+14X+1HY+15X+1HR+14X+1HM+//) WRITE(W+40)(I+X(I)+Y(I)+XR(I)+XM(I)+I=1+N1) D FORMAT(13X+3HI =+15+F13+3+F15+3+F16+3) SECOND TABULATION+HEADING WRITE(W+50)N1+N2+NERR D FORMAT(1H1+33X+33HVARIABLE DISCRIMINATION ALGORITHM+/+35X+ 113HCLUSTERING OF+15+2X+10HFACILITIES+/+39X+4HINTO+15+7H + OR -+15+
10 20 22 7 30 40 50	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R:10)N1:N2:NERR:NLOOP:DISCR:DINC) FORMAT(4110:2F10:0) DO 25 I=1:N1 READ(R:20)X(I):Y(I):XR(I):XM(I)) FORMAT(4F15:0) 5 CONTINUE FIRST TABULATION: LISTING OF KNOWN VARIABLES WRITE(W:30)N1) FORMAT(1H1://.35X:33HVARIABLE DISCRIMINATION ALGORITHM:/.31X; 124HLOCATION OF THE ORIGINAL:I5:2X:10HFACILITIES://.24X:21HCARTESIA 2N COORDINATES:6X:14HTRANSPORT RATE:3X:11HQUANTITY TO:/.69X:9HTRANS 3PORT:/.27X:1HX;14X:1HY:15X:1HR:14X:1HM://) WRITE(W:40)(I;X(I):Y(I):XR(I):XM(I):I=1:N1)) FORMAT(113X:3HI =:I5:F13:3:F15:3:F14:3:F16:3) SECOND TABULATION: HEADING WRITE(W:50)N1:N2:NERR) FORMAT(1H1:33X:33HVARIABLE DISCRIMINATION ALGORITHM:/:35X; 113HCLUSTERING OF:I5:2X:10HFACILITIES:/:39X:4HINTO:I5:7H + OR -:15; 2//)
1(2) 2) C 3(4(C 5)	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC) FORMAT(4110,2F10.0) D0 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I)) FORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1) FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL,I5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY T0,/,69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),I=1.N1)) FORMAT(113X,3HI =,15,F13.3,F15.3,F14.3,F16.3) SECOND TABULATION. HEADING WRITE(W,50)N1,N2,NERR) FORMAT(1H1,33X,33HVARIABLE DISCRIMINATION ALGORITHM,/,35X, 113HCLUSTERING OF,15,2X,10HFACILITIES,/,39X,4HINTO,15,7H + OR -,15, 2//) LOOP =0
10 20 25 7 30 40 50 50	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC) FORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I)) fORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1) FORMAT(111,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL,I5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY TO,/,69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),I=1,NI)) FORMAT(13X,3HI =,15,F13.3,F15.3,F14.3,F16.3) SECOND TABULATION. HEADING WRITE(W,50)N1,N2,NERR 13HCLUSTERING OF,15,2X,10HFACILITIES,/,39X,4HINTO,15,7H + OR -,15, 2//) LOOP =0) LOOP=LOOP+1 DO 61 L=1,N1
	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R,10)N1,N2,NERR,NLOOP,DISCR,DINC) FORMAT(4110,2F10.0) DO 25 I=1,N1 READ(R,20)X(I),Y(I),XR(I),XM(I)) FORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1) FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL,15,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY TO,/,69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),SR(I),XM(I),I=1,N1)) FORMAT(11X,3HI =,15,F13.3,F15.3,F14.3,F16.3) SECOND TABULATION. HEADING WRITE(W,50)N1,N2,NERR 0 FORMAT(1H1,33X,33HVARIABLE DISCRIMINATION ALGORITHM,/,35X, 113HCLUSTERING OF,15,2X,10HFACILITIES,/,39X,4HINTO,15,7H + OR -,15, 2//) LOOP =0) LOOP=LOOP+1 DO 61 I=1,N1
10 20 20 20 20 20 20 20 20 20 20 20 20 20	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R+10)N1,N2,NERR,NLOOP+DISCR,DINC) FORMAT(4110,2F10.0) D0 25 I=1,N1 READ(R+20)X(I),Y(I),XR(I),XM(I)) fORMAT(4F15.0) 5 CONTINUE FIRST TABULATION. LISTING OF KNOWN VARIABLES WRITE(W,30)N1 0) FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X, 124HLOCATION OF THE ORIGINAL.J5,2X,10HFACILITIES,//,24X,21HCARTESIA 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY T0,/69X,9HTRANS 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,//) WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),II=1,N1) 0) FORMAT(13X,3HI =,15,F13.3,F15.3,F14.3,F16.3) SECOND TABULATION. HEADING WRITE(W,50)N1,N2,NERR 0) FORMAT(1H1,33X,33HVARIABLE DISCRIMINATION ALGORITHM,/,35X, 113HCLUSTERING OF+15,2X,10HFACILITIES,/,39X,4HINTO,15,7H + OR -,15, 2//) LOOP =0 0 LOOP=LOOP+1 D0 61 I=1,N1
	DIMENSION JCH(30), JSAV(250) R=2 W=3 READ(R+10)N1+N2+NERR+NLOOP+DISCR+DINC) FORMAT(4110,2F10+0) DO 25 I=1+N1 READ(R+20)X(I)+Y(I)+XR(I)+XM(I)) fORMAT(4F15+0) 5 CONTINUE FIRST TABULATION+ LISTING OF KNOWN VARIABLES WRITE(W+30)N1 PORMAT(1H1+//+35X+33HVARIABLE DISCRIMINATION ALGORITHM+/+31X, 124HLOCATION OF THE ORIGINAL+I5+2X+10HFACILITIES+//+24X+21HCARTESIA 2N COORDINATES+6X+14HTRANSPORT RATE+2X+11HQUANTITY T0+/+69X+9HTRANS 3PORI+2+27X+1HX+14X+1HY+15X+1HR+14X+1HM+//) WRITE(W+40)(1+X(I)+Y(I)+XR(I)+XR(I)+I=1+N1)) FORMAT(13X+3H1 =+I5+F13+3+F15+3+F16+3) SECOND TABULATION+ HEADING WRITE(W+50)N1+N2+NERR) FORMAT(1H1+33X+33HVARIABLE DISCRIMINATION ALGORITHM+/+35X+ 113HCLUSTERING OF+I5+2X+10HFACILITIES+/+39X+4HINTO+I5+7H + OR -+15+ 2//) LOOP =0) LOOP=LOOP+1 DO 61 I=1+N1

	s
Rod	CHAPELLE RS-02399
61	ISAV(I)=1
c	CLUSTERING OF FACILITIES
•	DO 120 I=1,N1
	XST=X(T)=DISCR
	YST=Y(I)-DISCR
	YFIN=Y(I)+DISCR
	DO 110 J=1.N1
	1F(I-J)65,110,65
65	IF(X(J)-XSI)110,70,70
70 80	IF(X(J) - XFIN) = 0.90.90
90	IF(Y(J)-YFIN)100,100,110
100	ISAV(J)=I
110	CONTINUE
120	CONTINUE
C 150	N=0
170	IC=0
	NIC=2*N1
	DO 152 IBC=1.NIC
152	JSAV(IBC)=0
153	KN = (N1/N2) * 5
C	EXAMINATION OF EACH CLUSTER AND CHECK THE CHAIN LINKS
<u>entin de des Electricos.</u>	$DO 154 \text{ KM} = 1 \cdot \text{KN}$
154	JCH(KM)=0
C	CHECK THAT J IS NOT ALREADY PART OF A CHAIN, IF IT IS, DO NOT COUNT IT
	DO 156 NS=1,NIC
	IF (J-JSAV (NS))156,186,156
158	
	JCH(K)=J
	JN=J
160	JCH(K+1)=ISAV(JN)
• • •	IF(K-1)166,162,166
162	GO TO 168
166	$IF(JCH(K-1)-JCH(K+1))168 \cdot 174 \cdot 168$
168	K=K+1
	IF(K-KN)172,172,169
169	WRITE(W, 170)
170	FORMATTIOX;69HERROR: INCREASE DIMENSION OF JCH AND MODIFY STATEMEN
172	JCH(K)
- • -	GO TO 160
174	N=N+1
C	SAVE ALL JCH LARGER THAN J, INTO JSAV
	NI=N+1 DO 184 IN=1-K1
	$IF_{J}CH(IN) - J)184 + 184 + 176$
176	IC=IC+1
	IF(IC-NIC)182,182,178
	ener for energie en de la constant d La constant de la cons
	a se a la companya de

.

.

.

.

1

•

R.CHAPELLE RS-02399	PAGE 0
178 WRITE(W,180)	
180 FORMAT(10X,34HERROR. INCREASE DIMENSION FOR JSAV)	
182 JSAV(IC)=JCH(IN) 184 CONTINUE	
186 CONTINUE	
C CHECK IF PROPER CLUSTERING HAS BEEN OBTAINED	
INCN=IABS(N2-N)	
210 IF (NLOOP-LOOP) 211, 211, 220	
211 WRITE(W,212)	
212 FORMAT(31X,39HDESIRED CLUSTERING HAS NOT BEEN REACHED,/,27X,	
146HMODIFY THE VALUES OF DISCR OR DINC ACCORDINGLY,//)	
213 WRITE(W,214)	
214 FORMAT(33X,35HDESIRED CLUSTERING HAS BEEN REACHED,//)	
215 WRITE(W,216)	
216 FURMATIZIX;8HFACILITY;10X;2HCARTESTAN COURDINATES;11X;9HCLUSTERE	.D
WRITE(W, 217)(J, X(J), Y(J), ISAV(J), J=1, N1)	
217 FORMAT(21X,3HI =,15,F17.3,F15.3,I16)	
VRITE(W,218)N,DISCR	. .
218 FORMAT (77)29X, 32HIOTAL NUMBER OF CLOSTERED POINTS, 19,7,29X,33HOE) - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14
GO TO 250	
C MODIFY DISCRIMINATING POWER ACCORDING TO THE VALUE OF N	
220 IF(N2-N)230,213,240	
$\begin{array}{c} 250 \\ \hline 015 \\ 0$	
240 DISCR=DISCR-DINC	
GO TO 60	
250 CALL EXII	
UNREFERENCED STATEMENTS	
150 153 158	
FFATURES SUPPORTED	
ONE WORD INTEGERS	
IOCS	
CODE DEOUTDEMENTE FOR	
COMMON 0 VARIABLES 1442 PROGRAM 1062	
END OF COMPILATION	1
사람이 있는 것 같은 것 같	
<u>은 정말 경험물 수 없다. 그는 것은 </u>	
	8
는 바람에 물건 바람에는 사람이 물건을 가려 가 많은 것은 이것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는다. 이것은 것은 것은 것은 것은 것은 것을 가지 않는다. 이 것은 것은 것은 바람에 있는 것은	
ne en en 1997 (ne en el la constance de la cons La constance de la constance des	

		VA	RIABLE DISCRI	MINATION ALGORITH	IM
		CARTESIAN COOR	ON OF THE ORI RDINATES	SINAL 125 FACIL TRANSPORT RATE	LITIES QUANTITY TO TRANSPORT
		X	Y	<u>R '</u>	Μ
<u></u>		0.277	28.174	1.000	2.000
. •	1 = 2	1.074	93.066	1.000	2.000
	1 = 3	1.747	. 13.836	· 1•000	2.000
waana maada ka ahiin kaasa dhii	1 = 4	3.334	8/•345	1.000	2.000
	1 = 5	3.673	/ • 1 1 Z	1.000	2.000
	1 = 6	3.594	16929	1.000	2.000
	$\frac{1}{1} = \frac{1}{2}$	4 ● 3 3 U	04 415	1.000	2.000
	I = 0 I = 0	5.207	00.010 97.084	1.000	2.000
	I = -9 I = -10	5.045	-82.979	1.000	2.000
	$\frac{1}{1} = \frac{10}{11}$	7.37/	02.715	1.000	2.000
	· · · · · · · · · · · · · · · · · · ·	7.718	56.749	1.000	2,000
	1 = 13	8.870	60-205	1.000	2,000
<u> 1998 yan bana yang bana ka</u> ng bana kang ba	1 = 14	9.381	24,237	1.000	2.000
	1 = 15	10.700	96.945	1.000	2.000
· · · ·	I = 16	11.709	74.970	1.000	2.000
	$\frac{1}{1} = \frac{1}{17}$	12.191	7.668	1.000	2.000
	I = 18	13,162	4.329	1 .000	2.000
	1 = 19	13.912	0.331	1.000	2.000
	I = 20	15.249	4.341	1.000	2.000
•	1 = 21	15.891	81.267	1.000	2.000
	I = 22	16.232	7.289	1.000	2.000
	1 = 23	17.108	59.919	1.000	2.000
	1 = 24	17.914	68.586	1.000	2.000
	1 = 25	19.045	78.228	1.000	2.000
	I = 26	19.730	61.533	. 1.000	2.000
	I = 27	20.304	32.007	1.000	2.000
	I = 28	21.146	78.281	1.000	2.000
	l = 29	21.614	48.435	1.000	2.000
	I = 30	22.485	51,049	1.000	2.000
	1 = 31	23.155	34.308	1.000	2.000
·	I = 32	23.984	68.045	1.000	2.000
,	I = 33	24.497	7.085	1.000	2.000
	I= 34	25.401	34.796	1.000	2.000
	I = 35	26.589	38.362	1.000	2.000
	I = 36	27.813	29.532	1.000	2.000
	I = 37	28.200	99.444	1.000	2.000
,	I = 38	29.390	71.763	1.000	2.000
	I= 39	30.697	75.686	1.000	2.000
	I = 40	31.306	65.012	1.000	2.000
	I = 41	32.488	6.057	1.000	2.000
	I = 42	33•522	90•409	1.000	2.000
	I = 43	35.837	53.606	1.000	2.000
· · · · · · · · · · · · · · · · · · ·	I = 44	36.428	74.129	1.000	2.000
	I= 45	36.989	13.310	1.000	2.000
·	I = 46	37.928	59.878	1.000	2 • 000
		의 사람은 <u>대통령 가</u> 지 않는 것			

Ŀ

			<u>-</u>		•	
]	1 =	47	38.122	97.961	1.000	2.000
1	<u>,</u> 1 ,	48	39.000	94.343	1.000	2.000
l est a start s	f =	49	39•859	40.672	1.000	2.000
J	[=]	<u> 50 </u>	40.759	30.872	1.000	2.000
I	<u> </u>	51	41.993	53.322	1.000	2.000
1	í =	52	42.646	92.783	1.000	2.000
J	1 =	53	42.890	74•764	1.000	2.000
See of I	<u> </u>	54	43.467	13.996	1.000	2.000
1	= 1	55	44.015	3 • 139	1.000	2.000
9999 <u></u> 1	1 =	<u>56</u>	44.348	16.637	1.000	2.000
1	= 1	57	45.184	81.644	1.000	2.000
1	1 =	[.] 58	46.254	47.356	1000	2.000
J	(=	59	46.631	60.987	1.000	2.000
<u></u>	<u> </u>	60	47.720	39.255	1.000	2.000
1	í. , ⇒ ,	61	48.729	54•781	1.000	2 • 000
1	[]= <u>_</u>	6 <u>2</u>	48.925	11.619	1.000	2.000
.]	<u>(= 1</u>	63	49.418	19.348	1.000	2.000
·]	í =	64	50.859	61.171	1.000	2.000
J	í =	65	51.528	81.927	1.000	2.000
<u> </u>	(66	52+484	34.795	1.000	2.000
I	e ² , 1 (2) € 5 ∰ 3, 1	67	53.038	30.206	1.000	5.000
J. S. S. J.	(≊≊⊴ (* = %	68	53.817	13.795	1.000	2.000
<u>I sine and a sine and a</u>	(=	69	54.209	96.220	1.000	2.000
I	(=	70	55.251	74.346	1.000	2.000
I I	(=	71	55.964	51 487	1.000	2.000
	<u>r es</u>	72	56.811	16.526		2.000
	l ⁱⁿ	73	57.471	24.758	1 .000	2.000
l.	n 🖃	74	58.101	51,645	1.000	2.000
<u> </u>	/ =	75	59.486	43.301	1.000	2.000
I	(<u>=</u>)	76	60-131	20.236	1_000	2.000
. I	۲	77	61.636	21_000.	1_000	2-000
-	<u></u> (** * *)*	78	62.898	<u>910000</u> 84-788	1.000	2.000
i an	ि		44-300	e e 2005	1 . nnn	2.000
\mathcal{L}		80	45.281	25-686	1,000	2.000
<u></u>	/ <u></u>	81	<u> </u>	<u>97-652</u>	1.000	2.000
Ī	(=	82	67.288	79.207	1_000	2.000
. Î	- - -	83	67.849	RO - 892	1_000	2.000
		84	68-460	22.725		2.000
I	i~	85	69.777	4n-011	1.000	5.000
I	12	86	70.068	10.700	i non	5. nno !!
<u>I</u>	<u>* 7 m</u>	87	70.850	<u>62.204</u>	1.000	2.000
Ī	- -	88 88	71_226	ンビョンノー ドス _ R7ス	1.000	2.000
Ţ	- -	80	72_066	2002 2002	1.000	2-000
·····		<u> </u>	12000	020273	1000	
		2V 01	12010	100223	1.000	2000
() ;	i. S	1 ×	140014	62001	1.000	2.000
<u>I</u>	<u></u>	<u>74</u>	75 EAE	10-100		2.000
. .	, · _	כל הח	100000 74 414	100100 10 470		2.000
r T	, <u>-</u>	ን ፡፡ ባና	120010	10 002	1.000	2.000
······		27 200	10.003			2.000
		סל רח	100 076	38•700 10 744	1.000	2.000
	이번. 사망자이	ን (ጉፅ	1/0804	10•750	1.000	2.000
<u>***************</u>	<u></u>	<u>98</u>	<u> </u>	56 • 141		2.000
- 1	=	99	78.845	1.628	1.000	2.000
· 1	=	100	79.136	91.551	1.000	2.000
1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	=	101	79.853	79.402	1.000	2.000
gen e ser e se			- 영향한 가가 영향 및 가장 영향을 위한 100 1999년 1월 1999년 1월 19			

e

្រំ

and the set of the set of the

2

5

ŚФС

۰.,

5 • 000	000•T 000•T	10°150 29°12	924°86 168°16	= 152 = 15¢	I
				•	
•					
		· · ·		****	
					•
				<u></u>	<u></u>
			n. to solve the factor and the		an Angene die Angene angeste Angene angeste angeste angeste angeste

2•000	000 ° T	10.120	924 ° 86	= 152	I
5*000	<u>.</u> 1•000	77.267	<u>168•76</u>	= 15¢	I
Z•000	000•t	· ۲۰۲۰۲۶۶	ET8•96	= 153	1
S•000	000•T	509°07	L80•96	= 155	1
2°000	000•τ	72 9 •25¢	018•76	= 151	1
2°000	000•T	999•T6	LSE•76	= 150	I
. Z•000	000 ° I	7.857	126•66	6II =	I
2 • 000	000•T	E59°0E	027.920	8II =	I
5.000	000•T	069•25	<u> 35•115</u>	=	1
2 • 000	000•I	ZOI.8	EOSºI6	911 =	1
S•000	000• 1	290°TE	7Z8•06	SII =	I
2.000	000•1	950•6L	191.06	サ [[=	I
2 •000	000•T	89L°5L	85Ó•68	EII =	Ι.
2 * 000 ·	000•T	769°67	88•250	= 115	Ĩ
S•000	000°T	LIE" 79	52E º 18	TIT =	I
2•000	000•T	628°59	77L•58	OTT =	1
S*000	000•τ	51•120	82•345	60I =	1
Z•000	1 000 • L	159*08	967 • 78	= 108	I
2 • 000	000•I	987°79	412 - 58	20I =	I
S*000	0.00 • T	L92*67	+0 E •28	90I =	I
S • 000	000°T	L08*75	85•071	50I =	1
S•000	000 • T	66.533	26E•I8	+0I =	1
2°000	000°T	087.97	296 • 08	E0I =	1
2°000	1 •000	916*66	80°5¢J	= 105	I
	,				

VARIABLE DISCRIMINATION ALGORITHM CLUSTERING OF 125 FACILITIES INTO 50 + OR - 30

DESIRED CLUSTERING HAS BEEN REACHED

말 아이는 것 같은 것

CARTESIAN COORDINATES X Y FACILITY CLUSTERED WITH FACILITY CODE

1	= 1	0.277	28.174	3	L
1	= 2	1.074	93.066		2
, i j	= 3	1.747	13.836		
I	= 4	3.334	87.345	1()
I	= 5	3.673	7.112		\$
I	= 6	3.894	1.525	· 6	5
1	= 7	4.330	15.35		}
I	= 8	5.174	86.615	10) National and the second second
1	= 9	5.397	87.284	10)
<u> </u>	= 10	6.045	82.979	S)
I	= 11	7.374	93.216	15	>
I	= 12	7.718	· 56•749	13	3
·	= 13	8.870	60.205	12)
1	= 14	9.381	24.237	1^{\prime}	
	= 15	10.700	96•945		
	= 16	11.709	74.970	16	
	= 17	12.191	7.668	22	,
1	= 18	13.162	4.329	22	-
	= 19	13.912	0•331	20) 5777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777
	= 20	150249	4.341	27	
1	= 21	15.891	81.267	25	
	= 22	16.232	7.289	<u>2(</u>	
	= 23	17.108	59.919	26	>
1	= 24	17.914	68.586	24	ł
1 • • • • • • • • • • • • • • • • • • •	= 25	19.045	18•228	28	5 - Santan Anerikan wales alo 1985 - S
	= 26	19•730	61.533	2:	
	= 21	20.304	32.007	2.	
<u>l</u>	= 28	21.146	18.281	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	- 29	21.014	48+432	50	
. 1	= 50	220485	51+049	23	1 •
k Transformation and the state of the	<u> </u>	230133	34.308		
	- 22	23.984	68:043 7 005		
1	- 33	24•491	2000	2. 21	2
1970) - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 1	- 35	25 + 401	24+170 20,262	2/	<u>a na kakaona provi kuto na na</u>
1	- 36	208207	20-522	3.	r
	= 37	28.200	29.444	2.	7
	= 38	29,390	71,763	30	,)
	= 30	30-697	75.686	3,	2
	= 40	31.306	65.012	بې د (j la servici l
• ************************************	= 41	32_488	6.057	4	<u>na na na katan katan katan</u> L
•	= 42	33.522	90.409	4	2
i i i i i i i i i i i i i i i i i i i	= 43	35.837	53.606	43	3
	보험 같은 물건을 받는 것이 같다.			동물에 수도 걸었다. 감구 문화 관계	

	I = 4	4 36.428	74.129	44	ŧ
	I = 4	5 36.989	13.310	45	·······
	I = 4	6 37.928	59.878	46	
	I = 4	7 38•122	97,961	48	3
	I = 4	8 39.000	94.343	52	·
	I = 4	9 39.859	40.672	49	}
	I = 5	0 40.759	30,872	50	ý
	I = 5	1 41.993	53.322	51	
	I = 5	2 42.646	92.783	48	
	I = 5	3 42.890	74•764	53	}
	1 = 5	4 43.467	13.996	56	······································
	I = 5	5 44.015	3.139	55	j
	I = 5	6 44.348	16.637	54	ł
	1 = 5	7 45.184	81.644	57	1
	I = 5	8 46.254	47•356	58	,
	l = 5	9 46.631	60.987	64	e de la companya de En activita de la companya de la comp
	I = 6	0 47.720	39.255	66	,
	I = · 6.	1 48.729	54.781	61	
	I= ΰ	2 48.925	11.619	68	۰. ۱
	1 = 6	3 49.418	19.348	63	
	I = 6	4 50.859	61.171	59)
	I = 6	5 51.528	81•927	65)
	I = 6	6 52.484	34.795	67	, <u>, , , , , , , , , , , , , , , , , , </u>
20 년 20 20	I = 6	7 53.038	30.206	. 66)
	I = 6	8 53.817	13.795	72	2
	I = 6	9 54.209	96.220	69)
	I = 7	0 55.251	.74.346	70	
	I = 7	1 55.964	51.487	74	
a .	I = 7	2 56.811	16.526	76)
	I = 71	3 57.471	24•758	76	· ·
	I = 74	4 . 58.101	51.645	71	
	I = 7	5 59.486	43 301	75)
	I = 7	6 60.131	20.236	73	
	I =7	7 61.636	31.000	80	
	[= 7	62.898	. 84.788	83	}
	I = 79	9 64.300	88.995	81	L .
-	I = 80	0 65.281	35.686		+
	1 = 8	1 65.936	87.652	79)
	I = 8.	2 67.288	79•207	83	
<u></u>	<u>8 </u>	3 67.849	80.892	82	<u>.</u>
	I= 84	4 68 . 460	32.725	. 80)
	1 = 8	69.222	60.011	91	•
	I = 8(6 70.068	18.799	90)
	I = 8	70•850	52•394	88	
	I = 8	8 71•326	53.823	. 92	
	I= <u>8</u>	9 72.066	62.293	92	
	I = 9	0 73.376	16.223	95)
	I = 9	1 74.074	62.067	92	
	1 = 9	2 74.892	58.270	98	<u>}</u>
	ı = 9	3 75`•505	10•108	99	
	L = 9	4 75.616	10•442	99	
	<u> </u>	<u>2</u>	18.093	<u>244 - 27 - 27 - 29 - </u>	
	1 = ' '9(38.968	96)
	1 ·= 9			99	/ :
	1 - 7	0 100001	200141	105	*

 $u \in$

.

.

			· · ·	
I	= 99	78.845	7.628	97
	.≓. 100	79•736	91•551	
	. = 101	79.853	79 • 402	103 (in the second s
1	= 102	80.241	99 • 316	
1	= 103	80.962	76.480	101
1	= 104	81.397	46.533	106
I	= 105	82.071	54.807	98
I	= 106	82.304	49.257	104
S. S	= 107	83.214	64•486	111
<u> </u>	= 108	84,436	30•651	112
(I	= 109	85.342	27:120	112
· · I	i = 110	85.744	65.825	111
I	1 = 111	87.325	. 64.317	110
Internet in the second	···= 112	88.250	29.594	118
I	r = 113	89.058	75.768	114
	(= 11 4	90.167	79.096	113
<u>NARAN KANA</u>	$\frac{-1}{115}$	90.824	31.067	118
- - I	· = 116	91_503	8.102	116
	· - 11.7	02.115	52_690	121
e Manakana ang barang b	- <u> </u>	<u>72011</u>	20-453	116
T	- 110 - 110	740110	90000J 9-857	
	- <u>+</u> 1 7	7J07C1 01 257	01-666	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
<u> </u>	······································	040201 C	EE ESA	117
4 T	= 121	. 74#010 ·	DD0024	111
د. ۲	= 122	900001 01 010	406000	100
and a start of the second start start start of the second start of	= 123	2000TO	420100	166
		A (9 A A A	110201	en la glassifica de la Companya de l La manda de la companya de la company
1	= 125	98.426	10.120	147
·	IOTAL	NUMBER OF CLUSIN	ERED POINTS	
		NUMBER OF CLUST NED WITH A DISCR	IMINATION OF 5.	.000
		NUMBER OF CLUST NED WITH A DISCR	IMINATION OF 54	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
	OTAL	NUMBER OF CLUST	IMINATION OF 5.	,000
	OFAL	NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST NED WITH A DISCR	IMINATION OF 5	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUST	IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000
			ERED POINTS IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000
		NUMBER OF CLUSI NED WITH A DISCR	ERED POINTS IMINATION OF 5.	.000

.

•

.

				· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	I =	99	78.845	7.628	97	
	I =	100	79:736	91.551	100	
	I =	101	79.853	.79.402	103	
	1 =	102	80.241	99.316	102	
	I =	103	80.962	76.480	101	
•] =	104	81.397	46.533	106	
	I =	105	82.071	54.807	98	
	I =	106	82.304	49.257	104	
	I =	107	83.214	64.486	111	
	1 =	108	84.436	30.651	112	
	I =	109	85.342	27.120	112	
• •	I =	110	85.744	65.825	111	
	I =	111	87.325	64.317	110	
	I =	112	88.250	29.594	118	a name data shippe contra patitir filinge a for this shifting.
	I =	113	89.058	75.768	114	
	I =	114	90.167	79.096	113	
	I =	115	90.824	31.067	118	
	1 =	116	91,503	8.102	116	
	I =	117	92.115	53.690	121	· · ·
	I =	118	92.770	30.653	115	
	I =	119	93.921	2.857	119	
	1 =	120	94.357	91.666	120	
**************************************	I =	121	94.810	55.524	117	
	I =	122	96.087	40.605	- 123	
	I = ·	123	96.813	42.783	122	•
	I =:	124	97.891	77.267	124	
	I =	125	98.426	10.120	125	
					2012년 2월 19일 - 19일 19일 - 19일 - 19 19일 - 19일 - 19g	
					۵٬۵۵۵ بات ۱۹۹۵ و ۱۹۹۵ می در ۱۹۹۵ ۲۰۱۰ بوسین کاربینی است. ۲۰ ه	

TOTAL NUMBER OF CLUSTERED POINTS75OBTAINED WITH A DISCRIMINATION OF5.000

°

÷ 0

5

INATION OF 5.

14