THE UNIVERSITY OF OKLAHOMA
 GRADUATE COLIEGE

LOCATION OF CENTRAI FACILITIES

 HEURISTIC ALGORITHMS FOR LARGE SYSTEMSA DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
RENE ADRIEN CHAPELIE
Norman, OkIahoma
1969

LOCATION OF CENTRAL FACIIITIES

HEURISTIC ALGORITHMS FOR LARGE SYSTEMS

PLEASE NOTE: Appendix pages are not original copy. Print is indistinct on many pages. Filmed in the best possible way.

UNIVERSITY MICROFILMS.

ACKNOWLEDGMENT

I wish to express grateful appreciation to all who have made this undertaking possible.

In particular I extend thanks to my committee chairman Dr. Robert A. Shapiro for his guidance and suggestions. Special gratitude is due to all other members of my committee consisting of Professors Robert J. Block, Rodney L. Boyes, Bobbie I. Foote, Raymond P. Iutz.

I first became interested in location of central facilities during a summer employment with the Post Office Department in Washington, D.C. The motivation provided by the director of the Industrial Engineering Bureau, Mr. Alvin P. Hanes, has been instrumental in the development of this study. I am also grateful for the communication with Professor Leon Cooper of Washington University at St. Louis.

ABSTRACT

This study deals with the optimization of location of multiple central facilities in a large system of dependent elements connected by communication links.

This problem is of major importance in the location of service facilities. The function to optimize is a minimization of link costs due to time delay or connection expenses.

The case of small systems with one central location is a time-honored problem solved in the case of Euclidean distances by analog, geometric and numerical methods. The exact solution of the problem in a closed and explicit form has not yet been found. It often deals with the problems of industries or warehouses or communication center locations connected by straight links, and it has been extensively studied by Launhardt, Weber: Isard, and Cooper to mention a few. Other investigators have considered the case of a Manhattan metric in which the connecting links are perpendicular segments, and the results are tentatively applied to plant or city layouts.

The case of large systems and multiple central locations leads to excessive computing efforts often im-
possible even on the largest computers. Some algorithms are available but are somewhat inflexible. It is for this reason that new algorithms were developed; the variable grid algorithms and the variable discrimination algorithm. Whatever the size of the system, the combination of these algorithms allows a possible and rapid location of central facilities within the constraints of computer time and memory expenditure. A complete study and programming of these algorithms are presented to allow direct application by the engineer or the economist. Some possible applications to the Post Office Department are shown for the location of the sectional centers serving the numerous post offices of any given state.

It is show that those algorithms may be extended to n dimensional space and can be used to large cluster analysis.

TABLE OF CONTENTS

+ Page
LIST OF ILLUSTRATIONS ix
LIST OF TABLES xiii
LIST OF LOGIC DIAGRAMS xiv
IIST OF COMPUTER PROGRAMS. XV
Chapter
I. INTRODUCTION 1
I. 1 Generalities 1
I. 2 Plan of Studies. 6
I. 3 Possible Applications 9
II. LOCATION OF CENTRAL FACIIITIES 12 DISCRETE, TWO-DIMENSIONAI SPACE, EUCLIDEAN DISTANCES
ONE CENTRAL LOCATION
II. 1 ANALOG SOLUTION 14
II.1.1 Lights and Mirrors 14
II.1.2 Weights and Pulleys 16
II.1.3 The Link-iength Minimizer 20
II.1.4 Electrical Field. 21
II. 2 GEOMETRIC SOLUTION 23
II.2.1 The Force Polygon 23
II.2.2 The Launhardt-Pelander
Construction 28
II.2.3 Isovecture and Isodapanes 30
II.2.4 Topographic Mapping of Costs 36
II.2.5 Extension of the Geometrical Construc- tion 38
II. 3 ALGEBRAIC SOLUTION
II.3.1 Determination of Minimum Point 39
II.3.2 Geometric Programming 51
II.3.3 Expenditure at Vertice
Points 52
II.3.4 Case of Variable Transport Rate 54
II.3.5 Bounds on Sum of Distances 56
II.3.6 The Constrained Problem 58
III. IOCATION OF CENTRAL FACIIITIES 66
DISCRETE, TWO-DINENSIONAL SPACE, EUCLIDEAN DISTANCES
MULTIPLE CENTRAL LOCATIONS
III. 1 ANALOG SOLUTION 66
III.1.1 The Soap.Film Method. 66
III.1.2 The Link-Iength Minimizer 68
III. 2 ALGEBRAIC SOLUTION 69
III.2.1 Central Facilities Loca- tions and Assignments 71
III.2.2 Bounds on Sum of Distances 75
IV. HEURISTIC AIGORITHMS 78
DISCRETE, TWO-DIMENSIONAI SPACE, EUCLIDEAN DISTANCES
IV. 1 ONE CENTRAL LOCATION 81
IV.1.1 One Central Facility Heuristic Algorithm 81
IV. 2 MULTIPLE CENTRAL LOCATIONS 95
IV.2.1 Multiple Central Facilities Heuristic Algorithm 95
IV.2.2 Destination Subset Algo- rithm 96
IV.2.3 Variable Grid Algorithm 105
IV.2.4 Variable Grid Algorithm with Linear Constraints 106
IV.2.5 Random Destination Algorithm 109
Chapter Page
IV.2.6 Random Grid Location
Algorithm 114
IV.2.7 Random Grid Algorithm. with Linear Constraints 119
IV.2.8 Successive Approximation Algorithm 124
IV.2.9 Grid Successive Approxi- mation Algorithm 124
IV.2.10 Alternate Location and
Allocation Algorithm 125
IV.2.11 Variable Discrimination Algorithm 126
V. ANAIYSIS OF RESULTS 134
V. 1 RANDOM DESTINATION ALGORITHM 136
DISTRIBUTION OF DISTANCES
V.1.1 Small System: $n=20, m=3$ 136
V.1.2 Large System: $n=125, m=3$ 140
V. 2 RANDOM GRID IOCATION ALGORITHM 143
DISTRIBUTION OF DISTANCES
V.2.1 Small System: $n=20, m=3$ 143
V.2.2 Large System: $n=125, m=3$ 149
V. 3 RANDOM GRID WITH IINEAR CONSTRAINTS 152
V.3.1 Small System: $n=20, m=3$ 152
V.3.2 Large System: $n=125, m=3$ 158
V.3.3 Summary of Results 160.a
V. 4 VARIABLE DISCRIMINATION ALGORITHM 161
VI. CONCLUSION 164
VI. 1 RECOMMENDED FUTURE RESEARCH 164
VI. 2 SUMMARY 168
BIBLIOGRAPHY 174
APPENDIX 181

IIST OF ILIUSTRATIONS

Figure Page

1. Discrete, Two-Dimensional Space 12
2. Discrete, Two-Dimensional Space, Euclidean Distances, One Central Location 13
3. Iight and Mirror 14
4. Light and Mirror, Minimum Distance Path 15
5. Light and Mirror, Central Location of 3 Facilities 16
6. Weight and Pulleys, Central Location of 3 Facilities 17
7. Weight and Pulleys, Minimization of Potential Energy 18
8. Weight and Pulleys, Central Location of 4 Facilities 19
9. Link-Length Minimizer, Location of One Central Facility 20
10. Electrical Field Analogue Computer 22
11. The Force Polygon 23
12. Construction of Supplemental Angles 24.
13. Geometric Location of a Central Facility 24
14. Case of Negligible Weight 25
15. The Central Facility as a Center of Mass 26
16. Case of a Very Large Weight 27
17. Locational Triangle, One Angle is Greater than 120° 27
18. The Launhardt-Palander Construction 28
Figure Page
19. Influence of Markets and Raw Material Sources on Industry Location 29
20. Inconsistency in the Launhardt-Palander Construction 30
21. Isovectures and Isodapanes of Distances 32
22. Isovectures and Isodapanes of Costs or Time, 33
23. Isovectures and Isodapanes of Costs, Case of 3 Facilities 34
24. Cost Function and Topographic Mapping 36
25. Digital Mapping of Cost Function 36
26. Error Closure Vector 37
27. Expenditure at Vertice Points 52
28. Variable Transport Rate in Congested Area 55
29. Shortest Network Joining More Than 3 Points. 67
30. Network Not Uniquely Defined 67
31. Iink-Iength Minimizer, Multiple Central Facilities 68
32. Total Cost, Global Minimum 70
33. Case of Extreme Locations in the Determination of One Central. Facility 83
3.4. Location of One Central Facility, Heuristic Algorithm, $N=20$ 88
34. Location of One Central Facility, Heuristic Algorithm, $N=125$ 89
35. Destination Subset Algorithm, One Facility Taken as a Center, $N=20$ 103
36. Destination Subset Algorithm, One Facility Taken as a Center, $N=125$ 104
37. Variable Grid Algorithm, with Linear Constraints 107
38. Investigation Procedure to Define the Convex Hull 109
Figure Page
39. Irrational-Choice of Central Facilities 110
40. Variable Discrimination Algorithm 127
41. Variable Discrimination Algorithm, Blurred Areas 128
42. Variable Discrimination Algorithm, Underlying Assumption 128
43. The Discriminating Power is Proportional to the Respective Weights 129
44. Variable Discrimination Algorithm, Agglomeration by Closeness of Coordinates 130
45. Random Destination Algorithm, Distribution of Distances, Small System 138
46. Random Destination Algorithm, $N=20, \mathbb{M}=3$. 139
47. Random Destination Algorithm, Distribution of Distances, Large System 141
48. Random Destination Algorithm, $\mathbb{N}=125, \mathbb{M}=3$ 142
49. Random Grid Location Algorithm, Distribution of Distances, Small System 146
50. Random Grid Location Algorithm, $N=20, \mathrm{M}=3$ 148
51. Random Grid Location Algorithm, Distribution of Distances, Large System 150
52. Random Grid Location Algorithm, $N=125, \mathrm{M}=3$ 151
53. Random Grid with Linear Constraints, Distribution of Distances, Small System 155
54. Random Grid with Linear Constraints, $N=20$, $\mathrm{M}=3$ 157
55. Random Grid with Linear Constraints, Distribution of Distances, Large System 159
56. Random Grid with Linear Constraints, $\mathbb{N}=125$ $\mathrm{M}=3$ 160
Figure Page
57. Variable Discrimination Algorithm 163
58. Convergent Iterative Process 166
59. Example of Polygonal Demand Distributi.nn,Location of Central Facility171

LIST OF TABLAE

Table Page

1. Location-Allocation Problems 8
2. Applications of Iocational Problem 10
3. Computation Time Requirement - One Centraz Location 90
4. Postal System. Optimum Location of One Central Facility 92
5. Brrors in Algorithms 134
6. Random Destination AIgorithm, Distribution of Distances, Small Syatem 137
7. Random Destination Algorithm, Distribution of Distances, Large System 140
8. Random Grid Location Algorithm, Ranges and Class Intervals 143
9. Random Grid Location Algorithm, Distribution of Distances, Small System 144
10. Random Grid Location Algorithm, Distribution of Distances, Large System 149
11. Random Grid with Linear Constraints, Ranges and Class Intervals 152
12. . Random Grid with Linear Constraints, Distribution of Distances, Small System 153
13. Random Grid with Linear Constraints, Distribution of Diatances, Large Systom 158
14. Random Grid with Linear Constraints, versus, Random Destination Subset Algorithm 160.a

IIST OF LOGIC DIAGRAMS

Diagram Page

1. One Central Facility, Heuristic Algorithm 86
2. Destination Subset Algorithm, One Facility
is used as a Central Location 101
3. Random Destination Subset Algorithm 112
4. Random Grid Location Algorithm 116
5. Random Grid Algorithm with Linear Constraints 121
6. Variable Discrimination Algorithm 131

IIST OF COMPUTER PROGRAMS

Program Page
1 Location of one Central Facility,Heuristic Algorithm 1821A Case of Weight Dominance in the Locationof One Central Facility188
2 Destination Subset Algorithm, One Facilityis used as Central Location 190
3 Multiple Central Facilities, Random
Destination Subset Algorithm 194
4 Multiple Central Facilities, Random Grid Location Algorithm 201
5 Multiple Central Facilities, Random Grid with Iinear Constraints 218
6 Variable Discrimination Algorithm, Agglomeration of a Large System 235

I.1. LOCATION OF CENTRAL FACILITIES

CHAPTER I

INTRODUCTION

Generalities

Our physical, social and economical behavior depends on a set of networks: biological networks to control our thougits and motions, social networks allowing interchange of ideas and generation of actions, and economical networks to sustain our wants and distribute our goods.

These networks are limited in connection richness and flow capacity. To connect various elements of the system it may take time and it may generate cost. We are familiar with the old adage that "time is money", a more appropriate statement should be distance is money.

For the housewife it takes time to go shopping, time to take the children to school, time to prepare the dinner. For the engineer it takes time to materialize an idea into a design, time to do some market research, time to analyze a feasible production method, time to receive the material, time to route it through the plant, time to eval-
uate, organize, implement. We behave to create a comfortable balance with our environment, but it takes time to respond to environmental changes because of spatial limitation in our information network and a delayed reaction might be uncomfortable or even fatal.

Distance is the constraining element in most of our actions. The daily commuter complains about the long ride to work, the housewife considers that the shopping center is too far from home, that the kitchen is poorly laid out; the child does not appreciate the long walk to school on a chilly morming. The postman would prefer a shorter route, the fireman less hurry on a long stretch, the salesman less territory to cover and the wounded less distance to the hospital. The industrialist would like the markets to be situated close to the resources, the store manager would offer a better service if the warehouse were a block from his retail store, the weatherman could be more accurate if the data gathering station were in his backyard, the engineer more inventive if a well furnished library were in his office and more effective if he could communcate readily without ambigaity with his staff of foremen in the shop or sal,esmen in the field.

It takes time ank effort because of distances, meso sages are distorted and goods are scarce because of long network branchets th constrained capacity. The problem of time is often a problem of space and the problem of space a problem of location.
I.1. LOCょ.TION OF CENTRAL FACILITIES

CHAPTER I

INTRODUCTION

Generalities

Our physical, social and economical behavior depends on a set of networks: biological networks to control our thoughts and moticas, social networks allowing interchange of ideas and generation of actions, and economical networks to sustain our war.ts and distribute our goods.

These netrorks are limited in connection richness and flow capacity. To connect various elements of the system it may take tine and it may generate cost. We are faniliar with the old adage that "time is money", a more appropriate statemert should be distance is money.

For the hcasewife it takes time to go shopping, time to take the cilildren to school, time to prepare the ainner. For the engineer it takes time to materialize an idea into a desigr, time to do some market research, time to analyze a feasible production method, time to receive the naterial, time to route it through the plant, time to eval-
uate, organize, implement. We behave to create a comfortable balance with our environment, but it takes time to respond to environmental changes because of spatial limitation in our information network and a delayed reaction might be uncomfortable or even fatal.
 industrialist would like the markets to be situated close to the resources, the store manager would offer a better service if the warehouse were a block from his retail store, the weatherman could be more accurate if the data gathering station were in his backyard, the engineer more inventive if a well furnished library were in his office and more effective if he could communicate readily without ambiguity with his staff of foremen in the shop or salesmen in the field.

It takes time and effort because of distances, messages are distorted and goods are scarce because of long network branches with constrained capacity. The problem of time is often a problem of space and the problem of space a problem of location.

In all our previous examples we had these constraints because of space requirements. It takes time to think and act because our nervous system is formed of multiple paths of finite lengths, traversed by pulses of finite velocity, we have a finite number of neurones with finite number of interconnections. The computer manufacturer has quickly realized the importance of space on the computation time of their machines, and made their circuits with microelements. With our brain we must be able to control the writing on this page or the movement of our foot; the computer may have to drive a printer as well as disc packs or tape reels. To minimize message transmission to tape outputs it is wise to think that a central location of the main processor would be advisable. Nature has furnished us with a central processor shrinking nervous paths into some of our mental processes but also peripheral processes for our reflexes. In the operation of our processing system we must ingest some input data or raw materials, for example the design problem we expect to solve requires the use of a book in fluid mechanic at the University library, a similar design has been used on a machine in Japan, a technical study of this machine has been published in Russia. Similarly the computer may have to use a magnetic tape in the computing room, punch card readers from the manufacturing plant, light pen oscilloscopes from the various engineering departments, punched tape transmitted by teletype from remote terminals across the country. It is
a problem of space allocation to define the location of our laboratory in function of the available literature and expertise on the subject. It is a problem of space allocation to install our computer at the right place so as to minimize message delays and cost of wiring and transmission. In a manufacturing environment for example the economic factor of time is of ten a disguised problem of space. Labor and overhead costs accumulate with time and it takes time for procurement of raw material, time to transform the input into finished products, time to move parts from one work station to another, time to move carriages, slides, tables, spindles, tools into working position, time to gather components to assemble a final product. It takes time because new materials must be produced in distant markets, the tools must be moved along a cutting path, the assembly components must be handled from the storage bins. To minimize time is to minimize the space transport of materials or messages. This is the problem of plant location with respect to raw material input and market output for the finished product. Plant layout deals with the problem of geometrical arrangements of machines and men to decrease distances, and motion study tries to simplify work station to reduce body displacements and fatigue.

In a community environment we rély on a multitude of county, state, or national service agencies. Their location should allow a rapid contact in case of need.

Who cares about an excellent fire department if our house has time to burn to the ground while the fire truck is on the road; who likes a modern hospital so far out that the patient may die en route? To minimize time we must minimize space. This is clearly evident in our modern societies in the tremendous rate of growth of urban communities and high-rise buildings where space is hopefully condensed so as to simplify our constant communications. The city service agencies cater to the people and they must be situated so as to please the largest number of citizens by a correct location of their premices. However, no city is independent, no country is autonomous and the optimum location of a facility will be different if we are only concemed with a restricted environment or of the whole possible interconnections. 'Service agencies respondent to many cities or many countries are part of a very large system and the optimum location of center minimizing transmission time of message or goods deals with a multitude of elements.

Therefore the problems of location that we consider to tackle in this dissertation are closely related to the theory of graphs and circuits, to the theory of flow and transportation and to the theory of information. We will limit this study to the location of central facilities and the corresponding rational clustering of satellites which will be serviced in the optimum manner within the physical or economical constraints imposed on the system.

I.2. Plan of Study

In the general problem we define the location of n elements with their respective requirements or supplies. These n elements are involved in transaction with a set of m elements.

The set of n elements may be restricted in size and the elements sufficiently apart to consider space as discrete; on the other hand, the set may be extremely large and the n elements so closely located that a measure of density in this continuous space will have to be introduced.

The set of m elements may be a subset of the n elements or may be a completely different set.

To the transaction is affixed a figure of merit: time, distance, cost, etc., which must be optimized by the proper choice of the set of m elements with respect to their location, constraints of capacity, characteristics of the connecting channels and economic constraints.

When a central facility wust be reached by depending satellites, the means of connection may be direct along geometric straight lines. This is the case, for example, of airfreight with straight paths between the central suppliers and the various cities, the case also of telecommunication between central emitters and related receptors, etc.

Quite often in practice the transportation network between central facilities and related elements must be done through a maze of streets, roads and sinuous paths. At the scale of a city the connecting links may be a succession of perpendicular streets and avenues that a citizen, for example, must follow to reach the closest post office. At the scale of the United States it is a set of road elements of ten oriented North-South and East-West, that a delivery truck must drive to reach the city of the retail store. In a plant it is the nicely aligned aisles along which are lined the machines and which are crisscrossed by forklifts or other material handling equipment.

Our n elements not only have spatial characteristics but they may have a complete vector of characteristics and we might be interested not in the location of various central facilities but in the grouping of elements with nearly similar entities. We are no longer dealing in space allocation but in cluster analysis or entity allocation.

Our investigation could therefore consider various levels of complexity. We could look first at a discrete space with an interconnecting network of straight lines between satellite elements and central facilities. In this Euclidean space we would study the location of one central facility deserving few elements then we would extend our study to the problem of multiple central locations. We
could note the possible expansion to an N dimensional space by a brief mention of clusters. We could then tackle the problem of a Manhattan space of intersecting streets and avenues or a network of roads properly aligned along longitude and latitude. We could then consider the case of a dense set of elements to be served in a continuous space of given density. Table 1 represents most of the possible combinations which may occur in locational theory.

Space (elements to serve)	Discrete		Continuous large number)
```Central Facilities (or clusters)```	One	,	Nultiple
Distances	```Euclidean ,Man 1 dimensional N dimensional```	attan	Sinuous Pathe
Transactions	Equal.	,	Unequal
Constraints	Constrained	,	Unconstrained

Table 1. Location-Allocation Problems
This dissertation cannot deal with all the possible combinations of problems presented in the figure above; therefore, some areas will be emphasized at the expense of others and the concluding chapter will show possible areas for future research.

The optimal location of central facilities is an ageold problem which attracted many mathematicians of reknown since the 17 th century, however, the simplified assumptions lead to mathematical models which do not really apply to some common complex situations. In our large communities and at the scale of our country it is rare to find only one centralized facility serving the individuals. Cities have many fire stations, states have many central post offices, countries have multiple centralized data gathering and distributing locations. With the advent of the computer, heuristic solution of the locational problem becomes possible but we are still limited in our theoretical study by the immensity of the problem. Flexible heuristic algorithms for very large systems will be emphasized to allow direct application by the engineer or economist.

## I.3. Applications

A tentative tabulation of possible applications
follows. It is quite incomplete but will give an idea of the problems which may be tackled with the present algorithms.

Table 2. Applications of Locational Problems

Elements Requiring Service	Centralized Facilities or Clusters
Individual as a member of a community	For Transportation taxi stations bus stations railway stations air terminals airports   For Communication   post offices   public telephones   telegraph offices   For Education   schools   libraries   churches   For Security   police stations   fire stations   hospitals, doctors   For Supplies   stores   For Entertainment   theaters   stadiums   TV \& radio stations   For Administration city govt. agencies county govt. agencies state govt. agencies federal govt. agencies


Resources and Markets	Industrial Plants   Warehouses   Distribution Centers   Communication Centers   Data Gathering Centers   Production Centers   Regulating Centers   Group of Markets with similar characteristics
Entities   Machines, controls, organizations, elements etc.	Central Processors and Regulators Management Centers Taxonomy, etc.

## CHAPTER II

LOCATION OF CENTRAL FACILITIES
DISCRETE, TWO-DIMENSIONAL SPACE, EUCIIDEAN DISTANCES ONE CENTPRAL LOCATION

We are considering in this case a finite set of $n$ discrete elements associated with a set of two characteristics which may be their cartesian coordinates in a plane, or a set of two entities $X_{1}$ and $X_{3}$.


Fig. 1. Discrete Two-dimensional Space

In considering a network of straight lines connecting these points, we try to optimize the layout of this network of lines with respect to a figure of merit.

In the case of one central location the network of straight lines must be connected to one central node through which all transfers will be made.


Fig. 2. Discrete Tw - - dimensional Space
Euclidean Distances
1 Central Location

There is no lateral transfer between 2 elements except through the common central facility.

The problem is often considered as the minimization of the sum of Euclidean distances joining each facility to the central location. However, the amount of transfer along each line may be variable in size, the branches and facilities may have limit in capacities and what may appear to be the shortest route may not be the optimum one when considering time or cost of communication. In this case, weighted distances will have to be introduced and sets of constraints will be added to the problem.

When constraints are ignored, the problem in this
simplest form may be solved by various methods which will be described in the sections which follow.
II.1. ANALOG SOLUTION
II.1.1. Lights and Mirrors

When light is emitted from point $A$ and impinges on a flat mirror to reach point $B$ it follows a minimum distance path. The problem is to find the point of incidence. A similar problem was solved by the ancient Greeks to find the shortest path between 2 locations close to a stream if on the way a pail of water had to be fetched.


Fig. 3. Light and Mirror
When the distance $\mathrm{AP}+\mathrm{PB}$ is given, P is located on an ellipse of loci $A$ and $B$. The set of ellipses with loci $A$ and $B$ represent the possible location of point $P$. As the distance AP +PB decreases, it reaches a minimum value for which the ellipse is tangent at point $P$ which is the solution to our problem


Fig. 4. Light and Mirror
Minimum Distance Path

In the case of 3 points $A, B, C$ which must be connected by a network to a central facility so as to minimize distances, Polya [48] shows that a similar physical approach involving light can be made. In that case if we assume that the central facility $P$ is located at a distance $r$ from $C$, then it must be on a circle centered on $C$ and of radius $r_{0}$ The minimization of distance $A P+P B$ corresponds to a path of light impinging on a circular mirror. According to the laws of reflection $\alpha_{1}=\alpha_{a}$ and due to the symmetry of the situation a similar reasoning undertaken from $C$ can be done from $A$, then $B$. Therefore, all angles $\alpha, \beta$ and $\gamma$ are equal to $60^{\circ}$ and the central facility is at the intersection of the network of links oriented at $120^{\circ}$ 。


16


Fig。5. Light and Mirrors
Central Location of 3 Facilities
II.1.2. Weights and Pulleys

This solution is not historically the first one, but it allows a visualization which aids greatly in comprehension as the problem gains in complexity.

Let us first consider 3 locations $A, B, C$ engaged in transaction with a central facility $P$. If the volume of transaction to and from these three locations are identical and if the links are not constrained in capacity then the optimum location of the central.facility will minimize the sum of distances $P A+P B+P C$. If the 3 points are plotted on a vertical plane and equipped with smali pulleys, the optimum location of the central facility is given by the position of equilibrium of a knot connecting 3 strings passing over the pulleys and carrying 3 equal weights at their extremities.


Fig. 6. Weight and Pulleys Central Location of 3 Facilities

We will prove that equilibrium is reached when the potential energy of the system is at a minimum, that is when all the weights are in the lowest position possible. This corresponds to the maximum of $A A^{\prime}+B B^{\prime}+C C^{\prime}$ or the minimum of $P A+P B+P C$. Through static consideration the equilibrium is obtained when the system of forces are equally inclined at $120^{\circ}$ to each other.

If the transactions from point $A, B$ and $C$ to point P are not identical, proportional weights could be used. For example, if costs are to be minimizea in the transport of $a, b, c$ tons of materials respectively from $A, B, C$ to $P$, then we should minimize ad $A P A+b,(B P)+c,(C P)$ with weights $m_{1}, m_{a}, m_{3}$ at $A, B, C$ proportional to the transport weights $a, b, c$. In this general case, the system of mass in equilibrium gives the minimization of link distances [47]。

With $I_{1}$ : length of the string at each respective point
$d_{1}:$ length of the string from the pulley to the weight
$I_{1}$ : length of the string from the pulley to the knot
$H_{i}$ : distance of the pulley to the reference horizontal plane
$m_{i}$ : weight at end of string

as $\sum_{i} m_{1} I_{1}=$ Constant
and $\sum_{i} m_{i} H_{i}=$ Constant
the minimization of $\sum_{1} m_{1} I_{1}$ corresponds to the minimization of $\sum_{1} m_{1} h_{i}$ which is at the minimum of potential energy.

In 1775 Fagnano studied the location of a point minimizing distances in a system of 4 elements. In the case of equal transaction, the central facility was found at the intersection of the segments connecting opposite points. The result can be seen immediately by using our analog weight system.


> Fig. 8. Weight and Pulleys
> Central Location of 4 Facilities

A similar central facility would be found if we had identical transaction from opposite points $m_{A}=m_{D}, m_{B}=m_{C}$ with $m_{A} \neq \mathrm{m}_{\mathrm{B}}$ 。

This analog approach can be used, theoretically, for any set of $n$ facilities; however, it is, in practice, restricted by the following limitations: the strings are not perfectly flexible and the friction is not negligible. It is interesting to note that the location of the central facility
as found by this model is not the center of masses as one might subjectively assume. A clever use of this analog procedure may be extremely useful in complex problems, it has already been used in a number of practical problems [16] [33] [8].

## II.1.3. The Link-Length Minimizer

In 1957 Miehle [43] under contract with the Department of the Army designed a mechanical device able to define the central location of a relatively large system. On a horizontal surface are installed some fixed pegs with pulleys at the location of elements to be serviced, a movable peg represents the central facility. The interconnections are made with a loop of string. By pulling the end of the string, because of potential energy consideration the movable peg will be positioned to minimize the total string length.


Location of One Central Facility

This method is relatively simple; however, it requires a physical model and the friction at the pulleys may be large and the movable peg must be manually positioned in order to retrieve the slack on the string. A relotively large system can be treated and we will see in Chapter III that the device may be applied to the location of multiple central facilities. Transaction weight on a given link may be added to the model by multiple increments created by multiple looping.

## II.1.4. Electrical Field

Electrodes connected to a DC power source through a resistive network are located on a plane map of facility locations. At a given point of this plane, the total field is the sum of the elementary fields weighted by the proper resistances. This total field may be measured by an omni-directional detector and, with a scale factor, is analogous to the total transport cost. Equi-field lines can then be constructed representing iso-cost liness these are concentric around the optimum location and converge toward that optimum when the detector sensitivity is increased. The method is relatively simple but lacks accuracy as we shall see later (II。2.3). An ingenious electrical analogue machine has been developed by Mr. William Bernard under Air Force contract AF18(600)-125 [7].

Resistances inversely proportional
to demand


F゙g。 Electric Field Analogue Computer

II。2。 GEOMPTRIC SOLUTION
II.2.1. The Force Polygon

In the analog model of weight and pulleys the forces acting on the common string knot are in equilibrium and form a force parallelogram. The study of which is put to use in the following geometric construction defining the position of the central facility $P$.


Fig. 11. The Force Polygon

The angles $\beta_{A}, \beta_{B}, \beta_{C}$ are the supplements of the respective angles $\alpha_{A}, \alpha_{B}, \alpha_{C}$. The following construction is suggested by George Pick in the mathematical appendix of Weber's theory on location of industries [54] [26]. In a circle sustaining the arc $\overparen{A B}$, the angle $\beta$ is the supplement of $\alpha$, and the point $C$ can be anywhere on the arc $\overparen{A C B}$.


Fig. 12. Construction of Supplemental Angles

Knowing the weights acting at each location, a polygon of force may be built, thus defining the angles $\beta_{1}$ 。 The supplemental angles $\alpha_{1}$ are found on circles sustending $\beta_{i}$ on one side


Fig. 13. Geometric Location of a Central Facility

For computational ease we will mention the trigonnometric formulation of angles $\beta_{i}$.

With $2 p=m_{A}+m_{B}+m_{C}$

$$
\begin{aligned}
& \sin \frac{\beta_{A}}{2}=\left(\frac{\left(p-m_{B}\right)\left(p-m_{C}\right)}{m_{B} m_{C}}\right)^{\frac{1}{2}} \\
& \sin \frac{\beta_{B}}{2}=\left(\frac{\left(p-m_{C}\right)\left(p-m_{A}\right)}{m_{C} m_{A}}\right)^{\frac{1}{2}} \\
& \sin \frac{\beta_{C}}{2}=\left(\frac{\left(p-m_{A}\right)\left(p-m_{B}\right)}{m_{A} m_{B}}\right)^{\frac{1}{2}}
\end{aligned}
$$

In the case of a negligible weight $m_{i}$ at one location $i$, the corresponding angle $\beta_{1}$ is negligible and $\alpha_{1}$ is practically $180^{\circ}$, the location of the central facility is then on the opposite line.


Fig. 14. Case of a Negligible Weight

The location of $P$ on that particular line, according to Pick, is then at the center of mass so that:

$$
m_{A} x_{A}=m_{B} x_{B}
$$



Fig. 15. The Central Facility as a Center of Mass
Even Yassen in 1956 [58] uses this principle of center of moments to optimize the facility location, but a simple numerical example shows that this reasoning is false. If for example

$$
\begin{aligned}
& m_{A}=8 \\
& m_{B}=12 \\
& A B=10
\end{aligned}
$$

the equality of moments would give

$$
\begin{aligned}
m_{A} x_{A} & =m_{B} x_{B}=m_{B}\left(A B-x_{A}\right) \\
8 x_{A} & =12\left(10-x_{A}\right) \\
x_{A} & =6 \\
x_{B} & =4
\end{aligned}
$$

and the total weight distance is $(8 \times 6)+(12 \times 4)=96$. However, if the central facility is located at $B$ the total of weight distance is only $8 \times 10=80$, which is an improvement. The central location should therefore be located at the point of maximum weight in the case of 2 facilities.

In the case of a very large weight, for example if

$$
\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{B}}+\mathrm{m}_{\mathrm{C}}
$$

it is then impossible to build the weight triangle and the geometric construction is impossible. In our case, point A has so much weight that it is necessary to locate the central facility at that point.


Fig. 16. Case of a very large weight in $A$
The polygon of forces cannot be constructed

If one angle of the triangle is greater than $120^{\circ}$ there is no point at which each side subtends $120^{\circ}$, hence the minimum point $P$ coincides with the vertex [A]。


Fig. 17. Locational Triangle
One angle is greater than $120^{\circ}$

## II.2.2. The Launhardt-Palander Construction

In 1882 Launhardt [37] developed a graphical solution to define the central facility for a set of 3 locations, which is making use also of the force polygon.

On one of the triangle sides is built a force polygon, the intersection $P$ of the circumscribed circle with a segment joining the third triangle corner to the so-called "pole" $F$ of the circle defines the location of the central facility。


Fig. 18. The Launhardt-Palander Construction

It is to be noted that no geometrical reasoning was given for this particular construction.

Using this simple construction Tord Palander [46]
developed a diagram which depicts the influence of the loca-
tion of a consumer $C_{1}$ using the products manufactured at a central facility $P$ from raw materials coming from sources


Figo: 19. Influence of Markets and Raw Material Sources on Industry Location

The production facility deserving $C_{1}$ or $C_{a}$ should be at $P_{1}$. If the consumer were at $C_{3}$, he could be best served by a production center at $P_{3}$ 。 Similarly $B$ is the best location to serve $C_{4}$ or $C_{5}$. If the customer were at $C_{8}$, he would be served best by a production facility at $C_{6}$ itself. On the other hand, a customer at $C_{7}$ would be served best by a facility located at A.

This construction gives a good insight into locational shifts in case of weight changes in $A$ and $B$, how-
ever if we look at Figure 20 , we will see that the point $M_{A}$ found by using the Launhardt-Palander construction is far from being the optimum location. In fact, we may obtain 3 locations $M_{A}, M_{B}, M_{C}{ }^{2}$ if we use the different sides of the triangle as a base for our force polygon, all of them sharing an increased sum of weighted distances compared to the optimum facility $P$ 。


Fig. 20. Inconsistency in the Iaunhardt-Palander Construction II.2.3. Isovectures and Isodapanes

All points situated on a circle centered on a facility are equidistant from that facility in Euclidean space. It is
a line of equipotential for distances, but also for costs if transportation rates are identical in all azimuths, and for time if the straight distance is covered at equal speed in all directions from the facility. If a particular azimuth is advantaged because of the location of a cheap line of transport by railroad or canal for example, the line of equal cost will be a distorted circle in that particular direction. Similarly the isochrone circles may be distorted by the presence of a faster transportation system in a given direction. The set of lines representing equal distances, costs or transportation time will be representing a family of isovectures. If we consider 2 facilities $A$ and $B$ and their respective families of distance isovectures we obtain a set of intersecting circles. If a facility is set at a point $M$ on one of these circle interceptions the sum of distances $P A+P B=D$ can be read directly by summing the corresponding radii. For example in Figure 21, $R_{A_{3}}+R_{B_{7}}=D=10$. Another facility $M^{\prime}$ set at the intersection of $R_{A_{3}}+\Delta R=R_{A 4}$ and $R_{B r}-\triangle R=R_{B 6}$ will be connected to $A$ and $B$ by an identical sum of distances

$$
\begin{aligned}
\left(\mathrm{R}_{\mathrm{A} 3}+\Delta \mathrm{R}\right)+\left(\mathrm{R}_{\mathrm{B} 7}-\Delta \mathrm{R}\right) & =\mathrm{R}_{\mathrm{A}_{3}}+\mathrm{R}_{\mathrm{B}_{7}}=\mathrm{D}=10 \\
\mathrm{R}_{\mathrm{A}_{4}}+\mathrm{R}_{\mathrm{B} 6} & =\mathrm{D}=10
\end{aligned}
$$

The location of the point $P_{1}, P_{2}, P_{3}$, etc., are on $a$ curve of equal sum of distances and called isodapane.


Fig. 21. Isovectures and Isodapanes of Distances

Similarly if we consider costs, these are propor-
tional not only to distances but to the volume of freight and the transportation rate, the isovectures will be modified accordingly。 Also, isovectures corresponding to time may have different spacing when corresponding to one facility or another because of limitations in channel capacity or slower transmission means. However, isodapanes of total equal costs or equal time can be readily constructed.


Fig. 22. Isovectures and Isodapanes of Costs or Times

When looking at the isodapanes we see that when the costs (or distances, or times) decrease, they converge toward the optimum location of the central facility。 This cono struction could then be readily used in the case of multiple facilities to locate an optimum central location [31] [32].

A construction of the isovectures and isodapanes is given in Figure 23 in the case of 3 facilities. It may be readily seen that this construction is very long and grossly inaccurate as we get closer to the optimum central location. It is of very little use to locate the optimum point except if the plot is accelerated by means of a Computer. This construction is, however, self-explanatory with respect to


Fig. 23 Isovectures and Isodapanes
of Costs
Case of 3 facilities
sensitivity analysis, if the center must be located in another area for economic reasons or other types of constraints, the construction can readily inform us of the penalty we would have to pay in this suboptimum locationo

## II.2.4. Topographic Mapping of Costs

The locations being defined by $x$ and $y$ in a system of rectangular coordinates, we may consider a third axis of costs perpendicular to the plane of facilities. For each point $P$ taken as a candidate for the central facility we can compute the corresponding total transportation cost which then can be plotted vertically above the point $P_{0}$. If the computation of cost is repested for a certain number of points, we obtain a three dimensional. convex surfaces whose minimum distance to the plane of facilities gives the optimum location of the central facility. If this topographical map of cost is cut by parallel planes corresponding to given differences in costs, we obtain the set of isodapanes which can be projected on the plane $x, y$ 。


Fig. 24. Cost Function and Topographic Mapping If the plane $x, y$ is divided into a checker-worik and if we consider the central facility to be successively located at each line intersection we could obtain a matrix of total transportation costs which could be used to visually delineate the isodapanes and therefore define the optimum central location [45].


Fig. 25. Digital Mapping of Cost Function

## II.2.5. Extension of the Geometrical Construction

The extension of Pick's graphical method to a set of multiple facilities is impossible because the various orientations of the force polygon segments are unknown.

Launhardt has extended his construction to a larger set of facilities however its inadequacy has been shown in Figure 20 。

The limitation is created by the indetermination in the orientation of the force polygon. If a central point is chosen intuitively from which the polygon is built, it will close through an error vector. We sinould investigate the possibility of reducing this closure vector by a rational rule to relocate our first estimated central location. No sure convergent method has been found to date by the author.


Fig. 26. Error Closure Vector

In 1810 Tedenat found a trigonometric relationship between the angles formed by an arbitrary line intersecting all segments connecting $n$ points to a central facility. In 1837 Steiner gave the formal demonstration of this relation. However, this relation is interesting as long as the central facility is located but it is of no help in locating it.
II.3: AIGEBRAIC SOLUTIOA

II 3 3.1. Determination of Minimum Point
In the locational problemg we know the location of each facility and their corresponding requirements as well as the set of shipping rates (or speed of transport). In the most general problem we must define the number of central facilities as well as their location so as to minimize transportation costs (or communication time).

A comprehensive study in the case of a single central facility is presented by Walter Isard [33]。

For example in the case of $n$ facilities:
$i=1,2,3,000, n$; the transport costs to the central facility $P$ is given by

$$
C=\sum_{1=1}^{n} r_{1} m_{1} D_{1}
$$

where $r_{1}$ : represents the transport rate on the route from $P$ to. i
$m_{1}$ : represents the quantity to transport from $P$ to i
$D_{1}$ : represents the distance connecting $P$ to $i_{0}$

The distance $D_{1}$ is function of the location of the central facility of coordinates ( $X, Y$ )。 The cost function $C$ will also vary according to the location of the central facility.

$$
C(X, Y)=\sum_{1=1}^{n} Y_{1} \circ m_{1} \circ D_{1}(X, Y)
$$

We are looking for the minimum of the function $C$ as it varies with the locational vector ( $X, Y$ ) of , the central facility。 A stationary point of this function $C$ is obtained by equating to zero the first partial derivatives of $C$ with respect to $X$ and $Y$. For example a stationary point for a set of 3 facilities is given by

$$
\begin{aligned}
d C=0 & =d\left(r_{1} m_{1} D_{1}+r_{2} m_{a} D_{2}+r_{3} m_{3} D_{3}\right) \\
& =r_{1} d\left(m_{1} D_{1}\right)+r_{3} d\left(m_{2} D_{a}\right)+r_{3} d\left(m_{3} D_{3}\right)
\end{aligned}
$$

since $r_{1}$ are fixed, we have..

$$
\frac{r_{1}}{r_{a}}=-\left.\frac{d\left(m_{2} D_{3}\right)}{d\left(m_{1} D_{1}\right)}\right|_{\left(m_{3} D_{3}=C^{s t}\right)}
$$

$$
\left.\frac{r_{1}}{r_{2}}=-\frac{d\left(m_{3} D_{3}\right)}{d\left(m_{1}\right.} D_{1}\right)\left.\right|_{\left(m_{a} D_{2}=C^{s t}\right)}
$$

$$
\frac{r_{2}}{r_{3}}=-\left.\frac{d\left(m_{3} D_{3}\right)}{d\left(m_{a} D_{2}\right)}\right|_{\left(m_{1} D_{i}=C^{s t}\right)}
$$

This represents a set of 3 equations with 3 unknowns $D_{1}, D_{a}, D_{3}$ o For this stationary point to be a minimum of cost it is sufficient that the second derivative of $C$ with respect to an arbitrary line passing through $P$ of arc length $u$ be positive to prove that the transport cost surface is convex downward

$$
\begin{aligned}
& \frac{d^{2} C}{d u^{2}}=\sum r_{1} m_{2} \frac{d^{3} D_{1}}{d u^{a}} \\
& \frac{d^{2} D_{1}}{d u_{a}} \geq 0 \text { so } \frac{d^{2} C}{d u_{a}}>0
\end{aligned}
$$

In the general case of $n$ points it is enough to define $D$ from 2 facilities to find the location of the central one.

As previously, $P$ will give a stationary point to the function $C$ if

$$
\left.\frac{r_{1}}{r_{j}}=-\frac{d\left(m_{j} D_{j}\right)}{d\left(m_{s} D_{i}\right)} \right\rvert\, \quad \sum_{\substack{\text { for } i \neq j \neq k}}^{r_{k} m_{k} D_{k}=c^{s t}}
$$

In a system of cartesian coordinates with Eiclidean distances connecting the facilities to the central location we may write the following equations

$$
\begin{gathered}
D_{1}=\left[\left(X-X_{1}\right)^{3}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}} \\
C(X, Y)=\sum_{1=1}^{n} r_{1} m_{1} D_{1}(X, Y)=\sum_{1=1}^{n} r_{1} m_{1}\left[\left(X-x_{1}\right)^{2}+\left(Y-y_{1}\right)^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

$X, Y$ : represent the cartesian coordinates of the centrail facility
$x_{1}, y_{1}$ : represent the cartesian coordinates of the facility $i$

To prove that $C$ has a minimum we must consider the Hessian matrix

$$
H=\left[\begin{array}{cc}
\frac{\partial^{2} C}{\partial X^{2}} & \frac{\partial^{2} C}{\partial X \partial Y} \\
\frac{\partial^{2} C}{\partial X \partial Y} & \frac{\partial^{2} C}{\partial Y^{2}}
\end{array}\right]
$$

and prove that $C_{X X}$ as well as $C_{X X} C_{Y Y}-C_{X Y}^{2}$ are always positive, then it will be necessary to check that $C$ can have at most one minimum and at least one minimum.

$$
\begin{aligned}
& C(X, Y)=\sum_{i=1}^{n} r_{i} m_{i}\left[\left(X-X_{i}\right)^{2}+\left(Y-Y_{i}\right)^{2}\right]^{\frac{1}{2}} \\
& C_{X}(X, Y)=\sum_{i=1}^{n} x_{i} m_{i} \frac{1}{2} 2\left(X-X_{i}\right)\left[\left(X-X_{i}\right)^{2}+\left(X-Y_{i}\right)^{2}\right]^{-\frac{1}{2}} \\
& C_{X X}(X, Y)=\sum_{i=1}^{n} r_{i} m_{1}\left\{(1)\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{-\frac{1}{2}}+\right. \\
& \left.\left(X-x_{i}\right)\left(-\frac{1}{2}\right) 2\left(X-X_{1}\right)\left[\left(X-X_{1}\right)^{3}+\left(Y-Y_{1}\right)^{2}\right]^{-\frac{3}{3}}\right\} \\
& C_{X X}(X, Y)=\sum_{i=1}^{n} r_{1} m_{1}\left[\frac{1}{D_{1}}-\frac{\left(X-X_{1}\right)^{2}}{D_{i}^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{X X X}(X, Y)=\sum_{i=1}^{n} r_{1} m_{1}\left[\frac{D_{1}^{2}-\left(X-X_{i}\right)^{2}}{D_{s}^{3}}\right] \\
& C_{X X X}(X, Y)=\sum_{i=1}^{n} r_{i} m_{1} \frac{\left(X-X_{i}\right)^{2}+\left(Y-Y_{1}\right)^{2}-\left(X-X_{i}\right)^{2}}{D_{1}^{3}} \\
& C_{X X}(X, Y)=\sum_{i=1}^{n} r_{s} m_{1} \frac{\left(X-Y_{1}\right)^{2}}{D_{1}^{3}}
\end{aligned}
$$

$$
C_{X X}(X, Y) \text { is therefore always positive because } r_{1}, m_{1}, D_{1}
$$ are always positive and the numerator is a square

Similarly

$$
C_{Y Y}(X, Y)=\sum_{1=1}^{n} r_{1} m_{1} \frac{\left(X-X_{1}\right)^{2}}{D_{1}^{3}}
$$

and

$$
C_{X Y}(X, Y)=\sum_{i=1}^{n} r_{i} m_{i} \frac{\left(X-X_{1}\right)\left(Y-Y_{1}\right)}{D_{1}^{3}}
$$

So

$$
\begin{aligned}
C_{X X} C_{Y Y}-C_{X Y}^{a}= & {\left[\sum_{i=1}^{n} \frac{r_{1} m_{1}\left(Y-y_{1}\right)^{2}}{D_{1}^{3}}\right]\left[\sum_{j=1}^{n} \frac{r_{1} m_{i}\left(X-X_{j}\right)^{2}}{D_{j}^{3}}\right] } \\
\vdots & {\left[\sum_{i=1}^{n} \frac{r_{1} m_{1}\left(X-x_{1}\right)\left(Y-y_{1}\right)}{D_{1}^{3}}\right] \therefore\left[\sum_{j=1}^{n} \frac{r_{i} m_{i}\left(X-X_{j}\right)\left(Y-y_{1}\right)}{D_{j}^{3}}\right] }
\end{aligned}
$$

$$
\begin{aligned}
C_{X X} C_{Y Y}-C_{X Y}^{a}=\sum_{1}^{n} \frac{r_{1} r_{j} m_{1} m_{j}}{D_{1}^{3} D_{j}^{3}} & {\left[\left(Y-Y_{1}\right)^{2}\left(X-X_{j}\right)^{2}-\right.} \\
& \left.\left(X-X_{1}\right)\left(X-X_{j}\right)\left(Y-Y_{1}\right)\left(Y-Y_{j}\right)\right]
\end{aligned}
$$

if $i=j$ the term in the bracket is zero
if $i \neq j$

$$
C_{X X} c_{Y Y}-C_{X Y}^{3}=\sum_{1 \neq 1}^{n} \frac{r_{1} f_{j} m_{1} m_{j}}{D_{1}^{3} D_{j}^{3}} \quad\left[\left(Y-y_{1}\right)^{2}\left(X-X_{j}\right)^{3}-\right.
$$

$$
\left(X-X_{1}\right)\left(X-X_{j}\right)\left(Y-Y_{1}\right)\left(Y-Y_{j}\right)+\left(Y-Y_{1}\right)^{2}\left(X-X_{1}\right)^{2}-
$$

$$
\left.\left(X-x_{1}\right)\left(X-x_{1}\right)\left(Y-y_{j}\right)\left(Y-y_{1}\right)\right]
$$

$$
C_{X X} C_{Y Y}-C_{X Y}^{a}=\sum_{1 \neq j}^{n} \frac{r_{1} r_{j} m_{1} m_{j}}{D_{1}^{3} D_{j}^{3}}\left[\left(Y-Y_{1}\right)\left(X-X_{j}\right)-\left(Y-Y_{j}\right)\left(X-X_{1}\right)\right]^{a}
$$

$$
C_{X X} C_{Y Y}-C_{X Y}^{a} \text { is therefore always positive because } r_{1}, m_{1}, D_{1}
$$ are always positive and the numerator is a square。

The stationary point obtained by differentiation is therefore a minimum point.

Palermo [47] has proven that $C$ can have at most one minimum on the plane and that the function $C$ has at least a minimum。

This minimum occurs at

$$
\begin{aligned}
& C_{X}(X, Y)=0 \\
& C_{Y}(X, Y)=0
\end{aligned}
$$

That is

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{r_{1} m_{1}\left(X-X_{1}\right)}{\left[\left(X-x_{1}\right)^{a}+\left(Y-y_{1}\right)^{2}\right]^{\frac{2}{2}}}=0 \\
& \sum_{i=1}^{n} \frac{r_{1} m_{1}\left(Y-Y_{1}\right)}{\left[\left(X-X_{1}\right)^{2}+\left(Y-y_{1}\right)^{2}\right]^{\frac{2}{2}}}=0
\end{aligned}
$$

This is a set of two non-linear equations which cannot be explicitly solved. An iterative method is necessary such as the Newton-Raphson procedure。

If the 2 equations are independent, the coordinates of the central facility are given by

$$
X=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{i} x_{1}}{\left[\left(X-x_{i}\right)^{2}+\left(Y-y_{i}\right)^{2}\right]^{\frac{2}{2}}}}{\sum_{i=1}^{n} \frac{r_{1} m_{1}}{\left[\left(X-x_{i}\right)^{2}+\left(Y-y_{i}\right)^{3}\right]^{\frac{2}{2}}}}=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{i} x_{1}}{D_{1}}}{\sum_{i=1}^{n} \frac{r_{1} m_{1}}{D_{1}}}
$$

$$
Y=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{1} y_{1}}{\left[\left(X-X_{1}\right)^{a}+\left(Y-y_{1}\right)^{2}\right]^{\frac{1}{3}}}}{\sum_{1=1}^{n} \frac{\sum_{1} m_{1}}{\left[\left(X-x_{1}\right)^{2}+\left(Y-y_{1}\right)^{3}\right]^{\frac{2}{3}}} \frac{\sum_{1}^{n} m_{1} y_{1}}{D_{1}}}=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{1}}{D_{1}}}{\sum_{1}}
$$

As $D_{1}$ is a function of $X$ and $Y$ these equations cannot be solved directly, they must be solved by iteration. A set of starting values $X^{(0)}$ and $Y^{(0)}$ must be assumed a priori and they are used to compute $X^{(1)} Y^{(1)}$ using the equations above, and so on $X^{(1)} Y^{(2)}$ is used to compute $X^{(a)} Y^{(a)}$ etc。 The process hopefully converges if the starting values are chosen adequately.

We are now going to consider a method to derive a plausible iterative starting value $X^{(0)}$ and $Y^{(0)}$ 。

It happens quite frequently that transportation costs may be proportional to distances raised to some power $k$

$$
C=\sum_{1=1}^{n} w_{1} D_{1}^{k} \quad k>1
$$

$w_{1}$ being the weighted index bearing on the location of the center. It can be proven [9] that for $k \geq 1$ the function $C$ is convex. Being a convex function, every local minimum is a global minimum.

$$
\begin{aligned}
& C(X, Y)=\sum_{i=1}^{n} W_{i}\left[\left(X-X_{1}\right)^{a}+\left(Y \propto Y_{1}\right)^{a}\right]^{\frac{k}{2}} \\
& C_{X}(X, Y)=\sum_{i=1}^{n} k W_{i}!\left(X-X_{i}\right)\left[\left(X-X_{i}\right)^{a}+\left(Y-Y_{i}\right)^{2}\right]^{\frac{k}{2}-1}=0 \\
& C_{Y}(X, Y)=\sum_{i=1}^{n} k W_{8}\left(Y-Y_{i}\right)\left[\left(X-X_{8}\right)^{a}+\left(Y-Y_{i}\right)^{2}\right]^{\frac{k}{3}-1}=0
\end{aligned}
$$

Only an implicit solution for $X$ and $Y$ coordinates of the central facility is obtained and an iteration process duce must also be used to solve the nonlinear expressions:

$$
\begin{gathered}
\text { if } I_{i}=\left[\left(X-X_{i}\right)^{a}+\left(X-Y_{i}\right)^{3}\right]^{\frac{k}{2}-1} \\
C_{X}(X, Y)=k X \sum_{i=1}^{n} w_{i} I_{i}-k \sum_{i=1}^{n} w_{i} X_{i} I_{i}=0 \\
C_{Y}(X, Y)=k Y \sum_{i=1}^{n} w_{i} I_{i}-k \sum_{i=1}^{n} w_{i} Y_{i} I_{i}=0
\end{gathered}
$$

and

$$
X=\frac{\sum_{i=7}^{n} w_{1} x_{1} I_{1}}{\sum_{1=1}^{n} w_{1} I_{1}}
$$

$$
Y=\frac{\sum_{i=2}^{n} w_{i} y_{i} I_{i}}{\sum_{i=1}^{n} w_{i} I_{i}}
$$

As previously, if we had a set $X^{(0)}, Y^{(0)}$ of good starting values giving us convergence, we could solve by iteration

$$
\begin{aligned}
& X^{(k+1)}=\frac{\sum_{i=1}^{n} w_{1} x_{1} I_{1}^{(k)}}{\sum_{i=1}^{n} w_{1} I_{1}^{(k)}} \\
& Y^{(k+1)}=\frac{\sum_{i=1}^{n} w_{1} Y_{1} I_{1}^{(k)}}{\sum_{i=1}^{n} w_{1} L_{1}^{(k)}}
\end{aligned}
$$

the superscript ( $k$ ) meaning the $k^{\text {th }}$ iteration.
In this general case also we are faced with the problem of finding the starting values.

Let us consider the particular case where $k=2$, then

$$
0=\sum_{s=1}^{n} w_{1}\left[\left(X-x_{1}\right)^{2}+\left(Y-y_{1}\right)^{a}\right]
$$

$$
\begin{aligned}
& C_{X}=\sum_{i=1}^{n} 2 w_{i}\left(X \sim X_{i}\right)=0 \\
& C_{Y}=\sum_{i=1}^{n} 2 w_{i}\left(Y \infty Y_{i}\right)=0
\end{aligned}
$$

This set of 2 linear equations can be explicitly solved:

$$
\begin{aligned}
& X=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{s}} \\
& Y=\frac{\sum_{i=1}^{n} w_{i} y_{s}}{\sum_{i=1}^{n} w_{s}}
\end{aligned}
$$

It has been proven by McHose [42] that this solution of the second degree equation is a good first approximation for the location of the central facility when $k \geq 1$ 。 Therem fore we can take these values as starting solution of our iterative process and experience proves that the procedure rapidly converges.

In our original problem of Euclidean distance our iterative equation will then be:

$$
\begin{aligned}
& X^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{1} x_{i}}{\left[\left(X^{(k)}-x_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{1} m_{1}}{\left[\left(X^{(k)}-x_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{2}{2}}}} \\
& Y^{(k+1)}=\frac{\sum_{1=1}^{n} \frac{r_{1} m_{1} y_{1}}{\left[\left(X^{(k)}-x_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{r_{1} m_{1}}{\left[\left(X^{(k)}-x_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{2}{2}}}}
\end{aligned}
$$

with

$$
\begin{aligned}
& X^{(0)}=\frac{\sum_{1=2}^{n} r_{1} m_{1} x_{1}}{\sum_{1=1}^{n} r_{1} m_{1}} \\
& Y(0)=\frac{\sum_{1=1}^{n} r_{1} m_{1} y_{1}}{\sum_{i=1}^{n} r_{1} m_{1}}
\end{aligned}
$$

This starting value is the weighted mean coordinate. An example of computer program to solve that algorithm is given in Chapter IV。

It must be kept in mind that before beginning the algorithm solution each facility should be checked for weight dominance, that is the central location may be located at point $k=1,2, \cdots \circ, n$ only if

$$
w_{k} \geq\left[\left(\sum_{j \neq k k} w_{j} \cos \theta_{j}\right)^{2}+\left(\sum_{j \neq k} w_{j} \sin \theta_{j}\right)^{2}\right]^{\frac{1}{2}}
$$



This check may become quite cumbersome computationally when dealing with a very large number $n$ of facilities. We should ignore this test unless we become suspicious of a weight dominance creating a convergence of the algorithm to a close proximity of a facility $\mathrm{k}_{\mathrm{g}}$ then the check is only necessary on that particular facility $k$ 。

## II.3.2. Geometric Programming

Minimization of the function

$$
\left.D(X, Y)=\sum_{i=1}^{n}\left[\left(X_{i}-X\right)^{a}+\left(y_{i}-Y\right)^{2}\right]\right]^{\frac{1}{2}}
$$

may be done by minimizing the related function

$$
G=\sum_{i=1}^{n} t_{o i}^{\frac{1}{2}}
$$

subject to the constraints

$$
t_{o i} \geq\left(x_{i}-X\right)^{2}+\left(y_{i}-Y\right)^{2} \quad i=1,2, \cdots, n
$$

where $t_{o i}$ are additional independent variables.
There are 6 n terms in the constraint inequalities put in canonical form:

$$
x^{2} t_{o i}^{-1}
$$

$1 \geq X_{i}^{2} t_{O i}^{-1}-2 x_{i} X_{o i}^{-1}+y_{i}^{3} t_{o i}^{-1}-2 y_{i} Y_{O i}^{-1}+Y^{2} t_{O i}^{-1} \quad i=1,2, \cdots, n$
and $n$ terms in the function $G$. There are $n$ variables $t_{o i}$ and 2 variables: $X, Y$. Even if the function $G$ were a posynomial, which it is not, we would expect $6 n-3$ dew grees of freedom.

When considering a relatively small system of 50 facilities, the problem involves a minimum of 297 degrees of difficulty which is equivalent to the optimization of a function of 297 variables, a problem which is theoretically possible but economically infeasible.
II.3.3. Expenditures at Vertice Points

In the above algorithm we have assumed that money or time costs were proportional to distances. This is not always the case and some fixed charges of loading and unloading must be added. Under such a case the function $C$ becomes discontinuous.


Fig. 27.: Expenditures at Vertice Points .
if $I_{1}$ : is the total loading cost for goods transferred from facility $P$ to facility $i$ $u_{q}$ : is the total unloading cost for goods transo ferred from facility $p$ to facility $i$
then the function $C$ is given by

$$
C=\sum_{i=1}^{n}\left(I_{i}+r_{i} m_{i} D_{1}+u_{i}\right)
$$

It may be assumed that the loading and unloading costs are directly proportional to the amount transited: $\mathrm{m}_{1}$

$$
\begin{aligned}
& l_{1}=a_{1} m_{1} \\
& u_{1}=b_{1} m_{1}
\end{aligned}
$$

$a_{s}$ and $b_{i}$ being factors of proportionality then tine function $C$ is given by
$C(X, Y)=\sum_{i=1}^{n}\left(a_{1} m_{1}+r_{i} m_{i} D_{i}+b_{i} m_{1}\right)$
$C\left(X_{,}, Y\right)=\sum_{i=1}^{n} a_{i} m_{1}+\sum_{i=1}^{n} r_{i} m_{1} D_{i}(X, Y)+\sum_{i=1}^{n} b_{i} m_{i}$
$C(X, Y)=C_{I}+C_{I I}(X, Y)+C_{I I I}$
Mathematically speaking, as the cost $C_{I}$ and $C_{I I I}$ are not functions of the location of the central facility, a differentation of the function $C$ will give an identical set of equations as derived above and their solution will give the same central location coordinates. However, some fallacy appears in this reasoning; for example: if facility $j$ has an extremely Iarge cost of loading and unloading its own goons, shown by the importance of the coefficients $a_{j}$ and $\mathrm{b}_{j}$ this cost may outweigh all transportation costs and therefore it might be more economical to locate the central facility at point $j$ in order to eliminate the transfer cost of its own goods, and also drastically lower the loading and uniloading unit cost by the corresponding modernization and mechanization imparted to this center.

A procedure to avoid this pitfall will be to derive the coordinates $X$ and $Y$ obtained by the solution of the set of equations of the partial derivatives of $C_{\text {II }}$, compute the corresponding cost $C$ then check the various transportation costs $C_{k}$ using one of the locations as central facility.

$$
C_{k}=\sum_{i=1}^{n} m_{i} r_{i} D_{1}+\sum_{i \neq k}^{n}\left(a_{1}+b_{1}\right) m_{1}
$$

$$
k=1,2, \cdots, n
$$

if one of the $C_{k}$ is less than $C$ then the central facility must be located at that particular $k$ place.

## II.3.4. Case of Variable Transport Rate

It is common in practice to deal with transportation media where the rate of transport decreases with distance. Accordingly this complicates the cost function. Timewise also it is quite frequent to use for example, slower aircrafts on shorter routes than on longer ones.

When the transportation rate is function of distance, then

$$
\begin{aligned}
& r_{i}=f_{1}\left(D_{1}\right) \\
& c=\sum_{i=1}^{n} f_{i}\left(D_{1}\right) \cdot m_{i} \cdot D_{1}
\end{aligned}
$$

Stationary points may be derived by differentiation:

$$
d C=\sum_{1=1}^{n} m_{1} \cdot\left[f_{1}\left(D_{1}\right)+D_{1} \cdot f_{1}^{\prime}\left(D_{1}\right)\right] d D_{1}
$$

and

$$
\frac{f_{i}\left(D_{i}\right)+D_{i} \cdot f_{i}^{\prime}\left(D_{i}\right)}{f_{j}\left(D_{j}\right)+D_{j} \cdot f_{j}^{\prime}\left(D_{j}\right)}=-\frac{\alpha\left(m_{j} D_{j}\right)}{d\left(m_{i} D_{i}\right)}
$$

$$
\sum_{k} f_{k}\left(D_{k}\right) \cdot m_{k} \cdot D_{k}=C^{s t}
$$

$i \neq j \neq k$

The development of these equations may lead to multiple optima. The function $C$ should be evaluated at all of these optima to $f$ ind the best one.

If the route passes through a congested area the expenditure in time and money per unit carried versus distance may not follow a linear function. Extra costs due to obstacles like towns and rivers in the case of ground transportations for example, must be taken into consideration [8].


Fig. 28. Variable Transport Rate in Congested Area

## II.3.5. Bounds on Sum of Distances

When considering a central location $P$ minimizing the sum of distances, we consider a network with branches of length $D_{1}$, from $P$ to the facility i. The total length of the network is

$$
D=\sum_{1=1}^{n} D_{1}
$$

Considering a pair of vertices : i, $j$


$$
D_{1}+D_{j}>D_{1 j}
$$


$D_{1}+D_{j}>D_{1 j}$


$$
D_{i}+D_{j}=D_{1 j}
$$

For each pair of vertices the following inequality holds

$$
D_{1}+D_{j} \geq D_{1 j}
$$

In a locational problem of $n$ vertices, there are

$$
\sum_{i=1}^{n-1} n-i=\frac{n(n-1)}{2}
$$

distances $D_{1 j}$ 。

The distance $D_{1}$ connecting $P$ to the facility $i$ is a part of $(n-1)$ triangles on which can be applied the triangle inequality。

In the case of 4 facilities，for example，we can write the following set of inequalities


On the right－hand side are the possible combinations of distances connecting $n$ facilities taken 2 at a time。

The left－hand side

$$
3\left(D_{1}+D_{3}+D_{3}+D_{4}\right)=3 \sum_{1=1}^{4} D_{1}=3 D
$$

corresponds to（ $n-1$ ）$D_{\text {。 }}$
Therefore

$$
D \geq \frac{1}{n-1} \sum_{i=a}^{n} \sum_{j=1}^{s-2} D_{i j}
$$

The right－hand side is then a lower bound of the sum of distances［10］。

In our iterative process we took the weighted average as a starting value, the

$$
D \leq \sum_{1=1}^{n}\left[(X-\bar{X})^{a}+(Y-\bar{y})^{3}\right] \frac{1}{3}
$$

in which

$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} \dot{x}_{i} \\
& \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

This is therefore a possible upper bound for the sum of distances.

## II. 3.6 . The Constrained Problem

The $n$ distinct locations form a convex hull. H limited by linear boundaries. Either $P$ is located at a facility, in case of weight dominance, and is trivially an element of $H$ or it is first obtained by a weighted sum of facility coordinates and therefore is an interior point. We will use this convex hull in the heuristic algorithm with variable grid and linear constraints (Chapter IV) to limit our investigation。

Sometimes the location of a facility is restrained within a given space limited by physical boundaries. Sometimes the facilities generally considered as punctual may
have a spatial area or a zone of influence and cannot be located too close because of possible interference.

We could be faced by the following constraints

$$
\begin{array}{r}
{\left[\left(X-x_{1}\right)^{2}+\left(Y-y_{1}\right)^{2}\right]^{\frac{2}{2}} \geq \Phi_{1}} \\
x_{\min } \leq X \leq x_{\max } \\
y_{\min } \leq Y \leq y_{\max }
\end{array}
$$

This is an example of optimization theory in which the objective function and some of the constraints are non-linear. The following possible solutions should be considered: the method of Lagrangian multipliers in which the inequalities would be investigated in turn in their equality sense, or using the Khun-Tucker conditions.

It must be noted that according to the demonstration of Kuhn and Kuenne [36], the coordinates $X$ and $Y$ of $P$ are necessarily elements of the convex hull and the set of 2 inequalities

$$
\begin{aligned}
& \mathrm{x}_{\min } \leq \mathrm{X} \leq \mathrm{x}_{\max } \\
& \mathrm{y}_{\min } \leq \mathrm{Y} \leq \mathrm{y}_{\max }
\end{aligned}
$$

are automatically met and are therefore redundant constraints. The minimization problem is then limited to
minimize $\quad C(X, Y)=\sum_{i=1}^{n} r_{1} m_{1}\left[\left(X-X_{1}\right)^{3}+\left(Y-y_{1}\right)^{3}\right]^{\frac{1}{2}}$
subject to

$$
\left[\left(X-x_{1}\right)^{a}+\left(Y-y_{1}\right)^{2}\right]^{\frac{1}{2}} \geq \Phi_{1} \quad i=1,2, \cdots, n
$$

then we have a set of $n$ inequalities.
In the Lagrangian method the inequality constraints are considered by including one active constraint at a time。 Thus for

$$
\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}} \geq \Phi_{1}
$$

to be active the corresponding Lagrangian function becomes

$$
\mathrm{L}\left(X_{,} Y_{,} \lambda_{1}\right)=C(X, Y)+\lambda_{1}\left(\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}}-\Phi_{1}\right)
$$

the necessary conditions are given by

$$
\frac{\partial I}{\partial X}=0 \quad \frac{\partial I}{\partial Y}=0 \quad \frac{\partial L}{\partial \lambda_{I}}=0
$$

$\frac{\partial I}{\partial X}=\sum_{i=1}^{n} \frac{r_{1} m_{1}\left(X-X_{1}\right)}{\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}+\frac{\lambda_{1}\left(X-X_{1}\right)}{\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{3}\right]^{\frac{1}{2}}}=0$
$\frac{\partial I}{\partial Y}=\sum_{i=1}^{n} \frac{r_{1} m_{1}\left(Y-Y_{1}\right)}{\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{2}{2}}}+\frac{\lambda_{1}\left(Y-Y_{1}\right)}{\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}=0$
$\frac{\partial I}{\partial \lambda_{1}}=\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]^{\frac{1}{2}}-\Phi_{1}=0$
The solution of these 3 equations should give $X$, $Y$ and $\lambda_{1}$ 。 Then it should be necessary to check if the
solution violates the other inequality constraints. A similar computation should be undertaken for the $n$ inequalities. If the three above equations were linear, still the computational effort would be large and the procedure computationally unattractive. But, moreover, the implicit nature of these equations cannot give a direct solution, except through an iterative process. In this rigorous form the method should be abandoned. However, we have seen that in the unconstrained problem a good approximation of $X$ and $Y$ is given by considering

$$
C(X, Y)=\sum_{1=1}^{n} r_{1} m_{1} D_{1}^{2}(X, Y)
$$

In this particular case the Lagrangian equations become

$$
\begin{gathered}
L\left(X, Y, \lambda_{1}\right)=\sum_{i=1}^{n} r_{1} m_{1}\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}\right]+ \\
\lambda_{1}\left[\left(X-X_{1}\right)^{2}+\left(Y-Y_{1}\right)^{2}-\Phi_{1}^{2}\right] \\
\frac{\partial I}{\partial X}=\sum_{i=1}^{n} 2 r_{1} m_{1}\left(X-X_{1}\right)+2 \lambda_{1}\left(X-X_{1}\right)=0 \\
\frac{\partial I}{\partial Y}=\sum_{1=1}^{n} 2 r_{1} m_{1}\left(Y-Y_{1}\right)+2 \lambda_{1}\left(Y-Y_{1}\right)=0
\end{gathered}
$$

$$
\frac{\partial I}{\partial \lambda_{1}}=\left(X-X_{2}\right)^{2}+\left(Y-Y_{1}\right)^{2}-\Phi_{1}^{2}=0
$$

An explicit solution is possible in that case, but the final solution is not exact and must be improved by iterative process to correspond to the effective Euclidean distances. If the initial approximation is known to be $X^{(0)}$ and $Y^{(0)}$ then a better solution is determined by the equations

$$
\begin{aligned}
& X^{(n+1)}=X^{(n)}-u\left|\frac{\partial C(X, Y)}{\partial X}\right|^{(n)} \\
& Y^{(n+1)}=Y^{(n)}-u\left|\frac{\partial C(X, Y)}{\partial Y}\right|^{(n)}
\end{aligned}
$$

the $u$ value : distance to move in the good direction to improve the value of the variable, if taken too small may produce slow convergence or if taken too large may miss the optimum solution altogether. Moreover, $u$ may be positive or negative and a trial and error procedure will be necessary.

A procedure used by Stewart [45] considers all the inequalities in their equality sense and he uses a plotting technique to check that the results given by iteration do not violate the constraints.

We could also apply the Kuhn-Tucker conditions for $P$ to be a stationary point of the minimization problem

$$
C(\underline{X})=\sum_{i=1}^{n} r_{1} m_{1}\left[\left(X_{1}-X_{1}\right)^{2}+\left(X_{2}-y_{1}\right)^{2}\right]^{\frac{1}{2}}
$$

subject to

$$
g(X)=-\left[\left(X_{1}-X_{1}\right)^{2}+\left(X_{2}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}+\Phi_{1} \leq 0
$$

These conditions are summarized below

1) $\underline{\lambda} \leq \underline{0}$
2) $\underline{\nabla} c(\underline{X})-\underline{\lambda} \underline{\nabla} \underline{g}(\underline{X})=\underline{0}$
3) $\boldsymbol{\lambda} \underline{g}(\underline{X})=\underline{0}$
4) $E(\underline{X}) \leq 0$

Developing these conditions will lead to

3) $\left(\lambda_{2}, \lambda_{2}, \cdots, \lambda_{n}\right)$

$$
\left[\begin{array}{c}
g_{1}(\underline{X}) \\
g_{z}(\underline{X}) \\
\vdots \\
g_{n}(\underline{X})
\end{array}\right]=\underline{0}
$$

4) $g(X) \leq 0$

When developed we obtain

1) $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{n}\right) \leq \underline{0}$
2) $\sum_{i=1}^{n} \frac{r_{1} m_{1}\left(x_{1}-x_{1}\right)}{\left[\left(x_{1}-x_{1}\right)^{2}+\left(x_{2}-y_{1}\right)^{2}\right]^{\frac{2}{3}}}+$
$\sum_{i=1}^{n} \lambda_{1} \frac{x_{1}-x_{1}}{\left[\left(X_{1}-x_{1}\right)^{2}+\left(x_{2}-y_{1}\right)^{2}\right]^{\frac{3}{2}}}=0$
$\sum_{1=1}^{n} \frac{r_{1} m_{1}\left(x_{2}-y_{1}\right)}{\left[\left(X_{1}-x_{1}\right)^{2}+\left(X_{2}-y_{1}\right)^{2}\right]^{\frac{2}{2}}}+$
$\sum_{1=1}^{n} \lambda_{1} \frac{x_{3}-x_{1}}{\left[\left(x_{1}-x_{1}\right)^{a}+\left(X_{2}-y_{1}\right)^{2}\right]^{\frac{2}{2}}}=0$
3) $\begin{aligned} \lambda_{1}\left(\Phi_{1}-\left[\left(X_{1}-X_{1}\right)^{a}+\left(X_{a}-Y_{1}\right)^{a}\right]^{\frac{1}{3}}\right) & =0 \\ \text { for } i & =1,2,3, \cdots 00, n\end{aligned}$
4) $-\left[\left(X_{1}-x_{1}\right)^{2}+\left(X_{2}-y_{1}\right)^{2}\right]^{\frac{1}{2}} \leq-\Phi_{1}$
for $i=1,2,3, \cdots, n$
which we must solve for $X_{1}, X_{a}$ and $\lambda_{1}$ ( $i=1,2,000, n$ )。 This method is also not very attractive computationally and the quadratic formulation of $C$ should be used to obtain approximative but useful results.

## LOCATION OF CENTRAL FACIIITIES

DISCRETE，TWO－DIMENSIONAL SPACE，EUCIIDEAN DISTANCES MULTIPLE CENTRAL LOCATIONS

The location of the $n$ facilities to service，the requirement at each destination as well as the rate of ship－ ping in a particular region are known．The problem is to determine the number $m$ and location of central facilities supplying the service and their corresponding set of satel－ lites。

It is assumed that the number $m$ of central locam tions is less than the number $n$ of facility locations． If not，it would be possible to have a zero total transport cost by putting a center at each facility．

> III。1。 ANALOG SOLUTION

III．1．1．The Soap Film Method

Plane films of soap bubbles formed between 2 close planes and a set of posts connecting them gives surfaces of minimum potential energy．The lines connecting the posts are
then of minimum total length through a network of $120^{\circ}$ angle boundaries.


Fig. 29. Shortest Network Joining More Than 3 Points The necessary junction points cannot be specified but are automatically created. The method gives unreliable results when the number of points is above 15 to 20 because of variable drainage as the model is pulled out of the soap-forming solution. Moreover, the solution of the problem is not uniquely defined.


Fig.. 30. Network Not Uniquely Defined

## III。1.2. The Link-Length Minimizer

The mechanical system developed by Miehle [43] can be applied to multiple central facilities but the number of these central facilities and their dependent satellites must be known. This choice has to be made subjectively by looking at the concentration of points in a given area and it is never certain that the choice will bring the minimum circuit length. However, during the minimization process if one central facility is brought closer to a point than the central facility on which it depends, then a change in connections may improve the minimization。

Pull


Fig. 31. Link-Length Minimizer Multiple Central Facilities

Constraints of distance between central facilities may be obtained by connecting them with a rigid spacing bar. Constraints of minimum distance between central location and satellite facility may be obtained by installing a corre-
sponding round base of given radius at the base of the facil－ ity constrained。

Transaction weights on a given link may be added to the model by multiple increments created by multiple looping．

It may take about an hour to find the optimum loca－ tion of 17 central facilities in a system of 62 fixed points．

## III。2。 ALGEBRAIC SOLUTION

Even if we assume no restriction on the capacity of the central facility and if the shipping costs are supposed to be independent of the total central facility supply，we still are faced with a very large problem．If we arbitrarily decide on the number $m$ of central facilities，there are $S(n, m)$ possible assignments of $n$ destinations to $m$ sources［11］，where $S$ is the Stirling number of the second kind：

$$
S(n, m)=\frac{1}{m!} \sum_{k=0}^{m}\binom{m}{k} \quad(-1)^{k}(m-k)^{n}
$$

These possible assignments are enormously large for large $n$ ．Moreover，we might find that another value of $m$ may lead to smaller total transportation costs．Each value of $m$ brings a new arrangement of satellite locations and we cannot tell a priori without exhaustive study what will
be the optimum value $m$ giving a global minimum of transaction costs. Moreover, as the number of central facilities increases, the cost of invested capital and operating costs increase at the same time.


Fig. 32. Total Cost Global Minimum
If we refer to the above figure we see that a minimum transportation cost is reached with 6 central facilities, but the optimum number minimizing the total cost is 4 。

Our cost function $C(m)$ is the sum of transportation costs $C_{1}(m)$ and the depreciation and operating costs $C_{a}(m)$

$$
C(m)=C_{1}(m)+C_{3}(m)
$$

The shipping costs are proportional to distances as well as to quantity shipped, this cost may be discontinuous in the case, for example of quantity discount.

The cost of invested capital and operating costs
could readily be estimated by standard economic analysis if we knew the corresponding satellites and their respective demand or supply. The location of the central facilities and their respective assignments must first be solved.
II.2.2.1. Central Facility Location and Assignment

The transportation cost is function of the location of the $n$ facilities $\left(x_{i}, y_{1}\right) \quad i=1,2,3, \cdots, n$ as well as the number $m$ and location of the central facilities $\left(X_{j}, Y_{j}\right) j=1,2, \cdots, m_{0}$ We will assume that each facility is connected only to a unique central point, therefore, only the distances connecting a central point to its respective satellites should be considered. A facility $i$ may or may not be connected to a central location $j$ and we will use the Kronecker delta $\delta_{s j}$ of value 1 if $i$ is connected to $j$ or value 0 if it is not.

Therefore, the transportation cost in Euclidean space can be written as

$$
C=\sum_{j=1}^{m} \sum_{i=1}^{n} \delta_{i j} w_{i j}\left[\left(X_{j}-x_{i}\right)^{3}+\left(Y_{j}-y_{i}\right)^{2}\right]^{\frac{1}{2}}
$$

A set of $m$ stationary points is found by solving the $m$ equations in $X_{j}$ and $m$ equations in $Y_{j}$

$$
\begin{aligned}
& c_{X_{j}}=0 \\
& c_{Y_{j}}=0
\end{aligned}
$$

or for $j=1,2,3, \cdots, m$

$$
\begin{aligned}
& \sum_{s=1}^{n} \frac{\delta_{1 j} w_{1 j}\left(X_{j}-X_{1}\right)}{\left[\left(X_{j}-X_{j}\right)^{2}+\left(Y_{j}-Y_{1}\right)^{2}\right]^{\frac{2}{2}}}=\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j}\left(X_{j}-x_{1}\right)}{D_{i j}}=0 \\
& \sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j}\left(Y_{j}-Y_{1}\right)}{\left[\left(X_{j}-X_{1}\right)^{2}+\left(Y_{1}-Y_{1}\right)^{2}\right]^{\frac{2}{2}}}=\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j}\left(Y_{j}-Y_{1}\right)}{D_{1 j}}=0
\end{aligned}
$$

Following the same development as for one central facility we must prove that the principal minor determinants of the Hessian matrix are all positive for the stationary point to be a minimum.

$$
\begin{aligned}
& C_{X_{j} X_{j}}>0 \\
& { }^{C_{X_{j}} X_{j}}{ }^{C_{Y_{j}} Y_{j}}-C_{X_{j} Y_{j}}^{a}>0 \text { for } j=1,2,3, \ldots, m
\end{aligned}
$$

This minimum is then found by solving the extremal
equations

$$
\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j} x_{j}}{D_{1 j}}-\sum_{i=2}^{n} \frac{\delta_{1 j} w_{1 j} x_{1}}{D_{1 j}}=0
$$

$$
\sum_{i=2}^{n} \frac{\delta_{1 j} w_{1 j} Y_{j}}{D_{1 j}}-\sum_{1=1}^{n} \frac{\delta_{1 j} w_{1 j} y_{1}}{D_{1 j}}=0
$$

which lead to

$$
\left.\begin{array}{rl}
X_{j}= & \sum_{i=1}^{n} \frac{\delta_{i j} w_{1 j} x_{1}}{D_{1 j}} \\
Y_{j=1}^{n}=\sum_{i=1}^{\sum_{i=1 j}^{n} \frac{\delta_{1 j} w_{1 j}}{D_{1 j} D_{1 j}}} \\
\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j}}{D_{1 j}}
\end{array}\right\} \begin{aligned}
& j=1,2,3, \cdots, m
\end{aligned}
$$

As $D_{1 j}$ is a function of $X_{j}$ and $Y_{j}$, these equations cannot be solved directly, they must be solved by iteration. We will assume as starting values of the iterative process the values $X_{j}^{(0)}$ and $Y_{j}^{(0)}$ obtained by using the quadratic formulation of distances

$$
C=\sum_{j=1}^{m} \sum_{1=1}^{n} \delta_{1 j} w_{1 j}\left[\left(X_{j}-x_{1}\right)^{2}+\left(Y_{j}-y_{1}\right)^{2}\right]
$$

$$
\left.\begin{array}{l}
C_{X_{j}}=\sum_{i=1}^{n} 2 \delta_{1, j} w_{i j}\left(X_{j}-x_{1}\right)=0 \\
C_{Y_{j}}=\sum_{i=1}^{n} 2 \delta_{1 j} w_{1 j}\left(Y_{j}-Y_{1}\right)=0 \\
X_{j}^{(0)}=\frac{\sum_{i=1}^{n} \delta_{1 j} w_{1 j} x_{1}}{\sum_{i=1}^{n} w_{1 j}} \\
Y_{j}^{(0)}=\frac{\sum_{i=1}^{n} \delta_{1 j} w_{1 j} y_{1}}{\sum_{i=1}^{n} w_{1 j}}
\end{array}\right\} j=1,2, \cdots, m
$$

then the solution of the exact Euclidean distances is given by the iterative process

$$
X_{j}^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{\delta_{i j} W_{1 j} X_{1}}{\left[\left(X_{j}^{(k)}-X_{1}\right)^{2}+\left(Y_{j}^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{i j} w_{i j}}{\left[\left(X_{j}^{(k)}-X_{1}\right)^{2}+\left(Y_{j}^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}}
$$

$$
Y_{j}^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j} Y_{1}}{\left[\left(X_{j}^{(k)}-X_{1}\right)^{2}+\left(Y_{j}^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{1 j} w_{1 j}}{\left[\left(X_{j}^{(k)}-X_{1}\right)^{2}+\left(Y_{j}^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}}
$$

for $j=1,2, \cdots, m$ and all possible combinations of Kronecker $\delta_{1 j}{ }^{\circ}$

We are quickly limited by the size of the problem and it may become uneconomical to use this exhaustive technique for more than 10 facilities. We must in fact, not only compute all the possible assignments for $m$ central locations which may run easily into many million combinations but also we must investigate the variation of total cost as $m$ is varied, the development of other techniques is necessary when we must deal with some common problems involving many hundred elements。

## III.2.2. Bound on Sum of Distances

When considering a set of $m$ central locations. $P_{j}$ minimizing the sum of distances, we consider a network with branches of length $D_{i j}$ from $P_{f}$ to the facility $i_{0}$ The total length of the network is

$$
D=\sum_{j=1}^{m} \sum_{i=1}^{n} \delta_{i j} D_{i j}
$$

We have evaluated the bounds for the sum of distances in the case of one central facility. In the case of $m$ central facilities we do not have a priori the value of the Kronecker delta $\delta_{i j}$ nor the satellites assigned to a given central facility. However, if we knew this allocation of satellites we could apply to that particular set the triangle inequality relating the distance between 2 facilities i and $k\left(D_{s k}\right)$ and the distances of these facilities $i$ and $k$ to the central one $j\left(D_{1 j}\right.$ and $\left.D_{k j}\right)$. We have

$$
D_{1 j}+D_{k j} \geq D_{1 k}
$$

If $h$ facilities are satellites of the central location $j$ then for this set of satellites the total optimum distance is $D_{j}$

$$
D_{j}=\sum_{i=1}^{h} D_{i j}
$$

In the case of 4 satellite facilities, for example


$$
\begin{aligned}
& D_{1 j}+D_{2 j} \geq D_{12} \\
& D_{2 j}+D_{3 j} \geq D_{23} \\
& D_{3 j}+D_{4 j} \geq D_{34} \\
& D_{4 j}+D_{1 j} \geq D_{41} \\
& 2 D_{1 j}+2 D_{2 j}+2 D_{3 j}+2 D_{4 j} \geq D_{2 a}+D_{23}+D_{34}+D_{41} \\
& 2 \sum_{1=1}^{4} D_{1 j} \geq D_{12}+D_{23}+D_{34}+D_{41} \\
& D_{j}=\sum_{i=1}^{4} D_{1 j} \geq \frac{1}{2}\left(D_{12}+D_{23}+D_{34}+D_{41}\right)
\end{aligned}
$$

Then in a generalized problem

$$
D=\sum_{j=1}^{m} D_{j}
$$

will be greater or equal to one half of $n$ distances of the $D_{i k}$ matrix and certainly greater than one half of the $n$ Ieast distances.

## CHAPTER IV

## HEURISTIC ALGORITHMS

DISCRETE - TWO DINENSIONAL SPACE - EUCLIDEAN DISTANCES

When considering the unconstrained or constrained locational problem with single or multiple central facilities we always reach a point at which an iteration technique is required because of the implicit nature of the equations. Manual computation in such a case is quite tedious; computer programming is necessary when dealing with a large set of facilities. In the previous chapter we dealt at length on the mathematical reasoning supporting our method. It is of ten found in practice that working tools are also necessary and the development of these tools is rarely presented in the literature. This explains why a large amount of valuable research is frequently wasted or ignored because of a missing link between the scientist and the potential user. The following programs have been developed to be applied as an easy tool by any prospective user. Some of these algorithms have been studied extensively by Kuehn and Hamburger [35], Cooper [10], Feldman, Lehrer and Ray [24], Vergin and Rogers [53], but if their range of accuracy is discussed at
length, their innerworkings are not directly available to the user. Some other programs are new approaches giving more flexibility for the particular case of very large systems often present in federal government locational problems.

For each heuristic algorithm we shall study the general principle, the detailed logic diagram, some characteristics of programming, an application to an actual problem and a discussion on the results obtained and the corresponding expenses in computer time and memory.

The programs are written in FORTRAN which is a very known language but expensive in memory and computational requirements, a more careful programming or the use of AUTOCODER might be necessary in some cases.

Terminology of variables in the following algorithms and computer programs. Some of these variables will be more fully explained in the corresponding algorithms using them.
$X_{1}, y_{1}$ or $X(I), Y(I):$ Cartesian coordinates of facilities $i$ $r_{i}$ or $X R(I)$ : Rate of transport from facility $i$ If we try to minimize a cost function it might be in dollar per pound per mile for example. If we try to minimize a time function it might be in nanosecond per bit per meter for example.
$m_{1}$ or $X M(I)$ : Amount to transport from facility $i$ to the central location $P$.

It might represent for example the poundage of goods to carry or the number of digitized bits of a message to transmit.

N : Number of facilities
M : Number of central facilities
ITERA : Number of iterations in random search of facilities
IGRID : Initial number of grid divisions on each $X$ and $Y$ axis

ITGRD : Number of grid size changes
INC : Incremental number of divisions on each $X$ and $Y$ axis when passing from one grid size to the next

DOLD(I), $\operatorname{DNEW}(I):$ Old and new Euclidean distances from facility I to optimum central location

SDOLD, SDNEW: Old and new sum of distances to the central facilities

COLD(I), CNEW(I): Old and new transportation costs from facility I to optimal central location

SCOLD, SCNEW: Old and new sum of transport cost to the central facility
$\operatorname{JOSAV}(I), \operatorname{JNSAV}(I):$ Old and new code number allocation of the facility I
$\operatorname{IOSAV}(J), \operatorname{INSAV}(I):$ Old and new code number of the randomly selected central location

RAINC : Class width on cumulative distribution of locations RAD (I) : Class boundaries on cumulative distribution of locations

KITER : Iteration counter
YFL : Random number between 0 and 1.000
$\mathrm{XC}(\mathrm{J}), \mathrm{YC}(\mathrm{J}):$ Cartesian coordinates of randomly selected central facilities
$D(I, J)$ : Euclidean distances from facility $I$ to central location J

I : Grid spacing counter
XMIN, XMAX: Minimum and maximum values of $X(I)$
YMIN, YMAX: Minimum and maximum values of $Y(I)$
IV.1. ONE CENTRAI LOCATION

## IV.1.1. One Central Facility Meuristic Algorithm

The program is based on the iterative algorithm presented on page 50 .

$$
X^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{1} x_{1}}{\left[\left(X^{(k)}-x_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{1=1}^{n} \frac{r_{1} m_{1}}{\left[\left(X^{(k)}-X_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{1}{2}}}}
$$

$$
Y^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{r_{1} m_{1} y_{1}}{\left[\left(X^{(k)}-X_{1}\right)^{2}+\left(Y^{(k)}-Y_{1}\right)^{2}\right]^{\frac{2}{2}}}}{\sum_{1=1}^{n} \frac{r_{1} m_{1}}{\left[\left(X^{(k)}-X_{1}\right)^{2}+\left(Y^{(k)}-y_{1}\right)^{2}\right]^{\frac{1}{2}}}}
$$

with

$$
\begin{aligned}
& X^{(0)}= \frac{\sum_{1=1}^{n} r_{1} m_{1} X_{1}}{\sum_{1=1}^{n} r_{1} m_{1}} \\
& Y^{(0)} \quad \sum_{i=1}^{n} r_{1} m_{1} X_{1} \\
& \sum_{i=1}^{n} r_{1} m_{1}
\end{aligned}
$$

The logic diagram of the program is given on pages 8687. The computer print-out and a set of results corresponding to 50 hypothetical facilities are given from page 182 to page 187.

It is to be noted that there is no built-in check for weight dominance and the user should scrutinize more thoroughly a solution which would be very close to an existing facility. The case of weight dominance of one fa-
cility is however, quite improbable when studying a large system.

The iterative process was stopped when

$$
\begin{aligned}
& X^{(k+1)}-X^{(k)} \leq E R R \\
& Y^{(k+1)}-Y^{(k)} \leq E R R
\end{aligned}
$$

the value of $E R R$ being read in as a problem variable.
The algorithm was run with problems of various sizes from $n=3$ to $n=500$. It is to be noted that with $\operatorname{ERR}=0.01$, in the case of 3 facilities the central location was found in 23 iterations while for a problem of 500 facilities it required 28 iterations. The number of iterations depends largely on the extreme locations of some facility as the weighted distances will give a poor first estimate [36] and the number of steps of the iterative search are not necessarily more numerous with a large system than with a small one.


Fig. 33. Case of Extreme Locations in the Determination of One Central Facility

When looking at the variation of toptal transportation costs during the iterative process on the computer print-out, we can see that there is a lack of sharp minimum, which means that a rough location of the central facility, as given for example by the starting value in the case of nonextreme locations may be sufficient in practical use.

The program was run in the case of weight dominance and the algorithm rapidly converges toward the dominant facility, however, never exactly reaching it. (see page 189)

Computational time on an electronic digital computer may be quite expensive and a tally of time was kept to try to derive a relation between the number of facilities investigated and the corresponding computational time on an IBM 360/40. In the particular system used the computer operates on two problems at a time (mode MrP2) and the variable demands on its elements and stored sub-routines do not allow a time printoout reliable for each of the problems. This inconsistency can be readily seen on the following Table 3, where compilation time varies drastically from one run to the next. There is no sure trend, but it can be considered that computatignal time is of insignificant importance in the total economics of most of the problems.

The total memory requirement in the case of 1000 facilities is 66 F 2 or 26,354 bytes of which 742 are
used for the program.
Real life data were used in the computation of one optimum central facility for the postal system, considering the continental 50 states of the union and their corresponding output in first class letter mail in the year 1965 [52]. This output volume was assumed to be originating from the capital city of the state the longitudes and latitudes of which were given [23]. With this particular limitation in the type of mail and assuming plane geometry, an optimum location for a postal institute for example, should be at $39^{\circ} 39^{\prime} \mathrm{N}$ and $83^{\circ} 27^{\prime} \mathrm{W}$ around Columbus, Ohio.

The program was also run for the sets of 20 facilities and 125 facilities which are used later on, in the analysis of the multiple central facilities algorithms. The results are shown in Figure 34 and Figure 35.

Diagram I. One Central Facility Heuristic Algorithm


Compute partial distances $D(I)$ to central facility




Fig. 34 Location of one central facility Heuristic algorithm, $N=20$


Fig. 35 Location of one central facility Heuristic algorithm, $\mathbb{N}=125$

Table 3 - Computation Time Requirement Discrete - Two Dimensional Space - Euclidean Distances Algorithm to Locate One Central Facility

Computer: IBM 360/40, Printer IBM 1403 N1, Computer Operating, Under MFP2

Time in Hours.Minutes.Seconds (Sexagesimal)

No.   Of   Facil-   ities	No.   of   Itera-   tions	Time   JOB-IKED   Compilation	Time   LKED-GO   Subroutine Ass.	Time   GO-END   Oper.Time	Total
5	14	00.01 .10	00.01 .42	00.00 .50	00.03 .42
15	10	00.00 .47	00.01 .58	00.00 .21	00.01 .56
15	10	00.00 .50	00.01 .03	00.01 .33	00.03 .26
25	10	00.01 .35	00.01 .41	00.00 .52	00.04 .08
50	24	00.01 .47	00.01 .33	00.00 .29	00.03 .49
75	13	00.01 .00	00.00 .47	00.01 .03	00.02 .50
125	19	00.01 .01	00.00 .49	00.00 .39	00.02 .29
500	28	00.01 .21	00.02 .04	00.02 .35	00.05 .60

Table 3a-Computation Time Requirement Discrete - Two Dimensional Space - Euclidean Distanceg Algorithm to Locate One Central Facility Computer: IBM 360/40, Printer IBM 1403 N1, Computer Operating; Under MFP2

Time in Hours.Minutes.Seconde (Sexagesimal)

Number   of   Facilities	Begin Time   J.OB	Begin Step   IKED	Begin Step   GO	End   JOB
5	11.06 .20	11.07 .30	11.09 .12	11.10 .02
15	04.11 .05	04.11 .52	04.12 .40	04.13 .01
15	20.11 .10	20.12 .00	20.13 .03	20.14 .36
50	04.13 .09	04.14 .56	04.16 .29	04.16 .58
75	14.14 .50	14.15 .50	14.16 .37	14.17 .40
125	12.49 .26	12.50 .27	12.51 .16	12.51 .55
500	20.05 .04	20.06 .25	20.08 .29	20.11 .04

Table 4 Postal System Optimal Location of One Central Facility Processing All States Daily Output of First Class Mail

\#	State	Capital	Lat. Deg-Min	Long. Deg-Min	Mail   Output Pounds
1	Alabama	Montgomery	$32^{\circ} 23^{\prime} N$	$86^{\circ} 17^{\prime} \mathrm{W}$	62,650
2	Alaska	Juneau	$58^{\circ} 25^{\prime} N$	$134^{\circ} 30^{\prime} \mathrm{W}$	1,163
3	Arizona	Phoenix	$33^{\circ} 30^{\prime} \mathrm{N}$	$112^{\circ} 00^{\prime} \mathrm{W}$	22,288
4	Arkansas	Little Rock	$34^{\circ} 42^{\prime} \mathrm{N}$	$92^{\circ} 16^{\prime} \mathrm{W}$	20,916
5	California	Sacramento	$38^{\circ} 35^{\prime} \mathrm{N}$	$121^{\circ} 30^{\prime} \mathrm{W}$	394,139
6	Colorado	Denver	$39^{\circ} 44^{\prime} \mathrm{N}$	$104^{\circ} 59^{\prime}$ W	47,453
7	Connecticut	Hartford	$41^{\circ} 45^{\prime} \mathrm{N}$	$72^{\circ} 40^{\prime} \mathrm{W}$	74,813
8	Delaware	Dover	$39^{\circ} 10^{\prime} \mathrm{N}$	$75^{\circ} 30^{\prime}$ W	15,863
9	Washington,D.C.	Washington	$38^{\circ} 50^{\prime} \mathrm{N}$	$77^{\circ} 00^{\prime} \mathrm{W}$	238,476
10	Florida	Tallahassee	$30^{\circ} 25^{\prime} \mathrm{N}$	$84^{\circ} 17^{\prime} \mathrm{W}$	80,791
11	Georgia	Atlanta	$33^{\circ} 45^{\prime} \mathrm{N}$	$84^{\circ} 23^{\prime} \mathrm{W}$	79,198
12	Idaho	Boise	$43^{\circ} 38^{\prime} \mathrm{N}$	$116^{\circ} 12^{\prime} \mathrm{W}$	9,502
13	Illinois	Springfield	$39^{\circ} 46^{\prime} \mathrm{N}$	$89^{\circ} 37^{\prime} \mathrm{W}$	387,961
14	Indiana	Indianapolis	$39^{\circ} 45^{\prime} \mathrm{N}$	$86^{\circ} 08^{\prime} \mathrm{W}$	91,294
15	Iowa	Des Moines	$41^{\circ} 35^{\prime} \mathrm{N}$	$93^{\circ} 37^{\prime} \mathrm{W}$	60,204
16	Kansas	Topeka	$39^{\circ} 02^{\prime} \mathrm{N}$	$95^{\circ} 41^{\prime} \mathrm{W}$	47,086

Optimal Central Location: $39^{\circ} 39^{\prime} \mathrm{N}, 83^{\circ} 27^{\prime} \mathrm{W}$

93

\#	State	Capital	$\begin{gathered} \text { Lat. } \\ \text { Deg-Min } \end{gathered}$	$\begin{aligned} & \text { Long. } \\ & \text { Deg-Min } \end{aligned}$	Mail   Output   Pounds
17	Kentucky	Frankfort	$38^{\circ} 10^{\prime} \mathrm{N}$	$84^{\circ} 55^{\prime} \mathrm{W}$	41,344
18	Louisiana	Batan Rouge	$30^{\circ} 28^{\prime} \mathrm{N}$	$91^{\circ} 10^{\prime} \mathrm{W}$	52,978
19	Maine	Augusta	$44^{\circ} 19^{\prime} \mathrm{N}$	$69^{\circ} 42^{\prime} \mathrm{w}$	17,631
20	Maryland	Annapolis	$39^{\circ} 00^{\prime} \mathrm{N}$	$76^{\circ} 25^{\prime} \mathrm{W}$	73,834
21	Massachusetts	Boston	$42^{\circ} 15^{\prime} \mathrm{N}$	$71^{\circ} 07^{\prime} \mathrm{W}$	153,409
22	Michigan	Lansing	$42^{\circ} 45^{\prime} \mathrm{N}$	$84^{\circ} 35^{\prime} \mathrm{W}$	127,187
23	Minnesota	St. Paul	$44^{\circ} 57^{\prime} \mathrm{N}$	$93^{\circ} 05^{\prime} \mathrm{W}$	90,323
24	Mississippi	Jackson	$32^{\circ} 17^{\prime} \mathrm{N}$	$90^{\circ} 10^{\prime} \mathrm{W}$	24,448
25	Missouri	Jefferson City	$38^{\circ} 34^{\prime \prime} \mathrm{N}$	$92^{\circ} 10^{\prime} \mathrm{W}$	139,140
26	Montana	Helena	$46^{\circ} 35^{\prime} \mathrm{N}$	$112^{\circ} 01^{\prime \prime}$ W	17,322
27	Nebraska	Lincoln	$40^{\circ} 49^{\prime} \mathrm{N}$	$96^{\circ} 43^{\prime} \mathrm{W}$	35,658
28	Nevada	Carson City	$39^{\circ} 10^{\prime} \mathrm{N}$	$119^{\circ} 45^{\prime} \mathrm{W}$	9,207
29	New Hampshire	Concord	$43^{\circ} 10^{\prime} \mathrm{N}$	$71^{\circ} 30^{\prime} \mathrm{W}$	11,631
30	New Jersey	Trenton	$40^{\circ} 13^{\prime} \mathrm{N}$	$74^{\circ} 46^{\prime} \mathrm{W}$	184,397
31	New Mexico	Sante Fe	$35^{\circ} 10^{\prime} \mathrm{N}$	$106^{\circ} 00^{\prime} \mathrm{W}$	17,645
32	New York	Albany	$42^{\circ} 40^{\prime} \mathrm{N}$	$73^{\circ} 50^{\prime} \mathrm{W}$	662,584
33	North Carolina	Raleigh	$35^{\circ} 45^{\prime} \mathrm{N}$	$78^{\circ} 39^{\prime}$ w	73,749
34	North Dakota	Bismark	$46^{\circ} 48^{\prime} \mathrm{N}$	$100^{\circ} 46^{\prime} \mathrm{W}$	11,646
35	Ohio	Columbus	$40^{\circ} 00^{\prime} \mathrm{N}$	$83^{\circ} 00^{\prime \prime}$ w	219,330
36	Oklahoma	Oklahoma City	$35^{\circ} 27^{\prime} \mathrm{N}$	$97^{\circ} 32^{\prime}$ W	59,159
37	Oregon	Salem	$44^{\circ} 55^{\prime} \mathrm{N}$	$123^{\circ} 03^{\prime}$ W	45,733

Optimal Central Location: $39^{\circ} 39^{\prime} \mathrm{N}, 83^{\circ} 27^{\prime} \mathrm{W}$

$\#$	State	Capital	Lat.   Deg-Min	Long.   Deg-Min	Mail   Output   Pounds
38	Pennsylvania	Harrisburg	$40^{\circ} 15^{\prime} \mathrm{N}$	$76^{\circ} 50^{\prime} \mathrm{W}$	302,933
39	Rhode Island	Providence	$41^{\circ} 50^{\prime} \mathrm{N}$	$71^{\circ} 23^{\prime} \mathrm{W}$	22,769
40	South Carolina	Columbia	$34^{\circ} 00^{\prime} \mathrm{N}$	$81^{\circ} 00^{\prime} \mathrm{W}$	28,434
41	South Dakota	Pierre	$44^{\circ} 22^{\prime} \mathrm{N}$	$100^{\circ} 20^{\prime} \mathrm{W}$	10,292
42	Tennessee	Nashville	$36^{\circ} 10^{\prime} \mathrm{N}$	$86^{\circ} 48^{\prime} \mathrm{W}$	68,770
43	Texas	Austin	$30^{\circ} 15^{\prime} \mathrm{N}$	$97^{\circ} 42^{\prime} \mathrm{W}$	233,041
44	Utah	Salt Lake City	$40^{\circ} 45^{\prime} \mathrm{N}$	$111^{\circ} 52^{\prime} \mathrm{W}$	23,110
45	Vermont	Montpelier	$44^{\circ} 20^{\prime} \mathrm{N}$	$72^{\circ} 35^{\prime} \mathrm{W}$	14,082
46	Virginia	Richmond	$37^{\circ} 35^{\prime} \mathrm{N}$	$77^{\circ} 30^{\prime} \mathrm{W}$	74,408
47	Washington	01ympia	$47^{\circ} 02^{\prime} \mathrm{N}$	$122^{\circ} 52^{\prime} \mathrm{W}$	53,472
48	West Virginia	Charleston	$38^{\circ} 20^{\prime} \mathrm{N}$	$81^{\circ} 35^{\prime} \mathrm{W}$	23,240
49	Wisconsin	Madison	$43^{\circ} 05^{\prime} \mathrm{N}$	$89^{\circ} 23^{\prime} \mathrm{W}$	86,544
50	Wyoming	Cheyenne	$41^{\circ} 10^{\prime} \mathrm{N}$	$104^{\circ} 49^{\prime} \mathrm{W}$	7,489

Optimal Central Location: $39^{\circ} 39^{\prime} \mathrm{N}, 83^{\circ} 24^{\prime} \mathrm{W}$

## IV.2. MULTIPLE CENTRAL LOCATIONS

IV.2.1. Multiple Central Facilities Heuristic Algorithm

The program should be based on the iterative algorithm presented on page 74.

$$
\text { for } j=1,2,3, \cdots, m \text { and } \delta_{i j}=0,1
$$

with

$$
X_{i}(0)=\frac{\sum_{i=1}^{n} \delta_{i j} r_{i} m_{1} x_{1}}{\sum_{1=1}^{n} r_{1}, m_{1}}
$$

$$
\begin{aligned}
& X^{(k+1)}=\frac{\sum_{i=1}^{n} \frac{\delta_{1 j} r_{1} m_{1} x_{i}}{\left[\left(X_{j}^{(k)}-X_{i}\right)^{2}+\left(Y_{j}^{(k)}-Y_{i}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{n} \frac{\delta_{1 j} r_{1} m_{1}}{\left[\left(X_{j}^{(k)}-X_{i}\right)^{2}+\left(Y_{j}^{(k)}-Y_{i}\right)^{2}\right]^{\frac{1}{2}}}} \\
& Y(k+1)=\frac{\sum_{i=1}^{n} \frac{\delta_{i \cdot j} r_{1} m_{1} y_{1}}{\left[\left(X^{(k)}-X_{1}\right)^{2}+\left(Y^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{2}}}}{\sum_{i=1}^{a} \frac{\delta_{1 j} r_{1} m_{i}}{\left[\left(X_{j}^{(k)}-X_{1}\right)^{a}+\left(Y_{j}^{(k)}-Y_{1}\right)^{2}\right]^{\frac{1}{3}}}}
\end{aligned}
$$



The amount of computation becomes rapidly prohibitive even for less than 10 facilities and it is of little interest to develop such an algorithmo Other procedures must be sought to reduce the computational effort. In some practical problems we might know the set of satellite facilities depending on one central location, we are then brought back to the previous case of locating only one central facility. Such a simplification is often realistic, for example sev. eral market areas may have their own individual source. In some other cases we might know the position of all the facilities as well as the central ones but we do not know the value of the Eronecker delta, that is $_{s}$ we must find the set of appropriate aatellites connected with each central facilm ity。

## IV.2.2. Destination Subset Algorithm [10]

In some practical problems one of ten considers enIarging or modifying an existing facility so as to use it as a central location for set of satellites. We must then consider a subset $m$ of the $n$ facilities such that it
minimizes transportation costs when connected to the proper set of satellites.

There are

$$
\frac{n!}{m!(n-m)!}
$$

possible choices of $n$ facilities taken $m$ at a time. For each of these combinations of $m$ central facilities we must consider all the distances to all the other points and allocate the satellites which give the minimum distances.

It is to be noted that for $m=1$ the method is trivial. Every location is tried as a candidate for a central facility and the sum of transportation costs computed for each of them, the location giving the least transportation cost is chosen as central location. A program was written for this particular case of one facility used as central location. The logic diagram is show on pages 101-102. The program was applied to a set of 20 facilities with equal weight as per Figure 36. The computer print-out and results are given from page 190 to page 193 and the problem was processed in 3 minutes 49 seconds on the IBM 360/40 computer. The program uses 542 bytes, the total memory requirement varies with the size of the problem but in the particular case of , 50 facilities it takes 418 bytes more.

In the case where $m$ is relatively large, the amount of computation may be cumbersome because of the large
number of combinations: $\binom{n}{m}$. It is also complicated to make a general computer program which is able to consider all the possible combinations for all $m$. In the case where $m$ is known a program can be readily developed using reference [38]. In practice, this assumption of using an existing facility as a central location is quite realisitc and it is not uncommon, for example, in the postal system to enlarge and mechanize an existing post office to use it as a "sectional center" handling mail of satellite post offices.

If because of the structure of the problem or its economic constraints the central facilities must be separate entities, then the use of the subset algorithm would not be correct. However, this algorithm allows the definition of the optimum $\delta_{1 j}$, that is the optimum set of satellites best served by one central location. For this particular set taken alone we may then compute the exact location of the central facility by using the program developed in paragraph IV.1.1. using the extremal equations found for the location of one and only center.

We are not sure however, that the method gives us the absolute minimum, first of all because we assume a priori a value of $m$, and secondly, because we intuitively decide that the set of satellites found by the subset algorithm are the best ones, even after correction is made to locate exactly the central facility. We also assume that
the corrected algorithm will bring some improvement which is not necessarily the case. In fact, in case of partial weight dominance from some facilities then chosen as central one by the subset algorithm, the exact solution may increase substantially the total cost of transport. A high loading and unloading cost at the chosen center may also create higher total cost using the algorithm IV.1.1.

In the destination subset algorithm we do not have any choice in the length of the investigation procedure. It is only through exhaustive enumeration of all the combinations that a correct allocation may be found. We should keep in mind for example, that for $n=100, m=10$ there are

$$
\binom{n}{m}=\binom{100}{10}=\frac{100!}{10!90!}=17,310 \text { billion combinations of }
$$

10 central facilities. Then for each of these centers $(n-m)=100-10=90$ distances must be computed, that is $m(n-m)=900$ distances are computed then compared for each allocation. This represents for example, 15,579 trillion computations involving square and square roots to find the right set of central facilities and satellites in the case of 100 facilities and 10 centers. We have seen in section II.3.5. that the central facilities will be definitively situated within the convex hull defined by straight lines connecting extreme points.

100
Except in very rare cases of weight dominance or large obtuse angles of the convex hull, the central facilities will be found at the extreme points, we could then make abstraction of these $k$ extreme points, thus reducing our possible combinations from $\binom{n}{m}$ to $\binom{n-k}{m}$.

Diagram 2. Destination Subset Algorithm
One facility is used as central location


PRINT
and tabulation title
Zero transport cost
(saved as optimum)
CSAV $=0.0$


Zero transport cost
$\mathrm{C}=0.0$


Compute partial
Distance: DP
Cost : DC
Compute total cost corresponding to the $J$ central facility $C=C+D C$


Yes
PRINT
2nd tabulation body
Total transport cost
for facility $J$
taken as center
$J, X(J), Y(J), C$
(I)



> Fig. 36 Destination Subset Algorithm One facility taken as a center
> $\mathbb{N}=20$


Fig. 37 Destination Subset Algorithm One facility taken as a center $N=125$

## IV.2.3. Variable Grid Algorithm

When considering many hundred facilities and numerous central ones, the destination subset algorithm, although practical in assumption, may be too cumbersome to use because of the length of exhaustive computations.

We know that the optimum location of all the $j$ centers $\left(X_{j}, Y_{j}\right)$, must satisfy the system of inequalities

$$
\begin{aligned}
& x_{\text {minimum }} \leq X_{J} \leq x_{\text {maximum }} \\
& y_{\text {minimum }} \leq Y_{J} \leq y_{\text {maximum }}
\end{aligned}
$$

The area delimited by $x_{\text {minimum }}, x_{\text {maximum }}$ and $\mathrm{y}_{\text {minimum }}, \mathrm{y}_{\text {maximum }}$, can be divided into a mesh of large or fine spacing. The $N$ intersection points of our mesh can then be treated as possible central facilities, $m$ subsets of these $\mathbb{N}$ points can be found using a similar algorithm as in IV.2.2., so as to define the proper satellites minimizing transportation costs. In substance, this grid algorithm is similar to the destination subset algorithm but it is much more flexible. The choice of spacing will definitively influence our computing time (and possibly our locational accuracy), but at least we have a means of control on our computer time expenditure.

This algorithm is attractive as long as $N<n$, because it reduces the number of possible combinations to $\binom{N}{m}$. With this algorithm we are not too much interested in finding
the correct location of the central facility but the correct subset of allocations, once these subsets are known they can be studied independently and the algorithm IV.1.1. can give us for each one the correct location of the center. We can start with a very loose mesh containing at least $m$ intersection points, define from it the corresponding $\delta_{1 j}$. $A$ new mesh is then re-defined with a tighter spacing; if the new subsets of allocations remain the same, then it is probable that these allocations are correct. Similarly as with the destination subset algorithm we are never sure that these allocations are the best ones.

## IV.2.4. Variable Grid Algorithm with Iinear Constraints

The central facilities being located within the convex hull, a more efficient variable grid algorithm should discard the mesh points outside this convex hull. The linear constraints defining this convex hull can be found by a relatively involved separate sub-routine program, but it must be kept in mind that these facilities will have to be plotted sooner or later in order to present the results to management, then it is quite easy on that plot to locate the extreme points.


Fig. 38. Variable Grid Algorithm with Linear Constraints

For this particular figure with $n=50$ facilities, if we try to find the location of $m=3$ central locations, we must consider $\binom{50}{3}=19,600$ combinations or $2,763,600$ computations. In the case of the variable grid algorithm with linear constraints only $\binom{14}{3}=364$ combinations or 51,324 computations would be necessary. It is possible that the set of assignments in both cases may be identical and consequently the location of the central facility for each subset would be the same using the correcting algorithm IV,1.1.

Inversely, in the case of very few facilities, the variable grid algorithm can present many more intersecting points and consequently the use of algorithm IV.1.1. might not be necessary in the final analysis and the optimum set of grid points might be accurate enough. This case is somewhat realistic as centers are sometimes located at the intersection of ranges and townships.

Some extra effort is necessary to define the convex hull. In the case of a large system the plot can be done quite rapidly for example, with a Calcomp plotter at the output of an IBM 1130 computer using the plotting sub-routines or the powerful "data presentation system". Another method would not use any plot but would define the hull by the following procedure. The points are ordered by increasing values of $X_{1}$. The point corresponding to $X_{\text {minimum }}$ is definitively an extreme point. The set of lines connecting this extreme point to the other points of the set will have facilities located above and below them, except for two lines which delineate a part of the convex boundary. These extreme lines are connected to new extreme points; from these, new sets of lines are defined, new boundary lines are found, some of these boundary lines will give new extreme points not previously defined. Furthermore, the method allows the definition of all the bounding lines and extreme points.


Fig. 39. Investigation Procedure to Define the Convex Hull

This particular grid algorithm with linear constraints may appear somewhat cumbersome to use. It may be pointed out that the destination subset algorithm by its very nature, automatically defines points within the convex hull. However, by using this variable grid, we have a direct handle on our computational effort and we may stop at any level of accuracy without having to go through the exhaustive set of $\binom{n}{m}$ combinations which might become enormous in the case of a very large system.

## IV.2.5. Random Destination Algorithm [10]

The problem with the destination algorithm and even the variable grid algorithm is that the amount of computational effort may be very large. Also quite a number of combinations of grid points or destinations "rationally"
chosen by a replacement process can easily be recognized as poorly chosen when considering the layout of facilities.


Fig. 40. Irrational Choice of Central Facilities

If for example, we consider the "rational" set of combination $\binom{20}{3} 1,2,3 ; 1,2,4 ; 1,2,5 ;$ etc. we can readily see from Fig. 40 that they are poor contenders for the title of optimum central locations. A possible random choice of these combinations could lead more rapidly to a better solution. To avoid duplication of computational effort we could input all possible combinations from a pack of nicely shuffled cards. However, if we can write all the combinations it means that the problem is small enough to easily allow an exhaustive computation of all the combinations in any.order presented. When the system becomes too large, then a sampling procedure might be advantageous, the subset of $m$ facilities being chosen at random through a Monte Carlo technique from the set of $n$ facilities. For this particular subset, allocations can be determined
and the corresponding sum of weighted distances evaluated. During the sampling procedure it is possible to keep in the computer memory the set of $m$ facilities with the best characteristics. As with every Monte Carlo procedure it is of utmost importance to know when to stop the procedure so as to obtain an acceptable level of error. A simple criterion would be to stop after a given number of samplings. A more sophisticated method would be to look at the distribution of weighted distances by maintaining a running talley of mean, $\mu_{\%}$ and standard deviation $\sigma_{9}$ and stop the sampling if the allocation falls below $\mu-x \sigma_{9} x$ being determined through experience.

The logic diagram of a possible computer program is given on page 112 . The program was applied to a set of 20 facilities as per Fig. 48, to be served by 3 centrai locations. The computer print-out and results are given from page 194 to page 200 and the 500 iterations were processed in 6 minutes 27 seconds on an IBM $360 / 40$ computer. The program uses 1264 bytes. The total memory requirement varies with the size of tne problem; for example, the variables occupy 1286 bytes more when sampling 20 facilities with 5 central iocations. The program was also appiied to 4 large systems of 125 facilities each; the results for the first system are shown on figure 50 , and the quantitative resulta for all are given on page $150 . \mathrm{a}$.

Diagram 3. Rendom Destination Subset Algorithm



## IV.2.6. Random Grid Location Algorithm

When we are using the random destination algorithm, we are sampling from a population of $\binom{n}{m}$ combinations. We have seen that this set might be enormous if $n$ and $m$ are ralatively large ( 17 trillions in the case of $\binom{100}{10}$ ) Consequently the results given by a relatively small amount of sampling may be very much suboptimal. To avoid this pitfall we could take a much larger sample but this goes against our intent to reduce our computational effort. We could also divide the facility space into a mesh with a spacing such that the number of mesh intersection points is much smaller than $n$. In this last case, we are sampling from a reduced population of $N$ mesh intersecting points still covering the whole area to be investigated. We are assuming in these grid algorithms that the distribution of facilities in space is uniformly spread, which is frequently the case for large systems. This method however, would not be very efficient in the case of remote clusters.

The logic diagram of a possible computer program is given on page 116. The program was applied to the same set of 20 facilities served by 3 central locations of algorithm IV.2.5. The computer print-out and results are given from page 201 to page 217. Five possible grid spacings were investigated by dividing the circumscribed rectangle in 3, 4, 5, 6, then 7 divisions on each axis.

For each grid spacing 100 samplings were made. The corresponging 500 samplings were done in 6 minutes 33 seconds on an IBM 360/40 computer. The program uses 1694 bytes. The total memory requirement varies with the size of the problem, for example, the variables occupy 1494 bytes more when sampling 20 facilities with 5 central locations and 50 possible grid intersection points.

Diagram 4. Random Grid Jocation Algorithm




## IV.2.7. Handom Grid Algorithm with Linear Constraints

This algorithm is very similar to the random grid. location algorithm. A mesh is defined to cover the facility space and the mesh intersection points selected at random as possible central facilities. To decrease further the number of combinations we exclude from our sampling process the mesh intersection points which fall outside the convex hull enclosing the facilities. Definition of the huli can be done by the methods described under paragraph IV.2.4.

The logic diagram of a possible computer program is given on page 121. The program was applied to the same set of 20 facilities served by 3 central locations of algorithm IV.2.5. The computer print-out and results are given from page 218 to page 23.4. Five possible grid spacings were investigated by dividing the circumscribed rectangle in 3, 4, 5, 6 then 7 divisions on each axis. The linear constraints are defined and during sampling each grid intersec--tion is checked against these constraints, this intersection point is rejected if it violates any one of the constraints. For each grid spacing 100 samplings were made. The corresponding 500 samplings were done in 5 minutes 59 seconds on an IBM 360/40 computer. The program uses 2052 bytes. The total memory requirement varies with the size of the problem; for example, the variables occupy 1742 . bytes more when sampling 20 Pacilities with 5 central loca-
tions and 50 possible grid intersection points.
Every point ( $x, y$ ) of the linear constraint passing through the extreme points $\left(x_{i}, y_{f}\right)$ and $\left(x_{j}, y_{j}\right)$, is subjected to the equation:

$$
\frac{y-y_{1}}{y_{1}-y_{3}}=\frac{x-x_{1}}{x_{1}-x_{y}}
$$

A part of the data input includes the number of linear constraints (NC), number relatively small even for large sets, and the extreme points defining each constraint. The constraints are grouped in two classes: first the one "smaller than or equal to" (MC of them), then the one "larger than or equal to". The program automatically defines the elements of the linear equation: angular coefficient and ordinate at origin, and rejects the random grid points violating any of the conatraints.

The program was also applied to 4 large systems of 125 facilities each; the results for the first system are shown on figure 58 and the quantitative results for all are given on page 160.a.

Diagram 5. Random Grid Algorithm with Linear Constraints



IV.2.8. Successive Approximation Algorithm [10]

The complexity of the locational problem increases with $n$ but even more drastically with $m$. It is a relatively small problem to find the optimum allocation when $m=2$ because of the limited number of combinations $\binom{n}{2}$. If the allocation were found for such a set we could then try to introduce a third center by placing it for example, at one of the facilities. Then we would have to test each facility to see if it could not be better served from the new central one, and re-allocate accordingly. The process can then be carried up to $m$ centers.

In this method the problem is to choose adequately each new center. In some practical problems the subjective choice may be sufficient to lead to the optimum allocation, however, in most cases it is difficult to pick good contenders and the resulting allocation may be suboptimal. After the 1st approximation we still must consider (n - 2) facilities as possible centers, and this number may be quite large.
IV.2.9. Grid Successive Approximation Algorithm

In a like manner to the successive approximation algorithm of paragraph IV.2.8, we choose to select two grid intersection points as central facilities, and once the best allocations are defined a third grid point is introduced for an improved re-allocation. The process is carried until $m$
sets of allocations are defined, then each subset may be processed with the algorithm IV.1.1. to find the exact center locations.

In this case we are limiting our investigation to a set of grid points $N$ which are directly under our control. Once 2 optimum grid points are defined, we can more easily investigate all the remaining grid points as possible third center. The program can also be devised as to reject grid points violating the linear constraints of the convex hull.

## IV.2.10. Alternate Location - Allocation Algorithm

The set of $n$ locations is divided into $m$ sets of approximately identical number of points, and for each of these subsets the best central location is defined. Each point is then tested to see if it is closer to its central facility than the neighboring one. If the neighboring one is closer, new subsets are defined and new central locations computed. The process is combined until further improvement is not possible.

The method is sometimes known as the AJA Algorithm and was suggested by both Cooper [10], Vergin and Rogers [52]. This algorithm has been applied to some practical problems, for example, it was used by Devine and Lesso [17] in the optimization of offshore oil fields.

## IV.2.11. Variable Discrimination Algorithm

When we look at a very large system of facilities we might consider reducing our power of discrimination. In so doing, we are assuming that in a set of facilities the locations are so closely located that they may be considered as a single entity.

This set of $n_{k}$ facilities will have a corresponding mean weight

$$
w_{k}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} r_{i} m_{i}
$$

acting at a point

$$
\begin{aligned}
x_{\left(n_{k}\right)}= & \frac{\sum_{i=1}^{n_{k}} r_{1} m_{i} x_{1}}{\sum_{i=1}^{n_{k}} r_{1} m_{1}} \\
y_{\left(n_{k}\right)}= & \frac{\sum_{1=1}^{n_{k}} r_{1} m_{i} y_{1}}{\sum_{1=1} r_{1} m_{1}}
\end{aligned}
$$

If the system is very large we might use a very small power of discrimination and therefore include large clusters of facilities into the same set. If on the other hand the problem is relatively small we might increase our power of discrimination and include only very few facilities in each set.

Once all the sets $n_{1}, n_{z}, \cdots, n_{k}$ are defined, we may apply any one of the previous algorithms to solve the locational problem. The only purpose of our method is to condense the total number of facilities into a smaller set.


Fig. 42. Variable Discrimination Algorithm

We will assume that each facility is surrounded by a blurry area, if another facility is present in this area it is not recognized as separate. If two or more facilities have intersecting blurred areas they will be considered as a single one.


Fig. 43. Variable Discrimination Algorithm Blurred Areas

We have direct control over the size of the blurr and accordingly over the size of the problem.

In this process we make the assumption that closely located facilities will finally depend on the same center. In theory it might be wrong (see Fig. 44.), but in practice it is highly improbable that closely located facilities will depend on different centers, if only for avoiding disruption created by discontinuity of management or operation.


Fig. 44. Variable Discrimination Algorithm Underlying Assumption

It is to be noted that we would like to discriminate more sharply the facilities with heavy weight and more loosely the facilities with little weight; the blurred area should then be inversely proportional to the facility weight.


Fig. 45. The Discriminating Power is
Proportional to the Respective Weights

In practice the problem is to define the subsets $n_{1}, n_{z}, \cdots, n_{k}$

In a large system it is highly improbable that the plot will be found to be of much help as every facility must be scrutinized independently, we must then be able to automatically define these subsets. Two approaches are possible. For each facility we may compute all the corresponding Euclidean distances to all other facilities and select the shortest one within a given value $2 \varepsilon$, this would amount to computing $\frac{n(n-1)}{2}$ distances. We may also order the abcissae of our facilities and check the one with corresponding $x$ and $y$ falling less than $2 \varepsilon$ apart; in this particular case the
blurred areas would be assimilated to Squares.


Fig. 46. Variable Discrimination Algorithm Agglomeration by Closeness of Coordinates

The value of $\varepsilon$ depends on the size of the set we want finally to handle with the previous algorithms. The computer program could be built in such a manner that we would define the size of the desirable set, a given $\varepsilon$ would be tested and increased if the agglomerated set was found to be too large, or decreased in the other case.

With this algorithm we can reduce a very large set to a smaller one easier to nandle and although the results of the locational problem may be approximate, we can deal with any size problem and we will not be stopped by the computer memory or computational time. In some cases the problems may be so large that it is not even possible to store all the facilities coordinates and weights in the computer memory space, it is then necessary to partition the problem and agglomerate the sets successively in each partition.

Diagram 6. Variable Discrimination Algorithm





## CHAPTER V

## ANALYSIS OF RESULTS

Some of the previous algorithms have been extensiveIy studied by Leon Cooper and applied to 100 locational problems with 60 facilities and 4 central locations. In one of his research papers [12] he gives the following percent deviation from the lower bound (ref: II.3.5, III。2.2).

Table 5. Errors in Algorithms
(Applied to 100 Problems, $\mathrm{n}=60, \mathrm{~m}=4$ )

	Mean Percent   Error	Mean Percent   Deviation from   Lower Bound
Destination Subset	0.948	360.1
Random-Destination	2.518	367.2
Successive-Approximation	7.086	387.9
Alternate Location-		
Allocation		

In judging these methods we should not be comparing only the minimum sum of distances that they give, but mainly how fast they offer the correct set of satellites, as each of these sets gives the exact solution very rapidly and with 134,
little memory requirement by applying algorithm IV.1.1. With these criteria, the destination subset algorithm with the lowest mean percentage error is one of the poorest, while the variable grid algorithm is much better.

We should also look at the memory requirement and computing time, above 50 facilities the destination subset algorithm is not practical, above a few hundred facilities the random destination and random grid may reach the limit of memory space (around 1,000 bytes of memory is required for each facility with the random grid algorithm and linear constraints in the search for 5 central locations). For larger systems of many thousand facilities the use of the discrimination algorithm is a necessity, it may rank poorly in mean percent error but it is the only method now available which can solve such a system.

The valuable grid algorithms and discrimination algorithms have been mainly devised for large systems. However, to compare with existing algorithms they were tested for a set of 20 facilities and 3 central locations (Fig. 48). Then to compare the results in the case of a larger system it was applied to 125 facilities served by 3 centers. Because of computer time limitations it was not possible to make a more exhaustive study.

# V.1. RANDOM DESTINATION ALGORITHM <br> Distribution of Distances 

V.1.1. Small System: $n=20, m=3$

500 Samples

## Range

$98.009-43.927=54.082$
Number of classes
Sturges rule: $k=1+3.3 \log _{10} N$
k : number of classes to use
N: total number of data
$\mathrm{k}=1+3.3 \times 2.69897=1+8.9 \cong 10$ classes
Class interval
$54.082 / 10=5.4082$

137
Table 6. Random Destination Algorithm Distribution of Distances

Small System

	Class Boundaries	Frequency
1	$43.927-49.335$	53
2	$49.336-54.743$	154
3	$54.744-60.151$	97
4	$60.152-65.559$	80
5	$65.560-70.968$	56
7	$70.969-76.376$	26
8	$76.377-81.784$	17
9	$81.785-87.192$	6
10	$87.193-92.600$	6

Mean: 59.629
Standard Deviation: 9.928


$$
\begin{aligned}
& \text { Fig. 47. Random Destination Algorithm } \\
& \text { Distribution of Distances } \\
& \text { Small System }
\end{aligned}
$$

The distribution of distances has a positive skewness, the optimum assignment lies at $1.58 \sigma$ from the mean, while poor assignments extend up to $3.86 \sigma$ from the mean.


Fig. 48 Random destination algorithm $N=20, M=3$

$$
\text { V.1.2. Large System: } n=125, m=3
$$

## 25 Samples

Range

$$
6186.930-3323.594=2863.336
$$

Number of classes

$$
k=1+3.3 \log _{10} 25=1+3.3 \times 1.39794=5.6 \cong 6
$$

Class Interval

$$
2863.336 / 6=477.2226
$$

Table 7. Random Destination Algorithm Distribution of Distances Large System

	Class Boundaries	Frequency
1	$3323.594-3800.816$	
2	$3800.817-4278.039$	6
3	$4278.040-4755.261$	7
4	$4755.262-5232.484$	7
6	$5232.485-5709.707$	3

Mean: 4331.586
Standard Deviation: 750.026


Fig. 49. Random Destination Algorithm
Distribution of Distances
Large System

The distribution of distances has a positive skewness, the optimum assignment lies at $1.34 \sigma$ from the mean, while poor assignments extend up to $3.86 \sigma$ from the mean.

The 25 iterations were made in 4 minutes 31 seconds on an IBM 360/40 computer.


Fig. 50 Random destination algorithm

$$
N=125, M=3
$$

## V.2. RANDOM GRID LOCATION ALGORITHM DISTRIBUTION OF DISTANCES

V.2.1. Small System: $n=20, m=3$

100 Samples per Grid Division
5 Grid Divisions from 3 to 7

Number of classes

$$
k=1+3.3 \log _{20} 100=1+3.3 \times 2 \cong 8 \text { classes }
$$

Table 8. Random Grid Location Algorithm Ranges and Class Intervals

Grid   Divisions	Range	Class Interval
3	$116.045-57.769=63.276$	$63.276 / 8=7.9095$
4	$104.580-53.128=51.452$	$51.452 / 8=6.4315$
5	$108.658-50.847=57.811$	$57.811 / 8=7.2263$
6	$102.296-52.866=49.430$	$49.430 / 8=6.1787$
7	$119.858-61.436=58.422$	$58.422 / 8=7.3027$

Total distribution
Number of classes: $k=1+3.3 \log _{10} 500 \cong 10$
Range: $119.858=50.847=69.011$
Class interval: $69.011 / 10=6.9011$

Table 9. Random Grid Location Algorithm Distribution of Distances

Small System

$\begin{aligned} & C \\ & 1 \\ & a \\ & s \\ & s \\ & e \\ & s \end{aligned}$	Grid Division					
	3		4		5	
	Class   Boundaries	F   r   e   q	Class   Boundaries	F r e q -	Class   Boundaries	F $r$ $e$ $e$ q 0
1	52.769-60.678	22	53.128-59.559	14	50.847-58.073	5
2	60.679-68.588	32	59.560-65.991	21	58.074-65.299	18
- 3	68.589-76.497	16	65.992-72.422	22	65.300-72.526	28
4	76.498-84.407	8	72.423-78.854	19	72.527-79.752	20
5	84.408-92.316	7	78.855-85.285	11	79.753-86.978	19
6	92.317-100.226	1	85.286-91.717	8	86.979-94.205	5
7	100.227-108.135	2	91.718-98.148	3	94.206-101.431	4
8	108.136-116.045	2	98.149-104.580	2	101.432-108.658	1
	Mean: 70.727   Std。Devo: 12.781	Mean: 71.946   Std. Dev. $: 10.920$		Mean: 73.414   Std. Dev.: 11. 347		

Table 9. Random Grid Location Algorithm Distribution of Distances

Small System







Fig. 51. Random Grid Location Algorithm Distribution of Distances - Small System

In this particular layout of facilities, whatever the grid division may be, the mean sum of distances, the standard deviation and the minimum sum are all larger than the ones found with the random destination algorithm. It took 43 samplings to reach the minimum with the random destination method. With the random grid method only the division in 3 offered a total number of grid points less than 20 and, in this particular case, the minimum distance was reached in 2 samplings. The other grid division required an average of 47 samplings before reaching optimum. This single problem is not enough to bear any definite judgment on the speed of the method except that it consistently gives larger error than the random destination algorithm; we must then consider that the random grid algorithm is inadequate for a small number of facilities. We will show that for a larger set this method becomes more and more efficiento


Fig. 52 Random grid location algorithm

$$
N=20, M=3
$$

$$
\begin{aligned}
& \text { V.2.2. } \frac{\text { Large System: } n=125, m=3}{25 \text { Samples per Grid Divisions }} \\
& \text { One Grid Division in } 5
\end{aligned}
$$

Range

$$
6064.238-3387.996=2676.242
$$

Number of classes

$$
k=1+3.3 \log _{10} 25 \cong 6
$$

Class interval

$$
2676.242 / 6=446.0403
$$

Table 10. Random Grid Location Algorithm Distribution of Distances Large System

	Class Boundaries	Frequency
1	$3387.996-3834.036$	6
2	$3834.037-4280.076$	6
3	$4280.077-4726.116$	4
4	$4726.117-5172.157$	3
5	$5172.158-5618.197$	5

Standard Deviation: 770.290


Fig。53. Random Grid Algorithm
Distribution of Distances
Large System

The optimum assignment lies at $1.39 \sigma$ from the mean, while poor assignments extend up to $2.08 \sigma$ from the mean. It is to be noted that although the minimum sum of distances is nearly identical to the random destination algorithm, the assignment is quite different. We must apply the exact re-location (IV.1.1.) to find out what is the optimum method of the two.

The 25 iterations were made in 5 minutes 42 seconds on an IBM 360/40 computer.


Fig. 54 Random grid location algorithm

$$
N=125, M=3
$$

## V.3. RANDOM GRID WITH IINEAR CONSTRAINTS

$$
\begin{aligned}
& \text { V.3.1. } \frac{\text { Small System, } n=20, m=3}{100 \text { Samples per Grid Division }} \\
& 5 \text { Grid Divisions from } 3 \text { to } 7
\end{aligned}
$$

Table 11。 Random Grid with Linear Constraints Ranges and Class Intervals

Grid   Divisions	Range	Class Interval
3	$76.490-52.941=22.549$	$22.549 / 8=2.8186$
4	$73.176-46.781=26.395$	$26.395 / 8=3.2992$
5	$88.660-50.051=38.609$	$38.609 / 8=4.8261$
6	$81.441-54.283=27.158$	$27.158 / 8=3.3947$
7	$121.155-64.102=57.053$	$57.053 / 8=7.1316$

Total Distribution
Number of classes: 10
Range : 121.155-46.781=74.374
Class interval : 74.374/10 $=7.4374$

Table 12. Random Grid with Linear Constraints Distribution of Distances Small System

$\begin{aligned} & C \\ & 1 \\ & a \\ & s \\ & s \\ & e \\ & s \end{aligned}$	Grid Division					
	3		4		5	
	Class   Boundaries	F $r$ $r$ $e$ q	Class   Boundaries	F $r$ $e$ q q -	Class   Boundaries	F   $r$   e   e   q
1	52.941-55.759	53	46.781-50.080	7	50.051-54.877	17
2	55.760-58.578	15	50.081-53.379	9	54.878-59.703	24
3	58.579-61.396	0	53.380-56.679	21	59.704-64.529	20
4	61.397-64.215	5	56.680-59.978	27	64.530-69.355	15
5	64.216-67.034	24	59.979-63.277	11	69.356-74.181	11
6	67.035-69.852	2	63.278-66.577	15	74.182-79.007	7
7	69.853-72.671	0	66.578-69.876	5	79.008-83.833	4
8	72.672-75.490	1	69.877-73.176	5	83.834-88.660	2
Mean: 57.901			Mean: 58.767		Mean: 63.731	
Std. Devo: 5.368			Std. Devo: 5.852		Std. Dev。: 8.708	

Table 12. Random Grid with Linear Constraints Distribution of Distances

Small System

$\begin{aligned} & c \\ & 1 \\ & a \\ & s \\ & s \\ & e \\ & e \\ & s \end{aligned}$	Grid Division				Total   Distribution	
	6		7			
	Class   Boundaries	F $r$ $e$ e q 0	Class   Boundaries	F $r$ $e$ q	Class   Boundaries	F $r$ $e$ $e$ $q$ 0
1	54.283-57.677	9	64.102-71.233	30	46.781-54.218	64
2	57.678-61.072	28	71.234-78.365	52	54.219-61.655	154
3	61.073-64.467	19	78.366-85.496	17	61.656-69.093	154
4	64.468-67.862	16	85.497-92.628	0	69.09.4-76.530	81
5	67.863-71.256	12	92.629-99.760	0	76.531-83.968	42
6.	71.257-74.651	10	99.761-106.891	0	83.969-91.405	4
7	74.652-78.046	2	106:892-114.023	0	91.406-98.842	0
8	78.047-81.441	4	114.024-121.155	1	98.843-106.280	0
9					106.281-113.717	0
10					113.718-121.155	1
	Mean: 64.680   Std. $\mathrm{Dev}_{0}: 6.230$		Mean: 74.576   Std. Dev. $: 6.937$		Mean: 63.930   Std。Dev。: 8.959	







Fig. 55. Random Grid with Linear Constraints Distribution of Distances - Small System

In this particular layout of facilities, the variability in the sum of distances is less with the random grid with linear constraints than with the random destination method. When the number of grid points is smaller than the number of facilities, the mean value of the sum of distances is definitively improved (57.9 and 58.7 compared to 59.6). The optimum value of 46.781 obtained with a grid division of 4 is still larger than 43.927 given by the random destination method, however, the assignment in satellites is the same and consequently after final location with algorithm IV.1.1. the sum of distances will be identical.

It is interesting to note that when the number of grid points is too small the distribution becomes multimodal, for example, 2 modes appear at 54 and 65 for a grid division of 3. As the number of grid points increases the distribution gets skewed more and more to the right; this is due to the fact that we take percentagewise fewer and fewer samples as the population increases. This fact explains why the random destination algorithm will not be efficient when used with a very large system, because it will then be necessary to take also very large samples from the population to finally get a point near optimum。


Fig. 56 Random grid with linear constraints

$$
N=20, M=3
$$

## IV.3.2. Large System, $n=125, m=3$ 25 Samples per Grid Division One Grid, Division in 6

Range

$$
4922.980-3082.082=1840.898
$$

Number of classes

$$
k=1+3.3 \log _{10} 25 \cong 6
$$

Class interval

$$
1840.898 / 6=306.8163
$$

Table 13. Random Grid with Linear Constraints Distribution of Distances Large System

	Class Boundaries	Frequency
1	$3082.082-3388.898$	7
2	$3388.899-3695.714$	7
3	$3695.715-4002.530$	3
4	$4002.531-4309.347$	5
6	$4309.348-4616.163$	2

Mean: 3754.705
Standard Deviation: 504.635


The optimum assignment lies at $1.33 \sigma$ from the mean, while poor assignments extend up to 2.32 from the mean. It is to be noted that for such a small number of samples, this method gives the best assignment of any other method. ( $8 \%$ better than the random destination subset algorithm). Moreover the spread of results is not so large, there is a drastic improvement in the value of the standard devia. tion of the sum of distances: 504 compared to 750 for the random destination subset algorithm。 This improvement is easily understood by looking at Figure 40 where it is shown the possible irrationality of the sampling made with the random destination method. When the set of $N$ facilities in creases, the random grid with linear constraints will improve with it as it spreads the limited number of sampling points all over the facility space.


Fig. 58 Random grid with linear constraints $N=125, M=3$

Table 14
Random Grid with Linear Constraints versus Random Destination Subset Algorithm Application to 4 Different Systems $\mathbb{N}=125, M=3,25$ Random Samples
Computer: IBM 360/40
Printer: IBM 1403 N 1
The exact minimum sum of distances is computed by applying algorithm IV. 1 to the sets of satellites defined by the corresponding algorithms.

Sys-   tem   \#		Random Destination Subset Algorithm	Random Grid with Linear Constraints
1	Minimum sum of distances   Mean sum of distances   Standard deviation of sum of distances   Exact minimum sum of . distances	$\begin{array}{r} 3323.594 \\ 4331.586 \\ 750.026 \\ 3122.075 \end{array}$	$\begin{array}{r} 3082.082 \\ 3754.705 \\ 504.635 \\ 3000.712 \end{array}$
2	Minimum sum of distances   Mean sum of distances   Standard deviation of sum of distances   Exact minimum sum of distances	$\begin{array}{r} 3147.336 \\ 4362.776 \\ 938.340 \\ 2890.957 \end{array}$	$\begin{array}{r} 3290.181 \\ 4277.913 \\ 790.590 \\ 2837.912 \end{array}$
3	Minimum sum of distances   Mean sum of distances   Standard deviation of sum of distances   Exact minimum sum of distances	$\begin{array}{r} 3048.011 \\ 3726.594 \\ 532.571 \\ 3061.424 \end{array}$	$\begin{array}{r} 3063.494 \\ 3779.001 \\ 542.535 \\ 3030.233 \end{array}$
4	Minimum sum of distances   Mean sum of distances   Standard deviation of sum of distances   Exact minimum sum of distances	$\begin{array}{r} 3010.937 \\ 3987.171 \\ 848.243 \\ 2966.200 \end{array}$	$\begin{array}{r} 3050.184 \\ 3609.579 \\ 505.884 \\ 2953.828 \end{array}$

## V.4. VARIABLE DISCRIMINATION AIGORITHM

The discrimination algorithm is to be used when the size of the problem is sc large that it cannot be handled by the computer facility because of the memory requirement.

Using FORTRAN to program all the previous algorithms made the tools easy to use with any make of computer; however, it drastically reduces our memory space. For example, a problem with 500 facilities could not be handled with our 122 K computer fecility. At the national scale it is common to be faced with problems involving many thousands of facilities; the discrimination algorithm can then be used to condense this set to a smaller size of easier manipulation.

The simple variable discrimination program given on page 235 to page 237 was used to cluster a set of 125 facilities into a set of 75 , using a storage space of 1062 bytes for the program and approximately 11.5 bytes per facility considered. When the facilities are not plotted it is difficult to guess correctly a good starting value for the discriminating power and its possible variations. It is wise to start with a large value of discriminant $D I S C R_{9}$ large variation steps DINC, and wide open tolerances NERR. With a very small number of loops: NLOOP, the investigator can rapidly see how the set behaves under the clustering program; it is then easy to adjust properly the discrimination argument, its variations, and the range of
tolerance for the expected subset. The program does not have a built-in system to compute the new weighted location, transport rate and amount to be transported for the generated cluster, an easily developed sub-routine could be devised to do such a computation; time was not available to develop it.

Figure 59 shows the clustering effect of the algorithm as applied to our set of 125 facilities. It would be interesting to apply any one of the previously developed algorithms to study the variation in total sum of distances and corresponding loss in accuracy (if any) created by this clustering. It is to be noted also, that with our available memory space of 122 K we could easily condense sets containing up to 10,000 facilities.


Fig. 59 Variable Discrimination Algorithm

## CHAPTER VI

CONCLUSION
IV.1. Recommended Future Research

In the preceding chapters we covered some of the highlights of the state of the art in some of the methods which have been used to solve the two dimensional locational problem in Euclidean space, and we expanded some new computational methods adjustable to large systems. When reviewing these methods we find many areas which would require further research.

The analog method first appealed to the author many years ago while measuring electrical fields in oil well surveying, but it must be granted that the method involves the possibility of large errors and is relatively inflexible as the facilities must be physically plotted and fitted with mechanical or electrical devices. It is undoubtedly possible to find a better instrumentation and technique but the analog method will remain cumbersome and will have mostly a demonstration purpose.

Very little has been done with the geometric method in the case of multiple vertices, although historically it
was the first one to be developed for few vertices. It is to be noted that many complex problems in the field of mechanics or electricity may be solved graphically with enough accuracy for practical purpose。 The author has tried many geometrical constructions to reduce the force closure vector by a hopefully convergent procedure but to date nothing of value has been found.

The drawing of isodapanes and the mapping of costs has been undertaken on a digital computer but all the results presented in the literature show painfully hand-drawn curves from points of equal costs plotted by the computer. It seems quite feasible to devise a Calcomp plotter sub-routine for example, to trace and interpolate automatically these curves.

In the iterative algorithm of the algebraic solution as applied to one central facility we could have used the conventional approach of varying $X$ to reduce $\partial C / \partial X$, then modify $Y$ to reduce $\partial C / \partial Y$ and continue the process hopefully toward convergence, however, the optimum may be too long to reach or may be missed altogether if the steps are not adequate and these steps cannot be defined a priori without having an insight on how the derivatives behave.


Fig。60. Convergent Iterative Process
We preferred to use a method which starts at the weighted mean of distances and it has successfully converged all the time, however, no formal proof of this convergence is still available。

Moreover, we have found that the starting value we used may be far from the optimal location in case of weight dominance, we should then consider the use of a more heavily weighted arithmetic mean to encompass for this error. For example, it would be interesting to study the optimum value of the power $k>1$ in the following starting values so as to obtain an accelerated convergence or even a good enough optimum location without iteration.


It is probable also that the use of the Holder inequality could lead us to a more restrictive bound than the triangle inequality.

Quite a number of non-linear problems are successfully solved by the use of geometric programming. It has been previously demonstrated that the method could solve exactly the single-center locational problem. In practice, however, the method becomes rapidly infeasible because of the very large degree of difficulty encountered, even with relatively small systems.

The constrained problem has been mentioned but no exact solution computationally attractive has been found to date with the Lagrangian or Khun-Tucker methods.

In the study of multiple central facilities we tried to develop a few algorithms computationally attractive for the case of large systems. Because of time and computer
expenditures limitations we barely developed and tested three algorithms and the very few cases run were not enough to statistically prove the superiority of the variable grid algorithm with linear constraints over the random destination algorithm in the case of large systems. It seemed that above 100 facilities the variable grid with linear constraints gave a better allocation in less time and with less spread in results than the random destination algorithm but this statement must be supported by future substantial statistics and further research.

## VI.2. Summary

In Table 1 of the introductory chapter we had listed most of the types of locational problems we are faced with in practical life. In our study we limited ourselves to the expansion of some computational techniques applied to large systems of facilities located in a áscrete space and interconnected by Euclidean distances. Even under such drastic limitations we only developed three new methods: the random grid location, the random grid with linear constraints and the variable discrimination algorithms. The testing and debugging of these programs are complete, but due to limitations in time and computer expenditure the complete statistical study of results is quite incomplete。

Our effort is not in vain however, and adds to the multiple research done in locational theory. We may look
down on the analogue methods of solution but in some practical problems these are the only techniques self-explanatory to management and of recommended use by Haley [30] in 1963 or Eilon and Deziel [22] in 1966。

Some researchers, on the other hand, are very oriented to theory and try to reduce the locational problem to a more manageable mathematical model, or to connect it more closely to the extensively studied transportation and transhipment problems [3] [25] [29].

For some other researchers, an approximate answer is quite sufficient for the practical use it will be made of it. Although it has been shown that the definition of the center of mass is erroneous, it will give in practice a result with acceptable accuracy, mostly if there is no undue weight dominance or extreme locations. The optimal location in the case of one center is then found at the intersection of the weighted arithmetic means of the demand points along two orthogonal axis and the problem is identical to the definition of the center of gravity of a two-dimensional object in mechanic [19] [44].

When faced with equations of implicit nature, some researchers will try to find some heuristic algorithms, that is to say some numerical methods of iterative or simulative nature contributing to a reduction in the average search for the optimum solution. This is the method that I have adopted because it is flexible enough to adjust to all the problems
and realistic enough to approach real life problems. Some of these methods are presented in the literature [10] [24] [35] [50] [53], and although they are logically complete they require extensive programming and testing to be duplicated by a potential user. Some of these heuristic methods may even a.ttempt some non-linear cost functions or some large systems [2.4]. Most of these methods have some simplifying assumptions: Kuehn and Hamburger [35], as well as Feldman, Lehrer and Ray [24] read in all the potential central locations sites and use the add or "Drop" approach to eliminate the ones which are not economically interesting transportationwise; they may even consider some unified transport rates which are far from real world situations. Nor do any of them take into account the type of road system, inaccessible areas, labor costs and site costs, etc., but even with these drastic restrictions the results could be useful, but it is the extreme exception rather than the rule when the computer program is made public [18].

Up to now, we have not even mentioned the very important case in which the elements to service are so numerous that they may be considered as part of a continuum with a given density per unit area. This is the case for example, of locating city service centers and is of very practical nature. Some approaches to this problem have been treated by Witzgall [56] in the case of a Manhattan metric of streets and perpendicular avenues, or in the case of a city beltway
and radial streets. For example, a computer program in FORTRAN was devised [57] to locate a central facility serving a polygonal demand distribution that is a superposition of many distributions each bounded by a polygon with constant density inside and vertices following in counterclockwise direction.


Fig. 61. Example of Polygonal Demand Distribution Location of Central Facility

The locational problem in Manhattan metric has a great potential application in optimal plant layout and has been studied, for example, by Bindschedler and Moore [5] [44] and a computer program devised by Armour [1] to mention just a few。

In our study we have always assumed a value of $m$, without knowing if it were the most appropriate and the one leading to an absolute minimum cost. Bender, Goldman and Levin [4] [39] have done some research in that area to find the necessary "degree of centralization" that is the optimum
number of centers to be located in a given area。
Our study was considering only a two-dimensional space with each facility bearing 2 attributes of cartesian coordinate location; however, in numerous practical problems of sorting and classification it is common to find elements with multiple characteristics. In taxonomy for example, $n$ species may be scored for $m$ characters. In these particular problems it is desirable to cluster large number of objects, symbols or persons into smaller numbers of mutually exclusive groups, each having members that are as much alike as possible. In two dimensional space our Euclidean distances represented the minimization of weighted sum of squares about the group mean. Similarly in multi-dimensional space we will consider the minimization of the function:

$$
C=\sum_{i=1}^{n} w_{i}\left[\sum_{j=1}^{m}\left(x_{1 j}-x_{i}\right)^{2}\right]^{\frac{1}{2}}
$$

and it represents the "loss of information" as reflected by the error sum of squares. This cluster analysis is very comm mon in social sciences, psychology, biology and marketing。 Much has been written on this subject but we will mention just a few [27] [2] [20]. The theory is very nicely covered by Cooper [14] and a selection of computer programs to solve this generalized locational problem are available [6] [49] [40].

Even though the amount of literature is impressive in the field of locational theory and spans over many centuries
of research little has been achieved. The geometric solution did not lead to anything of much value, the proof of a convergent algorithm has never been done completely [34] and the various investigative algorithms become rapidly impossible over few hundred facilities. The main goal of this dissertam tion was to decrease the computational requirement of some of the methods. The variable grid algorithms and the variable discrimination method allow the condensation of a very large set into a smaller one easier to manipulate. In the process of agglomeration some of the information is lost and the final solution may be only suboptimum; however, the result will be better than nothing at all. In multimdimensional problems the variable grid algorithms will also be applicable, the grid points will be multi-dimensional and the linear constraints will be changed into planes and hyperplanes; similarly the discrimination algorithm will have to screen through all the attributes to condense close points. Although we limited ourselves to discrete space and Euclidean distances, it would be a great engineering achievement to compile in an orderly manner all. the accomplishments in the field of locational theory into a set of tools directly and easily available to the practicing engineer, economist or social and government worker。

## BIBLIOGRAPHY

1．Armour，G。Co，＂A Heuristic Algorithm and Simulation approach to relative location of facilities＂，Unpubs lished Ph。D。Dissertation，Department of Industrial Engineering，University of Califormia at Los Angeles， 1961。

2．Bah，G。Ho，＂Data Analysis in the Social Sciences：What about the Details？＂，Proceedings－Fall Joint Computer Conference，Stanford Research Institute，Menlo Park， Califormia，1965．

3．Baumoly Wo Jo and P。Wolfe，＂A Warehouse Location Prob－ lem＂，Operations Research，V。G。，March－April， 1958 pp。252m258。

4。 Bender，Bo K．and $A$ 。J。Goldman，＂Optimization of Disa tribution Networks．Mathematical Development＂，Un－ published report \＃6930，National Bureau of Standards， July 13，1960。

5．Bindschedler，A．E．and J．M．Moore，＂Optimal Location of New Machines in Existing Plant Layouts＂，Journal of Industrial Engineering，12：1，January，1961，pp． 41－48。

6．Bonner，RoE。，＂Clustering Program＂，International Business．Machine Corporation，Yorktown Heights， New York，May，1964。

7．Brink，E．I．and J．S．De Cani，＂An Analogue Solution of the Generalized Transportation Problem with Specific Application to Marketing Location＂，Proceedings＝ First International Conference on Operational Re－ search，Wiley，New York，1961，pp．123－137．

8．Burstall，RoMo．RoA。Leaver and J。E．Sussams，＂Eval－ uation of Transport Costs for Alternative Factory Sitesoo．oA Case Study＂，Operational Research Quarterly， 13：4，December，1962，pp．345－354．

9．Cooper，$I_{0}$ ，＂An Extension of the Generalized Weber Prob－ lem＂，Unpublished paper，Washington University， School of Engineering and Applied Science，St．Louis， 1967．

10．Cooper，$L_{0}$ ，＂Heuristic Methods for Location－Allocation Problems＂，SIAM Review，6：1，January，1964，pp．37－53．

11．Cooper，$L_{0}$ ，＂Location－Allocations Problems＂，Operations Research，11：3，1963，pp．331－343．

12．Cooper， Les $_{\circ}$＂The Optimal Location of Facilities＂，School of Engineering and Applied Science，Washington Uni－ versity，St．Louis，E\＆AS Research，Number 1，April， 1969。

13．Cooper，$L_{0}$ ，＂Solutions of Generalized Locational Equi－ librium Models＂，Journal of Regional Science，7：1， 1967 。

14．Cooper，$L_{o}$ ，＂An n－Dimensional Extension of Locational Equilibrium Models＂，Unpublished paper，Washington University，School of Engineering and Applied Science， St．Louis，1968．

15．Courant， $\mathrm{R}_{\mathrm{o}}$ and H 。 Robbins，＂What is Mathematics＂， Oxford University Press，New York，1963．

16．Dean，W。H。Jro，＂The Theory of the Geographic Location of Economic Activities＂，Unpublished Ph。D。Disserta－ tion，Ann Arbor， 1938.

17．Devine，MoD。 and W。G。Lesso，＂Optimization Studies in the Development of Offshore Oil Fields＂，Unpublished report，Department of Mechanical Engineering，The University of Texas at Austin，1968。

18．Durbin，E。P。 and D。M．Kroenke，＂The Out of Kilter Algo－ rithm：A Primer＂，RAND Corporation Memorandum， RMm $5472 \omega \mathrm{PR}$ ，December，1967。

19．Eddison，R。 To，K。Pennycuick and B。H。P。Rivett， ＂Operational Research in Management＂，English Union Press，London，1962，Chapter 8。

20．Edwards，A。Wo and I。 I。 CavillimSforza，＂A Method for Cluster Analysis＂，Biometrics，21，June，1965，pp． 362－375。

21．Efroymson，$M_{0} A_{0}$ and $T_{0} L_{\text {。 }}$ Ray，＂A Branch－Bound Algo－ rithm for Plant Location＂，Journal of the Operations Research Society of America，Vol．14，No．3，May－aJune， 1966，pp．361－368。

22．Eilon，So and D。P。Deziel，＂Sitting a Distribution Center，An Analogue Computer Application＂，Management Science，Vol．12，No．6，February，1966，pp。B245－ B254。

23．Espenshade，E。B。Jro，＂Goode＇s World Atlas＂，Rand McNally \＆Company，Chicago， 1965.

24．Feldman，Eog FoA。Lehrer and T．I．Ray，＂Warehouse Loca－ tion under Continuous Economics of Scale＂，Management Science，Vol．12，No．9，May，1966，pp．670－684。

25．Ford，$L_{0}$ ． 。 and $D_{0}$ ．Fulkerson，＂Flows in Networks＂， Princeton University Press，Princeton，New Jersey， 1962。

26．Friedrich，C。Jo，＂Alfred Weber＇s Theory of Location of Industries＂，The University of Chicago Press，1929， pp．230－231。

27．Green，Po Eo，RoE。Frank and P。J。Robinson，＂Cluster Analysis in Test Market Selection＂，Management Science， 13：8，April，1967．

28．Greenhut，Mo，＂Plant Location in Theory and in Practice＂， University of North Carolina Press，1956。

29．Hadley，Gog．＂Linear Programming＂，Reading，Massachusetts， Addison－Wesley，1962。

30．Haley，K．Bo，＂The Siting of Depots＂，International Journal of Production Research，Vol．2，No．1，March， 1963，pp．41－45．

31．Hoover，$E_{0} M_{0}$＂Location Theory and the Shoe and Leather Industries＂，Unpublished Ph。D。Dissertation，Cambridge， Massachusetts，1937，pp。42－52。

32．Hoover，E．Mo，＂The Location of Economic Activity＂， McGraw－Hill Book Company，New York，1948．

33．Isard，Wo，＂Location and Space Economy＂，Technology Press， MoI。To，Cambridge，1956。

34。 Katz，$I_{0} N_{0}$ ，＂On the Convergence of a Numerical Scheme for Solving the Generalized Weber Problem and Some of its Extensions＂，Unpublished Report No．AM－68－4， Department of Applied Mathematics and Computer Science，Washington University，St。 Louis，1968。

35．Kuehn，A。A。 and M。J。Hamburger，＂A Heuristic Program for Locating Warehouses＂，Management Science，Vol．9， No．4，July，1963，pp．643－668．

36．Kuhn，HoW。 and R。E。Kuenne，＂An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics＂，Journal of Regional Science，4：2，1962，pp．21－33．

37．Launhardt，Wo，＂Matematische Begrundung der Volskswirtschaftslehre＂，Leipzig，1885．

38．Lehmer， $\mathrm{D}_{\mathrm{o}} \mathrm{H}_{\mathrm{og}}$＂Teaching Combinatorial Tricks to a Computer＂，Proceedings of Symposia in Applied Mathe matics，Vol．X，Combinatorial Analysis，American Mathematical Society。

39。 Levin，B。 $M_{\circ}$＂Optimization of Distribution Networks＂， Unpublished Technical Report No。 6930 of the National Bureau of Standards to the U．S．Post Office Department，July 13，1960。

40．Lingoes，J。Co，＂Multivariate Analysis of Contingencies： an IBM 7090 Program for Analyzing Metric／Non－Metric or Linear／Non－Linear Data＂，Unpublished Computation Report，University of Michigan Computing Center， June，1966。

41．Nanne，A．S．，＂Plant Location Under Economies－of－Scale－ Decentralization and Computation＂，Management Science， Vol．11，November，1964．

42．MoHose，A。Ho，＂A Quadratic Formulation of the Activity Location Problem＂，Journal of Industrial Engineering， 12：5，September，1961，pp．334－337．

43．Miehle，Wo，＂Link－length Minimization in Networks＂， Operations Research，March－April，1958，pp．232－243．

44．Moore,$^{\prime} J_{0} M_{\sigma}$ ，＂Plant Layout and Design＂，New York，The Macmillan Company，1962，p．39．

45．Moore，Jo Mo and M．R．Mariner，＂Layout Planning：New Role for Computers＂，Modern Materials Handling，18：3， March $_{9}$ 1963，pp。38－42。

46．Palander，$T_{0}$ ，＂Beitrage zur Standortstheorie＂，Almquist and Wikselts，Uppsala，Chapter IX，1935．

47．Palermo，F。Po，＂A Network Minimization Problem＂，IBM Journal of Research and Development，5，1961，pp．335m 337 。

48．Polya，$G_{0}$, ＂Induction and Analogy in Mathematics＂， Princeton University Press，1954，pp。145－146。

49．Rubin，Jo，＂Optimal Taxonomy Program（7090－IBM－0026）＂， International Business Machine Corporation，Program Information Department，Hawthorne，New York，1965。
50．Shycon，H．N。 and R。B。Maffei，＂Simulation－Tool for Distribution＂，Harvard Business Review，Vol。 41，No．6， November－December，1960，pp．65－74。

51．Stewart，D。W。Jro，＂The Development of a Quantitative Niethod for the Optimization of the Facilities Location Problem＂，Unpublished MoS。 Thesis，Georgia Institute of Technology，January，1963．

52．U．S．Post Office Department，＂First Class and Air Mail Volume Flow Information，Vol。 2，November 16－18，1965， Sectional Center to Destination State，Average Daily Pounds and Pieces＂，Unpublished report from the Rew search Branch of the Bureau of Transportation and International Services，Washington，$D_{0} C_{0}, 1965$.

53．Vergin， $\mathrm{R}_{0} \mathrm{C}$ 。 and J。 $\mathrm{D}_{0}$ Rogers，＂An Algorithm and Com－ putational Procedure for Locating Economic Facilities＂， Management Science，Vol。13，No。6，February，1967，pp。 B240－B253。

54．Weber，$A_{0}$ ，＂Uber den Standort der Industrien＂，Tubingen， 1909。

55．Wimmert，RoJo，＂A Mathematical Model of Equipment Loca－ tion＂，Journal of Industrial Engineering，Vol。9，No。6， November－December，1958，pp．498－510．

56．Witzgall，Co，＂Optimal Location of a Central Facility。 Mathematical Models and Concepts＂，Unpublished Tech－ nical Report No。 8388 of the National Bureau of Stan－ dards to the U．S．Post Office Department，June 30，1964。

57．Witzgall，C．，＂Computer Routines for Optimally Locating a Central Facility Serving a Polygonal Demand Distri－ bution＂，Unpublished Working Paper No。3－65 of the National Bureau of Standards to the U．S．Post Office Department，Project 4230450，January 7，1965。

58．Yassen，L．C．，＂Plant Location＂，American Research Council，New York，1958，pp． 220.

## APPENDIX

## COMPUTER PROGRAMS FOR THE LOCATION OF CENTRAL FACIIITIES

The following programs have been written in FORTRAN IV with control cards for the IBM $360 / 40$ or the IBM 1130 computers. Please refer to the comment cards to modify the dim mension statements according to the size of the problem. The input/output codes for $R($ Read ) and W(Write) should also be changed to fit the available computer connections. Note also the format input, and punch the data accordingly. The terminology of variables is given on the comment cards.

The appendix includes the following programs:

1 - Location of one central facility
1A - Location of one central facility in case of weight dominance

2 - Destination subset algorithm, one facility is used as central location

3 - Random destination subset algorithm
4 - Random grid location algorithm
5 - Random gxid with linear constraints
6 - Variable discrimination algorithm

ONE CENTRAL FACILITY
HEURISTIC ALGORITHM

C LOGATION OF ONE CENTRAL FACILITY
C DEFINITIUN OF MACHINE INPUT/OUTPUT : R READ
W WRITE
INTEGER R, $\because$
C CHANGE THF DIMENSIUN CARD IF MORE THAN IOJO FACILITIFS ARE GJVSIDEマEI;
DIMENS ION X (1000), Y(1000), XR(1000), XM(1000),0(1000),C(1000)
$R=5$
$W=6$
C READ N : NUMBER OF FACILITIES
REMARK : THE MACHINE WILL STGP AFTER ITER ITERATIONS IF OPTIMUM IS VOT Y REACHED
READ(R,IO)N,FRR,ITER
10 FORMATI $10, F 10.0,1101$

READ VARIABLES X(I),Y(I):CARTESIAN COORDINATES OF FACILITIES XR(I):TRAMSPDRT RATF ON FCUTE I XM(I): QUANTITY TU TRANSPORT ON ROUTE I
$\operatorname{REAO}(R, 20)(X(I), Y(I), X R(I), X M(I), I=1, N)$
20 FDRMAT (1OF7.0)
WRITE (H,30)N
30 FORMAT (IHL, / / $35 \mathrm{~K}, 15 \mathrm{HLOCATION}$ OF THE, [5, $2 \mathrm{X}, 10 \mathrm{HFACILITIES,//,24X}$,
121 HCARTESIAN COORDINATES, $3 X, 14$ HTEANSPORT RATE, $3 X, 11 H Q J A N T I T Y$ I,$/$,
$269 \mathrm{X}, 9 \mathrm{HT}$ : 2 ANSPORT, /, $27 \mathrm{X}, 1 H \mathrm{X}, 14 \mathrm{X}, 14 Y, 15 \mathrm{X}, 1 \mathrm{HR}, 14 \mathrm{X}, 1 \mathrm{Hi}, / / 1$
DO $40 \quad \mathrm{I}=1, \mathrm{~N}$
WRITE(W, 35)I, X(I), Y(I),XR(I), XM(I)
35 FORMAT (13X,2HI=, 15,FI3.3,F15.3,F14.3,F16.3)
40 CONTINUE
WRITE (W,50)
50 FURMAT (LHL,//,35X, 32 HLOCATION JF OVE CENTRAL FACILITY,/,3OX,
141 HCAKTESIAN COOROINATES - EUCLIDEAN SPACE, $/ /, 27 X, 1 H X, 14 X, 1 H Y$, $27 \times, 25 H T O T A L$ TRANSPORTATION COST.//)
$X B E L T=E R R+1.0$
$Y D E L T=E R R+1.0$
$K=1$
C COMPUTE STARTING VALUES OF CERTRAL FACILITY CODRDINATES: XC, YC
$S$ SRM $=0.0$
$S R M X=0.0$
$S R M Y=0.0$
DO $60 \mathrm{I}=1, \mathrm{~N}$
$R M=X R(I) \div X M(I)$
$S R M=S R M+R M$
$S R M X=S R M X+R M * X(1)$
$60 S R M Y=S R M Y+R M * Y(I)$
$X C=S R M X / S R M$
$Y C=S R M Y / S R M$
C COMPUTE EUCLIDEAN DISTANCES TO CENTRAL FACILITY
70 DO $80 \mathrm{I}=1, \mathrm{~N}$
$80 D(1)=\{((X C-X(1)) * * 2)+((Y C-Y(1)) * 52)) * * 0.5$
C
COMPUTE TOTAL TRANSPORTATION COST: SC
$S C=0.0$
DJ. $90 \quad I=1, N$
$\mathrm{C}(\mathrm{I})=\mathrm{XR}(\mathrm{I}) * \times M(I) \div \mathrm{D}(\mathrm{I})$
90 SC=SC+C(1)
95 IF ( 100-K) 106,106,100

```
 100 IF(XDELT-ERR)105,105,120
 105 [F(YUELT-ERR)100́,106,120
 106 WRITEIW,110IXC,YC,SC,K
 110 FORHAT(3X,15HLUCATION OF THE,/,3X,lGHCENTRAL FACILITY, 2X,F12.3,
 1F15.3,7X,E15.%,1, IX,GHAT THE,14,1X, MHITERATION)
 WRITE(W,115)
 115 FORMAT(1HIL,//,34X,34HDISTANCES AND TRANSPPRTATION COSTS,/,40X,
 123HTO THE CENTRAL FACILITY,//,35X,8HOISTANCE,IlX,
 219HTRANSPORTATION COST,//1
 DO 113 L=1,N
 WRITE(N,1lG)I,D(1),C(I)
 116 FORMAT(13X,2HI=,15,F23.3,F25.7)
 118 CDNT INUE
 GOT0 1000
 120 WRITE(W,130)XC,YC,SC
 130 FORMAT(2.1X,F12.3.F15.3,7X,E15.7)
C COHPUTE NEN values of CEfYral facility conrdivates: xCN,ycv
 SDENO=0.0
 SXNUM=0.0
 SYNUY=0.0
 DO 140 I=1,N
 DENU)=(XR(I)*XM(I))/D(1)
 SDEN(3:SUEN(O+DENO
 XNUM=DENG*X(I)
 SXNUM= SXNUM+XNUM
 YNU:|=DENO%Y(I)
 140 SYNUM=SYNUM+YNUM
 XCN= SXNUM/SDENO
 YCN=SYNUMISDENO
 XDELT=ABS(XCN-XC)
 YDELT=ABS(YCN-YC)
 XC=XCN
 YC=YCN
 K=K+1
 GO TU 70
1000 CALL EXIT
 END
```




LOCATIUN OF ONE CENTRAL FACILITY CARTESIAN COORDINATES - EUCLIDEAN SPACE
556.274
477.053
487.000
509.750
527.149
539.161
547.296
552.779
556.467
558.945
560.602
561.718
562.474
562.979
563.315
563.542
563.693
563.790
563.857
563.907
563.939
563.960
563.974
503.983
$Y$
323.658
141.980
88.940
70.027
50.731
50.929
45.5 .13
41.794
39.260
37.542
36.382
35.602
35.078
34.722
34.484
34.324
34.217
34.145
34.097
34.067
34.045
34.029
34.019
34.013

TOTAL TRANSPORTATIOV
COST

LOCATION OF THE CENTRAL FACILITY AT THE 24 ITERATION

24601.000 393.102
3587.384
2200.523
1007.80
451.077
1838.176
541.016
2452.504
274.691
0.021
523.017
423.990
556.792
553.967
555.848
549.552
558.789
546.115
552.462
544.653
559.305
545.803
557.005
586.965
490.621
4212.316 415.302
1283.760 332.043 451.963
703.061
358.096
689.536
347.031
526.362
338.698
562.608
8022.195
480.3 .59
350.271
309.282
114.357
202. 1.59
553.553
414.016
685.42 .3
246.503
1725.583
449.623


## ONE CENTRAL FACILITY

CASE OF WEIGHT DOMINANCE


# distances and transportation costs <br> to the central facility <br> distance <br> TRANSPORTATION COST 

```
I= 1 . 0.029
I= 2 7.016
 0.292
35.083
I= 3
10.096
30.288
```

C LOCATION OF DNE CENTRAL FACILITY

C DEFINITION OF MACHINE INPUT/DUTFUT: R REAO
C W WRITE
INTEGER R:G
C ChANGE THE DIMENSION GARD IF MORE THAN 50 FACIlities ARE CONSIGERED DIMENSION XI 503,Y1 501:XR: 501,XMI 50:
$\mathrm{R}=5$
$W=6$
READ(R.10)N
IO FORMATIT10)
C READ VARIABLES X(I), YIII:GARTESIAN GOORDINATES OF FACILITIES
XRTIG:TRANSPURT RATE CN ROUYE I
XMII : QUANTTTY TO YRANS PORT ON ROUYE I
READ(R,20)(XiI)\&Y(I)\&XR(I), XM(I),I=1,N)
20 FORMAT(4.F15.0)
WRITE (W.30)
 128HDESTINATION SUESET ALGORITHM\%/ $35 x^{\circ} 40 H O N E$ FACILITY IS USED AS C

 $415 \mathrm{X}, 1 \mathrm{HM}$, / 11
DO $40 \mathrm{I}=1 \mathrm{~N}$

35 FORMAT $(13 X, 2 H I=, I 5, F 13.3, F 15.3, F 14,3, F 16,3)$
40 CONTINUE
WRITE (W:50)
50 FORMAT(1HL,//,39X,32HLDCATION OF CNE CENTRAL FACILITY,/,35X.

2BSET ALGORITHA, $/ 35 \mathrm{~K}, 4 \mathrm{GHONE}$ FACILITY IS USED AS CENTRAL LOCATYOY,

- 3/1.26X, 28 HCENTRAL FACILITY GODROINATES, $6 \mathrm{~K}, 25$ HTOTAL TRANSPORTATIDN

CSAV $=0.0$
DO $100 \mathrm{~J}=1, \mathrm{~N}$
$C=0.0$
DO $60 \mathrm{I}=2 \mathrm{~N} \mathrm{~N}$
$D P=1((X(J)-X(I)) * * 2) *(Y(J)-Y(1)) * \% 2)) * * 0.5$

$C=C+D C$
60 CONTINUE
WRTTETW, (V)J万X(J),Y(J),C
70 FORMAT115X,2H3=,15,F14.3,F15.3,F25.31
IF(J-1) $80,90,80$
80 IFCC-CSAVI $50,100.100$
$90 \operatorname{cSAV}=\mathrm{C}$ $J S A V=J$
$100^{-}$continue
WRITE(H,110)JSAV, X (JSAV),Y(JSAY) +CSAV
110 FORMATI/,1X,16HCENTRAL LOCATION,/,3X, $2 H A T, 5 X, 2 H J=, I 5, F 14,3, F 15,3$,
1F25.35
CALL EXIT
END

LOCATIDN OF DNE CENYRAL FACILITY DESTINAYION SUBSET ALGORITHM DNE FACILITY IS USED AS CENTRAL LOCATION

CARTESIAN COORDINATES TRANSPORT RATE QUANTITY TO


LOCATION OF ONE CENTRAL FACILITY CARTESIAN COORDINATES - EUClidean space DESTENATIDN SUBSET ALGORTTMM ONE FACILITY IS USED AS CENTRAL LOCATION

			$\underset{X}{\text { RAL FAT }}$	$\begin{aligned} & \text { ORDINATE } \\ & Y . \end{aligned}$	TUTAL TRANSPORTA
	$\mathrm{J}=$	1	7.190	5.490	169.706
	$\mathrm{J}=$	2	9.070	9.940	250.014
	J	3	4.610	6.490	155.955
	$\mathrm{J}=$	4	4.940	8. 250	169.834
	$J=$	5	0.470	0.690	302.881
	J	6	6.180	3.570	177.446
	$\mathrm{J}=$	7	1.130	9.810	254.922
	$\mathrm{J}=$	8	6.000	4.360	165.387
	J=	9	8.230	8.060	198.313
	$\mathrm{J}=$	10	9.600	9.280	248.497
	$\mathrm{J}=$	11	3.460	9.680	208.24.4
	J=	12	2.310	0.390	274.667
	$\mathrm{J}=$	13	2.530	4.570	190.018
	$\mathrm{J}=$	14	40440	7.990	167.346
	$J \equiv$	15	8.530	1.460	254.522
	$\mathrm{J}=$	16	2.290	7.030	189.366
	$\mathrm{J}=$	17	8.830	7.120	203.038
	J=	18	2.620	9.410	213.579
	$\mathrm{J}=$	19	3.820	2.420	204.816
	$\mathrm{J}=$	20	7.550	1.970	225.713
CENTRAL LOCATİN					
AI	$J=$	3	4.610	6.490	155.955

MULTIPLE CENTRAL FACILITIES RANDOM DESTINATION SUBSET ALGORITHM


DNE: (I) $=0.0$
$\operatorname{COLD}(I)=0.0$
CNF:N(I) $=0.0$
JOSAV(!)=0
40 JNSAV(I)=0
$0045 \mathrm{~J}=1$, M
$\operatorname{IOSAV}(J)=0$
$45 \operatorname{INSAY}(J)=0$
SDULD $=0.0$
SDNEW=0.0
$S C O L D=0.0$
C ZERD ITERATION COUNTER
$K I T E R=0$
C DEFINITION DF CLASS INTERVALS FOR O TO 1 RANDUM NUMBER DEFIVIVG THE O TO V
C INTEGERS
$X N=N$
RAINC $=1.0 / X \mathrm{~N}$
DO $50[=1, N$
$X I=1$
50 RAD(I) $=X I$ FFAINC
C RANOOM generatir starting value
$I Y=21735$
C STARTING OF ITERATION COUNTER
60 KITER=KITER + 1
IF (KITER-ITERA) 70,70,275
C RAMDOA CHOICE DF M CENTRAL FACILITIES
70 DO $100 \mathrm{~J}=1 \mathrm{M}$
75 CALL RANDU(IY,IY,YFL)
DO 90 [ $=1$, A
IF (YFL-RAD(I) $180,80,90$
$\begin{aligned} 80 X C(J) & =X(I) \\ Y C(J) & =Y(I)\end{aligned}$
INSAV(J)=1
IF\{J-1)82,100, 82
$82 \mathrm{~K}=\mathrm{J}-1$
C CHECK THAT RANDOMLY CHOSEN FAこILITY HAS NOT BEEN ALREADY PICKED AS CEVTRAL
c LJCATION
D0 $34 \mathrm{KJ}=1$, K
IF (XC(J)-XC(KJ)) $100,83,100$
83 IF(YC(J)-YC(KJ)) $100,75,100$
84 CINTINUE
90 CONTINUE
100 CJNTINUE
C COMPUTE ARZAY OF EUCLITEAN DISTANEES TO RAVDOMLY CHOSEN CENTRAL FACILITIES
DO $110 \mathrm{I}=1, \mathrm{~N}$
DO $110 \mathrm{~J}=1, \mathrm{M}$
$110 \mathrm{D}(\mathrm{I}, \mathrm{J})=(1(X C(J)-X(I)) \% * 2)+((Y C(J)-Y(I)) * * 2)) * * 0.5$
c
FOR EACH FACILITY SELECT THE CLDSFR CENTRAL LOCATION (IF distavee is zerj
C
IT MEANS THAT THE FACILITY HAS BEEN CHOSEN AS CENTPAL LOCATIOVI
DU 17: $\mathrm{I}=1, \mathrm{~N}$
SHORT=I)(I, I)
$J=1$
0] $160 \mathrm{~K}=2, \mathrm{M}$

IF (D (I,R)-SHCRT) $150,160,150$
$150 S H O R T=D(I, K)$
$J=K$
160 CONTIN!F
DNENII = SHORT
CNEM(I)=XR(I)*XM(I) 1 ONEW(I)
JVSAV(I)=J
170 CONIINUE
C COMPIJTE SIM OF OPTIMAL DISTANCES AND TOTAL TRANSPBRTATIOV CJST
SDNE $=0.0$
SCN: $1=0.0$
$00130 \mathrm{I}=1$, N
SDNEN=SDNE W DNEN(I)
180 SC.NEN = SCNFW+CNEN(I)
IF(KITER-1) 190,190,210
C TITLE UF SECOND TABULATIDN
190 WRITE (4.200)
200 FIRAAT (1HL,//,37X,35HPANDOM DESTINATION SUBSET ALGORITHM, $/ 34 X$, 14 HOISTRIBUTION OF TDTAL DISTAVCES NND COSTS,//, $31 X, 9 H I T E R A T I J N$, $25 \mathrm{X}, 14 \mathrm{HSUM}$ OF GPTIMUM, $5 \mathrm{X}, 16 \mathrm{HSUM}$ OF TRANSPDRT, $1,32 \mathrm{X}$, GHNUMBER, 7 X , 39.10ISTANCES, $12 \mathrm{X}, 5 \mathrm{HCOSTS}, 1 / 1$

C BGDY OF SECOND TABULATION
210 WRITE W, 220)KITER,SDNEW, SCNEW
220 Firdat (30X, 17, 3X, E13.6.7X, E13.6)
C IF THIS IS THE FIRST ITERATION RFPEAT RANDOM GHOICE ANOTHER TIGE IF (SCOLD) $230,240,230$
C CHECK IF VEN CHOICE OF CENTRAL FACILITIES GIVES BETTER PESULTS
230 IF (SCNE - SCOLD $240,240,270$
240 SOOL J=SONE W
SCOL O=SCNEW
DO $250 \quad[=1, N$
$D O L O(I)=D N E: I)$
COLD(I) = CNEW: (I)
250 JOSAV(I) =JN:SAV(I)
$00269 \mathrm{~J}=1, \mathrm{M}$
260 IOSAV $(J)=1 M S A V(J)$
27060 T! 60
C. THIRD TABULATIUN: OPTIMUM ALLJCATION

275 जRITE(W, 290)[TERA
280 FORMAT (1H1,//, 37X,35HRANDDM DESTINATION SUBSET ALGORITHM,/,35X, 124HOPTIMUY ALLOCATION AFTER, I5, 1X, 10HITERATIDV5,/1, 35X,
$239 H C O D E ~ A N D ~ L U C A T I O N ~ O F ~ C E N T R A L ~ F A C I L I T I F S, ~ /, 45 X, 4 H C O D E, ~ 8 X, ~$
33HFACILITY, $/, 44 X$, GHNUM3ER, $8 X, 6 H N U M B F R, / / 1$
DO $295 \mathrm{~J}=1+\mathrm{M}$
WRITE(N,290) J,IDSAV(J)
290 FOR: 4 AT $(44 x, 2 H J=, I 4,8 X, 2 H I=, I 4)$
295 CDNTINUF"
VRITE(N,300)
300 FORMATI//,46X, 13HOPTIMUM ALLOCATIJV,//, 13X,19HFA G I L I T IS S, 110X, $16 H C E N T R A L ~ L O C A T I O N, S X, L 1 H D I S T A V C E T D, 7 X, 14 H T R A N S P O R T A T I J V, f ;$ $212 X, 6 H N U A B E R, 4 X, 21 H C A R T E S I A N$ COJRDINATES, $7 X, 4$ HCDDE, $11 X$, $316 H C E M T R A L$ LOCATION, $9 X, 5 H C O S T S, /, 25 X, 1 H X, 13 X, 1 H Y, / /)$
NQTTE(N, 310$)(1, X(I), Y(I), J O S A V(I), O O L D(I), C O L D(I), I=1, N)$


WRITE(N, 32015DOLD,SCOLD
320 FDRYAT $1 /, 62 X, 5$ HTOTAL,E14. $5,4 X, F 15.61$
CALL EXIT
END

LOCATION DF HULTIPLE CENTRAL FACILITIES RANDOM DESTINATIDN SUBSET ALGORITHM

## 3 CENTRAL FACILITIES 20 FACILITIES



RANOOM DESTINATIJN SUBSFT ALGORITHA DISTRIBUTION OF TOTAL DISTANCES AND COSTS

ITERATIGN SUM OF OPTIMIMM		
NUMBFR	DISTANCES	SUM DF TRANSPORT
		COSTS



RANDOM DESTINATION SUBSFT ALGORITHM OPTIHUM ALLDCATION AFTFR 500 ITFRATIONS

CODE AND LOCATION OF CENTRAL FACILITIFS

$J=$	1	$I=$
$J=$	2	$I 4$
$J=$	3	$I=17$

OPTIMUM ALLOCATION

NUMBER	$\begin{aligned} & \text { C I L I I T } \\ & \text { CARTESIAN } \end{aligned}$	$\begin{aligned} & \text { IE S } \\ & \text { COORDINATES } \end{aligned}$	central location CODE	DISTANEE TO CENTRAL LOCATIJV	TRANSPORTAT COSTS	TION	
	$X$	$Y$					
$I=1$	7.190	5.490	2	0.231225 E O1	0.452450 E	01	
$I=2$	9.070	9.940	2	0.283019 El	$0.566039 E$	01	$\bigcirc$
$1=3$	4.610	6.490	1	0.150960 E 01.	$0.301921 F$	01	
$I=4$	4.940	8.250	1	0.563560 E OO	$2.112712 E$		
$1=5$	0.470	0.690	3	0.377033 E 01	0.754066 F	01	
$I=6$	6.180	3.570	3	$0.262529 E 01$	0.525056 E	01	
$I=7$	1.130	9.810	1	0.377737501	0.755473 E	01	
$I=8$	6.000	4.360	3	0.291822E 01	$0.583644 E$	01	
$I=9$	8.230	3.050	2	0.111517 E O1	0. 2230345	01	
$I=10$	9.600	9.280	2	0.229314 E 01	0.458628 F	01	
$I=11$	3.460	9.650	1.	0.195359801	$0.390717 E$	01	
$1=12$	2.310	0.390	3	0.253002 E OL	0.505004 F	01	
$I=13$	2.530	4.570	3	$0.250731 E 01$	0.501462 E	01	
$I=14$	4.440	7.990	1	0.0	0.0		
$I=1.5$	8.530	1.490	3	$0.480093 E 01$	0.953137E	01	
$I=15$	2.290	7.030	1	0.235459 OL	0.470918 E	01	
$I=17$	8.830	7.12!	2	0.0	0.0		
$I=13$	2.620	9.410	1	0.230842501	$0.451684 E$	01	
$1=19$	3.820	2.42)	3	0.0	0.0		
$I=20$	7.550	1.970	3	0.375704 E OL	0.751409 E		

        INTEGER R, H
    CHANGE THE DMF NSIUN CARU IF MORE THAG 20 FACILITIES ADE
    OIMENSION X $201, y(201, \times R(201, \times 11201,0120,201$
DIMENSION DOLD (20), DNFW 20), COLD (20), CNEV( 20)
DIMENSIONJOSAVI 2O1,JNSAVT 201.2AD 201
C CHANGE THE DIMENSION CARD IF MJRF THAN 5 CENTRAL LOCATIONS MRF DESIPED
DIMENSION IOSAV (5), INSAVI 5), XC. 51 , YCO 51

DIMENSION XG(100), YG( 100 )
$R=5$
$H=6$
C TERAINJLOGY OF VARIABLES
C N : NUMEER OF FACILITIFS
C
MTER
:NUBER OF CENTPAL FACILITIES
: Number of iterations in ranjom searoh of facilities
IGRID : INITIAL NUMBER OF CRID DIVISIONS DN EACH X AND Y AXIS
ITGRD :NUMBER OF GSID SILE CAAVGES
INC :INCREMENTAL NUMEER GF DIVISIOVS JV EACH $x$ AYO Y AXIS WHEV
PASSING EROA DNE GRIO SIZE TO THF NEXT
XTI, Y(I):CARTESTAN CDORDTVATES UF FACILITIES
XR(I) :TRANSPORT RATE GN ROJTF: 1
XMII) : OUANTITY TO TRANSPORT ON ROUTE I
DOLD(I), DNFW(I):OL? AVD NEW EUCLI DEAN JISTAMCES FRTA FACILITY I TJ
DPTIMUM CENTRAL LOCATIOA
SDOLD, SDNE: : JLD ANG vEN SUM JF DISTANGES TO THF CENTRAL FACILITIFS
COTD(IT, CNEN(T):OLO AND NEN TRAVSOQTATION ZOSTS FRJM FACTLITY I TO
DPTIMAL CENTRAL LOCATION
SCOLD, SCNEN:OLD AND NEW SUR: GF TPANSPIRT COST TO THE CENTRAL FACILITY
JJSAVII), JNSAVII SOLD ANO NE GDDE VJMBE? ALLJCATION JE THE CACTLTYY
IGSAV(J), INSAV(I):OLD AVD NE: cone vigtor of the ravoovly selegten
central location
C

C
C
C

    C
    C
    C
c
C
$\stackrel{C}{C}$
$c$
6
RAINC :CLASS IIDTH ON CJMULATIVF DISTRIBUTIJM DE LOCATIOVS
RADII :CLASS BOUNDARIES OV CUMULATIVE DISTRIBUTION OF LOEATIONS
KITER : ITERATIOU CJUVTER
YFL :RANDUM NUMBER GET AFEN O AVD 1.000
XC(J),YC(J) :CARTESIAV CCJRDINATES OF RANDOMLY SELECTED CENTRAL
FACILITIES
DII,J) : EUGLIDEAN DISTANCES FRDM FACILITY I TO CEYTPAL LOCATION J
L :GRID SPACING COUNTER
XMIN,YMAX:MINIMU:A AND YAXIMJ: VALIFS TF X(I)
YMIN, YMAX:MINIMU AND MAXIMUN VALIES JF Y(II
READ(R,IO)N, Y, ITERA,IGRID,INC, ITGZO
10 FORMAT (ÓllO)
READ(R,20)(X(I),Y(I),XR(I), XVI(I),I=1, N)
20 FORMAT(4F15.0)
FIRST TAUJLATIOV: LIST GIVEN VARIABLES
WRITE(iN, 30)ITGRD, ITERA, IGRID, INC, M, N
30 FDRMAT(LHL, //, $35 \mathrm{X}, 39 \mathrm{HLOCATION}$ OF MULIPLE CENTPAL FACILITIES,/,
140X, 30HRANDOM GRID LOCATIJN ALGJKITH, $1 / 29 x, 13,1 x, 20$ GRID SPACING
 3F GRIO DIVISIONS, $14,4 x, 3$ SHOTVISION INCREMENTS PER GRID CHANGF , I 4 $4,71,43 \mathrm{X}, 13,1 \mathrm{X}, 13 \mathrm{HCENTRAL}$ FACILITIES,1,46X,I5,1X,1DHFACILITIES,//1 WRITE(N,32)
32 FORMAT $24 x, 2$ IHCARTESIAV CIORDINATES, $6 X, 14$ HTRANSPORT RATF, $3 x$,
TIHQUANTITY TO, 1,69 X, बHTRANSPORT, $1,27 \mathrm{X}, 1 \mathrm{HX}, 14 \mathrm{X}, 1 \mathrm{HY}, 15 \mathrm{X}, \mathrm{LHP}, 14 \mathrm{X}, 1 \mathrm{H}$ :
2,11)
DO $36 \quad \mathrm{I}=1, \mathrm{~N}$
WRITE (W,35) $\mathrm{i}, \mathrm{X(1),Y(I),XR(I),XM(I)}$
35 FORMAT (10X,3HI $=, 15,4(4 X, F 11.31)$
36 CONTINUE
C GRID CUUNTER SET FIR FIRST GRID INVESTIGATION
$\mathrm{L}=1$
C DEFINE X MAXIMUM; Y. MAXIMUA
$X M A X=X(1)$
DO $80 \quad I=2, N$
IF(XII)-XMAX) $80,80,70$
$70 \mathrm{x} \because \mathrm{A} \overline{\mathrm{x}}=\mathrm{x}(1)$
80 CONTINUE
$Y$ MAX $=Y(1)$
D0 $100 \mathrm{I}=2, \mathrm{~N}$
IF(Y(I)-YMAX)100,90,90
90 YMAX=Y(1)
100 CONTINUE
C DEFINE $X$ AINIMUA, $Y$ MINIMIM
XMIN $=X(1)$
DO $120 \quad 1=2, \mathrm{~N}$
IF(X! ! ! - XMIN $1110,120,120$
$110 \times M I N=X(I)$
120 cont inve
YMI:N=Y(1)
Do $140 \mathrm{I}=2, \mathrm{~N}$
IF(Y(I)-YMIN) $130,140,140$
$130 \mathrm{YMIN=Y(I)}$
1.40 CONTINUE

C DEFINE RANGE OF $X$ AND $Y$
RANGX $=X$ MAX $X$ MIN
RANGY = YMAX-YMIN
C COMPUTE NJMBER JF GRID INIERSECTIJV OJIVTS
150 NBER = IGRID+1
$N G=(N R E R) \div 2$
C CHECK IF NUMEER OF GRID INTEFSECTION ?OINTS IS LARGE EVJUGA
IF (NG-M) $160,160,170$
160 IGRID $=1 G R I D+I N C$
6010150
C DEFINE GRID SPACING
170 GRID $=1$ GRID
XIMC=RANGXTGTD
YINC=RANGY/GRID
C DEFINE GRID INTERSECTION DIINTS
DO 1 万O $1=1$, NBER
I $\mathrm{X}=\mathrm{I}-1$
DO $180 \mathrm{~J}=1$, NBER
$X K=J-1$
$K=J+I X * N B E R$
$X G(K)=X M I N+(X K * X I N C)$
180 YG(K) $=$ YMIN+IIX FYINC)
c zero all computational variaeles
DO $50 \quad \mathrm{I}=1, \mathrm{~N}$
DOLDTI $=0.0$
DNEN(I) $=0.0$
$\operatorname{COLD}(I)=0.0$
CNEM(I) $=0.0$
Josav(I) $=0$
$50 \operatorname{JNSAV}(1)=0$
$0060 \cdot \mathrm{~J}=1 \mathrm{M}$
$\operatorname{IOSAV}(J)=0$
$60 \operatorname{INSAV}(J)=0$
SDOLD $=0.0$
SDNEW=0.0
$S C O L D=0.0$
SCNEN=0.0
C ZERO ITERATION COUNTER
KITER=0
C DEFINITIUN OF CLASS INTERVALS FUR O TO I RAVDUM NIMBER DEFIVING THE
C O TU.NG INTEGERS
XNG=NG
RAINC $=1.01$ XNS
$00 \quad 190 \quad[=1$,NG
$x I=1$
190 RAD(I) =XI*RAINC
C RANDOM GENERATDR STARTING VALUE
$I Y=21735$
C.STARTING OF ITERATIUN GOUNTER FJR A GTVEN GRID

200 KITEF $=$ KITEF +1
IF(KITER-ITERA) $210,210,39:$
C RANOUN CHOICE OF M GENTRAL FACILITIES RAM TiHE VG G?ID OOIVTS
$210002.40 \mathrm{~J}=1 \mathrm{~m}$
215 CALL RANDUIIY,IY,YFL)
DO $230 \mathrm{I}=1$, NG
IF (YFL-RAD(1))220,220,230
$220 \times C(J)=X G(I)$
YC(J)=YG(I)
INSAV(J) $=$ I
IF(J-1) 222,240,222
C CHECK THAT RANODALY CHOSEN GRIO POINT HAS NDT BEEN ALREADY PICKEO AS
C CENTRAL LOCATION
DO $224 \mathrm{KJ}=1, \mathrm{~K}$
IF(INSAV(J)-INSAV(KJ))240,215,240
224 CONT INUE
230 CONTINUE
240 CONTINUE
C COMPUTE ARRAY OF EUCLIDEAV DISTAVCES TO RANDIMLY CHOSEV CENTRAL FACILITTR
DO $250 \quad \mathrm{I}=\mathrm{IN}, \mathrm{N}$
DO 25i J=1,M
$2500(1, J)=((1 \times C(J)-X(1)) * * 2)+((Y C(J)-Y(I)) * * 2)) * * 0.5$
$C$ FOR EACH FACILITY SELECT THE CLOSER CEATRAL LOCATION

DO $280 \quad \mathrm{I}=1, \mathrm{~N}$
SHORT $=D(I, 1)$
$J=1$
DO $270 \mathrm{~K}=2, \mathrm{M}$
IF(D(I,K)-SHORT) 260,270,270
260 SHORT $=$ D $(1, K)$
$J=K$
270 CONTINUE
-DNEH(I) = SHORT
CNEN(I)=XR(I)*XM(I)*DNEW(I)
JNSAV(1)=J
280 CONIINUE
C COMPUTE SUM OF OPTIMAL DISTANCES AND TOTAL TRANSOORTATION GGST SDNE $N=0.0$
SCNEW $=0.0$
DO $290 \quad I=1, N$
SONEA=SJNEW+DNEW(I)
290 SCNET=SCNEW+CNEN(I)
IF(KITER-1) $300,300,320$
C TITLE OF SECOND TABULATION
300 WRITE(W,310)

14IHDISTRIZUTION DF TOTAL DISTANGES AND COSTS, /1, $31 \times$, QHITERATIRN,
$25 \mathrm{X}, 14 \mathrm{HSUA}$ UF OPTIMUM, 5 X, L GHSUR OF TRAVSPORT,, 3 ? X, SHMJABER, 9 X ,
39HDISTANCES, $12 \times$, 5HCOSTS, //1
C BOOY OF SECOND TABULATION
320 WRITE(W, 330 )KITER, SDNEN, SCNEW
330 FURMAT(30X,I7,9X,E13.6,7X,E13.6)
C IF THIS IS THE FIRST ITERATICN DEPEAT RANDOM CHIIEE AVOTYER TIME
[F(SCULD) $340,350,340$
C . CHECK IF VEW CHOICE OF CEMTRAL FACILITIES OTVES BETTER RESUTS 34.0 IF (SCNEN-SCOLD) $350,350,330$

350 SDOLO = SDNE $N$
SCOLD=SCNEN
DD $360 \quad \mathrm{I}=\mathrm{I}, \mathrm{N} \cdots$
OOLD(I)=DNEW(I)
COLD(I) =CVEW (I)
360 JOSAV(I) = JNSAVIII
DO $370 \mathrm{~J}=1$, M
$370 \operatorname{IOSAV}(J)=\operatorname{INSAV}(J)$
380 GO TO 200
C THIRD TABULATION: OPTIMUM ALLOCATION
390 WRITE (W, 400 )L, ITERA
400 FORMAT(1H1,//,40X,30HRANOOM GRID LOCATIOV ALGORITHM, $1,40 X$,
I2BH]PTIMUM ALLOCATION ON GR[1) H, I $3,1,45 X, 5 H A F T E R, I X, I 4, I X$,
2 LOHITERATIONS,//, 35X,39HCODE AND LICATION JF CEVTRAL FACILITIES,/, $333 X, 11 H C O J E$ NU:ABER, $10 X, 21 H C A R T E S T A N$ COORDINATES, $1,57 X, 1 H X, 14 X, 1 H Y$,

## 4/7)

$00.415 \quad \mathrm{~J}=1$; M
$J J=\operatorname{IJSAV}(J)$
WRME(W,410)J,XG(JJ),YG7JJ)
410 FOR:HAT $(34 X, 3 H J=, 14,9 X, F 11.3,4 X, F 1 L .3)$
415 CONTINUE
WRITE(W,420)
 110X, LOHCEVTRAL LOCATIDN,SX, $11 H O I S T A N C E T O, 7 X, l 4$ TTRANSPORTATIJV,/, 212X, GHNUM3ER, $4 X, 21 H C A R T E S I A N ~ C O J R D I V A T E S, ~ \exists X, 4 H$, JJE, $11 X$, $316 H C E N T R A L$ LOCATION, $9 \mathrm{X}, 5 \mathrm{HCOSTS}, /, 25 \mathrm{X}, 1 \mathrm{HX}, 13 \mathrm{X}, 1 \mathrm{HY}, / / 1$
WRITE(N,430)(I, X(I),Y(I),JOSAV(I), DOLD(I),CCLD(I), I=I, N)
430 FTRMAT $11 x, 3$ HI $=, 14,2 x, F 11,3,3 x, F 11,3,7 x, 13,10 x, 16,6,4 x, E 15.51$ WRITE(W,435) SDOLD,SCOLS
435 FORMAT $/ /, 52 \times, 5$ HTOTAL, E14. $6,4 X, F 15.51$
C CHECK IF ALL GRIO CHANGES HAVE BEEV DJNE
IF(L-ITGRD) $440,450,450$
$440 \mathrm{~L}=\mathrm{L}+1$
G) 10160

450 CALL EXIT
END

## LOCATION OF MULTIPLE GFNTRAL FACILITIES

RANDOM GRIO LOCATIOM ALGORITHM



## RANDOM GRID LOCATION ALGORITHY UPTIMUM ALIOCATION ON GRID \# 1 <br> AFTER IOO TTERNTTONS

CODE AND LOCATION OF CENTRAL FACILITIES
CODE NUABER CAPTESIAN CODRDINATES
$X$

$J=$	1	6.557	5.757
$J=$	2	3.513	0.390
$J=$	3.513	3.940	



RANDOM GRIE LOCATIDN ALGORITHM DISTRIBUTION OF TOTAL DISTANCES AND EOSTS



RANDOM GRID LOCATION ALGORITHY DISTRIBUTION JF TJTAL DISTANEES AND COSTS

JTERATIGN NUMBER

SUM OF IPTIMUM DISTAMCES

SUM TF TRANSOORT. COSTS

1	0.854513 F 0 ?	0.170923 E 03
2	0.663508 F 02	0.132702 F 03
3	0.798092 E 0?	$0.159619 \% 03$
4	0.601718 F 02	0.120344 F 03
5	0.751462 C ?	0.150293 E
6	0.593459 E 02	0.118592803
7	$0.572+55 \mathrm{E}$ ? ?	0.134491 F 03
8	0.594032 O	0.118306 E 03
9	0.764203 E 22	0.152841503
10	0.896103 E 9?	.0.177221F 03
11	0.336593 E O?	0.167339 E 03
12	0.863575 E 02	0.172715 F 03
13	0.940181 E 22	0.193036 F 03
14	0.054055 E 0?	0.132731
15	0.912603 F 02	0
16	0.771455 O?	
17		
18	0	
19		



RANDOM GRID LOCATION ALGORITHY
OPTIMUM ALLOCATION ON SRID \# 3

## AFTER 100 ITERATIONS

CODE AND LOCATION JF CENTRAL FACILITIES
CODE NUMBER CARTESTAN COOROINATES
$x$
$\gamma$

$J=$	1	0.470	9.940
$J=$	2	4.122	2.300
$J=$	3.774	8.050	

OPTIMUM ALLOCATION


RANIOM GRID LOCATION ALGORITHM
DISTRIBUTIUN OF TOTAL DISTANCES AND COSTS

		$\begin{array}{r} -143162 E 03 \\ 0.115648 \mathrm{O} 03 \end{array}$
	3t 02	0.153768 E 03
	0.635449 O ?	$0.127090 E^{0} 3$
	0.730849 E 02	$0.146170 \mathrm{E}^{0} 3$
85	0.717667 F 0 ?	$0.143534 \mathrm{E} \quad 03$
87	0.712331502	0.142456 F 93
88	$0.613199 E 02$	$0.122540 E 03$
89	0.738285 E 02	$0.147657 E 03$
90	0.716677602	0.143336 E 03
91	$0.717867 E 02$	$0.143534 E 03$
92	0.720453 E 02	0.144391 E 03
93	0.645050 E 02	$0.129212 F 03$
94	0.654171 F 02	$0.130334 E 03$
95	0.731503 E 02	0.146301503
96	0.814407 EO 02	0.152982 E 03
97	0.716134 E 02	$0.143227 E 03$
98	0.634033 E 02	0.126807503
99	0.731541 E 02	0.145308 E 03
100	0.585288 E 02	0,117053E 03

RANDOM GRID LOCATION ALGORITHM OPTIMUM ALLOCATION ON GRID $\quad 4$ AFTER 100 ITERATIONS

CODE AND LOCATIDN DF CENTPAL FACILITIES
COEE NUMAER CATRTESMANCODRDMATFS
X
$Y$

$J=1$	3.513	5.757
$J=$	2	0.959

OPTIMIUN ALLOCATION



RANDOM GRID LOCATION ALGORITHM
OPTIMIJ ALLOCATION ON GRID H:5

## AFTFR IOO ITERATIOIS

CODE AND LOCATION OF CENTPAL FACTLITIES CODE NUMBER CAITESTAN COORDINATES
$X \cdots Y$

$\qquad$




```
 21 FORMAT(2I10)
 DO 23 KC=1,NC
 RENO(R,22)KC,11,12
 22 FORMAT(3110)
 C ANGULAR COEFFICIENT OF LINEAR CONSTRAINT
 A(KC) =(Y(L1)-Y(I2))/(X(1)1)-X(12))
 C ORDINATE AT ORIGIN OF LINE CONSTRAINT
 23B(KC)=Y(I1)-A(KC)*X(I1)
 c first tabulation: list given.variables
 WRITE(H, 3O)ITGRD,ITERA,IGRID,INC,M,N.
 30 EORMAI/IHL,/L,35X,39HLOCATIDN DE NULIIPLE CENIRAL EACIIITIES,/,
 140X,30HRANDOM GRID LDCATION ALGOHITHM,/,43X,23HUITH LIINEAR OONSTPA
 2INIS,/1,29X,I3,1X,20HGRID SPACINS, CHANGES,
```



```
 4F GRID DIVISIUNS,I4,4X,3GHDIVISIJN INCREMENTS PER GRID CHANGE ,I4
 5,//,43X,13,1X,18HCENTRAL FACILITIES,/,46X,I5,1X,10HFACILITIES,///
 URITE(A,32)
 32 FORMAII24X,2IHCARTESIAN COJRDINATES,GX,14HTRANSDORT RATE, 3X,
 111HQUANTITY TO,/,69X,9HTGANSPORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HY
 2,-11)
 DO 36 I=1,N
 WRITE (W,35) I,X(I),Y(I),XR(I),XM(I)
 35 FORMAT (10X,3HI =, 15,4(4x,FLL.3))
 36. CONTINUE
 WRITE(N%40)
 40 FORMAT (/LL,46X,HBHLLNEAR COVSTRNLVTS,/N
 DO 43 KC= 1,MC
 WRITE(N,42)KC,A(KC),KC,B(KC)
 42 FORMAT (22X,2HY(, 13,3H)-,E14.6,5H* XI,13,23H) LESS THAN 2R EOUA
 1LTO,E17.6)
 43 CONTINUE
 00-45-KC=2GM,NO
 WRITE(W,44)KC,A(KC),KC,B(KC)
 44 FORMAT {22X,2HY(,13,3H) -,E14.6,5H* X(,I3,2GH) GREATER THAN OR E
 LQUAL TB, EL4,6)
 45 CONTINUE
 G GRID COUNTER SET FOR FIRST GRID INVESTIGATION
 L}=
 C DEFINE X MAXIMUA, Y MAXIMUM
 XMAX=X(1)
 00-80 I =2,N
 IF(X(I)-X,MAX)30,80,70
 70 XNAX=X(I)
 80 CONTINUE
 YMAX=Y(1)
 DO 100 I=?,N
 LE(Y(I)-Y:AAX)100_90_90
 90. YMAX=Y(I)
 100 CONTINUE
 OEEINE X MIAIMLLL, y MINIMUM
 XMIN=X(1)
 DO 120 I=2,N
 IF(X(1)-X:1H4)110,120,120
```

```
 110 XMIN=X.(I)
 120 CONTINUE
 Y:4IN=Y(1)
 DO 140 I=2,N
 IF(Y(I)-YMIN) 1 30, 140,140
 130 YALLEY(I)
 140 CDNTINUE
 C DEFINE RANGE DF }X\mathrm{ AND Y
 RAVGX=XMAX-XMSN
 RANGY=YMAX-YMIN
C COMPUTE NJMBER UF GRID INTERSECTIJN PDINTS
 150 NBER=IGRIO+1
 NG=(NBER)}\because%
C CHECK IF NUMBER OF GRIM INTERSECTION POINTS IS LARGE ENOUGH
 IF(NG-M)100,160,170
 160 IGRID=IGRID+INC
 GO TO }15
 C DEFINE GRID SPACING
 170 GRIO=IGRID
 XINO=RANGX/GRID
 YINC=3ANGY/GRID
C DEFINE GRID INTERSECTION OOINTS
 DO 130 I=1,NSER
 Ix=1-1
 DO 180 J=1,NQER
 XK=J-1
 K=J+IX*NBEP
 XG(K)=XMIN+(XK*XINC)
 180 YG(K)=YMIN+(IX*YINC)
C TEPIL ALL COMPUTATICIVAL VARIABIFS
 DO 50 I= ,N
 DOLO(I)=0.0
 DEN(I)=0,0
 COLD(I)=0.0
 CNEW(I)=0.0
 JOSNV(I)=0
 50 JNSAV (I)=0
 DO 60 J=1,M
 InSAV(J)=0
 60 INSAV (J)=0
 SDOLD=0.0
 SDNEW=0.0
 SCOLD=0.0
 SCNEN=0.0
C ZERO ITERATION COUNIER
 KITER=0
C DEFIMITION OF CLASS INTERVALS FOR O TO I RANDUM NUMBER DEFINING THE
C O IO NG INTEGEES
 XNG=NG
 RAING=1.O/XNGG
 OD 190 IEI,NO
 XI=I
 190 RAD(I)=XI*PAINC
 RANDOM GENERATRR SIARIING VALUE
```

$1 \mathrm{Y}=21735$
C. STARTING OF ITERATION COUIVTER FOR A GIVEN GRIO
$200 K I F E B=K I E R+1$
IF\{KITER-ITERA1210,210,39
C RANDUM CHOICE OF M CENTRAL FACILITIES FROA THE NG GRID POINTS $210-20-240 \quad \mathrm{~J}=1, \mathrm{~N}$
215 CALL RANDU(IY,IY,YFL)
DO $230 \quad \mathrm{I}=1$, NG
JF 1 VFL-2AD(1) $) 220,220,230$
c CHECK THAT RANDOMLY CHOSEN GRID POINTS SATISFY THE LINEAR CDNSTRAIMTS
C CONSTRAINTS LESS THAN OR EQUAL TO
220 DO $1220 \mathrm{Kr}=1 \mathrm{MC}$
ERROR=(YG(I)-A $(k C) \div X G(I) 1-B(K C)$
IF(ERROR) $1220,1220,215$
1220 CONTINUE
c CONSTRAINTS GREATER THAN DR EQUAL TO
DO $1222 \mathrm{KC}=\mathrm{FACL}$, NC
FRPOR=(VG(L)-A(KC)
IFIERROR1215,1222,1222
1222 CiJntinue
$X C(J L=X G(1)$
$Y C(J)=Y G(I)$
INSAV(J) $=1$
IE (J-L) $222,-240,222$

## $222 k=J-1$

$c$
CHEGK THAT RANDOMLY CHOSEN GRIO POINT HAS NOT BEEN ALREADY PICKEU AS CENTEAL LINCATLON
DO $224 \mathrm{KJ}=1, \mathrm{~K}$
IF(INSAV(J)-INSAV(KJ))240,215,240
-224 CONIINUE
230 continue
240 CONTINUF
COMOUTE AREAY OE EUGLIDEAY DSTANCES TG RINDOMLY SHOSEN FENTOA EAGHITIE
DO $250 \mathrm{I}=1, \mathrm{~N}$
DO $250 \mathrm{~J}=1 \mathrm{in}$

C FOR EACH FACILITY SELECT THE CLOSER CENTRAL LOCATICN
DO $280 \quad I=1, N$
SHORT $=0(1,+1)$
$\mathrm{J}=1$
DO $270 \mathrm{~K}=2, \mathrm{M}$
IE(OU(I,K)-SHORT)260,270,270
$260 \operatorname{SHORT}=\mathrm{D}(1, K)$
$J=K$
270 CUNIINUE
DNEN(I) = SHORT
CNEW(I)=XR(I)*XM(I)*DNEN(I) JNSAV(1) $=\boldsymbol{J}$

## 280 CONTINUE

COMPUTE SUM OF UPTIMAL DISTANCES AND TOTAL TRANSPORTATION COST SONEM $=0.0$
SCNEW=0.0
DO $290 \quad \mathrm{I}=1, \mathrm{~N}$
SONELESONEW+DNE:IU

290 SCNEW = SCNE $k+$ CNEW(I)
IF (KITER-1) $300,300,320$
C IITLE UE SECUND TABULAIION
300 WRITE(W,310)
310 FORMAT $1 / \mathrm{HI}, / /, 40 \mathrm{X}, 30 \mathrm{HRANDOM}$ GRID LOCATION ALGORTTHM,/,43X, 123H*IIH LINEAR COMSIRAINTGALL,34X,
24IHOISTRIBUTION OF TOTAL OISTANCES AND COSTS,//, $31 X$, GHITFRATIDN,
 4 GHDISTANCES, $12 \times$. 5 HCOSIS. 111
C BODY OF SECOND TABULATION
320 WRITE (W,330)KITER,SDNEW,SCNEW

C IF THIS IS THE FIKST ITERAIICN REPEAT RAVDOM CHOICE ANDTHER TIME IF(SCOLD)340, 350,340
C CHECK IF AFWCHOLCE OF CFNTRAL EACHIIIES GIVES BEITER BESMIS
340 IF(SCNEN-SCULD) $350,350,330$
350 SOOLD=SDNEW
SCOLD $=$ SCAEM
DO $360 \quad 1=1, N$
DOLO(I)=0NEW(I)
COLDIL =CNEWLU
360 JOSAV $(1)=$ JNSAV(I)
DO $370 \mathrm{~J}=1$, i4
370 IOSAV(J)=INSAV(J)
380 GO TO 200
C THIRD TABULATION: OPTIAUA ALLOCATION
390 WRITE (H, 400)L, ITERA
400 FORMAT ( $141, / /: 40 \mathrm{X}, 30 \mathrm{HR}$ ANDOM GRID LOCATION ALEORITHM, /,43X,
123 HiMITH LINEAR CONSTRAINTS, //,40X,

3LOHITERATIUNS, //, 35X,39HCUDE AND LOCATION OF CENTRAL FACILITIES,/, $433 \mathrm{x}, 11 \mathrm{HCODE}$ NUMBER, $10 \mathrm{X}, 2$ LHCARTES IAN COORDINATES, $1,57 \mathrm{x}, 1 \mathrm{HX}, 14 \mathrm{X}, 1 \mathrm{Hy}$, 5/11
DO $415 \mathrm{~J}=1$, M
$J J=1 \operatorname{OSAV}(J)$

410 FORMAT $(34 x, 3 H J=, 14,9 x, F 11,3,4 x, F 11,3$ )
415 CUNTINUE
WRIIE $\left(H_{1}, 420\right)$
420 FORMAT///, $46 \mathrm{X}, 18$ HOPTIMMM ALLOCATIUN,//,I8X,19HFAC [ L I T I F. S, 110X, 16 HCFNTRAL LUCATION, $6 X, 11 H D I S T A N C E T O, 7 X, 14 H T R A N S P O R T A T I O V, I$,

$316 H C E N T R A L$ LOCATION, $9 X, 5 H C O S T S, /, 25 X, 1 H X, 13 X, 1 H Y, 1 / 1$
WRITE $(W, 430)(1, X(I), Y(I), J O S A V(I), D O L D(I), C O L D(I), I=1, N)$

WRITE (W,435)SOOLO,SCOLD
435 FORMAT (/, 62X,5HTOTAL, E14.6,4X,E15.6)
CHECK IE ALI GRID CHANBES $4 A V E$ BEEV DONE
IF(L-ITGRD)440,450,450
$440 L=L+1$
60 Ta 160
450 CALL EXIT
END

5 GRID SPACING CHANGES
100 ITERATIUNS PER GRID
INITIAL NUMBFR OF GRID DIVISIONS 3

3 CENTRAL FACILITIES
20 FACHITIES

CARTESIAN COORDINATES $\qquad$ IRANSPORT RATE OUANTITY TO
TRANSPORT
$X$

$\begin{aligned} & 1= \\ & 1= \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 7.190 \\ & 9.070 \end{aligned}$	$\begin{aligned} & 5.490 \\ & 9.940 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.000 \\ & 2.000 \\ & \hline \end{aligned}$	
$1=$	3	4.610	6.490	1.000	2.1000	
$I=$	4	4.940	8.250	1.000	2.000	
$1=$	5	0.470	0.690	1.000	2.100	
$\mathrm{I}=$	6	6.180	3.570	1.000	2.000	
$\mathrm{I}=$	7	1.130	9.310	1.000	2.000	
$1=$	8	6.090	4.360	1.000	2.000	A)-
$I=$	9	8.230	8.000	1.000	2.000	$\stackrel{\sim}{\sim}$
$1=$	10	9.600	9.280	1.000	2.1000	
$1=$	11	3.460	9.680	1.000	2.000	
$1=$	12	2.310	0.390	1.000	2.000	
$1=$	13	2.530	4.570	1.000	?:00n	
$1=$	14	4.440	7.390	1.000	2.000	
$\mathrm{I}=$	15	8.530	1.490	1.000	2.000	
$I=$	16	2.290	7.030	1.000	2.000	
$1=$	17	8.830	7.120	1.000	2.000	
$1=$	18	2.620	9.410	1.000	2.000	
$1=$	19	3.820	2.420	1.000	2.000	
$1=$	20	7.550	1.970	1.000	2.020	


$\begin{aligned} & 1= \\ & 1= \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 7.190 \\ & 9.070 \end{aligned}$	$\begin{aligned} & 5.490 \\ & 9.940 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.000 \\ & 2.000 \\ & \hline \end{aligned}$	
$1=$	3	4.610	6.490	1.000	2.1000	
$I=$	4	4.940	8.250	1.000	2.000	
$1=$	5	0.470	0.690	1.000	2.100	
$\mathrm{I}=$	6	6.180	3.570	1.000	2.000	
$\mathrm{I}=$	7	1.130	9.310	1.000	2.000	
$1=$	8	6.090	4.360	1.000	2.000	A)-
$I=$	9	8.230	8.000	1.000	2.000	$\stackrel{\sim}{\sim}$
$1=$	10	9.600	9.280	1.000	2.1000	
$1=$	11	3.460	9.680	1.000	2.000	
$1=$	12	2.310	0.390	1.000	2.000	
$1=$	13	2.530	4.570	1.000	?:00n	
$1=$	14	4.440	7.390	1.000	2.000	
$\mathrm{I}=$	15	8.530	1.490	1.000	2.000	
$I=$	16	2.290	7.030	1.000	2.000	
$1=$	17	8.830	7.120	1.000	2.000	
$1=$	18	2.620	9.410	1.000	2.000	
$1=$	19	3.820	2.420	1.000	2.000	
$1=$	20	7.550	1.970	1.000	2.020	

$Y$
$R$
4

## LINEAR CONSTRAINTS



RANDOM GRID LOCATION ALGORITHM WITH LINEAR CONSTRAINTS

## DISTRIBUTION OF TOTAL DISTANCES AND COSTS

ITERATIUN SUM IE GPTIMIM SUM OF TRAUSDQRT


MUMBER

COSTS

RANDOM GRID LOCATION ALGORITHM
WITH LINEAK CONSTRAINTS

```
OPTIMUM AlIOCATION ON GRID # l
```

    AFTER 1 JO ITERATIONS
    CODE AND LOCATION DF CFNTRAL FACIIITIES
CODE NUMBER CARTESIAN COOROINATES

$1=1$	3.513	6.757
$J=$	6.557	3.573
$J=3$	6.557	6.757

OPTIMUM ALLOCATION


RANDOM GRID LDCATID'N ALGORITHY WITH LINEAP CONSTRAINTS

## OISTRIBUTIUN OF TGTAL DISTANCES AND COSTS

LTERAIION SUM OF OPIIMUM SUM OF TRANSRIRT

## NUMBER

distances
casts


```
OPTIMUM ALLOCATION ON GRID # 2
```

    AFTER 100 ITERATIONS
    

OPTIMUM ALLDGATION


RANOOM GRID LOCATIOY ALGORITHY WITH LINEAP CUNSTRAINTS

DISTRIBUTION OF TOTAL DISTANCES AND COSTS

LIERATIDN
NUMBER

Su: De netimum DISTANCES

SUM OE TRANSDOET cosis

$0.1449808 \quad 03$


## OPTIMUM.ALLOCATION ON GRID \# 3

AFTER 100 ITERATIONS
CODE AND LDCATION OF CENTRAL FACILITIES CODE NUMBER CARTESIAN CGORDINATFS
x

| $J=$ | 1.774 | 8.030 |
| :--- | :--- | :--- | :--- |
| $J=$ | 2.296 | 6.120 |
| $J=$ | 5.948 | 2.300 |

OPTIMUM ALLOCATION


## RANDUM GRID LOCATIOV ALGORITHY with linear constraints

## distribution if total distances and costs

ITERATLIN SUM OF OPTLMLM SUM OF TRANSRORT

## NUMBER

costs

1	0.656294E 0?	0.131259203
2	0.543087 E 02	0.108613 E 03
3	0.552535 E 02	0.112507 E 03
4	0.676936 F 02	0.135387 E 03
5	0.616904 E 02	0.123391503
6	0.620587502	0.124117E 03
7	0.633277 E 02	0.126655 E 03
8	0.738285 E 02	0.147657 E 03
9	0.735985502	0.147657 E 03
10	0.597720 F 02	$0.119544 E 03$
11	0.708013 E 02	$0.14160 .3 \mathrm{E} \quad 03$
12	$0.633277 E 02$	$0.126655 \mathrm{E}-03$
13	0.669555 E 02	$0.1339{ }^{\circ}$
14	0.628177 E 02	
15	0.538699E 02	
$\begin{array}{ll} 16 \\ 17 & 0.6979 \end{array}$		



```
OPTIMUM ALLOCATION ON GRID # 4
```

    AFTER 100 ITERATIONS
    CODE ANO LOCATION OF CENTRAL FACILITIES CODE NUMBER CARTESIAN CODRDINATES

$J=$	1	3.513
$j=$	2.000	1.982
$J=$	6.557	3.573

OPTIMUM ALLOCATION


RANDOM GOID LOCATION ALGORITHM WITH LINEAR CONSTEAIMTS

DISTRIBUTIUN OF TUTAL DISTANCES AND COSTS
ITERAILON SUM OE OPTIMUA SUM OF TRANSPORT
NUMBEP
DISTANCES
COSTS



```
UPTIMUH. ALLOCATION UN GRID #
 AFTER 100 ITERATIONS
```

    CODE ANO LOCATIUN OF CENIRAL FACILITIFS
    CODE NUMBER CAKTESIAN COOROINATES
    \(Y\) V \(V\)
    | $j=1$ | 2 | 3.070 |
| :--- | :--- | :--- |
| $j=$ | 8.296 | 7.211 |
| $j=$ | 8.296 | 4.483 |

OPIINUM ALLOCATION

NUMBER	AC LIITIES CARTESIAN COORDINATES	Central lucation CODE	DLSTANCE TO CENTRAL LOCATIOV	TRANSPOPTATION COSTS	
$1=1$	$7.190 \quad 5.490$	2	0.149564 F 01	0.209129 OL	N
$1=2$	$9.070 \quad 9.940$	2	0.551 .180 F 01	0.110236502	
$I=3$	$4.610 \quad 6.490$	1	0.169265 F 01	0.338569 F 01	
$1=-4$	$4.940 \quad 8.250$	1	0.213156 E 01	0.426312 F 01	
$I=5$	$0.470 \quad 0.690$	1	0.702379 Ol	$0.140476 E$ O?	
$I=6$	6.180 . 3.570	2	0.230424501	$0.460849 \mathrm{~F} \mathrm{O1}$	
$1=7$	$1.130 \quad 9.310$	1	$0.32: 800101$	0.6496005 01	
$I=8$	6.000 4.360	2	0.229399 FOL	0.459789501	
$I=9$	$8.230 \% 8.060$	2	0.357774 E 01	0.715549 E 01	
$L=10$	Q.600 - $\quad .200$	2	0.407129 OL	0.0742585 01	
$\mathrm{I}=11$	$3.460 \quad 9.680$	1	0.249787 E 01	0.499573 F 01	
$1=12$	$2.310 \quad 0.390$	1	0.636453 E 01	. 0.137292502	
$I=13$	$2.530-4.570$	1	ก. 2607T0F 01	-0.530558F 01	
$I=14$	$4.440 \quad 7.990$	1	0.156833 E 01	$0.313667 E 01$	
$I=15$	$9.530 \quad 1.490$	2	0.300201 E 01	0.600402 F O1	
$\underline{L}=16$	$2.290 \quad 7.030$	1	0.809171F On	0.161834501	
$I=17$	$8.830 \quad 7.120$	2	0.269072 F 01	0.538145 F 01	
$I=18$	$2.620 \quad 9.410$	1	0.224589 F 01	0.449177\% 01	
$I=19$	$3.820-2.420$	1	0.484.845E 01	ก,069690 0.01	
$1=20$	7.550 1.970	2	0.26211.7FO1	D. 524234 F 01	
			$10.641018 E 02$	0.129704E03	

VARIABLE DISCRIMINATION ALGORITHM AGGLOMERATION OF A LARGE SYSTEM

```
1/ JOB T
1/ FOR
** R.CHAPELLE KS-02399
*IOCS(CARD, 1132 PRINTER, DISK)
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM
C VARIABLE DISCRIMINATION ALGORITHM
 SPRING 1969
C AGGREGATION OF A LARGE SYSTEM OF NI FACILITIES INTO A SET OF N2
C. TERMINOLOGY OF VARIABLES
C R -READ/INPUT
C W -WRITE/OUTPUT
C NI NUMBER OF ORIGINAL FACILITIES
N2 EXPECTED NUMBER OF CLUSTER
C N EFFECTIVE NUMEER OF CLUSTERED FACILITIES
CllSCR DINANGE OF AGGLOMERATION,XIII OR Y(I) + OR O DISCR
THE NEIGHBORHOOD OF N2
C_XII)Y(IIOCARTESIAN COORDINATES OF FACILITIES
C XR(I) GTRANSPORT RATE ON ROUTE I
C
C
C
C
C.KN
 INTEGER R&W
C CHANGE THE DIMENSION CARD IF MORE THAN 125 FACILITIES ARE CONSIDERED
 DIMENSION X(125),Y(125),XR(125):XM(125),ISAV(125)
C DIMENSION OF JCH=KN=(N1/N2)*5, OF JSAV=NIC=2*NI
 DIMENSION JCH(301,JSAVI 250)
 R=2.
 W=3
 READ(R,IO)NI,N2,NERR,NLOOP,DISCR,DINC
 10 FORMAT(4I10:2F10.0)
 DO 25 I=1,N1
 READ(R,20)X(I),Y(I),XR(I),XMSI)
 20 1ORMAT (4F15.0)
 25 CONTINUE
 C FIRST TABULATION. LISTING OF KNOWN VARIABLES
 WRITE(W,3OIN1
 30 FORMAT(1H1,//,35X,33HVARIABLE DISCRIMINATION ALGORITHM,/,31X,
 124HLOCATION OF THE ORIGINAL,I5,2X,IOHFACILITIES,//,24X,21HCARTESIA
 2N COORDINATES,6X,14HTRANSPORT RATE,3X,11HQUANTITY TO,1,69X,9HTRANS
 3PORT,/,27X,1HX,14X,1HY,15X,1HR,14X,1HM,/1/
 WRITE(W,40)(I,X(I),Y(I),XR(I),XM(I),I=1,NI)
 40 FORMAT(13X,3HI =,15,F13.3,F15.3,F14.3,F16.3)
 C SECOND TABULATION. HEADING
 WRITE(V:50)N1,N2,NERR
 50 FORMAT(1H1,33X,33HVARIABLE DISCRIMINATION ALGORITHM,1,35X,
 113HCLUSTERING OF,15,2X,1OHFACILITIES,/,39X,4HINTO,15,7H + OR -,15,
 21%
 LOOP =0
 6 0 ~ L O O F = L O O P + 1
 DO 61 I= 1,N1
```

R。CHAPELLE RS-02399
$61 \operatorname{ISAV}(1)=1$
C CLUSTERING OF FACILITIES
DO $120 \mathrm{I}=1, \mathrm{Nl}$
$X S T=X(I)-D I S C R$
$X F I N=X(I)+D I S C R$
$Y S T=Y(I)-D I S C R$
YFIN=Y(I)+DISCR
DO $110 \mathrm{~J}=1, \mathrm{~N} 1$
1F!I-J165,110,65
65 IF $(X(J)-X S T) 110,70,70$
70 IF(X(J)-XFIN) $80, ? 0,110$
80 IFiY(J)-YST)110,90,90
90 IF $(Y(J)-Y F I N) 100,100,110$
$100 \operatorname{ISAV}(J)=I$
110 CONTINUE
120 CONTINUE
COUNTING PROCEDURE OF CLUSTERS, UP TO STATEMENT 186
$150 \mathrm{~N}=0$
$I C=0$
NIC $=2 * N 1$
DO 152 IBC=1,NIC
$152 \mathrm{JSAV}(I B C)=0$
$153 \mathrm{KN}=(\mathrm{N} / \mathrm{N} 2) * 5$
C. EXAMINATION OF EACH CLUSTER AND CHECK. THE CHAIN LINKS
$\begin{array}{lll}D O & i 86 & J=1, N 1 \\ D O & 154 \quad \mathrm{KM}=1, \mathrm{KN}\end{array}$
$154 \mathrm{JCH}(\mathrm{KM})=0$
C CHECK THAT $J$ IS NOT ALREADY PART OF A CHAIN, IF IT IS, DO NOT COUNT IT
DO 156 NS $=1$, NIC
IF(J-JSAV(NS)) $156,186,156$
15E CONTINUE
$158 \mathrm{~K}=1$
$J C H(K)=J$
$J N=J$
$160 \mathrm{JCH}(\mathrm{K}+1)=1$ SAV (JN)
IF $(K-1) 166,162,166$
162 IF (JCH(1)-JCH(K+1))164,174,164
164 GO TO 168
$166 \mathrm{IF}(\mathrm{JCH}(\mathrm{K}-1)-\mathrm{JCH}(\mathrm{K}+1) 1168.174,168$
$168 \mathrm{~K}=\mathrm{K}+1$
IF (K-KN) $172,172,169$
169 WRITE $(W, 170)$
170 FORVAT $10 X, 69 H E R R O R$. INCREASE DIMENSION OF JCH AND MODIFY STATEMEN
1T 153 ACCORDINGLY)
$172 \mathrm{JN}=\mathrm{JCH}(\mathrm{K})$
GO TO 160
C SAVE ALL JCH LARGER THAN J, INTO JSAV.
$K 1=K+1$
$00134 \mathrm{IN}=1, \mathrm{KI}$
IF, JCH(IN)-J)184,184,176
176 I $C=1 C+1$
IF(IC-NICI182,182,178

```
 R.GHAPELLE.RS-02399
 PAGE
 178 WRITE(W,180)
 180 FORMAT(1OX,34HERROR. INCREASE DIMENSION FOR JSAV)
 182 JSAV(IC)=JCH(IN)
 184 CONT INUE
 186 CONTINUE
C CHECK IF PROPER CLUSTERING HAS BEEN OBTAINED
 INCN=IABS(N2-N)
 IF(INCN-NERR)213,213,210
 210 IF(NLOOP-LOOP)211.211,220
 211 URITE(W,212)
 212 FORMATI 31X:3ЯHDESIRED CLUSTERING HAS NOT BEEN REACHED,/;27X,
 146HMODIFY THE VALUES OF DISCR OR DINC ACCORDINGLY,//1
 GO TO 215
 213 WRITE(W,214)
 214 FORMAT(}33\times,35HDESIRED.CLUSTERING HAS BEEN REACHED,//
 215 WRITE(W,216)
 216 FORMAT(2IX,8HFACILITY,10X,2IHCARTESIAN COORDINATES,IIX,9HCLUSTERED
 1,/,23X,4HCODE,15X,1HX,14X,1HY,11X,13HWITH FACILITY,///
 WRITE(W,217)(J,X(J),Y(J),ISAV J),J=1,N1)
 217 FORMAT(2IX,3HI =,I5,F17.3,F15.3,II6)
 |RITE(W,218)N,DISCR
 218 FORMAT (///,29X,32HTOTAL NUMBER OF CLUSTERED POINTS,19,1,29X,33HOBT
 IAINED WITH A DISCRIMINATIONOF,F803)
 GO TO 250
 NODIFY DISCRIMINATING POWER ACCORDING TO THE VALUE OF N
 220 IF (N2-N) 230,213,240
 230 OISCR=OISCR+DINC
 GO TO 60
 240 DISCR=DISCR-DINC
 GOTO 60
 250.CALL.EXIT
 END
```

    UNREFERENCED STATEMENTS
    150 153 158
    FEATURES SUPPORTED
        ONE WORD INTEGERS
        IOCS
        CORE REQUIREMENTS FOR
    COMMON 0 VARIABLES 1442 PROGRAM 1062
    END OF COMPILATION


240

$1=$	47	38.122	97.961	1.000	2.000
$1=$	48	39.000	94.343	1.000	2.000
$1=$	49	39.859	40.672	1.000	2.000
$\square \square$	50	40.759	30.872	1.000	2.000
$=$	51	41.993	53.322	1.000	2.000
$\mathrm{I}=$	52	42.646	92.783	1.000	2.000
$\mathrm{I}=$	53	42.890	74.764	1.000	2.000
$=$	54	43.467	13.996	1.000	2.000
$1=$	55	44.015	3.139	1.000	2.000
$1=$	56	44.348	16.637	1.000	2.000
$=$	57	45.184	81.644	1.000	2.000
$=$	. 58	46.254	47.356	1.000	2.000
$1=$	59	46.631	60.987	1.000	2.000
1/	60	4.7 .720	39.255	1.000	2.000
C) 12	51	48.729	54.781	1.000	20000
1 $1=$	52	48.925	11.619	1.000	2.000
1 =	63	49.418	19.348	1.000	2.000
$=$	64	50.859	61.171	1.000	2.000
$1=$	65	51.528	81.927	1.000	2.000
1 =	66	52.484	34.79 .5	2.000	2.000
$\cdots$ \%	67	53.038	30.206	1.000	2.000
1.	68	53.817	13.795	1.000	2.000
$\mathrm{I}=$	69	54.209	96.220	1.000	2.000
$=$	70	55.251	74.346	1.000	2.000
$1=$	71	55.964	51.487	1.000	2.000
1 =	72	56.811	16.526	1.000	2.000
	73	57.471	24.758	1.000	2.000
I. $=$	74	58.101	51.645	1.000	2.000
$=$	75	59.486	43.301	1.000	2.000
$1=$	76	60.131	20.236	1.000	2.000
$1=$	77	61.636	31.000	1.000	2.000
सPCl $=$	78	62.898	84.788	1.000	2.000
$1,=$	79	64.300	88.995	1.000	2.000
12.	80	65.281	35.586	1.000	2.000
$1=$	81	65.936	87.652	1.000	2.000
$1=$	82	67.288	79.207	1.000	2.000
$1=$	83	67.849	80.892	2.000	2.000
$\cdots$, $1=$	84	$68 \cdot 450$	$32 \cdot 725$	1.000	2.000
$1=$	8.5	59.222	60.011	1.000	2.000
$\stackrel{\square}{\square}$	86	70.068	18.799	1.000	2.000
$1=$	87	70.850	52.394	1.000	2.000
$1=$	88	71.326	53.823	1.000	2.000
$1=$	89	72.056	62.293	1.000	2.000
$1=$	90	73.376	16.223	1.000	2.000
Q $-1=$	91	74.074	62.067	1.000	2.000
ㄴ, $\square \bigcirc$	92	74.892	58.270	1.000	2.000
$1=$	93	75.505	10.108	1.000	2.000
$\mathrm{I}^{\prime}=$	94	75.616	10.442	1.000	2.000
$1=$	95	76.083	18.093	1.000	2.000
1 =	96	76.792	38.968	1.000	2.000
$1 \pm$	97	77.804	10.756	1.000	2.000
	98	78.551	56.747	1.000	2.000
i =	99	78.845	7.628	1.000	2.000
1	00	79.736	91.551	1.000	2.000
$1=$	01	79.853	79.402	1.000	2.000



VARIABLE DISCRIMINATION ALGORITHM

## CLUSTERING OF 125 FACILITIES

 INTO $50+O R-30$
## dESIRED CLUSTERING HAS BEEN REACHED




244


[^0]| $1=$ | 99 | 78.845 | 7.628 | 97 |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 100 | 79.736 | 91.551 | 100 |
| I | 101 | 79.853 | 79.402 | 103 |
| $1=$ | 102 | 80.241 | 99.316 | 102 |
| $1=$ | 103 | 80.962 | 76.480 | 101 |
| I = | 104 | 81.397 | 46.533 | 106 |
| 1 = | 105 | 82.071 | 54.807 | 98 |
| $1=$ | 106 | 82.304 | 49.257 | 104 |
| $I=$ | 107 | 83.214 | 64.486 | 111 |
| $1=$ | 108 | 84.436 | 30.651 | 112 |
| I $=$ | 109 | 85.342 | 27.120 | 112 |
| 1 = | 110 | 85.744 | 65.825 | 111 |
| $1=$ | 111 | 87.325 | 64.317 | 110 |
| $=$ | 112 | 88.250 | 29.594 | 118 |
| $=$ | 113 | 89.058 | 75.768 | 114 |
| I $=$ | 114 | 90.167 | 79.096 | 113 |
| $\mathrm{I}=$ | 115 | 90.824 | 31.067 | 118 |
| $1=$ | 116 | 91.503 | 8.102 | 116 |
| 1 $=$ | 117 | 92.115 | 53.690 | 121 |
| $\mathrm{T}=$ | 118 | 92.770 | 30.653 | 115 |
| $I=$ | 119 | 93.921 | $2.85 \%$ | 119 |
| $1=$ | 120 | 94.357 | 91.666 | 120 |
| $1=$ | 121 | 94.810 | 55.524 | 117 |
| $=$ | 122 | 96.087 | 40.6005 | 123 |
| $1=$ | 123 | 96.813 | 42.783 | 122 |
| $\mathrm{I}=$ | 124 | 97.891 | 77.267 | 124 |
| $1=$ | 125 | 98.426 | 10.120 | 125 |


[^0]:    TOTAL NUMBER OF CLUSTERED POINTS
    75
    OBTAINED WITH A DISCRIMINATION OF 5.000

