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ABSTRACT

This study deals with the optimization of locgtion
of multiple central facilities in a 1arge_system of depen- -
dent elements connected by communication links,

This problem is of major importance in the location
of service‘facilities, The function to optimize is a mini-
mizatiqn of link costs due to time delay or connection ex;
penses,

The case of small systems with one central 1ocatioh
is a timeéhbnored problem_sol#ed in the case of Buclidean
distancés by analog; geometric and numerical methods. The
exact solution of the problem in a closed and explicit form
has not yet been found, It often deals with the problems
of industries or warehouses or communication center loca-
tions connected by straight links, and it has been exten-
sively studieq by Launhardt, Weber,‘Isard:and Cooper to
mention a few, Other investigators have considered the case
of a Manhattan metric in which thé connecting links are
perpendicularvsegmenms; and the results are tentatively
applied to plamt or city layouts.

The case of.lérge systems and multiple centrai

locations leads to excessive computing efforts often im-
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possible even on the largest computers, Some algorithms are
available but are somewhat inflexible, It is for this reason
that new algorithms were developed; the variable grid algo-
rithms and the variable discrimination algorithm, Whatever
the size of the system, the combination of these algorithms
allows a possible and rapid location of central facilities
wiﬁhin;the constraints of computer time and memory expen-
diture. A complete study and programming of these algorithms
are presented_to allow direct application by the engineer or
the economist, Some possible applications to the Post Office
Department are shown for the location of the sectional cen-
ters serving the numerous post offices of any given state.

It is shown that those algorithms may be extended to
n dimensional space and can be used to large cluster anal-

ysis,
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I.1. LOCATION OF CENTRAL FACILITIES
CHAPTER I
INTRODUCTION

Generalities

Our physical, social and economical behavior depends
on a set of networks: biologicailnetworks to control our
thoughts and motions; social networks allowing interchange
of ideas and generation of actions, and economical networks
to sustain our wants and distribute our goods.

These networksvare limited in connection richness
and flow capacity, To connect various elements of the sys-
tem it may take time and it may generate cost, We are fa-
miliar with the old adage that "time is money", a more ap-
propriate statement should be distance is money.

For the housewife it takes time to go shopping,
time to take the children %o school, time to prepare the
dinner, For the engineer it takes time %o materialize an
‘idea into a design; time to do some market research, time to
analyze a feasible production method, time to receive the
material, time to route it through the plant, time to eval-

1



2
uate, organize, implement, We behave to create a comfortable
balance with our environﬁent, but it takes time to respond
to environmental changes because of spatial limitation in our
information network and a delayed reaction might be uncom-
fortable or even fatal,

Distance is the constraining element in most of our
actions, The daily commuter complains about the long ride to
work, the housewife considers that the shopping center is too
far from home, that the kitchen is poorly laid out; the child
does not appreciate the long walk to school on.a chilly
morzing., The postman would prefer a shortér route, the fire-
man less hufry'on a long stretch, the salesman less territory
to cover and the wounded less distance to the hospital, The
industrialist would like the markets to be situated close
to the resources, the store manager would offer a better ser-
vice if the warehouse were a block from his retail store, the
weatherman could be more accurate if the data gathering sta-
tion were in his backyard, the engineer more inventive if a
well futnished library were in his office énd more effective
if he could communicate readily without aﬁblgulty with his
staff of foremen in the shop or salesmen in the field,

It takes %ime and eff rt bee ause of distances, mesm
;sages are aistorted anﬁ goods are scarce because of long net-
Awork brandheS'with constrained capac1ty,. The problem of tlme‘
is cften a prcblem of space and the prqblem of Space a prob-

lem of location.
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uate, organize, implement, We behave to create a comfortable
balance with our environment, but it takes time to respond
to environmental changes because of spatial limitation in our
information network and a delayed reaction might be uncom-

fortable or even fatal.

Distance 48 raining element in most of our
2lains about the long ride to

work, the k i I - A the shopping center is too

J.2 shorter route, the fire-
man less huriy '~, the salesman less territory
to cover and the WOK'V 1] distance to the hospital. The
industrialist would like the markets to be situated close
to the resources, the store manager would offer a better ser-
vice if the warehouse were a block from his retail store, the
weatherman could be more accurate if the data gathering sta-
tion were in his backyard, the engineer more inventive if a
well furnished library were in his office and more effective
if he could communicate readily without ambiguity with his
staff of foremen in the shop or salesmen in the field.

It takes time and effort because of distances, mes-
sages are distorted and goods are scarce because of long net-
work branches with constrained capacity. The problem of time

is often a problem of space and the problem of space a prob-

lem of location,
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In all our previous examples we had these constraints
because of space requirements, It takes time to think and
act because our nervous system is formed of multiple paths of
finite lengths, traversed by pulses c¢f finite velocity, we
have a finite number of neurones with finite number Qf inter-
commections., The computer manufacturer has quickly realized
the importance of space on the computation time of their
machines, and made their circuits with microelements. With
our brain we must be able to control the writing on this
page or the movement of our foot; the computer may have to
drive a printer as well as disc packs or tape reels, To
minimize message transmission to tape outputs it is wise to
think that a central location of the main processor would be
advisable, Nature has furnished us with a central processor
shrinking nervous paths into some of our mental processes but
also peripheral processes for our reflexes, In the operation
of our processing system we must ingest some input'data or
raw materials, for example the design problem we expect to
solve requires the use of a book in fluid mechanic at the
University library, a similar design has been used on a ma-
chine in Japan, a technical study of this machine has been
published in Russia. Similarly the computer may have to use
a magnetic tape in the computing room, punch card readers
from the manufacturing plant, light pen oscilloscopes from
the various engineering departments, punched tape transmitted

by teletype from remote terminals across the country., It is
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a problem of space allocation to define the location of our
laboratory in function of the available literature and ex—
pertise on the subject., It is a problem of space alloca-
tion to install our computer at the right place so as to
minimize message delays and cost of wiring and transmission,

In a manufacturing environment for example the eco-
nomic factor of time is often a disguised problem of space.
Labor and overhead costs accumulate with time and it takes
time for procurement of raw material, time to transform
the input into finished products, time to move parts from
one work station to another, time to move carriages, slides,
tables, spindles, tools into working position, time to
gather components to assemble a final product, It takes
time because new materials must be produced in distant
markets, the tools must be moved along a cutting path, the
assembly components must be handled from the storage bins.
To minimize time is to minimize the space transport of
materials or messages., This is the problem of plant loca-
tion with respect to raw material input and market output
for the finished product. Plant layout deals with the
problem of geometrical arrangements of machines and men to
decrease distances, and motion study tries %o simplify
work station to reduce body displacements and fatigue.

In a2 community environment we rély on a multitude
of county, state, or national service agencies, Their

location should allow a rapid contact in case of need.
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Who cares ébout én excellent fire department if our house has
time to burn to the ground while the fife truék is on the
'road; who likes a modern hospital so far out thap the patient
may die en route? o minimize time we must minimize space.
This is clearly evident in our modern societies in the tre-
mendous raté of growth of urban communities and high-rise
'buildingszhere space is hopefully condensed so as to sim-
plify our constant communications, The city service agen-
cies cater to the people and they must be situated so as to
please the largest number of citizens by a correct»location.
of their premices. However, no city is independent, no
countiy,is autonomous and the optimum location of a facility
will be differenf if we are only concerned with a restricted
environment or of the whole possible interconnections, *‘Ser-
vice agencies respondent to many cities or many countries
are péit»of avvery large systenm énd the optimum location
of center minimizing transmission time of message or*goodé
deals with a multitude of elements,
. | Therefore the problems of location that we consider
to tackle in this dissertation are closely related to the
theory of graphs and circuits, to the theory of flow and
transportation and to the theory of information., We will
limit thié study to the location of central facilities and
thé‘porreSponding rationalupluStéring of satellites which
will be serviced in the oﬁtimum manner within the physical

or economical constraints imposed on the system.
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I.2. Plan of Study

In the general problem we define the location of n
elements with their respective requirements or supplies.
These n elements are involved in transaction with a set
of m elements,

The set of n elements may be restricted in size
and the elements sufficiently apart to consider space as
discrete; on the other hand, the set may be extremely large
and the n elements so closely located that a measure of
density in this continuous space will have to be intro-
duced.

The set of m elements may be a subset of the n
elements or may be a completely different set,

To the transaction is affixed a figure of merit:
time, distance, cost, etc.,, which must be optimized by the
proper choice of the set of m elements with respect to
their location, constraints of capacity, characteristics of
the connecting channels and economic constraints,

When a central facility must be reached by de-
pending satellites, the means of connection may be direct
along geometric straight lines, This is the case, for ex-—
ample, of airfreight with straight paths between the central
suppliers and the various cities, the case also of tele=-
communication between central emitters and related

receptors, etc,
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Quite often in prastice the tranéportatidn network
between central facilities“and-related elements must be done
through a maze of streets, roads and sinuous paths, At the
scale of a city the comnecting links may Sé a succession of

perpendicular streets andvavenues that a citizsn, for ex-

;*;;mampleg must follow to reach the closest post office, At

the scale of ‘the United States it is a set of road elements.
often oriented North-South and East-West, that a dslivery'.
truck must drive to reach the city of the retsil store. In
a plant it is the nicely aligned aisles along which are
lined the machines and which are crisscrossed by forklifts
T-sfssﬁher material handling equiphenﬁ,

Our n elements not only have spatial character-
istics but thej‘may have a somplete vector of charactér—
istics and we might be interssted not in the location of
various central facilities but in the:grouping of'elements _
with nearly similar entities, We are no longer dealing in
space allocation but in cluster analysis or entity alloca-
tion, .

Our investigation could therefore consider various
1sve1s of complexity. We could 1ook.first.at a discrete
space with an interconnscting network of straight lines
between satellite elements and qsntral facilities, In this
Euclidean space we would study the location of'ene central
facility deserving few elements then we would ex#end our

study to the problem>of multiple central locations. -We
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could note the poss.fble expansidn to an N dimensional space

.by a br:.ef mentlon of clusters.

We could then tackle the

_problem of a Ma.nhattan space of intersecting s’creets and

avenues or a network of roads. properly aligned along longi~-

tude and latitude.-

- We could,'the_n consider the case of a

dense set of elements to be served in a continuous space of

given density,

Table 1 represents most of the possible

combinations which may occur in locational theory,

(or clusters)

Space Discrete ‘9 | Continubus '

(elements ' (large number)

" to serve)

Central One , Multiple
Facilities

, Manhattan, Sinuous

Distances Buclidean ‘
’ 1 dimensional Paths :
N dimensional
Transactions Equal- o Unequal
Constraints Constrained - , Unconstrained:
Table 1. Location~Allocation Problems

This dissertation cannot deal -with all the possible

_ combinations of problems presented in the figure above; there-

fore, some areas will be emphasized at the expense of otheérs

‘and the conclud:.ng chapter will show possible areas for future

resea;rch. :
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_ The optimal location of central facilities is an age-
old problem which attracted many mathematicians of reknown
since the 17th century; however; the simplified assumptions
lead to mathematical models which do not really apply to some
common complex situations, In our large communities and at
the scale of our country it is rare to find only one cen-
tralized facility serving the individuals. Cities have many
fire stations; states have many central post offices,
countries have multiple centralized data gathering and dis-
tributing locations, With the advent of the computer, )
heuristic solution of the locational problem becomes possible
but we are still limited in our theoretical study by the im-
mensity of the problem, Flexible heuristic algorithms for

very large systems will be emphasized to allow direct appli-

cation by the engineer or economist,

I.3. Applications

Un—_ T}

A tentative tabulation of possible -appiications
follows, It is quite incomplete but will give an idea of the

problems which may be tackled with the present algorithms,
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Table 2, Applications of Locational Problems

Elements
Requiring Service

Centralized Pacilities
or Clusters

Individual
as a member of a
community

For Transportation
taxi stations
bus stations
railway stations
air terminals
airports

For Communication
post offices
public telephones
telegraph offices

For Education
schools
libraries
churches

For Security

police stations
fire stations
hospitals, doctors

For Supplies
stores

For Entertainment
theaters
stadiums
TV & radio stations

For Administration
city govt., agencies
county govt, agencies
state govt. agencies
federal govt. agencies




Resources and Markets

Entities
Machines, controls,
organizations, elements
etc,

Industrial Plants
Warehouses
Distribution Centers
Communication Centers
Data Gathering Centers
Production Centers
Regulating Centers

Group of Markets with
similar characteristics

Central Processors and
Regulators

Management Centers

Taxonomy, etc.




CHAPTER II

LOCATION OF CENTRAL FACILITIES
DISCRETE, TWO-DIMENSIONAL SPACE, EUCLIDEAN DISTANCES
ONE CENTRAL LOCATION

We are considering in this case a finite set of n
discrete elements associated with a set of two characteristics
which may be their cartesian ‘coordinates in a plane, or a set

of two entities X1 and Xa.

>§N a3
(o}
(o] -'-d« o 13 11
>q e g- 10} 10
G 18 %0
& 18 9
v Qg §_
U B
q e 0
a= [ E 10
a2 (o)
a o 03 g 20 8
% S| Lt
®3 ‘ o}
. . 5
-Distance X, ‘Annual Refail Sales X,

Fig. 1. Discrete Two-dimensional Space

In considering a network of straight lines connecting
these points, we try to optimize the layout of this network
of lines with respect to a figure of merit,

12
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In the case of one central location the network of
gtraight lines must be connected to one central node through

which all transfers will be made,

X

2

X
1

Fig, 2. Discrete Two-dimensional Space
Euclidean Distances

1 Central Location

There is no lateral transfer between 2 elements ex-—
cept through the common central facility.

The problem is often considered as the minimization
of thg sum of Euclidean distances joining each facility to
the central location, However, the amount of transfer along
each line may be variable in size, the branches and facilities
may have 1imit in capacities and what may appear to be the
shortest route may not be the optimum one when considering
time or cost of communication. 1In this case, weighted dis:
tances will have to be introduced and sets of constraints

will be added to the problem,

When constraints are ignored, the problem in this
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simplest form may be solved by various methods which will be

described in the sections which follow.

IT.1. ANALOG SOLUTION

I1.1.1. Lights and Mirrors

When light is emitted from point A and impinges

on a flat mirror to reach point B it follows a minimum

distance path, The problem is to find the point of inci-

dence, A similar problem was solved by the ancient Greeks
to find the shortest path between 2 locations close to a

stream if on the way a pail of water had to be fetched,

B

Fig. 3. Light and Mirror

When the distance AP+PB is given; P 1is located
on an ellipse of loci A and B, The set of ellipses with
loci A and B -represent the possible location of point P.
As the distance AP+PB decreases, it reaches a minimum value

for which the ellipse is tangent at point P which is the

solution to our problem
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Fig, 4, Light and Mirror

Minimum Distance Path

In the case of 3 points A,B,C which must be con-
nected by a network to a central facility so as to minimize
distances; Polya [48] shows that a similar physical approach
involving light can be made. In that case if we assume that
the central facility P is located at a distance r from C,
then it must be on a circle centered on C and of radius 7,
The minimization of distance AP+PB corresponds to a path of
light impinging on a circular mirror, According to the laws
of reflection @ =a and due to the symmetry of the situ:
ation a similar rgaasoning undertaken from C can be ddne
from A; then B. Therefore; all angles a, B and y are

equal to 60° and the central facility is at the intersection

of the network of links oriented at 120Q°.



Fig., 5, Light and Mirrors

Central Location of 3 Facilities

IT.1.2, Weights and Pulleys

This solution is not historically the first one, but
it allows a visualization which aids greatly in comprehen:
sion as the problem gains in complexity.

Let us first consider 3 locations A, B, C engaged
in transaction with a central facility P. If the volume of
transaction to and from these three locations are identical
and if the links are not constrained in capacity then the
optimum location of the central facility will minimize the
sum of distances PA+PB+PC., If the 3 points are plotted on
a vertical plane and equipped with small pulleys, the opti-
mum location of the central facility is given by the position

of equilibrium of a knot connecting 3 strings passing over

the pulleys and carrying 3 equal weights at their extremities,



Fig, 6, Weight and Pulleys

Central Location of 3 Pacilities

We. will prove that equili‘pi-iuni is reached when the
potential energy of the system is at a minimum, that is when
all the weights are m the lowest position possibie. This
corresponds fd the meximum of AA‘4+BB‘3CC‘ or the minimum of
PA+PB+PC. Through static consideration the equilibrium is
obtained when the system of forces are equally inclined at
120° to each other,:

If the tra.nsactiéhs ,froi'r'i point 2, B and ¢ to point
P__,a:r_‘e not identical; proportional weights could be used,
For example; if co'sts are to be minimized in the transport
of a, b; ¢ tons of materials respectively from A,B,C to P,
then we should minimize é.(AP)-;-b.(Bi’}-chCP) with weights
m , ma; m ' at 4,B,C proportional to the transport weights
ay, b, ¢, In this general case, the system of mass in equi-

librium gives the minimization of link distances [47].



Fig, 7o Weight and Pulley

Minimization of Potential energy

length of the string at each respective point

length of the string from the pulley to the weight

length c¢f the string from the pulley to the knot

distance of the pulley to the reference horizontal
plane

weight at end of string
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the minimization of g ml corresponds to the minimization
i 1
i

of :E:mih1 which is at the minimum of potential energy.,
1

In 1775 Fagnano studied the location of a point mini=
mizing distances in a system of 4 elements, In the case of
equal transaction, the central facility was found at the
intersection of the segments connecting opposite points, The
result can be seen immediately by using our analog weight

systenm.

Fig, 8, Weight and Pulleys

Central Location of 4 FPacilities

A similar central facility would be found if we had

identical transaction from opposite points m, = mp, My = Mg

This analog approach can be used, theoretically, for
any set of n facilities; however, it is, in practice, re:
stricted by the following limitations: the strings are not
perfectly flexible and the friction is not negligible, It is

interesting to note that the location of the central facility
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as found by this model is not the center of masses as one
might subjectively assume. A clever use of this analog pro-
cedure may be extremely useful in complex problems, it has

already been used in a number of practical problems [ 16]

[33] [81.

IT.1.3, The Link-Length Minimizer

In 1957 Miehle [ 43] under contract with the Depart-
ment of the Army designed a mechanical device able to define
the central location of a relatively large system, On a
‘horizontal surface are installed some fixed pegs with pulleys
at the location of elements to be serviced, a movable peg
represents the central facility., The interconnections are
made with a loop of string., By pulling the end of the string,
because of potential energy consideration theimovable peg will

be positioned to minimize the total string length,.

fixed
: peg

pull movable

reg

Pigs 9. ILink-Length Minimizer

Location of One Central Facility
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. This method is relativély sim@le; however, it requirés
‘& physical model énd the friction at the pulleys maj be large
and the movable peg must be manually positioned in order to
retrieve the slack on the string, A relatively large system
can be treated and we will see in Chapter III that the device
may be applied to the location of multiple éeﬁtral facilities,
Transaction weight on a given link may be added to the model

by multiple increments created by multiple looping.

I1.1.4, Electrical Field

Electrodes connected to a DC poﬁér source through a
resistive netWoﬁk‘arevlocated on a piape map of facility loca~
tions, At a given point of this plane, the total field is the
sum-ofAthe elementary fields weighted bj thé proﬁér resistances,
| This total field mey be measured by an;omni-direétional de-
tector and;.with a scale_faqtor; is analogous to the total
transport cost, Equi~field lines can then be conétructed
.represénting iso-cost 1ines; these are concentric around the
loptimnm location and convergeltoward that optimum when the
défector sensitivity is increased, The method is.relatively
,simple}but lacks éccuracy‘as_We shall see 1atér (IT1.2,3)s 4&n
‘ingenious electrical 'analogue machine has been developed by

Mr, William Bernard under Air Force qopﬁracf AF18(660)-125 [7].
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Fig, Electric Field Analogue Computer
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II.2, GEOMETRIC SOLUTION

II.2.1, The Force Polygon

In the analog model of weight and pulleys the forces
acting on the common string knot are in equilibrium and form
a force parallelogram. The study of which is put to use in
the following geometric construction defining the position

of the central facility P.

B
Bn~*
c N

Fig, 11. The Force Polygon

~ The angles Bpas Bps By are the supplements of the
respective angles Qpy Opy Ggo The following construction is
suggested by George Pick in the mathematical appendix of
Weber’'s theory on location of industries [54] [26]. In a
circle sustaining the arc Kﬁ, the angle g 1is the supple~-

ment of a, and the point C can be anywhere on the arc icB.



24

Fig, 12, Construction of Supplemental Angles

Knowing the weights acting at each location, a
polygon of force may be built, thus defining the angles aio
The supplemental angles a are found on circles sustending

s1 on one side,

Pig. 13. Geometric Location of a Central Facility

For computational ease we will mention the trigo-

nometric formulation of angles B,*
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With 2p = My + Og + Oy

- - 3
i PR ((p mp) (P mc)>
s Tc

- - w)(p - 3
sin _ﬁ§= ((P mc)(P mA)>

2 my My
B [(p-m)(p-mp)\?
sSin — =
2 Iy Up )

In the case of a negligible weight m1 at one loca-
tion i, the corresponding angle 31 is negligible and a
is practically 180°, the location of the central facility is

then on the opposite line,

A
. C ;
-Oq
B -

Fig. 14. Case of a Negligible Weight
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The location of P on that particular line, according

to Pick, is then at the center of mass so that:

my X =1 X
My iy
X B

AT' A jt:"‘B’j

Fig. 15. The Central Facility as a Center of Mass

Even Yassen in 1956 [58] uses this principle of center
of moments to optimize the facility location, but a simple

numerical example shows that this reasoning is false,

If for example my = 8
IDB = 12
AB = 10

the equality of moments would give

my Xy =up Xy =0y (AB - x,)
8 x, = 12(10 - xA)
Xy = 6
Xg = 4

and the total weight distance is (8x6) + (12x4) = 96.
However, if the central facility is located at B +the total
of weight distance is only 8x10 = 80, which is an improve-
ment, The central location should therefore be located at

the point of maximum weight in the case of 2 facilities,
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In the case of a very large weight, for example if
m, > mp + Mg
it is then impossible to bulld the weight triangle and the
geometric construction is impossible, In our case, point

A has so much weight that it is necessary to locate the

central facility at that point,

Fig. 16, Case of a very large weight in A

The polygon of forces cannot be constructed

If one angle of the triangle is greater than 120°
there is no point at which each side subtends 120°, hence

the minimum point P coincides with the vertex [A].

Fig, 17. Locational Triangle

One angle is greater than 120°
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1I.2,.2, The Launhardt-Palander Construction

In 1882 launhardt [ 37] developed a graphical solu-~
tion to define the central facility for a set of 3 locations,
which is making use also of the force polygon,

On one of the triangle sides is built a force poly-
gon, the intersection P of the circumscribed circle with a
segment joining the third triangle corner to the so-called
"pole™ P of the circle defines the location of the central

facility.

Fig, 18, The Launhardt-Palander Construction

It is to be noted that no geometrical reasoning was
given for this particular construction.
Using this simple construction Tord Palander [46]

developed a diagram which depicts the influence of the loca-
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tion of a consumer Ci ‘using the products manufactured at

a central facility P from raw materials coming from sources

A and B,

Fig." 19. Influence of Markets and Raw Material

- Sources on Industry Location

The Aproduct‘ion facility deserving C1 or (}‘a should -
be at .Plo If the consumer were at C_, he could be best
se;'ved by a production center at Pso Similarly B is the
best location to serve C; or Cso If the customer were at
Ce, he 4wo_uld be served best by a ‘production facility at Ce
itself, On the other hand, a customer at C_ would be
served best by a facility located at A, |

This Vcon_stl:ruction- gi{res a good insight into loca~

tional shifts in case of weight changes in°' A and B, how-
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ever if we look at Figure 20, we will see that the point MA
found by using the Launhardt-Palander construction is far from

being the optimum location., In fact, we may obtain 3 loca-
tions M, My, My, if we use the different sides of the tri-
angle as a base for our force polygon, all of them sharing an

increased sum of weighted distances compared to the optimum

facility P.

Fig, 20, Inconsistency in the

Launhardt-Palander Construction

I1.2.3, Isovectures and Isodapanes

All points situated on a circle centered on a facility

are equidistant from that facility in Buclidean space. It is
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a line of equipotential for distances, but also for costs if
transportation rates are identical in all azimuths, and for
time if the straight distance is covered at equal speed in all
directions from the facility. If a particular azimuth is adé
vantaged because of the location of a cheap line of transport
by railroad or canal for example, the line of equal cost will
be a distorted circle in that particular direction. Simi-
larly the isochrone circles may be distorted by the presence
of a faster transportation system in a given direction, The
set of lines representing equal distances, costs or trans-
portation time will be representing a family of isovectures.
If we consider 2 facilities A and B and their respective
families of distance isovectures we obtain a set of inter-
secting circles, If a facility is set at a point M on one
-of these circle interceptions the sum of distances PA+PB=D
can be read directly by summing the corresponding radii, For
example in Figure 21, Ry, + RB7 =D = 10. Another facility
M’ set at the intersection of R, +A\R = R,, and
RB? -AR = Ras will be connected to A and B Dby an

identical sum of distances

(RA3 +AR) + (R‘_B7 -AR) = RAS + RB7 =D =10

RA4 + RBB =D =10

The location of the point Pl, Pa, Pa, etc,, are on a

curve of equal sum of distances and called isodapane,



Pig, 21, Isovectures and Isodapanes of Distances

Similarly if we consider costs, these are propor-
tional not only to distahces but to the volume of freight and
the transportation rate, the isovectures will be modified ac=-
cordingly. Aiso s isovectures corresponding to time may have
different spacing when corresponding to one facility or
another because of limitations in channel capacity or slower
transmission means, However, isodapanes of total equal costs

or equal time can be readily constructed,
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Fig, 22, Isovecturés and Isodapanes of Gosts or Tifies

When looking at the'iSOdapanes:we see that when the
costs (or distances, or times) decrease, they converge toward
the optimum location of the central facility. This cone,
struction could then be readily used in the case of multiple
faéilities to locate an optimum central 1oéation [31] [32].

A conétruction,of the isovectures and isodapanes is
given in PFigure 23 in the éase of 3 facilities, It may be
readily seen that this construction is very long and grossly
inaccurate as we get closer to the optimum central location.
It is of very little use to locate the optimum point except
if the plot is accelerated by means of & Computer, This

-construction is, however, self-explanatory with respect to
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Fig. 23 Isovectures and Isodapanes

of Costs

Case of 3 facilities
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sensitivity analysis, if the céhter must be located in another
area for economic reassns or other types of constraints,:the
construction can readily infbrm us of the penalty we would

have to pay in this suboptimum location,

I1.2.4, Topographic Mapping of Costs

The locations being defined by x and y in a system
of rectangular coordinates, we may consider a third axis of
costs perpendicular to the plane of facilities, For each -
point P taken as a candidate for the central facility we can
compute the corresponding total tranéportation cost which then
can be plotted vertically above the poiht P, If the compu-
 tation of cost is repeated for a certain number of points, we
obtain a three dimemsional convex surface, whose minimum
distance to the plane of facilities givés the optimum 1oca4
tion of the central facilify;-lf‘this topographical map of
cost is cut by parallel pl#nes corresponding to given differ-
ences in costs, we obtain the set of isodapanes which can be

projected on the plane X,¥.
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isodapane ¥ “
map of
c
C‘ Yy
C \ . ‘
- X - - - —

Fig, 24, Cost Function and Topographic Mapping

It the;plane X,y is divided into a checker;work and if we
consider the central facility to be successively located at |
each line intersectionAwe could obtain a matrix of total |
tranSpOrtafion costs which could be used to visually delin-
eate the isodapanes and therefore define the optimum central

location [45], o
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Fig. 25, Digital Mappihg of Cost Function
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I1.2,5, Extension of the Geometrical Construction

The extension of Pick®s graphical method to a set of
multiple facilities is impossible because the various ori-
entations of the force polygon segments are unknown,

Launhardt has extended his construction to a larger
set of facilities however its inadequacy has been shown in
~Figure 2d°

The limitation is created by the indetermination in
the orientation of the fofce polygon., If a central point is
chosen intuitively from which the polygon is built, it will
close ‘through an error vector, We snould investigate‘ the pos~

sibility éf reducing this closure vector by a rational rule
to.relocate our first estimated central location, No sure

convergent method has been found to date by the author,

D error vector

Fig. 26, Error Closure Vector
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In 1810 Tedenat found a trigonometric relationship between
the angles formed by an arbitrary line intersecting all segF
ments connecting n points to a central facility., In 1837
Steiner gave the formal demonstration of this relation.
However, this relation is intergsting as long as the central

facility is located but it is of no help in locating it.

11,3, ALGEBRAIC SOLUTION

II43.1. Determination of Minimum Point

In the locational problem, we know the location 6f
each facility and their corresponding requirements as well as
the set of~shipping rates (or speed of tranSport)ol In the
most general problem we must definé the number of central
facilities as well as their location so as to minimize trans-
portation costs (or communication‘tﬁme)o
o A comprehensive study in ﬁhe case of a single central
facility is presented by Walter Isard [33].

For example in the case of n facilities:

i =1,2,3,000,n; the transport costs to the central facility

P 1is given by

C = ‘:E: r m D
. 1.1 1

- i=1
where - r1 : represents the tranépbrt rate on the route from
P to 1 .
m : represents the quantity to transport from P to i

represents the distance connecting P to i,
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The distance D‘ is function of the location of the central
facility of coordinates (X,Y). The cost function C will

also vary according to the location of the central facility.

n . ’
C(X,Y) = Z "'14i om oD (X,Y) ‘
1=1
We are looking for the minimum of the function C as it
varies with the locational vector (X,Y) of .the central fa=-
cility.., A stationary point of this function C is obtained
by equating to zero the first partial derivatives of C with
respect to X and Y, For example a stationary point for a
set of 3 facilities is given by

dC =0

dr m D +rr m D +r m D)
1 1 1 32 3 3 3 3 3

d
r, d(m1 D1) + T d(m;3 Da) + T (ma Da)

since r ~are fixed, we have ..

IT1 d(ma Da)
R — st
. . =C

r d.(m1 D:,) (ma Da )
r d(m- D )| -

1 s &
el P st
T d(ml D:.) (ma Da _C, )

Amg 27

T e _ a8t
d(m2 Da) ,(m1<D1. = C" ")

m'-“lc:o.'s
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This represents a set of 3 equations with 3 wriknowns
])l ’ -.’r)a ’ Dao- For this stationary point to be a minimum of
cost it is sufficient that the second derivative of C with
respect to an arbitrary line passing through P of arc
length u be positive to prove that the transport cost

surface is convex downward

as¢ a*Dd
—_— Z r m 1

du?® tgu?
@D’ d2c

that i8 el 20 80 = >0
dua : du.a

In the general case of n points it is enough to
define D from 2 facilities to find the location of the cen-
tral one.,

As previously, P will give a stationary point to
the _,function ¢ if

r a( m DJ )

1 -
oD om T SERCEEOSSNECSCEC—
r

d(ms Dx) Z‘rkmkl)k = ¢ST
for i £ i Ak
In a system of cartesian coordinates with Euclidean
distances connecting the facilities to the central location
we may write the following equations ‘
D =[(X-x)® + (¥-y)0k
Y 'Y

C(X,Y) = Z rm D (X,Y) = Z rm [(X-x )% + (Y-;-Y‘)zli

i=1 i=1
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X,Y : represent the cartesian coordinates of the cen-
tral facility
X, ;yi ¢ represent the cartesian coordinates of the
facility 1i.

To prove that C has a minimum we must consider the

Hessian matrix - -
. 32C  23%C
oX? 3k Y
H =
' d2¢C d2C
X Y dY?

. 2
and provg that C}CX as well as CXXCYY - CXY are always
positive, then it will be necessary to check that C can have

at most one minimum and at least one minimum,

n

| L
oy = ) rm [ e ()]
- | R
CX_(X,Y) C = 121 rm 712- 2(X—x1) [(-Xu-xl)2 4 (Y-ny} )3] 2
. . | ~i
(B0 = wa {1 [xpr w0 ] T

| A
(%=x,)(-3) 2 (X&) [(Xx)? + (3=3)7] *

Cxx(X,Y) = nz .- [%__ (X—x:)a]




a D - (X-x )3
Cyg(X,¥) = > rlmi[ — - ]

n
Cyy(X,Y) = Z; rm

CXX(X,Y) = rm

CXX(X,Y) is therefore always positive because L ,Di
are always positive and the numerator is a square.

Similarly

(X-x )2
CYY(X9Y) = z
t=1 1
. and
2 (X=x_)(Y=y )
CXY(X’Y) = 121 I‘i mi ba .
. So
| L orm ()7 | | & )|
a : : :
gy - G = Z PR
= ) = \
z rm (X-x )(Y-XL) : i rm (X-’x_‘)(Y-’Yi)
1=1 ‘ =vl _ D?
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I‘ I‘ m m
typ=r  p 1’
9 Ly

(Rx, ) (=, ) (T3, ) (¥, )]

if i=J the term in the bracket is zero

-_— Trrmon
Gy C o —z o e (%, )
xCyy = Cxy = — =¥, )% (X=x)® -

(X2, ) (X% )(¥-3,)(¥-y,) + (¥=y,)?(%=x,)? -

(%% ) (%=, ) (=7 ) (¥, )

rmmnm

CxCoy = Gy = Z [y = ()@
1£1

D D
L

CXXCYY - C;Y is therefore élﬁays positive because ri,nii,D1
are always positive and the numerator is a
square, |

The stationary point obtained by differentiation is
therefore a minimum point,
Palermo [47] has proven that C can have at most one

minimnm_on the plane and that the function C has at least a

minimum,
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. This minimum occurs at

Cg(X,Y) = 0
That is

i rom (X—x’ )

: "‘.__:1 [(X-x‘-)a + (Y_y")a]

wp

[(X-x )2+ (Y=y )]

i L

This is a set of two non-linear equations which can-
not be explicitly so_lved, An iterative method is necessary
such as the Newton-Raphson procedure, |

If the 2 equations are independent, the coordinates

of the central facility are given by

.2 : rmzx B rmzx
z- : . 1 ¢ 1 z: 1 1 3

1=1 X-X. a+ Y- -%— $=1..’E‘)‘
X = ( ) ( Y)

n rm B rn

Z 1 1 LR}

-
I 2 LU




2 rm . rm
y ttyt

z 1151 z .
.
i=1

i=1 [(X_,xi )3 + (Y._yi )3] 3

1

rm

3 ) - n
1 .f Z

t=1 [(x_x‘)z + (Y—y")a] g

rm
D1l |

As ])1 is a function of X and Y these equations
canuot be solve& directly, they must be solved by iteratio‘nol
A set of starting values X(©) and Y!°) must be assumed a
priori é.nd they are used to compute X(*) Y(1) wusing the
equations above, and so on X¢*) Y¢*) is used to compute
X(2) y(3) etec, The process hopefully converges if the starting
values are chosen adequately,

We are now going to consider a method to derive a
plausible iterative starting value X(°) and Y¥'°),

It happens quite frequently that transportation costs

may be proportional to distances raised to some power k

c=z*w'1>k ks> 1
i=1 1 !

w1 being the weighted index bearing on the location of the
center, It can be proven [9]' that for k 2 1 the function
C is convex, Being a convex function, every local minimum

is a global minimum,
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®
o] iy

cE) = Y ow [(x-x)? + (v=,)]

1

[
"

k—l
O

Gg(X,Y) 7

hi

Zl k w (Xe'x‘) Equz )2 + (Y-y

k_»
=~

Cy(X,Y) = Zz kw (Y-y ) [(X--rxa )2+ (Y=y, )ﬂ =0

Only an implicit solution for X and Y coordinates
of the central facility is obtained and an iteration proce=

dure must also be used to solve the non-linear expressions:

. -1
i 5= [@ex)? (1)
" n ' n
Cg(X,Y) = k X ZwLi-k Zw‘xi:ui:o
1=1 i=1
n a
Cy(X,Y) = k Y z w oL -k Z w oy, L =0
1=1 i=1

and
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i | i)

L
1 s

As previously, if we had a set X(°), Y(°) of good starting

values giving us convergence, we could solve by iteration

Z w X L(k)
X(k+1)="=1 1 11

n

2. v

1=1_

L
(k"‘l ) 121 W1 yi !
Y

a

2, v uo

i=1

the superscript (k) meaning the kth iteration.

In this general case also we are faced with the prob-
lem of finding the starting values, “

Let us consider the particular case where k = 2,

then
R

¢ = Z w .[(X-xi)"a + (Y«-y1 )3]

1i=1
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CY= 2 2Wi (Y—vyi)

This set of 2 linear equations can be explicitly

solveds

w X
A 3
i=1
X =
a -
w
i=1 v
n
w
i y&
i=1
Y = -
9
2w
L1 :

It has been proven by McHose [ 42] that this solution
of the second degree equation is a good first approximation
for the 1ocati5n of the central facility when k 2 1, There-
fore we can take these values as starting solutioﬁ of our
iterative process and experience proves that the procedure
rapidly converges,

In our original problem of‘Euclidean distance our

 iterative equation will then be:
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n rmzx

1 1 i
A i=1 (k) __ 2 (k) _, )3 >
L) [(X )P (Y .Vi)]
n rm
A 1
=1 lzx(k)_xi)a + (Y(k)-y‘1 ;)z] +
i rimiyi
S [e(E)_y ye (k)_, ya] &
Y(kn) - [(X xi) (¥ yi)]
' 1 rm
i 1
k i
1=1 :Ex(k)_xt.)a + (r( )_y1 )a] 3
with |
S
11
X(o) _ i=1
z rm
=1 1 1
o z rimtyi
7o) - 1=1

S
]

!
M-
LR
B
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This starting value is the weighted mean coordinate,
An exampie of computer program to solve that algorithm is
given in Chapter 1V,
It xﬁust be kept in mind that beforé beginning the
algorithm solution each facility should be checked for weight
dominance, that is the central location may be  located at

peint k = 1, 2, eee, n only if

W, 2 [(;k Wy cos ej):a‘"-r» (z w:i sin 93)3] *
R} ' :

Jfk

_ | X5 = Xy
with cos e:j = .
Dy
. Yj = Yk‘ .
. Sin ej = e

Dy

This éheck nay become qu;',’ce cumbersome computationalljr
when dealing with a very la¥ge immhér n of facilities, We
should ignore this test unless we become suspicious of a
weight dominance crasating a convergence of the algorithm to a
close proximity of a facility k, _then the check is ohly

necessary on that particular facility k.
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1T.3.2. Geometric Programming

Minimizaticon of the function

D(X,Y¥) = i [(Xi“x)a N (yi__Y)a] 5

1i=1

may be done by minimizing the related function

a

Z g
— F]
G = 1;oi

1=1

subject to the constraints
3 2 J o XX
55 2 (%4-X)% + (¥;-Y) i=1, 2, , 1

where ¢ ; are additional independent variables,

Thers are 6n terms in the constraint inequalities

put in canonical form :

Xotai
247w 2% Xt y3 50t . 2yL Yttt 4 YRR = voe
1223673 2xlXt01+y§tOl 2y YEE + YR i=1, 2, s

and n terms in the function G, There are n variables
%,y @end 2 wvariables; X,¥Y, Even if the function G were
a posynomial, which it is not, we would expect 6n-~3 de~
grees of freedom,

When considering a relatively small system of 50
facilities, the problem involves a minimum of 297 degrees
of difficulty which is equivalent to the optimization of a

function of 297 variables, a problem which is theoretically

possible but economically infeasible,
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I1.3.3. Expenditures at Vertice Points

In the above algorithm we have assumed that money or
time costs were proportional to distances, This is not al-
ways the case and some fixed charges of loading and unloading

must be added, Under such & case the function _C becomes

disconﬁinuous.
Traunsportation
costs
Pixed
unloading costs
I
‘ ]
Pixed : :
leading costs { : - :‘ -
' P A B Distances

Pig, 27. ¢ Expenditures at Verticé Points .

is the total loading"_cdst for gq,oﬂia trans-

ks
[
-1

ferred from facility P %o facility i
u. ¢ is the total unloé.dih.g’ cost for goods tré.ns:
ferred from facility P to facility i
then the function C is giireri ~b§'

n

C = E:(l"v-;-zr"‘m1 D’fui)

. i=1
It may be assumed that the loading and unloading

costs are directly proportional to the amount transited : m



1l =z=a nm
i b A §

u =b m
1 1 1

a, and b£ being factors of proportionality

then the function C .is given by

)

C(X,Y) = gx (a.1 mo o+ r m Di + ba ms)

2 : n a
C(X,Y) = 121 a m + ‘421 rom ZD‘ (X,Y) + 121 b1 m,
C(X,Y) = Cq + C17(%,Y) +  Cpp

Mathematically speaking, as the cost C. and CIII
are not functions of the location of the central facility, a
differentation of the function C will give an identical set
of equations as derived above and their scliution will give
the same central location coordinates. However, some fallacy
appears in this reasoning; for examples; if facility J has
an extremely large cost of loading and unlcading its own
goods, shown by the importance of the coefficients a.:j and
bj, this cost may outweigh all transportation costs and there-
fore it might be more economical fto locate the central fa-
cility at pecint J in order to eliminate the transfer cost
of its own goods, and also drastically lower the lcading and

unloading unit cost by the corresponding modernization and

mechanization imparted to this center,
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A procedure to avoid this pitfall will be to derive
the coordinates. X and Y obtained by the solution of the

set of equations of the partial derivatives of C com—

1T’
pute the corresponding cost C then check the various trans-
portation costs Ck using one of the locations as central

facility.

n n
;Z m r D + (2 +b)m
f=1 i 3 i 4 e 1 1 1

k=1, 2, ee», n

if one of the Ck is less than C then the central fa0111ty

must be 1ocated at that particular k place,

II.3.4. Case of Variable Transport Rate

It is common in practice to deal with transportation
media where the rate of transport decreases with dis-
tance. Accordingly this complicates the cost function., Time-
wise also it is quite frequent to‘use for example, slower air-
crafts on shorter routes than on longer ones,

When the transportation rate is function of distance,
then

r = £,(D,)

zz f (D ). m D

1=1

Q
]
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Stationary points may be derived by differentiation:

n

= m [f1 (D) + D% (bx)]

and |
(Dz) +D.f' (D) d(mij)
£ (D) + Dygl (D) A (mD)

> £, (D). m.D = ¢
k
i£jfk

The development of these equations may lead to
multiple optima. The function C should be evaluated at all
of these optima to find the best one. |

If the route passes through a congested area the ex-
pendlture in time and money per unit carried versus dlstance
may not follow a linear function, Extra'cos%s due to ob- )
stacles like towns and rivers in the case of ground trans-
portations for example, must be taken into con31deratlon [8].

Expenditure 1

per unit
carried

L

Distance

' Fig. 28, Variable Transport Rate in Congested Area
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II.3.5. Bounds on Sum of Distances

When considering a central location P minimizing
fhe sum of distances, we consider a network with branches of
length D , from P %o the facility i. The total length

of the network is

1i=1

i
D= z D
i

Considering a pair of vertices : i,

J 1)

P

=D
1 "3 13

de
o
+
=}

-O——

1

For each paj.r of vertices the following inequality holds
D +D 2D |
SR 1)
In a locational problem of,' n vertices, tvhere are

=l :

i=1 - . 2

distances D’ ;°



57
The distance D1 connecting P to the facility 1
is a part of (n;1) triangles on which can be applied the
triangle inequality.
In the case of 4 facilities, for example, we can

write the following set of inequalities

D #4D =D
2 1

1 3

[w)

+ D =D
3 13

g
=l

+ D =2
4 l4

=]

+ D =
3 33

o

+ D =
& 34

0P oo %
(=]

+ D =2
% 34

3D +3D +3D +3D 2D +D +D +D +D 4+ D
1 3 3 4 12

13 14 23 24 34

On the right-hand side are the possible combinations
of distances connecting n; facilities taken 2 at a time,
The left-hand side .
3(D +D +D +D) =3 ZD = 3D
1 3 3 4 i
1=1
corresponds to (n-1)D.

Therefore

The right-hand side is then a lower bound of the sum

of distances [10].

]
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In our iterative process we took the weighted average

as a starting value, the

D= Z I (v ®

i=1

in which

i

i}
sl—
™M
’_Nz,

] |
]

Y
T I,

This is therefore a possible upper bound for the sum of

distances,

II.3.6, The Constrained Problem

The n distinet locations form a convex hull H
limited by linear boundaries, Either P is located at a
facility; in case of weight dominanCe, and is trivially an
element of H or it is first obtained by a weighted sum of
facility coordinates and therefore is an interior point, ‘
We will use this convex hull in the heuristic algorithm with
variable grid and linear constraints (Chapter IV) to limit
our investigation,

vSometimes the locafion of a facility is restrained
within a given space limited by physical boundarieso_ Somef

times the facilities generally considered as punctual may
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have a spatial area or a zone of influence and cannot be lo-—
cated too close because of possible interference,

We could be faced by the following constraints

1

[(X-»xi)2 + (Y—yi)z] ERS &

X . == X =5 X

min max
ymin = ¥ = yma.x

This is an example of optimization theory in which the ob-
jective function and some of the constraints are non-linear,
The following possible solutions should be considered: the
method of Lagrangian multipliers in which the inequalities
would be investigated in turn in their equality sense, or
using the Khun-Tucker conditions.

It must be noted that according to the demonstration
of Kuhn and Kuenne [36], the coordinates X and Y of P
are nebessarily elements of the convex hull and the set of

2 inequalities Xoin < X s Xnax

Ymin s Y = ymax

are automatically met and are therefore redundant constraints,

The minimization problem is then limited to

n
1

minimize - C(X,Y) = Z rom [(X-xi)3 + (Y—yi)"’] =
1=1

| 1
subject to [(X-xi 2 o+ (Y-.;\,r1 )3_] 3 > 8 i=1,2, °cco, n
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then we have a set of n inequalities,
In the ILagrangian method the inequality constraints
are considered by including one active comstraint at a time,
Thus for

1

[(mel)a + (Y--yl)a] T2

to be active the corresponding Lagrangian function becomes
i
L(XgY,kl) = C(X,Y) + Al ( [(X-xl )2 4 (Y_yl )a] 2 _ @1

the necessary coanditions are given by

L AL 3L
—_—=0 —_—=0 —_ =0
X Y 67\1
n
L r, m (X-x,) A, (X=x))
— = EZ + = 0

X 1=1 [(mez )2 4+ (Y—yi ):a] } Bx_xl )2 4+ (Y_yz. )a] ";"

dL r, m (¥-y,) A, (¥=3,)

3Y  i=1 [(wal )2 4 (Y_“y1 )aJ 3 i l:(x_xl )3 + (Y—y:. )3] ) =°

[

3L - [(X_xl )2+ (Y-y:. )2] 2 _ 8 =0

—— 1

A
1

The solution of these 3 equations should give X,

Y and xlo Then it should be necessary to check if the
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solution violates the other inequality constraints, A sim-
ilar_ computation should be undertaken for the n inequali-
ties, If the three above equations were linear, still the
computational effort would be large and the procedure compu~
tationally uwnattractive, But, moreover, the implicit nature
of these equations cannot give a direct solution, except
through an iterative process, In this rigorous form the
method should be abandoned. However, we have seen that in
the unconstrained problem a good approximation of X and Y
is given by considering

n

C(X,Y) = Z r m D® (X,Y)

i=1

In this particular case the Lagrangian equations become

a

L(X,Y,xl) = Z rom [(}C--ax1 )a_f"(i'y;)z:l +

1=1

A, l-gx-;xl )? +(Y-y )? - @f]

3T <
—_—= ZZrm(X—x)+2x (X=x ) = O
X i S 1 1 1
n
oL z 5 o
— i rom (Y-y )+ 2 (Y-y) =0

Y 1=1
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L
—_—= (X~x )% + (Y=y )® - 8% =0
ax 3 1 1
1
An explicit solution is possible in that case, but the final
solution is not exact and must be improved by iterative pro-
cess to correspond to the effective Euclidean distances, If

the initial approximation is known to be X(°) anda Y(°)

then a better solution is determined by the equations

-

3C(X,Y) | (™
X(a41) = X(0) o g | e

X

3C(X,Y) | (»
yla+2) - y(2) gy ——

Y

the u value : distance to move in the good direction to
improve the value of the variable, if taken too small may
produce slow convergence or if taken too large may miss the
optimum solution altogether, MNoreover, u may be pos%tive
or negative and a trial and error procedure will be neéessary,

A pfoce&ure used by Stewart [45] considers all the
inequalities in their equality sense and he uses a plotting
technique to check that the results given by iteration do not
violate the constraints,

We could also apply the Kuhn-Tucker conditions for

P to be a stationary point of the minimization problem
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P

n

i
subject to
L
gx) = - [(Xl--’x1 )2+ (Xa-yi)a] ®+8 <0

These conditions are summarized below
1) A =<0
2) Vo -2Vew =0
3) rg(X) =0

4) g(X) =0

Developing these conditions will lead to

1) Ay Ay Ay eeey A)S0 [L2g, (@) g (1)
aX X
1 2
3C - 30 4 2g_(X) 2g (%)
2) ==y =] = (A 5 A, °**y ) )
ok X 1T e » X 3%
1 2 1 2
2g (X) 23s (X)
2 o
aX X
1 2

o



g (X)
3) ()\19 )»29 oooy )\n) gg(&)
g (X)
n
4) gX) = 0
When developed we obtain
1) ()\19 )‘z’ Xa, °0°, )‘n) s 0
! oy
Il.s o (Xl Xi)
2) " +

1=

[y
il
-
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[(Xl_xs )+ (Xz-yi )B:I 4

X -x°
1 i

T =

A [(Xl_x1 )2 4 (Xa_y‘ )a:l z

I:(Xl-xs )+ (Xa-y1 )2] %

o

X =x
2 i

A, [(Xl_'x1 ) 4 (Xa“__y1 )a:l = =

0

0

[
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. ‘ 1_
2 - 3 ] —
3) (Q‘ - [(Xl-xi) + (X -3 ] ) -0
for i=1, 2, 3, °°*, n

1

2 2 2
4.) - I(x _xa) +(x -yg) ' s—§1
‘fOI' i“'—1, 2, 3, eee, 1

which we must solve for Xﬁ’ X; and A (i =1,2,°°°,n),
This method is also not very attractive computationally and
the quadratic formulation of C should be used to obtain

approximative but useful results,



CHAPTER III

LOCATION OF CENTRAL FACILITIES
DISCRETE, TWO-DIMENSIONAL SPACE, EUCLIDEAN DISTANCES
MULTIPLE CENTRAL LOCATIONS

The location of the n facilities to service, the
requirement at each déstination as well as the rate of ship-
ping in a particular region are known., The problem is to
determine the number m and location of central facilities
supplying the service and their éorresPonding set of satel-
lites,

It is assumed that the number m of central loca-
tions is less than the number n of facility locations,

If not; it would be possible to have a zero total transport

cost by putting a center at each facility.

IIT.1. ANALOG SOLUTION

IIT.1.1. The Soap Film Method

Plane films of soap bubbles formed between 2 close
planes and a set of posts connecting them gives surfaces of

minimum potential energy., The lines connecting the posts are

66
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then of minimum total length through a network of 120° angle

boundaries,

Fig, 29, Shortest Network Joining More Than 3 Points

The necessary junction points camnot be specified
but are automatically created., The method gives unreliable
results when the number of points is above 15 to 20 be-
cause of variable drainage as the model is pulied out of the
soap-forming solution, 'Moreover; the solution of the problem

is not uniquely defined,

[ —

Fig, 30. Network Not Uniquely Defined .
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III°1°2° The Link-Length Minimizer

The mechanical system developed by Miehle [43] can be
applied to multiple central facilities but the number of these
central facilities and their dependent satellites must be
known. This choice has to be made subjectively by looking at
the concentration of points in a given area and it is never
certain that the choice will bring the minimum circuit length,
However, during the minimization process if one centfél fa-
cility is brought closer to a point than the central facility
on which it depends, then a change in connections may im-

prove the minimization,

Pull

Fig. 31, Link-Length Minimizer

Multiple Central Facilities

Constraints of distance between central facilities
may be obtained by comnecting them with a rigid spacing bar,
Constraints of minimum distance between central location and

satellite facility may be obtained by installing a corre-
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sponding round base of given radius at the base of the facil-
ity constrained,
Transaction weights on a given link may be added to
the model by multiple increments created by multiple looping,
It may take about an hour to find the optimum loca-
tion of 17 central facilities in a system of 62 fixed

points,

I1T.2, ALGEBRAIC SOLUTION

Even if we assume no restriction on the capacity of
the central facility and if the shipping costs are supposed
to be independent of the total central facility supply, we
still are faced with a very large problem., If we arbitrarily
decide on the mumber m of central facilities, there are
S(n,m) possible assignments of n destinations to m

sources [ 11], where S is the Stirling number of the second

kind:
v 1 m
S == D (§) -0F (w)”
k=0

These possible assignments are‘enormously large for
large n. Moreover; we might find that another value of m
may lead to smaller total transportation costs. Each value
of m brings a new arrangement of satellite locations and

we cannot tell a priori without exhaustive study what will
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be the optimum value m giving a global minimum of trans-
action costs, Moreover, as the number of central facilities

increases, the cost of invested capital and operating costs

increase at the same time,

Total cost

Co,

Depreciation

and

operating
costs

Transportation
costs

Sp—

{

! |

4 6 m
Fig, 32, Total Cost Global Minimum

¢
If we refer to the above figure we see that a mini-

mum transportation cost is reached with 6 central facili-
ties, but the optimum number minimizing the total cost is 4,
Our cost function C(m) is the sum of transportation

costs Cl(m) and the depreciation and operating costs Ca(m)
C(m) = Cl(m) + Ca(m)

The shipping costs are proportional to distances as
well as to quantity shipped, this cost may be discontinuous
in the case, for example of quantity discount.

The cost of invested capital and operating costs
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could readily be estimated by standard economic analysis if
we knew the corresponding satellites and their respective de-
mand or supply. The location of the central facilities and

their respective assignments must first be solved.

IT.,2,2.1, Central Facility Location and Assignment

The transportation cost is function of the location
of the n facilities (xz,yi) i=1, 2, 3, °c°c°y, n as well
as the number m and location of the central facilities
(XJ,YJ) j =1, 2, cccy, m, We will assume that each facility
is connected only to a unique central point, therefore, only
the distances connecting a central point to its respective
satellites should be considered. A facility i may or may
not be connected to a central location J and we will use
the Kronecker delta &;y of value 1 if 1 is connected
to Jj or value 0 if it is not,

Therefore, the transportation cost in Euclidean

space can be written as

1

m n |
C = Z Z w [x- 2, (Y - 3]7
= = TR ( } )7 ( y y%)

A set of m stationary points is found by solving

the m equations in XJ and m equations in YJ



T2

or for j =1, 2,-3, °°*, m

n . n
zz Oyy Wy, (X, -x,) _ zz 6y, Wy, (X;-x,) o
T = =
i=1 - 2 - 2| 2 1=1
[(x,-x7 + (¥,-5,)] D,
n n
z by Wy (Y,-7,) _ Z 81y Wi, (Ya"yl)_
T = =
i=1 - 2 - 2 3 i=1
[0+ (¢,5)7] D,

Following the same development as for one central
facility we must prove that the principal minor determinants
of the Hessian matrix are all positive for the stationary

point to be a minimum,

Cxx. > O

Jd d

C Ca forj=1’ 2’ 3, °°°9m

C > 0

Xij

This minimum is then found by solving the extremal

equations




which lead to

i=1 D
X -
J - n
z 8yy Wy,
i=1 D
13 _
i=1, 2, 3, c°ey m
- 5
1y Wy, ¥
Yj - .1“ 15 Y1
i=1 fD:I.J
n r
Z 845 Wy,
1=1 D
13
As })1 is a function of XJ and Y, , Tthese equa-
3

tions cannot be solved directly, they must be solved by
iteration., We will assume as starting values of the iterative
process the values X§°) and Y:°) obtained by using the

quadratic formulation of distances

m  n
C = qu Z 6” LA [(Xa-xt)a + (Ya-yz)a:l

1=1



C =Z2 X—X =
XJ & 61 wad‘( ; 1) 0
J=1,2, cooym
n
o = S 2 -
Yj P4 61; “Qa (Y.1 yi) 0

B

X(O) _ i=1
J n
w
i=] 13
J = 1, 2’ ooo’ m
n
6 w
{i=1 s L y‘
y(o)

n
2, v
$=1 1

then the solution of the exact BEuclidean distances is given

by the iterative process

6 w X
z 1y 1y 1 ‘ i
1=1 [(ka)_xi )2 + (Yfk)-yt )3] 7

x(+1)
J

iy Wiy

-1 ]IS: 3 k 2 %
= [ )m 4 (1 Bay 2]
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) w y

n
z 13 13 Y1

= [a® ) 4 1By, )a] 5

ylke) _

J & W

2. -

1=1 [(Xd(k)_x‘ )2 4+ (Yfk);yi )a] z

for j =1, 2, °°°, m and all possible combinations of

Kronecker 5ijo

We are quickly limited by the size of the problem and
it may become uneconomical to use this exhaustive technique
for more than 10 facilities., We mus% in fact, not only com-
pute all the possible assignments for .m central locations
which may run easily into many million combinations but also
we must investigate the variation of total cost as m is
varied, the development of other techniques is necessary when
we must Qeal with some common problems involving many hundred

elements,

IIT1.2,2, Bound on Sum of Distances

When considering a set of m central locations. PJ
minimizing the sum of distances, we consider a network with
branches of length Dlj from P‘ to the facility i. The
total length of the network is
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m n
D = Z Z 6 D
=1 $=1 13 13

We have evaluated the bounds for the sum of distances
in the case of one central facility., In the case of m
~central facilities we do not have a priori the value of the
Kronecker delta 513 nor the satellites assigned to a given
central facility. However, if we knew this allocation of
satellites we could apply to that particular set the triangle
inequality relating the distance béfween 2 facilities 1
and k (D&k) and the distances of these facilities 1 and

k to the central one (Dza and ij), We have

D D 2D
13 *+ ks 1k

If h facilities are satellites of the central loca-

tion J then for this set of satellites the total optimum

distance is D
3

jial
b o>
J {=1 44

In the case of 4 satellite facilities, for example



D + D 2D
1Jd 23 12
D + D 2D
2] aj 23
D + D" 2D
33 43 34
D + D 2D
4 1) 41

13 2) 3l 4 13 23 34 41

Then in a generalized problem

m

<
D= /2, D

J:lJ

will be greater or equal to one half of =n distances of the

Dik matrix and certainly greater than one half of the n

least distances,



CHAPTER IV

HEURISTIC ALGORITHMS
DISCRETE - TWO DIMENSIONAL SPACE - EUCLIDEAN DISTANCES

When considering the unconstrained or constrained
locational problem with single or multiple central facilities
we always reach a point at which an iteration technique is
required because of the implicit nature of the equations.,
Manual computation in such a case is quite tedious; computer
programming is necessary when dealing with a large set of
facilities, In the previous chapter we dealt at length on
the mathematical reasoning supporting our method. It is
often found in practice that working tools are also neces-
sary and the development of these tools is rarely presented
in the literature, This explains why a large amount of
valuable research is frequently wasted or ignored because of
a missing link between the scientist and the potential user,
The following programs have been developed to be épplied as
an easy tool by any prospective user. Some of these algo-
rithms have been studied extensively by Kuehn and Hamburger
[35], Cooper [10], Feldman; Lehrer and Ray [24], Vergin and
Rogers [53], but if their range of accuracy is discussed at

78
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length, their imnerworkings are not directly available to the
user, Some other programs are new approaches giving more
flexibility for the particular case of very largé systems
often present in federal government locational problems.

For each heuristic algorithm we shall study the gen-
eral principle, the detailed logic diagram, some character-
istics of programming, an application to an actual problem
and a discussion on the results obtained and the corre-
sponding expenses in computer time and memory.

Thé programs are written in FORTRAN which is a very
known language but expensive in memory and computational re-
quirements, a more careful programming or the use of AUTO-

CODER might be necessary in some cases,

Terminology of variables in the following algorithms and
computer programs, Some of these variables will be more

fully explained in the corresponding algorithms using them.

X,y o X(I), ¥(I): Cartesian coordinates of facilities 1

r or XR(I): Rate of transport from facility i
If we try to minimize a cost function it might be in
dollar per pound per mile for example, If we try to
minimize a time function it might be in nanosecond
per bit per meter for example.

m or XM(I): Amount to transport from facility 1 to the

central location P.



ITERA
IGRID

ITGRD
INC

80
It might represent for example the poundage of goods
to carry or the number of digitized bits of a mes-
sage to transmit,
Number of facilities
Number of central facilities
Number of iterations in random search of facilities
Initial number of grid divisions on each X and Y
axis
Number of grid size changes
Incremental number of divisions on each X and Y

axis when passing from one grid size to the next

DOLD(I), DNEW(I): 0ld and new BEuclidean distances from facil-

ity I to optimum central location

SDOLD, SDNEW: 0ld and new sum of distances to the central fa-

cillities

COLD(I), CNEW(I): 0ld and new transportation costs from facil-

ity I to optimal central location

SCOLD, SCNEW: 014 and new sum of transport cost to the central

facility

JOSAV(I), JNSAV(I): 014 and new code number allocation of the

facility I
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IOSAV(J), INSAV(I): 0ld and new code number of the randomly
selected central location
RAINC : Class width on cumulative distribution of locations

RAD(I) : Class boundaries on cumulative distribution of loca-

tions

KITER : Iteration counter
YFL Random. number between 0 and 1.000

XC(J), YC(J): Cartesian coordinates of randomly selected

central facilities

D(I,J) : Euclidean distances from facility I to central loca-
tion J

L ¢ Grid spacing counter

XMIN, XMAX: Minimum and maximum values of X(I)

YMIN, YMAX: Minimum and maximum values of Y(I)

IVv,1. ONE CENTRAL LOCATION

IVv.1.1. One Central Facility Heuristic Algorithm

The program is based on the iterative algorithm pre-
sented on page 50.

n r m X

}Z 1 1 1
i

=1 I:(X(k)-xi)3 + (Y(k)—y‘)a] 2

X(k+1) -

B r m

EZ £ 1

=1 [(Xu:)_x‘ 4 (f8)y )3] 5
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y() |
n r m
zz 1 1
: n 1
1=1 [(X(k)-x‘ )2 + (Y(k)-yi )a] 3
with
r m X
(o) 1=1 i i i
X =
zz r m
i i
1=1
n
zz r m X
(o) 1=1 ot
Y

o
5 e
d i 1
i=1

The logic diagram of the program is given on péges 86-
87. The computer print-out and a set of results corre-
sponding to 50 hypothetical facilities are given from page
182 to page 187.

It is to be noted that there is no built-in check
for weight dominance and the user should scrutinize more
thoroughly a solution which would be very close to an ex-

isting facility. The case of weight dominance of one fa-
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cility is however, quite improbable when studying a large
system,

The iterative process was stopped when

x(k+2) _ x(k) ¢ ggr
y(kr1) _ y(k) o ppp

the value of ERR being read in as a problem variable.

The algorithm was run with problems of various sizes
from n =3 to n =500, It is to be noted that with
ERR = 0,01, in the case of 3 facilities the central loca-
tion was found in 23 iterations while for a problem of
500 facilities it required 28 iterations., The number of
iterations depends largely on the extreme locations.of some
facility as the weighted distanceé will give a poor first
estimate [ 36] and the number of steps of the iterative search
are not necessarily more numerous with a large system than

with a2 small one.

Fig, 33. Case of Extreme Locations in the

Determination of One Central Facility
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When looking at the variation ofatotal'tranaportafion
costs during the iterative process on the computer print-out;:
we can see that there is a 1ack‘of:sharp minimum,. which
means that a rough 1ocation of tné,cenfral facility, as
”giren for example'by the starting value in the case of non-
ektreme locations may be sufficient .in pracﬁical use,

The program was run in'thé.casciof'weight dominance'
and,ﬁhe algorithm rapidly;convergea toward the dominanp“fa-
- ¢ility, however, never enactly reaching 1£°' (see page 189)

Computational tiﬁc on an electronic digital_computer .
may be quite expensive and a tally of tlme was kept to try
‘to derive a relation between the number of facilities in—
.vestigated and the corresponding computatlonal time on
an 1IBM 360/40° In the particular system used the computer
operates on two problems at a tima (mode MFP2) and the
variable demands on its elements and stored sub-routines
do not allow a time print;out re’iable for each of the prob-{
lems, This inconsistency can be readily seen on the fol-
" lowing ' Table 3,_'where compilation time varies drastical}y
from one.run to thenext° There is no snre trend, but it
can be considered that computatignal time is;of insignifi-
cant importance'in.the total economics of“most.of.the prob_
lems., |

The'fotallmemory rcquirement in the case of 1000
facilities is' 66F2 orj{26,354 bytes of which 742 are
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used for the program.

Real life data were used in the computation of one
optimum central facility for the postal system, considering
the continental 50 states of the union and their corre-;
sponding output in first class letter mail in the year 1965
[52]. This output volume was assumed to be originating
from the capital city of the state the longitudes and
latitudes of which were given [23]. With this particular
limitation in the type of mail and assuming plane geometry,
an optimum location for a postal institute for example,
should be at 39°39'N and 83°27’'W around Columbus, Ohio.

The program was also run for the sets of 20 fa-
cilities and 125 facilities which are used later on, in
the analysis of the multiple central facilities algorithms.

The results are shown in Figure 34 and Figure 35.
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Diagram 1. One Central Facility
Heuristic Algorithm

(START)
TAR
READ

N,ERR,ITER/

r

y
READ 7
X(1),Y(I) j/-
XR(I);XM(I)
PRINT -
1st tabulation
listing of known variables

N facilities
| X(I),Y(T),XR(I),XM(T) |

Y
PRINT
(2nd tabulation title

-y ——
Set location error criterion
Central location unknown
Coordinate errors are large
XDELT=ERR+100
YDELT=ERR+100

l

Y "
Set iteration counter

K =1
‘ ——
) Compute sbtarting values of |
" leentral facility coordinates:
v
T m X,
y (o R
Z:IEmL
{1} zz LT
0= =
Z__J ri« m,

\
Compute partial distances

D(I) to central facility

Compute partial and total
transportation costs
¢(1),sC
i

®




PRINT
2nd tabulation
Last iterative step
Fingl location of
central facility

XC,YC

Final total

transport cost

\SC

{_

=T XK > ITER

PRINT
3rd tabulation
Partial distances
and costs
to the best

D(I),c(I)

.

( cALT EXIT )

.

central facility

iterations

no

check
accuracy of
location in X
XDELTs;;ERR/

check
accuracy of

no
Y —
R

locatioq/;n
YDELTtk:ER

©

Tteration counter |
K=K+1

A

New location of
central facility
XC=XCN
| YC=YCN

?

Locagtion error
criterion

XDELT= XCN-XC

YDELT= YCN-YC

DIOUUREPNpU—

!

Compute new
location of
central facility

z . p”

XON=' &
< r, mg

"

i}e o, J

- )

—XC(k”):

PRINT
2nd tsbulation body
Present central
facility location
XC,YC
Present total
transportation cost

SC
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Table 3 - Computation Time Requirement -
Discrete - Two Dimensional Space - Euclidean Distances

Algorithm to Locate One Central Facility

Computer: IBM 360/40, Printer IBM 1403 N1,

Computer Operating, Under MFP2

Time in Hours.Minutes.Seconds (Sexagesimal)

No. No. Time Time Time Total
poos1 | Trorg. | JOB-IKED IKED-GO GO-END
ities tions | Compilation |Subroutine Ass,| Oper,Time Time
5 14 00.01.10 00.01;42 00400;50 00.03.42
15 10 00.00.47 00.01.58 00.00.21 {00.01.56
15 10 00;00.50 00.01.03 00.01.33 | 00.03.26
25 10 00.01.35 00;01;41 00.00.52 | 00.04.08
50 24 00401.47 00.01;33 00.00,29 | 00.03.49
75 13 00.01;00_ 00.00.47 00.01.,03 | 00.02,50
125 19 00.01,01 00.00.49 00.00.39 | 00.02.29
500 28 00.01.21 00.02,04 00.02.35 [ 00.05.60




Table 3a - Computation Time Requirement -
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Discrete - Iwo Dimensional Space = Euclidean Dlstancgﬁ |

Algorithm to Logate OnevCQn;ral Pacilivy

Computers

Computer Operating, Under MFP2

1BM 360/40, Printer IBM 1403 N1,

Time in Hours.Minutes.Seconds (Sexagesimal)

End

Nug?grv ‘Bégﬁn.Time 3egin Step | Begin Stép
Facilities' JOB . IKED GO JOB
5, _11006;20,_ 11,07.30 | 11,0912 | 11,10.02
15 04;.11905 04.11.52 | 04,12.40 | 04.13.01
15 20.11.10 | - 20.12.00. | 20,13.03 | 20.14.36
25 | 11.10.15 | 11.11.50 11.13.31 | 11,14.23
50 04.13.09 04,14056. 04,6029 | 04,16,58
75 14314;50;_,-14;55;50 14016;37 | 14;17940
125 | 12049.26 | 12,50027 | 12.51.16 | 12.51.55
500 20,05.04 | 20.06025 | 20,08,23 | 20.11.04
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Table 4 DPostal System

Optimal Location of One Central Facility

Processing All States Daily Output of

First Class Mail

# State Capital Las. Long. Og:;it
Deg-Min | Deg-Min | Pounds

1 | Alabama Montgomery 32°23’N | 86°17‘'W | 62,650
2 | Alaska Juneau 58°25’N [134°30‘W 1,163
3 | Arizona Phoenix 33°30‘N {112°00‘W | 22,288
4 | Arkansas Little Rock 34°42'N | 92°16°‘W | 20,916
5 | California Sacramento 38°35‘N [121°30'W [ 394,139
6 | Colorado Denver 39°44'N |104°59'W | 47,453
7 | Connecticut Hartford 41°45'N | 72°40'W | 74,813
8 | Delaware Dover 39°10'N | 75°30‘W | 15,863
9 | Washington,D,C. | Washington 38°50‘N | 77°00'W | 238,476
10 | Florida Tallahassee 30°25’N | 84°17'W | 80,791
11 | Georgia Atlanta 33°45‘N | 84°23'W | 79,198
12 | Idaho Boise 43°38'N [|116°12'W | 9,502
13 | I1linois Springfield 39°46'N | 89°37'W {387,961
14 | Indiana Indianapolis | 39°45’N | 86°08‘W | 91,294
15 | Iowa Des Moines 41°35’N | 93°37'W | 60,204
16 | Kansas | Topeka 39°02’N | 95°41‘W | 47,086

Optimal Central Location:

39°39'N, 83°27'W
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Mail

# State Capital Lat, Long. Output
Deg-Min | Deg-Min Pounds
17 | Kentucky ‘Frankfort 38°10'N | 84°55'W | 41,344
18 | Louisiana Batan Rouge 30°28'N | 91°10'W | 52,978
19 | Maine Augusta 44°19'N | 69°42'W | 17,631
20 | Maryland Annapolis 39°00'N | 76°25'W | 73,834
21 | Massachusetts |Boston 42°15'N | T71°07'W | 153,409
22 | Michigan Lansing 42°45'N | 84°35 ‘W [127,187
23 | Minnesota St, Paul 44°57'N | 93°05‘W | 90,323
24 | Mississippi Jackson 32°17'N | 90°10‘W | 24,448
25 | Missouri Jefferson City| 38°34'N | 92°10‘'W [ 139,140
26 | Montana Helena 46°35°'N | 112°01°'W | 17,322
27 | Nebraska Lincoln 40°49'N | 96°43°'w | 35,658
28 | Nevada Carson City 39°10'N [ 119°45‘w 9,207
29 | New Hampshire | Concord 43°10'N | T71°30‘'W | 11,631
30 | New Jersey Trenton 40°13'N | 74°46'W | 184,397
31 | New Mexico Sante Fe 35°10'N | 106°00°‘W | 17,645
32| New York Albany 42°40'N | 73°50’W | 662,584
33 | North Carolina |Raleigh 35°45'N | 78°39‘W | 73,749
34 | North Dakota Bismark 46°48'N | 100°46°W | 11,646
35 | Ohio Columbus 40°00 'N. 83°00‘wW | 219,330
36 | Oklahoma Oklahoma City | 35°27'N| 97°32'W | 59,159
37 1 Oregon Salem 123°03‘W | 45,733

44°55'N

Optimal Central Location:

39°39'N, 83°27'W
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# State Capital Lat. Long. Olnf%;-l]it
Deg-Min Deg-Min Pounds
38 | Pennsylvania Harrisburg 40°15'N| 76°50'W | 302,933
39 | Rhode Island Providence 41°50'N | 71°23'W | 22,769
40 | South Carolina |Columbia 34°00'N{ 81°00'W | 28,434
41 | South Dakota Pierre 44°22'N | 100°20‘W | 10 , 292
42 | Tennessee Nashville 36°10‘N | 86°48‘'W 68;770
43 | Texas Austin 30°15'N | 97°42'W |233,041
44 | Utah Salt Lzke City 40°45'N | 111°52'W | 23,110
45 | Vermont Montpelier 44°20'N | 72°35'W | 14,082
46 | Virginia Richmond 37°35'N | 77°30‘W | 74,408
47 | Washington Olympia 47°02'N | 122°52'W | 53,472
48 | West Virginia {Charleston 38°20'N | 81°35'W | 23,240
49 | Wisconsin Madison 43°05'N | 89°23‘'W | 86,544
50 | Wyoming Cheyenne 41°10'N | 104°49'W 7,489

Optimal Central Location:

39°39‘N, 83°24'w
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IV,2, MULTIPLE CENTRAL LOCATIONS

IV.2.1. Multiple Central Facilities Heuristic Algorithm

The program should be based on the iterative algo-

rithm presentéd on page T4.

2 & T m X

Z 1y ¢ 1 1

1=1 (k) o 2 (k) 2 '3'
e _ [z 2 v (¥ 2]

- . 61:1 ri mi

1=1 l:(x,(k)"% 2+ (rEy )3] g

S Y rs m‘ yt

‘= (k)_, ya (k)_, ya] &
k) [(X x )2+ (TH=y)) ]

= 614 rs ms

i=1

|:(X§k)-:x1 )2 + (Yd(k)Qyi )3_] 2

for j=1, 2, 3, ***, m and 6“ =0, 1

with




The amount of computation becomes rapidly pro.hib-.
itive even for less than 10 facilities and it is of little
interest to develop such an algorithm, Other procedures must
be sought to reduce the' computational effort, In some' prac;
~ tical problems we might know the set of satellite facilities
depending oxi one centr-ai location, we are then brought back
to the previous case of locating only one central facility.
Such a si:i;plificatio;} is often realistic, for example sev=-
eral market a,rea,é may have their own indiiridua.l oui'cea In
some other cases we mighf-know the position of all the fa-
cilities as well as the central ones but we do not know the
value of the Kronecker dalta; that is; we must find the set
of gppropriate gatellites connected with each central facil-

ivy,

IV§29 2. Destination Subset Algorithm [10]

_ In some practicall problems ome often considers en-
larging or modifying an existing facility so as to use it as
a central location for a2 pet of satellites, We must then

consider a subset m. of the n facilities such that it



97
minimizes transportation costs when connected to the proper
set of satellites,
There are

n!

m! (n - m)!

possible choices of n facilities taken m at a time, For
each of these combinations of m central facilities we must
consider all the distances to all the other points and allo-
cate the satellites which give the minimum distances.

It is to be noted that for m = 1 the method is
trivial. Every location is tried as a candidate for a cen-
tral facility and the sum of transportation costs computed
for each of them, the location giving-the least transporta-
tion cost is chosen as central location, A program was
written for this particular case of one facility used as
central location. The logic diagram is shown on pages 101-102,
The program was applied to a set of 20 facilities with
equal weight as per Figure 34. The computer print-out and
results are given from page 190 to page 193 and the problem
was processed in 3 minutes 49 seconds on the IBM 360/40
computer, The program uses 542 bytes, the total memory
requirement varies with the size of the problem but in the
particular case of 50 facilities it tekes 418 bytes more,

In the case where m 1is relatively large, the

amount of computation may be cumbersome because of the large
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number of combinations: (2). It is also complicated to make
a general computer program which is able to consider all the
possible combinations for all m. In the case where m is
known a program can be readily developed using reference [38].

In practice, this assumption of using an existing fa-
cility as a central location is quite realisitc and it is not
uncommon, for example, in the postal system to enlarge and
mechanize an existing post office to use it as a "sectional
center" handling mail of satellite post offices,

If because of the structure of the problem or its
economic constraints the central facilities must be sepa-
rate entities, then the use of the subset algorithm would
not be correct. However, this algorithm allows the defini-
tion of the optimum 61’, that is the optimum set of sat-
ellites best served by one central location. For this
particular set taken alone we may then compute the exact
location of the central facility by using the program de-
VeioPed in paragraph 1IV.1.1. using the extremal equations
found for the location of one and only center,

We are not sure however, that the method gives us
the absolute minimum, first of all because we assume a
priori a value of m, and secondly, because we intuitively
decide that the set of satellites found by the subset
algorithm are the best ones, even after correction is made

to locate exactly the central facility. We also assume that
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the corrected algorithm will bring some improvement which is
not necessarily the case, In fact, in case of partial weight
dominance from some facilities then chosen as central one by
the subset algorithm, the exact solution may increase sub~
stantially the total cost of transport. A high loading and
unloading cost at the chosen center may also create higher
total cost using the algorithm 1IV,.1.1.

In the destination subset algorithm wé do not have
any choice in the length of the investigation procedure, It
is only through exhaustive enumeration of all the combi-
nations that a correct allocation may be found. We should
keep in mind for example, that for n = 100, m = 10 there

are
100!

10! 90!

(g) = (128) = = 17,310 billion combinations of

10 central facilities. Then for each of these centers
(n - m) = 100 - 10 = 90 distances must be computed,
that is m (n - m) = 900 distances are computed then com-
pared for each allocation. This represents for example,
15,579 +trillion computations involving square and square
roots to find the right set of central facilities and sat-
ellites in the case of 100 facilities and 10 centers,
We have seen in section 1II.3.5. that the central

facilities will be definitively situated within the convex

hull defined by straight lines connecting extreme points,
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Except in very rare cases of weight dominange or large obtuse
angles of the comnvex hull, the central facilities will be

found at the extreme points, we could then make abstraction

of these k extreme points, thus reducing our possible com-

n—k).

binations from (3) to ( o
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Diagram 2. Destingtion Subset Algorithm
One facility is used as central location

START
READ
N
X(1), Y(I)
XR(I), XN(I)

PRINT
lst tabulation
Listing of known variables
N facilities
X(1),Y(I),Xr(I),X11(T)

Y.
PRINT
2nd tabulation title 4

Y.
Zero transport cost
(saved as opbtimum)
CSAV = O 0

7

Zero transport cost
¢ =00 |

Y

I =1

V~<

Compute partial —
Distance: DP I=T+1] T=J+1,
Cost __: DC A

y
Compute total cost
corresponding to the dJ
central facility

C =C + DC

PRINT
2nd tabulzgtion body
Total transport cost
for facility J
taken as center

J.X(3),Y(3),C




Save cheaper center|
CSAV = C
- JSAV = J

PRINT l
2nd tabulation results
Best location of
central facility
and corresponding
total transport cost |

JSAV,X,Y,CSAV J

CALL EXIT
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IV.2.3. Variable Grid Algorithm

When considering many hundred facilifies and numerous
central ones, the destination subset algorithm, although
practical in assumption, may be too cumbersome to use because
of the length of exhaustive computations,

We know that the optimum location of all the j cen-

ters (XJ ’ y‘ ), must satisfy the system of inequalities

s s
Xninimam XJ *maximum

L £Y s .
Yminimum = ¥, * Ymaximum

X and

maximum
can be divided into a mesh of large or

I‘he area delimited by X i, jioms

Iminimum® Ymaximum’
fine spacing, The N intersection points of our mesh can
then be treated as possible central facilities, m subsets
of these »N‘ points can be found using a similar algorithm
as in Iv;2.2.; so as to define the proper satellites
minimizing transportation costs, In substance, this grid
algorithm is similar to the ,destination subset algorithm but
it is much more flexible, The choice of spacing will defin-
itivéiy influence our computing time (and possibly our loca-
tional accuracy), but at least we have a means of control
on our computer time expenditure,

This algorithm is attractive as long as N < n, be- .
cause it reduces the number of possible combinations to (g).

With this algorithm we are not too much interested in finding
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the correct location of the central facility but the correct
subset of allocations; once these subsets are known they can
be studied independently and the algorithm 1IV,.1.1. caﬁ give
us for each one the correct location of the center, We can
start with a very loose mesh containing at least m inter-
section points; define from it the corresponding 51,. A
new mesh is then re-defined with a tighter spacing; if the
new subsets of allocations remain the same, then it is prob-
able that these allocations are correct, Similarly as with
the destination subset algorithm we are never sure that these

allocations are the best ones,

IV.2.4, Variable Grid Algorithm with Linear Constraints

The central facilities being located within the con-
vex hull; a more efficient variable grid algorithm should
discard the mesh points outside this convex hull., The
linear constraints defining this convex hull can be found by
a relatively involved separate sub-routine program, but it
must be kept in mind that these facilities will have to be
plotted sooner or later in order to present the results to
management; then it is quite easy on that plot to locate the

extreme points,
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¥, maximum

Yminimum maximum
Xm:'m:'.mum
Fig, 38. Variable Grid Algorithm

with Linear Constraints

For this particular figure with n =50 facilities,
if we try to find the location of m =3 central locations,
we must consider (530) = 19,600 combinations or 2,763,600
computations, In the case of the variable grid algorithm
with linear constraints only (134) = 364 combinations or
51,324 computations would be necessary. It is possible that
the set of assignments in both cases may be identical and
consequently the location of the central facility for each
subset.would be the same using the correcting algorithm

Iv,1.1,
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Inversely, in the case of very few facilities, the
variable grid algorithm can present many more intersecting
points and consequently the use of algorithm IV.1.1. might
not be necessary in the final analysis and the optimum set
of grid points might be accurate enough. This case is some-
what realistic as centers are sometimes located at the inter-
section of ranges and townships,

Some extra effort is necessary to define the convex
hull, In the case of a large system the plot can be done
quite rapidly for example, with a Calcomp plotter at the out-
put of an IBM 1130 computer using the plotting sub-routines
or the powerful "data presSentation system". Another method
would not use any plot but would define the hull by the fol-
lowing procedure, The points are ordered by increasing values

of xi. The point corresponding to x ig definitive-

minimum
ly an extreme point. The set of lines connecting this ex-
treme point to the other points of the set will have facil-
ities located above and below them, except for two lines
which delineate a part of the convex boundary. These ex-
treme lines are connected to new extreme points; from these,
new sets of lines are defined, new boundary lines are found,
some of these boundary lines will give new extreme points

not previously defined. Furthermore, the method allows the

definition of all the bounding lines and extreme points.
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Pig. 39. Investigation Procedure to

Define the Convex Hull

This particular grid algorithm with linear constraints
may appear somewhat cumbersome to use, It may be pointed out
that the destination subset algorithm bjr its very nature,
automatically defines points within the convex hull, However,
- by using this variable grid, we have a direct handle on our
computational effort and we may stop at any level of accuracy

without having to go through the exhaustive set of (E) com-
binations which might become enormous in the case of a very

large system.

Iv.2.,5. Random Destination Algorithm [ 10]

The problem with the destination algorithm and even
the variable grid algorithm is that the amount of computa-
tional effort may be very large. Also quite a number of

combinations of grid points or destinations "rationally"
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chosen by a replacement process can easily be recognized as

poorly chosen when considering the layout of facilities,

5
M ® 13 x18
x 2 30
XL O le X
1®
2@ 7 11X x19
X
3@ X14
Bx
13% (15
4% 17
8y *

Fig. 40. Irrational Choice of Central Facilities

If for example, we consider the "rational" set of
combination (230) 1, 2, 3; 1,2,4; 1,2,5; etc, we can readily
see from Fig, 40 that they are poor contenders for the
title of optimum central locations, A possible random
choice of theseﬂcombinat;lons could lead more rapidly to a
better solution, To avoid duplication of computational ef-
fort we could input all possible combinations from a pack of
nicely shuffled cards., However; if we can write all the
combinations it means that the problem is small enough to
eagily allow an exhaustive computation of all the combina-
tions in any order presented. When the system becomes %09
large, then a sampling procedure might be advantageous, the
subset of ﬁ facilities being chosen at ramndom through a
Monte Carlo technique from the set of n facilifies. For

this particular subset, allocations can be determined
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and the corresponding sum of weighted distances evaluated,
During fhe sampling procedure it is possible to keep in the
compiter memory the set of m facilities with the best
characteristics°  As with every Monte Carla proce&u?e it is
of:ﬁtmost importance %o know when to stop the procedure so
as to obtain an écéeptable level of error, A simple cri-
terion would be %o Stop after & given number of samplings.
A more sophisticaféd method would be to look at the distri-
bution of weighted distances;by.méintaining a running talley
of mean, u, and standard deviation, ¢, and stop the sampling
if fhe allocation falls below y - Xog, X being determined
throﬁgh experience,

'The loglc diagram of a possible computer program 18
given on page 112 . The progran was applied to a set of 20
facilities as per Fig., 48, to be served‘by 3 ceentrdl 104
catiqns° The computer print-out and results are given from
page 194 to page 200 and tﬁe 500 iterations”were processed
"in 6 minutes 27 seconds on an IBM 360/40 computer, Thé
| program uses 1264 bytes, The total ﬁémory requirement
varies with the size of tne problem; for example, the vari-
ables occupy 1286 bytes more ﬁhep sampling 20 facilitiaes
with 5 central locations, The prégram was‘also appiied to
4 large systems of 125 facilities each; the results for
the Pirst system are shown om figure 50, and the quanti-

tative results for all are given un page 160.a,
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Diggram 3. Random Destinabtion Subset Algorithm

g o

T‘ READ 7/
X(Ig g Y(I) /
XR(I) , XM(I)

Y
PRINT
1st tabulation
Listing of known variables

N, M
X(1),¥(1),XR(T), 2 (1)

¥
Varisbles with suffix OLD
are set to zero
Example: SCOLD = 0.0
¥
Zero iterstion counter
KITER = O

i .
' Cumul . prob. distribution of
choosing a given facility
Define class width sRAINC
Define class boundaries:RAD(I):
]

Y. -
Random generator
starting value

. | O
_ | ITteration counter
1 : | KITER = KITER + 1

//6£;ck
of

end
iteration ™
TTER{ITERS,

No.

?Yes
Random selection of facilities
from cumulative distribution
Call random nber generator O to 1.0
Define XC, YC of central facility

®o @ o




i

PRINT
3rd tabulation
Optimum gllocztion

after ITERA iterations

1st part:code & coordinates

of best central locations

JOSAV(J) 4XC(J),YC(J)

ond part:list of facilities
location & best allocation
distance & transport cost

| _to optimum center

e

~( cALL EXIT)

]
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is facility~.
already chosen
s center-
_{o
Save code I
of location selected
' INS_,AY_( J)

: A I
Compute Euclidean distances
D(1,J)
to randomly chosen center

Y
For each facility, select
closest center
Save :-shortest distance DNEW(I)
~code J of corresponding
central l?ggtion IJNSAV(I) |

y
Compute sum of

-optimal distances tSDNEV
—-optimal transport cost:SCNEW |
Yo
PRINT

2nd tabulation
For given iteration: KITER, list
-optimal distances :SDNEW

-optimal transport cost:SCNEW

-~W_MN__f*N___\S\‘\*“‘\__—’////

Is it
lst ibtergtion ™
SCOLD=0.0

Yes

¥

Yes
Save new allocation at the
place of the old one
Variables OLD=Varigbles NEW

i
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IVv.2.6. Random Grid Location Algorithm

When we are using the random destination algorithm,
we are sampling from a population of (E) combinations, We
have seen that this set might be enormous if n and m are
ralatively large (17 trillions in the case of (1&?)} Conse-
quently the resuits given by a relatively small amount of
sampling may be very much suboptimal, To avoid this pitféll
we could take a much larger sample but this goes against our
intent to reduce our computational effort., We could also
divide the facility space into a mesh with a spacing such
that the number of mesh intersection points is much smaller
than. n., In this last case, we are sampling from a reduced
population of N mesh intersecting points still covering
the whole area to be investigated., We are assuming in these
grid algorithms that the distribution of facilities in space
is uniformly spread, which is frequently the case for large
systems. This method however, would not be very efficient
in the case of remote clusters,

The logic diagram of a possible computer program is
given'on page 116. The program.wés applied to the same
set of 20 facilities served by 3 central locations of
algorithm 1IV,2.5. The computer print-out and results are
given from page 201 to page 217 . Five possible grid
spacings were investigated by dividing the circumscribed

rectangle in 3, 4, 5, 6, then 7 divisions on each axis,
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For each grid spacing 100 samplings were made. The corre-
sponging 500 samplings were done in 6 minutes 33 seconds
on an IBM 360/40 computer, The program uses 1694 Dbytes,
The total memory reqguirement varies with the size of the
problem; for example, the variables occupy 1494 bytes more
when sampling 20 facilities with 5 central locations and

50 possible grid intersection points,
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Diggram 4. Random Grid Location Algorithm
(srarT)
\F——~
READ
N,M,ITERA
IGRID ITGRD INC

READ '”;7
(1) , Y(I)
XR(I) , XM(I)

1st tebulation A
Listing of known varigbles
N,M,ITERA,IGRID,ITGRD,INC

XD, Y1), XR(D) XM(I)_////

T s e

Varigbles with suffix OLD
are set to zero :
Example: SCOLD = 0,0

Zero grid spaciﬁé”Ebﬁnter T
L 0

: i
Define Xmln’Xmax’

T
TminsImax |

Y
Define range of X and ¥

RANGX=ABS Xmax Xmln

RANGY=ABS Ymax Yoin

=
Compute number of grid
intersection points NG
NBER = IGRID + 1
NG = NBER**2

IGRID=IGRID+ING . r<~———

A

Define grid spacing
GRID = IGRID
XINC = RANGX/GRID
YINC_ = RANGY/GRID
.
Define grid 1ntersect10n points
XG(K) y YG(K)

]




T Grid change cdﬁﬁter,
L=5Lx+1

are
grid changes
completed

L>ITGRD

s

PRINT
3rd tabulation
.Optimum allocation
after ITERA iterations
1lst part:code & coordinates
of best central locations
IOSAV(J),XC(J),YC(J) i
2nd part:list of facilities
location & begt allocation

distance & transport cost !:

to optimum centerﬁ_—*’////
— T

®

~Yes (CALL
g

-
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Zexo lteration counter
KITER = O J

choosing a grid point
Define class width :RAING |
Define class boundaries:RAD(I)]
. ui ) .
Random generator.
starting value |

Tteration counter!
KITER = KITER + 1

T, o

check
end of
iteration

TTER(ITERA

~

e

Cumul., prob. distribution of |

Yes

A

Random selection of grid points
from cumulative distribution
fCall random nber generator O to l.

s grid point "~
already chosen > Tes

as center

No\
Save code I
of location selected

- v e
Compute Euclidean distances
D(I,J)
to randomly chosen center |

| Define XC, YC of central facility

Y
For each facility
select closest center
Save :-shortest distance DNEW(I)
—-code J of corresponding

{
|

central location JNSAV(I)

1

|

'
t

®

:
|

1
’

=)

P
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Compute sum of

-optimal distances : SDNEW
|___—optimal transport cost:SCNEW
¥ —
PRINT

2nd tabulation
For given iteration: KITER, list
-optimal distances ¢ SDNEW

_opt}pal transport COSt.ffﬁ?i///
1st iteration ;;
\\KITBR 1 -

IJM
allocatlon better >

SCNLW‘<\ SCOLD

Yes

\l

place of the old one

Save new allocatlon at the |
Variables OLD=Var 1ablesNEw |
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IV.2.7, Bandom Grid Algorithm with Linear Constraints

_This algorifhmlis very similér to the randomﬁgrid_lb;
cation algorithm, A mesh'is.dgfinpd“to cover the.facility
space and the:mgsh intersection points,sglectedﬂat random as
possible central facilities. To decrease further the number
: 6£ combinations we,eiclude from our Samplihg process the mesh

intersection points which fall outside the convexihﬁll en__
closing the facilities, Definition of ‘the hull can be done
by the methods described under paragraph 1IV.2.4.

The logic diagram of a pOSSIble computer program is
given on page 121, The program was applied %o the. same'set
of 20 facilities served by 3 central locations of algo-.
rlthm IV.2,5, The computer print-out and results are glven
frbm page 218 to page 234 s Five possible grid spacings,
were investigated‘By diviaing the qircumsbfibed rectangle in
3; 4, 5, 6 then-7 -divigions on each axis, .The lingar con-
straints are-defined{and'during éampliqg each grid'intensec-
tion is checked against these constraints, .this interséé%ion
point is réjeqtedgif it violates any oné of the constraints,
For éach grid Spacing. 100'.samplings,were mé;de° The corre-
-sponding 500 samplings were done in 5 minutes 59 sec-
onds on an 'IBM 360/40 computer,. The program uses 2052
‘bytes. Thertotal.memory requireméﬁt yarieé'with the size of
' the problem; for éxample,-the variables occupy 1742. bytés

‘more when sampling 20 facilities with 5 central ibcae



120
tions and 50 possible grid intersection points,
Every point (x,y) of the linear constraint passing
through the extreme points (x; , ¥,) and (x‘ , yj), is sub-
jected to the equation:

y-y, x-x

A part of the data input includes the number of linear con-
straints (NC), number relatively small even for large sets,
and the extreme points defining each constraint. The con-;
straints are grouped in two classes: first the one "smaller
than or equal tom" (MC of them), then the-one vlarger than or
equal to", The program automatically defines the élements of
the linear equation: angular coefficient and ordinate at
origin, and rejects the random grid points violatirig any of
the constraints,

The prdgram was also applied to 4 large systems of-
125 facilities each; the results for the first sjstein_are
shown on figure 58 and the quantitative results for all ‘are

given on page 160.a.
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Diagram 5. Random Grid Algorithm with Linear Constraints

(suam

.

READ /
N,M,ITERA

IGRID ITGRD INC/
X(13, (1) /
XR(I) & XD/

NC: Nber of constraints /

MC: Nber of conste =<  /

Extreme points defining -
the constraints

Compute equation
of constraint:
Angular coefficient -

Ordinate at orlgln

PRINT
1st tabulation |
Listing of known varisgbles i
N,M,ITERA,IGRID,ITGRD,INC i
X(I),Y(I) XR(I) XM(I)
Equations of constra;pts,,“_-

e e =
PSS

Set grid counber |
L=1 B !

Define X 1n’Xmax’Ym1n’Yhax

i

Define range of X and Y

S

Compute number of grid
intersection points NG

(o}
| TGRID- IGRID+INcr<«~~~
b

3
i
)

&
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®

N
Define grld spa01ng _}

! Define grld
| intersection points
J
2X .
| Zero computational
L_mm“mwmyarlables o
|
N S — R . .
Grld change counter Zero 1teratlon counter
L =L +1 | P KITER =0
k ]
!N Cumul. prob. distribution of Ry
|No : choosing a grid point ;
//”’\\\\\ Define class width |
Grid ohange’ - YesCAILM | Define class boundaries |
< ~-—zm EXIT .
~ completed \\\/// L ‘
\\EL I?FRD Random generator |
N starting value
K j
[N ST ‘
A>fIterat10n counter
| KITER = KITER + 1
e o e e
PRINT . heck end™
3rd tabulation l<93._MMWWN9<:G£Ci§gra§?on\f>
Optimum allocation | k/ TR e
- . : , KITER{ITERA.
after ITERA iterations o : : \\\\
1st part:code & coordinates ' g
of best central locations - | : Yes: -
2nd part:list of facilities . 'Random selection of
b grid points
location & best allocation ! | from cumulative distribution |
distance & transport cost = | - R T
k\\to optimum center | P
\»_‘“//’ /,/ -
- is grid \\\\ No :
point satisfying ————>m

constralnts«\\

Yes

® ®
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®

1

-

/g)gm No
p01nt satisfying —-—

constralnts/ﬂ o

iSeratats
Yes

[ Deflne XC YC of central fa0111ty

|

-

e

g

—is grid point

already chosen >%—
Ncentﬁr’/, -

0

"~

Y

S |

Save code I of locatlon selected
INSAV(I)

R S SUUREDR It _-

D(I,J)

e

V..

~ For each faclllty
select closest center
Save:-shortest distance DNEW(I)
-code J of corresponding
| central location JNSAV(I)

-

Y

Compute sum of
-optimal distances :SDNEW

g e d e

— e it e e ———————

Is it . Yes

lst iteration %%

-

KITER=1l -~
/

~No
// \
Is new ™

|

/ g
alYocation bettex» i
SCNEW }OLD )

Y

No

Sey

{ Yes

Compute Euclldean dlstarces |

to randoml;)ichosen_cv:enter _

-optimal transport cost SCNE”

e Aerm ook

[

Save new allocation at the.

s place of the old one
: Variables OLD=VariablesNEW

g

)
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IV.2.8. Successive Approximation Algorithm [10]

The complexity of the locational problem increases
with n but even more drastically with m., It is a relative-
ly small problem to find the optimum allocation when m = 2
because of the limited number of combinations (2). If the
allocation were found for such a set we could then try to
introduce a third center by placing it for example, at one of
the facilities, Then we would have to test each facility to
see if it could not be better served from the new cgntral
one, and re-allocate acco?dingly. The process can then be
carried up to m centers,

In this method the problem is to choose adequately
each new center. In some practical problems the subjective
choice may be sufficient to lead to the optimum allocation,
however; in most cases it is difficult to pick good contenders
and the resulting allocation may be suboptimal., After the
1st approximation we still must consider (n - 2) facilities

as possible centers, and this number may be quite large.

IV,2.9., Grid Successive Approximation Algorithm

In a like mammer to the successive approximation algo-
rithm of paragraph 1IV.2.8, we choose to select two grid
intersection points as central facilities, and once the best
allocations are defined a third grid point is introduced for

an improved re-allocation, The process is carried until m
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sets of allocations are defined, then each subset may be pro-
cessed with the algorithm IV,1.1. to find the exact center
locations,

In this case we are limiting our investigation to a
set of grid points N which are directly under our control,
Once 2 optimum grid points are defined, we can more easily
investigate all the remaining grid points as possible third
center, The program can also be devised as to reject grid

points violating the linear constraints of the convex hull,

Iv.2.10. Alternate Location - Allocation Algorithm

The set of n locations is divided into m sets of
approximately identical number of points, and for each of
these subsets the best central location is defined. Each
point is then tested to see if it is closer to its central
facility than the neighboring one., If the neighboring one
is closer; new subsets are defined and new central locations
computed, The process is combined until further improvement
is not possible,

The method is sometimes known as the ALA Algorithm
and was suggested by both Cooper [ 10], Vergin and Rogers
[52]s This algorithm has been applied to some practical
problems; for example, it was used by Devine and Lesso [17j

in the optimization of offshore oil fields.
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IV.2.,11, Variable Discrimination Algorithm

When we look at a very large system of facilities we
might consider reducing our power of discrimination, In so
doing, we are assuming that in a set of facilities the loca-
tions are so closely located that they may be considered as
a single entity.

This set of N facilities will have a corresponding

mean weight

e

1 Z
W, = == r nm
k n'-k:i.=il.1 !

acting at a point
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izl ri ml xi
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I

e

SZ]. ri mi yi
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If the system is very large we might use a very small
power of discrimination and therefore include large clusters
of facilities into the same set, If on the other hand the
problem is relatively small we might increase our power of
discrimination and include only very few facilities in each
set,

Once all the sets no,n, °*°, N are defined, we
may apply any one of the previous algorithms to solve the
locational problem, The only purpose of our method is to

condense the total number of facilities into a smaller set,

o 0 .. - -
. @}o **"*,‘
QD *

Pig., 42, Variable Discrimination Algorithm

We will assume that each facility is surrounded by
a blurry area, if another facility is present in this area
it is not recognized as separate, If two or more facilities
have intersecting blurred areas they will be considered as a

single one,
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Fig, 43. Variable Discrimination Algorithm

Blurred Areas

We have direct control over the size of the blurr and
accordingly over the size of the problem.

In this process we make the assumption that closely
located facilities will finally depend on the same center. In
theory it might be wrong (see Fig. 44.), but in practice it is
highly improbable that closely 1ocaﬁed facilities will depend
on different centers; if only for avoiding disruption created

by discontinuity of management or operation,

x
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x ~o \\ /
‘O x oR
3 / /’P‘ S
P - a ~
1~ - - \ x
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- | AN qA/W‘— \
e @ ,
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Pig. 44, Variable Discrimination Algorithm

Underlying Assumption
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It is to be noted that we would like to discriminate
more sharply the facilities with heavy weight and more loose-
ly the facilities with little weight; the blurred area should

then be inversely proportional to the facility weight.

m =50
1

O

O m4 =60

e

Fig, 45. The Discriminating Power is

20

Proportional to the Respective Weights

In practice the problem is to define the subsets
n n;’ ceo, m,
In a large system it is highly improbable that the plot will
be found to be of much help as every facility must be scruti-
nized independently; we must then be able to automatically
define these subsets. Two approaches are possible, For each
facility we may compute all the corresponding Euclidean dis-
tances to all other facilities and select the shortest one

within a given value 2¢, +this would amount to computing
= n2- 1 dis£énéés° We may also order the abcissae of our

facilities and’check the one with corresponding x and Yy

falling less than 2¢ apart; in this particular case the
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blurred areas would be assimilated to Squares,

d

+
1
]
I
|
[
I
|
:
l

e i
__.._(?._..+
K

»x

Fig, 46, Variable Discrimination Algorithm

Agglomeration by Closeness of Coordinates

The value of ¢ depends on the size of the set we
want finally to handle with the previous algorithms., The
computer program could be built in such a manner that we would
defiﬁe the size of the desirable set, a given ¢ would be
tested and increased if the agglomerated set was found to be
too 1arge; or decreased in the other case,

With this algorithm we can reduce a very large set
to a smaller one easier to nandle and although the results of
the locational problem may be approximate, we can deal with
any size problem and we will not be stopped by the computer
memory or computational time, In some cases the problems may
be so large that it is not even possible to store all the fa-
cilities coordinates and weights in the computer memory
sPace; it is then necessary to partition the problem and

agglomerate the sets successively in each partition.
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' Diagram 6, Variable Discrimination Algorithm

READ
N1 :Nber original facilities
N2 :Expected nber new facil,
NERR :Variabtions in N2
NLOOP:Clustering iter. counter
DISCR:Discrimination range
DINC :Discrimination increment

REID ]
X(I) o ¥Y(I)
K&XM(I),XR(I)//

3
PRINT
lst tabulation
Listing of known variables
NI,T,X(I),¥(I),XR(I),XM(T)

R
PRINT 1

2nd tabulation,
Heading
///I’“”—“‘
Zero counter
IO0P = O

Lo

Counter

LOOP=100P+1

i
% = 1,01]

Clustering range around X(I)
XST = X(I) - DISCR
XPFIN= X(I) + DISCR

Clustering range around Y(I)
YST = Y(I) - DISCR
YFIN= Y(I) + DISCR

'Clustering gates
J = 1,N1
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G

N
T(J)-YST =0 >

Yes

No

@—- ------- S

' ¥

ISAV(J) =TI

& Continue
i

Zero cluster counter

N =0

[ Cluster counting routine]

i =*1,Nl‘,—<

Zero elements
of each cluster
JCH(.) = 0

is element J
already part
of a cluster?

Yes

_'befine elements of
_each cluster .
JCH(,)
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©

®

“Error {flag
if chain length
exceeds dimension |

Check the end of
fe—s== chgin of elements
JCH(.)
in eacthluster

N

¥
Cluster counterl
= N+1

Error flag
if saved elements =
excggd dimension

than J

Save elements JCH
of higher index
: JSAV (o)

Y

l G933§5L331&9_-_}---—--

[ Check if prOper “clustering
has been obtained

2nd tabulation
"Desired clustering has
been reached” -

SNBSS e

PRINT

ey

under discrimination:
: e =

( CALL EXIT )

PR

INT
Facility I,X(I),Y(1),
clustered with facility J
Number of clustered points: N

DISCR

Y

ond tabulation |
"Desired clustering has
not been reached"
Modify DISCR or DINC
accordingly. .—"
b=

e ———————

PRINT

|

y

g3§§<}

Lt INCV—NERR<:O/
\

NLOOP-LOOP<L 0

No

_—

DISCR =

Increase clustering
areas
DISCR + DINC

Decrease clustering
areas
DISCR = DISCR ~ DINC

|




CHAPTER V
ANALYSIS OF RESULTS

Some of the previous algorithms have been extensive-
ly studied by Leon Cooper and applied to 100 1locational
problems with 60 facilities and 4 central locations. In
one of his research papers [12] he gives the following per-

cent deviation from the lower bound (refs: II.3.5, III.2.2).

Table 5. Errors in Algorithms

(Applied to 100 Problems, n = 60, m = 4)

Mean Percent
Mean Percent Deviation from
Error Lower Bound
Destination Subset 0.948 360,.1
Random-Destination 2,518 367.2
Successive-Approximation 7.086 387.9
Alternate Location- 2,582 367.7
Allocation

In judging these methods we should not be comparing
only the minimum sum of distances that they give, but mainly
how fast they offer the correct set of satellites, as each

of these sets gives the exact solution very rapidly and with

134,
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little memory requirement by applying algorithm IV.1.1. With
these criteria, the destination subset algorithm with the
lowest mean percentage error is one of the poorest, while the
variable grid algorithm is much better,

We should also look at the memory requirement and
computing time, above 50 facilities the destination subset
algorithm is not practical, above a few hundred facilities
the random destination and random grid may reach the limit
of memory space (around 1,000 bytes of memory is required for
each facility with the random grid algorithm and linear con-
straints in the search for 5 central locations). For larger
systems of many thousand facilities the use of the discrim-
ination algorithm is a necessity, it may rank poorly in mean
percent error but it is the only method now available Whidh
can solve such a system.

The valuable grid algorithms and discrimination algo-
rithms have been mainly devised for large systems. However,
to compare with existing algorithms they were tested for a
set of 20 facilities and 3 central locations (Fig. 48).
Then to compare the results in the case of a larger system
it was applied to 125 facilities served by 3 centers,
Because of computer time limitations it was not possible to

make a more exhaustive study.
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Vo1, RANDOM DESTINATION ALGORITHM

Distribution of Distances

Voelo1lo, Small System: n = 20, m = 3

500 Samples

Range

98,009 - 43.927 = 54.082
Number of classes

Sturges rule: k = 1 + 3.3 log10 N

k: number of classes to use

N: +total number of data

k=14 3.3 x 2,69897 =1 + 8.9 =~ 10 classes
Class interval

540082/10 = 504082
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Table 6, Random Destination Algorithm

Distribution of Distances

Small System

Class Boundaries Frequency

1 43.927 - 49.335 53
2 49.336 - 54.743 154
3 54,744 - 60,151 97
4 60.152 = 65,559 80
5 65,560 - T70.968 56
6 70,969 -~ 76,376 26
7 76,377 - 81.784 17
8 81.785 - 87.192 6
9 87.193 - 92,600 5
10 92,601 - 98.009 6
500

Mean: 59,629

Standard Deviation: 9,928
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Fig., 47. Random Destination Algorithm
Distribution of Distances

Small System

The distribution of distances has a positive skew-

ness, the optimum assignment lies at 1.58 ¢ from the mean,

while poor assignments extend up to 3.86 ¢ from the mean,
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Vo1.2., Large System: n = 125, m = 3

25 Samples

Range

6186.930 - 3323.594 = 2863.336
Number of classes

k=1+ 3.3 1og:1o 25 =1 + 3.3 x 1.39794 = 5,6 2 6
Class Interval

2863.336/6 = 477.2226

Table 7. Random Destination Algorithm
Distribution of Distances

Large System

Class Boundaries Frequency

1 33230594 -— 38000816 6
2 38000817 - 42780039 7
3 42780040 - 4‘7550261 7
4 4755,262 - 5232,484 3
5 5232,485 - 5709.707 0
6 5709.708 - 6186.930 2

25

Mean: 4331.586
Standard Deviation: 750,026
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Fig., 49. Random Destination Algorithm
Distribution of Distances

Large System

The distribution of distances has a positive skew-

ness, the optimum assignment lies at 1.34 ¢ from the mean,

while poor assignments extend up to 3.86 ¢ from the mean,

The 25 iterations were made in 4 minutes 31 sec-

onds on an IBM 360/40 computer.
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RANDOM GRID LOCATION ALGORITHM

DISTRIBUTION OF DISTANCES

Vo2,1. Small System:

n=20,mn-=23

100 Samples per Grid Division

5 Grid Divisions from 3

Number of classes

to 7

k=14 3.3 1oglo 100 = 1 + 3.3 x 2 ~ 8 classes

Table 8. Random Grid Location Algoxrithm
Ranges and Class Intervals
Grid :
Divisions Range Class Interval

3
4
5
6
7

116,045 - 57.769
104,580 ~ 53.128
108.658 ~ 50.847

102,296 - 52.866

119.858 - 61.436

163,276
51,452
57,811
49.430

58.422

63,276/8 = 7.9095

51,452/8 = 6,4315
57.811/8 = 7.2263
49.430/8 = 6,1787
58,422/8 = 7.3027

Total distribution

Number of classes: kX =1 + 3.3 log10 500 ~ 10
1190858 = 500847 = 690011

Range:

Class intervsgl:

69.011/10 = 6,9011
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Table 9, Random Grid Location Algorithm
Distribution of Distances
Small System
Grid Division

C 3 4 5
1
a F F F
S r r r
s Class e Class e Class e
: Boundaries q Boundaries q Boundaries ?
1 52,769~ 60,678 22 1 53,128~ 59,559 14 50.847- 58,073 5
2 60,679— 68,588 32 59,560~ 65,991 | 21 58,074~ 65,299 18
'3 68.589- 76,497 16 65,992— 72;422 22 65,300- T2.526 | 28
4 760498— 840407 8 720423- 780854 19 720527_ 790752 20
5 849408— 92,316 7 78,855- 85.285 | 11 79,753~ 869978 19
6 920317—1009226 1 859286—91.717 8 86,979~ 94,205 5
7 1009227-1089135 2(91.,718- 98,148 3 940206-101,431 4
8 108.136-=116.045 2 198,149-104,580 21101.,432-108.658 1

Mean: 700727

Std., Dev,.:12,781

Mean: 710946

Std. Dev,.:10.920

Mean: 73.414
Std, Dev,:11.347
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Table 9., Random Grid Location Algorithm
Distribution of Distances
Small System
Grid Division
c 6 7 Total
i P F Distritution P
s r r r
z Class : Class Z Class :
s Boundaries ° Boundaries o Boundaries o
1 52.866~ 59,044 | 13| 61.436- 68.738 | 21. || 50.847- 57.748| 36
2 59,045~ 65,223 | 24 | 68.739~- 76.041 | 37 | 57.759- 64.649 | 87
3| 65.224- 71,402 |31 76.042- 83.344 | 27 | 64.650- 71.550 |136
4 71,403~ 77,581 |27 | 83.345- 90.647 | 5| 71.551~ 78.451 122
5 77.582~ 83,759 1| 90,648~ 97.949 | 1| 78.452- 85.352] 62
6 83.760~ 89.938 O | 97.950-105.252 | 3 | 85.353- 92,253 | 27
7 89.939- 96-117 105.253.112.555 | 2| 92.254- 99.154 | 12
8 96.118-102,296 11112,556-119.858 | 4| 99.155-106.055 [ 10
9 106.056,112,956 | 3
10 112.957-119.858 | 5

Means 67,792

Std., Dev,: 8,233

Means 78,153

Std., Dev,.212,108

Mean: 72,405

Std. Dev,311,655
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In this particular layout of facilities, whatever the
grid division may be, the mean sum of distances, the standard
deviation and the minimum sum are all larger than the ones
found with the random destination algorithm., It took 43
samplings to reach the minimum with the random destination
method, With the random grid method only the division in 3
offered a total number of grid points less than 20 and, in
this particular case, the minimum distance was reached in 2
samplings, The other grid division required an average of
47 samplings before reaching optimum, This single problem
is not enough to bear any definite judgment on the speed of
the method except that it consistently gives larger error
" than the random destination algorithm; we must then consider
that the random grid algorithm is inadequate for a small
number of facilities., We will show that for a larger set

this method becomes more and more efficient,
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Vo2,2, Large System: n = 125, m = 3

25 Samples per Grid Divisions

One Grid Division in 5

Range
6064.238 - 3387.996 = 2676.242
Number of classes'
k=1+331log 25 ~6
10
Class interval

2676.242/6 = 446.0403

Table 10, Random Grid Location Algorithm
Distribution of Distances

Large System

Class Boundaries Frequency'
1 3387.996 - 3834.036 6
2 3834,037 - 4280.076 6
3 4280.077 - 4726.116 4
4 47260117 - 51720157 3
5 5172.158 ~ 5618,197 5
6 56180198 - 60640238 1
25
Mean: 4459.856

Standard Deviation: 770,290
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Pig, 53. Random Grid Algorithm
Distribution of Distances

Large System

The optimum assignment lies at 1.39 ¢ from the
mean, while poor assignments extend up to 2,08 ¢ from the
mean, It is to be noted that although the”minimum sum of
distances is nearly identical to the random destination algo-
rithm, the assignment is quite different, We must apply the
exact re-~location (IV.1.1.) to find out what is the optimum
method of the two,

The 25 iterations were made in 5 minutes 42 sec-

onds on an IBM 360/40 computer,
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V.3, RANDOM GRID WITH LINEAR CONSTRAINTS

V.3, 1, Small System, n = 20, m = 3

100 Samples per Grid Division

5 Grid Divisions from 3 to 7

Table 11, Random Grid with Linear Constraints

Ranges and Class Intervals

Grid Range Class Interval
Divisions
3 76,490 - 52,941 = 22,549 | 22,549/8 = 2.8186
4 73,176 - 46,781 = 26.395 26.395/8 = 3.2992
5 88,660 — 50,051 = 38,609 38.609/8 = 4,8261
6 81,441 - 54,283 = 27,158 27.158/8 = 3.3947
7 121,155 - 64.102 = 57,053 | 57.053/8 = 7.1316

Total Distribution
Number of classes: 10
Ra.nge H 1219155 - 460781 = 74‘0374

Class interval : T4.374/10 7.4374
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Distribution of Distances

153

Small System

Random Grid with Linear Constraints

Grid Division

C 3 4 5

1

a F F B
S r r r
s Class e Class e Class e
: Boundaries 1| Boundaries ? Boundaries 4
1 520941—' 550759 53 460781- 500080 7 50.051"‘ 540877 17
2 55,760- 58,578 | 15 50,081- 53,379 9 54,878~ 59,703 | 24
3 58,579~ 61,396 0] 53,380~ 56,679 | 21 59,704~ 64,529 | 20
4 61.397= 64,215 5 569680~ 59,978 27 64.530- 69,355 |15
5 64.216=- 67,034 |24 59.979- 63.277 | 11 69,356- 74,181 {11
6 67,035~ 697852 2 63,278~ 66,577 | 15 T4,182- 799007

7 69?853- 72,671 0 66.578- 69.876. | 5 79,008- 83,833 4
8 T72,672- 75,490 1 69.877- 73,176 5 || .83.834- 88,660 2

Mean: 570901
Std. Dev.: 5,368

Mean: 58.767

“ Std, Deve: 5,852

Mean: 63,731
Std. Dev.: 8,708
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:Table 12, Random Grid with Linear Constraints

Distribution of Distances

Small System

Grid Division Total
c 6 7 Distriﬁution
é B F F
: _ Class : Class : Class g
: Boundaries ? Boundaries ? Boundaries ?
1 54,283- 57,677 9| 64.102- 71,233 {30 | 46.781- 54.218 | 64
2 5T.678= 61,072 | 28 | 71.234- 78.365 {52 | 54.219~ 61,655 154
3 61,073~ 64,467 | 19 | 78.366=- 85.496 | 17 | 61.656— 69,093 {154
4 64,468~ 67,862 | 16 || 85.497—- 92,628 | O} 69.094- 76,530 | 81
5 67,863~ 71,256 | 12 || 92,629~ 99,760 | O | 76,531~ 83.968 | 42
6 71.25T- T4.651 | 10 || 99.761=-106.891 | O | 83.969- 91,405 4
7 74,652~ 78,046 | 2 106;892:1140023 O 91.406- 98.842 | O
8 78.047- 81.441 | 4 |1114,024-121,155 | 1| 98.843-106,280 | ©
9 106.,281=113.717 | O
10 113.718-121,155 | 1

Mean: 64,680 Mean: 74.576
Std, Dev,: 6,230 Std, Dev,: 6,937

Mean: 63,930
Std. Dev.: 8,959
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In this particular layout of facilities, the varia-
bility in the sum of distances is less with the random grid
with linear comstraints than with the random destination meth-
od, When the number of grid points is smaller than the number
of facilities, the mean value of the sum of distances is de-
finitively improved (57.9 and 58.7 compared to 59.6). The
optimum value of 46.781 obtained with a grid division of 4
is still larger than 43,927 given by the random destination
method, however, the assignment in satellites is the same and
consequently after final location with algorithm IV.1.1.
the sum of distances will be identical,

It is interesting to note that when the number of grid
points is too small the distribution becomes,m;itimgdal, for
example, 2 modes appear at 54 and 65 for a grid division
vof 3. As the number of grid points increases the distribution
gets skewed more and more to the right; this is due to the fact
that we take percentagewise fewer and fewer samples as the
population increases, This fact explains why the random
destination algorithm will not be efficient when used with a
very large system, because it will then be necessary to take
also very large samples from the population vo finally get a

point near optimum,
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Iv.3.2

Range
4922,980
Number of classes
k=143

Class interval

158

o Large System, n = 125, m = 3

25 Samples per Grid Division

One Grid, Division in 6

- 3082,082 = 1840.898

03 log:lo 25 ~6

1840.898/6 = 306.8163

Table 13,

Random Grid with Linear Constraints

Distribution of Distances

Large System

Class Boundaries Frequency

1 3082.082 - 3388.898 7
2 3388.899 ~ 3695.714 7
3 3695,715 - 4002,530 3
4 4002.531 -~ 4309.347 5
5 4309.348 - 4616.163 2
6 4‘6160164 b 49220980 1

25

Mean: 3754.705
Standard Deviation: 504.635
. /—V
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Pig, 57. BRandom Grid with Linear Constraints

Distribution of Distances

The optimum assignment lies at 1.33 ¢ from the
mean, while poor assignments extend up to 2,32'¢ from the
mean, It is to be noted that for such a small number of
samples, this method gives the best assignment of any other
method. (8% better than the random destination subset algo-
rithm), Moreover the spread of results is not so large, there
is a drastic improvement in the value of the standard devia-
tion of the sum of distances: 504 compared to 750 for the
random destination subset algorithm, This improvement is
easily understood by looking at Figure 40 where it is shown
the possible irrationality of thé sampling made with the ran-
dom destination method, When the set of N facilities in-
creases, the random grid with linear constraints will improve

with it as it spreads the limited number of sampling points

all over the facility space,
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Table 14

Random Grid with Linear Constraints versus Random Destination Subset Algorithm
Application to 4 Different Systems
N =125, M = 3, 25 Random Samples

‘Printer: IBM 1403 N 1

The exact minimum sum of distances is computed by applying algorithm IV.1 to the
sets of satellites defined by the corresponding algorithms,

Computers IBM 360/40

Sys- Random Destination Random Grid with
t;m Subset Algorithm Linear Constraints
Minimum sum of distances 3323.594 3082.082
Mean sum of distances 4331.586 3754,705
1 Standard deviation of sum of
distances 750.026 504.635
' Exact minimum sum of -
distances 3122.075 3000.712
Minimum sum of distances 3147.336 3290.181
Mean sum of distances 4362,776 4277.913
> Standard deviation of sum of E ,
distances 938.340 790.590
Exact minimum sum of ,
: distances _ 28%0.,957 2837.912
Minimum sum of distances 3048.011 3063.494
Mean sum of distances . 3726.524 © 3779.001
3 Standard deviation of sum of .
distances 532.571 542,535
Exact minimum sum of
distances 3061.424 3030.233
Minimum sum of distances 3010.937 3050.184
Mean sum of distances 3987.171 3609.579
4 Standard deviation of sum .of
distances 848.243 505.884
Exact minimum sum of
distances 2966 .200 2953.828

syTnsay Jo fxeuuwng ¢°C°A

2°091
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V.4, VARIABLE DISCRIMINATION ALGORITHM

The discrimination algorithm is to be used when the
size of the problem is sc large that it cannot be handled by
the computer facility because of the memory requirement,

Using FORTRAN to program all the previous algorithms
made fhe tools edsy to use with any make of computer; however,
it drastically reduces our memory space, For example, a
problem with 500 facilities could not be handled with our
122K computer facility. At the national scale it is common
to be faced with problems invélving many thousands of facil- |
‘ities; the discrimination algorithm can then be used to con-
dense this set to a smaller size of easier manipulation,

The simple variable discrimination program given on
page 235 to page 237 was used to cluster a setv of 125 fa-
cilities into a set of 75, wusing a storage space of 1062
bytes for the program and approximately i1.5 bytes per facilw
ity eonsidered;, When the facilities are not plotted it is
difficult to guess correctly a good starting value for the -
discriminating power and its possible vai‘iations., It is
wise to start with a large value of discriminant DISCR,
large variation steps DINC, and wide open tolerances
NERR, ‘- With a very small numbéz; of loops: NLOOP, the inves-
tigator can rapidly see how the set behaves under. the clus-
teriﬁg program; it is then easy to adjust propei‘ly the dis-

crimination argument, its variations, and the range of
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tolerance for the expected subset, The program does not have
a built-in system to compute the new weighted location, trans-
port rate and amount to be transported for the generated clus-
ter; an easily developed sub-routine could be devised to. do
such a computation; time was not available to develop it

Figure %9 shows the clustering effect of the algorithm
as applied to our set of 125 facilities, It would be inter-
esting to apply any one- of the previously developed algorithmé
to study the variation in total sum of distances and corre-
sponding loss in accuracy (if any) created by this clustering,
It is to be noted also, that with our available memory space
_of 122K we could easily condense sets containing up to

10,000 facilities,



163

00

i

T

EE——

h—.——//

:
71 ) e

] k/ .

tion Algorithm

rimina

lsc

Fig. 59 Varisble D



CHAPTER VI

CONCLUSION

IV.1. Recommended Future Research

In the preceding chapters we covered some of the high;
lights of the state of the art in some of the methods which
have been used to solve the two dimensional locational prob;
lem in Euclidean space, and we expanded some new computational
methods adjustable to large systems, When reviewing these
methods we find many areas which would require further re;
éearch.

fhe analog method first appealed to the author many
years ago while measuring electrical fields in oil well sur-
veying,“but it must be granted that the method involvés the
possibility of large errors and is relatively inflexible as
the facilities must be physically plotted and fitted with
mechanical or electrical devices, It is undoubtedly possible
to find a better instrumentation and technique but the anaiog
method will remain cumbersome and will have mostly a demon-—
stration purpose, |

Very little has been done with the geometric method
in the case of multiple vertices, although historically it

164 -
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was the first one to be developed for few vertices, It is
to be noted that many complex problems in the field

of mechanics or electricity may be solved graphically with
enough accuracy for practical purpose., The author has tried
many geometrical constructions to reduce the force closure
vector by a hopefully convergent procedure but to date
nothing of value has been found,

The drawing of isodapanes and the mapping of costs
has been undertaken on a digital computer but all the results
presented in the literature show painfully hand-drawn curves
from points of equal costs plotted by the computer, It seems
quite feasible to devise a Calcomp plotter sub-routine for
example, to trace and interpolate automatically these curves,

In the iterative algorithm of the algebraic solution
as applied to one central facility we could have used the con;
ventional approach of varying X to reduce 3C/3X, then
modify Y +to reduce 3C/d3Y and continue the process hope-
fully toward convergence, however, the optimum may be %too long
to reach or may be missed altogether if the steps are not ade-
quate and these steps cannot be defined a priori without having

an insight on how the derivatives behave,
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X X

Figo GOQ Convergent Iterative Process

We preferred to use a method which starts at the weighted
mean of distances and it has successfully converged all the
time, however, no formal proof of this convergence is still
available,

Moreover, we have found that the starting value we
used may be far from the optimal location in case of weight
dominance, we should then consider the use of a more heavily
weighted arithmetic mean to encompass for this error, For
example, it would be interesting to study the optimum value
of the power k > 1 in the following starting values so as
to obtain an accelerated convergence or even a good enough

optimum location without iteration.
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X(0) =
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It is probable also that the use of the Holder in-
equality could lead us to a more restrictive bound than the
trigngle inequality. ! '

Quite a number of non:linear problems are success;
fully solved by the use of geometric programming, It has
been previously demonstrated that the method cou%d,solve
exactly the éingle:center locational problem, In practice,
however, the method becomes rapidly infeasible because of
the very large degree of difficulty encountered, even with
relatively small systems,

The constrained problem has been mentioned but no
exact solution computationéily attractive has been found to
date with the Lagrangian or Khun;iucker methods,

In the study of multiple central facilities we tried

to develop a few algorithms computationally attractive for

the case of large systems, Becausé of time and computer
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expenditures limitations we barely developed and tested three
algorithms and the very few cases run were not enough to sta-
tistically prove the superiority of the variable grid algo-
rithm with linear constraints over the random destination
algorithm in the case of large systems, It seemed that above
100 facilities the variable grid with linear constraints
gave a better allocation in less time and with less spread
in results than the random destination algorithm but this
statement must be supported by future substantial statistics

and further research,
Vi.2, Summary

In Table 1 of the introductory chapter we had listed
most of the types of locational problems we are faced with in
practical life, In our study we limited ourselves to the ex-
pansion of some computational techniques applied to large
systems of facilities located in a discrete space and inter-
connected by Buclidean distances, Even under such drastic
limitations we only developed three new methods: the random
grid location, the random grid with linear constraints and the
variable discrimination algorithms. The testing and deQ
bugging of these programs are complete, but due to limitations
in time and computer expenditure the complete statistical
study of results is quite incomplete,

Our effort is not in vain however, and adds to the

multiple research done in locational theory. We may look
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down on the analogue metﬁods»of solution‘but in some practical
‘problems these. are the only féchniques self-explanatory to
management and of recommended use by Haley [30] in 1963 or
Eilon and Deziel [22] in 1966,

Some researchers, on the other hand, are very oriented
to theory and try to redﬁée the locational problem to a more
manageable mathematical model, or to comnect it more closely
to the éxtensively studied transportation and transhipment
problems [3] [25] [29].

| For soﬁe ofher researchers,»an'approximate answer is
quite sufficient for the practiéalfuse it will be made of ift.
Although it has been shown that the definition of thé'center
of mass is erroneous, it will give in practice a result with
acceptable acgurady, mostly if there is nb undue weight dom-
ihance or extreme locations. The optimél_logatiop in the case
of one center is then found at the intersection of the |
weighted.arithmetic'means of the demand points along two
orthogonal axis ahd the problem ié identicai to the definition
_ of the center of gravity of a two-dimensional object in me-
chanic [19] [44].

When faced with equations of implicit nature, some
researchers will try to find some heuristic algorithms, that
is to say some numerical methods of iteratiﬁe or simulative
nature contributing to & reduction in the average search for
.thé optimum solution. This i§ the method that I have adopted

because it is flexible enough to adjust to all-the'problems
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and realistic enough to approach real life problems., Some
of these methods are presented in the literature [10] [ 24]
[35] [50] [53], and although they are logically complete they
require extensive programming and testing to be duplicated by
a potential user., Some of these heuristic methods may even
attempt some non;linear cost functions or some large systems
[24]. Most of these methods have some simplifying assump-
tions: Xuehn and Hamburger [35], as well as Feldman, Lehrer
and Ray [24] read in all the potential central locations
sites and use the add or "Drop" approach to eliminate the
ones which are not economically interesting transportation-
wise; they may even consider some unified transport rates
which are far from real world situations, Nor do any of
them take into account the type of road system, inacces-
sible areas, labor costs and site costs, etc.,, but even with
these drastic restrictions the results could be useful, but
it is the extreme exception rather than the rule when the
computer program is made public [18].

Up tb now, we have not even mentioned the very im-
portant case in which the elements to service are so numerous
that they may be considered as part of a continuum with a
given density per unit area, This is the case for example,
of locating city service centers and is of very practical
nature, ©Some approaches to this problem have been treated by
Witzgall [56] in the case of a Manhattan metric of streets

and perpendicular avenues, or in the case of a city beltway
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and radial streets, For example, a computer program in
FORTRAN was devised [57] to locate a central facility serving
a polygonal demand distribution that is a superposition of
many distributions each bounded by a polygon with constant
density inside and vertices following in counterclockwise

direction,

f
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Fig. 61, Example of Polygonal Demand Distribution

Location of Central Facility

The locational problem in Manhattan metric has a
great potential application in optimal plant layout and has
been studied, for example, by Bindschedler and Moore [5] [ 44]
and a computer program devised by Armour [ 1] to mention just
a few,

In our study we have always assumed a value of n,
without knowing if it were the most appropriate and the one
leading to an absolute minimum cost., Bender, Goldman and
Levin [4] [39] have done some research in that area to find

the necessary "degree of centralization" that is the optimum
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number of centers to be located in a given area,

Our study was considering only a two-dimensional space
with each facility bearing 2 attributes.of cartesian cCoor-
dinate location; however, in numerous prabtical problems of
sorting and classification it is common to find elements with
multiple characteristics° In taxonomy for example, n
species may be scored for’ ﬁ characters, In these partic-—
ular problems it is depirable to cluster large number of
objects, symbols or persons into smaller numbers of mutually
exclusive groups, each having members that are as much alike
as possible, In two dimensional space our Euclidean distances
represented the minimization of weighted sum of squares about
the group mean, Similarly in multi-dimensional space we will

consider the minimization of the function:

and it represents the "loss of information" as reflected by
the errof sum of squarés° This cluster analysis is very com;
mon in social sciences, psychology, biology and marketing.
Much has been written on this subject but we will mention just
a few [27] [2] [20]. The theory is very nicely covered by
Cooper [14] and a selection of computer programs to solve this
generalized locational problem are available [6] [49] [40].
Even though the amount of literature is impressive in

the field of ‘locational theory and spans over many centuries
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of research little has been achieved, The geometric solution
did not lead to anything of much value, the proof of a con;
vergent algorithm has never been done completely [34] and the
various investigative aigorithms become rapidly impossible
over few hundred facilities, The main goal of this disserta-
tion was to decrease the computational requirement of some of
the methods, The variable grid algorithms and the variable
discrimination method allow the condensgtion of a very large
set info a smaller one easier to manipulate. In the process
of agglomeration some of the information is lost and the final
solution may be only suboptimum; however, the result will be
better than nething at all, In multi;dimensional problems
?he variable grid algorithms will also be applicable, the grid
points will be multi:dimensional and the linear constraints
will be changed into planes and hyperplanes; similarly the
discrimination algorithm will have to screen through all the
attributes to condense close points, Although we limited
ourselves to discrete space and Euclidean distances, it would
be a great engineering achievement to compile in an orderly
manner all the accomplishments in the field of locational
theory into a set of tools directly and easily available to
the practicing engineer, economist or social and government

worker,
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APPENDIX

COMPUTER PROGRAMS FOR THE
LOCATION OF CENTRAL FACILITIES

The following programs have been written in FORTRAN IV
with control cards for the IBM 360/40 or the IBM 1130 computers,

Please refer to the comment cards to modify the di-
mension statements according to the size of the problem, The
input/output codes for R(Read) and W(Write) should also be
changed to fit the available computér connections, Note also
the format input, and punch the data accordingly. The termi;
nology of variables is given on the comment cards,

The appendik includes the following programs:

1 = Location of one central facility
1A = Location of one central facility in case of
weight dominance
2 «~ Destination subset algorithm, one facility is
used as central location
= Random destination subset algorithm
Random grid location algorithm

- Random grid with linear constraints

O Ul o~ W
v

~ Variable discrimination algorithm
181
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ONE CENTRAL FACILITY
HEURISTIC ALGORITHM
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FORTRAN IV G LEVEL 1, M0D 2 MAIN DATE 04/17%/30 PAGFE 1001

C LOCATION OF ONE CENTRAL FACILITY SPRING 1959

C DEFINITION OF MACHINE INPUT/OUTPUT R READ

C W WRITE

‘ INTEGER Ryl

C CHANGE THF DIMENSION CARD IF MORE THAN 1090 FACILITIES ARE CINSIDERED
DIMENSION X(1000),Y(1000),XR{1000)},%XM(10032),0(1000),C{1000)
R=5
W=6

c READ N sNUMBER OF FACILITIES '

c "ERRIADMISSIBLE DISTANCE ERROR IN LOCATING A CENTRAL FACILITY

c REMARK  sTHE MACHINE WILL STUP AFTER ITER ITERATVIONS IF OPTIMUM IS NDT Y

c REACHED .

~ READ(RJIOIN.ERRyITER
10 FORMAT(I10,F10.0,110) ~
READ VARIABLES X{(I)yY{I)2CARTESIAN COORDINATES OF FACILITIES
XR{I)sTRANSPORT RATF ON FCUTE 1
XM{I)sQUANTITY YO TRANSPORT ON ROUTE 1
READ(Rs2Z0YUX{TI)yYII) o XRIL) ¢ XM{I)yI=1,4N)
20 FORMAT({10F7.0)
WRITE(W,30)N

30 FORMAT{1HLs// 935X, 15HLOCATION OF THE,15+2X, 10HFACILITIES,// 424X,
121HCARTESIAN COORDINATES 46X, 14HTRANSPORT RATES3X,LIHQJANTITY 12,7/,
269X.9HTRANSPORT|/127X,lHX,IGX,IHY,15X,1HR,14X,1HH,//)

DO 40 I=1,4N

WRITE(Wy 354y X{I)eY{I)yXR{T)yXMIT)
35 FORAAT (13X 42HI=415,F13.39F15.34F14.3,F1643)
40 CONTINUE

WRITE(wW,50)

50 FURMAT(LHL.//+35X,32HLOCATION OF ONE CENTRAL FACILITY,/,30X,
141HCARTESTAN COORDINATES — FEUCLIDEAN SPACE,//+27Xs 1HX, 14X, 1HY,
2TXe25HTOTAL TRANSPORTATION COST.//7) '

XBELT=ERR+1.0
YDELT=ERR+1.0
K=1 »
C -COMPUTE STARTING VALUES OF CENTRAL FACILIYY COORDINATES: XC,YC
SR =0.0
SRMX=3.0
SRMY=0,0
DO 60 I=1,4N
RM=XR{I)*=XM(T)
SRM=SRM+RYV
SRMX=SRMX+EMxX{1)
60 SRMY=SRMY+RM*Y({])
: XC=SRMX/SRNM
- YC=SRMY/SRM
C COMPUTE EUCLIDEAN DISTANCES TO CENTRAL FACILITY
70 DO 80 I=14N
80 DIL)=A{{(XC=XUDI))*=2)+((YC-Y(1))*%2))%%0.5
C COMPUTE TOTAL TRANSPORTATION COST: SC
" SC=0.0
D3J 90 I=1,yN
COID)=XR{I)*XMII)*DI(])
90 SC=SC+C(I)
95 IF{ 100-K)10641064100

(aNeNe]



PAGE 3002

100 IF({XNDELT~ERRI1I05,4105,120
105 IF{YODELT~ERR}ILOG641064120
106 WRITE(W+110)IXC,YC,SCyK

110 FORMATI3X, ISHLUCATION OF THE,/,3X,L6HCENTRAL FACILITY, 2X,Fl2.3,

1F15.397X3E15e73/7 91Xy OHAT THEs1 4, le“HITFRATlON)
WRITE({W,115)

115 FORMAT(LHL+//+34X934HDISTANCES AND TRANSPJRTATIQN COSTS,y /440X,

123HTO THE CENTRAL FACILITY;// 35X, 8HDISTANCE, 11X,
219HTRANSPORTATION CCSTy//)
DO 118 I=1,N
ARITE(W 1160 14D01),C(T)
116 FORMAT(13X,2HI=1151F2303,£25.7)
118 CONTINUE
GO T 1000
120 WRITE(¥W,130)XC,YC.SC
130 FORMAT(21XyFLl2.34F15.3,TX,EL5.7)
COMPUTE NEW VALUES OF CENTRAL FACILITY COORDINATES:
SDEND=0. 0
SXNUM=0.0
SYNU4=0.0
DO 140 I=1,N
DENU={XR (I} =XH{1))/0(1)
SDENG=SDENC+DENU
XNUM=DEMG#X( )
SXNUM=SX NUM+XNUH
YNUM=DEND*Y [ 1)
140 SYNUM=SYNUM+YNUM
X CN= SXNUM/SDEND
YCN=SYNUM/SDEND
XDELT=ABS{XCN=XC )
YDELT=ABS{YCN-YC)
XC=XCN
YC=YCN
K=K+1
GO TO 70
1000 CALL EXIT
END

XCNy YCN
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LOCATION BF THE 50 FACILITIES
CARTESTAN COORDINATES

TRANSPORT RATE QUANTITY TO

TRANSPQORTY
X Y R M

1 25165.000 39.000 119.900 323.000
2 903.000 233,000 345,000 61.000
3 483.000 3621.000 5853.000 18.000
4 23.000 2167.009 804.9200 315.000
5 242.000 989,000 1714.000 57.000
6 555,000 485.000 823.000 521.000
T 2289.,000 669.00D 23.000 148.000
8 23.000 28,009 616,000 71.000
9 2363.000 838,000 28.200 1386.000
10 293,000 79,000 1030.000 75.020
11 564.000 34.000 2927.200 1278.000
12 41.000 28.000 590,000 140.000
13 233,000 299,009 6.000 150.000
14 8.000 4.000 114.200 19.900
15 11.000 1.009 24.000 12.000
16 9.000 3.000 9.000 38.000
17 15.000 9.000 - 8.000 8.000
18 6.000 4.000 11.000 13.000
19 18,000 22.000. 4.000 17.000
20 12.000 11.000 6.200 3.000
21 290.000 7.000 70.900 5.000
22 '5.000 53.000 12.000 57,000
23 19.000 4.000 5.000 2,000
24 7.000 29.0090 6.000 2.900
25 10.000 228.000 5.000 14.000
26 74200 9.000 5156.0C0 172.900
217 41736.000 619.000 1264000 14,000
28 182.000 197.000 84.000 12.000
29 75,000 1221.009 398,000 295.000
30 243,000 119.000 T77.000 20.000
31 -144.000 201.009 450.900 350,000
32 42.000 505.000 125.000 139.000
33 205,000 25.000 238.000 557.000
34 1253.000 62.000 55.000 628.000
35 24564000 173.000 546.000 16.000
36 38,000 54.000 92,000 935.000
37 226.000 12.000 82.000 247,000
38 53,000 280.000 248.000 5.000
39 85,030 8042.000 626,000 117.0C0
40 84.000 15.000 111.000 203.000
41 215.000 4.000 13.000 1012.009
42 272.000 136.000 261,000 121.000
43 676.000 11.009 132.200 107.000
44 410.000 165.000 374.000 1184.000
45 15.000 105.000 18.000 17.000
46 152.000 75.000 758.000 132.000
47 -11.000 439,000 797.000 50.700
48 "313.000 18.000 59.9200 19,000
49 1249.000 1619.000 14.000 2.000
50 115.000 58.000 26.000 165.000
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LOCATION OF ONE CENTRAL FACILITY

CARTESIAN COORDINATES -~ EUCLIDEAN SPACE
X Y TGTAL TRANSPORTATION COST
556.274 323.658 0.4850975E 10
477,053 141.980 0.4170824E 10
487,000 88.940 0.4080162E 10
509.750 70.027 0.4038015F 10
5274149 584731 0.4009905F 10
539.161 50,929 0.3991098E& 10
5474296 45,513 . 0.39785458E 10
552.779 41.794 0.3970146E 19
556,467 3%.260 0.3964532E 190
558.945 37.542 0.3960T774E 10
560. 602 36.382 0.3958258F 10
561.718 35.602 : 0.3956569E 10
562.4T4 35.078 0.3955432E 10
562.979 34,722 0.39545670FE 10
563.315 34.484 0.3954158¢ 10
563.542 . ’ 34.324% 0.3953819E 10
563.693 34,2117 0.3653592E 10
563,790 34,145 0.3953444FE 19
563.8657 34.099 0.3953341E 19
563,907 34,067 0.3953267E 190
563,939 34,045 0.3953222E 10
5634960 34.029 0.3953193F 10
563.974 34.019 0.3953170t 190

LOCATION OF THE |
CENTRAL FACILITY 563983 34.013 0.3953154F 10
AT THE ' 24 ITERATION
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DISTANCES

T0 THE CENTRAL FACILITY

DISTANCE

24601.,000
393.102
3587.884
2200.523
1007.806
451,077
1838.176
541,016
2452.504
2744691
0.021
523,017
423,990
5564792
553.967
555.548
549.552
558,739
5464115
5626462
544,653
559.305
545,808
557.005
5864965
490,621
4212.516
415,302
1283. 760
332,043
451,963
703.061
358.096
689.586
347.031
5264362
338.698
562.608
8022.195
4804359
350,271
309.282
114.357
2024159
553,553
414.016
685,423
2464503
1725,683
449,623

AND TRANSPORTATIOM CQOSTS

TRANSPURTATION

0.9455885E
0.8272822E
0.3779978E
0.5573043F
0.9846064EF
0.1934140F
0.6257151E
0.2366189E
0.95176T7F
0.2121990E
0.8023719€
0.4320120C
0.3815912F
0.1206011E
0.1595425E
0.1901001C
0.3517134E
0.7990681E
0.3713579€
0.9944312F
0.1906285E
0.3825644F
0.5458082E
0.6684059¢
0.4108754E
0.4350979€
0.7431403F
0.4186244F
0.1507263E
0.5113461E
0.7118411E
0.1221558E
0.474T134F
0.2381829F
0.3031662E
0.4527756E
0.6859999E
0.6976341E
0.5875615E
0.1082393E
0.4608162E
0.9767426E
0.1615174E
0.8951931E
0.1693872E
0.4142482E
0.2731410E
0.2753302E
0.4834712F
0.1928381E

09
07
09
09
08
09
07
08
08
08
05
08
06
07
06
06
05
05
05
04
0%
06
04
D4
05
09
07
06
09
06
08
08
08
08
07
08
07
06
09
04
07
07
07
08
06
08
08
06
05
07

Co



188

ONE CENTRAL FACILITY
CASE OF WEIGHT DOMINANCE
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LOCATION OF THE 3 FACILITIES

CARTESIAN COORDINATES TRANSPORT RATE QUANTITY TO
’ TRANSPORT
X Y R i
= 1 11000 2000 1000 104000 .
I= 2 4,000 1200 1000 5000
= 3 1500 5¢500 1000 34000

LOCATION OF ONE CENTRAL FACILITY

CARTESIAN COORDINATES = EUCLIDFEAN  SPACE
X Y TOTAL TRANSPCRTATION COST

. 76472 24361 : 744008

e 8.023 2,100 726456
84516 2.091 . 716272
84951 2.08%6 Ce243
94326 2077 . 654370
9eb644 2,067 . 65¢639
9,910 2+056 684034
10,129 2046 67e54C
104307 2,038 674139
106451 24030 . 664817
10567 2:024 664559
104659 24019 664355
104732 2.015 : 664192
106790 24012 650064
10.835 24009 656964 °
104871 2007 656884
10,899 24006 654822
104921 2004 65776
10.928 24003 654736
10,952 : 2.002 650706
10962 20002 65:683

LOCATION OF THE
CENTRAL FACILITY 10,970 24001 654664
AT THE 22 ITERATICN

DISTANCES AND TRANSPORTATION COSTS
TO THE CENTRAL FACILITY’

DISTANCE TRANSPORTATION COST
I= 1 0029 0292
= 2 74016 354083
I= 3 10096 . ‘ 30.288
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ONE CENTRAL FACILITY
DESTINATION SUBSET ALGORITHM
ONE FACILITY IS USED AS CENTRAL LOCATION
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FDRTRAN IV G LEVEL 19 NOD 3 . MAEN DATE 20/G1f00 PAJE OWWI
C LOCATION OF OME CENTRAL FACILITY SPRING 1969
C THE DESTINATION SUBSET ALGORITHM
c T TTONE CFACTILITYUISTUSED TAS TCENTRALT LGCﬁfVUh o o T
C DEFINITION OF MACHINE INPUT/OUTPUT: R READ
C W WRIYE _
T e LN TEGER R R e e e . - S —— ~
C CHANGE THE DIMENSIDN CARD IF MDRE THAN 50 FACILITIES ARE CONSIDERED
DIMENSION X{ 503,Y{ 50),XRi 503),XM{ 50} ]
-—gEg T B r A i — 3
W=6
READIR,10}IN '
IO U RORMAT (Y 10y T T T e T T -
C READ VARIABLES X{I),Y{I):CARYESIAN COGRBINATES 0OF FACILITIES
c . - XR{II:TRANS Pqu RATE OGN ROUYE 1

C T XM T QUANY T TY VO TRANS PORT ON'RGU(E"T"'"r"~m———_—_

READIR, 20 IXTI) o Y(T#sXRUI)¢XM{1)I=1,N) '
20 FORMAT(4F15.0) :
CTTWRITEWW 30T T T T T - T o o T
30 FORMATILHL//439%,32HLOCATYION OF ONE CENTRAL FACILIYVs /041X, '
128HDESTINATION SUBSET ALGDRITHM;/s35Xo40HONE FACILITY IS USED AS C
T2ENTRALTLOCATIONYZ /5 2 T Xy ZLHCARTESTAN " COORDINATES s 6 X5 L4HTRANSPORT RA™
3TE«3Xe11HQUANTITY TOp/g72Xy9HTRANSPGRYv/oZ9X71HX914X IHY 9 13X o 1HR,
415X 1HMo /7))

DU 40T 1= N . s
WRITE(M 35 DoXUI) YT} XRUTY X1 1)

35 FDPMAT(lBXsZHi~gISyFlJonF1ro3yF1@~J1F16 3) o ]
40 CONTINUE ™™ T T T
HRITE{W¢50)

50 FORMAT(1HLs//+39%,32HLOCATION DF ONE CENTRAL FACILITY,/s35X,
[39HCARTESTAN COORDINATES "= "EUCT IDEAN SPACE /56 Xy 28HDESYINATION TS0 ™73
2BSET ALGORITHMs/ ¢35X s40HONE FACILITY IS USED AS CENTRAL LOCATION,

- 3//+26X52BHCENTRAL FACILITY COORDINATES,6X,25HTOTAL TRANSPORTATION

ACUST,/.azx,lﬁx,14X.IHV?24x,1Hcv//J -

CSAV=0.0

DO 100 J=14N

c=0.0

DO 60 I=1¢N

DP=1{{X{JI-X{I) ) %%2)+(Y{JII-YL{I))%%2))%%0.5

DCEXRUIVEXMULY%0P
C=C+DC

60 CONTINUE
WRITETWS10Y I X{a ), YO, C

70 FORMAT{15X32HJ=915¢F14e34F15.33F25.3)
IF{J-1180,90,80 : S

80 TFIC=CSAVIS0,100%100 ' f

90 CSAV=C( ‘ :
JSAV=]

Y00 CONTTNUE
WRITE(Ws110)JSAV,X{JISAV) s Y{ISAV) +CSAY '

110 FORMAT(/41X316HCENTRAL LOCATION: /58X, 2HATs 5Xs2HI=915,F1443,F15, 3,
TIES IV T
CALL EXIT
END
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LOCATION OF ONE CENTRAL FACILITY
DESTINAYION SUBSEY ALGORITHM

CARTESIAN CODRDINATES

ONE FACTUETY IS USED AS CENTRAT COCATION™

TRANSPORT RATE QUANTITY TD

: T Y RANS PORT T
X ' R M ]
1= 1 7.190 56490 1,000 2.000
= 2 9,070 9. 940 1.000 2.000
1= 3 4—;6“1'0 6”.‘490 ~ 1000 R jZo 000 E
= 4 4.940 B.250 1.000 - - 12000 E
I= 5 0.470 0. 690 1.0G0 . 26000 3
= 6 6.180 3,570 1.000 Z.000 e
= 7 1.130 9.810 1.000 2.000
I= 8 64000 44360 1.000 2.000
i = 9 ) 80230 . 8006-0 10000 2 OOOO
I= 10 9,600 9.280 1.000 L 24000
1= . 11 30’5‘60 o 9e680 ‘ 10000 ’ 20000
I= 12 2.3Y07 T TT0.39%0 1.000 T 2.000
= 13 2.530 4570 1.000 2,000
= 14 4.45%0 7.990 1.000 - 2.000
i= 15 8.530 1490 1.000 - 2000 A
i= 16 2.290 7.030 . 1.600 . 2.000 3
1= 17 8.830 70120 ° 1,000 . . 2,000 E
= 18 2.620 9. 410 15000 2,000
I= 19 3.820 20420 1.000 2.000
I= 7.550

1.970

1.000

2,000
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LOCATION OF ONE CENTRAL FACILITY

CARTESIAN COORDINATES -~ EUCLIDEAN SP&CE

DESTINAVION SUBSET ALGORTTHM

ONE FACILITY IS USED AS CENTRAL LOCATIGN

CERTRAL FACTUITY CODRDINAYES —— ~ '”TUTKE’TRENSVURTKTTUN”CD§
X Y C

J= 1 T7.190 50490 169.706

= 2 9,070 . 9,940 250.014
J= 3 47610 64490 T155.955 1
J= 4 4,940 . 84250 169,834 ;
J= 5 0.470 00690 302,881 i
= 6 67180 35570 LT7.6%6 i
J= 7 1.130 9.810 254,922 !
= 8 €.000 40360 165,387 !
= g 85230 87060 YOB.313 ]
= 10 9.600 - 9.280 2480497 5
= 11 3,460 8,680 . 2080284 i
= 2 2,370 0,390 714661 -
J= 13 2.530 4,570 190,018 ;
J= 14 40 440 7.990 1670346 i
: = 15 8.530 1,490 25492, T
i = 16 20290 70030 1899366 j
| = 17 8.830 T.120 1 203.038 {
J=718 2,620 97410 213,579 :
= 19 3.820 2.420 204,816 :
: J= 20 7.550 " 1,970 225,713 ;
i e =
CENTRAL LOCATION - ' I : ;
AT J= 3 4,610 64490 1550955 ° ;

B et 2 e ey IO

S,
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MULTIPLE CENTRAL FACILITIES
RANDOM DESTINATION SUBSET ALGORITHM
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FORTRAN. IV, G LEVEL 1. MOD 3 MAIN __ DATE_05/38/55 _PA3E 920}
. c LOCATION DF MULTIPLE CENTRAL FACILITIES SPRING 1969
. C THE _RANDCM DESTINATION SJBSET ALGIRITHY |
c DEFINITION OF MACHINE INPUT/OUTPUT: R RFAD
c | W WRITE

INTEGER RyW

CHANGE THE DIMENSION CARD IF MIRE THAN 20 FACILITIFS ARE CONSIDERED
CHANGE THE DIMENSION CARD IF M3RRE THAN 5 CENTRAL LOCATIONS ARE DESIRED
DIMENSION X[ 20),Y{ 2D)sXRIU 20),XM( 20)

DIMENSTION DOLDI{ 20),ONEW{ 20),20LD( 20),CNEU( 20}

DIMENSION JOSAVI 20),JNSAVL 20),I0SAVI. 5),INSAV{ 5)

DIMENSION RAD( 201+XCL 51,YC{ S5r.D( 20, 20)

oo

2=5
W=6
TERAINALOGY OF VARIABLES
N SNUMBER OF F4CILITIES
M :NUMBER OF CENTRAL FACILITIES
ITERA SNUMBER OF ITERATIONS IM RANDOM SEACH OF FA(ILITICS
CX{I)yY{I):CARTESTIAN COORDINATES OF FACILITIES
XR(I) STRANSPORT RATE ON RJUTFE 1

MIT) CSQUANTITY T TRANSPOURY OGN ROUTE I

DOLD(I) DNEW(I):0LD AND NEW EUCLIDEAN DISTANCES FROM FACILITY 1 7D
OPTIMUM CENTRAL LOCATICN

SDOLN, SIMEW:JLD AND NEW SUM OF DISTANCES TO THE CENTRAL FACILITIES

COLD(T),CNEN(1):DLD AND NEW TQAVSDUQTATIDM GSTS FROM FAFILITY I 70
OPTIMAL CENTRAL LOCATION E

SCOLD, SCNEW:OLD _AND NEW SUM CGF TRANSPORT COST TO THF CFNTPAL FACIIITY

JOSAV{ T}, JNSAVIT}:OLD AND NEW CODE NUMBER ALLOCATION OF THE FACILITY |

ICSAVIJ)Y s INSAVII) :OLD AND NEW CODE NUMBER OF THE RANDOMLY SELECTED '
CENTRAL LOCATIOGN

RAINC sCLASS WIDTH ON CUMULATIVE DISTRIBUTION OF LOCATIONS
CRAD(T) sCLASS BOUNDARIFS ON CUMULATIVE DISTRIBUTION QF L3CATIONS
KITER SITERATION COUNTER e ‘ i

YFL SRANDUM NUMBER BETWEEN 0 AND 1. 000

XC(J)»YC(J) :CARTESIAN COORDINATES OF RANDOMLY SELECTED CEVTQAL
FACILITIES '
DIGERE SEUCLIDEAN DISTANC;S FRDW FKCILITY I TD PENTR_.AL LOCATION J 1
READ{(R,10IN,M, ITERA R I PSR
10 FORMATI3110) i L fi , '
RFAD(R ZO)(X(I’yY(I) XQ(I)g 1‘4(1)91=10N)
20 FORMAT(4F15.,0)
C FIRST TABULATION: LlST IVEV VAQIABLES
T OWRITE(W,3))MyN 7 : ‘ ’ SRS A
30 FORMAT{1H1+/74+35X, 39HL3LATI3\ 9F ﬁULTIPLF uENTQAL FACILITIES./,.'Wf?"
137X, 35H2ANDOM DESTINATION SURSET ALGORITHM,//,43X,13,1X,. -
213HCENTRAL FACILITIESe/945X415)1 Xy LOHFACTLITIESy// 424X,
321HCARTESTIAN COORDINATES,6Xy L4HTRANSPORT RATE,3X,11HQUANTITY TO,/,
469X, IHTEANSPORT,/, 27X01HX114X 1HY,15X91HR114Y IHW //)
' DD 36 I"’ 1!\.
WRITE. . (Wy35) I,X{1)y¥Y{I), XR(I)yYW{I)
35 FORMAT (10X y3HT =4I544(4X,Fl1le3))
36 CUNTINUE
C ZERD ALL CCMPUTATIONAL VARIABLES
D0 40 I=1,N
POLDCIN=0.0

OO OO0 0oo 0o o noo oo oo
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PAGE 2002

UNFI(I
coLn(i

49

JOSAV{

)

)
CNEW(D)
1
JNSAVIT

45

10SAV(J

INSAV(J

- SDNEW=0.0

SDOLD~u.~

SCOLN= 0 0

KITER=0

SCNEW :
ZER{ ITF“ATIDM ’OUNTER

DEFINITION OF CLASS INTERVALS FDR 07131 RANDUM NUWBFR DEFIVIVG THE 0 TO N
INTEGERS

XN=2
T RAING =1.07%XN
DO 50 I=1,N
X1=1 _ '
50 RADII)=XI%*RAINC

RANDOM GENERATGR STARTING VALUE
1Y=21735

- 60

STARTING OF ITERATION COUVTFP .
KITER=KITER+1
IF(KITER-ITERA)TO, 70 275

70
.15

RANDOM CHNICE OF M CENTRAL FACILITIES
DO 100 J=1.M
CALL RANDU(TY, 1Y, YFL)

30

. IF (YFL- RAD(I))ﬁO 80 90

DO 90 [=1,N

XC(J)=X(1)

YC(Ji=Y{I)
INSAV(J)=I
IF{J- 1!82,100 92

82

T , — . T T T T T T T T T
CHECK THAT RAND 1LY CHDSEW FA ILITY HAS NOT BEEN ALREADY PICKED AS CENTRAL
LICATION . - ey T e e s

83

DD 84 KJI=1,K . .
IF(XC(J)*XC(KJ))lOO 83,100

100

T84

90

CONTINUE

IF(Yu(J)~YC(KJ))100975 109
CONT INUE - ; : .

CIONT INUE

COMPUTE ARRAY OF EU"LIﬁEAV DISTAV”:S T0 RAVDOWLY CHOSEN CENYRAL FACILITIESQ
0O 110 I=1,N
DO 110 J=14.M

110

1T MEANS THAT THE FACILITY HAS BEEN CHOSEN- AS CENTRAL LOCATION)

D(I,J)~(((XC(J)—X(I))‘“2)*((YC(J)~Y(I))**Z))**O 5 e ’ ' |
FOR EACH FACILITY SELECT THE CLOSER CENTRAL LOCATION (IF DISTAV E IS_ZﬁRD &

DO L7) I=1,4N
SHORT=D(1,1)
J=1

- DO 160 K=24M
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__PAGE 0203

IF(D(I,K)—SHORT)150,}60}160 _ . s ' o T

150 SHORT=D({1,K) ‘ . o o
J=K .

160 CONTINUF
DNEXN{ )=
CNEW{{}=

- JNSAVIT)

170 CONTINUE

C COMPIJTE SyM OF DOPTIMAL D]STAKCFS AND TDTKL TRANSP ?TATIU\ CJST
' SONEI=0.0 .
SCRNZA=0.0
DO 130 T=14N
SONEW=SDHEWEINEA(T)
180 SCNEWA=STNFW+CNEW(I)
IF{KITER-1)19D0,190,210
C TITLE OF SECOND TABULATION
190 WRITE(wW,200) o T
200 FURHAT(lHl,//,B?X,35HRANDGﬂ DESTINATION SUBSET ALGORITHM,/,34X,
C14LHDISTRIBUTION OF TOTAL DISTANCES AND COSTS,//4,31X%, 9HITERATI3N1
25X, LAHSUM OF GPTIMUM,5X,,L6HSUM OF TRANSPD%T /932X, AHNUMBER,IX,y
394DISTANMCES 9y 12X SHCOSTS,/ /)

SHORT
XR (I)“‘Y (1)*DNEW{I)

C BODY, 3F SECOND TABULATION
- 210 ARITEih,?7O)KITER SDNEW,SCNEW
220 FORAAT (30X, 17,8X,EL3.64,7X4E12.6) - ‘
.. C IF THIS IS THE FIRST ITERATION &FPFAT RAVWJ% C#OICF AVOTHFR TIWE
5 _IF{SCOLD)230,240,230
C CHECK I¥F NEW CHOICE OF CENTRAL FACILITIES oIVES BETTEQ RESULTS

230 IF(SCNFEW-SCOLD)240,240,279
240 SOOLI=SDNEW
SCOLD=SCNEW
DO 250 I=1,N
DOLD LI =DNEK(T)
COLD(I)=CNEV( 1)
250 JOSAV(I)=JNSAV(I)
DO 260 J=1.,M
260 [0SAV(J)=1NSAV{J)
- 270 60 T K0 . . . R :
S C 0 THIRD TA HJLATIOV : OPTIMUM ALLOCATION -
275 WRITE(W,280)ITER
280 FDRMAT(1H1,//,37x.35HRAN99M DESTINATION SUSSET ALGORITHM,/,35X,
124HOPTIMUM ALLOCATION AFTER, IS, 1X, 10HITERATIONS,// 435X,
"2394CNDE AND LOCATION OF CENTRAL FACTLITIES,/,45X, 4HCHDE BXs o
U 33HFACILITY /44Xy 6HA U13ERy8X 6HNU”5F?,//) s
DO 295 J=L4M
WRITE( 492901 J,105AV(J)
290 FORMAT (44X 42HI=4 1448Xy2H1=,14)
295 CONTINUF
WRITE(W,300) ' ' ' S ' R
300 FORMAT(// 446X, 13HOPT IMUM ALLOCArIJw,//,Lsx 194F A cr L T I E. Sy
- 110X, 16HCENTRAL LGCATIONy 56Xy LLHDISTANGE TNy TX, L4HTRANSPDRTATION, /4
212X, GHNUMBER,y 4Xy 21HCARTESIAN COJRDIMATES 99X 94-C0ODEy 11Xy
316HCENTRAL LOCATION,9X,SHCOSTS,y /325X s LHX s 13X, LAY,/ /)
WRITEL A e300 (T oX(I) oY)y JOSAVII),NOLD(T),COLDITY,1=1,4N) :
310 FORMAT(LLIX3HI =41492XsF11a393XsFLLe3,7Xy 13, 10X1EL64644%,EL5.60 - .
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', WRITE(W,y320)5DULD,SCOLD
320 FORMAT (/462X 5HTOTALEL4.6,4%3F15.6)
CALL EXIT
END
{ o LOCATIGN OF MULTIPLE CENTRAL FACILITIES
L _RANDOM ODESTINATION SUBSET ALGORITHM L
3 CENTRAL FACILITIES
, 20 FACILITIES
b ‘ CARTES IAN COCRDINATES TRANSPORT RATE  QUANTITY TO |
L B I B . _ - Co . TRANSPDRT
X Y R M
I = 1 7190 7 5,490 1.000 .. 724,000 !
1= 2 9,070 . 9.940 0 1.000 L 24000 0
1 = 3 4,610 . 64490 . -1.000 L 2.000
I = 4 44940 8259 1.000 2.000
I = 5 .. 0.470 04690 1.000 2.000
1 = 5 ' 6.180 3,570 1.000 2.000 1
| I = 7 T1.1300 7 7 79.810 . 1.000 . 02.000
- 1 = 8 6.000° 44360 . 1,000 0 2.000 4
| 1= 9  8.230 84060 1,000 0 2,000 .
I = 10 9.600 9.280 1.000 2.000
I = 11 3,460 9.680 1.000 ~ 2.000
1 = 12 2.310 0.399 1.000 2.000
P I = 13 T 24530 T 4057100 T 1.000- T T 2,000
b I = 14 4. 440 - 7.990 S 14000 0 T 24000
L 1= 1  8.530 - 1,490 - 1,000 2,000 i
1= 16 2.290 7.030 1.000 2.000
1= 17 3.830 7.120 1.000 '2.000
I = 18 24620 9,410 1.000 _2.000
| | = 19 - 3.820 _ 2.420 - U1.000 - . 7240000 ]
; [ = 20 _ 7.550 . 1.970 1,000 724000 4
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RANDOM DESTINATION SUBSET ALGORITHHA
DISTRIBUTION OF TOTAL DISTANCES AND C3STS

ITERATION SUM OF OPTIMUM SUM OF TRANSPORT
NUMBER DISTANCES CISTS
] 0.494680F 02 0,987361E 02
2 0.622942E 02 0.124589F 03
3 0.512428C 02 . 0.102436E 03
4 0.522075E 02 0.104415E 03
5 0.573191€ 02 0.114638E 03
b . 0.6299938E 02 N0.126000F 03
7 © 0.482333F 02 0.954668E 02
8 0.626795E 02 0.125359E 03
.9 0.4448606F 02 0.889732F 02
10 . 0.622860F 02 0.124572F 03
11 T 0.6006394F 02 ~ 0.12127°F
12 . .0.810183C 02 o0
13 . 0.633401F 02 B
14 0.4648%7 - B
15 " e -
e 7 i ' e

e 9B44TE 02
' 0.120742E 03

a0z 0.133539E 03

Ue499599F 02 -~ 0.999198E 02
0.597973E 02 0.11959SF 03
479 " 0.7T00885E 02 . 70.140177F 03
480 0.599969E 22 w0 041199%94F 03
481 . - 0.552149EF 0?2 , - 0.110430F 03
482 0.583724E D2 0.116745F 03
483 0.540727F 02 " 0.108146F 03
484 T 0.499599F 02 0.999198F 07
485 L 0.582791F 02 © 7 . .0.116558E 03 . . "
486 - 0.542777FE 02 0.108556% 03 .
487 0 . - 0.525178F 02 . 0.105036E 03
488 0.655060E Q2 © 0.131012F 03
489 0.490505F 02 0.981011E 02
490 0.622432E 02 0.124436F 03
491 - 7 0.558385E 02 - o 0.111677E 03
492 _ D.530840E 02 - 0.106168E 03
493 - D,491263F 22 - 0.982527€ 02
494 0.716451E 02 0.143290F 03
495 0.528780F 02 0.105755E 03
496 0.536986E 02 0.197397E 03
497 0.590859F 02 . 0.118172E 03
498 - " 0.6009%08E 02  0.120182E 03
499 , 0.818133F 02 " 0.1563627E-03

500 0.702484E 02 "0.140497E 03




----——-—-..........l...!...................m-.-..-.-----------_--li

RANDOM DESTINATION SUBSFET ALGORITHM ,
OPTIMUM ALLOCATION AETER 500 ITERATIONS

CODE AND LOCATION OF CENTRAL FACILITIFES

CODE FACILITY
NUNM3ER NUMBER
J= 1 I= 14
J= 2 1= 17
J= 3 I= 19

OPTIMUM ALLOCATION

FACILITILI ES : - CENTRAL LOCATION DISTANZE 710 TRANSPDRTATION

NUMBER CARTESTAN COORDINATES CODE CENTRAL LOCATION £COSTS
’ X R Y o o B : T . :

1 = 1 7.1390 T 5.490 2 0.231225F 01 0.452450F 01

I = 2 9.070 9.940 2 0.283019E 01 0.566039E 01 S
I = 3 4.610 © 6. 490 1 D.150960EF 01- 0.301921F 01 O
I = 4 4,940 Be250 1 "0.563550E OO -7 D.112712E Ol

I = 5 ) 0.470 . 0690 3 2.377033F 01 C . 0.754066F .01
[ = 6 6.180 o 3.570 3 L 0.262528E 01  D.525056F 01

I = 7 1.130 9.810 1 0.377737¢ 01 0. 755473E Ol .
1= ] 6.000 4e360 '3 ' 1.291822F 01 0.583644F Q1

I = 9 84230 © B.060 2 : 0.111517F 01 C.223034EF 01

I = 10 9.600 - 9.28D 2 D.229314F 01 . - 0.458628F 01
1= 11 . 3. 460 9. 68D 1 T 0.195259F 0! . D.390717F 01

I = 12 . 2.310 - 0.390 3 0.253002F 01 - 0.536004F 01}

1 = 13 2.530 4,570 3 D.25073LF 01 0.501462F 01

I = 14 : 4.440 7.999 1 9.0 0.0

I = 15 8.530 1490 3 0.480093E 01 0.950187E 01

I = 15 L 2.290 i 7.039 1 0.235459F 01 . 0.470918F 01 .
I = 17 . 8.830 7.129 2 0.0 ‘ " 0.0

I = 18 : 2.620 - 9,410 1 0.230842F 0L . . D« 451684F 0L

I = 19 . 3.820 2.42 3 3.0 0.0

I = 20 7.550 1.970 3 0.375704F 01 0.751403%E 01

TOTAL  0.439270E 02 - D.B7853%F 02
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MULTIPLE CENTRAL FACILITIES
RANDOM GRID LOCATION ALGORITHM
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FORTRAN IV G LEVEL 1, M0OD 3 MAIN DATE, N6/18/15 ' PASF nNNy g
e LOCATION OF MULTIPLE CENTRAL FACILITIES o © SPRING 19589
c THE RANDOM GRID LI3OCATION ALGIRITHM ' -
o DEETNITION OF MACHINE INPUT/CUTPUT: R KEAD
C _ ¥ WRITE
INTEGER Ryl
e CRANGE THE DIHENSIUN CARD TE MORE THAN 20 FACTLITIFS APT CANSTDERED
' DIMENSION X( 200, Y( 20),XR( 201 ,XM(  20),D( 29, 29} :
DIMENSION DOLDU  20),DNEW{ 20),CCLDL  20),CNEW(. 20V
_ DIMENSTON JOSAVU 2014 JNSAV(  2071,2AD( 20}
C CHANGE THE DIMENSION CARD IF MIRF THAN 5 CENTRAL LOCATIONS ARF NFSIPED
DIMENSIGN IOSAV( B5),INSAV( 5),¥C( 5),YC( 5} ‘
€ . CHANGE THE DIMENSION CARD Tr MJRE THAN 100 GRID IV1EQRFFT._A°E C ﬁQIDFQfﬂ
' DIMENSION XG( 100),YG( 109) -
R=5 | o
A 6
TERAINILOGY OF VARIABLES
N :NUMBER OF FACILITIFS
4 - TNUMBER QF CeENTPRPAL FACILITIES . ' ’
FTERA  :NUMBER OF ITERATIOINS 1M RANDOH srAnrH nF FACILITIF”
CIGRID  TINITIAL NUMBER OF CGRID DIVISIONS ON EACH X AND Y AXIS
{TGRD SNUMBER OF GRID STZF CHANGES
INC SINCREMENTAL NUMRBER OF DIVISIONS 3N EACH X AND Y AXIS WHEN

PASSING FROM ANE GRID SIZE TO THE NEXT
XTIT Y (T :CARTESTAN COORDINATES UF FAL[LITIFS
XR{1) STRANSPORT RATE ONM RRJTE 1 _
XM 1) SQUANTITY TO TRAMSPORT NN ROUTE I " ' '
DOLDI(I)ONFW (I):0LD AND NEW EUCLIDEAN JIST&WCcS FDJ! FA'ILITY I TW
OPTIMUM CENTRAL LOCATIOCN
SDOLD, SDMEw:2ILD AND NEW SUM JF DISTANCES TN T4F CENTRAL FACILITIFS
CALDL Y CNEW T Y1 OLD AND NMEW TRANS®IRTAT[ON "DSTS FQU* F:/\(‘ILITY { T]
- CPTIMAL CENTRAL LOCATION ' =
SCOLDySCNEWzOLD AND NEW SUM GF TRANSPIAT C”bT TD T%u_CEN1RAI FALILITY
JOSAVIT ) JINSAV(I)$OLD AND NEW TODE NUMBER ALLICATION JF-THE CACILITY i
[OSAVIJY, INSAVII) sOLD AND NEW CONE NUMBER (OF THE RANDOYLY SCELECTED ;
CENTRAL- LOCATION

"RAINC sCLASS WIDTH ON CUMULATIVE DISTRIZJTION NF LOTATIONS _
RAD( 1) :CLASS 3CUNDARIES ON CJ”JLATIVE PIST?IBJTIUW OF LP NTIFF§
KITER sITERATION CJUNTER - ; ,

YFL $RANDUM NUMBER BETWEEN O AND 1 OOQ

XC{J )y YCU{JY $CARTESIAN CCI3RDINATES CF RANDOMLY SELECTED CENTRAL
FACILITIES
IR IINY UCLIDEAV’DIST&NCEJ FROM FACILITY I TD CEVTPWL LaC ATIWV g
L ' GRID SPACING CCUNTER ' :
XMIN,KMAX'MINIMJ4 AND. MAXIMJM VALYES IF Y(l)--
YMING VMAXTMINTMUMA AND MAXIMUM VALUES OF Y(T)
" READ(RsLOINy My ITERA, IGRID, INCy ITGRD
10 FORMAT(6110) ' SR
READ(R, ZJ)(X(I)yY(I)yKR(I) X%(I)yf 1v$) o
20 FORMAT(4F15.0) '
C FIRST TABULATINON: LIST GIVEN VARIA%L:S
WRITE(W,30)ITGRO,ITERA, IGRID,y INCyMyN ’
30 FORMAT{LIHL,//,35%,39HLOCATION OF MULTIPLE CENTRAL FACILITIES,/,
140X, 30HRANDUOM GRID LOCATIUN ALJJRITi ,//, QX 13 1Xy2045RTD SPACING

OO OOOOOCOOONOOAOOOOOONOOO0O000
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PASE 0002

; 2 LHANGES 44Xy T4, 1 Xy IOHITERATIONS PFR GRIN, /315X, 33HINITIAL NUMBER n
' 3F GRID DIVISIONS ,14,4Xy35HDIVISION IRCREMENTS PER GRIND CHANGE 414

49/ /143X 13431Xy18HCENTRAL FACILITIFS /946X 15, LXy 1OHEFACTILITIES,,y//)
WRITE(W,32) ‘
32 FORMAT {24X 421 HCARTESTAN COORDINATES 66Xy 14HTRANSPIRT RATE, 3X,

FLIIHQUANTITY TO,/7,69X,3HTRANSPORT o7 ¢ 27X s LHX 14X 1HY 5 15Xy LHPy 14X, 1AM
2+/7) '
DO 36 I=1,N

WRITE (We35) ToXUL)eYUI) s XROT) $XIMOT)
35 FORMAT (10X,3HI =,15,4(4X,F11.3)}
36 CONTINUE

- C GRID CUUNTER SET FOR FIRST GRID INVESTIGATICN
L=1 : , ' '
C DEFINE X MAXIMUM, Y. MAXTMUMY
XMAX=X(1) ‘ '

D3 82 I=2,N
IF{X{I)~XMAX)80,80,70

70 XAAX=X (1)
BO CONTINUE
YMAX=Y (1) -

BO 100 I=2,N
[F{Y(I)=-YMAX)10D,90,90
90 YMAX=Y{1l)

100 CONTINUE o
C DEFINE X MINIMUM, Y MINIMIM
XMIN=X(1) ' ' '

DO 120 I=2,4N
»IF(K"!-XiIN)lID:ldO,l?J
L10 XMIN=X(T)

120 CONT INUE
YMIN=Y (1}
DO 14D I=2,4N

IF{Y(T)-YMINI130,140, Ry
130 YMIN=Y(I) )
140 CONTINUE™ -7

C DEFINE RANCE OF X AND Y
RANGX=XMAX~XMIN :
- RANGY=YMAX=-YMIN ' LT e
C COMPUTE NUMBER OF GRID INTEQSECTIJV BIINTS

150 NSER=IGRID+1
NG=(NBER)%*%2

C CHECK IF NUMBER 0OF GRID IdTrFSECTIﬂV DUIVTS IS LARGE FVJUG
IFING~M)1604160,170
160 IGRIN=TIGRIL+INC

GO T0O 1590
c DEFINE GRID SPACING
170 GRID=IGRID

“XTNC=RANGX/GRID
Y INC=RANGY/GRID
C DEFINE GRID. INTERSECTION 031\75

NGO 130 I=1y4NBER
[X=1-1
DO 180 J= lyNBER

XK= J 1
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K=J+ I X*®N3ER, '
Xa(K)—XdIV*(XK*XIDL)

180

YG{KI=YMIN+{IX%YINC)
ZERO ALL COMPUTATIONAL VARTAEGLES
DN 50 I=1,N

~LOLD(I)=0.0

COoLD(I)=0

DNEW(I)=0, O

50

CNEW (I)=O.
JOsav(I)=0
JNSAV(T) =D

60

DO 60 J=1,M
I0SAV({J) =0
INSAV(J) =0

SDOLD=D.0
SDNEW=0.0
SCOLR=0.0

TSCNER=0.0 T
ZERQ ITERAT[JN buumrsn I
- KITER=D |

SEFTNITION OF CLASS TNTERVALS FON 0 T0 T RANOUY NUTSER BEFTVING THE
0 TU.NG INTEGERS :
XNG=NG

"RAINC=1.0/XNG

X1=]

DO 190 I=1, Nu

190

RAD(I)=XT%* hAIVC .
RANDOM GENERATDOR STARTING VALUE
IY=21735

200

JFKITER~ ITERA)ZIO?ZLO 3°)

STARTING OF ITERATION . CDUNTEP FIRVA GIVEN GRID e
KITER=KITER+]1 T e e

210

RANDUY CHOTCE OF M CENTRAL FACILITIES FRAT THE NG GBID POINTS
DO 240 J=1,M
CALL RANDUIUIY,IYsYFL)

215

220

1F (YFL~- PAD(!))Z’O 220, 253

DO 230 T=14NG .

XCLJY=XG(T1)

IR~ 1)222,240,222

YC(J)= Yu([)
INSAV{J )=

222

- CENTRAL 'LOCAT [ON

K=J-1 , - , ——— — — . K
CHECX THAT QANDJ&LY CHOSEQ GPID P“IWT HAS VﬂT RFFN ALR“A“V PICK’? AS %

224

DO 224 KJd=1,K
IF(INSAV(J)—INSAV(KJ))2401215:240
CONT INUE '

230
240

CONTINUE
CONT INUE : ' ‘ ' : PR SR ‘ S
COMPUTE ARRAY OF EUCLIDEAV DIaTA\LES TO ”\VDW“LV CHDS V CFVT?\L FACTLITIE

250

DO 250 I=1,N
DO 250 J=1,M o "
DOy dY=(UIXCEII=XCI) ) *Xx2)+ ((YCLJ)=-Y{T))Ex2))*¥0.5

FOR EACH FACILITY SELECT THE CLUSER CERNTRAL LUCATION
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PX F 3)3’

DD 280 I=1,N
SHORT=D(1,1)

J=1
DO 270 K=2,

IF(O(I,K)—SHORT)200927Oy2?O
260 SHORT=D(1,K) : v
J=K

© 270 CONTINUE

-DNEWA(I)=SHORT
CNEN(I)—X\(I)“XM(I)*ﬂNFH(I)
JNSAVIT)=J

280 CONT INUE
COMPUTE SuM OF DPTIMQL DISTAIUES AND TUT\L TQ MSD]QTNTI”N CHaSsT

SONEW=0.,0

SCNEwW=0.0
DO 293 I=1,N
 SDNEW=SINEW+DNEW(IT)

290 SCNEW=SCNEW+CNEW(])
- ITF{KITER-1)300,300,320 |
TITLE OF SECOND TABULATION

'300 WRITE(W,310)
310 FORMAT(LHL +//+40X,30HRANDAONM GRID LOCATICON ALGORITHM, /, 34X,

L4IHDISTRIBUTION OF TOTAL DISTANIES AND COSTSH//,31X,QHTITERATINN,

25X, L4ASUT OF OPYIMUNM, 5K, LaHSUR OF TRANSPORT 17 132 %, 6HNJALER, OX,
39HDISTANCES 12X, 5HCOSTS,// ) ' ST L
BODY OF SECOND TABULATION

320 WRITE{Wy330)KITERySDNEN, SCNEW

330 FORMAT (30X 178X 4EL3.647X,EL3.6)

C IF THIS IS THE FIRST ITERATIL\ QFPFAT PAWWUW CAMNICE AVQT%FQ TI4%
[IF{SCOLD)340,350,340 i

. CHECK IF NEW CHOICE OF CEMTRAL FACILITIﬁS uTVF§ RCTTFQ QFSJLT§
340 IF{SCNEY-SCOLD)350,350,389 c e U S S

350 SDOLD=SONEW
SCCLN=SCNEW
D0 360 I=1,N—

360 JOSAV(I)=JNSAVII)

~DOLD(Ti=DNEW(I)
~COLD(I)=CNEW(TI)

DO 370 J=1,M
370 10SAV(J)=INSAV(Y)
380 GO TO 200

THIRD TA3ULATION @ UPTIWU! ALLOuATIDN
390 WRITE(W,400)L,ITERA

© 400 FORYMAT (LHL 4/ / 940X, 3OHQAHDUW CPI3 LDFNTIDV ALGQQITHW /4 40Xf

128HIPTIMUM ALLOCATION UON SGRID #,139/ 945X y5SHAFTER1IX,,I4,41X,
210HITERATIONS,y//7 435Xy 39HCODE AND LOCATION 3F CENTRAL FACILITIES,/,

24
D0 415 J=1 M_
JI=I0SAV(J)

333X, 11HCCIE NUMBEvaOX,Zl%CARTESYAN COCRDIMATES ¢ /957Xy LHX, L4X 4 1HY, 1

—ARTTETH, élo)J}XG(JJ),Yb(JJ)
410 FORMAT(34X,3HJ =414 ,9X,FLL.3,4X,FLL. 3)
415 CONT INUE

TWRITE(W,4200 . o .
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PASE ﬁwxf

420 FORMAT(// 46X 18HOPT [MUH ALLGCATION,//y 18Xy 19HF A C T L I'T 1 E Sy
110Xy LOHCENTRAL LOCATION,SXyLIHDISTANCE TO,7X, L4NTRANSPORTATIIN, /,
212Xy BHNUM3ER 44X 21 HCARTESTAN COIRDINATES Xy 4HZIDE, 11X,
316HCENTRAL LOCATION,9X45HCOSTSy /325X, 1HX, 13X y1HY,//)

WRITE(W,430) (T o+ X(I),Y(I)yJOSAVIT) D0LD(T),COLO(T),I=1,N) -
430 FORMAT{LLIX 3HI =41442XsF11e3,3XyF11. ?,7X.I3plOX Flﬁ.b,+Y E15.51%
_ CHRITE(W,435)SDOLN,SCOLD ' :
2 A35 FORMAT (/52X s SHTOTAL ELlbeHy4XyFLBaH) -
C CHeCK TF ALL GRID CHANGES HAVE BEEN DINE

IF(L-ITGRD) 440,450,450
440 L=L+]

GJ 10 160
450 CALL EXIT
END




LOCATIGN OF MULTIPLE CENTRAL FACILITIES =
TORANDODM GRID LOCATION ALGORITHM S

5 GRID SPACING CHANGFS 100 ITFRATINNS PER GRIN .
INITIAL NUMBER OF GRID DIVISIINS 3 DIVISIAON IMCREMENTS PER GRID CHAANSE 1

3 CENTRAL FACILITIES -
S 20 FAGIULTIES = o .

\
CARTESIAN COORDINATES TRANSPORT RATE QUANTITY TO
I = 1 7.190 54490 ~1.00n0 ' 2.000
I = 2 2.070 9.940 1.000 - 2.909
1= 3 4,610 T 6.490 0 o l.o0C T T T oo 2 o0 o
I = 4 C 44940 o 8,250 . - 0 1.000 . o 02,000 .8
1= 5 - L 0.470 LT 04690 L 1,000 T L e 2,000 o
I = 6 6.180 3.570 1.000 ~ 2.000
I = 7 1.130 9.810 1.000 2.000
I = 8 6.000 © 44360 1.000 2.000
1= g TB8.230 - B8.060 T 1.000 - 2.00D
1= 10 - 9.600 9e280 0 1.000 T 2,000 T
1= 11 S 34460 T 9.680 . . 1.0007 0 2,000 00T
I = 12 2.310 0.390 1.000 2.000
I o= 13 2.530 4,570 . 1.000 - 2.009
I = 14 4,440 7.990 1.000 2.000
= s 8.530 - T 1.490 T r.eo0 7~ 2.000
I = 16 - - 24290 7.030 0 - .0 14000 0 2,000
I = 17 84830 L TWl2000 0 i 1,000 12,000
I = 18 Z2.620 G.410 1.000 T 2.000
I = 19 3.820 2.420 1.000 . 2.000
{ =

20 7.550 1.979 1.000 2.900




208 .

. RANDOM GRID LOCATION ALSGORITHY - =
DISTRIBUTION GF TOTAL DISTANCES AND COSTS

ITERATION SUM OF OPTIMUM SUM DOF TRANSPOIRT
NUMBER DISTANCES COSTS
1 0.720299F 02 . . 1 0.144060E .03 °
Z 0.6 26H35E Y2 0.I25357F 03
3 0.772214E 02 ~ 0.154443E 03
4 0.70414%E 32 0.140330F 03
SR V7 3267T3F 02 0V TESA95F O3
b 0.663145E 02 0041326298 03
ST 0.7L17A5E 02 = . D.1%2353E 03 -~
8 0.914100F 02 0.1523720E 03
9 D.652524E 02 0.130505F 03
10 0.540542E 32 ~0.128109F 03
T 0. 782951602~ 0.155%90F 03
12, . 0.8T4BTAHE 02 . . 0.174975F 03 . o
13 0 S0J58868LE 02 0 . L 0L LL17T36E 03 el
1% 0.935620F 07 0.197126F ~
15 0.613372F 02 n.r
16 T 047221918 02 . - °
7 T0L658TT T
18 BRI A e BT S
e 03
T T TOL1IE 03
i ' 7T 0.113195E 03
T T T T T ie 92T T 0 155365 0%
ST L e VBB RTLE 02 . 0.137174F 03
S T D TNZ2BL4E 02 S 0.140503F 03
g2 0.878219E D2 0.1755664F 03
93 0.594903F 02 0.118981F 03
94 777 0.542861E 22 ' 0.108572F 03
g5 . 0.7RTII14E 02 L T 0+s155223F 03
FC 1S 0.850261E D2 = . 0.,170952E 03
9T o 00.8T4333FE .02 0 - 0.1743ATE 03 -
9% 0.809427F 02 0.151385F 03
99 : 0.555136E 02 0.111227€ 93
100 0.574836E 02 0.114967EF N3




. RANDOM GRID LDCATION ALGORITHM
UPTIMUM ALLOCATION DN GRID #

1

AFTER

100

[TTERATIONS

CODE AND LOCATION OF CENTRAL FACILITIES

CODE NUMBER

CAPTESIAN CODRDINATES .

X v
J = 1 6.557 ’)a?ST
J= .2 3,513 0.390
—IETT3 3,513 ¥.940
OPTTRUM ALLOCATION
FACILITIES CENTRAL LOCATION DISTANCE TO TRANSPORTATINN

N.527695€

0.125539EF

NUMBER CARTESTAN COORDINAYES -~ - - CODE — CENYRAL LOCATIDN COSTS
g Sty Do UE LR SRR _
: [\
1 = 1 7.190 5.490 L D.14161L7E 01 0.283235F 91 3
I = 2 92.070 9.940 L 0.405592% 01 0.811184F 01
= 3 T 4.610 6.490 1 N.13h643%4F 01 N.327963E D1
[ = 4 4,940 84250 1 - D.220083C 01 0.44601AAT L
1= 5 - 0.470 . 0.690 2. 2.305308F 01 0.6116165 01
I = (8] 6H.180 3570 1 0.320885k 0L D.651753E D1
I = 7 1.130 9.810 3 0.238628F 01 D0.477275F 91
I = 8 62000 44360 L J.246046F 01 Ne432092F 01
1 = 9 B.230 T 8.060. 1 D.212102F 0L . 424204F 01
I = 10 9.600 ©9.280 - ihl o D.395335E Ol D.T7906T73F 01
I = 11 3,460 9.680 ) D.265411E 00 0.530822% 00
1 o= 12 2.310 0.390 2 D.170333E 01 0.7249657C D1
I = 13 24530 4,579 2 0.429410F 01 0.858820F N\
I = 14 %o 440 7.990 3 2.215833E 01 D.431795F N1
I = 15 T R3.530 1.490 2 D.513585F 0L D.102717TF 32
I = 156 24280 - 0 T.030 3 D.315668% 01 Ca6317335F 01
1 = 17 L B.B830 L T7.120 1 0.232219F Q1 DL480437E DL
= 18 2.620 9.%410 3 0.103872E O1L 0.207744E OL
I = 19 3.820 2420 2 D.205303F 01 0.410605F 01
1 = 20 7.550 1.970 2 N.4334865 01 2.855973E 21
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. RANDOM GRID LOCATIODN ALGORITHYM
BISTRIBUTION OF TOTAL DISTANCES AND COSTS

I TERATION SUM OF OPTIMUM SUM DOF TRANSPORT
NUMBER DISTANCES COSTS
1 - 0.725570F 02 0.145134F 03
2 0.527695¢ 02 0.105539E 03
3 0.608446E 02 0.121689E 03
4 0.754811F 02. 0.150342F 03
5 0.7BITL4F 02 0.154273F 03
6 C0.794097F 02 0.153320E 03
7 0.542861F 02 0.108572E 93
8 0.805535F 02 0.161107€ 03
9 0.76351DF D2 0.152702F 03
10 0.722993F 02 0.144599F 03
IT T 0.6571L94F 02 0. 131439EF 03
12 - 0.545500F 22 - - 04129100F 03
13 " 0.110114F 03 10.220228F 03
14 0.595514F 22 0. 1191037 ~
15 0.779213E 22 R P
16 0.725670F 02
17 0.5T1GATT
19 ol
P . el25367F 03
- 0.112581F 03
S e Zar 02 T0L.121510F N3
1 Ue623930FE 02 0.124785F 03
R 0.797754F 02 0.159551F 03
. 85 0.572911¢F 92 0.LL4532F 03
87 0. 708S18F 02 0.141784F 03
88 -~ C D.5T7336F 92 0.1154567F 03
B89  0.73C6E03E 072 - T 0.1473228 0%
- 90 0.5640542F 02 S 0«1281998 93
Lo 91 . 04597877 D2 0.119575€ 03
92 0.92637GE 02 0.1B8B275E 03
93 0.648323€ (2 0.1295655 03
94 0.925606E 92 0.185121F 03
95 0.586C8BIE 92 T 0.117215E 03
96 . 0.731926F 02 . 04156385F 03
97 C0.7317¢2€ 02 "0.146353F N3
98 0.5716437E 02 0.1L5238E 03
99 0.86L44TE 02 0.173290F 03

100

0.778810E

D2

C.155762F

23




e -,

v RANDOM GRIG LOCATTON ALGORITHM . °
. OPTIMUM ALLOCATION ON GRIDM 2.
AFTER 100 ITERATIONS

CODE AND LOCATION OF CENTRAL FACILITIES
TCOBE NUABER - CARTES (&N CHRDINATES ™
: | ‘ Xoo Y

5.035 2.777
5.035 7.552
SEEITR S 3 I AN I

e o
BT TR
WIS

O T TMUM ACCOCAT I
FACILITIES CENTRAL LOCATION DISTANCE T TRANSPORTATIAN
NOWBER ™ CARTESTAN COORDINATES — — — CONE - CENTRAC CNCATION —— TOSTS

7.190 54490
9.070 9.940
G.610 0 . 6.499
4,940 . . . 84250 =
C0.470 T 00690
5.180 3.570
1.130 9.810
64000 4a 360
§.230 . 8.0860
ST 946000 9,28
11 3.460 . 9.689
12 2.310 O.2390
13 2.530 , 4,579
14 4 o440 ~ 7.790

0.349115F 00 0.698229F N0
D.468843E 01 0.937686F 01
. 1L4635E 0L~ 0.228059F O1
L0 DLT03941F 00 . 0.1407R8E 01 .
T 0.501964F 0L L 0JI00393F 02
0.133251F o1 0.2785070E N1
0.451053C 01 0.902115F 01
0.154394E 01 0.208723F 01
T0.303541E 0L D.6O70RLF 01
04705645 01 - 0.961128E 01
CDL264T08F DL . 0.529410F D1 .
Ne3627295E O1 0. 724590F N1
D.308027F 01 0.616054F 01
0.738532F 00 0.147706F N1

Lie

L0 ~§ O W=

15 8.530 . 1.490 COLITZABOE 0L AL TAGG2TE O]
16 : 1 2.290 L Te030 NW279428E. 01 7 D.5588587F .01
t7 3.330 T TLL200 NJ2ATLITRE 01 - 0D.694355F 0]
18 2.620 9.410 D.304672% 0L N.609344F 01

0.12665%0F 01 0.253300F 01
D.2641L45E 01 N.528231F 0}

19 3.820 - 2429
20 7.550 Le970

Wononln 8ol oo o hl W o oW o BpNoB
—
(o]

NP N TN PR EN VTR T RIS R N U EC R

TOTAL  0D.531276E 02 -~ 0.124255E 03
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RANDOM GRID LOCATINN ALGDRITHM
DISTRIBUTIION OF T3TAL DISTANCES AND (CISTS

TTERATION SUM OF DPTIMUM © SUM NF TRANSPORT:
NUMBER DISTANCES COSTS
1 0.854413F 02 © 0.170923EF 03
2 0.663508F N2 9.132702F 03
3 0.79806G2F 02 . D.159619F 03
4 0.501718F 02 0.120344F 03
5 0.751462E Q2. 7 T0H,I502093F 03
6 .0.592459F 02 0.118692C¢ 03
7. © 046724558 02 0.134491F 03
8 0.594C37F 02 0.118306E 03
.9 0.764203E 22 0.152841F N3
10 _ 0.886103E N2 0.LTT221F 03
1T 0.836693F 077 T 0.167339F 03
12 . 0.863575F 02 0.172715% 03
13 U 0.940181F 92 - 0,188036F 03
14 0,0654655E 07 D.132931F
15 0.912603E 02 o
16 0.771456E 02 -7
177~ 0 hLT2RFT
19 e L
k)
s T6T567E 03
L 0.101595F 03
N TE s O T D.1B6%4T3F N3
Lo ey BLEGTSE N2 o 0.163715E 03
e T 0 6561 88E 02 . 0.131.233F 03 ..
" 8h 0.631860F 02 0.126372E 03
o 87 . . 0.674561F 02. N.134712E N3
T ’88 0.691661F 02 0.138332EF 03
T - T B9 . 0.80TI124F D2 D,1ALA25E 03
80 0 DJT64203F 02 . . 0.152841F 03
SQp i T 0,T7657548 02 0 1 0,153151F .03
92 0.9 %CCO0E 72 ~ 0.199200F 03
93 0.69+505F 02 0.1389301F 03
94 0.658127E 02 0.131524AFE 03
T G95 T T 0L670770E 02 . L DLI34154803
96 Y T0.6181818 02 0 L 001236H34F 0%
97 ... 0 0.831058F 02 7 0.1%56212F 03
98 0.536162F 02 0.1268332E 03
99 0.804EB85E 02 0.169977% 03

100 0.62C358E 02 ' 0.124072F 03 )




' RANDDM_GRID]LOCATION:ALGDQITHW_
C OPTIMUM ALLCCATION ON SRID #°3
AFTER 100 TTERATIUNS

CODE AND LOCATION OF CFNTRAL FACILITIES
CODE NUMBER o CARTESTAN COORDINATES
: : X . : Y

J = 1 0-/‘*.70 9.940
J = 2 4a122 2.300
I=3

TTCTTE . T BL0AD

OPTTMUM ALLOCATION —

FACTILI.TIES | CENTRAL LOCATION DISTANCE 10O TPANSPORITATION

NUMBER CARYESTAN CUNRUINATES ——~ —  CODE T CENTWAL LGCATITN . ToSTS .
_ X _ Y : Lt -
. . no
1= 1 7.190 5.490 3 0.260627F 01 0.521254F 01 v
I = 2 9.070 . 9.940 3 0.230819F 01 D.4541637F 01
I = 3 4.610 o ba a9 ) 0.351887F 01 0. 703774 Q1
I = 4 4.940 . 8.250 3 - 0.284252E N1 N.E4R505F 01
I = 5 D.470 - o 0.690 2 0.399114E 01 . Q.738227F D1
I = 6 5.180 3.570 ) Y.241832F N1 0.433664F 01
I = 7 - le130 9.310 1 ' D.K72680F 0O 1345365 D1
I = ‘8 6.000 . 44360 2 ! N.278756E N1 D.85%7512F N1
= 9 8.230 ' 8.060 3 T 0.456989E 00 T C.913¢79F 00
I = 10 . 9.600 0 9.280 .3 N.221287E D1 D.642574E 21
[ = 11 . 3,460 .. - 9.680 1 ~ 0.300128E 01 0.60025568 01
I = 12 2.310 039D 2 D.263276F 21 NeS2AH857F 01
[ = 13 . 2.530 , 4.579 2 ©0.277261E 01 NL554521F 11
I = 14 4,440 7.990 3 N.333424F 01 C.66ARGTE O],
= 15 ~ . 8.530 .. . 1.490 . R T NLALSIROE NI . G.E16350F D1
I = 16 C 24290 0 . 74030 R L De343227F 01 0. - Q.686454F 0
I = 17 . 8.830 . 0 -~ . T7.120 3 N.129400F 01 " . 0.273800F .01
1 = i8 2.5620 9.419 1 D.221436F 01 Qann®?28725 01
I = 19 3.820 2.420 2 0.3249656E NO 0.649032E N9
I = ?

20 7550 1.970 N.344385€E 01 0.688770F 01

CTOTAL  D.508474F 02 - ~0.101695F 03
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RANGOM GRID LOCATION ALGORITHY
DISTRIBUTION OF TOTAL DISTANCES AND COSTS

ITERATION SUHM OF OPTIMUH SUM DOF TRANSPORT
NUMBER DISTANCES COSTS
1. 0 D.G656294E 02 0 0.131259F .03 -
2 OLTIC3T6E D2 TOVT&Z0I5E 03
3 0.629839E 02 . DJ125968F 03
4 0.715650F 02 ND.143130C 03
5 0,088 2T3ET0Y T T O VIIAZAIE 0T
6 S 0.539547F 02 . 0J10T7909E 03
-7 D.634627F 02 7 0.126927E 03 .
8 0.7285%5¢F 02 OIESTEIE 03
9 0.716ETTE 02 0.143336F 03
10 0.710172E 02 . 04142034F 03
T 0. TTGSHTE 02 T O0GLEI3TAE 03
2 0.6939068 22 - . 0J138781F 03
C130 0 T 0GATR2919E 02 L 0 DL 1225848 03 e
14 - 0.6339T8¢ 97 0.L367TRAR
15 0.539547F 02 PR
16 0.654310F 22—
17 T 0. LT 29RET T T
18 - o- '
g 16 Lo o e R T e T
— —
_era3T62E 03
" 0.115648% 03
e weaae B2 . DL 1B3TRABE 03 o
SRS g B IBGA9E 92 0 T 0.127090F 03
C e 0, T306849F 02 © . 04145L70F 03
"8k 0.717667F 07 0.14353%4% 03
87 .. 0.712331F 02 0.142466F N3
88 0.613199E 92 ND.1225640FE 03
89 T 0.738285F 02 -~ 0JI47h57% 03
T 90 L 0.TLEATTE 02 = =1 D.143336F 03
9l F0GTLTEGTE N2 . L DJL43534E 03
G2 0.720453F 02 0.14%291E 03
93 D.645060F 02 0.129212F 03
94 0.654171F 02 N.130834F 03
95 - T 0.731503F 02 . 0.1A630lt 03
L 96  DG8L4409F 02 0 M T0L1528892F 03
97 U 0eTLEL34E 02 0 001432278 030
98 0.634033F 02 D.126807F 03
99 N.731541F 02 0.146308E 03

100 0.585288EF 02 0,117058E 03




S0 RANDDM GRID LOCATION ALGORITHM. . ..
ST UOPTIMUM ALLOCATION ON GRID % & -

AETER™ 100 TTEQATTONS

CODE AND LOCATION DF CENTRAL FACILITIES

—CODE NUARER — T ICARTES YA COORDTNATFES
oy = 1 3.513 e T5T
Yy = 5 0.959 0.399
=03 PR E A DX T

—OPTIRUM ALLOCATION

FACILITIES - . CENTRAL LOCATION DISTANCE TC TRANSPORTATION

NUNBER CARTESTAN COORDINATES CODE - CTTENTRAC COCATION — - COSTS T
. AR Xy | , A _ S Rt -
. ) ' N
I = 1 7.190 54490 2 0.201859E 01 D.423710F 01 h
I = 2 9.070 - 9.940 1 0.640392F 01 0.128%073E 02
1= 3 4,610 - B 6490 1 DCLI28A2F CL - T D.225774F 01
I = 4 4,940 8+ 250 1 0.206529E 01 . (0.413068F 01 =
I = 5 0.470 . 0.690 2. 0.573847E 00 - 0.11ATO9EF N1 -
= 6- 65.180 ] 3.570 3 D.3766BLE 0O 0.753262E 09
1 = 7 1.130 9.810 1 74387339E 01l 0.7746T7TE 01
I = 8 6.000 4,360 4 D.963703E 00 0.192740F 01
I = 9 — B8.230 T 8.060 3 N.478855% 01 T 0L,G5TTIIFE 01
1 = 10 . 9.600 - 0 9.28n L3 0.646T45F DL 0.129%43E D2
= 11 Ba460 T 8.68D an N.292382EF 01 O QLEBATEAE O T
I = 12 2.310 0.390 2 J.13%032F 01 D.277163F 01
I = 13 2.530 44579 1 0.2329759E 01 0.479518C 71
1 = 14 ‘ 4,440 7.990 1 D.154267F 01 ' 0.208534F 01
= 15 84530 . L LJ490 0 T -3 LT DG 286955% 01 T JJBT39I0F DL
I = 16 2.290 . 7.03D 1 . D.1253508 01 C.2506%9E N1
I = 17 . . 8.830 . . 7,120 3 TDLG21271IE 01 0 T 0LR425428 01
I = 18 , 2.620 g.41D 1 0.279958F 01 0.559934F 01
I = 19 3.820 2.420 3 J.296976F N1 0.553953€E 01
1 = 20 7.550 1. 970 3 3.188610E8 01 0.377221F 01
U TOTAL L D.528461F 02 . 0.10S8732€ 03
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. RANDO® GRID LICATION ALSORITHM
DISTRIBUTION OF TUTAL OISTANCES AND COSTS
ITERATION SUM OF OPTIMUM SUM OF TRANSPORT '
NUMBER DISTANCFS CaSTS
1 0.641018F 02 C 0.128204F 03
2 0.794937F 02 0.1589R8EF 03
3 0.777695€ 02 . 0.155539EF 03
4 0.795612F 02 0.159123F 03
5 0.771560F 02 T 0.155508F 03
6 0.705463%F 02 L 0.141094F 03
7 " 0JT93529F 0?2 © 0.158706E 03
8 0.678613E 02 0. 135723F 03
9 0:.831784F 12 0.1566357F 03
10 _ 0.83244TF 02 . 0.165490F 03
1T — 7 0.614358E 02 0.T122%725 03
12. T 0.119858E 03 - . 0.239717F 03 SURIPRTR
13 0 U 0WLL3220E 030 0 0 0.226441F 03 oot D
1% D 67145655 D2 Ve 134293F
15 0.705469F 02 Q.
16 D.657394F 02 "
17 0 832770 "
13 0ot =
- 41.:"'(93‘
et T3795E 03
) L 0.166406E 103
Iy 02T 0 1412510 03
S we 1306756 020 . 0.146135F 03
Cira - 0.832283€ 02 . 0.,16645TE 03
- i 86 0. 155538 02 0.15L108E 03
e 87 3 0.749800F 02 0.149960F 03
e .88 D.118726E 03 N.237452F 03 )
- ‘ BY 0 0.698867FE 02 . . 0.13S07aE 0% T
90 . . 0.778401E 02 01555808 .03 e ';,V;%
T910 T 0LT19693E 030 L 0.2393378°03 0 o o el g
92 0.6571542EF 02 0.131503F 03 t
. 93 0.754223F 02 0.150845€ 03
- : 94 0.805&56E 02 0.161131FE 03
v~ . T 95 T 0.834STIE 02 - 0.17639%E 037
96 . - 04752923F 02 7T 0.150886F 03 0 . e T
97 i T DGBBTI2TE 02 T L iDG1BLAA6F 030 o o e ¥§
98 0.714335E 02 0.142367EF 03 1
99 0.717689€ 02 0.143538F 03
100 0.777695E 02 0.1555395 03




RANDOM GRID LICATION ALGORTTHY

OPT IMUM

ALLOCATY]

0N 'ONM

GRID #

v

AFTFE

100

ITERATIONS

CODE AND LOCATIBN‘DF CENTPAL FACTLITIES

: Bv?:,f‘

TCODE NUWBIR CARTESTAN CNORDINATES
X %
J = 1 0.719 0.390
J = 2 D470 G,940
T= 3 AN

GPTIMUR AL

LOCATION

TRANSPNRTATION

n.122872€

FACTILITTIES CENTRAL LACATION NISTANCE TO

NUMBER CARTESTAN CODRDINATES . - . C7DF CENTRAL LOCATIDN, CHSTS

I = L 7.190 5.490) 3 D.149564E 01 0.299128€ N1 N
I = 2 9.070 9.940 3 D.551180F 01 D.5110236E 02 =
= 3 4,510 6490 3 J.419679E 01 0.839153E D1

I = 4 4,940 8.250 - 2 _0N.AT77380F D1 N.OSBTANF O

I = 5 0470 0.690 1 0.383971L3E Q0 0. 7734275 00

I = ) 6,180 3.579 3 Ne230424F 01 0. 4560840F O1

I = 7 1.130 9.3819 2 D.672680F 00 0.1%24534F N

I = 8 6.000 4,360 3 7.229899F 01 0, 459T799F 01 .

I = 9 8.230 TB.060 R T 03571 7T4E 0L 0. 7155496 01 ‘
1= 10 9.600 - 94280 3 T 0.49T129E 01 G.9942538 01
1= 11 3.460 9.68) 2 0.300128F 01 C0LEONN256F Q)

I = 12 2.310 0.39) 1 2.1591250 01 0.318253F N1
o= 13 2530 4.579 1 0.455554F 01 0.,%11103F D1

I = 14 44440 7.990 2 D 442305F 01 0.884610F N1

[ = 15 83.530 1.%90 T3 T0.309207TE o1 DL.EINLIPF 01

1 = 16 2.290. 7.030 . - 2 L DG34322TF 01 0.686454F O}
1= 17 8.830 " S T.l2000 3 NL269072F 01 0.528145F 01

I = 18 2.620 5.410 z D.221436F 01 3 6472872C OL

I = 19 3.820 - 24420 1 C.370657E 01 N.741314E 01

I = 20 7.550 1.979 3 0.262117F 01 0.524234F 0

TOTAL- 0.51435RE Q2 N3
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MULTIPLE CENTRAL FACILITIES
RANDOM GRID WITH LINEAR CONSTRAINTS
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‘ ?f“LOCAT1ON OF MULTIPLE CENTRAL FACILITIES o T SPRING 1969

THE RANDOM GRIDR LOCATION ALGDRITHM
WITH | INSAR CONSIRAINIS

Onboo

DEFINI]IOV OF MACHINE INPUT/0UTPUT: R READ

W WHRITE

INTEGER R,

" CHANGE THE DIMENSION CARD IF MORE THAN 20 FACILITIES ARE CONSIDE QFD’
O DIMENSION XU 20)9Y(Q 205 4XRL 200 #XM{ 20),DC 20, 20)
CDIMENSION DOIDL 201, DNEW( 203 ,0000¢C 20} CANEW{ _20)

ﬁ

DIMENSION JOSAVI 20} ,JNSAVI( 22),RAD( 20)
CHANGE THE DIMENSION CARD IF MURE THAN S CENTRAL LOCATIONS ARE DESIRED
DIMENSION IOSAVE 5} o INSAV( %), XCL 5).YC({ 95)

' CHANGE THE DIMENSION CARD [F MGRE THAN 109 GRID INTERSEGT. AL CUNSIDERED]
DIMENSICGN XG{ 100},YG{ 100) ' ' ‘ g

CHANGE DIMENSION CARD TF MORE THA% 10 _COANSIRAINTS _ARE CONSIDERED

DIMENSION A( 10),8( 10)
. R=5 .
__W=6h
- 'TCRWINDLDWY OF VARIABLES
SN T sMUMBER OF FACILITIFS
M SNUMAER DFE CEMTEAL FACILITICS e e
ITERA SNUMBER OF ITCRATIONS IN RANDOM SEARCH OF FACILITIES
IGRID SINITIAL NUMBER .GF GRID DIVISIONS ON SACH X AND Y AXIS
_TIGRD . sNUMBER OF 6RO SIZFE CHAMGES k
: INC' - :INCREMENTAL NUMBER UF DIVISIDNS ON SACH X AND: Y Ax13 WHF\ 4
_ PASSING FROM ONE GRID SIZE T THE NEXT - R T
X1y, YlI),rARIESlAJ CQQQDI AT ES_QF FACIJTTIFQ
XR(I) STRANSPORT RATE ON ROUTE I
XM{I) SQUANTITY TO TRANSPORT ON RQUTE I
_NC .. 'TDTAJ NUMBER ﬂF IT'WA%,CDNQTQAINT\ ON_COMVEY HUI
B [ INUMBER CF LINEAR COMSTRAINTS WITH LESS THAN OR EﬂJAL TC
DK e :CODE NUMBER OF LINEAR CONSTRAINT : : :
JI1.12- CORE NUMBER (OF THE 2 FACTILITIES DEFINING IHF l!“ﬁ “FPQTJ&F\
A{KC) SANGULAR COEFFICIENT OF LINEAR CONSTRAINT 1
B(KC) *20RDINATE AT ORIGIN OF LINEAR CONSTRAINT

Dﬂ]PLIJ.DNF'lI):HLJ AND__NER CFUCL IDEAN DI§TANst FQH” FAFT|ITY,T T? ;

- . . OPTIMUM CENTRAL LOCATION _
{vSDDLD SDNEW:ULD AND NEW SuM GF DISTANGES TJ THF CFVTPAL FAFILITIFS v
CCOLD(IY,CNEWLT)e0LD AND NEW TRANS2ORTATION COSTS EROM FACILITY T T3 4

OPTIMAL CENTRAL LOCATION 3
SCOLDySCNEW:0LD AND NEW SUM OF TRANSPORT COST TC THE CENTRAL FACILITY
JOSAVI 1), JNSAVII) 201D AND NMEW JODE NUMRED ALLCCATION JF Tof EACTLITY 4

'5[USAV(J),INSAV(I).HLD AlD NEW (ODE NUWBEQ OF THE RAVDHWLY SFLFCTF“ T
CENTRAL LOCATICN '

RAJNF” ‘fl&SQ,d[DTH an FUMH]ATIVr DJQTRTRJIIQV nE lﬂCAIT”NQ i
RAD(I) $CLASS BOUNDARIES 3N CUMULATIVE DISTRIZUTION OF Lﬂ”ﬂ?lﬂﬁs
KITER PITERATION COUNTER

YEI __:RANDUM NUMBER BETWEFN O AND 1.000

oo onphoophopoapachoobhoopoohao

“10 EORMATI(A110) -

"READ (R, 10) Ny M,y ITERA [GRID 14c SReib]

20 FORMAT{4F15,0)

READ(RyZOVAXLT )oY LI o XR{T) o XMLT) g 121 4N)

_REAN(R,21)MC,MC
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PAGE 2902

“;f"21 FORMAT(2110)

‘D0 23 KE=1,MC
READ (R 223K 411,12

22 FORMAT{3T110)

c ANGULAR COEFFICIENT OF LINEAR CONSTRAINT

: AlKCI={YIT1)=Y(TI23 3}/ (X(T1)=X{T12)) : ]
3 C ORDINATE AT ORIGIN OF LINE CONSTRAINT LR L _1
- .23 BIKC)=Y(I1)~A(KCI*X{I1]}
e . MC 1= MC4)

C FIRST TABULATION: LIST GIVEN VARIABLES

WRITE(W,30)ITGRD, ITERA,IGRID, INC My N~
30 FORMAT(IH] ,// 435X, 294 QCATION D MW TIPLE CENTRAL EACTY IXI1ES ./,

140X ¢30HRANDOM GRID LOCATION ALGORITHM,/, 43X, 23HWITH LINEAR CONSTRA

2INTS /7 +29X413,41X,20HGRID SPACING CHANGES .
3 4% 3 144 1%, JOHITERATIONS PFR GRATN, /,18X,33HINITIAL vu"’rn 0

4F GRID DIVISIUVS e 144X, 35HDIVIS ION IVCRFWEﬁ1S PER GRID CHANGE +14
597/ 943X 1341X, 18HCENTRAL FACILITIES,/ 146X, ISleleHFACILlTIcS //)
WRITF{x,32)

32 FORMAT[24X,2LHCARTESIAN LDJADIWATPSpb s 14HTRANSPDRT RATE,3X,

IIIHJUANTliY TDy/yb9A,9HTR&N)PUKT:/y??KolHXyl+X,ldY 157 LHR, 14X LM
24l L) i .

DO 36 I=1N
o WRITE (Wye35) ToX{I)yYUL}yXROL)$XMUI) .
35 FORMAT (10X,3HT =, 15,406, E11.3)) . S ‘ 3

S WRITE(Ws40) ~
4 PDRWATJ/I/LAAX.IRHIIMFLR FPxQTPﬂIVTQ //)

36 CONTINUE ‘ "”--;Y'_  - "_;:{  BT R " '§

DO 43 KC=1,MC ' i
WRITE(Ws42)KC4ALKCIKC,B(KC)
4) EQRMAT (22X, -2-HY.(, r% ’.Hi —,FH_»_ f4.5H % X{ o [3,23d) LESS THAN DR EQHIL

.43 CONTINUE

l[.. TOyn_ll.())

DO 4.5 KC="iC) . NC
WRITE{Ws44)KC+A{KC ) KCy3(KE) '

44 FORMAT {22X921Y (3 1343H) —~4E14.6,5H % X{,13,26H} SREATER THAN (OR E
LQUAL T, El4.6) —

@

’H45 CUNTINUE

GRID COUNTER SET FLR ansr GRID INVESTIGATIDN

L=)

C DEFINE X HAXIWUA, Y MAXTIMUM
XMAX=X{1)
Do 80 I=2,N

70 XMAX=X{(I) -

CLIF(X{1)- sty)ao,so 70

80 CONTINUYE

YMAX=Y(1)
DO 100 I=24N

100 CONTINUE

LELY 1) =YMAX) 100, 90,90
90 YMAX=Y (L) ,

DEEINE X MINIMUM, Y MIN]MUY

XMIN=X(1} .
DO 120 I=2,N

—TELX(L)=XMIN)110, +120,120 v — . .
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PAGE 027 3

o110
I

XMIN=x(1)
CONT INUE

YMIN=Y (1)

130

DO 140 1I=2,4N
TF(Y(I)-YMIN)}L130,140,14%40
YAIN=Y(T)

140
- DEFINE
_ RANG

CONT INUE
RANGE OF X AND Y
X=X MAX=XMIN

RANSY=YMAX=YMIN
COMPUTE NUMBER OF GRID INTE
NAER=JGRIN+] .

RSECTIOM ROINTS -

150

NG={NBER ) %2
C'CHECK IF NUMBER OF GRID IN
TEING=

MY1650,4,160,170

TERSECT[UN PO ers IS LARGE ENSUSH

160

IGRID=IGRID+INC
GO 10 150
DEEINE _GRID %PAEJMG

t l70J

L YINC=RANGY/ZGRID

GRID=IGRID
XINC=RANGX/GRID

DEFINE GRID INTERSECTINN
D3 130 I=1,NBER
{ X=T~1

20INTS

DB 18D J=1,NBER

- XK=J=1

K=J+ IXENBER

180

XG(K)= XWIW+(XK*K1NC)
YGIK)=YMIN+{IX*YINC)

DOLD(

ZERD_ALL ('DHPUT’\TIP\[A!
DD 50

VAQ

IABlFQ

[
_ )
 DNEALL)
)
)

COLD(I
CNEW(I
JOSAV (]

50

DO 60 J e
CIOSAVL Y =0 s el

JNSAV(I)=O

1M

1

60

INSAV(J)=0
SDOLD=0.0
SDNEW=0.0

'"“SCULD =0.0

'7F-R1

[TERATLON COUNLES

KITER=0

DEFINITICN GF CLASS INTERVALS FOR

0 T3 NG

0 TO 1 RANDUM MUMBER DEFINING THE

CXNG=NG

- DO-190

INTEGERS

RAING=1.0/XNG:

" XI=I

190

r-x,«r"'""

RAD({I)=XI*RAINC

__RANDOM GENERATOR STARTING

VALUE ‘
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PAGE 0004

. ,‘i*~ RN

1Y=21735 ' " o
cosst G STARTING OF ITERATION COUJTrR FOR A GIVEN GRID
L IO K ITER=KITER ]
IF(KITER-TTERAY2104210,399
RANDUM CHOICEF OF M CENTRAL FACILITIES FROM THE NG GRID POINTS
NO._240 _J=1,M i
CALL RANDU(LIY, IV, YFL)
- DG 230 I=1,NG
L 16 (YEL=RAD(13)220,220,230 : o :
C CHECK THAY RANDOMLY CHJ EN GRID PUIUTS SATISFY THF LINFAP CONSTRAIMTS
Cc CONSTRAINTS LESS THAN OR EQUAL TO
220 D0 1220 KC=1,.MC »
B " ERROR=(YGIII-A(KC)I*XG{I))-BI(KC)
“IF{cRRQOR)1220, 12207 15
1220 CONTINUE
C CONSTRAINTS bRFATER THAN R EQUAL TO
: DJ 1222 KC=MC1lyNC
R4JVhl')”4(V("thI),—R{Kr)
S IF(tRQOR)ZsS,l?zz 1222 ‘
21222 CONTINUE
e X O = NG
YC(J)=YG(T)
INSAV(J) =1
IE(J=1)222,240,222
222 K=J-1 .
o CHECK . THAT RANDUML\ CHJStN GRlD POIMT HAS NDT BEEN ALPFADY ”[CKFD LS
CENTRAL L OCATION
DO 224 Kd=1,K
IFCINSAVIJY-INSAV(KI))IZ240,215,240
=224 CONTINMUE
230 CONTINUE _ v -,',: o : ':ft g
240 CONTINUE o S o e R RETRREE 3
L COMOUTE ARRAY _NE FHIILJFAM,WTRT WNLES T3 D ANDOMLY CHOSEN CENTOAL EACTIL ITIES

DO 250 I1=1, N
DO 250 J=1, -
'7RQ,DIT.11k(l(XFl1) YD) RV (VO L) =Y [ ) ) k%D Vx20,&

SUC T UFOR EACH FACILITY StLECT THE CLOSEK CENTRAL. LOCATICN
0L DO 280 I=1,N . : 5
SHORT=D{],1)
J=1
DO 270 K—L,M
—1E(D(1,K)=SHORT) 260,270, 219_v
T 260 SHORT= D(I,K) ' -
S d=k
270 CUNTINUE
DNEW(T)=SHORT
CNEW {1 )1=XR (1) %XM( [ )*DNEW(T)
INSAV(TY=J
. .280 CONTINUE o . ‘ ' ' AR ‘
¢ . COMPUTE SUM OF JPTIMAL PISTHNpES AND TDTAL TRA SPOPTATIJN c0§r
e e SONE=0.0 -
SCNEW=0.0
DO 290 I=1,N
_ SOMEH=SDNEL+DMEW(])
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PAGE 0005

2290 SCNEW SCNE%+CNFh(I)
- U IF(KITER-1)300+300,320
C JLITLE QOF SECOND TABULATION
300 WRITE(wW,310)
310 FORMAT{1HL,// 440X, 30HRANDOM GRID LOCATION ALGORTTHM, /243X,
123HWITH L IMEAR COMNSIRAINYS,/Z/,34%, :

C241HDISTRIBUTION OF TOTAL DISTANCES AND COSTS+//74 21X 9HITERATION,
35X, 14HSUM OF CPTIMUM,5X16HSUM OF 1h\ﬂ§DDQT f432X, 6HVU“BCR99X,
49HDI STANCES 12X ,5HCNSTS /1)

¢ BODY OF SECOND TABULATION
320 WRITE (Wy330)KITER,SONEW,SCNEW
330 FORMAT (30X 17 48XsF13.6,7X,Fl3.6)

... C - IF THIS IS THE FIKST ITERATICN REPEAT RANDCH CHOICE ANOTHER TIME
. IF{SCOLDI34C, 350,340 _
C CHECK TF WEW CHOICE OF CENIRAL EACIL ITIES _GIVES SETTER RESH TS

340 IF(SCNEw—SCULD)350,350, 380
350 SDOLD=SONEW
SCOLD=SCNEY
DO 360 I=14N
CDOLD(TI)=DNEW(T)
COID(T }=CNEW{1}
360 JOSAVIT)=JNSAVI(I)
DO 370 J=i,M
370 [OSAVJl=IMSAV(])
- .380-G0 70O 230 ' ' S '
.C THIRD TABULATION 3 OPTIMUA AlLCCATI?V
390 MRITEL W, 400)1 +1TERA
400 FuRMAT(1Hly//¢4OX,BOHQAVDUM GRID LJCATIOV ALLORIT%M,/,43X1
©123HWITH LINEAR CONSTRAINTS,// 40X,
228H3PTIMUMA ALITOCATION ON_GRID #,13,/,65X SHAFTER,1X, 14, 1X, _
310HITERATIONS// 35X 39HCODE AND LOCATION OF CENTRAL FACILITIES,/,
433X, llHCDDb hUﬂBEK,lOX ZIHCAKTtSIAQ COORDINATES,/ 57X, 1HX,14 IHYy
SLAY o
DO 415 J=1.M
JJ=I0SAV (J)
_ARITE (W, 410)1.XLLJLLLWLL|H
S 410 FORWAT(quyjHJ —,IA.QA,Fll 3 4Xy Fll 3)
Lo %15 CONTINUE . '
' L WRITEA{ie420) - Do o L ¥
420 FORMATI(// 446X, 18H0OPT IHMUM ALLOCATIUM.//,ISK.19HF ACTLITTIES,
110X, 16HCENTRAL LOCATION,6X s LIHDISTANCE TO,7Xy 14HTRANSPORTATION ./,
212X o 6HNUMBER o 4X 21 HCARTES TAN COIRDINATES ,OX, 4HCANE L 11X,
' 316HCENTPAL LDCATIDN 9X+5HCOSTS,y /525X, 1HX, 13Xy1HY,//) B
WRITE{ W s43Q) (Lo XUI) YD) JOSAVII) oDOLDLT},COLDIT) s I=14NY
430 EQORMAT (11X ,3HL =,14,2X,E11.3,3%,F11.3,7%,13,10X,E16,60,4"
WRITE(HW,435)S00L0,SCOLD
435 FORMAT(/ 62X +y5HTOTALyEL14.544%X4EL15.6)

c CHECK IF_ALL_GRIN CHANSES HAVE 3EEY DONE
' [F{L-1ITGRD) 440,450,450 ‘ o RN

440 L=L+1

. GO I0 160

" 450 CALL EXIT
END
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. LDCATION OF MULTIPLE CENTRAL. FACIUITIES o 7 i
R RANDOM GRID LUCATION ALGURITHM T
_ WITH L INEAR COMSTRAINTS i

5 GRID SPACING CHANGES 100 ITERATIONS PER GRID
_INTTTIAL NUMBER OF GRIND DIVISIANS 3 DIVISION TNCREMENTS 2FR GRIP CHANGE 1

3 CENTRAL FAGILITIES
20 FACII ITI®ES

QARTFSLAN_COQRDLNATES JRA&SDOQI RATE NQUANTITY YO
T L S TRANSPORT
XL Y R o oo H

7.190 .- 5.490 . 1.000 2.000
v 9,070 . 9.940 _ —1.000_ _2.000
TR 40610 T T 6,490 0 T CTLL0007 o 2,000 0 T
C 4,940 e BG250 0 - 1.000 e L 2.000
QW e7Q s _D.690 . e 1 l.000 ) 2 2000
6.180 3.570 1.000 2.000
1.130 9.810 1..000 2.000
6,000 4,360 — 1,009 __2.000
U 8.230 0 S 8.060 - 1.000 T 2.000
N 94600 9.280 . . l1.000 - 2.000
SR I RS SICIRE Dty Y /W .Y M N Q.A80 : — 1,000~ : 2 a0n0
12 2.310 0.390 1.000 2.000
13 . 2.530 4,570 ' 1.000 2.000 .
14 e 4.440 7.7990 1.000 —2.000D
‘ AT 845830 T T 1.4900 0 0 T T 1,000 2 2,000
Clo e 26290 00 740300 1.000 .. 2000
12 BRI i Y20 1.000 2,000
18 2.620 .. 9.410 1.000 2.000
19 3.820 2.420 o 1.000 2.000
20 : 7.550  1.970 : 1000 2.000

.‘cj X~ o8 mpwb r~

bzh

‘«ku_aa_e—cmmm—«mr«q.-q-—iumj-q-—m

O TRV VO T I TR VO VI VI T
P-‘
o

LINEAR CONSTRAINTS

e YUY = P00 163728E-01 % X( 0 1) LESS THAN ORCFQUAL TN 0 N.979150C CI
LN 2y = =04124528E 01 % XU 23 LESS THAN DR FQUAL TO . ND.212347F 02

Y4 5 3) = 0,13R182F 02 % X{ -3)Y 1£SS THAN _OR EQUIAL_ TN =D JRERNALSEE (1

YU &) 0.728038E 01 #* X{ . 4) GREATER THAN 0OR FQUAL TO —=0.60A116F 02

Yt 359 0.176849E 00 * X{ 5) GREATER THAN OR EQUAL TO -0.1385194F-C1

Y{ _6) = =0.163043E 00 % X({ 6) GREATFR _THAN OR EQUAL T0 0.766430F Q0

1.

B T S RIETIP NI SO
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RANDGM GRID LOCATION ALSGRITHV
WITH LINEAR CONSTRAINTS

DISTRIBUTIUN OF TOTAL DISTANCES AND COSTS

ITERATION SUM _1E OPTIMiM SUM_OF TRANSPORT
MUMBER DISTANCES -~ tosTS
1 0.64455GE 02 0.128910t 03
2 0.62G839E 02 +0.125968F 03
3 0. A652284F Q02 0.130487€ 03
& 0.652284E 02 0.1304578 03
5 0.529413E 02 0.105833E 03
6 _0.529413E 02  D.1D5%383F 03
7 0.652284E 02 D.130457E 03
- 8 0.529413E 02 : 0.105383€ 032
_9 . 0,529413F 02 0.105383F 03
10 : 0.652284E 02 - 04130457F 03 o
1 © 046445508 02 - 0.1229106 03 B
12 0.652284F N2 0L IB0G8TE 03 T e R
13 0.529413F 02 0.1058°" '
L4 0.629839E 92 e
15 0.52G413E 02
16 S 045377 e
17 IR RS
’/‘/’-_‘_,w'—"]"" ' ‘_‘_‘_,.n_zo'j E 03
RS : - UL111526E 03
— e 0.125963F 03
LU LY4L3E 02 © . C.10%383F 03
S et T0,5294138 020 . 04105883E 03
S 0.529413E_02 - 0,105882F 03
T 85 0.557631E 02 0.111526E 03
e 86 .- . 0.644550E 02 0.128310E 03
T 87 . 0, 686294E 02 0.1312595 03
88 T 0.529413E 02 -7 0.105883F 03
89 . . . 0.556484F 02 - Co- 061112978 03
Q0 o 0.8529413F Q02 . N, 1058836 03 -
91 0.656294E 02 " 0.131259F 03
92 0.656294E 02 0.1312539E N3
93 0.557631E 02 0.1115246E 03
94 7 ©.0.557631E 02 0.111526E 93
95 = 0.545271F 02 . 06109054 0%
96 Q.5587631E 02 L 0.1116824F .03
97 0.656294F 02 0.131259E 03
58 0.529413E 02 , 0.1053383E 03
99 0.545271E6 02 0,.109054F N3

TU1000 . 0.545271E 02 0.109054E 03




S TURANDOM GRID LOCATION ALSORITHM. 0

WITH LINEAR CONSTRAINTS.

OPTIMUM ALLOCATION ON GRID # 1
' AFTER 100 ITERATIONS

' CODE NUMBER

" CODE AND LOCATION DF CENTRAL -FACILITIES

CARTES[AN CCORDINATES

b. 4 Y
J= 1" 3,813 6 T57
d= 2 ) 65.557 3.573
Jd= 3 64557 6.757
DPTIMUM ALLOCAT ION

FACTILLITITES

e | CENTRAL LOCATIAON " DISTANCE T0 TUTRANSPORTATION
oo = NUMBER - CARTESIAN COORDINATES . .. COoDE : .CENTRAL LOZATION . | ;OSTS
N
| X
I = 7,190 54490 3 0.141617€ 01 ° _0.282235F 91
i= .2 "9.070 - 9.940 o 3 0.405592E 01 0.811184F a1
1= 3 “4.610 - 6.490 1 0.112862% 01 0.275724F 01 -
= 4 4,940 8,250 - 1 - N, 206829 0O} D L13083F 01
I = 5 D.470 0.690 2 0673506E 01 0.124701E 02
1= 6 64180 3.570 2 ! 0.376681E 00 0.753362F 00
1 = T_ l.130 9.8y ] 0.387339E 0] _ 0.TITALTTE Q1
1= ‘ g 6.000 g 40360 2 -»'30.96370"”5._»00 L U 0.192740F 01
1= 9 8.230 8,060 .- 30 ©D.2121028 01 0L,424204F 01 o
l= 10 G 600 9,280 7 3 NL.39533IHE Q) - ‘0, 7O06G73E 0Oy
I = 11 3.460 9.680 1 0.,2927382F 01 D.584T7064F 01
I = 12 2.310 0.7390 2 0.530733F 01 Ne10AL4TE 02
1= 13 2.530 4o 570 1 0.229750%5 01 D.479519E 01
-1 = 14 44400 7.990 RS 0.154267E 0L =77 0.308534E 017
I = 15 " B4530 1490 2 D.2RH955E N1 0.573910F 01}
I-= 16 24290 7,030 1 0.125350F 0} N, 72H80A09E N1
1= 17 B8.8730 T120 3 0.230219F 01 Nah6N43T0 01
I = 18 2.620 9.410 i 0.279968E 01 Je.559936F 01
=19 3..820 24290 2 N.2060QTAE Q] D.593G53E 0}
1 = 20 . T.550 1.970 2 0.188610% 01 S 0DL3TT2215 0L
TOYAL  9,529413E 07 0 1059a2§
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RANDOM GRID LOCATION ALGORITHM
 WITH LINEAR CONSTRAINTS
DISTRIBUTION OF TGTAL DISTANCES AMD COSTS
IIFRATION SUM_QOFE _OPTIMUM SUM _QF TeANSPORY
NUMBER . DISTANCES " COSTS
1 C.625649F 02 0.125130€ 03
2 0.522644F 02 ° 0.104529E 03
3 Qo635649F O : 0.127130F_ 03
4 ' 0.551G98E 02 - - 0.110400E 03
5 0.558664E 02~ 0.111733E 03
o) Q.8 65ALTE D2 ~0.113129F8 03
7 0.635649E 92 0.127130E 03
8 0.486947FE 02 0.973895F 02
9 N.595199F 02  0.117040F 03
10 0.522878E 02 - 0.104576E 03 .
11 0.631104E 02 . 0.136221F 03
12 0L,605081F (02 ) 012N TAE 03
13 0.603747E 02 0.1207/7"
14 0.56564TE 02 T ‘
15 0,5744391E 07
1é 0,507
17 ‘ . ) '" S
— o4k 03
. -U.968T84E 02
—— ’ L) ]DQKLRT‘K:. OTZ
LTl GdYSE 02 D 0411756598 03
P 0466 T8ATE 02 © 7 0,1295795 03 o
A i QO H623A/08E 02 . 0. 1247218 03 : .711
85 0.648323F )2 0.,1296658 03
86 - . 0.55S8L2E 02 0.113962% 03
87 ‘n R/u&’%j_lxrj;n? 8] ‘11_7_:‘-17'317 rn_ » —
88 - 0.619273F 02 0004123355803 0 o ”!
89 . 0.555812F 02 S0 U DLL13942E 23 s
o 0.535917E .02 0,11 71848 03
91 0.564G17E 02 0.112983F 03
92 : 0.576692E 02 0.115338F 03
93 0.65764R8E 02 0,131530F 03
94 DU 064943258 02 - 0.988651E 02 L. '
95 0 0.504782E 02 . 0.100957E 03 .
96 ‘ 0.5 416158F 02 = N,108323F N3 - :
97 0.539387C 02 0.107877€ 93 »
98 0.537629€ 02 0.107525E 03
99 : i 0. 4608083E 02 N, 1214517 03
100 © '0.592391E 02, . 0.118478E 03 .
o |




L ————. —

~ RANDOM GRID LDCATION ALG D&ITHM
© WITH LINEAR CONSTRAIRTS

OPTIAUM ALLOCATION ON GRID # 2
AFTER 100 ITERATIONS

CODE AND LUOCATICGN OF CENTRAL FACILITIFS

'foUDE_NUMBER | CARTESTAN COORDINATES -
L= _5.03% 2,777
J=02 CUTe317 T 1.5520
J="3 S 247520 7 i0.7.552

OPTIMUM ALLNCATION

T A C I L I'T1 E§ o " CENTRAL LOCATION ~#Pl DISTANCE TO . TRANSPORTATION

NU%BFR , CAhTESIAN COORDINATES .py. CODE - 5 CFNT AL LOCATION - COSTS
: )( , Y ) o L . =S
nNo
I = 1 7.190 D420 2 N.206A0445 01 _ N.413287F 0]
1= 2 9.070 = . - 9.940 2 0.296166F 01 . 0,892332F 0L
1= 3 44610 . 64490 3 0.213991F 01l 0.427932F 01
1 = 4 4,940 - P B.280 3 NL.229601F 01 - N A532072¢C 0
I = 5 0.470 04690 1 0.501964E 01 0.100393E 02
I = 6 64180 3.570 1 0.139251E Ol C.278502F 01
I = 7 _l.130 9.810 03 ___D.278907F 01 ___N.S5A015F 01
1= 8 T6L000 T T 40360 S DL L185352F 01 U 0.3TOT04F 01
CIo= 9 - 03,230 - B.060 2 0.104413F 01 . 0.208827F 01
1 = 10 - 9.600- s 9.28D 2 NL286253F (1 : - 0. 8725048FE N
1 = 11 T 3,460 9.680 3 D.224206F 01 0.468411F 01
I = 12 2.310 0.399 1 0.362295E 01 ~ 0.724590F 01
I = 13 2..530 4.570 3 N.299079FE N1 i _0,598157F 01
1= 14 4,440 o T7.990 3 0.174329E 21 0.34B6S8F 01
1= 15 . 845307 - 1.490 -1 _ 0.372460FE 01 . 0.744921E Ol
1= 16 - 2,290 - Y SN ¢ K. ¥4 DR 2 T D ULAQTTIBQE Q0D - N.,130558F N]
I = 17 -~ 8.830 7.120 2 ND.157312E 01 0.314625F 01
I = 18 2.620 9e 419 3 0.186222F Ol 0.372444F 0]
I = )Q 3.4820 : 2420 ] <1 26650FE 01 i N, 25220NE N1Y
T = -

200 L TT7.550 0 0 1.970 0.264145E 01 -~ = 0.5282°1E 01

TOTAL 0 .467311E 02 N.G35623E 02
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CRANDOM GRID LOCATIGN ALGORITHM
WITH LINEAR CONSTRAINTS

DISTRIBUTION OF TOTAL DISTANCES AND COSTS

ITERATION : SUM_QOFE _DOPTIMUM SUM_QOF TRANSBORT
- NUMBER ~ DISTANCES o COSTS
1 0.556597F 02 0.111319E 03
2 0.5360L06F 02 - 0.107203€ 03
2 Q..594022F 2 ) 0.118806F 03
4 04758892 02 0.151778F 03
5 0.632144E 02 C0.1264295 03
b 0817732 N2 0. 1)8347F 03
7 0.532543C 02 0.106509E 03
8 0.886603E 02 0.17732LF 03
9 0.587778F 02 _0.117556FE 103
10 © 0.50C512E 02 . 0.100103& 03
11 0.831058E 02  ° 0.166212E 03
1.2 Q.A12414A0 02 . ';;nAL?7APRn 03
13 0.632144E 02 0.12647""
14 0.633477E 02 L :

1% N0, 8536263F 02
16 Lo 0.5,‘;‘0{‘;—-
17 AL T
P : Jwok 03
e T . UW132327E 03
~ — e 0.144980F 03
L lepE5E 020 T 0413644778 03
“0.725148E 02 7 0e145030F 03
o Do87s8685E. 02 0011465138 03
R -1 0.507136E 02 0.101427F 03
o 86 _--- . 0.630383E 02 0.126077E 03
- — e 87 _ D.AZ3329F 02 —0,13466KF D3 _
LT 88 7 U 0.54T111E 020 0 0 04109422F 03 -
89 .. 0.755031E 02~ - 04153006E 03
aQ _ D.5450351F 02 L QL1121 70F Q3
91 0.619687E 02 0.123937E 03
92 0.550851€ 02 0.112170€ 03
93 ______0.724897F 02 __D.144980F 03
94 - 04534032E 02 0.118306F 93
95 0.553295E 02 . 0.110659F 03
96, 0.578937F 02 S 0.115988F 03
97 0.594032E 02 0.118806E 03
98 0.8465G6F 02 0.169319¢ 03
99 0. 547111 02 AHn 1.00422E N3

100 0.672767E 02 ~ 0,134553F 03




S RANDOM GRID LOCATION ALGORITHM .. 7

_ WITH LINEAR CONSTRAINTS .-

OPTIMUM . ALLOCATION ON GRID #
100 ITERATIONS -

AFTER

3

~CODE AND LOCATION OF CENTRAL FACILITIES

. CODE NUMBER

CARTESIAN COORDINATES

X Y
f = 1.714 3.030
J= 3 5.948 2.300

DPTIMUM ALLOCATION

CANUMB

T.
Y

4

. CENTRAL LOCAVION
ESIAN CODORDINATES = -

.. CODE

U UDISTANCE T -
© o CENTRAL LOCATION

CUTRANSPORTATION ol

cosTs

1.190

ogz| |

‘Y_= 1 : —. _6 490 1 0, 260427FE 01 i N. 521284 (01 ' -
= 2 9070 . 9.940 o 1 55 0.230819F O1 0.461637F Q1 .
S G DR S 4,610 o 6e490 7 2 0 0.234340F 1. 0.4686T7T9E Q1
1= b 4,940 i S 8.28) 1 N.284642582E "0 - 0.5458505E 01

I = 5 0.470 0. 690 3 0.579968E 01 0.114194E 02

1= 6 64180 3.570 3 0.129102F 01 0.7258203F 91

= 7 1.130 9.810 2 __0.336984F 01 (0,7739/7C 01 _
1= 08 e 60000 4,360 T3 T 0.206066E 01 G.412131E 01 s
1= 9 8,230 00 . B.060 1. - D.456989E 0N 0.913978E .90
1= 10 Q. 600 i QAR 1o Q. 2212876 01 Q. Lt 2574FE 01

1 = 11 3.460 9.689 2 0.374546E O1 0.749092€E 01

I = 12 2.310 0.390 3 D.410890EF 01 0.821781F 01
L_~=;. 1.3 2530 — Va R7n‘ — ”_') ) !‘%ATS‘[;\E 0l Nn,21385125 01
L= 14 T hls40 T.990 0 2.0 S0 0.2846G3E 01 - 0.568986F 01
1 =015 84530 0 Cle490 o 3 . 0.2T06Q7E .01 . 0.541215F Ol .
J.= 160 ?_ 290 {030 2 0 Q10021509 0. 120040 01

1 = 17 83.830 7.120 1 0.139400E 01 0.278800F 01

I = 18 2.620 9.410 2 N.330591E 01 0.661183F 01
q=__ 19 —3.820 2,420 — 3 —0.213138E .01 L 6262 T0LE O
I =20 T 7550 . SC p.e7n T 3 T D.163564F 01 0.327127E 01

A JOTAL N 57005126 02 N,1N01035 AR
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RANDOM GRID LOCATION ALGURITH% : S ;
WITH LINEAR CONSTRAINTS S o S k

DISTRIBUTION JF TOTAL DISTANCES ARND COSTS.

ITERATIAON SUM_OF_QPTIMUM SUM._OF TRANSPORT _
T NUMBER DISTANCES ... CDSTS B
1 0.656294E 02 0.13125%C 03
2 0.543087F 02 0.108613E 03
3 (.5A2535F 02 0.112507F 03
4 0.676936F 02 "0.,135387E 03
5  0.616904F 02 0.123381f 03
6 0..6205870. 02 0.1241178-03
1 0.633277E 02 0.126655F 03
8 0.738285E 02 0.147657E 03
9 o _0.73H285F 02 0.147657E 03
S 10 04597720702 0 T 0.119544E 03
SN . .0.708013E D2 - .5 0.141603F 03
12 o 0.63%277F 02 - 0L 128685 O3 i T
13 0.669555E 02 0.13397° "
14 0.628177E 02 ~
15 0, 58868GF_ Q2
16 0e69707 "
17
e ~oa3F 03
,,,,, “0.129558€ 03
. N.1423492E 03
e LLEABHE 02 “0.118551F 03
o «664855E5 02 " D.132371E 03
D D A3IBTLHE 02 0,127343 8 03
B “ 85 0.665534E 02 0,133107E N3
" 86 -7 -0.597720F 02 0.119544F 03
_87 0.696991F 02 0,139394E 03
- 88 0.603119€ 02 04120624E 03
89 0.605868E 02 0.121174E 23
990 0.596582F 02 0,11931 7€ N3
91 0.809727E 02 0.151945E 03
92 - 0.571633E 02 0.114327E 03
- T S— - 0.5395945E 02 _0Q,1172198 03
94 - .0 0.542832F 02 0.10856%E 03 .
© 95 7 04598216E 02 “0.119643F 03
Q6 0 694991 F 02 0.1393498¢ 03
97 0.734318E 02 0.146864E 03
93 0.603119E 02 0.120624E 03
Qg 0.604502F Q2 0.,120Q01F 03

04577034

- 0.115407E

03




T T T R ANDOM . GRID LOCATION ALGORITHM® & - .
S oes Tt GITH LINEAR CONSTRAINTS |

OPTIMUM ALLOCATION ON GRID # 4
AFTER 100 ITERATIONS

7 CODE AND LOCATION DF CENTRAL-FACILITIES -
. CODE NUMBER . CARTESIAN CODORDINATES

_3.513 - 6.757
T1.0000 0 0 lJesz
L 6.557 © 0 3.573

e ke
R B
wN

OPTIMUM ALLOCATION

 'NUMBER' -  CARTESIAN COORDINATES - © - CODE " = CENTRAL LOCATION ® . CGSTS - . =

b
4

g .

43

[

7.190 | 5.490
9,070 T 9,940
C4.610. 0 . 64490
4,960, - - 8,250
T 0.470 0+690
6.180 © 3.570
1.130 . 9.810
000 T e 360 T
84230 0 - 8.0560
Q. 600 - Qo280
34460 9.680
2.310 0.390
2.530__ —_54.570
4440 0 T 7.990
5o Be530 i L 1.490
24290 T e 7,030
8.830 7.120
2.620 9.410
3,820 2.420
7.550 L 1.970

0.201859F 01 " 0.403719F 01
T0JB40392F D1 0 -D.128078E 07
S D.112862E 01 L 0.225724F 01
0.,206529F£ 01 - 0.413058EF 01
0.139617E 01 0.279225E 01
0.3746681F 00 0.753362E 00
_0.387320F Q) 0.274AT7TF 01
C0.963T03E 00 T U 04192T40F Gl
0.4788558 01 . 0.95779°C Ol
N ALATHEE D L SN 12824698 02D
0.292382F 01 C.5847640 01
0.206143E 01 0.412285F 01
D.239759E Q) 0.4795125 01
0 DL154267E 0L 0.308%34F 01
T 0.286955E 01 0 0 c0.573G10F 01
Q0,1283508 03 - . 2ENL9C N
0.421271F 01 0.842542E 01
N0.279968E 01 " 0.559G636F 01
0.,.28838AF 01 QLA7INTTI2E 01
0.188610E 61 0.277221E 01

D W ® N oW o N e

e gt
o N> =

B U (N A OO T TN (VI O I TR O

N
vioe

D~

s
tojee]

Pt bt et gt b gt o g bt ped fog et bt fog bt e g e g e

'»Lor4w SERISY P RSN KRR SR N P X

L (U TR TR TR
p—
-

e

TOTAL " 0.562832E 02 - (,108866F 03
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RANDOM GRID LOCATION ALGORITHM :
WITH LINEAR CONSTRAINTS _
DISTRIBUTION JF TOTAL DISTANCES AND COSTS
JTFRATIHN SUM OF DPTIMIM SUM._(OF _TRANSPORT
. NUMBER DISTANCES . CO0STS |
1 0.641C18E 02 ' 0.128204E 03
2 0.754149E 02 - - 0.150830F 03
3 _0.754223E 02 -0 150345E 03
4 0.77S967E 02 0.155994F 03
5 0.668643E 02 T 0.133729E 03
A ‘0. TI9Q47E (02 : 0..15589394 N3
7 0.678829E 02 0.135756F 03
8 0.658584F 02 0.133717F 03
9 0.754940F 02 - 0.150992F N3 — _ : :
10 0.755897E 02 . 0.151180E 03 o T
11 0.804386E 02 L 0.160377E 03 b
12 CLB0ATHLIE 02~ : 0.161352E 02 -
13 0.678399E 02 0.135¢"
14 0.717151E 02
15 O 1TC4TAE O
16 07877 o
17 et
10 - MR R
~1DE 03
L UT161122F 03
. e 0.133754F 03
G T VE 0200 0.151302F 03 .
0.668643E 02 - . 0.133729E 03
0.3063Y 7 02 oo N,18Y12A46F 03
0.658758E 02 0.133754F 03
. 0.6T7577E 02 ~ 0.135515F 03
—0.8057058 02 0.161141F 03
S 04756726E 02 - 0V151345F 03 0
- 0.568904E 02 © - - 0,133781E 03
Qe 785477F- Q2 - . 0 N,1510Q4F- N3
0.668835E 02 0.133767E 03
0.668584E 02 ~ 0.133717& 03
0.753817F 02 _0.150763E 03
0 T54223E702 7 041503456 03
. 0.805656£°02° . 0,161131F 03 = i
Q. T1T344E 02 0 1G3LE9F D3 o %
0.754223E 02 0.150345E 03
0.779967F 02 0.155994E 03
0. 7179509€E 02 - : 0,.1£3590% 03

1 0.755669E 02 - ' 0.151134E 03




WIYH LINEAR LOVS]QAINTS

_RANODM GRID ldCAf‘UN ALGURITHW

UPTIMUM. ALLOCATION UM ,GRID

ITERATIONS

5

" 'CODE _AND LOCATICUN

- CODE- NUMBER

OF CENTRAL FACILITIFS .
CARTES IAN COORDINATES

¥ a
= _1_ : 3.07C 7.?1}
=02 - 8.296 FR ¥ %
= 3 84296 . . 4,483

OPFIMUM ALLOCATION

ST FEACTUITIES. CENTRAL LUCATION DISTANCE TG , TRAMSPQDTAT{OM"
{NUMBER (CARTESIAN. CDORDINATES CCENTRAL LOCATION COSTS .
N
. W
= 1 —7.190 5,490 2 _0.149564F 0] D.22912R8F 01 -
Io=- 2" 9407070 90040 L T2 0.551180F 01 U 0.110236E.02 '
= 3 44610 L6490 1 - 0.169285F 01 0.338569F 01 .
S A 4,940 R, 250 1 02131865 01 VL 426312E 01
I = 5 0.4T0 0.699 1 0.702379E 01 C. 1404T76E 2
I = 6 6.180 3.570 2 0.2304245 01 0.460849F 01
L= 7 1.130 9,210 1 D.3246800F 0] _0.649600F 01
=80 T 6.000 v;‘-,ff 4.360 2 "0.229899F - 01 . T Q.459729F 01
=9 L Be230 e 8.060 2 - 0.357774F. 01 0.7155%49E ¢l
1 =__"19 9 AQ0- . 9,280 2 0L 4971298 Q1 N O94288F 0Y
I = 11 3.460 G.56380 1 N0.249787F 01 0.499573F 01
1= 12 2.310 0.390 1 0.636458E 01 . 0.1372928 02
1 =13 24530 44570 1 D.25977QF 01 _0.539558E 01
I = 14 4,440 7.990 - 0.156833F 01 . ¢ 0.213667F 01
1= 15. 8.530 . 1.490 2 2.300201FE 01 D.600402F 01
L= 16 2,290 7,030 1 0. R80Q171FE_Qn - D181 R34F (O1
1= 17 8.830 7.120 2 D.269072F 01 De538145F 01
1 = 18 2.620 9.410 1 0.224532F 01 D.449177F 01
I .= 19 3,820 24420 1 N, 4BABASE (] 0, 0496905 0]
cCL=Eo2000 7.550 1.970 2 2.262117F 01 .524234F 01
CTOTAL. 0.641018E 02 0. 1282045 03
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VARTABLE DISCRIMINATION ALGORITHM
AGGLOMERATION OF A LARGE SYSTEM
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0B T
4/ FOR o :
%% RLCHAPELLE RS=02399 .
*TOCS(CARDs 1132 PRINTERs DISK)
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM
€ VARTABLE DISCRIMINATION ALGORITHM : i SPRING 1569

“C - AGGREGATION OF A LARGE SYSTEM OF N1 FACILITIES INTO A SET OF N2
©Co " TERMINOLOGY OF VARIABLES : g
) ¢ TR <READ/INPUT
L- C W JWRITE/OUTPUT
C N1 «NUMBER OF ORIGINAL FACILITIES
TG N "+EXPECTED NUMBER OF CLUSTERED FACILITIES
e NERR " WACCEPTABLE VARIATION OF N2 .
L Co N . - JEFFECTIVE NUMBER OF CLUSTERED FACILITIES -
C DISCR +RANGE OF AGGLOMERATIONsX(1) OR Y(IJ +* OR = DISCR
C DINC « INCREMENTAL DECREASE OR INCREASE OF DISCR TO OBTAIN N IN
C THE NEIGHBORHOOD OF N2 _
T T XTI T3 Y(IT<CARTESTAN COORDINATES OF FACILITIES R
C s XR(1) . o<TRANSPORT.RATE ON ROUTE 1 . T
e CCUXMOT) . WQUANTITY TO TRANSPORT. ON° ROUTE 1 : S U
¢ NLOOP VAXIMUM NUMBER OF TIMES WE WANT THE PROGRAM TG RUN ;
C THROUGH A CLUSTERING LOOPe IF N2 + OR = NERR IS NOT REACHE]
C DURING THESE NLOOP, MODIFY INC OR NERR BY CHECKING BEHAVIO
S T T T OF OUTPUT N 5
L KN : '.MAXIMUM NUNBER OF POINTS IN A CLUSTERV

“ INTEGER R sw | ERET TR |
CHANGE THE DIVENSTON CARD 1F WMORE THAN 135 FACILITIES ARE CONSIOEREG

N

DIMENSION X({ 125)9Y{ 125)sXR( 125)sXM( 125)9ISAV( 125)
C DIMENSION OF JCH=KN=(N1/N2)%*54 OF JSAV NIC Z*NI
L 'DIMENSIOI\ JCH( 30)'JSAV( 250) LR
READ(R 10)N19N20NERR9I\LOOP DISCR’DINC

10 FORMAT(4110s2F1040)
DO 25 I=14N1 -~ _
_jg;;j'READ(R¢20)X(I)¢Y(I)oXR(I)oXM(I)
.20 FORMAT(4F1540) SR .
CL26 CONTINUE 00 o 0 T o T
FIRST TABULATION. LISTING OF KNOhN VARTABLES
~ WRATE(Ws30IN1
30 FORMAT(1H1+//935%X3s33HVARIABLE DISCRIMINATION ALGORITHMs/ 931Xs
“71Z4HLOCATION OF THE ORIGINALI592X510HFACILITIESs//324Xs2 IHCARTESTA
2N COORDINATESs$6X3s14HTRANSPORT ‘RATE ¢2 X9 TIHQUANTITY - TO,/ 69Xo9HTRANS R
~BPORT S/ 927Xs1HX 9 14Xs1HY 915X s LTHRs 14X 9y 1HM s/ /) sl T . e
WRITE(Ws40) (ToX(T)oY(I)oXR(I DV oXM(I)sI=19sN1)
40 FORMAT(13X93HI =9I159F13e39F15e33F14ea39F16e3)
C SECOND TABULATIONe HEADING
T WRITE(MQSO)NI,N?;VERR T T T T T T R
;50 FO?MAT(1H1,33X;33HVARIABLE DISCRIMINATION ALGORITHM,/.asx, ,1~*f"*5Tfj

_— ﬁll'vl"v""; S N

113HCLUSTERING. OF 21522Xs 1OHFACILITIES» /939X 94HINTOs1517H + OR =»15»
2/7)

LOOP =0
60 LOOP=LOOP+1
TDOET TEINT
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U RCHAPELLE RS=02399 -~ . 7. o 0 PAGE

el ISAV(I)=1 : R
C CLUSTERING OF FACILITIES
DO 120 I=1sN1
XST=X(1)=DISCR
CXFIN=X(1)1+DISCR
S YST=Y(I)=-DISCR
COYFIN=Y(I)+DISCR
DO 110 J=1sN1
1F11=-J)655110465
65 IF(X(J)=XST)110970s70
70 IFIX{JY=XFINIB0,20s110
80 TIFVY(J)=YST)110+90990
S 290 IF(Y(J)=YFIN)10091004110
100 ISAV(JY=1
110 CONTINUE
120 CONTINUE :
T COUNTING PROCEDURE OF CLUSTtRs, V=3 TO STATEM&NT 186
N=0 - |
SIC=0
NTC=2%N1
DO 152 IBC=1sNIC
. - 152 JSAV(IBC)=0
T 183 KN=(NT/NZ2 %5 - ' N
. EXAMINATION OF EACH CLUSTER AND ChECK THE CHAIN LINKS ;};vﬁfv‘-=
DO 186 J=13sN1 ' s
DO 154 KM=1sKN
154 JCH(KM) =0
C CHECK THAT J IS NOT ALREADY PART OF A CHAINo
ioen DO 156 NS=1eNICH R R B
IR Y- JSAV(NS))156a186o156 f}”ﬁ ,,2,*'
186 CONTINUE : SR =
158 K=1
JCH(K)=J
IN=J
,v”_:JCH(K+1)-ISAV(JN)
CUIF(K=1)16651629166 )
i 1F<JCH(1)~JCH(K+1))164,174.164
164 GO 10 168
IF(JCH(K=1)=JCH(K+1))168¢1749168
K=K+l
JWRITE(W,170),_ R L g AR By
FORMAT (10X s 69HERROR » INCREASE DIMENSION OF JCH AND MODIFY STATEMEN.
1T 153 ACCORDINGLY)
172 JN=JCH(K)
GO TO 160
174 N=N+1 T = N e T L
. SAVE ALL JCH LARGER THAN J, INTostAv
T K1sK4lD o R
PO 184 IN= l,Kl
_ IFAVJCHUIN)=~J) 184491849176
176 IC=1C+1
T IF(IC=NICT18251825178

IF IT 1S

DO_NOT COUNT IT E
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;RcCHAPtLLE RS=02399

WRITE(w,lso)‘

CJSAV(IC)=JCHIIN)

FORMAT(10X 934HERROR INCREASE DIMENSICN FOR JSAVI

CONTINUE

' CONTINUE

'CHECK IF PROPER CLUSTERING HAS BEEN OBTAINED

U INCN=I1ABS (N2=N) A

IF(INCN~NERR)21392135210

" IF {NLOOP=- LOOP)211o2110220

VRITE(Ws212)

FORMAT(31Xs39HDESIRED .CLUSTERING HAS NOT BEEN: REACHED /527Xy

f l46HMODIFY THE VALUFS OF DISCR OR DINC ACCORDINGLY»//)
.60 TO 215 . ' T v N .

WRITE(Ws214)
FORMAT(33X»35HDESIRED .CLUSTERING HAS BEEN REACHEDs//)
WRITE (Ws216)

vFORMAT(21X98HFACILITYolOX;ZlHCARTESIAN COORDINATESY 11X99hCLUSTERED

i :19/,23X04HCODE915X sy 1HX 814Xy lHYsllXalBHHITH_FACILITYo//)

MRITE(W217) (JaX(J) s YLI) 9 ISAVIJ) sd=19N1)

517

218

FORMAT(Z21IXs3HI =9159F17e33F15e39116)
VRITE(Ws218)NsDISCR '

FORMAT (//329X932HTOTAL NUMBER OF CLUSTERED POINTS;I99/929X933HOBT

U A1AINED WITH A DISCRIMINATION OF@FS»B)

EQMODIFY DISCRfMIRATING PONER ACCORDIRG

GO TO 250

230

230

TO THE VALUE OF N.
IFIN2-N1230+2139240 .
DISCR=DISCR+DINC
GO TO 60

DISCR=DISCR~ DINC

. .60°TO 60
1250 CALL EXIT
END

UNREF

ERENCED STATENENTS

,?FEATU

'150““'”

'-"1 53- 158

RES SUPPORTED *T

—ONE
10Cs

WORD INTEGERS

CORE.

COMMON

REOUIPEMENTS FOR. g
_0 VARIABLES

| 1442 PROGRAM . 1062

END OF COMPTLATION
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_ VARIABLE DISCRIMINATIOA ALGORI#HN
hLOCATION ‘OF -THE ORIGINAL 125 FACILITIES.

TRANSPORT

~CARTESTAN COORDINATES TRANSPORT RATE  QUANTITY 70

X ] Y

tag ‘__ M T

28174 i 1e000 e i s000

932066 1,000 24000
. 134836 . 1.000 ‘ 2000
874345 1000 24000

i onow

" 10525 .
4154335

T el12 7 1e000 w1 240000 7
: 260000
C240000

Bo174 66615 5.000

O O~ O WD W N

wonoulnc

10 6.045 824979

56397 874284 . 1000 24000

FIAVELD - :
15 106700 . .  96.945 1000 24000
11f709, i

nto n

154249
15891 814267
164232  7.289

N

mouon
KR 3
= O m. 4

._lY’lQBWn

184228

kiiadiaiiniainicil

26 19.730  61.533
324007

nonou

N
~

. N
o ol

‘ - _
(€V]
(@]
e

28 21,146 78,281

33,584 684045
23 244497 7,085

254401 34,796
e85 24196

284200

38 29+390 71,763
304697 754686
314306 654012

nonon
] W
O

SR

gt g e |

.f@6’05jr M‘.H
”?D?“ng

s

' 364989 13,310
374928 - '
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386122 97961

-

ﬂ3;39)000. ﬁf
396859 .
606759

9k .343
406672 s
304872,

i oo

416993
42,646
42:890

536322
926783
The 164

Q@;m43.461ﬁ BEESTRRE.
.f44’015‘
L4e348 .

"1136996"”?"_
,F3i139h _J L
N Ba637

1o w ol

Bleb44
474356
60987

450184
464254
464631

B L RS P Ay (NN A o [

67720 0
”48’729F~4
484925

394255
54781 .
Llle619

516528 .

494418
504859

194348
61e171
Ble927

l‘—ct—ch—( H:
iwounon

346?95_
;3012Q6ﬁ
136795 5

TL000

m.tn

966220
The346
51487

556251

554964

T6e5267 7
245158
518645

434301
204236
316000.

604131
61e636

I

1

1
1

sz§a‘ggg

6526

H8g§]33;:,._;

674849

654936
674288

i nu

04068 1875799

52.394
53823

704850
71326
72,066

134376

58e270 0

104108
104442

754505
754616
76083

774804
+ 78551,

—
nunn

784845
794736

19402

90853




0Qq*e

02T1°01

9Z2#H°86
168*.6

00002
00002
000°2

©1480°96, .
0TS eEE T LT

£18°96

"000°2
000°2
000°2

000°T  999°T6

000°T - Learz

_000°T  €59°0¢€

LGE* %6
126%¢56
0LL*26

-000°2
- Qoo0cz -

Z01°8.

. 069°€9" ,s;».._g_'[ 1926 0 0 :

_gnL90ng_g 'ﬁ28?06?h253?_91133

£€06°16

000°¢2
000°2
0002

000 T T 95076

000°1 ‘ 89.L°G/
000°1 oLt

856°68 s

omnouiu

- .000*2 .
so00°Z
00042

TTO000%L. 0 L1ETHY.
F000°T
0000 Tin . E S ogTrEE.

“gzgegH

052°88 21t

e GZETLE
R
ZRESGY

000°2
000°2
000°7

0001 1697 0¢
000°T 98%° 49
000°1 L52* 64

CIRTAR 1
712°¢8
70€*28

000 4 Z PR
S 000%Z Ll

0001

T L08 g
000°T. o 0BYt9L

e TLo%egs o
 f16€°f9fﬂ:.'
29608

000°¢

To00vT Ll

The

17208
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_VARIABLE DISCRIMINATION ALGORITHM

'CLUSTERING OF 125 FACILITIES»“JU'wﬁ”*
o INTOL 50 4 OR 7o 39 |

DESIRED CLUSTERING HAS BEEN REACHED

a;CLUSTERED

CARTESIAN COORDINATES .
= CWITH FACILITY

280174

wiw o onfn

10 6ol i 82¢979. -
11 ‘ . Te374 93.216
' 560749

600205

wn onow
-
N
5:0[00 ~ ~ioh u
; [ ] i
° o
—
@

13 162
130912

684586
784228

wonou
N
o
for
) ~
°
O
—
Ful

48e435
224485 514049
230155 _ 340308

264589 354362
274813 294532
28,200 99444t

324488 ‘
334522 904409
350837 534606
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364428 74129
36098Q R 13°310 -
370928 590878
L e g 12D 9T 96 e
48 29,000 , 944343
49 394859 406672
50 40.759 300872
SN 424 646* 926783
g 341;,;;w3,ﬁ42,8901;;?;gv;;74.764 s
54 434467 132996
55 444015 - 34139
56 446348 164637
474356 -
600987 i
394255
480729 544781
486925 114619
49 L18 719348 .
04859 61.1714
1528 816927
520484 344795
53,038 304206 ,
53 817 : 136795
e T 960220 i

. 1
R Tt ST N

niw ow nbuwle wje oo oal
w
W

min onoufn

nonu

4 b 516487;
564811 166526
576471 244758
58.101 51e645

S 43 301

31000
. 844.788
644300 884995
654281 354686

; 87652

80892

324725

222 604011
180799

16 223
62067
" 586270
+ 109108 L
106442
184093
384968
o7 ) 774804 10756
784551 566747

73 376
744074

RS SRR B
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99 780845 70628
7100 U 794736 0 o 91leb51
SO e 794853 0 TLT9e402.
102 e 80e24) a0 996316 o
103 804962 ' 766480
104 B1.397 464533
105 820071 544807
' R B26304 o h9e257 T
B83a214 . i 6hLabB6
: LT 84.436 30e651.
109 854342 270120
110 _ 85744 654825
0325 . 64e317
0250 1 . 296554 .
0058 r 0 750768 0 e o
7 R R 9096 e
115 _ 90824 314067
' " 914503 84102
924115 536690
P T 306653
24857
oy 916666 "
94,810 - 556524
964087 406605
966813 424783
976891 o TTe267 o
1980426, 10e120

Cibnow o wlbew o wleowowlanon i
—
o
o

= 116

By non
A N
k N

' TOTAL NUMBER OF CLUSTERED POINTS 75
OBTAINED WITH A DISCRIMINATION OF 5,000 - .
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780845

oLl

74628

91

100
101
102

. 796736

T79e853 .

804241 .

TTTT91.551
796402
994316

100 -
103
102

103

104

105

80,962
Ble¢397
82,071

166480
466533
54807

101

106
98

12—
07
108

L B26304 -
U 8360214
B4 G336

m“{490257
L 6heti86
“ 30651

77104
111

112

109
110
111

854342
8506744
874325

27:120
656825
640317

112
111
110

112
113
14

1_880250”:'
. 89+058.
904167 -

S 296584
754768
796096 .

118

114
113

115
116
117

90.824 -

914503
92,115

314067
80102
534690

118
116
121

I8
TR 2 6 R

,.5:92077O,ﬁ&7""
2934921 00 E
544357

306653 0 s
“ %?2°8573fﬁﬂmfif‘;

3.@'115‘
WLWIJQ,Z_‘>"
120

121
122
123

96.087
964813

g4.810°

556524
404605
42,783

117
1232
122

catwow o wwe el o oale o wwpe o owiuew i owoulucn

1260

974891 T
980426 L o

Tiez6l
106120, -0

TTize T
Seol2s e

- TOTAL NUMBER

OF CLUSTERED POINTS

75

OBTAINED

WITH A DISCRIMINATION OF  5.000 -




