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PREFACE 

Many antennas are designed with the primary objective of ob

taining maximum gain in specified directions. In almost every case 

they are designed by empirical methods based on a firm and compre

hensive knowledge of theory describing similar classic antennas. 

The properties of a function of a matrix vector may be used to 

obtain solutions to systems for which the para.meters are significant 

only at discrete values of a chosen variable. The purpose of this study 

is to demonstrate that the gain of an antenna array can be considered 

as such a variable, and, having accomplished this, to demonstrate 

the technique by which a truly optimum design can be achieved. Some 

practical designs were developed in the effort and the results com

pared with known values. 

I wish to express my appreciation to those who have aided me in 

the investigation ancl preparation of this thesis. I especially wish to 

thank Dr. K. R. Cook~ Professor of Electrical Engineering, Oklahoma 

State University, for his interest and technical guidance in the subject 

of this thesis; and to Dr, D. K. Cheng, Electrical Engineering Depart

ment, Syracuse University, for his willing support in furnishing me 

with his paper introducing the subject of this thesis; and to C. E. 

Lewis, for his invaluable assistance in adapting the mathematics of 
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the solution to a computer program; and to my dad, R. T. Moore, my 

wife, Ouida, my children, Leslie, Dorothy, and Brenda, for the many 

personal sacrifices without which this thesis would not have been 

written. 
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CHAPTER I 

INT ROD UC TION 

Fundamental Relations Pertaining to Gain 

Optimization of Antenna Arrays 

In almost every case antennas are designed by empirical methods 

based on a firm and comprehensive knowledge of theory describing 

similar classic antennas in idealized conditions. It is not feasible to 

use a purely theoretical approach to optimize the configuration of an 

antenna. Unrealistic simplifying assumptions must be made to reduce 

the resulting mathematical expressions into a form for which solutions 

can be obtained. Array antennas are almost always designed symme

trically to minimize the quantity of empirical var1ations which must 

be considered. The optimum configuration required to satisfy specific 

design goals may deviate from symmetrical dimensions or symmetri

cal element excitation but usually can not be obtained within a reason

able number of measurements. 

The primary objective of many antenna designs is maximization 

of directive gain. Systems engineers have long since learned that a 

nominal increase in antenna gain significantly reduces the system 

transmitter power requirements or the system receiver sensitivity 

1 



requirements. Increasing an electromagnetic circuit margin by 

increasing antenna gain has become so attractive that extensive efforts 

and facilities have been devoted to construction of antenna arrays. 

The directive power gain, G( e, <j>), of a given antenna array is 

taken with reference to a non-dissipative isotropic radiator. Neg-

lecting heat losses in the array, the expression for gain as developed 

by Silver ( 1) is 

G( e , <j> ) = 
0 0 1 

41T 

S( e , <j> ) 
0 0 

(I) h Z,r .£1T S( 9, <j>) sin 9d9d<j> 

where 5(9, <j>) is the power radiated per unit solid angle in the direc-

tion ( 9, q>) corresponding to the spherical coordinate system shown in 

figure I. 

x 

z 

.;..~~~--'-,~~~~~~.......;•y 
I 

- -l 

Location of Point n in Spherical Coordinates 

Figure 1. 

In equation (1), 

5(9, <j>) = IE (9, <j>) 12 g (9, <j>) ( 2) 

where E (8, <j>) represents the field intensity as a function of the array 

and includes a phase factor corresponding to the space separation 

between elements in the direction of gain optimization. The function 
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g(e, tj>) represents the power pattern of the reference element of the 

. array and i.ncludes an amplitude and phase factor due to the element 

excitation. The element gain will be normalized to unity in the 

direction of optimization which is denoted as ( 9 , tj> ) • 
0 0 

Recent Related Efforts 

The problem of determining the maximum possible gain and how 

it can be achieved for a given number of discrete elements having 

finite separation has .been approached by many investigators. Recent 

efforts include an article titled "A Mathematical Theory of Antenna 

Arrays with Randomly Spaced Elements," Y. T. Lo, IEEE Trans -

3 

actions on Antennas and Propagation, .Vol. AP-12, May 1964, in which 

the gain1 degradation of a randomly spaced array was evaluated. In the 

same reference R. W. P. King and S. S. Sandler discussed broadside 

and endfire arrays and developed curves for specific curtain arrays. 

C. T. Tai wrote an article which appeared in IEEE Transactions on 

Antennas and Propagation, July, 1964 titled "The Optimum Directivity 

of Uniformly Spaced Broadside Arrays of Dipoles" in which he develo-

ped some gain curves for specific broadside arrays of N elements 

ranging from N = 3 to N = 20. The paper by Dr. Tai was limited to 

linear arrays. More recently D. K. Cheng (2) of Syracuse University 

wrote a paper titled "Gain Optimization for Arbitrary Antenna Arrays" 

which appeared in IEEE Transactions on Antennas and Propagation in 



November, 1965. Dr. Cheng's paper demonstrated for linear arrays 

that systems in which certain system parameters have significance 

only at discrete values of a chosen variable may be resolved using a 

theorem on the properties of a function of a matrix vector. 

Objective 

4 

The method introduced by Dr. Cheng is particularly interesting 

in that it can be extended to apply to planar and volumetric arrays as 

well as the linear arrays demonstrated by Dr. Cheng. This true opti

mization method is examjned in detail in this thesis with generality and 

application to planar arrays as the goal. The resulting equations have 

been adapted to a computer program to yield the optimum gain of a 

given ar:tay in a specified direction and the amplitude and phase of 

excitation required at each element to yield that gain. The program 

has been utilized to design some basic array configurations and com

pared with results obtained utilizing classical procedures to establish 

advantages typical of the method developed in this thesis. The designs 

were also compared to the linear arrays reported by Dr. Cheng to 

establish confidence in the program. 

Observations 

If the amplitude of excitation for certain elements in the array is 

relatively small some array thinning may be achieved. This application 
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is not investigated in this thesis but is considered an interesting 

aspect for future investigation. Another area that could benefit from 

further investigation is the effect and application for roots of the 

characteristic equation other than x. 1• which is considered in this 

text, should they be non-zero in a specific problem. 

Discussion of Results 

The results of this investigation demonstrate that the technique 

is a true optimization technique for determining the maximum gain in 

. a particular direction that can be achieved with a given basic element 

and a fixed array configuration. Computation of the amplitude and 

phase distribution for the array which will result in that maximum 

gain is achieved ~ithin the gain calculation and the design can readily 

be applied to practical antenna array problems. 

The computer program input requirements are minimal and, 

in most applications, already known for a specific design problem. 

I 

The classic.:-d designs for which the technique described in this thesis 

was applied demonstrated the agreem~nt of the results with known 

values. The impressive advantages of the optimization approach 

already demonstrated by Cheng for certain linear arrays should find 

direct application for planar and volumetric array designs. 

One of the designs reported in Cheng's paper was repeated in 

this thesis. The results were identical and the program was 



considered verified for arrays of isotropic elements. Arrays of 

linear elements are handled in a slightly different way within the 

program so another comparison was made. One of the arrays 

reported by Tai was investigated and the results compared well with 

those obtained by Tai for an array of half-wave dipoles. 

6 

Some hypothetical planar and volumetric arrays were computed 

and the results indicate that the optimization technique can readily be 

applied to solve real array design problems. 



CHAPTER II 

ANALYTICAL DEVELOPMENT 

Transformation to Matrix Notation 

To solve equation ( 1) by application of the theory of matrices it 

is necessary to rewrite the equation for gain. The numerator will be 

examined first. 

In equation (2) the field of the nth element of a volumetric array 

is developed by Stratton ( 3) as 

E = -j60 I 
jkR - jwt - jk ;a0 • 1; - jf3n 

F (e "')~ n 
o ' '+' R Ill O 

n 

>:<Note: The variable q, has been added to the reference element to 

accommodate elements having variation in both e and q,. 

The resultant field intensity is obtained by summing over the 

entire array. 

- j( k B . .t + f3 ) 
o n n. 

e 

R is the radius to the point of observation. 

R is the unit vector in the direction of R. 
-o 

F is the phase factor of the basic element. 
0 

I is the magnitude of the cµrreht in the nth element. 
0 

n 

7 

( 3) 

( 4) 



k = 2rr/}... where A is the wavelength. 

13 is the phase of the nth element. 
n 

r locates the nth element. 
-n 

In equation (4), 

angle between r and R . 
-n -o 

w , where w is defined as the 
n n 

( 5) 

>:<Note: Cos w = sin 9 sin 9 cos (cp - cp ) + cos 9 cos 9 . (6) 
· n o n on o n 

Since j Ba I= 1 and j...rnl is just the distance from the origin to 

element n which will be defined as d , the following terms can be 
n 

defined: 

I e -j 13n is the nth element excitation= a 
o n 

n 

where n = 1, 2, ... , N and a includes the magnitude and phase of 
n 

element (r , 9 , cp ). 
n n n 

( 7) 

D = k d , and k R • r = D cos w . 
n n -o -+n n n 

( 8) 

-j 60 F (9, cp) is the radiation field intensity of the array reference 
0 

element which, multiplied by its complex conjugate, is the power 

pattern of the array reference element which will be defined as 

g( 9, cp). 

Now, equation ( 2) becomes 
N 

S(9, cp) = g (9. cp) L 
n=l 

N 
-j D cos w L a e n n 

n 
m=l 

where ( •:•) denotes 'transpose conjugate 1 • 

·'• j D a·, e m 
m 

cos w 
m 
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N N 
s(e. <\>) = g(e. <\>) L L 

m= 1 n= 1 

.,, -j(D cos w - D cos 
a-·- e n n m 

m 

Power Patterns for Arrays 

"\][ ) 
ma .(9) 

n 

Substituting equation ( 6) for cos w and cos w demonstrates 
n m 

9 

the variation in the power pattern function for various array configura-

tions. The variation is given here for cos w only since the variation 
n 

with cos w is identical. 
m 

( 1) Volumetric Array, 

Cos w =sine sin 8 cos (cp cp) +cos 8 cos 8. (10) 
n o n on o n 

(2) Planar Array, (cp = cp = 0) 
n m 

Cos w = sin 8 sin 8 cos cp + cos 8 cos 8 . 
n o n o o n 

( 11) 

(3) 1 LinearArray,(8 =8 =0,cp =cp =O) 
n m n m 

Cos w = cos 8. (12) 
n o 

Since the element power will be normalized to unity in the 

direction of optimization 

g(8,cp)=l 
0 0 

and, from equation (9). the power pattern of 

the array is 

S{8 cp ) 
o, 0 

N N 

=2: L 
m=l n=l 

-j(D cos W - D cos w ) 
a>:::: n n m m a • 
me n 

( 13) 

All of the constants in the exponent of equation ( 13) are known 

inputs for a given array design and a can be arbitrarily defined as 
mn 

a -
-j(D cos w - D cos w ) 

n n m m. 
( 14) 

mn e 



The numerator of equation (1) can now be expressed as 

N N 
S(9,<j,) 

0 0 =I I 
m=l n=l 

a~:< a a 
m mn n· 

The denominator of equation ( 1) will now be examined. 

Applying equation (9) to the denominator of ( 1) yields 

_l f2;r 
4;r Jo 

..,, -j(D cos w - D 
a-.- n n m 
me 

cos'¥ ) 
ma 

n 

10 

( 15) 

g( e, <j,) sin 9d9d<j,. ( 16) 

Define u ::a: cos e, du = -sin 9d9. 

Therefore, in equation (16), 

sin 9 = Ji - u z 

( 1 7) 

so that the exponent of ( 16) can now be written as 

-j jv1-~2 rD sin 9 cos (<j,-<j, )-D sin L n n n m 
e 

e cos ( ¢-¢ ~ + 
m m~ 

u [n cos e -D cos e J j 
n n m m .( 18) 

In ( 18) only the multiplier of Jir----u__,,,,2 contains a function of ·4> and 

the definitions 

(19) 

and C = D cos e - D cos e 
mn n n m m 

( 20) 

may be used to simplify (16) which becomes 

g(u, q,) du dq,] an. (21) 
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Let 

- 1 f 2 rr 11 -j [J1 -u 2 f ( cp) + u C ] 
13mn = 4 rr o -1 e mn mn 

g(u, cp) du dcp. (22) 

The denominator of equation ( 1) can now be expressed as 

N N 
_41 r2rr rrrS( 8, cp) d8dcp = L La>:, 13mn an. 

rr Jo Jo mc::l n=l m 
(2 3) 

Combining equations (15) and (23) permits equation (1) to be rewritten 

as 

N N 

I I a,:, a a 
m mn n 

m=l n=l 
(24) N N 

L L 
m:;: l n= l 

Definitions of Matrix Terms 

Equation (24) can now be expressed as a product of matrices with 

the following definitions: 

The ·column vector a = ..__. 

The row vector a ,:, = fa,:< 
--+ l l 

(25) 

a ,:, a.?~] 2 • • • 1~ • (26) 
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The Hermitian NXN 

square matrix 

(27) 

>!<Note: Hermitian ~ a = a ,:, 
m n 1111t"YI • 

The Hermitian NXN square 

matrix .. '• ............. . 
~l f3 ••• 

N2 (28) 

N N 

2: 2: a*: a a =a:::::: Aa . 
m mn n ---+ ---+ 

(29) 

m=l n=l 

N N 

r IL a::!:: f3 a .,, B =a,,, 4 
m mn n ---+ • 

m=l n=l 
(30) 

a:::::: A a 
---+ ---+ 

Now, G(a ) = --. a:::::: B a 
( 31) 

~ -
Matrix Solution 

Matrix theory can be applied to equation (31) to determine the 

maximum gain that can be achieved with a given array in any specific 

direction, (e , <l> ). 
0 0 

Matrix theory will also be used to determine the 

excitation magnitude and phase required in each element of the array 

to yield that maximum gain. 

Browne (4) and Gantmacher (5) have developed matrix theory 

applicable to equation (31). The characteristic equation of G(a ) is 
~ 
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defined as 

(32) 

where \. are the roots of the characteristic equation. 
n 

If B, which appears in the denominator of (31) is positive definite, 

the following statements may be made: 

(a) The roots (\.1, \. 2 , ••. , \.N) of the characteristic equation 

are all real. 

(b) \. and \. represent the bounds of the value of G(a ) , i. e. 
1 N 

(c) 

\. > G(a ) > \. . 
1 - ~- N 

\. > G(a ) is attained whenever a satisfies 
1 - ~ -

Aa =\. 1 Ba. - ..... 

~ 

( 33) 

the equation 

( 34) 

Now, if "-i can be found to satisfy the equality of equation (33), 

the maximum possible gain for the antenna array under consideration 

would be determined. Likewise, if a can be found to satisfy equation -
(34) the current distribution for the array would be determined. 

,:<Note: Statements (a), (b), and (c) above are contingent upon B being 

positive definite. It will not be attempted here to demonstrate, in 

general, that B is positive definite. It will be considered sufficient for 

the intent of this thesis to demonstrate that B is positive for each 

specific problem investigated. If Bis not positive definite, the possi-

bility of infinite gain would be introduced which is not reasonable for 

a finite number of discrete elements. 
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B positive definite implies 

- u 2 f (cp) + u C J g(u, cp) du dcp. (~S) 
mn mn 

Determination of Maximum Gain 

The characteristic equation (32) can be expanded into its poly-

nomial form utilizing the matrix theorem 27. 1 on page 68 in Browne 

(4) for matrices where one is the identity matrix. 

Theorem: Let C be an n-square matrix with elements in F. If 

the 'sum of all m-rowed principal minor determinants 

of C is denoted by er , the characteristic function of 
m 

C is 

= er 
0 

n er (-~)n-l n-2 ( - "-) + 1 "- + er 2 ( -"-) + 

1 
• o • + er 1 ( -/\.) + er • ( 3 6) 

n- n 

n 

f( \) = ~ (-\t-mer , where er = 1, er =lei. 
m o n rr-1=0 

Applying the above theorem the characteristic equation 

(37) 

where I is the identity matrix can be expanded to 

n n-1 n-2 (-~)l + er er (-\) + er (-\) + er 2 (-\) + ••. + er 1 "-
o 1 n- n 

= o. ( 38) 

- --1 -
If C is defined as B A equation (32) can be written as 

j A - \BI = I B I (IC - \II) = 0 and the polynomial expansion of ( 32) 

would be 
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Cf = 1 and Cf , (m=l, 2, ... , n-1), is given by Browne in the 
o m 

above theorem as follows: 

Cf consists of m columns of C and. n-m columns of I chosen in 
m 

all possible ways. 

Example: Let N = 2. 

[Cl I c 12] 
I= [: :]. c = 

c21 c22 
' 

C 11 0 1 c 
12 

Cf 1 = + = C 11 + c22 

c21 1 0 c22 ' 

but, C WqS 
--1 -

defined as B A. Therefore, 

A=B c, or, 

[I «:] 
«12] 
a22 

= [~II 
1321 

~12] [ C ! I 
1322 c21 

:12] 
22 . 

all= 1311 C 1 + 13 2 C 1· 1 1 2 ( 40) 

( 41) 

( 42) 

( 43) 

Simultaneous solution of equations (40)and ( 42) yields 



a 
{312 11 

C 11 = a21 {322 and 

IBI 
equations (41) and (43) yield 

{311 al2 

The polynomial expansion of IA "Bl = O for N = 2 can now be written 

as 

{31 1 {312 

"2 -

a 11 

{321 {322 a 
21 

{312 {31 1 

+ 
{322 {321 

+ 

a 
12 

a22 

a 
22 

= 0. 

Browne's statement for writing er in connection with the· 
m " 

theorem on page 14can be elaborated on and, perhaps, clarified in 

light of the previous example. 

( 44) 

er is the sum of the determinants consisting of m columns of 
m 

A and n-m columns of B, (m=O, 1, 2, ... n), chosen in all pas sible 

combinations maintaining column correspondence between A and B, 

i.e. , the ith column of B is replaced with the ith column of A. 

16 



Example: The coefficients, er , for N=3 can be written directly from 
m 

the above statement. 

er ~ m = 0, n-m = n and the determinant consists only of n col
o 

17 

umns of Band since there is only one possible way to take the columns 

of B without violating column correspondence, 

(311 (312 (31 3 

Cf = (3 21 (322 (323 = li3I. 
0 

(3 31 (332 (333 

cr1:::::;'> m=l, n-m = 2 and the sum of the determinants is written 

as 

(1'11 (312 (313 (311 (1'12 (313 (311 (31 2 (1'13 

Cf 1 = I 

(1'21 (322 (323 + (321 (1'22 (323 + (321 (322 0!23 

(1'31 (332 (333 (3 31 (1'32 (333 (33 1 (332 a 
33 • 

Likewise, 

a 11 a (313 a 11 (312 a 13 (311 a 12 a 13 12 

Cf2 = a 21 (1'22 (323 + a 21 (322 (1'23 + (321 0!22 (1'23 

(1'31 0!32 i333 a 31 i332 0!33 1331 0!32 (1'33 
• 

and, Cf3=1AI. 

The polynomial can, therefore, be written for any number of 

terms and, in general, for N = n the coefficients are: 



(a) The coefficient of (-At,. 

(b) The coefficient of ( -A) 0
, 

QI 
2n 

•••• 0 •••••••••••• 

QI 2· . . QI 
n nn 

n-1 
(c) Thecoefficientof(-\.) , 

0- = 
1 

QI 
21 

. . . . . . . . . . . . . . . . . . . . . 
QI 
nl 

(3 3" . (3 n nn 

+ ... + 

(d) The coefficient of (-A)~- 2 

18 

( 45) 

( 46) 

+ 
..................... 

(3 3" . (3 n n 

(3 ... (3 QI 
22 2,n-1 2n 

...................... 

( 47) 



Q' 11 a 12 (31 3 (314 (315 ••• (3ln 

a 21 Q'22 (323 (324 (325 ••• (32n 

er 2 = 
.................................. 

+ 

+ 

+ ... + 

(3 n3 13 5· . . (3 n nn 

a 11 (312 a 13 (314 1315 ••. (3ln 

a 21 1322 Q'23 (324 (325· •• (32n 

................................. 
Q' 
nl (3 n2 

Q' 
n3 (3n4 (3n5" • • (3nn 

a 11 (312 (313 a 14 1315 ••• (3ln 

a 21 1322 (323 Q'24 (325 .•• (32n 

................................. 
Q' 
nl (3 n2 (3n3 

Q' 
n4 (3 n5 • • • (3nn 

f33···f3 1 n n, n-

a2n 

Q' 
nn 

19 



20 

131 1 0:'12 1313 1314 ... 131 n- 1 a 1 n , 

13 21 0:'22 13 23 
1324 ... 132,n-l a 2n 

+ 
.................................... 

13 n 1 
Cl:' 

n2 13 n3 13 n4 · · · 13 n,n-1 
Cl:' 

nn 

1311 13 1 2 1313 131,n-2 
Cl:' 

1, n-1 a In 

Cl:' 
2, n-1 a 2n 

+ ... + 

13 ... 13 2 a 
n3 n, n- n, n- 1 

Cl:' 
nn .(48) 

(e) The coefficient of (-\,n-m, 

131, m+l 131 2 . . . 131 ,m+ n 

0- = ...•..•.•.............•..•...•••..••...••.• 
m 

an2 ... anm 13 .13 ... 13 
n, m+l n, m+2 nn 

Cl:' 
1, m-1 

Cl:' 
1, m+l 131 3 .. ; 131 ,m+ n 

+ ........................................................... 

0:'2···0:' 1 n n,m-
Cl:' 

n, m+l 

13 1 1 13 . . . 13 Cl:' Cl:' • • • Cl:' Cl:' 
12 l,n-m l,n-m+l l,n-m+2 l,n-1 In 

+ ... + ··················································0•••1t•• 
13 13 ... 13 a a ••. a· a 
nl n2 n, n-m n, n-m+l n, n-m+2 n, n-1 nn 

(49) 



The elements QI and (3 are defined in equations ( 14) and ( 22). 
mn mn 

It has been shown that the characteristic polynomial can be 

written in its general form. The roots of the polynomial, '\. 1 > x.2 > 

x.3 > x.4 ~ ... ~An' represent the solution for G, the gain of the array. 

A discussion of the roots of the characteristic equation can be found 

in Guillemin (6). Guillemin. states that if the rank of the matrix A is 

r, the characteristic equation has exactly r non-zero roots. 

Theorem: If A contains at least one r- rowed minor determinant that 

does not vanish, but no non-vanishing ( r +l )-rowed minor determinant, 

A is said to be of rank r. If A = 0, the rank is said to be zero. 

The rank of A will be determined by application of the preceed-

ing theorem to ascertain the number of non-zero roots. 

Frbm the definition of equation (27) 

and, 

inserting the values of QI given in equation ( 14) the matrix can be 
mn 

written in a form for which the rank can be determined. 

Notice that for m=n, 

21 

QI = 1 
mn 

( 50) 

and the off diagonal terms are the complex transpose of each other 

since A is Hermitian. 

Laplace's method for expansion of a determinant about a column 

as developed in Browne ( 4) can be applied repeatedly to reduce the 



order of A until a sum of 2 x 2 determinants of the form 

a .. Q' • . remain for which 
11 lJ 

a 11 = a 22 - ... = Q' = = Q' •• = = a = 1 
Q' .• Q' .. 11 JJ nn 

Jl JJ 

and, 

a ... Q' • . -j(D. cos '¥ - D. cos '¥,) 
11 lJ 1 e J j 1 1 

= = 0, 
Q' •. a .. -j(D. cos '¥ - D. cos '¥ 

Jl JJ 1 i J J 1 
e 

and all 2-rowed minor determinants vanish. Since no element of A 

is zero there is at least one I -rowed minor determinant that does not 

vanish and A is of rank 1. 

Q' 
mn 

= 
e 

-j(D cos '1r - D 
n n m 

Therefore, for n = N, A= [amn], and 

cos '¥ ) 
m there exists only one non-zero 

root to equation (32) and it is A1, the upper bound of G~. 

I 
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For A of rank 1 it is necessary to determine only the coefficients 

CY O and CYl in equation (39) since 

rily be zero. 

CY ' m 
(m = 2, 3, ... , N), must necessa-

CY O and CY 1 are defined in equations ( 45) and ( 47). The solution 

is greatly simplified by omission of CY , m > 1, and equation ( 32) is 
m 

reduced to 

IBI ( 51) 

IB I (-At- l can be factored out leaving n-1 roots identically zero and 

(J' A + CY 1 = 0, or, 
0 1 

CY 
Al = 1 ( 52) 

CY 
0 



Therefore A = 
1 

+ ... + 
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( 53) 

The solution of equation ( 53) satisfies the equality of equation 

( 33) and, therefore, is the upper bound for the gain of the array in the 

direction ( 8 , cj> ). 
0 0 

A more convenient expression for equation ( 53) may be obtained 

by defin~ng two new terms. 
,~ . 

Let, 

E = -

j D l cos -w1 
e 

e 

e 

Let b denote the cofactor of (3 to facilitate writing the 
mn mn 

- --1 
inverse of B, (B ). 

( 54) 



- -1 
B 

1 

= IBI 

- -1 1 
B ~=IBI 
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( 55) 

E 2 + ..• + bNl E 

N 

f 2 + ••• + bNZ f 

N 

. . . . . . . . . . . . . . . . •. . . . . . . . . .. . . . . . . . . 

( 56) E 2 + ... + bNN E 
N 

E E':'+b 
1 1 21 E 2 E f' + . . . + bN 1 

+ b 12 f 
E':'+b EE'''+ +b EE,;, 

2 2 2 2 z' . . . NZ N 2 

+ + b E u:, + b E p;, + + b E EN,:,]. ( 57) 
. . . 1 N 1 N ZN 2 N .• • NN N 

The product E E ,:, is just a . 
m n mn 

Therefore, E . E,:, = [a J = A. 
-- mn 

( 58) 

Equation ( 57) can now be written as 
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Each line within the brackets of the above equation generates 

one of the determinants in the numerator of equation ( 53). 

Now, equation ( 53) becomes 

( 60) 

or, 

G(a ) = E ~:, 

....... - - -1 
B E -

Determination of Element Excitation 

If equation ( 60) is introduced into equation ( 34) an a may be _. 

. chosen giving the magnitude and phase of excitation required for each 

element in the array to produce the maximum gain. 

A~= >-. 1 B ~= B ~>-. 1, since >-. 1 is a scalar. 

I 

Substituting equation (58) for A and {60) for >-. 1 yields 

E • 
~ 

--1 
The equation is satisfied if a is chosen to be B E • The optimum - -
excitations in the N elements of the array are, therefore, 

--I 
a = B ._. 

which is the product shown in equation { 56). 

column vector 

a = a 
~ • 2 

a is defined as the ......... 

{ 61) 

( 62) 
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a is the magnitude and phase of excitation required in element 
n 

n to yield the maximum gain in the direction of optimization. 



CHAPTER III 

GENERAL SOLUTION FOR GAIN AND EXCITATION 

OF SPECIFIC ARRAYS 

The solution to equation ( 60), 

,:, --1 
>...1 = ~ B ~· can best be obtained utilizing a com-

pute r program. 

The program consists of a main program, a subroutine for 

determination of each f3 in the Hermitian B matrix and a subroutine 
· mn . 

for determining the inverse of B. 

Main Program 

The main program performs the operations necessary to 

determine equation {60). Equation {61) is included in the computation 

as seen by referring to equation { 56) and is printed out in the process 

of computing the maximum gain. The subroutines described in this 

chapter are called out in the main program. The flow diagram for the 

main program is shown on page 43 . A listing of the computer pro-

. gram and a set of sample problems computed with the program are 

included in the appendix. 

27 
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Beta Subroutine 

The subroutine for f3 utilizes numerical integration of a 
mn 

double finite integral by application of Simpson's l / 3 rule as des-

cribed in Salvadori and Baron (7) to solve equation (22). 

For generality g(u, cp) in equation ( 22) should remain a 

variable. Solutions have been obtained for some typical power patterns 

of elements used most frequently. 

(a) Isotropic Elements, 

g(u, cp) = 1 • 

{b} Linear Elements, 

g(u, cp) = 

g(u, cp) = 

2 m;r 
cos fy u) 

1 - u 
2 

. 2 (m;r } 
Sm . Z U 

1 - u 
2 

(m - odd). 

, (m - even). 

where m is the number of half wavelengths in each element. 

( 63) 

( 64) 

( 65} 

For more complex element designs the power pattern function 

becomes more complex, and it is apparent that a program for computing 

f3 must be written after g(u, cp} has been determined. 
mn 

The value of g(u, cp) in equations ( 64} and ( 65) can be shown by 

repeated application of !'Hospital I s rule to be zero at the limits of 

integration with respect to u. 



To accommodate computation, it is necessary to write the 

exponential of equation ( 22) in its trignometric form so that the real 

anc;l. imaginary parts may be integrated separa~ely. 

Let 

Then, 

1 
13mn = ~ J2rr J 1 

0 -1 

-j "i1 - u 2 f . ( cp) + u C J ~ mn m · 
e · g(u, cp) dudcp. 

- j 1v1 - u 2 f < c1> > + u c ] .. . 
f L1 mn . mn ( "') . = e g u, '+' • 

1 

f. Re = cos [Ji -u 2 f {cp) + u C J g(u, cj>L and 
1 mn mn 

f. Im= - sin[J1·- u 2 f (cp) +u C Jg(u, cp). 
1 . mn mn 

The term1s used in the above equation are as defined in the text. 

Page 45 is the flow diagram for the 13 subroutine. The 
. mn . 
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· functional values to be used in the double numerical integration process 

are computed in this routine. A separate set of values is computed 

for the real and imaginary parts for m either odd or even or for 

isotropic sources. The subroutine calls BINT, the double numerical 

integration subroutine shown oh page 48, A listing for the 13 
mn 

subroutine and the integration subroutine is given in appendix B. 

Inverse of B Matrix Subroutine 

The Jordan elimination method described by Fox (8) was used 

--1 
to compute B with complex elements in B. Page 49 is the flow 



diagram for the matrix inversion, called CINV, and a listing for the 

subroutine is included in appendix B. A matrix multiply routine for 

complex numbers is also included in appendix B and is used both with 

the inversion subroutine and the main program. 

Program Input 

The following program array parameters are required to 

determine the gain and element excitation for the array. The terms 

defined below are the input terms found in the listing in appendix B. 

The computer program was written in Fortran IV. 

Card A: N 

Card B 1: r 1 , 8 
1, cp 1' 

Card B 2: r 3 , 8 3' cl>3' 

Card C: Title 

r 2' 

r 4' 

Input Arrangement 

8 2' 

8 4' 

cp2 

cp 4 

r • n 
8 J cp 

n n 

Card D: MKEY, nn, m~ A, 8, cp 

Definitions 

N = number of elements in the array. 

(Namelist format) 

(6El 2. 6 format) 

(l 2A6 format) 

(Namelist format) 

30 



r. = distance from origin to ith element. 
1 

8 = 8 direction of i th element. 
i 

¢. = cp direction of ith element, 
1 

Title = A description of the problem having an allowable length of 72 

characters. 

31 

MKEY = 1 if the element lengths are odd multiples of half-wavelengths. 

= 2 if the element lengths are even multiples of half-wavelengths. 

= 3 if elements are isotropic sources, 

nn = number of spaces desired for the double numerical integration 

routine, (nn must be even). 

m = number of wavelengths in an element. 

A = wavelength, (dimension must be compatible with r.). 
1 

8 = 8 dire 1ction in which maximum gain is desired. 

<P = ¢ direction m which maximum gain is desired. 

Program Output 

The program outputs for the array designs computed in connec-

tion with this the sis are compiled in appendix C. 

The first sheet of the output for each problem is a printout of the 

input data. The second sheet of the output contains a which is com-
posed of the magnitude and phase of each element in the array. Each 

term within the parenthesis for a has a real and imaginary part. The --. 
normalized amplitudes and phases are listed below a in the same order 

-+ 



as the input data are listed so that correlation is maintained between 

a particular excitation and the specific element requiring that 

32 

excitation. The second page also contains the solution for the maximum 

gain that can be achieved with the given array at the optimization 

angle specified in the input data. 



CHAPTER IV 

SAMPLE COMPUTATIONS 

Comparison with Known Design Values 

Initially, the program was used to determine the gain of simple 

classic arrays to demonstrate the theory and computer routines. A 

single isotropic element located at the origin, a single half-wave 

dipole at the origin, two isotropic elements located symmetrically 

about the origin and separated by a half-wavelength were all tried with 

complete success. 

The linear array in figure 2 was examined by Cheng (2) and was 

evaluated in this program for comparison. The results are shown in 

appendix Con page 66. Dr. Cheng computed the maximum gain for 

the eight isotropic element end fire array spaced O. 425 A apart to be 

22. The results of this program show the gain to be 22. 1. The gain 

for the same array with equal amplitude and phase element excitation 

is 12. 5. 

To demonstrate the application to arrays of linear elements a 

design examined by Tai (9) was investigated. The array of four col

linear half-wave dipoles spaced O. 8 wavelengths apart, shown in 

figure 3, was found by Tai to have a maximum gain of 6. 4. The same 

33 
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x 

e = oo 
0 

cj>o = 0 0 

1 2 3 4 5 6 

Element Spacing = O. 425 A 

Eight Equally Spaced Linear Isotropic Elements 

Figure 2. 

x 

e = 90 ° 
0 

cj> 0 
= oo 

4 3 1 2 

7 

---.11•~z 

y 

Element Spacing = O. 8A 

Four Equally Spaced Half- Wavelength Dipoles 

Figure 3. 
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design using the technique of this thesis yielded a maximum gain of 6. 5 

as shown on page 68 in appendix C. 

The question of computational errors in the numerical approach 

utilized in the program is of considerable interest. As in any inte-

gration process, the more nearly a function is evaluated at every 

point on a curve the more accurate will be the answer. In the eval-

uation of f3 by Simpson's 1 / 3 rule the number of computations and, 
mn 

consequently, the accuracy is increased by increasing the input nn. 

The error in the technique for single integration is reported by Salva-

dori and Baron (7) to be on the order of (H4). The effect of double 

integration on that figure could probably be determined in much the 

same way and should be determined for specific applications where the 

error con'trol in the result warrants the computation. 

Increasing nn significantly increases the computer time required 

for the routine as the accuracy is increased. It is necessary, there-

fore, to estimate a reasonable value for nn for which the computation 

I 

time is acceptable and the error can be considered negligible. 

Planar and Volumetric Arrays 

Several planar arrays have been optimized utilizing the technique 

developed in this thesis. The data are included in appendix C. The 

arrays reported include the three isotropic element array shown in 

figure 4, the six element planar array shown in figure 5, and a planar 



array of , linear. dipoles. 

A volumetric array directive gain optimization was demonstra

ted for the configuration shown in figure 6. The isotropic elements 

are located at the corners of a cube. The results are shown in 

appendix C on page 78. 
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cp 
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0 
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0 

Element Spacing r = A / 4 
n 

Three Planar Isotropic Elements 

Figure 4. 

z 

1 2 3 8 = 45 • • 0 

'Po = 45 
A 2 

4 5 6 • • 

Six Isotropic Element Planar Array 

Figure 5. 

z 

3 
4 

A/2 
y 

x 

Element Spacing = A/ 2 

Eight Isotropic Element Cubic Array 

Figure 6. 
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CHAPTER V 

CONCLUSIONS 

The advantages of the ability to maximize the directive gain of 

an antenna array are obvious. Random design is too often unrewarding 

and empirical design is expensive and time consuming and often results 

in much less than optimum gain. With a true optimization technique a 

specific array configuration can be examined and immediately the 

decision can be made as to whether the design must be changed to meet 

system requirements. 

The maximum gain in any particular direction for a specific 
I 

array,· and the element excitation required to produce that gain are 

readily determined by the technique described in this thesis. Arrays 

up to twenty elements can be optimized for basic elements fbr which 

the power pattern can be described as linear elements or isotropic 

elements with no changes in the program. More complex basic 

elements require a program modification. This limitation is not 

considered serious, since the large majority of arrays are composed 

of elements which approach those described. 

The theory has been kept as general as possible and linear, 

planar, and volumetric arrays can be designed with equivalent facility. 

38 
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The selection of the origin of the coordinate system is completely arbi

trary as is the direction of optimization. 

The sample computations checked quite satisfactorily with known 

values reflecting sufficient accuracy in the program. No negative or 

infinite gains were computed which indicates that for the arrays 

examined the Hermitian B matrix is positive definite. 

The gain and current distribution obtained for a particular array 

in a specified direction gives no indication what effect that excitation 

would have on the gain in any other direction, nor is there any sugges

tion for altering various parameters of the array configuration if the 

gain is inadequate or excessive. Both of these additional design guides 

would be extremely useful for gain optimization, but their absence does 

not reflect upon the usefulness of the optimization technique described 

in this thesis. It merely indicates that this useful tool leaves, in 

some cases, certain other design problems to be solved in other ways. 

The objectives of the investigation have been achieved and a use

ful gain optimization technique provided which should greatly enhance 

the solution of many array problems. 
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The flow diagrams for the various routines used in the compu

tation of the maximum gain arid the required element excitation are 

included in this appendix. 

Note: All underscored symbols represent complex numbers. 



READ: N 

READ: r... e~ A, n= l N J J l.11.-. J J 

READ: 1\TLE 

H = 2./nn . 

* -E §.L :::: e -

- - ---, 

- - --, 
CALL: BETAI 
INPUT: MKEY, kk,H K ~ 7T J ) ) J 

rri, ej, ei., ¢.J·, a>i., r:i, '7. 
OUTPUT: .~tj 

I 
______ _j 

\Ni:1.ITE: ~j i j:::l,N, i.~l,N 

MAIN PROGRAM 

43 



CALL: CINV 
IN PUT: 8, N 
OUTPUT: _a-', KKK 

Vv'R1l'~'. ''THE MATRIX 

6. 15 SINGULAR'.' 

CALL: CXMX fV'\ L 
INPUT: _a) B-\N,N)N 
OUT PUT: 8 B-1 

VVRITE.: M-·~..i ,j=-1,N) i..-=\,N 

CALL: CXMXML 
IN Pur: s-1)§..J N, N, \ 
OUTPUT: A 

'VVRITE.: Ai.,1 , i.-=l,N 

CALL: CXMXM L 

INPUT: e•J A, I; N, \ 
OUT PuT: G 

!END I 
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SUBROUTINE: BE. TAI 
INPUT: MKE.Y,nf'\,HJK,>.,~rn, 

e,_, I e..., J <Pvi J (}),,.,, ) tn J •...., 

OUTPUT:§. 

M PI2- = m "11'. 2 

c = D"' cos e..., - .D..., (..ose....., 

P:::.D""sil""te"' 

r~ -
I + (¢)· := Pc.os(cf>-4>.-i)-Qc..os(<:P-d>~ 
I L 

= (/)+K 
I 

L 

G,OTO (12) 13J 11) M KE:Y 

BETA COMPUTATION 
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(), _sin 1 MPI2.)Ll} 
' "'L - 1 - u:a. 

(CA).= C.0.51-[(M PT2) LJ] 
9 t. I -U'-

U:::.U+H U=-u+H 

u:: _, 

r-----

L_ 

L---



r- - - -
I 
I 
I 
I ,--

r-~~~--L~~~~~ .......... 

: +i.,j = Cos[+(u\>j][3<.u\] 
I 
L ____ _ 

I 
I 

CALL: BINT 
IN PUT: -fJ nn, 1-i, K 
OUTPUT: RB 

r- - --- - -

fi., 1 = -sin~(u\, i] [ ~ (u)i. J 
L ____ _ 

CALL: BI NT 
INPUT: .f., """', 1-4, K 
oui- PUT: IM B 

..6. =(1/72.o)(R B + j r MB) 

RETURN 

END 
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r--
1 

I 

I 

. I 

I 
L ___ .J..__ 

SUB ROUT I NE: BJ: NT 
INPUT: f, '"'""; H, k 
OUTPLJT: SUM 

n=nn-2.. 

SUM= HK X 
'1 

RETURN 

END 

BETA INTEGRATION 

48 



SU BRO UT IN!;_; C. IN v 
INPUT". A,n · 
OUT PUT: A-I )l Jl .L 

-> 

I 
I 
L 

RE"TURN 

MATRIX 

INVERSION 

bi · .::: 0 _,_J 

49 

- - -1 
~___.,--__, I 

I 
I 

___ J 

- -, 
I 
I 



1. > I"\ 

b -b -tL, 
.i. "" ..,- :A. "' "' IOi J ... .., 

___::;,,.i___ _,_ - -· -

- ., 
I 

50 

r -- - -

I 

61 "-= b,2,..A.. -t bi .L I 
---=..i.:::: -- - ~ I I 

r~ ,V 
___ _J 

I 
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The listings for the various routines used in the computation of 

the maximum gain and the required element excitation are included 

in, this appendix. 

Note: All underscored symbols represent complex numbers. 



MAIN PROGRAM 

$ltlFTC SETUP 
Rl:AL K,M 

1001 
1002 
100 3 
1004 
1005 

1006 
100 7 
1008 
100.;; 
1010 
1011 
1012 
1013 

1014 
1015 
1016 
1017 
1018 

13 

6 .3 

CUM Pl EX E, I: P ( 2 0, 2 0 h E P S ( 2 lJ, 2 0) , H ( 2 0 , 2 u) , IH NV ( 2 0 , 2 0) , B l:H NV ( 2:) , 2 0 ) , A 
l( 20,20),(;( l, l) 

DIMENSION K( 20), TH( 20) ,PH(20) ,11EAD ( 12) 
DIMtNSION AA(20),AAT(20) 
NAM EL I ST IN AM l / N IN AM 2 /MK t Y , N N , M , XL A M , JH I: TA , PH I 
FORMAT( 6EU.6) 
flJl{MAT( 12A6) 
FOKMAT( lHl//////12>46) 
FOkMAf( //39X,9hEPSIU.lhl (, lj,311,l)) 
f ORMA T( I ( 12 X, l H ( , lP f 11. 4, lH, , t l l. 4, l H) , 2 X, l H ( , E 11. 4 , l H, , El l • ~, l H) , 

12X, lH(, Ell.4, lH, ,tll.4, lH))) 
FUKMAT( //3oX, l6HEPSILUN STAK ( 1,, 13,lH)) 
FURMAT(//41X,3HO (,13,lH,,13,lHII 
fOR.MAf(//J4X,25HTHI: MATKlX ti IS SlNliULAk.) 
FUKMAT( // 36X, l lt-18 lNVEt{ St (, l j, 111, ,I 3, 111)) 
FORMAT(//33X,16Hti dY 8 l i-..Vt:KSE (,IJ,lH,,13,lrll) 
FOKMAT(//41X,3HA (,13,3H,1)) 
FORMAT(//40X,5HG = (,lPtll.4,lH,,tll.4,111)) 
F ukMAT ( I/ 3oX, lHN, 4)(, ~HM Kl: Y, 4X, 2H 1'4N, b X, l HM, 7 X, 6H LAMBDA/ j 4 X, 13, 4X, 1-2 

l, :>X , I 3, 3X , f 6. 1 , 2 X , l Pt l 1 • 4 ) 
FORMAT(//44X,5HTHEfA,llX,3HPHl/4lX,1PEll.4,5X,Ell.4) 
F O KM AT ( / / 5 0 X, 8 H fl EM I: \I T S / / 3 7 X, 1 HK , 14 X , 5 H T rl E TA , 1 1 X ,3 H PH I I 
FUKMAT( 28X, lP3Elo.4) 
FOKMAT(//46X, l 711NORMALlll:O VALUES//42X,9HAMPLI TUUE:,9X,5HPHASE) 
FUKMAT( 36X, lP 2El6.4) 
P 1=3.1415927 
R E::AIJ( 5, NAM l) 
1 F ( N • E Q • 0 ) GO TO 6 3 
f{ EA D( 5, l O O 1 )( H. ( l )y TH( I ) , PH ( l ) , I = l , N) 
READ(S, 1002) HEAD 
KEAD( 5,NAM2) 

U1 
v.) 



. WRlff(b,1003) HEAU 
WKITEl6, 1013) N,MKEY,NN,M,XLAM 
WRITElb,1014) THETA~PHl 
WiHTl:(6, 1015) 
w R I H: ( 6, l ll lb )( R { I ) , HH I ) , PH ( I ) , I =l , N) 
H=2.0/FLOAT(NN) 
K=360.0/FLOAT(NN) 
C=2.0*P 1/XL AM 
00 10 I=l,N 
EE=C*K1IJ*(SlNU(THElAt*SlNJ(TH(l))*CUSDIPHI-P~(l))+COSO(ThEfA)*COS 

lD( TH( l) ) ) 

t=EE*l O.O, 1.0). 
E: P ( I, l) = C EXP ( E ) 

10 EPS { l., l )=C.tXP ( -E) 
WRITE(6, 10031 HE:AD 
WRIJE:(6,1004) N . 
WRITE(t>, 1005.HEP( 1, l>,1=1,1") 
WRITE(6, 1006) N 
wRITEl6, lOOS)(EPS( 1,1),I=l,N) 
KK=NN+l 
00 11., I= 1, N 
00 11 J ·= 1, 'J 

11 CALL l:H: TA [( MK E Y, K K, H, K ~ XL AM, P I , M, TH ( J ) , TH ( I ) , PH ( J) , PH l I ) , R l J) , R ( I ) 
1,Bll,J)) 

WR IT El 6, 1003) HEAD 
VII RITE ( 6, l 001) N, N 
DO 14 l=l,N 

14 WRiTE(6, 1005)(8( 1,J ),J=l,N) 
CALL C1NV(tl,N,61NV,KKK) 
lf(KKK.EQ.O) GO TO 12 
WRITE( 6, 1008) 

1.11 
~ 



GU TO 13 
12 WKITE(6, 1003} HEAD 

WR IT EC 6, l 00 9) N, N 
DO 15 I= 1, N 

lj Wj{ITE(6, l005HBINV( 1,J),J=l,N) 
WRITH6, 1003) HEAD 
CALL CXMXML(B,BlNV,BdlNV,N,N,N) 
wiUTE( 6, 1010) N,N 
00 · 16 1=1,N 

16 WRITE(6,l005)(ddINV(l,J},J=l,N) 
CALL CXMXMLtdlNV,E?,A,N,N,l) 
WKITE(6,l003) HEAD 
WRITEt6, 1011) N 
WKITE(6, lOOS){A( I, l>, 1=1,N) 
DU 81 I= 1, N 

81 AA(I)=CABS{All,ll) 
X SA=AA( l) 
NKK.=l 
DO 82 I =2, N 
IF( AA{ I ).GE .XSA} GU Tl) 82 
X SA=AA( I) 
NKK=I 

82 CuNTINUE 
OU 8j I= 1, N 

01 
01 



83 AA( I )=AA( U/XSA 
DU 84 I=l,N 
YY=A IMAG( A( I, U l 
XX=Rt:AL ( A( 1, 1)) 

8 4 A AT ( 1 ) = A f AN 2 ( Y Y , XX } * 18 0. 0 /P I 
AATX=AATI NKK J 
UO 85 I= l, N 

85 AAT( 1>=AAT( lJ-AATX 
WRITE( o, 1017) 
w K ITU 6, l O l i:i H AA l I ) , A A ft I ) , I = l , N) 
CALL CXMXMLlEPS,A,G,1,N,l) 
WRITE(b, 1012) G 
GU TO 13 
END 

I.Tl 

"' 



BETA SUBROUTINE 

$ldt-TC BETAIX 
SUBKOUTll~E BETAl(MKEY,NN,H,K,XLA,"1,PI ,;vt,THN,THM,PHN,PHM,Ri\i,RM,13ETA) 
u l M f:N S hlN F ( j l, 51 ) , f-P H ( 51 ) , FU ( ~ l t. 51) , GU ( 5 l) 
KEAL K,M,MP 12, lMH 
CuMPLE:X tH:TA,CNl,C'1<'.'.,CN3 

1000 FUkMAT( lP7t:l5.4) 
MP12=M*PI/2.0 
DN=Z.O*PI*~N/XLAM 
DM=2.0*Pl*KM/XLAM 
C=01\J*CUSQ( THN J-DM*CU5Ul HlM) 
P= Di\i*S IND( T Hi\l) 
W=DM*S IND( THM) 
P H=O. 0 
LJU 10 I=l,1\JN 
Ft>H( I )=P*CLl SO( Ph-Phf\J )-W*CUSLJ ( Pt1-P~1M) 

lu PH=PH+K 
GU ( l)=O .o 
GU(h1N)=v.o 
L =i\JN-1 
GU TO ( 12, 13, 11), MK E Y 

13 u=-1.0+11 
LJO l~ 1=2,L 
GU ( I ) = S l 1\J ( M P l 2 *U ) * * 2 I ( l • 0- U* * 2 ) 

15 U=U+H 
GU TO 20 

12 U=-1.0+-H 
LJO 14 I= 2, L 
GU( 1)=CUS{MPI2*U)**2/I l.O-U**2) 

14 U=U+H 
GU TO 20 

11 DO 16 l=l,NN 
16 GU ( I ) = 1 • 0 
20 U=-l.O 

u, 
....J 



OU 17 1=1,NN 
XX= l.0-0**2 
lf(XX..l T .r.OE-u7) XX=O.O 
DO 18 J = l, NN 

18 f-U( 1,J)=ft>H(J)*SJRT(XX)+U*C 
17 · l.J=U+H 

UU 2 l J = 1, N N 
DU 21 I=l,;~N 

21 F ( I, J ) = GU ( I ) * CLl S ( FU ( l , J )) 
CALL lilNT(f,~N,H,K,k8) 
OU 19 J=l,NN 
lJU 19 I= 1, .~ N 

19 F( I,J )=-GU{ l)*SIN(fU( I,J)) 
CALL HlNT(F,NN,H,K,lMd) 
Kb=RB/ 720.0 
IMti= IMB/ 720 .O 
bET A=RB 
CNl=(O.O, l.U) 

· Ci\i2= IMt3 
CN3=CN l*CN 2 
B t: T A= B c: T A +C N 3 
RETURN 
END 

1.11 
00 



INTEGRATION SUBROUTINE 

$ lBFT C B lNTX 
SUBROUTINE 8INT(f,NN,H,K,SUM) 
DIMENSION f(51,51) 
REAL K 
N=NN-2 
X=O.O 
00 10 J=1,·,,i, 2 
lJO 10 l=l,N,2 

10 X = X + F ( I , J hf ( I t- 2, J ) +F ( l , J + 2) + F ( l + 2 , J + ll + 4. 0 * ( F ( l + l , J + 2 ) + f ( I +-1 , J ) + F 
l ( I, J + l ) +F ( I + 2, J + l) l + l -6. O* F ( I + 1 , J + l) 

SUM=l-t*K*X/9.0 
RETURN 
END 

1.11 
sD 



MA TRIX INVERSION SUBROUTINE 

$ IBFT C INV 
SUBROUTINE CINV(A,N,AINV,KKK) 
COM PL E:: X At 2 0, 2 0 ) , A l NV ( 2 0 , 2 0 ) , S l 4 0 ) , B (2 0 ,4 0) , T 

lOOO FURMAT(bEl5.4) 
MM=2*N 
KKK=O 
OU 23 l = l, 'i 
DO 23 J = l, f'\I 

23 B(l,J)=All,J) 
K=N+l 
DU 24 l = 1, N 
DO 24 J=K, MM 

24 B(I,J)=(O.O,O.O) 
DO 25 l= 1, N 
K= l+N 

25 B(l,K)=(l.O,U.O) 
OU 33 I= 1, N 
J=I 
IFtCABS(Bll,.J».GT.l.OE-08) GO T026 
L=I+l 
DO 12 K=L, N 
IF(CABS(B(L,J)J.GT.l.OE-08) GO TU27 

12 CONTINUE 
KKK-= l 
RETURN 

27 DO 13 M=l,MM 
13 S(M)=B(K,M) 

DU 14 M= 1, MM 
14 B(K,MJ=B( 1,M) 

00 16 M=l,MM 
16 Bl I,M)·=S(M) 
26 T =B( I, J) 

(7', 
0 



DU 17 K=l,MM 
17 l:Hl,K)=B(l,K)/T 

L=l+l 
IF(L.GT.N) GO TJ .H 
DO 10 K=L, N 
T=l:HK,J) 
DO 10 im= 1, MM 

10 B(K,NN)=BCK,NN)-T*bll,NN) 
33 CONTINUE 

lf(N.l:Q.l) GO TO 50 
DO bJ 1=2,N 
J=I 
L=l-1 

29 T=Btl,J) 
DO 21 K=J ,i'1M 

21 B(L,K)=tHL,K)-T*tHI,K) 
If( L .H.l. U GO TO 20 
L=L-1 
Gu TO 29 

20 CONTINUE 
50 DO 30 l=l,N 

DU 30 J = l, N 
NN=J +N 

30 AINV( 1,J l=B( I,NN) 
RETURN 
ENO 

"' ...... 



COMPLEX MULTIPLICATION SUBROUTINE 

$ lBFT C MULL LL 
SUBROUTINE CXMXML(A,B,C,M,N,L) 
COMPLEX Al20,20),B(20,l0),C(20,20) 

1001 FORMAT( lP6El5.4} 
DO l J= 1, L 
DU l l = l, M 

l Cl I,J )=( O.O, O. 0) 
wRITE(o,lOOl) C(l,l) 
DO 2 J= 1, L 
DO 2. l=l,M 
DO 2 K= 1, N 
WtUTEf6,lOOU C(l,U 

2 Ct 1,J)=C( 1,J1+Al I,K)*tHK,J) 
WRIT El 6, 1001) C{ l, l) 
Rl:TURN 
ENO 

O' 
N 
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64 

The program inputs and program outputs are printed in this 

appendix for various array configurations. The amplitude and phase 

distribution for the array is printed under A(N, 1) and normalized 

under the heading "NORMALIZED VALUES." The amplitude and 

phase order corresponds with the element order printed on the input 

page. The gain is printed below the distribution. It should be 

realized that the gain is a .real number, and the imaginary part which 

is quite small compared to the real part is to be neglected. 



8 LINEAR ISOTROPIC ELEMENTS 

N 
8 

MKEY 
3 

NN 
24 

M 

•••••• 
LAMBDA 

3.0000E 00 

THETA 
O.OOOOE-39 

PHI 
O.OOOOE-39 

R 
O.OOOOE-39 
1. 2750E 00 
2.5500F 00 
3~ 8250E 00 
5 .10 OOE 00' 
6.3750E 00 
7. 6500E 00 
B.9250E 00 

ELE~ENTS 

THETA 
O.OOOOE-39 
O. OOOOE-39 
O. OOOOE-39 
O.OOOOE-39 
O.OOOOE-39 
O.OOOOE-39 
O.OOOOE-39 
o.ooooE-39 

PHI 
O.OOOOE-39 
O.OOOOE-39 
O.OOOOE-39 
O.OOOOE-39 
o.ooooE-39 
O.OOOOE-39 
o.ooooF-39 
O.O'.lOOE-39 

"' U1 

" 



8 LINEAR ISOTROPIC ELEMENTS 

( l.0841E 00,-2.3102E 00) 
{ 6.2834E-02, 4.3091E 00) 
(-l.3686E 00,-3.0694E 00) 

A ( 8, l) 

(-8.7159E-Ol, 3.2457E 00) 
(-6.1203E-Ol,-4.2659E 00) 
( 1.4322E 00, ?.11?2E 00) 

( 4.6493E-Ol,-3.9497E 001 
f l.077lf 00, 3.8283E 00) 
( 

NORMALIZED VALUES 

AMPLITUDE 
1.ooooe oo 
l.3169E 00 
l.5584E 00 
l.6887E 00 
1. 6887E 00 
1.·5584E 00 
1. 3l 69E 00 · 
1.ooooe oo 

PHASE 
. -0. OOOOE-39 

l.698CJE 02 
-l.8425E 01 

1.54031: 02 
-3.3303E 01 

l.3915E 02 
-4.9170E 01 

l.2072E 02 

G = I 2.2098E Ol,-l.1921E-01) 

O' 
O' 



BROADSIDE ARKAY OF LINEAR DI POLES 

N MKt: Y NN M LAM tWA 
4 1 24 l.J LJJJOE 00 

THl::TA PHI 
-J. OOOOE 01 O.OJJJE-1J 

K 
1. 2000E 00 
3. 6000E 00 
1. zoom: oo 
j. 6uoo1::: oo 

1:LEMENTS 

THETA 
O.OOOOE-39 
O. 0000 E-:B 
l.dOOOE QZ 
l.clOOOE 02 

PHI 
J.ODOOE-3'1 
J.DJOOE-39 
O.OJOOE-39 
O.OOOOE-39 

0-
-J 



BROADSIDE ARKA Y OF • LINEAR DI POLES 

l,. 6 3 8 3 E O O , b. ':Ji 6 7 E - 0 ti l 
l.6143E 00, l.2513E-08) 

A t 4,1) 

l.6143E 00, 2.llb3E-J7l ( l.6383E 00,-9.9019E-09) 

~UKMALIZED VALUF.S 

A:"1PLI TUDt 
1. Ol 48E 00 
1.oooot:- oo 
1. Ol48E 00 
l.OOOOf 00 

l'hAS E 
-4.3927E-)6 

O.OOOJE-3~ 
-1. tf5 75 E=-06 
-7.0~71E-06 

G = ( 6.505ZE 00,-2.5535E-15) 

-··--···-----. __ ._, ___ .. ___ .. ····--·---· ,, ______ . ··-----··· ·-· ------- --~ 

0'-
00 



10 ELEMENT BROADSIDE AKRAY 

N 
10 

MKE Y 
l 

THETA 

NN 
24 

M 
1.0 

LAM BO!\ 
3.JJJOE 00 

9. OOOOE 01 
PHI 

O.OOJJE-3~ 

R 
l. 2750E 00 
3. 82 5JE 00 
6. 3 750E 00 
ti. f..jl_ :>OE 00 
1.1475E 01 
1. 2750E 00 
3. 8250E 00 . 
6. 3 7':>0E 00 
8. 92 SOE 00 
1. 14 7':>E 01 

E Lt: ME NT S 

THE: TA 
O. OOUOE-39 
O.OOOOf-39 
O.OOOOE-39 
o.uOOOE-39 
O. OOOOE-39 
l.8000E: 02 

· 1~ 8000E 02 
l.dOOOE 02 
l.8000E 02 
l.8000E 02 

PHI 
o. o·ooo F-39 
U. 0000 E-39 
O.OOOQE-,-39 
O.OOOOE-39 
J.OJOOE.;..39 
O.OOOOE-39 
o.ooooE-:39· 
J.JJOOE-39 
0 • 0 :JOO E- 3 9 
O.OOOOE-39 

.. ----- -· ...... ·- ·---- ·····----- ..... -·•J•·---·---

O' 

'° 



----·- ...... ---------·----·---·--··-----------·-----·--------.-----------·-·-----------·· ...••. -----------------···-----···-------·-·----- ---· ----- ------·---------·--------· 

·10-ELEMENT BROADSIDE ARRAY 

------------· ----- •h·-·-·-.·- -·-.---····-~- ~ -----·--- ------~-----···--·-··--·····----- -----·------·----------- ···----·------- - - . ·--------·· ---------- -------------· 

A -C 10,l) 

( l.6764E 00, 6.2755E-08) ( l.6827E 00, 3.L312E-07) ( 2.5454E 00, 9.0557E-07) 
t z. 6l 76t ou;· r~ 2r29e...; 06) ( 2. 522IE o'o, 1. 3030E..;;;OS J ( ·1.676~ E 00, 8 .0613E.;;;. IOJ 
( l.6827E 00,-7.7035E-081 C 2.5454E oo,.:...i.45b8E-l:,t ( 2.6176E 00,-2.7034E-07) 

----.,._:_·--·- ·'-···1--·7;·-sz21r-···ou,...; z~--9728E-011 I - . . 
" 

NORMALIZED VALUES 

AMPLITUD~ PHASE 
·· - ------------ ·T;-mmoF·-u~----u. ::rn:rF-3T ____________ . -·-·-----. ------·-------

1. oo 11E 00 8.,172E-Ob 
l.5184E 00 l.8239E-05 
l.5615E 00 2.4405E-05 
l.5045E 00 2.7457E-05 
l.OOOOE 00 -2.ll73E-06 

-----r~--uo37F·ou--·-·:···-:;;;;4·;-~c-=-rH,--------- ·----- ------·-----------------
1. s 1 s4E 00 -5.424lE-Ob 
l.56l5E-OO ~a.D623E...;06. 
l.5045E 00 -8.8~83E-Ob 

---------------------- ___ ... --------- -----------·--------------,;- =--- r·· r.-z-oaa"E-:or ,-er. ou:nrE-n-1-----------------· 

------------ -------------------- -···---- ---------··-· ---- ·-- -··------- ------- ---·--·-·-··-- - ··-·--------- - -- ----·-- ------- ······---- ---------- ...J .. ·-------
0 

--------·--·-·····--------- ·-----------



3 ELEMENT PLANAR ARRAY 

N 
3 

MKEY 
3 

THETA 

NN 
24 

M 
1.0 

LAMBDA 
3.0000E 00 

9. OOOOE 01 
PHI 

9.0000E 01 

R 
7.5000E-Ol 
1. 5000E-Ol 
1. 5000E,-01 

ELEMENTS 

THETA 
O.OOOOE-39 
9.0000E 01 
1. 8000E 02 

PHI 
O.OOOOE-39 
1.8000E 02 
o.ooooE-39 

-J .... 



3 ELEMENT PLANAR ARRAY 

A C 3, 1) 

8.6334E-Ol,-~9181E-08t ( 3.8152E-Ol, l.0977E-08) I 8.6334E-Ol, l.7134E-08) 

, 
NORMALIZED VALUES 

AMPLITUDE 
2.2629E 00 
t .OOOOE 00 
2.2629E 00 

PHASE 
-2.9215E-06 

O.OOOOE-39 
-5.lllt2E-07 

G = ( 2.l082E 00, 8.88l8F.-16) 

-.J 
N 



_ ?_}l ~ t>~_~NA",_ A~9'A!_ 

N 
6 

MKEY 
3 

NN 
- 21t 

1111 LAMBDA 
1.0 3.0000E 00 

THETA P-HI 
'~.r;oooe 01 4. 5000E 01 

~ 

l.6771E 00 
1. 5000E-Ol 
l.6771E 00 
l.6771E 00 
1. 5000E-Ol 
i. 6771E 00 

ELEMENTS 

THETA 
6.3420E 01 
O.OOOOE-39 
6. 31t20E 01 
l.1658E OZ 
1.eoooe 02 
l. l658E 02 

•.. !..- ........ . 

PHI 
O.OOOOE-39 
O.OOOOE-39 
t.8000E 02 
O.OOOOE-39 
O.OOOOE-39 
l.8000E 02 

-.J 
vJ 

• _.. ____ .-, ••• --~-'---'"••""_.;... ______ ,n _________ ., ---·• •-·---·~.·--•··•·--··-··---···--•" - - -----"-·--~--·••·•··•· •- • ~--- "·- • ·----~-····-- •-•·----- • '•--·----·-·-• • ---·-···--



2 X ~ PLANAR ARRAY 

A ( 6,U 

{-7.2151E-Ol, 2.5108E-Ol) ( 4.8574E-Ol, l.OOOlE 00) ( 9.l397E-Ol,-7.3045E-Ol) 
( 9.1397E-Ol, 7.3045E-Ol) ( 4.8574E-Ol,-l.0001E 00) (-7.2151E-Ol,-2.5108E-01J 

NORMALIZED VALUES 

AMPLITUDE 
1.0000E 00 
t.4553E 00 
l.5315E 00 
l.5315E 00 
l.4553E 00 
1. OOOOE 00 

PHASE 
O.OOOOE-39 

-9.6718E 01 
-l.9944E 02 
-l.2218E 02 
-2.2491E 02 
-3.2163E 02 

G = ( 6.0257E 00,-4.4703E-08) 

-.J 
.i:,.. 



2 X 3 PLANAR ARRAY 

N 
6 

MKEY 
3 

THETA 

NN -
24 

M 
1.0 

LAM BIJA 
3.00()0E 00 

q. OOOOE 01 
PHI 

9.0000F Ol 

R 
l. 6771E 00 
7.5000E-Ol 
l.6771E 00 
l.677lE 00 
7.5000E-Ol 
l.6771E 00 

ELEMENTS 

THETA 
6.3420E 01 
O.OOOOE-39 
6. 3420E 01 
l.l658E 02 
l.AOOOE 02 
l.1658F IJ2 

PHI 
O.OOOOE-3() 
O.OOOOf-l9 
l.A()OOE 02 
0.0100E-39 
O.OOOOE-19 
l.8000E 02 

-J 
l11 



2 X 3 PLANAR ARRAY 

A ( 6,1) 

( l.2152E 00, 3.5801E-08) ( l.526gE 00, 3.0607E-Oq) ( l.2152E 00, 4.6050E-08) 
{ l.2152E 00, 4.l939E-08) ( l.5269E 00, 6.5602E-08) t l.2152E 00, 6.1516E-08) 

NORMALIZED VA(UES 

AMPLITUDE 
l.OOOOE 00 
l.2565E 00 
l.OOOOE 00 
l.OOOOE 00 
l. 2565E 00 
1. OOOOE 00 

PHASE 
O.OOOOE-39 

-l.5731E-06 
4.8 324E-07 
2.8942E-07 
7.7375f-07 
l.3067F-06 

G = { 7.9l4AE 'lO, 4.8850E--15) 

-.J 
O's 



8 ELEMENTS-CUBIC ARRAY 

N MKEV NN - -M . l A~RDA 
A 3 24 1.0 · 3.0000f: 00 

THETA PHI 
q.ooooE 01 o .• OQOOE-3Q 

ELEMfNT5 

R THETA PHI 
l.0607E 00 4. 5000E Ol 4.5000E 01 
l • .06C7E 00 4.5000E 01 -4.5(}00E 01 
1.0607E 00 4.5000E 01 -1. 3500E 02 
1. 0607E 00 4.SOOOE 01 . l.3500F 02 
1. 0607E 00 l. 35 OOE 02 4.5000.E Ol 
l.0607E 00 l. 3500E 02 -4.5000E 01 
l. 0607E 00 l.3500E 02 -1. 3501)f 02 
l.C607E 00 1. 3500E 02 l.3500E 02 

-.J 
-.J 



8 ELEMENTS-CURIC ARRAY 

( 3. 8204E-Ol, 7.3630E-01) 
( 3.8204E-01,-7.3630E-Ol) 
( 3.8204E-Cl,-7.3630E-Olt 

A ( 8,1) 

{ 3.8204E-Ol, 7.3630E-Ol) 
( 3.8204E-01, 7.3630E-01) 
( 3.8204E-Ol,-7.3630E~orJ 

( 3.8204E-Ol,-7.3630E-Ol) 
( 3.8204E-Ol, 7.3630E-Ol) 
( 

NORMALIZED VALUES 

AMPLITUDE 
1. OOOOE 00 
1.0000E 00 
l.OOOOE 00 
l. OOOOE 00 
l. OOOOE 00 
1. OOCOE 00 
l.OOOOE 00 
1 .. ()OQOE 00 

PHASE 
-O.OOOOE-39 

-6.8665f.-05 
-1.2515E 02 
-l.2515E 02 

4.2ql5E-06 
-6.8188E-05 
-l.2515E -02 
-l.2515E 02 

G = { 6.6350E 00,-6.7055F.-08) 

.._] 

00 
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