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PREFACE

Many antennas are designed with the primary objective of ob-
taining maximum gain in specified directions. In almost every case
they are designed by empirical methods based on a firm and compre-
hensive knowledge of theory describing similar classic antennas.

The properties of a function of a matrix vector may be used to
obtain solutipns to systems for which the parameters are significant
only at discrete values of a chosen variable. The purpose of this study
is to demonstrate that the gain of an antenna array can be considered
as such.a variable, and, having accomplished this, to demonstrate
the technilque by which a truly optimum design can be achieved. Some
practical designs were developed in the effort and the results com-
pared with known values.

I wish to express my appreciation to those who have aided ine in
the investigation and preparation of this thesis. I especially wish to
thank Dr. K. R Cdok, Professor of Electrical Engineering, Oklahoma
State University, fdr his interest and technical guidance in the subject
of this thesis; and to Dr. D. K. Cheng, Electrical Engineefing Depart-
rhent, Syracuse University, for his willing support in furnishing me
\&ith his paper introducing the subject of this thesis; and to C. E.

Lewis, for his invaluable assistance in adapting the mathematics of
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the solution to a computer program; and to my dad, R. T. Moore, my
wife, Ouida, my children, Leslie, Dorothy, and Brenda, for the many
personal sacrifices without which this thesis would not have been

written.
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CHAPTER I
INTRODUCTION

Fundamental Relations Pertaining to Gain

Optimization of Antenna Arrays

In almost every case antennas are designed by empirical methods
based on a firm and comprehensive knowledge of theory describing
vsimilar classic antennas in idealized conditions. It is not feasible to
use a purely theoretical approach to optimize the coﬁfiguration of an
antenna. Unrealistic simplifying assumptions must be made to reduce
the resul’ting mathematical expressions into a form for which solutions
caﬁ be obtained. Array antennas are almost always designed symme-
trically to minimize the quantity of empirical variations which must
be considered. The optimum configuration required to satisfy s'pecific
design goals may deviate from symmetrical dimensions or symmetri-
cal element excitation but usually can not be obtained within a reason-
able number of measurements,.

The primary objeétive of many antenna designs is maximization
of directive gain. Systems engineers have long since learned that a
nominal increase in antenna gain significantly reduces the system

transmitter power requirements or the system receiver sensitivity



requirements. Increaséng an elect.romé.gnetic circuit margin by
increasing antenna gain has become so attractive that extensive efforts
and facilities vhave‘ been devoted to construction of antenna arrays.

The directive Jpower gain, G(6, '¢), of a given antenna array' is
taken with refefence to a non-dissipative isotropic radiator. Neg-
lecting heat losses in the array, the expression for gainas developed

by Silver (1) is
S(6_, &)

1 fZTr ™ .
— /s [; S(8, ¢) sin 6d6dd

where S(0, ¢) is the power radiated per unit solid angle in the direc-

G(Oo, ¢o) = (1)

tion (6, ¢) corresponding to the spherical coordinate system shown in

figure 1.
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A
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Location of Point n in Spherical Coordinates
Figure 1.
In equation (1),
| |2 |
5(6, ¢) = |E (6, ¢) g (6, 9) : (2)
where E (8, ¢) represents the field intensity as a function of the array
and includes a phase factor corresponding to the space separation

between elements in the direction of gain optimization. The function



2(6, o) repreéents the power pattern of the reference element of the
array and includes an amplitude and phase factor due to the element
excitation. The element gain will be normalized to unity in the

direction of optimization which is denoted as (90, ¢O).
Recent Related Efforts

The problem of determining the maximum possible gain and how
it cabn be achieved for a given number of discrete elements having
finite separation has been approached by many investigators. Recent
efforts include an article titled "A Mathematical Theory of Antenna
Arrays with Randomly Spaced Elements," Y, T. Lo, IEEE Trans-
actions on Antennas and Propagation, Vol. AP-12, May 1964, in which
the gainI degradation of a randomly spaced array was evaluated. In the
same referénce R. W, P.. King and S. S. Sandler discussed broadside
and endfire arrays and developed curves for specific curtain arrays.
C. T. Té.i wrote an article which appeared in IEEE Transactions on
Antennas and Propagation, July, 1964 titled "The Optimum Directivity
of Uniformly Spaced Broadside Arrays of Dipoles' in which he develo-
ped some gain curves for specific broadside arrays of N elements
ranging from N = 3 to N = 20. The paper by Dr. Tai ‘was limited to
linear arrays. More recently D, K. Cheng (2) of Syracuse University
wrote a paper titled "Gain Optifniza.tion for Arbitrary Antenna Arrays'

which appeared in IEEE Transactions on Antennas and Propagation in



November, 1965. Dr. Cheng's paper demonstrated for linear arrays
that systems in which certain system pararheters have significance
only at discrete values of a chosen variable may be resolved using a

theorem on the properties of a function of a matrix vector.
Objective

The method introduced by Dr. Cheng is particularly interesting
in that it can be extended to apply to planar and volumetric arrays as
well as the linear arrays demonstrated by Dr. Cheng. This true opti~
mization method is examined in detail in this thesis with generality and
application to planar arrays as the goal. The resulting equations have
been adapted to a computer program to yield the optimum gain of a
given array in a specified direction and the amplitude and phase of
excitation re;quired at each element to yield‘ that gain. The program
has been utilized fo design some basic array configurations and com-
pared with results obtained utilizing classical procedures t; establish
advantages typical of the method developed in this thesis. iThe designs

were also compared to the linear arrays reported by Dr. Cheng to

establish confidence in the program.
Observations

If the amplitude of excitation for certain elements in the array is

relatively small some array thinning may be achieved. This application



is not investigated in this thesis but is considered an interesting
aspect for future investigation. Another area that could benefit from
further investigation is the effect and application for roots of the

characteristic equation other than X\ , which is considered in this

l)

text, should they be non-zero in a specific problem.
"Discussion of Results

The results of this investigation demonstrate that the technique
is a true optimization technique for determining the maximum gain in
a particular direction that can be achieved with a given basic element
and a fixed array configuration. Computation of the amplitude and
phase distribution for the array which will result in that maximum
gain is athieved within the gain calculation and the design can readily
bev applied to practical antenna array problems.

The computer program input requirements are minimal and,
in most ipplications, already known for a specific design problem.
The classical designs for which the technique described in this thesis
was applied demonstrated the agreement of the results with known
values. The impressive advantages of the optimization approach
already demonstrated by Cheng for certain linear arrays should find
direct application for planar and volumetric array designs.

One of the designs reported in Cheng's paper was repeated in

this thesis. The results were identical and the program was



considered verified for arrays of i'sotropic elements. Arrays of
linear elements are handled in a slightly different way within the
program so another comparison was made. One of the arrays
reported by Tai was investigated and the results compared well with
those obtained by Tai for an array of half-wave dipoles.

Some hypothetical planar and volumetric arrays were computed
and the results indicate that the optimization technique can readily be

applied to solve real array design problems.



CHAPTER II
ANALYTICAL DEVELOPMENT
Transformation to Matrix Notation

To solve equation (1) by application of the theory of matrices it
is necessary to rewrite the equation for gain. The numerator will be
examined first.

In equation (2) the field of the nth element of a volumetric array
is developed by Stratton (3) as

JkR - jwt - jk B.O 3 - ip

e n
R

E_ = -j60 :[On F (6, ¢)

. (3)

*Note: The variable ¢ has been added to the reference element to
accommodate elements having variation in both 6 and ¢.

The resultant field intensity is obtained by summing over the
entire array.

kR N .
E =-j60 F_(6, ¢) -%Jk Zr I e'J(k By 3.t P, (4)
n= n

R is the radius to the point of observation.
_130 is the unit vector in the direction of R.
Fo is the phase factor of the basic element.

IO is the rriagnitude of the current in the nth element.
n



k = 27/ X\ where \ is the wavelength.v
Bn is the phase of the nth element.
I, locates the nth element.

In equation (4),

R " =]R Hr ‘cos ¥ , where ¥ 1is defined as the (5)
o ~n ~oi{!™"n n n

angle between r and R .
n )

*Note: Cos ¥ =s5in 8 sin 8 cos (¢ - o )+ cos 8 cos 8 . (6)
n o n o n o n

Since IEOI: 1 andl__l;nl is just the distance from the origin to

element n which will be defined as dn, the following terms can be

defined:
I ! pn is the nth element excitation = a (7)
o _
i
wheren=1, 2, ..., Nand a_ includes the magnitude and phase of

element (rn, en, d)n).

D Zkd, and k R * ¢
n n 0 ~n

= Dn cos \Ifn. (8)
-j 60 Fo(e, ¢) is the radiation field intensity of the array reference
element which, multiplied by its complex conjugate, is the power
pattern of the array reference element which will be defined as

g(0, o¢).

Now, equation (2) becomes

N i D cos ¥ N i D I
S(6, ¢) =g (6, ¢)D a e "n n Y arel Om % Um
n=1 m=1

where (*) denotes 'transpose conjugate'.



—J(D cos ¥ - D cos V¥ )
n m

5 =
8
©

o]

©

N
(0, ¢) = g8, ¢)>
m=1

Power Patterns for Arrays

Substituting equation (6) for cos \I/n and cos \Ifm demonstrates
the variation in the power pattern function for various array configura-
tions. The variation is given here for cos ¥ only since the variation

n
with cos ¥ 1is identical.
m
(1) Volumetric Array,
n o n o n

Cos ¥ =sinB sin6 coé(d) -d ) tcos 6 cos 6 , (10)
n o

(2) Planar Array, (¢n = d)m =0)

Cos ¥ =sinB® sin® cos & + cos 6 cos 0 ., (11)
n o n o o n
| s = e = 0 = = O
(3)' Linear Array, (Gn m s d)n (bm )
Cos ¥ = cos 6 , (12)
n o

Since the element power will be normalized to unity in the

direction of optimization

g (6, ¢ ) =1 and, from equation (9), the power pattern of

N
- L' v
Z a J(Dn €08 Fh Dm cos m)a, (13)
n
n=

All of the constants in the exponent of equation (13) are known

inputs for a given array design and @ . can be arbitrarily defined as

. =D cos ¥ -D cosV¥T ) (14)
a = n n m m’,
mn e
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The numerator of equation (1) can now be expressed as

N N .
(80, ¢o) :mZ: Z:: m mn *n- ‘ (15)

The denominator of equation (1) will now be examined.

Applying equation (9) to the denominator of (1) yields

2T fﬂ' Zl:\I % o % —_j(Dn cos ‘I’n - Dm cos ¥ )a
4 m e m n
m=
g(6, ¢) sin 6d6ds. (16)
Define u = cos 0, du = -sin 06d6. _ (17)
Therefore, in equation (16),
2

sin 6 =1 - u

so that the exponent of (16) can now be written as

-] l\/l _uZ I:Dnsin Gn cos (¢—¢n)—Dmsin em cos (¢_¢m)]
e

u[D cos O -D cos 0 ]l '
n n m (18)

5 ‘
In (18) only the multiplier of VI - u”~ contains a function of ‘¢ and

the definitions

fmn(cb) = [Dn sin Gn cos (cb-cpn)-Dm sin Gm cos (cb-cbm)] (19)

and C =D cos 06 -D cos 6 (20)
mn n n m m

may be used to simplify (16) which becomes

% 21:\1 L [h fznf -J[lu £ ($)+ucC_ ]

m=1 n=1

g(u, ¢) du d¢] a - (21)
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Let
2 1 . 2 |
LT A e
an 4T Yo -1 m m
g(u, ¢) du d¢. (22)
The denominator of equation (1) can now be expressed as
> - N N
1 ™ —
e = e . 23
47 /cl LS(9'¢)ded¢ ;zln}:-‘lam Pmn *n (23)

Combining equations (15) and (23) permits equation (1) to be rewritten

N
2
G(o_, ¢ ) = Bt I (24)

Definitions of Matrix Terms

Equation (24) can now be expressed as a product of matrices with

the following definitions:

%1
5
)
The ¢column vector a = (25)
Bad'y
a
l N =

The row vectori:‘ = [al af ... aN] . (26)



Y11 %12
.. @ @
The Hermitian NXN 21 22
square matrix A :[a/ ]: ...........
, mn
| *N1 N2
*Note: Hermitian => o o * .
mn i
B11 812
The Hermitian NXN square Ry Bag v

matrix gr[ﬁ -:]'—' e e
mn

1 n=1
ax A a
Now, G(a) == =
T a* B a
—> —

Matrix Solution

-------

12

(27)

(28)

(29)

(30)

(31)

Matrix theory can be applied to equation (31) to determine the

maximum gain that can be achieved with a given array in any specific

direction, (eo, ¢0). Matrix theory will also be used to determine the

‘excitation magnitude and phase required in each element of the array

to yield that maximum gain,

Browne (4) and Gantmacher (5) have developed matrix theory

applicable to equation (31). The characteristic equation of G(i,) is
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defined as

IK-X_B
n

= 0 | | (32)

where xn are the roots of the characteristic equation.
If —B, which appears in the denominator of (31) is positive definite,
the following statements may be made:
(a) The roots ()\1, )\2, e )\N) of the characteristic equation
are all real.

(b) N, and \__ represent the bounds of the value of G(i,)’ i. e,

1 N
>\1 > G(i>)2>\N, (33)
(c) >\1 > G(__a;’) is attained Wheneverﬁ’ satisfies the equation
Aa =)\ B a. (34)
— 1 —

Now, if )\1 can be foundAto satisfy the equality of equation (33),
the maximum possible gain for the antenna array under consideration
would be determined. Likewise, if_a_._. can be found to satisfy equation
(34) the current distribution for the array would be determined.

*Note: Statements (a), (b), and (c) above are contingent upon B being
positive definite. It will not be attempted here to demonstrate, in
general, that B is positive definite, It will be considered sufficient for
the intent of this thesis to demonstrate that B is positive for each
s;pecificv problem investigated., If B is not positive definite, the possi-
| bility of infinite gain would be introduced which is not reasonable for

a finite number of discrete elements,
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B positive definite implies

2w
O<z Zf f [l-u f (¢)+qun]g(u,¢)dudd>. (25)

m=1 n=
Determination of Maximum Gain

The éharacteristic equation (32) can be expanded into its poly-
nomial form utilizing the matrix theorem 27.1 on page 68 in Browne
(4) for matrices where one is the identity matrix,.

Theorem: Let C be an n-square matrix with elements in F, If
the ‘sum of all m-rowed principal minor determinants

of C is denoted by crm, the characteristic function of

C is
—_— n n-1 n-2
f(x)':l c-x1| e (N4 e (T e (T
v fo) 1 2
1
. to (-\) +o0 . (36)
n-1 n
PREED SIS  wherea =1, o =|T|.
T1=0 O n

Applying the above theorem the characteristic equation
| -x1 =0, (37)
where I is the identity matrix can be expanded to

cro(-x)rl + orl(->\)n"'l + crz(-)\)n_z t oo to (-x)1 to_=0. (38)

n-1
— —_1 -
If C is defined as B =~ A equation (32) can be written as
IK - )\gl = l gl (IE - )\Il) = 0 and the polynomial expansion of {32)

would be



.lEI[«O(_x)n + o -\

-1 : -
)n o (_)\)n 2
2
o =land ¢ , (m=1, 2, ...
o m

above theorem as follows:

+...

—%}1ﬂ+wﬁl=043”

15

, n-1), is given by Browne in the

o consists of m columns of C and n-m columns of I chosen in

m

all possible ways.

Example: Let N = 2.
B €11 12
C =
Co1 C22 )
C,, 0 1oc
o, = + :
Cop 1 Y
— ) _] -
but, C was defined as B A. Therefore,
A=B C, or,
“11 %12 Bir P2l “n
Y21 %22 Fo1 Py Co1
= + .
@ 7P G TP G
= + R
@5 =B Crp YRG0
= +
@y B €11 TRy, Gy
= +
@y, =By C1a TR Gy

Simultaneous solution of equations (40)and (42) yields

12

22

11

+C

22,

(40)

(41)

(42)

(43)



C = 21 BZZ and
|51

equations (41) and (43) yield

Pi1 212
Co07 Bor %
15|
The polynomial expansion of 'X - AB| =0 for N = 2 can now be written
a8
By Py , @ Py Bii 9,
N + N
Y %1 Pl B %

“11 %12

+ = 0. (44)

0121 0122

Browne's statement for writing Um in connection with the
theorem on page l4can be elaborated on and, perhaps, clarified in
light of the previous example.

. is the sum of the determinants consisting of m columns of
A and n-m columns of g,'(m:O, 1, 2, ... n), chosen in all possible

.combinations maintaining column correspondence between A and ]_3_,

i.e.,, the ith column of B is replaced with the ith column of A.

16
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Example: The coefficients, o0 , for N=3 can be written directly from
m

the above statement.

0 =m =0, n-m = n and the determinant consists only of n col-
o .

umns of B and since there is only one possible way to take the columns

of B without violating column correspondence,

as
*11
T %
%31
Likewise,
“11
%7 %1
%31
and, 0'3 = l

The polynomial can, therefore, be written for

terms and, in general, for N = n the coefficients are:

12

22

32

B11

B21

512 513
522. 523
532 B33

= 2 and the sum of the determinants is written

ﬁ11

12
22

32

532

B13

Bl

12

22

32

13

23

331.

13

23

3314,

any number of



(a) The coefficient of (‘)\)n,'
P11 B12" Bln
_ B21 BZZ° BZn
g ={B I = :
o
Br11 BnZ Bnn
(b) The coefficient of (-\)°,
11 %1277 %iIn
- 1al- .
“n | “21 %22 “on
anl anZ' ann
-1
(c) The coefficient of (—)\)rl s
@ Pz Pys Pin
o = @ By Byseer Py
anl BnZ Bn3' ’ Bnn
+...+
n-2

(d)

The coefficient of (-\),

18

(45)
(46)
By @2 PByger By
v [Py @ PBysees By
Bnl anZ Bn3“ Bnn
B11 B12 Bl,n-—l In
521 Bzz' Bz,n-l 2n
Bnl Baor F3n, n-1 nn
(47)



------------------------------

---------------------------------

@ Py Pz By Pin
@ By Pas 2y Byg Bon
anl BnZ Bn3 an4 5n5 5nn
1 P Pis Bl n-1 1n
@ By By By no1 2n
anl BnZ Bn3 5n, n-1 ann

19
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Bii %12 Pz Py Pl nc1 %In

Bor %2 Pyy Py Brn-1 %n
+

Bnl anZ Bn3 Bn4 ’ Bn, n-1 ann

---------------------------------------

Bnl an Bn3 Bn,n-Z an,n-l %nn . (48)
(e) The coefficient of (-\)" 7,
11 %12 “1m Plmer Plme2 Bin
o S ] 4 ¢ o 6 e s e s 8 6 a4 e s 6 8 4 6 ¢ e s 8 s 6 a8 e s 0 e 8 4 s s s e a0 a0 s e s
. m
a1l %n2 arnm Bn, m+1 Bn, m+2 Bnn
11 %12 % -1 Pim Y m+l PlLmiz Promes o Pin
anl anZ an,m~1 Bnrn n, m+l Bn,m+2 Bn,m+3 Bnn
Bip Przee pl,n_m *ln-m+1 %“l,n-m+2 7 %1,n-1 %In
S
Bnl an ﬁn,n-m n,n-m+l n,n-m+2 n,n-1 ann




The elements @ and an are defiﬁed in equations (14) and (22).

It has been shown that the characteristic polynomial can be
written in its general form. The vroots of the poiynomial, )\1 2 )\2 2
)\3 >N 2. ._>_)\n, represent the solution for‘ G, the gain of the array.
A discussion of the roots of the characteristic equation can be found
in Guillemin (6). Guillemin states that if the rank of the matrix A is
r, the characteristic equation has exactly r non-zero roots.
Theorem: If A contains at least one r-rowed minor determinant that

does not vanish, but no non-vanishing (r+l})-rowed minor determinant,

A is said to be of rank r. If Z =0, the rank is said to be zero.

The rank of A will be determined by application of the preceed-

ing theorem to ascertain the number of non-zero roots.
From the definition of equation (27)
A = [oz } and,
mn
inserting the values of « given in equation (14) the matrix can be
mn
written in a form for which the rank can be determined.

Notice that for m=n,

21

a =1 (50)

and the off diagonal terms are the complex transpose of each other

since A is Hermitian.

Laplace's method for expansion of a determinant about a column

as developed in Browne (4) can be applied repeatedly to reduce the
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order of X until a sum of 2 x 2 detérminan’cs of the form

«@.. .. remain for which
ii ij
= =..,., = = .,.., = =,.., = =1
o, a.| %117 %2 % %5 *nn
J1 JJ
and,
., a.. -i(D,. cos ¥, - D, cos ¥)
ii 1j 1 e j j i i
= EO,
a.. a.. -I{D. cos ¥ - D, cos V¥
i ] e 1 i ] 1

and all 2-rowed minor determinants vanish. Since no element of X
is zero there is at least one l-rowed minor determinant that does not

vanish and A is of rank 1. Therefore, for n = N, A :[a/ n] , and
. . m

-i(D cos¥ -D cos V¥ ) .
o = n n m m  there exists only one non-zero

root to equation (32) and it is )\1, the upper bound of G(_a_).

| p—
For A of rank 1 it is necessary to determine only the coefficients

¢ and ) in equation (39) since ¢ , (m = 2, 3, ..., N), must necessa-
o m

rily be zero.

o and o, are defined in equations (45) and (47). The solution
o

is greatly simplified by omission of ¢ , m > 1, and equation (32) is
m

reduced to

- n-1

n —
Bl o (-0 + [Ble (0" <0, (51)
|§l (-)\)n_ can be factored out leaving n-1 roots identically zero and
- by =
Uo' 1 +crl 0, or,
o
)\1 = _1. (52)
o
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Therefore \1 =

.................

N1 BN.Z B.N?)"'BNN BNI N2 BN?)'”BNN

The solution of equation (53) satisfies the equaiity of equation

(33) and, therefore, is the upper bound for the gain of the array in the

direction (6 , & ).
o o

A more convenient expression for equation (53) may be obtained

by defining two new terms.

Let,

Letb
mn

1

i D
T

iD

i iD cos ¥ ]

1

cos ¥
2

cos ¥

(54)

denote the cofactor of to facilitate writing the
mn

inverse of g, (B ).



24

b bapter P
Pio Pt P2
5-1 ]
B 1= T
b b ... b '
L I P2n NN | . (55)
_ _
+ + + ¢
Py 9tP % b1 ‘w
+ .
. Pz 1tP2 2 PNz ‘N
Ak
+ + ...
CPIn Pon 2 thun N | . (56)
B'.le——l—— b e ek4+b._ . € ex+ + b € ey
s A |1§| 111 1 21 2 1 NI N 1
k4 € € 3k L.+ € € sk
by, 6 TPy, 5 Py ‘w3

€ ekt € ekt ., +b € _€x| (5
et big ) NP 2 N NNNN:I(7)

The product € €% is just ¢
m n mn

Therefore, € €& = l:amn:l = A, (58)

Equation (57) can now be written as

—1 1
B S +
£B & lgl[bllall+b21d21+b3l 31 ° PN1 N1
+ .
thy, @, ¥hy, e, thyag, et by, g
+b +b +...+Db '
oot P g N Y Pan %an T Pan ¥3N NN O’NN].(59)
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Each line within the brackets of the above equation generates
one of the determinants in the humerator of equation (53).

Now, equation (53) becomes

N = e*B e, (60)
or,
C=-1
G(a) = ¢% B €
— — —

Determination of Element Excitation

If equation (60) is introduced into equation (34) an a_may be
.chosen giving the magnitude and phase of excitation required for each

element in the array to produce the maximum gain‘..

A a =\ B a = g a A, since \. is a scalor.
—_— 1 —> — ] 1
Substitutilng equation (58) for A and (60) for )\1 yields
— L=-1
€ exa =B a ¢*B ¢

: .1 '

The equation is satisfied if a is chosen to be B ¢ . The optimum
: — —

excitations in the N elements of the array are, therefore,

a'=]§—1 € v, (61)
— —» : .

which is the product shown in equation (56). a, is defined as the

column vector

Lo~ . | (62)
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a_ is the magnitude and phase of excitation required in element

n to yield the maximum gain in the direction of optimization.



CHAPTER III

GENERAL SOLUTION FOR GAIN AND EXCITATION

OF SPECIFIC ARRAYS

The solution to equation (60),

N\, = ¢ B~ ¢, canbest be obtained utilizing a com-
— .
puter program.
The program consists of a main program, a subroutine for
determination of each an in the Hermitian B matrix and a subroutine

for determining the inverse of B.
Main Program

The main program performs the operations necessary to
dete‘rmine equation (60). Equatioﬁ (61) is included in the coﬁmput-ation
as seen by referring to equation (56) and is printed out in the process
of computing the maximum gain. The subroutines described in this
chapter are called out in the main program. The flow diagram for the
main program is shown on page 43, A listing of the computer pro-
~gram and a set of sample_prdblems computed with the program are

included in the appendix,
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Beta Subfoutine '

" The subroutine for an utilizes numerical integration of a
double finite integral by application of Simpson's 1/3 rule as des-
cribed in Salvadori and Baron (7) to solve €quation (22).

For generality g(u, &) in equation (22) should remain a
variable. Solutidns have been obtained for some typical power patterns
qf'elements used most frequently.

(a) Isotropic Elements,

gla, &) =1 . | (63)

(b) Linear Elements,

cos (-—2— u) .
g_(u-' ¢) = —__T— ’ (m - Odd): . ) (64)
1 -u ' '
51n2 (m—zTT u) .
g(u: ¢) = 2 ’ (m - even): (65)
l1-u .

where m is the number of half wavelengths in each element.

For more complex element designs the power pattern function
becomes more complex, and it is apparent that a program for computing
an must be written after g(u, ¢) has Been determined.

The value of‘g(u, ¢) in equations (64) and (65) can be shown by

‘repeated application of 1'Hospital's rule to be zero at the limits of

» integration with respect to u.
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.To accommodate computation, it is necessary to write the
exponential of equation (22) in its trignometric form so that the real

and imaginary parts may be integrated separately.

g(u, ¢) dudé.

Let :
| __j[\/l “u¥i (@) +uc ]
e mn mn

f

1

glu, ¢).

Then,

f. Re = cos [\)l - u"2 frnn (¢) +u Cmn:] g(u, ¢), and
N
- 51n[: 1 -u frnn (¢) +u Cmn:] glu, ¢) .

The term's used in the above equation are as defined in the text.

f. Im
i

Page 45 is the flow diagram for the an subroutine. The
“functional values to be used in the double numerical integration process
are computed in this routine. A separate set of values is computed
for the real and i‘maginary parts for m either odd or even or for
isotropic sources. The subroutine calls BINT, the double numerical
integration subroutine shown on page 48. A listing for the ﬁmn

subroutine and the integration subroutine is given in appendix B.
Inverse of B Matrix Subroutine

The Jordan elimination method described by Fox (8) was used

. —-1 — .
to compute B with complex elements in B. Page 49 is the flow



diagram for the matrix inversion, éalled CINV, and a listing for the
subroutine is included in appendix B. A matrix multiply routine for
complex numbers is also included in appendix B and is used both with

the inversion subroutine and the main program. '
Program Input

The following program array parameters are required to
determine the gain and element excitation for the array. The terms
defined below are the input terms found in the listing in appendix B.

The computer program was written in Fortran IV.

Input Arrangement

Card A: N {Namelist format)

2 (6E12. 6 format)

Card BZ:r3, 93, ¢>3, Ty 84, ¢>4

Card Bn/Z: LR en_l, (bn-l’ r en, cbn

Card C: Title (12A6 format)

Card D: MKEY, nn, m, A, 0, ¢ {(Namelist format)
Definitions

N = number of elements in the array.
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distance from origin to ith element.

r =

i

8 = 0 direction of ith element.
i

¢, = ¢ direction of ith element.

i
Title = A description of the problem having an allowable length of 72

characters.

1l

MKEY = 1 if the element lengths are odd multiples of half-wavelengths.

2 if the element lengths are even multiples of half-wavelengths.

I

= 3 if elements are isotropic sources.
nn = number of spaces desired for the double nufnerical integration
routine., (nn must be even).
m = number of wavelengths in an element.

A = wavelength, (dimension must be compatible with ri).

D
I

0 direction in which maximum gain is desired.

©
1l

¢ direction in which maximum gain is desired.

Program Output

The program outputs for the array designs computed in connec-
tion with this thesis are compiled in appendix C.

The first sheet of the output for each problem is a printout of the
input data. The second sheet of the output containsi’which is com-
posed of the magnitude and phase of each element in the array. FEach
term within the parenthesis fori’ has a real and imaginary part. The

normalized amplitudes and phases are listed below_a;’in the same order



32

as the input data are listed so that éorrelation is maintained between

a particular excitation and the specific element requiring that
excitation. The second page also contains the solution for the maximum
gain that can be achieved with the given array at the optimization

angle specified in the input data.



CHAPTER IV
SAMPLE COMPUTATIONS
Comparison with Known Design Values

Initially, the program was used to determine the gain of simple
classic arrays to demonstrate the theory and computer routines, ‘A
single isotropic element located at the origin, a single half-wave
dipole at the origin, two isotropic elements located symmetrically
about the origin and separated by a half-wavelength were all tried with
complete success.

The linear array in figure 2 was examined by Cheng (2) and was
evaluated in this program for comparison, The results are shown in
appendix C on page 66, Dr, Cheng computed the maximum gain for
the eight isotropic element end fire array spaced 0,425 A apart to be
22. The results of this program show the gain to be 22,1, The gain
for the same array with equal amplitude and phase element excitation
is 12,5,

| To demonstrate the application to arrays of linear elements a
design examined by Tai (9) was investigated. The array of four col-
linear half-wave dipoles spaced 0.8 wavelengths apart, shown in

figure 3, was found by Tai to have a maximum gain of 6.4. The same

33
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A
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Eight Equally Spaced Linear Isotropic Elements

Figure 2.
x
A
6 =90°
o
= Q°
d)o
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Element Spacing = 0.8A

Four Equally Spaced Half-Wavelength Dipoles

Figure 3.
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design using ‘the technique of this thésis yieided‘ a maximum gain of 6.5
as shown on page 68 in appendix C.

The question of computational errors in the numerical approach
utilized in the program is of considerable interest. As in any inte-
gration process, the more nearly a function is evaluated at every
point on a curve the more accurate will be the answer. In the eval-
uation of ﬁmn by Simpson's 1/3 rule the number of computations and,
consequently, the accuracy is increased by increasing the input nn.
The error in the technique for single integration is reported by Salva-
dori and Baron {(7) to be on the order of (H4). The effect of double
integration on that figure could probably be determined in much the
same way and should be determined for specific applications where the |
error control in the result warrants the computation.

Increasing nn significantly increases the computer time required
for the routine as the accuracy is increased. It is necessary, there-
fore, to estimate a reasonable value for nn for which the cor|nputa.tion

i
time is acceptable and the error can be considered negligible.

Planar and Volumetric Arrays

Several planar arrays have been optimized utilizing the technique
developed in this thesis., The data are included in appendix C. The
arrays reported include the three isotropic element array shown in

figure 4, the six element planar array shown in figure 5, and a planar



array of . linear. dipoles.

‘Ai volumetric array directive gain optimization was demonstra-
ted for tﬁe configuration shown in figure 6, The isotropic elements
are located at the corners of a cube., The ;'esults are shown in

appendix C on page 78,
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CHAPTER V
CONCLUSIONS

The advantages of the ability to maximize the directive gain of
an antenna array are obvious. Random design is too often unrewarding
and empirical design is expensive and time consuming and often results
in much less than optimum gain, With a true optimization technique a
specific array configuration can be examined and immediately the
decision can be made as to whether the design must be changed to meet
system requirements,

The| maximum gain in any particula.r. direction for a specific
array, and the element excitation required to produce. that gain are
readily determined by the technique described in this thesis. Arrays
up to twenty elements can be optimized for basic elements fbr which
the power pattern can be descrbibed as linear elements or isotropic
elements with no changes in the program. More complex basic
elements require a program modification. This limitation is not
considered serious, since the large majority of arrays are composed
of elements which approach those described,

The theory has been kept as general as possible and linear,

planar, and volumetric arrays can be designed with equivalent facility,.
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The selection of the origin of the coordinate syétem is completely arbi-
trary as is the direction of optimization.

The sample computations checked quite satisfactorily with Rnown
values reflecting sufficient accuracy in the program. No negative or
infinite gains were computed which indicates that for the arrays
examined the Hermitian B matrix is positive definite,

The gain and current distribution obtained for a particular array
in a specified direction gives no indication what effect that excitation
would have on the gain in any other direction, nor is there any sugges-
tion for altering various parameters of the array configuration if the
gain is inadequate or excessive, Both of these additional design guides
would be extremely useful for gain optimization, but their absence does
not reflect upon the usefulness of the optimization technique described
in this vthesis. It merely indicates that this useful tool leaves, in
some cases, certain other design problems to be solved in other ways.

The objectives of the investigation have been achievedland a use-
ful gain optimization technique provided which should greatly enhance

the solution of many array problems.
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The flow diagrams for the various routines used in the compu-
tation of the maximum gain and the required element excitation are
included in this appendix,

Note: All underscored symbols represent complex numbers,
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IREAD: N |

J

READ %, Ba, 6, n= LN

—
[READ: TITLE |
R

CALL: BETAZL
INPUT:IMKEY, kk,H K A,

m)ejl 8L1¢'/¢{_A G;Q
OQUTPUT: Q;_J'

READ: MKEY, nn,m A, 6.,®,

!

H= 2I/MJ
lK=3<ol0/nnJ
[c=27/2|

wriTE: B;;, j:IJNJ t=I,N

IWR\TE'. €L, i UN]
' )
kk=nn+1 |
L

MAIN PROGRAM
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CALL: CINV
INPUT: B, N
CLUTPUT: B, KKK

WRITE: YT HE MATRIX WRITE: 623 ,JE NG =N
B 1S SINGULARY —

Y
43 CALL: CXMXMN L

b INPUT: B, B",N,N,N
OUTPUT: BB

}

W RITE: BR

; ,jzl,N) L:\)N

CALL: CXMX ML
INeUT: B e N N, I
OUTpPUT: A

|

WRrITE: A, , =LN

!

CALL: CXMXM L
INPUT: ¥ A, [N,
ouTPLT. G

IWRITE: Q]

END




SUBROUTINE: BETAL

INPUT : MKEY, nn, H K, 37, m,
9”)9’“:¢n,®m)";1, o

oUTPUT . 8 :

{Dh :(2. T/%) (n

=G T ]

| C = D €05 B — Dy, 056

[p:‘DnS;hQA ]

| [£(0), = Peos (9~ -Qeos($-0,.)
: 1
i lp=o+K ]

[coTo (12,13,1)) MKEY)|

<}
o
@r

BETA COMPUTATION
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CALLY BINT
INPUT:f, nnH,K
OUTPUT: RB

CALL: BINT

INPUT: £, »n, H,K

QUTPUT: TMR
|

& .
Fﬁ:(!/mo)(f B+jIMB) |
[RETURN |




SUBROUTINE: BINT
INPUT: £, nn, H, K
OUTPUT: SUM

!

Nn=nn-2 |

+4(f, +1,

L+ j+2 L+2,J'

)+'6{L+\,j+|

+f,

L+2] Ly+a L+2Jj+2

Lyj+t +"CL+?_J‘]+5

RETURN

BETA INTEGRATION

-
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The listings for the various routines used in the computation of
the maximum gain and the required element excitation are included
in this appendix,

Note: All underscored symbols represent complex numbers,



MAIN PROGRAM

$IBFTC SETUP

REAL KoM

CUMPLEX EsEP(20420)4,EPS(20920) ¢B(20420) yBINVI(20420) +BBINVI2)0420)45A

1020420)s6( 14 1)

DIMENSION R(20)s TH(20),PH(20) yhEAD(L12)

DIMENSIUN AA(20),AAT(20)

NAMEL IST/NAML1/N/NAMZ2/MKEY yNNyMy XLAM, THETA 4PHI
1001 FUORMAT(6E12.6)
L1002 FURMAT( 12A6)
1003 FORMAT( LHL///7/7712A6)
1004 FOURMAT(//39Xy9RHEPSILUN (41343Rh41))
1005 FORMAT(/( 12Xy lH{ 9 1PFLlle4ylHpoblledolH) 92X slHU4ELLl o4 slHysELlLl %y lH),

12Xy IH{ s Elle4y lHysELLla4y 1lH)))
1006 FUORMAT(// 36Xy 16HEPSILUN STAR (lssl3,1R))
LOO7 FURMAT(//41Xe3HDB (9139 LlHpel3,1H))
LOUB8 FURMAT(//34Xy25HTHE MATRIX B IS SINGULAK.)
1009 FURMATI(//36Xe 11HB INVERSE (31 3¢lhesl341H))
1010 FORMAT(//33Xy 16HB B8Y B8 INVERSE (s1341Hyel3:1H))
1011 FORMAT(//41Xy 3HA (91343H,1))
1012 FURMATL//40Xy5HG = (ylPELLle4ylHysElla4ylh))
1013 FURMAT(//36Xs LHNy 4K s 4HMKE Y y 4 X9 ZHNN yO X 9 LHMy T XyoHLAMBDA/ 34Xy 13,4X,12

ly 29X 139 3Ky F6a192Xy1PEL11l.4)
1014 FOURMAT(//44Xs SHTHETA 311Xy 3HPHI /41 Xe1lPELLl.4 5 XeELlLl %)
LO15 FORMAT(//50Xy BHELEMENTS//37X91HR 914X sSHTHETA L1 X9 3HPHI)
1016 FORMAT( 28Xy IP3El6.4)
1017 FORMAT(//46Xy LTHNORMALIZED VALUES//42Xs9HAMPLI TUDE 49X 5HPHASE)
1018 FURMATI( 36Xy IP2EL16.4)

PI=3.1415927
13 READ( 5, NAM 1)

IFIN.EQ.O) GO TO 63

READ( S5y LOOLMRIOL)y THUIDyPHIL) I =1,4N)
63 READ(5, 1002) HEAD

READ(5,NAM2)

€9



WRITE( 6, 1003} HEAD

WRITEL 6y 1013) NyMKEY NN My XLAM
WRITE({6,1014) THETA,PHI

WRITE(6y 1015)

WRITELOs LOLONIRETI)y THUT)yPHIT) 9 I=1yN)
H=2.0/FLOAT{NN)

K=360.0/FLOAT(NN)

C=2.0%P L/XL AM

D0 10 I=1yN

EE=C*R{IV*( SINDITRETA)Y®SIND{THLT ) ) #CUSDUPHI - PH(I))+CDSD(THETA)*COS
1ID(THOELEY))

E=EE*¥{0.0,1.0)

EPUI, 1)=CEXP{E)

EPS{ 1y I )=CEXP{-E)

WRITEL 6y 1003) HEAD

ARITE(6,1004) N

WRITE( 6y 1OOSMEP(ILy1)eI=1yN)

WRITElL6,y1006) N

WRITE( 6y LOOS)I(EPS(L1yI)yI=1yN)
K=NN+1

DO 1L I=1yN

DO 11 Jd=1,N

CALL BETAI(MKEY KK, HyKyXLAMvPIvaTH(J)vTH(I)vPH(J)yPH(I)vR(J)yR(I)

LyBl 1,d1))

WRITEL 6y 1003) HEAD

WRITE( 6y LOOT) NoN

DO 14 I=14N
WRITE(6,1005)(Bl1I4d)yd=14N)
CALL CINVE{BsNeBINVyKKK)
IF(KKK.EQ.0) GU TO 12

WRITE(641008) '

12°]



12

)

16

81

82

GO TU 13

WRITE( 6, 1003) HEAD
WRITE( 6y 1009) NoN

DO 15 I=1,N ,
WRITE(6y LOOSIBINVII9J)gd=1yN)
WRITE(6y1003) HEAD

CALL CXMXML{ByBINV,BBINVsNsN,N)
WRITE(6, LO10) NyN

DO 16 I=1,N

WRITE(6y LOOS)(BBINVILyd)ed=1,N)
CALL CXMXMLUBINVsEP yAysNyNy1)
WRITE(6y1003) HEAD
WRITE(6y1011) N

WRITE( 69 100S)(ALT, 1)y I=14N)

DU 81 I=1,N

AA(T)=CABSLA(T,1))

XSA=AAL 1)

NKK=1

DU 82 I=2,N

IF(AAT 1 ).GE XSA) GU TU 82
XSA=AALT)

NKK=1

CUNT INUE

DO 83 I=1sN

S9



83

84

85

AAL1)=AA(TI)/XSA

DU 84 I=14N

YY=AIMAGIA( LIy 1))}
XX=REAL{A(I,1})) : .
AATL{ [ )=ATANZ2(YY  XX)}*180.0/P1
AATX=AAT({NKK)

DU 85 [=14N

AAT{ [)=AAT( 1 )-AATX
WRITE(6y1017)

WRITE(G6y LOLBICAAL L) JAAT(L) s I=1yN)
CALL CXMXMLIUEPS»AsGelyNy 1)
WRITE(O,1012) G

GU TO 13

END

9%



BETA SUBROUTINE

$18FTC BETAIX

1000

10

13

15

12

14

11
16
20

SUBROUTINE BETAI{MKEY yNNoHs K9y XLAMJPT My THNy THMy PHNy PHM, RNy RM,y BET A)

UIMENSION F(51951)yFPHISL)FULDL 51) 4GU(51)
REAL KyMyMP 12, IMB '
COMPLEX OETASCNLLnNZeCTN3
FURMAT({ 1P TE15.4)

MP12=M*P[/2.0

Did=2+0%P [ KN/ XL AM

DM=2.0%P J*RM /XL AM
C=DN*COSO(THN ) =DM*CUSU( THM)
P=CiN#*SINOD(THN)}

R=CMES IND(THM)

PH=0.0

DO 10 I=1ynAN

FPHL L) =P*COSDIPH-PHN)-WQXCOSU(PH-PHM)
PH=PH+K

GU(1)=0.0

GUIINN)=0.0

L=hN-1

GU TO (124134 11)eMKEY

U=—1.0+H

BO 19 I=24L
GUUIT)=SINIMPLI2%U)%%2/{]1.,0-U%k%2)

U=U+H
GU TO 20
U=-1|O+H

bo le I=2,L

GUL L )=CUSIMPI2¥%U)%%2/(1.0-U*¥%x2)
U=uU+H B B

Gy TU 20

DU l6 I=1sNN

GUlI)=1.0

==1.0

LS



18
17

21

19

DU 17 I=19NN

XX=1a0-Jxx)

TF{XX L TWle0E-UT) XKX=0.0"
DO 18 J=1yNN

FUL Ly )=FPH{J )ESIRTIXX) +U*
J=U+h

DU 21 J=1yNN

DO 21 I=1ynNN
FOLyd)=GUl 1 )*CUS{FU(I,4J))
CALL BlNT(FvNNvH'K.KB)_
DU 19 J=1ysNN

DU 19 I=1ynN

FUI,Jd)==GUL I}%SIN(FUlT4d))
CALL BINT(FonNNoHyK,IM3)
Rb=RB/T20.0

IMB=IMB/T720.0

BET A=RB

CN1={0.0y 1.0}

CnN2=1M8B

CN3=CN1*(CN2

BETA=BETA+CN3

RETURN

~END

84



INTEGRATION SUBROUTINE

$IBFTC BINTX :
SUBROUT INE BINTUFsNNyHyK,y SUM)
DIMENSION F(51,51)

REAL K

N=NN-2

X=0.0

DU 10 J=1yNy2

DO 10 I=1leNys2 _

10 K=XAFU Ly J IRl T #2490 )+F LT 9 J 4 2)+F (L #2404 2) +4 0% (FUI+ Lo J#2)+F (141, J)+F
HIsd+l)+F(J42,041))+10.0%F(1+1yJ+1)
SUM=h¥*K*X/9,.0 ' '

RETURN
END

6S



MATRIX INVERSION SUBROUTINE

$IBFTC INV
SUBROUTINE CINV(AsNyAINVeKKK)  _
COMPL EX A(z0.20).A1NV(zo 203.5(40),3(20.40).1
k000  FURMAT(6EL15.4)
MM= 2%N
KKK=0
DU 23 [=1,N
DU 23 J=1,N
23 BlIvJ)=ALTyJ)
: K=N+1
DU 24 1=1,N
. DO 24 J=K.MM
24  B(I,J)=00.0v0.0)

DU 25 I=1yN
K=I+N

25 BIsK)={140y040)

| DU 33 I=1,N
J=1I
IF{CABSIBl1,J)).6T.1.0E-08) GO TO26
L=I+1

DU 12 K=L,N
IF{CABS{B{L,J)).GT.1.06-08) GO Tu27
12 CONT INUE

KKK=1

RETURN
27 DU 13 M=1,MM
13 " S{M)=B(KsM)

DU 14 M=1,MM
14 B{KsMI=B({IsM])

DO 16 M=1,MM
16 BUIM)=S(M)
26 T=B(I,J)

09



17

10
33

29
21

20
50

30

DU 17 K=1¢MM

Bl 1lseK)=BL{ILsK)I/T
L=1+1

IF(L.GTAN) GO TO 33
DO 10 K=LN
T=8(KyJ)

DO 10 NN=1,MM
B(KyNN)=BIKyNN)-T=3{I,NN)
CONT INUE

IF{N.EQsL1) GU TO 50
DO 20 I=24N

J=1

L=I-1

T=BiLyJ)

DO 21 K=J,MM
BILyK)=B{LyK)-T%8{[4K)
IFIL.EQ.L1) GO TD 20
L=L-1

Guo 10 29

CUNT INUE

DO 30 I=1yN

DU 30 J=1yN

NN=J +N
AINVI 1sJ }3=BCEI4NN)
RETURN

END

19



COMPLEX MULTIPLICATION SUBROUTINE

$IBFTLC MULLLL
SUBROUTINE CXMXML (AsB4CoMoNsL)

- COMPLEX AIZU'ZO).B(ZO,ZO)'C(ZO'ZO)

1901  FURMAT(1P6EL1S5.4) '
bO 1 Jd=1stL
DU 1 i=1sM

1 ClI1yJ)=(0.0,0.0)

WRITE{6,1001) C{1,1)
DO 2 J=1,L
DO 2 I=1+M
DG 2 K=14N
- WRITE(641001) C{1,1)

2 ClLsd)=Cl I J)+ALI4yKIEBLIKyJ)
WRITELG6,1001) C(1,1) '
RETURN
END

<9
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64

The program inputs and program outputé are printed in this
appendix for various array co‘nﬁguratio'ns. The amplitude and phase
distribution for the array is printed under A(N, 1) and normalizéd
under the heading "NORMALIZED VALUES," The amplitude and
phase order corresponds with the element order printed on the input
page. The gain is printed below the distribution. It should be
realized that the gain is a real number, and the imaginary part which

is quite small compared to the real part is to be neglected.



8 LINEAR ISOTROPIC ELEMENTS

N MKEY NN M LAMBDA
8 3 24 eeeee.  3.0000E 00
THETA ~ PHI
0.0000F-39 0.0000E-39
ELEMENTS

R THETA PHI
0.0000E-39 0.0000E-39 0.0000E-39
1.2750E 00 0. 0000E-39 0.0000€-39
2.5500E 00 0. 0000E-39 0.0000E-39
3,8250E 00 0. D000E-39 0.0000E-39
5.1000E 0O 0.0000E-39 0.0000€E-39
6.3750E 00 0.0000E-39 0.0000E-39
7.6500E 00 0.0000€~-39 0.0000F-39
8.9250F 00 0.0000E-39 0.0700€-39

9



8 LINEAR ISOTROPIC ELEMENTS

( 1.0841€E 00,-2.3102E 00)
{ 6.2834E-02y 4.3091E 00)

A

( 8,1)

(-8.7159E-01y 3.2457E 00)
(-6.1203E~-01,+-4.2659E 00)

(~1.3686E 00,-3.0694E 00) ( 1.4322€E 00, ?.llZ?E 00)

G

NORMALIZED VALUES

AMPLITUDE

1.0000E
1.3169€
1.5584E
1.6887¢
1.6887E
1.5584E
1.3169E
1.0000€

00
00

00

00
00
00

no -

00

PHASE

-0.0000E-

1.6989E
-1.8425€
1.5403E
-3.3303¢
1.3915E
~4.9170E
1.2072€

4.6493E-01,-3.9497E 00)
l.

(
{ 0771€ 00, 3.8283E 00)
( i

39
02
o1
n2
21
n2
o
02

’

= [ 2.2098E 014-1.1921E-07)
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BRUADSIDE ARRAY UOF LINEAR DIPOLES

N MKE Y NN M LAMBDA

4 1 24 1.0 3.2220E 00
THETA PHI
3. 0000E 01 0.0333E-39
ELEMENTS
R THETA PHI
. 2000E 00 0.0000E—39 0.0000E-39
3.6000E 00 0. 0U0DE=-39 3.0000E-39
1.2000t 00 1.8000€ 02 0.0000E-39
3,6000E 00. 1.3000E 02 ).0000E-39

L9



BROADSIDE ARRAY OF : LINEAR DIPOLES

A U 4,41)

(‘L.6383E 00y b.91l67E-08) { 1.6143E 00y 2.1163E-07) { 1.6383E 004-9.9019E-09)
{ 1.6143€ 00, 1.2513E-08) |

NURMALIZED VALUES

AMPLITUDE PRHASE

1.0148E OO —4.3927TE-06
1. 0006t 00 0.0000E-39
1.0148 00  -7.38575E-06
1. 0000t 00 —7.0571E-06

G = [ 0645052E 004-2.5535€E£-15)

89



10 ELEMENT BROADSIDE ARRAY

N MKE Y NN

M L AMBDA
10 1 24 1.0 3.2220E 00
THETA PHI
$.0000E 01 0.0000E-33
ELEMENTS

R THETA PHI
1.2750E 00 0.0000E-39 0.0000E-39
3.8250E 00 0.0000E-39 U.0000E-39
6.3750E QO 0.0000E-39 0.0000E-39
B.9250E 00 0. VO00E-39 0.0300E-39
1.1475E 0Ol 0. 0000E-39 J.0000E-39
1.2750E 00 1.8C00E 02 0.0000E~39
3.8250E 00 '1.8000F 022 0.0000E-39
6.3750E 00 1.8000E 02 J«0J00E-39
8.9250E 00 1.8000E 02 0.0J00E-39
1.1475€ 01 1.8000E 02 0.0000E-39

69



7T 10 ELEMENT BROADSIDE ARRAY

A { 10s1)
{ 1.6T64E 00, 6.27556-08) [ L.6827E 00, 3.1312E-07) ( 2.5454E 00, 9.0557€-07)
' { 2.6176E 00, 1.2I29E-06) { 2.5221E 00, 1.3030E-05) | 1.6764E 00, 8.0613E-10]
( 1.6827E 00,-7.70356-08) ( 2.5454E 00,~1.4568E-07) ( 2.6176E 00,-2.7034E~07)

T e T U522 TE 00 ZeIT2BESOTY T T e

7/

‘NORMALI ZED VALUES

AMPLITUDE PHASE

e st s e i e 5 1 g st ..;.‘. e e e o s e i e e i e e _I_:_UU_UOE U O O. JJ..,J,J«E;W.“._«». RS - : e
1. 0037 0O Be51l72E-06 :
1.5184E 00 1.8233E-05 ’ h ST
l. 5615€ 00 244035E~-05
1.5045E 00 © 2.T45TE-05
1. 0000 0O -2.1173E-06

T R » —— e~ OO TE- DO =4 ~T5TIEZTE—— —
: 1.5184E 00 —5.4240E-06 .
1.5615E 00 -8.,0623E-06 " T e
1.5045E 00 -8.8983E-06 ’

. G TET (7 2eZ08BE Ol =0.000UE=3I ) T
—_— U U, - — — - S - —_— [E— - - S
o




3 ELEMENT PLANAR ARRAY

N  MKEY NN M L AMBDA
3 3 24 1.0 3.0000€ 00
9.0000E 01 © 9.0000E 01
ELEMENTS
R THETA  PHI
7.5000E-01 0. 0000E-39 0.0000E-39
7.5000€-01 9.0000E 01 1.8000E 02
7.5000E-01 1. B000E 02 0.0000E-39

I



3 ELEMENT PLANAR ARRAY

{ 8.6334E-01,-1.9181E-08)

A

« 3,1)

{ 3.81526-01, 1.0977E-08) { 8.6334E-01,

G

NORMALIZED VALUES

AMPLITUDE PHASE
2.2629E 00 ~2.9215E-06
1.0000€ 00 0.0000E-39

2.2629E 00 -5.1142E-07

= ( 2.1082¢ 00, 8.8818F~16)

1.7134€E-08)

ZL



2 X 3 PLANAR ARRAY

N MKEY NN M LAMBDA
6 3 24 1.0 3.0000E 00
THETA ' PHI
. 4,5000F O1 "4.5000E 01
ELEMENTS

R THETA o PHI _
1.6771E 00 6.3420F 01 0.0000E-39
7.5000E-01 0.0000E-39 0.0000E-39
1.6TT1E 00 6.3420F 01 1.8000E 02
1.6771E 00 1.1658€ 02 0.0000E~-39
7.5000E-01 1.8000E 02 0.0000E-39
1.67T1E 00 1.1658E 02

" 1.8000F 02

€L




2 X 3 PLANAR ARRAY

{-7.2151E-01, 2.5108E-01)
( 9.13976-01, 7.3045E-01)

A

{ 6+1)

{ 4.8574E-01, 1.0001E 00)
{ 4.8574E-01,-1.0001E 00)

G

NORMALTZED VALUES

AMPLITUDE

1.0000€E
1.4553E
1.5315€
1.5315€E
1.4553E
1. 0000E

00
00
no
00
00
00

PHASE

0.0000€E-

-9.6718E
-1.9944E
"1.22‘.8E
~2.2491€
-3.2163E

{ 9.1397E-01+-7.3045€E-01)
(-7.2151E-Oly—2.5108E—01)

39
01
02
02
02
0?2

= ( 6.0257E 00,-4.4703E-08)

wL



2 X 3 PLANAR ARRAY

N MKE Y NN - M LAMBDA
6 3 24 1.0  3,0000€ 00
THETA PHI
9.0000E 01 9.0000F 01
ELEMENTS
R THETA ~ PHI

1.6771E 00 6.3420E 01 0.0000E-139
7.5000E-01 0. 0000E-39 0.0000€-39
1.6771E 00 6.3420E 01 1.8000E 02
1.6771E 00 1.1658E 02 0.0900E-39
7.5000E-01 1.8000E 02 0.0000F~-39
1.677T1E 00 1.1658F 02 1.8000E 02

QL



2 X 3 PLANAR ARRAY
A 6,1) .
( 1-2152E 00y 3.5801E-08) { 1.5269E 00, 3.0607E=09) ( 1.2152E 00, 4.6050E-08)

{ 1.2152E 00y 4.1939E-08) { 1.5269E 00y 6.5602E-08) ( 1,2152F 00y 6.3516E-08)

NORMALIZED VALUES

AMPLITUDE PHASE.

1.0000E 00 0.0000E-39
1.2565€ 00 -1.5731E-06
1.0000€& 00 4,8324E-07
1.0000E 0O 2.8942€E-07
1.25€65E 00 - T1.7375€E-07
1.0000E 00 1.3067E-06

G = 7.9148E N0, 4.8850E=15)

9L



B ELEMENTS-CUBIC ARRAY

o Z

R
1.0607E
1.06C7E
1. 06C7TE
1.0607E
1.0607E
1.0607E
1.0607E
1.C607E

MKEY NN -
3 24
THETA
9.0000€ 01
ELEMENT
THETA
00 4.5000E
00 4.5000E
00 4.5000E
0cC 4.5000E
00 1.3500E
00 1.3500F
00 1.3500€
00 1.3500E

M L AMBDA
1.0 3.0000F 00
PHI.
0.0000£-39
S
PHI
01 4.5000E
01 -4.5000¢E
01 -1.3500E
01 -1.3500F
02 4 .5000E
02 -4.5000E
02 -1.3500F
02 1.3500€

01
01
02
02
01
01
02
02

LL



{
(
{

8 ELEMENTS-CUBIC

3. 8204E-01l, T.3620E-01)
3.8204E-01,-T.3630E-01)
3.8204E-Cly~7.3630E~-01)

{
(
{

G

ARRAY

A 8,1)

3. 82 04E-01,
3.8204E-01,
3.8204E-01,-7.3630E~01)

T.3630E-01) (
7.3630E-01)
(

NORMALIZED VALUES

AMPL I TUDE

1.0000E
1.0000€E
1.0000E
1.0000¢E
1.0000€E
1.00C0E
1.0000E
1.0000E

no
N0
00
00
00
00
0o

00

PHASE
0. 0000E-39
-6.8665FE-05
-1.2515€& 02
-1.2515E 02
4.2915€E-06
-6.8188&£-05
-1.2515E 02
-1.2515F 02

3
3

= { 6.6350F 00,~6.7055F-08)

«B8204E-014~T.3630E-01)

«8204E-01,

T«3630E-011}

8L
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