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PREFACE

During the last fifty years, the study of colloids has graduglly
developed into a branch of exact sciences, However, due to the diffi-
culty in the experimental field, very few parameters have been checked
seriously to the physicist!s standard, The development of NMR technique
brought new hopes in this field as well as many others. The present
work is a preliminary theoretical consideration on the study of colloids
and/or other surface phenomena.

Theories concerning about the relations among quantities such as
viscosity, diffusion constants, electric field, shearing modulus etc,
are still vaguely written in the literature. So the study of any direct
effect on the relaxation rate has been limited to the knowledge of the
author. Direct effect on relaxation times due to the pressure from
electrostriction effect has been found negative,

The treatment of Brownian motions of a colloid by correlation
analysis seems promising. The author feels certain  that information
theory will be a powerful tool in handling liquid-state problems, Pre-
liminary formulas relating to the relaxation rates have been derived, Last-
ly, the fundamentals of BPP theory is included in Appendix B partly
because it is a good exercise to relate the knowledge learned in class-
room to research work,

The author wishes to express his deepest gratitude to Dr, V. L. Pollak
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for his guidance and the innumerable number of hours of discussions

with him during this study, Graditute is also due the Army Research
Office at Durham for financial support (Project No. 4768). A note

of thanks is to be given to Richard Slater for showing me .the unpublished

data of his recent work.
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CHAPTER I
INTRODUCTION

Nuclear magnetic moment, owing to its relatively smaller inter-
action energy between itself and the applied magnetic field, (as
comparing to the average thermal energy,) has long been considered
as a favorable probe to explorate the structure of matter ever
since even before the discovery of the technique of observing the
NMR (nuclear magnetic resonance) singals in bulk material., Shortly
after the initial discovery by Purcell (1) and by Bloch (2) independ-
ently, Pake (3) has made the use of it in study of the crystal
structure of gypsum. Up till now several hundreds of papers are
published each year on the structure of matter by using NMR technique.
However, there are certain fields still remaining almost unattacked,
One of these problems ig the study of surface phenomena of certian
sort by NMR methods. The enviroment of molecules in the fluid phase
near the solid-fluid interface cannot be adequately described by a
model used for pure liquids., It has been perturbed by the presence
of the solid surfaces. The information from NMR technique, as we hope,
may lead us to a better understanding to the surface and/or colloid
phenomena; it may also serve as a check to the existing theories in

these fields.



NMR Relaxation in Liquids

It is well known that, in most liquids, the transverse relaxation
time T2 of NMR signal is considerably longer than that of the solid
of the same material. In certain range of the correlation time, Ty
is almost equal to the longitudinal relaxation time T;. This pheno-
menon is well understood by the BPP theory (4) on the basis of line
width narrowing due to the Brownian motions of 1liquid molecules.

The theoretical estimates of T, and T2 are quite close to the experi.

1

mental values, which, for liquid water at room temperature, are about

3.6 seconds!l,

2

According to BPP theory“, the transverse relaxation rate 1/Tp

is inversely proportional to the spread of local field anloc due to

the neighboring spins, Therefore, we write

T 3 (1-1)
where Tzrl stands for the transverse relaxation time in a rigid lattice,
which, for ice, is about 10 p-seconds., 1In the case of a liquid, due
to the rapid motions of the molecule itself and the enviroment, the
"effective!" ABy, . 1is considerably Smaller3 than that in the solid.

If the correlation time To is defined as the time needed for the

1Experimental values of T;, self diffusion constant, and viscosity
of water as a function of temperature are listed in Appendix A,

25 part of the BPP theory related to the relaxation mechanism
in liquids is given in Appendix B.



local field to change by an amount of the order of itself, then, follow-
ing Pines and Slichter (5), the relaxation time T, in 1iquid is exp-

ressed as
Ty = (T,"H) 27, (1-2)

This equation holds only for T, << Tzrl. If, in addition, T, << llub,
the reciprocal of Larmor frequency, we also have T1 = T9. The Pines
and Slichter relation (l-2) is obtained from a particularly simple
physical picture, and can easily be derived. (See Appendix C.)
Experimentally, the upper limit of longitudinal relaxation time
T1 is sometimes determined by the concentration of paramagnetic ime
purities in the sample. The presence of dissolved oxygen therefore

shortens the relaxation time T; in some cases.
Surface Relaxation

In 1951, Bloch (6) first gave an explanation on the surface
"catalytical" action of a fine powder of Fej05 on the relaxation
rate of xenon gas. A sample with an estimated volume to surface
ratio about 10~ cm. was observed giving the same effect as an oxygen
catalyst of 30 atm.(7).

M. Sasaki, T. Kawai, A, Hirai, T. Hashi, and A, Odajima (8)

3For dipole-dipole interaction, the average field over a long
period of time is actually zero, but the fluctuation of the field
deviates from zero with a complex spectrum. The effective field
which we used here is the root mean square value of the dipole-
dipole component of the fluctuation, which gives us the same power
density spectrum as the fluctuating field itself. For detail
discussions, see Chapter V.



studied water sorbed on cellulose by pulsed NMR technique, They con-
cluded two water phases are present. Two Tlls, but not two Ty's,
were observed. The two T; values were reported as 20 msec. and 165
msec, respectively.

NMR relaxation of protons absorbed on catalytic solids such as
those used in petroleum cracking processes was studied by T, W,
Hickmott and P. W. Selwood (9). Single phase T,'s were observed
as a fairly linear function of liquid content for both associated
liquids such as water, methanol, ethanol, and non-associated liquid
such as n-hexane. The relaxation time T, for water adsorbed on y-
alumina was reported in a range from 90 msec. to 300 msec, (varied
with water content of the sample). When commerial catalysts with
high paramagnetic oxide content were used, T; for water reduced to
about 20 to 50 msec,.,

A series of careful measurement and some theoretical work have
been published by Zimmerman, Woessner, and coworkers (10, 11, 12,
13, 14, 15, 16) on water vapor adsorbed on silica gel, Two phase
behavior for both longitudinal and transverse relaxation was
observed to exist simultaneously. With the exception of the data
at very high vapor coverage, the transverse relaxation time of both
phases are independent of surface coverage., For the phase which is
believed to be strongly adsorbed, T2' 1is 0.162 msec., while the
transverse relaxation time of the other phase, T9q, is 0.828 msec,.
When the coverage is higher than two times the monolayer coverage,

T21 increases markedly. The longitudinal relaxation times are functions



of surface coverage. The data show only single phase behavior when
the coverage is below 0.5 or above 0.7 of the monolayer coverage,

It shows a minimum in between. At a coverage about 0,6 of the mono-
layer, i.e., 0,126 gram of water per gram silica of 700 mzlgm specific

area, Ti is 3.21 msec. while T,, is 14.5 msec..

11

Recently, Woessner (13, 14) investigated the temperature depend-
ence of relaxation times of protons in water molecules adsorbed on
silica gel with a sample of 3/4 monolayer coverage. These data were
interpreted in terms of life time of water molecules in each phase
and by a mechanism in which anisotropic motion of the molecules is
considered. The data fits their theory beautifully. For details of
their work, the reader should consult the original work. Unfortunately,
due to some unknown reason, the sample has changed its character over
a year of storage, It would be more interesting if the temperature
dependence of relaxation times of various coverage were available.

A similar study was reported by Winkler (17) on water adsorbed
by aluminum oxide. All these work indicates a common point. That
is, in the presence of certain surfaces, the relaxation times of the
liquid in the VERY VICINITY of the solid are reduced by a factor of
several hundred as compared to that of pure liquid. The details of
interactions which cause the change of enviroment states are still
not clearly understood.

Some preliminary measurements have been made by V. L. Pollak (18)
on the relaxation times of protons in water containing colloidal

silica particles. 1In this problem, not only the low-coverage water



molecules should be considered, but multilayer adsorption should also

be taken into account. In this experiment, several samples of "Ludox"

were used. Under various conditions, T, ranges from 150 msec. to 250
msec. (See Fig., 1). In other words, T, (and also T; at small magnetic
field B) reduced to about one-tenth of that of proton in pure water,
Similar results were reported on the suspension of colloidal alumina.
Further experimental work is underway by R, R, Slater (19). It shows

in general the relaxation rate is field dependent,
Suggested Relaxation Models for "Ludox" Colloids

The stability of Ludox colloids are very good except toward freez-
ing. The freezing point of various "Ludox" samples is 0°C. After
freezing, the colloid is unstable, and irreversible precipitation
occurs, The clear liquid after precipitation shows a relaxation time
not very much different from that of pure water., This means the ele-
ments responsible for the increase of relaxation rate are gone with
the precipitate,

A sample has been acidified by adding nitric acid. The relaxatdon
rate changes immediately after acidification, and it stands almost
constant during coagulation, which took a time of several weeks. The
coagulation rate, as reported by the DuPont Technical Bulletin, depends

on the pH value.

lLudox is a kind of colloidal silica manufactured by the DuPont
Co.. Five types are available on the market. See Appendix D for their
classification, physical properties, and approximate chemical compo-
sitions.
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In all the above. cases, single relaxation.time are observed, i.e.,

the signal follows the simple exponential decay law,

.Three. possible models may be suggested to. explain: this phenqﬁenon:
Model I. The structure of the double layer is responsible for most
of the changes of the enviroment state experienced by the water mole-
~cules,

If this is the case, either one or both of the following con-
ditions have to be met in order that a single-phase relaxation curve
may be observed: (1), the proton population. in the»double layer is
large enough so that it‘contributes to. the most part of the overall
relaxation observed; (2), the exchange rate between protons in the
double layer and those in the bulk water is so great that a sharp
distinction between these phases is not possible. Zimmerman and
Brittin (11) has calculated the condition for the later to be happened
in their cases, The fact that precipitation of colloid by freezing
brings the water-phase relaxation.rate back to the order of pure water
means in this model the destruction of the double layer enviroment
state.

Model 1II, Sufficient amount of paramagnetic impurities are adsorbed
on or near the colloid surface.

At -the present time, 'experiments have not ruled out :the possibi=
lity of paramagnetic. contaminations.  The  disappearance
of extra relaxation rate after precipitation can be count for if one

is willing to use the assumption: that these impurities co-precipitate
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with the colloﬁd particles. If Model "II is the true picture, the
phenomenon. can be used te study the behaviors of paramagnetic ions
adsorbed én giant ﬁolecules. If the impurity were known, it should
show the general character of field dependence of relaxation rates
of that particular ion, suitably adjusted to take into account the
motion ofpthe giant molecule.
Model TIIT. The Brownian motion OF THE COLLOID PARTICLES is
assumed to. be ‘the reason of causing extra relaxation. This motion,
superposed on top of the Brownian motion OF THE WATER MOLECULES, can
- be described by a very long correlation time; which therefore enters
our relaxation time formula.

We will prove in Chapter V such a moetion will lead to broadening
of the line width. In this model, gelation will cause the long cor-
relation time becoming infinity, thus dropping out of the formula.
Only after coagulation will the true surface effect be observed, and

Model T becomes the dominate faétor.

We shall begin our ‘discussion in-Chapter II on some general pro-
perties of colloids., Based upon this discussion, an estimation of
the surface charge density on the Ludox particles is given,

In Chapter III, we shall .survey the theory of electro=-chemical
double layer, froﬁ-which, the electric field intensity and potential
as a function of distance in.a.flat double layer is estimated,

In Chapter IV, electrostriction effect is discussed., The magni-

tude of pressure and the pressure effect on the relaxation rates are



11
also estimated. - However, we found that these estimated values are
- several 6rders_:todﬁSmallef.tofbe:significant.

In: Chapter V, a simple model of relaxation mechanism. is. introduced.
The possibility of using multiple correlation: times is alse discussed.
General correlation analysis from a more rigorous point of view was
used. through out the chapter.

Chapter VI contains several proposed experiments which might
relate the models with observable data, It also contains several
suggested methods to detect the paramagnetic. impurities.

Since ‘the. purpose of a preliminary theory is to.guide the
experimental work, one should always keep:in.mind te revise his
theory when it is necessary. We believe that, in a field such
as colloid science, it is not advisable to. let either the-theory
goes too: far beyond the experimental, or vise versa, in order not
to let the theory lose its physical background, or to. let the ex-

perimental work go a unnecessary long way.



CHAPTER II

SOME PROPERTIES OF COLLOIDS

Classification of Colloids

Customarily, colloids are classified into. two kinds, LYOPHOBIC
and LYOPHILIC.  In a lyophilic celloid, there is strong affinity
between the particles and the molecules of the dispersion:medium.

The stability of an ideal lyophobic colloid depends upon the fact-
that the particles carry an electric charge. Solvation effect such
as those in lyophilic-colloid is neglected in IDEAL lyophobic col-
loids. Any real colloid lies between the two extreme cases, Purely
phenomenologically, lyophobic colloids. should be defined, at least
"when water is used as dispersion medium, as the colloidal sels whose
stability is highly sensitive to added electrolytes (20)., Lyophobic
sols are thermodynamically unstable and the concept of their stability
is a kinetic one. - Ideal lyophilic sels are in thermodynamic equili=
brium; therefore, no question of stability arises., 1In REAL lyophobic
sols the colloidal particles: are neérly.élways.solvated; therefore,
the non-ienic contribution to. the stability from the special proper-
ties of the surface of the solid is net always zero (20).

Quartz suspension in water is classified as a lyophobic .colloid(21).

12
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An amorphous surface layer is formed when quartz crystals are pulver-
ized (21). On the other hand, silicic acid is classified as lyophi-
lic (22) because polar water molecules in.the liquid phase have a
certain affinity toward the polar —OH groups in the silicic acid.
(Starch is another example beleng to: this class, but no prominent
effect on nuclearVmagnetic:relaxation~times has beeﬁ observed,) - The
colloidal behavier of silica sols is very'compiicate, probably be-
cause these sols have properties intermediate between hydrephobic
and hydrophilic(23).

According to Bechtold and Snyder (24), Rule (25), "Ludex'" par-
ticles are made of amorphous silica seeds. - They have surface hydroxyl
groups resembling theose in. silicic acid., By the mean time they are
alkali-stabilized to.introducevnegative charges on the surface. A

i

simplified structure is believed to. be as follows:

WA S
NN N N N
NN NN

P N AN

- It is therefore reasenable to: believe that Ludox has also a partly
lyophobic and partly lyephilic character. - It might prebably be this
character which is responsible for its extreme stability and relatively

long gelation time eover a wide pH range,
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Surface Charge Density

The- surface of Ludox particles is pesitively charged whenithe
liquid phase is strongly acidic.> In‘neutra1 and alkaline solutiens,
the surface is negatively charged, Various metheds have been. used
to. determine the surface density of hydroxyl groups of silicas,
Zhuravlev . and Kiselev (26) reported a surface density of 5.3 OH-

" groups per'mp,2 on: their "KSK-2" silica gel Sample, by using a deu-~
" terium exchange methed. The sample was firét.desorbed.under high
-vacuum. They concluded that this method is more accurate than: the
complete:calcination;method, by which. water may be liberated from
.the inside of the globule skeleton.

Electrophoresis data and titration data can alse be used to es-
timate~the.surface'&ensity of the charged OH groups. - The : electro-
phoresis data are interpreted in. terms of ¢-potential (the electro-
kinetic potential), which is definéd as the potential at the slipping

:plane(the'inner layer is considered_sta;ionary with respect . to. the
-particle). Since-the.relatién bétween g-potential and the surface
potential: is still net clearly understood; therefore, one should be
cautious = at present to usewthe-electrophoresis data to. calculate
potential and surface charge density.of colloids (27),

As. the properties of amorphous silica depend somewhat on:the way
it was prepared, direct determinationJOf the. properties of the Ludox
samples is therefore preferked. A direct,determination:of the -surface

charge density of Ludox, using a titration method, was reperted by
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Heston, Iler and Sears (28). One of their sample (sol B) was prepared
. in the same way as Ludox is made (24, 25).,  The sol was prepared ion
- free by-passing it through a bed of ionhexchange-resinl. Known amount

of NaOH was then. added. The concentration of free OH ions (OH ions

" . B
- -

iﬁ‘Lhe'buik'iiqﬁid)vwégrestimated from pH readings. - The adsorbed OH
was obtained by subtracting the free hydroxyl ions from the total
. NaOH .added. The pH measurements were made with an alkali-resistant,
type E-2 glass electrode at 25°C, using a Beckman Model-G pH-meter,
The results of their experiments are plotted in Appendix. D.
They have reached the following conclusions:

(1). The adsorption of hydroxyl ions per unit of surface area
is esséntiallyfindependent,of.the specific area of the silica.

(2). The adsorption capacity of surface of silica for hydroxyl
jons at pH 2 12 is about 3.5 T 0.3 hydroxyl ions per m uz.

(3). The number of hydroxyl ions adsorbed per m,uz at any pH
is a function eof pH value. It increases as the pH value increases
and reaches-the saturation. value of 3.5 as -the pH value goes beyond

12,
. Percent of Charged Silanol Groups

Now, let us compare .the adsorption capacity with the total number

lExamples of resins used in: the preparation are Dowex 50 (H- form),
(Dow .Chemical .Co.); Nalcite HCR. (H-form), (National Aluminate. Corp.);
Amberlite IR-4B (OH-form), and Amberlite IRC-50 (H-form), (Rohm & Haas
Co.). Dowex 50 and Nalcite HCR are sulfonated addition copolymer pre-
pared from. styrene and divinylbenzene (DVB) For further information
and -thepories on ion' exchange, see: the famous treatise by Helfferich
‘(Reference # 29),
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of (charged + uncharged) silanol groups per unit aréa on the surface
- of Ludox particles, The latter is. twice  the number of the surface
Si atoms.

Suppose, on.the average, there are n Si atoms along the radius
r of a sPherical,amorphous,siliéa»particle. The total number of Si
atoms in this particle- is fgl 23 . The mass of each 510y group is
M/N, , where M= 60. is -the formula weight, and N, is the Avogadro's
number. Thenfotal mass is. therefore |

4103 LMo 41t r3p
3 Np 3 (2-1)

where pis -the density of amorphous silica. Solve for ﬁ, we have
n=r(Np /M3 = (6.02%1023x2.20/60)3x = 2.80x107 =
‘ (r in cm,)
The number of Si atoms on: the surface is 4ﬂ'n2, while the area is
4ﬂ‘r2. - Therefore,. the number of Si atoms per unit area is n2/r2,7
which is 7.84 x 1014 atoms/cmz.,vory7.84 atoms per'mzuz.
This number indicates. that the total silanol groups on:the sur-
face'ha§e a-density of 15.6 groups per m;uz. Only 22%. of them carry
-charge under saturation conditions., Only about 4% of them carry charge
at pH = 9.5 to 10.0. - This is a remarkably low percentage that a sat-
uration layer formed by closely packed. counter-ions does not seem to
be existing. We will come back:toe. this peint in.next.chapter when

we discuss-the Gouy-Chapman model.



CHAPTER 111
. THE  THEQRY OF ELECTRO-CHEMICAL DOUBLE LAYER

We shall now introduce the theory of electro-chemical double
layer. Based upon this, estimation on magnitude of electrical field
strength énd_potential will be made, Electrostriction effect and
the effect 6f_preSSure on relaxation time will be discussed in next

chapter.
Poisson-Boltzmann Equation

According to Gouy and Chaﬁman (30, 31), the ionic7charge in the
solution surrounding the particle extends some distance into the li-
quid. 1In this theory, these dissolved ions are assumed to be point
charges of negligible dimensions. The distribution of these ions
along the normal coordinate of the surface is governed by the electric
field and thermal motion, If wevfurther assume the average concentra-
tion of these ions at a given point can be calculated from the aver-
age value of the electric potential at the same point, then, by

Boltzmann's theorem,
n_/ng = exp (Y_eQVkT): n+/ni = exP(-V+e§7kT); (3-1)

where e is the fundamental charge;

V_, V. are the valences of ions respectively;

17
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n_, iy are the lotal concentrations in number of ions/cm3;

n®, nQ are the concentrations of ions far from the surface
+ 5

i, e,, where. &= 0,

The space charge density
p=p - p_v= e (n+V+ -n V). (3-2)
Since the solution far from the surface is electrically neutral,

o _ o —
Vn = Y+n+ , apd p= 0.

1f, furthermore, V, = V_,(which is enly approximately true in the -

cases of Ludox,) then n°® = nﬁ = n,

n =n exP(Ve@7kT)

(3-3)

n

= n exp(-Vel/kT)

In the theories treating the stability of colldids; expressions.:
(3-2) and (3-3) are traditionally introduced intoAtHe Pdisson's
equation

VA = --ple (3-4)

which in term gives us. the so=-called Pdissen-Boltzmann'equation:

Vo = ~28Vn gion eV -~ (3-5)
€ kT - :

. The Limiting Cases of Poisson's Equation
It should be. point out that the above relation implies impli-

citly that the dielectric constant is independent of direction (ise-

tropic) and of electric field strength. Otherwise,. the general
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Poisson'!s equation should take the form:
.ng =‘_ _£t;ﬂlf§. | _‘ ' - (3-6)
€0 -
At small field, VP = v-(xeéﬁ)\='(/§-1)eov§ﬁ = - (ﬁ;;l)eovzig
andvquation:(3-6) is reduced to. equation: (3-4).

On”the éther hand, at;thé’high;field.limit,vthe.dielectric.near
the;charged'particiesis~qompletely saturated.  In.the saturated re-
gion, ;.= PE = Np‘? » Where P is the polarization.per unit volume;
‘p, the elementary-dipole; and ?, the unit vector along T. Using the

vector identities

S A
VB = P vef + £.VP,

T e - P 2
vf =3 + (I =
r r

.r .r

and the fact. that VP.= 0.(P-has:beenﬂé55umed to. be constant),
we have

VsP = 2p/r. , (3-7)

Substitute (3-7) into (3-6):

. 2p :
e SR I S . (3-8)
j '".GO G.Or

This is the high field limit of the Poisson's equation.
The Internal Field

In general, the electrical polarization is a function of field
strength., At present, no.existing theory gives satisfactory relation

- between them for liquids under sufficient high field. - For liquids
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composed‘of permaneﬁt electriczdipoleé, the electric field produces
induced dipoles as.well as re-orients the permanent dipoles. Such
a double action could-therfore increase the internal electric field
‘F'far‘beyond the-extgrnal_field:E. Eecausevof the. thermal motions
of the 1iquid molecules, the.internalvfield has a complex a, c. com-
ponent. The well-known‘Langevin_relationtrelétes polarization .due

'to re-orientation te. the internal local field strength F:

-

, | A
P(re-orien.) =-_P[L(-ET')]"E

‘where " L(A) = coth A - —%r,;is the Langevin. function. In:isotropic

media such as 1iQuids,ff is‘in;thevsame‘direction as'E. However,
theorgtical»difficulty’arises because: the relation between their
magnitudes depends upon the:choice of the model of cayity.in,the,cal-
culation. Different attempts were proposed by varieus authors. - None
of them.is.of»complete'success. The situation is even more serious
for polar liquids, Among these existing theories, Onsagert!s (32)
and,Kifkwood's (33) giﬁe the best result. Bodth-(34), based. upon
'Kirkwood's theory of polar liquids, reperted an approximate: relation
between electrostatic dielectric .constant of water and. the applied
electric field strength. ‘In;hisvthebry,nthe‘dielectriCeconstant
approaches. the value of‘the:sqqare‘of,the»refractive index in- the
high field limit. The exPerimental.value of:79 fo£ thé~dié1ectric
‘constant at: room temperature and lew field strength is ebtained.only
by adjusting the accepted dipole moment. from 1.87 D, U. te 2.1 D. U.

(One Debye Unit‘is.equal»to.10518 esu.)
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The Thickness of Dielectric Saturation Layer

If such a saturation layer can, at least in theory, be distinguished
around a colloidal "Ludox" particle of 3 to 8 m u in radius , the
thickness of such a layer will not be very thick, as we will see it
in the following discussion:

Suppose a charged solid particle of radius o and surface charge
density o is submerged in water, and suppose the region occupied by
water can be divided into. two distinctive regions: In the region
between the spheres of radii «and r, (ro.> ‘a,) water is completely
polarized, while optside of L the medium can be described by a single

dielectric "constant!, A reasonable choice of r, is that where the

o
field strength E(r,) satisfies
pE(r,) = kT | (3-11)
In the inner region, equation (3-10)
- ViE=. £ 4 2P (3-10)

€o €of
is satisfied. Integrate (3-10) over the volume of the sphere of
o’

radius ry, i. e., fromr =0 to r = r_;

f vEav= Lfpav+s 22 av, (3-12)
v o Jv €& JV

From the divergence -theorem, we obtain

-J‘ V+E dv .= -j‘ E-dS = - 4'1Tr02E(r‘o) (3-13)
Vv S .

The second term on:the right hand side of (3-12) is:
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= 2 _ .52y, .
eo i - r eo . r T ‘ € (ro - )0 (3-14)

Hjed

2P 1 ~2p 17 4oy r2ar 4r P
hakal dV'= . N
v (o]

If we further assume that ‘the space charge density within this region
+is zero, i.e., no.counter ions present, then the first term on.the

_right hand side of (3-12) is

, 2
o dv=. | g5 = ATl . (3-15)
Jv. €o JA ®o » €o

From (3-12), (3-13), (3-14), and (3-15), we have

2
r2E(r) =29 B (r2 .42, (3-16)
o ‘e’ o € = ©

. from.which T, can: be .obtédined:

—_ oo+ P 2
id a[ ¢ E(ry) +'P ,] (3-17)

Taking ¢ = 0.112 coul./m?, i.e., 20% (from Appendix D) of the
saturation surface charge density,which is 3,5 negative ions per.m,uz,
or 0.56 coul./m2; P as Np = (6.02x1023x10%418 molecules/m>)x6.1x10-30
. coul,-meter = 0.204,cou1./m2; E(ro)las.kT/p = 6.6x108.volts/meter;
€g. = 8.85x10-12 coul./volt-meter, the ratio of r_/wis estimated.as

__ro_ = 1.24

If such a relation: is valid, then.-r, - o = 1.8 m u for a particle

(o]
of 15 my: "in diameter. If we further estimate -the distance between
-water molecules by the same method we estimated the distance between

Si atoms on Silica surface in. Chapter II, then.we have

n=r (Np/MmL/3,
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and r/n = (18/6.02x1023x1.0)1/3 = 3.1x10-8 cn.

A water layer of 1.8 m,urin»thickness.Cer¢5ponds to a layer of six
water molecules. - (Recall. that. the layer éf chemisorption and.the most
- intimate layers of physical adserptien, as observed by Zimmerman et
al., has a thickness of about two to. three molecules,. which could be
-considered as a'reasénableflower limit of thg»thicknessvof dielectric
saturation. layer.,)

It is interesting to poeint out that the ratio: between r, and

o
is independent of &, the.particle diameter. This. is se because we
have assumed that the space charge density is zero in.the inner
region, which: is really not the case, - The space:charge shall give

us another term in equation: (3-15), which will offset the effect

due. to. the. surface: charge ¢ ; this in.term gives us a;shaller:numer-
.ater in (3-17), and a smaller value of r -,

The criterion. pE(r,) = kT should actually bepr(ré)\= kT. Since
the local field F may be.considerably larger than E at. the same. point,
and sincé F may be assumed to. be a monotenically increasing function
of E, we may conclude that .ré,> ¥y, O, in other words, equation: (3-13)
,should.be‘iﬁtegrating at a lower value of E,,ﬁhich:turnS'out to: be a

smaller deneminater in (3-17), and a larger value of r, - «.  However,

o
the value °f‘€°E(ro)’ using E.= kT/p, is less than 3% of the denominater;
: (8.85x10'12x6.6x108,= 0.0058), therefore, the substitution: of pF =kT
by pE .= kT has. little effect on the result. We can thus consi&er that
equation (3-17) gives us a good estimation of the upper limit of the

thickness of the saturated polarization. layer,

One interesting conclusion.can: be reached. from:the above discussion,
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If one wants to assume that: complete polarization be a chief cause
of change of enviroment state, he will find that the proton population
in this enviroment state is directly proportional to.the volume of

solid in. the sample

4Tra2(r - @) 1 k4T3 ::'Vsolid’v

0

and independent of particle size if o, or equivalently, according to

. Hester, et al. (28), the pH value of the sample has been kept: constant,
The Space Ion Density

“In. considering the problem of space charge, however, there is
one more trouble one has to meet with if the Gouy-Chapman picture
-is used, Since the iens are assumed. to: be point. charges of negli-
gible dimensions, it is possible to.reach an extremely high density
of estimated space ions such that there is not enough space for them.
According to Bier (p; 14, Ref. 27), in a usual case, the surface
potential of a colloid is as-high as 250 millivolts. Assuming that
the'ion concentration in. the bulk of the solution is 0.0l molar, which
is a reasonablevvalue,.the.concentrétion of counter-ions near the sur-
face is then, according to. equation (3-3),

1 250. mv
100~ *P 725 mv

.= 220. molar (kT/e = 25 mv)

. for uni-valent ions, which is physically impossibly'largel.

lror example, pure water is about 55 molar , pure sulfuric acid,
18 molar. )
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Thezcounter'ion;concentrétion~may therefore-eXhibitbsaturatién
- behavior near the surface, This behavior also depends upon ion
-valence, ion- size, hadration number, etc. As a consequence, the -
thickness of the diffuse layer will.then~bevconsidered.greate;'than
-that predicted by the Gouy-Chapman: theory.
- Fortunately, such situation.will not be met in.most of the Ludox
samples. We will be back: to this point during the calculatioen: of

potentials in.a flat. double layer.,
The Flat Double Layer

The traditional Poisson-Boltzmann equation is a non-linear dif-
ferential equation, It has been solved analytically for plane inter-
- face between "particle" and selution.  However, no analytical selution

.was obtained in spherical coordinates. Debye and.Hﬁckel treated. it
approximately by taking only the first term of the expansion of the

- hyperbolic sine function, This approximation is too.rough for mest
of the cases of colloids, where surface charge densities are so large
that. the exact:-solutions are required., Loeb, Overbeek, and Wiersema
(35) solved the spherical problem with.the aid of a computer. Unfor-
‘tunately, theirzhumerical.tables‘arendifficuit to: handle., At present,
- it is not clear how detailed a picture-willvbe»required.to account
‘for the NMR data, We .therefore confine ourselves to a study of .the

- flat double layer for the:time being.

In a-flat double layer, the Poisson;Bolthann;eq#ation (3«5)

. has only oene variable,

the normal distance from the surface,

The. equation: is
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%g 2eV ‘
d = =1 sinh‘%%g

dx e ' (3-5a)

If we call y = eW/kT, and rewrite equation (3-5a), we have

.dzy _ 2e2v2y .
ax2 = ekT  sinhy,

Multiply beth sides by Z%E., and integrate between.x and , with boundary

'conditions‘ y.=0 -and %§v= 0 at x = o,

© 2 2.2 aso d
i 2SZ E_% dx = —EE—Y—E— sinh.y &Y dx
g 4% dx ekT % dx ’
2 te?y?
0~ ( gi') e —fEEE—E— [cosh 0 - cosh'y ] .
et dy _ 4e2V2n _ | 8eVn . ..y
Iz = -J ——él_(_T_—— (cosh.y. - 1), —-'J-—GT(-T—— sinh 5

(3-18)
- The minus sign.is chesen in order that the selution may have a

-physical meaning. ' On separation.of variables, we have

2dy _ [ 8e4Vén
JIZ_ v T AT & (3-19)

“This equation: is readily integrable if a factoer of e¥/2 is multiplied

. to both: the denominater and.the numerater of the left side. : The result

is
/2 | 2e%y%y
In /7 .= |7 x + C
e¥/2+1 kT
‘Recall that y =y == eZ$b -at_x = @; the integration.constant is
, ) eyC'/2 - 1
then. obtained as: C =1l "—-_ , and

eyo/2.+ 1'
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| o | 72
(e¥o/241) + (e9°/2.1)exp(- / 260y
&Y/2 = : ekl

. (3-20)
2y2 ‘
(eYO/2+1),- (eYO/zml)exP(_ _2e°Vin %)
' ekT
In -the following equations, we -shall: c¢call
A=e¥o/? + 1 = exp(eVl /2kT) + 1,
= oYo/2 - : g
B =e’0/" . 1 = exp(eW,/2kT) -1, (3-21)
; 2e“Ven
R d - s
n g ekT
Rewrite equation (3-20); - solve for W :
2, ~=Bx
g= 2L g 2EBer” ), (3-22)
eV A . Be-Bx
Differentiate equation (3-22); we obtain
_ _=Bx
b4 e A2 . B ew.BX

A'relation between surface potential and surface charge density is

(oo} (-}
o = - f pdx = ¢ I —%;%; dx = - . ¢ _%%L‘ . - (3-24)
o] o) ) x=0

Using (3-18), we have

or

_2kT ’ X2 ‘
¥, = - sinh~l |~
: eV . 8 Gan .

(3-26)

In order .to obtain numerical data from:.equations (3-22), (3-23),
and (3-26), it is essential to use -the correct value of n.

Physically, ‘the stability of the colleid is-highly  dependent = - upon
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ion concentration (36). In Ludox, -sodium:chloride and sodium: sulfate
- salts are added to. improve its stability. It is rather unfortunate

- that several salts are present in the sample; therefore, no. straight-
forward way of calculating n is available . Several assumptions have
-to be made in the calculatien,

Thexsﬁlfate-ions are di-valent, This fact has net been: taken
-inte account in: equation (3-5a), which: otherwise will contain. several
terms each for a different kind of ion., Hewever, the co-ions (ions
-which have thelsameasign_as-the-surface-charges) are less effective
to the stability of colleids (36); we thus treat the number n as
the' number of .the mono=valent: counter-ion (Na+).per unit volume far
from the surface. ' From Appendix D,  we see-that..the sodium.ions:come
-from three sources: (1), from added NaClj; (2), from added Na)S0,3
and (3), from ionized NaOH diffused. into the bulk,
The -amount of total titratable alkali is far much greater than

that could be expected. from.pH calculation (Table I), - Therefore,
.enly a-small portion ef theititratable_alkali.is»present in.the bulk
1liquid. This portion af:the titratable alkali is ionized into Né+
and OH_; and these OH ions aregpresumably;reSponsible'for'thepr
-measurement, Sodium;ions‘from~this.source‘can:be=neglected.both~in

-evaluation of o and of n (Table I, II), Thus, we have

z £50 \
n = ( 1 )\ViNAo_i s
i

where the summation is:carried over all seurces of sodium ions;

f; is'the weight fraction of NaCl or NapSO0y,

‘Mi’ the molecular weight, Vi,'the valence respectively,
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"TABLE I

THE TOTAL TITRATABLE ALKALI AND THE OH ION CONCENTRATIONS CALCULATED
FROM pH VALUES IN UNDILUTED LUDOX COLLOIDS

Type of Colloid HS LS SM AM  AS

pH at 25°C 9.9 8.3 8.5 9.1 9.6
[OH—] (in 10-°N) 4 7.9 .20 .32 1.3 4,0

Wt. % of Na,0

from pH Data ,00020% .000005% .000009% ,00003% .00006%*

Wt. % of Najy0 (total)

o o, \ 9, [/ =39
from duPont Data Sheet .31% .10% -10% .13% +25%

* . .
-"These numbers are % ammonia.

TABLE 1II

NUMBER. OF SODIUM IONS PER c¢.c,- WATER. IN .UNDILUTED LUDOX COLLOIDS

Types of Colloid HS LS - SM AM :AS

Veo! Vo, - 0.846 0,845 0.932 0.846 0,845
From Added NaCl™ 59,0 3.0 1.2 10.4 1.48
F?om:Added NaZSQA* | .6606 | 12 3.3 7.3 6.05
From NaOH*, Using pH Dgta . 0.48 0.012 '0.019 0.076 0.24

*

Total Numer of Na' ions 120 15 4,5  17.7 7.53

*In 1017 ions per c.c, water,
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p is the density, and V./Vy, the volume ratio of the sample
and water in it; Np, the Avogadro's number.
If we assume that all the remaining portion of the titratable alkali

are on the surface, then

- (£/M)Np

o
AF

where f is the weight fraction of titratable Na,0,
M = 31, the formula weight of %Nazo,
A, ‘the specific area per gm. of silica, and
F, the weight fraction of silica in the sample,
k is a conversion factor of 10~18 if the unit of o is expressed

in ions/square m W,

The numerical values of n are given in the last line of Table II,
In Table III, the values of ¢ are given in two different units, namely,
in ilons/m pz and in Coul,/m?, We also give the values of B and B”lat 25°C,
Notice that B has the dimension of the reciprocal of length, The value

of B is obtained from the formula

= 10-3 |
B = 2,30x10 ’ :

where n is expressed in number of ions per cubic meter. The values
of Y, and @% at 25°C are listed in the last two lines of Table III,
To these values of @b, only that of ammonia stabilized Ludox has a
possibility of reaching ionic saturation.

With these numerical values, we have calculated the field strength

at any point by equations (3-23) and (3-21), the potential ¥ at.any
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TABLE 1I1I

SURFACE CHARGE DENSITIES AND SURFACE POTENTTIAL OF LUDOX

Type of Colloid HS LS SM AM AS

6~ (in # ions/m p2)  0.98 0.31 0.34 0.41 1,44

0" (in Coul./m2) ~0.155  -0.050 =o}055 -0.066  -0.232

8 (in meter=1)*  4.62%108 1.63x108 0.39x108 1.77x10% 1.16x108
8=l (in mp)* 2,16 6.14 25,6 - 5.65 8.4

Yo (=eW_ /KT)* +5,86 +5,68 +7,07 +6.06 £9,44

T, (in mv)® | -150 =145 - -181 ~155 =241

* At 25°C,

point by equations (3-22) and (3-21), and the space charge density

by the following'formﬁla,

eWr
kT

p = ~ ZeVn sinh

aBe=P*(a2 + p2e-2PX)
(A2 - BZEEZBX)Z

-8eVn

(3;27)

These values are listed ianable v,



TABLE iv

FIELD STRENGTH, POTENTIAL, AND SPACE CHARGE DENSITY IN A FLAT
DOUBLE LAYER AS A FUNCTION OF DISTANCE

(4) 30% Ludox HS (25°C)

Bx 0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.5 2.0
x  (in & ) 0 2,16 4,33 6,50 .5066 13.0  17.3  21.6 32.5 43.3
E  (in 107v/m) 22,2 1l.4  7.65 5.65 4.48 3.09 2,29 1,76 0.99 0,58
T (inav. ) 2149 2116 296  -82 71 .55 <4k o35 .20 7.7
p (in Coul./c.c.) 711 180 . 83 47.4 31 16.4 10.3 7.1 3.5 1.95

[43



TABLE IV(CONTINUE)

(B) 30% Ludox LS  (25°C)

Bx 0.0 0.02 0.05 0.1 0.2 0.3 0.4 0.6 0.8
x  (in A) 0 1,23 3.07 6.4 123 18.4 246 36,8 49,1
E (in 107v/m) 7.1 6,06 4,96 3,82 260 195 1.5  1.07  0.80

v (imav. ) ~165 2137 -126  -113 94 .81 271 <55 43

o (Coul.jc.c,) 79.6 50,7 34,0 20,4 9.6 5,7 3,72 2.0  1.26
(C) 15% Ludox SM (25°C)

Bx 0.0 0,01 0,02 0.03 0.04 0.06 0.08 0,10  0.20

X (in &) 0 2,56 5.13 7,70 10,25 15.4 20,5 25,6  51.3

E  (in 10’v/m) 3.43 2,95 2,58 2,28 2,04 1,70  1.44  1.26 0,77

¥ (in mwv. ) 2181 -172  -165  -158  -154&  -144  -136  -130  -105

o (in Coul.je.c.) 126.7  93.3  71.7  56.5  45.2  31.1  22.6  17.4  6.56

£e



TABLE 1V (CONTINUED)

1223 392

(D) 30% Ludox AM  (25°C)
Bx 000 0002 0005 ‘051 OGZ 003 004 096 098 1’00
[»] .
X (in 4) 0 1,13 2.82 5,65 11.3 16.9 22.6 33,9 - 45,2 56,5
E (in 107v/m) 9,04 7.25 "5.97 4.48 2,96 2.22 1.7% 1.20 0.89  0.68
U: (in mv. ) 2152 <142 o131 =117 97 87 272 36 44 .35
o (in Goul./C.g.) 151 72.5 49,4 28,1 12.6 7.2 4.6 2.4 1.5 1.0
(EYy 30% Ludox AS (25°C)
8x 0.0 0,02 0,05 0.1 0.2 0.3 0.4 0.6
x  (in &) 0 1,68 4,2 8.4 16.8 25,2 33.6 50,4
"E (in 107v/m) 33.4 30.0 17.0 9.6 4,9 3,18 2.29 1,39
¥ (i mv. ) So240 2202 o173 o145 113 94 .81 -62
o (in Goul./c.c.) 1510 127 33.2 14,6 7.8 3.2

®e



TABLE V

TEMPERATURE DEPENDENCE OF E AND ¥ OF 30% LUDOX HS

Bx 0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.5 2.0
x (&) 0 2,08 4,15 6.22 8,30 12,44 16,6  20.8 31.1 4.5
0°C E (107v/m) 21.8 11.2 7.45 5,50 4,32 2,98 2,20 1.70  0.95 0.56
T (mv.) 2151 116 -96.5 =82.5 -71.3 <55.5 -43.8 -35.1 -21.9 -12.7
(o]
x (4) 0 2,26 4,52 6.78 9,04 13.53 18.1 22,6 33.9 45,2
50°C E (107v/m) 22.4 11.52 7.80  5.82 4.61 3.20 2.36  1.83 1.03 0.60
¥ (mv.) ~147 2115 =94.8 -81.0 =71.0 =55 = -43,3 -34.6 -21.9 -12.2
- _
x (A) 0 2,42 4,85 7.28 9,70 14,57 19.4  24.25 36.4 48,5
100°C E (10v/m) 23,1 11.88 8,11 6,15 4.86 3.36 2.52  1.93 1.09 0.64
¥ (mv.) -144 113 93,8 -80.5 =70 54,5 -42.8 34,6 -20.4 -12.2

Gg
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To illustrate the temperature dependence of equations (3-22) and (3-23),
an example is given in Table V on 30% Ludox HS, The range of variation
is smaller than expected, The numbers in Tables IV and V are plotted on
the next few pages.

The values.of surface charge densities listed in Table II1 agree
fairly well with the experimental ¢'s of Hester et al (28). The places
where E = kT/p ‘are x. = 5 Z for Ludox LS at room temperature, 7 A for
Ludox AM, 10 for HS, and 21 for AS. The value of E for Ludox SM has
never reached the value kT/p even on the surface. Fortunately, all
these values fall within or close to the upper limit of thickness of’
dielectric saturation layer as we have estimated on p.23. Space charge
densities for most. types of colloids are low to. be accounted for an
ion saturation layer; except in Ludox AS, the ammonia stabilized colloid,

may possibly reach the saturation barrier,
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FIGURE III
Temperatuture Dependence of Electric
Field Strength in a Flat
Double Layer

(30% Ludox HS)

Distance X (in A)



. CHAPTER IV
"~ "ELECTROSTRICTION EFFECT ARQUND THE DOUBLE LAYER

We shall now estimdte ‘the pressure change due to the strong
electric field created by the electric double layer. The electric

field strength and potential are obtained from previous chapter,
Forces Acting on a Volume Element

Consider-a volume element AV of an (isotropic) liquid medium.

The condition of equilibrium can be stated as

f-Vp=0 (4-1)

—_

where f is the body force per unit wvolume acting on AV, and p is the
pressure in this element, The body force, as given by Stratton (37),
is

Fe= oL B¢ + L (2 98 (4-2)

2 2 T
where.T‘is»the density. We save the letter p for the space charge
density.
In the liquid space surrounding a colloid particle, there is a
non-zero space charge density due-to:the difference in concentrations
of positive and negative ions, A term upf has. to be added to -the

above body  force expression,
=L B2 ve+ L o2 28 )4 oE (4-3)
.2, 2 T

According to Stratton,. two important assumptions have been.made in

39
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the Qerivation of equafion (4-2); namely,
! ‘ L ;
(1), ¢ depends only on r and T%
(2), the boundary of solid is rigid so that no work is
being done during the compression.,

The first assumption gives us no problem in the case of colloids since
the dielectric constant of water is @ function of field intensity E,
which is a function of space only. The second assumption could not
be fully justified since thevcompressibility of water is only seven

times greater than the compressibility of quartzl.

A Relation between E, , -andup-

From equations (4-1) and (4-3), a differential relation between

pressure and field intensity
1 L2 1 2. O¢
e -2 E% Vg + —~ V(E4T 88 4 gE - Vp = 0O A
3 € 2( ,a'r) P P (4-4)

is obtained. Dot multiply equation (4-4) through by dS and integrate,
r r r

’ r bnd band bd —_
=% f E2V3°dS + % f V(Ezfgg)vds + j pE°dS = j vpedS , (4-5)
e o) (=] (o)

oo}

This equation can be reduced by using the following relations:

r - €
=% f »EZVeedS = . % jﬁ "E;Zde B (1)
® 579"
o ” . | E
l/zf V(EZT'%%)“m =% ’EZT.? -y E%r 28 (11)
® ‘ T 0 aT
r ., I y
® Jo . . .

1According to International Critical Tables.
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T — P
f Vp'd’S:f dp = p - p, (1IV)
Now, let us start our discussion by integral (II). A classical

way of finding_vvgg is by employing the Clausius-Mossottit!s law,

which is too simple and does not describe the situatien correctly.
Instead of using the Clausius-Mossotti's law, we are going to.try
~a formula of dielectri;:constant for water given'by Booth (34), which
reads: |

g2, 28 N (2 + 2u . A 73 Bu(n? + 2)

€, + 3] 73 Ee, L( 6 kT )
(4-6)

wﬁere T is ﬁhe refractive iﬁdex,
N, 'the number of water molecules per c.c.,
'mu; . the permanent electric dipole moment of water molecule, and
L, the,Laﬁgevin‘function. ~ﬁ-~ L(x) = coth x - —%— .
Noticing that N is related to the density T by the relation
NAT
M

N =

where N, is the Avogadro's rumber, and M, the molecular weight, we

may obtain : frem (4-6) a formula ‘ for T%%_:

D¢ _ 28N (1%42) p L(N 73 BN 42)y - (e . T]Z)

7

dT  ‘3Jf7§ E okT €

€

(4-7)
With the aid of equation (4-6), one should be able to:solve, in

principle, the general Poisson equation (3-6)., The value of E thus

-obtained should be substituted into expression (I) and (II), and a

relation between.p and ¥ obtained from the general Poisson's equation
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should be used in expression (III). Such a procedure inevitably re-
quires complicate iteration. Since our purpose is to obtain an order-
of- magnitude estimation, we shall try to avoid unnecessdry compli-
cation. For this reason, the Poisson-Boltzmann's picture is again
adopted.

In Poisson-Boltzmannfts picture, ¢ has been assumed & constant.
This is a happy assumption because we can thus put expression (I)
‘equal to zero, It is interesting to point out that it is possible
to obtain the same result by assuming that the density T is a con-

stant in equation (4-4). By using-a general relation

de
Ve = aT VT,

we can easily reduce (4-4) to its equivalent form:

L V'(Ez _B_E) +LE 1 Vp (4-8)
aT T T

Dot multiply term by term by dS and integrate. Since T is regarded

as a censtant here, we can take it out of the integral sign. So,

v
2 de 1 1
5 E° T=Tj pd ¥ =-— (p - p.)
(o]
This is the same equation as we obtained in the Booth-Poisson-Boltzmann
treatment.

Expression (III) can .readily be evaluated under Poisson-Boltzmann

picture, which says that pcan be expressed as:

p = - 2eVn sinh—%%gL o

Therefore,



43

W R

- .pd¥ = 2eVn f sinh —& A= 2nkT( cosh - 1)
Io s XT XT

(4-9)

Combine (4-5), (4-7), (4-9), and expression (IV); we have

, 2 W
P - Py = %EZ(}Z - 196 + 20kT (cosh —=X- - 1)
o

(4-10)

Estimated Pressure .and Its Effect on Tl

To obtain the upper limit of Ap due to eletrostriction effect,
let us. take the maximum values of E and ¥ ‘of 30% Ludox HS. From
Tables II, III, and IV,

| E = 22.2x107 volts/meter,
= - 149 mv. (or Yo = eV, /kT = 5.86),
n= 120#1017 ions/c.c.
=12

Taking (e/eg) - ﬂz = 70, e = 8.85x10

o farad/meter, we have

—l—‘EZC_E_ - ﬂz)eo = 1.65x10’ NewtonS/meterz, and

2 co

2nkT (cosh Vo - 1) = 1.72x107;NewtonS/meter2.

The maximum total pressure-is only about 3.4x107 Newtons/meterz,
or 340 kg,/cm:z.u

Benedek and Purcell (38, 39)'has.meésured the longitudinal relax- .
ation time of proton in water up to 10,000 kg./sz. A more: careful
work was done later by Nolle and Mahendroo (40), = They found eonly
small negative pressure coefficient of Ty-. ‘At 340 kg/cm2, the pres-

sure effect is essentially negligible.,



CHAPTER V
THE MULTIPLE CORRELATION-TIME THEORY

In this chapter, we shall try to give a theoretical basis teo
justify the use of the phenomenological equation of multi-correlation-
timesin colloids. As we have seen, estimations of change of proper-
ties in the double layer fail to give us proper considerations on the
increase of relaxati;n rétes of protons in water in the colloids; we
shall therefore look from a different point of view. It is clear from
the fundamental theory (Appendix B) that all the informations: about
the motions of the molecules are contained in the orientation functions,
These informations, except @ random phase factor, are subsequently
passed into the correlation functions; theréfore, a study of correlation
functions are essential to the problem. A complete knowledge about
the correlation functions of a particular system is of course a problem

of statistical physics; we shall leave it for future investigatien.
Harmonic Analysis

In the general theory of harmonic analysis (41), an expression

of considerable interest and importance is

lim 1 * t/2
P12(T) = o0 - 22 £, (D) fp(t+m)de, (5-1)

where t is time and T is a "time displacement!" independent of t., In

44
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case either or both of the functions are complex, (5-1) should read:

lim 1 T/2

C‘D12(T) = Tow T J_T/z f*l(t)fz(tﬁ)dt (5-1')

1f fl(t) = f2(t), @11(T) is called the autocorrelation function of
fl; if fl(t) and f2(t) are two statistically related but otherwise
independent functions, ¢;9(T) is called the cross-correlation function
of f£) and f,, in the specified order. Autocorrelation functions are
frequently mentioned in physics literature; sometimes, they are simply
referred as correlation functions.

If we write fl(t) and fo9(t) in their Fourier integral form:

@

£1(t) =f P e dw
-] (5‘”2)
O Lt
f,(t) = f Fo(w) e W Ty
-C0
we can easily prove that
» T/2
1 ¢ % *
—_— £1(t)f,(ttr)dt and Foi(w)Fy(w)
T 12 1 1
are Fourier transforms of each other, If f; = f,, then Fl’fF1 is

called the "power spectrum" of fl‘ The term power Spectrumvis mise
leading; only if f1 is related to such quantities as voltage, current,
velocity, displacement in a harmenic escillator, etc;, the expression
Fl*F1 has the physical meaning of 'power", |
So far we have not stated the nature of £,(t) and f9(t). They
may be periodic functions of time, aperiodic functions of only single
occurance, random time series of any sort, or a mixture of any two

of the above. The analysis of autocorrelation and cross-correlation
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functions of periodic or aperiodic functions is of conceptional im-
portance; since they are "definite!" function of time, we know their
future” quite well from the analysis of their past. These functions
bring us no new informations, and no statistics is needed in their
analysis.

The original idea of correlation was introduced by the statist=
icians, For certain problems associated with the strength of the
relation between two random variables, the statisticians introduced
the correlation coefficient defined as

2xnyn
Pry = o7 5

From this historical background and the frequent application of cor-

relation functions on problems dealt with random variables, it may
mislead us to the idea that only random functions have to do with
correlation., In fact, the energy density spectra of periodic or
aperiodic functions are well known in the field of Fourier analysis.
These spectra are also a periodic or aperiodic functions to which
we definitely cannot assign a correlation time, Only a certain type
of ensemble of random variables are qualified to be assigned a
single correlation time., One of the examples is the ensemble whose
probability distribution follows the Poisson distribution.

We' shall first state some of the general theorems about corre-

lation functions; the proof of these theorems is given in Appendix E,

THEOREM 1I: The autocorrelation function is real and even.
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THEOREM TII: The autocorrelation function approaches to zero as T
approaches to infinity, if f£,(t) contains no d.c. or periodic com-

ponents

THEOREM III: The autocorrelation function is continuous everywhere

if it is continuous at the origin.

THEOREM IV: The maximum value of the autocorrelation'function occurs

at the origin; i.e., @;;(0) > lmll(T)( for every T # 0.

THEOREM V:. The autoecorrelation function at the origin is the mean

square value of £,(t).

It is clear from the definition (5-1) of correlation functions,
in order that ¢ 9(7) be a definite function of 7, the integral has
to be independent of time t, Such @ requirement is obviously fulfilled
in the cases of periodic or aperiodic functions, but it is not neces-
sarily true for an ARBITRARY random function. The ensemble of random
functions (which we shall call it.the-randomvproceés)vwhich fulfills
this condition is a stationary random process, This is an important
catagory of random processes because each of them may be defined by
a set of time independent probability functions (42) and therefore
may bé handled'by using the ergodic theorem. The ergodic theorem
states that: for an ergodic system, the time average of a member
function of an ensemble is equal to the ensemble average of the sys-
tem, In the cése ofvautoéofrelétion funcfién, this statement is

equivalent to
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s ®

_ lim 1% 7 = _ ,
70 £ (B)F (ehr)dt —J_Zlsz(yl,yz,T)dyldyza (5-3)

21107 = e 27| o

Here y; and y, are the heights of TWO member functions of the ensemble
at the SAME instant of time, and Tis here considered as a parameter,
P(yl,yz;T) is the unconditional probability of occurance"of ¥y

and Yoo If we reconize Tas the time difference between ty and ty,

we can write

P(y;5¥93T) = Py IP(yy/y 37D

where P(yl)dy1 is the probability that y; lies in the range (y, yl+dyl),
and P(yz/yl;TYbQS the conditional probability that, knowing Yis we
find y, lies in the range (yg, y2+dy2) at a time interval T = t; - ty

later, Therefore,

_lim 1 * T

(T)_T—'m 2T | ¢

*
wll fl (t)fl(t+T)dt

~n o ~ o
= ¥1Y Py IP(yy/yys T)dy dy,. (5-4)
] )
Both (5-3) and (5-4) serve as useful formulas in evaluating the

correlation functions,
The Brownian Motions in aColloidaIISystem

Having discussed some general properties of correlation functions,
let us take a look on the general features of Brownian motions.  The
equation of motion of a particle executing Brownian motion in a simplest

medium can be written as

a U= | fy o+ F(e) (5-5)
dt
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where m.is the mass of the particle; G, its velocitys ,fZ, a: symmetri-
cal frictional part; and ;(t),_a fluctuating part whosevmicroscopic
nature may or may not be well understood. Following Uhlenbeck and
Ornstein (43), we will assume the mean value of F(t) at given t,

over an ensemble of particles which have the same initial velocity

at t, is zero, i. e.,

F(6) © = 0

In systems such as colloidal sols, there are two types of inter-
related Brownian motions which we are interested, i.e., the Brownian
motion of the water molecules .and the Brownian motion of the colloid
particles, The number of independent equations of motion is equal
to the degree of freedom. However, they may be divided into. the follow-

ing two groups:

m, %1% = - fuy + Fyu(t) + Ky[x(6)] , (5-6a)
d |
e g = - fe # F(0) ¥ k[x] (5-60)

where w .and ¢ stand for the water molecules and the colloidal particles
respectively. Both of these equations are written in the laboratory
system of coordinates. The treatment of such a set of equations is
obvious statistical in nature. - The term K[x] is added here to take
account of the "external' forces which.may be a function of space,

such as thé.gravitationél force, the applied electrical field as in

.an electrophoresis experiment, or & slow-varying 8patiél-dependent

time function which may generally happen in colloids. 1In general,
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the K fluptuations.are-of much lower frequencies than the F fluctua-
tions, We shall show this is the case in the next few paragraphs.

We shall exclude all those "external! forces such as gravitational
force, non-equilibrium thermal diffusions, etc.; therefore, let. us
set Kc[x] = 0, For KW[%(tﬂ 's, we ma8y include such kind of fluctu-
ations generally brought into our attention in the study of colloids,
for example: the motion of electric double layer, of "gaint" macro-
molecule-size magnetic impurity particles, the migration of water
molecules or ions on: the surfaces, and the forced motion of water
molecules by their giant neighbors, etc..  For the sake of clearness
of discussion, we will not specify it at the present time,

To a first approximation, equation (5-6b)

du

mg HEE = - foue + F (t) (5-6b)

_may be interpreted physically as .the equation of motion of a colloid
particle surrounded by a homogeneouS, incompressible, continuous medium
so that we may neglect the molecular character of the medium temporarily,
Under this picture, a volume element dV containing mass m, of the
medium in the space around the macro-particle will execute a motion

which can be described by the equation (5-7),

m,, %‘és = - fve + G () , (5-7)

where v, is a velocity of the same order of magnitude of Ugo We may

image .that,vc is related to u_. in.the ordinary hydrodynamic sense.

(o

The term G (t) in (5-7) is a fluctuating force of the same frequency

range of F (t) but of a smalleram litude, Such a velocity field pro-
c v P p
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vide us a relative coordinate system for each volume element. If we
choose the volume element such that it contains only one water mole-

cule, we can rewrite (5-7) in the laboratory system as

d .
m,, ,d_‘t’_C. = - £ v + G (t) (5-71)

An observer in the moving system of coordinates should find the

; . ! e fs .
relative velocity U, = Uy = Ve satisfies the equation

!
dUW

My S = o gy F(6) + { K [x(e] - G0 (5-8)

Equation (5-8) is simply the difference between equations(5-6a) and
(5-71)., Since this observer should find himself in the same situation
as an observer in the laboratory system looking at the molecular
Brownian motion of pure water, we may assume equation (5-8) is iden=

{
tical to equation (5-5), and u, = U3

mw_g.‘é. = - fu + F(t). (5-5)

Substitute (5-5) into (5-8), we find

Ky[x(t)] = 6 (e) (5-9)

which states that the fluctuating force exerting on a molecule due
to the push-around by the colloid particle is of the same frequency
range as the fluctuating force exerting on. the colloid particle,

So far we have only discussed the translational Brownian motion.
In a similar way, we can easily extend our discussion to the rotational
case, The fluctuating terms in equations (5-6a), (5-6b), (5-7), and

(5~8) has a physical dimension. of force. 1In the later discussion of
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correlation functions, we will not make distinctions in notations
between: the fluctuating force, the fluctuating velocity, or the random
displacement, Since they are related to. each other by an integration,

their correlation property is the same.
The Correlation Function of Mixed Fluctuations

Having established that. the frequency of Fw(t) is much higher
than that of K,(t), let us go back to the definition of autocorrela-

tion function,

*
?11(T) = 1 3T J-r‘rfl' (t) £q (£+7)dt, (5-1)

Under experimental conditions, T can never reach infinity. For practi-
cal purpose, only a time interval AT during which fl(t) has passed.
the zero value asufficient number of times is required, SuppoSe now
we choose the length AT in such a way that F_(t) has changed many 
cycles while Kw(t) remains essentially a“cénstant (say, C) during the

interval, then,

Py (T) = %}2 %” [F (t)ﬂgﬂ(t)J F (t+T)+Kw(t+T)] dt
gZAT‘J AT[F (t) + (ﬂ [F (t+1) + Cldt
L n AT , g n AT ,;
= = F (t)F (t+1)dt + — F (t)dt
ZATJ AT 2ATJ AT Y
* AT ,
C * 2
+§’A—'fj M (t+T)dt + C (5=10)

The first term is:the. correlation function related to.the molecular
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‘random motion in & pure water sample; the second term is Fhe mean
value of Fw(t), which we have assumed it be zeroj; the thi?d term,
as far as 71 << AT , can also be proven as the mean value of Fw(t).

As it is frequently cited in the literature, the correlation
function is assumed of the form:

W AT

: . o 1TV
Fw (t)Fw(t+T)dt = <F, (t)Fw(t)>aVe o

—— 5.
2AT J-AT (5-11)
We shall postpone the discussion of the validity of this assumption
in next section, and start to use this form of correlation function
in our discussion.

If relation (5-11) is used in (5-10), the autocorrelation function

in our "petite!" ensemble has the form shown in Fig.IV. It has a constant

A(P]_]_(T)

FIGURE IV. The aptocorrelation function of
a random process with a hidden d.c, component,.

tail at t equals to "infinity", Notice that the value of C2 is arbi-
trary,

The treatment in the last paragraphs has an obvious weakness
because the random process it handled is not a STATIONARY process.

It can only be considered approximate te a stationary process if we



choose our ensemble in such a small volume that K(x) is constant in
it, and such a small time interval AT that K(x) has not changed sub-
stantially, ‘However, (5-10) is a good approximation for the overall
process in.that small region near the origin.
Fig.IV is an example of correlation functions with a hidden d.c.
component, Another interesting example of correlation function is
that of a function with a hidden infinitely-narrow band of sine-cosine
- components, In-the:central portion near the origin, one finds the

. correlation function of thermal noise, which satisfies assumption

(5-11), and therefore its correlation function has an exponential

form, In the region far from the origin, the noise.correlation

function decays away, and theusignal‘correlation function shows up,
which has a (periodic) cosine fqrma - This is the way the communication
engineers used to. separate weak signals from strong random noise(44, 45).

-In the case of colloids, the "signal'" is actually some long
wavelength noise, which will shew up in: the correlation diagram far
from the origin as a slow variation: of c? with 7. This is so because
we have selected a non-stationary small ensemble.

Since a water molecule will eventually pass through all the.-
possible phase space in a colloid $ample, it is evident that:the overall
process is stationary, and there will be no further d.c. or periodic
component; therefore, its correlation function has to approach zero
as T~ o , Since the fast fluctuation has already decayed away, it

must approach to zero. in a slower fashion:
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T —
(0 " e JmT[fw(t)wa<ti] [FuCesr) + K (em) at

= @FF(T)'+ @FK(T) + @KF(T) + @KK(T)

The cross-correlation functions ¢FK(T)‘and @KF(T)may be proved to. be
.zero if we assume:
(1), the F, process and the K process are statistically independent, and
(2), either of them has a zero mean value, (See Appendix E.)

-Thus we can-write the autocorrelation functionbHr a colleid: sys-

tem as:

P11 (1) = Ppp(T) + @ (1)
- If assumption (5=11) is used for.both.¢FF(T) and @KK(T), we have

P11(T) = S (D)F(E)>, e"T'/Tf.+.<Kw(t>Kw<t>>t'e”T’/Tk

(5-12)
The Exponential Form of Correlation Functions

As . we have point out, the fundamental task in evaluating the. cor-
relation function of a random process is to. find first its probability
density functien., Direct integration of equation (5-1) can only be
performed experimentally by a cerrelator. Sometimes; to find the pro-
bability density distributien is not an easy problem; one has to.rely
upon. ingenious. assumptions. One of the most often quoted aSSumétion
for NATURAL physical systems is (5-11). However, this is not a funda-
mental assumption, its sufficient condition concerning about probabi-

lity distribution can be proved without difficulty; i. e.,, if the ran-
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. dom process follows a Guassian distribution law, or equivalently, if
the probability density function satisfies the diffusion equation,
then a correlation time can be defined, and the correlation function
has the form of (5-11).

Let us start with the two dimensional (rotational) diffusioen
equation,
D

s _ 2
Vg P (5-13)

b
ot

ol

a
The  conditional probability P(uya%;T).required in (5-4) is the solu-

tion of (5-13) with the initial condition
Plwy, ty) = §5(w = w) (5-14)

In otheerOrds, we Want P(a),-tz) = P(w , T) satisfies the initial
condition (5-14), By expanding P(w , T) into spherical harmonics

(we wish to. use the orthogonality property of spherical harmonics

in the integration (5-1), since f£;(t) here is the orientation functions
of the dipole-dipole interaction, i.e,, they are spherical harmonics

of L = 23) we have

P(w,. ™) =20 Cp () ¥y y(0) (5-15)
s o 2 2 —
Substitute (5-15) into (5-13), using Vg YL,M(aD = = L(L+DY] (W

dCL,M(T)

D
2‘_______ _ _ _s _
dr YL’M(w) = L(L+1) CL,MYLSM(w) . (5-16)

Multiplying both sides: by YL( M:(a>), integrating over all w , and
H

using the orthogonality property
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| L) Y g (@) de= 81010 100
o

we can separate (5-16) into a set of equations

dop wm(T) Dy
—— = - =5 L(L+1) C
dT a2 L(L 1) LQM ]
which has the immediate solution
¢ () = ¢ ,(0) e~/ TL
L,M T YL, M
a2
in. which L is defined as
L(L + l)DS

Since we are interested only in the component of P(w , T) with L = 2,
we' have 2
Te = @7 /6Dg (5=17)
This is .the correlation time given in the BPP theory.
In case that P(w ) can be written as the product of P(8) and P(p),
equation (5-13) can be separated into & 6-equation and a @-equation, 1In

this way, the degeneracy in M has been removed, and
= al7u2
TLSM - a /M DS o

Einstein has found that , for a free particle under Brownian motion,

the probability density function satisfies the diffusion equatioen

QP :
ot 'szPs

]

or in. the rotational case,

2p D g
ot T g2 s

This may be considered as another justification of using (5-11).



The a priori Probability

I1f equation (5-12) is being used to determine .the relaxation
times, we have to know the relative strengths of the time averages
;<F:(t)Fw(t)>t and fK:(t)Kw(t)>t » In BPP .theory (4), there is only
one term involved; the a priori probability has been assumed constant
(= 1/41w ) and integral (5-4) is performed as Abragam did on p.299,
equation (101) in his treatise (46). The result of integration gives
us the coefficient of the exponential form <Fi(t)Fi(t)>av the numer-
ical values 4/5 for Fos 2/15 for Fl,,and 8/15 for Fy (Appendix B),

Remember that both Fw(t),and Kw(t) which will be interested in
NMR are fluctuations of the orientation functions defined in (B-16),
Intuitively, we can split the a priori prebability into two.terms,

each associates with its own exponential decay function, with their
l.- k
4

, where 0 < k <'1. We can think of k as a function of

sum still equal to 1/47% . We shall call these two parts

and

the properties of .the sample. Thus:

: T
eulT[/TF + kem' | /TKv],, (5-18)

¢ (1) =
i 11

.and the power spectra:

N. "2(1 - k) T Zk‘TK
_ i : . Tp
J (w) s [ 5 +_1+w2T2] , (5-19)
K

2
1+ T
@ - F

‘where ‘No = 4/5, N1 = 2/15; and N, = 8/15, 1In case-that more than

one TK should be considered, we can.write, with k =:2’ki’
’ 1

I (w) = b6 [ 21 - k)TFZ + Z 2 TK — } ~ (5-20)

1+ w - 1+ w
1
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CHAPTER VI
PROPOSED EXPERIMENTS

Recent work by R, R. Slater (19) does:show the experimental,

. field dependence curve of relaxation times of "Ludox" can be fitted
into a scheme using two correlation times, Unfortunately, the curve
is similar to that due to. paramagnetic ions. So, the most important
task at the present time is to determine whether there is a sufficient
amount of paramagnetic contaminations in the sample. Various methods
of determination: have been proposed., Among them the most conclusive
ones are mass Spectfoscopic analysis and ESR experiments, Separation
of the solid particles from the liquid by centrifuge method is under
way; thus Wwe are able to determine where the responsible element
lies. Probably a easier way is.to run.a "synthesis". The ion exchange
resins needed in the experimental are easy to acquire, The particle
size can be determined by the available BET equipment and the electron
- microscope, Suspect impurities can be doped into the sample during
synthesis,

Another simple  way to.check on the foreign materials. is as follows:
Dissolve a known amount of "Ludox'" sample in NaOH solution. Compare
its relaxation time against a blank made of high quality silica dis;
solved in NaQH solution. For safety reason, they should be checked

-at two different field strengths,
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If unfortunately, paramagnetic ions are found to be responsible,
the system:can be used to study adsorption of paramagnetic ions by
gaint particles, Perhaps a better system to study this phenomenon
is the .dion exchange resin itself, since its surface character can be
controled at ease'by_addingvvarious chemicals, Another sort of differ-
ent material called "molecular .sieves!" are available; they are syn-
thetic zeolites with narrow, rigid, uniform pores which.functions as
a highly specific sorbent (29).

If paramagnetic contamination. has been excluded, it is the task

of experimental werk to. determine the values of 7, .and k in equations

K
(5-<19) and (5-20). In order to explore the relation between k and
other factors, we shall have at least one curve for each of the follow-
ing pair, keeping all the other factors as- constant as possible: (1),
k vs, temperature; (2), k wvs, radius of particle; (3), k vs, % silica
‘content; (4), k vs. pH value,

If the surface. phenomenon can be established, it should in general
exist in all lyophobic colloids. For those colloids whose maximum

. stable concentrations are much lower than that of Ludox, paramagnetic

salts may be adled to study its coagulation mechanism.

*

*
b,
e
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APPENDIX A

THE TEMPERATURE DEPENDENCE OF RELAXATION TIME leAND

DIFFUSION CONSTANT OF 0,~FREE PURE H201

T 123x106 ¢ (DN T) 1 (T;/D) (TI0/T)
(°C) (em?/sec) (see) (DM Tyg0q  Mase (T1/D)y500 (TIN/M)c0q
0 0.97 1.59 1,00 2,02 1.04 1.03
5 1.16 1.88 0.99 1.69 1.02 1,02
10 1.36 2.20 0.98 1.46 1.02 1.01
15 1.58 2,55 0.98  1.28 - 1.02 1.00
20 - 1.85 2,95 10.99 1,12 1.01 1.00
25 2,13 3.37 1 1 1 1
30 2,46 3.82 1.02 1 0.896 0.98 1.00
35 2,79 4,30 1.02 '0.805 0,97 1.00
40 3.14  4.76 1.03 . 0.733 0.96 0.99
45 3.52 5,27 1.04 0.671 0.95 0.98
50 3,94 5,77 1.05 1 0.615 0.93 0.97
55 4,37 6.78 1.06 . 0.569 0.91 0.96
60 4,82 6.81 1.06 0.523 . 0.89 0.95
65 5,30 7.36 - 1.07 0.488 0.88 0.94
70 5,78 7,91 1.07 0.454 0.86 0.93
75 1 6.27 8,49 - 1.07 0.424 0.86  0.92
80 6.81 9.10 1.08  0.400 0.85 . 0.91
85 7.26 9,70 1.07 0.377 0.84 . 0.90
90 7.75 10.30 1.06 0.355 0.84 0.89
95 8,20 . 10.95 0 0.336 0.84 1 0.88
100 8.65 11.55 1.03 0.318 . 0.84 0.87

1Taken‘fromJ.-H. Simpson and H. Y. Carr, Phys. Rev. 111, 1201
(1958). :
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APPENDIX B
THE FUNDAMENTALS OF BPP THEORY

The following is a step by step derivation of a part of the BPP
theory in which the dipole-dipole interaction is treated as a perturb-
ation. The‘qQantum mechanical method eof '"variation of constants" is
in general used., No attempt is made to use the more rigorous "diagonal
sum method," Such a treatment cgnsbe found in Kubé and Tomita:

J. Phys., Soc, Japan, 9, 886 (1954)'as~well as scattered in the Abragam's
book. Furthermore, we will concentrate our discussion on the appli~

cation of BPP theory to the relaxation of liquid systems.
Classical Hamiltonian of Interactien

Classically, the potential“energy~of’interaction-of a maénetic

dipole b, in a field B, is
V.= a41,°B
I-Lli

If B; is the field created by the j-th dipole at the location of the

i-th dipole,
By == V3%

where P, = - ujOVi(l/rij).

- 65
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Therefore,

g}i =9,/ T.* Vi(l/rij)_7

it "
VlJ = - (U‘i' vil)_/_- U‘j" vi(l/rij)_/ (B~1)
After expansionl,
v o ey 3(hgeriy)(byeryy) (B-2)
Vo o= : -
’ 3, r3,
: ij ij

Expression (B-1).indicates that Vi; has a tensorial character;
it is the product of two irreducible (or spherical)tensors (47). Ex-
pression (B-1l) can "readily" be expanded into a sum of three terms
each of which multiplied by an appropriate Clebsch.Gorden coefficient
(or as it is often called, the Wigner coefficient.) Instead of using
this short-handed notation, we prefer the direct expansion which follows
in the next three pages, which we believe will show up the physical in-

sight more clearly.
Quantum Mechanical Analog

In quantum mechanics, the magnetic moments are described by the

operators
}.—L)i ------ - KT ’Ej ------ KT, (B=3)

L= —
where I and Ij-are-the corresponding Spin angular momentum operators

1Expression (B-2) . is generally found in treatise of electromagnetism.
See, for example, Panofsky and Phillips, Classical Electricity and Magnetism,
Addison-Wisley, 1955,
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of the i-th and j-th nuclei respectively. 1If we substitute (B:=3)
directly into the classical equation (B-2), We have the interaction

operator
v, = G302 3 AD T )

-
‘where uis the unit vector along r,;. With direction.cosines~a1, @9,

i
and o3. - In the original papers by Bloembergen et al. (48, 4), ex-
pression (B-4) is first exPanded.into.Cartesian-components, then- the

spin part is transformed into the components I,, I,, and I ; and the

+’
space part into spherical coordinates. The terms were regrouped into
groups of equal Am values. By reverse the procedure of calculation,
i.. e., by doing the transformation before the expansion, we find it
is possible. to cut.dewn the labor of calculation to less than one

third of the original.

Using: the relationships

11=15(1++1—,)

I,=5 (T 1) (B-5)
13,— Iz

o = xij/rij = sin_eij_cbs 4 3
o = Yij/rij = sin eijvsin @ij . (B=6)
g = zij/rij = cos eij

~we have



68

. s B I, I, -1, I, + I, I.
Wy L A I v B e P

— + - ~ 1ty 7
=% & l IZiIZj +% (1 iI f - I,iI j)_/

I'w=vyh / I, ces8;; + sin eij(?xcos@ij + Iysinmij) _/
o : + =L L APy T
=vh / Icos eij + % sin eij(I € +Ie ")/

Substitute -these exPressionsvinto.(B;4), and multiply them out. term
by term; thus we have a total of twelve terms. Regroup them accord-
ing to their Am.values (the reason for doing_so,will be clear in the
following discussion,) we obtain the expansion of V;: operator in

J
the six terms A, B, C, D, E, and F:

<
1

2,3 + 1 - 1T
5= (WA x ){IZiIzj + (17,1 j TP

]

A ok + P15 | = 4Q4i\ =
— 3/ I;c080:5 + % sinby (174 e J+1 i 1) /x

- S U .
i Izjcoseij + % 51neij(I 5€ J+1 j € )_/

= '_(yz‘ﬁz/r:i) (A+B+C+D+E+F)

where

2
A= IZiIzj (1 =3 cos eij )3 Am = 03

- - 2 .
Lot : 4 ,
B=% (I';T ;+ T ,T7)) (2-3sin 8;,)

1 (7Tt 1+ ' + 2 . = (e

=% (I i1 i + I ;T j) (1 -3 ces eij)’ Am = 0,

— ‘A, + + y _‘:cpi. 3 . =
C.= (3/2)(1 iIzj + I j;Zi)e 351neijcoseij, Am.= 13

= = — ei@i' . . = o1
D= (3/2)(1 iIZj +1 jIz]._) J sin eij cos eij, Am = =1;
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E=% (‘I+iI+j ) e'162¢ij sin? Gij; Am = 24
F =% (ﬂfﬁif_j ) e£2¢ij sin? eij; Am = -2,
We have thus the total Hamiltonian
H=H +H (B=7)

o 1

2.2,.3.
-_yﬁBo;%:Izi +(H ) (A+ B4 CHDHESTF)

'Unperturbed.Eigenstates

Under the action of the unperturbed Hamiltonian, « yﬁBo = I,45
i
the system: behaves as if it were a set of free spins, since the inter-
action terms have been neglected, - The equation of motion of the un-

perturbed state of a single nucleus of spin % is
Ho(t) = - vE T-Bol(t) = (K/1) Q/3t)Ut) (B-8)
where q«t)‘=‘q%(t)x% + C_%(t)x-% (B=9)

Substitute (B-9). into (B=8) and express it in matrix form:

¢ c
< | % Bo -0 5
T, | =-8
C_y 0 B, C_y
-~ -

The solution of this equation are
Ci%(t)w= C15(0) exp(-iyB t)

which shows that .the state vector precesses under the homogeneous
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field Bo’ and. that neo. transitien can take place, i, e.,

U(t) = Q%(O) exP(-lyBot)x% + Q_%(O) eXp(-lyBot)X_%
(B-10)
~ For N identical spins, the unperturbed Hamiltonian is
N
Hy = - viB, 2, T, (B-11)
Ci=1
A wave function of the form of equation (B-10), with energy eigen-
value - vHBym, is expected to be the solution of (B-11). Such a
wave function, if operated by I+, I,, or T, will yield the eigen-

values (m +1), m, (m - 1) respectively.
Expansion of the Toetal Wave Functien

For this reason, it is desirable to expand the perturbation Hamil-

+ —
tonian into polynermials of T , I and I , such as we have done in

z’
(B-7), since such an expansion will make the evaluation of the perturb-

ation energy < ) | H1 | Xgqr > eXtremely simple.

The solution of the Schrodinger equation
iH(3/at) = ‘(Ho -+ Hl) N4 (B=12)

of the total Hamiltonian can be expanded in terms of the unperturbed

eigenfunctions ¥ (0) and the unperturbed eigenvalues Em°:

W) = J ¢ (t) exp(-x E.°t) ¥ (0)
. .
%Cm(t) exp(1yBgmt) ¥ (0) © (B-13)

_ Substitute (B~13) inte (B-12), and using the linear independence of
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¥ (0)!s, we have

C
fﬁ—%;gl—v= %?’Hlm'mcmeXp(iah,mt) (B-14)
wvhere H{M'm = < ,(0), H{¥(0)> (B-15)
E:O ’.EO
and W 1= ——EL—E—JE— = yBo(m - m') = - yB,Am, where Am =m' - m.

Since ¥ (0) and ¥ ,(0) are time independent, we can combine the phase

factor in (B-14) into. the perturbation Hamiltonian (B-15):
Hlm'mexp(i%'mt) = <\Ifmy (0) ['HlexP(-i\{BoAm)l‘IfInv(O)>
With this in mind, we can rewrite the expressions A through F as follows:

(A1), A=T,T,5 (1 -3 cos?8;;);

(B1), B=3% (I'yT” 3+ T4I (1 - 3 cos? 84));

j

(v, c=3 (11, + I+jIzi)e'i¢ijSineﬁcoseije;iYB°t§
(D), D~='% (f-iIzj + f_jIzi)ei¢ijsin@ijcoseijeiYBot;
(Et), E=% I+if+je’iz@ijsingeije°12VB°E

(Ft), F.= % I_if'jei2@ij sin GijeizYBot.

Each of the above perturbation terms consists of three parts: the
phase factor, the spin operator, and the "orientation functions',

The last term is defined as the follewings:

Fo=(1-3 cos? Gij)rigs.,
= ain. ipij =3 _
F1 sin eij cos eij e rij s (B-16)
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3

F, = sin? eij eiz@ij r., (B-16).

1]

The Spectrum of the Orientation Functions

. are constants with

If the lattice is rigid, eij, Pijo and iy

respect to time; then the only time-dependent parts in the perturb-
tion expressions are then the phase factors, . Since expressions A and
B do. not contain phase factors, they become !"secular'" perturbations
and will give non-zéro,transition probabilitiesl. Expressions C, D,

E, and F give rise periodic perturbations. However, in the cases of

ij° Pij and Tijo

liquids and gases, © and consequently the orientation
functions, are random functions of time, which may be expanded into
Fourier frequency spectra, the Fourier components and phase factors
cancel each other at certain part of the spectrum, thus making the
perturbation integral non-zero, i. e., C. D. E, and F become secular
at these frequencies, Through these channels of interaction, the spin
system may transfer energy to the lattice,
The expressions of the orientation functions in Fourier integrals
are
o
FJ.(t):f ¢;(v) exp(2 108) d, (3 =0, 1, 2.) (B-17)
-0

The Parzeval theorem2 says that, if Fj(t) and Gj(u) are a pair of

Fourier transforms, then

lFor a detailed discussion of time-dependent perturbation theory,
see, for example, Merzbacher, Quantum Mechanics (1961), pp. 439-443,
pp. 466-470.

2See, for example, E, C, Titchmarch, Introduction te. the Theory
of Fourier Integrals (1937), Oxford.
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J - |F(t)i2dt.= I eo|G(q)|2du.

Divide both sides by a very long time interval T,
1 e

® 2.
—Erf-?IF(t)l dt = I-@'

As T - o, the left side is the time average of |F(t)l2.

G(u) 2/T dv.

The function J(v) =

‘G(Ul{Z/T is called the spectral den -
sity or power spectrum. Notice that J(U) is real and Z 0. As we will
see later, the power density can alse be obtained directly from cor-
relation analysis (Chapter V).

In liquids, the functiens F,(t), Fy(t), and Fy(t) are random
. functions of time., After a time interval T, the random functions & -
Fj(t + T) can assume some arbitrary values governed by a certain pro-
bability distribution. Since F(t+T) must assume the value F(t) as

1 of functions

Tapproaches zero, <F¥(t) F(t+T)>aV is a good combination
to illustrate the statistical nature of the variation of F with respect
to 7. - The function R(T) = < F*(t)F(t+T) >av 18 called the corre-
~lation function of F(t), and is independent of t for a stationary
random process.

K(T) = %iﬂ“li[ F*(t)F(t+T)dt - (B-18)
TJ=

[>2]

By using the Fourier integral theeorem, we have

1A‘better combination is the normalized correlation. function
< FR(E)F(t4T) >4y /< F*(t)F(t) >ay. For detailed discussioen on corre-
lation functions, see Chapter V, ‘



74

K(T) = f J(U) exP(-27tiUT) du;
" (8-19)
SJ() = J K(T) exp(2TCivT). dT.

The Abragam-Pound Method

The relation between power spectrum.and transitien probability
~per unit time can: be found as follows:
According to the time-dependent first-order perturbation- theory,
the- transition probability per unit time between two eigenstates m
and m' of the unperturbed Hamiltonian induced by the perturbation H!
(H' has been expanded into a sum of six terms in order to apply it
to the same set of eigenvectors;) can be written as

t

f 2
f Hém' (t1) exp(-icy ¢') dt!
o i

W= (1/82¢t)

mm!

. (B-20)

Since t! is a dummy variable, the.product’inv(B_ZO)‘can~be considered
as a double integral

ot t

o = (820 [ aet 8l e aen w'p (o) e imf(®1-6)

o Jo
In order to,recéniZe‘the-cerrelation function in . this expression, a
new variable T= tf-t!"  is introduced. During the performance of the
first (right-side)r integration, t' is considered constant; therefore,
after changing the variable, the new independent variable is T; and

th o= t! T, dt" = d(t! - T) = - dr}

and the range of integration is from T=t! to. T=t!-t, Therefore,

1 pt tiat . .
Vo = ’-ﬁ7?f dt'f drHy (8D Hp (e1em)e ™ m! T (B-21)
] J !
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By changing the order of integration, we realize that the first inte-
t .

gral I’ , () ' (t'-T)dt! is the cofrelation>function Koo
o .

times the time intervall. Thus,. we have connected a relation between

transition probability and the result from any cerrelation hypothesis,

To carry out the integration (B-21) explicitly, the domain of

integration has been. cut into two sections, as it is shown in Fig. B-1.

p tf J ti

T=t!
T=t!~t /‘/<— ‘ tt=T+t

t1=0

>
T

Fig. B-1. The domain of integration of Wmm

Thus,

T+t

1 . ) P%
W =775 dT exp(~1a>mmgT)f°dt' H' (1) ' (t'”T)

t____?

t t
dTexP('ia)mm?T)I dtt H' (ti) i (tv,T)

=t
+\[
o

d;T(’l's-t 0) exp( 1wmmﬁ) L —

':’HH
C—‘?

.t
+ dr(t=T) exP(la)mm:T) Km?]

[e]

t 2 ¢!
= (1/‘11’2)[ Komt exp(=iw . 7)dT +%'z; ITKm,cos(a_}m,T)dT.
e L _

IThis interval should be long enough in order not to render the
definition of correlation function mearingless,
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J (e 1) 2 ¢t
S W= ) v.ﬁztnféTKmm'COS(aﬁm}T)dT . (B-22)

Equation (B-22) is .sometimes refered as the Abragam-Pound formula (49).
So. far we have not made any assumption on: the nature of the per-
turbation and the shape of the correlation functions. Equatien (B-22)
is quite general, and its application is net limited to any parti-
‘cular form of interaction. Neither is it necessary that H' be a
randomly fluctuating precess.,

In most of the physical systems which have been investigated in
. the literature at,the.presént time, the correlation functions can be

assumed of having an exponential form:
K(T) = K(0) exp(-|T|/7o), (B-23)

where T, is the correlation time. The condition of justification on
this assumption:has rarely been mentioned in the literature. A suffi-
cient condition was proved in Chapter V. If assumption (B-23) is a-
“dopted, the power spectrum J(U) can easily be shown as being of a
Lorentzian shape.

J() = f.< F(t)F*(t)v>aV.eXp(mlTl/Tc)exP(27IiUT),dT

=0

o] . o 1
= < F(t)FH(t) >avlf-f e T /TC+27T1UTdTﬁ[‘é(ZTTiU=;;)dT _7
‘ . o
= < FR(E)F(L) >au/ - 1 + 1 7
' T 29TiuH(1/Te) 2Miv-(1/1¢) ~

2'Tc

1+4 "T2U2Tc2 °

<F*(t)F(t) >ay

(B=24)

The second term in (B-22) is in general believed of second

order. Using assumption (B=23), we can easily show by integration
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by parts that this term is of the order of magnitude ZTC/ﬁzt. If

the condition T, << t is fulfilled, we can then write

wmm'

= (1/42) 3w ,) - (B-25)

Examples of Relaxation Time Formulas

The relation between relaxation times and transition probabili-

ties varies from system to. system. The ensemble average in (B-24)
can be calculated under various conditions such as isotropicity,
etc.. For the relaxation.of proton magnetic moments in water, the
relaxation effect due to the nearest proton (in the same molecule)
.can be. calculated readily by taking Tijs the interproton distance,
as a constant "b", Under no external orientating forces such as
electric field, etc., we may assume the inter-proton axes are
distributed in a random, isotropic way such that we can substitute

the time average by a spatial average, i.e.,

1 T W2 9 2
(L, < F*o(t)Fo(t),>av,= z&~—3-f f (1-3cos“8)“sinbdody
: 0O JO

Tb
s
=-—| (1-3%2)2dx = 47560 (B-26a)
2b° J41
L (TR 5
(2), < F*l(t)Fl(t) >av = 5 '~ cos“0sin“6sin6dody
' 4T Jo Jo
;! 6
= L x2(1l-x?)dx =  2/15b° ; (B-26b)
266 4y '

1 M W27
(3), < Frp(£)Fy(t) > = —— (sin26)2s1n6d6 dep
4T b o Jo

.1
= - E%E (1-x2)2dx =  8/156° . (B-26¢)
+1
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A typical and correct example between relaxation times and transition
probabilities between various eigenstates of the unperturbed Hamilton-
ian can be found in Solomon's paper (50). for a system of spin = %.

He found T; and T, for identical spins as

1 6 h%® T, 4T e
L U
T, 20 b 1+ofT 2 1+huPT
5 c
. (B-27)
1 3 h2y4 S5Te 27, ]
= 3'Tc + - +
T2 20 o L 1+o_)2'r2c 1+4Q?Tc2

The derivation.of (B-27) from (B-25), (B-26a, b, c) is straight for-
ward. Readers who are interested in the details of derivation should
consult .the original paper,

There~remaiﬂs the problem of determining the correlation time(s)
‘through somelestablished theorems in certain other fields, such as
the Debye's theory of dielectric relaxation, etc. Also, some of the
assumptions used in. the derivation are not quite justifiable in cer=-
tain special systems., All these deviations are still open for further

research.



APPENDIX C
. PINES AND SLICHTER PICTURE. OF MAGNETIC RELAXATION

Two magnetic moment vectors located at different magnetic enviro-
ments will change their relative phase angle as time goes by. If the
enviroment is essentially constant, the phase shift Ap is proportional

to time t, i. e.,
Ap = Awt (C-1)

where Aw ¢1 = YAB. 1If Ap ~ 1 rad. when t = T2r1, i. e., two
vectors originally in‘phase will lose its. coherence afterward, we have

bw .y T o1,

1

1
1,7 A —— (C-2)
Aw rl

This is equation (1l-1).

However, if the enviroment fluctuates rapidly, Agpwill not pro-
portional to time t if t is comparatively longer than the average
period of fluctuation, 1i. e., if t>>.T.. 1In this case we can devide
this time interval into n smaller intervals T+ During this interval

T the enviroment has changed an amount of the order of itself.

c?

We can then write, if 7, < < Tofl, i.e., if Ap < < 1,

892 = n(bw p17) 2 = G 2Tt (C-3)
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When Acpz reaches the order of 1 radz., t is then defined as the

.transverse relaxation time., Therefore, 1 r\»’(Ao.:rl)zfrcTz , or
1/T2 ~ (Aw r1)2'rc ' (C-4)

This is equation (1-2).

From equation (B-27), Appendix B, we can easily obtain. that

L y2____2Tc
. o ¢
- If a%ZTCZ << 1, we have ‘

1/T1 ~t (Aw 1’1')2(2TC).

Since this is a .rough derivation, we can. conclude that Tj S’Tz if

Te.<< l/w ,, by comparing the last equation with equation (C-4).
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APPENDIX D
SOME PROPERTIES OF "LUDOX" 'COLLOIDSl

The designations used in the classification of "Ludox" colloids are:

HS - high sodium stabilization level,

LS - low.sodium stabilization level,

SM - seven millimicron (particle diameter),
"AM . alumina modified, and

AS- . ammonia stabilized.

Types of Colloid HS LS SM AM » As.
% Silica (as 810p) 3.1 303 15 30 130.0
Density (gm./ec.c.) . 1,2i2 1.211 1.097 1.209 . 1.206
% Na,0 (titratable) 0.31  0.10 0.0  0.13  0.25°
Chloride (as % NaCl) 0.04 0,002  0.001  0.007  0.001
Sulfate (as % Na,S0,) 005 0.010  0.003 0.006 . 0.005
pH (at 25°C) 9.9 8.3 8.5 9.1 9.6

(Continued on next page.)

lTaken from.duPont Product Information Bulletin.

% -ammonia.,
3By B. E. T. method (nitrogen adsorption on dry solids). See
Reference No. (51). '
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Relative Degree of Saturation
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SOME- PROPERTIES OF "LUDOX" COLLOIDS(Continued)

Type of Colloid HS LS SM AM AS

Viscosity (c.p. at 25°C) 4 9 14 10 12

ApproXimate‘ Particle
Diameter (m ) 14-15 14-15 7-9 14-15 14-15

Surface Area3

(m2 /gm-silica) 195-215 195-215 350-400 195-215 195-215

Stable, except: toward freezing, which
Stability - causes irreversible precipitation.
Freezing point 0°C.

= T T ] 14

"3°A:Nac1 blank sol! |

I __2OB: Colloid —
C: The differenc
between A &

NN AR

THE ADSORBED OH TONS ON THE COLLOIDAL SILICA SURFAGES AS A
'FUNCTION OF pH



APPENDIX E
THE PROOF OF SOME THEOREMS ABOUT CORRELATION FUNCTIONS

The following is a proof about some of the important theorems
on correlation functions stated in Chapter V.,
Theorem I: The autocorrelation function is real and even,
The definition of cross-correlation function is

T

9, 5(7) =;i:% J"-Tfl*(t) £(t + Hat. (B-D)
Change the variable 7 to -~ T,
Qpp(~T) = Tiiz % J_Zfl*(t) £,(t - T)dt.
'If we call x=1t - T, then
. an T=T
0 5(-T) = lim 1 £, (x + T Ey(x)dx . (E-2)

T— o 2T J-T-T
Since we are integrating from - o to + «, the right hand side is just
@ZI(T). If £ = f2, the right side of (E=2) is also,@il(T). By these

two relations, we can show that @11(7) is real and even,

Theorem II1: The autocorrelation: function approaches te zero as T
approaches to infinity, if fl(t) contains no d.c. or periodic com-
ponents.

According to: the ergodie- theorem, the correlation function.can
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be expressed as
pn Pa ®
9y1(T) = mylsz(yl) P(yy/yys T)dy dy,.

As the time difference becomes very large, the system tends to "forgeﬁn
its history ; therefore P(y2/yl, T) *'P(yz) as 7 — o, if there is

no hidden periodic or d.c. component, i.e., if there is no bias on the
values of y. Therefore

n® a®

?,,(T =,‘J_mylP(yl)d,y1‘J _wy?_P(yz)dyz
=31 92

If the random process is stationary, we can write v, = v and the

2 b

autocorrelation function is equal to the square of the mean value.

Tf, furthermore, the mean value is equal to zero, then we have
?11(*) = 0.

Theorem III: The autocorrelation function is continuous everywhere

if it is continuous at the origin,

Let us consider the autocorrelation function at any value T, and

the autocorrelation function at T + e
lim1 * © '
(1) = (t+e)] = "1™ £ ()£, (t+T) - £ (t+ri€£]dt
11 oy (rz0)] Tw 27) 7 L [ 1

I1f we call

F(t) = £1(¢), and G(t) = fl(t+7).= fl(t+7i€),

then by the general Schwarz inequality, which states that if
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lim 1 T2 lim 1 " .2,

; — Fo(t) dt and . G (t)dt

T @ 2T J_T ’ T o ~2T _J_T

exist, then
‘2

. ] T . ] T2 [ T2
lim 1 7 pee)e(r)de] < lim 1 Fo(t)dt|| , G%(t)dt
Im® ZTJ =T =T (2T)2 .J«'-T ‘J-T

one obtains:
" ’<lim 1~ T2 g~ T
@ll(T) - Qll(Tie) = L —EEU_Tfl (t)dt 'EE -éfl(t+T)5fl(t+fie))dt

The integral in the first bracket is ¢11(0), and the inﬁegral in the
second bracket can: easily be shown to be,@ll(O) - z@ll(ie) + ¢11(0),
So 2
[o1() - oy (20| * 5 2.0, @ [0, (0) - vy, 0]

If the autocorrelation function is continuous at the origin, i.e.,
if we can make the. quantity ¢11(0) b-¢llCi€)-as small as we please,

we can also make ¢11(T) - ¢11(Iie) as small as we. please,

Theorem IV: The maximum value of the autocorrelation function occurs

at the origin.
The value of the integral
p ® 2
| [£1(0) & fl(t+T)] dt (E-3)
00 '

is always greater -than zero at T # 0 for any non-periodic function: £f;.
The equal sign is reserved for periodic functions, In order to make

- (E=3) zero, the integrand has to be zZero everywhere, i.e,, either
fl(t)‘E?- fl(t + 1), or fl(t) E‘fl(t + T), which means either f,l

has a period of 27, or f; has a period T.
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Expand (E=3):

s © 2 p © 2 an® .
o £.7(e)de + foo(t+7)dt £ 2, £,()f. (t+7)dt > O
Jow L J et Joot 1

Change the variable in the second integral above to x =t + T, and

take average over the independent variable, we have

91700 + 9,,(0) > £ 20,,(7)

iﬂe.,

0,0 > |o (0] .

Theorem V: The autocorrelation: function at the origin is the mean

square  value of fl(t).

This is evident by inspeécting the definition of the autocorrela-
tion function. We put this here because sometimes we want to know

the physical meaning of ©;,(0).

For more theorems, its proof, and applications, the reader is referred

to the texts ¢gn Information Theory or The Statistical Theory of Com-

munication.
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