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PREFACE

This thesis presents the theory of interaction or coupling between
two parallel, closely spaced single transmission lines. This theory can
also be applied to a pair of balanced transmission lines.

This study is part of the research project, "Probabilistic System
Analysis," sponsored by Sandia Corporation, under Contract No. 50-7841,
The original goal of this part of the project Wés to investigate the in-
terference or induced voltage on a line among a bundle of lines of which
pulses are past on one of the other lines,

In the course of this study, it was found that this investigation
of coupled transmission line theory is not only of interest to Sandia
Corporation for just knowing how much interference voltage is induced
and how this voltage can be reduced, but the theory also has a great po-
tential of application to a large class of transmission proﬁl;mso For
example, the analysis of multimode transmission systems and the analysis
-of interaction between drifting charged particles and propagating elec-
tromagnetic waves. ih view of these more important applications, the
‘study made here is beyond Sandié“s;iéyergéf;‘ o

Indgbtedﬁésa'is.aéknowledged;to‘ﬁr;vxenneth R. Coock for his recom-
mendatién and to Dr. Arthur M. 3reipoh1 for granting the research assis-
tantship which enabled the author to work on these interesting problems.
The author wishes to express his sincere appreciatiom tqus° Ko Ro
Cook, A, M, Breipohl and Leonard L. Grigsby for their helpful and sug-

. gestive discussions,
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CHAPTER I

INTRODUCTION

The problem of interference or cross talk among a bundle of lines

on which pulses or other signals are passed can be attacked by one of

the two following approaches:

1.

26

Field Theory: Starting with Maxwell's equations, two poten-
tials associated with a signal on a line can be set up. Then
the electric and magnetic field in that line, neighboring lines,
and in the insulation dielectric between the lines can be de=
rived from these two potentials, By using biaxial coordinates,
this problem can be solved exactly for two parallel single
lines. Unfortunately, this aﬁproach can not be applied to thiee
of more lines owing to the complicated boundaries. However,
numerical methods with fhe aid of a digital computer can be used
to calculate the field at a finite number of points on a finite
number of transverse planes spaced longitudinally along the
lines° |

Circuit Theory: By assuming self-line parameters, Rii‘.Lii?
GiiD,Ciiﬁ and mutual line parameters, Rij' Lij' Gij' and Cij’
the telegraphist's equation can be formulated, then solved by

Laplace transform technique.

The calculation of line parameters is a static field problem which

is quite involved even for a bundle of a few lines. By introducing a few



simplifying assumptions, the line parameters can be evaluated, and the
result can be verified by measurements. It is also anticipated that the
measurements are theoretically possible but may be very difficult to
perform for -a bundle of short lineé.

The field theory approach is more general ané rigorous but except
for very simple cases it also is a formidable one. The circuit theory
seems completely different from the field theory. By imposing a few re-
strictions, both King (1) and Pipe {2,3) have derived long line equations
from Maxwell's equations. Schelkunoff (4,5) has studied the equivalence
of these two approaches in detail for numerous cases. The infinite num-
ber of modes of Schelkunoff's generalized telegraphist's equations is
due to the distributed coupling between dominant mode and other high or~
der modes. Neglecting this coupling, Schelkunoff’s generalized tele-
graphist's equations reduce to single mode transmission line equations.

The study of propagation of waves along several parallel wires can
be traced as far back as 1920 (6,7). The early interest in this problem
was in connection with cross-fire and cross-talk of telegraph and tele-
phone circuits. The early work done in this area was directed toward
calculating the far end and near end cross-talk coefficient and elimi-
nating the coupling, For open wires a complete and systematic transpose
scheme (8,9,10) has been developed., As for cables (1ll1,12) twisted pairs
and quads were successfully developed which effectively eliminate cross~
talk among a cable with hundreds of thousands of pairs of wire. Matrix
algebra (13,14) was introduced for a much simpler and more elegant solu-
tion in the late 1930's,

The coupling effect was put into use as coplane coupler (15) which

works as filter or suppressor in a transmission line system through



which an antenna is fed by two or more transmitters of different frequen-
cy simuitaneously° The second use made of coupling effect is direcfional
coupler which becéme a popular subjéct in the early 1950's, Alfhough the
major portion of the work was done on wareguide devices, the transmission
line type (16,17).was also investiéafed@

The coupled mode theory (18,19) initiated by Pierce in 1954 is well
appreciated iﬁ the study of directional coupler and traveling wave devi=
ces, But due to its weakly coupled nature, unfortunately, this well de=
veloped theory can not be adopted for this problem,

The approach used in this study is for:tightly coupled system and
for transient state., It can be easily applied to steady state problem.

Although the line parameters with.the presence of all other lines
are aséuméda No éttempt of evalugting these parameters is made. Only
two symmetric lines are thoroughly investigated»here but the extension to
non-symﬁetric lines can be made wifh some mathematical ciifficulties0

The treatment of a transmission line by Laplace transform is quite
extensive in the literature (20,21,22,23,24) but the most general case,
lossy transmission line terminated at both ends is never treated due to
mathematical complications., In Chapter II, the transmission line is
studied systematically; use of the result is made in the following chap=
ters, Thevmost general case is also treated, The coupled lossless and
lossy lines are studled in Chapter III and Chapter IV respectively, In

Chapter V, a more practical problem is investigated.



CHAPTER II
ISOLATED TRANSMISSION LINE

Steady state transmission line theory is a topic in nearly every
book dealing with circuit theory or linear systems. The transient state
solution, using the Laplace transform approach, appears in many fine
books of transient analysis (22-27). However, due to mathematical
complication, the most general case, lossy line terminated at both ends,
never has been treated before, In this chapter, the lossless line is

treated, then treatment of lossy line follows,
Line Equations and Their Solution

A transmission line with line parameters L, C, R, and G is fully

described by two first order differential equations:

V(z, t)

- _.r.i_-z = (L %{ + R)I(z,t)

(1)

- 32 L oc 34 o)z, t) .
9z ot
If initial current and voltage all along the line are both assumed

to be zero, i.e,

V(z,0) =

|
o

(2)
I(z,0) =

[
o



then the Laplace transform with respect to t of Equation 1 is:

-%%=(Lp+R)T

(3)
3T -
“w>= (Cp + G)V .
On differentiating with respect to z,
Do :
3V o1
- = (Lp + R) ===
Al A
(4)
-
3T 7
- -'1' = (C + G) m——— o
9z P 9z

Then substitution of the values of dV/3z and 91/9z of Equation 3

into Equation 4 yields the following uncoupled equations:

227
-5—7 = (Lp + R)(Cp + G)V
z
(5)
2
°T =
= (Lp + R)(Cp + G)I
;;5 P P
The solutions of Equation 5 are:
V(z,p) = pe 7% + B
(6)
T(z,p) = Cef?z + De"”

where

r =7 (Lp + R)(Cp + G) .

Substituting Equation 6 into Equation 3, the undetermined constants

~C and D are found in terms of A and B, The results are

Cp+G
Lp + R

}v

A, | G



(8)
Therefore the voltage and current on the line in the "p" domain is
Viz,p) = pe "% + Be'
_ |Cp+ G | ~-rz Cp+G _ rz
T(z,p) = /m Ae - ,/r%-,,,—ﬁ' Be (9)
_A_-rz B .rz
T zg e T zg e ’
They may be denoted
Lp + R p+3
Zo(p) = = A
Cp+ G C+ o
c
(10)

r(p) = J(Lp + R)(Cp + G) = \]EE J(p + R/L)(p + G/C)

as the transformed line impedance and propagétion constant.,

The constants A and B depend on the boundary conditions. If the

line is of length &, with a load Z; and a source of voltage Eg(t) and
output impedance Zg as shown in Figure 1, then the boundary conditions

in the "t" domain and "p" domain respectively are:

V(o,t) = Eg<t)-- I(o,’t)zg

(11)
V(2,t) = I(2,t)Z,
V(o,p) = fg(p) - T(o,p)Z,
’ (12)
V(2,p) = T(2,p)Z, .
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Figure l. An Isolated Transmission Line With
Both Ends Terminated

Substituting the solution in the "p" domain, Equation 9 into Equa=-
tion 12, and solving for the constants A and B,

E (1 + J-‘-)e”
g Z.

(o]

e—rares

T T A ’
2 Cosh(rf) + 2|1 + -:7-—‘Sinh(rz)
i Zs- : Z,
—_— E e
E (1 I A
g 7
: 0o
S ARy AN °
+
o| E—Lloosh(re) + 2|1 + i’z % sinh(re)
7
0o o}

Inserting the above solution into Equation 9 yields the complete

solution in the "p" domain.



AR [1 Ez_]e-r( 2-2)
E (p) Z Z
V(ng) = "'Ezp li __- S—— —
+ 2
'}E;Z——i Cosh(rl) + l:l + —%&]Sinh(rl)
Z
[o] -
(13)
Z, - Zo] =r(2-
£, (p) [l ' E'&]er(z Y- [l - '2"2'} T
T = J -— S, -
) [T, v 3, z T,
e Cosh(rk) + |1 + —%3- Sinh(rg)
Zs o
' Equation 13 can be rewritten as:
. | zZ,
Sinh[r(2-2z)] + 5 Cosh[r(2-2)]
= T ——————————— L+ - :
TzR) = B) T T 5T
e | Cosh(P2) + |1 + -—-—- Sinh(rg)
Z Z,
o o
_ -E-E(P) 8inh[r(2-2)+X;]
1 _(EE)Q:I%_ Sinh[re + X,]
Eo
(14)
2'2 .
Cosh[r(2-z)] + == Sinh[r(2%-z)]
E (p) o
T(z,p) = - o e e
Zo [Z'g» + Zz} - l: Zg zz} o
Cosh(ri) + |1 + «1Sinh(rL
z B

(o] (o]




where

Zg/zo

14 reduces to

If =1, i.e,, a complete match at the sending end, Equation -

- - 71
- = Z. ~Z, |5 -rb .
V(z,p) = E_(p) :fL-f:& 2 e i Sinh{r(2-z) + X1
BT T+ T, ]
(1ua)
| Lo [Z -Z,]% —pp
: T(z.p) = _&_ = _2' 2 e-r Cosh{r(f-z) + xl] .
Z, |Z, + 2,

If 7}/2;‘= 1, i,e., load impedance matches the line, Equation 1lu

reduces to

Z -
V(z,p) = E (p) gmmimm e
ot Zg
(1ub)
T(z,p) = E,(p) m—mmm ™,
' BT+ Zg

If 7&/7; =1-= ZE/Z;, i.e., both endg‘of the line are matchgd, then

b3
V(z,p) = -gégl e T?
(1uc)
T(z,p) = _§§£_ &TE

(o]
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Using the inversion theorem, from Equation 14, the line voltage and

current is:

a1 otje Sin[r(z-z)+xll‘ pt
V(z,t) = mfo-jw Sinh[r2 + X,] ap
(15)
1 o4 Eé(p) Cosh[r(2-2)+X;] pt
If,(z:t) = mf:_jm T Zg 2—; Sinh[rd + X,] e
Zol1 - Er) 2
o

where o is a real number which is greater than the largest real part of

the poles of the integrand.
Terminated Lossless Line

If the line is lossless and both source impedance and load impedance

are pure resistive, then

L
Z°= E._RO
' p
V= \/LCp=; (16)
Zg-_‘Rg, Z£=R£ °
For a step voltage:
E, t >0
F(t) =E U _(t) = -
& o -1 lo. t<o
(17)
f .7 =£?o
gP) 5

The inversion integrals of voltage assumes the form



11

Sinh[r(4-2z )+Xl] ,ept

oty o L o+ jo Eo
V Z.t = —?’[ n dp °
27 . :
] g=3e Il -<Z'g)2:|]_ Sinh[rf + X,] P

The integrand is a single value function of p with simple poles at
-Xz + jnn
P=0andp=__zr’n=o’il’i2’ °°°n
The residue at p = 0 is

. t .
E, Sinh[r(2-z) + X;.‘]ep _ B Simh X

T [Z,\2% 1 7\ L
[1 -( _§> 7 sinh[re + X,1 | .0 -< .E) Z Sinh X,
Z P Z
O o

Ry

:——-E ‘o
RR. + Rg o]

}=

, -X2 + Jjnn
The residue at p = —_-,c,'fv—- is

Eg Simhlr(f-z) + X;1eP*

WAL,
E{E -(f) 2 p Sinh[frs + X2%P i -X ;—jnn
: v

t
=X ——
2 L . .
E, e L/v X, + jor jnn

B l: (RgYJ_I ns=-o X2 + n“n
l ~ = 2
o}

The voltage along the line is

/v
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zg > = Slnh[% X2 + 3 E 2nr |e

where

-
- -11_8
e

In a similar manner, evaluating the line current inversion integral

yields
I(Z.t) = eoe———— T

- X
2 l/V hcd ]nﬂ-t_._

ZS X + jn7 ' [ z z ’
l < ) l ne—ew X + n“n o173 T2 I T AT - (18)

O

These final solutions of line voltage and current have been obtained
as an infinite hyperbolic series. No physical interpretation can be made

for each term of these series. An alternative method may be developed
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which gives a solution for which each term can be identified as success=

ively reflected waves,
By substituting Equations 16 and 17 into Equation 13, then rewrite

as
- _ (2nt+z)p

E
V(z,p) = g Z (png)n e v

_ (2n2+28-z)p

E [
[e]
e D N R v
1+ g2 00 &
R
(o]
(19)

” _ {2n%+z)p

: E Z

E o (2ne+2 =-z)
o PURTIUN U --—-—-2\, :
Z v(plp-g‘)_ P, ©

~ °+8n=0

Recalling the fundamental Laplace transform pair:

the inverse transforms of Equation 19 can be written as

E 2 n '
V(z,t) = °R Z (ong) U_,l[t - 2“;:“2]
1+ & 10 ‘
Ro
+ Eo i ( )n o Ut - 2ni+28~-z
Rg % PePg’ Pp V-1 i
l 4 — n= I
(20)
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2ni+z

E e
o] n
SO =2 DI o ¢ - 22

2n1+22~z
e S et ey ufe - e
g n=0
where
Ro - Ry
p : A
L R, + R,
o =0 Rg
BT

are reflection coefficients at the receiving end and sendiggvéﬁde;e55ec-
tively. i h -

In Equation éo, the first series of voltage or current waﬁes are
forward waveslof which the nth term represents the wave being reflected
n times at both eﬁds. The second eeries are backward waves of which
the nth term represents the wave being reflected n times at the sending
end and (n + 1) times at the receiving end.

If Py = §§-i-§§ = 0, this is the case for the source impedance

equal to the line impedance, then only the first term of each series

exist,
28-
V(.Z,t) = R U‘*l[t - —] g R Py U"ll‘ —"'z"
(o]
(20a)
Eo, z Eo 20-7"
Hzt) = Uaft - §] - TR °1 ot - 5] .
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Ro = Ry . . .
If p, = W = 0, i.e., the load impedance matches the line, then
only the first term of the first series exists,

V(z,t) = _“R_ u_ylt - —]
142
RO
(20b)
E
I(z,t) = g : —U_j[t - 21
= 0, then

Furthermoref }f Py = pg =

(20¢)

I
N
H
c
'_l
m
t
'
5

1) =

The solutions of special cases, Equations 20a, 20b, and 20c, also
can be easily obtained from Equations 1lu4a, 1l4b, and l4c, respectively.

Instead of step voltage, a pulse of amplitude Ej and duration t is

applied to the line. Then Eg(t) assumes the form

Eg(t) = E [U_)(£) = U_;(t-1) ]

and (21)
- _ l[ "TPJ
Eg(p) =E,pll-e
The general solution, Equation 20 assumes the form
Eo N n 2nl+z 2n2+z
V(z,t) =——-§-g' ZZO (D‘ng) U"ll} ]w l[ --r:|
1l + = n=
o
Eo . n 2n£+2£-z 2ni+28-2 .
A R RY PRl
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Eo - n 2nf+z 2n2+z
I(z,t) = Eo—""R_g. nZO (png) {U-'lljt - U-l[} - —- ]

E [--3
_ o n 2nl+28%~z 2n8+28~2
ot %g nZo (png) p&{ U'l[t - v ] - ,,U‘l[t - v = T]}

Corresponding to each term of the solution of a step voltage, there
is another term of the same amplitude but opposite polarity and delayed

by a time interval Tt for the solution of pulse voltage.
Terminated Lossy Line

For the most general case, a lossy line with general load impedance,

1 . _ 1
Zz = Ry + Lgp + E-Q-P-’ and general source impedance, 'Z'g = Rg + Lgp + E-g-ﬁ’

allows Equation 11 to be rewritten as

T(z,p) = (—-p- )n e-r(2n2.+z)

[
t
~~
)
o
N
N
&

Z, -\ = ~0(2nL+28~2)
Z + 2 n=0
o g

(23)

— w1\ =r(2ng=z)
T(z,p) = E,(p)|z——m ( ) e

1l i (-‘-; -; )n - e-r(2n9.+29.-z)

where 39. and Fg are not just a numerical reflection coefficient any more,

but a function of p.

By the inversion theorem, the stbolic solutions of the line vol-

tage and current are:
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2 0t E(p)Zo —=.n -
V(z,t) = -l-p z [ -..?:_9._ (p 7 P e r(.2n2.+z)ept dp

oo otie E(p)Z - - - -
+ 2:':;3 Z f _P o (png)n 5, e r(2n2+24 z)ept dp
n=0 O-j“ ZO + Zg
(24)
(z.t) = 1 i oty f(g)- (5.5 )" -r(2n2.+z)ept 4
z’ = 351[3 [—d lz- plpg - e p

-n=0 G-\j“ Zo + g .

‘ = Q"’j“‘ - N = ~r(2n2+28- t f
- 5:';_,. z f —E(-E-L- (Ong)n Py € r(2n z)ep dp
J n=0 o=J= Z.O + Zg

There is no feal difficulty in éValuating the inversion ihtegrals
although it is a rather complicated process and it is difficult to ex-
press tﬁeﬁfesultsbexplicitlyo |

: All;integranés of EQuatién 24»can be expressed in the fol;pwing

form,
- - - ';.‘.. -yv(p) pt
.Eg(p)[U(‘p) + Zo(p)w(,p)]e yvip ep
where

-y = (2n+z) or (2nR+28-z) .

U(p) and W(p) are rational algebraic functions of p and can be

written in the form

'5‘(_p) + ._I;T(E). .

Q(p), R(p), and S(p) are polynomials of p. R(p) is of a lower degree

than 5(p).
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For example the integrand of the first integral of V(z,t) of Equa-

tion 24 is

" -r{2ni+z) pt
e e

which can be written as

-— -— - 2
26(20 = Zg) | (Zo - 22)2 (%o - ZQ) . ewr(2n2+z)ept

E(p)

-yr(p) pt
e

o) T + ZWp) Je

-yr(p) Pt o = = -yr(p) pt
e e e

= E(p)T(p)e + E(p)W(pIZ,
- -y/IC /(p+R/L)(p+G/C) pt
= Eg(p)ﬂ'(.p)e e

- - L [p¥ -yvLC /(§+R/L)(.p+G/C) pt
+Eg(p)W(p) T /3T © e

°

The evaluation of integrals with integrands of the above type is a
routine task once the closed contour, Figure 2, has been properly chosen,
This takes care of the finite number of poles associated with fé(p)ﬁzp)
or Eé(p)ﬁtp) and the two branch points on the negative real axis,

Zy = =R/L and 2, = -G/C. The Eé(p), Laplace transform of time function
of applied pulse, for most cases is quite simple and would not cause.
any difficulty,

An alternate way to write a general term of Equation 3 is
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i

~
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]
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/r'
oeloece )

/
/ OO0

Figure 2., The Contour Used For the Special
Type Integrands Discussed in the
Text

_  _  =y/1C /(p+R/L)(p*G/C)
E,(p)T(p)e y P P

=, e L [p#R/L _-y/LC V(p+R/L)(p+G/C)
+ Eg(p)wcp)v\/g /5%@-5- e

- -y/IC V(p+R/L)(p+G/C)
= T*(p) % e P P

- 1 [pR/L -y/Lc V(p+R/L)(p+G/C)
+ W (p) ;- §:§75' e

where
Ti(p) = p fg(p)'U'(.p)
T =E » BT .

Since the inverse Laplace transform of

19
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Fy(p) = = e VVIC YpHR/L)(p46/C)
p

and

- = 1 / R/L o-yVIC /(p+R/L)(p+G/C)
¢2(P) D ;-&-%/C yrL

are known to be (24,27),

1/R G
= + = |yvLC
e§<L ¥ CJY Le u_,(t - yvLC)

¢l(‘t) =
PHE-Ypie [ AE+ gk L 3E-8) F7- yQLCLt
2 yvic t? - y2IC ’
9,0t) = 7(-+ ) [: - - ) - ych:l

t -&2+8

G Z\L c) YR _G\[Z _ .2 ,
Lo Nl

-+

for t > y/IC > 0

where I and Il are modified Bessel functions,
Therefore the Laplace inverse transform of this particular term is
t t
[ oo - oae s [ wone - o
o o
or
t t
f Ut - £)oy (E)AE +f WGt - E)oy(E)dE
o o
where U'(t) and W'(t) are the inverse Laplace transforms of U*(p) and
-W-'(p)o

This gives the formal solution for the most general case, For
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practical problems, if the line parameters, L, C, R, G, and the terminal

impedances, Z, and Z are given, by following the above scheme, one can

g

solve these problems much easier than it appears at first sight. In
particular, for transmission problems, where the resistive part of the
terminal impedances R, and Rg are made equal to or compatible with the
squared ratio YL/C of the line, then only the first few terms of each
series need to be calculated.

The condition, Ry = R, = vYL/C represents the best matching condition

g

for a lossy transmission line.



CHAPTER III

COUPLED LOSSLESS TRANSMISSION LINES

The so called telegraphist’s equation in matrix form for n-parallel

transmission lines as shown in Figure 3 are

3 _ 3 -
- 5= (vl = [RICI] + (L] T (1] = [21(1]
" 3 (25)
- 5= (13 = [GILV] + [c] T vl = [Y1LV] ‘
ke ) >
= A___Js5tet) |
/\I ' l
[ N
zgj ng z z
Vj(.Z,t) zj 2k
Ees @ Vi (z,t)
\/

Figure 3. A N-Parallel Transmission Lines System

where [V] and [I] are column matrices of order n; their elements, V,(z,t)

22
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and Ik(z,t) are the voltage and current of kth line at distance z from
the sending end and at the time t. The matrices of [R], [L], [C], and
[G] are non-singular, square matrices of order n; their elements are self
or mutual line parameters.

Ry

resistance of the ith line per unit length.
Lij = inductance of the ith line per unit length.

C.. = capacitance of the ith line per unit length.

ii
Gj; = conductance of the ith line per unit length.
L:s = coupling inductance between the ith and jth line per unit

ij
- length.

cij = coupling capacitance between the ith and jth line per unit

| length.

All self and coupling parameters are distributed quantities, The

lumped parameter analogy is shown in Figure U4,

% To other lines

kth line

Figure 4, The Lumped Parameters Analogy of a N-Parallel Transmission
Lines System 3 ( :
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Two Symmetrical Lossless Lines

Grounded at Both Ends

In this thesis, only the two line system is investigated. For a

two line system Equation 25 reduces to:

s - 21111t 21005

V2 = Zn, 1 Znnl
-F- 21]:+ ?22
(26)
I
I R -
= Y0 - Yol

oI o
- w2 = =Yy T) + Yyl

Equation 26 is a set of simultaneous, partial differential equa-

tions, The transformed equations are:

Tt D0 + 2T, = 0

av, - -

qz 1 2121y t 29515 =0

(27

dT - L - -

Tt Y11V - YoV = 0

at, _ _ o _

T - YioVy t YpoVy =0

where

V1 = Vilz,p), Ty = Volz,p), Ty = Ti(z,p), Tp = To(z,p)

Z1) = Ryy + Lygps Z2p = Rop + Logpy 212 = Zp1 = Lyop
Y11 = 611 + C11Ps Y22 = Gz + Goopy Y12 = Y21 = CaoP
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By .successive differentiation and some rather tedious algebraic op-

erations, Equation 27 yields the following set of uncoupled differential

equations,

a4, v a7, v

pral AP PR AT IR P PO 2 * (211 22" 12)( 11722 12) =0
', 7 a%v,

ot (2Z)5Y1 577177 1-255755) E;?‘ + (Z11Z22‘Z12)(Y11Y22'Y12) =0

) (28)

dwT a°T, o
dzu + (2Z12Y12'211Y11‘222Y22) "1?‘ + (leZZZ'ZlZ)(YllYZZ' 12) =0

a*T, 42T,

==+ (221,70 5-0) 1Y) 1-25575,) == + (lez22'zl2)(YllY22'Yl2) =0

dzl+ dzu

It is quite interesting to note that the transformed voltage and
current of each.line, Vltz,p), V;(z,p), Tl(z,p) and T}(z,p) all satisfy
a differential equation of exactly the same form with the characteristic

equation
ru + ar2 +8=0 (29)

where

o = 22)9Y12 - 211¥1) - Z22¥22

N

- =2 - =2
B = ( Z11%22 = 4 >( Y1100 = Y12> ’

The four roots are:

=
2
[ a a2 5
T3 "TNE - 8 (30)
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Note that all square roots are assumed to be a positive quantity.

This scheme is used throughout this thesis,

The solutions of these differential equations (Equation 28) are:

v, =

<l
t

=
u

I

Substituting Equation 31 into Equation 27 and

ients B's, C's, and

Equation 31

riz -r .z Yoz
= Ble 1% 4 B2e 1% 4 Bse 3% + qu

r 2 -rq2 YLz -raZ
Ale 1 + A2e 1 + Ase 3 + Aue 3

-r3z

r.z -r.2Z L2z -,z
1l 1 3 3
Cle + C2e + Cse + Cue

o VA
D er‘lz + D e r3

1 2e-rlz + Dsersz + D

4

(31)

solving for the coeffic-

D's in terms of A's, then inserting the result into

- _ rlz “rlz r'sz “’rsz
Vl = Ale_ % Aze + Ase + Aue
- -,ri’fzz + Z?ll r.z -r.Z
V2 > Ale 1" 4 ae’1
27 -
1212 ¥ 2 Y
'r§-22 + E ?ll rsz =r‘32
t - A.e + A e
D - 3 4
"Tf2 * 2 Y
+ 2T - B0ty Tz -2
T, = = s r\A,e - A,e
e S 2
1712 12 t ‘
Z10Y¥11 = 2507 -
12¥11 = 222Y22 riz raz
M= 3(A3 - Aye



Sl

2

3

+(Z 12712 ~ 21 Y 2 N)7y 0 ryz
-rzﬁ +Z Y ~ (Ao
1412 ¥ 2 ¥

r% + (212?12 EllYll) rs

-2
2® * )

. N ~PnZ
3“ _ 3“
(Ase Aue )

27

2 [E—
T3l1p t 2 Yy
where
- = = z 2
2 = 291299 = 299 o

Since the A's are only multiplication constants, the above equations

can be rewritten as follows:

v, = (“”1212+Z Y )A' 1% 4 ("rlzlz+ le)Aée 1
+ (-r2§' +Z Y. )A'er3 + (-rzf +Z Y. )A' ~ra?
3712 12/°°3 3712 12/7°4
. Zum = - .z 2us o -r.z
vz = (-I‘lZ22+Z Yll)Aie 1 + ("I‘lZ22+Z Yll)Aie 1
raz
(-r32'22+'2'?l )A' + (-r% +2'Y ) e 732
- - = wm e r.z - o e mm -1, Z
T) = (ZioTiiTaoTis )y Ale'L® + (Zpo¥ip-Z10T0)ry Afe 2

-raz
r, Ale 3

( lé ll 22 22) 3 rSZ..,, <-Z- T Y

22%127%12 11)r3 Aje

3 3 -r.z
2 [?1 _7r ( 11 11’212Y12 L]Aée 1

r +{z2. Y -Z r A'e 3° + |- +(Z.. Y. -Z_ ¥ Ate 3
[:3 ( 12712 11Y11) 3} 3® B 3+( 11711 12712 )r:-J y®

By dropping the prime of the A's and introducing four auxiliary

il
W

N

( 12 12‘211Y11 i]A

+
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functions of r, the above equations are further simplified.

- r.z =P.Z ThZ -
Ty = Ajf1(r))e 17 + Bpfy(-ryde 17 4 Agf (-rg)e’ 37 + A f (-ry)e  3”
- r.z -1.2Z r.z -r.z
V2 = AlfQ(Pl)e 1 + A2f2(-r‘l)e 1 + A3f2(r3)e 3 + Aufz('rs)e 3
(32)
r.z =-P.Z r,.Z -r.z
T = 1 - 1 3 - 3
Il Alfs(rl)e + A2f3( rl)e + A3f3(r3)e + Aufs( r3)e
- r.z -n.Z r.z . -r,. 2z
- l - l 3 -
I2 Alfu(rl)e + A2f4( rl)e + ASfH(rS)e + Aufu( ra)e 3
These four auxiliary functions are:
£(7) = =72, - Y50
£(r) = -r°Z,, - Y¥..Z
2 22 11
(33)
(T _T
£4(r) = (Z12Y11 Zya¥1oF
3 4+(T 7 -7 7 )
£,00) = 2 + (7,7, Z1%2) o
If these two lines are symmetric and lossless, i.e.,
Ljp =Ly =L, Rip = Ryp =0,
€11 =C22=C, 11 = G2 = 0,
and
Lyo = Lpy s C12 = Co1 » (34)
then
211 = %90 » Y10 5 ¥ s
and
r) = -ry = J(L-L,)(C4C ) D
I‘3 = ""ru = \/(L+L12)(C‘=’Clz) P
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Equation 32 reduceés to the following.

v, = (L le)(clzL Cle)(Ale + Aje )p
a2 A2
_ 3 3“) 3
+ (L4l ) (e LocLy ) (age 3+ ae” )
- r.2 D, Z
= (L- _ -A.el1 1
V, = (L=L ) (C oL CL12)( Aje 1" + Aje )
T'aZ b of-V4
3 3%\ 3
L-CL +
+ (4L, )(C 12)(A3e ae O )p
(35)
- - N ATl 1
T, = (C,L=CL ,) [(L-L,)(C+C ) (-A,e"1% + Aye™ 1%)p
- _ - PsZ 'I‘sZ 3
+ (Cp,L=CLy ) J(L+L ) (C ¢15) (-a5e"3% + a,e73%)p
- - ' - riz -r1z\ 3
T, = (CppleCly,) L)) (aje ™ - ae” ¥)p

raz b 4P A
- - \ - 3 3 3
+ (cl2L CLl2) /(L+Ll2)(C Clz) ( A3e + Aue )p ’

where A;, Ay, Aj, and A, are constants to be determined from the boun-
dary conditions. Assume the sending end devices have output impedances
Zgl and Zg2,-the receiving end devices with input impedances Z&l and

Zgo, and the first line is fired with a voltage wave described by time

function Bgl(t); then the boundary conditions are:

Vilo,t) = (t) - Il(o,t)zgl

Egl
Vy(o,t) = QIé(o,t)Zg2 (35)
Vl(!.,t) = Il(!.,t )Zfal
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Their Laplace transforms are:

Vl(o,p) = E

‘gl<p) - Tl(o,p)fgl

Vé(o,p) = wT;(o,p)ZEQ
‘ (37)

]

V,(2,p) T, (2,p)Zg
Vé(l,p) = T;(l,p)§%2 o

Substituting Equation 35 into Equation 37 and grouping the terms,

C+C12 C+Cl2 -

C-C E
- 12 = 12 7 = &1
+ (L+L1,5)(CypL~CL;5) ( T Z 1> + Au(} +J/L+Ll2 gl> Eﬁ}-

C+C - C+C -_
(’L-LlZ)CClZL-CLl2) -Al<l - -L-:Jilg- Zg2> - A2<l + ._.1.2. Zg2>

c-C C=C
_ &2 12 =
+ (L+L,,)(Cy,L~CL,,) A3<l Ty, ng> + Au<l + oLy, zg2>

C+C12 = \ r 2 C+C12 = \ -r.2
(L-xLlQ)(.ClzL-CLlQ) Al<l + ToL;, ZR.l)"- 1% 4 Agll = [o====TZ01) @ 1

1]
o

C—Cqp — C=Cy,)\ -
+ (L+L12)(C12L-CL]_2) A3< 'ﬁ?iﬁ' Zz) T3ty Aq,(l - Em e T3t = o
* ; L | |

_ C4Cio » \ T L C+Cqp = \ T4
12

/C-c o c-C i
+(<L+L12)(012L CLlQ)Es(l +\ T3 Zzz e +Al1 L+Ll2 Zzz 0,
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by assuming

gl = “g2 ~

and

Z,Q,l = Z2,2 =.0. "

i.,e., the output impedances of the sending'end devices and the input
impedances of the receiving end devices are all equal to zero. This is
the case that these two lines are both grounded at two ends. Equation

38 is easily solved for the undetermined constant A's, They are:

L (L=Ly,)(Cq,L=CL,,) sinh(flz) up3
N S
2 (LeLy 5 )(Cy pLmCLy ) Simh(r, 2) 4p3
(39)
3 (L=L;,)(Cy,L~CL,,) Sinh(r,%) 4p
A = 1l 1 -E—glersz
% (L-Ly,)(C;,L=CL,,) Sinh(ryk) up3

The complete solution in the p-domain under the assumed conditions
are obtained by inserting the value of A's of Equation 39 into Equation

35q

!él Sinh[r;(2~2)] . Eél Sinh[r3(2=-2z)]
2 Sinh(r,%) 2 Sinh(ry2?)

Vl(z,p) =

(40)

V. (z,p) = :E&E,Sinh[rl(z"2)3.+ Epy Sinhlrg(s-2)]
2'%,P 2 sinh(rlz) 2 Sinh(rg?)
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- E,, Coshlr,(2-z)] E_; Coshlr,y(2-z)]
Il(ztp) = -E} - 1 + —g; - 3
22, Slnh(rlz) 2 Zgo Sinh(rze)

__gl Cosh[rl(l-z)] E 1 Cosh[ra(z—z)]
2 2y, Slnh(rll) 2-Z02 Sinh(ral)

T}(ZQP) =

Using the inversion theorem, the formal solution of line voltages

and currents tan be written as

o+je E Eg1 Slnh[rl(l-z)] pt
V.(z,t) = J[
T 2 sinn(r2)  © %

g=jo

fﬁjm Egy Sinh[rg(4-z)] pt
2wj

dp = V_(z,t) + V,.(z t),fﬁ
g=je 2 Sinh(r %) a ™ b T

n

V,(z,t) -Valz,t) + Vp(z,t)

(41)

otje Coshlry(%~z)] e
I)(zet) = 5?5 jr zlz e
o-je ol °in rl

o+je |2pY Cosh[rq(£~z)] oDt
2“]

dp = I_(z,t) + I, (z,t)
U']" 2 2 02 Sth(r l) P a ' b ’

I(z,t) = -Ia(z,t) + I (z,t)

where o is a real number which is greater than the real part of all
poles of the complex integrand of that integral.

If a step voltage of amplitude E , as Equation 17, is applied on

the first line, then the line voltages-and currents are:
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1 g+je Sinh[r;(2-2)] pt dp
Vylzye) = mj 2 Sinh(r, 2) ® 7

G=Jeo

.2 f°+i°° Sinh[r;(2-2)]

— ePt dp = v_.(z,t) + V. (z,t)
213 J gejm 2 Sinh(r %) p a7 b1

-V;_i(z ot ) + Vl;l(z st)

Vo(z,t) =
(42)
o+je Sinh{r,(2-2)] t
I (z,t) = 5—%] —L ePt dp
g=jo 2 Zol Slnh(rlz) p

otje Slnh[rs(L-z)]
pt d
! 1“[0 —jw 2 Zop Sinh(rye) © 'I;‘11 I)(z,t) + I,,(z,t)

Iz(z.t) = -Ial(z't) + Ibl(z't) .

By comparing the Equations 41 and 42 of the coupled case with cor-
responding Equations 14 and 15 of the isolated case (since the isolated
case discussed in Chapter II is the line with terminated impedance at

both ends, it is better to let Z_ and Z, equate to zero, then X;=X,=0,

g
for comparison), it is noted that:
(1) there are two sets of waves on each line of a coupled system
and each set is of exactly the same form as the wave in the
isolated case;

(2) the operational or transformed propagation constant and line

impedance of these two sets are:

o L-L
_ Ly
vy = J(L-Lpp)(CHC ) p = % Zo1 *JEc,,
‘ L+L (43)
= J(L+Lcc-c ) p = B= Z . = ekl

v, | 02 c-C
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(3) these quantities are perturbations of the values under isolated

conditions being

r = JIC p
L

The perturbed values usually are much different from the unperturbed

ones for very closely spaced lines, in contrast to the usual perturbation

theory in which only a very small amount of change is assumed.

(Note

that the value of a coupled line is that value of the line in the pre-

sence of the other line.)

The integration in a complex plane of Equation 42 can be performed

by evaluating the residues of

for Equation 15 in Chapter II.

each integrand; much the same as was done

The results are:

(-3 n :
- - = t . t
vV (z,t) :iz-z' E, + Eg 1;2::1 (ni) sin |:22z nw][Cosl:%'— nw]+ COSE%_ nw:]
Rz > (=1) -z
=YT E0 + E0 z nw "Slr.l{l nﬂ:l ’
n=l
(v +v,)t (v -V, )t
2 COSE-—-?— nn|Cos - 2 nm
o
' (-1 v t v.t
Vo(z,t) = Ej z »—-)—-Sln[ 15) Cos[:-%- nﬂ - Cosl:—%— nm
n=1l
o n —
_ (=1)" . (%2 .|
= -Eo ZS oh Sln__z nw
n=
1 (Vl+V2)t 7] 1 (Vl—'V2)'t
2 Sin T n1r Sin| = 5 ———g—— n7

(uy)
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n
{ns]
|o
g
Py
o
~~
[
S
=}
(@]
o}
4]
101
)
N
o]
[
(@]
0
0
ld
g
| R

Il(z,t)

o2 n=s
= E i (- ])(——’)- CosI: }
e]
nsl

E 2. -1)® - v.t
I,(zyt) = - 29- (-j)(ni) Cos[q'mz n1;JCos]:+ nn]

<+
3
(o]
-~
[N
N’
P
+
?
(@]
[o]
7]
zel
»
N
g
L — 1
(@]
[o]
7]
<
b O
ct
3
| I |

' n
L (-1) -2
E, nz-l (=3)=g5— Cos|=g— 7|

vt ) v,t
Ty Cos| = 1|+ g cos] B e
ol 202 .

From the solution, Equation 43, the following conclusions can be

drawn:

(1) the voltage at the sending end of line No. 1 is E, and at the
receiving end is zero; the voltage at both ends of line No, 2
is zero.

(2) the steady state currents on the first line and second line

are zero all along the line; actually it is impossible to
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reach a steady state or it takes an infinite time to reach the
steady state in this casey
(3) The transient current and voltage are two infinite series of
which each term is a cosine function of time that never dies
out,
Any further interpretation is difficult to make. Therefore, follow-
ing the method used in Chapter II, the alternate solution of the form of

successive waves is obtained as follows.

Eo & N 2ni+z | T 2n 42 4=z |
V,(z,t) = : Uu,lt - - U_q [t = —
E e - -
(o) 2ni+z 2ni+24-2 -
n=0 | . - _
Volz,yt) = =V, (z,t) + Vy(z,t)

(45)

E o
_ "o ZE 2ni+z 2nf+22-2

E; = -
+ - g E: Unl t - 2ni+z + U-l £ - 2ni+24=2
02 n=0 V2 _ V2

Va(z,a) Vb(z,t)

I (‘z’t) + I (zgt) =
2 b Zoli Zo2

» : v (z,t) Vy(z,t)
I (z,t) + Tp(zyt) = - 224 ..P.Zf :
ol o2

1,(z,t)

Therefore, a few more conclusions are in order,

(4) The velocity associated with these two sets of waves are:
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- 1
JCL-L12)(C+C12) 1
vV = (""6)

<v

> v

V1

V2 =

One is greater, the other is smaller than that of an isolated
line with parameters L and C, Each set of waves propagates on
both lines with the same. velocity.

(5) By comparing the corresponding voltage and current waves, it
is'foﬁnd that the line impedance’associated with each mode of

the waves is

2t . [EEw A 2T,
ol /C+Cyy ol C+Cy,

: (47)
02 C-Cyp . _ 02 C-Cy,

The superscripts indicate forward waves (+) or backward waves
(-). The impedance of the backward waves is just the negative
of that of the forward waves., o

(6) For each mode, the relationship between line impedance and

velocity is the same as that of the isolated lines.

Figure 5 shows the first forward and backward voltage wave on both
line 1 and line 2. The corresponding current waves are shown in Figure
6.

If one rectangular pulse with amplitude E, and duration 1 is

applied on the first line instead of step voltage, then

Egy(t) = Eg[U_y(t) = U_y(t - 1]

i (u8)
= -— o, EeEa—
Egl(p) = E lp D I °
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Voltage Applied on Line No., 1.
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The complete series solutions assume the following forms.,

U 2nitz U 2ni+24=-2
ST R S | L

U l} - 2nt+z - {] - U-l[} - 2n8428~z _ f]

tm

O

5—

1]

Mg

V,(z,t)

=]
[1]
o

[
Mlm
[o]
Ms

=}
]
o

U-l-; . 2nf+z 7 _ U-l t - 2nit28=-2z
B V2 V2
U 2nitz !l =U .|t = 2nl428=2 _ %
-1 Vo -1 A

= Va(z,t) - Va(z,t - 1) + Vb(z,t) - Vb(z,t - 1)

B =
g

t
]

8
wléﬁ
Ms

=}
1]
o

Volz,t) = =V (z4t) + Vo(z,t ~ 1) + Vp(z,t) - Vp(z,t - 1)
(49)
1 . 1l -
Il(zbt) = EZI [?a(z,t) - Va(z,t - Ti] + 2;;-[Yb(z,t) - Vylz,t - T{]
I(z,t) = - -Zi- [Valzst) = Valz,t = 0] + % [V(z,t) = Vp(z,t - 1)) .

For a pulse input, to each line except for the voltage and current
waves shown in Equation 45 and Figures 5 and 6 for step voltage input,
there is another set of voltage and currentiwaves with exactly the same
“amplitude, but of opposite polarity and delayed by a time interval, the

duration of input pulse,

Two Symmetrical Lossless Lines Terminated

at Both Ends

For two symmetrical lossless lines terminated at both ends such that



bl

Zgy = Zgp = Zg
(50)
2oy = 290 %2y -
Substituting Equation 50 into Equation 38 and solving f:or A's,
Z, ) -r.L
-F - 1
1 Bgl<l Zol e
TR Y 0 7 D T (I =) | == == =
1271247412 L
p3l(1 + Lﬁ- Sinh(pr, %) +| —&==lCosh(r. %)
A 1 Z 1
ol ol
E l<l + ZL erll
1 g Z 1
Ay = T LY oI=CT o) == S
bmRy1278 12 12 3 ZoZg\ .. . . ZotZy |
p°|(1 + —==|Sinh(r;2) + - Cosh(r, £)
Z-ol .Zol
(51)
-E 1 l - _ig, e_rsl
A 1 , .g ‘ Zo
3 - ®WL-L,,J(C,,L-CL..) —— ™ —
127%712 12 ZoZ _ Z o+ :
ps[<l + —f—%)sinh(rsl) +< —E—-&>Cosh(r32)
ZO2 Z02
. Z
| Pl s e
A = 'I'JC, s 252
y - H(L=L (C,,L-CL..) - -
12712777412 702 Zots ,
| ’ p° (1 + —"—%)smh(rsz) +<—E—-"->Cosh(r L)
7 7./ 3
o2 02

Inserting these A's into Equation 38, the complete solution of two

terminated lines in the p-domain is: -



y2

ol

ZgZp\ zg+z
2|\l + —/sinh(r ) + Cosh(r 2)
, Z

ol

Z,
gl {S:th[r (2=2)] 4 wr LZ_ Cosh[r (2=-2)]

Vl(z.p)

. Qi
ZyZy, Z,tZ,
2011 + ——7 S:th(r L) + T— Sinh(r'sl)

-Vc(z,.p) + V(z,p)

7
gl {Smh[rs(l-z)] + — Cosh[r (R,-z)]}

= V.(z,p) + Vy(z,p)

VZ(.z P)

» (52)
Egl {Cosh.[rl(lwz)] + 2.-.-2-; 'S-Ii'nh[rl(l-Z)]} |

Z- 7, 'Z"g-rfl ]
ol ol

Tl(nz P )

E‘gl {Cosh[r (2-2)] + ?‘- Slnh[r (2~2)] }
o2

= = T (2,p)+T,(z,p)
ﬁil + .£L7;>Slnh(r L) +< Slnh(r 2)

02

'I-z(z,p) -»Tc(z,p) + "I'd(z,p) .

V.(z,p)s Vy(z,p), T (z,p) and T (z,p) can be further simplified to

a more compact form by assuming
Zo #2601 Ty 7 2o

and
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T 0 = Egl Slnh[rl(l-z) + Xl&]
c . ' —s J_ - N
Z 211 Sinh[r.2 + X_]
2{; _( =g‘> ]3 1 5
Zol
Vd(Z.P) ] E% - Smh[rg(z-z) + Xg ]
Z = Sinhfr. 2 + X,]
2 l} -< =E.) ) 3 7
452
(53)
ﬂf Coshlr,(2~2z) + X, ]
T (Z.P) = __.&i i | -
¢ = | Z, \2|L  sinh[r 4 + Xg]
201 ~| £.) |Z e
701
T -) ) Egl Cosh[ra(l-z) + Xs]
%P Z, \2|L  sinh[rge + X,]
211 -( _%_) 2
Z02
where ' , ' Co > 7
‘ g
-1 Z -1 Z
X, = Tanh -_—ﬁ— Xg = Tanh -——_%J‘_—
} A Z
ol 1 ¢ L
Zol
Z 47
% 2
-1 ZZ -1 ol
X‘5 = 'I_‘anh —— _ X7 = Tanh  co—————— ,
Z02 Zgzﬂ,
1+-==
4
o2

Th ial £ hi iti Z =7 ,%7 =7
ese special cases of matching conditionms, . 1 2y o2

Z =Z ,orZ =17 _ are considered later.

g ol g 02

Using the inversion theorem, the solution in the t~-domain is:
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1 0"'5“’ 'E-;gl Sinh[rl(z-Z) + Xu] pt
Vy(zgt) = 5 f i 77 \2|L  Simhlr % + X1 °© dp
I® ol - é—) 3
Zol

L1 f0+:i°° ‘gl Sinblrg(2-2) + Xg] pt ap
( )1& Sinh[r, s + X,]
2

= Vo (z,t) + V,(z,t)

V2(z,t) = =Vc(z,t) + Va(z,t) | (54)
o+je E Coshl[r,(2~2) + X, ]
I(z,t)=?l* i - L * Pt dp
1 L e - Z_ \211 sinh[r,(%-z) + X.]
o=1® 2 Z |1 - ) 1 5
“ol :gf
Zol
. o#jw E Cosh[r,(%-2z) + X, ]
+§-l-- —d 3 4 Pt gp
™) = Zg 2|L  Sinhlr,2 + X;]
22‘021- -Z-_...z) 2
02

= Ic(z,t) + Id(z,t)

I2(z,t) = =I (z,t) + Ig(z,t) o

If the lines are lossless, and the source impedances and the load

impedances are pure resistive, then

[T-1,
Z‘ = —L: R N Z =
‘ol c+c12 ol 02 C-C12
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= =D
ry = AL-L,)(C4C ) p = v
ry = V(L+L5)(C-Cyp) p = v, °

The line voltages and currents due to a step voltage of amplitude
Eq applied to the first line can be easily obtained by first replacing -
Eé(p) by 1/p and evaluating the residues of each integrandj much the

same as done on Equation 15 in Chapter II.

3 :
Ry Ej e + jnn
Ve(2s%). = TR,y Fo * ——r ) ey
| - 2

. v.t
4 z mnm '%'
Slﬂh{%s - T X t+ ] I‘nf] e
v,t
Xy =
R E e X4 + in7n
V.(z,t) = dex E 4 S p—
a°e 2(R_+R,) o
g L 21_(_}_)51‘1:-@0 X7+n1r
Ro2ﬁ b ‘
v,t
jn1r=.%_
S'th(B-T 7+3Tn1rje
(55)
R R v.t
2 S o % .
et 2R o T R, \2 1L < °
L 2ROll_‘<\E>.§.n_-w X5+n1r
ol
v.t
DT

VA . 2 2
COSh[XS -7 X5 + .jA T mr:] e
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R v,.t

= Ro2 °
Id(z.t) = sere—— EO -

V2t
z T ==
CoshI:X9 -1 X7 + j = nn] e
where
-1 2 -1 7
X8=Tanhl=2-'—, ‘ X9=Tanhl-L °
Z ST Z
ol 02

It is noted that V'c(_z,p) and etc. in Equation 52 can be rewritten

as:

- “riz = =r.(28-z)
1° . 1
e e
c Z. - - -2rg8
1l + ___&. l=0p lpll
Zol g
3 - = - = .n =(2ni+z)r
= =2 Eg1 2. (pgPgy) e !
Zg+Zol n:O.

- )nF e-(2n£+22-z)rlJ

7 o
- 02  wm - - -(2ng+248-2)r
Vizp) =z==—F_ | > (G 5 )le 3
at%s 1
Zg*702 gl | &y g2 a2
.
_ Z G T )n_ e—(2n!?.+212.-z)r3
Ly Pefr2’ Pao
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o0
- = N =(2n +2)r
T (z,p) = B | (51751 1
Zg+Z°l n=0
I G -(2n2+28%~2z)r
+ (p_.p,,) p,, e 1
o el 21
(56)
Eq 2 o = n -(2n24z)r
T.(z,p) = gfz— | > (5.5 e 3
qa-=? 7 +2 = 2722
g 02 n-O g
o0
+ T 5 )n - -(2n2,+22-z)r3
Lo PP’ Puo ®

The Fgl and etc, in Equation 56 denote the operational reflection

coefficients at both ends for mode 1 and mode 2 waves;

NJ
N
Rl

5 1

gl

N
+
9

ol

p

21

8
'
=)f &y

+

<

ol

Therefore the successive waves solutions in

V. (z,p) = T (z,p) + Vé(z,p)
V,(z,p) = -V'c(z,p) + V'd(z,p)
T,(z.p) = T,(z,0) + Ty(z,p)
T2(z,p) = -Tc('z,p) + Td(z,p)

where Vc(‘z,p) and etc. are given in Equation 56,

For lossless lines, pure resistive terminati

voltage input, the successive waves solutions in

P, 2 = _EE__- 502
€< Z_+73
g 02
p 2 = M
L Z + 7
L 02
the p-domain are:

(57)

ng impedances, and step

the t-domain are:
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R (-]
- ol n 2ni+z
Vl(z.t) = ﬁ;;ﬁ;; E, gz% (pglpll) U-l[} vl.}

_ ji ( ) u |y o 2nar22-z
Pg1Pa1’ Pa1 "-1 V]

n=0

R ji n 2024z
N n | 2na22-z
- - ————{ = S nS + S —S
2 (982922) Pos U‘llf v, } (8,-8,)4(5,-8,)

V,(z,t) = (S, - 8,) + (5, - §,)
(58)
I (z,t) = Ri‘ (S5 + Sy) + L (s, *+8,)
1 ol 3 N Ro2 3 4
o1 1
I,(zyt) = - g—=(S3+ Sy) + g=—'(S5 + 8,)
ol . 02
where all reflection coefficients are just
R - R R - R
1
pgl=h& Rg2=RL2_+_§E.
v ol g 02 g
o =Ro1-Re R = o2 = Rg
21 Ry + Ry L2 R°2 + Ry

In the above solution, there are four sets of successive waves on
each line of which Sl and S3 are forward waves of mode 1 and mode 23
82 and Su are backward waves of mode 1 and mode 2 respectively. The
voltage and current waves of each mode, S; and S, or Sa and Sy, on each

line are very similar to the waves shown in Figures 5 and 6. The only
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modifications required are, that after each reflection takes place at
the receiving end or sending end, the amplitude of the reflected wave is

to be reduced by a factor Pei O P (i =1, 2), Also it is easy to see

gi
that the wave front varies with time due to the difference in velocity
and the difference in reflection coefficients associated with these two
modes of waves. For both the line voltage and current, the smaller the
absolute value of the reflection coefficients, the less time required
for reaching steady state., Theoretically it takes an infinitely long
time to reach the steady statej but for practicalvpurposes, it is said
that the line is at steady state when the amplitude of reflected voltage
or current wave is-a small fraction of that quantity aiready on the line,

Since the receiving end voltages are of most interest, in Equation

58 let z = &,

R © S '
ol n (2n+1)2
1“ Rg+§ol o 2;% gl 2} 21 -1{? Yl J
~ Ryo S n (2n+1)4
. Rgfﬁoz o 2;5 ot g2v a2 22 1 vy
‘ (59)

o 3 | |
_ -Tol - \n (2n+1)%
Yozt = - pmr 2, (ogrgy) (= og) U—ll} - _"T'—l

02 n (2n+1) %
: Rg+E02 o gi% >(Dg2022) ¢ g7 -l[:- Vo -J

The variation of receiving end voltages with time are shown in '
Figure 7. Of course no numerical values can be given unless the line

parameters and the termihéfing impedanéesvare known,
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Figure 7a. Receiving End Voltages, Successive Waves
of Mode 1.
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i
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Figure 7b. Receiving End Voltages, Successive Waves

Figure 7,

of Mode 2,

Receiving End Voltages of a Coupled Transmission
Lines,

50
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Figure 7c., Receiving End Voltage, Line No. 1.
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Figure 7d, Receiving End Voltage, Line No. 2,

Assumptions:
Zy1 = 40 ohms, Z°2 = 60 ohms,
Zgl = Zg2 = 1000 ohms,
Zg) = Zyy = 200 ohms,
5 . .
vy T TVl (arbitrary assumption)

Step voltage Eo applied on line no, 1

Figure 7. Receiving End Voltages of a Coupled Transmission
Lines,
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There are two line impedances for each line corresponding to the
two modes of waves. At each end the terminating impedances R, and Rg
may be chosen to match one of these two line impedances. By combination,

there are six special cases.

e

(1) 2

L]
N

€0 p =0

g ol gl
(2) Zg = Zop i.e. Pgr = 0
(3) z,=2, 1i.e. Pgy = O
(4) z, =12, i Pgp =0
(5) ZL = Zol and Zg = Z02 i.e, Po1 = pg2 =0
(6) 2, =2, and Zg = Zolrﬂ i.e. o2 = pgl =0

For the f;rst two cases, the voltage and current waves of one mode
(mode 1 for case i, mode 2 for case 2) prééégate from the sending end to
the receiving eﬁd; being reflected at the receiving end, they propagate
back to the sending end, then stop there without any further reflection,
The voltage and current waves of the other mode bounce back and forth
between the two ends,

For the next two cases, the voltage and current waves of one mode
(mode 1 for case 3, mode 2 for case 4) propagate from the sending end to
the receiving end, then stop there without any reflection.

Cases 5 and 6 are optimum cases. The waves of one mode (mode 1 for
5, mode 2 for case 6) propagate to the receiving end without reflection;
the other mode, being reflected from the receiving end, propagates back

to the sending end and then stops there without further reflection,



CHAPTER IV

COUPLED LOSSY TRANSMISSION LINES

Two coupled, symmetrical and lossy transmission lines, grounded at

both ends or terminated at both ends have been considered in the prece-

ding chapter,

The solution in the p-domain for both ends grounded is:

V,(z,p)

V,(z,p)

1"

Tl(z.p)

Ty(z,p) =

In the t-domain, the solution is:

1
2jﬁ

Vl(z,t) =

1

+  commern

27mj

ot+j»

Eél(p) Sinh[r,(2~2)]

E
+ B

l(P) Sinh[rs(k-z)]

28inh(r %)
Vl(z,p) + v;(z,p),

TVE(Z'P) + V;(z,p)

E'l(p) Cosh[rl(l-z)]

s -4 ik

2Sinh(r3£)

Eé;(p) Coshlrj(2~z)]

(60)

2 Z) Sinh(r %)

T;(z,p) + Tg(z,p)

Tiz,p) + Ti(z,0)

-

1(p) Sinh[r;(2-2z)]

2 Z,, sinh(rsz)

°

ept dp

gmjoo 2Slnh(rl£)
*O+]je Eé;(p) Sinhlr,(2-z)]
o‘-joo 2Sinh(r32,)

53

Pt ap = Vi(z,t)

+ Vﬁ(z,t)

(61)
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L Volzet) = =V;(z,t) + Vi(z,t)
otje T _( -
e - gy [0 T ene)
( 1J geie 2 Zo; Sinh(r %)

4§ o

1 f°+j“ E:LC,_P) Cosh{ry(2-z)] ot
27]

e  dp = I'(z,t) + I'(z,t)
i b
g-jo 2 Zop Sinh(rye) a

I(z,t) = ~Ii(z,t) + Il(z,t) .

They are of the exact same form as Equations 40 and 41 of the loss-

less case. The difference is that the parameters roo Py 2;1’ Zo2’ are

functions of p, not just pure numbers as for the lossless case.

-‘l’—. J(p+20) (p+28)
1

1

~— \/(p+2a)(p+28)

V2

(62)

v, = VZ-Z)(T4T,,) = (L-L1,)(C4Cy,) /(p+2a)(p+28)

v, = J(ZT )(T-T ) = J(L+L12)(c+c12) J(p+2v) (p+28)

- {‘E.E /L-—L12 / 420,
7z = =F=;2 = e 58
ol Y+Yl2 C+Cy,V pt+28

o Y, C-C,,\/ p*26
where

R.-R

R
=Lj2
G+G

2 = TE
)

2 _R1+R2

Y = wm—i
L+Ll2“
G-G1,

26 = =— .

12
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The complex integrals in Equation 61 can be evaluated by finding
the residues but the presence of thg doubled-valu; function Tys Ty and
2;19 7;2, compiicates the procéss of evaluation. The alternate method
to be used here is by expressing the hyperbolic functions ip Equation 60
in an exponential series and from the known transform pairs, obtain the
solution in the t-domain,

For a steé input voltage of amplitude E,, V;(z,p) in Equation 60

can be rewpitten as:;

Eo Sin[ry(2-z)]
2p Sin(r,2)

V;(_z oP) =

- ZH:IZ (p+2a) (p+28) - 22&12£:£»V(p+2a)(P+23)
1

> e —e 2 .

n=0

tr1
o

]
"l

From the known Laplace pair,

E e | -(o+)i2BEZ)
(e} v 2ni+z
Va(ZQt) = '2_- Z e l U-lft - -T—]
n=0 1
+ I l}a-s) /t2 -(M);Jdt
. (G_B)..(,2n£+z) [ o~ (atB)t 1 ' v
i Vi 2ni+z ,

. _(2n2+z>2

Vl vl
: : (63)
- e-(a+6)(2n£+21—z) U E_ 2n2.+2£-zj’
-l v'_
1
2 (2n8428-2\2 |
. t (arg)ye TL[(0BYt -(.._17___Q dt
+ (a-a).z_’,‘_:’ﬂ:i/’  o(ard)t ] - 1‘2 .,
V1 . =
' 2n2+28-2 , V/ £2 _(2nz+2z z)

Vi
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The voltage wave of mode 2, Vb(z-,t), is of the exact same form if
a, B, and vy in Va(z,t) are replaced by the corresponding quantities v,
§, apd Voo

The current wave of mode 1, T;(z,p), may be rewritten as:

- -?.I.l-étz- Y(p+2a) (p+28)

- 2202 ) (pr28)
+e V1 .

The inverse Laplace transform of I;(z,b) is also known.

2

C+Ciop - ‘
I (z,1) __ + Z (a+B)t OEQ-B)jt2 _(_2_ni_+£)

Ll2 n=0 1

t , 2
+ o f e-»(a+8) I, (a-B)/t2 - (.2.2.2'_"?-) dt
2ni+z Vi
V1

(64)

§ 2
R ORS (a-s{/;2 _ (2n2:22»z)
1

t 2
~(at 2nL+24-
+ a/ ’ e (at8) I, .(a-B)\/tz-- (-P—‘-,—-i) dt ¢ .

V1

The current wave of mode 2, II')(z,t), is obtained by replacing o, B,

v, and the factor vC+C,,/L~L;, by v, §, v, and the factor ¢C-Cl2/L+Ll2 o

1

As for the coupled lossy transmission lines, terminated at both
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ends, the solution in the p-domain is:
Vl(z,p) = Vl(z,p) + V}(z,p)

V,(z,p) = -V (z,p) + Vi(z,p)
(65)

Ti(z,p) Tg(z,p) + T}(z,p)
T,(z,p) = -I'(z,p) + T4(z,p) ,

where VZ(z,p) and etc. are given by

'E'Ll"(p) . Sinh[ﬂ(l—z) + X}

V'(z‘p) = - - —
Zol
- E, l(P) Sihh[rﬁz-z) + Xé]
Vilz,p) = T \ZL stwblr,t s X1
211 -( —E—) 2 7
z;2

T'(z,p) __E.slip) — Cos}_ltr3u-z) + X!
c ? % 211 - Sinh[r.2 + X']
) 21 -( _.g_.> 2 . ‘ 3 5

fg;(p) Cosh[ra(2-z) + X211

7. \2|1  Sinh[r.% + X']
2[1-(._5_”2 Sinhlrgt + X)
ZoZ o

T:i(z D)

where

IFPI

XL = Tanh.l

BN

ol
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N
H+
»

)
3

By the inversion theorem, the formal solution is:

V. (z,t) = Vi(z,t) + VQLZ.t)
Volzyt) = =Vi(z,t) + Vi(z,t)
. (66)
I,(zyt) = Il(zst) + Ié(z,t)
;z(z,t) = -Ié(z,t) + Ié(z,t) o

The evaluation of each complex integral can be done much the same
as for the isolated transmission line in the end of Chapter II, since
the voltage or current waves of each mode is of the exact same form as

the waves on an isolated line.



CHAPTER V

A PRACTICAL EXAMPLE ~ COUPLED LOSSLESS TRANSMISSION

LINES WITH CAPACITIVE TERMINATIONS

In this chapter, a practical example, but a less general case, is
considered to demonstrate the theory.presented’in this thesiéo

A symmetrical coupled lossless transmissional line, with capaéitive
termination, is chosen because the lossless line is a good approximation
for most practical cases (especially for the physically short line).
The capacitive termination is assumed to represent tbe most solid state
devices, which in general have capacitive input and éutput impedance.

The operational line impedances and propagation constants are:-

zol = Rol ’ zo2 = Ro2 '

r, = fL-L,)(C+C,) Py T, =‘/KL+L12)(C—C12) Ps

and the operational load impedances and source impedances are:

— 1
Z = 2 = R+ -
gl "g2 g cCcp'’
g (67)
Ty = Zgp =Ry * Ei‘ .
P
Then the operational reflectién coefficients are:
-— P+al R “Rol 1 1
4 TP TS p = &0 ’ a, = ) b, =
1 1 1 ) - YC_ 1 ( C °*
g 8 p+bl g Rg'l-Rol A (Rg Rol pg Rg'l'Rol Cg
(68)

59



Ro=R 1
- pray = B 02 R

Pg2 °g2 pb, *  Pg2 Rg*Ryp ° ) (Rg-Roz)cg '
-— p+cl _ Rz- ol _ =1

Pa1 = Pu1pFd » PULTRAR, ' 1

ZRQ'Rolscg '

- pre Rg-Rop 1
p =p N p T ——— s fe) = ——-—un-a-—- ’
22 22 p+d2 22 R2+R02 2 (Rg-Ro2)cg

60

1
2
2 (Rg+Ro2)Cg
(68)

1

d -_’T——-T—
1 R2+R 1 Cg’

(o]

1
dy * RARc
L 702 g

Inserting these values into Equation. 54, the transformed voltage: on

the two lines for a step voltage applied on the first line is:

vl(z’p) = vc(z,p) + Vd(Z,P)
V&(z,p) = —V;(z,p) +»Vh(z,p)

where V;(z,p) and Vh(z,p) are given by:

-— ol
V (z,p) = E_ 5= (pyPgq )
c+ZP o R ¥R ] gig g1°01" (5ip )1 |\ pea,

PP ——
! gl 2l (P+bl)n+l P+dl

LS L e e
nso0 82 k2 (p+hé)n*l p+d,

n (pta))”? (p-rcl >n

n n+l gptaij?l ( p+cl>x1

n+l

(69)

- 2ni+z

et

Vi

2024282
-, v P
e 1

(70)

_ 2ni+24~-2z

: p
Vo

By expanding in partial fractions and taking the inverse Laplace

transform term by term,



(f-l (p+.a1)n ptc, n
- yntl ( )
{ (p*b;) ptd,
_ ’“il Kii _ (o#l-i) byt & Kpi  (nei) -qpt
S5 ot o & @DY ¢ T

Then by the shifting theorem,

- 2h£+z
(f-l (pta;)? ( p+cl)n . V]
(p+bl)n+l p+d’l
. -b' ( 2n£+z)
'?i% Kyg 2nez \(PH-1) TPUE ST LT onges
= - t - - - s
1 (nt1-1)! v, 1 Vi
2ni+z
o3 d t -
i Kpi 2ngrz \(P1) . 1( vi )u _ 2024z
<1 (n-i)! vy 1 V1

Therefore the line voltage for waves of mode 1 is:

: Rol =
\ (Z,t) =z | oe—— ) .
c (o] Rg*Rol nz=0 |

: | 2nit+z ‘
ntl (nt1-1) by (¢ - 222E)
K. s 1 v 2ni+z
Z (p lpzl)n ——l+—- t - M e 1 U-l te- ——‘-,-—-
iz g (n+l-1)} vy 1
(711)
. . 2nltz
+ f: G 0. " Ko (t - 2n£+z)(n-l) e"dl(t - vi )-U |E_ 2n8+z
13T -1
i=1 gl a1” (n-1): v vy
L {y ~by (t- 2nkr2e-3) _
Lo ontl Ky oy _ 2ng428-z (ml-l)e VT TV 0 . |t 2n&+28-z
-2 g DI\ v Y T —
izl ¢ 1 1

_’2n2+22-z)
Vi
Ot

+1-1) =by (t
Tl on o0l Kyg /t_‘2n2+22-z)(n+1 b il

P P —r(t=
gl el (n+1-1).\ vy

Vi

—_ 208+28-2 |

ot

61



wherevl(ji (j = 1, 2, 3, 4) are coefficients of each term of the partial

-fractional expressions

1 i=-1 n pfcl n
Ky = = i1 (p*a))
(i-1)! | dp ptd;
1 ai-t n  (pta))”
Kog = == 1=T (P*cy) Tl
(i-1)! |ap "1 (ptb,)
(72)
Ko, = L - (pta )n< pﬂ:l)nﬂ
31 T (3-1) i-1 1
37 (11! |« p+d; peb,
« 1 |ait - )n+1' (p+a))"
., = - ptc S t———————
43 . ~i-l 1 n+l
St (i-1)! |dp +b.) '
PT .(p 1 p=d,

By a similar process, it is found that the line voltage for waves
of mode 2 is:
' Ro2 &
Vylz,t) = E =g — D °
R
d o Rg+ 02 o
' . én£+z
[ -3 - - s
%il G )P K11 _ 2nitz (n+1-1) e b2(t vy )U ¢ - 204z
1 g2P22) ToFl-1)t v, | -1 vy
2n+z
' 3y -d,(t - 82
+ ii ( )n K2i t - 2ni+z (n-1) e 2( Vi )U £ - 2ni+z
& e’ T v, \ 1 v
- (73)
: . _B (t- 2n£+22-z) _ "
“il , o ml K§i /. 2niv2e-z (n+l-1)e 2 V2 4|, 2met22-z
- | — - - v
i1 g2"%2  (n+l-i)} v, , 1 2
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and
1 di-l n/ P*¢2 "
Ki. = =1 (p+a2) >
(-1 | @ ptd,
— p=b2
1 |at? n (ptay)”
5’ - i-1 (ptey)™ - n+l
1 (i-1)! |dp (p+b,)
| p=d2
(74)
| 1 ai-1 n/ Prep\PtL
gi - ( )t i-1 (p*az) \ d
i"l © d = +
1 -1 el _(pran)”
KQ. = o1 (p+c2) el o
(-1 |aprT (p+b2)n
— p=d,

This formal solution for line voltage for each line which comsists

of eight double infinite series looks'v§ﬁy complicated, Fortunately,

for a practical transmission problem, only the first few terms of each

series are required for an approximate solution.



CHAPTER VI

SUMMARY

. '-(
This thesis presents the theory of an insolated transmission line

with both endsvterminafed,.and then the theory of two coupled symmetri-
cal lines, \It is shoﬁn that there are two modes of waves on two cgﬁpled
transmission lines and that each of these two modes of waves is of the
exact same form as the waves existing on an isolated transmission line
under the same conditions. The parameters, line impedances, and propa-
gation constants of these two modes of waves of two coupled lines are
the perturbed quahtities of an isolated line.

The future work suggested in this area is:

(1) the theory of a coupled system of tﬁé,non-symmetrical lines;

(2) the theory of a coupled systéﬁ,of multi-transmission lines,

symmetrical or non-symmetrical;

sl

(3) the evaluation of line parameters, L, C, R, G'»Zij’ and o,

ij®

of a practical multi-line system,
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