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PREFACE 

This thesis presents the theory of interaction or coupJJ.ng between 
.::;' 

two parallel, closely spaced single transmission_llneao _Thia theory. can 

also be applied to a pair of balanced transmission lineao 

This study is part of the research project,· "Probabilistic System 

Analysis 9'' sponsored by Sandia Corporation, under Contract Noo 50-7841-o 

The original goal of this part of the project was to investigate t}ie $.n-

terference or induced voltage on a line among a ~dle of l.bies of w~icb 

pulses are past on one of the other lines. 

In the course of this study, it was found-that this investigation 

of coupled transmission li~e theory is not only of . .i:ntel'8at to Sandia 

Corporation for just knowing how much interference voltage.is .biduced 

and how this voltage can be reduced 9 but the.theory also bas a great po­

tential of application to a large class of transmissionproblemso For 

example 9 -tbe analysis of multimode transiliisaiol\' syst~. ~d the cU1alysis 

-of interaction.between drifting charged particles and propagating elec­

. tromagnetic waves·o fri view of these more . iq,ortan:t applications·, the 

·.study made here · is beyond Sanclia 9 s ... inte~t O 
' . ,, ti., 

Indebtediwaa is acknowledged to~l>ro Kenneth Ro Cook for-bis recom­

mendation and to Dro Arthur'Mo. Breipobl for granting.the research.assis­

_tantship which enabled the author to work on these intereating-probleinso 

The author wishes to express his sincere appzrec!atim to:Drso Ko-Ro 

.gestive diacuaaioneo 
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CHAPTER I 

INTRODUCTION 

The problem of interference or cross talk among a bundle of lines 

on which pulses or other signals are passed can be attacked by one of 

the two following approachesg 

lo Field Theory: Starting with Maxwell's equations, two poten­

tials associated with a signal on a line can be set up. Then 

the electric and magnetic field in that line, neighboring lines, 

and in the insulation dielectric between the lines can be de• 

rived from these two potentials. By using biaxial coo~dinates, 

this problem can be solved exactly for two parallel single 

lineso Unfortunately, this approach can not be applied to three 

or more lines owing to the complicated boundaries. However, 

numerical methods with the aid of a digital computer can be used 

to calculate the field at a finite number of points on a finite 

number of transverse planes spaced longitudinally along the 

1ineSo 

2o Circuit Theoryg By assuming self-line parameters, Rii• Lii• 

Giia .cii'il and mutu~l line parametez,s, Rij, Lij • Gij, and Cij, 

the telegraphist 9s equation can be fcz,mulateda then solved by 

Laplace transform techniqueo 

The calculation of line parameters is a static field problem which 

is quite involved even for a bundle of a few lines. By introducing a few 

l 
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simplifying assumptions, the line parameters can be evaluated, and the 

result can be verified by measurements. It is also anticipated that the 

measurements are theoretically possible but may be very difficult to 

perform for-a bundle of short lines. 

The field theory approach is more general and rigorous but except 

for very simple cases it also is a formidable one. The circuit theory 

seems completely different from the field theory. By imposing a few re­

strictions,both King Cl) and Pipe (2 1 3) have derived long line equations 

from Maxwell's equations. Schelkunoff (4 15) has studied the equivale.nce 

of these two approaches in detail for numerous cases. The infinite num­

ber of modes of Schelkunoff's generalized telegraphist's equations is 

due to the distributed coupling between dominant mode and other high or~ 

der modes. Neglecting this coupling, Schelkunoff' s generalized tele- ... 

graphist's equations reduce to single mode transmission line equationso 

The study of propagation of waves along several parallel wires can 

be traced as far back as 1920 (.6 1 7). The early interest in this problem 

was in connection with cross-fire and cross-talk of telegraph and tele­

phone circuits. The early work done in this area was directed toward 

calculating the far end and near end cross-talk coefficient and elimi· 

nating the coupling. For open wires a complete and systematic transp9~e 

scheme (8 1 9 110) has been developed. As for cables (11 112) twisted pairs 

and quads were successfully developed which effectively eliminate cross­

talk among a cable with hundreds of thousands of pairs of wire. Matrix 

algebra (13 114) was introduced for a much simpler and more elegant solu­

tion in the late 1930's. 

The coupling effect was put into use as coplane coupler (15) which 

works as filter or suppressor in a transmission line system through 
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which an antenna is fed by two or more transmitters of different frequen­

cy simultaneously o The second use made·· of coupling effect is directional 

coupler which became a popular subject in the early 19SO's. Although the 

major portion of the work was done on wareguide devices, the transmission 

line type '16 117) was also investigated. 

The coupled mode theory (18 119) initiated by Pierce in 1954 is well 

appreciated in the study of directional coupler and traveling wave devi­

ces. But due to its weakly coupled nature, unfortunately, this well Qe~ 

veloped theory can not be adopted for this problem. 

The approach-used in this study is for,tightly coupled system and· 

for transient state. It can be easily applied to steady state problem. 

Although the line parameters with the presence of all other lines 

are assumed. No attempt of evaluating these parameters is made. Only 

two symmetric lines are thoroughly investigated here but the extension to 

non-symmetric lines can be made with some mathematical difficultieso 

The treatment of a transmi~sion line by Laplace transform is quite 

extensive in the literature (20,21,22,23,24) but-the most general case, 

lossy transmission line terminated at both ends is never treated due to 

mathematical complications. In Chapter II, the t?'ansmission line is 

studied systematically; use of the result is made in the following chap­

ters. The most general case is also treated. The coupled lossless and 

lossy lines are studied in Chapter III and Chapter IV respectivelyo ln 

Chapter V1 a more practical problem is investigated. 



CHAPTER II 

ISOLATED TRANSMISSION LINE 

Steady state transmission line theory is a topic in nearly every 

book dealing with circuit theory or linear systems. The transient state 

solution 9 using the Laplace transform approach, appears in many fine 

books o-f transient analysis ( 22-27) o However., due to mathematical 

complication, the most general case, lossy line terminated at both ends, 

never has been treated before. In this chapter, the lossless line is 

treated 1 then treatment of lossy line follows. 

Line Equations and Their Solution 

A transmission line with line parameters L, c, R, and G is fully 

described by two first order differential equations: 

a . > (L at+ R)I(z,t 

(1) 

- aI(z.t) - (Ca + G)V(z t) 
az 1't • • 

If initial current and voltage all along the line are both assumed 

to be zero 11 i.eo 

V(z,O) = 0 

(2) 

I(z 1 0) = 0 

4 



then the Laplace transform with respect tot of Equation l is: 

av - rz = c1p + R)r 

aT ... az = ccp + G>v o 

On differentiating with respect to z, 

a2v 
(Lp + R) 

aT ... :-:,- = 
Oz az 

a2i 
(Cp + G) 

av 
- ::-1 = oz az 

Then substitution of the values of av /oz and auaz of Equation 3 

into Equation 4 yields the following uncoupled equations: 

a2V' 
~ - (Lp + RHCp + G)V azL -

a2"f 
--.ii° - (Lp + R)(Cp + G)I O 
OZL -

The solutions of Equation 5 are: 

- -rz rz I(z 9p) = Ce + De 

where 

r = I (Lp + R)(Cp + G) 

5 

(3) 

(4) 

(5) 

(6) 

Substituting Equation 6 into Equation 3 1 the undetermined constants 

,c and Dare found in terms of A and B. The results are 

C = ;cp + G A 
Lp + R • ( 7) 



_ /Cp + G 
D - - . Lp +RB 

Therefore the voltage and current on the line in the "p" domain is 

~(z.p) _ jCp + G A -rz Jcp + G . B rz 
- Lp + R e - Lp + R ~ 

They may be denoted 

A -rz .. = ...... e 
ZO 

B . rz 
- -e 

Zo 

r(p) = J(Lp + R)(Cp + GJ· = {Le j(p + R/L)(p + G/C) 

as the transformed line impedance andpropa.gation constant. 

6 

(8) 

(9) 

(10) 

The constants A and B depend on the boundary conditions. If the 

line is of length 19 with a load z1 and a source of voltage E8(t) and 

output impedance z8 as shown in Figure 1 9 then the boundary conditions 

in the "t" domain and "p" domain respectively are: · 

(11) 

V(&,t) = I(J,t)Z& 

(12) 



~ 
zg 

,. 
z >I I(z,t) 
~ 

V(z,t) 

Figure l. An Isolated Transmission Line With 
Both Ends Terminated 

1 
Z1, 

Substituting the solution in the 1'p" domain• Equation 9 into Equa-

tion 12 1:and solving for the constants A and B, 

- ( z'a.) rt Eg l + ~ e 

A = ~ ....... ----------------"""'"------...... ~------
2 [ '\.:. Z° Jc o sh (rt) + 2r + Z°~Z°]Sinh(rt) 

• 

- ( z'a.) -rR. E l - - e g -. Zo 

B = ------------------------~------------Z g + z ~1 I- Zg z ~1 
2 '!o JC·osh(rR.) + 2 Ll + ~ JSinh(rR.) 

Inserting the above solution into Equation 9 yields the complete 

solution in the "p" domain. 

7 



gzo Gosh(rt) + 1 + ~ Sinh(rt) 

~ Zt] r(R.-z) [ Za,J •r(t-z) l+-e - 1-:-e z0 z 

Equation 13 can be rewritten as: 

Sinh[r( 1-z )+X1] 

Si~h[r~ + X2] 

Cosh[:ri(t-z)+X1] 
Sinh[rR. + X2] 

8 

(13) 

(l~) 



where 

=-Za. 

;+z.e. 
z''. 

Tanh x2 = ---0--
Zg Z.e. 

l+ -2 
zo 

9 

If Zglz"o · = 1, i.e. , a complete match at the sending end, Equation ' 

14 reduces to 

[
- -] l. . _ Z - Z ~. -r.e. = E (p) _0 _& 2 e Sinh[r(R.-z) 

g Z0 + Z.e. 
(14a) - ["'" -Jl .· E (p) u - Z - ·-rJI. 

.··• Tcz,p) = s_ _0 _ .e. 2 e Cosh[r(R.-z) + xl] 
Z0 Z0 + z1 

.If Z.e./Z0 = 1, i.e., load impedance matches the line, Equation 14 

reduces to 

(14b) 

I(z,p) = E'. (p) ~ · e-rz 
g-'l'P -"o + Zg 

If ?1/z"0 = l = 'rg~o• i.e., both ends of the line are matc~ed, then 

T(z,p) 

-rz e 

(14c) 
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Using the inversion theorem, from Equation 14 1 the line voltage and 

current is: 

(15) 

Cosh[r(R.-z)+X1 ] t 
------- eP dp Sinh[r.e. + x2J 

where a is a real number which is greater than the largest real part of 

the poles of the integrand. 

Terminated Lossless Line 

If the line is lossless and both source impedance and load impedance 

are pure resistive, then 

zo -!¥ - c = R 0 

v JLc p 
p =-v (16) 

For a step voltage: 

t > 0 -
t < 0 

(17) 

't"g(p' >.· - 1 - p:. 

The inversion integrals of voltage assumes the form 

/ 



ll 

V(z,tl = 2;11:::: E -(~)Jt 0 

The integrand is a single value function of p with. simple poles at 
-Xz + jmr 

p=Oandp= ~/v ,n=O,.:!:,l,.:!:,2,• 00 

The residue at p = O is 

-x2- + jmr 
The residue at p = · · · · · is 

R./V 

z 2 l . E-( t) 2 p Sinh[rt + X2J p 

' .· t ·~· E Sinh[I'( R.-z) + ,X ]eP · -

d 
dp 

. t 
z J Jmr _ + j T n,r e · R./v • -

The voltage along the line is 



+ 

where 

-x t 
Eo e 2 1/v Ge) 

~ -(~)2Jt 
~ 

n=-• 

R 
V(z,t) =~E0 

X2 

x2 
2 

+ jnn · [ 
2 2 Sinh x3 

+ n n . . 

-1 R9., 
X = Tanh· ~ l - R -

0 

'· . 

z x . - T 2 + J 

x3 = Tanh-l [~ J , 

12 

z ~ jn1r 
t 
R,/v T 2mr e 

In a similar manner, evaluating the .line current inversion integral 

yields 

These final solutions of line voltage and current have been obtained 

as an infinite hyperbolic serieso No physical interpretation can be :made 

for each term of these series. An alternative method may be developed 
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which gives a solution for which each term can be identified as success-

ively reflected waveso 

By substituting Equations 16 and 17 into Equation 13, then rewrite 

as 

Eo 00 

I + 
Rg 

1 + lL n=O 
0 

Eo 
Tcz,p) = R0 + Rg 

00 

I 
n=O 

(p a,Pg>n PR. e 

00 

I (, . )n P R.p,: e 
n=O 

g; 

(2IiR.+z)p ,,. 

( 2n R.+2 .t-z) p 
v 

_ (2nR.+z)p 
v 

(2nR.+2 -z>e 
v 

Recalling the fundamental Laplace transform pair: 

-ap . (. . ) e . ----- u.:.,1 t•a , 

the inverse transforms of Equation 19 can be written as 

Eo 
V(z,t) = ---

1 +~ 
Ro 

Eo 
+ . Rg 

1 .+-
Ro 

~ ( )n U [t _ 2nR.+zJ L Pg,Pg -1 · n=O . ·. V 

00 

I 
n=O 

(19) 

(20) 



where 

( . p. )n P u ft _ 2n.t+2R.-z] 
Pt g t -1 L v 

Ro - Rt­

R0 + R.e, 

t•; :-· . •' 

14 

are reflection coefficients at the receiving end and sending end respec-

tivelyo 

In Equation 20 1 the first series of voltage or current waves are 

forward waves of which the nth term represents the wave being reflected 

n times at both endso The second series are backward waves of which 

the nth term represents the wave being reflected n times at the sending 

end and Cn + l) times at the receiving end.; 
R0 - R2 • • . 

If Pg= R + ~ = 0 1 this is the case for the source impedance 
O g 

equal to the line impedance, then only the ;irst term of each series 

existo 

zl. 
- vJ + 

2R.-z] --v 

Eo, [ z] Eo [ 2R.-zl 
I(z,t) = R. + tt u_1 t - v - R + R P.t u_1 t - -V--J o 

O g O g 

(20a) 
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R ·- R,t 
If p1 =Ro+ R = 0 1 ioeo the load impedance matches the line, then 

0 .t 
only the first term of the first series exists. 

(20b) 

Furthermore, if p1 =Pg= o, then 

E z 
V(z,t) = :,Q. U 1[t - -] 

2 - v .. 

(20c) 

Eo z ,·Icz,t) = ~ u_1It - ~J 
:.C:1\0 v 

The solutions of special cases, Equations 20a, 20b, and 20c 9 ,also 

can be easily obtained from Equations 14a, 14b, and 14c, respectively. 

Instead of step voltage, a pulse of amplitude E0 and duration Tis 

applied to the line. Then Eg(t) assumes the form 

and (21) 

- 1 [ -TPJ E (p) = E - 1 - e g O p 

The general solution, Equation 20 assumes the form 

Eo co 

Co1og>n { u_l [t ~} V(z,t) = I _ 2nt+z~ _ U [t 2nt+z 
R v -1 v 

1 +~ n=O 
0 

Eo 
co 

{ u [ _ 2nt+21.-z] _ u ~ _ 2n1+21"'.'Z . ~} + I n 
R (p 1Pg) Pt -1 t v -1 t v 

1 + i!- n=O 
0 
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( )n { U f: _ 2n.t+2.t-z] _ U ~ _ 2n.t+2.t-z _ J} · 
P.e.Pg p~ -1c= v •. -lLt v T 

Corresponding to each term of the solution of a step voltage, there 

is another term of the same amplitude but opposite polarity and delayed 

by a time interval t for the solution of pulse voltage. 

Terminated Lossy Line 

For the most general case, a lossy 
1 

!".e. = R.e. + L.e.P + Ca,P' and general source 

line with general load impedance, 

impedance, !"g = Rg + LgP + Clp• 
. . g 

allows Equation 11 to be rewritten as 

~ oz: 00 

- 0 ~ = E (p) - - L 
g Z0 + Zg n=O 

( - - )n - -r(2n.t+2.t-z)J 
P.e.Pg . P.e. e 

00 

I 
n=O 

1 ~ (- - ·)n - -r(2nR.+2R.-z)J 
,.. - L PR.Pg PR. e 
L.0 + Zg n=O 

(23) 

where Pa, and Pg are not just a numerical reflection coefficient any more, 

but a function of p. 

ay the inversion theorem, the symbolic solutions of the line vol-

tage and current are: 
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1 ~ f a+j• E(p)Zo {- - )n -r(2n.ll,+z) pt 
V(,z,t) = ~ L _ "'" p p e e dp 

~1fJ n=O a-j• Zo + ~g .11, g . 

.., f O+J·. ao -E ( )-z 1 ~ P o (- - l - -r(2n.ll,+2.11,-z) pt + 21rj L - _ PR.Pg P.11, e e dp 
n=O o-J• Zo + Z8 

(24) 

1 -~ 21fJ 
Leo ., .. a+J·· ~(p) f ti c-"- )'ri - -r(2n.11,+2R.-z) pt dp 

P.11,Pg P.11, e e 
n=O ·. a-j• !'0 + 'f8 

0 
! .:···,,. \. 

There is no real difficulty in evaluating the inversion integrals 

although it is a rather complicated ,process and it is difficult to ex-

press the results explicitly. 

All integrands of Equation 24 can be expressed in the following 

where 

y = (2nR.+z) or (2nR.+2.11,-z) 

U(p) arid W(p) are rational algebraic functions of p and can be 

written in the form 

- R(p) 
Q(p) + - • 

S(.p) 

Q( p), R(p) 1 and S(p) are polynomials of po R(p) is . of a lower degree 

than ~(p). 
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For example the integrand of the first integral of V(z,t) of Equa-

tion 24 is 

which can be written as 

('ro - 'rg) -r(2nt+z) pt jn 

··~-'2 e e 
O g 

- rr ,... "' ;-i -yr(p) pt = E(p)~(p) + ~0 w(p~e e 

- "' -yr(p) pt - - - -yr(p) pt = E(p)u(p)e e + E(p)W(p)Z0 e e 

-y/Ii. {(p+R/L)(p+G/C) pt 
= Eg{p)U"(p)e e 

- - IL /p+l<7L -ylLC {(p+R/L)(p+G/C) pt 
+ Eg(p)W(p) ..Jc ~p+G/c' e e 

The evaluation of integrals with integrands of the above type is a 

routine task once the closed contour, Figure 2 1 has been properly chosen. 

This takes care of the finite number of poles associated with Eg(p)U(p) 

or EgCp)W(p) and the two branch points on the negative real axis 9 

z1 = .. R/L and z2 = -G/C. The Eg(p), Laplace transfo.rm of time function 

of applied pulse, for most cases is quite simple and would not cause 

any difficulty. 

An alternate way to write a general term of Equation 3 is 



where 

I 
I 

/ 

jw 
.,_... 

Figure 2o The Contour Used For the Special 
Type Integrands Discussed in the 
Text · 

_ -y./IE /(p+R/L){p+G/C) 
Eg(p)U(p)e 

- . ~ {L jp+R)L ~-y/Lc ,'(p+R/L)(p+G/C) 
+ Eg(p) (p)J C p+G C· 

- 1 -y/Lc /(p+R/L)(p+G/C) 
=U'(p)pe 

1 + W'(p) -
p 

p+R)L -y-li:C. I( p+R/L) (p+G/C) 
p e 

u•Cp) = p 'fgCp)U'(.p) 

W'Cp> =Jf p 'fg<P>'wCp> 

Since the inverse Laplace transform of 

0 

19 
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l(p+R/L )(p+G/C) 1 

and 

are known to be (24 1 27), 

t - ¥!_ + ~)t ~(R G) Jt2 2 1 
¥R G) r.:-::: f 2 L C I1 ..,..,.. - -c - y LC + - - - yvLC e --•,t(.·-·.u----.w-...... ---- dt • 
2 L C y/Lc Jt2 _ y2Lc 

' .· . . . 

t . l(R + G) b J 
+ G f e- 2\L C Io Y!. - i)fo2 - y2LC dt 

C y./Lc 2\L C 

for t > ylLC > a 

where I 0 and Ii are modified Bessel functions. 

Therefore- the Laplace inverse transform of this particular term is 

or 

where U'(t) and W'(t) are the inverse Laplace transforms of U'(p) and 

w• (p) o 

This gives the formal solution for the most general case. For 
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practical problems, if the line parameters, L, c, R, G, and the terminal 

impedances, z1 and z8 ar• given, by following the above scheme, one can 

s.olve these problems much easier than it appears at first sight. In 

particular, for transmission problems, where the resistive part of the 

terminal impedances R1 and Rg are made equal to or compatible with the 

squared ratio IL/C of the line, then only the first few terms of each -

series need to be calculated. 

The condition, Ri = Rg = IL/C represents the best matching condition 

for a lossy transmission line. 



CHAPTER III 

COUPLED LOSSLESS TRANSMISSION LINES 

The so called telegraphist 9s equation in matrix form for n-parallel 

transmission lines as shown in Figure 3 are 

z . 
gJ 

- ;z [VJ = [RJ[IJ + [LJ it- [IJ = [ZJ[I) 

-i'z [I] = [GJ[VJ + [CJ it [VJ = [Y][VJ 

R, 

z )I Ij {z,t) 

I Ik(z,t) 

Vj(z,tJ 
I 
Vk(z,t? 

11 

>f 
I 

Z.e,j 

-

Figure 3. AN-Parallel Transmission Lines System 

(25) 

Z.e.k 

-

where [VJ and [I] are column matrices bf order Di their elements, Vk(z,t) 

22 



and Ik(z,t) are the voltage and current of kth line at distance z from 

the sending end and at the time t. The matrices of [R], [L], [CJ, and 

23 

[G] are non-singular, square matrices of order n; their elements are self 

or mutual line parameters. 

R, • = resistance of the ith line per unit length. 
l.l. 

Lii = inductance of the ith line per unit length. 

c .. = capacitance of the ith line per unit length. 
l.l. 

G •• = conductance of the ith line per unit length. l.l. 

Lij = coupling inductance between the ith and jth line per unit 

length. 

c .. = coupling capacitance between the ith and jth line per unit 
l.J 

length. 

All self and coupling parameters are distributed quantities. The 

lumped parameter analogy is shown in Figure 4. 

'' To other lines 

Figure 4. The Lumped Parameters Analogy of a N-Parallel Transmission 
Lines System 
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Two Symmetrical Lossless Lines 

Grounded at Both Ends 

In this thesis 9 only the two line system is investigated. For a 

two line system Equation 25 reduces to: 

(26) 

Equation 26 is a set of simultaneous, partial differential equa-

tionso The transformed equations are: 

where 

Vi= 'v1(z,p), V2 = 'v2(z,p), I1 = I1(z,p), "i'2 = "i'2(z,p) 

Z11 = R11 + L11P, Z22 = R22 + L22P, Z12 = !'tl = L12P 

Y11 = G11 + C11P, Y22 = G22 + G22P, Y12 = Y21 = C12P ,. 

(27) 
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By ,.successive differentiation and some rath~r tedious algebraic op-

erations, Equation 27 yields the following set of uncoupled differential 

(28) 

It is quite interesting to note that the transformed voltage and 

current of ~ach. line, V1(,z,p), Viz,p), T1 (z,p) and T2(z,p) all satisfy 

a differential eq'1ation of exactly;the· same·form with the characteristic 

equation 

4 2 . 
r + ar + 8 = 0 

where 

The four roots arei 

rl •J-%•~ 
r2 = -J ! + Jf- s2 = -rl 

. r 3 = J- i -J ~ - 62 

(29) 

(30) 
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j a ~ 
~ = - .,. 2-Jf-- B" = -r3 

Note that all square roots are assumed to be a positive quantity. 

This scheme is used throughout this thesis. 

The solutions of these differential equations (Equation 28) are: 

v1 
r 1z -r1z r3Z -r3z = A1e + A2e + A e + A4e 3 

v2 B r1z -r1z r3Z -r z = le + B2e + B3e + B4e ,3 

(31) 
y, = C rlz -r1z 

+ C r3Z -r3Z 
1 le + c2e 3e + c4_e 

- = D l'lZ -r1z D r3Z ""r3Z 
12 1 + D2e + 3e + D4e 

Substituting Equation 31 into Equation 27 and solving for the coeffic-

ients B's, C's, and D's in terms of A's, then inserting the result into 

Equation 31 



where 

+ r~ + (z12Y12 - 'z11Y11)r3 

-r~12 + z Y12 

27 

Since the A's are only multiplication constants, the above equations 

can be rewritten as follows: 

By dropping the prime of the A's and introducing four auxiliary 
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functions of r, the above equations are further simplified. 

(32) 

These four auxiliary functions are: 

f1(r') 2-
- !12z = -r zl2 

f 2{r) 2-= -r Z22 - v11z 
(33) 

If these two lines are symmetric and loss.less I i.e., 

and 

112 = 121 I c12 = c21 • (34) 

then. 

z11 = z22 • yll = y22 • 
and 

rl = -r2 = jc1-112 >cc+c12 > P 

r3 = -r4 = jC1+112)(c-c12 ) p 
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Equation 32 reduces to the following. 
\..,. 

(35) 

where A11 A2 , A3 , and A4 are constants to be determined from the boun­

da?Y conditions. Assume the sending end devices have output impedances 

z81 and Zg2, the receiving end devices with input impedances z~1 and 

z12 , and the first line is fired with a voltage wave described by time 

function Egl (t) • then the boundary conditions are: 

V1(o 1t) = E81(t) .... I1 (o 1t)z81 

v2(o 1t) = ~I~(o,t)Zg2 

v1(t,t) = l1(t~t)Ztl 

,.V2'R., t) = I (R., 'bJz12 

(36) 
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Their Laplace transforms are: 

V1Co,p) = Eg1Cp) - T+Co,p>'zg1 
; 

(37) 

Substituting Equation 35 into Equation 37 and grouping the terms, 
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by assuming 

- 0 

and ·:I, .. 

r· .. , .. 

ioe., the output impedances of the sending end devices and the input 

impedances of the receiving end devices are all equal to zero. This is 

the case that these two lines are both grounded at two ends. Equation 

38 is easily solved for the undetermined constant A's. They are: 

l l - -r1 R. 
-Egle 

Al= Sinh(r1R.) 4p3 (L-Ll2)(Cl2L-CL12) 

l ·····'. i,·i: ... E° r1 R. 

A2 = gle 

(L-Ll2 )(Cl2L-CL12) Sinh(r1R.) 4p3 

(39) 

l ·., 1: ·, - -r3R. 

A3 = -ESi1e 
(L-Ll2){Cl2L-CL12) Sinh(r3 R.) 4p3 

l l - r3R. 
A = ESi1e 

4 (L-Ll2){Cl2L-CL12) Sinh(r3R.) 4p3 

The complete solution in the p-domain -under the assumed conditions 

are obtained by inserting the value of A's of Equation 39 into Equation 

35. 

__ ~gl Sinh[r1(R.-z)] + Egl Sinh[r3(R.-z)] 
V'l(z,p) 

2 Sinh(r1i) 2 Sinh(r3R.) 

= -Egl Sinh[r1(R.-z)] + Egl Sinh[r3(R.-·z)] 

2 Sinh(r1R.) 2 Sinh(r31) 

(40) 
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= -Egl Cosh[r1(1-z)] + E'81 Cosh[r3(1-z)] 

2 Z01 Sinh(r11) 2 z0.2 Sinh(r31) 

Using the inversion theorem, the formal solution of line voltages 

and currents can be written as 

I 
(41) 

_ l f a+joo ~gl Cosh[r1. (t-z)] pt .,J· 
I 1(z,t) - .,....,. - e dp/.,-

:&'lrJ , 2 Z01 Sinh(r11) 1 a-Joo 

l f a+joo 
+r 

'lrJ a-j• 

where a ·· is a real number which is greater than the real part of all 

poles of.the complex integrand of that integralo 

If a step voltage of amplitude E01 as Equation 17 1 is applied on 

the first line, then the line voltages·· and currents are: 
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-- __!_ J a+j• Sinh[r1 ( 1-z)] ept dn 
V1(z 1t) ~ ..-. 

'll'J • 2 Sinh(r1 t.) P a-J• 

(42) 

By comparing the Equations 41.and.42 of the coupled case with cor­

responding Equations 14 and 15 of the isolated case (since the isolated 

case discussed in Chapter II is the line with terminated im~dance at 

both ends, it is better to let Zg and ZR, equate to zero, then x1=X2=o, 

for comparison), it is noted that: 

(1) there are two sets of waves on each line of a coupled system 

and each set is of exactly the same form as the wave in the 

isolated case; 

{2) the operational or transformed propagation constant and line 

impedance of these two sets are: 

r 3 = J<L+L ){C-C ) p = L 
. 12 12 ,;2 

= JL-L12 
C-C12 

=~; 

(43) 
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,a) these quantities are perturbations of the values under isolated 

conditions being 

0 

The perturbed values usually are much different from the unperturbed 

ones for very closely spaced lines. in contrast to the usual perturbation 

theory in wh.ich'only a very small amount of change is assumed. (Note 

that the value of a coupled line is that value of the line in the pre-

sence of the other line.) 

The integration in a complex plane of Equation 42 can be performed 
·I 

by; eyaluating the residues of each integrand; much the same as was done 

for Equation 15 in Chapter II. The· results are: 

= -E 0 f 
n=l 

(-l)n . IR.-z 1 
mr SinLT n~ ·i> 

0 

(44) 



OI> 

I 
n=l 

c-·,<-1> 
J nir 

n 

{-z~l cof f nJ + z~2 cofC n~} 
From the solution, Equation 43, the following conclusions can be 

drawn: 

35 

(1) the voltage at the sending end of line No. 1 is E0 and at the 

receiving end is zero; the voltage at both ends of line No. 2 

is zero. 

(2) the steady state currents on the first line and second line 

are zero all along the line; actually it is impossible to 
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reach a·steady state or it takes an infinite time to reach the 

steady state in this case; 

(3) The transient current and voltage are two infinite series of 

which each term is a cosine function of time that never dies 

out. 

Any further interpretation is difficult to make. Therefore, follow-

ing the method used in Chapter II, the alternate solution of the form of 

successive waves is obtained as follows. 

+ ~ to { u_l E - 2n;:z ]- u-1G - 2n1:~R.-z]} = Va(z,t)+Vb(z,tl 

V2(z,t) = -Va(z,t) + Vb(z,t) 
(45) 

Eo OI) 

= 2 z01 I 
n=O 

Ia(z,t) + Ib(z,t) 
Va(z,a) Vb(z,t) 

= = 
zol 

+ 
zo2 

I 2(z,t) = -Ia(z,t) + Ib(z,t) = -
Va(z,t) 

+ 
Vb(z,t) 

zol "Zo2 

Therefore, a few more conclusions are in order. 

(4) The velocity associated with these two sets of waves are: 
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l 
vl = > v 

JtL-L12 )(C+c12 ) 
l 

v=- 0 (46) 

l 
jTE 

V2 = < v 
j(L+L12 )(C-Cl2) 

One is greater, the other is smaller than that of an isolated 

line with parameters Land c. Each set of waves propagates on 

both lines with the same velocity. 

(5) By comparing the corresponding voltage and current waves 1 it 

is found that the line impedance associated with each mode of 

the waves is 

L-L12 
C+C12 

+ = JL+L12 
zo2 c-c12 

= - ;L-L12 
C+Cl2 

- _ JL+LJ.2 z - - 0 o2 C-c12 

(47) 

The superscripts indicate forward waves(+) or backward waves 

(-). The impedance of the backward waves is just the negative 

of that of the forward waves. 

(6) For each mode, the relationship between line impedance and 

velocity is the same as that of the isolated lines. 

Figure 5 shows the first forward and backward voltage wave on both 

line 1 and line 2. The corresponding current waves are shown in Figure 

6. 

If one rectangular pulse with amplitude E0 and duration Tis 

applied on the first line instead of step voltage, then 

(48) 



~~l I 

~~~vl 1 

~~~;=:-1=~ 
z=O I I Voltage on line noo l I I I z=R. 

I I I I I I 
i-. -~2 I I I I 
J___~v1 I I I I 
,----------------+-J_-,,v I 
I . I I ::::::J7 ~ I 

L-------------·----t-1--~Vl 

38 

i--------. ------. --- --~, 
I . I I ~V2 

L_---------------+-+-~1 [-----------. ---.. -t-t--~ 
r--.. ------.-----·--i-t-.-v~, 
~--- ·---------- +-+--­
~----·-----------,-,-v-rav I i<_,2 
~---------------i_i ___ ~ 
r--. ----------. ---t-t--;-;--~v2 
~---------------T-,---~ 
C _________ . ____ . _2~~---=-J 
z=O · z=R. 

Voltage on line no. 2 

Figure So Voltages on a Two Coupled Transmission Lines, With a Step 
Voltage Applied on Line No. l. 
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z=O I 
I Current on line no. l 

r---.• 

~s~~1 . : : J : 
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The complete series solutions assume the following forms. 

Eo 00 

{u-1 [' 
2n1+z J ~ 2nL+21-z J} V1(z 9t) =2 I - - u t -

n=O 
v1 -1 v1 

Eo 
ao 

{ u_1 ~ - ~} I 2n9.+z - TJ - U-lr -
2nR.+2R.-z --2 n=O vl vl 

Eo 
oc, 

{ u_1 f 0-lr -2nL:t•J} ... 2 I .. 2nR.+z J-
n=O V2 

Eo 
ao 

{ u_1 t - - TJ .. U-lr - - ~} I 2nt+z 2nR.+2~'.9Z .. _ 
2 n=O v2 v2 

= Va(z,t) - Va(z,t - T) + Vb(z 9t) - Vb(z,t - T) 

(49) 

For a pulse input 9 to each line except for the voltage and current 

waves shown in Equation 45 and Figures 5 and 6 for step voltage input, 

there is another set of voltage and current waves with exactly the same 

amplitude, but of opposite polarity and delayed by a time interval, the 

duration of input pulse. 

Two Symmetrical Lossless Lines Terminated 

at Both Ends 

For two symmetrical lossless lines terminated at both ends such that 



Substituting Equation 50 into Equation 38 and solving for Avs. 
' 

1 

( Z ) -r R. -E 1. - ...Le 3 gl z 
. o2 

41 

(50) 

Inserting these A's into Equation 38, the complete solution of two 

terminated lines in the p-domain is: 



a more compact form by assuming 

and 

z t- z l g O 

42 

(52) 



where 

Esl V"d(z,p) = 
2~ -( ~)J 

= Es.1 
. Ic(z 1p) 

~ (~ )l 2 l - ..!.. 2 z ,. ' 
ol · 

-1 z, 
X =Tanh -6 

Sinh[r1(t-z) + X4] 

Sinh[r1R. + x5J 

Sinh[r~(R.-z) + Xg] 

Sinh[r3.e. + x7J 

Cosh[r1(.e.-z) + X~] 

· ~inh[r1 .t + x5] 

Cosh[r3 (.e.-z) + X6 ] 

Sinh[r3R. + X7 ] 

Zt+Z.e, 
· ol -1 x7 = Tanh 

zz 
l + ! ~ z o2 

These special cases of matching condit.ions, Z = Z Z = z 
R. ol' R, o2 • 

Z = Z 1, or Z = Z 2 are considered latero 
g O g O 

Using the inversion theorem, the solution in the t-domain is: 

43 

(53) 



1 Ja+j• 
+ ...... 

2irJ a-j• 

l Jo+joo 
+~ -

a-joo 

Sinh[r1(R.-z) + x4] t 
Sinh[r1 t + x5] eP dp 

Sinh[r3(R.-z) + X6] ept dp 
Sinh[r3t + x7 ] 

I, I (g °Z'.'g )2Jl 
2 !'o2L - !'o~ 2 

Cosh[r3(t-z) + X4] pt 
_ e dp 

Sinh[r3t + x5] 

(54) 

If the lines are lossless. and the source impedances and the load 

impedances are_pure resistive. then 

z = J L+Ll2 = R • 
o2 C-c12, o2 



rl = 

r2 = 

/(L-L12HC+c12> p = ;-
. l 

l(L+L12 >Cc-c12 ) .. p =%' 

Z = R g g 0 

45 

• 

• 

The line voltages and currents due to a step voltage of amplitude 

E0 applied to the first line can be easily obtained by first replacing 

'fg<p) by 1/p and evaluating the residues of each integrand• much the 

same as done 011 Equation 15 in Chapter II. 

n=-oo 

x5 + jmr 

X + n2,r2 
5 

v t 
f: J jmr + 

Sinht's - y x5 + j yn1r e 

.. 00 

Viz,t) I n=-oo 

Sinh ~B - y x.7 + j y mr J e 

v t 
jn,r+ 

RgRR, 
l + 2 

I ( ) - --R.2!. E z,t = c 2RR, o 

00 

I n=-oo 

0 

(55) 

0 
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l+~ 
v t 

-X7 + . 2 co x7 + jmr 
Ia'z,t) Ro2 

Eo 
E0 e 

I = 0 

2R.e, 2 R02f-(t)J x2 + n21r2 n=-co 7 

where 

-1 'z.e, 
X8 = Tanh =--, 

Zol 

-1 ~O. x9 = Tanh mar.- o 

Zo2 

It is noted that V'c(z,p) and etc. in Equation 52 can be rewritten 

as: 

-2r R. 
l - p p e l 

gl u 

- f 
n=O 

co 

- I 
n=O 

- ( 2n.e.+2 R.-z )r3 e 
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'fs;1 [ ~ ,- _ )n -(2n +z)r1 Ic(z 1p) = I - - PglpR.l e 
zg+zol n=O 

+ ! __ n _ -(2n&+2.t-z)r1] 
(p glP.u> P .u e · . 

n=O 
(56) 

- [1 __ n -(2rit+z)r3 
YdC.z,p) 

Egl 
= (p g2P 12) e z +z 2 g O 

00 

+I 
n=O 

The p 1 and etc. in Equation 56 denote the operational reflection g 

coefficients at both ends for mode 1 and mode 2 waves; 

Therefore th~ successive waves solutions in the p-domain are: 

where V (z 1p) and etc. are given in Equation 56. c 

(57) 

For lossless lines, pure resistive terminating impedances, and step 

voltage input, thesuccessive waves ~9luti01lS in the t-domain are: 
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= Rol { ~ v1(z,t) R R E ~ 
g+ ol o n=O 

- ! 
n=O 

P U It _ 2nR.+21-z]} 
R.l -.1[ Vl J 

( P P ) n U ~ - 2nR.+~ 
g2 12 -ll v2 J 

- f 
n=O 

(p P )n P U ~ - 2n1+2t-zJl= (Sl-s2)+(s3-s .. ) 
g2 12 12 -1 L v2 JJ ~ 

(58) 

where all reflection coefficients are just 

pgl = 
Rol - Rg 

Rg2 
Ro2 - Rg 

= 
Rol+ Rg Ro2 + Rg 

Rol - Rt 
RR.2 

= Ro2 - Rt 
P11 = 

Ro2 + R1 
0 

Rol + R1 

In the above.· solution,· there are ~our sets of successive waves on 

each line of which s1 and s9 are forward waves of model and mode 2; 

s2 and s4 are backward waves of model and mode 2 respectively. The 

voltage and current waves of each mode, s1 and s 2 or s3 and s4 , on each 

line are very similar to the.waves shown in Figures 5 and 60 The only 
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modifications required are, that after each reflection takes place at 

the receiving end or sending end 1 the amplitude of the reflected wave is 

to be reduced by a factor P,e.i or Pgi (i = 1 1 2)o Also it is easy to see 

that the wave front varies with time due to the difference in velocity 

and the difference in reflection coefficients associated with these two 

modes of waveso For both the line voltage and current, the smaller the 

absolute value of the reflection coefficients, the less time required 

for reaching steady state. Theoretically it takes an infinitely long 

time to reach the steady state; but for practical purposes, it is said 

that the line is at steady state when the amplitude of reflected voltage 

or current wave is·. a small fraction of that quantity already on the line O 

Since the receiving end voltages are of most interest, in Equation 

58 let z = t. 

Rol - · l' (2n+l)1] V1(z 1 R.) I n 
= k +R E (pglpU) (l_ - Pu) U_l t - v.l 

.. g ol 0 n=O 

Ro2 
00 

I n 
(1 - p ) U ~ - (2n+l)t] + ft.+~ 2 Eo . (pg2PR.2) 

g,o n=O 1.2 -1 v2 

(59) 

· Rol 00 

( - . ) u G - (2n+J:)1J V2'z 1 L) I n 
= - Rg+Rol Eo (pglPR.i) 1 PR.l 1 t v 

n=O - l 

The variation of receiving end voltages with time are shown in 

Figure 7. Of course no numerical values can be given unless the line 

parameters and the terminating impedances are known. 
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Figure·_ 7a. Receiving End Voltages, Successive Waves 
of Mode lo 

I 

I 

I 

I 

t 

I ; t 
' 

I 
I 

Figure 7bo Receiving End Voltages, Successive Waves 
of Mode 2o 

Figure 7. Receiving End Voltages of a Coupled Transmission 
Lineso 
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0 0 0394...-------' 
E 

S1-S2)+(S3-S4) 
' ' 

Figure 7c. Receiving End Voltage, Line No. 1. 

V2(R. 9t) 

0.0384E0 

Figure 7d. Receiving End Voltage 9 Line No. 2. 

Assumptions~ 

zol = 40 ohms, zo2 = 60 ohms, 

zg,i = zg2 = 1000 ohms, 

ZR.l = ZR.2 = 200 ohms, 

5 
(arbitrary assumption) v2 =-v 

6 1 

Step voltage E applied on line no. 1 
0 

Figure 7. Receiving End Voltages of a Coupled Transmission 
Lines. 
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There are two line impedances for each line corresponding to the 

two modes of waveso At each end the terminating impedances Rn and R 
. JI, g 

may be chosen to match one of these two 'line impedanceso By combination. 

there are six special cases. 

(1) ,-z = z g ol i.e. Pgl = 0 

(2) zg = zo2 i.e. pg2 = 0 

(3) ZR. = zol i.e. p R.l = 0 

(4) ZR. = zo2 i.e. p R.2 = 0 

(5) ZR. = z . 
ol and z g = zo2 i.e. p R.1 = pg2 = 0 

(6) ZR.= zo2 and zg = zol i.eo Pt2 = p 1 = O ' ' g 

For the first two cases. the yoltage and current waves of one mode 

(mode 1 for case 1 1 mode 2 for case 2) propagate from the sendtng end to 

the receiving end; being reflected at the receiving enda they propagate 

back to the sending end 1 then stop there without any further reflectiono 

The voltage and current waves of the other mode bounce back and forth 

between the two ends. 

For the next two cases. the voltage and current waves of on.e mode 

(mode 1 for case 3 1 mode 2 for case 4) propagate from the sending end to 

the receiving end, then stop there without any reflection. 

Cases 5 and 6 are optimum cases. The waves of one mode (mode 1 for 

5 1 mode 2 for case 6) propagate to the receiving end without reflection; 

the other mode 1 being reflected from the receiving end 1 propagates back 

to the sending end and then stops there without further reflection. 



CHAPTER IV 

COUPLED LOSSY TRANSMISSION LINES 

Two coupled, symmetrical and lossy transmission lines, grounded at 

both ends or terminated at both ends have been considered in the prece-

ding chapter. 

The solution in the p-domain for both ends grounded is: 

_ Eg1(p) Sinh[r1(.t-z)] + Eg1{p) Sinh[r3{.t-z)] 
V (z p) = --------- -1 • 2Sinh(r1 .t) 2Sinh(r3R.) 

(60) 

In the t-doma,.in, the solution is: 

__ ...Lfo+joo '.E81(p) Sinh[r1(.t-z)] pt 
V (z 1t) ~ .. · e dp 

1 'lfJ o-joo 2Sinh(r1.t) 

(61) 
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= ...L. f a+joo Egl (p) Cosh[rl (R.-~.)] ePt dp 
I 1 (z,t) 2 

1rJ a-joo 2 Z01 Sinh(r1R.) 

1 f o+joo "f81 ~p) Cosh[r3(. R.-z)] pt = +r c e dp 
1TJ o-joo 2 Z02, Sinh(r3R.) 
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They are of the exact same form as Equations 40 and 41 of the loss­

less caseo The difference is that the parameters r 1 t r 2 , z01 , Z02 , are 

functions of p, not just pure numbers as for the lossless case. 

rl = Jcz-Z12HY+Y12> = JcL-L12HC+C12> jcp+2aHp+2S) = ~ j(p+2a)(p+2S) 

r 2 = j(Z+z12 )CY~Y12 ) = )CL+L12 )(c+c12 ) jCp+2y)(p+26) = 1.../cp+2a)(p+2S) 
V2 

(62) 

- j z-'l:12 
zol = Y+Y12 

_ J L-.ti2 J p+2a 
- c+c12 p+2B 

z = j :,+z12 
o2 Y-Yl2 

where 

2a = 
R;i.-R2 
L-L12 

2B = 
G+GJ 2 
c+C12 

2y = 
R1+R2 
L+L12 

26 = 
G-G12 
c-c12 

0 
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The complex integrals in Equation 61 c~ be eva+uated by f~nding . 
the residues b~t the presence of the doubled-value function r 1 , r~, and 

'z'01 , z02 , complicates the proc~ss of evaluationo The altel"Qate method 

to be used ~ere is by expressing 1the h~;rbc;,lic func;ions i~ Equation 60 

in an exponential series and from the known transform pairs, obtain the 

solution in the t-domain. 

For a step input v~ltage of amplitude E0 , ~(z,p) in Equation 60 

can be• reWpitten as: 

V• (z ,P) _ :2. Sin[r1 ( .e.-z)] 
a - 2p Sin(r1 .e.) 

2n.ttz t"(p+2a)(p+2S) 
Vl 

From the known Laplace pair, 

- e 

2n~2 £-z {(p+2a )(p+2 8 >]. 

Eo 
=-

• { -(a+S)(2nR.+z) 

I e ~ ~1~ _ 2nR.+z] 
2 n=O L Vl J 

t 
+ (a-S).(2nR.+z) J e-(a+S)t 

vl 2nR.+z 
vl 

(63) 

_ e-(a+S)(2n.e.+2.e.-z) U E- 2nR.+2R.-z] 
-1 v1 

t I ~a-S) t2-(2nR.+2R.-z)il dt f -(a+S)t l~ vl J 
2n.e.+2.e.-z e 1· t2 -(2nR.+2:R.-z)Z 

Vl· : 
vl 

0 
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The voltage wave of mode 2~ Vb(z,t) 9 is of the exact same form if 

a, B, and v1 in Va(z,t) are replaced by the corresponding quantities y, 

o 1 8:lld v 2 • , 

The current wave of mode 1, I' (z ,P) 1 may be rewritten as: . a 

y, (z,p) 
a 

2nR.+z l(p+2a)(p+2B) 
Vl 

- 2nR.+2R.-z l(p+2a)(p+2B)J 
+ e Vl • 

The inverse Laplace transform of I'(z,p) is also known. 
, a 

I~(z,t) = ?-}~~~~~ to {~-(m+Blt I 0 f m-a>} t2 _ { 2n~z /J 
+ a ft e-(a+B) Io ~a-Bl ·t2 - { 2n!;:" t ]at 

2nR.+z L 
Vl 

-(a+a.) 
e I 0 r(a-8) u · ..... . 

(64) 

The current wave of mode 2 1 Ib(z,t), is obtained by replacing a, B, 

v1 and the factor lc+c12/L-L12 by y, o, v2 and the factor lc-c12/L+L12 • 

As for the coupled lossy transmission lines, terminated at both 



ends 9 the solution in the p-domain is: 

• 

where V•(z,p) and etc. are given by c 

where 

!'. 1(p) Sinh[r1(R.-z) + x4J 
'vc'(z,p) = 1 ·t ( z' ) · ,. , ,Slnh[r R. + X'] 2 1 - ;[... '· · y-· ' . · ''; 1 . 5 

rb:cz,p> = 

T• Cz p) d • = 

.· · Zol 

. 'fs1CP> 

~ (z )l 2 - . _s i. 
zol 

'fsi<P> 

2~ -( ?-)J! . o2 

Sinh[r3(R. .. z) + x6] 
· Sinh[r3 R. + x.p 

Cosh[r3(R.-z) + x4J 
Sinh[r R. + X'] 

•. 3 5 

Cosh[r~(R.-z) + x6J 
. Sinh[r3 R. + x.p 

X' =Tanh -1 z& 
4 "" £>01 

• 
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(65) 

• 
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Z~+Z.e, 

X' -l Zol = Tanh 
5 zz.e, 

l +=ft 
zol 

xv -l .zL = Tanh 
6 zo2. 

Zg+~.e, 

X' -l Zo2 = Tanh 7 
Z Z.e, 

l +~ 
zo2 

By the inversion theorem, the formal solution is: 

V1(z,t) = V~(z,t) + VA(z,t) 

V2(z,t) = -V~(z,t) + V~(z,t) 
(66) 

I1(z,t) = I~(z,t) + Id(z,t) 

The evaluation of each complex integral can be done much the same 

as for the isolated transmission line in the end of Chapter IIi since 

the voltage or current waves of each mode is of the exact same form as 

the waves on an isolated line. 



CHAPTER V 

A PRACTICAL EXAMPLE - COUPLED LOSSLESS TRANSMISSION 

LINES WITH CAPACITIVE TERMINATIONS 

I~ this chapter, a practical example, but a less general case, is 

considered to demonstrate the theory presented in this thesis. 

A symmetrical coupled lossless transmissional line, with capacitive 

termination, is chosen because the lossless line is a good approximation 

for most practical cases (especially for the physically short line). 

The capacitive termination is assumed to represent the most solid state 

devices, which in general have capacitive input and output impedance. 

The operational line impedances and propagation constants are: 

and the operational load impedances and source impedances are: 

zgl zg2 R l = = +-. g c p 
g 

Zu = ZR.2 
l = R1 +Co 
.e.P 

Then the operational reflection coefficients are: 

59 

{67) 

b = l 
l (R +R 1 )C' 

g O g 

(68) 
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p+a2 Rg-Ro2 l 
b2 

l 
Pg2 = Pg2 p+b2 I Pg2 = Rg+Rol ' a2 =· (Rg-R~2)cg t = (Rg+R02 >cg 

t 

(68) 

p+c1 R1-Ro1 ·l l 
Pu = Pu p+dl ' p R.l = R +Ro2 • cl = (R1-R01 5cg t dl = (RJl.+R01 )Cg' 

p+c2 RrRo2 l. l 
p R.2 = p R.2 p R.2 = c2 = d2 = p+d2 • RR.+Ro2 ' (Rt-Ro2)Cg ' (R1+R02 )cg • 

Inserting these values into Equation.54, the transformed volt~ge: on 

the two lines for a step 

co 

I 
n=l 

[lo Ro2 
Vd(z,p) = E 

0 Rg+Ro2 

co 

I 
n=O 

voltage applied on the first line is: 

are given by: 

n n+l 
pglpR.l 

(pg2PR.2) 
n 

n n+l 
p gl R.2 

(p+a1)n 

(p+b1)n+l 

(pfa1>~--

(p+b )n+l ·. l 

(p+a2)n 

(p+b2)n+l 

(p+ai)n 
(p+l:> )n+l 2 

(69) 

(~r _ 2n1+2R.-z PJ 
e. vl 

p+dl 
(70) 

2nR.+z (~f e 
- v p 

2 
p+d1 

(~rl -
2nR.+2R.-z 

PJ "2 e 0 

p+dl 

By expanding in partial fractions and taking the inverse J:,aplace 

transform term by term, 



n-tl 
= L ~ K2i (n-i) -d1t 

L.. tn-i)! t e • 
i=l i=l o; 

Then by the shifting theorem, · f 2n1-tz J t.p-1. (p-ta1)n ( p-tcl)n e .. ~ p 
cJ_ (p-tb )DH p-td 

l . l . 

= 
n-tl 

I 
i=l 

Kli (, 2nR.-tz)(nH-i) -b~(t 
(n-tl-i)! \t -~ e 

2n1-tz) 

- vi- u E _ 2nR.-tzJ 
-1 v 

l . 

n 

I 
i=l 

K2i ( 2n1-tz)(n-i) -di(t - 2ntz) ~ 
( . ) , t - - e l u_1 t n-1. , v1 

Therefore the line voltage for waves of mode 1 is: 

Rol aa 

Vc(z,t) = Eo R 't'R · 2 
. g ol n=O. { . 

n-tl · K 
n 1 • (p p ) 1 t 

il gl 1l (nH-i) ! ( 
-··::· r 1-i) _-1'1 (, - ··!:·) "-1 E- ··::~ 

n-tl n n-tl 
- L Pg1P11 

i=l 

(71) 

• -b {t- 2n1-t21-z\ 
K3i ·(t- 2nR.-t21-z)(nH-i) e l v1 L It.- 2n1+21-z] 

(n+l-i) ! v1 -1 L v1 J 
- . 
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where Kji (j = 1 1 2 1 31 4) are coefficients of each term of the partial 

fractional expressions 

l 

(i-1)! 

(72) 

1 
~

i-1 . n+l 
-r:I' (p+cl) 

p. . (i-1)! 

'By a similar process, it is found that the line voltage for waves 

of mode 2 is: 

1 ( • ) b (t 2n1+z) j 
Kli (t -~)·. nH-1 - 2 -~ U ft _ ~ 

{n+l-i>! v2 e -1 L vl 

· ( 2n1+z) 
n n K;i .·( 2n1+z)(n-i) -d2 t - vi- ~ 2n.t+~ . + , (p p ) ....-............. t - - e U 1 t -
L ~2 R.2 (n-i) ! v 2 - V2 
i=l . . (73) 
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, • -d (t- 2n.t+2.t-z\ . ~ 
K4~ 'ft- 2n.e.+2.e.-z )(q+l-1) e 2 v2 i ft_ 2n.e.+2.t-7:.l 

(n+l-1). \ v2 -lL v2 J 
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and 

[di-1 n] Kii 
1 n p+c2 

= l.~l (p+a2) ( -) 
Ci-lH dp p+d2 

p=b2 

l w-1 (p+a2ln~ 
K2i 

d n 
= dpi-1 (p+c2> 'c +b )n+l (i--1) ~ p 2 

p=d2 
(74) 

l [ di-1 ( p+c rJ K3i = 
dpi~l 

(p+a2)n ____.! 
(i-1)! p+d2 -b p- 2 

K~i 
l n+l (p+"2ln j 

= (p+c2) 0 

(i-1)! (p+b )n+l 
2 p=d2 

This formal solution for line voltage for each line which consists 

of eight double infinite series looks v-ery c:omp1icatedo Fortunately, 

for a practical transmission pr.obl~m, ,only the first few terms of each 

series are required for an approximate solutiQno 



CHAPTER VI 

SUMMARY 

I 

This thesis p~sents the theory of an insolated transmission lin~ 

with both ends . terminated, and then the theoiy of two coup.led symmetri-

cal lines. It is shown that there are two modes of waves on two CQupled 

transmission line, a,nd that each of these two modes of waves is of the 

exact same form as the waves existing on an isolated transmission line 

under the same conditions. The parameters, line impedances, and propa-

gation constants of these two modes of waves of two coupled lines are 

the perturbed quantities of an isolated line. 

The future work suggested in this area iss 

(l) the theory of a coupled system of two.non-symmetrical lines; 

(2) the theory of a coupled system.of multi-transmission lines, 

symmetrical or non-symmetrical; 

(3) the evaluation of line parameters, L, C, R, G,_zij' and rij' 

of a practical multi-line system. 
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