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ABSTRACT

Couette flow was first examined experimentally in
1890 by Maurice Couette. Since that time, many theorists
have studied the corresponding turbulent flow for the pur-
pose of constructing a mathematical model which would pre-
dict the observed behavior. Although various semi-empirical
theories were developed, the random, three-dimensional char-
acter of the fluid turbulence prevented the construction of
a self-contained theory.

The author has obtained the first analytical solu-
tion for a turbulent, plane Couette flow via application of
the recently developed general evolution criterion of
Glansdorff and Prigogine. The resulting theory indicates
that the flow obeys the well-known law of the wall and
enables the calculation of the constants appearing in the
law as a function of Reynolds number. The theoretical re-
sults also include an approximate solution for the distri-
butions across the flow of the Reynolds stress and the rate
of dissipation of turbulent kinetic energy by viscous
effects. In addition, the relation between skin friction

coefficient and Reynolds number is obtained.
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INTRODUCTION

This work was initially undertaken in conjunction
with an investigation of reduction of turbulent boundary
layer skin friction via the use of flexible boundaries.
Upon conduction of a literature search for relevant infor-
mation, it was found that the firm of Bolt, Beranek and
Newman, Inc., had conducted a similar investigation during
the period 1962 - 1965 under contract to the Navy. Their
work consisted of a limited experimental program and an
analytical investigation of the interaction of both an
externally excited éurface and a passive, compliant surface
with a turbulent shear flow.

In their final report, Jackson, et al [1965], they
label the problem as being mathematically "intractable."
Their approaches to the problem involved various applica-
tions of statistical methods to various forms of the Navier-
Stokes equations, Apparently, a variational approach was
not investigated, since prior to the publication of the
work of Glansdorff and Prigogine [1964] no general varia-
tional procedure existed which could account fer the non-
linear convection terms in the Navier-Stokes equations.

xi



Blick, et al [1969) have found experimentally that
a very flexible boundary does indeed appear to reduce the
skin friction produced by a turbulent boundary layer. First
attempts to construct a mathematiéal model of this phenome-
non met with only limited success, Blick [1969]. In sub-
sequent efforts to simplify the problem to one which could
be successfully modeled mathematically, it ﬁas decided to
attempt to apply the variational procedure developed by
Glansdorff and Prigogine to the simplest, realizable, tur-
bulent shear flow, viz., Couette flow. Originally, it was
planned that both rigid and flexible boundaries would be
investigated. However, obtaining a solution for turbulent
Couette flow with rigid boundaries proved to be a consider-
able problem and a study of the flexible case is relegated
to future efforts. It is pertinent to note, however, that
the method developed herein does appear to be general
enough to account for the dissipative effects of a flexible
boundary responding to the random, turbulent pressure

fluctuations.
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A VARIATIONAL FORMULATION OF
TURBULENT COUETTE FLOW

CHAPTER I
DEFINITION AND DISCUSSION OF PROBLEM

Turbulent fluid motion is defined by Hinze [1959],

p.2, as
An irregular condition of flow in which the various
quantities (such as velocity and pressure) show a
random variation with time and space coordinates, so
that statistically distinct average values can be
discerned.

The vast majority of real flows are indeed turbu-
lent and, furthermore,are usually associated with shear
flows, i.e., flows which have a spatial gradient of the
mean velocity normal to the streamlines. Turbulent flows
are both difficult to understand physically and to model
mathematically owing basically to:

1. the random, three-dimensional motion of a
continuous medium (which negates application
of the ideas of classical kinetic theory),

2. nonlinearity of the equations of motion which.
leads to the existence of more fluid motion
properties than governing equations.

The fundamental problem is most aptly described by Nee and

Kovasznay [1967].
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In turbulent flow, it is usually assumed that the fluid
is regarded as a continuum while the instantaneous
velocity components and the pressure obey the Navier-
Stokes and continuity equations. Due to randomness of
the turbulent motion, it is necessary to treat turbu-
lence as a statistical phenomenon both in theory and
in experiment, instead of considering the development
of the instantaneous and local values of the fluid
velocities and pressures. To state it precisely, we
want to know only the statistical distribution of
solutions when a statistical distribution of initial
or boundary conditions are known or givemn. But, unfor-
tunately, due to the nonlinearity of the Navier-Stokes
equations the resulting governing equations for the
statistical variables (such as the nth order correla-
tions*, or spectrum functions*) are all indeterminate
in the sense that they form a finite hierarchy of the
equations where the number of the dependent variables
grow more rapidly than the number of equations. The
"closure" of such a hierarchy of equations by the use
of some suitable hypothesis is the classical problem
of the theory of turbulence.

The closure problem has led to speculation that the Navier-
Stokes equations'may constitute necessary but not sufficient
conditions to describe a stationary field of turbulence, '
e.g. Stern [1968]. However, the present work demonstrates
that the Navier-Stokes equations are at least sufficient to
permit approximate analytical solutions for a stationary,

turbulent flow.

*For example, WUuzP’ is a third order correlation
and, in general, a spectrum function is the Fourier trans-
form of the various correlations. As noted by Batchelor
[1953],p.8, G. I. Taylor introduced the basic energy spec-
trum function in 1938 and is defined as the one-dimensional,
Fourier transform of the correlation between two fluctuating
velocities. The resulting function is an energy spectrum
function in the sense that it describes the distribution of
the components of kinetic energy over the constituent Fourier
wave-numbers of the turbulence.
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In order to illustrate the fundamentals of the
problem, let us consider the conservation of momentum
equagion for flow of an incompressible fluid having con-
stant viscosity and experiencing no external body forces

which may be written as

f,[__i sV = -0, 0ty
Xj oXi I%; 3%; (1.1)

For a turbulent flow one may introduce the so-called
Reynolds decomposition of the velocity and pressure into
a time averaged (or mean) component and a fluctuating
component, 1i.e.,
. v
P

Vi+ ug
P+ p’

i

{]

(1.2)
Substituting equations (1.2) into (1.1), we have

)o[ﬂs‘%ﬁg +('u:’4. uj) A(Uq.-l- U.x.)]__—5gz+ p’) +/.“ éz(vi-l-U-i)
. IXidX; (1.3

Reynolds simplified this equation by taking the time

average and introducing the following rules for time

averages of fluctuating quantities.

d =Db =0
ﬂ-i'B:.z-l--B‘
RB = ZB + &b
TNy |
X T X (1.4)
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Where a and b are fluctuating quantities, and A(x,t) =
Ktx)‘+ a(x,t) and B(x,t) = B(x) + b(x,t). Upon applying

these rules to the time average of equation (1.3), we

obtain
Y Ui -
S+ Vel ou Ui | = <3P T
f[)'t JJXJ'+ -’ij]" OX: +/‘-:)_U.i_

IX; 3X;
(1.5)

From conservation of mass, we have dU;/ax; = o 3 therefore,

equation (1.5) can be rearranged into the following form:

[QJL~-+'U __L] %%% + gng/xgig  _Jf'afi3J
J

(1.6)
When the conservation equation fﬁr the mean properties of
the turbulent flow is written in this form, it has the
same appearance as the laminar flow equation except for an
extra term added to the laminar stress term. The additional
terms —jﬂm represent an effective shear stress produced
by eddies which cause a macroscopic exchange of momentum
between adjacent parts of the flow field having different
mean velocities. These stresses are usually referred to

as the Reynolds stresses.

1.1 Phenomenological Theories
If one attempts to solve equation (1.6) for the
mean properties of the turbulent flow, it is found that
. the question of how to determine the Reynolds stresses

prevents a straightforward solution. The object of the
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so-called phenomenological theories of turbulent shear flow

is to express the Reynolds stresses in terms of a function
of the mean velocity profile in order to reduce the number
of dependent variables and thereby allow a solution. These
theories have introduced such pseudo-quantities as an eddy

viscosity € defined by

m
=

= - Uy Boussinesq, 1877, (1.7a)

o
X

a momentum mixing length L for two dimensional flows

_fu—z = 4* ldx Prandtl, 1926, (1.7b)
&

and

L= kU /gy Von Karman, 1930, (1.7c)
d%z d Xz

and a vorticity transport theory due to G. I. Taylor which

assumes the vorticity of each fluid "particle'" is constant

and results in

| A Tayior, 193Z, (1.7d)

A tabulation of these and other phenomenological theories

can be found in Rotta [1962].
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As pointed out by Nee and Kovasznay [1967], all
the 61assica1 phenomenological theories are based on the
idea of determining the Reynolds stress at a point in terms
of the mean flow geometry at that point; whereas, the
Navier-Stokes equations are of the elliptical type which
means that the interior of a flow field is influenced by
all the boundary conditions. Thus, wju; is undoubtedly
affected by the neighboring flow conditions. It is per- .
tinent to note that the theqry developed herein is based
on an integral over the entire flow, and thus represents

a significant departure from the phenomenological theories.

1.2 Couette Flow

Couette flow is the name given by fluid dynamicists
to the fluid motion which occurs between two parallel sur-
faces moving relative to each other. The name honors M.
Couette [1890] who first investigated the flow between two
concentric cylinders. Couette's apparatus involved a fixed
inner cylinder and a rotating outer shell. "Later Taylor
[1935] investigated the reversed case of a fixed outer
cylinder and a rotating inner cylinder. Basic differences
betweén the two types of flow have been found. For a dis-
cussion of this type of Couette flow, the reader may refer
to Townsend [1956].

Owing to the attendant centrifugal forces, we

expect rotational Couette flow to differ from the ideal
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planar case of two infinite plane surfaces moving parallel
to one another with some non-zero, relative velocity. For
such a flow the momentum equation, eq. (1.6), reduces to a
requirement that the total shear stress be a constant
throughout the entire flow field. In the case of laminar

flow, this means

dV/4x, = constant (1.8)

0f course, this is easily solved for the velocity distri-
bution across the flow once the distance of separation and
the relative velocity between the parallel boundaries are
known, see Figure 1. However, if one wishes to consider
turbulent Couette flow, he immediately encounters the
classical problem of what to do with the Reynolds stress
.fu.—aj . When the fluid properties (f+/u), the separa-
tion distance h and relative velocity VU, are given, and
the Reynolds number is such that the flow is turbulent
(Figure 2),there is no known way to directly calculate the
turbulent shear stress for this very simple case! This is
an amazing comment on the limitations of the present state
of knowledge concerning mathematical modeling of turbulent
shear flows.

The purpose of the work reported herein is to
establish a self-contained, theoretical model for turbu- .

lent, plane Couette flow with smooth, rigid, and
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impermeable boundaries. The theory, which is developed,
includes not only approximate, analytical solutions for
the distributions of the mean velocity and Reynolds stress,
but also the distribution of the rate of dissipation of

turbulent kinetic energy.
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CHAPTER II

THE GENERALIZED EVOLUTION CRITERION
OF GLANSDORFF AND PRIGOGINE

A variational principle can be found for all linear
differential equations which are self-adjoint or which can
be put into such a form by multiplying by a '"reducing

factor," e.g. Hildebrand [1965], p. 216. The differential

equation must be expressible in the self-adjoint form in
order for it to have the same differential form as the
Euler-Lagrange equation corresponding to the proposed sta-
tionary functional,* see Appendix I. ‘
Glansdorff and Prigoginé [1964] have developed a %
'restricted' variational technique to handle nonlinear.
problems, which by definition are non-self-adjoint. 1In
particular they purport to have developed a generalized
evolution criterion for macroscopic physics based on the %
ideas of irreversible thermodynamics. The work reporfed
herein is the first effort to apply their theory to a

fully-turbulent shear flow, and it is found that the theory

*A functional is defined to be an integral whose
integrand is a function of one or more functions of the
independent variable.

10
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does indeed appear to be applicable to turbulent shear
flows provided the correct constraints can be found and
applied.

However, before discussing the conceptually diffi-
cult theory of Glansdorff and Prigogine, it is necessary
to set the scene with a brief discussion of variational
theory and the principle of minimum rate of entropy pro-
duction. These are discussed in section 2.1 and 2.2,
respectively, and are followed by the development of the
evolution criterion for a single-component fluid in sec-

tion 2.3.

2.1 Variational Principles and Their Utility

The calculus of variations is that branch of
mathematics which deals with the selection of an unknown
function appearing in the integrand of an integral which
will cause the value of the integral to be either a maxi-
mum or minimum. The modern theory begén with Johann Ber-
noulli in 1696 who formulated and solved the famous
brachistochrone (from the Greek meaning shortest time)
problem¥ and it was not until almost two hundred years
later that Weierstrass established the sufficiency condi-

tions for a relative (not absolute) minimum or maximum of

*One is required to find the (frictionless) path
between two points in a vertical plane along which a par-
ticle would move, under the action of gravity, in the
shortest time.
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As the construction of the universe is the most
perfect possible, being the handiwork of an all-wise
Maker, nothing can be met with in the world in which
some maximal or minimal property is not displayed.
There is, consequently, no doubt but that all the
effects of the world can be derived by the method
of maxima and minima from their final causes as well
as from their efficient ones. - L. Euler 1744, as
quoted by Davis [1962].
This endorsement by the great Swiss mathematician of
extremal principles for the mathematical modeling of
nature has had far reaching and lasting effects in dynam-
ics and quantum mechanics, e.g. Lanczos [1966], Goldstein
[1959], and Yourgrau and Mandelstam [1960].

The success of such procedures, known as varia-
tional methods, in the mathematical analysis of many
physical processes must be regarded as one of the most
astonishing facts of science. The peculiar appeal of the
idea of analyzing problems in terms of a minimal or maxi-
mal principle has persisted to the present, and indeed
Einstein's Theory of General Relativity seems to endorse
the application of variational theory to the description
of nature¥ The immediate and most obvious objective of
all mathematical modeling is to describe mnature as close-
ly as .possible and obtain the best possible solution. 1In

many cases variational methods seem to accomplish this

objective most efficiently.

*See Lanczos [1966] for an interesting historical
discussion of variational methods and their relation to
Relativity Theory.
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In practice variational formulations of physical
procésses are quite usefﬁl, and one such formulation has
enabled the present author to obtain the first successful,
non-phenomenological solution for a turbulent shear flow.
Before discussing the particular variational principle
used herein, it seems appropriate to first define what one
is and what are its possible advantages.

The following particularly clear and inclusive
definition of a variational principle is given by Finlay-
son and Scriven {1967].

A variational description of a physical system
consists of a statement that the variation, or func-
tional differential, of a specified functional is
equal to some fixed value, which can be and customari-
ly is chosen to be zero. The description is not com-
plete without full specification of (1) the functions
with respect to which the variation, or differential,’
is taken, and (2) any auxiliary conditions that must
be satisfied as constraints when the variation is
taken. The functional whose variation vanishes is
said to be stationary relative to (1) those functions
with respect to which the variation is taken, and (2)
any constraints that are imposed. The stationary pro-
perty of an integral functional implies by the calculus
of variations one or more "Euler-Lagrange equations"
and "natural boundary and initial conditions." If
these match the equations of change, constitutive equa-
tions, boundary conditions, and so on, which describe
the physical behavior of the system, then the varia-
tional formulation is indeed an alternative descrip-
tion, and is usually called a variational principle.

Many such variational principles have been labeled
minimum (or maximum) principles, e.g. Hamiltoﬁ's principle
and the principle of least action, when in reality they
only require some functional to be stationary which is only

a necessary condition and not a sufficient condition for
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the functional to be either a maximum or minimum. The
question of a sufficient condition for a particular type of
extremal is quite complex, e.g. Gelfand and Fomin [1963].
The search for sufficiency conditions extended from the
middle 1700's to the late 1800's. This search uncovered
three additional necessary conditions (the Euler-Lagrange
being the first, see Appendix I) which must be considered
in order to obtain a valid sufficiency proof, viz.,

1. Legendre's necessary condition, 1788

2. Jacobi's necessary condition,. 1837

3. Weierstrass' necessary condition, 1879

Fortunately, in applications of variational prin-

ciples the applied worker is seldom required to delve into
the questions of sufficiency, primarily because the differ-
ential equations generated by the calculus of variations
are consequences of the first variation. The comments of
Dreyfus [1965] concerning sufficiency conditions and prac-
tical problems are relevant.

For engineering purposes, necessary conditions are
important than sufficient conditions. There are sever-
al reasons. Since the set of curves satisfying a valid
sufficient condition may be vacuous, seeking a curve
which satisfies a sufficient condition is akin to look-
ing for a needle in a haystack which may not even con-
tain a needle. This is a task not particularly appeal-
ing to a practical person with a pressing problem.
Second, while necessary conditions are useful tests
which can eliminate pretender curves, the violation of
a sufficient condition by a curve proves little. Final-
ly, various successive approximation algorithms that
~generate a sequence of curves converging through the

space of nonminimizing curves toward a curve yielding a
relative minimum can be formulated around necessary
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conditions.

It should be noted here that all the necessary con-
ditions concern relative, not absolute, extrema. Most
sufficient conditions that exist are suitably strength-
ened combinations of the four fundamental necessary
conditions and are of three types. Some guarantee weak
relative minimization; others promlse strong relative
m1n1mlzat10n, yet others, if satisfied, assure absolute
minimization. These latter, unfortunately, are of a
type that are rarely verifiable in practice. In dis-
missing conditions of the latter type as impractical,
we relinquish all hope of isolating curves that y1e1d
anything provably better than relative minima. Such
is the lamentable, but unav01dab1e, fate of practical
applied variational theory.

Before concluding this discussion of variational
principles, it is pertinent to note their advantages over
analyses based just on differential equations. This is
done with the following list of characteristics of varia-
tional principles which make them desirable for practical
analyses.

Advantages of Variational Formulations:

l. Involve only phy51ca1 quantities (e.g., kinetic
energy, rate of entropy production, etc.) which
can be defined without reference to a particular
set of coordinates and are thus invariant with
respect to the choice of coordinates for a
system.

2, Can serve as the starting point for new mathe-
matical formulations of physical processes.

3. Admit the possibility of obtaining approximate
solutions via such methods as the Ritz Method,
e.g., Schechter [1967], Chapter 3.

4. May suggest fruitful analogies and generali-
~zations (as was the case in the present work).

5. A variational integral may represent a physical
quantity of more use in a particular problem
than the field given by the solution to the
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Euler-Lagrange equation, and the variational
integral is likely to approximate this inte-
~gral more accurately than the solution.

6. If the principle is a minimum or maximum prin-
ciple, the variational method provides upper
or lower bounds on the variational integral.

7. If in addition a reciprocal variational princi-
ple (maximum or minimum) can be formulated,
both upper and lower bounds can be found, and
these may be most helpful in evaluating approx-
imate solutions, see Schechter [1967], p. 93.

8. The direct method of the calculus of variations
may yield proof of existence of solutions, a
potential advantage when an exhaustive study of
the mathematical aspects of a problem is needed.
Thus, in view of these advantages it is not sur-
prising that considerable effort has been expended in the

search for variational principles.

2.2 The Principle of Minimum Entropy Production

In 1945 Prigogine introduced the theorem of mini-
mum entropy production which is applicable to only linear
problems in irreversible thermodynamics. Before discus-
sing the assumptions of this theory, it is necessary to
introduce some definitions and basic postulates of irre-
versible thermodynamics.

The International Dictionary of Applied Mathematics

defines an irreversible process as the following:

If a system undergoes a transformation ABC (see
sketch), the change is said to be reversible if there
exists a change CBA such that:

(2) The variables characterizing the state of the

system return through the same values, but in
the reverse order;
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(b) Exchanges of heat, matter and work with the
surroundings are of the opposite sign and take
place in the reverse order. Thus, for example,
if in the trajectory ABC the system receives a
quantity of heat Q, it must give up the same
amount in the inverse trajectory CBA. All
changes which do not satisfy these two condi-
tions are irreversible.

All real, physical processes like heat transfer,
diffusion, chemical reactions, etc. are irreversible. Such
irreversible processes are characterized by the fact that
they cannot be reversed without an expenditure of work by
the surroundings greater than that done by the system.

In the same reference we find that the Onsager
Reciprocal Relations are defined as relations which state
that the matrix of phenomenological coefficients L1. is
symmetric provided a proper choice is made for thef%eneral-
ized rates of irreversible processes J aﬁd the correspond-

J
ing generalized forces X, i.e.,

J

Lkj = Lsk (2.1)
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The proper éhoice means that the rates Jj and forces Xj
are such that the local entropy production per unit volume
and unit time caused by internal irreversible processes is

given by the product of these rates and forces, i.e.,

G’E%S.x = 2 95 X; (2.2)
=0 for reversible transport processes
>0 for irreversible " "
where S, = entropy per unit volume
i denotes changes in entropy produced by changes inside the
system, and the fluxes and forces are related by the so-
called linear phenomenological laws which many transport

processes appear to obey.

J-K = Z'l Luj XJ | (2.3)

where r = number of processes involved. The coefficients

ij(i.e. when K = j) may be proportional to-thermal con-
ductivity, electrical conductivity, the diffusion coeffi-
cient, etc.; whereas the coefficients ij(with k #3j)
describe the interference of the two irreversible processes
k and j.

For example, Newton's 2nd Law, Fick's diffusion
law, and Fourier's heat conduction law all have the struc-

ture of eq. (2.3) when k = j, e.g.



19

= ~-_} 3T | Heat
B 4 3X 7~ Area-Time
(2.4)
and, as will be shown later, the corresponding volumetric
rate of entropy production associated with this irrever-

sible transport of internal energy caused by the tempera-

ture gradient is

c = : (1)) E.U.
%x ax('r) Vol.-Time (2.5)
where = '
Xj = 3T/Ax = generalized force
I = %x = generalized flux (2.6)

Substituting eqs. (2.6) into eq. (2.3) with r = 1, we see

that

b = Lu %I

:-L
45

‘ - 2 . . .
. Ln = /&T in accordance with Fourier's law

When k # j, the Onsager reciprocity relations, eq.
(2.1), state that when the flux Jk corresponding to the
irreversible process k is influenced by the driving forces
Xj of the other (f - 1) irreversible processes, then the
individual fluxes Jj are also influenced by X, through the
same interaction coefficient ij. Coupling between vari-

ous irreversible processes is the subject of various
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specialities, e.g. thermo-elasticity (interaction of
material displacements and temperature distribution), high
temperature, real gasdynamics (interaction of temperature,
velocity and chemical reactions), electro-mechanical phe-
nomena (e.g. strain gauges), etc.
The bilinear form for the local entropy production,

eq. (2.2), arises via the use of Gibbs thermostatic* equa-

tion.

Tds = de + Pdv
(2.7)

where s = entropy per unit mass

n

e = internal energy per unit mass

v = specific volume = I/p

This equation is obtained from the first and second law of
thermodynamics and is subject to the following assumptions:

l. The only mode of work exchange between the
system and its surroundings are of the PdV
type. Furthermore, the volume changes associ-
ated with this work must be performed "slowly,"
so that at any instant P has a definite, unique
value (e.g., during a rapid expansion of a gas,
it becomes non-uniform so that there is no
unique pressure). In addition, there must be
no frictional work which would require addi-
tional pressure to accomplish a given volume
change, Pippard [1961], p. 21.

*Accordlng to Tribus [1961], thermostatlcs is con-
cerned with equilibrium processes which do not depend on
time as an explicit variable and, basically, tell us in
what direction a process will go, but not how rapidly.
Whereas, thermodynamics deals with the rates at which non-
equilibrium processes tend to equilibrium. The reader is
referred to Truesdell [1965] for an 1nterest1ng discussion
of these two subjects.
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2. Gibbs' equation is based on the assumption of
equilibrium states, i.e., changes in a thermo-
dynamic system occur slowly enough so that the
system passes from one state to another without
appreciable deviation from a state of local
equilibrium, which means that in the case of a
single-component system its state at any in-
stant is completely specified by two state
variables such as temperature and pressure.

Since Gibbs' equation is applied to irreversible
processes it is of interest to note the comments of Denbigh
[1961], p. 44.

As regards the application of the equation to irre-
versible paths the following may be said. The deriva-
tion was based on a reversible change, since it is only
for such a change that we can, in general write
dq = TdS. The resultant equation gives the change, de,
in the internal energy of the system, which is at a
partlcular temperature T and a particular pressure P,
in terms of the corresponding changes of entropy and
volume. All of these quantities are functions of state.
Moreover, provided that there are no irreversible
changes of composition? the choice of any two of the
variables will determine the state of the system and
therefore will determine the values of the other three
variables. Thus, if we consider a change between a
defined initial state and a defined final state, the
integral of the equation must be valid even if the path
is not a reversible one (but excluding irreversible
changes of comp051t10n) Thus, as we go from an initi-
al state (P , T ) to a final state (P , T ), the

A A B

changes of e, V and S all have definite values, depend-
ing only on these states, and it is of no interest how
this change takes place.

Despite what has just been said, the terms TdS and
PdV can be identified as heat absorbed and work done,
only in the case of a reversible path. Thus we can
write

dq - dw = de = TdS - PdV,

*Such as would be caused either by diffusion or
chemical reaction taking place within the body; in such
cases the concentrations of the various species must also
be specified in order to determine the local equilibrium
state,.
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but whenever the process is irreversible dq is less
than TdS and dw is less than PdV. (It is to be empha-
"sized that P in the above equation refers to the pres-

sure of the system itself, and therefore, in an irre-
versible expansion, it is larger than Pgy¢, the exter-

nal pressure against which the work is done.)

The relation between dq and TdS referred to by
Denbigh follows ffom the second law, dS2dq/T, which clear-
ly states (since dS = Sp - Sp is determined only by the
initial and final equilibrium states A and B) that the
heat intake of a system during an irreversible path is
less than along a reversible one, or in the case where
heat is released by the system (negative q), it is greater.
The consequence of this difference in heat transfer is that
the two fypes of paths do not give rise to the same changes
of state in the surroundings.

With this introduction to Gibbs' equation and some
of the definitions used in irreversible thermodynamics, we
are ready to briefly discuss the principle of minimum
entropy production. In this>princip1e Gibbs' equation is
assumed to apply equally well to fluid flow problems and
is used in such problems with the differentials of eq.
(2.7) replaced by the material derivatives of fluid

. k.
mechanics, i.e.,

TDS - De _ £ D
Dt = Dt P‘?‘g' (2.8)
#+ D -9 4 ovyi = local rate of change + changes
bt ot IX; caused by

convection
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By substituting the conservation equation for mass and
energy into eq. (2.8), one can obtain a very‘general ex- ‘
pression for the local, volumetric rate of entropy produc-
tion. If we use the following forms of the continuity and
energy equations for a single-component fluid experiencing

no external forces:

Qﬁ _ - AV,-
Dt /oax.-, (2.9)
De .y . 4 .
foe = Ty - A4 . (2.10)
J L :

where Tij = components of fluid stress tensor = 7@;- P8y

and substitute into the appropriate terms of eq. (2.8), we
obtain an expression for the local time rate of increase of
entropy per unit volume.

PRE =+ {7l - 1)
(3

J

=381 L o4 st
+ § T 4 T
IX1 b5 W

= ""div(p + O (2.10)
where div@ = the net flow of entropy per unit volume and
time out of a fixed differential volume element

of the fluid.

0" = the entropy production per unit volume and time.
i“%%? = entropy produéed by the transport of energy in a
‘finite temperature gradient.
2?;%%% = entropy produced by viscous dissipation of

fluid motion into heat.
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The principle of minimum entropy production requires
that the volume integral of 0" over the region of interest
be stationary, i.e.

8~5.CT dv = o .
The interesting comments of Schechter {1967}, p. 144, con-
cerning this principle bear repeating here.

Upon some reflection, it would seem intuitively
correct that a principle of minimum entropy production
should be valid. We have seen that the volumetric rate
of entropy production is a measure of the irreversibil-
ities associated with a process, and we know that in
the absence of external intrusions a system will ap-
proach an equilibrium state, that is, a state in which
the entropy productions vanishes. In the presence of
certain imposed constraints it appears reasonable to
assume that the system will come as closely as possible
to equilibrium while satisfying the imposed constraints.
Thus, we feel intuitively that the system in the sta-
tionary state® will generate as little entropy as possi-
ble by approaching the equilibrium state as closely as
possible.

In actuality, very few physical systems obey this
requirement, One can show this by comparing the Euler-
Lagrange equations associated with eq. (2.11) with the
appropriate balance equations which are known to correctly
describe a system. If these two sets of equations are not
identical, then the principle cannot lead to a correct
description of a system's behavior (recall the definition
of a valid variational principle given in section 2.1).

As an elementary example, consider the case of

*A time-independent state.
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steady-state heat conduction in a body with a prescribed,
time-independent, nonuniform temperature distribution.
For such a case
. -1
=3 ] T — '
o- ’ %L %TL‘ — j:'.X(.
(2.12)
and the corresponding linear phenomenological law is
J, = 9. = L.AJf’—-'i;.AJ:.
L= e 5% = 7% (2.13)
where L = 4T?

Therefore, the total rate of entropy production is

Lo*(x-,,‘r, T)dv =\ 375(-'7-) éLxl(ﬁ"} dv (2.14)

where 'V is the volume of the system. Now if this integral
is to be an extremal, we must require that its first vari-

ation with respect to the function T(X{) be zero, i.e.,

0=29T 3 (30) — (T/2IL :
oT ¢)X,:(3T’ -(T)'g_f'*"%-i%,%‘ (2.15)

which is the Euler-Lagrange equation. The known, correct

balance equation for this problem is

-— da.
0 = T)%f (2.16)

Thus, if eq. (2.15) and (2.16) are to be identical, we

must require

0 = .é% (2.17)
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or AT>= constant which can only be approximately true for
nearly isothermal systems. Eq. (2.17) means that the
phenomenological coefficients of a system must be constant
in order for the principle of minimum rate of entropy pro-
duction to be applicable.

Via similar considerations of more general problems
it can be shown, e.g. Schechter [1967], p. 144-148, that
the principle is a valid description if and only if the
system meets the following requirements.

1. Linear phenomenological laws,

T =JZ L& X; (2.18)

2. The Onsager reciprocity relations are valid,

Lij = Lji (2.19)

3. The phenomenological coefficients are constants,

Lij = constants (2.20)
4. Nonlinear convection terms are negligible,'i.e.,
no mechanical convection is considered, but
purely dissipative processes of thermal,
mechanical, or chemical origin are.

5. Boundary conditions and external forces are
time independent.

For those linear systems which satisfy the above
five conditions, thé stationary state, i.e., the time-inde-
pendent state, of the system is a state of minimum entropy
production.

Since most physical systems do not satisfy these
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severe restrictions, Glansdorff and Prigogine undertook
the project of developing a more general principle which-
would be valid for nonlinear and time dependent processes.

2.3 The Local Potential: A Generalization
of Thermodynamic Entropy Production

The fundamental conservation of mass, momentum and energy
equations provide the starting point for mathematical
analysis of flow problems. For specific problems, one
often can simplify these partial differential equations
somewhat, but usually the forms of the equations which are
of interest remain coupled and nonlinear. In general the
integration of such a set of equations is quite difficult,
if not impossible. Typical contemporary approaches to such
problems involve setting up a large number of finite-dif--
ference equations to approximate the differential equations
and using a digital computer to solve the resulting her-
rendous set of algebraic equations. Not only is this an
expensive_route to follow, but it is plagued with many
problems associated with minimizing errors énd obtaining
satisfactory solutions. |

An alternate and less expensive approach to the
problem of solving the fluid conservation equations is
offered by the general evolution criterion proposed by
Glandorff and Prigogine (1964). It will be shown that the
resulting "restricted" variational principle has the com-

plete nonlinear conservation equations as its Euler-Lagrange
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equations; although no new physical information is intro-
duced, the problem is thus made amenable to various approx-
imate techniques sﬁch as the Ritz method and the method of
partial integration, for examples see Schechter [1967],
Chapter 3.

| The thermodynamic system considered by Glansdorff
and Prigogine is unrestricted, except that there exists at
every point at each instant of time a state of local
thermodynamic equilibrium as required by the Gibbs equa-
tion. However, the system as a whole need not be in equi-
librium either thermally, mechanically or chemically; in
other words, microscopic equilibrium is required, but
macroscopic nonequilibrium is admissible and indeed is the
source of entropy production. This assumption permits
system evolution to be described in terms of macroscopic
thermodynamics and fiuid mechanics without any explicit
introduction of molecular cbncepts, Prigogine [1965].

According to Prigogine [1965], the development of

a general evolution criterion began with the observation
that something still remains valid in the principle of
minimum entropy production even when the various restric-
tions on that principle are not met. Namely, it was
observed that when one splits the local volumetric rate

of entropy production into two parts, viz.,

do" = Z XedT; + Z Tdy (2.21)
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the last term is always negative for time-independent
boundary conditions, irrespective of the phenomenological

relations between J; and Xi5 (which may be nonlihear), i.e.,

2 Jidx; <0 (2.223)

,H. 2 Jedxifdv 2o (2.22b)

v
For a proof of eq. (2.22) in a simple case, con-

sider the heat conduction problem of an isothermal solid
body which at time t = 0 suddenly has time-independent,
but nonuniform, temperatures imposed at the boundaries.
The apprdpriate form of the energy equation is

P55 = —%‘% (2.23)
If we now multiply this equatidn by 2 (1/T)/3t and use the

product rule, the results are

V=it s) = k)] - vk
Sl (2.24)
Now, since the internal energy is dependent only on the
temperature, we have _
de = C,dT (2.25)
where Cv = the specific heat at constant volume. Substi-
tuting eq. (2.25) into the left hand side of eq. {(2.24),

we see that it must be negative since C,>0 is one of the
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requirements for thermodynamic stabilityf i.e.,

_/og_%%“‘ = —12_’!'( 53) <o (2.26)

Thus, it follows from eq. (2.24) that

T [‘Zﬂ (¥ )] L axut(T £ (2.27)

If we now integrate ¥ over the volume of the system and
recall that we have specified time-independent boundary
conditions, i.e., §T = 0 at the boundaries, we obtain after

applying the divergence theorem

L ._l_
.{,[%“ ot 3Xc T ] dv £0 (2.28)

which is a special case of eq. (2.22) and thus completes
our proof. Eq. (2.28) is a measure of the deviation from
the stationary state, i.e.,it will decay to zero as the
system approaches the equilibrium state of a constant tem-

perature distribution T(X ).
i

*Cy”> 0 simply requires that the addition of heat to

a closed, stable system must increase its temperature. The
condition that the entropy be a maximum is the classical
requirement for stability of an equilibrium state. For
discussions of thermodynamic stability one may refer to

Callen [1960], Chap. 8 and Kirkwood and Oppenheim [1961],
Chap. 6.
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Now, introduce the linear phenomenological law

into eq. (2.28) to.obtain

(2.29)

Since L (= sz) is a function of temperature, assume that

-| . - -I | .
[.L a7 /3X;] = L(T) AT°/3Xa‘. where T, (Xi) is the time-inde-
pendent temperature'distribution at the stationary state.

Using this assumption, one can write eq. (2.29) in the form

L(T;) c)-ra AT A-V 40

AXL IXi (2.30)

BQ(TfT)z é_f
ot ot

This is the defining equation for the local potential for

steady state heat conduction. The main properties of the
local potential are:

1. ¢ (T,T,) decreases in t1me until it reaches its
minimom value $(T,,T,)

¢ (T,,T,) = 1/2(d;S/dt) = one half the total
rate of entropy production at the stationary
state TO(X ), since the phenomenologlcal
coefficients are time- independent in the sta-
tionary state.
Since. the local potential is a generalization of the classi-
cal thermodynamic entropy production, it is also called the

generalized entropy production.

Before demonstrating that it is legitimate, and
indeed necessary, to replace the generalized flux with

its stationary state values and thus is not subject
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to variation, we must keep in mind the definition of a
valid variational principle, viz., it must be equivalent
to the conservation equations. Thus, if we wish to build
a variational principle around the local potential, we must
require that the first variation of?@(T,To) with respect to
variations in T be zero, and further, it must reproduce the

correct form of the energy equation.

= ¢ = - !
(58), ij(To)%.}i_ 3 6T

L TZ 3X: [L(T° ]dV (2.31)

Eq. (2.31) follows from the divergence theorem and the fact
that 8T = 0 on the boundaries. If eq. (2.31) is to hold
for arbitrary 8T, it follows that the rest of the integrand

must be zero.

g )T -
LT 5 | =0 (2.32)
At this point, i.e., after we have taken the variation, we

assume that the temperature To which satisfies eq. (2.32) is

the desired stationary temperature; thus

LT LT '] = d4
-Axi[ (Te) ‘?,\‘}‘t] = %% =0 (2.33)

which is indeed the appropriate form of the energy equation
for steady-state heat conduction.
The "name of the game'" in defining (T,To) is to

construct a functional which has:



33
1, Euler-Lagrange equations and boundary condi-
tions identical to the appropriate form of
the conservation equations.
2. A physical meaning within the framework of
irreversible thermodynamics in hopes of having
a unique relation between the variational prin-
ciple and the conservation equations, i.e., we
do not wish to have a functional which might
have a relative extremal for some thermodynamic
state other than the one which satisfies the
conservation equations.
However, the local potential cannot be a true extremum
since it is not actually stationary as defined in the cal-
culus of variations theory. By this we mean that the
defining functional
- -1
§(T,T.) = L L(Te) 2T 3T
3t == Sy 9y
aX{ dIXi d
(2.34)
is not stationary with respect to variations in T because’
we have set LIT /9%, = L(T)dTo/oXi and have treated it as a
constant in the variation process. This procedure, i.e.,
defining certain parts of an integrand to be constant
functions during a variation and afterwards requiring the

corresponding varied and unvaried functions to be identi-

cal, is known as a '"restricted" variational principle and

was first introduced by Rosen [1953] in his studies of
irreversible processes.

In order to clarify the distinction between a true
stationary functional and the requirement that the first
variation of the local potential Be zero, it is helpful to

consider an example given by Schechter [1967], p. 152,
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Suppose we have a large sheet of material of unit thick-
ness with time-independent face temperatures of 1 and 2,
and let X be the position coordinate perpendicular to the
faces. The entropy production for this problem is, see
eq. (2.10),

s _ -1y2

dt LL aa_;l) dv (2.35)
If we arbitrarily let L = sz = d/T, we can calculate the
temperature distribution which makes the entropy production
be stationary. Making this substitution-for L, the Euler-

Lagrange equation is

dT)* L d_(z& 4T
(37 ) + 9% (3% F)=o (2.36)

The solution of eq. (2.36), which satisfies the boundary

conditions T =1 at x=0and T =2 at x = 1, is

- 3/2 -

T ~—(1—_1Z’7:.)X+ i

Substituting this solution into eq. (2.35), we find the

(2.37)

stationary value of the entropy production, viz.,

&S J-' 172 AL
Sy - a _é_I_] = d 1_2/:. 4 _
e =) Fl5x | ( V& = 0.19574
(2.38)
Now we wish to compare this temperature distribution with

the solution to the steady-state heat conduction equation.



35

0=23% = _d dT
IX; dX T’ dx
(2.39)
the solution of which is
-Vh
(1-29% = 7, (2.40)

If we substitute this solution into eq. (2.35), we find
that the entropy production is

o _
_’_-—6- = 1.875 o

(2.41)
which is an order of magnitude larger than the stationary
value, eq. (2.38). Thus, we have shown that the state of
minimum entropy production does not correspond to the
observable, stationary state of this nonlinear transport

process.

However, the local poteﬁtial for this problem

-1
$(T,T) = [ & 4T 4T 4
| 3 _— :
=So-8 x4 (2.42)
is a ﬁinimum when dT-l/dx = dT;lldx is substituted from
eq. (2.40) into this equation, since one can show that.all
other functions T(x) produce larger values of §. Thus,

the temperature distribution which causes the local poten-

tial, with J = J(To), to be an extremal is the observable,
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steady-state temperature which satisfies the energy equa-
tion. If the solution T, is not known a priori, as it was
here, one must exercise caution in using the local potential,
since calculations based on it being an extremal are only
valid when the unvaried, stationary state functions (e.g.,
T,) are handled properly. Since a practical application of
the local potential, in which the stationary state is the
unknown which we wish to solve for, is'preéented in Chapter
II1, we shall relegate further discussion of applications
to that section.

Since the present work ié concerned with only a
single-component fluid, we shall derive a restricted form
of the local potential which is applicable to such a system.
For the general case of a system consisting of a mixture of
various species, which are interacting via diffusion and
chemical reactions, the reader is referred to the original
work of Glansdorff and Prigogine [1964], and for discus-
sions of time-dependent systéms one may refer to Glansdorff
[1965] and Hays [1965].

The derivation begins with the conservation equa-
tions which may be written in the following form for a

single-component fluid.

P - -3
3% 3XL(PVC) (2.43a)

Vi _ PV AV .
PsE= LY +amy
't XX (2.43b)
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a(re) _ _ o) — Yas _
3£ - -gya(fv'-e) T%-L + Ty Ve

(2.43c)

Now multiply the continuity equation by - [H T '+fh'3t J
the momentum equation by -1%%ﬁ} and the emergy equation
by AT"/at , and define ¥ as the sum of the left hand sides

*
of the resultant equations.

= —[HaT , 1 apldp _ Ve AT J(pe
VE-[i TNt ’e-(at)'*)a?j%&z

(2.44)
We wish to prove that ¥ is always nonpositive. In order
to accomplish this task, it is necessary to use some of the
results of classical thermostatics which are strictly
applicable only to systems in local equilibrium. The com-
ments of Schechter [1967], p. 156, concerning the justifi-
cation for this procedure is pertinent.
Thus this represents a limitation on the validity of the
work to follow. However, it is worth repeating that a
variational formulation can be shown to be correct by
insuring that the Euler-lagrange equations are identical
(including boundary conditions) with the appropriate
form of the balance equations. If this latter condition

is satisfied, one is not required to justify in a rigor-
ous fashion the derivation of the evolution criterion.

*The justification for these multipliers are that
they work, i.e., they lead to a local potential whose Euler-
Lagrange equations are the conservation equations.
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Therefore, witﬁ this thought in mind, we shall follow the
procedure developed by Glansdorff and Prigogine to derive
a specialized form of their general local potential.
To begin, we expand the last term of eq. (2.44) in

terms of the pressure and enthalpy,

a(pe) _ a P+pH) = —JP H
>t F(PHrH) = Pt

(2.45)
which follows from the definition H= e + P/,n. Since the
enthalpy for a single-component fluid in equilibrium is a

function only of the temperature and pressure, we may write

)i'_—ﬁ—**—a—'[—i-(.ﬂ‘l_)é_f_

T \NaT/p 3t
3t P dP /1 ot (2.46)
If we multiply byf and substitute the relations
(@)= ¢
3T Je P
aT /p (2.47a)

(.f_g_)_rz 7;- + % -31% o (2.47b)

into eq. (2.46), we obtain

=/ocpé_1 + 2P 4+ T P
t
’ it P (2.48)

Now inserting eq. (2.48) into (2.45), we have

_(ﬁ_ jacpg:cr l.é,_f_;_é_E.+H_,E. (2.49)
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and putting this into eq. (2.44) leads to

Ve[ - a4 UK

(2.50)

Next, observe that the first and last terms cancel, and

the density)o is a state function.

3 _ L) - AT 4 [av) JP
| 34? = Tw T )p [K Pat ( it
: (2.51)
where v = lép = specific volume.
Thus, eq. (2.50) can be written as
- IV LT _ Vi \?
¥=£[4L 4T + $¥ 329 - £(3%)
‘-ﬂ_LC ST 4P 4P AT
T? (.at:) - PT Jiéé ot (2.52)
If we now use the relation
Cy = Cp = T aTP/(aP
(2.53)

and the definition of the isothermal compressibility co-
efficient

7'=‘%{ﬂ9T (2.54)
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eq. (2.52) can be written in the form

[ainsVAC RS SICORS 228
(2.55)

Now since thermodynamic stability about a state of local

equilibrium requires C >0 and %2> 0%, it follows that

¥y <0 (2.56)

which is the desityed results. '
Returning to eqs. (2.43), multiplying by the ap-
propriate multipliers used to obtain eq. (2.44), and sum-

ming the right-hand sides, we must have

= [HaT™' | L3P a(pVi) Vi dVi Qv
¥ = [« 4] 55 YA

LAV 3T _ a1 [ pvie :
T it '%754 3t £Y:€) + é%‘

dXi axe
+ 3T Ve .
w Y IX; ~ 0

(2.57)
Upon using the product rule for differentiation and rear-

ranging, eq.. (2.57) can be written in the form

*7>0 simply requires that an isothermal expansion
of a stable system must cause a decrease in its pressure.
The stability criteria constitute Le Chatelier's Principle
which states that spontaneous processes induced by a devi-
ation from equilibrium be in a direction to restore the
system to equilibrium.
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"] P (R 48
+[%’L + pV (e +¥°) - '""JVJ]'g? ‘Alx:'
+ [y - pyey] i (V) +}JVJ -}J(—zl;—)so
(2.58)

Eq. (2.58) now has the same form as eq. (2.10), i.e., a
flow term and a source term related to the internal evolu-
tion of the system. It is also important to note that the
source has the form 23}'%_)'(?:;_ where the forces and fluxes
for the generalized entropy production are:

[} 4

X i. Jt

9. T _ DV
Xy H%‘E T ‘}E) PV

3T/ §i +pVi (e + v¥2) -y
IWViT)/8x; T - pViYj

YETVLX | PV

It is of primary importance to notice that these fluxes

and forces admit contributions from both thermodynamic and
mechanical convection and reduce to those which appear in
the principle of minimum entropy production when mechanical
equilibrium prevails, i.e., when all macroscopic motions

relative to the boundaries cease, and the various other
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restrictions on the principle apply.
Integrating ¥ over the volume of the system,Aas wés
done in arriving at eq. (2.30), we obtain the time deriva-
tive of the local potential and a generalized evolution

criterion.

S yav = [avz 3 <o

v
(2.59)

This derivative is negative during the evolution of an
arbitrary macroscopic system*énd'goes to .zero when the
system reaches a steady state consistent with the boundary
conditions. This general criterion provides an important
new tool for analyzing nonlinear transport phenomena.

We have seen in the special case of steady,. non-
linear heat conduction that if requiring the local poten-
tial to be stationary is to restore the appropriate bal-
ance equation, it is necessary to write QAin terms of a
functional which has the fluxes treated as fixed functions
corresponding to the steady state. Thus, in the general
case, it follows from eq. (2.59) that we should define the
local potential as

$ = L [3 () Xi] dv

(2.60)

*i.e., eq. (2.59) is independent of any kinetic laws
such as non-newtonian fluid laws, nonlinear dependency of
thermal conductivity on temperature, etc.
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The (Ji)o denote the values of the fluxes at the stationary
thermodynamic state and are NOT subject to variationms.
When one requires this functional to be stationary (with
(J') = fixed functions) with respect to variations in
[}‘%_"*pr at , Vi’ and T-1, the time-indebendent con-
servation equations of mass, momentum and energy are re-
stored, respectively.

Equation (2.60) leads to the double appearance in
fhe local potential of such macroscopic variables as tem-
perature, pressure, velocity, etc., i.e. as zero subscripted
and non-subscripted variables. Originally the local poten-
tial was "introduced in a heuristic way as a tool for cal-
culations." However, Prigogine and Glansdorff have found
a posteriori that the local potential is related to macro-
scopic fluctuation theory and in fact expresses the sta-
bility of an arbitrary macroscopic state with respect to
small fluctuations. In actuality,'the local potentials

might better be called: "fluctuation potentials which

determine the probability of deviations of thermodynamic

variables from their average value at the steady state.

This is the physical reason why each variable appears twice

in the local potential, once as a fluctuating quantity and

once as an average value.", Prigogine and Glansdorff [1965].
For example, T = To + §T is the fluctuating tempera-

ture and Ty is the average temperature at the steady state.
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Requiring (S @/ST)T‘): 0 determines the most probable

distribution of the fluctuating quantity T for a given
average distribution T, which in turn is required by the
classical fluctuation theory of Einstein to be identical
with the average T,, Prigogine [1965]. It was noted by
Glansdorff and Prigogine that this basic procedure is ex-
actly what the theory of the local potential requires in
order to restore the correct form of the conservation

equations, i.e.,

: most probable T
1. first require (g__%) =0 —>

T, with respect to T,

2. after which we set

which is called the self-consistency condition
in the local potential theory and is equivalent
to requiring the most probable distribution to
equal the average distribution.

Thus, the variational technique is applied to the fluctua-
tions about the local equilibrium state and.the admissible
functions which the fluctuations can have consist of those
distributions which differ from the average distribution
by the effect of molecular fluctuations.

Therefore, in attempting to apply the general evo-
lution criterion to turbulent flow, it is relevant to note
that the time scale of even the smallest turbulent fluctua-

tions are considerably larger than those associated with
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molecular fluctuations, Hinze [1959], p. 8. Thus, it is
expected that the variations used in the evolution criterion
and resultant conclusions apply equally well to the descrip-

tion of turbulent flows.




CHAPTER III

APPLICATION OF THE LOCAL POTENTIAL
TO TURBULENT, PLANE COUETTE FLOW

Apparently, up to the time of this work, the local
potential had only been applied to laminar flows and inves-
tigations of the critical Reynolds number at which such
flows become unstable and transition to turbulent flow
begins. bne may refer to the book by Schechter [1967] for
a variety of examples of such applications. The purpose
of the present work is to investigate the application of
the local potential to thc simplest type of realizable tur-
bulent shear flow. In particulaf, we shall consider the
case of fully-turbulent, plane Couette flow of a single-
component fluid which is:

l. steady

2, incompressible

3. 1isothermal

3.1 Reduction of the Local Potential

We begin by using the isothermal assumption
(T = const.) to reduce eq. (2.57) to
46
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If we substitute Wiy = 75 - P8¢ » this becomes

TV— "X{AJ‘(VLP)} %‘FLTXJ’ /av‘ax(
L t

- P8y & 2Y + PV L,

3t Ax J (3.2)
3t 3X;

where T% can be interpreted as the volumetric rate of

dissipation which is more convenient to work with when

analyzing isothermal problems. Now introducing the assump-

tion of an incompressible flow (f>= const.), eq. (3.2)

reduces to

et

Ty = 28 % _ 0%y Jve oV: Vi Jve
Xy it yx; 3t *J JST(':,%A%“ (3.3)
If this is substituted into the defining equation for the

local potential, eq. (2.59), we obtain

This leads to a functional for ¢ corresponding to eq.

(2.60), i.e.,

rer LB - [, - ol Juer o
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where the zero subscript denotes:

1. functions which are treated as constants in all
variational processes,

2. the appropriate values of the functions corre-
sponding to the stationary thermodynamic state.

Requiring ¢ to be stationary with respect to Vi yields

V; Vi = —-2JP Vi
PUN ="t Sk (3.6)

where we have dropped the subscript after the variation is
taken, since this is a self-consistent requirement or
corollary of the theory of the local potential. Equation
(3.6) is ‘indeed the Navier-Stokes equations for steady,
incompressible flow.

In the case of turbulent flow, the corresponding

form of eq. (3.6) is

. QU . TYETES
POk = 8k + 453K - p )

i (3.7)

as shown in Hinze [1959], p. 19. The overbars denote time
averaged properties, and

Vi = Ui + Wy
¢ _ f Reynolds decomposition
P = P+P

VU; = components of time averaged velocity

Wy = components of turbulent velocity fluctuations

This leads one to ask: What will be obtained from the
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integral of eq. (3.5) if oﬁe introduces a Reynolds decom:
position and assumes the zero subscripts can be interpreted
as denoting time averages? Doing this and using the rules

for time averages of fluctuating quantitiesf one obtains

- 3 Ty
3% Tﬁ-”]o( Viru)dv(s.s)’

If the Euler-Lagrange equation for this functional
is to be identical with eq. (3.7), we see that we must take
the variation with respect to the total instantaneous

velocity V; = * u;, in which case

Us

0= 3P Ui 2Vl | o 30 — 3T :
o YLk Y aX; %—XJ‘" (3.9)

Since the time average viscous shear stress ?@has the same
form as for laminar fiow, one can easily note the identifi-
cation of eq. (3.9) with (3.7) by using the continuity

relation JdU;/dx; = 0.

# Wi =P =0

(W w) (U +uj) = Vey + Wy + Uug + Wwg = Uil + Uiy

*It is of interest to note that in the case of pro-
ducts for turbulent flow the zero superscript clearly
denotes the stationary state of the product and not the
product of the individual terms evaluated at this refer-
ence state.
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With this verification of the capability of the
local potential to restore the appropriate form of the
momentum eq. for turbulent flow, let us return to‘eq.

(3.3) and rearrange it to obtain

TV = e dr (VP - 2yv) - Vi (28

it Xi ot TIx;
Tii v: IV JVq (3.10)
t( ] + PVl
J 3_&) ax,gt

Now using the divergence theorem and the definition of the

local potential

We are now ready to introduce the Reynolds decomposition
and specialize this functional to describe turbulent, plane
Couette flow. However, before proceeding, it is appropri-
ate at this point to introduce the concept of ergodic tur-

bulence.

3.2 Ergodic Turbulence

Statistical mechanics attempts to describe the time
averaged or equilibrium properties of isolated systems
which have so many degreeé of freedom that a complete de-
scription of all the internal motions of the system is im-

possible. According to classical mechanics one may picture



51
the motion of a system with N degrees of freedom as an
orbit in a 2N-dimensional space known as phase space whosé
coordinates consists of N generalized coordinates and N
~generalized momenta. At any instant of time the instan-
taneous state of the system is completely specified by the
positibn of a representative point in this space. Since
the total energy of an isolated system is constant, we can
imagine a multi-dimensional surface in phase space which
the system would be constrained to move on. An ergodic*
system is defined to be one whose representative point in
phase space passes through every point of the constant-
energy surface, corresponding to the energy of the system,
before returning to its original position.

Using the ergodic hypothesis, Boltzmann was able
to demonstrate the equivalence of time and representative
ensemble averages. A representative ensemble being defined
as a large number of similar systems whose representative
points in phase space lie on a constant-energy surface and
are suitably distributed so that every state accessible to
the actual system (as it moves along the constant-energy
surface) is represented by at least one system of the
ensemble which has an identical state. However, one can
construct an argument which appears to exclude real, physi-
cal systems from being ergodic, e.g., ter Haar [1954], p.

357.

*From the Greek meaning "'energy path."
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With the realization around the turn of the century
that real systems could not be strictly ergodic, much
effort was directed toward proving the existence of quasi-
ergodic systems for which the representative points in
phase space would come arbitrarily close to all points of
the constant-ehergy surface if sufficient time were allowed.
Although no completely satisfactory proof that real systems
obey such a hypothesis has been obtained, the entire theory
of classical statistical mechanics is based on the assump-
tion of the interchangeability of ensemble and time aver-
ages.

Beginning with a paper by G. D. Birkhoff [1931],
ergodic theory has developed into a complex mathematical
theory and has been the subject of much recent work, e.g.,
Arnold and Avez [1968] and Billingsley [1965]. It is
relevant to the present work to note that recently, Birk-
hoff and Kampe de Fériet [1962] have applied the ergodic
theory in their analysis of homogeneous turbulence, i.e.,
all the properties of the turbulence are independent of
absolute spatial position in the turbulent field.

Concerning application of the hypothesis to fluid
turbulence, Batchelor [1953] was apparently first to sug-
'gest that statistically homogeneous turbulence would obey
the ergodic hypothesis:

The property of spatial homogeneity says, in effect,

that all regions of space are similar so far as the
- statistical properties of u are concerned, and this
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suggests that the result of averaging over a large
number of realizations* or trials could be obtained
equally well by averaging over a large region of space
for one*realization.
Again, this has never been rigorously proven, Beran [1968],
p. 41.
As Khinchin [1949], p. 53, suggests, in the absence
of a formal proof it is much easier to simply apply such a
hypothesis and judge the theory constructed on it by its
practical success or failure. This is the approach
adopted here. In particular, in order to proceed with the
evolution criterion and avoid random functions of time, it

is necessary to postulate the existence of plane, ergodic

turbulence which we shall define as follows.

fy= i&ﬂ_‘*_ﬁ - jr‘ﬂ dX, dX; (3.12)
J; dt X; = const. E dX, an ’1‘::: t‘;z:s;;

where £ = f(xi, t) and g = g(Xi,t) are fluctuating quaﬁti-
ties associated with the turbulence. The product fg is
defined experimentally either at one or two points, e.g.,
f = (Xi’ t) and g(Xi + 6i, t), in the flow field. Experi-
ments show that it is a function only of the coordinate
along which the mean velocity varies -- herein defined as

XZ, the coordinate normal to the boundaries of the Couette

L
time average

*instantaneous
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flow. The basic assumption is that the turbulence is sta-

tistically homogeneous in planes parallel to the boundaries,
and furthermore, the time average of a turbulent quantity at
any point on such a plane is equal to the corresponding

spatial average over the (infinite) plane at any instant of
time.

3.3 Couette Flow

The nomenclature and boundary conditions used here-

in to describe plane Couette flow are as follows.

e ..
AXL 1
h v
*Xy JTTITTTI7777777777
X3
define
U = Vil X2)
Uz_'-: U3 =0
P = Const,
T = const. L from e%- (3.7)] (3.13a)
B.C.:
U=UW=0 @ X.=0
V = VUw = velocity of moving boundaryl €X; = h
U= 0

(3.13b)
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We begin the process of specializing the local
potential to describe this problem by introducing the
Reynolds decompositions into the surface integral of eq.

(3.11).

Ss{(UH w)(P+pP)— Wi+ “J)/“[E%I%Ejl + })jx_: - ]} Nids

(3.14)
If we invoke the ergodic hypothesis and note that ﬁ_,- us =
U}P' =0 s then eq. (3.14) reduces to
ViP + wp’ - on.;-A'U.. U + ,
j{ Py - ( _3_)_(1) 2 ‘”‘J t.) Nids
(3.15)

(see footnote)
Now applying the boundary conditions, eq. (3.13b), we

obfain

Sx i_,uv 4 ds = —ﬁ,av dl)’]xz ax, dx,

(3.16)

It is of interest to note that eq. (3.15) appears
to be the appropriate integral to account for a flexible
boundary. An extension of this work to include the dissi-
pative effects of a flexible boundary, i.e.,j-(u.

L

LP') NudS

would be most interesting and would provide additional in-
formaticn concerning the possibilities of obtaining drag
reductions via such boundaries as has been found experi-
mentally by Blick, et. al. [1969].
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This integral represents the rate of work which the moving
boundary is exerting on the fluid via the action of vis- -
cosity and as such must have a negative sign since dissi-
pation terms are positive in the definition of the local
potential.
| Now directing our attention to the volume integral

of eq. (3.11), we again introduce a Reynolds decomposition

to obtain

-'U-+u;;| (P +P’) T +uw: .32(U£+ui! (Ui + Ui)
j\r{ [" o X T [UL-;-uJ:u IXT +/“( 3X;

4+ 3V + w)) 3 (Vi + wi) U +u
aJxa ] Tax; A [(UW’)——Q (Uﬁ:&)}(c?f”)

Now using the definition of the time average and the

ergodic hypothesis to eliminate terms linear in.a fluctua-

ting quantity, eq. (3.17) becomes

-0 3E 4L SE » 2% 4 3) 2w

/‘ U + é'U'i .au'] s
(axJ ax, [v 4 + u; 340 v fav |
(3.18

We can now particularize this equation to the case of

Couette flow by applying eqs. (3.13) which produces

U; i
L{,« %: +/(3l;, +'3fo)3’5<[, +/a dv +/a[u’_q }J\Es 19)

The. last term of eq. (3.19) may be simplified by

using the following argument.
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u‘é_"_'(_!_ P A(U.'u|
9 Xj I X;

(3.20)
which follows from continuity. Furthermore, the conserva-

tion of momentum equation, eq. (3.7), for Couette is simply

T = _ p WUz = const,
/adx, S

(3.21)

Thus, when auyax; is constant across a region of the flow,
it follows that the time average properties of the turbu-
lence are also constant in the same region which is con-
sistent with our assumption of statistical homogeneity in
planes X, = constant. Therefore, since the averaged tur-
bulence properties can only vary in the X, direction, it

follows that eq. (3.20) must redﬁce to

Wik - (U u)
X2

3 X; ) (3.22)

In addition, from eq. (3.21), we have

f gu.luzz __‘M

d X, d X= (3.23)

e -

d*U
dX: |, (3.24)
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3.4 Isotropic Dissipation of Turbulent Kinetic Energy

The second term of eq. (3.19) represents the dis-
sipation of turbulent kinetic energy into heat via the
action of viscosity. In the general case the dissipation
consists of twelve different terms, and it has not yet
been completely measured experimentally (Hinze [1959], p.
496) nor successfully predicted by theoretical methods.
Thus to bypass this difficulty, Taylor [1935] introduced
the assumption of isotropy for the small scale eddies
responsible for viscous dissipation and a dissipation or
microscale scale Ay as a measure of the average dimension
of eddies'which are being dissipated.

Isotropy requires that all relations between tur-
bulent quantities be invariant with respect to rotation of
the coordinate system. One of the consequences of this
definition is that there can be no average turbulent shear

stress since it requires

Wilw; = -~ Uiy = o (isotropic) (3.25)

which .obviously does not apply to a turbulent shear flow.
However, theoretical consideration (Hinze [1959], p. 183)
and experimental evidence (e.g. Laufer [1951]) show that
the small-scale structure of most actual nonisotropic flows
is nearly isotropic. Thus, it is important to note that

the assumption of isotropy of the motions associated with
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dissipation indicates only that the small eddies are iso-
tropic and does not restrict the larger scale eddies which
are the primary cause of the turbulent shear stresses, i.e.,
ﬁ;ﬁ; # 0 , and are by definition nonisotropic.
If we expand the dissipation term of eq. (3.19) and

use the isotropic relations:

2
('%%) = (%L;f)z: (3‘;2)2 (3.26a)
(5% Che)= %)= G- %)2=%)= (3.26b)
3——15;‘2 -%%‘ = %-%;--%“7? = 44 % (3.26c)

the dissipation may be expressed as

UL 4 U Yau — AUy U3
/u( QXJ Xt JXJ - é/U. (3X|)+(3Xz + d Xz 3X|
(3.27)
To further reduce this expression Taylor introduced the

dissipation scale which is related to the above derivatives

by
w 2 - ( d U.!)i
. 3 X (3.28a)

. Xz (3.28b)
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-4 L—w)z = .él‘k_l ______Ju-z
S 2 dX2 X
(3.28¢)
where W) z (W)= U)* = (u,)® for isotropy. The reader

may refer either to the original work of Taylor [1935] or
Hinze [1959], pp. 143-154, for a derivation of these rela-
tions. Substituting eqs. (3.28) into (3.27), the isotropic
dissipation of turbulent kinetic energy into heat becomes
simply:

isotropic dissipation =’$/4$%¥f (3.29)
T
The amount by which the actual dissipation for a particular
flow varies from the isotropic value of 15 is a measure of

anisotropy of the small-scale motion.

3.5 Nondimensionalization of Functional

Inserting eqs. (3.29) and (3.24) into (3.19) leads

to
U, 4V (w)? 2 2
S‘\r{/“ X + 15 U )'fzr) +/“(-%¥;) + [ﬂ%‘,ﬂu} dv
(3.30)

Now adding eqs. (3.30) and (3.16), we obtain the appropri-
ate form of the local potential, eq. (3.11), for turbulent

Couette flow,
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= ffrongg oo 1 e gy

X2=h

+/“(dxz) + [/i.’.}%]ov + ts‘,«%ﬁﬂf} dX,dX,d X3
T

(3.31)
In order to generalize the results and reduce the number of
independent parameters required to describe the problem, it
is necessary to nondimensionalize this equation before at-
tempting a solution.

Since it is known from experiments that the con-
stant total shear stress portions of turbulent shear flows
with zero pressure gradient obey the well-known "law of the
wall," eq. (3.31) is nondimensionalized with respect to
quantities which make the mean velocity profile V(X.) amen-
able to such a description. For this purpose we define

the following quantities.

BE_L_T_ﬁx/:t , Ut = U

U
h'= __gﬁh/li )y (uwPz (w)?
W
A= ArlUyrp
- T

(3.32)
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where U = [’C’w/jo]‘/" is the so-called friction velocity

and Tw = _u (dU/dXz), _, is the viscous shear stress at the
boundary. Experiments with turbulent shear flows with zero
pressure gradient, e.g. Kline, et. al. [1967], indicate
that the mean velocity can be represented by
Ut = for 04£Yy £5
J ' £J (3.33a)

and

Ut = _l'?_,ﬁnj + B for  30< y <400 (3.33b)

where the constants K (known as fhe Prandtl-von Karman con-
stant) and B are empirically determined. For boundary
layer type flows K= 0.4 and B= 5. In between the two
regions where eqs (3.33) correlate the data, there is a
smooth transition between the two relations. Various
authors, e.g., Mellor and Gibson [1966], Kleinstein [1966],
and Rasmussen and Karamcheti [1965], have proposed equa-
tions for the law of the wall which provide a smooth mean
velocity profile, i.e., a continuous dU/d¥X, . The form
obtained by Rasmussen and Karamcheti was chosen for the
present work. Their equation expresses the distance from

the boundary X; in terms of a function of U, viz.,

yz x"/‘tz L - U*+ %—[Césh(Klf*) "-(KTW)-?-_ "OJ

(3.34)
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Using this equation we can evaluate the derivatives appear-
ing in eq. (3.31) and make a change of variable so as to
convert the integral over X, of eq. (3.31) into an integral
over U , since
dy = oV* + _Zpﬁ-[s.wh (kv?) = kv*] 5.35)

Introducing the nondimensional variables into eq.

(3.31), we obtaln

T¢ = ‘f’“”_f UmﬂUJ d.x.dx3 +

SIIRIG L«» (4] v

dut 2, 2
&)+ 5 (42" 4y dnydx,

(3.36)

We are still faced with the problem of finding a
relation between the dissipation and the mean velocity
profile in order to evaluate the integral over y. The only
alternative is to assume a relation which appears to be
compatible with experimental data, eq. (3.21), and the

appropriate boundary conditions.

3.6 Assumed Solution for Dissipation

Since the momentum equation, eq. (3.21), requires

-/’ U, Uz +/U-ﬁl){_ = constant,
2
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it appears to be reasonable to assume that when dU/dX,

is constant that the turbulence is also constant; in par-

ticular, we shall assume when d'U/dxz_ = constant that:
4 (W)*= turbulent kinetic energy/mass of the
isotropic, small-scale motion = const.
17 = const.
dissipation = const. (3.37)

We shall use the experimental results of Robertson [1959]
to guide the selection of a specific functional relation
between these quantities and the derivative of the mean
velocity.

The measurements of Robertson, see Figure 3, do
indeed indicate a nearly constant dissipation scale in the
core of the flow where dVU/dX, = constant. As a rigid
boundary is approached, the dissipation scale decreases to
a non-zero value (see Laufer [1951]) while dV/dX, in-

creases. Thus the following functional form is assumed.

A% = [A|+Az%gjq

Yy (3.38)

where the constants Aq and A, are to be determined by re-
quiring the local potential to be statiomary.

In addition, the measurements of Robertson indicate
Gxaiis neafly constant in the core and increases as one

approaches a boundary. However, since a rigid boundary
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Fig. 3. TURBULENCE INTENSITY DATA AND
"CALCULATED MICROSCALE, ROBERTSON [1959]
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requires W =u, = u; =0 @ X,=0 We expect (W) and the turbulent
kinetic energy to reach a maximum and then fall to zero at
X, = 0. The measurements of Klebanoff in a flat-plate,
turbulent boundary layer clearly show such a behavior,
Hinze ([1959], p. 489. Thus, as a first approximation, it

is assumed that
(Uf)? ] C, ) + Cz(."’ 9 )
(3.39)

which satisfies the boundary conditions for rigid boundaries,

(3.40)

Upon substituting eqs. (3.38 and (3.39) into eq.

(3.36), we obtain the following approximation for the local

potential.
T§ = "f’u'rj U *J dXidX; +
3 dy=wr
}plx3 J{Y‘f z [3iy.] Ut (f%§:)1-+

I5 (A + A24U+ {C (V= sL_)+ C.(1~ &)}}Ajau&
(3.41)
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Using eq. (3.35) to evaluate the derivatives, the

integral over X orU can be numerically integrated once

2
values of ﬁ and X are known.

3.7 The Ritz Method

The Ritz method is basically a procedure for ap-
proximating functions which are required to make some
functional stationary. For example, suppose we are given
some functional I(U) which is required to be stationary
with respect to U(y). The Ritz method consists of repre-
senting U(y) in terms of a series which:

1. satisfies the boundary conditions imposed on
" U(y) and

2. forms a complete set, i.e., as the number of
terms go to infinity the series can represent

an arbitrary function. This is expressed
mathematically for an arbitrary function f(y) as

J[Hﬂ)"{n(a)]zdﬂ—ao as n-> o

n
where F”L-:,):ZlAi(();(g) and usually the @;(y) are
L=
required to be continuous and differentiable
functions, e.g.,
4h(5) = éZ.AL Y' = a power series
which can be shown to have the above property.
The Fourier series is another example of a
complete set.
In practice the function U(y) is represented by the
truncated series and the constants are determined by the

set of equations resulting from requiring I(U) to be sta-

tionafy with respect to these constants, i.e.,
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I(V) ~ 1 (g‘ Ai Q1)

ol _
bA,‘,_o

(3.42)
The convergence of this procedure is usually rapid and
often requires only a few terms to obtain a satisfactory
approximation. However, the admonitions of Schechter
[1967], p. 93 should be recognized.

. « . convergence of the Ritz method is assured under
certain conditions; however, the quality of a given
approximation depends largely on the skill of the com-
puter in selecting "good" functional forms. In most
cases one can assess the goodness of it only by intro-
ducing a larger and larger number of free parameters
until the answer no longer varies significantly.
Although this test is often reliable, it is by no means
rigorous. Indeed we can construct certain examples for
which this test would fail. Consider the case in which
the exact solution includes every fourth member of an
orthogonal set of functions. Suppose further that we
first use a single member of the orthogonal set as an
initial approximation. On adding a second member of
the orthogonal set to the approximating function, we
would find that this member contributes nothing to the
first set. Can we then conclude that convergence is
complete? Obviously not. Thus there are certain
dangers associated with the process of testing conver-
gency by introducing a larger number of free parameters,
and the reader should be cautious. However, the test is
most often reliable and certainly is the best that can
‘be done in many cases.

Referring back to eq. (3.41), it may be seen that we
have constructed a functional which can be solved via the
Ritz procedure. In particular, we can determine the unknown

constants Al, Az, Cl’ Cz, p and K by attempting to solve



69

the set of equations associated with the conditions

9 _ 4
dd;
(3.43)
where Ol{ = the desired constants.
If we blindly apply eq. (3.43) to eq. (3.41) and
recall that the zero subscripts denote quantities which do
not vary, we see that the first three terms within the

volume integral form an exact differential; for example,

taking the derivative with respect to g

ap{v 32 [2v*]v+ (%‘f)z}z

UL U, gqr Ut L g (dUM?
g d dyz )8 + ) QI“‘

(3.44)

where we have dropped the subscript after the derivative is

applied in accord with the self-consistency condition. Eq.

(3.44) can be further reduced and integrated over y to

obtain

(3.45)

Thus, when we apply eq. (3.43) to the local
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potential given by eq. (3.41), we are in effect requiring
only that the integral of the volumetric rate of dissipation
be stationary. This leads to two difficulties:
1. The set of equations resulting from requiring
¢ to be stationary with respect to the con-

stants leads to a set of 4 homogeneous, linear
equations in A;, Ay, C;, C, which has the tri-

val solution A; = A, = C; = C, = 0.

2. Requiring the dissipation to be an extremum
leads to the laminar flow solution, for which
the dissipation of turbulent kinetic energy is
zero, since none would exist! ’

The simplest remedy for the first of these problems

is to make the local potential qﬁadratic in A; or A, and
C; or C,.. We wish to do this without restricting the
admissible functions allowed by our assumed solutions for
@**and A* , since it follows that we will have a greater

probability of obtaining an optimum solution from a larger
range of possible solutions. This can be accomplished a
number of ways, but the author chose to make the following
substitutions.

Ay — AyCy

C, — A4Cy
Upon again applying eq. (3.43), we obtain a solvable set
of nonlinear algebraic equations.

The second problem can only be dealt with by intro-

ducing the appropriate constraints to find the desired
relative extremum corresponding to a stationary field of

turbulence.
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3.8 Additional Constraints Necessary
To Describe Turbulent Flows

The inability of the unconstrained local potential

to describe a stationary field of turbulence seems to be
traceable to the isothermal assumption, eq. (3.1). For
laminar, incompressible flows this means the energy equa-
tion may be ignored and contributes nothing to the mathe-
matical modeling of the flow. However, in the case of a
turbulent flow the mechanical energy equation, obtained by
multiplying the momentum equation by the total velocity,
can be divided into a mean-energ& equation and a turbu-
lence-energy equation (e.g. Hinze [1959], p. 64). The

turbulence-energy equation for a steady, incompressible

Xy “NAXj T aXL X; It 3}{
(3.46)
, 3
Where q = 2 Uiug = 2 (turbulent kinetic energy/mass)

There terms have the following physical significance.

1. rate of change of turbulent kinetic energy per
unit mass caused by variations from point to
point of the flow field Uj(xj)

2. convective diffusion by turbulence of the total
turbulent energy
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3. production of turbulent energy caused by the
extraction of energy from the mean motion via
the action of the turbulent shear stresses.

4, rate of work per unit mass done by the viscous
shear stresses associated with the turbulent
motion.

5. the rate of viscous dissipation of turbulent
kinetic energy per unit mass.

If we integrate eq. (3.46) over the volume of plane
Couette flow and use the divergence theorem and the boundary
conditions appropriate for rigid, impermeable boundaries, we

obtain

= - p W dY; U D U
J-{f T /A(beL i) (m}dv

(3.47)

This equation simply requires that the stationary field of
turbulent flow must obey the basic energy balance, viz.,
the net production of turbulence must equal the net dissi-
pation,

Upon specializing eq. (3.47) to the case presently
being considered, we have an integral constraint which

restricts the variations of the local potential.

=ﬂj:{ (i_%g)ad_tgf_* - ls%tgf}dﬂdx.dh
(3.48)

One can apply this constraint to eq. (3.41) by
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using the method of Lagrange multipliers, e.g. Schechter
[1967], p. 16. This basically consists of introducing an
undetermined multiplier 7 which is to be determined by the

requirements

§0.= 6% + R8T =0
(3.49)

and J = const.,
where J is defined to be the constraint, eq. (3.48). Thus,
in place of eq. (3.43), we now have eq. (3.48) and the

following set of nonlinear algebfaic equations to solve:

Ja; (3.50)
where di =.A1, AZ’ Cl’ Cz’ﬁ , K
Eqs. (3.48) and (3.50) constitute a set of seven equations
for seven unknowns,
Upon solving for the unknown constants, we will
obtain an approximate solution for:

1. the mean velocity profile, eq. (3.34)

2. the distribution across the flow of the: dissi-
pation scale A,eq. (3.38), turbulent kinetic

energy per unit mass, eq. (3.39), the dissipa-
tion, eq. (3.29).

With the exception of the theory of Malkus [1956], which
has been disproven by Reynolds and Tiedermann [1967], this
represents the first entirely analytical solution for a

turbulent shear flow.



CHAPTER 1V

THEORETICAL RESULTS AND COMPARISONS
WITH EXPERIMENTAL DATA

Before discussing the numerical results, it is of
interest to note that a priori one does not know that eq.

(3.34) will lead to'U'=Tfm/2 at X, = h/2 as is found ex-

2
perimentally., Thus, it appears that formally the Ritz
method requires that § and K be constrained so as to sat-
isfy this boundary condition. However, it has been found
that numerically this has negligible effect; i.e., less
than 3%, on the resulting mean felocity profiles, which
lends additional credulence to the assumption that the
"law of the wall," eq. (3.33), is a valid representation

for the mean velocity distribution in a turbulent, plane

Couette flow.

4.1 Experiments

Although plane Couette flow is conceptually simple,
it is extremely difficult to realize experimentally, and
apparently there have been only two attempts to obtain
such a flow in the laboratory, viz., Reichardt [1956] and

74
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Robertson [1959]. Both experimental set-ups involved a
continuous, moving belt. The degree to which flows so-
obtained approximate the ideal, two dimensional case is a
function of three basic variables:

1. ratio of the belt width to the distance h
between the two primary flow boundaries, which
may be defined as the flow aspect ratio,

2. constraints imposed at the sides of the flow,

3. 1length of the flow.

Reichardt studied the motions of oil and water
inside a continuous belt loop; his basic experimental
set-up is shown in Figure 4. The belt was 80 cm. wide and
the spacing between the two runs of the belt was 16 cm.
which provided as aspect ratio of five,*and the distance
between the mounting pulleys was two meters.

On the upper side of the belt the liquid (water
or 0oil) formed a free surface with the ambient air; however,
from Reichardt's [1956] paper it is not clear exactly what
type of boundary existed on the bottom side.

Some of the mean velocity profiles obtained by
Reichardt in his apparatus are presented in Figure 4 along
with corresponding numerical results from the subject
theory. It may be seen that the theory indicates smaller
values of dU/dX2 in the middle of the flow and larger

values near the boundaries. This is indicative of a basic

*One expects the larger the aspect ratio the more
nearly the flow will approximate the two-dimensional case.
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difference in shear stress level with the theory predicting
larger valueé. .

These data of Reichardt are not unquestionable
since as suggested by Robertson [1959], p. 3, end effects
were possible. In addition, these data were obtained with
an unconventional arrangement whereby a cylindrical stick,
suspended by a steel wire from a movable '"wagon," was
lowered into the flow, and the flow velocity was obtained
by varying the spr>d of the wagon until the wire was per-
pendicular to the fluid-air interface during a traversal
along the flow. Neither the details of how this was done
nor an estimate of possible errors was discussed.

Robertson [1959] conducted his experiments with air
so that some of the turbulence properties could be measured
with a hot-wire anemometer. The basic experimental appara-
tus consisted of a 20-inch wide belt mounted on pulleys
above a fixed, metal surface through which various measure-
ment probes could be inserted into the flow. The distance
h between the belt and fixed surface was variable, but most
of the data were taken at a spacing h~2 inches which pro-
vided a flow aspect ratio of ten.

The sidewalls were fixed and were found to be a
source of trouble owing to the additional drag imposed on
the flow. This additional drag extracted momentum from
the fluid motion caused by the moving belt and thus pre-

vented the midstream velocity from attaining U /2.
' m
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The solution employed was to simply set-up a fan to force
air down the tunnel at a uniform speed equal to one half
the belt speed so as to compensate for sidewall resistance.

Twelve-inch diameter belt pulleys were located
ninety inches apart; this spacing was based on boundary
layer calculations which indicated the boundary layers on
the moving belt and fixed surface would join well ahead of
the test section located twelve inches from the rear pulley.

In order to measure the two-dimensionality of the
flow, Robertson made longitudinal and transverse pressure
and velocity measurements in the midstream about the test
station and found the variations to be less then ten per
cent. In addition, the midpoint velocity was found to be
within one per cent of V./2.

Some typical data obtained by Robertson are shown
in Figure 5 togefher with relevant theoretical predictions.
It is readily seen that an excellent correlation of the
data is obtained.

It is unfortunate that neither Reichardt nor
Robertson attempted to measure the shear stress directly,
since-a graph of the mean velocity profile in terms of the
law of the wall is quite sensitive to the value of skin
friction used (since ux =Fr2/7' ).

Reichardt obtained a value of u, by arbitrarily
requiring a particular form of the law of the wall to pro-

duce the correct centerline velocity, i.e.
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Ve _
Tf; = 2.5 kn —1’——“7"/2 + 5.5

’ (4.1)
The values of the constants appearing in equation (4.1)
were empirically determined by early (1920's and 1930's)
investigators of boundary layer and channel flows, and as
noted by Hinze [1959], p. 477, various investigators have
found other values for these constants, Thus attempting to
obtain u, from equation (4.1) is unsatisfactory.

The low speed water table experiments of Runstadler,
et. al. [1963] are perhaps most similar to the Couette flow
experiments of Reichardt. For a turbulent water boundary
layer with zero pressure gradient they found that Clauser's
form of the law of the wall correlated the logarithmic por-
tion of their data quite well, e.g., Figure 3.20 of
Runstadler [1963]. The constants chosen by Clauser [1956]

in the law of the wall are

v

4 (4.2)

Comparing equations (4.1) and (4.2) we see that it
appears quite possible that Reichardt may have underesti-
mated u, . Figure 6 shows Reichardt's data normalized with
respect to the u, determined from equation (4.1). The

theoretical mean velocity distribution is lower owing to a
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higher theoretical value of u, . Figure 7 compares some
values of the ékin friction coefficient obtained from equa- -
tion (4.1) with theory. It may be seen that the theory
predicts about 15% larger values of Cg .

| Robertson [1959], p. 33, used the Ross-Clauser
method to obtain a value for the skin friction coefficient.
Basically the Clauser Method [1954] consists of writing

the law of the wall in the form

A E (o (o) + 8]

(4.3)

where for Couette flow
Uy = U, - (4.4a)
Cs = 'rw/(Jz.ﬁU:) | (4.4b)

A semi-logarithmic graph (similar to Figure 6) can be con-
structed from equation (4.3) with C¢ as a parameter, and
when a given mean velocity profile is plotted on the graph,
the straight line (logarithmic) portion of the curve is
discernible, thus allowing one to determine Cg¢ by interpo-
lation. It is assumed that Robertson followed such a
procedure and used values of the constants found by Ross
based on his analyses of data for pipe and boundary layer

flows. According to Robertson, the values are

1 = 5.6 _._2.43 (4.5a)
X 10~
B = 5.6 (4.55)
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Although these constants are quite close to those appearing
in eq. (4.1), Robertson obtained values for C; about 15%
larger than those calculated from eq. (4.1). These values
of Cp, determined by Robertson from his mean velocity pro-
file data, are shown in Figure 7 and are found to be in
excellent agreement with the theory.

Using the values of C. presented by Robertson, his
mean velocity data have been cast in the form of the law
of the wall and are also presented in Figure 6. The slope
and general shape of these data agree with the theory as
expected owing to the close agreement shown in Figures S
and 7. The difference in level between the Robertson data
and the theory for the smaller values of qugé,is entirely
due to the small differences in U shown in Figure 5.

It is of interest to place a straight edge along
the line between U/uqg = 5.5 (since B = 5.5 in equation 4.1)
and the last point of Reichardt's data shown in Figure 6
which corresponds to the midstream. It may be seen that it
is questionable whether Reichardt's data obey the law of
the wall. Indeed, Squire [1960] has observed that Reichardt's

data are in better agreement with a square root law given by

£l

= + 3 [ XaUhpe _ V2
14 8(_;/_'(.. 14)
(4.6)
Squire also examined Robertson's data and found

that they appeared to be compatible with a law of the wall
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description. One cannot conclude, based on this limited
experimental data, which, if either, set of data is correct;
both experimental set-ups héd sources of error and any con-
clusioné must await further experimental results from a
third source. However, as mentioned at the begiﬁning of
this chapter, the present theory indicates that the law of
the wall is a valid representation for turbulent Couette
flow.

4.2 Theoretical Variation of the Constants
in the Law of the W%all

The constants K and g8 , which appear in equation
(3.34), were found to be a function of Reynolds number and
are shown in Figure 8. According to Kline, et al [1967],
Comte-Bellot has also shown that the coefficients in the
logarithmic law of the wall depend on Reynolds number. In
addition, it has been found experimentally, e.g., Gill and
Scher [1961], in turbulent flow through tubes and between
parallel, flat plates (channel flow) that the coefficients
show a definite Reynolds number effect up to Reynolds num-
bers of approximately thirty thousand beyond which they
appear to be genuine constants. This trend has also been
predicted by the present theory as shown in Figure 8.

It may be noted that the calculations show a small
amplitude oscillation in K and @ as the Reynolds number
décreases. The exact cause of this behavior has not been

found, but the instability may be caused by inaccuracies



42

10.0

9.6

94

Fig. 8.

VARIATION OF CONSTANTS IN THE LAW

OF THE WALL WITH REYNOLDS NUMBER

© CALCULATED PoinTs

o 0,0 —Or —O -0 0.406
o
' 1 1 1 L 1 2
20 40 éo 80 \00 120 140
Re x 1072
0 ) 5
e ) v o4
&
' 1 1 L 1 1 L 3
20 40 o 8o 100 {20 40

98



87.

in the numerical calculations and/or inadequacy of the law
of the wall to correctly describe the mean velocity profile
at lower Reynolds numbers.

It is of interest to note the'limiting values pre-
dicted by the present theory for Couette flow; for this
purpose, we note for large values of V/u, that equation

(3.34) may be written as

X, Uy ~ 1 e KW/uy
4 8 (4.7)
Upon taking the natural logarithm, we obtain
v, _ 1.
T RhLts 4 tnp
4 (4.8)

Thus, comparing equation (4.7) with equation (3.33b), we

b= &Tﬁ (4.9)

Now, if we estimate the asymptotic values of @ and X from

see that

Figure 8 as being 9.74 and 0.406, respectively, we find
the following values for the coefficients in the law of
the wall valid for Couette flow as Re-scw.

1

~ 2.46 , Bm5.6
K

(4.10)
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4.3 Additional Theoretical Results

Figure 9 presents the predicted distribution of
Reynolds stress from the wall to midstream. It is impor-
tant to keep in mind that the large eddies are primarily
responsible for turbulent transport phenomena, and in par-
ticular the momentum transport caused by the large eddies
produce the Reynolds stress. Thus, Figure 9, simply shows
that the largest eddies exist in the middle of the flow,
as one might expect intuitively, and are rapidly reduced
in size very near the boundaries where y< 30 of X2/h less
than about 0.03,

The theoretical distribution of the average squared-
velocity associated with the isotropic, small-scale motions
is presented in Figure 10. It is pertinent to notiée that
these curves do not show a large maximum within the flow as
Robertson [1959] found for <EF at Rex~60 x 10%, see Figure
3. Presumably, this is due to the fact that Eipsiis cal-
culated in the theory in such a way as to give the best
solution for isotropic dissipation, eq. (3.29). Thus EIPSi
is not a measure of the actual turbulent kinetic energy per
unit méss, but rather is a measure of the average of the

three correlations g;utul associated with the small-scale

motions.
The predictions for Taylor's dissipation scale are -

shown in Figure 11 which show that the dissipation scale
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decreases slightly with increasing Reynolds number. The
nearly constant value for ;. when y< 5 is indicative of a
nearly constant value of dVU/dX; very close to the wall, eq.
(3.33).

It is relevant to compare these values of Ay with
thbse obtained by Robertson [1959] who also assumcd the
isotropic relatioh, eq. (3.29). Using information from
Figures 3 and 7, we can calculate a noﬁdimensional value
for Robertson's dissipation scale, i.e.

= LoeE (3x104)| 4.9 X i0™®

83.5

t

(4.1)

which is about 6 times the midstream theoretical values of
Figure 10. The values of Ay shown in Figure 3 were deter-

mined by using the isotropic relation

(Bul )z - u)
X T
' (4.12)
where the two correlations were measured data. Since the
turbulence is not isotropic, which means
) (W% # W)* # (Ug)* 2 W)?

it is suspected that the resulting value of Ay is not a
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measure of the dissipation scale because ((.(1)z of the

complete motion >> (w/)* associated with the small-scale,
isotropic motions. |

Theoretical distributions of the dissipation aré
shown in Figure 12. It is most interesting to compare the
high Reynolds number distributions with the distribution
obtained by Laufer in the wall region of a pipe flow, e.g.,
Hinze [1959], Figure 7-43. Laufer's data exhibit a peak in
the dissipation curve near y = 8 which has a nondimensional
value of about 0.25. Thus the distributions of Figure 12
have the correct shape, and the larger magnitudes can be
explained by the lower skin friction (or u, ) which exists

in a Couette flow.
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CONCLUSIONS AND RECOMMENDATIONS

A new analytical method, based on the general evo-

lution criterion of Glansdorff and Prigogine, has been

applied to a simple, turbulent shear flow. The results

for plane Couette flow consist of the following:

1.

The concept of ergodic turbulence is a useful
tool in the analysis of this planar flow.

The law of the wall appears to be a valid re-
presentation for fully-developed turbulent
flow.

The relation between the constants in the law’
of the wall and Reynolds number is established.

The relation between skin friction coefficient
and Reynolds number is established.

Additional experimental work needs to be done
in order to establish with certainty the true
nature of the flow and to compare with the
present theoretical results. In particular,
the work should include direct measurements
of shear stress and distributions of dissipa-
tion.

In addition, it appéars possible to extend the pre-

sent work to analyze turbulent Couette flow in the case of:

1.
2.

a compliant boundary

a compressible fluid

However, before attempting such extensions, the convergence

of the series representations for (A)2 and (u*)z, i.e.,
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v = 3 Aafivvay)

it=o

(u"’)" = g— Cj[_\—dedg]j

J=l

should be investigated. Specifically, it should be deter-
mined whether the Ritz method will converge to a particular
solution with increasing N and M.

With regard to general applications, additional
original work must be done before the basic method can be
applied to more complex turbulent shear flows, such as the
notoriously difficult problem of the turbulent boundary
layer with pressure}gradien%. But the method does offer a
promising, new, analytical procedure for obtaining approxi-
mate solutions without the use of empirical constants so
prevalent in most existing theories of turbulent shear
flows. |

As a final note, it is strongly recommended that
the very limited and inefficient computer program used
herein be replaced by one of the more sophisticated routines
for solving sets of nonlinear algebraic equations. For ex-
ample, the Lockheed program written by Remmler, et al [1966]
(available through COSMIC at the University of Georgia) ap-

pears to be worthy of consideration.

*For instance, the applicability of the ergodic
hypothesis must be re-examined since the turbulence would
would vary along the flow. Also the necessary constraints
on the variations of the local potential will be more com-
plicated.
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Appendix I

RELATION BETWEEN VARIATIONAL PRINCIPLES AND
SELF-ADJOINT DIFFERENTIAL OPERATORS

The problem of finding a curve y(x) that minimizes

a functional I(y) given by

Xe ,
1ty = ,S;' F(X5454)dx (1-1)
where the integrand is a speéified function of y(x), the

derivative y4{x) , and the independent variable x, is called

the simplest problem in the calculus of variations. This’

basic problem is used here to illustrate the relation be-
tween variational principles and self-adjointness of limear

differential operators.

The functional I(Cy) is defined to bg stationary if
and only if its first variation vanishes for every permis-
sible variation §y(x) = y(x) - ¥(x), where y(x) is the
desired function or curve which gives I(y) its smallest
value relative to the class of admissible functions y(x).
The variation § y(x) is understood to represent an infini-
tesimal change in a function y = f£(x) at the point x and
is virtual in the sense that it is arbitrary and is only
a mathematical experiment to determine the properties of

102
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I at the ﬁpointﬁ y(xf;
Since the variation operator commutes with both the
operations of differentiation and integration with respect
to an independent variable (which is never varied), we may

write for the first variation of the integral

x?. x:
$T = 8\ Fdx = SFdx
'XI X|

ST = J):Z[AF 53_] X
N

or

Y Y
93 g—é‘ilclx

Now integrating by parts, we obtain

(I-2)

Note that dy(x) and §y(x) are fundamentally dif-
ferent. Both represent infinitesimal changes in the value
of y; however, dy denotes the change in value of the given
function y(x) caused by the infinitesimal change dx o% the
independent variable, while §y is an infinitesimal change
in the function y(x) which produces a new function y(x) +
8y (x) which, of course, has a different value at the point
X.

¥ From ordinary calculus one would expect

SFLXs 454" =-§-§$X + 3 E sy +

but since x is not varied, §x = 0.

ayl 63
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If the integral is to have a stationary value for
arbitrary, but small, variations § y(x), then the following

must be true.

3F _ .ci.(_a__r-: -
Yy dx\ady’/ =
(I-3a)
and
F ¢y
a ’ 3] = O
J % (I-3b)

Eq. (I-3a) is known as the Euler-Lagrange equation.

When the value of the sought function y (x) is not
preassigned at one or both of the end points x = X1, Xy,
the difference sy (x) Between‘?‘(x) and the varied function
y(x) =¥ (x) + 8y(x) néed not vanish. However, eq. (I-3b)
is a necessary condition which must be satisfied when y(x)
is identified with the minimizing (or maximizing) function
and must hold for all permissible variations §y(x). There-
fore, if §y(x) is not zero at the end points, we have the

so-called natural boundary conditions, i.e.,

aFJ = 0 ;FJ
— — < = 0
33' X=Xy ’ 3y X=X, (1-4)

which must be satisfied if I(y) is to be stationary.
At this point, we are ready to consider the defini-
tion of adjoint of a linear differential operator. The

following discussion of adjointness is taken from Ince

[1956].
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Apparently, tﬁe term adjoint was introduced by the
German mathematician Fuchs in 1873 in connection with work
concerning integrating factors for linear differential
equations of order two or higher. The elementary concept
of the integrating factor for linear, first order, differ-
ential equations is one of the first methods introduced in
beginning courses on differential equations and is familiar
to most sophmore science and .engineering students. How-
ever, the student often hears nothing about integrating
factors for higher order differential equations and is in-
troduced to the term self-adjqint in the study of the clas-
sical Sturm-Liouville problem, where it is often shown,
without explanation, that the differential operator associ-
ated with the problem can be written in the so-called self-
adjoint form. The confusion which such a presentation can
lead to is obvious.

The adjoint originates from consideration of the

following linear differential operator.

Ly) =Py +Pd"y 4 --- 4P 4
y) 3;% + 'fx_é' + +FPoi QY + Py .

Now suppose that a function z(x) exists such that zL(y)dx
is an exact differential. In addition, one needs the fol-
lowing formula which can be shown to be true by using the

elementary calculus rule for differentiation of a product.
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vy = %{{U(hv‘)v T TURE) NP U SR O :):}
AL
(I-6)

where the superscripts in parenthesis denote derivatives

with respect to x.
If eq. (I-6) is applied to each term in the product

z times eq. (I-5), one obtains

ZLly) = .cL{BLn Upz - y=2(p, Z)+ ey (Poi)(" |)}
+ Cl {5(" Z)PE - 3(" 3)(P i) + ___(_l)h-s(.ﬂz)(y‘-z_)}

f}"{:ﬂ Pn-2Z — Y (RVELZ).}
+ 3_( Pa-i2) + Y L@)
(I-7)
where
*¥(2) = (—U"_d"(P,iz n-1 yn-i
4 xX° + (~1) ci‘xnﬂ_PZ! o
~d(f., Z)
Xt PE
(1-8)
= the adjoint to L(y)
and
(I-9)

L* (2) =

is called the adjoint equation corresponding to

L(y) =
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Eq. (I-7) can be rewritten in the form

- () =
ZLLY) = YL¥(2) 347{8(5,2)}
(I-10)
which is known as the Lagrange identity. The term B(y,z)

is linear and homogeneous in both y and z and their deri-

vatives and is labeled the bilinear concomitant. Thus we

see that the product zL(y)dx is an exact differential, or
z(x) is an integrating factor, if and only if z satisfies
the adjoint equation, eq. (I-9).

When an equation is identical with its adjoint it
is said to be self-adjoint. For example, the Sturm-Liou-

ville differential operator is

A(y) = (Py")' + qy

Py'" + P'y' + qy (I-11)

Now using eq. (I-8) with n = 2 as the defining relation

for the adjoint, we have the following adjoint for A(y).
A*(y) = (Py)" - (P'y)' *+ qy

Ay) (I-12)

which proves the Sturm-Liouville operator is indeed self-
adjoiﬁt.

Comparing eqs. (I-11) and (I-3a) we see that they
have the same differential form. Thus, processes which
obey such self-adjoint differential operators admit the

possibility of defining a variational principle such that



108
some integral I has as its Euler-Lagrange.equation the
~governing diffefential equation. Note also that the
boundary conditions appropriate to the particular problem
must be compatible with a condition such as eq. (I-3b) in
order for I to be stationary.
 This basic relation between variational principles
and linear differential operators is also valid for more
complex cases. For example, a self-adjoint, fourth order,
linear differential operator must have the form
L{y) = (Sy"™)" + (Py')' + qy = L*(y)
(I-13)

Eq. (I-lSj has the same form as the Euler-Lagrange equation
for the following functional
X2
I = F(x,y,y',y")dx (I-14)
X1

Requiring I to be stationary leads to

.é_F___d(_é_E+é2__a_F=o
Yy dx oy’ Ay -
dx2
' (I-15a)

with boundary conditions x
2

>F _ d bF)SY =0
(}77 dx Jy" Jx,

(I-15b)



109

and

X
;a;fr sy ]xz =0
1 (I-15¢)

The boundary conditions vanish identically if y and y' are
specified at x = x;, x,. Thus, a variational principle can
be formulated for any process which is governed by eq;
(1-13).

In the case of non-self-adjoint problems such self-
contained variational formulations do not exist. For addi-

tional related discussions the interested reader is refer-

red to Hildebrand [1965] and Finlayson and Scriven [1967].



Appendix II
COMPUTER PROGRAM

The integral over y appearing in eq. (3.41) may be
reduced to twice an integral over 0 £ y £ h*/2 by noting
that the integral is an even function of y since dVU/dy is
symmetric about y = h*/2. This may be seen by observing
that the mean velocity profile between h/2 and h is the
reversed'mirror image of eq. (3.34), see Figure 2. Thus,

the complete mean velocity profile is given by

n2
y = U++_§2_[_cosh(kv*) -L'%_). -1

for 0<%z, 2 h/2

(II.1a)

and

(W-y) = (Uh-v*) + ;-_[cosh K(Uh-U*) — K- U%* _ ]
2

‘FOY‘ h/l & Xz £ h

(I1I.1b)
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Upon taking the derivative, one finds that d¥U /dy is indeed
symmetric about the middle of the flow as required. |
If this information is combined with the fact that
only the integral of the dissipation is a function of the
constants A, A,, C,, C,, g and K, one can define a simpli-
fied functional I' whose derivatives with respect to the
constants lead to the same set of homogeneous equations as
would be obtained by evaluating the corresponding deriva-

tives of T§, i.e.,

AT | o L T

doi T i
where
~h/2
'z 2 "y
I o{[A,+Aag—,}][(:.(!-%%hcz(\-%_;!)]}dj

(I1.2)

Expanding and integrating where possible, this equation

becomes

I'= A (CG+C)h" + AL (G +C) U = A(C+28)U3

g g
- 2A,(C, + 2C S dUF s+ dU?* g4
2(C 2) . dy aut + ZA.CzS:IdH dU
1_;,;
+2A,.(‘.25 (_d_v_f)z +
. ° dy dv (1I1.3)

Collecting like terms, the results are
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I':’. [At";"'AZU;](CI"'Cz) - A|(Cg+2.Cz)U,:

+2[A\C2_"'A2_(C|+ Zcz)] T1L + 2A2 C, T3

(I1.4a)

where

+

Tl = S dU dut _J du”*
o

d Y . | +_%L<..(smh KUt— KUY
(1I.4b)
t_’.& vt
2 m
| T3E§z[_dl] dut= | dvu”
0 dy A [ +—29'i(5mh KUt - KU*)
(II.4c)

Now making the substitutions
we obtain
I' = [A|h+ + Az,CfU'.%] (C| + A’Cg)
-A(C +2AC) Uk + 2 [A}Ca -

R2C(C,+ 2A,,)] T 4+ ZAA2CC. T3
: (1I.5)
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Before taking the derivative of I' with respect to
the constants, we must apply two constraints on the admis-
sible values of the constants, viz., |

1. the constraint J,, defined by eq. (3.48), and

2., a constraint on £ and K such the¢ the mean
velocity =TUm/2at x, =h/ , i.e.,

= =__H" + 2 » + +12
0=T. =04l +.ﬁ._Y_Cc>sh(J%fm)-.(L<%l ~ 1]

(I1.6)

These constraints are applied by using the Method of

Lagrange Multipliers, i.e., the set of equations for the

constants are determined by the conditions:

M - NI+ T +nT) _ o
ok ddi B

J, =o0

J, =0

(I11.7)

Where72,and)zzare the Lagrange multipliers.

The corresponding set of equations, which follow

from eqs. (II.5) and (II.7), is
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S5 = W(C + 2A,C.) + Um A,C, C, — Ut (C +4A,Cy)
t4[AC. - A.CC.]TL + 2A,0C,T3

.= U [C + AiCz] — 2(Ci+ 2A,C2)TL + 2A,C. T3

1
g——‘:: AW+ 2A,CUF - AUE — 4A,(C+AC)TH
+ 2AA.C5T3

-:%— = A W+ AzCUm ~ Z-Alv‘:"l + 2 (A= 2A.0)T1L
2 + 2 A,C T3

T, = Um-2TL — |5

(II.8).

= -Kh . v 2 . r )

J2 A +_2r_n+_ﬁ_[casl1(_’<_¥m.)—ﬁ<_;_fm_)_ﬂ

aL

== N (T2 + KkT5) + (n,-)) {[Afcz = AC(Cy+

2 A,C.J] (T2 +KT5) + 2 A, Azc.62(‘|'4+f<n)}

ar

+ %[%& SINh (KUz) - JES

Q-

1

5= Tz (=) {T2[AC, - MGt 2 4]

“»

+ ?.A.A,_C,CLT‘P} + _;_llz(.[cosh (E%;')-fklﬁ»z"_ﬂ
?



Where T2 =
T4
T5
T6
A
integrate
~grals are
solutions
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vt
T (SINh KUt - KUt) dUt

o [+ 3L (sivh kvt - kv

¥ ( SINh kUt~ KTU*) dUT

o [+ EBK(smh KUt - ku+)]?

1

\®  y+(cosh kvt-1) dvt
o LI+ 2Kk (swh Kt - Kkv*)]?

_ el
“3" vt(cosh kvt-1) du?t
o LI+ -%#—(smh Kt - kV*)]3

computer program was necessary to numericailily
and solve the above set of equations. The inte-
evaluated via Simpson's rule, and approximate

to the set of nonlinear, algebraic equations are

obtained by using what might be called a sequential minimi-

zation procedure which is analogous to the method of least

squares.
1.
2.

3.

The procedure consists of three basic steps:

begin with a set of initial guesses,
consecutively vary the value of each constant
(0,71 3nd ;) until the sum of the squares

of the right-hand sides of eq. (II.8) becomes
a minimum,

the iteration is continued until the sum is
less than some allowable error.

Since the approximate values of K and @ were known

a priori,

it was decided that the method would converge
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faster if these two variables were placed last in the set
of eight constants, i N7 . Thus, in the computer’pro-'

~gram the following identifications are made.

Aj =X (1) —  FQ) = 31/3A,
b, =X (2) — F(2) = 3L1/)A,
C,=X(3) — F(3) = J1/)¢,
C, =X (4 — F(4) = 31/3¢,
721 =X (5) — F(5) = J

n,=Xx (@6 — F(6) = J.

K =X (1) — F(7) = 31/3K
B =X (8) — F(8) = 3T/ag

The input to the program consists of the follow-
ing.

1. Three items must be specified on card #1 of
the data:

a. the total number of '\nknown constants
(4 10) in columns 1 and 2,

b. a print parameter (an integer) in column
10 which if non-zero will cause the sum
of the squares to be printed for each
value of the constant being incremented,
and if zero will only print out the sum
and the resultant values of the constants
at the end of one complete cycle of in-
crementation.

c. the total number of cases to be run in
columns 19 and 20.

2. Each additional card specifies the maximum
velocity Um in columns 10-22 and the width
of the flow h divided by the kinematic vis-
cosity # in columns 30-42. The number of
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these cards is equal to the total number of
cases.

The basic output of the program is the sum of the
squares of the homogeneous equations, eqs. (II.7), the
corresponding values of the constants (which are incremented
up to 50 times*), and the distributions across the flow of

pertinent flow quantities, viz.,

xz/h =X OVER H
Xg Uy = X2 - STAR
4

~ U/Um = U OVER UMAX
(ut)l= @WF/uwt = USQ/UTAiJ sQ.
.Eg#ﬁ; ‘= DSCALE * UTAU/NU
IS (ut)®* /(A ¥ = DISSIPATION (ND)
-W,Uz/u% = REY. STRESS(ND) ‘

U = U-STAR
Uy
(u’)* = TIsQ
m

% . . .

When a constant has been incremented 50 times with-
out finding a minimum in the sum, the sum is printed out
with a minus sign.

(ND) denotes nondimensional quantity.



118

The following pages show a flow chart, a listing
of the Fortran IV statements with examplé inputs, and a

typical table of output for the various profiles.



h ¥
P= P+I
@ Q=@
Form UTAU(P)
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. FLOW CHART
START

MO BeNS2p NYES

J= @ v
T CALL
EXIT L=
GET INITIAL
VALUES OF
EQuATIONS
() \DGP=@

¥
PrinT"CASE NO
YES |
PainT
SeTvY¥=X
MESSAGE
¥ ¥
CALL
sMsqPps} F2 EXAT
K
SeT T X @_‘ SMsQ=
VALUES GET
UTAUE,A, B SmsqP
P=¢ :




| i20
@ DO K=l,N _@

TJQ= JQ+1 KK=1

XO= X(K) 10C=@

SMSQO= SMsQ L= |

SET DX TO STARTING VALUE
——%¥

SMsSQ=

—
SMSQ P

Y

X(K)= ¥(KY+DX
CALcULATE
¥ FroOM X

VALUES NO A
oK

KK=¢
YES %X({K)= XO
DX=-DX

SMSQP =
ZF? 1
)

PaINT LQ,
SMSQ p’ K } ]

K= @ Dx= DX/3
NO LQ !

LQa=ta+i ‘I \DC= 1DC+]

LQ>EP

\ES

SETSMSQ,3MScH
[TO SMaLLesT
VAWE.SET X(K)|
To MATCH

'
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;

Pt "BesT
PossioLE
RESULT

SULTY
SMSQP,
Y

IT= Q@
UM= UMAX(T)
XK= %X(T)

©
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©

SETA,D Limits
GeY FA

UTAUN= A \ES

NO

 UTAUN =B

4
PrinT “No
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GET FC @ @

UTAUN=C DECREASE
: UTAUA

INCREASE

YES

LUTAU(P)=
UTAUN
UTAGA=
¥ UTAUW(P)
CavLt PROFIL
SuverauTinG
Jes \\No STOP Ik

S



ENTER

PROFIL
A= ;&(7)
YW= 2¢xXX

oET WP, UM’
UM‘L

un'"UMAx
ONER UTAUY Y
-swo U'!'N.a
- 1 He

PRNT U TWE
ResuLTing

ProrLES”

HeapinGg
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J=J+!

Ger LP ||

CALCULATE
PATA

PRINT
CALCULATED
Pata

I 710.1

YES

U= U+
B5 % UMAR(K)

DATA

CALCULATE

o

PrinT

CALCULATED

PATA

NO U<l

L= L+l

YES

899 % UMAX(W)

U= U+

. Gl OMAX(K)

| No

RETURN
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KLUTINE USED TO OBTAIN AN APPROXIMATE SOLUTION
Tit A SYSTEM CF NONLINEAR ALGEBRAIC EQUATIONS
UIMENSIGN X%lO(.F%lO(.Y~IO<.UMAX&IO(.HDV%IO(,UTAU%IO(
INTEGER P,Q
J#0 .
KEAD IN THE NUMBEKREN< OF UNKNOWNS , PRINT PARAMETER, TOQTAL NUMBER OF CASES
READZ1+1< NyPRM,Q
L FORMAT %12,7X911,58X,1L2<
WRITE23,110< Q
110 FORMATR//GX25HTOYAL NUMBER OF CASES IS ,12//< .
112 J #9081 : -
IDGP # 0O
WRITEZ3,170< J

V 170 FURMATZ//9X¢ 2HCASE NUMBER y12//<

READ IN U-MAX AND SEPARATION OISTANCE/KINEMATIC VISCOSITY
L7 READR12<UMAXEI<S HDVEBIL
2 FORMATE9X9E13797X9E13.7 <
RE #UMAXRJ<HHOVEIL
WRITE23,114< REJUMAXZ IS HDVEIL o
114 FORMAT 39X,11HREY. NO. = 41PEl3. 6.5X07HUMAX 2»1PE13.6,5X9s12HH OVE
IR NU = ,1PE13.6//< -
WRITE 32,117<
117 FORMAT 312Xy 1HPs7X;THUTAULP) <
INITIAL ESTINMATES OF THE N UNKNOWNS

521

XZ1< # 0.244
X32< # 0.011
AB3< # 112
XZ4< # -1000.
X85¢< # ~l.1
XZ6< # 1.0
XB7< # 0.41
XT8< # 9.1

UTAUE # UMAX%J(*O.S*O.lQlIALOGlO%RE*O.ZS(
UTAUA # 0. 75%UTAUE
UTAUB # 1.25*%UTAUE
P #0
60.P # P E 1
JQ#O
UTAURPC # ZUTAUA & UIAUB(IZ 0
51 WRITE 83,116< Py, UTAUZPL



|

23,

| B9)
16
71

33

32
49

42

29
26

36

FORMATE/ LUXe13,35X,E13,.,7//7<

WRITE®3,23¢

FORMATS LHO  14HSUM OF SQUARES , 29H VALUES
IFEN<15,15,16

CALL EXIT

TFEN-2U<T1,71,15

L#O -

CALL EQSNLZL ¢yXsFoUMAXsHDV UTAU,J, Py IDGP(

IF $1DGP< 33,32,33

WRITE %3,34< |

FORMAT %32H INITIAL VALUES NOT GUOD ENOUGH <
GO TO 15

DO 40 MN#1,N

YSMNC # X3MNL ' .

M#1

G0 To 3

SMSGHSMSQP

DO 5 K#l,N

JRABJIQEL

XO # XIK<

SMSCU # SMS(C

KK#1l

IDC#0

LQ#1

IF3 ABSZXEIKKL=1.E-8< 79796
DX# XIKL/ 2.0

GO 710 29

DX#1.0

GO 1O 29 -

OX# 0.33E-8

SMSL # SMSCP
XIK<HAXIKCEDX

CALL EQSNLZL 9XoF 9UMAXyHDV,UTAU,J, PleGP(
1FEIDGPL 364535436
XZK< ¥ X0

SMSGP # SMSCQO

GO T0 25

M#2

SMSuP # Je0

DO 18 1#1l,N

arF

VARIABLEFS<

971
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>1INS3Y 319ISSOd 2S39 HIZ*OHTZIVWIOS %L
DH18eXILTIAUM €L
2142184 >I1F - bBrgdl
NN & I0
.6 # NP
INNI INOD G
¢t OL 09 >%1-3°T *17° dOSKWS%4dl
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C NUMERICAL EVALUATION OF INTEGRALS VIA SIMPSON:S RULE
SUBROUTINE INTSTUMZ UTAUP X1l oT1leT2eT3:sT43T5,T6H4XKK
DIMENSION Y%20<e¥YE20<ySUB20<yCUB20< s WB20<s2320<5YYYR20<K,22%20<
DIMENSICN 7222%20<
INTEGER P
XK2 # 2.0%XK
H # UM2/20.0
DO 2 1#1,20
CH# CCSHIXKEH*IL
CUZBIK # H*[%3CH — 1.0<
SUZIK #SINHEXK¥EH*IC — XK&H%]

2 YEIC # 1.0/7/31.0 & XK2/7X1%¥SUZIK <
YO #0.0
DO & I#1,1942
4 YO # YO & YZIL
YE#0.0
DO & [# 2+18,2
6 YERYE & Y2IKL
Tlé H/3.,0%8Y820< 1.0 & 4.0%¥YD & 2.0%*YEL
DO 8 J#1,20
YYRJS # YRI<¥X2
8 Z3J<# SUBJIKRYYEBIL
20#0.0
DO 10 J#1,16G,2
10 20 # 20 & 23J<
ZE# 0.0
DO 12 J#2,418,2
12 2E # ZE & 234K
T2 # H/3.0%¥F2220< & 4.0%Z0 & 2,0%ZEL
WO # 0.0
DO 14 J # 1,19,2
14 WO # Wl & YYZTIL
WE # 0.0
DO 16 J # 2918,2
16 WE .# WE & YYZJIL
T3 # H/3.0%3L.0 & 4.0%¥W0 & 2.0%WE & YYZ20<<
DO 18 J # 1,20
18 YYYEIK # YRIKRYYBILHSUBIL
X0 # Ce0
DO 20 J # 1419,y2

{1



20 X0 # X0 & YYYZJIL
XE # 0.0
DO 22 4 # 291852
22 XE # XE & YYYZJL
T4 # HI340%84.0%X0 & 2.0%XE & YYYZ20<LK
DO 24 I # 1,20
24 Z71%i< # CURIK*YYZIL
Z0 # 0.0
DO 26 J#1519,2
26 20 # 20 & Z22%4<
lE # 0.0
DO 28 J#2418,2
28 ZE # IE & Z22%J<
TS if H/3.0%34.0%20 & 2.0%7FE & 722%20<KL
DO 30 I # 1,20
30 ZZ2Z31< # ZZRIKEYRIL
YO # 0.0
DO 32 J#1.219,2
32 YO & YO & Z21%J<
YE # 0.0
DO 34 J#1,1842
34 YE # YE & Z211%J4<
TO#HEH/3.0%T4.0%Y0 & 2.0%YE & 2272820«
RETURN
END

CALCULATION OF THE OISTRIBUTIONS OF VARIOUS FLUOW QUANTITIES ACROSS THE FLOW
SUBROUTINE PROFLL RUMAX HDV UTAU Xy Ke¢PsQ<
INTEGER - P4G
DIMENSICN XZ10<FRLO<UMAXEL0<,HDVE10<,UTAUZ30L
KK # XB7< ¢
XK2 # 2.0%XK
HP # HDVIK<SHUTAUZPL
UM # UMAXZK</UTAUZPL
UMz # UM/2.C
WRITE®3417< UM, HP
17 FORMAT310X,18HUMAX OVER UTAU = , E13.7/,10X,14HHDV * UTAU = ,E13
2¢T//<
WRITE%®3,113<
119 FORMATZ30X,23H THE RESULTING PROFILES//L

4
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U ooy S CeOlxuUMAX AKL

3o RETURN
END

INITIAL SPECIFICATLIO
2

1

TYPICAL DATA INPUT:
0.1510CCQELUL
Ce35GG0CCERDD

NSt

U...

Nl

0F EQUATIONS,

“AX AND SEPARATIUCN
Ve 4%00U00EEDS
0. 4500300EL05

PRINT PARAMETEK, TOTAL NO.

DISTANUE/KINEMAYIC VISCOSITY

OF CASES

VEl




It |

THUS THE APPROXIMATE FRICTION VELOLCITY = 0.3096802€-01

"UNAX_OVER UTAU

REY. M0. = 6.0389%E Ob

WMAX = 1.3%399%8 00

H OVER NU = §.500000B O&

0.4333499E 02

HDV * UTAU = 0.1393561E 04
TH: RESULTING PROFILES
X OVER M X2-STAR U OVER UMAX USQ/UTAU SQ. DSCALE®*UTAU/NU OISSIPATION(ND} REY.SYRESS(ND}
0.0 0.0 0.0 0.0 0.2807534E_Ol 0.0 0.0
U~STAR =00 TISQ = 0.0 ~
0.3109716€-03 0.4333578E (0 0.,9999994E-02 0.8414206E-03 0,2B07639€ Ol N.1601112E-02 O« 753402 TE-04
U-STAR =0.6333493E 00 TISQ = 0.44805965-06 ____
0.5220266E-03 0.8668319E 00 0.1599999€-01 0.6832350E-02 C.2808365E 01 0. 1279434E-01 0.6119013€E~03
U-STAR =0.8666997E_00 TISQO = 0.3639252E-05
0.9333808E-03 0.1300722E 01 0.,2999999E-01 02321551E-01 0.2810352E 01 0+ 44(9080E-01 0.2080441E~02
U-STAR =0.1300049E 01 TISQ = 0.1236234E—-04
0. 1245404E-02 Q. 1735545E 0L 0+3999999E-01 0e5539925E-01 0.2814281E 01 0. 1055204E_00 Ao #9T0551E-C12
U-STAR =0.1733399E 01 TI1SQ_= 0.2950030E-04 -
0.1558625E~-02 0.2172038E 01 0+4999998E-01 0.1089668€ 00 0.2820878E 01 0.205+C78E_ 00 0.9796500E-02
U-STAR =0.2166748E 01 TISQ = 0.5802524E-04
0.1873758€~-02 0.2611195€ 01 0.5993998€E-01 0.1195360E 00 0.28355359E 0! 0,354T495E 00 0.1709211E-01
U-STAF. =0,2600099¢ 01 TISQ = 0.1009286E-C3
0.2191711€E~02 0.3054282E 01 0.699998TE-N1 0.3025433E 00 0. 2845338E 01 0.5605459E 00 U.2740151E~OL
U-STAR =0.3033446E 01 TISQ = D.1611054E-D3
0.2513634E-02 0.3502901€ _O1 0.17999992E-01 0.4529231E Q0 0. 2865052 O1 0.8276575c_00 0.4126251E-01
U-STAR =0.3466798E Ol TISQG = 0.2411832C-03
0.2840930E-02 0.3959007E_C1 0-8999991E-01 0.6446707E 00 0.2891.152E O1L 0-1155677E 01 059180 14E-01.
U-STAR =0.3900147E Ot TISO = 0.3432895€E-03
0.3175315€6-02 0.4424994E 01 0.9999950E~01 0.8803089E 00 0.2924830€ Of 0.1543565¢€ 01 0.8159345€-01
T (U-STAR =0,4333495€ 01 TISQ = 0.46876TTE~03 e
0.5043112€E-02 0.7027883E 01 0.1499999E 00 0,2643772E 01 0.3255937€ 0} 0.3T40T7TU9E G) 0.,26524T3E 00
U-STAR =0,6500244E 01 TISQ = 0.1407815E~02
0.7656857E-02 0.1067030E 02 0.1999999E 00 0.4600108E 01 0.4005249€ Ol 0.43013(:8E 01 0.5280433E 00
U-STAR =0,8666993E O TISQ = 0.2449574E-D2 ]
0.1222132E-01 0.1703114E 02 0.2699998E_ 00 0.5769777E 01 0.5352893E 0} 0.3020460E 0} 0.7525300E 00
U=~STAR =0De1083374E 02 TISQ = 0.3072426E-02
0.2164496E-01 0.3016353F 02 0.2999998E 00 0.624294TE 01 0.7335526E 01 0.174027%€ 01 0.8860592E 00
U-STAR =0.1200049E 02 TISQ = 0.3324391E~-02
0.4293867E-01L D.5983763E 02 0.3499998E 00 0.6412481E OL 0.9675437€ 01 0+1027486E O1L 0.95071T6€ 00
U-STAR =D.1516T24E 02 TISQ = 0.3414668E-02
C.2299845E-01 0.1295990€ 03 0.3999998E 00 0«64T48TTE O1 0.1178685E 02 0469908031 00 0.9792288E 00
U-STAR =0.1T733398E 02

TISQ = 0.3447895E-02

sel




0.2125416E_00

0.2961895E 03 0.4499997E_00 0<6499078E_0O1 0.1322358E 02

0.5574999E_00 0.9913321E 00
U-STAR =0.1950073E 02 T1SQ = 0.3460781E-02
0.4996910E 00 0.6963456E 03 0.4999998€ 00 06508799E 01 0.1400294E 02 0.4979135E 00 11.9963961E_00
U-SYAR =0.2166T4BE 02 TISQ = 0.3465959E-02 -
0.7874557E 00 3<109T367E 04 0.5499997€ 00 0.6499078€ 01 0.1322361E 02 0.55T4976E_00 0,9913322€ 00
U-STAR =0,2383423F 02 TISQ = 0.3460781E-02
0.9070005€ 00 0.1263960E 04 0.5999997E_00 0.6474817E OL 0.1178689E 02 0.6990763E_00 0.9792291E_00
U-SYAR =0.2600098E 02 TISQ = 0.3447895E-02 :
0.957061 OF_00 0.1333723E_04 0.6499997€_00 0.6412482€ 01 0.9675465E 01 0.102T480E 01 0.9507181E_00
U-STAR =0.2816772E_02 TISO = 0.3414670E~02
o §.9783549€ 00 0.1363397E 0% 0.6999997E_00 . 6242949E_O1 0.7335554E 01 0.1740263E_01 0.68860604E_00
U-STAR =0,30334ATE 02 TISQ = 0.33243936~02
0.98777686E 00 0.1376529€ 04 0. 7499993F 00 0.5769793E 01 0.5352923€ 0L 0.3020434E 01 0.1525534E 00
U~STAR =0.3250121E_02 YISO = 0,30724356-02
T TT0.9923%31E A0 0.138289(% 04 0.7999990E 00 0.4600153€_OL 0.4005280E 0L 0.4301284E O1 0.5280505€ 00
T U-STAR =0.346679&F 02 TISQ = 0.2649598£-02
T 5 ,9949569€ 00 o.laabﬁéit'ﬁﬁ T 0.8499987€_ 00 0.2643829€ O1 0.3255949E O1 Oe3740843€ 01 0+2662539E 00

U—STAR =0»3683669E 02

T1SQ = 0.1407849E-02

" 0.99682&7E 00

TU-STAR =n,.300N0142F N2 _

0.1389136F 08 T T0.8999984E O 0.3803511E 00

0.8159751E-01

0.2924836E 01

h[ISQw T0.468T901E-03

0.1543633E 01

N.9971590E 00 ___

" 0.9099978€ 00~ 0.6447245€ 00

_.0.138 0.2891160E Ol 01156967E 01 0.5918580E-01
T D=STAR =0, 39436 T4E 02 _T1SQ = _0.3.3318LE-N3
T 0.9976863E_00 0.1390058E 04 0.9199972E 00 0,4529707€_00 0.2865058€ O1 0. 8277412E 00 0.4126692E-07.
TU-STAR =0.3986807E_02 TISQ = N.2412085E-03 8 )
0.9978082€ 00 1.1390506€ 04 0.9299966E 00 0.3025922E 00 932865366E 01 0.5606341E 00 ___ 0.2740598E-01

TU-STAR =0.4030139E 02~

T1S0 = 0.1611314E-03

0.9991?615 a0
[\) 3

0.1390949~ 04 0.9399959E_00 0.1895766E 00

0.28309615 01 .

‘YU=STAR =0

0.9984413E N~

T1$Q = 0,1009503E-03

T 0.139139RE 06 T 0.9499953E 00~ T0,1090084E 00

y-STAR =0, 4!16803‘ 0z

TTQUA9BTS4AE 00
N-STAR =0,4160136E N2

0.999A665F 00

11-STAR =0,420346R8F 37

0.9993773F 00

=STAR =0,4264AR00E 02

0.9996888F N0

U-STAR =0.6290132F 02

0.9993998E 00
B=STAP =0,6333466€ D2

_T159 = 0.5804739E-04 _ _

0.1391825¢F 04 0,959994TE 00 0.5542046E-01 0.2814284E 01
TISO = 0.2951159E-04

TOI3933KE 04~ 0.9699940F 00 _  0.2322615E-01 _ 0.2B10355€ Ol
TISO = 0.1236801F-04 . T

N.1392694% 04 0. 97999345 00

7T 942208365E 01
TISQ = 2 3663910F-05

N.1393127E 04 0.9899928E _'Q:é_'.';”—""._ 0710E~
TISQ = 0.4537309E-06

0.1393560E 0%

3 2.8599921€ 00
TISQ = 0.0

T0.35648250E_ 00

' 0:2654858E 06

1 0.9800255E-02

"6.1049603E 00

41T090E-01_

0.1301458E-01 _

0. lez.ifé?ae_-‘ii_z‘_

0.0

0.T629395E-

0.0

"0,1709580E-01

0.497245BE=02
T ' 0.20813946-02

T 0.6128550E-03

04

9¢l




