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CHAPTER I 

INTRODUCTION: 

Allantoin occurs Widely in na"ture where it arises partly from the 

degradation of purines by microorganisms and some animals and partly 

from synthesis by plants. 

Allantoic acid is the product of the hydrolysis of allantoin by 

allantoinase. Two enzymes have been reported to degrade allantoate, . . 

i.e., both allantoicase and allantoate amidohydrolase. The two 

different proposed pathways for the conversion of allantoate to 

ureidoglycolate are as follows: 

A. 9 QOOH Q 
NH2-C-NH-CH-NH-t-N~ 

~ QH 
allantoicase) N~-C-NH-CH-COOH + urea 

B. 

allantoic acid 

Q QOOH 9' 
N82-~-NH-CH-NH-~-N~ 

allantoic acid 

(1) 

allantoate 
arnidohydrolase , 

(2) 

ureidoglycolate 

1 

ureid oglyc ola te 

q NH2 
NH2-~-NH-CH-COOH + NH3 + CO2 

(3) 

ureidoglycihe 

ureidoglycine 
aminohydrolase 



In reaction (1), allantoate is degraded by allantoicase' to form 

ureidoglycolate and urea. In the alternate pathway (B), two enzymes 

(reactions 2 and 3) are involved in the degradation of allantoate. 

Ureidoglycine is a proposed intermediate in the production of ammonia, 

CO2. and ureidoglycolate. 

2 

Reliable techniques had been developed in previous studies (1) for 

use in investigating the ammonia-forming reactions in the enzymatic 

degradation of allantoate. It was the purpose of this continuing 

investigation to determine whether both pathways may occur in the same 

microorganism or whether only one functions in any given organism. 

Possible approaches to the solution of this problem include isolation 

of mutants unable to degrade allantoate, isolation of urease-negative. 

mutants, synthesis or isolation of the proposed intermediate

ureidoglycine, or purification of the enzymes involved. 

If two different enzymes can be used in the same microorganism to 

degrade allantoate, it should be impossible to isolate allantoate

negative mutants in a single mutational step; if only one is used, 

mutants can be isolated. If urease-negative mutants still can grow on 

allantoate minimal medium, using allantoate as sole carbon, nitrogen and 

energy source, the pathway producing ammonia may be assumed to function 

physiologically. If urease-negative mutants cannot grow on allantoate 

minimal medium, then it may be concluded that urease is required for 

allantoate degradation and that ammonia is not produced 3:n ~ from 

allantoate except through allantoicase and urease. 

Based on the above reasoning, it seemed that the two most important 

steps toward a definitive answer to the choice of pathways would be 

isolation of one or both of the types of mutants described and synthesis 
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of ureidoglycine. Purification of all the enzymes involved could not be 

undertaken unless the substrate was available for ureidoglycine amino

hydrolase; and only isolation of mutants could offer proof of the 

requirement of a particular reaction for allantoate degradation in vivo. 

Therefore, both these approaches were attempted in the present study. 



CHAPTER II 

LITERATURE REVIEW 

An enzyme which was reported to degrade allantoic acid to glyoxylic 

acid and urea was found independently by Krebs and Weil (2) in frog's 

liver and by Brunel (3) in the mycelium of Aspergillus niger. The 

enzyme was called allantoicase. Barker (4) was the first to report the 

anaerobic degradation of allantoate, using Streptococcus allantoicus 

which he had isolated from an allantoin enrichment. He! determined the 

fermentation products but did not study individual enzyme reactions. 

Campbell (5) reported that allantoic acid was enzymatically decomposed 

to urea and glyoxylic acid by an aerobe, Pseudo:monas sp., which he had 

also isolated from San Francisco Bay mud using allantoin enrichments. 

The fermentation of allantoin was investigated further by Valentine 

et al. (6) in 2· alla.ntoicus. These authors separated the degradation 

of allantoic acid to glyoxylic acid and urea into two steps. Allantoate 

was degraded to ureidoglycolate and urea by the enzyme allantoicase. 

Ureidoglycolate was converted to urea and glyoxylic acid by a new 

enzyme glyoxylurease (ureidoglycolate synthetase). 

The existence of ureidoglycolate as an intermediate in the degra

dation of allantoate was first proposed by Valentine and Wolfe (7). 

They described a method for the enzyme assay with cell-free extract from 

S. allantoicus to measure the degradation of ureidoglycolate. Gaudy (8) 

modified the procedure for the synthesis of ureidoglycolate in several 

4 
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respects to obtain a pure crystalline product and showed that a new 

enzyme, ureidoglycolate synthetase, was involved in the degradation of 

ureidoglycolate to urea and glyoxylic acid. Gaudy (8) purified 

ureidoglycolate synthetase 135-fold from crude extracts of .§.. allantoicus 

by treatment with MnC1z, fractionation on calcium phosphate gel, 

fractionation with ammonium sulfate and column chromatography on 

DEAE-cellulose. 

The properties of this new enzyme were studied by Gaudy and Wolfe 

(9), The purified enzyme and recrystallized ureidoglycolate were used 

for these studies. The maximal activity of ureidoglycolate synthetase 

occurred at pH 8.4 to 8.8 and no cofactors were required for the 

reaction. Inhibitors of the enzyme were p-chloromercuribenzoate (at 

relatively high concentration), Hg++, Zn++, 

At 10-3 M concentration, Mg++ had no effect 

++ ++ +++ ++ Cu , Fe , Fe • and Ca . 

on enzyme a cti vi ty and Mn++ 

at the same concentration increased enzyme activity slightly. The 

maximal velocity of the purified enzyme was 220 µ moles of glyoxylate 

formed per minute per mg of protein. The concentration of substrate 

required for half-maximal velocity was J.J x 10=2 M. The position of 

the equilibrium for the synthesis of ureidoglycolate was not affected by 

a pH'change or by the presence of enzyme. The equilibrium constant for 

the reaction in the direction of synthesis was 7.6, which corresponded 

to a negative free energy change of 1,230 cal per mole. 

The fact that 2· allantoicus had been shown to convert allantoic 

acid to glyoxylic acid and urea through a two-step sequence by the 

enzymes allantoicase and ureidoglycolate synthetase suggested that the 

reaction generally attributed to the single enzyme allantoicase might 

also occur in two steps in other organisms and that ureidoglycolate 
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might act as an intermediate in the degradation of allantoate in all 

such organisms. The presence of the ureidoglycolate synthetase reaction 

in the yeasts Saccharomyces cerevisiae and Candida utilis was reported 

by Do:mmas (10). Independent genetic evidence which supported the path

way of allantoate degradation proposed by Valentine et al. (6) has been 

obtained by Gaudy and Bruce (11) for Pseudomonas aeruginosa. These 

studies confirmed the role of ureidoglycolate as the sole intermediate 

in the conversion of allantoate to glyoxylate and urea in this organism. 

Studies of the enzyme activities of allantoate-negative mutants of 

P. aeruginosa by Winter (12) gave further support to this conclusion. 

The transduction data obtained by Bruce (13) indicated that the 

gene loci for the allantoin-negative mutants off. aeruginosa which were 

studied were not linked. This conclusion was based on the fact that the 

numbers of transductants obtained using phage grown on the wild type as 

donor were no greater than those obtained with phage propagated on 

mutants with different enzyme lesions. However, Winter's studies 

indicated that there was coordinated control of these unlinked loci. 

These were the first data which were obtained for a Pseudomonas species 

in which both biochemical and genetic studies of a single pathway 

were made. 

Meganathan (14) reported that bacteria belonging to the genera 

Aerobacter, Alcaligenes, Arthrobacter, Escherichia, Flavobacterium, 

Nocardia and Pseudomonas have the ability to grow on allantoin aero

bically and species of Aerobacter, Escherichia, StreEtococcus and 

pseudomona~ can ferment allantoin. Ureidoglycolate synthetase activity 

was demonstrated in cell-free extracts of representatives of each genljs. 
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It seems certain, therefore, that ureidoglycolate is a commonly 

occurring intermediate in the degradation of allantoin, at least in 

microorganisms, and that the ureidoglycolate synthetase reaction is 

responsible for the conversion of ureidoglycolate to glyoxylate and ure~ 

Trijbels and Vogels (15, 16) have agreed that ureidoglycolate is 

the sole intermediate in the degradation of allantoate by 

Pseudomonas aeruginosa, Penicillium citreo-viride and Penicillium 

notatum. However, Vogels (17) has pointed out that, in the case of 

§_. allantoicus, a reaction sequence which involved the degradation of 

allantoic acid by allantoicase could not be correct, because ammonia 

was formed in large quantities by§_. allantoicus in the degradation of 

allantoate to ureidoglycolate. Since this organism does not contain 

urease and the quantity of urea found is much less than 2 moles per mole 

of allantoate used, Vogels concluded that S. allantoicus contains no 

allantoicase. 

In 1966 Vogels (18) reported that the degradation of allantoate to 

ureidoglycolate in§_. allantoicus was a two-step reaction. The first 

step was catalyzed by allantoate amidohydrolase and allantoate was 

converted to one mole of ureidoglycine, one mole of CO2 and one mole of 

ammonia. In the second step, catalyzed by ureidoglycine aminohydrolase, 

ureidoglycine was transformed to ammonia and ureidoglycolate. The 

organisms capable of degrading allantoate via this pathway, as reported 

by Vogels (18), are Pseudomonas acidovorans, Escherichia 

coli, Escherichia coli var.acidilactici, Escherichia freundii, and 

Streptococcu~ allantoic~§· Cell-free extracts of these organisms 

exhibited only small activity in degrading allantoate. The activity of 

the extract was enhanced several-fold by a short pretreatment with acid 
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followed by rapid neutralization to pH 8.5. Vogels reported that two 

moles of ammonia, one mole of ureidoglycolate and one mole of urea were 

formed from one mole of allantoate. Ammonia was measured by oxidation 

of NADH with glutamate dehydrogenase ~nd CX.-ketoglutarate, and it was 

reported by Vogels that Nessler's reagent yielded the same values. He 

did not report studies of interference from other compounds in the 

incubation mixture, nor did he determine all nitrogenous products in the 

mixture. Wu (1) investigated the formation of ammonia by~- allantoicus 

and reported that different methods of ammonia determination affect the 

apparent ammonia production and also that different conditions affect 

the amount of ammonia formed. Studies showed that, of the methods 

tested, the microdiffusion method is the best for ammonia determination 

because apparently only the ammonium salt in the incubation mixture can 

react with the concentrated alkali and produce ammonia at the tempera

ture used for incubation (37°c). Use of limited amounts of enzyme and 

rapid analysis of the reaction mixture were recommended for assay of the 

production of ammonia. These studies confirmed the presence, in 

extracts of£· allantoicus grown on allantoin, of enzymes which form 

ammonia from allantoic acid,. Two pH 'optima were found for ammonia

forming enzymes, which may correspond to the optimum pH values for the 

two enzymes which form ammonia, allantoate amidohydrolase and 

ureidoglycine aminohydrolase. 

Since allantoate amidohydrolase is a very interesting and unusual 

enzyme, Vogels and his associates have studied this reaction in 

considerable detail. 

Vogels (18) reported that, in S. allantoicus, the extent of 

activation of allantoate amidohydrolase is sharply determined by the 



pH used. At pH 4.5 no activation occurs, but at pH 4.1 the activation 

is almost complete. At pH 1.9, activation reaches a maximum within 30 

seconds at o0 c. On prolonged pretreatment with acid, the activity 

decreases, probably due to denaturation. The enzyme was inactivated 

rapidly at pH values between 5 and 7.5. Both activation and inactiva-

tion of the extracts occurred in defined pH regions, and at two pH 

regions both activated and inactive forms of the enzyme remained 

unchanged; these were pH 4,3 to 4,9 and above 8.0. Activation and 

inactivation are reversible processes. According to Vogels, they are 

not connected with the dissociation of a low or high-molecular weight 
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part of the molecule, and may be due to intramolecular rearrangements in 

which the active site of the enzyme is involved. The pH optimum for the 

enzymatic reaction is about 8,5 and the enzyme is activated by manganous 

ions and reducing substances, such as glutathione. Allantoate amidohy-

drolase fr·om .§., allantoicus has been purified 50-fold by acetone 

fractionation, DEAE-cellulose chromatography and gel filtration by 

van der Drift and Vogels (19). 

A mechanism for the activation, inactivation and instability was 

proposed by van der Drift and Vogels (20, 21). "The extent and rate of 

activation depended both on the concentration of complexing substances 

and the pH value. Below pH 5,0, only H+ ions were necessary to achieve 

activation. Above pff 5. 0, activation took place only in the presence of 

complexing anions. A correlation was found between the rate and extent 

of activation by a particular anion on the one hand and the complex 

formation between the anion and Mn++ ions on the other hand. Activation 

++ was explained as a displacement of :rm · ions from·· the active center of 

+ the enzyme by H ions." Activation was presented by Vogels as follows. 



+ 
inactive enzyme activated enzyme 

+ ++ Mn 

10 

+ 
c ___ _ 

MnC, where C = complexing anion 

MnC + EDTA t---- MnEDTA + C 

A decrease of the enzymic activity could be achieved by the 

addition of bivalent cations, especially Mn++ ions, at defined pH 

values and also by dilution of enzyme with EDTA-free buffer. The first 

process was called inactivation and the second one instability by 

van der Drift and Vogels. "The inactivation is pH-dependent and was 

observed between pH 5,3 and 8.0. In the absence of bivalent cations the 

enzyme rapidly lost activity above a pH of 8 due to instability. Loss 

of activity could be prevented by addition of EDTA and/or Mn++ tons 

(above pH 8) or below pH 8 by the addition of EDTA. Activity ~}st by 
02~·· 

inactivation or instability could be restored by a subsequent;-,,ad'tivation 

procedure." According to van der Drift and Vogels (21) the proc.esses of 

activation, inactiv&tion and instability and the reversibility of these 

processes was represented by the following reaction scheme. 



J i.ntramolecular rearrangement 
instability 7,5<pH<lO 

z~< ~ 

inactive configuration 

+ 11 + aH 

activation 

inactivation N 
Me++ ( e . g • Mn ) 

5<pH<8 

J 
EDTA or pH<-8 

Z 
,f--~p-H>~8~~+-Mn~+-f~) 

• 

I 
y 

,/1 
Ha I 

/ I ++ .-x, Mn - - - z-

11 

activated configuration active configuration 

+ 

Mn++ 

+C n -C 

- EDTA 
MnC MnEDTA + C 

+ EDTA 

Here C is the complexing anion and X, Y and Z represent three amino 

acid residues in the active center of the enzyme. 

The activated configuration is active only above pH 8.0 in the 

presence of Mn++ ions and below pH 8.0 the active configuration is 

++ transformed into the inactive for1n .in the presence of Mn and other 

bivalent cations. The activated configuration is not further converted 

into the inactive form in the presence of EDTA. The extent of activa-

tion is determined by the + and Mn++ other bivalent amount of H or some 

cations in the medium. Mn++ is bound to other ligands and the active 

configuration of the enzyme is formed above pH 8.0. The enzyme was 

protected against loss of activity in this pH regi.on by Mn++ ions above 

pH 8.0 and also by higher concentrations of EDTA. When added in a 



sufficient amount, EDTA protected the enzyme against instability by 

transforming the active configuration into the activated form. 

Presumably, Mn++ ions can stabilize the enzyme above pH 8.0 by shielding 

one or more groups in the active center, e.g. X, and thus prevent the 

intramolecular rearrangement. 

The second enzyme in the ammonia-forming pathway, ureidoglycine 

aminohydrolase, has not been studied. Its activity has been measured 

only as a part of the overall two-step reaction for conversion of 

allantoate to ureidoglycolate, ammonia and CO2 • No separate studies 

have been possible since the substrate, ureidoglycine, has not 

previously been synthesized or isolated. 



CHAPTER III 

MATERIAlS AND METHODS 

A. Strains of Bacteria 

Three microorganisms were used in these studies. All were bacteria 

which can use allantoate as a sole source of carbon, nitrogen and 

energy; all are urease positive and are able to grow on minimal media, 

All have the ammonia-forming pathway B (see page 1) as shown by enzyme 

assays with cell-free extracts. 

Pseudomonas acidovorans, den Dooren de Jong strain 14 (22), was 

used as a wild type in these studies; it was obtained from M. Doudoroff, 

University of California at Berkeleyo Mutants were isolated as 

described below and were numbered in the order of isolation as 14-1, 

14-2, 14-3, etc. 

Aerobacter aerogenes, strain Tlb, was used as a wild type in these 

studies; it was isolated from an allantoin enrichment and identified by 

R. Meganathan in this laboratory (14). Mutants were numbered in the 

order in which they were isolated. The following notation was used: 

Tlb-1, Tlb-2, Tlb-3, etc. 

Strain '1W is an organism which was isolated on allantoate minimal 

medium in this study. It was identified as Aerobacter aerogenes and 

was used as a wild type in these studies. Mutants were isolated and 

were numbered in the order of isolation as TW-1, TW-2, TW-3, etc. 

13 
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B. Cultivation of Bacteria 

Since all three microorganisms produce ammonia when grown on 

allantoa.te, the medium must be highly buffered. The components of the 

minimal salts medium were as follows (amounts per liter): Na2HP04 .7 ~0, 

8.2 gm; KH2Po4 , 2.7 gm; MgS04 .7 H2o, 0.4 gm; FeC12 , 0.1 per cent solu

tion, 0.5 ml; distilled water to volume. When a solid medium was required 

agar was added to a concentration of 2 per cent. The pH was 7.0 before 

autoclaving. Carbon and nitrogen sources, when used, were prepared as 

10 per cent (W /V) solutions, passed through a Millipore filter 

(HA, 0.45 µ pore size), and added aseptically to the medium to a 

desired concentration. All i~cubations were at 30°c with aeration 

unless otherwise noted. 

C. Measurement of Growth 

Cell suspensions were read against appropriate blanks at 540 nm on 

a Coleman Junior Spectrophotometer. Culture tubes, 18 x 150 mm, were 

used for all optical density measurements. 

D. Treatment With Mutagens 

1. Ultravi.olet Light (UV) 

The UV source used was a 15 watt Sylvania germicidal lamp. This 

was placed 40 cm above the cell suspension. Six ml of a washed cell 

suspension in sterile saline (0.85 per cent solution of NaCl in dis

tilled water) containing about 108 cells/ml were irradiated in a 

sterilized petri dish. The suspension was agitated during exposure. 

The cell suspension was added to an equal volume of nutrient broth and 

incubated for 6 hours in the dark to allow segregation of the mutant 

genomes. 
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2. Ethylmethane Sulfonate (EMS) 

Cells were grown overnight in minimal medium containing 1.0 per 

cent allantoate as sole carbon and nitrogen source with aeration at 

30°c. Cells were harvested by centrifugation, washed with sterile 

saline and resuspended in minimal salts medium containing no carbon or 

nitrogen source. To a 5.0 ml sample of this cell suspension (O.D. of 

0.3 to 0.4) was added 0.1 ml of EMS. The cells were incubated at 30°c 

without shaking. Incubation time was 12 hours for P. acidovorans and 

4 hours for A• aerogenes Tlb. The treated cells were centrifuged, 

washed with sterile saline and resuspended in 5.0 ml of minimal medium. 

A 0.5 ml portion of this cell suspension was inoculated into fresh 

minimal medium which contained 0.5 per cent succinate as carbon source 

and 0.1 per cent NH4 Cl as nitrogen source. After growth, the culture 

was centrifuged and the cells were washed twice with sterile 0.85 per 

cent NaCl solution. 

3. N-Methyl-N'-Nitro-N-Nitrosoguanidine (NTG) 

The procedure for treatment with NTG and subsequent isolation of 

the mutants produced was obtained from Adelberg, Mandel and Chen (23). 

The procedure was used with some modification in this laboratory to 

obtain mutants. Cells were grown on 1 per cent allantoate minimal 

medium (allantoate as sole carbon and nitrogen source) overnight with 

aeration at 30°c. Washed cells were resuspended in minimal salts. NTG 

was added as a sterile 2.0 mg/ml solution in minimal salts to 6.0 ml of 

this cell suspension (O.D, of Oo3 to 0.4); the final concentration of 

NTG was 100 µg/ml. This suspension was incubated 30 minutes at 30°c 

with aeration. The treated cells were washed with sterile saline and 

resuspended in 6.0 ml of minimal medium which contained 0.5 per cent 



succinate or 0.5 per cent gluconate as carbon source and 0.1 per cent 

NH4Cl as nitrogen source. After growth, the culture was centrifuged 

and the cells were washed twice with sterile saline. 

4. Acriflavin 
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After overnight growth in 1 per cent allantoate minimal medium at 

30°c with aeration, cells were washed and resuspended in minimal medium. 

Acriflavin was added to 6 ml of this suspension (O.D. 0.2 to O.J). The 

final concentration of acriflavin was 2,5 µg/ml. This was incubated 

48 hr at 30°c with shaking. In some experiments, the treated cells were 

washed with sterile saline and resuspended in 6 ml of minimal medium; 

0,5 ml of this suspension was inoculated into fresh minimal medium 

containing 0.5 per cent succinate or 0.5 per cent gluconate as carbon 

source and 0.1 per cent NH4Cl as nitrogen source. This step was 

included to eliminate auxotrophs prior to further selection. After 

growth, the culture was centrifuged and the cells were washed twice with 

sterile saline. 

E. Isolation of Mutants 

The mutagen-treated cells were resuspended in minimal medium con

taining carbon and nitrogen sources appropriate for the type of mutant 

to be selected. For the purpose of isolating nitrogen source mutants, 

cells were resuspended in minimal medium containing no nitrogen source 

and aerated at 30°c for 6 hours to deplete internal pools. Then 0.5 ml 

of this suspension was inoculated into the appropriate minimal medium 

containing 50,000 U penicillin/ml or 650 µg/ml D-cycloserine. The 

culture was incubated 18 hours on the shaker, then centrifuged, washed 

once with sterile saline and resuspended in minimal medium containing 
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0.5 per cent succinate or 0.5 per cent gluconate as carbon source and 

0.1 per cent NH4c1 as nitrogen source. This was incubated at 30°c on 

the shaker. After growth, the dilution giving between 50 and 100 

colonies per plate was determined by pre:paring a series of dilution 

plates. The dilutions were stored at 4°c. Twenty plates of succinate 

minimal agar were inoculated by spreading 0.1 ml of the same dilution 

on the surface. Incubation was at 30°c until the colonies were 

1 to 2 mm in diameter. The colonies were then replica-plated by the 

technique of Lederberg and Lederberg (24) to the appropriate selective 

plates and succinate minimal agar plates. Mutants were those which 

formed colonies on succinate but not on selective minimal agar plates. 

These were picked individually from succinate plates and were checked 

for growth on the appropriate fresh liquid minimal medium. 

F. Tests for .Carbon and Nitrogen Source Utilization 

The minimal salts medium described above was used as the base for 

the growth media, with various compounds added as carbon and/or nitrogen 

sources. Cells were washed from a fresh nutrient agar slant with one ml 

of minimal salts medium and 0.1 ml of this suspension was added to the 

liquid minimal medium. Incubation was at 30°c with shaking. The 

following compounds were tested as carbon sources (at concentrations of 

0.5 per cent): glucose, gluconate, succinate, histidine, allantoate, 

ureidoglycolate, ureidoglycine, glyoxylic acid, acetate, citrate. The 

following compounds were tested as nitrogen sources (at concentrations 

of 0.1 per cent): allantoate, ureidoglycolate, ureidoglycine, oxamate, 

urea, glycine, NH4Cl. 
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G. Preparation of Crude Extract 

The cells were grown overnight in 500 ml of minimal salts medium 

with 1 per cent allantoate or 0.5 per cent succinate plus 0.1 per cent 

allantoate. The cells were harvested by centrifugation in a Sorvall 

refrigerated centrifuge, washed with sterile saline and then frozen as a 

pellet overnight. The cells were thawed by resuspensj_on in 10 to 15 ml 

of 0.02 M potassium phosphate buffer, pH ?.O, and were broken by sonic 

oscillation, using five to six 15-second bursts, cooling in ice between 

each treatment. The suspension was centrifuged for 20 minutes at 12,000 

rpm in an RC-2B refrigerated centrifuge. A cell-free extract was 

obtained by discarding the whole cells and debris. 

H. Enzyme Ass™ 

1. Without Acid-Pretreatment 

Crude extract containing an appropriate amount of protein in a 

volume of 0.1 to 0.6 ml was mixed with 5.8 to 7.2 ml of 0.1 M sodium 

barbital-HCl buffer (pH 8.5) which contained 15.0 to 20.0 µmoles per ml 

of potassium allantoate or ureidoglycine, 11 µmoles per ml of reduced 

glutathione (GSH) and 0.1 µmole per ml of manganous sulfate. The total 

volume was 7.5 or 9.0 ml. Tubes were incubated at 30°c for varying 

periods of time. Samples were used undiluted or were diluted 1/10 for 

chemical analysis. 

2. Acid-Pretreatment 

Crude extract containing an appropriate amount of protein in a 

volume of 0.1 to 0.4 ml was mixed with 1.2 ml of 0.05 M sodium citrate

HCl buffer (pH 2.0). After 30 seconds at room temperature, 5.8 or 7.2 

ml of 0.1 M sodium barbital-HCl buffer, pH 8.5, were added. This buffer 
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contained 15,0 to 20.0 µmoles potassium allantoate or ureidoglycine, 

11 µmoles reduced glutathione and 0.1 µmole manganous sulfate per ml. 

The total volume was 7,5 or 9.0 ml. The mixture was incubated at 30°c. 

Samples were used undiluted or were diluted 1/10 for chemical analysis. 

I. Chemical Analyses 

1. Allantoa te 

Allantoate was determined by addition of 1.0 ml of 0.15 N HCl and 

1.0 ml of phenylhydrazine·HCl (lOOmg/30 ml water) to a tube containing 

0 .2 to 1.0 µmole of allantoate made up to a 6.0 ml volume with distilled 

water. The tubes were immersed in a boiling water bath for 2.0 minutes. 

The tubes were cooled to room temperature and 1.0 ml of potassium. 

ferricyanide (500 mg/30 ml water) and 4.0 ml of 10 N HCl were added. 

After standing 5 minutes at room temperature, the color was read at 

515 nm on a Coleman Junior Spectrophotometer. 

2. Glyoxylate 

For the determination of glyoxylate, a sample containing 0.2 to 1. 0 

µmole of glyoxylate was made up to a 7.0 ml volume with distilled water. 

Then 1.0 ml of phenylhydrazine solution (100 mg/30 ml water) was added 

to each tube and, after thorough mixing, the tubes were kept at room 

temperature for 10 minutes. Consecutive additions of 1.0 ml of potas

sium ferricyanide (500 mg/30 ml water) and 4.0 ml of 10 N HCl were made 

with thorough mixing after addition of HCl. After standing 5 minutes 

at room temperature, the color was read at 515 nm on a Coleman Junior 

Spectrophotometer. 
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J. Urea 

Urea was measured by the method of Jones, et al (25), A sample 

containing Oto 1.25 µmoles of urea was made up to 4.25 ml with dis

tilled water, and 2.0 ml of a l:J (V: V) mixture of sulfuric and 

phosphoric acids were added. Following the addition of 0,25 ml of 

2,J-butanedione monooxime (JO mg/ml in water) solution, the tubes were 

placed in boiling water for 10 minutes in the dark. After cooling to 

room temperature in a water bath in the dark, the color was read at 

490 run in a Coleman Junior Spectrophotometer. 

4. Ammonia 

It has been found that the microdiffusion method for measuring 

ammonia (1) is the best method for use in studying the degradative path

way for allantoate. However, Nesslerization was used when a rapid 

assay was desirable. 

a. Microdiffusion Method 

The microdiffusion method was carried out as follows, using the 

68 mm plastic Conway unit with liquid seal. Two ml of 45 per cent 

potassium carbonate, made up in 0.025 per cent NPX tergitol, were placed 

in the closing chamber. Three ml of 0.02 N sulfuric acid were placed in 

the inner chamber as absorbent. One ml of sample was then placed in 

the outer diffusion chamber and, immediately before closing, 2.0 ml of 

45 per cent potassium carbonate in 0.025 per cent NPX tergitol were 

added to the outer diffusion chamber. After six hours incubation in the 

37°c incubator, loO ml of sulfuric acid was removed from the inner 

chamber and the ammonia content was determined by Nesslerization. 



b. Nesslerization 

A sample containing 0.1 to 1.0 )lltl.Ole of ammonia was made up with 

distilled water to a. volume of 15.0 ml. Samples from incubation mix

tures often became turbid after addition of Nessler' s reagent (26), 

interfering with measurement of color. The addition of 1.0 ml of 30 
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per cent sodium citrate before the addition of Nessler•s reagent, pre

vented the formation of a precipitate. After addition of Nessler•s 

reagent, the tubes were kept at room temperature for 10 minutes, and the 

color was. read at 436 nm on a Coleman Junior Spectrophotometer. 

5, Protein Content 

The method of Sutherland, et al. (27) was used for determination 

of the protein content of cell extracts. A sample containing Oto 0.1 

mg protein was made up to 1.0 ml with water. To each tube, 5.0 ml of a 

4 per cent sodium-potassium tartrate solution and 1.0 ml of 2 per cent 

Cuso4 solution were added. The tubes were allowed to stand at room 

temperature for 40 minutes. Phenol reagent (Fisher Scientific Company) 

was diluted 1: 2 with water and 0.5 ml was added to each tube and mixed 

immediately. After 15 minutes at room temperature, the color was read 

at 660 nm in a Coleman Junior Spectrophotometer. 

J. Chemicals 

Potassium allantoate was prepared by a modification of t,he proce

dure of Young and Conway (28) developed in this laboratory (12). 

Reduced glutathione was obtained from Calbiochem Company and sodium 

barbital and glycine were obtained from Nutritional Biochemicals Corpo

ration. Sodium glyoxylurea (ureidoglycolate) was prepared by the method 

described by Gaudy in 1962 (8). Glyoxylic acid was obtained from Fisher 
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Company and the disodium salt of succinic acid was obtained from Eastman 

Organic Chemicals. Ureidoglycine w~s synthesized in this laboratory. 

K. Synthesis of Ureidoglycine 

Since synthesis of ureidoglycine formed a significant portion of 

this study. the method of synthesis and analytical methods used in the 

study of the synthesized material will be described under "Results", 

Chapter IV. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

A. Evidence for Ammonia~forming Enzymes in Microorganisms 

Three microorganisms were used in these studies. They are 

Pseudomt>'has acidovorans strain 14, Aerobacter aerogenes: strain Tlb and 

Aerobacter aerogenes strain '1W. Cell-free extracts were prepared from 

allantoate-grown cells and checked for the presence of the ammonia

forming enzymes. Incubation mixtures were prepared (with the modifica

tions described below) according to Vogels (18). Ammonia was determined, 

after incubation, by the microdiffusion method. The same incubation 

mixtures were also analyzed for allantoate, glyoxylate and urea. 

The incubation mixture contained 16.0 µmoles/ml of potassium 

allantoate, 11 µmoles/ml of GSH and 0.1 µmole/ml of MnS04 , all dissolved 

in 0.08 M barb\tal-HCl buffer, pH 8.5. Extracts used in the individual 

assays were: 0.3 ml of crude extract containing 8.6 mg protein/ml from 

!• aerogenes TW, 0.6 ml of dialyzed crude extract containing 5.5 mg 

protein/ml from!• aerogenes Tlb, or 0.3 ml of crude extract containing 

7.5 mg protein/ml from E· acidovorans. Total volume in all incubations 

was 9.0 ml. Duplicate incubations using each extract were carried out 

with and without acid pretreatment of the enzyme. Incubation time was 

30 minutes at 30°c. Determinations were performed immediately after 

incubation. 

Results are shown in Table I. Approximately 2 moles of ammonia 

were formed from each mole of allantoate used in the case of 

23 
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TABLE I 

PRODUCTS OF ALLANTOATE DEGRADATION BY CELL-FREE EXTRACTS 

Cell-Free Extract Allantoate Glyo:,cylate Urea Ammonia Nitrogen 
llsed 

(µ moies7ml) 
Recovery 

1. 15.0 14.0 12 .3 28.2 9(1f; 
P. acidovorans 14 

2. 9.0 8.4 6.9 17.5 88% 

1. 16.8 18.8 12.6 34.5 90,, 
A. aerogenes '1W 

2. 4.3 3.4 5.5 5.5 ~ 

1. 9.6 9.6 6.8 21.2 9~ 
A. aerogenes Tlb 

2. 6.3 2.6 5.5 13.8 98i 

1. Acid-Pretreatment 

2. Nonacid-Pretreatment 
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acid-pretreated enzyme. The nitrogen recovery was calculated without 

the determination of oxamate since little or no oxamate is formed by 

aerobically-grown cells. 

B. Characterization of Microorganism, Strain '1W 

Strain '1W was isolated from a contaminated culture of P. acidovorans 

which had been treated with acriflavin. P. acidovorans can grow on 

minimal medium using gluconate as carbon source but cannot grow on 

glucose. Strain TW can use either glucose or gluconate as carbon source 

in minimal medium. Strain TW appears on an agar slant as slimy, thick, 

white, spreading growth and£· acidovorans as nonslimy, thin translucent 

spreading growth. 

Strain TW is a gram-negative, catalase positive, methyl red nega-

tive, Voges-Proskauer positive microorganism. Colonies on EMS-lactose 

agar plates are mucoid, pale pink in color and devoid of a metallic 

sheen. Strain '1W can use succinate, histidine, glucose, gluconate, 

citrate or allantoate as carbon source in minimal medium but P. 

acidovorans cannot use glucose or citrate as carbon source for growth. 

Strain '1W ferments litmus milk with production of acid (pale pink 

color in 48 hours). In fermentation broth, strain '1W forms acid from 

glucose, arabinose, maltose, sucrose, raffinose, glycerol, mannitol, 

salicin, citrate and sorbitol. Gas is formed from glucose, lactose and 

sucrose. The other compounds were not checked for gas production. 

Nitrite is formed from nitrate. Growth occurs at 25°c and 37°c but 

' growth rate is maximum at JO C. According to the above data, strain TW 

has been identified as Aerobacter aerogenes. 



C. Isolation of Mutants 

1. Isolation of Mutants Which Cannot Use Allantoate 
as Carbon Source 

a. Acriflavin and Penicillin G 
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A suspension of allantoate-grown cells of!· aerogenes strain TW 

was adjusted to an initial concentration of 104 to 105 cells/ml and 

treated with acriflavin as described previously. In order to allow 

selection of mutants unable to use allantoate either as a carbon or as a 

nitrogen source, the cells were collected, washed in sterile saline, and 

incubated for 6 hours with shaking at 30°c in minimal salts containing 

0.5 per cent succinate but no source of nitrogen. The cells were then 

collected by centrifugation, washed with sterile saline, and resuspended 

at a concentration of approximately 1 x 109 cells/ml in 6 ml of 1 per 

cent allantoate minimal medium which contained 189 mg of penicillin G. 

Incubation with penicillin and preparation of plates for replication was 

carried out as described previously. Plates were replicated to allan-

toate minimal agar and to succinate-NH4Cl minimal agar. Colonies growing 

on succinate-NH4Cl but not on allantoate were picked off and tested for 

ability to use allantoate as carbon and/or nitrogen source, 

In two experiments using this technique, no mutants unable to use 

allantoate as nitrogen source were found. However, ten mutants unable 

to use allantoate as carbon source were isolated. These were strains 

'IW-1, 'IW-2, 'IW-3, TW-10, 'IW-11, 'IW-12, 'IW-13, 'IW-14, 'IW-15 and 'IW-16. 

b. Ethylmethane Sulfonate (EMS) 

Treatment off• acidovorans and A· aerogenes Tlb was carried out as 

described previously. No penicillin treatment was used. Cells were 

grown on succin!:l.te-NH4Cl minimal medium after treatment with EMS and 
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plates for replication contained the same type of medium. Colonies were 

replicated on allantoate minimal agar and succinate-NH4Cl minimal agar. 

Those growing on succinate but not on allantoate were picked from 

s~ccinate plates and tested further. 

Six mutants were isolated by this procedure. They were!· aerogenes 

strain Tlb-2, f. acidovorans 14-1, 14-2, 14-3, 14-4 and 14-5, 

2. Isolation of Mutants Which Cannot Use Allantoate as Nitrogen 
Source and Urease-Negative Mutants 

Several different attempts to isolate mutants which could not use 

allantoate as nitrogen source or urease-negative mutants were unsuccess-

ful. Presumably, the failure to isolate mutants of either type was due 

to the large amounts of ammonia formed from allantoate or urea by these 

microorganisms. Ammonia diffused throughout the replica plates and would 

have allowed growth of any mutants which might have been present, thus 

preventing their identification. In an attempt to minimize this inter-

ference, the minimum concentrations of allantoate and urea required to 

allow normal growth were determined for!· aerogenes '1W in minimal 

medium containing glucose as carbon source. Figure 1 shows the variation 

in total growth with concentration of allantoate or NH4Cl in glucose 

minimal medium for this organism. The concentration of nitrogen source 

in the plates used for replication was decreased to 0.02 per cent but it 

was still impossible to identify mutants. The methods used in attempts 

to isolate these mutants are described below. 

a. Ultraviolet Light 

It was shown by K~lmark (29, 30) that ultraviolet light was an 

effective mutagen for the isolation of urease-negative mutants. It was 

thought that ultraviolet light might be effective in isolating mutants 
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Figure 1. Concentration of Nitrogen Source and 
Cell Growth 
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Strain '1W was incubated at 30°c with shaking 
for 18 hours, O. 02 ml of these cultures was 
transferred to 6 ml of fresh media and 0. D. was 
read after 8 hours incubation. 
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unable to use allantoate as nitrogen source and for urease-negative 

mutants of the organisms used in this study. Figure 2 shows the ultra

violet survival curve determined for E· acidovorans from which the 

optimal UV dosage was chosen. 

P. acidovorans was grown in 6 ml of nutrient broth at 30°c for 16 

hours with shaking. Washed cells were resuspended in 6 ml of sterile 

saline at a concentration of approximately 108 cells/ml and were 

irradiated in a sterilized petri dish for 19 seconds which, according 

to the UV survival curve, should achieve 99,9 per cent killing. Irra

diated cells were incubated in nutrient broth for 6 hours in the dark to 

allow for phenotypic lag. The surviving cells were then subjected to 

selection with D-cycloserine or penicillin Gas described above. 

Replica plates contained allantoate or urea as nitrogen source at 

concentrations of 0.1 per cent to 0.02 per cent. No mutants were 

isolated. 

b. Nitrosoguanidine and Ethylmethane Sulfonate 

Cells were treated with nitrosoguanidine (NTG) or ethylmethane 

sulfonate (EMS) as described above. All EMS treatments were 12-hour 

exposures and 30 minute exposures were used for all NTG treatments. 

The following combinations of mutagen and selective agent were used: 

(1) P. acidovorans, NTG, followed by penicillin 

(2) l:, a.cid ovorans 14-1, NTG, followed by penicillin. 

(3) l:· acidovorans, EMS, followed by penicillin. 

(4) P. acidovorans 14-1, EMS, followed by penicillin. 

(5) P. acid ov orans , EMS, followed by D-cycloserine. 

(6) P. acidovorans 14-1, EMS, followed by D-cycloserine. 

(7) P. acidovorans, EMS alone. 
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6 ml cells were irradiated with UV source at 
40 cm and samples were removed at times indicated. 
Surviving cells were determined by plate counts 
on nutrient agar. 
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(8) P. acidovorans, EMS followed by NTG, 

(9) P. acidovorans 14-1, EMS followed by NTG. 

In none of these experiments were mutants unable to use either 

allantoate or urea as nitrogen source isolated. 

D. Characterization of Allantoate-Negative Mutants 

1. Growth Studies 
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Cells from nutrient agar slants incubated overnight were suspended 

with 1 ml of minimal salts. One-tenth ml of this cell suspension was 

inoculated into 6 ml of minimal medium containing intermediates of 

allantoate degradation as carbon and/or nitrogen source. The initial 

optical density of these cultures was approximately 0.02. Cells were 

incubated at 30°c for 24 hours or more, with shaking except for Tlb 

which was grown in stationary culture. Data from these growth studies 

of wild types and mutants are shown in TabJes II and III. 

From the data shown in TabJes II and III, we can conclude that 

strains 14-1, 14-2, 14-J, 14-4 and 14-5 derived from P. acidovorans 

and strains TW-10, TW-11, 'IW-12, TW-13, TW-14, 'IW-15 and TW-16, derived 

from !_. aerogenes 1W are mutants which are blocked at ureidoglycine 

aminohydrolase because they can use allantoate as nitrogen source and 

can use ureidoglycolate as sole source of carbon and nitrogen, but they 

are unable to use allantoate as sole carbon and nitrogen source. A. 

aerogenes Tlb-2 is apparently blocked at the same reaction since it can 

use ureidoglycolate or allantoate as nitrogen source but cannot use 

allantoate as carbon source. The evidence is not as clear-cut as for 

the other mutants since neitqer the wild type nor the mutant can use 

ureidoglycolate as carbon source. One also can conclude from the data 



TABLE II 

GROWTH OF WILD TYPES AND MUTANTS WITH INTERMEDIATES OF THE 
ALLANTOATE PATHWAY AS CARBON AND/OR NITROGEN SOURCE 

Additions to Organism Strains Minimal Salts 

1% allantoa te 1:. acidovorans 14 
P. acidovorans 14-1, 2, 3, 4, 5 
A. aerogenes 'IW 
A· aerogenes TW-1, 2, 3 
!• aerogenes '!W.,.10; 11, 12, 

13, 14, 15, 16 
A. aerogenes Tlb 
I. aerogenes Tlb-2 

0.5'1, succinate P. acidovorans 14 
+ 0.1% allantoate P. acidovorans 14-1, 2, 3. 4, 5 

0,5% gluconate !_. aerogenes '1W 
+ 0.1% allantoate A· aerogenes TW-1, 2, 3 

!• aerogenes TW-10, 11, 12, 
13, 14, 15, 16 

A. aerogenes Tlb 
!_. aerogenes Tlb-2 

0,5% ureidoglycolate P. acidovorans 14 
P. acidovorans 14-1, 2, 3, 4, 5 
A. aerogenes TW 
I. aerogenes TW-1, 2, 3 
A. aerogenes TW-10, 11, 12, 

13, 14, 15, 16 
A. a.erogenes Tlb 
A. aerogenes Tlb-2 

0.5% succinate P. acidovorans 14 
+ 0.1% ureidoglycolate P. acidovorans 14-1, 2. 3. 4, 5 
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o. D. 

0.30 
0.03 
0.47 
0.03 
0.03 

0.18* 
0.02* 

0.58 
0.60 

0.87 
0.86 
0.80 

0.38 
0.39 

0.23* 
0.24* 
0.30* 
0.03* 
0.15* 

0.03* 
0.03* 

0.50 
0.47 



Additions to 
Minimal Salts 

0.5~ gluconate 
+ 0.1% ureidoglycolate 

0.5% glyoxylate 
+ 0.1% NH4Cl 

0,5% gluconate 
+ 0.1% urea 

TABI.E II(Continued) 

Organism 

!_. aerogenes 
A. aerogenes 
!, aerogenes 

A. aerogenes 
A. aerogenes 

A. aerogenes 
A, aerogenes 
!• aerogenes 

P. acidovorans 
P. acidovorans 
A. aerogenes 
A. aerogenes 
A. aerogenes 

A. aerogenes 
A. e_erogenes 

Strains 

TW 
TW-1, 2, 3 
TW-10, 11, 12, 
13, 14, 15, 16 
Tlb 
Tlb-2 

'1W 
'IW-1, 2, 3 
'IW-10, 11, 12. 
13, 14, 15, 16 

14 
14-1, 2, 3. 4, 5 
TW 
'IW-l, 2, 3 
TW-10, 11, 12, 
13, 14, 15, 16 
Tlb 
Tlb-2 

*O. D. given is for 48 hr. growth. All others were read at 
24 hr. 
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O. D. 

0.88 
0.85 
0.88 

0,37* 
0.24* 

0.32* 
0.04* 
0.28* 

0.67 
0.65 
0.80 
0.78 
0,82 

0.60 
0.56 
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TABLE III 

UTILIZATION OF INTERMEDIATES OF THE ALLANTOATE PATHWAY AS CARBON 
AND/OR NITROGEN SOURCE BY WILD TYPES AND MVTANTS 

Compounds Source of Wild ''!';ypes Mutants 
14 Tlb 'IW 14-1-2 TW-1-] TW-10-16 Tlb-2 -

Allantoate C and N + + + 

N' + + + + + + + 

Ureidoglycolate C and N + + + + 

N + + + + + + + 

Glyoxylate C + + 

Urea N + + + + + + + 



35 

that the ammonia-forming enzymes are required in these organisms for 

complete degradation of allantoate and that only one of the two proposed 

pathways occurs in a single organism because mutants which are 

allantoate-negative can be isolated. Strains 14-1, 14-2, 14-3 of P. 

acidovorans are mutants which are blocked at a step subsequent to 

glyoxylate formation. 

2. Formation of Ammonia by Nonproliferating Cells and Extracts 

A. aerogenes TW and 'IW-16 were grown overnight in minimal medium 

containing 0.5 per cent succinate plus 0.1 per cent allantoate at 30°c 

with shaking. Cells were washed and resuspended in the same volume 

(6 ml) of minimal salts containing 0.1 per cent allantoate. The concen

tration of cells in the suspension was approximately 2 x 109 cells/ml. 

Cells were incubated at 30°c with shaking and 0.1 ml samples of the 

suspensions were removed at frequent intervals. Ammonia content was 

determined by Nesslerization. After 10 hours incubation, the cell con

centration had not changed. Figure 3 shows the time course of ammonia 

formation by the wild type and the mutant, and indicates that the mutant 

has a greatly reduced ability to produce ammonia as compared to the wild 

type. If no ammonia is used by either type of cells and if allantoate 

amidohydrolase activity in the mutant is normal, one would expect the 

mutant to produce 25 per cent of the amount of ammonia produced by the 

wild type. The average for 12 sampling points was 21 per cent. 

Extracts were prepared from one mutant of each organism(!, aero

genes TW-16, f. acidovorans 14-1, and A· aerogenes Tlb-2) using cells 

grown on allantoate as nitrogen source. These extracts were ~ssayed 

for allantoate amidohydrolase activity. In all cases, the formation of 
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Figure J. Formation of Ammonia from Allantoate by 
Non-Proliferating Cells 

2 x 109 cells/ml were suspended in 0.1~ allantoate 
minimal medium and 0.1 ml samples were taken for ammonia 
determination at times indicated. 
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ammonia was extremely slow and more ammonia was formed ~ithout acid 

pretreatment than with pretreatment. 

E. Ureidoglycine 

0 NH-II 1--.c 
Ureidoglycine (NHz-C-NH-CH-COOH) has been proposed as an inter-

mediate in the degradation of allantoate by Vogels (17). This compound 

has never been synthesized or isolated and therefore has not actually 

been tested a·s an enzyme substrate. Vogels (17) attempted to isolate 

ureidoglycine from media in which enzymatic degradation of allantoate 

had been allowed, and from solutions in which allantoin was hydrolyzed 

under weakly alkaline conditions. These attempts failed, according to 

Vogels, because of the rapid hydrolysis of ureidoglycine to form ammonia, 

glyoxylate and urea. 

1. Synthesis of Ureidoglycine 

a. Oxaluric Acid 

The procedure used for the preparation of oxaluric acid 

0 · 0 
11 II 

(NHz-C-NH-C-COOH) was described by Biltz and Schrauder (31). Ten gm of 

alloxan·HzO were dissolved in 20 ml of JO per cent hydrogen peroxide. 

The mixture was heated in a boiling water bath for 10 minutes. The 

precipitate which formed was collected by filtration on a Buchner funnel 

and was washed on the filter with approximately 250 ml cold ethanol and 

250 ml cold water in 50 mJ. portions. The compound was air-dried. The 

weight of the product obtained was approximately 4.6 to 5.0 gm in 

different preparations. This compound decomposed at 210°c. (Melting 



points were determined using the Thomas-Hoover "Uni-Melt" capillary 

melting point apparatus, A. H, Thomas Co.,. Philadelphia..) 

b. Oxaluric Oxime 
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A general procedure for the synthesis of oximes has been described 

by Shriner, Fuson and Curtin (32). This procedure was modified for 

synthesis of oxaluric oxime (N~-~-NH-~~~OOH) as follows: 

Ten gm of hydroxylamine hydrochloride were dissolved in 60 ml of 

distilled water; 40 ml of 10 per cent sodium hydroxide solution were 

then added. The mixture ( pH 7. 0) was warmed in a steam bath. When the 

temperature reached 8o0 c, 2.0 gm of oxaluric acid were added slowly with 

stirring. This solution was kept in the steam bath for another 10 

minutes and was then cooled in an ice bath. In order to hasten crystal

lization, the sides of the beaker were scratched with a glass rod. 

Occasionally the addition of a few ml of cold distilled water and/or 

cold ethanol will assist in causing the oxime to separate. The precipi

tate was collected by filtration on a Buchner funnel and was washed with 

200 ml cold ethanol in 40 ml portions and air-dried. The weight of 

material obtained (Fraction A) was approximately 1.0 gm. This compound 

decomposed at 268-272°c. 

The mother liquor was stored at 4°c overnight. The precipitate was 

collected and washed as above. The weight of this material (Fraction B) 

was approximately 0.96 gm. This compour;d also decomposed at 268-2?2°C. 

Fraction A and Fraction B were combined and dissolved in 100 ml of hot 

water. Then 400 ml of 95 per cent ethanol was added to the solution and 

the mixture was stored at 4°c overnight for recrystallization. The 

crystals were collected and washed as described above and air-dried. 

This compound decomposed at 272°c. 
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c. Hydrogenation of Oxaluric Oxime 

Catalytic hydrogenation of oximes may give primary, secondary or 

tertiary amines (33). The products from hydrogenation of oximes depend 

to an unusual degree on the solvent employed. Hydrogenation of oximes 

in neutral media usually leads to mixtures of primary, secondary and 

tertiary amines. Hartung (34) was the first to realize that formation 

of secondary amines could be prevented by carrying out the hydrogenation 

in acidic media. The procedure for hydrogenation of oxaluric oxime was 

carried out as follows: 

One gm of recrystallized oxaluric oxime was dissolved in 500 ml of 

hot glacial acetic acid and 0.5 gm of 5 per cent Pd/C (palladium on 

carbon) was added to the solution. Mechanical stirring or shaking was 

provided and the temperature of the reaction mixture was maintained at 

0 20 to 25 C. Hydrogen was supplied at a pressure of 20 psi. After 24 

hours, 12 pounds of hydrogen had been absorbed by the reaction mixture. 

The catalyst was removed by filtration and washed with additional 

glacial acetic acid. The clear filtrate was evaporated to dryness in 

vacuo and the residue was collected (Fraction C). Fraction C (approxi-

mately 0.50 to 0.60 gm) was dissolved in 50 ml of minimal salts and 

200 ml of 95 per cent ethanol were added. The mixture was stored at 4°c 

overnight. The precipitate was collected by filtration on a Buchner 

funnel and was washed several times with ethanol. The weight of Fraction 

D was approximately 0.2 to 0.25 gm. 0 It decomposed at 255-258 C. The 

filtrate was evaporated to dryness in vacuo and the residue was desig-

nated as Fraction E. The weight of Fraction E was approximately O.J to 

0.35 gm and it decomposed at 220-223°C. 
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The overall reaction for the synthesis of ureidoglycine can be 

represented as follows: 

(1) ?i 0 0 
11 II mr')H + ~02 

o:::::~r .. .::::-o 

~N-C-NH-C-COOH + CO2 

0 

alloxan oxaluric acid 

(2) 
~N-tNH-tCOOH + N~OH 

~ fOH 
-- ~N-C-NH-8-coow + H20 

oxaluric acid oxaluric oxime 

(3) ?i ~ OH H+ ?i ~li2 
~N-C-NH-C-COOH + 2 ~---H2N-C-NH-CH-COOH + ~O 

oxaluric oxime ureidoglycine 

2. Characterization of Ureidoglycine 

a. Tests for Utilization as Carbon or Nitrogen Source 

Solutions were prepared by dissolving 0.2 gm of Fraction Dor 0.2 

gm of Fraction E in 100 ml of minimal salts. The solution containing 

Fraction D was designated as Solution A and that containing Fraction E 

was designated as Solution B. For testing Fraction E as carbon and 

nitrogen source, 6 ml of the solution were used without additions. For 

testing either solution for use as nitrogen source, 0,3 ml of' a 10 per 

cent solution of the ~ppropriate carbon source was added to 5. '7 ml of 
' . 

the solution. NH4Cl was included in the medium in controls with other 

carbon sources. Allantoate controls and uninoculated samples were also 

included. Cells used in.this experiment.were]:. acidovorans~ wild type 

and strain 14-1, and A. aerogenes 'IW, wild type and strain TW-16. 
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A volume of 6 ml of liquid medium was used in an 18 mm I. D. test 

tube and aeration was at 30°c. The incubation time was 24 hours unless 

otherwise indicated. Results are shown in Tables IV and V. 

Data in Tables IV and Vindicate that Fraction Eis ureidoglycine. 

Since!· aerogenes TW-16 and E· acidovnrans 14-1 are mutants which are 

blocked at ureidoglycine aminohydrolase, these mutants should not use 

ureidoglycine as carbon or nitrogen source. Both!• aerogenes TW and 

E· acidovorans can use Fraction E as carbon and nitrogen source but the 

mutants 'IW-16 and 14-1 cannot; therefore, Fraction E should be 

ureidoglycine. 

b. Enzymatic Formation of Ammonia from Ureidoglycine 

Figure 4 and Figure 5 show the formation of ammonia from Fraction E 

by a cell-free extract prepared from!• aerogenes TW. Enzymes were used 

with and without acid pretreatment. Amrnoni~ was determined by 

Nesslerization. 

In the experiment shown in Figure 4, the incubation mixture con

tained: 0.2 gm of Fraction E, 99 µmoles GSH, 0.9 µmole Mnso4 , 0.077 M 

barbital-HCl buffer (pH'8.5) and 0.2 ml of cell extract (7,3 mg protein/ 

ml) in a total volume of 7.5 ml. 

In the experiment shown in Figure 5, the incubation mixture con

tained: 0.2 gm of Fraction E, 99 µmoles GSH, 0.9 µmole Mnso4 , 0.077 M 

potassium phosphate buffer, pH 7.0, and 0.2 ml of cell extract (7.3 mg 

protein/ml) in a total volume of 7.5 ml. 

In both cases, control tubes, which were identical to the experi

mental tubes except that no extract was added, were prepared and treated 

in the same way as the experimental tubes. No ammonia was formed in the 

control tubes. 



TABLE IV 

GROWTH OF WILD TYPES AND MUTANTS ON SOLUTION A 
AS CARBON AND/OR NITROGEN SOURCE 

Medium Strain 

aerogenes TW 
" 
ti 

0.5% glucose+ 0.1% NH4c1 minimal medium A. 
0.5% glucose+ Solution A 
1% allantoate minimal medium 

aerogenes TW-16 
II 

" 

0.5% glucose+ 0.1% NHJ+Cl minimal medium A. 
0.5% glucose+ Solution A 
1% allantoate minimal medium 

ti 

acidovorans 14 
II 

II 

0.5% glucose+ 0.1% allantoate minimal medium 
0.5% succinate + 0.1% NH4Cl minimal mediUlTl E• 
0.5% succinate + Solution A 
1% ~llantoa te minimal medium 

acidovorans 14-1 
tt 

0.5% succinate + 0.1% NH4Cl minimal medium P. 
0.5% succinate + Solution A 
1% allantoate minimal medium ti 

0,5% succinate + 0.1% allantoate II 

minimal medium 
0.5% succinate + Solution A No cells 
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o. D. 

o.66 
0.82 
0.32 
0.70 
0.82 
0.02 
0 0 GO 
0,60 
0.05 
0.3.5 
0.60 
0.0? 
0.02 
0.60 

0.00 



TABLE V 

GRCWTH OF WILD TYPES ANP MUTANTS ON SOLUTION'" B 
(UREIDOGLYCINE) AS CARBON AND/OR 

NITROGEN SOURCE 

Medium 

1% allantoate minimal medium 
Solution B 
0.5% glucose+ Solution B 
0.5% glycine minimal medium 
0.5% glucose+ 0.1% glycine minimal medium 
1% allantoate minimal medium 
0,5% glucose+ Solution B 
0.5% glycine minimal medium 

A. -

A. 

Strain 

aerogenes 
tt 

tt 

" II 

aerogenes 
II 

It 

" 

'IW 

TW-16 

0.5% glucose+ 0.1% glycine minimal medium 
1% allantoate minimal medium .E• acidovorans 14 
Solution B 
0.5% sucoinate + Solution B 
0.5% glycine minimal medium 
0.5% succinate + 0.1% glycine minimal medium 
1% allantoate minimal medium 
0.5% succinate + Solution B 
0.5% glycine minimal medium 
0.5% succinate + 0.1% glycine minimal medium 
Solution B 

*48 hours incubation. 

P. 

No 

If 

" It 

II 

acidovorans 14-1 

" 
" 
ft 

cells 

43 

O. D. 

0.32 
0.12* 
0.74 
0.01 
0.60 
0.02 
0.03 
0.02 
o.49 
0.32 
0.10* 
0.46 
0.01 
0.70 
0.02 
0.02 
0.01 
0.63 
0.00 
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Figure 4. Formation of Ammonia frQm Ureidoglycine by 
Cell-Free Extract of Aerobacter aerogenes 
'IW at pH 8 • .5 • 
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Figure 5. Formation of Ammonia from Ureidoglycine by 
Cell-Free ExtraGt of Aerobacter aerogenes 
TW at pH 7. O. 
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c. Paper Chromatography and Color Reactions 

(1) Tests with Ninhydrin 

Amino acids, amines, and related compounds react with ninhydrin to 

form various colors. All a-amino acids react with ninhydrin reagent, 

0.2 per cent in acetone (W/V), in the cold, usually within 3 hours and 

certainly overnight, giving a purple color in most cases although signif-

icant variations are obtained. !f the chromatogram is heated for 2-3 

0 minutes or more in an oven at 105 C, all compounds containing a primary 

amino group attached to an aliphatic carbon atom react to give a purple 

color in main but with significant variations. If a compound yields a 

color on heating but not on standing overnight in the cold, it is 

almost certainly not an ~-amino acid (35), 

Equal amounts of glycine, oxalurio oxime, 2,J-butanedione monooxime, 

Fraction D, and Fraction E were spotted on two strips of Whatman No. 1 

filter paper. The papers were air-dried, then dipped through 0.2 per 

cent ninhydrin in acetone (W/V). Two per cent pyridine was added to 

the ninhydrin reagent immediately before use. One paper was left over-

night at room temperature. After the acetone had evaporated, the second 

0 paper was heated for 2-J minutes or more in an oven at 105 C. 

After heating, spots containing glycine, oxaluric oxime, and 

Fraction D were purple, that for Fraction E was brownish-purple, and the 

2,3-butanedione monooxime spot was reddish-purple. After standing over-

night at room temperature, glycine reacted to yield a purple color and 

both Fraction D and Fraction E yielded a slightly purple color. No 

color reaction occurred with either oxime under these conditions. Th~se 

results indicate that Fraction E and Fraction D contain a-amino acids. 
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(2) Tests with Ehrlich Reagent 

Indoles yield a purple color with Ehrlich reagent (one volume of 10 

per cent p-dimethylaminobenzaldehyde in concentrated HCl and 4 volumes 

of acetone), hydroxyindoles form a blue color and aromatic amines and 

ureido compounds appear yellow (35), 

F.qual amounts of oxaluric oxime, citrulline, Fraction D and Fraction 

E were spotted on Whatman No. 1 filter paper. After being air-dried, 

the paper was sprayed with Ehrlich reagent and colors began to develop 

at room temperature after 30 minutes. All compounds which were tested 

yielded yellow colors, indicating a ureido group. 

(J) Descending Paper Chromatography 

Two different solvent systems were used for chromatography. These 

were butanol:acetic acid~water (2:1:1) and butanol:pyridine:water 

(6:4:3), Results are shown in Figure 6. 

Equal amounts of glycine, oxaluric acid, Fraction D and Fraction E 

were spotted on a Whatman Nb. 1 filter paper sheet. After the spots had 

dried, the papers were placed in the chromatographic chamber, previously 

equilibrated with solvent, and were developed 16 hours for the butanol 

acetic acid: water system and 24 hours for the butanol: pyridine : 

water solvent. After being air-driedj the papers were sprayed with 0.5 

per cent ninhydrin in acetone (with a few drops of pyridine) and heated 

in an oven at 105°c for several minutes. Glycine appeared as a purple 

spot, oxaluric oxime and Fraction D were slightly purple and Fraction E 

was brownish purple in color. 

d. Infrared Spectra of Oxaluric Oxime and Ureidoglycine 

The infrared spectra of oxaluric oxime and ureidoglycine are shown 

in Figures 7 and 8. About 1 mg of sample was mixed and ground well with 
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Figure 6. Paper Chromatography of Glycine, Oxaluric Oxime, 
Fraction D and Fraction E. 

1. Glycine; 2. Oxaluric Oxime; 
3. Fraction E (Ureidoglycine); 4. Fraction D. 
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100 mg of dried potassium bromide to form a pellet. Infrared spectro-

scopy was carried out using a Beckman IR-5A recording spectrophotometer, 

calibrated with polystyrene film at 6.2307 µ. 

According to Silverstein and Bassler (36), free primary amino acids 

are characterized by the following absorptions: a medium N-H stretching 

band at 3130-3030 cm-l (3,20-3,30 µ); a weak N-H stretching band at 1660 

to 1610 cm-1 (6.03-6.22 µ) and a stronger N-H bending band at 1550-

1485 cm-l (6.46-6.74 µh these bands are absent in N-substituted amino 

acids; the strongly ionized carboxyl absorbs at 1600-1560 cm-l (6.25-

6.40 g) and more weakly at about 1400 cm-l (7.15 µ). Primary amines are 

characterized by the following absorption: two absorption bands in the 

3500-3300 cm=1 region (2.86-~03 µ); the N-H vibrations in the region of 

1650 to 1580 cm-1 (6.06-6.33 µ); broad N-H bending absorption at 900-

650 c~-l (11.1 to 15.4 µ) due to bending vibrations; and weak absorption 

bands for the unconjugated C-N linkage at 1220-1020 cm-1 (8.20-9.80 µ). 

According to Colthup, Daly, and Wiberley (37), oximes absorb 

-1 6 6 -1 broadly at 3300-3150 cm due to bonded OH stretch, at 1 90-1 20 cm 

due to C=N stretch, and near 930 cm-l due to N-0 stretching. 

e. Gas-Liguid Chromatography of Oxaluric Oxime and ~~~idoglycine 

A Hewlett-Packard series 5750 B gas chromatograph, equipped with a 

hydrogen flame detector and F & M Scientific Corporation Model 50 Auto-

matic Attenuator was used for gas-liquid chromatography. A 1/8 tn. x 

6 ft, column packed with 10 per cent silicone gum rubber (F & M Part No. 

UC-W98) was used in this work. 

Trimethylsilyl derivatives were prepared by treating 10 mg samples 

with 1 ml of anhydrous pyridine, 0,2 ml of hexamethyldisila.zane, and 

0,1 ml of trimethylchlorosilane. The reaction was carried out in a 
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plastic-stoppered vial and the mixture was shaken vigorously for a few 

minutes and was then allowed to stand at room temperature. The solutions 

became cloudy on addition of trimethylchlorosilane and no attempt was 

made to remove this precipitate, which in no way interfered with the 

subsequent gas chromatography. From 1.0 to 5.0 µl of the resulting 

mixture was used for injection into the column. The trimethylsilyl 

(TMS) derivatives of oxaluric oxime and ureidoglycine were chromate-

graphed under identical conditions. The retention time of the TMS 

derivatives of oxaluric oxime were 20.2 minutes and 32.4 minutes 

(Figure 9). The retention time of the TMS derivative of ureidoglycine 

was 22.0 minutes and only one peak was obtained (Figure 10). Derivati-

zation of ureidoglycine was complete in 1 to 2 hours at room temperature 

and no additional peaks were formed on standing. Figure 11 shows the 

chromatographic pattern obtained from a mixture of oxaluric oxime and 

ureidoglycine. 

f. Ultraviolet Spectra 

Ultraviolet spectra for oxaluric acid, oxaluric oxime and ureido-

glycine were obtained on a Cary 14 recording spectrophotometer. For all 

compounds, standard 3 ml silica cells with 1 cm light paths were 

employed. Proper amounts of sample were dissolved in distilled water. 

Oxaluric acid absorbed maximally at 202 nm, oxaluric oxime at 199 nm 

and ureidoglycine at 193 nm. Figure 12 shows the absorption peaks for 

ureidoglycine and oxaluric oxime. 

F. Accumulation of Ureidoglycine by Mutant Lacking 
Ureidoglycine Aminohydrolase 

f. acidovorans, strain 14-1, is a mutant which, according to growth 

data, is blocked at ureidoglycine aminohydrolase and therefore would be 
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Figure 9, Gas Chromatography of Oxaluric Oxime 

Conditions: 8 X attenuation, range 102 , 
injector temperature 260°C, detector temperature 

0 . ··. 
290 C" flow :rate (Helium) 30 ml/mino 9 chart 
speedl''/3mino. Sample size,.1-5 µl. Temperature 
progra~: 100°C isothermal for 10 min., 6°c/min 
to 200 C, hold at upper limit for 10 min. 
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Figure 10. Gas Chromatography of Ureidoglycine 

Conditions: 8 X attenuation, range 102 , injector 
6 0 0 

temperature 2 0 C, detector tempera tur<' 29n C, flow 
rate (Helium) JO ml/min., chart speed l''/3mino 
Sample size, 1-5 µl. Temgerature program: l00°C 
isothermal for 10 min., 6 C/min. to 200°c, hold 
a,t upper limit for 10 min. 
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Figure 11. Gas Chromatography of Mixture of Oxaluric 
Oxime and Ureidoglycine 

Conditions: 8 X attenuation, range 102 , injector 
temperature 260°c, detector temperature 290°c, flow 
rate (Helium) JO ml/min. • chart speed 111/Jmino Sample 
size, 1~5 pl. Temperature program: 1oouc isothermal 
for 10 min., 6°C/min. to 200°c, hold at upper limit 
for 10 min. 
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expected to accumulate ureidoglycine in growth medium containing allan

toate. If ureidoglycine were accumulated in the growth medium., one 

would be able to detect the ureidoglycine by gas chromatography and by 

the ultraviolet absorption spectrum of the supernatant. 

f. acidovorans 14-1 was grown overnight in Oo5 per cent succinate 

plus 0.1 per cent allantoate in minimal salts at 30°c with shaking. 

Cells were harvested by centrifugation and resuspended in minimal salts 

containing Ool per cent allantoate. The cell suspension (3 x 109 cells/ 

ml) was incubated at 30°c with shaking. After 6 hours incubation, the 

supernatant was collected by filtration with a Millipore filter. A 0.1 

ml sample of the supernatant was diluted to 15 ml with distilled water 

for determination of the ultraviolet absorption spectrum and the 

remainder of the supernatant was lyophilized for gas chromatography. 

a. Ultraviolet Absorption Spectrum of Supernatant 

One-tenth ml of Ool per cent allantoate was diluted to 15 ml with 

distilled water and 0.1 ml of the supernatant obtained as described 

above was diluted to 15 ml with distilled water. Ultraviolet spectra 

were recorded using a Cary 14 recording spectrophotometer. Standard 3 ml 1 

silica cells with 1 cm light paths were employed for all samples. 

Absorption peaks for allantoate were located at 213 nm (shoulder), 190nm 

and 187 nm and the supernatant (6 hour sample) absorbed at 193 nm. 

Figure 13 shows the absorption spectra of allantoate and the supernatant. 

Comparison of Figure 12 and Figure 13 shows that the spectra for synthe

sized ureidoglycine and the material accumulated in the supernatant are 

essentially identical. 
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b. Gas-Liquid Chromatography of Supernatant 

Ten mg of allantoate and 10 mg of lyophiiized supernatant were 

treated separately with 1 ml of anhydrous pyridine, 0.2 ml of hexamethyl

disilazan~ andO.lml of trimethylchlorosilane. The reaction was carried 

out in plastic-stoppered vials and the mixtures were allowed to stand 

for 2 hours or longer at room temperature. A 1/10 dilution of the 

mixture containing supernatant was made with pyridine; the allantoate 

mixture was not diluted. Oneµ liter of the resulting mixture was 

injected into the gas chromatograph. The retention times of the TMS 

derivatives of allantoate were 11.0 minutes and 20.4 minutes. The reten

tion time for the TMS derivative of the supernatant was 22.0 minutes and 

only one peak was obtained. Figures 14, 15 and 16 show the gas chroma

tography pattern for TMS-allantoate, TMS-supernatant and for a mixture 

of the TMS derivatives of supernatant and synthesized ureidoglycine 

(1/1 by volume). Only one peak was obtained from the mixture of 

synthesized ureidoglycine and supernatant. 

G. Crystallization of Ureidoglycine 

Crystals of ureidoglycine were obtained from cold ethanol, by the 

following treatment: 

Fraction E was dissolved in a minimal amount of distilled water. 

Ninety-five per cent ethanol (V/V) was added to a final concentration 

of 75 per cent. The solution was filtered through a Millipore filter 

(HA, 0.45 µ pore size). The crystals were formed after standing over

night at 4°c as macroscopically visible needles. The melting point of 

this material was 223°c. A photomicrograph of crystalline ureidoglycine 

is shown in Figure 17, Magnification is approximately 100 X. 
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Figure 14. Gas Chromatography of Allantoate 

Conditions: 8 X attenuation, range 102 , injector 
temperature 26o0 c, detector temperature 290°c, flow 
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Figure 15. Gas Chr9matography of Supernatant 
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Incubated with Allantoate for 
6 Hours. 

Conditions: 8 X attenuation, range 102 , 
injector temperature 26ooc, detector temperature 
290°c, flow rate (Helium) 30 ml/min., chart 
speed t'/3 min, Sample size, 1-5 µl. Temperature 
program: 100°c isothermal for 10 min., 6°C/tnin. 
to 200°c, hold at upper limit for 10 min. 
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Figure 16. Gas Chromatography of Mixture of Super
natant and Synthesized Ureidoglycine. 

. 2 
Conditions: 8 X attenuation, range 10 , injector 

temperature 26o0 c, detector temperature 290°c, flow · 
rate (Helium) 30 ml/min., chart speed l"/3 111ino 
Sample Size, 1-5 ul. Temgerature program: 100°c 
isothermal for 10 min., 6 C/min. to 200°cp hold at 
upper limit for 10 min. 
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Figure 17. Photomicrograph of Crystals of Ureidoglycine 



CHAPTER V 

DISCUSSION 

A. Allantoate-Negative and Urease-Negative Mutants 

Two different pathways have been proposed for the conversion of 

allantoate to ureidoglycolate in microorganisms. Since a proposed inter-

mediate in one pathway, ureidoglycine, had not been either synthesized 

or isolated from biological sources prior to the present study, proof 

of the occurrence of this compound and the enzyme postulated to catalyze 

its degradation was lacking. The enzyme which converts allantoate to 

ureidoglycine, ammonia and CO2 had been studied in considerable detail 

but only ammonia had been measured specifically as a product of the 

reaction. Ureidoglycine had not been identified or isolated from the 

reaction mixture. The enzyme forming ureidoglycine, allantoate amido-

hydrolase, had properties which engendered considerable doubt as to its 

physiological importance. The necessity of activation by treatment at a 

fairly low pH suggested that its activity might be of little importance 

in vivo. If the formation of ammonia (and ureidoglycine) from allantoate 

were physiologically unimportant reactions, it would be expected that 

organisms capable of growing on purines or any of their degradation 

products, including allantoate, would necessarily possess the allanto-

icase pathway, whether or not the allantoate amidohydrolase pathway were 

also present. Indeed, it seemed possible that the allantoate amidohy-

drolase reaction might be an artefact resulting from acid treatment of 
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another enzyme, possibly allantoicase. Therefore, it was essential to 

determine whether both pathways could be present in the same organism. 

This aspect of the problem was approached through attempts to isolate 

allantoate-negative mutants based on the following analysis. 

If both pathways exist and can function in the same organism, it 

should be impossible to isolate an allantoate-negative mutant of that 

organism by a single mutation. If only one pathway is used, such 

mutants can be isolated. Presumably, if a mutant which were blocked at 

allantoicase were selected and the organism had both pathways, allantoate 

amidohydrolase could still be used by the organism, or if a mutant 

blocked at allantoate amidohydrolase or ureidoglycine aminohydrolase 

wer~ isolated, allantoicase could still be used by the organism. 

Therefore, it should be impossible to isolate allantoate-negative 

mutants if both pathways are available for use in the same microorganism. 

Mutants which are unable to use allantoate as carbon source but can 

use allantoate as nitrogen source have been isolated. Growth data shown 

in Table III indicate that strains 14-1, 2, 3, 4 and 5 off. acidovorans, 

strains 'IW-10,11, 12, 13, 14, 15 and 16 of A. aerogenes 'IW, and strain 

Tlb-2 of!_. aerogenes Tlb are mutants which are blocked at ureidoglycine 

aminohydrolase. Since the use of allantoate amidohydrolase would allow 

formation of one mole of ammonia from one mole of allantoate, these 

mutants can use allantoate as nitrogen source but not as carbon source. 

No other position for an enzyme block can be postulated which would 

explain the observed growth data for these mutants. The isolation of 

these mutants indicates that only one of the pathways can be used in the 

organisms studied; i.e., the pathway involving allantoicase is not 

present in these organisms. 
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The microorganisms which were used in this study are urease posi

tive. If one could isolate a urease-negative mutant and this mutant 

still could use allantoate as nitrogen source for growth, this would 
1, 

offer additional proof that the ammonia-forming enzymes are used in 

allantoate degradation by these organisms. Unfortunately, repeated 

attempts to isolate urease-negative mutants were unsuccessful. These 

unsuccessful attempts may be explained as due to lack of a sufficiently 

selective enrichment procedureo Because of the large amounts of ammonia 

formed from allantoate by microorganisms, ammonia diffuses through the 

replicate plates and prevents identification of mutants which might be 

present. Ammonia excreted into the medium by wild type cells also would 

interfere with enrichment by the normal procedures which are dependent 

upon differential killing of non-growing (mutant) cells. 

B. Synthesis of Ureidoglycine 

Oxaluric acid is a known compound. Two methods··for· its 

synthesis have been reported, using different starting materials. 

Andrews and Sell (Je) reported that oxaluric acid can be made from 

parabanic acid. A sample of parabanic acid was dissolved in the minimal 

amount of warm water, and concentrated base was added dropwise until a 

pH of about 10 was reached. On cooling the resulting solution, the salt 

crystallized out in thin needles. The free oxaluric acid was most 

easily prepared by acidification with concentrated hydrochloric acid of 

a warm water solution of the salt until a pR value of 2.0 was reached. 

The method of Biltz and Schrauder (31), which used alloxan as 

starting material, was chosen for use in the synthesis of oxaluric acid 

in these studies. A yield of approximately 50 per cent was obtained. 

Oxaluric acid is only slightly soluble in water at room temperature and 
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decomposes at approximately 210°C. Oxaluric acid is decomposed by acid 

or alkali forming urea and oxalic acid. The synthesis of the oxaluric 

oxime was carried out at a pH of 7.0 to prevent the decomposition of 

oxaluric acid. 

The synthesis of oxaluric oxime has not been reported to our knowl-

edge. The compound which was synthesized in this study decomposed at 

0 
272 C. The infrared spectrum, gas chromatographic analysis and ultra-

violet absorption spectrum for this compound were shown in Figures 7, 

9 and 12, respectively. 

Rylander (33) pointed out that "the course of oxime hydrogenation 

appears to be unusually sensitive to the catalyst, substrate, and 

reaction environment, making generalization about these reductions 

particularly tenuous •11 He also reported a comparison of palladium, 

platinum, rhodium and ruthenium in hydrogenation of acetoxime and 

3-pentanone oxime; rhodium gave the best yield of primary amine. The 

products from hydrogenation of oximes depend to an unusual degree on the 

solvent employed. Hydrogenation of oximes in neutral media usually 

leads to a mixture of primary, secondary, and tertiary amines. Hartung 

(34) reported that formation of secondary amines could be prevented by 

carrying out the hydrogenation in acidic media. Several acidic solvents 

have been used for hydrogenation of oximes, such as acetic, sulfuric, 

phosphoric, and perchloric acids and acetic acid containing hydrogen 

chloride. In the present study, the synthesis of ureidoglycine was 

carried out in acetic acid. Five per cent palladium on carbon was used 

as catalyst for the hydrogenation of oxaluric oxime. The yield obtained 

was 30 per cent. The very slight solubility of oxime in acetic acid may 

explain the low yield. Other acidic media and catalysts might profitably 



be tested for the purpose of obtaining higher yields in hydrogenation 

of oxaluric oxime. 

C. Characterization of Oxaluric Oxime and Ureidoglycine 

1. Identification of Hydrogenation Products 
by Biological Methods 

P. acidovorans 14-1 and A. aerogenes TW-16 are mutants which are 

blocked at ureidoglycine aminohydrolase. P. acidovorans 14 and A. 

I 

aerogenes TW are wild types which should use ureidoglycine as carbon 

and/or nitrogen source; the mutants should not. Data given in Tables 

IV and V show that the two wild type organisms can use Fraction E 

(ureidoglycine) as carbon and/or nitrogen source. The mutants cannot 

u.se Fraction E even as a nitrogen source in the presence of a readily 

used carbon source. This indicates that Fraction Eis ureidoglycine. 

There was a possibility that oxaluric oxime and/or ureidoglycine 

might have decomposed to form urea and glycine under the very acidic 
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conditions which were used for the hydrogenation. Both wild types and 

mutants can use glycine and urea as nitrogen sources but neither mutant 

could use Fraction E as nitrogen source. If Fraction E contained urea 

and/or glycine, both wild types and mutants should be able to use 

Fraction E as nitrogen source. Since only the wild types can use 

Fraction E as nitrogen source, it can be concluded that Fraction E 

does not contain urea or glycine. 

It was shown in Figures 4 and 5 that ammonia is formed by a crude 

extract of~. aerogenes TW using Fraction E (ureidoglycine) as substrate 

at pH 7.0 or 8.5. This is additional evidence that Fraction Eis ureido-

glycine. Ammonia formation was quite slow and the reason for this is 

not known. Unfortunately, not enough ureidoglycine was available to 



allow a complete study of the optimum conditions for enzyme activity. 

Since the reaction is a deamination, it is possible that a cofactor such 

as pyridoxal phosphate may be required. Substrate concentration was 

decreased to one-fourth of the concentration which was used in the 

assays shown in Figures 4 and 5 to prevent possible substrate inhibi-

tion, but the velocity of the reaction was not increased. Ammonia-

forming enzyme activity was enhanced several-fold by acid-pretreatment 

of the extract when allantoate was used as substrate and the maximum 

specific activity is attained using incubation for 30 minutes at 30°c 

(1). Vogels has never determined which of the two ammonia-forming 

enzymes required acid-pretreatment. According to Figures 4 and 5, 

apparently allantoate amidohydrolase is the one which requires acid-

pretreatment, since acid-pretreatment inhibited the activity of 

ureidoglycine aminohydrolase. 

2. Identification of Ureidoglycine by 
Nonbiological Methods 

Both oxaluric oxime and ureidoglycine are ninhydrin positive. 

Since oxaluric oxime yielded a color on heating but not on standing 

overnight in the cold and ureidoglycine gave a color reaction both on 

heating and on standing overnight in the cold, it may be concluded that 

oxaluric oxime is not an a-amino acid and that ureidoglycine is an 

a-amino acid. Paper chromatography (Figure 6) showed that Fraction E 

does not contain glycine; this confirms the conclusion based on growth 

studies (Table V). The Rf values for oxaluric oxime and Fraction E are 

sufficiently different in the butanol:pyridine:water system to show that 

Fraction Eis not the starting material (the oxime). Only one spot was 

detected from Fraction E in two solvent systems in which the distance 
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traveled was quite different. If a secondary amine were present in 

Fraction E it should have been detected as a yellow spot with ninhydrin. 

No such spot was detected. Oxaluric oxime and Fraction E, when tested 

with Ehrlich's reagent yield a yellow color, indicating that both 

contain a ureido group as expected. 

The infrared spectrum for oxaluric oxime showed broad absorption at 

-1 6 6 -1 -1 3300-3150 cm , 1 90-1 20 cm and 930 cm due to OH stretch, and C=N 

stretch of oximes, indicating the synthesized oxaluric oxime has this 

functional Fraction E absorbed at 3130 -1 and 1640 -1 to group. cm cm due 

N-H stretching of the amino acid; at 1600 -1 and 1400 -1 due to the cm cm 

carbo~yl group of the amino acid. A stronger N.-H banding does not 

appear at 1550-1485 cm-1 for N-substituted amino acids. Since a band 

appeared at 1550 cm-l for Fraction E, this compound is not an N-

substituted amino acid. Two absorption bands appeared between 3500 and 

-1 3300 cm for 

6 -1 900- 50 cm • 

Fraction E and also at 16.50-1580 cm-1 , 1220-1020 cm-l 

These are characteristic absorptions for primary amines. 

Trimethylsilyl derivatives of glycine; urea, allantoate, ureido-

glycolate, oxaluric oxime, and Fraction E were prepared and subjected to 

gas-liquid chromatography. The retention times for these compounds were 

as follows: 

glycine 
urea 
allantoate 
oxaluric acid 
oxaluric oxime 
ur.eidoglycola.te 
Fraction E 

23 minutes 
20 minutes 
11 and 20.4 minutes 
20.2 and J2.4 minutes 
20.2 and 32.4 minutes 
20.5 and 21.4 minutes 
22.0 minutes 

Elution patterns for the TMS derivatives of oxalur.ic oxime, Fraction E 

and the mixture of Fraction E and oxaluric oxime were shown in Figures 9, 

10 and 11. Since only one peak was detected with Fraction E, it may be 
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concluded that this fraction is not a mixture of primary, secondary and 

tertiary amines and is essentially pure. These data provide evidence 

that Fraction Eis not and does not contain glycine, ur.ea, allantoate, 

ureidoglycolate, oxaluric acid or oxaluric oxime. 

Ultraviolet spectra of allantoate, ureidoglycolate, oxaluric acid, 

oxaluric oxime and Fraction E were recorded with a Cary 14 recording 

spectrophotometer. The absorption maxima of these compounds were as 

follows: 

allantoate 187, 190 and 213 nm 
ureidoglycolate 18.5 nm 
oxaluric acid 202 nm 
oxaluric oxime 199 nm 
Fraction E 193 nm 

The UV spectra also offer evidence that Fraction Eis not and does not 

contain allantoate, ureidoglycolate, oxaluric acid or oxaluric oxime. 

D. Accumulation of Ureidoglycine by 
Allantoate-Negative Mutant 

]:, acidovorans 14-1 is a mutant which is blocked at ureidoglycine 

aminohydrolase and therefore should accumulate ureidoglyeirte when 

exposed to allantoate. Gas-liquid chromatography of the TMS derivative 

of supernatant from mutant cells incubated with allantoate yielded only 

one peak at a retention time of 22. 0 minutes , and a 1 : 1 mixture of TMS 

derivatives of the supernatant and Fractio~ E also yielded only one peak 

with a retention time of 22.0 minutes. The ultraviolet spectrum of the 

supernatant absorbed maximally at 193 nm and the UV absorption maximum 

of Fraction E was also at 193 nm. These results support the conclusion 

that Fraction Eis ureidoglycine and]:. acidovorans 14-1 is a mutant 

which is blocked at ureidoglycine aminohydrolase and can acc"Q.mulate 

ureidoglycine in the medium. 
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E. Metabolism of Allantoate by Microorganisms 

The three different pathways which had been proposed for the degra

dation of allantoin in microorganisms are shown in Figure 18. These 

pathways differ in the number of reactions involved in the conversion of 

allantoate to glyoxylic acid. The first pathway proposed (5) included 

reactions 1 and 2 and assumed the direct conversion of allantoate to 

glyoxylate and urea in a single reaction. The pathway proposed by Wolfe 

and co-workers (6, 7) included one intermediate, ureidoglycolate, and 

included reactions l, 3, 6 and 7 (Figure 18). Ureidoglycolate synthe

tase catalyzes the conversion of ureidoglycolate to glyoxylate and urea 

(6, 7, 9). The second pathway, proposed by Vogels (17), included two 

intermediates between allantoic acid and ureidoglycolate and involved 

reactions 1, 4, 5, 6, 7 and 8. Allantoate amidohydrolase and ureido

glycine aminohydrolase are the enzymes which catalyze reactions 4 and 5. 

All the work described above was based on the chemical analysis of 

reaction mixtures. 

Bruce (13) obtained proof by genetic studies with f• aeruginosa 

of the allantoirt pathway sequence as proposed by Wolfe and co-workers 

(6, 7). The fact that Bruce was able to isolate mutants of this organ

ism which lacked allantoicase and were unable to metabolize allantoin or 

allantoate indicated that only one pathway could be used in P. 

aeruginosa. Winter (12) also obtained proof by enzyme studies of 

allantoin-negative mutants off. aeruginosa, of the pathway sequence 

as proposed by Wolfe and co-workers (6, 7). Winter (12) reported that 

synthesis of the enzymes of the allantoin pathway by f. aeruginosa. is 

coordinately controlled, although the loci for the enzymes studied are 

not closely linked. Based on growth and/or enzymatic data, 



0 
II 

H N C-NH' 
2\ I C=O 
Q:C C-NH/ 

. '\_N/H 

H 

Allantoin 

( I l 

0 0 0 
II II (2) II 

NH 2 -C-NH-CH--NH-C-NH -HC-COOH 
I 2 
coo H Glyoxyllc acid 

Allantoic acid 

0 

["00:.\ 1 NH
2
-~~NH

2 

. . (5) // 

Urea 

COOH O OH (7) NADO 

73 

0 

NH 2 -~H-NH-~-NH2\ NH2-C-NH-~.H-CO~OH . ' 

· . II II , 
NH

3 
Ureidoglycolate NH

2
-C....,.NH-C-COOH Ureidoglycine 

(8) 

0 0 
II .11 
C-NH-C-NH 
I 2 
COOH 

0.11aluri c acid 

0 
II 

,., , 
0 

II 

011aluric acid 

HC-COOH 

Glyo11ylic cicid 

+ NH
2
-C-NH2 

NH
2
-cH

2
-COOH 

Glycine 

FIGURE 1!3 

Urea · 

PROPOSED PATHWAYS FOR ALLANTOIN DEGRADATION 



74 

Meganathan (14) reported that in species belonging to the genera Aero

bacter, Alcaligenes, Arthrobacter, Escherichia, .Flavobacter_i~, Nocardia, 

and Pseudomonas, the pathway of degradation is the same as that proposed 

by Wolfe and co-workers (6, 7). In Streptococcus allantoicus, allan

toate amidohydrolase activity, as proposed by Vogels (17) was detected. 

Vogels (17, 18) reported that the degradation of allantoic acid to 

ureidoglycolate was mediated by allantoate amidohydrolase and ureidogly

cine aminohydrolase, but not by allantoicase, in Pseudomona~ acidovorans, 

Arthrobacter allantoicus, Streptocpccus allantoicus, Esch~richia .9.£1i, 

Escherichia coli var. acidilactici and Escherichia freundii. But 

Trijbels and Vogels (39) agreed that in certain microorganisms, e.g., 

P. ~eruginosa, allantoate is degraded by allantoicase. 

Recently, van der Drift, de Windt, and Vogels (40) reported that it 

seemed unnecessary to postulate the existence of ureidoglycine amino

hydrolase since a transamination reaction involving ureidoglycine and 

glyoxylate seemed to proceed nonenzymatically. They concluded that the 

conversion of ureidoglycine to ureidoglycolate was most likely catalyzed 

by allantoate amidohydrolase. All the work by Vogels and his associates 

with allantoate amidohydrolase and ureidoglycine arninohydrolase has 

been based on the chemical analysis of enzymatic reaction mixtures. 

In the present investigation, mutants which are blocked at ureido

glycine amino~ydrolase have been isolated and ureidoglycine has been 

synthesized. The utilization of the synthesized ureidoglycine by wild 

type organisms capable of growing on allantoate, the inability of 

mutants lacking ureidoglycine aminohydrolase to utilize the synthesized 

compound, the formation of ammonia from the synthesized compound by 

extracts of allantoate-grown cells, and the formation from allantoate of 
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a compound identical to the synthesized ureidoglycine by mutants lacking 

ureidoglycine am.inohydrolase offer the first concrete evidence that 

ureidoglycine is an intermediate in the catabolism of allantoin by some 

bacteria. The data obtained in the present study do not allow an 

unequivocal decision to be made concerning the existence of two distinct 

enzyme molecules for the allantoate amidohydrolase and ureidoglycine 

aminohydrolase activities. 

Growth data using mutants indicate that growth on allantoate as 

nitrogen source occurs at the wild type rate. However, the allantoate 

amidohydrolase reaction would not be required to proceed as rapidly to 

provide ammonia for growth as to provide carbon for biosynthetic reac

tions and for energy. Assays of ammonia formation by whole, non

proliferating cells indicated that ammonia formation proceeded at 

slightly less than the expected rate based on comparison with wild type 

cells. However, the allantoate amidohydrolase reaction in extracts 

prepared from mutants has a greatly reduced velocity compared to that 

of the wild type enzyme. Since three mutants, derived from three dif

ferent parental strains and therefore unquestionably independent, 

exhibited similar characteristics, it must be concluded that loss of 

ureidoglycine am.inohydrolase activity necessarily affects allantoate 

amidohydrolase activity. This can be interpreted in two ways. Allanto

ate amidohydrolase could be very sensitive to product inhibition by 

ureidoglycine, so that accumulation of this compound in the reaction 

mixture would rapidly inhibit formation of ammonia. This explanation 

is consistent with the apparent difference in behavior of the enzyme in 

whole cells and in extracts. Whole cells apparently excrete ureidogly

cine into the medium and it may therefore fail to accumulate in the cell 
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sufficiently to cause significant inhibition of allantoate amidohy

drolase activity. Alternatively, a single enzyme molecule may be 

responsible for both enzyme activities. If this explanation is correct, 

it seems necessary to postulate that allantoate amidohydrolase is com

posed of subunits, most probably of two different polypeptides, one of 

which has the active site for allantoate degradation and the other the 

active site for ureidoglycine degradation. Normal configurations of 

both peptides could be required for full activity in either reaction. 

It would seem quite improbable that three different mutants would have 

defects in a single polypeptide which would eliminate ureidoglycine 

aminohydrolase activity completely while none of the three is suffi

ciently deficient in allantoate amidohydrolase activity to affect growth 

on this compound as a nitrogen source. The method of selection used in 

mutant isolation should have detected with equal probability mutants 

lacking either activity. If the two activities were mediated by two 

completely independent proteins, it is equally improbable that both 

activities could be affected by a single mutation. None of the mutants 

used in these studies reverted and therefore they may be assumed to be 

deletion mutants. If the loci for the two enzymes were adjacent, a 

single deletion could affect both activities even though the proteins 

had completely independent activity. However, the probability that this 

specific type of deletion would occur in three independent mutants is 

extremely low. 

Based on the available data, it is concluded that normal ureidogly

cine aminohydrolase activity is required for normal allantoate amido

hydrolase activity. The basis for this requirement may be either removal 
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of an inhibitory product or the formation of an enzyme aggregate having 

both activities and requiring an unaltered configuration for both 

components for maximal velocity of either reaction. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Three microorganisms capable of using allantoate as the sole source 

of carbon and nitrogen were used in this investigation. These were 

Pseudomonas acidovorans 14, Aerobacter aerogenes TW and Aerobacter 

aerogenes Tlb. All possess the ammonia-forming pathway for allantoate 

degradation, i.e., the enzymes allantoate amidohydrola.se and ureidogly

cine aminohydrolase. Mutants lacking ureidoglycine aminohydrolase were 

isolated from each wild type strain. These mutants are capable of 

using allantoate as nitrogen source but not as carbon source. 

Ureidoglycine, a proposed intermediate in the pathway, has been 

synthesized. It has been characterized as follows: 

1. Reaction with ninhydrin at room temperature indicates that the 

compound is an ~-amino acid. 

2. Reaction with Ehrlich's reagent to form a yellow color 

indicates the presence of a ureido group. 

3. The infrared spectrum has absorption bands characteristic of a 

primary amine and an amino acid. 

4, The compound has maximum UV absorption at 1930 angstroms. 

5. Retention time for the trimethylsilyl derivative of the com~ 

pound in gas-liquid chromatographic analysis was 22.0 minutes and a 

single, well-defined peak was obtained. 
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6. The wild type strains, E• acidovorans 14 and!• ~erogenes TW, 

use the compound as a sole source of carbon and nitrogen. 

7. Mutants lacking ureidoglycine aminohydrolase cannot use the 

compound as a source of either carbon or nitrogen. 

8. Growth data, infrared and ultraviolet spectroscopy, melting 

points, and paper and gas-liquid chromatography were used to show that 

the compound is not, and does not contain, oxaluric oxime, glycine, urea, 

allantoate or ureidoglycolate. 

9. Ammonia was formed from the compound by a cell-free extract of 

Aerobacter aerogenes TW. 

10. Supernatant fluid from a suspension of Pseudomonas acidovorans 

14-1, which lacks ureidoglycine aminohydrolase, was collected after 

exposure of the cells to allantoate for 6 hours. The supernatant con

tained a single compound which had an ultraviolet spectrum identical to 

that of the synthesized ureidoglycine and formed a TMS derivative 

inseparable from that of ureidoglycine by gas-liquid chromatography. 

From these data, it is concluded that the synthesized compound is 

ureidoglycine. It is also concluded that ureidoglycine is an essential 

intermediate in the degradation of allantoate by the organisms used in 

this investigation and that ureidoglycine aminohydrolase activity is 

essential for the complete degradation of allantoate. If the organisms 

studied had possessed the allantoicase pathway in addition to the allan

toate amidohydrolase pathway, or if ureidoglycine degradation could be 

accomplished solely by non-enzymatic transamination, mutants with the 

characteristics of those isolated in this investigation could not have 

been obtained. The effect of a mutation causing loss of ureidoglycine 

aminohydrolase activity upon the activity of allantoate amidohydrolase 
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indicates that these reactions may be catalyzed by a single protein 

molecule with two different active sites or, more likely, by an aggre

gate in which the structural integrity of both components is required 

for full activity in either reaction. 
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