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PREFACE 

This dissertation is directed at obtaining a state model of the 

airborne radar ground clutter stochastic process which can be applied 

in schemes used to discriminate against clutter. Development of the 

model has been based upon the change in the radar cross section of a 

ground resolution cell viewed from an aircraft as the aircraft changes 

position. The basic randomness used in the development of the process 

was assumed to be the random separation of reflection points within a 

resolution cell. The process is shown to be nonstationary. 

The developed model includes the clutter process autocorrelation 

function which is used to obtain an approximation of decorrelation dis~ 

tance. The Bayesian approach to Kalman filtering is alternatively 

applied through use of the clutter model to obtain equations for 

recursive filtering. 
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CHAPTER I 

INTRODUCTION 

Airborne radar systems which view the ground are plagued with a 

.particular type of interference phenomenon commonly called ground 

clutter or clutter. This clutter generally results from constructive 

and destrµctive interference between the returns from many individual 

scatterers, each of which is too small to be resolved by the radar. 

The fluctuation or va:i;-iation in the return from a ground patch (ceH) 

therefore results from relative motion between the individual scatterers 

with respect to the viewing radar. The dominant source of this relative 

motion and therefore that of clutter is usually aircraft motion rather 

than scatterer motion. It is the clutter resulting from aircraft motion 

which is considered in this thesis. This clutter will be shown to be a 

nonstationary stochastic process which produces a modulation of the 

radar cross section of a ground cell in a noise~like fashion. 

Statement of the Problem 

A pulsed radar may be considered a sampling device which samples 

the ground clutter process at some pulse repetition frequency (PRF). 

The degree of correlation from pulse to pulse may then be described by 

use of a clutter autocorrelation function, and the information obtained 

through use of this function is essential in most clutter discrimination 

schemes. Therefore, the problem considered herein is the development of 
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a mathematical clutter model. Solution 0£ this problem is in part 

dependent on the use of the concept o~ radar cross section (RCS) to 

derive a clutter time autocorrelation function and other first-order 

and second-order moments of the cl.utter process which are necessary 

parts of the clutter model. The basic model developed is a discrete 

state model; however, it will be seen that the basic relation is the 

autocorrelation function. 

Clutter cell radar cross section (RCS) is a random variable whose 

behavior characterizes the clutter process. Therefore, the clutter 

process is developed in terms of cell RCS. A particular cell is desig­

nated by its position on a coordinate system located at the aircraft. 

A single cell then is analyzed in terms of its varying RCS which is 

produced by changes in the aircraft viewing posit~on with respect to 

the fixed position of the cell. This varying RCS is a function of air­

craft motion which may be converted to a function of time through a 

knowledge of aircraft velocity, The statistics of the variation in 

cell RCS as a function of aircraft position and velocity (or time and 

time difference) is of primary interest because this technique can be 

used to develop a clutter model which will be generally applicable to 

most moving pulsed radars. Such a model is particularly useful since 

it can be related to any particular radar on the basis of a minimal 

number of criteria: (1) radar beamwidth and pulse width, which desig­

nate cell size, (2) wavelength, and (3) radar position and rate of 

change of position with respect to the reflecting surface. 

The clutter model developed on the basis of the iibove criteria 

will be shown to be easily adapted to the solutions of filtering prob­

lems. It can also be used to provide insight into the clutter process. 
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In :!:act, a simple expression for decorrelation distance (or time) can 

be directly obtained from the autocorrelation function in terms of only 

antenna aperture width and antenna azimuth angle. In addition, the 

clutter power density spectrum at the output of a square law detector 

can be obtained from the Fourier transform of the clutter autocorrela­

tion function. 

Although such a model represents a nonstationary process, short­

·term, wide-sense stationarity will be justified and used for time.­

changes on the order of one radar scan time. 

Approach to the Solution 

This study of airborne radar ground clutter will be conducted on 

the basis of three major substudies. First, a state model of the clut­

ter process will be developed. Then the state model will be analyzed 

by studying the resulting autocorrelation function and by studying the 

relationships derived from the autocorrelation function, such as process 

spectrum and decorrelation distance. The final substudy will be di~ 

rected to developing and comparing several approaches to the application 

of the clutter state model. 

The state model will be developed in three successive steps. A 

probability density function will be derived to model the basic random~ 

ness as a first stepo Next, this randomness will be used in the expres~ 

sion of the phase of the cell-reflected voltage through the use of the 

geometry of aircraft motion with respect to the ref lee ting eel 1. Then 

a phasor addition of these voltages will be used to obtain an expression 

of cell radar cross section and time will be introduced by considering 

the cell radar cross section seen by the radar on successive pulse$• 
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The cell radar cross section thus derived as a function of time will be 

shown to constitute a first-order difference equation of the state of 

cell radar cross section from pulse to pulse, i.e., a state model. 

Analysis of the state model will be performed through a study of 

the developed autocorrelation function. Computer calculations of the 

autocorrelation function and its Fourier transform will be obtained at 

discrete points, and these functions will be plotted in three dimen­

sions. Analysis of the function plots will allow the determination of 

several invariant properties of the clutter process. However, it will 

be shown that the rate of availability of clutter information is not 

invariant but depends upon aircraft velocity, antenna size, and antenna 

azimuth angle. 

The final major substudy will consist of a limited study of appli­

cations. It will be limited in the sense that the clutter model will 

be used in a few typical applications to demonstrate its capabilities 

of clutter discrimination, and the application of the subject model 

will be compared with other clutter discrimination techniques. 

Previous Work in the Area 

Much of the early work done on radar clutter was accomplished at 

the Massachusetts Institute of Technology in the 1940's. Some of this 

work was documented in the Radiation Laboratory Series. Rice (1) de­

fined a general approach which can be applied to many types of clutter 

power. This approach is based on the assumption that the voltage re-, 

turned from individual scatterers can be divided into orthogonal com­

ponents, and that the amplitude distribution of each component is 

gaussian and its phase distribution is uniform. When this rationale is 



used, the magnitude of the square of the sum of these ga.ussian compo­

nents results in a Rayleigh distribution £or clutter power. However, 

this approach is often used without developing an expression for the 

time autocorrelation function which is the key relationship. 

5 

The airborne clutter problem has been considered under the assump~ 

tion 0£ time stationarity in several previous studies of clutter fil­

tering (2 ,3, 4). The sea clt1tter problem is closely related to the air­

borne clutter problem, and it has been demonstrated that sea clutter 

effects can be reduced through the use of a high-scan-speed radar (5)o 

When a high scan speed is used and only one or two hits are obtained 

per scan, the average data rate can be kept constant while the time be­

tween successive pulses (or pulse pairs) is increased to allow time for 

decorrelation. Integration will then smooth the sea clutter (or ground 

clutted. In the similar case of airborne radars, it has also been 

shown that pulse .. to-pulse frequency stepping (frequency agility) pro­

vides clutter decorrelation and thus facilitates clutter smoothing (6,7). 

The 11 linois Institute of Technology (IIT) recently used a mixture 

of theoretical and data studies to develop a general clutter model for 

predicting airborne radar performance in ground clutter environments 

(8). In this model, both discrete and distributed clutter are consid­

ered on the basis of generally assuming a log normal clutter distribu­

tion. The model of the triangular correlation function for distributed 

clt1tter used in the IIT study is a simplified approximation similar to 

the autocorrelation function subsequently developed in this thesis. 

Results of a previous study done at General Electric show that one 

antenna aperture width is the approximate distance a radar must travel 

between pulses to attain pulse-to~pulse decorrelation (9). A value of 
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approximately one aperture width is s1,.1bsequently derived in this thesis 

as the distance necessary for pulse~to-pulse decorrelation of clutter 

at an azimuth angle of 30 degrees. Completely different approaches 

were used in obtaining these two similar relationships. 



CHAPTER II 

STATISTICAL MODEL OF GROUND SCATTERER SEPARATION 

The statistical model of ground scatterer separation will be 

developed by (1) establishing a rationale, (2) making the basic assump­

tions necessary to implement this rationale, and (3) performing the 

probabilistic development on the basis of the rationale and assumptions. 

Rationale 

In this development of a statistical model of ground scatterer 

separation, the clutter cell RCS is considered a random var;i.able which 

is composed of the RCS of many elementary scatterers within the cell. 

Since the clutter cell is defined as the smallest resolvable ground 

patch, the cell RCS represents the contribution of all elementary 

scatterers in the cell which react within the constraints of the reso­

lution of the radar. Therefore, in this study, the clutter cell size 

will be designated on the basis of some range resolution and some azi­

muth resolution, ioeo, on the basis of the radar ground resolution cell. 

Consequently, cell RCS will be determined on the basis of the construc­

tive and destructive interference between elementary scatterer reflec ... 

tions. 

This interference is primarily a function of the scatterer separa ... 

tion in both range and azimuth. Consequently, a two-dimensional mathe­

matical model of sc~tterer separation on the ground is required even 
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though the cell RCS at any instant is determined only as a function of 

1 the range separation of elementary scatterers. The second spatial di-

mension is required to establish the rate of change of s~atterer sepa~ 

ration. 

lt will be subsequently shown that scatterer position within a 

cell is assumed to be random; consequently, scatterer separation within 

a cell will also be a random phenomenon since it :is a function of scat .. 

terer position. Therefore, a statistical model of ~catterer separation 

is required because of the random nature of scatterer separation. 

Assumptions 

The statistical model is based upon several rather general assump-

tions about the nature of terrain ;i..n terms of the elementary scatterers 

within a cell. These assumptions are as follows: 

(1) The location of independent scatterers is characterized by a 

uniform random distribution. 

(2) Scatterers are nondominant, isotropic, points. 

(3) A cell contains a large number of scatterers. 

Assumptions (1) and (3) are self-explanatory; nondominant, elementary 

scatterers are defined as those whose amplitudes are approximately 

equal. These assumptions are generally the same as, if not less re-

strictive than, the assumptions made by previous investigators (2). For 

example, Rihaczek (10) assumes, for purposes of clutter filtering, that 

ground clutter is derived from scatterers which are unresolvable, large 

1on the assumption of equal return from each scatterer within the 
cell (except, of course, for phase). 
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in number, independent, uniformly distributed in range, randomly 

located, and of comparable length, and.that such. scatterers give ri,se to 

clutter with characteristics of stationary gaussian noise. 

Although the assumptions made in this thesis in general tend to 

eliminate applications to the return from cities and ml:j.n .. made objects, 

at microwave frequencies even these man .. made objects will generally 

exhibit an RCS made up of the returns from many separate scatter points. 

Therefore while these assumptions will degrade the usefulness of such a 

model in modeling man-made objects, the model is by no means completely 

inapplicable in these cases. However, th~ assumptions have been made 

for the primary purpose of modeling natural terrain which is of con-

siderable interest in ground mapping by radar. 

Development of Probability Density Function 

By assumption, scatterers within a cell are characterized by a 

two-dimensional uniform distribution of position as shown in Figure 1 

(Figure 2 will be shown to result from Figure 1). This two-dimensional 

probability density function (joint density function) shown in Figure 1 

may be expressed as the product of the marginal probability density 

functions of x1 and x2 , i.e., 

f (x) = fx (xl)fx (x2) = (.!_) (.!_) for 0 < xl < Kl 
X 1 2 Kl K2 

0 < x2 < K2 (2 .1) 

;= 0 elsewhere 

Therefore x
1 

and x
2 

are independent random variables. 

These two .. dimensional position points may be considered random 

vectors. Then :i.f two sample ~andom vectors, X and Y, are withdrawn at 



f (i) 
X 

Figure 1. Probability Density Function of 
Scatterer Position 

1 

f <z) 
z 

7 

Figure 2. Probability Density Function of 
Scatterer Separation 

10 
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random from this distribution, X and Y are indepenoent, ioentically 

distributed :random vectors. But the random vector of interest is the 

difference between X and Y, which is 

Z = X - Y (2. 2) 

where 

(2 .3) 

and 

(2 .4) 

Thus x
1 

is independent of x
2 

and Y
2

, and Y1 is independent of x2 and Y
2 

so z
1 

is independent of z2 • It then follows that 

f_(z) 
z 

(2. 5) 

but the density function of z1 is the convolution of the density of x1 

with -Y1 (11, page 189) which is 

CX) 

fz (zl) = J fX (zl+yl)fy (yl)dyl 
1 ~CX) 1 1 

(2. 6) 

= 0 elsewhere 

Similarly 

(2. 7) 

= 0 elsewhere 



12 

The combination of Equations 2.5, 2.6, .and 2.7 results in the desired 

probability density function as shdwn in Figure 2. This density func-

tion is the statistical model of elementary scatterer separation ex-

pressed as a mathematical functton. In terms of the components of the 

random vector Z, this function becomes 

1 
= K1K2 (1 -

= 0 

where 

:z;l = scatterer separation on the ground 

z2 = scatterer separation on the ground 

Kl = cell dimension in the zl direction 

K2 = cell dimension in the z2 direction. 

for ~K1 < z 1 < K1 

.,K2 < z2 < K2 

elsewhere 

(2. 8) 

along the radius vector 

normal to the radius vector. 

This function describes the basic randomness in the clµtter process, 

and it will be used in conjunction with the deterministic model to 

describe the clutter process. 



CHAPTER III 

DETERMINISTIC MODEL BASED UPON GEOMETRY 

A deterministic model, based upon geometry, is neces!;!ary for the 

description 0£ the clutter process for the following reasons. The 

clutter process is to be modeled in terms of aircraft motion since it 

is aircraft motion which gives rise to the time variation. The separa­

tion of scatterers has been described statistically; however, it is the 

phase difference between scatterers, a function of scatterer separation, 

which determines the interference phenomenon. Therefore, phase differ­

ence and rate of change (first derivative) of phase difference, with 

respect to distance along ground track, will be described in terms of 

aircraft motion and of the z
1 

and z
2 

components of the random vector for 

scatterer separation. The model of the geometric relationships is pre­

sented in Figure 3. 

The symbols and notation used in the model are described in the 

following list: 

r = slant range to scatterer 

6r = slant range separation between scatterers 

ground track= path of aircraft projeqted onto the ground 

u = distance aiong ground track 

u = aircraft velocity along groun~ track 

v = distance normal to ground track 

h.= aircraft altitude 

13 
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Figure 3. Geomet~ic Mod~l 
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y1,y2~y3 = direction angles to resplution cell 

ot = azimuth angle to resolution cell 

c = propagation velocity of an electromagnetic wave 

T = radar pulse width 

68 = phase difference between two scatterers 

;\ = wavelength 

cp = antenna horizontal beamwidth 

CT 
K1 = r- csc y 2, i.e., range resolution 

~2 = rep, i.e., azimuth resolution. 

Ass1,1Inptions 

15 

The geometric model shown in Figure 3 is the model generally used 

for the solution of the rad~r problem. Bowever, three a:;sumed approxi-

mations are inherent in this traditionally used model. First, it is 

assumed that range resolution is determined solely by pulse width and 

depression angle and not vertical beamwidth (i.e., large vertical beam-

width). For most practical purposes, use of this approximation cat.1ses 

no discernable error at ground range distances larger than aircraft 

altitude, but a model based on this approximation cannot be used when 

radars gather data from the ground at near vertical incidence, e.g., 

radar altimeters and some doppler radars. Second, it is assumed that 

the resolution cell in this model is a rectangular rather than an 

annular-section resolution cell. Since small horizontal beamwidths are 

us~d on most airborne radars, t,tse of this approximation causes negligi-. 

ble error. Third, this. mod~l is based on the assumption that Earth is 

t: lat (but not smooth). 
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Development of Geometric Relationships 

The geometric model is made up of two coordinate systems. The 

first is a three-dimensional coordinate system at the aircraft and it 

is translating at aircraft velocity. This coordinate system is used to 

designate cell position. The second is a two-dimensional coordinate 

system on the ground, and it is rotating (but not translating) as a 

result of aircraft motion. This coordinate system is used to designate 

scatterer position within a cell. A study of the above relationships 

will indicate that, in essence, only one cell on the ground is being 

tracked. In other words, a ground cell is being observed from a moving 

platform, and at each observation instant the cell coordinate system 

remains aligned with the azimuth angle from the moving observation 

platform to the cell. 

Phase of the return from a scatterer is determined at any instant 

by the slant range to the scatterer, where slant range is expressed in 

terms of the geometric relationships discussed above. Therefore phase 

difference between two scatterers at any instant may be described in 

terms of the difference in their slant ranges. But from one instant of 

time to the next, phase difference changes as a result of the change in 

geometric relationships caused by aircraft motion. It is phase differ .. 

ence and change in phase difference which cause cell RCS variations as 

a function of change in position of the aircraft. 

Thus phase difference and the change in phase difference will be 

determined in terms of the random variables z1 and z2 and the coordi .. 

nates of cell position with respect to the aircraft. Two-way phase 

difference between two scatterers is given by 4;r times range separation 

in wavelengths or 
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(3 .1) 

where 

Then expressing z1 in terms of jzj and w, and expressing sin y
2 

in 

terms of u and v allows 

The change in 69 with respect to u then is 

(3. 2) 

(3 .3) 

It may be noted that, if this derivative is taken with respect to time, 

the following relationships results: 

(3. 4) 

2 2 = 2u/zl [ (v +h )cosw+ (uv)sin,UJ 
A . 3 

r 

Then 6f
0 

is the difference in doppler frequency between the two scat­

terers. Equation 3.3 could have been derived by starting with the 

dopple~ frequency of each of two separated scatterers. 

A coordinate transformation can be used to perform the operation 

necessary to obtain the Z values in terms of the random variables z1 

and z2 • It can be seen from Figure 3 that 
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zl = 1z1 cos(v + Q') 
I 

(3. 5) 

Then by using the double angle trigonometric identities and conve~ting 

Equation 3 ~s to matrix form, the following is obtained, 

where 

and 

It then follows that 

or 

l'zl cosijr 

=A 
lzl sinijr 

[ 

COSQ' 

A= 
sinQ' -::: l 

~l 
A = 

[ 

cosQ' s:lm] 

-sin<l' COSQ' 

jzj cos+ -1 
=A 

lzl sinijr 

(3. 6) 

(3 '7) 
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(3. 8) 

izl sinv = -z1 sinCt' + z2 cosa (3. 9) 

Applying relationships 3.8 and 3.9 to Equation 3.3 and combining 

Equ~tions 3.1 and 3.2 produce 

(3.10) 

[ 

uh
2 

Z V 

3/22 1 + /2 2 
r 'yu +v r vu +v 

(3 .11) 

Equations 3.10 and 3.11 are the desired relationships and repre-

s~nt the determini.stic model in terms of the random variables z 1 and z2 • 

These equations may be written as 

4TT siny2 
69 = azl = A zl (3-l2) 

(3 .13) 

where 

4TT siny2 
a= X 

dl = 
uh

2 
(4TT) 

3J 2 2 X 
ru +v 

d2 = 
V 

(~) 

r )u2+v2 X 



CHAPTER. IV 

STATE MODEL OF PROCESS 

The model developed thus far do~s not incorporate a function of 

t:i,me. Time will be introduced by considering a discrete state model in 

the form of a first-order linear difference equation. Since the pulsed 

radar data sequence is generally accepted as Markov-1, such a state 

equation is sufficient for linear mean square estimation of the next 

value in the sequence in terms of all past values (11, page 420). This 

type of state model is readily applicable to many types of problems; in 

particular, the Kalman or Bayesian approach to recursive filtering may 

be applied through the use of the discrete state model. 

The state model, along with the clutter autocorrelation function 

and other first-order and second-order moments developed in this 

chapter, will be considered the basic clutter model. 

Oevelopment of the State Model 

In order to apply the previously developed models in the develop-

ment of the state model, clutter cell RCS must be described in terms 

which include the effect of the phase difference between scatterers. 

The effect of the phase difference can be described by obtaining the 

square of the resultant magnitude from the phasor additiof\ of the 

square root of the RCS of many independent scatterers. (see Appendix C). 

Let a designate cell RCS and a. designate the RCS of elementary 
l. 

20 
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scatterer i within the cell; then Gonsider 

j (wt+e.) N 
r: 

i=l 
(a.)~ e 1 

1 
( 4 .1) 

where 

N = number of elementary scatterers in the cell 

e. == phase of elementary scatterer i. 
1 

Equation 4.1 is the phaser addition of the square root of elementary 

·wt 
scatterer RCS, and eJ may be factored from each side of Equation 4.1. 

Therefore, 

)~ ·e N 
~ jei 

(q eJ = r: (a.) e (4.2) 
i=l 

1 

N 1:: 
= r: (a.) 2 (cos e. + j sine.) 

i=l 1 1 1 

N k N 
~ 

= r: (cr. ) 2 case. + j r: (ai) sine. 
i=l 

1 1 
i=l 

1 

It may be noted that, if the central limit theorem is applied at this 

point, we obtain two gaussian random variables. When these variables 

are combined and subsequently expressed only in terms of the resultant 

envelope, the Rayleigh distribution is obtained. This approach has 

been used by Downing (12, pages 51 through 59). 

The following equation results from extracting only the magnitude 

from Equation 4.2: 
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1: N 1: 2 N 1 2 1: 
(0-) 2 = [( I; (cri) 2 cose.) + ( I; (cr.)'2 sine.) ]2 

i=l 1 i=l 1 1 

(4 .3) 

i.e., the square root of the sums of the square of the real and imagi~ 

nary parts. 'rhen squaring both.sides and representing the squares as 

double sums result in 

N N l 1: 
(J = I: I: (cr.)'2 (cr ) 2 cos(ek-ej) (4.4) 

j=l k:=1 J k 

or 

N N 1: 1: 
CY= E E (cr.) 2 (cr ) 2 cos60kj (4.5) 

j=l k:=1 J k 

where 

(4.6) 

is the phase difference between elementary scatterers as it has been 

defined in Equation 3.1. 

By noting that Equation 4.5 is a quadratic form, it may be 

rewritten in matrix form as the following dot product: 

~ 
cr l cr~ 

1 

~ 
cr2 

~ 
cr2 

cr = B (4. 7) 
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where Bis a square matrix of cosine terms, i,e., 

1 ... 

B= (4. 8) 

The summation required by Equation 4.5 or Equation 4.7 may be accomp-

lished by first summing along the diagonal of B, then summing over the 

portion above the diagonal, and finally summing over the portion below 

the diagonal. Since the elementary scatterers are assumed to be approx~ 

imately equal in amplitude, the diagonal summation is Ncr. and the summa• 
l 

tion above the diagonal is 

However, since 

N (N-1) 
2 
r 

-l=l 
COS69,l 

Bis symmetric and the summation above the diagonal is equal to the 

summation below the diagonal. Then by utilizing this symmetry of Band 

combining the sum~, cr is represented as 

0 = Ncr. + 20. 
l l 

Note that, if N = 2, then 

N (N-1) 
2 
t 

-l=l 
(4.9) 
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a= 2a. + 2a. cos69 
I. I. 

which is simply an expression of the law of cosines for equal ampli-

)\ tudes (cri • 

The expected value of a may be obtained by expressing 69 in term~ 

of the random variable z1 (Equation 3.12), multiplying cos&9 times the 

marginal density function of z1, and integrating. Specifically, by 

letting E denote th~ operation of taking the expected value, 

E[cr] = E[No-. + 2a. 
I. I. 

N (N-1) 
2 
I: 

-l=l 

N (N-1) 
2 
I: 

-l=l 
(4.10) 

It is shown in Appendix A that the expected value obtained in this 

manner is given by 

E[cr] = Na. 
I. 

(4.11) 

and the mean squared value is given by 

( 4. 12) 

By letting the subscript m denote a particular radar return pulse 

(i.e., time or aircraft position), then the difference in cell RCS 

from m-1 tom is given by 



N(N-1) 
2 
!: 

~l 
(cos69, - cos69,. 1) 

""'m "",m-

= b m 

Therefore, the st~te model is 

cr =O +b m m .. 1 m 

and since E[cr~) = E[cr~_ 1J, then 

E[b] = 0 
m 
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(4.13) 

(4.14) 

(4.15) 

However, the variance of b is required for most applications of this 
m 

model. 

Autocorrelation Function 

In the development of the variance of b , a key term appears. m 

This term m\,lst be considered as the correlation between cell RCS m and 

m-1, however, it will be shown that, by allowing the time (or position) 

differ.ence between m and m-1 to vary, an autocovariance function, which 

corre~ponds to the correlation term, can be obtained. 

The variance of bm may be expressed as 

2 = 4cr. E 
l. 

N(N-1) 
2 
!: 

~1 

or represented as a double sum, 

(cos69, .. cos69, 1 ) 
""'m "",m-

2 

(4.16) 
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N (N -1) N (N -1) 
2 2 
I: I: 

.(;:::1 j=l 
(costi9 9 -cos&9 9 1)(cosb,9. -cosb,9. 

1
) 

.,,,,m .,,,,m- J ,m J ,m-

l
N (N .. 1) N (N-1) 

2 2 2 
= 4cr.E I: E (costi9 9 cosb,9. +costi9 9 1cosA9 .. 1 1. .(;:::1 j=l .,,,,m J ,m .,,,,m- J ,m .. 

- cosb,9 9 1cosb,9. -costi9 9 . costi9. 1) .,,,,m- J ,m .,,,,m J ,m-

However, since b,9 9 is independent of tie., all terms in the above sum 
'1., J ' 

are zero, except in the case oft= j. In this case, a single sum is 

obtained, 

2 = 4cr.E 
1. 

N (N-1) 
2 
I: 
kl 

2 2 
(cos ti9k +cos ti9k. 1~2cosb,9k. cosb,9k 1) ,m ,m- ,m ,m-

(4.17) 

Then by applying Equation 3.13 (the derivative of A9 with respect to u), 

b.9k may be approximated in terms of ti9k. 1 by ,m ,m-

(4, 18) 

where tiu is distance traveled between samples m-1 and m. When Equation 

4.18 is used and the necessary integration is effected, it is shown in 
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Appendix B that 

2 
E[cos 69k . ] ,m 

2 1 = E[cos 69k,m-l] = i (4.19) 

and 

2 2 2 2 2 2 2 
E[b J = 2N cr. - 2N cr.r = 2N cr.[1-r] m 1 1 m 1 m (4.20) 

where r is the correlation coefficient (or normalized covariance) 
m 

Var[b] 
m 

2 = E[cr - cr ] m m-1 

= 2E[cr
2

] - 2E[cr cr 1] m m m-

and by using Equations 4.12, 4.13, 4.20, and 4.21, 

2 2 
E[cr cr 1] = N cr. (1 + r ) m m- 1 m 

If the time (or distance traveled) from sample m-1 to sample mis 

(4.21) 

(4.22) 

allowed to vary, Equation 4.22 becomes the autocorrelation function of 

cell RCS. However, a more basic function is the autocovariance function 

which is Equation 4.22 after the squared mean value is removed, i.e., 

N2cr~r. This is the autocovariance of cr. Thus the function developed 
1 m m 

in Appendix Bas a function of distance traveled by the aircraft 

(rather than time) is the normalized autocovariance function of crm as 

defined by Downing (12, page 25) and is given by 

r. (u,v,Au) = m 

d
2
K

2
6u 

sin 2 
d2K26u 

2 

2 

( 4 .23) 



The constants d1, d2 , K1 and K2 were defined in Chapter III. This 

function will be subsequently analyzed ip Chapter V where it will be 
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shown that rm is a slowly varying function of u at aircraft velocities. 

This slow variation substantiates the validity of short-term station-

arity. 

The variance of b is given by Equation 4.20 as 
m 

and the autocovariance of cr is given by 
m 

2 2 
R = N o-.r 

m 1. m 

(4.24) 

(4.25) 

At this point it may be seen that the state model given in Equa-

tion 4.14 may be put in a more general form as 

E[o ] = E[o 
1

] m m- (4.26) 

cr = E[cr J + v 
m m m 

(4.27) 

Cell radar cross section then is seen, from Equation 4.27 to be a 

random process consisting of a mean value and a correlated fluctuation 

component designated by v. This correlated noise component is the 
m 

term which has been called clutter, and it is seen that RCS autocovari-

ance is clutter autocorrelatiqn, or since the clutter has a zero mean, 

clutter autocovariance is the same as clutter autocorrelation. Thus 

the zero mean clutter process will be referred to as RCS clutter or 

simply clutter while the nonzero mean RCS process, which consists of 

mean RCS plus clutter, will be referred to as RCS or RCS process. 

The time state model will be applied in a Bayesian approach to 

recursive filtering of ground clutter in Chapter VII. 
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Scan-to-Scan Clutter Variance 

The clutter correlation phenomenon discussed above is also 

reflected in scan-to-scan clutter variance. It will be shown that as. 

pulse-to-pulse clutter correlation increases, scan-to-scan variance 

increases and increased scan-to-scan variance produces increased 

clutter. (This increased clutter can be identified in the presentations 

generally seen on airborne displays.) The significant conclusion is 

that increase in clutter can therefore be directly equated with an 

increase in pulse-to-pulse clutter correlation. 

As in Appendix B, the assumption is made that the density function 

f
21

,
22 

(z
1

,z
2

) does not change during one scan time, i.e .• , short term 

stationarity. Then, if it is assumed that n hits per scan are summed 

(or integrated) by the radar and Mis used as a scan-to-scan index sub-

script and mas a pulse-to-pulse index subscript as before, the scan-

to-scan cell RCS is given by 

1 n 
crM=- l: crm 

n m=l 
(4.28) 

This equation represents the uniformly weighted sum of n correlated 

identically distributed samples. The expected value is given by 

Then 

E[crM· J = l [n E(cr )] n m 

= N EJ. 
l. 

(4.29) 
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2 1 n 2 
E[a] = E[- I cr] 

M n IIFl m 

(4.30) 

By using Equation 4.22 for E[am cr.{.], 

(4.31) 

qnd the variance of crM is given by 

(4.32) 

The double summlition may be represented in matri.;ic form as 

R(O) R (1) R(2) R(n-1) 

R(l) R(O) R(l) 

R(2) R(l) R(O) 

C = (4.33) 

R(2) 

R(l) 

R(n-1) R(2) R(l) R(O) 

Then by summing Con the diagonal, the variance of crM is obtained as 

N
2i n-1 

Var[crM] = ~ [n + 2 I (n-k)rk(k)] 
n k=l 

(4.34) 
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which is similar to the relation developed by Costas (13, page 5). 

It may be noted that, if pulse-to-pulse correlation rk(k) is zero, 

then scan.to-scan variance is equal to the pulse-to-pulse variance 

2 2 divided by n, (Na.In), as expected, and clutter is reduced by a factor 
l. 

of 1/n, which is the same reduction obtained through the integration of 

white noise. When pulse-to-pulse correlation is complete (rk(k) = 1 

for all k ~ n), scan-to-scan variance is the same as pulse .. to-pulse 

variance (i.e., the integration is not effective in smoothing), and the 

resulting high clutter is reflected on the radar display. Thus a large 

pulse-to-pulse correlation tends to cancel the smoothing provided by 

integration. Consequently a large scan-to-scan variance, i.e., the 

noise-like modulation called clutter, is obtained. Of course, scan-to-

scan integration will smooth this clutter, but it will also deg~ade the 

time resolution of the radar. A similar smoothing could be obtained by 

cell-to-cell integration, but this action would degrade the space 

resolution of the radar. 



CHAPTER V 

AUTOCORRELATION FUNCTION ANALYSIS 

Analysis of the autocorrelation function is directed to identifying 

the variant and invariant properties of the function. This identifica­

tion, in turn, is dependent on examining the function by means of three­

dimensional plots of the function itself and its Fourier transform. 

This analysis is also dependent on a knowledge of the specific parame­

ters of the function. The autocorrelation function given by Equation 

4.23 is a function of distance along ground track, u, distance normal 

to ground track, v, and difference distance along ground track, 6u 

(Figure 3). The parameteri;, of this function are pulse width, beamwidth, 

wavelength, and altitude which could also be considered variable. 

The term correlation is somewhat ambiguous in that it may refer to 

amplitude or width (distance in wavelengths) of the normalized clutter 

autocorrelation function. However, the area under the autocorrelation 

function curve is a better measure of the quantity of interest than 

either amplitude or width, but the area is essentially a direct function 

of the width (or correlation distance) since the basic shape of the 

curve will be shown not to vary appreciably from a linear function. 

Consequently, correlation distance will be considered the basic correla­

tion parameter, and the term correlation will subsequently be used to 

refer to eith~r area under the curve or correlation distance, inter­

changeably. The distance to the first point where the correlation 

32 
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function touches the zero axis will be considered as the decorrelation 

distance. 

It should be noted that this autocorrelation function is the autow 

covariance function of clutter RCS and not clutter volttage. Therefore, 

the Fourier transform of this function gives the power squared density 

spectrum which is the video spectrum actually seen on a radar only if a 

square law detector is used. It is no~ clear whether the RCS (analogous 

to power) or voltage spectrum is more basic; however, the RCS spectrum 

was chosen for reasons of mathematical tractability. Certainly the RCS 

autocovariance function provides valid clutter information although the 

voltage autocovariance provides the information in a form more generally 

accepted. A brief comparison of the difference between the two is pre~ 

sented in Appendix C. 

Presentation of Autocorrelation Function 

An analysis of the autocorrelation function involves a presentation 

of the function in a form which allows a grasp of the variations present 

and the parameter dependency. Such a presentation is generally some 

form of graph; however, this function is four dimensional. Therefore, 

the function is plotted in a three dimensional graph, and either u, v, 

or azimuth angle, a, is held constant on each graph. Use of this con­

vention provides a graph of correlation amplitude on the vertical scale, 

correlation distance on the horizontal scale, and either ground track 

distance,. cross track distance, or azimuth angle into the paper (the 

third dimension). 

A normalization of the wavelength dependency and a mor~ compact 

graphical presentation are desirable for clarifying the graphs. An 
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inspection of Equation 4.23 reveals that A may be removed from the con­

stants d
1 

and d2 and coupled with Au as 6u/A; in each case distance can 

then be presented in terms of wavelengths. 

Since a mathematical expression for the clutter spectrum (power 

squared spectrum) at the video level is desirable in the analysis, the 

Fourier transform of the clutter autocorrelation (or autocovariance) 

function has been developed in Appendix D. A scale change of the re­

sulting transform was then effected to allow the spectrum to be normal­

ized in te:i;-ms of velocity and wavelength. The clutter spectrum may now 

be plotted in three dimensions with amplitude times velocity (in wave.­

lengths) on the vertical scale, frequency per unit velocity per wave• 

length (normalized frequency) on the horizontal scale, and either ground 

track or cross track distance into the paper. 

Because of the length and complications of the equations for the 

function and its transform, a computer program was written and utilized 

for the calculation of the function values and the transform of these 

values which were used in calculating the points subsequently repre­

sented in the plots. The program provides an output in tabular form of 

the three dimensional autocorrelation function and the three dimensional 

spectrum. The graphical results provide a basis for further analysis 

of the clutter process in the remaining sections of this paper. 

The autocorrelation function is plotted in graph form either at 

points along or across track or at slant ranges along a constant azi­

muth angle. The equation of the normalized autocorrelation function 

and its Fourier transform are as follows: 



Clutter Autocorrelation Function: 

r(u,v,.6u) = 

d1K16u 
sin 

2 
d1K16u 

2 

d2K2tiu 
sin 2 

d
2
K

2
tiu 

2 

Fourier Transform of Autocorrelation Function: 

where 
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(5 .1) 

(5. 2) 

. 2 .. sin x 
Therefore the autocorrelation function is the product of two 2 

X 

type curves. However a comparison of d1K1 with d2K2 reveals that for 

typical radar parameters and for ranges greater than altitude d1K1. is 

several orders of magnitude less than d
2

K
2

, except at angles very near 

ground track. Therefore 
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2 
d1K16u 

sin 
2 

d1K16u 
~ 1 (5 .3) 

2 

throughout a major portion of the region of interest and the autocor-

relation function then in this region is given by 

2 

r(u,v,Au) ,v (5.4) 

Near ground track, however, d1K1 becomes larger than d
2

K
2 

and the ex­

pression in Equation 5.3 predominates. These observations are borne 

out in the graphs which follow. 
. 2 sin x The Fourier transform of a 2 type expression has a triangular 

X 

shape (11, page 340). Therefore the Fourier transform of Equation 5.1 

can be shown to be the convolution of two triangular shapes (12, page 

340). But throughout a major portion of the region of interest one of 

the triangular shapes obtained from the Fourier transform will be much 

more narrow than the other. The convolution then of a triangular shape 

with a 11 spike11 produces a triangular shape. This is borne out by the 

triangular shaped spectrum plots which follow. 

Parametric Dependency 

The autocorrelation function is obviously directly dependent upon 

wavelength. It was therefore studied by considering difference dis-

tances, Au, in terms of wavelength. Of the other three designated 
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parameters, altitude, beamwidth, and pulse width, only beamwidth has 

any substantial effect throughout the region of interest. This may be 

deduced by considering the values of 

(5 .5) 

and 

(5 ,6) 

Therefore for r >> h the expression in Equation 5.5 is very small and 

1 

So only Equation 5.6 effects the autocorrelation and altitude and pulse 

width are not included in this expression. Thus, except in the region 

very near ground track, the autocorrelation function is invariant with 

altitude and pulse width. 

Along ground track the expression in Equation 5.6 is zero since 

sitlO' is zero. Therefore 

d2K2tiu 
sin 2 

d2K26u 

2 

2 

= 1 
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and 

2 

r(u,v,&u) = 

along ground track. Examination of Equation 5.5 then reveals that 

variation of T with h
2 

constant is equivalent to variation of h2 with T. 

constant. So to examine this parametric variation along ground track, 

Equation 5.1 was plotted allowing T to vary. This is shown in Figure 4. 

An examination of this graph reveals that lines of constant correlation 

amplitude, when projected onto the zero correlation amplitude plane, are 

inverse functions of T (as might be expected since increasing T de-

creases the abscissa of each curve). For example the correlation <lisp 

tance for a 0.5 correlation amplitude and 2 microsecond pulse width is 

56 wavelengths while for a 4 microsecond pulse width this distance is 

28 wavelengths. Then allowing h2 to vary instead of T it may be shown 

that correlation distance (or correlation) along ground track is an in­

verse function of h
2

• Therefore correlation varies inversely with pulse 

width and inversely with altitude squared along ground track. However 

when range is much larger than altitude this dependency is overshadowed 

by near complete correlation (correlation distance very large) along 

ground track. 

In the region from a few degrees off ground track to broadside the 

predominant correlation relationship is given in Equation 5.4. There-

fore an examination of Equation 5.6 reveals that in this region correla-

tion depends upon beamwidth, cp, and is invariant with altitude and pulse 



1.0 

• 7 5 

cp - 20 

Ct - 00 

h - 10,000 

r - 30,000 

o.s 

39 

Ft. 

Ft. 

0.0 Correlation 
Amplitude Line 

120 140 160 180 

~~ - Correlation Distance 

Figure 4. Autocorrelation Versus Pulse Width 



40 

width. As might be expected from the results above, correlation varies 

as an inverse function of~. This is shown in Figure 5 for an azimuth 

angle of 45 degrees and is typical for all azimuth angles to within a 

few degrees of ground track for typical airborne radar parameters. 

Geometric Dependency 

The geometric dependency may be obtained in the same manner used 

above to obtain parametric dependency. Again an examination of Equa-

tions 5.4 and 5.6 reveals that correlation is invariant with range 

beyond some minimum range and at azimuth angles off ground track. 

Figure 6 shows the variation of the autocorrelation function with slant 

range at 15 degrees off ground track. As may be noted the function 

does not change with range beyond a slant range of two to three times 

altitude. As the azimuth angle increases the distance at which range 

becomes invariant shortens. For example at an azimuth angle of 90 

degrees (broadside), range invariance begins when slant range (r) is 

only a few feet greater than altitude (i.e., at a ground range of a few 

feet). 

By the arguments previously used then, correlation varies inversely 

with azimuth angle. This is shown in Figure 7. Figure 8 is a Ublown-

up 11 view of Figure 7 in the region from 15 degrees off ground track to 

ground track. An examination of Figure 8 reveals that the -.-1- rela­
sinQ' 

tionship holds very closely at angles as small as 2 degrees off ground 

track. Thus the basic shape of the autocorrelation function is invari~ 

ant and its width varies inversely as the sine of the azimuth angle. 

Since it may be necessary to track a particular clutter cell on 

the ground for filtering purposes, the clutter of interest is that along 



1.0 

.75 
Cl) 

'O 
:, 
.J 
•rl ..... 
a. 
~ .so 
i:: 
0 

,,-j . 

.J 
Ill ..... 
Cl) 

1-1 
1-1 
0 

(.) 

.25 

5 
q' 

0 4 8 ...,_c 
#~ 

e,'li "ve, l:::,.u ~ ~ 
~ 

Figure s. 

12 16 20 

- Correlatidn 

T - 1.0 µsec 

ct - 45° 

h - 10,000 Ft. 

r - 60,000 Ft. 

0.5 Correlation 
Amplitude Line 

o~o Correlation 
,, 

Amplitude Line 

,·· 24 28 32 36 40 

Distance 

Autocorrelation Versus Beamwidth 

41 



T - 1.0 µ,sec 

cp - 20 

h - 10,000 Ft. 

~ - 15° 

1.0 

.s· 
i= 
0 (l) 

.6 .,., 'Cl 
,I.I;:) 
<II ,I.I ..... .,., 
(l) ..... • 4 k C. 

~~ 
u 

.2 

\_'3-~'t. 1.2. 
20 40 <o~o ~'3-~\.r;§:JJ 

(.J 't.-f. 

60 80 100 
I . 

120 . 160 160 180 200 

~~ - Correlation Distance 

Figure 6. Autocorrelation at Short Range Along 15 Degree Azimuth 



43 

T - 1.0 µsec 

cp 2.0° 

h 10,000 Ft. 

r - 100,000 Ft. 

1.0 

(1J 

"O 
:;J 
,I.J • 7 5 •.-1 
~ 

Q. 

l 
s:: 
0 

•,-I 
,I.J 

Ill 
~ .so Q) 

H 
H 
0 

C) 

.25 

0 4 8 12 16 20 24 · 28 32 ·, 36 40 

6~ - Correlation Distance 

Figure 7. Autocorrelation Versus Azimuth 



.T -

cp -
h -
r -

1.0 

Cl) 
"lj 
:, 

.75 .µ 
-.-1 
,-1 

Q. 

~ 
~ 
0 

•.-1 
.µ 
cu .so ,-1 

Cl) 
1-1 
1-1 
0 
u 

.25 

0 

1.0 1,1,sec 
20 

10,000 Ft• 

100,000 Ft. 

20 40 

o.o 

I 

60 80 100 '.120 140 160 180' 200 

6u - Correlation Distance 
A 

Figure 8. Autocorrelation Near Ground Track 

44 



45 

a particular track parallel to ground track. For this reason clutter 

correlation and the clutter spectrum has been plotted along such a 

track as shown in Figures 9 and 10. Figures 11 and 12 are presented to 

show how the clutter correlation function and the clutter spectrum 

change with distance across track. Of course, the change noted in 

these figures results from the change in azimuth angle. It may be 

noted from Figures 9 and 11 that the autocorrelation function changes 

very slowly as a, function of U or V in.' comparison With .its change .as "8 

function of t,u. 

The two spectrum graphs (Figures 10 and 12) verify several known 

relationships between the clutter autocorrelation function and the 

clutter spectrum. As the autocorrelation function becomes wider, i.e., 

as correlation is increased, the spectrum becomes narrower and higher 

in amplitude and more clutter is generally presented on the radar dis­

play. The spectrum shown in these figures is the video spectrum shifted 

to zero frequency (the doppler is removed); thus the spectrum width 

about the doppler frequency would be twice as wide as that shown in the 

graphs. 

Clutter Correlation Characteristics 

Some of the clutter RCS correlation characteristics may now be 

summarized on the basis of the discussion and an examination of the 

graphs presented. Examination reveals that the following approximate 

characteristics of correlation can be identified in the region off 

ground tr,;lck: 

(1) Correlation is invariant with range beyond some minimum range. 

(2) Correlation is an inverse function of the sine of the azimuth 
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angle and is thus maximum along ground track and minimum at 90 degrees 

off ground track. 

(3) Correlation varies inversely with antenna beamwidth (verified 

in more detail in Chapter VI). 

(4) At ranges greater than altitude, correlation is independent 

of altitude. 

(5) Correlation is independent of pulse width. 

(6) Correlation amplitude remains less than 0.05 after it is 

plotted through zero for the first time on any of the graph~. 

(7) For typical airborne radar parameters the distanc;e traveled 

by the radar between scans is greater than decorrelation distance (i,e., 

~lutter uncorrelated scan to scan). 

(8) Correlation is a direct function of wavelength. 

Approximately complete correlation is obtained along ground track. 

Inspection of Equation 4.34 will indicate that, since clutter 

correlation is invariant with range, clutter increases with range only 

as a result of the clutter variance (N2cr~). It is shown in Appendix B 
l. 

that N is a function of slant range. However, at long ranges the 

effects of Earth curvature and the decrease in the ground reflection 

coefficient at small grazing angles tend to offset this increase. 

Neither of these parameters are considered in the model developed 

herein. 



CHAPTER VI 

AUTOCORRELATION FUNCTION RELATIONSHIPS 

It was noted in Chapter V that the clutter autocorrelation function 

is essentially invariant in. shape and that its most significant parame-

ter is correlation distance. A simple expression for riorrelation dis• 

tance in terms of aircraft motion and radar parameters is therefore 

desired because a known shape and known correlation distance can then 

be used to determine a value of pulse-to~pulse correlation at any ground 

position without a lengthy calculation of the autocorrelation function. 

A condition generally desirable for radar is pulse-to-pulse decor-

relation since it increases the information available per pulse. There-

fore, the specific correlation distance to be determined will be 

referred to as decorrelation distance (d ). This basic relationship is 
C 

defined as the shortest distance at which the autocovariance function 

reaches the zero axis. 

Decorrelation Distanc~ 

Decorrelation distance is found by determining the point where the 

autocorrelation function first reaches zero amplitude. The autocorrela-

tion function reaches zero amplitude the first time when 

(6 .1) 
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for azimuth angles off ground track. Therefore applying the equations 

for d2 and K2 results in 

(2n s inai) (cp) (6~) = n 

or 

t:,u = 2cp sine.' (6 .2) 

But t:,u in this case is the value defined as decorrelation distance and 

is designated as d. ·so converting cp to an angle in degrees 
C 

d 
C 

(57 .3) 0.) 
2cp sine.' 

Antenna beamwidth is a function of aperture width (D) and may be 

approximated by 

(6 .3) 

58 A 
cp = -- (6.4) 

D 

if a circular aperture illumination distribution is assumed. By using 

Equation 6.4 in Equation 6.3 above 

d ~ __ D __ 
c 2 sinct 

(6. 5) 

Therefore decorrelation distance depends only on antenna size and azi-

muth angle and is independent of wavelength. This Equation 6.5 is the 

simple relationship desired. 

Equation 6.5 was checked at azimuth angles as close as 2 degrees 

to ground track for typical airborne radar parameters and geometry and 

found to be accurate. However as the azimuth angle gets very small 



53 

(i.e., "on ground track") sin(d
1
K

1
tsu/2)/(d

1
K

1
t.u/2) predominates as noted 

in Chapter 5 and Equation 6,5 becomes in.valid. 

Autocorrelation Function Approximation 

Since the basic shape of the autocorrelation function is invari-

ant, an approximation to this shape could save considerable calculation 

in some applications without severe degradation of the accuracy. A 

linear approximation to the normalized autocorrelation function is 

shown in Figure 13 to be a reasonable approximation and is given by 

r ~ 1 M .. -
m d 

C 

~ 0 

where 

tsd 

and 

d = C 

= 

2 

. u 

for M < d 
C 

otherwise 

PRF 

D 
siro 

(6.6) 

Then given the PRF and aperture width, the pulse-to-pulse correlation 

for clutter at some point on the ground beneath the aircraft may be 

calculated on the basis of the antenna azimuth angle to that point and 

the aircraft velocity. For many applications, this approximation is 

sufficient, and it allows a very simple calculation of pulse-to .. pulse 

correlation. It is interesting to note that the approximation 6.6 is 

independent of frequency. 
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Analysis of Clutter Process Sampling 

On the basis of the concept of decorrelation distance developed in 

this chapter, it can be shown that the aircraft must move a distance of 

d (decorrelation distance) between pulses to obtain uncorrelated 
C 

pulses. Since d has been shown to be a function of azimuth angle, it 
C 

fallows that a longer time interval (or slower sampling rate) must be 

provided between samples of the ground taken in front of the aircraft 

than between samples taken to the side if the information per sample :i,s 

to be kept constant. In other words, the clutter information rate is 

inherently higher broadside than it is ahead of the aircraft. Of 

course, the analysis of the clutter is a means to an end, the actual 

objective is to reproduce the average RCS which is being modulated by 

clutter. The rate at which the process should l;>e sampled for uncor-

reh.ted samples can be shown to be 

PRF < i_ ( 6 ~ 7 ) 
d 

C 

where PRF is pulse repetition frequency. If RCS is sampled at a rate 

faster than the rate specified in relationship 6.7, then the radar will 

reflect a portion of the clutter variation, as well as the average RCS; 

this r~action is undesirable. 

At this point it can be shown that the upper limits on sampling 

rates specified in the inequality 6. 7 and the lower limits specified in 

the sampling theorem are each useful tools in establishing requirements 

for sampling. In other words, contrary to the sampling theorem, it is 

desirable in the present study to eliminate the variations in the 

process being sampled. If this reasoning is applied to the clutter 



56 

process in the frequency domain and the process were to be reproduced, 

the sampling rate, according to the sampling theorem, would necessarily 

be 

PRF > 2 BW (6. 8) 

where BW is clutter bandwidth. This inequality sets a lower bound on 

the PRF. However to ensure that the process is not reproduced, an 

upper bot,1nd must be set on the PRF. It is stated in the sampling theo ... 

rem that, in order to reproduce a process, samples must be taken at 

such a rate as to prevent aliasing, as shown by Downing (12, pages 140 

to 143). However, to ensure nonreproduction of the process, a substan-

tial degree of aliasing is necessary. In fact, it is desirable, as in-

dicated in Figure 14 to obtain enough aliasing to produce a flat spec-

trum (an approximation of :white noise) which may then be readily 

smoothed by subsequent integration. 

As in the case of the sampling theorem, the sampling rate (for 

decorrelation in this case) is a function of process bandwidth. This 

can be shown by comparing the normalized spectrum bandwidths, shown in 

Figures 10 and 12 with the PRF derived by using decorrelation distance. 

The bandwidth obtained from the normalized spectra plots is a direct 

function of velocity in wavelengths, u/A, i.e., if u is doubled, the 

frequency scale represents a frequency twice as large. Therefore, 

u 
BW = K3 A ( 6 • 9) 

where K
3 

is a constant. But the sampling rate for decorrelation is 

PRF <~ 
d 

C 
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and 

d = 57 .3 ;\. 
c 2cp siw 
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Consequently, the sampling rate for decorrelation may be written as 

PRF < (BW)(2p siW) 
57 .3 K

3 

or for a given beamwidth and a given azimuth angle 

(6.10) 

(6.11) 

If pormalized frequency and normalized corr~lation distance as plotted 

in Figures 8 through 12 are designated as fl and t 1 respectively then 

(6.12) 

and 

(6.13) 

I I 
Let f

1 
and t 1 be the points where f

1 
and t 1 first reach zero on 

the graphs. Then ~xpressing PRF in terms of velocity and distance 

trav~led between pulses (for decorrelation) allows 

so using Equation 6.12 

. 
~ < (K

4
) (BW) 

d -
C 

(6.14) 

(6.15) 
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The distance to the point where the previously plotted spectra reach 

zero in amplitude is normalized bandwidth which must be multiplied by 

u/A to get bandwidth and expression 6.15 becomes 

(6.16) 

Then K4 is seen to be 

(6 .17) 

I I 
An examination of the graphs reveals that t 1f 1 is invariant and that 

(6.18) 

Therefore 

(6.19) 

Then in order to ensure that uncorrelated samples are obtained 1 the 

upper bound on sampling rate can be approximated from expression 6.11 as 

PRF < BW. (6.20) 

which is a substantiation of the result indicated in the aliasing plots 

in Figure 14. 

Inequality 6.20 might be considered a counter sampling theorem for 

clutter since it de$ignates a sampling rate sufficient to ensure non-

reproduction of the process time function. 



CHAPTER VII 

CLUTTER MODEL APPLICATIONS 

The design of any c~utter model must be based upon the applications 

intended for the model. In this thesis, the primary objective for the 

development of the model is the application of the model to clutter 

discrimination schemes. Therefore, the clutter model has been developed 

as a state model.for ease of application to a recursive filtering 

scheme. Although the clutter process is non~tationary, a Kalman or 

Bayesian filtering approach is readily applicable. The nonstationarity 

of the process tends to make other filtering principles less applicable. 

However, in the application of the recursive filters developed in th~s 

chapter, it must be remembered that the process is developed on the 

basis of RCS, not voltage, consequently, voltage measurements must be 

squared before application unless they are the output of a square law 

detector. 

Clutter discrimination schemes based upon pulse-to-pulse decor­

relation and subsequent integration of the resulting noise may also be 

applied through use of the clutter relationships previously developed 

from analysis of the clutter model. 

Pulse-to-Pulse Decorrelation 

Some form of integrati1:m is used in most pulsed radars to smooth 

uncorrelated (white) noise. As shown in Chapter IV, this integration 
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becomes less effective in smoothing clutter as pulse-to-p1,.1lse correla. 

tion increases. Therefore, if pulse-to~pulse decorrelation can be 

maintained, a special clutter filter is unnecessary. The conditions 

necessary :!;or pulse-to-pulse decorrelation may be determined from the 

expression for decorrelation distance developed in Chapter VI, which is 

D 
de .,.... 2 sina 

(7 .1) 

This equation indicates that, if the aircraft travels this distance (d) 
C 

between pulses, the clutter RCS will be decorrelated. One way of ob• 

taining this decorrelation is to vary PRF as a function of velocity and 

azimuth angle. A variable PRF that provides the decorrelation and 

simultaneously maintains a maximum clutter information rate may be ob-. 

tained from Equation 6.15 as 

2u 
(:PRF ) OPT = 0 s ina (7 .2) 

Of coul;'se, a PRF less than this also provides decorrelation but may not 

provide the desired average power. A varying PRF which provides appl;'ox-

imately maximum information rate and pulse~to ... pulse decorrelation is 

illustrated in Figure 15. As shown in this figure, the PRF decreases 

to some set minimum as the azimuth angle approaches zero degrees, 

In most cases, it is desirable to maintain the number of pulses 

returned from a point target during one scan across the target (number 

of hits per scan) at a constant number. Therefore, if a variable PRF, 

such as that given by Equation 7.2, is used, a variable scan speed 

proportional to PRF is given by 
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& = (cp)~PRF) 

s 

is required where h is the symbol for hits per scan, s 

Scan-to~Scan Filtering 
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(7 .3) 

Cell RCS, 0, is a random variable which describes the fluctuation 

in the radar cross section of a particular clutter cell on the ground. 

When the same cell is tracked on a scan-to-scan basis, the radar pro~ 

vides discrete time (or position) measurement of the cell RCS which 

then fluctuates as a function of time. The value desired from a clutter 

filter is the mean value of cell RCS, i.e., the non-time-varying com-

ponent since this mean value represents a smoothed but reaUstic repre-

sentation of the terrain, 

lf Mis considered a scan-to-scan index, as in Chapter IV, and if 

E[o-MJ =~and crM = YM, then a state model of the process is 

The variance of YM is 

~ = ~-1 

2 2 
N c;r. 

1. 
=-2-

n 
[n + 2 

n~l 
t (n-k)rk(k)] 

k.=1 

(7 .4) 

(7 .5) 

where n is the number of hits per scan. The Bayesian approach can then 

be applied to obtain a one.-4imensional Kalman filter as shown by 

Breipohl (14) 
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(7. 6) 

(7. 7) 

2 where~ is the best linear estimate o:(: X at time Mand SM is the vari-

ance of thi~ estimate. 2 
Note. that, as correlation increases, P in-

creases, and previous estimates are weighted more heavily, ov the 

me~sured value is discqunted as a result of correlation. In essence, 

this is a type of past-present comparison and weighting which is in-

tuitively appealing, 

2 and s0 are 2 
the original values of~ and SM, then Equations 

7.6 and 7.7 may be expressed as 

µ.M = (7. 8) 

(7. 9) 

Then the initial values may be chosen as 

which are simply the mean and variance 0£ the cell RCS. Thei:;e values 

might be obtained through measurement with the antenna pointed broadside 



65 

where\ correlation is minimum. Through use of these v~lues in Equations 

7.8 and 7.9 in conjunction with Equation 7.5, 

Ncr. n-1 M 
l [n + 2 I: (n-k)rk (k)] + ~ 2 YM 

n k=l fa:::l 
µ. = n-1 M 1 

2 [n + 2 ~ (n ... k)rk (k) J + M 
n k=l 

(7 .12) 

N2 2 
(J. n-1 

1 
[n + 2 E (n-k)rk(k)] ~ 

S2 = n k=l 
M 

1 n-1 

2 [n + 2 E (n'"k)rk(k)] +M 
n k=l 

( 7. 13) 

It can be seen that N2
cr~ can be divided out of Equation 7.12 so that 

1 

the equation depends upon N only through the original estimate, µ.0 • as 

shown by Breipohl (14), ~ depends oniy slightly upon µ.0 after a few 

iterations, i.e., ~ tends to become independent of N. Thus the filter 

is more or less independent of range and of terrain. However, S~ is a 

function of N2 and since N is a constant times slant range as shown in 

appendix B, the variance of the estimate increases as a function of 

range squared, as does the variance of cell RCS. 

The filtering process may be initiated by obtaining a measurement 

of average c-ell RCS and variance with the antenna pointing broadside 

(where correlat,ion is minimum). Under these conditions, a short; time-

average should provide a reasona.ble estimate. 

It has been noted in Chapter IV that scan-to-scan integration tends 

to degrade the time resolution of the radar, i.e., i£ there is change 

in the average cell RCS, several scans may be required to detect it. 

However, the filter indicated by Equation 7.6 tends to minimize this 
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degradation of resoluti,on because the estimate is largely dependent on 

the measured value yM when correlation is low. This filtering action 

is analogo1,1s to minimizing integration time (which increases response) 

when correlation is minimum, Thus the filter is more advap.tageous than 

straight integration which would smooth the clutter but would degrade 

time resolution uniformly whether integration was required to smooth 

clutter or not. 

Pulse .. to ... Pulse Filtering 

The Bayesian approach to Kalman filtering may also be applied on a 

puhe ... to .. pulse basis to smooth clutter. Normal distributions may be 

assumed since only first and second moments are known, and the use of 

these distributions results in an optimum linear filter as shown by 

Meditch (15, page 1.66). This is essentially the approach \lSed by 

Breipohl (14), however in the present case the measurement sequence is 

correlated. 

The state model used for this filtering is described by Equations 

4.26 and 4,27 with E[crm] replaced by Xm and c:rm replaced by Ym. The 

state model then is 

X = X l m m-,. 

y = X + € 
m m m 

(7. 14) 

So X does not vary (or varies slowly) with time and e represents a 
m m 

correlated noise. The measurement variance at each instant of time is 

N
2

cr~ and will be designated here as. P2 • As previously stated, the 
l 

measurement E;equence is c;tssumed to be Markov .. 1. 



Therefore in terms of normal distributions, the l;iest mean sq1,1are 

estimate of X, given all past values of Y., is the mean value of the 
1' 

conditional density function f l . which is normal. This 
X y 'y 1 ' ' • • ' 'il n n... , 
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condit;i.onal density functioq may be written in terms of known and meas-

urable values as 

Then using the Markov~l property 

f f I Y IY l'x x Y 1'···,Y1 n n- n-
(7 .15) 

It may be noted that fx/Y y is simply the conditional density 
n-1,'''' 1 

function used to obtain the previous estimate and j;y jY Xis the 
n n-1' 

conditional density function of Y given Y 
1 

with a mean value X and 
n n-. 

correlation coefficient r • n 
The mean and variance of Y. are considered 

1 

constants from pulse to pulse as shown in Appendix A. So the following 

normal density functions result: 

where 

2 
fy I y X .rvN[x(l-r ) ,+ r y 1,P (1-r ) J 

1
, n n n- n 

n n-

11. is the pr~vious e~timate ,...n-1 "" 

s2 is the variance of the previous estimate. 
n-1 

(7.16) 

(7.17) 
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These two normal density functions may be combined in Equation 7.15 to 

obtain a new normal density function. The mean and variance of this 

new density function then describe the present estimate and its vari~ 

ance, These may be obtained as 

(7.18) 

(7.19) 

An inspection of Equation 7.18 will reveal that as pulse-to-pulse 

correlatton increases, the previous estimate is weighted more heavily 

and the present measurement is discounted by subracting from it the in~ 

formation common to the previous measurement. If correlation is zero 

(rn = 0) the equations become the simple one-d;imensi.onal Kalman filter 

equations for uncorrelated measurement noise. Therefore Equation 7.18 

might be considered an optimum weighting between the previous estimaj:e 

and the new information (uncorrelated portion) available in the current 

measurement. The previous estimate is weighted by the autocorrelation 

function of the measurement and the new information is weighted by the 

variance of the prev;ious estimate. 

Equations 7.18 and 7.19 may be expressed in terms of the initial 

values as 

(7.20) 
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(7. 21) 

where 

j=l,2, ••• ,n 

Yo= O. 

2 
Again, as in the scan-to-scan case, if µ0 and s0 are taken as Ncri 

and 2 2 respectively, then tends l;iecome independent of terrain N cr i' µn to 

and S2 increases with increased 
n slant range. rhese initiating estimates 

may be measured as in the scan-toqscan case by pointing the antenna 

broadside where clutter correlation is minimum, and measuring the time 

average and variation about this average. 

Comparison of Filtering Schemes 

Since two different approaches to recursive clutter filtering have 

been presented, it seems appropriate to discuss the relative merits of 

the two. In each case, even though use is made of recursive filtering 

which involves storing only one past value, considerable computer 

storage is still required, if a large section of ground return is to be 

smoothed, since the filter equations must be appUed independently to 

each resolution cell. However, in the scan-to~scan case where approxi-

mately n pulses are integrated (n hits per scan) prior to clutter 

smoothing, a saving of computer storage of up to 1/ n might be realized, 

depending upon how the correlation information is implemented. 

Although pulse-to-pulse filtering involves more computer storage 

and more complexity, it offers the possibility of avoiding the time 
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resplution degradation inherent in scan-to~scan filtering. The usual 

integration resulting from post-detection filtering and CRT smoothing 

tends to destroy any time resolution on a pulse-to-pulse basis; conse­

quently, any recursive pulse-to-pulse smoothing prior to post-detection 

filtering and CRT smoothing should have little effect upon the time 

resolution. Pulse-to-pulse filtering involves a reinitiation of the 

filtering process with the start of each new scan since the last pulse 

of a previous scan is generally uncorrelated with the first pulse of a 

present scan. The process could be initiated at the beginning of eac;h 

scan by ~sing the averaged value from the previous scan as an initial 

estimate of cell RCS; however, the filtering action depends upon pulse­

to-pulse correlation; therefore, two measurements must be made before 

pulse-to-pulse correlation can be applied correctly and before the 

correct filtering can begin. 

Comparison of Clutter Decorrelation Schemes 

Pulse-to-pulse clutter deco'!:'relation is obtained by causing a sub­

stantial pulse~to-pulse change in phase difference between the returns 

from the elementary scatterers within a clutter cell. This change qm 

be effected by translating the radar position between pulses by a 

sufficient amount to alter the relative distances between scatterers 

since this alteration will change the phase difference. -This can also 

be accomplished by varying the number of wavelengths (which is phase) 

between scatterers. Changing the number of wavelengths between scat~ 

terers may be accomplished by c;:hanging the length of a wave. Conse­

quently, decorrelation may be accomplished by changing frequency on a 

pulse-to-pulse basis. 
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O I Leary (6, .pages 6 through 11) showed the {requency change 

necessary to decorrelate the return from a target of given size. This 

decorrelation effect and the clutter smoothing resulting from frequency 

jumping were also reported by Gustafson (7). By using sea clutter, 

Croney (5) demonstrated that, if sufficient time is allowed between 

pulses for pulse-to ... p\llse dec;orrelation, clutter smoothing results from 

subsequent integration. Thus any scheme which produces pulse-to-.pulse 

decorrelation is effective but each places some limitation on the radar, 

To OQtain a~ efficient use of the concept of waiting one decorrelation 

time between pulses, it is necessary to be able to determine decorrela­

tion time. The model developed in this thesis provides a realistic 

estimate of this decorrelation time. 

It appears that, although the filtering presented in this chapter 

reduces gro\lnd cl\ltter, it is suboptimal in that energy or average power 

is used to gather correlated samples which must then be filtered. Since 

less energy is required, a more efficient scheme is to gather the same 

information by using fewer uncorrel'ated samples (at the maximum rate of 

availability 0£ the information, if desired). The uncorrelated noise 

may then be smoothed through integration. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

This thesis has been directed to developing a mathematical model 

for airbo:rne radar ground clutter which may be applied in clutter 

discrimination schemes. 

Summary 

The clutter model is developed by first assuming that terrain is 

characterized by several rather general characteristics which have also 

been ~ssumed in most previous studies of a si,milar nature. From these 

assumptions, a probability density function is developed to describe 

the separation of elementary scatterers within a resolution cell. This 

density function represents the basic randomness assumed; consequently, 

it is called the statistical model a The geometry of the aircraft motion 

and cell position are developed in a deterministic model which relates 

the statistical model to aircraft motion. A phasor addition of the 

radar cross section of the elementary scatterers is then used to relate 

the deterministic and statistical models to cell radar cross section. 

Time is introduced by examining radar cross section from the standpoint 

of discrete state model results which are obtained on the basis of a 

pulse-to-pulse compa:rison. Evaluation of the moments of the resulting 

radar cross sectien random process provides a clutter autocorrelation 

function which is shown to be the basic clutter relationship. The 
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state model in conjunction with the various first and second moments, 

is defined as the basic mathematical model. 

The autocorrelation function is analyzed by calculating its Fourier 

transform; this transform represents the power squared spectrum. The 

autocorrelation function and spectrum a+e plotted in three dimensions 

to gain insight into the process. A basic quantity called decorrelation 

distance is developed from the graphical analysis (the plots) and is 

found to be an approximate function of antenna aperture width and azi~ 

muth angle. This decorrelation dista,nce, ,which is the distance the 

aircraft must travel between pulses to obtain decorrelated pulses, is 

shown to be directly related to process bandwidth since either is 

sufficient to describe the sampling rate necessary for decorrelation. 

The completely developed clutter model is finally applied in 

several schemes of clutter discrimination. These schemes basically 

involve (1) control of radar PRF to obtain decorrelation and (2) re-

cursive filtering to reduce the effects of correlation. 

Conclusions 

Analysis of the clutter model developed in this thesis indicates 

that ground clutter is a nonstationary random process whose spectrum 

varies primarily as a function of wavelength, antenna aperture width, 

azimuth angle, and aircraft velocity. Decorrelation distanc;e, which is 

inversely related to spectrum width, is shown to be approximated by 

D 
de = 2 ·-,.., S 111.u: 

where Dis aperture width and~ is azimuth angle. Thus ground clutter 



information from a moving aircraft is available at a faster rate at 

angles approximately normal to the direction of motion than at angles 

near the direction of motion. 
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Several of the basic characteristics of airborne radar ground 

clutter have been tentatively identified in the process of bu:i,lding the 

clutter model: 

(1) Clutter increases with correlation. 

(2) Clutter varies inversely as the sine of azimuth angle. 

(3) Correlation is invariant with range beyond some minimum 

range; consequently, clutter increases with range only because clutter 

variance increases with range. 

(4) Clutter tends to become invariant with both altitude and 

pulse width beyond some minimum range points off ground track. 

(5) Clutter decreases with increased aircraft velocity. 

(6) Clutter decreases with decreased wavelength. 

(7) Clutter decreases with increased antenna beamwidth. 

The clutter model developed in this thesis provides a tool which 

may be used to gain insight into the clutter process and may be applied 

in clutter discrimination schemes. 

Recommendations for Further Study 

The mathematical model developed in this thesis is approa,ched from 

the viewpoint of the clutter cell RCS rather than that of the retur~ed 

voltage. An interesting extension of this study would be to start with 

the same assumptions and develop a voltage model which could be used to 

determine which approach produces a more useful model on the basis of a 

comparison of the two models. 
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Two of the assumptions made in this study are that the elementary 

scatterers within a cell are equal in amplitude and that the RCS 

randomness is introduced through scatterer separation. If the elemen .. 

tary scatterer 1;1mplitude were given some random distribution, the model 

cot,1ld then incorporate an additional degree of randomness and the re­

sulting clutter model might be more precise, .but it would certainly be 

more complicated. 

An interesting relationship between clutter bandwidth and some 

maximum sampling rate for pulse .. to-pulse clutter decorrelation is 

approximated in Chapter VI, The development of a more detailed state­

ment of this relationship might lead to a more general application in 

the analysis of the sampling necessary for smoothing other correlated 

random processes. 

The clutter model developed in this study could be applied in 

other areas of radar technology, .each of which would result in further 

study. The following are a few examples: 

(1) Filtering by analog means. 

(2) Analysis for target detection in clutter. 

(3) Simulation of ground clutter. 

(4) Analysis of moving target indication (MTI) in clutter. 
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APPENDIX A 

MEAN ANO VARIANCE 

Process mean and variance are established on the basis of the 

fallowing rationale. If time is held constant and cell RCS, cr, is con-

sidered a fQnction of N and cr., then N and/or cr. might be considered 
1 1 

random variables which could account for terrain changes. However, 

only the time variations are considered in this thesis; consequently, a 

uniform terrain distribµtion is assumed, and N and cr. are constants for 
1 

a given resolution cell size and a given terrain. The moments of cr 

under consideration in this Appendix are the aircraft motion (or time) 

moments evaluated at zero time change and are therefore constants. 

The expected value of CJ is found by considering CJ in the form ob-

tained in Equation 4.9, i.e., 

N (N-1) 
2 

CJ = Ncr. + 2cr. ~ costi9.f.. 
1 1 

kl 
(A. l) 

Then 

N (N-1) 
2 

E[cr] = Ncr. + 2cr. ~ E;[costi9.f..] 
1 1 ~l 

(A.2) 

But from Equation 3.12 

· ... ·. 
E[costi9,f) = E[cos a z1J .. (A.3) 
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Then using the marginal density function of z
1 

given ;i,n Chapte:t;" II 

But 

So for 

Kl 
E[cos68t] = J 

-Kl 

= 

which is valid for all conventional airborne radars, then 

aK 
__ l >> l 

2 

and 

Therefore Equation A.2 becomes approximately 

E[cr] = Ncr. 
1 

79 

(A,4) 

(A.5) 

(A .6) 

(A. 7) 

(A. 8) 

The mean squc:lred value of cr wiU be found to be 2N2cr~ in a similar 
1 

fashion. Consider, from Equation 4.10, 



2 
E[cr J.= E 

2 2 2 = N cr. + 4No. 
l. l. 

N (N-1) 
2 
E 

kl 

Ncr. + 2cr. 
l. l. 

N (N-1) 
2 
E 

kl 
cos.Ml 

N (N-1) 
2 
E 

{=1 
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2 

(A. 9) 

2 

However E[cos69l] = 0, therefore it is sufficient to show the last term 

2 2 
in the above equation is equal N cri. Expressing the square as a double 

summation 

2 
N (N-1) N (N .. 1) N(N-1) 

2 2 .2 
E E cost.et = E E E cost.9..e, cos69m (A.10) 

kl kl ~1 

for m -=I,. t (A.11) 

for m = ..{, 

The double summation then reduces to a single summation and using a 

trigonometric identity 

(A .12) 

But 



by the same argument used above for E[cos az1J. So 

2 
N (N .. l) N (N .. l) 

2 2 2 E r: COS69,t. = E r: cos 69 ,t. 
-t=l .f.;::1 

Therefore from Equation A.9 it is seen that 

2 2 2 = N cr. + N(N-l)cr. 
1 1 

for large N. rhen the variance of cr is given by 

2 2 Var[cr] = E[cr] - E [cr] 

2 2 2 2 
= 2N cr. - N cr . 

2 2 
==Na. 

1 

1 1 
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N (N-1) (l) = 2 2 

(A.14) 

(A.15) 



APPENDIX B 

DEVELOPMENT OF VARIANCE AND AUTOCOVARIANCE FUNCTION 

The variance, s2 of the random variable b is the variance between m' m 

O:m and a:m-l" However by letti~g the time interval between m-1 and m 

vary, a continuous function of time difference or distance traveled, 6u, 

is obtained. The time difference of interes.t for the radar problem is 

typically less than a second; consequently, over a period on the order 

of a second, it is assumed that the probability density function given 

by Equation__ 2.8 does not cha~ge (i.e., short~term stationarity is as-

sumed). It can be seen from the analysis of the autocovariance function 

in Chapter V that, in the case of typical airborne radars, the correl'a .. 

tion is essentially zero after a mc>Vement, eiu, of a few feet or is 

essentially zero after a few milliseconds at a speed of 600 miles per 

hour. Therefore, it is typically necessary to assume short-term sta-

ttonarity over only a few milliseconds and only in the wide sense (i.e., 

no change in first-order and second-order moments over the time inter-

val) since only first-order and secoi:i.d-order mom.e.nts ate used. 

s2 will be derived by beginning with Equation 4.17, m 

s! == 4cr~ E 

N (N .. 1) 
2 
I: 

~1 

Then assuming no change in the density function from m.:.1 tom, 



2 
E[cos b,9k 1] = ,m ... 

as shown in Appendix A, and 

82 = 4 2[N(N-l) (l l)] _ 4 2 
· m cri 2 2 + 2 cri 

2 2 2 2 = 2N cr ... 2N cr.r (u,v,b,u) 
l. l. m 

1 
=2 
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(B .1) 

2E(cosb,9k cos69k. 1) ,m ,m-

(B .2) 

for large N. Therefore using a trigonometric identity and Equation 4.18 

r = 2E[cosA9k. cos~ek 1] m ,m ,m-

1 1 · 
= 2E[ -2 cos!' + -2 cos (2A9k . 1 + t ) ] m ,m- m (B .3) 

as shown in Equation 4,18 where Jm = (t,9k,m - ti9k,m-l) = (d 1z1+d2Z2)tiq. 

,The second term in Equation B.3 may be seen to be approximately zero by 

the same argument used in Appendix A. Therefore 

r = E[cosC J m m (B .4) 

Evaluation of r requires multiplication of cosC times the density m m 

fun~tion developed in Chapter II and int~gration. So using Equations 

3.13 and 4.18 



84 

which must be divided:".into four 'integrals, one for each quadrant of the 

density function, for integration. In the first quadrant only the in-

tegral is 

Performing the indicated integrations results in 

r (u,v,6u) = 
m 

dl Kl 8U 
sin 2 

d
1 
K

1
Au 

2 

d2K2Au 
sin 2 

d
2
K

2
Au 

2 

2 

and the autocovariance function shown in Equation 4.25 is 

2 2 R (u,v,!:!,u) ~ N cr.r (u,v,!:!,u) 
m 1. m 

Therefore fro~ Equation 4.24 

2 S (u,v, Au) 
m 

(B. 6) 

(B. 7) 

(B. 8) 

(B. 9) 

Since r is a function of position and change in position and thus a 
m 

function of time, .the process is obviously nonstationary in general. 

The value N which is the nUII)ber of elementary scatterers within a 

resolution cell has been assumed to be constant up to this point. Since 



85 

the number of scatterers within a cell i$ a direct function of cell 

area, N is e~sentially constant on a pulse-to-pulse or scan-to-$can 

basis (i.e., N h slowly varying). However N is actually a function of 

the slant range (r) to the cell since for a given terrain type the 

number of scatterers within a cell depends upon cell area. Cell area 

i!I given by 

(B .10) 

and it can be $een that cell area is a direct function of r. So N can 

be expressed as 

N::. Kr 
a 

where K is constant for a fixed pulse width, fixed beamwidth and at 
a 

ranges larger than altitud~. 

The value N then is considered deterministic; therefore treating 

it as a constant in the analysis of expected values causes no error. 

In fact N does not appear in the normalized autocovariance function 

developed in this Appendix, instead it appears in the mean and variance 

of cr as shown in Equations A.8 and A~lS. Therefore cell RCS mean and 

variance both increase with slant range, but they are approximately 

constant from pul$e to pulse and scan to scan. 

The value of radar cross section of the individual scatterers 

within a cell, cr., is considered constant although obviously as the 
l. 

ground reflection coefficient, cr0 , changes, cri changes. However, for a 

given terrain type cr0 is shown to be relatively constant over a wide 

range of grazing angles (8). Thus only at very short or very long 

ranges will the assumption of cr. constant with range cause serious error. 
l. 



APPENDIX C 

COMPARISON OF POWER AUTOCOVARIANCE WITH VOLTAGE AUTOCOVARIANCE 

RCS clutter is proportional to clutter voltage squared; therefore 

the Fourier transform of RCS clutter autocovariance (or autocorrelation 

since the process has zero mean) provides a spectrum analogous to the 

power squared spectrum while the Fourier transform of clutter voltage 

autocovariance provides the conventional power spectrum. Both autoco-

variance functions provide essentially the sjime information although in 

different forms. The mathematics involved in finding the voltage aut9-

covariance function become very involved, and most investigations end 

up by imposing limitations in order to obtain approximations of the 

function. As pointed out by Raven (16, page 262) in referring to this 

problem in general, 

Instead of becoming involved with such approximations, how­
ever,. it is often either more convenient analytically or 
more realistic in a physical sense to assume that the second 
detector is a square law rectifier producing the square of 
the envelope rather than the envelope itself. 

Raven (16, pages 245 to 264) discusse~ this general problem of the power 

density spectrum at the output of nonlinear devices; this problem is 

closely related to the particular problem considered in this Appendix. 

Since the RCS clutter is specified in ter~s of a voltage squared 

in the time domain, descriptions of RCS clutter autocovaria11ce will 

generally take the form of a function of the square of the clutter 

voltage autocovariance. Since squaring in the time domain implies 
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:;elf-convolution in the frequency domain, a spectral comparison of the' 

two functions indicates the RCS clutter spectrum (power squared) should 

tend to be wider than the conventional power spectrum. 

To obtain an approximate c.omparison of the RCS autocovar;iance 

function generated in this thesis with the analogous voltage function, 

assume that the voltage components of clutter at time 1 and 2 given 

here by x1 and x2 are jointly normal with zero mean and correlation 

coefficient p (which could be argued as a good approximation). .Then 

the voltage autocovariance is given by Raven (16) as 

,-00 

2 
-X + 2r.,x X -l I"' 1 2 

exp[ 2 2 
2e- (L,-p ) 

CX) 

J 

2 
= cr p(,-) 

2 
= er • Then if the voltage squared is considered, 

2 
Y=X 

the following results may be obtained, 

. E[Y] 2 
= CY 

2 4 
a = 2Er y 

i.e., 

The autocorrelation function of Y given by Raven (16, page 254) is 

(C .1) 

(C .2) 

(C .3) 

(C .4) 

(C. 5) 



E[Y(t)Y(t+T)] = ---;1===== 
2TT Jl-(!J2

a
2 

co co 

J J 
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(C. 6) 

The normalized autocovariance function then for the voltage squared is 

p2 (T), which in this case is the square of the normalized voltage auto-

covariance, If it is now assumed that a similar relationship holds for 

the autocovariance function developed in Appendix B then an approxima­

.k 
tion of the normalized voltage autocovariance is simply (rm) 2 where rm 

is given in Equation 5.1. A plot of this approximation compared with 

the clutter RCS autocovariance is shown in Figure 

.k 
given by (r ) 2 

m 

16. This approxima-

tion to the voltage autocovariance is seen to be some-

what broader than r and this will result in a narrowing of the spectrum 
m 

as predicted. However the decorrelation distance defined as the dis~ 

tance to the first ~ero crossing remains unchanged. Figure 16 also 

shows that the square root of the linear approximation of rm is a close 

approximation to this function obtained for the voltage autocovariance. 

Therefore a reasonable approximation to the clutter voltage normalized 

autocovariance function appears to be (using Equation 6.14) 

. 
= [.SD/sina - ~]\ 

.SD/sinQ' 

= 0 

for .M < d 
C 

elsewhere 

(C. 7) 
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A calculation of the clutter voltage autocovariance function in a 
; 

more general fashion for comparison with the RCS autocov~riance function 

appears to be a formidable task an~ will not be undertaken. It is not 

clear which form of the clutter autocovariance function is more basic 

but either form will allow some insight into the complicated process. 



APPENDJ;X D 

NORMALlZED FOUR!ER TRANSFORM OF AUTOCOVARIANCE 

The autocovariance function of the RCS process may be assumed to 

be short-term stationary which is disc~ssed in Appendix B. Then, in 

accordance with the Wiener-Kinchine relation discussed by Downing (12, 

page 3 7), t.he Fourier transform pair 

CIO 

G(w) = J r(t)e-jWtdt (D, 1) 
-cp 

CX) 

r(t) = J G(w)ejWtdf (D.2) 
-ex:, 

represent the normalized autocovariance function and its power spectral 

density. However, since r(t) in this case is analogous to a voltage-

squared relationship, a power-squared spectral density results. 

For notational convenience, the following set of relations are de-

fined, some in terms of previously designated constants (d
1

,d
2

,K
1

,K
2 

are designated in Chapter III): 

f = frequency in hertz 

w = 2m: 

L\U 
t = -. u 

Ol = 
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·. 2 
uh CT 

Thus the autocovariance function given in Equation 5.1 may be written as 

r(t) = [s,inat 
Q't 

Then the Fourier transform of r(t) is 

QQ 

s:i,nSt]2 
1,t 

G(w) = J r(t)[coswt - j. sinwt]dt 
-Cl> 

(D.3) 

(D.4) 

But r:(t) is an even function so r(t)sinwt is odd and the integral of an 

odd function over symmetrical 1 imi ts' i1f zero. Therefore 

co 

G (w) = f 
.~ 

[sirot s~n~t]2,:c::oswtdt 

Cl'S t 
(D.5) 

By using trigonometric ic;lentities to e:,q:,and this integral, it may be 

broken into nine integrals of the f.or;n 

and 

co 3 J coswt dt =.w
6 

( 4~) 
t4 

(D .6) 
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(D. 7) 

1 3 1 13 ll 13} + 2 I w- <wl3) I + 21 wt (Ct'-13) + 2 w- <et-S) . 

Thi~ function is then normalized in te~ms of wavelength and veloc-

ity by performing a scale change given by 

1 w 
F(f):;:: 2njJj G(2TTJ) (D. 8) 

where J is a consta~t to be designated. Since 

/!;U ut 
~ = ~ (D.9) 

where tis the time to travel a distance l!,u, 

and 

. 
u 

J = I 

1 w 
F(f) = --. G(-----;-,) 

u u 2TT ~ 2TT ~ 
A A 

A f = __,.,..2 • G(-.) 
TTU u 

J 

f Then-. is seen to be dimensionless so let 
u 
A 

and 

(D .10) 

(D .11) 

(D. 12) 
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(D .13) 

Then since a and Smay be expressed as 

a= (D.14) 

and 

2rr u s1 S=---
A 

(D .15) 

these may be substituted into Equation D.7. This substitution and the 

indicated scale Ghange results in 

(D .16) 

This normalized function is independent of frequency and velocity. 

Equation D.16 then is the normalized clutter spectrum corresponding 

to one point on the ground. If ground position is varied along a line, 

a three-dimensional spectrum may be plotted to show spectrum change 

along the line. This is done in Figures 10 and 12 of Chapter V where 

it is shown that this function is approximately triangular shaped for 

typical airborne radar parameters. 
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