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PREFACE

This dissertation is directed at obtaining a state moedel of the
airboerne radar ground clutter s;oéhastic process which‘can be applied
in schemes used to discriminate against clutter., Development of the
model has been based upon the change in the radar cross section of a
ground resolution cell viewed from an aircraft as the aircraft changes
position, The basic randemness used in the development of the process
was assumed to be the randem separation of reflection points within a
resolution cell, The érocess is shown to be nonstationary.

The developed‘model includes the clutter process autocorrelation
function which is used to obtain an approximatien of decorrelation dis-
tance. The Bayesian approach to Kalman filtering is alternatively
applied through use of the clutter model to obtain equations for
recursive filtering,
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CHAPTER I
INTRODUCTION

Airborne radar systems which view the ground are plagued with a
.particular type of_interference phenemenon commonly called ground
clutter or clutter. This clutter generally results from constructive
and destructive interference between the returns from many iﬁdividual
scatterérs, each of which is too small to be resolved by the radar.

The fluctuation or variation in the return from a grouhd.patch (cell)
therefore results from relative motion between the individual scatterers
with respect to the viewing radar. The dominant source of this relative
motion and therefore that of clutter is usually aircraft motion rather
than scatterer motion, It is the clutter resulting from aircraft motion
which is considered in this thesis. This clutter will be shown to be a
nonstationary stochastic process which produces a modulation of the

radar cross section of a ground cell in a noise-like fashion.
-Statement of the Problem

A pulsed radar may be considered a sampling device which samples
the ground clutter brocess at some pulse repetition frequency (PRF).,
The degree of correlation from pulse to pulse may then be described by
use of a clutter autocorrelation function, and the information obtained
through use of this function is essential in most clutter discrimination

schemes. Therefore, the problem considered herein is the development of



a mathematical clutter model, Solution of this problem is in part
dependent on the use of the concept of radar cross section (RCS) to
derive a clutter time autocorrelation function and other first-order
and second«order'momentg of the clutter process which are necessary
parts of the clutter model. The basic model developed is a discrete
state model; however, it will be seen that the basic relation is the
autocorrelation function.

Clutter cell radar cross section (RCS) is .a random variabie whose
behavior characterizes the clutter process. Therefore, the clutter
process is developed in terms of cell RCS. A particular ceil is desig-
nated by its position on a coordinate system located at the aircraft.
A single cell then is analyzed in terms of its varying RCS which is
produced by changes in the aircraft viewing position with respect to
the fixed position of the cell. This varying RCS is a function of air-
craft motion which may be converted to a function of time through a
knowledge of aircraft velocity, The statistics of the variation in
cell RCS as a function of aircraft position and velocity (or time and
time difference) is of primary interest because this technique can be
used to dévelop a clutter ﬁodel which will be generally applicable to
most moving pulsed radars. Such a model is particularly useful since
it can be related to any particular radar on the basis of a minimal
number of criteria: (1) radar beamwidth and pulse width, which desig-
nate cell size, (2) wavelength, and (3) radar position and rate of .
change of position with respect to the reflecting surface.

The clutter model developed on the basis of the above criteria
will be shown to be easily adapted to the solutions of filtering prob;

lems. It can also be used to provide insight into the clutter process,



In fact, a simple expression for decorrelation distance (or time) can
be directly obtained from the autocorrelation function in terms of only
antenna aperture width and antenna azimuth angle, In addition, the
clutter power density spectrum at the output of a square law detector
can be obtained from the Fourier transform of the clutter autocorrela-
tion function.

Although such a-modél represents a nonstationary process, short-
-term, wide-sense stationarity will be justified and used for time-

changes on the order of one radar scan time.
Approach to the Solution

This study of airborne radar ground'clutter will be conducted on
the basis of three ma jor substudies. First, a state model of the clut=-
ter process will be developed. Then the state model will be analyzed
by studying the resulting autocorrelation function and by studying the
relationships derived from the autocorrelation function, such as process
spectrum and decorrelation distance. The final substudy will be di-
rected to developing and comparing several approaches to the appiication
of the clutter state model.

The state model will be developed in three successive steps. A
probability density function will be derived to model the basic random-
ness as a first step. Next, this randomness will be used in the expres-
sion of the phase of the cell-reflected voltage through the use of the
geometry of aircraft motion with respect to the reflecting cell. Then
a phasor addition of these voltages will be used to obtain an expression
of cell radar cross section and time will be introduced by considering

the cell radar cross section seen by the radar on successive pulses,



The cell radar cross section thus derived as a function of time will be
shown to constitute a first-order difference equation of the state of
cell radar cross section from pulse to pulse, i.e.,, a state model.

Analysis of the state model will be performed through a study of
the developed autocorrelation function. Computer calculations of the
autocorrelation function and its Fourier transform will be obtained at
discrete points, and these functions will be plotted in three dimen-~
sions. Analysis of the functidﬁ‘plots will allow the determination of
several invariant properties of the clutter process. However, it will
be shown that the rate of availability of clutter information is not
invariant but depends upon aircraft velocity, antenna size, and antenna
azimuth angle,

The final major substudy will consist of a limited study of appli=-
cations. It will be limited in the sense that the clutter model will
be used in a few typical applications to demonstrate its capabilities
of clutter discrimination, and the application of the subject model

will be compared with other clutter discrimination techniques.
Previous Work in the Area

Much of the early work done on radar clutter was accomplished at
the Massachusetts Institute of Technology in the 1940's. Some of this
work was documented in the Radiation Laboratory Series. Rice (1) de-
fined a general approach which can be applied to many types of clutter
power. This approach is based on the assumption that the voltage re=
turned from individual scatterers can be divided into orthogonal com-
ponents, and that the amplitude distribution of each component is

gaussian and its phase distribution is uniform. When this rationale is



used, the magnitude of the square of the sum of these gaussian compo-
nents results in a Rayleigh distribution for clutter power.b However,
this approach is often used without developing an expression for the
time autocorrelation function which is the key relationship.

The airborne clutter problem has been considered under the assump=
tion of time stationarity in several previous studies of clutter fil-
tering (2,3,4). The sea_Clutter problem is closely related to the air-
borne clutter problem, and it has been demonstrated that sea clutter
effects can be reduced through the use of a high-scan-gpeed radar (5).
When a high scan speed is used and only one or two hits are obtained
per scan, the average data rate can be kept constant while the time be-
tween successive pulses (or pulse pairs) is increased to allow time for
decorrelation. Integration will then smooth the sea clutter (or ground
clutter), In the similar case of airborne radars, it has also been
showh that pulse-to=-pulse frequency stepping (frequency agility) pro-
vides clutter decorrelation and thus facilitates clutter smoothing (6,7).

The Illinois Institute of Technology (IIT) recently used a mixture
of theoretical and data studies to develop a general clutter model for
predicting airborne radar performance in ground clutter environments
(8). In this model, both discrete and distributed clutter are consid-
ered on the basis of generally assuming a log normal clutter distribu-
tion. The model of the triangulaf correlation function for distributed
clutter used in the IIT study is a simplified approximatioen similar to
the autocorrelation function subsequently developed in this thesis.

Results of a previous study done at General Electric show that one
antenna aperture width is the approximate distance a.radar must travel

between pulses to attain pulse-to-pulse decorrelation (9). A value of



approximately one aperture width is subsequently derived in this thesis
as the distance necessary for pulse-to-pulse decorrelation of clutter
at an azimuth angle of 30 degrees. Completely different approaches

were used in obtaining these two similar relatioenships.



CHAPTER 1I
STATISTICAL MODEL OF GROUND SCATTERER SEPARATION

The statistical model of ground scatterer separation will be
developed by (1) establishing a rationale, (2) making the basic assump-
tions necessary to implement this rationale, and (3) performing the

probabilistic development on the basis of the rationale and assumptions.
Rationale

In this development of a statistical model of ground scatterer
separation, the cluttér cell RCS is considered a random variable which
is composed of‘the RCS of many elementary scatterers within the cell,
Since the clutter cell is defined as the smallest resolvable ground
patch, the cell RCS represents the contribution of all elementary
scatterers in the cell which react within the constraints of the reso-
lution of the radar. Therefore, in this study, the clutter cell size
will be designated on the basis of some range resolution and some azi-
muth resolution, i.e., on the basis of the radar ground resolution cell.
Consequently, cell RCS will be determined on the basis of the construc-
tive and destructive interference between elementary scatterer reflece-
tions.

This interference is primarily a function of the scatterer separa-
tion in both range and azimuth. Consequently, a ;wo=dimensional-mathe-

matical model of scatterer separation on the ground is required even



though the cell RCS at any instant is determined only as a function of
the range separation of elementary scatterers.1 The second spatial di-
mension is required to establish the rate of change of scatterer sepa-
ration.

It will be subsequently shown that scatterer position within a
cell is assumed to be raﬁdom; consequently, scatterer separation within
a cell will also be a random phenomenon since it is a function of scate~
terer position. Therefore, a statistical model of scatterer separation

is required because of the randem nature of scatterer separation.

i

Assumptions

The statistical model is based upon several rather general assump-
tions about the nature of terrain in terms of the elementary scatterers
within a cell. These assumptions are as follows:

(1) The location of independent scatterers is.characterized by a
uniform random distribution.

(2) Scatterers are nondominant, isotropic, points.

(3) A cell contains a large number of scatterers,

Assumptions (1) and (3) are self-explanatory; nondominant, elementary
scatterers are defined as those whose amplitudes are approximately
equal. These assumptions are generally the same as, if not less re-~
strictive than, the assumptions made by previous investigators (2). For
example, Rihaczek (10) assumes, for purposes of clutter filtering, that

ground clutter is derived from scatterers which are unresolvable, large

lOn the assumption of equal return from each scatterer within the
cell (except, of course, for phase),



in number, independent, uniformly distributed in range, randomly
located, and of comparable length, . and.that-such. scatterers give rise to
clutter with characteristics of stationary gaussian noise,

Although the assumptions made in this thesis in general tend to
eliminate applications to the return from cities and man-made objects,
at microwave frequencies even these man-made objects will generally
exhibit an RCS made up of the returns from many separate scatter points.
Therefore while these assuﬁptions will degrade the usefulness of such a
model in modeling man-made objects, the model is by no means completely
inapplicable in these cases. However, the assumptions have been made
for the primary purpose éf‘modeling natural terrain which is of con-

siderable interest in ground mapping by radar.
Development of Probability Density Function

By assumption, scatterers within a cell are characterized by a
two-dimensional uniform distribution of position as shown in Figure 1
(Figure 2 will be shown to result from Figure 1). This two=-dimensional
probability dénsify functiﬁn (joint density function) shown in Figure 1

may be expressed as the product of the marginal probability density

functions of X1 and X2, i.e.,
f_(;) = fX (xl)fX (x2) = %—)ﬁ%—) for 0 < X < Kl
X 1 2 -1 2 .
' ’ 0<‘x2 <1<2 ‘(2,1) 7
=0 elsewhere o

Therefore Xl and X2

These two=dimensional position points may be considered random

are independent random variables.

vectors. Then if two sample random vectors, X and Y, are withdrawn at
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Figure 2. Probability Density Function of
Scatterer Separation



11

random from this distribution,,f and Y are independent, identically
distributed random vectors. But the random vector of interest is the

difference between X and ?, which is

Z=X-Y : (2.2)
where
and
ZZ == X2 - Y2 . (2.4)
Thus X1 is independent of X2 and Y2, and Yl is independent ofvx2 and'YZ
so Z1 is independent of 22. It then follows that
z 2y 1z, \

. but the density function of Z, is the convolution of the density of X

1 1

with -Y, (11, page 189) which is

1

w
z. ‘%1 J £y (zpryfy (vpddyy
1 o ] 1

Hh
~
N
~
ft

(2.6)

i

1 B
Fa (K -[z, ) for -k, <z, <K

; 0 elsewhere o

Similarly

+h

N

~
I

1 .
7 9 E;E; (szlzzj) for FKZ < 22 < K.2

(2.7)

=0 elsewhere °
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The combination of Equations 2.5, 2.é,:and 2.7 results in the desired
probability density function as shdﬁn in Figure 2. This density func-
tion is the statistical-mddel of elementary scatterer separation ex-

pressed as a mathematical function., In terms of the components of the

random vector E, this function becomes

£ = otm (1 - ,zlld(i - "—i-2-|—> for -K, <z, <K
zl,zz(zl,zz) KK, K, 7T K, 1 1 1
~K2_< zZ, < K2
(2.8)
=0 elsewhere
where

scatterer separation on the ground along the radius vector.

N
i

1
z2 = gcatterer separation on the ground normal to the radius vector.
K1 = cell dimension in the z1 direc;ion

K2 = cell dimension in the z2 direction.

This function describes the basic randomness in the clutter process,
and it will be used in conjunction with the deterministic model to

describe the clutter process.



CHAPTER II1I
DETERMINISTIC MODEL BASED UPON GEOMETRY

A deferministic model, based upon geometry, is necessary for the
description of the clutter process for the following reasons. The
clutter process is to be modeled in terms of aircraft motion since it
is aircraft motion which gives rise to the time variation. The separa~
tion of scatterers has been described statistically; however, it is the
phase difference between scatterers,,avfunction of scatterer separation,
which determines the interference phenomenon. Therefore, phase differ-
ence and rate of change (first aerivative) of phase difference, with

‘respect to distance along ground track, will be described in terms of
aircraft motion and of the Z1 and 22 components of the random vector for
scatterer separation. The model of the geometric relationships is pre-
sented in Figure 3.

The symbols and notation used in the model are described in the
following list:

r = slant range to scatterer

Ar = slant range separation betweéen scatterers

ground track = path of aircraft projegted onto the ground

u

]

distance along ground track
U = aircraft velocity along ground track
v = distance normal to ground track

h = airgraft altitude

13
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yl,y23y3 = direction angles to resplution cell

@ = azimuth angle to resolution cell

o
1

propagation velocity of an electromagnetic wave
T = radar pulse width

A8 = phase difference between two scatterers

A = wavelength

¢ = antenna horizontal beamwidth

cT . ,
K1 =35 csc YZ’ i.e., range resolution

K2 = rp, i.e., azimuth resolution,
Assumptions

The geometriC‘model shown in Figure 3 is the model generally used
‘fqr the solution of the radar problem. However, three assumed approxi-
mations are inherent in this traditionally used model. First, it is
assumed that range resolutibn is determined solely by pulse width and
depression angle and not vertical beamwidth (i.e., large vertical beam-
width). For most practical purposes; use of this approximation causes
novdiscernable error at ground range distances larger than aircraft
altitude, but a model based on this approximation cannot be used when
radars gather data from the ground at near vertical incidence,. e.g,,
radar altimeters and some doﬁpler radars. -Second, it is assumed that
the resolution cell in tﬁis-model is a rectangular rather than an
annular-section resolution cell. Since small horizontal beamwidths are
used on most airborne radars, use of this approximation causes negligi-
ble error. Third, this model is based on the assumption that Earth is

filat (but not smooth).
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Development of Geometric Relationships

The geometric model is made up of two coordinate systems. The
first is a three-dimensional coordinate system at the aircraft and it
is translating at aircraft velocity. This coordinate system is used to
designate cell position, The second is a two-dimensional coordinate
system on the ground, and it is rotating (but not translating) as a
result of gircraft motion, This coordinate system is used to designate
scatterer position within a cell. A study of the above relationships
will indicate that, in essence, only one cell on the ground is being»
tracked. In other words, a ground cell is being observed from a moving
platform, and at each observation instant the cell coordinate system
remains aligned with the azimuth angle from the moving observation
platform to the cell.

Phase of the return from a scatterer is determined at any instant
by the slant range to the scatterer, where slant range is expressed in
terms of ﬁhe geometric relationships discussed above. Therefore phase-
difference between two scatterers at any instant may be described in
terms of the difference in their slant ranges. But from one instant of
time to the next, phase difference changes as a result of the change in
geometric relationships caused by aircraft motion. It is phase differ=
ence and change in phase difference which cause cell RCS variations as
a function of change in position of the aircraft.

bThus phase difference and the change in phase difference will be
determined in terms of the random variables Z1 and Zz.and the coordi-
nates of cell position with respect to the aircraft. Two-way phase
difference between two scatterers is given by 41T times range separation

in wavelengths or
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pe = | (.1)
where
Ar = Z1 sin YZ . | (3.2)

Then expressing Z1 in terms of ]E"and ¥, and expressing sin yz.in

terms of u and v allows

Ar ='lzl[u cosy » Vv sinwj

r

-The change in A® with respect to u then is

dag 4ﬁlzl [(v%+h2)cos¢ + (uv)sing
— B 3 . LA

A
du A
r

(3.3)

It may be noted that, if this derivative is taken with respect to time,

the following relationships results:

Cl

[N
>

ay = 3= S804 (3.4)

[a ¥

u

_ 24]7] [(v2+h2)‘cosq;,+ (uv)sing,
- 2zl

3
T

Then AfD is the difference in doppler frequency between the two scat-
terers. Equation 3.3 could have been derived by starting with the
doppler frequency of each of two separated scatterers,

A éoordinate transformation can be used to perform the operation
_ necessary to obtain the E'values in terms of the random variables Z

1

It can be seen from Figure 3 that

gnd 22.
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Z, = IE, cos (¢ + @)

=’[El sin(y + @) . (3.5)

Then by using the double angle trigonometric identities and converting

Equation 3.5 to matrix form, the followihgvis obtained,

Zy |Z| cosy
= A _ (3.6)
Z, |z] siny
where
cosy -sinw : .
A = 3,7
sina cosa
and
cos sinw
As‘1 =
-sing cos®
It then follows that
]Zl cosy | Z
e
|z| siny z

or
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IE] cosy = Zl‘cosa + Z, sinx 3.8

2

IE‘ simp = «Z

1 siny + Z coso . 3.9)

2

Applying relationships 3.8 and 3.9 to Equation 3.3 and combining

Equations 3.1 and 3.2 produce

4rr siny, '
A9 = 5\ Z, (3.10)
2
ase _ 4n |
Tu= 1 . (3.1;)

uh v
g — Z1 + 22
r3,uz+v2 o /uz+v2

Equations 3.10 and 3.11 are the desired relationships and repre-
sent the deterministic model in terms of the random variables Zl and 22.

These equations may be written as

4m sin'y2 ‘
A8 = aZ1 = - Zl (3.12)
dpe.
i dlzl + dZZZ (3.13)
where
. 4 sin’y2
- A
uh2 41
r3/uz+v2
d = Y ('{‘;"'I .



CHAPTER IV
STATE MODEL OF PROCESS

The model developed thus far doés not incorporate a function of
time. Time will be introduced by considering a discrete state model in
the form of a first-order linear difference equation. Since the pulsed
radar data sequence is generally accepted as Markov-l,isuch a state
equation is sufficient for linear mean square estimation of the next
value in the sequence in terms of all past values (11, page 420). This
type of state model is readily applicable to many types of probléms; in
particular, the Kalman or Bayesian approach to recursive filtering may
be applied through the use of the discrete state model.

The state model, along with the clutter autocorrelation function
and other first-order and second-order moments developed in this
chapter, will be considered‘the basic cluttef.model.

Development of the State Model

In order to apply the previously developed models in the develop-
ment of the state model, cluﬁter cell RCS must be described in terms
which include‘the effecﬁ of the phase difference between scatterers.
The effect of the phase difference can be described by obtaining the
square of the resultant magnitude from the phasor addition of the
square root of the RCS of many independent'scatterefsi(see Appendix C).

Let ¢ designate cell RCS and o, designate the RCS of elementary

20
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scatterer i within the cell; then consider

. N j(mt+9.).
(@ JWHD 3 opF Tt (4:1)
i=1

where

N = number of elementary scatterers in the cell

Gi = phase of eleméntary scatterer i.

Equation 4.1 is the phasor addition of the square root of elementary

jwt

~scatterer RCS, and e may be factored from each side of Equation 4.1.

Therefore,

. N je, .
L 1
(@)® eJe,= z (oi)f e (4.2)

i=1
N 1

— % . .

= .Z (Gi) (Cosei + 3 slpei)
i=1 :
N L N 3

= & (0,)%cosb, +j £ (o,)° sind, .
. i i . i i
i=1 i=1

It may be noted that, if the central limit theorem is applied at this
point, we obtain two gaussian random variables. When these variables
are combined and subsequently expregssed only in terms of the resultant
envelope, the Rayleigh distribution is obtained. This approach has
been used by Downing (12, pages 51 through 59).

The following equation results from extracting only the magnitude

from Equation 4,2:
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L N 3 2 N ! 3
(@)% =[(Z (ci)2 c0s8,)  + (T (0.)? sine.)zj2 : (4.3)
, i ; i i
i=1 i=1
i.e., the square root of the sums of the square of the real and imagi-

nary parts. Then squaring both.sides and representing the squares as

double sums result in

NN Y L
o= £ I (g.,)% (ck)2 cos (6, -6.) (4.4)
=1 k=1 ]
or
NN y % | |
o= I I (0% (g)" cospl, ) (4.3)
=1 k=1 J J
where
Aekj = ek-ej _ (4.6)

is the phase difference betweén elementary scatterers as it has been
defined in Equation 3,1.
By noting that Equation 4.5 is g quadratic form, it may be

rewritten in matrix form as the following dot product:

% %
% 9
% %
0'2 0'2
g = B . (4.7)
Y 1
2 2
N N
I ]
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where B is a square matrix of cosine terms, i.e.,

1 cosA912 cosAQl3 cee cosAelN
cosAe21 1 | .
B = cosAe31 . . (4.8)
_COSAeNl . . . .

The summation required by Equation 4.5 or Equation 4.7 may be accomp-
lished by first summing along the diagonal‘of B, then summing over the
portion above the diagonal, and finally summing over the portion below
the diagonal. Since the elementary scatterers are assumed to be approx-
imately equal in amplitude, the diagonal summation is Nci and tﬁe summa -

‘tion above the diagonal is

However, since
cosAij = cosAejk

B is symmetric and the summation above the diagonal is equal to the
summation below the diagonal. Then by utilizing this symmetry of B and
combining the sums, ¢ is represented as
N(N-1)
2

g = Ngi + ZGi z cosAD
4=1

L . (4.9)

Note that, if N = 2, then
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g = 2Gi + ZGi cosAB

which is simply an expression of the law of cosines for equal émpli-
tudes (ci)%.

The expected value of o may be obtained by expressing A® in terms
of the random variable Z1 (Equation 3.12), multiplying cosA® times the
marginal density function of Zl’ and integrating., Specifically, by
letting E denote the operation of taking the expected value,

N(N-1)
2

Elo] = ElNo, + 20, &E cosA8, ]
1

N(N-1)
: ]
= No. + 20. z E[ cosa® . : - (4.10)
i o g 4

It is shown in Appendix A that the expected value obtained in this

manner is given by

Elc] = No, (4.11)

and the mean squared value is given by

E[o?] = 2Nzof ) | (4.12)

By letting the subscript m denote a particular radar return pulse
(i.e., time or aircraft position), then the difference in cell RCS

from m-1 to m is given by
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N(N-1)
2
cm -9 1= ZOi &21 (cosAeé’m - cosAeé‘m_l) (4.13)
= b .
m
Therefore, the state model is
o, =0, 1+ by (4o14)
and since E[omj = E[am_l], then
E[b_m] =0 . (4.15)

However, the variance of bm is required for most applications of this

“model.
Autocorrelation Function

In the development of the variance of bm, a'key term appears.
This term must be considered as the correlation between cell RCS m and
m-1, however, it will be shown that, by allowing the time (or position)

difference between m and m-1 to vary, an autocovariance function, which

corresponds to the correlation term, can be obtained.

The variance of bm-may be expressed as

12
N(N-1)
2 2 2 |
E[bm] = 4o, E &El (cosAeé’m - cosAG&,m-l) (4.16)

or represented-.as a double sum,
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N(N-1) N(N-1)

2 2
2 2
E =4 ) . -~
[bm] oiE {il jil (cosAG&ym cosAe&’m_l)(cosAej,m COSAej,m-l)
N(N-1) N(N=1)
2 2 2
= 4 .
GiE 451 jil (COSAG&,mCOSAej,m+C°SAe&,m-1C°SAej,m-1
- cosAG&,m_lcosAej,m-cosAeLymcosAej,m_l) .
However, since Ae& is independent of Aej, all terms in the above sum
are zerp, except in the case of £ = j. In this case, a single sum is
obtained,
N(N-1)
2 2 | 2 2 2
E[bm] = 4oE kil (cos Aek’m+cos Aekim_l~2cesA6kymcosA6k,m_1) (4.17)

Then by applying Equation 3.13 (the derivative of A® with respect to u),

Aek’m'may be approximated in terms of Aek;m-l by
da®
_ . kym-1 .
(884 1 - Aek,m-l) =" du Au (4.18)

= (42) +d,2) 0 =8

where Au is distance traveled between samples m-1 and ms When Equation

4.18 is used and the necessary integration is effected, it is shown in
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Appendix B that

2 2 1
Elcos Aek’m] = E[cos Aekim_lj =7 (4.19)
and
2 2 2 2 2 2 2
E[bm] = 2N o, - 2N Oty = 2N oi[l-rm] (4.20)

where rm is the correlation coefficient (or normalized covariance)

between o and o

el Then, because E[qm] = E[Qm-lj

2 2 )
E[om-+ o1 -2, 0 ] (4.21)

2
Var[bm] = EI:o‘m - om-lj -1 m m-1

]

2
2E[e_m] - 2E[om o

-1

and by using Equatioens 4.12, 4,13, 4.20, and 4.21,

2 2
Elo o ] =N0[(L+ 1) . (4.22)

m=1

If the time (or distance traveled) from sample m-1 to sample m is
allowed to vary, Equation 4.22 becomes the autocorrelation function of
cell RCS. However, a more basic function is the autocovariance function
which is Equation 4,22 after the squared mean value is removed, i.e.,
Nzoirm. This is the autocoevariance of o Thus the function developed
in Appendix B as a function of distance traveled by the aircraft

(rather than time) is the normalized autecovariance function of»qm as

defined by Downing (12, page 25) and is given by

— - 2
i dlKlAu ;n dezAu
2 S 2
dlKlAu dezAu
2 2

r (u,v,Au) = . (4.23)
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The constants dl’ d2, K1 and K2 were defined in Chapter III. This
function will be subsequently analyzed in Chapter V where it will be
shown that ro is a slowly varying function of u at aircraft velocities.
This slow variation substantiates the validity of short-term station-

arity.

The variance of bm is given by Equation 4.20 as

] = %7 (L-x ) (4.24)

r . | (4.25)

At this point it may be seen that the state model given in Equa-

tion 4.14 may be put .in a more general form as
E[qm] = E[cm_lj (4.26)
o = E[o_m] + v . (4.27)

Cell radar cross section then is seen, from Equation 4.27 to be a
random process consisting of a mean value and a correlated fluctuation
component designated by Ve This correlated noise component is the
term which has been called clutter, and it is seen that RCS autocovari-
ance 1s clutter autocorrelation, or since the clutter has a zero mean,
clutter autocovariance is the same as clutter aﬁtocorreiation. Thus
the zero mean clutter process will be referred to as‘RCS clutter or
simply clutter while the nonzero mean RCS process, which consists of
mean RCS plus clutter, will be referred to as RCS or RCS process.

The time state model will be applied iﬁfa:Bayesian approach to

recursive filtering of ground clutter in Chapter VII.
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Scan=~to=Scan Clutter Variance

The clutter correlation phenomenon discussed above is also
reflected in scan-to-scan clutter variance. It will bhe shown that as
pulse~to-pulse clutter correlation increases, scan~to-scan variance
increases and increased scan-to-scan variance produces increased
clutter. (This increased clutter can be identified in the presentations
generally seen on airborne displays.) The significant conclusion is
that increase in clutter can therefore be directly equated with an
increase in pulse-to-pulse clutter correlation.

As 1In Appendix B, the assumption is made that the deﬂsity function
le,Zz(zl’ZZ) does not change during one scaﬁ time, i.e., short term
stationarity. Then, if it is assumed that n hits per scan are summed
(or intégrated) by the radar and M is used as a scan-to-scan index sub-

script and m as a pulse~to-pulse index subscript as before, the scan-

to-scan cell RCS is given by
L D
Ty = ; E a ° . (4028) »

This equation represents the uniformly weighted sum of n correlated

identically distributed samples. The expected value is given by

8oy = £ [n 2o )]

=N g . (4.29)

Then



2 1 -2
E[GM] = E[; £ ol
m=1
, o n
== I I Elo o&] .
n m=1l 4=1
By using Equation 4,22 for E[cm o&],
n n
E[oij = Nzoi + 15 Tz Nzofr&_m(&-m)
_ n" m=1 4=1 ’
and the variance of oy is given by
n n
E[ofd] - N2 = li Z I R,  (-m)
: n me=l 4=l ’

The double summation may be represented in matrix form as

:rR(O) R(1) R(Q2) . .
R(1) R(0) = R(1)
R(2) R(1)  R(0)
C = ‘.
R(n-1) . : R(2)  R(1)

R(n-1)

R(2)
R(1)

R(0)

30

(4.30)

(4.31)

(4.32)

(4.33)

Then by summing C on the diagonal, the variance of g, is obtained as

M

2 2

N oi n-1

Var[cM] =—3 [n+2 Z (n-k)rk(k)]
n k=1

(4.34)
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which is similar to the relation developed by Costas (13, page 5).

It may be noted that, if pulse-to-pulse correlation rk(k) is zero,
then scan-to-scan variance is equal to the pulse-to-pulse variance
divided by n, (Nzci/n), as expected, and clutter is reduced by a factor
of 1/n, which is the saﬁe reduction obtained through the integration of
white noise. When pulse~toepulse correlation is complete (rk(k) = 1
for all k < n), scan-to-scan variance is the same as pulse~to-pulse
variance (i.e., the integration is not effective in smoothing), and the
resulting high clutter is reflected on the radar display. Thus a large
pulse-to~-pulse correlation tends to cancel the smoothing provided by
integration. Consequently a large scan-to-scan variance, i.e., the

: |

noise~-like modulation called clutter, is obtained. Of course, scan-to-

scan integration will smooth this clutter, but it will also degrade the

- time resolution of the radar, A similar smoothing could be obtained by

cell-to-cell integration, but this action would degrade the space

resolution of the radar.



CHAPTER V
AUTOCORRELATION FUNGCTION ANALYSIS

Analysis of the autocorrelation function is directed to identifying
the variant and invariant properties of the function. This identifica-
tion, in turn, is dependent on examining tﬁe function by means of three-
dimensional plots of the function itself and its Fourier transform.

This analysis is also dependent on a knowledge of the specific parame-
ters of the function. The autocorrelation function given by Equation
4.23 is a function of distance along ground track, u, distance ﬁormal
to ground track, v, and difference distance along ground track, Au
(Figure 3). The parameters of this function are pulse width, beamwidth,
wavelength, and altitude which could also be considered variablé.

The term correlation is somewhat ambiguous in that it may refer to
amplitude or width (distance in wavelengths) of the normalized clutter
autocorrelation function. However, the area under the autocorrelation
function curve is a better measure of the quantity of interest than
either amplitude or width, but the area is essentially a direct function
of the width (or correlation distance) since the basic shape of the
curve will be shown not to vary appreciably from a linear function.
Consequently, correlation distance will be considered the basic correla-
tion parameter, and the term correlation will subsequently be used to
refer to either area under the curve or correlation distance, inter-

changeably. The distance to the first point where the correlation

32
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function touches the zero axis will be considered as the decorrelation
distance,

It should be noted that this autocorrelation function is the auto=~
covariance function of clutter RCS and net clutter voltage. Therefore,
the Fourier transform of this function gives the power squared density
spectrum which is the video spectrum actually seen on a radar only if a
square law detector is used. It is not clear whether the RCS (analogous
to power) or voltage spectrum is more basic; however, the RCS spectrum
was chosen for reasons of mathematical tractability. Certainly the RCS
autocovariance function provides valid clutter information although the
voltage autocovariance provides the information in a form more generally
accepted. A brief comparison of the difference between the two is pre-

sented in Appendix C.
Presentation of Autocorrelation Function

An analysis of the autocorrelation function involves a presentation
of the function in a form which allows a grasp of the variations present
and the parameter dependency. Such a presentation is generally some
form of graph; however, this function is four dimensional. Therefore,
the function is plotted in a three dimensional graph, and either u, v,
or azimuth angle, &, is held constant on each graph. Use of this con-
vention provides a graph of correlation amplitude on the veftical scale,
correlation distance on the horizontal scale, and either ground track
distance,. cross track disténce, or azimuth angle into‘the paper (the
third dimension),

A normalization of the wavelength dependency and a more compact

graphical presentation are desirable for clarifying the graphs. An
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inspection of Equation 4.23 reveals that A may be removed from the con-

stants d, and d2 and coupled with Au as Au/A; in each case distance can

1
then be presented in terms of wavelengths,

Since a mathematical expression for the clutter spectrum (power
squared spectrum) at the video level is desirable in the analysis, the
Fourier transform of the clutter autocorrelation (or autocoevariance)
function has been developed in Appendix D. A scale change of the re-
sulting transform was then effected to allew the spectrum to be normal=-
ized in terms of veiocity and wavelength. The clutter spectrum may now
be plotted in three dimensions with amplitude times velocity (in wave-
lengths) on the vertical scale, frequency per unit velocity per wave~
length (normalized frequency)'on the horizontal scale, and either ground
track or cross track distance into the paper.

Because of the length and complications of the equations for the
function and its transform, a computer program was written and utilized
for the calculation of the function values and the transform of these
values which were used in calculating the points subsequently repre-
sented in the plots. The program provides an output in tabular form of
the three dimensional autocorrelation functien and the three dimensional
spectrum. The graphical results provide a basis for further analysis
of the clutter process in the remaining sections of thisnpaper,

The autocorrelation function is élotted in graph form either at
points along or across track or at slant ranges along a constant azi-
muth angle. The equation of fhe normalized autoecorrelation functien

and its Fourier transform are as follows:



35

Clutter Autocorrelation Function:

. dlKlAu . deZAu
sin —5=— sin —5—
r(u,v,Au) = - (5.1)
dlKlAu dezAu |
2 2 .
n .
Fourier Transform of Autocorrelation Function:
a _ 1 3 3 3 3 3
Y F(u,v,f) = ———— {267-(F 420 )7 - £, -2 |7 = (£+2B,)7 - [ £, ~2B, |
24(e. B.)
171
1 31 3301 3
+ 5 E @B+ 5 £ - B+ 5 ‘f1+(a1-51)l
1 13
+ 5 |£,-@-B)]7] (5.2)
where
f
f1 = 3/
2
@, = g
r3‘\/u2-+v2
v
;B = —_—_——— K o
1 2
r '\/u2-+v2
sin2 X
Therefore the autocorrelation function is the product of two —5—
X
type curves. However a comparison of dlK1 with de2 reveals that for

typical radar parameters and for ranges greater than altitude dlKl,is
several orders of magnitude less than d2K2, except at angles very near

ground track. Therefore
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— 2
dlKlAu
__2
dlKlAu
2

sin

R

(5.3)

throughout a major portion of the region of interest and the autocor-

relation function then in this region is given by

12

d2K2Au

2
d2K2Au

2

sin

r(u,v,Au) & (5.4)

Near ground track, however, dlKl becomes larger than d2K2 and the ex-

pression in Equation 5.3 predominates. These observations are borne

out in the graphs which follow,
s'n2x
The Fourier transform of a == 5 type expression hgs a triangular
X
shape (11, page 340). Therefore the Fourier transform of Equation 5.1

can be shown to be the convolutien of two triangular shapes (12, page
340)64 But throeughout a major portion of the region of interest one of
the triangular shapes obtained from the Fourier transform will be much
more narrow than the other. The convolution then of a triangular shape
with a "'spike” produces a triangular shape. This is borne out by the

triangular shaped spectrum plots which follow.
Parametric Dependency

The autocorrelation function is obvieusly directly dependent upen
wavelength. It was therefore studied by considering difference dis-

tances, Au, in terms of wavelength, Of the other three designated
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parameters, altitude, beamwidth, and pulse width, only beamwidth has
any substantial effect throughout thé region of interest. This may be

deduced by considering the values of

d_ K. Au 2
11
, = (2T cosar) (ST) (AYy (5.5)
2 2/2 2 270 A
raju v
and
d2K2Au

27 sino, | Au
7= C O ERE

(ZTNPL Sina’)(é%) ° (5 96)

Therefore for r > h the expression in Equation 5.5 is very small and

So only Equation 5.6 effects the autocorrelation and altitude and pulse
width are not included in this exbression. Thus, except in the region
.very near ground track, the autocorrelation function is invariant wifh
altitude and_pulse width.

Along ground track the expressién in Equation 5.6 is zero since

siny is zero. Therefore

. d2K2Au
sin —5——

d2K2Au
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and

r(u,v,Au) =

along ground track. Examination of Equation 5.5 then reveals that
variation of r with h2 constant is equivalent to variation of h2 with +
constant. So to examine this parametric variation along ground track,
Equation 5,1 was plotted allowing 7 to vary. This is shown in Figure 4,
An examination of this graph reveals that lines of constant correlation
amplitude, when projected onto the zero correlation amplitude plane, are
inverse functions of v (as might be expected since increasing T‘de»
creases the ahbscissa of each curve)° For example the correlation dis=-
tance for a 0.5 correlation amplitude and 2 microsecond pulse width is
56 wavelengths while for a 4 microsecond pulse width this distance is
28 wavelengths. Then allowing h2 to vary instead of T it may be shown
that correlation distance (or gorrelation) along'ground track is an in-
verse function of hza Therefore correlation varies inversely with pulse
width and inversely with altitude squared along ground track. However
Whgn range is much larger than altitude this dependency 1s overshadowed
by near complete correlation (correlation distance very large) along
ground track.

In the region from a few degrees off ground track to broadside the
predominant correlation relationship is given in Equation 5.4, There-
fore an examination of‘Equation 5.6 reveals that in this region correla-

tion depends upon beamwidth, @, and is invariant with altitude and pulse
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width. As might be expected from the results above, correlation varies
as an inverse function of ®. This is shown in Figure 5 for an azimuth
angle of 45 degrees and is typical for all azimuth angles to within a

few degrees of ground track for typical airborne radar parameters.,

1

Geometric Dependency

The geometric dependency may be obtained in the same manner used
above to obtain parametric dependency. Again an examination of Equa-
tions 5.4 and 5.6 reveals that correlation is invariant with raﬁge
beyond some minimum range and at azimuth angles off ground track.,
Figure 6 shows the variation of the autocorrelation function with slant
range at 15 degrees off ground track, AS‘may be noted the function
does not change with range beyond a slant range of two to three times
altitude. As the azimuth angle increases the distance at which range
becomes invariant shortens. For example at an azimuth angle of 90
degrees (broadside), range invariance begins when slant range (r) is
only a few feet greater than altitude (i.,e,, at a ground range of a few
feet),

By the arguments previously used then, correlation varies inversely
with azimuth angle, This is shown in Figure 7, Figure 8 is a "blown-

up" view of Figure 7 in the region from 15 degrees off ground track to

ground track. An examination of Figure 8 reveals that the S rela=

ine
tionship holds very closely at angles’as small as 2 degrees off gréund
track. Thus the basic shape of the autocorrelation function is invari-
ant and its width varies inversely as the sine of the azimuth angle.

Since it may be necessary to track a particular clutter cell on

the ground for filtering purposes, the clutter of interest is that along
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a particular tracg parallel to ground track. For this reason clutter
correlation ané the clutter spectrum has been plotted along such a
track as shown in Figures 9 and 10. Figures 11 and 12 are presented to
show how the clutter correlation function and the clutter spectrum
change with distance across track. Of course, the change noted in
these figures results from the change in azimuth angle. It may be
noted from Figures 9 and 11 that the autocorrelation function changes
very slowly as a function .of U or v in.!comparison with its change.as a
function of Au.

The two spectrum graphs (Figures 10 and 12) verify several known
relationships between the clutter autocorrelation function and the
clutter spectrum. As the autocorrelatibn function becomes wider, i.e.,
as correlation is increased, the spectrum becomes narrower and higher
in amplitude and more clutter is generally presented on the radar dis-
play. The spectrum shown in these figures is the video spectrum shifted
to zero frequency (the doppler is removed); thus the spectrum width
about the doppler frequency would be twice as wide as that shown in the

graphs.
Clutter Correlation Characteristics’

Some of the clutter RGS correlation characteristics may now be
summarizedvon the basis of the discussion and an examination of the
graphs presented. Examination reveals tha; the following approximate
characteristics of correlation can be identified in the region off
ground track:

(L) qurelation is invariant with range beyond some minimum range.

(2) Correlation is an inverse function of the sine of the azimuth
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angle and is thus maximum along ground track and minimum at 90 degrees
off ground track.

(3) Correlation varies inversely with antenna beamwidth (verified
in more detail in Chapter VI).

(4) At ranges greater than altitude, correlation is independent
of altitude.

(5) Correlation is independent of pulse width.

(6) Correlation amplitude remains less than 0.05 after it is
plotted through zero for the first time on any of the graphs.,

‘(7) For typical airborne radar parameters the distance traveled

by the radar between scans is greater than decorrelation distance (i.e.,
qlntter uncorrelated scan to scan).

(8) Correlation is a direct function of wavelength.
Approximately cemplete correlation is obtained along .ground track,

Inspection of Equation 4.34 will indicate that, since clutter
correlation is invariant with range, clutter increases with range only
as a result of the clutter variance (Nzoi). It is shown in Appendix B
that N is a function of slant.range. However, at long ranges the
effects of Earth curvature and the decrease in the ground reflection
coefficient at small grazing angles tend to offset this increase.
Neither of these parameters are considered in the model developed

herein.,



CHAPTER VI
AUTOCORRELATION FUNCTION RELATIONSHIPS

It was noted in Chapter V that the clutter autocorrelation function
is essentiélly invariant in shape and that its most significant parame-
ter is correlation.distance. A simple expression for correlation dis=
tance in terms of aircraft motion and radar parameters is therefore
desired because a known shape and known correlation distance can then
be used to determine a value of pulse-tOFpuise correlation at any ground
position without a lengthy calculation of the autocorrelation function.

A condition generally desirable for radar is pulse-to=-pulse decor-
felation since it increases the inférmation available per pﬁlse. There-
fore, the specific correlatioen distance te be determined will be
referred to as decorrelation distance (ac)° This basic relationship is
defined as the shortest distance at which the autocovariance function

reaches the zero axis.
Decorrelation Distance

Decorrelation distance is found by determining the point where the
autocorrelation function first reaches zero amplitude. The autocorrela-

tion function reaches zero amplitude the first time when

d2K2Au

2 (6.1)

il
=]
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for azimuth angles off ground track. Therefore applying the equations

for d2 and K2 results in

2 sima)(@)(é% =1

or

A

= sim 6.2)

Au

But Au in this case is the value defined as decorrelation distance and

is designated as dC. "So converting @ to an angle in degrees

(57.3) (M)
%= T2 sine 6.3)

Antenna beamwidth is a function of aperture width (D) and may be

approximated by
o = = (6.4)

if a circular aperture illuminatien distribution is assumed. By using
Equation 6.4 in Equation 6.3 above

N D

d = -7
c 2 sing

(6.5)

" Therefore decorrelation distance depends only on antenna size and azi-
muth angle and is independent of wavelength. This Equation 6.5 is the
simple relationship desired,

Equation 6.5 was checked at azimuth angles as close as 2 degrees
to ground track for typical airborne radar parameters and geometry and

found to be accurate. However as the azimuth angle gets very small
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(i.e., "on ground track!) sin(dlKlAu/Z)/(dlKlAu/Z) predominates as noted

in Chapter 5 and Equation 6.5 becomes invalid.
Autocorrelation Function Approximation

Since the basic shape of the autocorrelation function is invari-
ant, an approximation to this shape could save considerable calculation
in some applications without severe degradation of the accuracy. A
linear approximation to the normalized autocorrelation function is

shown in Figure 13 to be a reasonable approximation and is given by

r &1 -4 for ad < d_
c
Yy otherwise (6.6)
where
M = o
and
d D .

¢ 2 sinw

Then given the PRF and aperture width, the pulse-to-pulse correlation
for clutter at some point on the ground beneath the aircraft may be
calculated on the basis of the antenna azimuth angle to that point and
the aircraft velocity. For many applications, this approximation is
sufficient, and it allows a very simple calculation of pulse-to-pulse
correlation. It is interesting to note that the approximation 6.6 is

independent of frequency.
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Analysis of Clutter Process Sampling
On the basis of the concept of decorrelation distance developed in
this chapter, it can be shown that the aircraft must move a distance of

dC (decorrelation distance) between pulses to obtain uncorrelated
pulses. Since dC has been shown to be a function of azimuth angle, it
follows that a longer time interval (or slower sampling rate) must be
proVided between samples of the ground taken in front of the aircraff
than between samples taken to the side if the information per sample is

to be kept constant. In other words, the clutter information rate is

inherently higher broadside than it is ahead of the aircraft. Of
course, the analysis of the clutter is a means to an end, the actual

objective is to reproduce the average RCS which is being modulated by
(6.7)

The rate at which the process should be sampled for uncor-

QWC'

clutter.
related samples can be shown to be
PRF <
c

where PRF is pulse repetition frequency. If RCS is sampled at a rate
faster than the rate specified in relationship 6.7, then the radar will

reflect a portion of the clutter variation, as well as the average RCS;

this reaction is undesirable.

At this point it can be shown that the upper limits on sampling
rates specified in the inequality 6.7 and the lower limits specified in

the sampling theorem are each useful tools in establishing requirements
In other words, contrary to the sampling theorem, it is

for sampling.

desirable in the present study to eliminate the variations in the
If this reasoning is applied to the clutter

process being sampled.
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process in the frequency domain and the process were to be reproduced,
the sampling rate, according to the sampling theorem, would necessarily

be

PRF > 2 BW (6.8)

where BW is clutter bandwidth. This inequality sets a lower bound on
the PRF. However to ensure that the process is not reproduced, an
upper bound must be set on the PRF. It is stated in the sampling theo-
rem that, in order to reproduce a process, samples must be taken at
such a rate és to prevent aliasing, as éhown by Downing (12, pages 140
to 143). However, to ensure nonreproduction of the process, a substan-
tial degree of aliasing is necessary. In fact, it is desirable, as in-
dicated in Figure 14 to obtain enough aliasing to produce a flat spec-
trum (an approximation of white noise) which may then be readily
smoothed by subsequent integration.

As in the case of the sampling theorem, the sampling rate (for
decorrelation in this case) ig a function of process bandwidth. This
can be shown by comparing the normalized spectrum bandwidths, shown in
Figures 10 agnd 12 with the PRF derived by using decorrelation distance.
The bandwidth obtained from the normalized spectra plots is a direct
function of velocity in wavelengths, U/A, i.e., if 0 is doubled, the

frequency scale represents a frequency twice as large. Therefore,

o
=
1
=

>lce

(659)

where K, is a constant. But the sampling rate for decorrelation is

3

u

<
PRF < 3
C
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and

4 _ 5732
¢ 29 sin *

Consequently, the sampling rate for decorrelation may be written as

(6.10)

(BW) (2¢ sinw)
PRE < =573 K,

or for a given beamwidth and a given azimuth angle

PRF < (K,) (BW)

If notmalized frequency and normalized correlation distance as plotted
in Figures 8 through 12 are designated as f1 and ty respectively then

f
= (6.12)
and
_ Au
t1 =X o (6.13)

1 t
Let f1 and ty be the points where fl‘and t; first reach zero on

the graphs. Then expressing PRF in terms of velocity and distance

traveled between pulses (for decorrelation) allows

u :
q < (K,) (BW) (6.14)
so using Equation 6.12
%/—’! - YA . (K,) (BW) . (6.15)
-
1
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The distance to the point where the previously plotted spectra reach
zero in amplitude is normalized bandwidth which must be multiplied by

/A to get bandwidth and expression 6.15 becomes .

Ce

/A 4! _
SRS R GE . (6.16)
1

T

Then K4 is seen to be

11
An examinatien of the graphs reveals that tlf1 is invariant and that

!
tlfi"é 1 ) - (6.18)
Therefore
K, g1 . (6.19)

Then in order to ensure that uncorrelated samples are obtained, the

upper bound on sampling rate can be approximated from expression 6.11 as

PRF < BW © (6.20)

which is a substantiation of the result indicated in the aliasing plots
in Figure l4.

Inequality 6.20’miéht be considered a counter sampling theorem for
clutter sinée it designates a sampling rate sufficient to ensure non-

reproduction of the process time function.



CHAPTER VII
CLUTTER MODEL APPLICATIONS

The design of any.clutterjmodel-must be based upon the applications
intended for the model. 1In this thesis, the primary objective for the
dgvelopment of the model is the application of the model to clutter
discrimination schemeg. Therefore, the clutter model has been developed
as a state model for ease of application to a reéursive filtering
scheme. Although the clutter process is nonstationary, a Kalman or
‘Bayesian filtering approach is readily applicable. The nonstationarity
"of the process tendé to make other filtering principles less applicable.
However, in the application of the'recursive'filters developed in this
chapter, it must be remembered that the process is developed on the
basis of RCS, not voltage, conseque;tly, voltage measurements must be
squared before application unless they are the output of a square law
detector,

Clutter discriminatien schemes based upen pulse-to-pulse decor-
relation and subsequent integration of the resulting noise may also be
applied through use of the clutter relationships previously developed

from analysis of the clutter model.
Pulse~to-Pulse Decorrelation
Some form of integration is used in most pulsed radars to smooth

uncorrelated (white) noise. As shown in Chapter IV, this integration

60



61

becomes less effective in smoothing clutter as pulse-to-pulse correla-
tion increases. Therefpre, if pulse-to~pulse decorrelation can be
maintained, a special clutter filter is unnecessary. The conditions
necessary for pulse-to~pulse decorrelation may be determined from the

expression for decorrelation distance developed in Chapter VI, which is

. (7.1)

This equation indicates that, if the aircraft travels this distance (dc)
between pulses, the clutter RCS will be decorrelated. One way of ob-
taining this decorrelatioen is to vary PRF as a function of velocity and
azimuth angle. A variable PRF that provides the decorrelation and
simultaneously-maiﬁtains a maximum clutter information rate may be ob-
tained f:om Equation 6.15 as

24

(PRF)(pp = 5 sind . (7.2)

0f course, a PRF less than this also provides decorrelation but may not
provide the desiréd average power. A varying PRF which provides approx-
imately maximum information rate and pulse-to~pulse decorrelation is
illustrated in Figure 15, As shown in this figure, the PRF decreases

to some set-mini@um as the azimuth angle approaches zero degrees,

In most cases, it is desirable to maintain the number of pulses
returned from a point target during one scan across the target (number
of hits per scan) at a constant number. Therefore? if a variable PRF,
such as ‘that given by Equation 7.25 is used, abvariable scan speed

proportional to PRF is given by



-PRF (Pulses Per Second)

A

LN
\
\
\
N\
i i 1 L3 i i ! ¥ ] 1 L] 1 T i
20 40 60 80 100 . 120 140 160 180
- Azimuth Angle
Figure 15. Variable PRF for Pulse-to-Pulse Decorrelation

29



63

= LQLERE) (7.3)

is required where hs is the symbol for hits per scan,
Scan~to~Scan Filtering

Cell RCS, o, is a random variable which describes the fluctuation
in the radar cross section of a particular clutter cell onbthe ground.
When the same cell is tracked en a scan-to-scan basis, the radar pro-
vides discrete time (or position) measurement of the cell RCS which
then fluctuates as a function of time. The value desired from a clutter
filter is the mean value of cell RCS, i.e., the non-time-va:ying com=~
ponent since this mean value represents # smoothed but realistic repre-
sentation of the terrain.

If M is considered a scan-to-scan index, as in Chapter IV, and if

E[cM] = XM and Oy = YM’ then a state model of the process is

xM = xM-1 . (7.4)

The variance of YM is
2 Nzgi n—l
P =vVvar[Y,]=——[n+2 T (n-kK)r (k)] (7.5)
M 2 k
n k=1

where n is the number of hits per scan. The Bayesian approach can then
be applied to obtain a one-~dimensional Kalman filter as shown by

Breipohl (14)
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2 2
A T |
M o2 . o2 .

Sy-1

2 stﬁ 1
s = = (7.7)

Moop? g2

+ Syq

2

M is‘the vari-

where Hag is the best linear estimate of X at time M and S
ance of this estimate. Note that, as cofrelation increases, P2 in-
creases, and previous estimates are wgighted more heavily, 6r'the
measured value is discounted as a result of correlation. In essence,
this is a type of past-present comparison and weighting which is in-

tuitively appealing,

If B and Sg are the original values of Fag and 82

M’ then Equations

7.6 and 7.7 may be expressed as

M
2 2
MOP + SO ifl Yy
M P2 M32
0
) P
W=7 _ .2 " (7.9)
P+ MS
0
Then the initial vélueS‘may be chosen as
2 2.2

which are simply the mean and variance of the cell RCS. These values

might be obtained through measurement with the antenna pointed broadside
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where correlation is minimum. Through use of these values in Equations

7.8 and 7.9 in cenjunction with Equation 7,5,

Ne, ‘ n-1 7 M
—h+2 T @Or®l+ T ¥
_n k=1 ) i=1 o (7 12)
by = 1 n-1 | )
Zh+2 T (@r, &)+ M,
n k=1
Nzci n-1
5 [n+2 = (n-k)rk(k)] ;
2 _n k=1
Sy = - — - . (7.13)
S h+2 2 (@k)r ]+ M
n k=1

It can be seen that Nzci can be divided out of Equatién 7.12 so that
the equation depends upon N only through the originai estimate, bo e As
shown by Breipohl (14), iy depends only slightly upon after a few
iterations, i.e., “M tends to become independent of N. Thus the filter
is more or less independent of range and of terrain. However, Si is a
function of N2 and since N is a constant times slant range as shown in
Appendix B, the variance of the estimate increases as a function of
range squared, as does the variance of cell RCS.

The filtering process may be initiated by obtaining a measurement
of average cell RCS and variance with the antenna pointing broadside
(where correlation is minimum). Under these condiﬁions, a short time-
average should provide a reasongble estimate.

It has been noted in Chapter IV that scan~-tp-scan integration tends
to degrade the time resolution of the radar, i.e., if there is change

in the average cell RCS, several scans may be required to detect it.

However, the filter indicated by Equation 7.6 tends to minimize this
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degradation of resolution because the estimate is largely dependent on
the measured value Yu when correlation is low. This filtering action
is analogous to minimizing integration time (which increases response)
when correlation is minimum., Thus the filter is more advantageous than
straight intggration which would smooth the clutter but would degrade
time resolution uniformly whether integration was required to smooth

clutter or not.
Pulse~to~Pulse Filtering

The Bayesian approach to Kalman filtering may also be applied on a
pulse-to~pulse basis to'smooth clutter. Normal distributions may be
assumed since only first and second ﬁoments are known, and the use ofb
these distributions results in an optimum linear filter as shown by
Meditchb(15,vpage 166). This is essentially the approach used by
Breipohl (14), however in the present case the measurement sequence is
correlated.

The state model ﬁsed for this filtering is described by Equations
4,26 and 4,27 with E[@'m] replaced by X and g replaced by Y . The

state model then is

xm = Xm-l
Y =X 4+ . (7.14)

So X does not vary (or varies slowly) with time and €, represents a
correlated noise. The measurement variance at each instant of time is
22 Saq , 52 ,

N oy and will be designated here as P". As previously stated, the

measurement sequence is assumed to be Markov-l.
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Therefore in terms of normal distributions, the best mean square
estimate of X, given all past values of Yi,vis the mean value of the

conditional density function f - which is normal. This
X Yn’anl”°°’Yl

conditjonal density function may be written in terms of known and meas-

urable values as

£ COf £
] B X,Yn]Yn_l,...,Yl ~ Yn[Yn_l,...,Yl,x XlYn_l,...,Y
- - - f

XIY ,Y L ,eee,Y £
. n n-]. ]. . Yn'Yn-l,oqa,Yl Yn‘anl,ooe,Yl

1

Then using the Markov-1l property

£ o
Y Y LXX[Y sl

fory = . (.15
X|Y LY _(seeesYy £y |y
n! -1

It may be noted that f is simply the conditional density
) X’Yn-l ony,Yl |

function used to obtain the previous estimate and £ is the

Yann_l,x

conditional density function of Yn given Yn 1 with a mean value X and

correlation coefficient rn. The mean and variance of Yi are considered
constants from pulse to pulse as shown in Appendix A, So the following

normal density functions result:

~ NG 582 0) (7.16)

f
1 =1

x[anl,...,Y

2
£ Xva[x(l-rn) tor v P (l—rn)] (7.17)

YnlYn--l’

where

Bl is the previous estimate

2 \ , . s
Sn p is the variance of the previous estimate.
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These two normal density functions may be combined in Equation 7.15 to
obtain a new normal density function. The mean and variance of this
new density function then describe the present estimate and its vari-

ance, These may be obtained as

2 2
ST . (y_-r )+ B P(1+r)
“n - n-1 n n n 1 _n (7.18)
‘ (l-r ) + p? (1+r )

2 2
S_ .PT(l+r )
g2 _ n-l n . . (7.19)

2 2,
Sn-l(l”rn) + P (1+rn)

An inspection of Equation 7418 will reveal that as pulse-to-pulse
correlation increases,.the previous estiﬁate is weighted more heavily
and the present measurement is discounted by subracting from it the in-
formation common to the previqus measurement. If correlation is zero
(rn = 0) the equations become tbe simple one-dimensional Kalman filter
equations for uncorrelated measurement noise. Therefore Equation 7.18
might be considered an optimum weighting between the previous estimate
and the new information (uncorrelated portion) available in the current
measurement. The previous estimate is weighted by the autocorrelation
function of the measurement and the new information is weighted by the
variance of the previous estimate.

Equations 7.18 and 7.19 may be expressed in terms of the initial

values as

2[: (7y-r 35 P+ b (L)

T (7.20)

nSO(l-rn) + ,P (1+rn)
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N

s2p? (L4r )
ST = - Lt
n

5 = (7.21)
nSg(l-x_) + P (l4r )

where

j=1,2,44eyn

Yo = 0.

Again, as in the scan-toe-scan case, if MO and Sg are taken as Nci
and Nzgg, respectively, then LN tends to hecome independent of terrain

2, \ , PP .
and Sn increases with increased slant range. These initiating estimates
may be measured as in the scan-to=-scan case by pointing the antenna
broadside where clutter correlation is minimum, and measuring the time

average and variation about this average.
Comparison of Filtering Schemes

Since two different approaches to recursive clutter filtering have
been presented, it seems appropriate to diécuss the relative merits of
the two. 1In each.case, even though use is made of recursive filtering
which involves storing only one past value, considerable computer
storage is still required, if a large section of ground return is to be
smoothed, since tﬁe filter equations must be applied independently to
each resolution cell. However, in the scan-to~scan case where approxi-
mately n pulses are integrated (n hits per scaﬁ) prior to clutter
smoothing, a saving of computer storage of up to l/nmight be realized,
depending upon how the correlation information is implemented.

Although pulse-to~pulse filtering involves more computer storage

and more complexity, it offers the possibility of avoiding the time
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resplution degradation inherent in scan~to~scan filtering. The usual
integration resulting from post-detection filtering and CRT smoothing
tends to destroy any time resolution on a pulse-to-pulse basis; conse-
quently, any recursive pulse-to-pulse smoothing prier to post-detection
filtering and CRT smoothing should have little effect upon the time
‘resolution. Pulse-to-pulse filtering involves a reinitiation of the
filteringbprocess Qith the start of each new scan since the last pulse
of a previous scan is generally uncorrelated with the first pulse of a

present scan. The process could be initiated at the beginning of each

scan by ﬁsing the averaged value from the previous scan as an initial
estimate of cell RCS; however; the fiiteringraction depends upon pulse-
“to~-pulse correlation; therefore, two measurements must be made before
pulse-to~pulse correlation can be applied corfectly and before the

correct filtering can begin.
Comparison of Clutter Decorrelation Schemes

Pulse-to-pulse clutter decorrelation is obtained by causing a sub-
stantial pulse=~to=-pulse change in phase difference between the returns
from the elementary\scatterers within a clutter cell. This change can
be effected by translating the radar position between pulses by a
sufficient amount to alter the relative distances between scatferers
since this alteration will change the phase difference. -This can also
be accomplished by varying the number of wavelengths (which is phase)
.between scatterers. Changing the number of wavelengths between scat-
terers may be accomplished by changing the length of a wave. Conse-
quently, decorrelation may be accomplished by changing frequency on a

pulse-~to-pulse basis.
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O'Leary (6, .pages 6 through 11) showed the frequency change
necessary to decorrelate the return from a target of given size. This
decorrelation effect and the clutter smoothing resulting from frequency
jumping were also reported by Gustafson (7). By using sea clutter,
Croney (S)Idemonstrated that, if sufficient time is allowed between
pulses’fof pulse-to~pulse decorrelation, clutter smoothing results from
subséquent integration. Thus any scheme which produces pulse-to-pulse
decorrelation is effective buﬁ each places some limitation on the radar,
To obtain an efficient use of the concept of waiting one decorrelation
time between pulses, it is qecéssary to be able to determine decorrela-
" tien time. The model developed‘in this thesis provides a realistic‘
estimate of this decorrelation time,

It appears that, although the filtering_presented‘in this chapter
reduces ground clutter, it is suboptimal in that energy or average power
is used to gather correlated samples which must fhen be filtered. Since
less energj is required, a more efficient schemg is to gather the same
information by using fewer uncorrelated samples (at the maximum rate of
availability of the infermation, if desired). The uncorrelated noise

may then be smoothed through integration.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

This thesis has been directed to developing a mathematical model
for airborne radar ground clutter which may be applied in clutter

discrimination schemes.
Summary

The ciuttersmodel is developed by first assuming that terrain is
characterized by gseveral rather generalvcharaéteristics thch have also
been assuméd in most previous‘studies of a similar nature. From these
assumptions, a probability density function is developed to describe
the separation of elementary scatterers within a resqutioﬁ cell. This
density function represents the basic randomness assumed; consequently,
if is called the statistical model. The geometry of the aircraft motion
and cell position are developed in a deterministic model which relates
the statistical model to aircfaft motion, A phasor addition of the
radar cross section of the elementary scatterers is then used to relate
the deterministic and statistical models to cell radar cross section.
Time is introduced by examining radar cress section from the Qtandpoint
of discrete state model results which are obtained on the basis of a
pulse~-to-pulse comparisono‘ Evaluation of the moments of the résulting
radar cress section random process provides a clutter autocorrelatien

function which is shown to be the basic clutter relationship. The
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state model in conjunction with the various first and second moments,
.is defined as the basié-mathematical~mode1.

The autocorrelation function is analyzed by calculating its Fourier
transform; this transform represents the power squared spectrum. The
autocorrelétion function and spectrum are plotted in three dimensions
to gain insight into the process. A‘basic Quantity called decorrelation
distance is developed from the graphical analysis (the plots) and is
found to be an approximate function of antenna aperture width and azi-
muth angle. This decorrelation distance, .which is the distance the
aircraft must travel between pulses to obtain decorrelated pulses, is
shown to be directly related to process bandwidth since either is
sufficient to describe the sampling rate necessary for decorrelation,

‘The completely developed clutter model is finally applied in
several schemes of clutter discrimination. These schemes basically
involve (1) control of radar PRF to obtain decoréelation and (2) re-

cursive filtering to reduce the effects of correlation.
Conclusions

Analysis of the clutter model developed in this thesis indicates
that ground clutter is a nonstationary random process whose spectrum
varies primarily as a funétion of wavelength, antenna aperture width,
azimuth angle, and aircraft velocity. Decorrelation distance, which is
inversely related to speétrum width, is shown to be approximated by

D

dc = 2 sino

where D is aperture width and & is azimuth angle. Thus'ground clutter
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information freom a moving aircraft is available at a faster rate at
angles approximateiy normal to the direction of metion than at angles
near the direction of-métion.

Several of the basic characteristics of airborne radar ground
clutter have been tentatively identified in the process of building the
clutter model:

(1) Clutter increases with correlation.

(2) Clutter varies inversely as the sine of azimuth angle.

(3) Correlation is invariant with range beyond some minimum
range; consequently, clutter increases with range only because clutter
variance increases with range.

(4) Clutter tends to become invariant with both altitude and
pulse width beyond some minimum range points off ground track,

(5) Clutter decreases with increased aircraft velocity.

(6) Clutter decreases with decreased wavelength.

(7) Clutter decreases with increased antenna beamwidth.

The clutter model developed in this thesis provides a tool which
may be used to gain insight into the clutter process and may be applied

in clutter discrimination schemes.
Recommendations for Further Study

The mathematical model developed in this thesis is approached from
the viewpoint of the clutter cell RCS rather than that of the returned
voltage. An interesting extension of this study would be to start with
the same assumptions and develop a voltage model which could be used to
determine which appreach produces a more useful model on the basis of a

comparison of the two models.
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Two of the assumptions made in this study are that the elementary
scatterers within a cell are equal in amplitude and that the RCS
randomness is introduced through scatterer separation. If the elemen-
tary scatterer amplitude were given some random distribution, the model
could then incorporate an additional degree of randomness and the re-
sulting clutter model might be more precise, .but it would certainly be
more complicated.

An interesting relationship between clutter bandwidth and some
maximum sampling rate for pulse~to~pulse clutter decorrelation is
approximated in Chapter VI. The development of a more detailed state-
ment of thisirelationship"might lead to a more general application in
the analysis of the sampling necessary for smoothing‘other correlated
random processes.

The clutter model developed in this study could be applied in
other areas of radar technology, .each of which would result in furfher
study. The following are a few examples:

(1) Filtering by analog means.

(2) Analysis for target detection in clutter,

(3) Simulation of ground clutter.

(4) Analysis of moving target indication (MTI) in clutter,
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APPENDIX A
MEAN AND VARIANCE -

Process mean and variance are established on the basis of the
following fationale. If time is held constant and cell RCS, &, is con-
sidered a function of N and o> thgn N and/or o might be comnsidered
random variables which could account for terrain changes. However,
only the time variations are considered in this thesis} consequently, a
~uniform terrain distribution is assumed, and N and g, are constants for
a given resolution cell size and a given terrain. The moments of ¢
under consideration in this Appendix are the aircraft motion (or time)
moments evaluated at zero time change and are therefore constants.

The expected value of ¢ is found by considering o in the form ob-
tained in Equation 4.9, i.e.,

N(N-1)
2

c=0No, + 20, I cosA® . (A.1)
i o 4

Then

N(N-1)
2
Elo] = No, + 20, I E[cosAG{] . (A.2)
' |

But from Equation 3.12

E[cosAG{] = E[cgg a 21] ‘. : A.3)
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Then using the marginal density function of Z, given in Chapter II

1
| Kl' . lzl
E[cosAQL] = ‘f (cosazl)[EI (1 - _EI—)]dzl (A.4)
—Kl
aK
~ sin2 —'E-l-
e
2
But
akK :
1 2m
——2——.—.: ("_)\ 51n'Y2)K1 . (A'S)
So for

K, >> A ,

which is valid for all conventional airborne radars, then

aK1 ‘
5 >> 1 (A.6)
and
E[cosAGJL] Yo . A.7)

Therefore Equation A.2 becomes approximately
Ele] = No, . (A.8)

The mean squared value of ¢ will be found to be 2N20§ in a similar

fashion. Consider, from Equation 4.10,
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2
N(N-1)

. 9 2 '
_.E[G ] =E Nci + 2ga, z cosAGL ‘ A.9)

: o=l

: 2
N(N-1) N(N-1)
: 2 2 2 2 2 2
= No} + 4N, I E[cosAGL] + 40 E z cosAQL

=1

However E[cosAGL],= 0, therefore it is sufficient to show the last term

in the above equation is equal Nzoi. Expressing the square as a double

summation
2 ' ’
N(N-1) N(N-1) N(N-1)
2 2 2 :
E z cosAG& = E z z cosA9£ cosAem (A.10)
{=1 4=1 me=l :

But A6£and Aem are independent so
E[cosAe&cosAem];= 0 for m # 4 Aa.11)
2
= E[cos AGL] form= 4 .

The double summation then reduces to a single summation and using a

trigonometric identity

]
=
—

E[coszAG&]

1
= 7+ 3 E[cos228,] . (A.12)

But



E[cosZAG&] = E[c052a21] =0

by the same argument used above for E[cos azlj. ‘So

2
N(N-1) N(N-1)
2 -2 2 NON-1) 1
E z cosAG& = E z cos AG& =5 (E)
=1 {=1 .

Therefore from Equation A.9 it is seen that

E[0?] = Nzoi + 46? [ﬁig:ll (%)]

2 2 2
N'o} +-N(N~1)oi

ZNZG?
1

e

for large N. Then the variance of ¢ is given by

Vareo] = E[czj - EZEGJ

81

(A:13)

(A.14)
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APPENDIX B
DEVELOPMENT OF VARIANCE AND AUTOCOVARIANCE FUNCTION

The variance, Si, of the random variable bm is the variance between
S, and‘qm_l. However by letting the time interval between m-1 and m
vary, a continuous function of time difference or distance traveled, Au,
is obtained., The time difference of interest for the radar problem is
typicall& less than a second; consequently, over a period on the order
of a second, it is assumed that the probability density function given
by Equation\2;8 does not change (i.e., short-term stationarity is as-
sumed), It can be seen from the analysis of the autocovariance function
in Chapter V that, in the case of‘typical airborne radars, the correia-
tion is essentially zero after -a movement, Au, of a few feet or is
essentially zero after a few milliseconds at a speed of 600 miles per
hour. Therefore, it is typically necessary to assume short-term sta-
tionarity over only a few-milliseconds and only in the wide sense (i.e.,
no change in first-order and second-order moments over the time inter-
val) since only first-order and second-order moments. are used.

Si will be derived by beginning with Equation 4.17,

N(N=1)
2 2 2 2 2 |
Sm.= 4ci E kzl cos Aekym + cos Aek,m=1 - 2cosA9k’_mcosA9k’m_1

‘Then assuming no change in the density function from m-=1 to m,
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2 B 2
Elcos Aek,m_lj = E[cos Aek,_m]
1
as shown in Appendix A, and
N(N-1)
‘ 2
2 N(N 1) 2
$_ = 4o [ ( )] - 4o IE 2E(cosA6k’mcosAek’_m_l)
=1 .
.. 2 2 2
= 2N oy - 2N23i:m(u,v,Au) (B.2)

for large N. Therefore using a trigonometric identity and Equation 4.18

-
I

,ZE[COSAek,mCOSAek,m-lj

1 '
2E[2 cosﬁ; +

2 cos(ZAG ]_+ 5 )] (B.3)

= E[cosé%] + E[Cos(erk;m-l + Sm)]

as shown in Equation 4,18 where 5; = (Aekim - AB K,m~1 ) = (dlzI+d YAu.
‘The second term in Equation B.3 may be seen to be approximately zero by

the same argument used in Appendix A. Therefore

r = E[césﬁ;] . (B.4)

Evaluation of ro requires multiplication of cosé; times the density
function developed in Chapter II and integration. So using Equations

3.13 and 4.18
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KZ ﬁil
,E[coss;]-=_:£ ;i .cos[(dlzl +.d222)Au]fz

' 7 (Zl,zz)dzld'zz (Bos)
2 1

1°72

which must be divided:into four integrals, one for each quadrant of the

density function, for integration. In the first quadrant only the in-

tegral is T
1 K2 K1 : 24 2y
E[cosé}‘m]1 =T f ‘f cos[(dlz1 + dzzz)_Au](l‘ - f(—) 1 - f(—)dzleZ‘ .
.12 0 0 1 2
(B.6)
Performing the indicated integrations results in
= -2
dlKlAu . dZKZAu
sin —5 sin —5
f, (U’V’Au) = (B.7)
m dlKlAu dZKZAu
2 2
and the autocovariance function shown in Equation 4.25 is
R (u,v,Au) = N2 2 (u,v,Au) (B‘8)
“m sV, = O'ir_m sV, ° .
Therefore from Equation 4.24
2 2 2
S_m(u’V’Au) = 2N O'i[l'“rm(u’v’Au)] ° (B.9)

Since r is a function of position and change in poesition and thus a
function of time, :the process is obviously nonstationary in general.
The value N which is the number of elementary scatterers within a

resolution cell has been assumed to be constant up to this point. Since



85

the number of scatterers within a cell is a direct function of cell
area, N is eSsentially_constant on a pulse-to~pulse or scan-to~scan
basis (i.e., N is slowly Qarying). However N is actually a funétion of
the slant range (r) to tﬁe cell since for a given terrain type the
number of scatterers withih.a cell depends upon cell area, -Cell area

is given by
- _ [ET ‘
KK, = [ 3 csc,'yz_][rcp] (8.10)

and it can be seen that cell area is a direct function of r. So N‘can

be expressed as

-Where Ka.is constant for a fixed pulse widtﬁ, fixed beamwidth and at
ranges larger than altitude.

The value N then is considered deterministic; therefore treating
it as a constant in the analysis of expected values causes no error,
In fact N does not appear in the normalized autocovariance function
developed in this Appendix, instead it appears in the mean and variance
of ¢ as shown in Equations A.8 and A;15. Therefore cell RCS mean and
variance both increase with slant range, but they are approximaﬁely
constant from pulse to pulse and scan to scan.

The value of'radar cross section of the individual scatterers
- within a cell, 9y is considered constant although obviously as the
ground ;?flection coefficient, Tgs changes, o changes. However, for a
given terrain type go is shown to be relatively constant\over a wide
range of grazing angles (8). Thus only at very short or very long

ranges will the assumption of ci.COnstant with range cause serious error.



APPENDIX C

COMPARISON OF POWER AUTOCOVARiANCE WITH VOLTAGE AUTOGOVARIANCE

RCS clutter is proportional to clutter voltage squared; therefore
the Fourier transform of RCS clutter autocovariance (or autocorrelation
since the process Has zero mean) provides a spectrum analogous to the
power squared spectrum while the Fourier transform of clutter voltage
autocovariance provides the conventional power spectrum. Both autoco-
.variance functions provide essentially the Samé information although in
different forms. ‘The mathematics invelved in finding the voltage auto-
covariance function become very involved, and most investigations end
ﬁp by imposing limitétions in order to obtain approximations of the
function. As pointed out by Raven (16, page 262) in reférring to this
problem in general,

Instead of becoming involved with such approximations, how-

ever,.it is often either more convenient analytically or

more realistic in a physical sense to assume that the second

detector is a square law rectifier producing the square of

the envelope rather than the envelope itself.

‘Raven (16, pages 245 to 264) discusses this general problem of the poewer
density spectrum at the output of nonlinear devices; this problem is
closely related to the particular problem considered in this Appendix.

Since the RCS clutter is specified in terms df a voltage squared
in the time domain, descriptions of RCS‘clutter autocovariance will

generally take the form of a function of the square of the clutter

voltage autocovarianée. Since squaring in the time domain implies
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self -convolution in the frequency domain, a spectral comparison of the:
two functions indicates the RCS clutter spectrum (power squared) should
tend to be wider than the conventional power spectrum.

To obtain an approximate comparison of the RCS autocovariance
function generated in this thesis with the analogous voltage function,
assume that the voltage components of clutter at time 1 and 2 given
here by X1 and X2 are jointly normal with zero mean and correlation
coefficient p (which could be argued as a good approximation). Then

the voltage autocovariance is given by Raven (16) as

1 © -x% + 2px1x2 - xg
E(X.X,] = ——— r f x. x, expl - Jdx. dx
12 2f2 o = 12 26% (1+%) b2
2mMo N 1-p ‘ mP |
2 ,
= o plr) (C.1)

with E[XZJ = 02. Then if the voltage squared is considered, i.e.,

V= X (€C+2)

the following results may be obtained,

E[Y] = o? (C.3)
E[Y2] = 35" (C.4)
gi = 2" . (€.5)

. -The autocorrelation function of Y given by Raven (16, page 254) is
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2 2
© ®© =X +2pX. X, =X
B[V ()Y (t47)] = —iee [ XTX§ exp[— 3 E 3 2]dx1dx2
= o™ + 202() : (C.6)

The normalized autocovariance function then for the voltage squéred is
,pz(T), which in this case is the square of the normalized voltage auto-
covariance, 'If it is now assumed that a Simiiar relationship holds for
the autocovariance function developed in Appendix B then an approxima-
tion of the normalized voltage autocovariance is simply (rm)% where ro
is given in Equation 5.1. A plot of this.approximation compared with
th; clutter RCS autocovariance is shown in Figure 16. This approxima-
L
tion to the voltage autocovariance given by (r_m)2 is seen to be some-
what broader than-r_m and this will result in a narrowing of the spectrum
as predicted. However the decorrelation distance defined as the dis=-
tance to tﬁe first zero crossing remains unchanged. Figure 16 also |
shows that the square root of the linear approximation of ro is a close
approximation to this fﬁnction obtained for the voltage autocovariance.
Therefore a reasonable approximation to the clutter voltage normalized

autocovariance function appears to be (using Equation 6.14)

d-%
by = [1 - %—]2 €.7)
[
. !
~ «5D/sing -,§§F 3
- .5D/siny for ad < d_

= 0 elsewhere .
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A calculation of the clutter voltage autocovariance function in a

_more general fashion for comparison with the RCS autocovariance function
appears to be a formidable task and will not be undertaken. It is not
clear which form of the clutter autocovariance function is more basic

but either form will allow some insight into the complicated process.



APPENDIX D
NORMALTIZED FOURIER TRANSFORM OF AUTOCOVARIANCE

The autocovariance function of the RCS process may be assumed to
be short-term stationary which is discussed in Appendix B. Then, in
accordance with the Wiener-Kinchine relation discussed by Downing (12,

page 37), the Fourier transform pair

cw) = [ r(t)e ae | (D.1)
r(t) = [ cweltat (0.2)

represent the normalized autocovariance function and its power spectral
density. However, since r(t) in this case is analogous to a voltage~-
squared relationship, a power-squared spectral demsity results,

For notational convenience, the following set of'relations are de-

,K.,K

fined, some in terms of previously designated constants (dl,d 1°%

2

are designated in Chapter III):

f = frequency in hertz

w =27t
t::‘A—l.l
u
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22
B =3¢ 2
. = uh® cr
1 2r2(u2+v2)
S . S
1
2 2
utv

Thus the autocovariance function given in Equation 5.1 may be written as

sinyt sinBt-2 .
r(t) = e Bc ] . (D.3)
Then the Fourier transform of r(t) is
.
G(w) = f r(t)[coswt - j ¢inwt]dt . (D.4)
. =00

But r(t) is an even function so r(t)sinwt is odd and the integral of an

odd function over symmetrical limits” is zero. Therefore

m 3 +
G(w) = f ;[ﬂ—t—-‘e‘-%ﬂép-jz.gcoswtdt . (b.5)
Y. ’

L oB t

By using trigonometric identities to expand this integral, it may be

broken into nine integrals of the form

[ 2 e = um) (D.6)
~00 t

and
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) = —T— {20~ r20) - Jw-20 |- (@r28)° - |w-28 >+ Hu @487
12 (aB)

(D.7)
+ ‘21‘ |w- @+8) |+ %I“’*(O"B)l3+' -;—lw-(oz-ﬁ)l?}

.

This function is then normalized in terms of wavelength and veloc-

ity by performing a scale change given by

1 w - '
F(f) = EETET G(EEE) (D.8)

where J is a constant to be designated, Since

Mu _ Gt
X—_ )\ (D"g)
where t is the time to travel a distance Au,
U
J___.x (Dn].o)
and
1 .[‘. w
F(f) B [ G( o-) (Do].].)
oS oam 3
A A
Ao
=m ¢@®
A
Then % is seen to be dimensionless so let
I
f
f]_ = .‘[l (Dn].z)
X.

and
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4 1 '
_X.F(fl)=—2-fﬁc(fl) . (D.13)

Then since @ and B may be expressed as

2m u o,
o = ——= (D.14)

and

2m 4 B,
B = N R (D.15)

these may be substituted into Equation D.7. This substitution and the

indicated scale change results in

o 3 3 3 . 3 o 13
5 F(E )»= VPR {2F7 - (F +20 ) -|£,=20 |7 (E+2B,)7 - £ 2B, |
, 171

1r N3 L. 3 3
+ 3LE @B T FIE - @B+ FlE 4 @ -8)))]
+5lE @81 (0.16)

This normalized function is independent of frequency and velocity.
Equation D.16 then is the normalized clutter spectrum corresponding

to one point on the ground; If ground position is varied along a line,

a three-dimensional spectrum may be plotted to show spectrum change

along the line. This is done in Figures 10 and 12 of Chapter V where

it is shown that this function is approximately triangular shaped for

typical airborne radar parameters.
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