STABILITY CONSTANTS OF TIN-PYROCATECHOL

VIOLET COMPLEXES FROM COMPUTER

ANALYSIS OF SPECTRAL DATA

By
WILLIAM DUANE WAKLEY
i^{\prime}
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1964

Submitted to the Faculty of the Graduate College of the OkI ahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1970

Thosis
$1070 D$
wi490
$\cos 2$

Thesis Approved:

Horacio A Mottle

762680

PREFACE

This study was made to develop a generally applicable, objective computer method for determining the number, nature, and stabilities of complexes in solution from spectrophotometric data.

This work was supported in part by the Research Foundation and Computer Center at Oklahoma State University, and by training grant from the Federal Water Quality Administration FT1-WP-185 for aquatic ecologists in water pollution through the Reservoir Research Center, Research Foundation.

I would like to express my sincere gratitude to Dr. L. P. Varga, my adviser, for his patience, encouragement, and helpful criticism during this work. I would also like to take this opportunity to express my appreciation for the guidance given me by the other members of my committee: Dr. H. A. Mottola, Dr. T. E. Moore, Dr. J. P. Devlin of the Department of Chemistry, and Dr. Troy C. Dorris of the Department of Zoology.

I would like to thank Mr. W. V. Acceola of the Oklahoma State University Computer Center for his assistance in program modification, Mrs. Carl Estes and Miss Velda Davis for typing, and Mr. Mac Crank for preparation of the figures.

Finally, I would like to express appreciation to my wife, Linda, and daughter, Angela, whose understanding, encouragement, and patience were instrumental in the preparation of this dissertation.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 5
Graphical Methods 5
Computer Methods 10
Tin-Pyrocatechol Violet 14
III. MATRIX RANK ANALYSIS 17
General Outline of Method 19
Detailed Description of Method 19
Error Matrix S 20
Fortran Program 21
Detailed Description of Program 22
IV. SPECIES NUMBER 24
Theory 24
One Absorbing Species--No Restrictions on Stoichiometry 26
Two Absorbing Species--No Restrictions on Stoichiometry 29
Three Absorbing Species--No Restrictions on Stoichiometry 31
Two Absorbing Species--Restrictions on Stoichiometry 33
Three Absorbing Species--Restrictions on Stoichiometry 35
Species Number Program 35
General Description of Program 36
Detailed Description of Program 36
V. CORRESPONDING SOLUTIONS 39
Method of Corresponding Solutions 39
Computer Programs 42
Corresponding Solution Plot Program 43
Corresponding Solution \bar{n}, [L] Program 44
General Description of Program 44
Detailed Description of Program 45
Formation Function Program 49
Chapter Page
VI. PIT-MAPPING 52
Theory of Pit-Mapping 52
Application of Pit-Mapping to
Spectrophotometric Data 56
Pit-Mapping Program 57
EQUIL for Ligand Solutions 59
EQUIL for Metal-Ligand Solutions 60
VII. EXPERIMENTAL 62
Reagents 62
Apparatus 63
Instruments 64
Solutions 65
VIII. RESULTS AND DISCUSSION 74
Pyrocatechol Violet 74
Tin(IV)-Pyrocatechol Violet 89
IX. SUMMARY 131
A SELECTED BIBLIOGRAPHY 133
APPENDIX A--FLOW CHART, PROGRAM LISTING, AND DATA SET FOR MATRIX RANK ANALYSIS 137
APPENDIX B--FLOW CHART, PROGRAM LISTING, AND DATA SET FOR SPECIES NUMBER PROGRAM 143
APPENDIX C--FLOW CHART, PROGRAM LISTING, AND DATA SET FOR CORRESPONDING SOLUTIONS PLOT PROGRAM 156
APPENDIX D--FLOW CHART, PROGRAM LISTING, AND DATA SET FOR CORRESPONDING SOLUTIONS \bar{n}, [L] PROGRAM 161
APPENDIX E--PROGRAM LISTING AND DATA SET FOR PIT-MAPPING PROGRAM 171
APPENDIX F--STABILITY CONSTANTS OF TIN-PYROCATECHOL VIOLET COMPLEXES FROM COMPUTER ANALYSIS OF SPECTRAL DATA 184

LIST OF TABLES

Table Page
I. Comparison of Graphical and Computer Methods I 48
II. Comparison of Graphical and Computer Methods II 49
III. PCV as $f(\mathrm{pH})$ 66
IV. Composition of PCV Solutions at pH 3.00 67
V. Composition of Stock $\operatorname{Sn}(I V)$ Solutions 68
VI. Sn-PCV Series I 69
VII. Sn-PCV Series II 70
VIII. Sn-PCV Series III 71
IX. Sn-PCV Series IV 72
X. Number of Absorbing Species in Pyrocatechol Violet Solutions of Varying pH 78
XI. Number of Absorbing Species in Pyrocatechol Violet
Solutions at pH 3.00 88
XII. Number of Absorbing Species in Solutions of Tin(IV) and Pyrocatechol Violet-Series I 94
XIII. Number of Absorbing Species in Solutions of Tin(IV) and Pyrocatechol Violet-Series II 95
XIV. Number of Absorbing Species in Solutions of Tin(IV) and Pyrocatechol Violet-Series III 96
XV. Number of Absorbing Species in Solutions of Tin(IV)
and Pyrocatechol Violet-Series IV 97
XVI. Goodness-of-Fit Parameters for Species Number
Calculations 112
XVII. Formation Function Data 119
XVIII. Formation Constants of Tin(IV)-Pyrocatechol Violet Complexes 123
Table Page
XIX. Molar Extinction Coefficients 124
XX. Input Requirements for Matrix Rank Calculation 138
XXI. Input Requirements for Species Number Program 144
XXII. Input Requirements for Corresponding Solutions Plot Program 157
XXIIT. Input Requirements for Corresponding Solutions \bar{n},
[L] Program 162
XXIV. Input Requirements for Pit-Mapping Program 172

LIST OF FIGURES

Figure Page

1. Relationship Between Triangle $X Y Z$ and $|D|$ 27
2. Triangle XYZ for One Absorbing Species 27
3. Corresponding Solutions Function E Versus C_{L} at Constant C_{M} 41
4. Plot of C_{L} Versus C_{M} for Determining \bar{n}, [L] Values 41
5. Pyrocatechol Violet as $f(\mathrm{pH})$-Solutions $1,2,3,4,5$ 76
6. Pyrocatechol Violet as $f(\mathrm{pH})$-Solutions $6,7,8,9$ 77
7. Molar Extinction Coefficients of $\mathrm{H}_{4} \mathrm{PV}$ and $\mathrm{H}_{3} \mathrm{PV}^{-}$ 81
8. Molar Extinction Coefficients of $\mathrm{H}_{2} \mathrm{PV}^{2-}$ and HPV^{3-} 82
9. Concentrations of Pyrocatechol Violet Species 83
10. Pyrocatechol Violet at pH 3.00 86
11. Species Number Plot, PCV at pH 3.00 87
12. Spectra of Sn-PCV Series I 90
13. Spectra of $\mathrm{Sn}-\mathrm{PCV}$ Series II 91
14. Spectra of Sn-PCV Series III 92
15. Spectra of Sn-PCV Series IV 93
16. Species Number Plot Series I_{9} One Absorbing Species 100
17. Species Number Plot Series I_{2} Two Absorbing Species 101
18. Species Number Plot Series I, Three Absorbing Species 102
19. Species Number Plot Series $\mathrm{II}_{\text {, }}$ One Absorbing Species 103
20. Species Number Plot Series II, Two Absorbing Species 104
21. Species Number Plot Series II, Three Absorbing Species 105
Figure Page
22. Species Number Plot Series III, One Absorbing Species 106
23. Species Number Plot Series III, Two Absorbing Species 107
24. Species Number Plot Series III, Three Absorbing Species 108
25. Species Number Plot Series IV, One Absorbing Species 109
26. Species Number Plot Series IV, Two Absorbing Species 110
27. Species Number Plot Series IV, Three Absorbing Species 111
28. Mole Ratio Plots 114
29. Ratio n / m for a Complex of Tin(IV)-Pyrocatechol Violet at $610 \mathrm{~m} \mu$ 116
30. Coefficient n for a Complex of Tin(IV)-Pyrocatechol Violet at 610 mu 117
31. Molar Extinction Coefficients for Tin(IV)-Pyrocatechol Violet Complexes 126
32. Concentration of Species, Series I 127
33. Concentration of Species, Series II 128
34. Concentration of Species, Series III 129
35. Concentration of Species, Series IV 130

CHAPTER I

INTRODUCTION

Studies of the absorption of visible and ultraviolet radiation have long been used to obtain information about equilibria in solution. However, since the optical absorbance of a solution is governed by a characteristic intensive factor, the extinction coefficient, as well as by the concentration of each absorbing species, interpretation of measurements of this type is complicated if several complexes coexist. Many spectrophotometric methods used in quantitative analysis have been developed without complete knowledge of the nature and properties of the absorbing species. Therefore, unambiguous methods for the determination of the number, nature, and stabilities of several absorbing species in solution are needed.

Adequate experimental and theoretical descriptions of the chemistry of natural water systems are difficult to formulate. In order to develop a chemical model of a natural water system which would be useful for water quality definition and control, detailed information concerning accurate knowledge of the chemical equilibria is necessary. The concentrations of species in solution can be calculated from the measured concentrations of selected ions and the equilibria relating them provided reasonably accurate values of the concentration formation constants are known for the particular environment under study. The computer methods described in this work provide a valuable
method for determining the number, composition, and stabilities of species in solution in a straightforward, objective manner with a degree of accuracy and precision required of these numbers for modeling natural water systems. The methods are described using spectrophotometric data but could be applied to concentration data obtained in studies of natural waters by most other methods.

The purpose of this work was to develop a generally applicable, objective, computer method for determining the number, nature, and stabilities of complexes in solution from spectrophotometric data. Six computer programs are used for the analysis of the absorbance data:

1) Matrix Rank Program
2) Species Number Program
3) Corresponding Solutions Plot Program
4) Corresponding Solutions \bar{n}, [L] Program
5) Formation Function Program
6) Pit-Mapping

The matrix rank program calculates the number of components that contribute to the absorption spectrum of a multicomponent system. The species number program determines the number of absorbing species and gives information concerning trends in species number with wavelength or solution composition. The corresponding solutions plot program calculates the corresponding solution functions, E, which are used as input data for Program 4. This program also plots the E functions versus total ligand concentration at each total metal concentration. The corresponding solutions $\bar{n},[L]$ program cal culates formation function data using the E functions, total metal and total 1 igand concentrations, and the extinction coefficients of the ligand as input
data. The formation function program calculates stability constants from the $\bar{n},[L]$ data obtained in Program 4 (1). The pit-mapping program calculates stability constants for polynuclear, mononuclear, or mixed mononuclear and polynuclear systems. These programs constitute a generally applicable and objective method for analyzing spectrophotometric data obtained from multicomponent systems.

The final part of this work was to use these programs to analyze spectrophotometric data from an unknown system. The pyrocatechol violet (PCV) complexes of the tin(IV) were chosen for this study. Ross and White (2) have published a procedure for the spectrophotometric determination of $t i n(I V)$ using PCV as the colorimetric reagent. Information concerning the stabilities of these complexes has not been published.

The nomenclature used in this work is presented in the following definitions. The overall, stoichiometric stability constant, $\beta_{m n}$, of the complex, $M_{m} L_{n}$, formed from a central group, M, and ligand, L, is defined by Equation (1)

$$
\begin{equation*}
\beta_{m n}=\frac{\left[M_{m} L_{n}\right]}{[M]^{m}[L]^{n}} \tag{1}
\end{equation*}
$$

The total analytical concentrations of the central group, C_{M}, and the ligand, C_{L}, are given by Equations (2) and (3), where M and N are the maximum values of m and n in the system.

The degree of formation of the system or the average number of ligands bound to the central group, $\overline{\mathrm{n}}$, is defined in Equation (4).

$$
\begin{equation*}
\overline{\mathrm{n}}=\frac{\mathrm{C}_{L}-[L]}{\mathrm{C}_{M}}=\frac{\sum_{1}^{M} \sum_{n}^{N} n \beta_{m n}[M]^{m}[L]^{n}}{\sum_{1}^{M} \sum_{0}^{N} m \beta_{m n}[M]^{m}[L]^{n}} \tag{4}
\end{equation*}
$$

The fraction of the ligand, a polyprotic acid, present as each species is the ratio of the concentration of that species to the analytical concentration.

$$
\begin{equation*}
\alpha_{c}=\frac{\left[H_{C} \mathrm{~L}\right]}{\mathrm{C}_{\mathrm{L}}} \tag{5}
\end{equation*}
$$

The absorbance of a solution which contains the species L, M, and $M_{m} L_{n}$ is given by Equation (6), where 1 is the path length and $\varepsilon_{m n}$ is the molar extinction coefficient of species $M_{m} L_{n}$.

$$
\begin{equation*}
A=1\left(\epsilon_{L}[L]+\epsilon_{M}[M]+\sum_{1}^{M} \sum_{1}^{N} \epsilon_{m n}\left[M_{m} L_{n}\right]\right) \tag{6}
\end{equation*}
$$

CHAPTER II

LITERATURE REVIEW

The choice of a method for determining the number and composition of absorbing species and for computing stability constants from spectrom photometric data is governed by the complexity of the system and by the number of extinction coefficients which can be determined independently. It is difficult to interpret measurements of A and [L] unambiguously except in the simplest cases. More satisfactory results can be obtained in cases where it is possible to calculate the functions $\overline{\mathrm{n}}$, $[L]$ or $a_{c},[L]$ from spectrophotometric data.

Graphical Methods

A number of methods which are still widely used to determine the formulas and stability constants of complexes were first designed for the case in which only one complex is formed. The physical property most often measured has been optical absorbance although other physical properties which involve intensive factors have been used. The method of continuous variations was first applied to the formation of complexes in solution by Job (3) who assumed that only one complex was present. The experimental parameter used in this method is the difference, Y, between some measured physical property of an equilibrium mixture of 1 igand and central ion in solution and the value the property would have if no reaction occurred. A plot of Y verṣus
solution composition should have a maximum or minimum at the mole fraction corresponding to the composition of the complex formed if only one complex is present (4). If a system contains more than a single complex, the concentration of any given complex will reach a maximum at some value of the molar ratio of the reactants that differs from that found in the complex (5). This method has been used to obtain information concerning the formulas of complexes present in multicomponent systems although Vosburgh and Cooper (4) state that caution is necessary in such cases since the results obtained depend upon the wavelength of light used. Job (3), Hagenmuller (6), Schaeppi and Treadwell (7), and Schwarzenbach (8) have described graphical methods for calculating the overall stability constant β_{n} once the value of n has been determined. These methods are not suitable for systems in which n is greater than one. Watkins and Jones (5) conclude that in the general case it is impossible to obtain detailed information on a system containing several successive complexes by the use of the method of continuous variations alone.

The mole-ratio method is of value for obtaining information about the composition of complexes in solution although the results must be interpreted with care (9, 10). Yoe and Jones (9) showed that if the complex formed is slightly dissociated, a plot of absorbance versus mole-ratio, C_{L} / C_{M}, for a series of solutions in which C_{M} is kept constant and C_{L} is varied, rises steeply from the origin as a straight line for mole ratios below that corresponding to the composition of the complex formed, then breaks sharply to a constant absorbance at the mole-ratio of C_{L} / C_{M} in the complex. If more than one complex is formed, and the various complexes have different absorption characteristics and
different formation constants, measurements at different wavelengths will reveal their presence by breaks in the mole-ratio plots; even at one wavelength significant changes in slope indicate the presence of different complexes (11). The slope-ratio method is similar and is restricted to the formation of a single complex (10). The curvature of the mole-ratio and continuous variations plots have been used to calculate the stability constant of a single complex but the results are only approximate. These methods have the disadvantage that their usefulness depends upon the stability of the complex being studied.

A graphical method for determining the number of absorbing species is described by Coleman and Varga (12). Absorbance data is arranged in matrix form and various functions are plotted assuming one, two, or three absorbing species. The methad is based on the rank of the absorbance matrix. The theory of this method will be described in detail in a later section dealing with computer programs.

- A new method for determining the composition of complexes of the form M_{n} was described in 1960 by Asmus (13), Later articles modified the method so that it could be used to determine the composition of complexes of the form $M_{m} L_{n}(14,15)$. For the complex $M_{m} L_{n}$, data for the determination of m / n is obtained by varying the excess of the reactant M, the concentration of L being maintained constant. By preparing a second series of solutions in which the concentration of M is kept constant and in excess, while the concentration of L is varied, data for determining n is obtained. Using this absorbance data, curves are plotted for different values of the ratio m / n. A straight line is obtained for the correct value of m / n. The same procedure is then repeated to determine n.

In a review, Bjerrum (16) has pointed out that the formation of complexes in aqueous solution appears to occur in stepwise fashion. The number and nature of complexes formed can sometimes be deduced from the shape of the formation curve. This is a widely used method since many experimental techniques yield data of this type (\bar{n} or α_{c} as a function of [L]). If the formation curve has a limiting value at an integral value N of \bar{n}, then it may be assumed that the highest complex present is ML_{N}. It is often impossible to increase the free ligand concentration to a value such that $\overline{\mathrm{n}}$ becomes constant in which case inspection of the formation curve does not immediately indicate the number of complexes.

Irving (17) describes a graphical method for evaluating experimental results that should fit a linear equation. The principle behind this method is to use a coordinate system such that each pair of observations is used to define a straight line. The various straight lines for all the observations are then to intersect in a common point whose coordinates are related to the unknown constants. Irving uses this method to calculate the stability of a single complex, ML, from spectrophotometric data.

The most common graphical method for determining stability constants is the method of linear plots (18). The equations describing the system are transformed so that they are linear in the variables over a certain range of one of the variables. In this range the experimental data can be plotted as straight lines. Under limiting conditions, the intercept of this line on one of the axes, or the slope of the line, gives a value which may be one of the constants or a parameter which is a simple function of the constant. This method
has been used to calculate the stability constants for $N=1$ and $N=2$ where the experimental data is absorbance, A, as a function of $[\mathrm{L}]$ (19, 20, 21).

Interpretation is extremely difficult for systems in which three or more complexes are formed. For these systems extrapolation methods described by Newman and Hume (22) are used. They describe a method which uses absorbance data for determining successive formation constants and extinction coefficients for systems containing either single or mixed ligand complexes. The approach is to assume that only the first complex exists in solutions of low free ligand concentration and determining values of $\varepsilon_{0}, \varepsilon_{1}$, and β_{1} from measurements in this region. These values can then be combined with data for solutions which contain slightly higher ligand concentrations to give values of ϵ_{2}, β_{2} and the process repeated for higher complexes. Alternatively, values of $\varepsilon_{N}, \varepsilon_{N-1}$, and β_{N} can be obtained using solutions of high free ligand concentration and the above procedure reversed.

A number of authors have given methods for obtaining stability constants by extrapolation of certain functions to zero free ligand concentration. In each case the function \bar{n} or α_{c} are transformed to give polynomials in $[\mathrm{L}]$ or $[\mathrm{L}]^{-1}$ and values of the stability constants can be obtained by extrapolating these functions to $[\mathrm{L}]=0$ or $[\mathrm{L}]^{-1}=0$. The coefficients of these polynomials are the required β_{n}. The graphical extrapolations reduce the polynomials to N linear equations. Reviews of these methods are given by Sullivan and Hindman (23), and Rossotti and Rossotti (24).

The methods of linear plots and extrapolation are the most used methods for computing stability constants from spectrophotometric data
of the type $A,[L]$. Although the values of ε_{n} and β_{n} may be refined by successive approximation, considerable uncertainty often exists in stability constants computed by extrapolation methods (25). More satisfactory values may be obtained in cases where it is possible to calculate the functions $\overline{\mathrm{n}}$ or α_{c} from spectrophotometric data using the method of corresponding solutions. The theory of this method will be presented in detail in a later section.

The method of linear plots is also widely used for the analysis of the data $\overline{\mathrm{n}},[\mathrm{L}](24,25)$. Another method of treating this data is the method of curve fitting. Values of stability constants can be obtained by comparing experimental formation curves with curves calculated from Equation (4) using different values of β_{n}. This method is particularly useful for cases in which one or two complexes are formed. If three or more complexes are formed, a large number of formation curves would be necessary to fit the data and only approximate values of the constants would be obtained.

Computer Methods

The use of computers for the determination of the number and nature of complexes in solution has been quite limited. Matrix rank calculations for the analysis of absorption spectra of multicomponent systems and contour mapping of the absorbance data (three dimensional plotting) are the only methods in common usage.

The original paper dealing with matrix rank analysis was by Wallace (26) who applied the method to a system containing organic indicators. Several other papers (27, 28, 29, 30) have been published using the basic ideas presented by Wallace (26). When large amounts of
data are obtained, computer calculation of the rank of the absorbance matrix is necessary. A modification of the original matrix rank program is used in the present work (27). The theory of the method and the program changes are given in a later section.

Three dimensional contour plots of absorbance data can be used to provide a visual check on the rank of the absorbance matrix and to give information concerning the composition of the complexes in solution (31). A plotting program allows points having the relationship $\mathbf{Z}=\mathrm{g}(\mathrm{X}, \mathrm{Y})$ to be plotted as a topographic mapping of a three dimensional surface onto the $X-Y$ plane. The wavelength is plotted as the ordinate, concentration as the abscissa, and absorbance as the contours. By inspection the number of peaks and valleys in this plot are obtained and the molar ratios of the reactants where they occur give information concerning the nature of the complexes. This program was used by Varga and Veatch (31) in the interpretation of the hafnium-chloranilic acid system.

The most commonly used method for numerical calculation of stability constants in which the number of measured points exceed the number of unknown constants is the method of least squares $(18,32,33,34$, 35, $36,37,38,39$). The principle of least squares, which is founded on the normal probability equation, says that the best or most probable value of a measured quantity is that for which the sum of the weighted squares of the residuals is a minimum. The application of this principle to curve fitting is extensively treated by Deming (40). The method of least squares does not introduce any systematic computational errors. It gives the best set of constants obtainable from the data according to the theory of error and it also permits the
calculation of standard errors of these constants. The determination of many parameters from a large amount of experimental data using the method of least squares leads to very extensive calculations. Therefore, little use of this method had been made until recently when highspeed digital computers became available.

The least squares condition leads to normal equations which can be solved by straightforward methods if the system can be described by a function linear in the unknown stability constants. In studies of stepwise complex formation, if the concentration of the central ion or one of the complexes has been measured, linear equations usually result. Much of the potentiometric, polarographic, ion exchange, and solvent extraction work done on metal complexes has been interpreted using such a model which can be solved by a rigorous non-iterative linear least squares calculation.

The application of least squares methods to spectrophotometric data usually leads to nonlinear equations in the unknowns. If [L], $[M], \varepsilon_{L}$, and ϵ_{M} can be determined, a least squares calculation gives constants from which $\beta^{\prime} s$ and extinction coefficients can be determined (41, 42, 43). However, if only [L], c_{L}, and C_{M} are known, the equations are nonlinear and difficult to solve.

If the function relating β^{\prime} s and ε^{\prime} s is nonlinear in these constants, two general approaches for solution are used. Rydberg (18) outlines the Gauss-Newton iterative method of solution. In order to obtain an equation linear in the unknowns ($\beta^{\prime} s$), the β^{\prime} s are replaced by estimated values and their deviations from the true values. The function is then expanded in a Taylor series, neglecting higher terms, and solved for the deviations by the method of least squares. These
values of the deviations are used to obtain better values of the β 's and this procedure repeated until the deviations of the β 's are negligible in comparison to the standard errors of the stability constants. Rabideau and Kline (39) apply this method to the spectrophotometric investigation of the hydrolysis of $\mathrm{Pu}(\mathrm{IV})$.

A more systematic method of solving the system is the method of 'pitmapping' described in several papers by Sillen and coworkers (36, 37, 38). In this method approximate stability constants are obtained by graphical methods, Sillen then considers the function $f\left(\beta_{1}, \beta_{2}\right.$, \ldots, β_{n}). The approximate values are used to study how the sum of squares (SS) of the residuals vary with the variation of one parameter at a time. When the minimum of $S S$ is found for one parameter, this value is retained, and the next parameter is varied until a minimum of $S S$ is found for that parameter. After $S S$ has been minimized for each parameter in turn, the procedure is started over again, and continued in this manner until the sum of squares of the residuals is a minimum for all parameters. However, there is no guarantee that a true minimum will be reached. Sillen (36) states that this method of programming will be applied to spectrophotometric data, which commonly give nonlinear equations and several articles have just been published (44, 45).

If the spectrophotometric method of investigation is the method of corresponding solutions, $\overline{\mathrm{n}}$, [L] data is obtained. Several papers discuss the calculation of successive stability constants using formation function data ($1,46,47,48,49,50$). A review of these methods is given by Irving and Rossotti (51). Successive approximations, solution of simultaneous equations, interpolation at half \bar{n} values,

Schwarzenbach's Graphical Method, correction-term method, and least squares are some of the techniques reviewed in this paper. Most of the recent work has been done using least squares.

Graphical methods for determining the number and nature of species in solution are generally applicable only to simple systems. However, the mole-ratio method, Coleman and Varga's species number method, and the straight-line method of Holme and Langmyh give valuable information if the number of absorbing species is three or less. Graphical methods for determining stabilities are even further restricted because of the necessity for determining extinction coefficients as well as stability constants. Usually only approximate constants can be obtained.

The computer methods most widely used are matrix rank and least squares calculations. Matrix rank analysis is an excellent way to determine the number of species in a solution from spectrophotometric data. Linear least squares and iterative calculations are successful in simple systems. For spectrophotometric analysis of multicomponent systems the method of corresponding solutions is superior to other techniques. This method gives formation function data which can be analyzed using linear least squares if the complexes are mononuclear. If polynuclear complexes are formed, nonlinear least squares and iterative techniques must be used.

Tiṇ-Pyrocatechol Violet

Many new reagents for colorimetry have been introduced in the past few years but very few have been applied to the determination of tin. Sandell (52) describes reagents available now as generally
unsatisfactory in sensitivity and specificity. Dithiol (52) is considered the most useful, although there are several articles describing methods using phenylfluorone (53, 54, 55). The procedure published recently by Ross and White (2) using pyrocatechol violet (pyrocatechol sulfonphthalein or 3,3',4'-trihydroxyfuchsone-2"-sulfonic acid) is as sensitive and less subject to error than the above procedures. Their results indicate that pyrocatechol violet (PCV) forms complexes with $\operatorname{Sn}(I V)$ and not $\operatorname{Sn}(I I)$. No information is given regarding the stabilities of these complexes.

PCV was first obtained in a pure state in 1954 by Vodak and Leminger (56) who prepared it by the condensation of omsulfobenzoic anhydride with pyrocatechol. It is a reddish-brown crystalline powder which is readily soluble in water and aqueous ethanol, but insoluble in nonpolar solvents like ether, benzene, and xylene. An aqueous solution of PCV is yellow with the indicator present as a singly charged anion owing to the ionization of the sulfonic acid group.

PCV

PCV shows acid-base indicator properties with colow twansitions in both acidic and alkaline media. Several equilibria involving dissociation of hydroxyl protons have been described by Suk and Malat (57). Terand quadrivalent cations form complexes with PCV in acidic and alkaline media whereas divalent cations, as a rule, form complexes only in alkaline media. Numerous procedures involving the use of PCV as an indicator in chelatometric titrations (57) as well as its use as a spectrophotometric reagent for zirconium (58), iron (59), vanadium (60), yttrium (61), scandium (62), and other metals have been published recently. Very little information concerning the stabilities of the complexes formed is given.

CHAPTER III

MATRIX RANK ANALYSIS

The first step in the computer analysis of absorption spectra is to determine the number of absorbing species in solution. A method was developed by Wallace (26) to find the number of components that contribute to the absorption spectrum of a multicomponent system. The only assumption involved is that Beer's law is valid for each component. The absorption spectra of a series of solutions in which exist a number of absorbing species whose relative concentrations change from one solution to the next are measured. The changes in concentration can be accomplished, for example, by changing the ligand concentration in the formation of inorganic complexes or the pH of solutions containing organic indicators. Beer's 1 aw for a multicomponent system is given by Equation (7):

$$
\begin{equation*}
A_{\lambda j}=\sum_{k=1}^{m} e_{k k} c_{k j} \tag{7}
\end{equation*}
$$

where
$A_{\lambda j}$ is the absorbance at wavelength λ in the $j^{\text {th }}$ experiment, $\varepsilon_{\lambda k}$ is the extinction coefficient of the $k^{\text {th }}$ component at wavelength λ,
$C_{k j}$ is the concentration of component k in the $j^{\text {th }}$ experiment, and m is the total number of components.

Equation (7), from the definition of matrix multiplication, can be written in more compact form where A is a $p x n$ matrix, B is a $p x m$ matrix, and C is a $m x n$ matrix.

$$
\begin{equation*}
A=B C \tag{8}
\end{equation*}
$$

p is the number of different wavelengths and n is the number of experiments. The rank, R, of a matrix is defined as the order of the largest nonzero determinant that can be obtained from the elements of the matrix. Since a nonzero determinant requires that the rows and columns be linearly independent, the rank of a matrix is determined by the maximum number of linearly independent rows and columns. Therefore, the rank of a matrix gives the number of linearly independent components.

In general, determinants derived from the B matrix are non-zero, irrespective of order. The rank of the concentration matrix, therefore, determines the rank of the corresponding A matrix. It is a standard theorem that if matrix A is of rank R, then A contains R linearly independent variables with any variables in excess of R being linearly dependent. For a given system, the following relation is valid with C enumerating the number of components in the system and P the number of relationships among them.

$$
\begin{equation*}
\mathbf{P}+\mathbf{R}=\mathbf{C} \tag{9}
\end{equation*}
$$

Since in an open system the concentrations of the components are varied arbitrarily, no relationships are present between different components and $R=C$.

General Outline of Method

The computer method of determining the rank of an absorbance matrix described by Wallace and Katz (27) is an objective analysis based on standard statistical criteria. The method consists of setting up, in addition to the absorbance matrix A, another matrix S whose elements, $S_{i j}$, are the estimated errors of $A_{i j}$. A is then reduced by a series of row and column operations to an equivalent reduced matrix, whose elements below the principal diagonal are all zero. Elements of the error matrix S are transformed to an equivalent reduced matrix, during the reduction of A, by computing new values of $S_{i j}$ based on the propagation of errors in the reduction of A. The rank of A is then determined by a direct comparison of the corresponding elements on the principal diagonals of the reduced A and S matrices. The criteria used is that a principal diagonal element of the reduced A matrix is nonzero if its absolute value is equal to or greater than three times the absolute value of the corresponding principal diagonal element of the reduced S matrix. The number of statistically nonzero rows in the reduced A matrix is the rank or the number of independent components in the system. In other words, components are counted only when their contribution to the magnitude of the matrix elements exceeds the experimental error.

Detailed Description of Method

The A matrix is pivoted by an interchange of rows and columns to place the elements whose absolute value is the largest in the 1,1 position. The S matrix is transformed by the same row-column interchanges used in A. The resulting A matrix is then transformed to A^{\prime} by
the operation given by Equation (10) performed on all except the first row.

$$
\begin{equation*}
A_{i j}=A_{i j}-\frac{A_{i l}}{A_{I I}} A_{1 j} \tag{10}
\end{equation*}
$$

This operation makes all elements in the first column zero except for the first element. The S matrix is transformed to S^{\prime}, according to the theory for the propagation of errors in the elementary operations performed on the A matrix, by the operation given in Equation (11).

$$
\begin{equation*}
S_{i j}=\left[S_{i j}^{2}+S_{1 j}^{2}\left(\frac{A_{i 1}}{A_{11}}\right)^{2}+S_{i 1}^{2}\left(\frac{A_{i j}}{A_{11}}\right)^{2}+s_{11}^{2}\left(\frac{A_{i 1} A_{1 j}}{A_{11}^{2}}\right)^{2}\right]^{1 / 2} \tag{11}
\end{equation*}
$$

The reason for pivoting the matrix to place the largest elements on the diagonal is to minimize the rate of propagation of errors. With this arrangement, the coefficients of $S_{i j}^{2}, S_{i 1}^{2}$, and S_{11}^{2} on the right of Equation (11) can never exceed one, and the value of an element in S ' after an operation cannot exceed twice the value of the largest of the elements in S that goes into its calculation.

The submatrices formed by deleting the first row and column of A^{\prime} and S^{\prime} are then treated similarly to give $A^{\prime \prime}$ and $S^{\prime \prime}$. This process is repeated until all the elements of the transformed A matrix below the principal diagonal are equal to zero. It is then only necessary to compare elements on the principal diagonals of the transformed A and S matrices to determine the number of statistically nonzero rows, and, therefore, to find the experimental rank.

Error Matrix S

Early workers in this area $(26,27)$ assumed a constant error for all $A_{i j}$. However, Varga and Veatch (31) describe a method for
calculating the standard error of the absorbance, $S_{i j}$, as a function of the photometric error and the measured absorbances, $A_{i, j}$. The relation between relative concentration error, $\Delta C / C$, in a photometric measurement and the photometric error, ΔT, where C is the concentration and T is the transmittance, is given by Equation (12).

$$
\begin{equation*}
\frac{\Delta C}{C}=\frac{0,43429 \Delta T}{T \log T} \tag{12}
\end{equation*}
$$

From this equation and the generalized Beer's law relation, the following expression for the standard error of the absorbance, $S_{i j}$, can be derived,

$$
\begin{equation*}
S_{i j}=0.43429 \times \Delta T \times \text { antilog } A_{i j} \tag{13}
\end{equation*}
$$

For a given photometric error, $\Delta T, S_{i j}$ is a minimum for $A_{i j}$ in the range 0.2 to 0.8 absorbance units. Fof example, using $\Delta T=0.005$, $S_{i j}=1.37 \%$ of $A_{i j}$ if $A_{i j}=0.5$. This approach is much more reasonable than that of assuming a constant error regardless of the size of $A_{i, j}$.

Fortran Program

Wallace and Katz (27) wrote a computer program to perform the rank calculations when large amounts of data were used. This was a Fortran program for an IBM 704 computer. Varga and Veatch (31) modified this program for use on an IBM 7040. A copy of this program was obtained and several changes were made so that the program could be used on the IBM 360.

The most important change was the conversion of the entire program to double precision. Since the program involves a series of row and column operations on rather large matrices, it was necessary to use
double precision arithmetic to avoid roundoff error (63). The input statements were changed to make them compatible with the amount of data obtained in this work. All elements, $A_{i j}$ and $S_{i j}$, below the principal diagonals in the reduced A and S matrices were supposed to be set equal to zero as described in Equations (10) and (11). However, an element occasionally was not set equal to zero in the original program. This was corrected when the other changes were made.

In the original program the elements below the principal diagonal in the last column, the $j^{\text {th }}$ column, of the reduced A and S matrices were not set equal to zero. Therefore, the program could not determine the rank of A if the rank was equal to the number of columns j. This was corrected by interchanging the elements in the last column of the reduced A and S matrices to place the maximum elements on the principal diagonals and then setting the elements below the diagonals to zero. The rank of A can now be determined if the rank is less than or equal to the number of columns in the A matrix.

Detailed Description of Program

N , the number of experiments, L , the number of wavelengths, and CRIT, the criterion for setting A elements to zero are read in first. The absorbance data, $V(I, J)$, is read next. Since the program is written in double precision, the next step is to convert the absorbance data to double precision, This yields the absorbance matrix, $A(I, J)$.

The first step in the rank calculation is to calculate the error matrix, S, and write the original A and S matrices. The A and S matrices are then pivoted, reduced, and sub-pivot elements set to zero. This completes the reduction of the two matrices. Then the experimental
rank is determined by comparing corresponding elements on the principal diagonals of the A and S matrices. The rank of $A(I, J) p l u s$ the reduced A and S matrices are written out in the final steps of the program.

The rank calculation is in a DO loop which allows the photometric error to be varied from 0,001 to 0.01 in increments of 0,001 . The rank is calculated for each value of the photometric error. By removing the DO statement, the experimental rank can be calculated with a particular photometric error. A flow chart of the program and a listing of the program with a typical data set is given in Appendix A.

A graphical method for determining the number of species in solution from spectrophotometric data is described by Coleman, Varga, and Mastin (12). The method is based upon the rank of an absorbance matrix. In this method absorbance data is arranged in matrix form and yarious functions of the absorbance data are plotted for the cases of one, two, and three absorbing species. For two and three absorbing species, distinction is made between cases in which there are restrictions on the stoichiometry, such as the condition that the sum of the concentrations of the absorbing species is constant, and cases in which there are no restrictions on the stoichiometry. The method is simple to apply when the amount of data is small. However, the calculations and plotting are time consuming for larger amounts of data. Computer methods for handling the data are needed.

Theory

Spectrophotometric measurements provide a powerful means for examining interactions among substances in solution. The information obtained in typical experiments consists of graphs of absorbance A at wavelengths i for a series of solution compositions j. This information can be displayed as a matrix A with elements $A_{i j}$ or in Fortran notation $A(I, J)$. The matrix A is a rectangular array of numbers.

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{14}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

A matrix of i rows and j columns is said to be of order $i x j$. When $i=j$, as in matrix A, the matrix is of order j. A determinant can be defined as a square array of numbers that is evaluated according to a certain rule. The order of a determinant is the number of rows (or columns). The largest determinant that can be formed from a square matrix is of the same order as the original matrix as shown in Equation (15).

$$
\operatorname{det}[A]=\left|\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{15}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right|
$$

Othen determinants can be formed from the original determinant by deleting an equal number of rows and columns. Nine second order (formed by deleting one row and one column) and nine first order determinants (formed by deleting two rows and two columns) can be obtained from the third order determinant in Equation (15). For example, three second order determinants are:

$$
\begin{aligned}
& \text { delete } 1^{\text {st }} \text { row, } 1^{\text {st }} \text { column yields }\left|\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right| \\
& \text { delete } 1^{\text {st }} \text { row, } 2^{\text {nd }} \text { column yields }\left|\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{33}
\end{array}\right|
\end{aligned}
$$

$$
\text { delete } 1^{\text {st }} \text { row, } 3^{\text {rd }} \text { column yields }\left|\begin{array}{ll}
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right|
$$

The following theorem will be used in the derivations to follow. Given the points $X=(a, b), Y=(c, d)$, and $Z=(e, f)$ as shown in Figure 1, the value of the determinant, $|D|$, is related to the area of triangle $\triangle X Y Z$ by Equation (16). The determinants used in the one, two, and three species cases will be shown to be of the above type. The proof of this theorem is given in many standard mathematics texts (64).

$$
|D|=\left|\begin{array}{lll}
a & b & 1 \\
c & d & 1 \\
e & f & 1
\end{array}\right|
$$

$$
\begin{equation*}
|\mathrm{D}|=2 \mathrm{x} \text { AREA }(\triangle \mathrm{XYZ}) \tag{16}
\end{equation*}
$$

One Absorbing Species-No Restrictions
on Stoíchiometry

If the matrix A is of rank R, where R is the number of independent absorbing species, then each determinant $\left|A_{i j}\right|$ of order $R+1$ must vanish. The value of the transpose of a determinant is the same as the value of the determinant.

$$
\left|\begin{array}{ll}
A_{11} & A_{12} \tag{17}\\
A_{21} & A_{22}
\end{array}\right|=0
$$

Taking the transpose of the determinant in Equation (17) yields Equation (18) which can be rewritten as shown in Equation (19).

Figure 1. Relationship Between Triangle XYZ and $|\mathrm{D}|$

Figure 2. Triangle XYZ for One Absorbing Species

$$
\begin{align*}
& \left|\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22}
\end{array}\right|=0 \tag{18}\\
& \left|\begin{array}{lll}
A_{11} & A_{21} & 1 \\
A_{12} & A_{22} & 1 \\
0 & 0 & 0
\end{array}\right|=0 \tag{19}
\end{align*}
$$

This is a case of Equation (16) with one set of points at the origin as shown in Figure 2. The value of the determinant must be zero if one species is absorbing, so $|D|=2 \times \operatorname{AREA}(\triangle X Y Z)=0$. The only way this could be true is for the area of $\triangle X Y Z=0$. This can occur only if points X and Y lie on a straight line through the origin if the (X, Y) points are plotted, a straight line through the origin for each waver length pair will be obtained only if one species is absorbing.

$$
\begin{gathered}
\left(A_{11}, A_{21}\right) \\
\left(A_{12}, A_{22}\right) \\
1 \\
\prime \\
\left(A_{1 j}, A_{2 j}\right)
\end{gathered}
$$

If more than one species is absorbing, then the value of the determinant in Equation (17) is not necessarily equal to zero and straight lines ane not obtained. The absorbance at one wavelength is plotted against the absorbance at each other wavelength. A reference wavelength, usually of maximum absorbance, is used. A series of i straight lines passing through the origin with the number of points on each line equal to the number of solution compositions j is obtained when the data are from a
single absorbing species.

```
Two Absorbing Species-mo Restrictions
    on Stoichiometry
```

When rank $\mathrm{R}=2$, each determinant of onder 3 must vanish.

$$
\left|\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{20}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right|=0
$$

To put the determinant in Equation (20) in a farm suitable for graphical display, each column is divided by its first element.

$$
\left|\begin{array}{lll}
1 & 1 & 1 \tag{21}\\
A_{21} & A_{22} & A_{23} \\
\frac{A_{11}}{A_{12}} & A_{13} \\
A_{31} & A_{32} & A_{33} \\
\frac{A_{11}}{A_{12}} & \frac{A_{13}}{1}
\end{array}\right|=
$$

Taking the transpose of Equation (21) yields Equation (22),

$$
\left|\begin{array}{lll}
1 & \frac{A_{21}}{A_{31}} \tag{22}\\
& A_{11} & A_{11} \\
1 & A_{22} & \frac{A_{32}}{A_{12}} \\
& A_{12} \\
1 & A_{23} & A_{33} \\
& A_{13} & A_{13}
\end{array}\right|=0
$$

Interchanging columns in Equation (22) yields the form used for plotting, Equation (23) restricts the following (X,Y) points to a straight line because it is of the same form as the determinant in Equation (16).

$$
\left|\begin{array}{lll}
A_{21} & A_{31} & 1 \tag{23}\\
\frac{A_{11}}{11} \\
\frac{A_{22}}{A_{12}} & \frac{A_{32}}{A_{12}} \\
A_{23} & A_{33} & 1 \\
\frac{A_{13}}{A_{13}}
\end{array}\right|=0
$$

Since the value of the determinant equals zero, the area of $\triangle X Y Z$ in Figure 1 must equal zero. This can occur only if the points X, Y, and Z lie on a straight line. This line will contain points for other solum tion compositions, $\left(A_{2 j} / A_{1 j}, A_{3 j} / A_{1 j}\right)$. Therefore, a plot of absorbance ratios involving three different wavelengths provides a test as to whether a series of spectra can be described in terms of two species.

Three Absorbing Species-mo Restrictions

on Stoichiometry

When the rank of an absorbance matrix is three, each determinant of order 4 must vanish. Dividing each column of a fourth order determinant by its first element yields Equation (24).

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 1 \tag{24}\\
A_{21} & A_{22} & A_{23} & A_{24} \\
\hdashline A_{11} & A_{12} & A_{13} & A_{14} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
\frac{A_{11}}{A_{12}} & A_{13} & A_{14} \\
A_{41} & A_{42} & A_{43} & A_{44} \\
\frac{A_{11}}{A_{12}} & \frac{A_{13}}{13} & A_{14}
\end{array}\right|=0
$$

Subtracting the first column from each of the other columns, expanding along the first now, and dividing each now by its last element yields Equation (25). The general form is given in Equation (26),

$$
\left|\begin{array}{ccc}
x_{1} & x_{1} & 1 \tag{26}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

Using Equation (16) again, it is seen that if a system contains three absorbing species a family of straight lines is obtained. The number of lines obtained is j, the number of solution compositions, with i points on each line. Since all values of X contain the term A_{14} / A_{12} and all values of X contain the term $\mathrm{A}_{14} / \mathrm{A} 13$, the simplified elements of the determinant given in Equation (27) will also give linear plots which differ only in slope from the plots obtained using Equation (25).

Since there may be many possible wavelength combinations if data are available at a large number of wavelengths, the number of combinations chosen for graphical display is usually limited as follows: (a) for one species, values of $A_{m j}$ versus $A_{i j}$, $i \neq m$, are plotted where m is a wavelength of maximum absorbance; (b) for two species, $A_{m j} / A_{n j}$ versus $A_{i j} / A_{n j}, i \neq m$ or n, are plotted where m is defined as above and n is any other wavelength; (c) for three species, ($A_{m x} A_{i y} A_{m y} A_{i x}$)/
$\left(A_{m x}{ }^{A}{ }_{i z}-A_{m z} A_{i x}\right)$ versus $\left(A_{m x} A_{i j}-A_{m j} A_{i x}\right) /\left(A_{m x} A_{i z^{-A}}{ }_{m z} A_{i x}\right) ; i \neq m, j \neq x, y$, or z are plotted, where m is defined as above and x, y, and z are three arbitrary (but fixed) solution compositions.

Two Absorbing Species--Restrictions on Stoichiometry

Up to this point no restrictions have been imposed upon solution compositions. The results for one, two, and three absorbing species are general but for certain cases interpretation is easier when there are restrictions on the stoichiometry.

Spectra of metal complexes are often reported for a series of solutions prepared by varying the ligand concentration at constant stoichiometric concentration of the metal ion such that the sum of the concentrations of the absorbing species is equal to a constant. Consider a series of complex ions, M_{n}, where $n=0$ to N. Let $\sum_{n=0}^{N} M L_{n}$ equal the constant stoichiometric concentration. Assume that the concentrations of two absorbing species are related as shown in Equation (28),

$$
\begin{equation*}
[\mathrm{I}]+[\mathrm{II}]=\mathrm{C} \tag{28}
\end{equation*}
$$

If the path length is one centimeter, the absorbance is given by Equation (29)

$$
\begin{align*}
A & =\varepsilon_{I}[I]+\varepsilon_{I I}[I I] \\
& =\varepsilon_{I}(c-[I I])+c_{I I}[I I] \tag{29}\\
& =\varepsilon_{I} C+\left(\varepsilon_{I I}-\varepsilon_{I}\right)[I I]
\end{align*}
$$

Using Fortran notation, the absorbance at wavelength λ_{1} in solutions J and $J B$, where J is any solution and $J B$ is a reference solution, is given
by Equations (30) and (31). Similar equations can be written for wavelength λ_{m} and solutions J and JB. Subtracting Equation (31) from Equation (30) and Equation (33) from Equation (32) yields Equations (34) and (35), which give upon division the final form used for plotting.

$$
\begin{align*}
& A\left(\lambda_{1}, J\right)=\varepsilon_{I}^{\lambda_{1}} c+\left(\varepsilon_{I I}^{\lambda_{1}}-\varepsilon_{I}^{\lambda_{1}}\right)[I I]_{J} \tag{30}\\
& A\left(\lambda_{1}, J B\right)=\varepsilon_{I}{ }_{1}{ }_{1}+\left(\varepsilon_{I I}^{\lambda_{1}}-\varepsilon_{I}^{\lambda_{1}}\right) \quad[I I]_{J B} \tag{31}\\
& A\left(\lambda_{m}, J\right)=\varepsilon_{I}^{\lambda_{m}} c+\left(\varepsilon_{I I}^{\lambda_{m}}-\varepsilon_{I}^{\lambda_{m}}\right)[I I]_{J} \tag{32}\\
& A\left(\lambda_{m}, J B\right)=\varepsilon_{I}^{\lambda_{m}} c+\left(\varepsilon_{I I}^{\lambda_{m}}-\varepsilon_{I}^{\lambda_{m}}\right)[I I]_{J B} \tag{33}\\
& A\left(\lambda_{1}, J\right)-A\left(\lambda_{1}, J B\right)=\left(\varepsilon_{I I}^{\lambda_{1}}-\varepsilon_{I}^{\lambda_{1}}\right)\left([I I]_{J}-[I I]_{J B}\right) \tag{34}\\
& A\left(\lambda_{m}, J\right)-A\left(\lambda_{m}, J B\right)=\left(\varepsilon_{I I}^{\lambda_{m}}-\varepsilon_{I}{ }_{I}\right)\left([I I]_{J}-[I I]_{J B}\right) \tag{35}\\
& A\left(\lambda_{1}, J\right)-A\left(\lambda_{1}, J B\right)=\frac{\left(\varepsilon_{I I}^{\lambda_{I}}-\varepsilon_{I} \lambda_{1}\right)}{\left(\varepsilon_{I I}-\varepsilon_{I}\right.}\left(A\left(\lambda_{m}, J\right)-A\left(\lambda_{m}, J B\right)\right) \tag{36}
\end{align*}
$$

A plot of $A\left(\lambda_{1}, J\right)-A\left(\lambda_{1}, J B\right)$ at λ_{1} versus the corresponding differences at other wavelengths yields a straight line through the origin with the number of points on each line equal to the number of solution compositions J. The number of wavelength pairs determines the number of lines obtained, This is the same form as the case of one species absorbing with no restrictions on the stoichiometry.

Three Absorbing Species--Restrictions on Stoichiometry

In a closed system, the total concentration of the several components remains constant. Therefore, P in Equation (9) is equal to one. If a system contains three absorbing species, the sum of whose concentrations is a constant, then the rank R should equal two, A derivation similar to that shown for two absorbing species with restrictions on the sțoichiometry yields equations which reduce ta the same form as the two species case without restrictions. I straight lines, not through the origin, with J points on each line are obtained from a system containing three absorbing species if the following (X, Y) points are plotted.

$$
\begin{equation*}
\frac{A(L M 2, J)-A(L M 2, J B)}{A(L M 1, J)-A(L M 1, J B)} \text { versus } \frac{A(I, J)-A(I, J B)}{A(L M 1, J)-A(L M 1, J B)} \tag{37}
\end{equation*}
$$

LMI and LM2 are two arbitrary (but fixed) reference wavelengths and JB is a reference solution.

Species Number Program

In typical experiments it is useful to explore many more possible combinations of absorbance data than is feasible by desk calculation. Also, the graphical methods give no objective measure of the 1 inearity of the functions plotted. Therefore, a computer program was written to test each data set for linearity assuming one, two, and three absorbing species for either constant or nonconstant stoichiometry. This program fits the best least squares straight line through each data set, calculates the intercept and slope of each line, gives a measure of the goodnessmof-fit, and plots both the experimental and calculated lines for
each case. The absorbance data plus various control parameters, which determine the model to be used, are the only input data required, Seve eral examples using this program are given in a recent paper (12).

General Description of Program

The program is written in Fortran IV and was originally used on an IBM 7040. The entire program was converted to double precision for use on an IBM 360. The program consists of a main program and three subat routines. The main program reads in the absorbance data, calculates the (X, Y) functions to be plotted, performs a least squares curve fit on these data, and prints out the experimental data plus the calculated quantities, such as the slope and intercept of the best straight line through the data, the standard deviation of each point, and the goodnessm of-fit panameter. The subroutines are a plot routine which plots the experimental and calculated curves, a small subroutine called by the plot subprogram to perform certain calculations, and a matrix inversion routine called by the main program during the least squares calculation,

Detailed Description of Program

All elements of each array are set equal to zero first, Then MSIZE, the maximum size polynomial which can be used in the least squares curve fitting procedure, SIZE, the size polynomial to be used, and NCONT, the number of models or polynomials to be tried are read next. The values of coNTL, which determine if the coefficients of the polynomials are to be fixed or calculated, are read in next. The initial values of the BETAS are then read in as zeros. The heading for the output table, HEAD, the title for the plot, TITLE, the ordinate label, MOP,
the abscissa label, TAB1, the symbols to be used on the plot, NCH, and the name of the system being studied are the next data input. $M M$, the number of solution compositions or experiments, L, the number of wavelengths, LM, LM1, LM2, wavelengths of maximum absorbance, JB, JB1, JB2, feference solutions, and NSTOIC, a parameter which is one if nonconstant stoichiometry is assumed or zero for constant stoichiometry, are read in next. ITER and IT1 are parameters which determine which number of species case is to be tried. After the error parameter, DELT, is read, the final data input is the absorbance array, $C(I, J)$.

The absorbance data is converted to double precision and stored in $A(I, J)$. ITER is initially one, two, or three. If ITER is one, Equation (19) is used to calculate $X A(L M, J)$ and $Y A(I, J)$ for the one absorbing species case. If ITER equals two and NSTOIC is one, Equation (23) is used to calculate (X, Y) points for two absorbing species with no restrictions on the stoichiometry. However, if ITER is two and NSTOIC is zero, Equation (36) is used for two species with restrictions on the stoichiometry. If ITER is three and NSTOIC is one, Equation (27) is used for three species with no restrictions on the stoichiometry. If ITER is three and NSTOIC is zero, Equation (37) is used to calculate (X, Y) points for thnee absorbing species with restrictions on the stoichiometry. After each of these cases, the program branchs around the other casesa IF statements at the end of the program allow a return to this part of the program to try each case in turn if desired. The next step in the program is to calculate XMIN and XMAX for the plot routine. After this, the best least squares straight line is calm culated for the experimental (X, Y) data. The values of the BETAS, coefficients of the polynomial fit, and their standard deviations, DEV,
are calculated and written out. SMIN, the goodnessaofafit parameter, is calculated next. SMIN is defined as the sum of the weighted squares of the deviations, S, divided by the degrees of freedom, DF.

The heading for the output table, the experimental (X, Y) points, weight of the data, calculated Y (YHAT), DEV, S, and SMIN are written out. YMIN and YMAX for the plot are then calculated. Since all calcuse lations were performed in double precision, the next step is to convert all the data to single precision before the experimental and calculated (X, Y) points are plotted. This least squares curve fitting procedure followed by the plot routine is repeated for each wavelength for a par ticular number of absorbing species.

For example, assume an unknown system contains either one or two absorbing species with no restrictions on the stoichiometry. XA and YA functions are calculated for each wavelength and solution composition using Equation (19)。 Then, at each wavelength the best straight line through the points is calculated and the experimental and calculated curves are plotted. The program then returns and calculates new XA and YA functions at each wavelength using Equation (23). The least squares curve fit and plotting procedure is repeated at each wavelength. In most cases, the best model (one or two absorbing species) can be determ mined by visual inspection of the curves for each wavelength. If not, a comparison of the goodnessmof m fit parameters yields the best fit. A flow chart and listing of this program plus a typical data set is given in Appendix B.

CHAPTER V

CORRESPONDING SOLUTIONS

It is difficult to interpret measurements of A and [L] unambiguously, except in the simplest cases. Graphical methods described earlier can be used for $N=1$ and in some cases for $N=2$ if one or more extinction coefficients can be determined independently. Although the values of β_{n} and ϵ_{n} may be refined by successive approximation, considerable uncertainty often exists in constants obtained by extrapolation methods. More satisfacțory values can be obtained in cases where it is possible to calculate $\bar{n},[L]$ values from spectrophotometric data.

Method of Corresponding Solutions

Rearranging Equation (4) gives Equation (38)

$$
\begin{equation*}
C_{L}=\stackrel{\rightharpoonup}{n} C_{M}+[L] \tag{38}
\end{equation*}
$$

For a series of "corresponding" solutions having the same (unknown) values of \bar{n} and [L] but containing different total concentrations of M and L, a plot of C_{L} versus C_{M} should be a straight line of slope \bar{n} and intercept [L] (25). The correspondence between two or more solutions can be established using any property that is a function of the free ligand concentration only. This method can be used only for systems in which $C_{L}-[L]$ differs appreciably from both C_{L} and zero. The corresponding solution function, E, is defined in Equation (39), where A is
the absorbance, 1 is the path length, ε_{L} is the extinction coefficient of the ligand, and C_{L}, C_{M} are the total ligand and total metal concentrations.

$$
\begin{equation*}
E=\frac{A-1 C_{L} C_{L}}{1 C_{M}} \tag{39}
\end{equation*}
$$

Substitution of Equations (2) (3), and (6) in Equation (39) yields the following expression which shows that E is a function of the free ligand concentration onlyp

$$
\begin{equation*}
E=\frac{\sum\left(\varepsilon_{n}-n \varepsilon_{L}\right) \beta_{n}[L]^{n}}{\beta_{n}[L]^{n}}=f([L]) \tag{40}
\end{equation*}
$$

If the value of E is the same throughout a series of solutions which contain different total concentrations of M and L, the value of [$[$] must also be the same, provided that only mononuclear complexes are formed (25).

The experimental procedure is to measure the absorbance of a series of solutions containing different total concentrations of M and $L_{\varphi} E$ is then calculated according to Equation (39). Plots of Eversus C_{L} for each C_{M}, as shown in Figure 3, are interpolated at chosen E values to obtain pairs of values of C_{L} and C_{M} for corresponding solutions. Then linear plots of C_{L} versus C_{M} are made (Figure 4) and values of \bar{n} and $[L]$ are obtained from the slope and intercept of each line,

One serious limitation of this method is that it cannot be used if polynuclear complexes exist in solution. From the relation $C_{L}=[L]$ $+\bar{n}^{\prime} C_{M}, \bar{n}$ is given by Equation (41)。

Figure 3. Corresponding Solutions Function E Versus C_{L} at Constant C_{M}

Figure 4. Plot of C_{L} Versus C_{M} for Determining $\overline{\mathrm{n}}_{\mathrm{s}}$ [L] Values

$$
\begin{equation*}
\left(\frac{\partial C_{L}}{\partial C_{M}}\right)_{E}=\vec{n} \tag{41}
\end{equation*}
$$

When dinuclear or higher polynuclear complexes are present in solution， the expression for $\left(X_{L} / \partial_{M}\right)_{E}$ contains［M］and the extinction coeffi－ cients of the different complexes．Therefore，the derivative depends on C_{M} and at a constant value of the intercept on the C_{L} axis，the calcu－ lated value of $\overline{\mathrm{n}}$ depends on the wavelength used（65）。 At $C_{M}=O_{\text {g }}$ ，the derivative is made up of the real ligand number $\overline{\mathrm{n}}$ and a term depending on the wavelength．In general， \bar{n} is a function not oniy of［ L ］but also C_{M} if polynuclear complexes are present．Therefore，corresponding values of C_{L}, C_{M} will not necessarily fall on a straight line。

To check for the presence of polynuclear species，measurements should be made at several wavelengths，preferably in different absorp＝ tion bands．If only mononuclear complexes are present，the same result will be obtained at each wavelength．However，different $\stackrel{\rightharpoonup}{\mathrm{n}},[\mathrm{L}]$ curves will be obtained at different wavelengths if polynuclear species are present．

Computer Programs

Two computer programs have been written to analyze spectrophoto－ metric data obtained using the method of corresponding solutions．The first program calculates the corresponding solution functions，E ，for each C_{L} and C_{M} and plots E versus C_{L} at constant C_{M} for all wavelengths． The values of E, C_{L} ，and C_{M} are written out for each wavelength。 This program will be referred to as the corresponding solution plot program。 The second program，referred to as the corresponding solution $\bar{n}_{,}[\mathrm{L}]$ program，uses the E values calculated in the plot program plus other
experimental data to calculate $\overline{\mathrm{n}},[\mathrm{L}]$ values by the method shown in Figures 3 and 4.

Corresponding Solution Plot Program

This program was written in Fortran IV and uses single precision arithmetic. Since no matrix operations are needed, double precision arithmetic was not necessary. The programs were run on an IBM 360.

The input data are sets of absorbance readings obtained from measm urements on series of solutions containing varying concentrations of metal and ligand。 C_{L} and C_{M} values, plus extinction coefficients, ε_{L}, of the ligand at each wavelength are also read in at the start of the program. Using all combinations of C_{L} and C_{M}, these data are used to calculate the corresponding solution functions, $E\{$ as given in Equation (39). The calculated E values along with the corresponding values of C_{L}, C_{M} and ε_{L} are written out at each wavelength. The program as written can handle up to seven C_{L} concentrations and 80 wavelengthso The number of C_{L} concentrations and wavelengths can be increased by simply changing a dimension statement and reading in the data. The maximum number of C_{M} concentrations is determined by the number of curves which the plot routine can accept. This is considerably larger than the number of C_{M} concentrations usually used in studies of metal complexes. The program is written for the case of four C_{M} concentrations.

After the above data is written out for each wavelength, a plot of E versus C_{L} at constant C_{M} is made at each wavelength. The number of curves on each plot is equal to the number of C_{M} values with the number of points on each curve equal to the number of C_{L} concentrations。 These plots are used to select E values for the interpolation described
earlier. It is obvious from Figure 3 that use of E values greater than E_{5} will produce large errors in the calculated C_{L} values because the E versus C_{L} curves are approximately horizontal. Therefore, the plots are inspected at each wavelength of interest to choose a range of E values for which the slopes of the curves are significant. A flow chart, prom gram listing, and typical data set is given in Appendix C_{0}

Corresponding Solution $\mathbf{n}_{\mathbf{n}}$ [L] Program

The method of corresponding solutions is an excellent method for studying complex equilibria in solution。 This method yields $\overline{\mathrm{n}},[\mathrm{L}]$ data from which stability constants can be obtained. However, the calculations, plotting, and interpolation become cumbersome when large amounts of data are available。 Also, the graphical procedure gives no measure of the linearity of C_{L} versus C_{M} plots which are used to calculate $\stackrel{r}{n}^{n}$, [L] values. In order to speed up and improve the accuracy of the method, a computer program was written to perform the necessary calculations.

General Description of Program

The program was written in Fortran IV for use on an IBM 360, Since matrix calculations were involved, the program was written in double precision. The experimental data input for the program are the Efunco tions at a particular wavelength plus C_{L} and C_{M} concentrationse Using a least squares curve fitting procedure, the best fit for each of the E versus C_{L} at constant C_{M} curves is calculated. These curves are then interpolated at chosen E values and corresponding values of C_{L} and C_{M} are calculated. Then the best straight line is fitted to each set of C_{L}, C_{M} values and the slope ((\bar{n}) and intercept ([L]) are calculated for
each．The coefficients for the polynomial fits of the E versus C_{L} curves as well as the straight line fits of $C_{L}{ }^{\text {G }} C_{M}$ data sets are written out along with their standard deviations．Plots of experimental and calculated C_{L}, C_{M} curves can be made if desired．

Detailed Description of Program

The first control parameter specified is NCo This parameter can have values of zero or one depending upon the part of the program befing executed．The least squares curve fitting procedure is used in two parts of the program．It is first used to calculate the best polynomial fit of E versus C_{L} curves．$N C$ equals zero for this part of the program。 After the interpolation section，the least squares procedure is used again to fit the C_{L}, C_{M} data setso For this part of the program，NC is one．

After $N C$ is set to zero，the headings for the output table， HEAD ， the title for the plot，TITLE，the X and Y coordinate labels，TAB1 and MOP，the symbols for the plot， NCH_{9} and the name of the system being studied are read in。 L ，the number of C_{M} concentrations，$M M M$ ，the numos ber of E values，MSIZE，the maximum size polynomial which can be used to fit the data，NCONT，the number of polynomial models to be tried，and MPT，the maximum number of C_{L} points at any given C_{M} are read in next． $M M$ ，the number of C_{L} values at each $C_{M} X^{\prime} X$ and $Y A$ arrays，the C_{L} and E functions for E versus C_{L} plots，and CONTL，the parameter which detere mines the particular polynomial model to be used，are read in at one time if MPT ≤ 8 ．A 7 th degree polynomial is the maximum size which can be used，Therefore，up to and including 8 points per curve can be fit exactly with a particular model。 For example，if there are 7 C
concentrations for a given C_{M} ，a 6 th degree polynomial will fit the data exactly．For this reason only one model need be tried for MPT ≤ 8 and CONTL is read in at the same time as the X, Y points（statement 114）．

However，if MPT ≥ 9 ，all possible polynomials（through 7 th degree） must be tried in order to be sure of obtaining the best possible fit， Each of the 127 possible models must be tried and a control card（CONTL） read in for each．Therefore，all CONTL cards are read in at the start of the program（statement 110）。 The other experimental data is read in as described earlier．

The next step of the program is to calculate XMIN，XMAX for the plot．After the minimum and maximum values of the X coordinates have been calculated，the least squares curve fitting procedure is used to calculate the best fit for each experimental curve（E versus C_{L} at constant C_{M} ）。 One model or many may be tried for each C_{M} ．The values of the BETA＇s，coefficients of the polynomial fit，and their standard deviations，DEV，are calculated for each model．The goodnessoofefit parameter，SMIN，is calculated for each also．SMIN is the sum of the weighted squares of the deviations from the experimental data divided by the degrees of freedom。 If the standard deviation of a BETA for a particular model is greater than the absolute value of the BETA itself， this model is discarded．When a model satisfies this criteria，the SMIN＇s for successive models are compared．The best fit of the data is the model whose BETA＇s are greater than their standard deviations and whose SMIN is the smallest．This procedure is repeated for each E versus C_{L} curve ${ }_{\phi}$

The BETA＇s，their standard deviations，and SMIN are written out for each model for each C_{M} ．Then，after all models have been tried，the
best fit values of BETA，standard deviations，and SMIN are written out． The BETA＇s for the best fit are stored in the BB array for use in the interpolation procedure．This describes what occurs through statement 116.

The E values for the interpolation as shown in Figure 3 are read in next．The interpolation procedure is quite simple although it would be very time consuming without use of a computer，An expression involving the BETA＇s from the best fit for each C_{M} and the C_{L} values is set up as shown in Equation（42）。

$$
\begin{equation*}
\mathrm{SUM}=\mathrm{BB}(I, 1)+\mathrm{BB}(I, 2) \mathrm{XC}_{\mathrm{L}}+\mathrm{BB}(I, 3) \mathrm{XC}_{\mathrm{L}}^{2}+\infty \mathrm{BB}(\mathrm{I}, 8) \mathrm{xC}_{\mathrm{L}}^{7} \tag{42}
\end{equation*}
$$

Using the first E value，C_{L} is initialized to some value（arbitrary） between O and $100\left(C_{L}\right.$ and C_{M} concentrations are scaled before input）o This value of C_{L} is substituted in Equation（42）and the value of SUM is calculated $S U M$ and E are compared by using a set of IF statements and by incrementing C_{L} the difference between $S U M$ and E is made less than or equal to $1,0 \times 10^{-4}$ ．This procedure is repeated for each $C_{M^{\circ}}$ Then a new E value is used and the whole process is repeated for each C_{M} ．The result is a set of corresponding C_{L}, C_{M} values for each E_{o}

The final step of the program is to go back to the least squares curve fitting routine and fit the best straight line through each C_{L}, C_{M} set．The slope and intercept and their standard deviations are printed out along with SMIN for each line。 Since the input data have been scaled，the $[L]$ has to be multiplied by the scaling factor．The experi－ mental and calculated curves can be plotted if desired by simply adding a plot subroutine and a CALL statement。

The results obtained from this program are a set of $\vec{n},[L]$ values
for input to a formation function program which calculates the stability constants relating the species in solution. This program was checked using several sets of literature data. The first set of data used was Ahrland's (66) data on the uranyl ion. $S i x C_{L}$ concentrations for each of three C_{M} concentrations were used and the curves were interpolated at six E values. The following results were obtained using a fifth degree polynomial to fit the six experimental points for each C_{M}

TABLE I

COMPARISON OF GRAPHICAL AND COMPUTER METHODS I

A similar comparison was made using Fronaeus (67) work on nickel thiocyanate complexes: The results are shown in Table II. In this case, MPT was greater than 8 , so 127 possible models were tried as described earlier. The best fit was then used for interpolation and the calculation of $\dot{n},[L]$ values. A flow chart, program listing and a typical data set is given in Appendix D.

TABLE II
COMPARISON OF GRAPHICAL AND COMPUTER METHODS II

	Fronaeus Graphical Method		This Program	
E	$\overline{\mathrm{n}}$	$[\mathrm{L}]$	$\overline{\mathrm{n}}$	$[\mathrm{L}]$
5	0.53	42.0	0.51	$42_{.} .5$
7	0.65	61.0	0.64	60.8
10	0.86	87.5	0.83	88.1
15	1.06	137.0	1.07	136.6
20	1.28	187.0	1.26	187.8
25	1.42	$240_{9} 0$	1.41	240.4
30	1.48	297.0	1.50	296.3
35	1.54	355.0	1.54	354.7
40	1.56	414.0	1.58	413.5

Formation Function Program

The final step in the computer analysis of spectrophotometric data obtained using the method of corresponding solutions is to calculate the stability constants of the mononuclear complexes from $\stackrel{m}{\mathrm{n}},[\mathrm{L}]$ data, A least squares curve fitting and plotting routine written by Varga (1) is used. The program is written in Fortran IV for use on an IBM 360. All matrix algebra is done in double precision.

The basis of the program is a functional model of the system which is linear in the unknown coefficients. An expression of the form given in Equation (43) is used.

$$
\begin{equation*}
Y=a_{0}+a_{1} X+a_{2} X^{2}+\infty+a_{N} X^{N} \tag{43}
\end{equation*}
$$

The average number of bound ligands per central metal ion, \bar{n}, can be expressed as a function of the free ligand concentration and the unknown stability constants.

$$
\begin{equation*}
m=\frac{C_{L}-[L]}{C_{M}}=\frac{\beta_{1}[L]+2 \beta_{2}[L]^{2}+\cdots+N \beta_{N}[L]^{N}}{1+\beta_{1}[L]+\beta_{2}[L]^{2}+\cdots+\beta_{N}[L]^{N}} \tag{44}
\end{equation*}
$$

Rearranging Equation (44), an expression of the form of Equation (43) is obtained where $\beta_{O}=1$ 。

$$
\begin{equation*}
(\bar{n}-0) \beta_{0}[L]+(m-1) \beta_{1}[L]+\infty+(n-N) \beta_{N}[L]^{N}=0 \tag{45}
\end{equation*}
$$

The input data are a set of average ligand numbers, $\stackrel{\rightharpoonup}{n}_{9}$ and corresponding free ligand concentrations, [L], and an error parameter. The program calculates the overmall formation constants, β_{N}, standard deviations, SIGMA, and an estimate of the goodnessmofmfit, SMIN, for up to 63 possible combinations of N from 1 to 6 in the polynomial $\Sigma(\bar{n}-N) \beta_{N}[L]^{N}=0$, where N ranges from 0 to 6 and $\beta_{O}=1.0_{0}$ The β_{N} and ($\beta_{N}-$ SIGMA) must be positive and SMIN/($\mathrm{DF}-1$) must be 1.5 or less. DF is the number of degrees of freedom. The maximum size of the model may be decreased and the β^{\prime} 's may be given fixed values. If data point error parameters are not available, an option in the program allows an unweighted least squares calculation of an error set which is then in= cluded in the weighted least squares calculation of the unknown coefficients. The output consists of the stability constants and their standard deviations plus the experimental and calculated $\overrightarrow{\mathrm{n}}$ values. The goodness-of-fit parameter is printed out also. The experimental and calculated formation function, $\overline{\mathrm{n}}$ versus [L], are plotted to allow a
direct comparison between parametric and graphical measures of goodness-of-fit. A detailed description of the program has been published and program flow charts and listings are available (1).

PITmMAPPING

The interpretation of spectrophotometric data obtained from a system containing mononuclear, polynuclear, or a mixture of mononuclear and polynuclear species is quite difficult. Since the functional relationship between the unknown parameters is nonlinear, the general trend has been to use the Gauss method of linearization of a nonlinear relationship. Sillen (37) has recently published a series of papers describing a general least squares method which is valid for nonlinear functions. Theese are hard to treat by the standard methods for linear functions or the Gauss approximation method. Sillen's programs were written in Algol. A Fortran version of this programming method was used by Metzler (42) and this program was modified by Thomson (68). A copy of Thomson's program was obtained and after a few changes was used in this work.

Theory of PitmMapping

The problem of determining the equilibrium constants for a number of simultaneous equilibria in solution can be expressed as a special case of the following general problem. A functional relationship, f, between a measured quantity, y, and some accurately known experimental quantities a_{1}, a_{2}, \cdots is assumed where $k_{1}, k_{2}, \cdots, k_{N}$ are unknown constants.

$$
\begin{equation*}
y=f\left(k_{1}, k_{2},--\infty, k_{N} ; a_{1}, a_{2},-\infty\right) \tag{46}
\end{equation*}
$$

If (a) the expression for f is correct, (b) there are no errors except the random errors in y, (c) the errors in y are normally distributed around the correct value, and (d) the weight w_{i} given to each measurement y_{i} is inversely proportional to the square of its standard deviation, then the "best" values for $k_{1}, k_{2}, \cdots, k_{N}$ are those that minimize the error-square sum, U.

$$
\begin{equation*}
U=\sum_{i} w_{i}\left(y_{i}-f\left(k_{1}, k_{2},-\infty, k_{N} ; a_{1 i}, a_{2 i},-\infty\right)\right)^{2} \tag{47}
\end{equation*}
$$

If f is a linear function of the k 's, the least squares condition leads to linear equations which can be solved by straightforward methods. If f is not a linear function of the k's, the general trend has been to reduce it to a linear one by an approximation such as expressing the derivatives of U as a Taylor series and then using only the first terms (Gauss Method).

Pit-mapping does away with the condition that the equations should be linear by considering directly the error-square sum as a function of the unknown k's as given in Equation (48).

$$
\begin{equation*}
U\left(k_{1}, k_{2},-\infty, k_{N}\right) \tag{48}
\end{equation*}
$$

It is assumed in nonlinear cases that the area surrounding the minimum value of the error-square sum, known as the "pit", is described by a second-degree surface. By varying systematically the values for N unknown constants, $1 / 2(N+1)(N+2)$ points are obtained which define the surface of the error function. This surface is a generalized elliptic paraboloid in ($N+1$-dimensional space and the coordinates, the unknown
constants, corresponding to the lowest point on the error function surface can be directly calculated.

The method of variation and refinement of the equilibrium constants has been summarized in matrix notation (38). The variation technique, called a "shot", can be summarized by Equation (49) where k and c are column matrices (vectors) with N elements, $\left|k_{1} k_{2} \ldots k_{N}\right|$ and $\left|c_{1} c_{2} \ldots c_{N}\right|$.

$$
\begin{equation*}
\mathbf{k}=\mathbf{c}+\mathrm{SHv} \tag{49}
\end{equation*}
$$

c is the current set of trial equilibrium constants and k is the column vector of the new approximations to the constants. H is a diagonal step matrix which controls the magnitude of the variation and S is a trigonal twist matrix which defines the direction in which to vary the vector k. If the "pit" (minimum in U) is skew, that is its main axes are at angles to the coordinate axes k_{i}, the speed and accuracy of the program is improved by varying k along this main axis instead of parallel to the coordinate axes. The twist matrix S performs this operation. v is a variation vector chosen so that during the shot all elements are zero except one or two at a time that are +1 or -1 . In other words, a maximum of two constants are varied simultaneously.

In the program, S and H are treated as a single square matrix, SH_{0}

$$
S H=\left[\begin{array}{cccc}
h_{1} & s_{12} & \cdots & s_{1 N} \tag{50}\\
0 & h_{2} & \cdots & s_{2 N} \\
0 & \vdots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & \cdots & h_{N}
\end{array}\right]
$$

Initially，the elements，h_{i} ，are given the user supplied value DEC（ 0.05 to 0.1 in this work）and all elements．s ${ }_{i j}$ are set to zero．As information on the shape of the＂pit＂is accumulated，the elements of SH are improved using a trigonal correcting matrix， $\mathrm{W}_{\text {。 }}$ The elements of W depend on the shape of the＂pit＂．The amount by which each constant is varied is not the same for all constants and as successive approxima－ tions give current constants with error－square sums further down in the ＂pit＂，the direction and amount to vary each constant is determined by the shape of the＂pit＂。

The equation of the second－degree surface of the error function can be expressed as shown in Equation（51）where U_{c} is the value at the central point（ $k=c, v=0$ ），p is a vector，and R is a matrix．

$$
\begin{equation*}
U=U_{c}-2 p v+v R v \tag{51}
\end{equation*}
$$

Using all values of the variation vector， $1 / 2(N+1)(N+2)$ values of U are calculated．These U values are then used to calculate the terms in p and R as described by Sillen（38）．The variation vector，v_{O} ，to ob－ tain the constants at the minimum，k_{0} ，is found from Equation（52）．

$$
\begin{equation*}
v_{o}=p R^{-1} \tag{52}
\end{equation*}
$$

Using v_{0} ，the vector k_{0} at the calculated minimum point can be found using Equation（53）。

$$
\begin{equation*}
\mathbf{k}_{\mathrm{o}}=\mathrm{c}+\mathrm{SHv}_{\mathrm{o}} \tag{53}
\end{equation*}
$$

The value of the errormsquare sum at the minimum，U_{O} ，is then calculated using Equation（54）。

$$
\begin{equation*}
\mathrm{U}_{\mathrm{O}}=\mathrm{U}_{\mathrm{c}}-\mathrm{pv}_{\mathrm{O}} \tag{54}
\end{equation*}
$$

If the calculated U_{0} is lower than earlier U values, it is accepted as the new central value and the whole process repeated until there is no change between successive U's.

Application of Pit-mapping to Spectrophotomețric Data

Assuming that Beer's law applies for each of the J species in solum tion, an observed absorbance A can be represented by

$$
\begin{equation*}
A=\sum_{j=1}^{J} c_{j} \epsilon_{j}^{1} \tag{55}
\end{equation*}
$$

where C_{j} is the concentration and ε_{j} is the molar extinction coefficient of the $j^{\text {th }}$ species in solution. The path length, 1 , is one centimeter. The error-square sum, U, is then defined as shown in Equation (56) where i is the solution number and k is the wavelength.

$$
\begin{equation*}
U=\sum_{i k} w_{k}\left(A_{i k}-\sum_{j=1}^{J} c_{j i}{ }^{c}{ }_{j k}\right)^{2} \tag{56}
\end{equation*}
$$

In this work the weighting factor, w_{i}, for all data was unity. The error-square sum is minimized when $\partial U / \partial{ }_{j k}=0$ resulting in J simultaneous equations at each wavelength, k.

$$
\begin{equation*}
\sum_{j=1}^{J}\left(\sum_{i} c_{j i} c_{j \prime i}\right) \varepsilon_{j k}=\sum_{i} c_{j \prime i^{\prime} A_{k}} \tag{57}
\end{equation*}
$$

In this version of the pit-mapping program $j^{\prime}=1,2,3$, and 4 , since a maximum of four species with unknown molar extinction coefficients are
considered in subroutine ECOEF. Equation (57) is solved for the molar extinction coefficients by the standard method of Cramer's Rule. The solution of Equation (57) can be written as the ratio of two determinants where $D=\left(\sum_{i} C_{j i}{ }_{j}{ }_{j}{ }_{i}\right) ; j, j^{\prime}=1,2,3$, and 4 , and $D_{j k}$ is the matrix in which the $j^{\text {th }}$ column of D is replaced by the vector given in Equation (59).

$$
\begin{gather*}
e_{j k}=\left|D_{j k}\right| /|D| \tag{58}\\
\left(\sum_{i} C_{1 i^{\prime}} A_{i k}, \sum_{i} C_{2 i^{\prime}} A_{i k}, \sum_{i} C_{3 i} A_{i k}, \sum_{i} C_{4 i} A_{i k}\right) \tag{59}
\end{gather*}
$$

Using these values of the molar extinction coefficients and the concen trations of the species, the error-square sum can be calculated from Equation (56). The concentrations of the species in solution are calcue lated in subroutine EQUIL, from initial approximations to the equilibrium constants and an assumed model of the system. The EQUIL subroutine must be rewritten for each different model of the system. Complete details will be given in a later section.

Pit-mapping Program

The computer program consists of a main program with ten subroutines and two function subprograms. A listing of the program with a typical data set is given in Appendix E. A detailed flow chart is given elsewhere (68). The input data required are a set of absorbance readings, total ligand and total metal concentrations, solution $\mathrm{pH}^{\prime} \mathrm{s}$, trial stability constants, known molar extinction coefficients, and various control parameters. The modifications of the main program and the EQUTL, subroutines used in this work will be described in detail. A brief
summary of the primary functions of the other parts of the program will be given. A detailed description is given elsewhere.

The primary function of the main program, MAIN, is to read input data and print out the final results. It also contains the IF statements to check for negative constants as well as other convergence criteria. As the k_{o} are calculated, each constant is checked to determine if the program has moved it to a negative value. If so, a "dummy" subroutine (MIKO) is entered and the program stops. The variation vector, \mathbf{v}_{0}, needed to calculate the constants at the minimum and the actual \mathbf{k}_{0} set are calculated in MAIN. The standard deviations of these constants are also calculated.

The modifications of MAIN were in the input and output sections The program as now written prints out the trial stability constants plus the total ligand and metal concentrations. Then the absorbance data is printed out. The "best" set of constants plus their standard deviations and UMIN (the minimum U value) are printed next. The molar extinction coefficients of all species of interest are written out at each wavelength. The experimental and calculated absorbance readings are printed out for each solution at all wavelengths. The final step in MAIN is to plot the calculated molar extinction coefficients versus wavelength.

EQUIL subroutine calculates the concentrations of all species from initial approximations to the equilibrium constants and an assumed model of the system. Subroutine NEWTRS, used by EQUIL, solves polynomial equations for the unknown concentrations.

ECOEF subroutine calculates the unknown molar extinction coefficients using DETER3 and DETER4 to evaluate third-order and fourth-order determinants. The error-square sum is calculated also.

TWIST subroutine performs the variation of each unknown constant and stores the various U values calculated in ECOEF. The improved SH matrix is calculated in TWIST also. Subroutines MATIN, matrix inversion, PINUS, multiplication of a matrix and a vector, and MULLE, matrix multiplication are used in TWIST and MAIN to perform matrix operations described earlier.

Subroutine PLOT is called by MAIN to plot the molar extinction coefficients. Subroutine POT is used by the PLOT routine.

EQUIL for Ligand Solutions

This subroutine is the same as used by Thomson (68). Stepwise dissociation constants for ligands, $\mathrm{H}_{3} \mathrm{~L}$, with three replaceable protons are converted to the corresponding formation constants, $K_{i}, i=1,2$, and 3. The fraction, α_{0}, of the total ligand as the unprotonated species, L, is defined in Equation (60), where [H] is the hydrogen-ion concentration.

$$
\begin{equation*}
\alpha_{0}=1 /\left(1+K_{1}[H]+K_{1} K_{2}[H]^{2}+K_{1} K_{2} K_{3}[H]^{3}\right) \tag{60}
\end{equation*}
$$

Equilibrium concentrations of all species are then calculated using the equations given in Equation (61) where C_{L} is the total ligand concentration.

$$
\begin{align*}
{[\mathrm{L}] } & =c_{L} \alpha_{0} \\
{[\mathrm{HL}] } & =c_{L} \alpha_{0} K_{1}[\mathrm{H}] \\
{\left[\mathrm{H}_{2} \mathrm{~L}\right] } & =c_{L} \alpha_{0} K_{1} \mathrm{~K}_{2}[\mathrm{H}]^{2} \tag{61}\\
{\left[\mathrm{H}_{3} \mathrm{~L}\right] } & =c_{L} \alpha_{0} K_{1} K_{2} K_{3}[\mathrm{H}]^{3}
\end{align*}
$$

A number of different models of species in solution were used in an attempt to fit the data of solutions of $\operatorname{Sn}(I V)$ and Pyrocatechol Violet. All were a simple variation of the following model which gave the best fit.

In this model, it is assumed that three complexes, $\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}$, $\mathrm{Sn}^{\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}}$, and $\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{6+}$, formo The overall formation constants are defined as shown in Equations (62), (63), and (64). Charges are omitted.

$$
\begin{align*}
& {[\mathrm{Sn}]\left[\mathrm{H}_{3} \mathrm{PV}\right] \beta_{11}=\left[\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right][\mathrm{H}]} \tag{62}\\
& {[\mathrm{Sn}]\left[\mathrm{H}_{3} \mathrm{PV}\right]^{2} \beta_{12}=\left[\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}\right][\mathrm{H}]^{2}} \tag{63}\\
& {[\mathrm{Sn}]^{2}\left[\mathrm{H}_{3} \mathrm{PV}\right] \beta_{21}=\left[\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right][\mathrm{H}]} \tag{64}
\end{align*}
$$

The mass balance for the ligand and metal are given in Equations (65) and (66).

$$
\begin{align*}
& C_{P C V}=\left[\mathrm{H}_{3} \mathrm{PV}\right]+\left[\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right]+2\left[\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}\right]+\left[\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right] \tag{65}\\
& \mathrm{C}_{\mathrm{Sn}}=[\mathrm{Sn}]+\left[\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right]+\left[\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}\right]+2\left[\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right] \tag{66}
\end{align*}
$$

Substituting in Equations (65) and (66) for $\left[\operatorname{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right],\left[\operatorname{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}\right]$, and $\left[\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)\right]$ from Equations (62), (63), and (64), two equations in two unknowns, $\left[\mathrm{H}_{3} \mathrm{PV}\right]$ and $[\mathrm{Sm}]$, are obtained.

$$
\begin{align*}
& {\left[\mathrm{H}_{3} \mathrm{PV}\right]+\beta_{11}[\mathrm{Sm}]\left[\mathrm{H}_{3} \mathrm{PV}\right] /[\mathrm{H}]+2 \beta_{12}\left[\mathrm{Sn}^{2}\right]\left[\mathrm{H}_{3} \mathrm{PV}\right]^{2} /[\mathrm{H}]^{2} } \\
&+\beta_{21}[\mathrm{Sn}]^{2}\left[\mathrm{H}_{3} \mathrm{PV}\right] /[\mathrm{H}]-\mathrm{C}_{\mathrm{H}_{3} \mathrm{PV}}=0 \tag{67}
\end{align*}
$$

$$
\begin{align*}
& {[\mathrm{Sn}]+\beta_{11}[\mathrm{Sn}]\left[\mathrm{H}_{3} \mathrm{PV}\right] /[\mathrm{H}]+\beta_{12}[\mathrm{Sn}]\left[\mathrm{H}_{3} \mathrm{PV}\right]^{2} /[\mathrm{H}]^{2} } \\
&+2 \beta_{21}[\mathrm{Sn}]^{2}\left[\mathrm{H}_{3} \mathrm{PV}\right] /[\mathrm{H}]-\mathrm{c}_{\mathrm{Sn}}=0 \tag{68}
\end{align*}
$$

These two equations are solved in subroutine EQUIL. Initial approximam tions, $\left[\mathrm{H}_{3} \mathrm{PV}\right]=\mathrm{C}_{\mathrm{PCV}}$ and $[\mathrm{Sn}]=\mathrm{C}_{\mathrm{Sn}}$, are made and Equation (67) is solved for $\left[\mathrm{H}_{3} \mathrm{PV}\right]$ by Newton's method using NEWTRS. The calculated root is checked to make sure that:
(a) it is not negative
(b) it is less than $C_{P C V}$
(c) convergence has occurred.

If this root is adequate, it is used to solve Equation (68) for [Sn] by Newton's method. If the new root for [Sn] is adequate, it is compared to the old approximation to the root, and if these agree to three decimal places, it is considered that $\left[\mathrm{Sn}\right.$] and [$\mathrm{H}_{3} \mathrm{PY}$] have been approximated with sufficient accuracy. If roots are approximated that do not fulfill any of the above criteria, the calculation is terminated.

From Equations (62), (63), and (64) the concentrations of $\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}, \mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}$, and $\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{6+}$ are calculated using the two roots. These concentrations are then returned to ECOEF for use in the calculation of molar extinction coefficients.

CHAPTER VII

EXPERTMENTAL

Reagents

$\xrightarrow{\mathrm{H}_{2} \mathrm{O}}$
Distilled $\mathrm{H}_{2} \mathrm{O}$ which had been passed through a mixed cation-anion exchange resin was used throughout this work. Fisher Certified Rexyn 300 resin of medium porosity in H^{+}and OH^{-}ion form was used. The specific conductance of the $\mathrm{H}_{2} \mathrm{O}$ after passing through the resin was $6.4 \times 10^{-7} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. All references will refer to this as distilled $\mathrm{H}_{2} \mathrm{O}$.

Pyrocatechol Violet

The pyrocatechol violet (PCV or 3,3',4'-trihydroxyfuchsone-2"sulfonic acid) used was Eastman reagent grade. Stock solutions of PCV were prepared by dissolving appropriate amounts of the reagent in distilled water and diluting to volume. These solutions were found to be stable for at least 30 days. In this work fresh solutions were prepared weekly to avoid possible air oxidation of the PCV,

Tin

Baker Analyzed Reagent grade sodium stannate, $\mathrm{Na}_{2} \mathrm{SnO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, was heated at $160^{\circ} \mathrm{C}$ for approximately 24 hours to remove water of hydration.

Stock $\mathrm{Sn}(\mathrm{IV})$ solutions were prepared by dissolvịng $\mathrm{Na}_{2} \mathrm{SnO}_{3}$ in 6.13 M HCl. Solutions prepared with $1 \mathrm{M} \mathbf{H C l}$ in excess of the component $\operatorname{Sn}(I V)$ have been found to be stable for over two years (69).

Hydrochloric Acid

A stock solution of about 6 M HCl was prepared by diluting 37.7% Baker Analyzed Reagent grade HCl with distilled $\mathrm{H}_{2} \mathrm{O}$. This solution was then standardized using primary standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$. All stock Sn (IV) solutions were prepared using this standard acid.

Sodium Chloride

A stock solution of 3 M NaCl was prepared by dissolving Baker Analyzed Reagent grade NaCl in distilled $\mathrm{H}_{2} \mathrm{O}$. This solution was used to provide a constant ionic medium of $1 \mathrm{M} \mathrm{Cl}^{-}$for all measurements.

Apparatus

Glassware

All glassware used was Pyrex and volumetric glassware met ACS requirements. Only Class A volumetric glassware was used.

Cel1s

Scientific Cell Company fused silica cells were used. The matched cells were rectangular with a one centimeter path length. These cells were cleaned with concentrated HNO_{3} after use and were stored in a dilute HNO_{3} solution between runs.

Instruments

Balance

All weighings were performed on a Mettler Type H5 balance. Samples were weighed to ± 0.0001 grams.

pH Meter

A Beckman Zeromatic pH meter equipped with a Sargent/Jena S-30080-15C saturated calomel reference electrode and a Sargent/Jena S-30050-15C glass electrode was used for all pH measurements. The pH meter was standardized before u'se with buffers prepared from pHydrion Buffer powders.

Spectrophotometers

Preliminary absorbance measurements were made with a Beckman Model DU Quartz Spectrophotometer. All later work was done on a dual beam Cary Recording Spectrophotometer, Model 14. All studies were in the visible or ultraviolet regions of the spectrum. Unless stated otherwise, spectra were recorded from $7000 \AA$ to $2400 \AA$ at a rate of $5 \AA /$ sec and a chart speed of 2 in/min. This gave a wavelength scale of $50 \mathrm{~A} /$ scale division, The readings of the baseline and cells were checked regularly. Absorbance readings were taken from the spectra of the solutions at $50 \AA(5 \mathrm{~m} \mu)$ intervals. All readings were estimated to +0.001 absorbance units. These absorbance readings were then punched onto computer cards for analysis.

Pyrocatechol violet (PCV) is a reddish-brown crystalline powder which is readily soluble in $\mathrm{H}_{2} \mathrm{O}$. The spectra of several solutions of varying concentrations of PCV in distilled $\mathrm{H}_{2} \mathrm{O}$ were determined to find a suitable concentration range for spectrophotometric studies. Stock solutions of PCV were prepared by dissolving 0.1932 grams of reagent grade PCV in distilled $\mathrm{H}_{2} \mathrm{O}$ and diluting to 500 ml . The pH 's of these $10^{-3} \mathrm{M}$ PCV solutions were approximately 4.5 .

A series of $10^{-4} \mathrm{M}$ PCV solutions were prepared, over a period of one week, by diluting 10 ml of the stock solution to 100 ml . The absorbances of each of these solutions were measured at several wavelengths between $5000 \AA$ and $2500 \AA$. No changes were observed over a period of one week. Therefore, fresh PCV stock solutions were prepared weekly.

Since PCV shows acid-base indicator properties with color transsitions in both acidic and alkaline pH ranges, it was necessary to study the spectrum of PCV as a function of pH . PCV is apparently present in several forms in the pH range from 0 to 7 due to the ionization of the sulfonic acid group and then the loss of hydroxyl protons as the pH is increased (57). The PCV concentration used was $8 \times 10^{-5} \mathrm{M}$ in $1 \mathrm{M} \mathrm{Cl}{ }^{-}$, The spectra of 9 solutions were obtained. The pH was adjusted with HCl or NaOH solutions. The wavelength range was $7000 \AA$ to 2600 A. The reference solution was $1 \mathrm{M} \mathrm{Cl}^{-}$. The solution compositions are given in Table III.

TABLE III

PCV AS $f(\mathrm{pH})$

Solution Number	PCV	Volume $\mathrm{PCV}(\mathrm{ml})$	pH	Volume 2M $\mathrm{HCl}(\mathrm{ml})$	Volume 3M $\mathrm{NaCl}(\mathrm{ml})$
1	$8 \times 10^{-5} \mathrm{M}$	4.0	0.42	22.00	2.00
2	$8 \times 10^{-5} \mathrm{M}$	4.0	1.01	2.50	15.00
3	$8 \times 10^{-5} \mathrm{M}$	4.0	2.02	0.25	16.50
4	$8 \times 10^{-5} \mathrm{M}$	4.0	3.05	0.00	16.66
5	$8 \times 10^{-5} \mathrm{M}$	4.0	4.09	0.00	16.66
6	$8 \times 10^{-5} \mathrm{M}$	4.0	5.20	0.00	16.66
7	$8 \times 10^{-5} \mathrm{M}$	4.0	6.03	0.00	16.66
8	$8 \times 10^{-5} \mathrm{M}$	4.0	7.11	0.00	16.66
9	$8 \times 10^{-5} \mathrm{M}$	4.0	8.18	0.00	16.66

The spectra of another series of $P C V$ solutions were determined with the PCV concentrations ranging from $2 \times 10^{-5} \mathrm{M}$ to $7 \times 10^{-5} \mathrm{M}$ in 1 M Cl^{-}. The pH of each solution was adjusted to 3.00 ± 0.05 with HCl or NaOH . The reference solution was 1 M NaCl . The wavelength range was $7000 \AA$ to $2600 \AA$. The compositions of these solutions are given in Table IV.

TABLE IV

COMPOSITION OF PCV SOLUTIONS AT pH 3.00

Solution Number	Volume $10^{-3} \mathrm{M}$ PCV (ml)	$C_{P C V}$	Volume 3 M NaCl (ml)
1	1.0	$2 \times 10^{-5} \mathrm{M}$	16.66
2	1.5	$3 \times 10^{-5} \mathrm{M}$	16.66
3	2.0	$4 \times 10^{-5} \mathrm{M}$	16.66
4	2.5	$5 \times 10^{-5} \mathrm{M}$	16.66
5	3.0	$6 \times 10^{-5} \mathrm{M}$	16.66
6	3.5	$7 \times 10^{-5} \mathrm{M}$	16.66

Stock $\operatorname{Sn}(I V)$ Solutions

The procedure for the preparation of stock Sn (IV) solutions was to dry reagent grade sodium stannate, $\mathrm{Na}_{2} \mathrm{SnO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, at $160^{\circ} \mathrm{C}$ for 24 hours to assure loss of water of hydration. Then the required amounts of $\mathrm{Na}_{2} \mathrm{SnO}_{3}$ needed to yield stock solutions of the concentrations shown in Table V were weighed out and dissolved in 6.13 M HCl .

TABLE V

COMPOSITION OF STOCK $\operatorname{Sn}(I V)$ SOLUTIONS

Series Number	Grams Na ${ }_{2} \mathrm{SnO}_{3} /$ I	C Sn II
III	0.5318	$5.0 \times 10^{-3} \mathrm{M}$
IV	1.0636	$1.0 \times 10^{-2} \mathrm{M}$

Tin-Pyrocatechol Violet Solutions

Preliminary runs on PCV solutions, $\mathrm{Sn}(\mathrm{IV})$ solutions, and mixtures of PCV and $S n(I V)$ indicated no absorption bands in the wavelength range from $18,000 \AA$ to $7000 \AA$. Therefore, all measurements were restricted to the range $7000 \AA$ to $2400 \AA$. The visible and ultraviolet spectrum of each solution in each series of solutions was obtained. Four series of solutions, each with a different total $\mathrm{Sn}(\mathrm{IV})$ concentration, were studied. The compositions of these solutions are given in Tables VI, VII, VIII, and IX.

The following procedure was used to prepare the solutions given in Tables VI, VII, VIII, and IX. A 10 ml aliquot of a particular $\mathrm{Sn}(\mathrm{IV})$ stack solution in 6.13 M HCl was diluted to 100 ml with distilled $\mathrm{H}_{2} \mathrm{O}$. This produces a solution 0.613 M in HCl . This solution is used immediately after dilution. A 1 ml aliquot of a diluted stock $\operatorname{Sn}(I V)$ solution is transferred to a 50 ml volumetric flask. The required volume of PCV solution was added and the solution mixed thoroughly.

Sn-PCV SERIES I

Solution Number	$\begin{aligned} & \text { Volume } 5 \times 10^{-4} \mathrm{M} \\ & \text { Sn (IV) in } \\ & 0.613 \mathrm{M} \mathrm{HCl} \text { (m1) } \end{aligned}$	$\mathrm{C}_{\text {Sn }}$	$\begin{aligned} & \text { Volume } 10^{-3} \mathrm{M} \\ & \text { PCV (m1) } \end{aligned}$	${ }^{\text {c PCV }}$	$\begin{aligned} & \text { Volume } 3.0 \mathrm{M} \\ & \mathrm{NaCl} \text { (m1) } \end{aligned}$	${ }^{C_{P C V}}{ }^{\text {: }}$ Sn
0	1.0	$1.0 \times 10^{-5} \mathrm{M}$	0.25	$0.5 \times 10^{-5} \mathrm{M}$	16.46	1:2
1	1.0	$1.0 \times 10^{-5} \mathrm{M}$	0.5	$1.0 \times 10^{-5} \mathrm{M}$	16.46	1:1
2	1.0	$1.0 \times 10^{-5} \mathrm{M}$	1.0	$2.0 \times 10^{-5} \mathrm{M}$	16.46	2:1
3	1.0	$1.0 \times 10^{-5} \mathrm{M}$	1.5	$3.0 \times 10^{-5} \mathrm{M}$	16.46	3:1
4	1.0	$1.0 \times 10^{-5} \mathrm{M}$	2.0	$4.0 \times 10^{-5} \mathrm{M}$	16.46	4:1
5	1.0	$1.0 \times 10^{-5} \mathrm{M}$	2.5	$5.0 \times 10^{-5} \mathrm{M}$	16.46	5:1
6	1.0	$1.0 \times 10^{-5} \mathrm{M}$	3.0	$6.0 \times 10^{-5} \mathrm{M}$	16.46	6:1
7	1.0	$1.0 \times 10^{-5} \mathrm{M}$	3.5	$7.0 \times 10^{-5} \mathrm{M}$	16.46	7:1

TABLE VII
Sn-PCV SERIES II

Solution Number	$\begin{aligned} & \text { Volume } 10^{-3} \mathrm{M} \\ & \text { Sn (IV) in } \\ & 0.613 \mathrm{M} \mathrm{HCI}(\mathrm{ml}) \end{aligned}$	$\mathrm{C}_{\text {Sn }}$	$\begin{aligned} & \text { Volume } 10^{-3} \mathrm{M} \\ & \text { PCV }(\mathrm{ml}) \end{aligned}$	${ }^{\text {c }}$ PCV	$\begin{gathered} \text { Volume } 3.0 \mathrm{M} \\ \text { NaC1 (m1) } \end{gathered}$	${ }^{C} \mathrm{PCV}$: ${ }^{\text {c }}$ Sn
0	1.0	$2.0 \times 10^{-5} \mathrm{M}$	0.25	$0.5 \times 10^{-5} \mathrm{M}$	16.46	1:4
1	1.0	$2.0 \times 10^{-5} \mathrm{M}$	0.5	$1.0 \times 10^{-5} \mathrm{M}$	16.46	1:2
2	1.0	$2.0 \times 10^{-5} \mathrm{M}$	1.0	$2.0 \times 10^{-5} \mathrm{M}$	16.46	1:1
3	1.0	$2.0 \times 10^{-5} \mathrm{M}$	1.5	$3.0 \times 10^{-5} \mathrm{M}$	16.46	3:2
4	1.0	$2.0 \times 10^{-5} \mathrm{M}$	2.0	$4.0 \times 10^{-5} \mathrm{M}$	16.46	2:1
5	1.0	$2.0 \times 10^{-5} \mathrm{M}$	2.5	$5.0 \times 10^{-5} \mathrm{M}$	16.46	5:2
6	1.0	$2.0 \times 10^{-5} \mathrm{M}$	3.0	$6.0 \times 10^{-5} \mathrm{M}$	16.46	3:1
7	1.0	$2.0 \times 10^{-5} \mathrm{M}$	3.5	$7.0 \times 10^{-5} \mathrm{M}$	16.46	$7: 2$

TABLE VIII

Sn-PCV SERIES III

Solution Number	$\begin{aligned} & \text { Volume } 1.5 \times 10^{-4} \mathrm{M} \\ & \text { Sn (IV) in } \\ & 0.613 \mathrm{M} \mathrm{HCl}(\mathrm{ml}) \end{aligned}$	C_{Sn}	$\begin{aligned} & \text { Volume } 10^{-3} \mathrm{M} \\ & \text { PCV }(\mathrm{ml}) \end{aligned}$	${ }^{\text {c PCV }}$	$\begin{gathered} \text { Volume } 3.0 \mathrm{M} \\ \mathrm{NaC1}(\mathrm{m1}) \end{gathered}$	${ }^{C}$ PCV: ${ }^{\text {C }}$ Sn
1	1.0	$3.0 \times 10^{-5} \mathrm{M}$	0.30	$0.6 \times 10^{-5} \mathrm{M}$	16.46	1:5
2	1.0	$3.0 \times 10^{-5} \mathrm{M}$	0.5	$1.0 \times 10^{-5} \mathrm{M}$	16:46	1:3
3	1.0	$3.0 \times 10^{-5} \mathrm{M}$	1.0	$2.0 \times 10^{-5} \mathrm{M}$	16.46	2:3
4	1.0	$3.0 \times 10^{-5} \mathrm{M}$	1.5	$3.0 \times 10^{-5} \mathrm{M}$	16.46	1:1
5	1.0	$3.0 \times 10^{-5} \mathrm{M}$	2.0	$4.0 \times 10^{-5} \mathrm{M}$	16.46	4:3
6	1.0	$3.0 \times 10^{-5} \mathrm{M}$	2.5	$5.0 \times 10^{-5} \mathrm{M}$	16.46	5:3
7	1.0	$3.0 \times 10^{-5} \mathrm{M}$	3.0	$6.0 \times 10^{-5} \mathrm{M}$	16.46	2:1

TABLE IX

Sn-PGV SERIES IV

Solution Number	$\begin{gathered} \text { Volume } 2.0 \times 10^{-3} \mathrm{M} \\ \text { Sn (IV) in } \\ 0.613 \mathrm{MHCl}(\mathrm{ml}) \end{gathered}$	C_{Sn}	$\begin{gathered} \text { Volume } 10^{-3} \mathrm{M} \\ P C V(\mathrm{~m} 1) \end{gathered}$	$\mathrm{C}_{\text {PCV }}$	$\begin{aligned} & \text { Volume } 3.0 \mathrm{M} \\ & \mathrm{NaC1} \text { (m1) } \end{aligned}$	$\mathrm{C}_{\mathrm{PCV}}: \mathrm{G}_{\mathrm{Sn}}$
1	1.0	$4.0 \times 10^{-5} \mathrm{M}$	0.33	$0.66 \times 10^{-5} \mathrm{M}$	16.46	1:6
2	1.0	$4.0 \times 10^{-5} \mathrm{M}$	0.5	$1.0 \times 10^{-5} \mathrm{M}$	16.46	1:4
3	1.0	$4.0 \times 10^{-5} \mathrm{M}$	1.0	$2.0 \times 10^{-5} \mathrm{M}$	16.46	1:2
4	1.0	$4.0 \times 10^{-5} \mathrm{M}$	1.25	$2.5 \times 10^{-5} \mathrm{M}$	16.46	5:8
5	1.0	$4.0 \times 10^{-5} \mathrm{M}$	1.5	$3.0 \times 10^{-5} \mathrm{M}$	16.46	3:4
6	1.0	$4.0 \times 10^{-5} \mathrm{M}$	2.0	$4.0 \times 10^{-5} \mathrm{M}$	16.46	1:1
7	1.0	$4.0 \times 10^{-5} \mathrm{M}$	2.5	$5.0 \times 10^{-5} \mathrm{M}$	16.46	5:4

Color development was immediate upon mixing. After adding 16.46 ml of 3.0 M NaCl, the solution was diluted to 50 ml with distilled $\mathrm{H}_{2} \mathrm{O}$. This produces 50 ml of solution containing approximately 0.6 milliequivalents H^{+}. A constant ionic strength of $1 \mathrm{M} \mathrm{C1}{ }^{-}$was used in all measurements. The flask was shaken to assure complete mixing. The contents were then transferred to a 150 ml beaker and the pH adjusted to 3.00 ± 0.05 with 1 M NaOH . The maximum amount of 1 M NaOH required was 0.6 ml so the dilution error was negligible. After adjusting the pH , the spectrum was obtained using a reference solution of 1 M NaCl in $\mathrm{H}_{2} \mathrm{O}$. The spectrum was obtained from $7000 \AA$ to $2400 \AA$ using a Cary 14 recording spectrophotometer.

CHAPTER VIII

RESULTS AND DISCUSSION

Pyrocatechol Violet

Ross and White (2) state that pyrocatechol violet forms at least two complexes with tin(IV). Their results indicate that the optimum pH for the formation of these complexes is between 2.5 and 3.0 . For this reason all tin(IV)-pyrocatechol violet solutions were studied at pH 3.00. However, since pyrocatechol violet shows color transitions in both acidic and basic media (57), it was necessary to study the pyrocatechol violet system both as a function of pH and at pH 3.00 before trying to interpret the tin(IV)-pyrocatechol violet system. The stepwise equilibria used to interpret the pyrocatechol violet data were first proposed by Suk and Malat (57).

The undissociated molecule shown earlier will be represented as $\mathrm{H}_{4} \mathrm{PV}$. The proposed equilibria are given in Equations (69), (70), and (71) with the stepwise dissociation constants given in Equations (72), (73), and (74).

$$
\begin{align*}
& \mathrm{H}_{4} \mathrm{PV} \stackrel{\mathrm{k}_{1}}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{PV}^{-}+\mathrm{H}^{+} \tag{69}\\
& \mathrm{H}_{3} \mathrm{PV}^{-}{ }^{-\mathrm{k}_{3}} \mathrm{H}_{2} \mathrm{PV}^{2-}+\mathrm{H}^{+} \tag{70}\\
& \mathrm{H}_{2} \mathrm{PV}^{2-} \mathrm{k}_{3} \mathrm{HPV}^{3-}+\mathrm{H}^{+} \tag{71}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{k}_{1}=\left[\mathrm{H}_{3} \mathrm{PV}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{4} \mathrm{PV}\right] \tag{72}\\
& \mathrm{k}_{2}=\left[\mathrm{H}_{2} \mathrm{PV}^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{PV}^{+}\right] \tag{73}\\
& \mathrm{k}_{3}=\left[\mathrm{HPV}^{3-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{PV}^{2-}\right] \tag{74}
\end{align*}
$$

The spectra of the series of solutions given in Table III were obtained to determine the number of absorbing species in solution as a function of pH and to determine the acid dissociation constants of pyrocatechol violet. The spectra obtained are given in Figures 5 and 6. Color transitions occur in the pH ranges $1-2$ and 5-6. The solutions are red in strongly acid media, yellow from pH 2 to 5, and violet above pH 6 . No other color changes occur as the pH is increased to 8.18. Higher pH's were not used because of the apparent decomposition of pyrocatechol violet in strongly basic solutions. Solutions of pH 9 and 10 were violet but upon acidification, the observed absorbances at 440 and $550 \mathrm{~m} \alpha$ were greatly reduced. It has been reported that air oxidation of pyrocatechol violet occurs in basic solutions (57).

Number of Absorbing Species

The absorbance data from the spectra in Figures 5 and 6 were used as input data for the matrix rank calculation. Several combinations of solutions were used. Absorbance readings from 700 to 260 md at $5 \mathrm{~m} \mathrm{\mu}$ intervals were used in each case. The absorbance and error matrices were 89×9 for solutions 1 through 9, 89×5 for solutions 1 through 5, and 89×7 for solutions 3 through 9. The error matrix was calculated using Equation (13) with the accepted value being that for which the photometric error, ΔT, was 0.005 . Too small a photometric error will

Figure 5. Pyrocatechol Violet as $f(p H)$-Solutions $1,2,3,4,5$

Figure 6. Pyrocatechol Violet as $f(\mathrm{pH})$-Solutions $6,7,8,9$
cause noise on the absorbance surface to be counted as an absorbing species. Too large a value, on the other hand, will treat a significant absorbing species as noise. The results of the rank calculations are summarized in Table X .

TABLE X

NUMBER OF ABSORBING SPECIES IN PYROCATECHOL VIOLET SOLUTIONS OF VARYING pH

*Accepted value.

Matrix rank analysis indicated the presence of four absorbing species over the entire pH range with two species in the first five solutions. The species which absorbs strongly at 550 ml in solutions

1 and 2 is the undissociated molecule, $\mathrm{H}_{4} \mathrm{PV}$. Then, between pH 1 and 2, this peak diminishes quickly as the solution color changes from red to yellow. This is due to the ionization of the sulfonic acid group. The reaction occurring is given in Equation (69). It is evident from the spectra that the singly charged anion, $\mathrm{H}_{3} \mathrm{PV}^{-}$, exists as the predominant species over the pH range from 2 to 5. The maximum absorbance of this species occurs at $440 \mathrm{~m} \|$. Between pH 5 and 6 , another color change occurs. This color change is due to the reactions given in Equations (70) and (71).

The rank of four observed for solutions 1 through 9 is due to the presence of the four species given in the equilibria described in Equations (69), (70), and (71). The rank of two observed for solutions 1 through 5 is due to the equilibrium given in Equation (69) and the rank of three for solutions 3 through 9 is due to the presence of the three species described in Equations (70) and (71).

Acid Dissociation Constants of Pyrocatechol Violet

The acid dissociation constants of pyrocatechol violet were determined from the spectra of the solutions listed in Table III, The calculations were done with the pit-mapping program using the EQUIL subroutine described earlier. The concentrations of each form of pyrocatechol violet in each solution and the molar extinction coefficients of each species at all wavelengths were also calculated.

The spectra of the solutions between 620 and 260 mH and their acidities were used as the primary input data. The concentration of pyrocatechol violet, $8.0 \times 10^{-5} \mathrm{M}$, was entered and the initial estimates, O. $260,7.200$, and 8.000 of $\mathrm{pK}_{1}, \mathrm{pK}_{2}$, and pK_{3}, respectively, were used.

The estimates of 7.200 and 8.000 for pK_{2} and pK_{3} were obtained from Ryba and coworkers (70). The pK_{1} value of 0.260 was of the proper order of magnitude for a sulfonic acid (71). These estimates were varied by the procedure described earlier with the initial value of DEC $=0.10$. The pit-mapping calculation was performed on solutions 1 through 9, 1 through 5, and 3 through 9. The models used in EQUIL for each case were derived from the equilibria given in Equations (69), (70), and (71).

The successful model for solutions 1 through 9 is summarized in Equațions (69), (70), and (71). The initial estimates for $\mathrm{pK}_{1}, \mathrm{pK}_{2}$, and pK_{3} were $0,260,7.200$, and 8.000 , respectively. Six iterations were required for convergence with the following results obtained:

$$
\begin{aligned}
& \mathrm{pK}_{1}=0.264 \pm 0.003 \\
& \mathrm{pK}_{2}=7.508 \pm 0.001 \\
& \mathrm{pK}_{3}=8.332 \pm 0.003
\end{aligned}
$$

UMIN, the minimum error-square sum, was 0.982 . The typical size of UMIN for a good fit is from 10^{-2} to 10^{1}. The molar extinction coefficients of four pyrocatechol violet species were calculated; the se are plotted in Figures 7 and 8 and are given in Table XIX. The concentrations of each species in each solution were calculated and plotted in Figure 9 as a function of pH .

As expected, no convergence was obtained for any two or three species model tried on solutions 1 through 9. The evidence for lack of convergence is: large values ($10^{10}-10^{15}$) for the error-square sum, large standard deviations for the equilibrium constants, negative molar

Figure 7. Molar Extinction Coefficients of $\mathrm{H}_{4} \mathrm{PV}$ and $\mathrm{H}_{3} \mathrm{PV}$

Figure 8. Molar Extinction Coefficients of $\mathrm{H}_{2} \mathrm{PV}^{2-}$ and HPV^{3-}

Figure 9. Concentrations of Pyrocatechol Violet Species
extinction coefficients, exceptionally large molar extinction coefficients, a zero value for the concentration determinant in ECOEF, or inadequate roots in EQUIL.

Pit-mapping calculations were also performed on solutions 1 through
5. The input value for pK_{1} was 1.00 with the initial value of $\mathrm{DEC}=0,10$. The model for the system is given by Equation (69). The value for pK_{1} obtained was 0.262 ± 0.004 which is in excellent agreement with the earlier value for pK_{1}. UMIN was 0.582 .

The input estimates for pK_{2} and pK_{3} for the calculation on solutions 3 through 9 were 7.360 and 8.120 , respectively. The initial value for DEC was 0.10. The model used in subroutine EQUIL is given in Equations (70) and (71). The calculated values for pK_{2} and pK_{3} are

$$
\begin{aligned}
& \mathrm{pK}_{2}=7.223 \pm 0.024 \\
& \mathrm{pK}_{3}=8.038 \pm 0.031
\end{aligned}
$$

The minimum erfor-square sum was 0.197 . The pK 's are in good agreement with the four species model calculation on solutions 1 through 9.

Concentrations and molar extinction coefficients calculated in the last two cases agreed quite well with the values obtained from the four species model. However, since the four species model treats all of the data simultaneously, the results obtained in that case are assumed to be the best values. The results given in Figures 7, 8, and 9, and Table XIX were from the four species calculation.

The values obtained for pK_{2} and pK_{3} are in good agreement with those calculated by Ryba (70). No literature value for pK_{1} was found.

Pyrocatechol Violet at pH 3.00

The spectra of the pyrocatechol violet solutions given in Table IV are shown in Figure 10. The purpose of this series of solutions was to determine the number of species in solution at pH 3.00 . From the equilibria and spectra described earlier, it was suspected that only one species was present in significant amounts. The concentration diagram of Figure 9 shows that $\mathrm{H}_{3} \mathrm{PV}^{-}$, the singly charged anion due to ionization of the sulfonic acid group, is the predominant species at pH 3.00 .

The results of the matrix rank calculation on the spectra given in Figure 10 are shown in Table $X I$. Absorbance readings from 660 to 265 ml at $5 \mathrm{~m} \mu$ intervals were used as input data. The absorbance and error matrices were 80×6. As expected, there is one absorbing species of pyrocatechol violet present in solution at pH 3.00. The absorbing species is $\mathrm{H}_{3} \mathrm{PV}^{-}$.

The species number program was run on the above data, with only the one absorbing species case being tried. The results are shown in Figure 11. The X and Y absorbance functions given by Equation (19) in Chapter IV were plotted for six solutions and eight different wavelengths. The best straight line fit was calculated for each line. The result, a series of straight lines through the origin, indicates one absorbing species present in solution. SMIN, the goodness-of-fit parameter, ranged from 0.013 to 1.32. These values indicated correct weighting of the data points, since SMIN based on the Chi-squared distribution should have values on the order of unity.

Beer's law plots were made from the absorbance readings at 440 and $280 \mathrm{~m} \mu$. Over the concentration range studied Beer's law is obeyed.

Figure 10. Pyrocatechol Violet at pH 3.00

Figure 11. Species Number Plot, PCV at pH 3.00

TABLE XI
NUMBER OF ABSORBING SPECIES IN PYROCATECHOL VIOLET SOLUTIONS AT pH 3.00

ΔT	Rank (Solutions 1-6)
0.001	4
0.002	1
0.003	1
0.004	1
0.005	$1 *$
0.006	1
0.007	1
0.008	1
0.009	1
0.010	1

[^0]Using Beer's law, the molar extinction coefficients of $H_{3} \mathrm{PV}^{-}$were calculated. The agreement between these values and those calculated using the pit-mapping program is excellent. The molar extinction coefficient at $440 \mathrm{~m} \mathrm{\mu}$ was calculated to be 17,385 using Beer's 1 aw and 17,490 using the pit-mapping program. At 280 md , the Beer's law calculation gave 10,785 while pit-mapping yielded 10,870 . The difference is less than 1%.

Tin (IV)--Pyrocatechol Violet

Number of Absorbing Species

The spectra of each series of solutions given in Tables VI, VII, VIII, and IX are shown in Figures 12, 13, 14, and 15, respectively. The wavelength range was 700 to $240 \mathrm{~m} \mu$. In order to determine the number of absorbing species in solution, matrix rank calculations were run on several combinations of solutions in each series. The results are summarized in Tables XII, XIII, XIV, and XV.

The absorbance and error matrices for Series I were 80×8 for solutions 0 through 7 and 80×7 for solutions 1 through 7. Absorbance readings from 660 to 265 md at 5 mH intervals were used as input data. The number of absorbing species in each case of Series I is three using $\Delta T=0.005$. However, at $\Delta T=0.004$, the rank of solutions 0 through 7 is four. This is due to the presence of the small absorption band at 610 mW in the spectrum of solution O shown in Figure 12. The peak at 610 mN occurs only in those solutions where the ratio $\mathrm{C}_{\mathrm{PCV}}: \mathrm{C}_{\mathrm{Sn}}$ is less than one. In Series I only the first solution absorbs appreciably at $610 \mathrm{~m} \|$. The rank of solutions 1 through 7 is three. Since

Figure 12. Spectra of Sn-PCV Series I

Figure 13. Spectra of Sn-PCV Series II

Figure 14. Spectra of Sn-PCV Series III

Figure 15. Spectra of Sn-PCV Series IV

TABLE XII

> NUMBER OF ABSORBING SPECIES IN SOLUTIONS OF TIN(IV) AND PYROCATECHOL VIOLET-SERIES I

ΔT	Solutions 0-7	Rank
0.001	4	Solutions 1-7
0.002	4	3
0.003	4	3
0.004	4	3
0.005	3^{*}	3
0.006	3	$3 *$
0.007	3	3
0.008	3	3
0.009	3	3
0.010	3	3

*Accepted value.

TABLE XIII
NUMBER OF ABSORBING SPECIES IN SOLUTIONS OF TIN(IV)
AND PYROCATECHOL VIOLET-SERIES II

ΔT	Solutions 0-7	Rankern
0.001	4	3
0.002	4	3
0.003	4	3
0.004	4	3
0.005	4	3
0.006	4	3
0.007	4	2
0.008	3	2
0.010	3	2

[^1]TABLE XIV
NUMBER OF ABSORBING SPECIES IN SOLUTIONS OF TIN(IV)
AND PYROCATECHOL VIOLET-SERIES III

ΔT	Solutions $1-7$	Rank
0.001	4	Solutions $1-5$
0.002	4	3
0.003	4	3
0.004	4	3
0.005	3	3
0.006	3	3
0.007	3	3
0.010	3	2
0	3	3

*Accepted value,

TABLE XV

NUMBER OF ABSORBING SPECIES IN SOLUTIONS OF TIN(IV) AND PYROCATECHOL VIOLET-SERIES IV

ΔT	Rank (Solutions 1-7)
0.001	3
0.002	3
0.003	3
0.004	3
0.005	3
0.006	3
0.008	
0.010	

*Accepted value.
the free ligand, $\mathrm{H}_{3} \mathrm{PV}^{-}$, absorbs at 440 mH and contributes a rank of one, the number of metal-ligand species in Series I is three,

The absorbance and error matrices for Series II were 80×8 for solutions 0 through 7 and 80×6 for solutions 2 through 7. Absorbance readings from 660 to 265 md at $5 \mathrm{~m} \mu$ intervals were used as input data. The rank of solutions 0 through 7 is four while the rank of solutions 2 through 7 is three. Since $\mathrm{H}_{3} \mathrm{PV}^{-}$contributes a rank of one to each case, the number of metal-ligand species is three and two for solutions 0 through 7 and 2 through 7, respectively. The difference is due to the absorption band at 610 mld (Figure 13) which occurs in solutions 0 and 1 where $C_{P C V}: C_{S n}$ is less than one.

The absorbance and error matrices for Series III were 80×7 for solutions 1 through 7 and 80×5 for solutions 1 through 5. The wavelength range was from 660 to $265 \mathrm{~m} \mathrm{\mu}$ at $5 \mathrm{~m} \mathrm{\mu}$ intervals. The rank of three for solutions 1 through 5 is due to the presence of three metalligand species, since the free ligand absorbance at 440 md is negiigible. Using $\Delta T=0.005$, the rank of solutions 1 through 7 is three, also. However, at $\Delta T=0.004$, the rank is four due to the three metal ligand species and the small absorbance of the free ligand at $440 \mathrm{~m} \|$ in solutions 6 and 7 (Figure 14).

The absorbance and error matrices for Series IV were 80×7 with the wavelength range the same as in previous series. The rank of three indicates three metal-ligand species, since the free ligand does not absorb in this series of solutions.

Matrix rank analysis indicates the presence of three tin(IV)pyrocatechol violet complexes. The primary absorption peaks for these species occur at $610 \mathrm{~m} \mu$ and at $550 \mathrm{~m} / \mathrm{d}$. The absorbance at $610 \mathrm{~m} \mu$ occurs
only for values of the ratio $C_{P C V}: C_{S n}$ less than one indicating the possibility of polynuclear species.

The species number calculation was made on solutions 1 through 7 of Series I, 2 through 7 of Series II, and 1 through 7 of Series III and IV. The calculation tested each data set for linearity assuming one, twa, and three absorbing species with nonconstant stoichiometry. Equations (19), (23), and (27) were used to calculate the X and Y absorbance functions for each case. The best straight line fits were calculated for each of 16 wavelengths for the one and two species cases. The wavelengths used were $660,635,610,585,560,535,510$, $485,460,435,410,385,360,335,310$, and 285 ml . Only six to eight of these lines are plotted in the following figures because of space limitations. The total number of lines for the three species model in each case is equal to the number of solutions being run. Only three or four lines will be plotted because of space limitations.

The results of the species number calculations are given in Figures 16, 17, and 18 for Series I, Figures 19, 20, and 21 for Series II, Figures 22, 23, and 24 for Series III, and Figures 25, 26, and 27 for Series IV. For each series the result is the same as obtained in the matrix rank analysis. The species number plots indicate three absorbing species in each series.

It is obvious by visual inspection of the species number plots which assumed model gives the best straight line for each series of solutions. The values of the goodness-of-fit parameter, SMIN, are of interest in verifying this conclusion. These values are given in Table XVI.

Figure 16. Species Number Plot Series I, One Absorbing Species

Figure 17. Species Number Plot Series I, Two Absorbing Species

Figure 19. Species Number Plot Series II, One Absorbing Species

Figure 20. Species Number Plot Series II, Two Absorbing Species

Figure 21. Species Number Plot Series II, Three Absorbing Species

Figure 22. Species Number Plot Series III, One Absorbing Species

Figüre 23. Species Number Plot Series III, Two Absorbing Species

Figure 24. Species Number Plot Series III, Three Absorbing Species

Figure 25. Species Number Plot Series IV, One Absorbing Species

Figure 26. Species Number Plot Series IV, Two Absorbing Species

Figure 27. Species Number Plot Series IV, Three Absorbing Species

TABLE XVI
GOODNESS-OF-FIT PARAMETERS FOR SPECIES NUMBER CALCULATIONS

Model	Series I	Series II	SMIN	Series III

The results of the matrix rank analysis and the species number calculations indicate the presence of three tin(IV)-pyrocatechol violet complexes. When solutions having values of the ratio $\mathrm{C}_{\mathrm{PCV}}: \mathrm{C}_{\mathrm{Sn}}$ less than one are omitted from the matrix rank calculations, the rank is decreased by one. This species absorbs at 610 mu . This indicates the possible presence of a polynuclear species absorbing at $610 \mathrm{~m} \mu_{\text {. }}$

Nature of Absorbing Species

The mole-ratio method described by Yoe and Jones (9) is used to obtain information concerning the nature of the $\operatorname{tin}(I V)$-pyrocatechol complexes in solution. Mole-ratio plots were made at 550 and $610 \mathrm{~m} \mu$ for each series of solutions given in Tables VI, VII, VIII, and IX. These plots are shown in Figure 28. At $550 \mathrm{~m} \mu$ the break in the moleratio plot for Series I occurs at a value of two for the ratio C_{L} / C_{M}. This corresponds to a complex of the composition ML_{2}. The ligand, $\mathrm{H}_{3} \mathrm{PV}^{\top}$, is in excess for the last six solutions of Series I with the largest C_{L} / C_{M} ratio being 7. This indicates that $M L{ }_{2}$ is the highest complex formed. The breaks in the mole-ratio plots range from two in Series I, one and one-half in Series II, near one in Series III, and no break in Series IV. The maximum ligand excess decreases from Series I through Series IV. The breaks in the mole-ratio plots indicate a mixture of ML and ML_{2} present in solution.

The mole-ratio plots at 610 mL break at a C_{L} / C_{M} value of one half indicating the presence of a dinuclear complex $M_{2} L$. The plots of each of the four series has a distinct break at $C_{L} / C_{M}=1 / 2$.

The Holme-Langmyhr method for determining the values of m and n in the complex $M_{m} L_{n}$ was used to check the probable existence of a

Figure 28. Mole Ratio Plots
dinuclear tin(IV)-pyrocatechol violet complex. The equations used were derived by Holme and Langmyhr (15) and have been used in a similar study by Thomson (68). The ratio n / m for a $\operatorname{tin}($ IV)-pyrocatechol violet complex $\left(M_{m} L_{n}\right)$ at 610 mj was obtained by plotting

$$
\frac{1}{\left(C_{L}-n / m C_{M}\right)^{n / m}} \times 10^{-4 n / m} \quad \text { versus } 1 / A
$$

for various values of the ratio n / m. The necessary absorbance values were obtained from Series $I, ~ I I$, and III. The correct value of n / m gives a straight line plot. The results are shown in Figure 29. The only straight line obtained was for $n / m=1 / 2$ and a value of $A_{0}^{m}=5.83$ was obtained by extrapolation. A_{O}^{m} is an upper absorbance limit occurring if the concentration of reactant M is held constant and the concentration of L is increased until the concentration of the complex approaches an upper limit.

$$
\begin{aligned}
& \operatorname{Iim}\left[M_{m} L_{n}\right]=C_{M} / m \\
& C_{L} \longrightarrow \infty
\end{aligned}
$$

The value of n for a $\operatorname{tin}(I V)$-pyrocatechol violet complex ($M_{m} L_{n}$) at 610 mH is obtained from a plot of

$$
\left(\frac{1}{\left.C_{L}-\frac{n A}{m A_{O}^{m}} C_{M}\right)^{n} \times 10^{-4 n} \quad \text { versus } 1 / A ~ . ~}\right.
$$

Various values of n were tried, with the correct value yielding a straight 1 ine as shown in Figure 30. The best straight line obtained was for $n=1$.

Figure 29. Ratio n / m for a Complex of Tin(IV)-Pyrocatechol Violet at 610 mb

Figure 30. Coefficient n for a Complex of Tin(IV)-Pyrocatechol Violet at $610 \mathrm{~m} / \mathrm{d}$

The results of the mole-ratio method and the Holme-Langmyhe methoo indicate the presence of a dinuclear tin(IV)-pyracatechol violet complex in solutions of 1 ow C_{L} / C_{M} ratios. The presence of $1: 1$ and $1: 2$ mononuclear complexes is indicated by the mole-ratio plots at 550 m . These results are in agreement with earlier results of the matrix rank analysis and the species number calculation.

Stabilities of Tin(IV)-Pyrocatechol Violet Complexes

The method of corresponding solutions cannot be used to interpret spectrophotometric data if polynuclear complexes exist in solution. However, the method can be used to check for the presence of such species as described earlier.

The corresponding solutions plot program was run on the absorbance data obtained from the spectra given in Figures 12, 13, 14, and 15. Corresponding solution plots similar to Figure 3 were obtained in the wavelength range from 515 to $590 \mathrm{~m} \|$. No well behaved curves were obtained in the region of 610 m .

The corresponding solutions \bar{n}, [L] program was run at 535,550 , 565, and 580 md using the E values calculated in the corresponding solutions plot program as input data. The $\bar{n},[I]$ values obtained are given in Table XVII.

Different $\bar{n},[L]$ curves were obtained at each wavelength, which is the result expected if polynuclear species are present。 All wavem lengths used were associated with the absorption at $550 \mathrm{~m} / \mathrm{h}$ 。 If corresponding solution plots could have been made at wavelengths associated with other absorption bands, the differences in $\overline{\mathrm{n}}_{\mathrm{g}}$ [L] values probably would have been even greater. The conclusion is that

TABLE XVII
FORMATION FUNCTION DATA

$\overline{\mathrm{n}}$	$535 \mathrm{~m} / \mathrm{L}$ [L] $\times 10^{6}$	$\overline{\mathrm{n}}$	$550 \mathrm{mH}[\mathrm{L}] \times 10^{6}$	-	565 mb [L] $\times 10^{6}$	$\overline{\mathrm{n}}$	$585 \mathrm{mu}[\mathrm{L}] \times 10^{6}$
0.4801	0.2313	0.4809	0.4056	0.4879	0.8435	0.4825	1.8291
0.5885	0.6376	0.5853	0.6437	-0.5949	1.5317	0.5849	3.8787
0.6913	0.9384	0.6897	0.7728	0.6961	2.1451	0.6666	4.8613
0.7888	1.2155	0.7917	0.8882	0.7988	2.6955	0.7623	5.7423
0.8801	1.5634	0.8868	1.1135	0.8874	2.9585	0.8951	6.3249
0.9950	2.2299	0.9954	1.6514	0.9610	2.9489	0.9791	8.5743
1.1283	2.9720	1.1469	2.3345	1.1310	4.4068	-	-

at least one polynuclear species is present and, therefore, some method other than corresponding solutions must be used to calculate the stability constants.

The stability constants of the tin(IV)-pyrocatechol violet complexes were determined from the spectra of the solutions given in Tables VI, VII, VIII, and IX using the pit-mapping program. The concentrations of each species in solution and the molar extinction coefficients of all tin(IV)-pyrocatechol violet complexes were also calculated. The spectra of the solutions between 660 and 265 mb , the total pynocatechol violet and tin(IV) concentrations, and the solution pH 's were used as the primary input data for each series of solutions. The initial value of DEC was 0.10 in each case. Initial estimates of the stability constants were read in also.

Solutions 2 through 7 of Series II have $C_{P C V}: C_{S n}$ ratios equal to or greater than one and the rank is three. Since the free ligand, $\mathrm{H}_{3} \mathrm{PV}^{-}$, contributes a rank of one, the number of metal-1igand species is two. The pit-mapping calculation was performed on the spectra of these six solutions using three different models:
$\mathrm{ML} \quad$ and ML_{2}
$\mathrm{ML} \quad$ and ML_{3}
ML_{2} and ML_{3}

Only the model assuming ML and $\mathrm{ML}_{2}\left(\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}\right.$ and $\left.\mathrm{Sn}^{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}\right)$ was successful. The initial estimates for PKP1 and PKP2 $\left(-\log \beta_{11}\right.$ and $-\log \beta_{12}$) were -8.5 and -15.0 . Six repetitions were required for convergence. The following results were obtained:

$$
\begin{aligned}
\log \beta_{11} & =7.797 \pm 0.312 \\
\log \beta_{12} & =14.741 \pm 0.321 \\
\mathrm{UMIN} & =0.342 .
\end{aligned}
$$

The agreement between the experimental and calculated spectra was excellent.

The pit-mapping calculation was performed on solutions 0 through 7 of Series I, solutions 0 through 7 of Series II, and solutions 1 through 7 of Series III and IV. From the matrix rank and species number results, it is known that each of the above series of solutions contain three tin(IV)-pyrocatechol violet complexes. The results of the mole-ratio method, the Holme-Langmyhr method, and the previous pit-mapping calculations indicate one polynuclear (probably dinuclear) and two mononuclear (probably ML and ML_{2}) complexes. For these reasons three species models were used in subroutine EQUIL for all of the above sets of solutions. The models tried were:

$$
\begin{aligned}
& \mathrm{ML}_{1}, \mathrm{ML}_{2}, \mathrm{ML}_{3} \\
& \mathrm{M}_{2} \mathrm{~L}, \mathrm{ML}, \mathrm{ML}_{2} \\
& \mathrm{M}_{2} \mathrm{~L}_{2}, \mathrm{ML}, \mathrm{ML}_{2} \\
& \mathrm{M}_{2} \mathrm{~L}_{3}, \mathrm{ML}, \mathrm{ML}_{2} \\
& \mathrm{M}_{2} \mathrm{~L}_{4}, \mathrm{ML}, \mathrm{ML}_{2} .
\end{aligned}
$$

With the exception of the $\mathrm{ML}, \mathrm{ML}_{2}$, and ML_{3} case, all models tried contained one polynuclear and two mononuclear complexes. The only model which gave meaningful results was the $M_{2} L, M L$, and ML_{2} model described earlier. All other models were eliminated because they gave
large error-square sums $\left(10^{15}-10^{18}\right)$, negative molar extinction coefficients, and poor agreement between experimental and calculated spectra.

The model $M_{2} L, M L$, and $M L_{2}$, described in detail earlier, was tried for each series of solutions. In each case convergence was obtained. Good fits of the spectra, small error-square sums, and stability constants with small standard deviations were obtained. The input estimates for PKP1, PKP2, and PKP3 $\left(-\log \beta_{11},-\log \beta_{12}\right.$, and $-\log \beta_{21}$, respectively) were $-7.800,-14.740$, and -13.000 . The initial value for DEC was 0.10 . A maximum of five repetitions was required for convergence in each series. The results obtained are given in Table XVIII. The calculated molar extinction coefficients for $\operatorname{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}, ~ \mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}$, and $\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{6+}$ are plotted in Figure 31 and are tabulated in Table XIX. The calculated concentrations of all tin(IV) species are plotted in Figures 32, 33, 34, and 35 for Series I, II, III, and IV, respectively.

> TABLE XVIII
> FORMATION CONSTANTS OF TIN (IV) - PYROCATECHOL VIOLET COMPLEXES

	Series I	Series II	Series III	Series IV	Average	Std. Dev.
$\log \beta_{11}$	7.649	7.765	7.970	7.823	7.801	0.133
$\log \beta_{12}$	14.594	1.4 .758	15.282	14.963	14.899	0.297
$\log \beta_{21}$	13.210	12.451	13.136	12.889	12.922	0.342
UMIN	0.132	0.337	0.184	0.193		

TABLE XIX
MOLAR EXTINCTION COEFFICIENTS

	HPV^{3-}	$\mathrm{H}_{2} \mathrm{PV}^{2-}$	$\mathrm{H}_{3} \mathrm{PV}^{-}$	$\mathrm{H}_{4} \mathrm{PV}$	$\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}$	$\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right.$	$\left(\mathrm{H}_{2} \mathrm{pV}\right)^{6+}$
660					3356	8986	7010
655					4066	10240	8785
650					4716	11230	10420
645					5421	12080	12550
640					6126	12460	14540
635					6877	13390	16490
630					7638	14180	18400
625					8603	14940	19630
620	1929	23490	337	1956	9475	16800	21080
61.5	3071	29400	333	2960	10540	18210	22100
610	3966	34860	320	4330	11450	20040	22720
605	4632	39330	298	6280	12370	22380	23010
600	5718	41760	260	8943	13360	24830	22980
595	6615	42260	223	12390	14420	28050	22810
590	6884	41390	186	16600	15770	31870	22520
585	6528	39770	150	21680	17350	37210	21960
580	6511	37900	111	27450	19610	44150	20760
575	6017	36000	89	32900	22450	52940	19460
570	6238	34330	89	37610	25990	61310	17720
565	6230	32660	119	41380	29540	69720	16140
560	6089	31090	176	43590	32430	76960	14130
555	6482	29260	289	44070	33730	79620	12790
550	6570	27430	471	43040	33160	78140	11140
545	6554	25590	712	41000	31150	73730	9801
540	6574	23640	1037	38190	28030	67640	8177
535	6745	21610	1435	35000	24350	59630	6855
530	6867	19820	1926	31670	20620	50290	5863
525	6943	18060	2503	28470	17210	41260	5603
520	7135	16510	3177	25230	14400	33670	4752
515	7126	15080	3951	21970	12160	27740	5146
510	7484	13640	4829	18790	10520	22690	4888
505	7948	12100	5813	15780	9170	19180	4800
500	7997	10870	6902	13150	8046	16150	5044
495	8483	9402	8036	10750	7126	13090	4922
490	9014	8122	9253	8660	6470	10220	4962
485	9477	6839	10480	7147	5925	8619	5170
480	10100	5624	11780	5717	5564	6884	5258
475	10090	4792	12900	4903	5245	5866	5587
470	10960	3575	14050	4190	4979	4974	5633
465	11220	2711	15110	3529	4818	3946	5934
460	11580	1861	15980	3239	4663	3062	6083
455	11640	1390	16660	3072	4542	2512	6156
450	12230	579	17160	2773	4474	2285	6230
445	12260	383	17420	2756	4392	2174	6423

TABLE XIX (Continued)

Wavelength $\mathrm{m} \mu$	HPV^{3-}	$\mathrm{H}_{2} \mathrm{PV}^{2-}$	$\mathrm{H}_{3} \mathrm{PV}^{-}$	$\mathrm{H}_{4} \mathrm{PV}$	$\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{2+}$	$\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{PV}\right)_{2}^{\mathrm{Sn}_{2}\left(\mathrm{H}_{2} \mathrm{PV}\right)^{6-1}}$	
440	12250	377	17490	2682	4454	2286	6519
435	11730	861	17260	2807	4547	2746	6438
430	11360	1499	16860	2780	4765	3670	6426
425	10950	2035	16240	2956	5077	4655	6330
420	10100	2870	15450	2949	5369	5724	5866
415	9907	3207	14520	3240	5509	6572	5505
410	9453	3595	13530	3351	5572	7430	5209
405	9481	3645	12520	3566	5602	7987	4887
400	9017	4037	11540	3824	5598	9023	4356
395	8633	4370	10570	4188	5698	9915	4080
390	8464	4514	9669	4767	5961	11330	3812
385	8229	4669	8930	5247	6441	13010	3760
380	8287	4681	8236	5932	7082	14780	3962
375	8207	4755	7701	6472	7606	15800	4561
370	8376	4574	7319	6679	7750	15820	5021
365	8244	4495	7007	6425	7353	14280	5333
360	8495	4126	6785	6058	6350	12100	5237
355	8541	3883	6646	5359	5127	9518	4251
350	8399	3664	6571	4702	4130	7335	3839
345	8524	3231	6503	3741	3347	5695	3215
340	8340	3087	6438	3056	2852	4817	3098
335	8558	2945	6384	2647	2714	5240	2981
330	8614	3185	6315	2581	3979	5798	3165
325	8813	3675	6283	2847	3505	6545	3391
320	9290	4534	6302	3438	3896	7290	3909
315	10160	5947	6361	3933	4307	7968	4139
310	10930	7735	6442	4036	5011	9208	4913
305	11390	9615	5662	3997	6090	12010	5665
300	11580	10920	6796	3966	7983	16350	6452
295	11220	11270	7215	4829	9866	20610	7354
290	11030	10340	8160	6984	10220	20560	7811
285	10720	8927	9641	8880	9251	17940	7928
280	10650	7198	10870	8739	8419	15460	7564
275	10400	5512	10860	8100	7663	15010	7178
270	9504	4482	9762	7449	6968	14220	6764
265	9548	3400	8279	7112	6622	14680	6422
260	8232	4045	6899	7100			

Figure 31. Molar Extinction Coefficients for Tin(IV)-Pyrocatechol Violet Complexes

Figure 32. Concentration of Species, Series I

Figure 33. Concentration of Species, Series II

Figure 34. Concentration of Species, Series III

Figure 35. Concentration of Species, Series IV

CHAPTER IX

SUMMARY

An objective computer method for determining the number, nature, and stabilities of complexes in solution from spectrophotometric data has been developed. Six computer programs have been collected, modified, or written and used to interpret absorbance data. These programs constitute a powerful method for analyzing spectrophotometric data from systems containing mononuclear, polynuclear, or a mixture of mononuclear and polynuclear complexes.

Three acid dissociation constants of pyrocatechol violet in $1 \mathrm{M} \mathrm{Cl}^{-}$ solutions have been determined:

$$
\begin{aligned}
& \mathrm{pK}_{1}=0.264 \pm 0.003 \\
& \mathrm{pK}_{2}=7.508 \pm 0.001 \\
& \mathrm{pK}_{3}=8.332 \pm 0.003
\end{aligned}
$$

Molar extinction coefficients and concentrations of pyrocatechol violet species were also calculated.

Spectrophotometric data from $1 \mathrm{M} \mathrm{Cl}^{-}$solutions of $\operatorname{tin}($ IV $)$ and pyrocatechal violet have been interpreted on the basis of formation of 1:1, 1:2, and 2:1 metal-1igand complexes. The corresponding stability constants were:

$$
\log \beta_{11}=7.801 \pm 0.133
$$

$$
\begin{aligned}
& \log \beta_{12}=14.899 \pm 0.297 \\
& \log \beta_{21}=12.922 \pm 0.342
\end{aligned}
$$

Molar extinction coefficients and concentrations of tin(IV) species were calculated.

A SELECTED BIBLIOGRAPHY

(1) Varga, L. P., Anal. Chem, 41, 323 (1969).
(2) Ross, W. J., and White, J. C., Anal. Chem. 33, 421 (1961).
(3) Job, P., Ann. Chim. Paris 9, 113 (1928).
(4) Vosburgh, W. C., and Cooper, G, R., J, Am, Chem. Soc. 63, 437 (1941).
(5) Watkins, K. O., and Jones, M. M., J. Inorg. Nucl. Chem, 24, 1607 (1962).
(6) Hagenmuller, P., Ann. Chim. Paris 6, 5 (1951).
(7) Schaeppi, Y., and Treadwell, W. D., Helv. Chim. Acta 31, 577 (1948).
(8) Schwarzenbach, G., Helv, Chim. Acta 32, 839 (1949).
(9) Yoe, J. H., and Jones, A. L., Ind. Eng. Chem. Anal. Ed. 16, 111 (1944),
(10) Harvey, A. E., and Manning, D. L., J. Am. Chem. Soc. 72, 4488 (1950).
(11) Ayres, G. H., and Janota, H. F., Anal. Chem. 31, 1985 (1959).
(12) Coleman, J. S., Varga, L. P., and Mastin, S. H., Inorg. Chem. 9, 1015 (1970).
(13) Asmus, E., Z. Anal. Chem. 178, 104 (1960).
(14) Klausen, K, S., and Langmyhr, F. J., Anal, Chim, Acta 28, 501 (1963).
(15) Holme, A., and Langmyhr, F. J., Anal. Chim. Acta 36, 383 (1966).
(16) Bjerrum, J., Chem. Revs. 46, 381 (1950),
(17) Irving, H. M. N. H., Analyst 93, 273 (1968).
(18) Rydberg, J., Acta Chem. Scand. 15, 1723 (1961).
(19) Lunn, A. K., and Morton, R. A., Analyst 77, 718 (1952).
(20) Newton, T. W., and Arcand, G. M., J. Am. Chem. Soc. 75, 2449 (1953).
(21) Benesi, H. A., and Hildebrand, J. H., J. Am. Chem. Soc. 71, 2703 (1949).
(22) Newman, L., and Hume, D. N., J. Am. Chem. Soc. 79, 4571, 4576 (1957).
(23) Sullivan, J, C., and Hindman, J. C., J. Am, Chem. Soc. 74, 6091 (1952).
(24) Rossotti, F. J. C., and Rossotti, H. S., Acta Chem. Scand. 9, 1166 (1955).
(25) Rossotti, F, J. C., and Rossotti, H., "The Determination of Stability Constants," McGraw-Hill, New York, 1961.
(26) Wallace, R. M., J. Phys. Chem. 64, 899 (1960).
(27) Wallace, R. M., and Katz, S. M., J. Phys. Chem. 68, 3890 (1964).
(28) Ainsworth, S, J. Phys. Chem. 65, 1968 (1961),
(29) Ainsworth, S., J. Phys, Chem, 67, 1613 (1963).
(30) Katakis, D., Anal. Chem, 37, 876 (1965).
(31) Varga, L. P., and Veatch, F, C., Anal. Chem. 39, 1101 (1967).
(32) Rydberg, J., and Sullivan, J. C., Acta Chem, Scand. 13, 186 (1959).
(33) Sullivan, J. C., Rydberg, J., and Miller, W, F., Acta Chem. Scand. 13, 2023 (1959).
(34) Rydberg, J., and Sullivan, J. C., Acta Chem. Scand. 13, 2057 (1959).
(35) Rydberg, J., Acta Chem. Scand. 14, 157 (1960).
(36) Dyrssen, D., Ingri, N., and Sillen, L. G., Acta Chem. Scand. 15, 694 (1961).
(37) Sillen, L. G., Acta Chem. Scand, 16, 159, 173 (1962).
(38) Sillen, L. G., Acta Chem. Soand. 18, 1085 (1964).
(39) Rabideau, S. W., and Line, R, J., J. Phys. Chem. 64, 680 (1960).
(40) Deming, W. E., "Statistical Adjustment of Data," John Wiley and Sons, New York, N. Y., 1943,
(41) Wentworth, W. E., J. Chem. Ed. 42, 96 (1965),
(42) Nagano, K., and Metzler, D. E., J. Am. Chem. Soc. 89, 2891 (1967)。
(43) Wentworth, W. E., Hirsch, W., and Chen, W., J. Phys. Chem, 71, 218 (1967).
(44) Ingri, N., and Sillen, L. G., Ark. Kemi 23, 97 (1964).
(45) Sillen, L. G., and Warnqvist, B., Ark. Kemi 31, 315 (1969).
(46) Deelstra, H., Vanderleen, W., and Verbeek, F., Bull, Soc. Chim. Belg. 72, 632 (1963).
(47) Thun, H., Verbeek, F., and Vanderleen, W. J., J. Inorg. Nucl. Chem. 29, 2109 (1967).
(48) Eeckhaut, L., Verbeek, F., Deelstra, H., and Hoste, J., Anal. Chim. Acta 30, 369 (1964).
(49) Schroder, K. H., Acta Chem, Scand. 20, 140 (1966).
(50) Unwin, E, A., Beimer, R. G., and Fernando, Q., Anal. Chim, Acta 39, 95 (1967).
(51) Irving, H, , and Rossotti, H. S., J. Chem. Soc., 3397 (1953).
(52) Sandell, E. B., "Colorimetric Determination of Traces of Metals," Interscience, New York, 1959.
(53) Bennett, R. L., and Smith, H. A., Anal. Chem. 31, 1441 (1959).
(54) Luke, C. L., Anal. Chem. 28, 1276 (1956).
(55) Luke, C. L., Anal. Chem. 31, 1803 (1959).
(56) Vodak, Z., and Leminger, O., Chem. Listy 48, 552 (1954).
(57) Suk, V., and Malat, M., Chemist-Analyst 45, 30 (1956).
(58) Young, J. P., and White, J. C., Talanta 1, 263 (1958).
(59) Onosova, S. P., and Kuntsevich, G. K., Zhur. Anal. Khim . 20, 802 (1965).
(60) Mushran, S. P., Prakash, Om, and Awasthi, J. N., Anal. Chem. 39, 1307 (1967).
(61) Young, J. P., White, J. C., and Ball, R. G., Anal. Chem. 32, 928 (1960).
(62) Birmantas, I. I., and Yasinskene, E. I., Zhur. Anal. Khim. 20, 811 (1965).
(63) McCracken, D. D., and Dorn, W. S., "Numerical Methods and Fortran Programming," Wiley and Sons, New York, 1966.
(64) Rosenbach, J. B., Whitman, E. A., Meserve, B. E., and Whitman, P. M., "College Algebrawith Trigonometry," Ginn and Company, Boston, 1963.
(65) Fronaeus, S., Acta Chem. Scand. 5, 139 (1951).
(66) Ahrland, S., Acta Chem. Scand. 5, 1151 (1951).
(67) Fronaeus, S., Acta Chem. Scand, 7, 21 (1953).
(68) Thomson, J. A., "Computer-Assisted Studies on Quinizarin-2. Sulfonic Acid and Its Complexation with Iron (III)," (unpub. PhD thesis, The University of Waterloo, Waterloo, Ontario, 1970).
(69) Johnson, J. S., and Kraus, K. A., J. Phys. Chem. 63, 440 (1959).
(70) Ryba, O., Cifka, J., Malat, M., and Suk, V., Coll. Czech. Chem. Commun. 21, 349 (1956).
(71) Albert, A., and Serjeant, E. P., "Ionization Constants of Acids and Bases," Wiley and Sons, New York, 1962.

APPENDIX A

FLOW CHART, PROGRAM LISTING, AND DATA SET FOR MATRIX RANK ANALYSIS

TABLE XX
INPUT REQUIREMENTS FOR MATRIX RANK CALCULATION

ANALTSESSOF SPECTRA katz-wallate PRDGRAM CONVERTED TO DOUBLE PRECISIDN AND MODIFIED BY MILLIAM D. WAKLEY. CHEMISTRY DEPARTMENT. OKIAHOMA STATE UNIVERSITY	
c	
given n experiments in each of mhich the optical absorption	
IS MEASURED AT L HAVELENGTHS RESULIING IN MATRIX	
A MITH L ROWS AND N COLUHNS. DIMENSION A(LON)	
IL must be G.t.E. NJ	
object - to deterhine rank df matrix, taking into account	
EXPERIMENTAL ERRORS IN S MATRIX	
C c	
methdo - REDUCE all elements below principal diaganal to zero after maximum fpivoti placed on diagonal	
input-	
CARD 1-N COLS. 1-5. 1 COLS. 6-10. CRIT CBLS. $11-19$ (F9.8)	
CRIT IS THE CRITERION FOR SETTING A ELENENTS TOIF AII.JI L.T. CRIT*S(İJ). Ali,	
REAL*8 DABS, DS QRT, DBLEFORMAT 215 F9, 8)	
3 FDRMAT (1H1.10X,17HRANK OF SYSTEM IS,13,1X.31H*ITHIN A RANGE OF PLU	
5 FORMAT(1H1, 30x, 17 HORIGINAL S MATRIX//1	
7	FORMATilhl, 30x,16HREDUCED S MATRIX//
B	FORMATIIH.J.9Fi2.71
	READI 5,1) N, ${ }^{\text {c,CRIT }}$
c	READ ABSORBANCE DATA
	DO $103 \mathrm{~J}=1 . \mathrm{N}$
103	
c	CONVERT ABSDRBANCE DATA to double precision and store original data in
	DD $321 \mathrm{~J}=1 \mathrm{iN}$
	D0 $321 \quad 1=1,2$
	A(I, J)= DELEIV(I, JI)
	B(I,J)=A(1,J)
321	continue
c	PERFIRM RANK CALCULATION 10 TIMES VARYING Photometric error frdm 0.002
c	TD 0.01
	D0 $50 \mathrm{KTEl}, 10$
	T=KT
	T=T*0.001
$c \quad$	CALCULATE ERRDR MATRIX S
	$00141=1.2$
	$0014 \mathrm{~J}=1$, N
	X*A(1, J)
14	Sイ1, J. $=0.43429$ T*10.**X
	WRITE(6.4)

c mRITE ABSORBANCE MATRIXA
20 DO $20 \quad$ \& $=1 . \mathrm{L}$
20 HRITE 6,8) (AII, J), J=1,N)
c. WRITELG, 5J
WRITE ERROR MATRIX S
DO $30 \quad 1=1, L$
30 WRIE 6,8$)$ (SI \qquad
matx ELENENTS READ, now to pivot and reduce rows
NHIN $\mathrm{N}=\mathrm{N}-1$
DO $140 \quad J C=1$, NHIN
DO $140 \quad J C=1$,
$A M A X=0,00 \$ 00$
DD $110 \quad 1=x, L$
IFIAMAX-DABS(A!I,J)I.GE.0.1 GD TO 110
$105 \begin{aligned} & \text { AMAX }=\text { DABSAAM, JI) } \\ & \text { 1MAXXI }\end{aligned}$
1.max $=1$
JMAX $=1$
o continue
IFIAMAX.LE. O. 1 GO TO 150
Do $115, J=1, N$
SHEAI JC, J)
$A(J C, J)=A\left(I M_{\text {M }}, J\right)$
$\begin{gathered}A(I M A X \\ S H\end{gathered}=S\left(J C_{0}\right)=S H$

115 Silmax, Ji $=5$ K
CO $120 \quad 1=1,2$
$\mathrm{SH}=\mathrm{A}(1 ; \mathrm{IC})$
A(I.JC)=AII.JMAX)
$A(1) J M A X)=S W$
$S H=S(I, J C)$
SWESIITJC
SH.I.JC) $=$ SII.JMAX
120 sili.Jmaxjesm
pivot element placed. Reduce sub-pivat elements te zern
IPLUS $=\mathrm{JC}+1$
DD 130 IxIPLUS, 1
FiA!I-JCt-EQ-O. GO 10130
$125 \mathrm{FAC}=\mathrm{A}\left(\mathrm{I}_{\mathrm{t}} \mathrm{JC}\right) / \mathrm{A}(\mathrm{JC}+\mathrm{JC})$
DO 129 JIIPLUS.N
A(I, J) $=A(1, J)-F A C * A(J C . J)$
TEMP $=A(J C, J I / A I J C, J C)$
$S(I, J)=D S G R T(S(1, J)$

1) $\#$ FACFTEMP) **21

IF(DABS(ACI;J))-DABS(CRIT*SII,J)I.GT.0.1 GO 10129
$127 \mathrm{~A}(\mathrm{I}, \mathrm{J})=0.00 \times 00$
129 CDNTINUE
$A(I, J C)=0.00400$
SII, JC $=0.00+00$
130 CONIINUE
$\mathrm{NN}=\mathrm{N}+1$
$\mathrm{~S}=\mathrm{H}=\mathrm{A} / \mathrm{N}$
$S=A(N, N)$

$\mathrm{SW}=\mathrm{A}(1 ; \mathrm{N})$
$S H I=S(I, N)$
1:1: $A(I, N)=0.00+00$
ST1;N\}=O.00400
11:
CONTINUE
$A \mid N, N)=S H$
IFIAIN;NI-NE-O-I GO TO 150
142 LFSL-N.LE.OI GO TO 150
143 NPLUS $=N+1$
DO 145 IENPLUS ©
IF $F(A(I, N)-E Q .0$.$) TO 145$
$144 \mathrm{SH}=\mathrm{A}(\mathrm{N}, \mathrm{N})$
$A(N ; N)=A(I ; N)$
SUES(N,N)
$S(N, N)=S(1, N)$
$5(1, N)=5 \%$
$60: T 0150$
145 G
continue.
τ
c
c
MATRIX IS REDUCED: DETERMINE RANK
$150 \mathrm{DO} 160 \quad I=1, \mathrm{~N}$

160
c
CONTINUE
162 WRITETt.3) NRANK,CRIT
WRITE(6;6)
5 WRITE(6, Bi) (AIt, $16, J=1, N$)
WRITE 6,7$\}$
170 WRITE(6,8) (StI, J), $j=1, N$)
$\begin{array}{lll}\text { DO } & 171 & J=1, L \\ 00 & 171 & J=1, N\end{array}$
Ali,j)=8it.j)
272 CONTINUE
50 CONTINU
STOP
END
$\stackrel{C}{C}$ DATA
${ }^{9}{ }^{890001}$
$\begin{array}{llllllllllllllllllllllllllll}0001 & 0001 & 0001 & 0002 & 0003 & 0005 & 0006 & 0009 & 0010 & 0011 & 0016 & 0021 & 0028 & 0037 & 0049 & 0068\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllllllll}0837 & 0862 & 0875 & 0888 & 0889 & 0884 & 0866 & 0845 & 0811 & 0778 & 0737 & 0698 & 0661 & 0631 & 0609 & 0592\end{array}$
 $\begin{array}{lllllllllll}0439 & 0489 & 0610 & 0744 & 0796 & 0774 & 0702 & 0625 & 0561\end{array}$ $\begin{array}{lllllllllllllllllll}0018 & 0024 & 0033 & 0042 & 0058 & 0078 & 0102 & 0138 & 0173 & 0211 & 0024 & 0004 & 0006 & 0008 & 0011 & 0014\end{array}$ $\begin{array}{llllllllllllllllllllllll}0330 & 0339 & 0352 & 0370 & 0398 & 0430 & 0474 & 0527 & 0589 & 0652 & 0723 & 0808 & 0892 & 0969 & 1048 & 1120\end{array}$ $\begin{array}{llllllllllllllllllllll}1182 & 1229 & 1262.1276 & 1279 & 1261 & 1228 & 1183 & 1121 & 1058 & 0986 & 0916 & 0852 & 0780 & 0722 & 0672\end{array}$
 053905730649076808520844075906440547 0001000100010001000100010001000100010001000100010002000300040004 $\begin{array}{lllllllllllllllllll}0005 & 00.06 & 0007 & 0008 & 0008 & 0009 & 0011 & 0016 & 0020 & 0029 & 0037 & 0046 & 0056 & 0069 & 0083 & 0101\end{array}$ $\begin{array}{lllllllllllllllllll}0123 & 0153 & 0187 & 0230 & 0281 & 0339 & 0408 & 0481 & 0566 & 0650 & 0749 & 0840 & 0947 & 1031 & 1121 & 1207\end{array}$ $\begin{array}{lllllllllllllllll}1064 & 0627 & 0602 & 0582 & 0568 & 0557 & 0549 & 0539 & 0532 & 0527 & 0519 & 0514 & 0919 & 0841 & 0772 & 0717 \\ 0521 & 0521 & 0526 & 0532\end{array}$ $\begin{array}{llllllllll}0549 & 0582 & 0654 & 0769 & 0870 & 0876 & 0791 & 0672 & 0558\end{array}$
 $\begin{array}{llllllllllllllllllll}0005 & 0005 & 0005 & 0005 & 0005 & 0005 & 0005 & 0006 \\ 0105 & 0136 & 0171 & 0218 & 0267 & 0328 & 0392 & 00470 & 0012 & 0019 & 00028 & 0038 & 0047 & 0062 & 0081\end{array}$

 $\begin{array}{llllllllllll}0577 & 0602 & 0674 & 0786 & 0875 & 0868 & 0778 & 0661 & 0556\end{array}$
 $\begin{array}{llllllllllllllll}0007 & 0007 & 0007 & 0007 & 0007 & 0007 & 0008 & 0010 & 0014 & 0018 & 0026 & 0033 & 0042 & 0052 & 0070 & 0089 \\ 01 & 13 & 0143 & 0181 & 0227 & 0278 & 0335 & 0402 & 0480 & 0561 & 0652 & 0747 & 0842 & 0946 & 1034 & 1126\end{array} 1312$ $\begin{array}{lllllllllllllllllllllll}0113 & 0143 & 0181 & 0227 & 0278 & 0335 & 0402 & 0480 & 0561 & 0652 & 0747 & 0842 & 0946 & 1034 & 1126 & 1212 \\ 1282 & 1337 & 1380 & 1396 & 1405 & 1381 & 1346 & 1292 & 1228 & 1154 & 1077 & 0991 & 0916 & 0840 & 0772 & 0717\end{array}$
 $\begin{array}{lllllllll}0547 & 0578 & 0651 & 0770 & 0869 & 0871 & 0786 & 0670 & 0560\end{array}$

 $\begin{array}{lllllllllllllllllll}0152 & 0174 & 0208 & 0244 & 0292 & 0348 & 0411 & 0479 & 0559 & 0647 & 0734 & 0824 & 0923 & 1012 & 1096 & 1178\end{array}$
 051405570640076308620862077306560547
00010010002500420058007600920103010801111010901080106010701120116 $\begin{array}{lllllllllllllllllllll}0130 & 0144 & 0158 & 0168 & 0170 & 0171 & 0169 & 0164 & 0161 & 0157 & 0152 & 0150 & 0149 & 0151 & 0156 & 01855\end{array}$ $\begin{array}{llllllllllllllllllllllll}0181 & 0201 & 0230 & 0264 & 0308 & 0360 & 0420 & 0488 & 0568 & 0647 & 0734 & 0827 & 0914 & 1000 & 1082 & 1158\end{array}$ $\begin{array}{lllllllllllllllllll}1219 & 1266 & 1303 & 1324 & 1333 & 1319 & 1297 & 1256 & 1200 & 1128 & 1053 & 0980 & 0900 & 0827 & 0753 & 0702 \\ 0643 & 0598 & 0566 & 0538 & 0517 & 0505 & 0496 & 0487 & 0480 & 0476 & 0468 & 0463 & 0460 & 0463 & 0472 & 8485\end{array}$ $\begin{array}{lllllllllll}0643 & 0598 & 0566 & 0538 & 0517 & 0505 & 0496 & 0487 & 0480 \\ 0516 & 0556 & 0641 & 0760 & 0850 & 0838 & 0752 & 0638 & 0534\end{array}$
 $\begin{array}{llllllllllllllllllllllll}0543 & 0677 & 0800 & 0900 & 0954 & 0964 & 0942 & 0903 & 0858 & 0813 & 0776 & 0740 & 0708 & 0674 & 0644 & 0617\end{array}$ 0592: 057005580552055605680586060806420674071507560804084802870528 $\begin{array}{lllllllllllllllllllllll}0959 & 0987 & 0998 & 1008 & 1011 & 1008 & 0998 & 0974 & 0947 & 0902 & 0854 & 0798 & 0752 & 0704 & 0657 & 0688\end{array}$
 $\begin{array}{llllllllll}0648 & 0678 & 0708 & 0758 & 0788 & 0750 & 0664 & 0556 & 0491 \\ 0001 & 0014 & 0031 & 0050 & 0074 & 0100 & 0128 & 0153 & 0174\end{array}$
 $\begin{array}{llllllllllllllll}1040 & 1320 & 1574 & 1780 & 1913 & 1960 & 1931 & 1853 & 1774 & 1680 & 1617 & 1547 & 1478 & 1414 & 1342 & 1267 \\ 1189 & 1113 & 1046 & 0980 & 0927 & 0874 & 0832 & 0790 & 0750 & 0713 & 0686 & 0657 & 0636 & 0611 & 0596 & 0577\end{array}$ $\begin{array}{lllllllllllllllllll}0560 & 0548 & 0536 & 0531 & 0531 & 0534 & 0546 & 0551 & 0554 & 0554 & 0548 & 0542 & 0536 & 0530 & 0523 & 0586 \\ 0512 & 0508 & 0502 & 0492 & 0482 & 0472 & 0458 & 0543 & 0431 & 0431 & 0442 & 0468 & 0518 & 0603 & 0701 & 0798\end{array}$

APPENDIX B

FLOW CHART, PROGRAM LISTING, AND DATA
SET FOR SPECIES NUMBER PROGRAM

TABLE XXI
INPUT REQUIREMENTS FOR SPEGIES NUMBER PROGRAM

Card Number	Columns	Format	Variable Name and Function
1	1-3	13	MSIZE - maximum size polynomial for least squares curve fit
	4-6	13	$\begin{gathered} \text { SIZE - size of polynomial } \\ \text { used } \end{gathered}$
	$7-9$	13	NGONT - number of polynomials to be tried
2	1-2	12	CONTL - code for 1 st term
	3-4	12	- code for 2nd term
	5-6	12	- code for 3rd term
	7-8	12	- code for 4th term
	9-10	I2	- code for 5th term
	11-12	12	- code for 6th term
	13-14	I2	- code for 7 th term
	15-16	12	- code for 8th term
			Explanation of code: Terms 1 thru 8 refer to Beta's, coefficients of the polynomial. If 0, this parameter is calculated. If 1 , this parameter is not calculated.
3	1-10	D10.3	Beta_{0}
	11-20	D10.3	Beta ${ }_{1}$
	21-30	D10.3	Beta_{2}
	31-40	D10.3	Beta_{3}
	41-50	D10.3	Beta_{4}

TABLE XXI (Continued)

Card	Columns	Format
Number	D1-60	Variable Name and Function
	$61-70$	D10.3

TABLE XXI (Continued)

Card Number	Columns	Format
$19-21$	I3	Nariable Name and Function

L. P. VARGA ANO HILLIAM D. WAKEEY OKLAHOMA STATE UNIVERSITY CHEMISTRY OEPARTHENT NUHBER OF ABSORBING SPECIES PROGRAM FORTRAN IV CALCULATES THE $\mid X, Y$ FUNCTIONS FOR $1,2, O R 3$ ABSORBING SPECIES WITH CONSTANT OR NDNCONSTANT STOICHIONETRY, FITS THE BEST STRAIGHT LINE THRU EACH DATA SET, CALCULATES THE INTERCEPT ANO SLDPE OF EACH LINE,
CALCULATES THE GOODNESS OF FIT PARANETER. ANO PLOTS THE EXPERIMENTAL CALCULATES TME GOODNESS OF FIT PAR
AND CALCULATED LINES FOR EACH CASE
AND CALCULATED LINE
INTEGER CONTL SIZE
INTEGER CONTL, SIZE \quad OOUBLE PRECISION 8,9$), 0 \times(8,9), V(11, B 0), B E T A(B), B(B), S I G(B), A(B$

DIMENSION HEAD(20), MOP $\{181$, NCHI $411 *$,

2 FORMATIPTDII.3J
3 FDRMATIBI2)
4 FORHAT (1213H
5 FORMAT (1 $\mathrm{x}, 20,1$
F FDRMAT1
FORMAT(BBX, 12HSMYN/IDF-1)=00.0.6)
3 FORMAT (BDIO.3)
34 FORMATIIH . 10013.6
35 FORMATIIP2015.6/)
36 FORMATSIHI, 6 X , 4HBETA, $10 \mathrm{X}, 7 \mathrm{H}$ STD DEV
37 FORMATIIH2,10X,2OH PHOTDMETRIC ERROR $=$, OIG. $:$
52 FORMAT(BOAL)
JREADS $=5$
JRITE
C SET ELEMENTS of all arrays to zerd
$\begin{array}{lll}\text { DO } & 60 \quad I=1,80 \\ \text { DO } & 60 & \mathrm{~J}=1,80\end{array}$
XA(I. J J $=0.00+00$
CDNTINUE $00+00$
60 CDNTINUE
$\begin{array}{lll}\text { DO } & 61 & 1=1,80 \\ \text { DO } & 61 & j=1,10\end{array}$
$A!I, J 1=0.00+00$
SAI I + J) $=0.00+00$
E1(I, J) $=0.00+00$
61 CONTINUE
YHATII $621=0,80$
YHAIII $=0=00+00$
DEVII $=0=00+00$
S(1) $=0.00+00$
62 CONTINUE
$0063 I=1,160$
$x(1)=0.00+00$
63 CDNTINUE
$0064 \mathrm{~J}=1.80$
64 CONTINUE
$00 \quad 65 \quad 1=1 \cdot 80$
$E(I, J)=0.00+00$
65 CONTINUE
$00 \quad 66 \quad I=1,8$
$x \times(1, j 1=0, \quad J=1$.
0x(II, J) $=0.00+00$
66 CONTINUE
$\mathrm{DO} 671=1, B$
BETA(I) $=0.0 D+00$
111=0.00400
SIGII $=0.00 .400$
67 CO
 O PE YNOMIAL USED, NCONT=NUMBER OF POLYNOMIALS. CONTL=DETERMINES BETAS
(TABLE HEADINGS, TITLEETITLE OF PLOT, MOP OROINATE OF PLOT, NCMESYMBOLS USED FOR PLOT, TABIEABSCISSA OF PLOT, ND, NP; NH, NB CONTROL PARAMETERS
FOR PLOT, DELT $=$ ERROR PARAMETER, MMENUMBER OF SOLUTION COMPOSITIONS.
=NUMBER OF WAVELENGTHS, LMI.LM2,LM=WAVELENGTHS OF MAXIMUM ABSORBANCE
JBI, JB2, JB\#REFERENCE SOLUTIONS
READIJREADS, 4) MSIZE, SILE,NCDNT
OD $101 \mathrm{~K}=1$, NCDNT
101

READI JREAD5,63) (BETAIII. I*1, HSIZE
EADA JREADS 6) (TEAOIEST, i=1,20)

H,ND,NP,NH,NB
1000 READ JREAD5,7)
c THE NAME DF THE SYSTEM BEING STUDIEO IS READ IN HERE-
C NSTOIC $=2$ IF NON-CONSTANT STOICHIOMETRY IS ASSUMED. O IF CONSTANT
NSTOIC $=2$ IF NON-CONS
READI JREAD5, 331 OELT
READIJREAD5, 331

READ ABSDREANCE DATA
DO $103 \mathrm{J=1,4M}$

convert aesorbance data to double precision
$\begin{array}{lll}\text { DO } & 53 & J=1, M M \\ 00 & 53 & 1=1, L\end{array}$
$A(1, J)=D B L E(C(1 . j))$
53
CONTINUE OD $1033 I=1.2$
1033
WRITETJRITEG,34) (AIS, 3), J=1,MH)
WRITE(JRITEG,37) DELT
C STATEMENTS 1234 ThRU 5011 calculate functions to be plotite

C 1234 ABSDRBING SPECIES
$12344^{\circ} \mathrm{OO} 4400 \mathrm{~J}=1, \mathrm{MH}$
$\mathrm{XA}(\mathrm{M}, \mathrm{J})=47 \mathrm{M}$
XATLA．JTAKLM．
YA（I，JIEACI．J）
K2＝A1I，JI
4400 SA\｛1，Ji＝0．
5002 60 To 1122 242－DELT＊10．＊＊×1
C 2 ABSORBING SPECIES，NON－CONSTANT STOICHIOMETRY
3311 DO $1003 \mathrm{JI} 1, \mathrm{MH}$
IFRNTOIC．ED．OJ． 60 TD 100
2007 LMM1＝LM－1
DO 2001 I＝1．LMMI

2002 ［FILK．ER．L）GO TD 2004
2002 LMP $1=$ LM +1

2003 YAII；J）＝AII：J）／A（I，JI
2005 XA（LM，J）
GO TO 1003 （2，J）／AI．JJ
10022 ABSORBING SPECIES，CONSTANT STOICHIOMETRY XAHK，J）＝A（LH，J）－A（LH，JB） DO $102 \quad i=1, L$
$(1 . J)-A(I ., J B)$
1003 CONTINOE
C 3 ABSDRBING SPECIES，CONSTANT STOICHIDMETRY
$1103001202 \mathrm{~J}=1$ ， HM
IFINSTOIC．EQ．IT．GO TO 5000
5005 IF（J．EQ．JB）GO TO 1120
1121 XA（LM，J）＝（A（LM2，J）－A（LM2，JB））／IA（LM1，J）－AILM1，JB））
60101211
1120 xal（M．J7＝0．00
1102 YA（J．E日．JB）GO TO 1130
1102 YA（1，J）＝（A（I，J）－A（I；JB））／（ACLM1，J）－A（LM1，JB） GO TD 1222
1130 Ya（I，J）$=0.00+00$
1222 CONTINUE
GO 101122

5006 IFILM1．EQ．1）GO TO 5007
 （MM）－A（LMI，MM）＊AII，JB1） SO TO 5008
$5007 \mathrm{E}(1,(\mathrm{M})=0.00+00$
5008 DO $5001 \mathrm{~J}=1$ ，MM
5012 IF LM．
 IA（LM1，MNI＊AIT，JBHI）

5009 El（If） $1=0.00 * 00$

5001 CONTINUE
$\mathrm{D}(5010 \quad 1=1 \mathrm{gL}$
$\mathrm{XA}(\mathrm{LH}, \mathrm{I})=\mathrm{E}(\mathrm{I}, \mathrm{LM})$
5010 CONTINUE
观 $50111=1$ ， 14
DO $5011 \mathrm{~J}=1,1$
5011 CDNTINUE
NC $1=M 4$
$\mathrm{M} M=\mathrm{L}$
$\mathrm{L}=\mathrm{NC} \mathrm{I}$
c CALCULATE XMIN，XHAX FOR PLots
CALCULATE XHI

39 XHIN＝XA（LH，J）
199 CONTINUE
$X H A X=X A\left(L H_{1} 1\right)$

38 XMAX＝XAイLM．J）
99 CONTINUE
X KAX $=X M A X+0.2 *(X M A X-X H I N)$
C LEAST SQUARES CALCULATION THRU STATEMENT 100
DO $100 \mathrm{I}=1.1$
DO $10 \quad \mathrm{~K}=1, \mathrm{MSILE}$
00
$10 \mathrm{~J}=1, \mathrm{MSI}$
$10 \times \times(K, J)=0,00$
CALCULATE WEIGHT OF DATA POINTS DO $12 \mathrm{~J}=1$ ，MM
YFirfer in 1133，2222，2211
1133 VARY＝SA（1，J）＊SA（1．J）
GO TO 4401
2222 IFINSTOIC．EO． 11 GO TO 3113
3333 VARY＝SAII，JIESA $I, J)+5 A(1, J 8) * S A(I, J 8)$
VIMSIIE 3, J）$=0$ SORT（DABS VARYI）
GO TO 1111
2211 IFIJ．ER．JB）GO TO 1112
$3113 \mathrm{~W}=1.00+00$
$1112 \mathrm{~W}=0.00+00$

1111 V（1．31＝1．00＋00
29 Vi2，JI＝XAlLM，J！
DO 9 15＝3，MSI2E
9 V（11，Ji＝V（1） $1-1,3) * x A(L$ M．$d)$
27 V（MSIZEE $1, J=Y$ YAI I，JI
C bUILD MATRIX CONTAINING ELEMENTS OF NORMAL EQUATIONS DO 12 If＝1， HS 12 E

Pivotevain. J)
$X \times(I I, J A)=X X(I I, J A)$ \#W*PIVOT WV(JA,J)
LLEIL.GT.NCONT) GO TO 25
$1313 L L=1 L+1$
SHRINK MATRIX ACCORDING TO SIIE II $=1$
DD
16
$\underset{j J=1}{ } 16 \mathrm{~K}=1,512 \mathrm{E}$
DO $15 \mathrm{~J}=1, \mathrm{SI}$ I2E

1314 IFiCONTL(LL-1,J)GEQ-11 GD TO 15
1315 DX(1I, JJ) $=X \times(K, J)$
5 CONTINUE
II=II+I
CONTINUE

C. SHRINK HATRIX ACCORDING TO FIXED BETA $N=I I-1$ | $\mathrm{M}=\mathrm{II}$ |
| :--- |
| $\mathrm{II}=\mathrm{I}$ |

IFICONTLTLL-1,K),EQ.I) GO TO 27
7 AY $=0.000+00$
$22 \mathrm{AY}=\mathrm{AY}+\mathrm{BETA}(J) * X X(K, J)$ DXIII, H $)=x X(K, M S 1)-A Y$ $11=I I+I$
CONTINUE
c 17 CONTINUERTRIX
8 CALL INVERTIN,M,OXI
$K X=1$
OD $185 \mathrm{~K}=1$, SI $2 E$
IF(CDNTL(LL-1;K)-EQ-1) GO TO 184
c.

STDRE CALCULATED BETA FROM MATRIX OR fixED beta
844 B $\{\mathrm{K})=\mathrm{DX}(\mathrm{KK}, \mathrm{H})$
KK $=$ KK+1
GO 10185
184 B(K)=BETA: $K)$
185 CONTINUE
C. OETERMINE SET DF CALCULATED BETAS

DO $21 \quad J=1$, MM
$A Y=0.00+00$
$0 D \quad 32 \mathrm{~K}=1, S I$
$32 A Y=A Y+B\{K) * V(K, J\}$ YHAT\{J]=AY
C CALCULATE DEVIATION
C CEVIJ)=V(MSI,JI-YHATIJI \quad CULATE KEIGHTED SOUARE DF DEVIATION S(J)IV(MSIZE $+2, j)$ ODEVRJJ*DEV(J)
21 SMIN=SMIN+S(J) CALCULATE DEGREES of freEdom
$\mathrm{DF}=\mathrm{M} M-\mathrm{N}$
C. CALCULATE GCODNESS-DF-FIT PGRAMETER SMIN=SMIN/IDF-1.0)
calculate standard deviation daf getas $0018 \mathrm{~K} \quad \mathrm{~K}=1$, S12E
IF\{CONTL\{LL-1,K\}.EQ.1) GO TO 187
1877. $A Y 1=0 X(K K$ KK $) * S M I N$ AY=DABS(AY1).

G0 701 D
87 SIG(K) $=0.00+00$
18.8 CONTINUE

C 3434 WRITE JRITE6,36)
WRITE (JRITEG,35) (B(K) *STG(K) *K=1, SIZE)
WRITE OUTPUT TABLE HEADINGS
WRITE JRITE6,5) (HEAD (K); K=1,2D)
DO $23 \mathrm{~K}=1$, HA
$x(k)=v(2, k)$
YK $K=V(H S I=K$
c
(WEIGHTED SUM OF SQUARES DF DEVIATION
23 WRITE(JRITE6,2) V(2,K),V(MSI,K),V(MSIZE+3,K),V(MSIZE+2,K),YHAT(K). DO $27 \mathrm{~K}=1$, MM
$J=K+H M$
$Y(J)=Y H A T(K)$
$24 \mathrm{X}(\mathrm{J})=\mathrm{V}(2, \mathrm{~K})$
TRITE\{JRITEG,83 SMIN
YMIN=Y(1)
$\mathrm{YMIN}=\mathrm{Y}$ (1J
NP TS
C CALCULATE VMAX, YMIN FOR PLOT 00 $399 \mathrm{~J}=2$, NPTS (FIYMSNeLT.Y(Jj) 60 TO 399
41 YMIN=Y(ib
YMAXEY(1)
OO $299 \mathrm{~J}=2$, NPTS
IFIYMAX-GT-Y(J)) 60 te 299
40 YMAXEY(J)
299 CONTINUE

C CONVERT (x, y) POINTS TO SINGLE PRECISION DO $55 I J=1$, NPTS xS\{IJ)=SNGL(X(1J)
55 CONTINUE
$X(N=S N G L(X H I N)$
XAX $=S N G\left(X_{m A X}\right)$
YIN $=$ SNGL (YMIN)
YAX
SNGL (YMAX)
C 409 PLOT EXPERIMENTAL AND CALCULATED CURVES
409 CALLPLOTKXS,XIN,XAX, $0, Y S, Y I N_{0} Y A K, 0,2,0,0,0,0,0, N P T S, 2,1,0,21$

```
        MRITE{JRITEG,4) ITER,A
        GO TO 13
    G0 TO 13
C ITER=1TER+ITI
    GO TO NEXT MDOEL OR STOOP
    IF{ITER-3) 3311,1103,100
    1001 CDNTINUE
        STDP
            END SUROUIINEPLOTIX,XMIN,XMAX,LX,Y,YMIN,YMAX,LY,Z, ZMIN, 2MAX,LZ,NPT
            [NPLOT,NCOPY,NCD,NDIM)
            K,Y, Z=SINGLE SUBSCRIPTED VARIABLES IOENIIfYING THE COORDINATES DF THE
            MOINTS TO BE PLOTTED. XMIN,XMAX,YMIN,YMAX,ZHIN, ZMAX=MINIMUM AND MAXIMUN 
            VALUES ON THE X,Y,AND Z AXESO LX,TY,LZ=TYPE OF SCALE USED ON THE X,Y,AND
            OF THE FUNCTIONTO TO BE PLOTTED. NPLOTSINUMBER OF THO OENENSIONAL
            OF THE FUNCTIONTO BE PLOTTED. NPLOTS=NUMBER OF TWO OGMENSIONAL 
            DIMENSION X(1),Y(1),2(1),Sx(13),TITLE(20),1(134),NCH(41),MOP(I'B),
            1TAB1(18)
            COMMON TITLE,MOP,NCH,TABL;ND,NP,NH,NB, JREADS, JRITEG
    FORMATI20A4
    FDRHAT (80AL)
    3 FORMAT (1H1, 26X, 20A4)
    4 FDRMAT(IH, A1,3X,F6.3,121A1)
    5 FORMAT(132A1)
    12 FORMAT(1HK,62x,IBAIH
    6 FORMAT (9X,F6.2,1114X,F6.2))
    7 FDRMATHPE17.2.E116.21
    B FORMATY1PEIT.2,E61.2,E55.2)
    9 FORMATIIPE17.2,2E40.2,E36.21
    II FORMATIIPE17.2,4E24.2,E20.2)
        LLX=LX+1
        NOD=NCO+1
    GO TO(15,13,14;13),NDD
    13 REAO(JREAD5,11 ITITLE\1H, 1=1,201
    14 IF(NDD.GE.3)READ(JREAD5,2) (MOPII), I=1,181, (NCH(I), {=1,41),
    14 IFTABI|I), I=1,18I,ND,NP,NM,NB
    15 NCH(4) =NB
        NPN=NPT/NPLOT
        IFILX=GT.O\ GO TO 1?
1717CX=120./1XMAX-XHINI
    SX(1)=XMIN
    Sx(13)=x
    J=(XMAX-XHIN)/12.+U
    16. }5x(k)=
    17 60 10 1
    17 XLX=LX
        x x=120.1xLX
        DD 18 K=1,LLX
```

18 SX(K) $1010 . *(N X+K-1)$

IFIR.GT-0) GO TO 20
$2020 \mathrm{CY}=50 . /(\mathrm{YHAX}-\mathrm{YMiN}$
${ }^{60} \mathrm{YLO}_{\mathrm{C}=L Y}{ }^{21}$
$\mathrm{CY}=50 . / \mathrm{YLY}$ $\mathbf{K Y}=\mathbf{C Y}$
$\mathbf{N Y}=$
NY=ALOGIO(YMIN)
21 CALLPOT(Y,YMIN,LY, NPT,1,50.,CY) IFINDIM.LT=3) 60 to 24
2424 IFILZ.GT.O) GO TO
C2 $=40.1(2 \mathrm{MAX}-2 \mathrm{MIN})$
60 T0 23
$22 \quad 212=12$
$C 2=40.12 \mathrm{LZ}$
2H1N.LZ iNPT. 0.40 .-C2I
4. $0050 \mathrm{NN}=1$, NCOPY

T1=33.

Lr
$\mathrm{Y}=\mathrm{L}=\mathrm{Y}$

$T T=50$.
WRITEIJRITEG,3) (TITLEII), $I=1,20$
DO $43 \mathrm{KK}=1,51$
$\mathrm{N}=1$
$\mathrm{NN}=$
$J E D=1$
$J=51-K K$
25 DO $\begin{aligned} & 25 \\ & \text { L(J) } \\ & \text { NB }\end{aligned}$
25 L(J) $=$ NB

2626 L(13) =NP 1F(T.GT.TT) GO TO 30
3030 SCALEET/CY*YHI

$\mathrm{N}=0$
$\mathrm{~T}=\mathrm{T} \boldsymbol{T}-5$.
TT=TT-5.
IFIT.LE:O.) SCALE=YMIN
$\begin{aligned} & 303 \text { GO TO } \\ & 26 \text { GO TO (27,27.28.28.27.2B).LY }\end{aligned}$
27 SSEKY*LYY
60 TO 29
28 SSKKY*LYY
29. L1131=ND

2929 SCALExIO GO TO 30 $\mathrm{N}=0$
LYY $=$ LYY-1
L(133 =NP
L1133)=NP
IF $50 . \ldots$.
30 IF(50..EQ.Tt 60 TO 31
31 DO $32 \mathrm{~J}=14$, 133
31 DO $32 \mathrm{~J}=14,133$
$32 L(J)=N M$

IFILX-GT:0) 60 TO 34
$4440033 \mathrm{~J}=13,133.10$
60 T0 36
$34 \mathrm{kx}=120 / \mathrm{Lx}$
0035 J=13,133;kX
$35 L(J)=N P$
36 IF (50..EQ.T) $(1,(133)=N D$
DO $40 \mathrm{LH}=1$;NPLOT
DO $39 \quad \mathrm{IF}=\mathrm{JED}$,NNN
IFIYII).NE.T: GO TO 39
$9393 \mathrm{~J}=\mathrm{x}(1)$
383 F(NDIM.NE-3) 60 TO 38
383 272111
L($\mathrm{j}+13.3=\mathrm{NCH}(12+1)$
60 1039
38 CONTINUENCHILH:
JED $=$ NN N +1
NNN $=$ NN N + NP
40 CDNTINUE
IF(T1-NE.T) GO TO 41
411 IF (15..GE.T) GO TO 41 LI2 12 MOP
$\mathrm{HI}=\mathrm{Ml}+1$ $T 1=T 12-1$.
41 IF(N.EQ. 1) GO TO 42
420 WRITE (JRITE, 4) L(2), SCALE. (L (J), J=12,1323
2. GR TO 43

2 WRITE(JRITEG:5) (LIJ), J=1,2321
3 CONTINUE.
GO TOP 44 ,
GRITE (JRIT $45,46,47,48,49,44$) ,LLX
GO TO 50
5 HRITE SO
60 TO 50
46 HRITE(SRITE6, B) (SKIK), $k=1, L(X)$
47 HRITE(SRITE6,9) (SXIK), $K=1, L L X)$
GO TD 50
8 WRITE (JRITE6,10) (SX(K), $K=1, L(X)$ GO TO 50
49 HRITE(JRITE6,11) (SX(K), K=1,LLXI
\qquad RETURN
END
SURROUTINEPOT (V,VMIN, $V, N P, J, V C, C)$ OIMENSION VII
IFILV.GT.0) GO TO 2
22 DO 1 I 1×1 + NP
VII)xFLOAT(IFIX(C*(VII)-VMIN)*.5!)
$20031=1$, NP

4 IFIJ.GT.AI GOTO 7
$770061=1$,NP

55 IF (VIIV-LE.VC) GO TO 6
$5 \mathrm{~V}(1)=\mathrm{VC}+1$
8 CONTINUE
7 RETUR
END
SUBROUTINE INVERTIN, M,DXI
OOUBLE PRECISION DX, PIVOTI, PIVOT 2
DIMENSION DX 8.9)
00
PI VOT $1=1.0$
10
OXIT, II=PIVOT1
DO $10, j=1, m$
10 IF(J.EQ.I) 601010
1010 OX1I, J) $=$ PIVOT1*DX(I.J)
10 CONTINUE
10 CONTINUE
IFIK.EQ=I) GO TO 25
2525 Pi var $2=D \times(\mathrm{K}, 1)$
DX(K, 1)
O-PI VOT2*PI vat
OX(K, 1$\}=-$ PI VOT2* PI YロT
DD $20 L=1$, H
IFiL.EC.I) GOTO 20
2020 DX:K,LJ=DX(K,LI-PIVOT2*DX(I. L)
20 CONTINUE
30 CONTINUE
RETURN
END
c DATA
$\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}$
001111111
$0.0000+000.0000+000.0000+0000.0000+00 \quad 0.0000+00 \quad 0.00004+000.000 D+000.0000+00$
COLEMANS SPECIES SIG Y Y ABER ABSORACE DATA PLET Y-YHAT WY-YHAT!**2
Y ABSORBANCE FUNCTXF
$716^{1} 112511231$
$0.0050+00$
$\begin{array}{lllllllllllllllllllll}0056 & 0114 & 0149 & 0147 & 0126 & 0081 & 0052 & 0050 & 0055 & 0060 & 0057 & 0060 & 0076 & 0071 & 0034 & 0098\end{array}$ $\begin{array}{llllllllllllllll}0078 & 0162 & 0209 & 0213 & 0189 & 0121 & 0076 & 0068 & 0073 & 0077 & 0075 & 0075 & 0094 & 0082 & 0200 & 0889\end{array}$ $\begin{array}{llllllllllllllllllllll}0110 & 0242 & 0352 & 0413 & 0495 & 0338 & 0177 & 0129 & 0126 & 0131 & 0133 & 0137 & 0163 & 0111 & 0149 & 0208\end{array}$

APPENDIX C

FLOW CHART, PROGRAM LISTING, AND DATA

SET FOR CORRESPONDING SOLUTIONS

PLOT PROGRAM

TABLE XXII
INPUT REQUIREMENTS FOR CORRESPONDING
SOLUTIONS PLOT PROGRAM

Card Number	Columns	Format	Variable Name and Function
1	$1-80$	2044	TITLE - title for plot
2	$1-18$	80A1	MOP - title for Y-axis of plot
	19-22		NCH - symbols for plot
	59-76		TAB1 - title for X-axis of plot
	- 77		ND - "."
	78		NP - "+"
	79		NM - "-"
	80		NB - blank
3	1-3	I3	N - number of solutions
	$4-6$	I3	M - number of wavelengths
Next MM cards	1.80	16(F4.3,1X)	A, B, C, D - absorbance data with number of cards determined by N and M. See Table XX for explanation of format
Next MM1 cards	1-80	10(F6.1,2X)	EX - molar extinction coef. ficients of ligand, number of cards determined by M
Next MM2 cards	1-80	7(E10.3)	CL1, CL2, CL3, CL4 - C_{L} concentrations for each $\mathrm{C}_{\mathrm{M}}^{\mathrm{L}}$

hilliam d. wakley oklahoma state university chemtstry department CORRESPONDING SOLUTIONS PLOT PROGRAM FORTRAN IV IBM SYSTEM 360 OSU COMPUTER CENTER 14 JULY 1969
READS IN ABSORBANCE DATA FOR I WAVELENGTHS AND J EXPERIMENTS, EXTINCTION COEFFICIENTS OF LIGAND AT I WAVELENGTHS, TOTAL LIGAND CONCENTRATION FOR J EXPERIMENTS AT EACH TOTAL METAL CONCENTRATION. CALCULATES CORRESPONDING SOLUTIONS FUNCTIONS E1,E2,E3,E4. WRITES EXPERIMENTAL AND CALCULATED DATA. PLOTS, AT EACH WAVELENGTH, CCRRESPONDING CONCENTRATION. NUMBER OF CURVES ON EACH PLOT IS EQUAL TO THE NUMBER OF METAL CONCENTRATIONS: NUMBER DF POINTS BN. EACH PLOT IS DEIERMINED BY THE NUMBER OF LIGAND CONCENTRATIONS AT EACH METAL CONCENTRATION.

 IN/0.0/, YMAX/0.0/.CK191)/91*0.08
DIMENS.ION MOP(18), NCH(41), TITLE (20), TABI(18)
FORMAT (16 (F4.3.1X)
formailifio.3)
7 FORMATH1O(F6.1,2XI)
14 FORMAT(1H1, BX, 1 HE, $14 \mathrm{X}, 3 \mathrm{HABS}, 14 \mathrm{X}, 2 \mathrm{HCL}, 14 \mathrm{X}, 1 \mathrm{HX}, 15 \mathrm{X}, 1 \mathrm{HY}, 14 \mathrm{X}, 2 \mathrm{HCM}$)
23 FORMAT 120 A4
24 FORMAT ${ }^{2}$ BOAL
25 FORMATI $13,3 \times, 11$ hMAVELENGTH=, 13,3 . 1 OHEXT COEFF $=$, E1.6.6
27 FORMAT12131
29 FORMAT $11 \times, 1$ EHCMI $=1.00 \mathrm{E}-05=-1$
30 FORMATHX, $18 \mathrm{BHCM} 2=2.00 E-05=*$;
31 FORMATIXX,1BHCM3 $=3,00 \mathrm{E}-05=1$ 1)
COMMON TITLE, MOP *NCH, TABL, ND, NP *NM, NB, JREADS, JRITE 6
JREADS $=5$
READ TITLE OF PLO
READ (5,23) (TITLEII), I=1,20
MOP=ORDINATE OF PLOT NCH=SYMBOLS FOR PLOT TABI=ABSCISSA FOR PLOT ND. NP. NA, NBECONTROL PARAMETERS FOR PLOT
 1NP,NM,NB.
N=NUMBER OF SOLUTIONS MENUMBER OF WAVELENGTHS
READ 5,27) NoM
READ ABSORBANCE DATA

RO $3 \quad J=1$, N
3 READ $(5,1)(B(I, J), 1=1 ; M$
DO $4, j=1$ N
DO 5 IC(I,JI, $I=1, M$
5 READI5, 5 II
READ EXTINCTION, $1=1, M$
READISANCTION COEFFICIENTS FOR LIGANO
CL 1, Cit $2, C L 3, C L 4=T$ TIAL LIGAND CONCENTRATIONS FOR EACH METAL CONCENTRATION

READ(5,6) (CL1(J), J=1,N)
READ 5,6) ($\mathrm{Cl} 2 \mathrm{i}(\mathrm{J}, \mathrm{J}, \mathrm{J}=1, \mathrm{~N})$
READ (5,6) (CL $3(J), J=1, N)$
C CALCULATE CORRESPONDING SOLUTION FUNCIIONS
$0026 \quad I=1, \mathrm{M}$.
$08 \quad \mathrm{~J}=1, \mathrm{~N}$

E2(1,J)=(日(1,J)-EX(I)*CL2: 1 J$) / / \mathrm{CM}$
$E 4(T, J)=1 D\left(I, J 1-E X(1) * C(4(J)) / C M_{4}\right.$
8 CONTINUE
WRITEIG.14)
WAVELENGTH
$x(k)=\mathrm{CL}(\mathrm{C})$
$Y(K)=E(1(i, k)$
9 WRITE(G,13) EIIT,K),A(I,K),CLI(K),X(K),Y(K),CM
DO $10 \quad K=1, N$
$L=K+N$
$X(L)=C L 2(K)$
$Y(L)=E 2(1, K)$
10.WRIIE(6,13) E2(I,K),BCI,K),CL2(K),X(L),Y(L), CM2 $0011 K=1, N$ $\mathrm{L}=\mathrm{K}+2 * \mathrm{~N}$
K(L) $=\mathrm{CL} 3(\mathrm{~K})$
$Y(t)=E 3(1 ; K)$
11. WRITE(6, 13) E3(I, K), CII,K), CL3(K), X(L), Y(L), CM3 $D 0$
$L=K+3 * N$
(L) $=$ C(4 4 (K)
Y(U) E4 (1, K)
12 WRITE(6, 13) E4(I,K), D(I,K),CL4(K), XILI, Y(L), CM4 NN=4*N
SCALE TOTAL ligand CONCENTRATIONS BEFORE PLOTTING X(L) $=x(L) * 10 * * 5$
28 CONTINUE
CALCULATE XMIN,XMAX FOR PLOT
XMIN=XT1)
$15 \quad L=2$, $N N$
FFIXMIN.LT.X(L)) GO TO 15
16 XHIN=XIL
CONTINUE
XMAX
DO $17 \quad L=2$. NN
IFIXMAX.GT.X(L)I GO 10 : 17
18 XNAX $=X$ XL
XMAX $=$ XMAX $+0.2 *(X M A X-X M I N+$
CALCULATE YMIN,YMAX FOR PLOT
YNIN=Y(1)
DO $19 \quad L=2$. NN
IFIYMINELT.Y(L) GO 50

YMAXYY(I)
D 21
$L=$
1FIYMAX.GT.YiLI) GO TO 21
22 CONTINUE
YMAXEYMAX +0.1 \#IYMAX-YMIN:
PLİ=1-0 function vs total ligand concentration for each total metal CONCENTRATION AT EACH HAVELENGTH

ON PLOT FOR EACH TOTILCIION COEFFICIENIS FDR LIGAND, SYMBOLS USEO R1TE16,25) 1,M1,EX(1)
WRITE $(6,29)$
WRITE $(6,30)$
WRITE(6.31)
CONTINUE
STOP
Subroutine plat and subroutine pot are the same as shonie in the species

E YS CL AT CONSTANT CM TOS, PCV-SN SYSTEM

0098010201070112011501170113010700960085007700690063005900560054 $\begin{array}{llllllllllllllllll}0164 & 0187 & 0214 & 0247 & 0279 & 0295 & 0296 & 0279 & 0249 & 0217 & 0183 & 0159 & 0139 & 0124 & 0112 & 0105 \\ 0237 & 0285 & 0342 & 0404 & 0458 & 0489 & 0489 & 0466 & 0422 & 0370 & 0317 & 0275 & 0238 & 0217 & 0202 & 0189\end{array}$ $\begin{array}{llllllllllllllllllll}0244 & 0291 & 0350 & 0418 & 0478 & 0511 & 0512 & 0486 & 0446 & 0395 & 0348 & 0306 & 0278 & 0259 & 0251 & 0249\end{array}$ $\begin{array}{lllllllllllllllllllll}0253 & 0303 & 0363 & 0429 & 0490 & 0528 & 0532 & 0510 & 0471 & 0421 & 0376 & 0342 & 0316 & 0304 & 03022 & 0309\end{array}$
 $\begin{array}{lllllllllllllll}0216 & 0222 & 0232 & 0243 & 0252 & 0255 & 0247 & 0233 & 0208 & 0183 & 0162 & 0142 & 0127 & 0116 & 0107 \\ 010100\end{array}$ 033503660454052905890619 0610 057405180451038703270280024602200199

 $\begin{array}{lllllllllllllllll}0506 & 0598 & 0710 & 0823 & 0912 & 0959 & 0949 & 0902 & 0831 & 0743 & 0659 & 0582 & 0521 & 0483 & 0467 & 0460 \\ 0124 & 0120 & 0119 & 0113 & 0109 & 0103 & 0096 & 0088 & 0079 & 0072 & 0065 & 0058 & 0055 & 0051 & 0050 & 0048\end{array}$ 0207020902090210020401980186017201560137012001090089009000830079 $\begin{array}{lllllllllllllllllll}0 & 0421 & 0451 & 0489 & 0532 & 0562 & 0576 & 0556 & 0518 & 0461 & 0398 & 0340 & 0291 & 0252 & 0223 & 0200 & 0180 \\ 0572 & 0648 & 0738 & 0836 & 0913 & 0946 & 0929 & 0872 & 0786 & 0686 & 0587 & 0491 & 0416 & 0359 & 0317 & 0281\end{array}$
 $\begin{array}{lllllllllllllllllll}0797 & 0921 & -1066 & 1210 & 1321 & 1371 & 1344 & 1271 & 1158 & 1025 & 0872 & 0739 & 0631 & 0547 & 04877 & 0441\end{array}$ 01440141013801330126011701080099008900810072006600590056.00520051 $\begin{array}{lllllllllllllllllllllllllllll}0426 & 0444 & 0463 & 0482 & 0495 & 0495 & 0477 & 0439 & 0391 & 0338 & 0289 & 0252 & 0221 & 0197 & 0177 & 0163\end{array}$


``` \(\begin{array}{llllllllll}01143 & 001714 & 002429 & 003429 & 004143 & 005429 & 007714 & 010143 & 013000 & 017000\end{array}\) \(0.500 \mathrm{E}-05 \quad 0.100 \mathrm{E}-04 \quad 0.200 \mathrm{E}-04 \quad 0.300 \mathrm{E}-040.400\)
\(0.500 \mathrm{E}-05 \quad 0.100 \mathrm{E}-04.0 .200 \mathrm{E}-04.0 .300 \mathrm{E}-04 \quad 0.400 \mathrm{E}-04.0 .500 \mathrm{E}-\mathrm{D} 40.600 \mathrm{E}-04\)
```


APPENDIX D

FLOW CHART, PROGRAM LISTING, AND DATA SET FOR CORRESPONDING SOLUTIONS
$\overline{\mathrm{n}}$, [L] PROGRAM

TABLE XXIIT
INPUT REQUIREMENTS FOR CORRESPONDING
SOLUTIONS \bar{n}, [L] PROGRAM

Card Number	Columns	Format	Variable Name and Function
1	1.80	20 A 4	HEAD - column headings for output table
2	$1-80$	20A4	TITLE - title for plot
3	Same as	, Table XXI	
4	1-55	55H	name of system being studied
5	$1-3$	13	L- number of $\mathrm{C}_{\mathrm{M}}{ }^{\text {s }}$
	$4-6$	13	MM - number of E values, maximum of 40
	7-9	13	MSIZE - maximum size polynomial used for curve fit
	10-12	13	NCONT - number of control cards
	13-15	13	MPT - If MPT>8, control cards specifying system models are read in separate from data. MPT<8, control cards are read in with data.
6	Same as	, Tab1e XXI	
7	1-3	13	MM - number of C values for a particular C_{M}
	4-6	I3	SIZE - size polynomial used to fit data set
8	1-77	7D11.4	$X A-C_{L}$ values for E vs C_{L} plots
9	1-77	7D11.4	YA - E values for E vs C_{L} plots
10	Same as	, Table XXI	

TABLE XXIII (Continued)

Card Number	Columns	Format
$11-14$	Same formats as cards $7-10$ except for a different C_{M}	
$15-18$	Same formats as cards $7-10$ except for a different C_{M}	
$19-22$	Same formats as cards $7-10$ except for a different C_{M}	
$23-25$	$1-80$	$8 D 10.3$


```
C WILLIAM D. WAKLEY OKLAHOMA STATE UNIVERSITY FIT AND PLOT OEPARTMENT II FORTRAN IV
    IBM SYSTEH 360 OSU COMPUTER CENTER 30 DECEMBER 1969
    CALCULATES BEST FIT OF E FUNETIONS US CLL AT CONSTANT CM USING UP TO 7T
    DEGREE POLYNOMIALS. INTERPOLATES AT SELECTED E VALUES AND CALCULATES
    CORRESPONDING CL,CM YALUES. FITS BEST LEAST SQUARES STRAIGHT LINE THROUGH
    THESE POINTS ANO CALCULATES THE SLOPE AND INTERCEPT FOR EACH E VALUE.
    SLOPE =LIGAND NUMBER INTERCEPT=FREE LIGAND CONCENTRATION
    PROGRAM WILL PLOT EXPERIMENTAL AND CALCULATED CURVES IF DESIRED
    INTEGER CONTL,SILE
    REAL*8 DABS,DSOR
    DOUBLE PRECISION DX(8,9),XX(8,9),H,PIVOT,V{11,40),BETA(8),B(40,8),
    SIG(40,8),YA(99,40),YHAT(40),DEV(40),S(40),X(40),Y(40),XA(99,40),E
    (40), SMIN(40,127), SAVE{40,8),BB(40,8),CA(6,40), AY,SVE,YX,AYI,SUM,A
    DIMENSION HEAO(20),MOP(18),NCH{41),TITLE(20),TAB1(18),2(1),CONTLII
        27.8)
        COMMON TITLE,MOP,NCH,TABI,ND,NP,NM,NB, JREADS,JRITE6
    FDRMAT(1P7011.3)
    3 FORMAT (812)
    FORMATIIX,ZOA
    6 FORMAT (20A4)
    7 FORMATIS5H
    FORMAT(88X,12HSMIN/(DF-1)=,015.5
    33 FORMAT (8D10.3)
    36 FORMATILH,EX, 4HBETA, 1OX,7HSTD DEV
    S2 FORMATIBOAI)
    54 FORMATIIH,D10.3,2X,015.5,2x,D10.3,2X,[3,2X,13)
    57 FORMAT(7011.4)
    63 FORMAT(4010.3)
    81 FORMATI8DI0.3)
69 FORMAT(IH,1PIDI5.5,2131
    JREADS=5
    NC=0 FOR LEAST SQUARES FIT OF E VS CL, NC=1 FOR FIT OF CL VS CM
```



```
    READ(JREADS,6) (HEAD(1), I=1,20)
    READ(JREAD5,52) (MOP(I), I=1,18),(NCH(I), I=1,40),{TAB1(1); l=1,18
    1),ND,NP,NM,NB
The NAME OF THE SYSTEM beING STUDIED IS READ IN HERE.
000 READ(JREADS,7)
    L=NUMBER OF CM, MAXIMUM=8 MMM=NUMBER OF E VALUES, MAXIMUM=40 MSIZE=8=
    MAXIMUM SIZE OF POLYNOMIAL USED FOR CURVE FIT, IE TTHHIMUGREE POLYNOMIAL
    NCONT=NUMQER OF CONTROL CARDS, IE NUMBER OF MODELS MAXIMUM=127
    MPT=IF(MPT.GT.8), CONTROL CARDS SPECIFYING SYSTEN MODELS ARE READ IN
    SEPARATE FRCM THE DATA. IFIMPT.LE.8), CONTROL CARDS ARE REAE IN HIT
    TME (X.Y) DATA.
    READ(JREADS;4) L,MMM,MSI LE,NCONT,MPT
    MSI=MSIZE+1
C HRITE NAME OF SYSTEM BEING STUDIED
```

MRTEISRITEG,7) CONJL=CONTROL CARDS WHICH DETERMINE IF BETAS ARE TO BE FIXED OR CALCULGTED 10 IF 0 THIS PARAMETE
05 READ (JREAO5,3) (CONTL(K, 1), $\{=1$, MSIIE) IFINC-EG-O) GO TO. 106
SIZE=SIZE OF POLYNOMIAL
READ JREAD5,4) SIZE,NCON
$00101 \quad K=1$, NCONT
REAOIJREAO5,3) (CONTLIK,I), $I=1, M S I Z E$
DO $103 \quad I=1, L$ L
$X A=C M * 10 * * 6$ VALUES FOR CL VS CM PLOT
$X A(1,1)=0.1000+02$
$X A(1,2)=0.200 D+02$
XAIT:4) $=0.4000+02$
CONTINUE HRITE CONTROL PARAMETERS
HRITE CONTROL PARAMETERS
HRITE JRITE 6,41 L,MMM, MSIIE, NCONT, M
C READ BETASICDEFFICIENTS OF POLYNOMIAL)
through statement 100 least sguares fit of data
DO $100 \quad 1=1$.
IFINC.EQ. 1) GO TO 1122
Manumber of ci values for each cm, maximuma 40
READ (JREAD5.4
$\times A=C L * 10 * * 5$ MM.SILE
READ
READ (JREADS,57) (XA(1,J), J=1,MM)
C $\quad \forall A=E$ FUNGTIONS*10**3 FOR E VS CL PLO
READ(JREADS;S7) (YA(I,J1), $J=1$, MM)
IF(MPT.GT.B) GO TO 1122
114 DO $104 \quad k=1$, NCON
04 READ(JREADS,3) (CONTL(K,NN), NN=1,MSIZE
$1122 \times M I N=X A(I, 1)$
DO $199 \mathrm{~J}=2$, MM
FiXMINALT.XAlI ,JH) GO TO 199
39 XMIN=XAII , J)
199 CONTINUE
XMAX=XAI 1,11
FiXMAX.GT.XAII,JJI GO TO 99
38 XMAX=XAT1 , J
99 CONTINUE
$X M A X=X M A X+0.2 *(X M A X-X M I N)$
DO $10 \mathrm{~K}=1$, MSIZE
DD $10 \mathrm{~J}=1$, MS 1
calculate neight of data points
DO $12 J=1$, MM
$H=1.00+00$
2111 V(MS12E+3.J) $=$
$=1,00+00$
$29 V(2, j)=K A 11, j)$

DO $911=3$, MSI $2 E$
9 V(II, J)=V(II-1, J) $=$ XA(1, , J)
27 V(MSI2E $2,1, J)=Y A(I, J)$
V(MSIZE $+2, J)=W$
c
builo matrix containing elements of normal equations DO 12 II=1, MSIIE
DO $12, \mathrm{~A}=1, \mathrm{H}$
12 XX(II, JA) $=\mathrm{XX}(11, \mathrm{JA})+\mathrm{W} * \mathrm{PI}$ VOT*V(JA, J
75 CONTINUE
SVE $=1.00+05$
13 ShRINK MATRIX ACCORDING TO SIZE
$L L=1$, NCONT
$11=1$
$0 D$
20
JJ=1
DO $15 \mathrm{~J}=1.5 \mathrm{SIZ}$
IF(CONTLILL \quad K).EQ. 11 GO TO 16
1314 IFCCONTL (LL JJ.EOM, GO 1015
$x \times(K . J)$
15 CDNTINU
II=1I+1
16 CONTINUE
SHRINK MATRIX ACCORDING TO FIXED BETA $\mathrm{N}=11$ $M=1 I$
$I I=1$ DO $17 \mathrm{~K}=\mathrm{I}$, SI2E IFICONTLELL,KI.EQ. 11 GO TO 17
$1717 \mathrm{AY}=0.00+00$
22 AY=AY*BETA(J)*XX(K,J)
$D \times(I I ; M)=X X(K, M S I I-A Y$
II=II $1+1$
c INVERT MATRIX
18 CALL INVERT ($\mathrm{N}, \mathrm{M}, \mathrm{DX}$)
$\mathrm{KK}=1$
OO $285 \mathrm{~K}=1$, MSIZE
STORE CALCULATED BETA FROM TO 184 OR FIXED BETA B $\{I ; K)=D X(K K, M)$ $\mathrm{KK}=\mathrm{KK}+1$
GO
184 B(It,K)=BETA(K
185 CONTINUE
SMIN(1) LL $=0.00+00$
DETERMINE SET OF CALCULATED BETAS $D D \quad 21 \quad J=1, M H$
$A Y=0, O D+00$
Da $32 \mathrm{~K}=1$, SI2E
32 AY=AY $+B(I, K) * V(K, J)$ YHAT(J)=AY
c Calculate deviation

DEV(J)=VIMS1.J.-YHAT (J)
C CALCULATE HEIGHTED SQUARE OF DEVIATIONS
S(J)=V(MSI2E+2,J)*DEV(J)*DEV(J)

Calculate oegrees of freedom
$\mathrm{DF}=\mathrm{MH}-\mathrm{N}$
130 IF (MM.EQ.N) GO TO 132
131 IFIMM.EQ. $\mathrm{N}+1$) GO to 132
CALCULATE GODDNESS-DF-FIT PARAMETER
133 SMIN
c CaLCulate standard deviation of betas CO $188 \mathrm{~K}=1$, MSI $2 E$

1877 AYI $=D \times(K K, K K) * S M I N(I, L L)$
$A Y=D A B S(A Y I)$
IG(I, K)
DSSQRT(AY)
$3131 \mathrm{KK}=\mathrm{KK}+1$
G0 T0 188
87 SIG $(1, K)=0.00+00$
188 CONTINUE
3434 WRITE BETAS AND
WRITEIJITEG,35) (B(I,K).SIG(I,K), K=1.SIZE)
C HRITE HEADINGS
WRITE (JRITEG,5) (HEAD $(K), K=1,20)$
OETERMINES EXPERIMENTAL (X, Y) POINTS FOR PLOT OETERMINES EXPERIMENTAL (X, Y) POINTS FOR

$Y(K)=V(M S 1, K)$
C WRITES 3 COLUMNS OF EXPERTMENTAL DATA, CALELLATED Y. DEVERTIOM, WEIGATES SUM OF SQUARES OF DEVIATIONS
23 KRITE(JRITE6.2) V(2,K),V(MSI,KI,VIMSIZE+3,K),V\&MSIZE+2,K DEVCKISSKI
C DETERMINES CALCULATED (x, y) POINTS FOR PLOT $D 24 K=1$, $M M$
$J=K+M M$
$24 X(J)=V(2, K)$
WRITES GODDNESS-DF-FIT PARAMETER
RIITEISRITEG,8) SMIN(I.IL)
CALCULATE YMIN.YMAX FOR PLOT
YMIN=Y(1)
NP $T S=M M+M M$
OD $399 \mathrm{~J}=2$. NPTS
IFIYMIN.LT.YIJV) GO 10399
41 YMIN=Y(J)
CONTINUE
OD $299 \mathrm{~J}=2$, NPTS
IF(YMAX.GT.Y(J)) GD 70299
40 YMAX=Y(J)
299 CONTINUE
YMAX $=$ YMA $X+0.1 *(Y$ MAX-YMIN)

```
        IF{NC.EG.O) GO T0 117
    118 CALL PLOT(X,XHIN,XHAX,O,Y,YHIN,YHAX,0,Z,0.0,0.0,0,NPTS,2,1,0,21
        IF{NC.EO.1) GO TO 25
    117 OD 189 K=1,SIZE
        If STANDARD dEvIATION OF beta is gt beta, gO TO NEXT mIDEl
        IF(SIG(I,K).GT.YX) GO TO 26
    C 189 CONTINUE DETERMINE AND STORE BETAS, STANDARD DEVIATIONS, AND SNIN FOR "BEST FIT'
    14 IF(SVELT.SMINII.LLI) GO TO 26
    30 SVE=SMINIT,LL)
    DO 20 K=1,MSIZE
        SAVE(I,K)=SIGII,*)
    26 CONTINUE
        1F(LL.EQ.NCONT) SMINIT,LLI=SVE
        CONTINLE
    100 CONTINUE
        IFINC.EQ.1) GO TO 109
        DD 116 I=1,L
    HRITETJRIS, STANDARD DEVIATIONS, AND SMIN fDR -BEST FIT.
        WRITE(JRITEG.36)
        WRITE(JRITEG,8) SMIN(I,NCONT)
        GRITEIJR
    28 MM=MMM
    C READ E VALUES FOR INTERPDLATION OF E VS CL CURVES
        READ(JREAO5,81) (E(J), J=1,MM)
        OD 46 J=1,MM
    WRITE E VALUES
        46 WRITE(JRITES,11II E(J)
        MAXIMUM NUMBER OF E VALUES=40
        DO 74 J=1,MM
        ODX=0. 10+00
        AX=5.0D+01
    48 SUM=BB(I,1)+B8(1,2)*AX*BB(I,-3)*AX**2*BB{1,4)*AX**3+BB(1,5)*AX**4*B
        1B(1,6)*AX**5+BB(1,7)*AX**6*BB(I,81*AX***
    49 IF{DABS(E(J)-SUM)-LT-I.00-04) GO TO 47
    128 IFISUM-GI.0.00400) GO 10 12
    126 IF(ETJ)-SUM) 61,47,62
    127 AX=AX+1.0
        G0 10 48
        AX=AX-DDX*AX
        G0 TO 48
| 62 AX=AX+DDX*AX
    GO TO 48
    47 CAII,J)=A
C WRITES CL, INDEX OF CM, INDEX OF E VALUE
    74 WRITE(JRITEG,69) CAII,JI,I,J
        STORE CALCULATED CL'S IN YA FOR PLOT vS CM
        STORE CALCULAT
fall
117 IF\{NC.EO.1) GO TO 2
\(\quad Y X=D A B S(B!I, x)\)
IF SIGII,K).GT.YX) GO OF BETA IS GT BETA, GO TO NEXT HIDEL
189 CONTINUE
14 IFISVE.LT.SMINII.LLI) GO TO 26 DEVIATIONS, AND SMIN FOR BEST FIT
30 SVE SMINI \(1, \mathrm{LL})\)
19 DO 20
20 SAVE \((I, K)=S I G(I, x)\)
26 CONTINUE
CONTINE NCONT SHINTI,LLI=SVE
CONTINUE
IFINC.EQ. 11 GO TO 109
(ANDARD DEVIATIONS, AND SMIN fOR •bESt fit* WR
WRITEIJRITEG,8) SMINII,NCONTI
116 CONTINUE
C READ E VALUES FOR INTERPOLATION OF E VS CL CURVES READ (JREAO5*B1) (E (J). J=1,MM) GRITE E VALUES MAXIMUN NUMBER DF E VALUES=40 \(\begin{array}{lll}\text { DO } \\ \text { DO } \\ 74 \\ & \mathrm{~J}=1, \mathrm{MM} \\ \mathrm{I}=1, \mathrm{~L}\end{array}\) \(00 X=0.10+00\) \(A X=5.0 D+01\)
(1)
IF(DABS(E(J)-SUM).LT.I. 00-04) GO TO 47
128 IF (SUM-GT.0.00 120 ) GO 1012
126 IF(EIJ)-SUM) 61,47:62
```



```
60 TO 48
\(1 \begin{aligned} & 62 \quad A X=A X+D D X * A X \\ & 125 \quad D O X=D D X * 0.5 D+00\end{aligned}\)
GO TO 48
74 WRITEIRLIEGDEX DEA, INDEX OF E VALUE STORE CALCULATED CL'S IN YA FOR PLOT VS CM DD \(10 \mathrm{~B} \quad \mathrm{I}=1, \mathrm{~L}\)
```


08 YAlJ $\mathrm{NC}=1$ $M M 1=1 / 2$ $M M=L$
$L=M M I$
GO TO 107. PERFORM LEAST SQUARES CURVE FIT ON EACH CL.CM SET OF DATA
09 CONTINUE
STOP
END
SUBROUTINE INVERT(N, M, DX)
DOUBLE PRECISION DX,PIVOTI,PIVOT 2
OIMENS ION OX(8.9)
OD $30 \mathrm{I}=1$; N
PIVOT1=1-DO/Dx(1.I)
OXIL, i)=PIVOT
OD $10 \mathrm{~J}=1$; M
1010 DX(I,J)=PIVOT1
=PIVOT1*DX(I.J)
10 CONTINUE
DO $25 \mathrm{~K}=1$, N
IF(K.EG.I) GO TO 25
2525 PIVOT $2 \times D \times(K, 1)$
OX (K, I) $=$ PIVOT $2 * P$ IVOT
0020 L=1; M
IFSL.EO.I) GO TO 20
2020 DX(K, L) $=$ DX(K,L)-PIVOT2*DXII,
20 CONTINUE
25 CONTINUE
30 CDNTINU
RETURN
ENDBROUTINE PLOT AND SUBRDUTINE POT ARE THE SAME AS SHDUN IN THE SERGRES
NUBRER PROGRAM
DATA

E=FUNCTION(L)
PCV-SN COMPLEXES
$421 \quad 8117$

${ }^{7}{ }^{7}$
$\begin{array}{lllllllllll}0.50000+01 & 0.10000+02 & 0.20000+02 & 0.30000+02 & 0.40000+02 & 0.50000+02 & 0.30000032\end{array}$

$\begin{array}{rl}0 . & 0 \\ 0 & 0 \\ 0 & 0\end{array} 01$
 $0.97140+000.38430+010.98360+010.15530+020.15370+020.152607020 .1526040 .2$ 07000001
$0.60000+01 \quad 0.10000+02 \quad 0.20000 * 02 \quad 0.30000+02 \quad 0.40000 * 020.50000+02 \quad 0.600012482$ $\begin{array}{lllllllll}0.60380 * 00 & 0.12950+01 & 0.56240+01 & 0.9986 D+01 & 0.44210+02 & 0.14940402 & 0.850872402\end{array}$

$$
000000001
$$

$\begin{array}{lllllllll}7.7 \\ 0.67000+01 & 0.10000+02 & 0.2000 D+02 & 0.25000+02 & 0: 30000+02 & 0.4000 D+02 & 0.50000+02\end{array}$ $\begin{array}{llllllllll}0.4973 D+00 & 0.9464 D+00 & 0.3443 \mathrm{D}+01 & 0.5004 \mathrm{D}+01 & 0.6764 \mathrm{D}+01 & 0.11090+02 & 0.1358 \mathrm{D}+02\end{array}$
$\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0.4000+01 & 0.4500+01 & 0.5000+01 & 0.5500+01 & 0.6000+01 & 0.6500+01\end{array}$ $\begin{array}{ccccccccc}0.3000+01 & 0.350 D+01 & 0.400 D+01 & 0.450 D+01 & 0.500 D+01 & 0.550 D+01 & 0.6000+01 & 0.6500+01 \\ 0.7000+01 & 0.750 D+01 & 0.800 D+01 & 0.850 D+01 & 0.900 D+01 & 0.950 D+01 & 0.100 .0+02 & 0.105 D+02\end{array}$ $0.1100+020.1150+020.120 \mathrm{D}+02 \quad 0.125 \mathrm{D}+02 \quad 0.1300+02$
$0^{2} 1$
$0 \begin{array}{llllll}0 & 111\end{array}$
$0.0000+000.0000+000.0000+000.0000+000.0000+000.0000+000.000 \mathrm{D}+000.0000+00$

APPENDIX E

PROGRAM LISTING AND DATA SET

FOR PIT-MAPPING PROGRAM

TABLE XXIV
INPUT REQUIREMENTS FOR PIT-MAPPING PROGRAM

Card Number	Columns	Format	Variable Name and Function
1	$1-40$	10A4	$\begin{gathered} \text { JACK - name of system being } \\ \text { studied } \end{gathered}$
2	1-10	F10.2	PKP1 - - \log of trial stabil. ity constant
	11-20	F10, 2	$\begin{gathered} \text { PKP2 - }-\log \text { of trial stabil- } \\ \text { ity constant } \end{gathered}$
	21-30	F10.2	$\begin{aligned} & \text { PKP3 - }-1 \text { og of trial stabil- } \\ & \text { ity constant } \end{aligned}$
	31-33	13	NUMPH - number of solutions
	34-39	F6. 2	DEC - initial value of step
	40-42	13	JREP - number of repetitions
	43-45	I3	NN - number of constants calculated
	46-48	13	```NF - number of trial con- stants```
	49-51	I3	JQ - number of species for which molar extinction coefficients are to be calculated
	52-54	13	JNO - number of species for which molar extinction coefficients are known
	55-57	I3	NSP - number of wavelengths
3	1-50	5F10.2	$\begin{aligned} & \text { LOGF - } \text { logs of trial stabil- } \\ & \text { ity constants } \end{aligned}$
4	1-9	313	IPO - indexes of constants to be varied

TABLE XXIV (Continued)

Card Number	Columns	Format	Variable Name and Function
5	10-18	313	JEQ - indexes of species for which molar extinction coefficients are to be calculated
	$1-10$	E10.3	PXLT - C_{L} for 1igand system, ${ }^{L}{ }_{M}^{L}$ for meta1-1igand system
	11-70	10F6.2	PH - pH's of solutions
Next M cards	1.80	16(F4.3,1X)	SPEC - absorbance readings with number of cards determined by NUMPH and NSP. See Table XX for explanation of format.
Next N cards	$1-80$	16(F4.3,1X)	CK - baseline correction with number of cards determined by NSP. See Table XX for explanation of format.
Next card	1-80	$20 A 4$	TITLE - title for plot
Next card	1-18	80A1	```MOP - title for Y-axis of plot```
	19-21		NCH - symbols for plot
	59-76		TAB1 - title for X-axis of plot
	77		ND - "."
	78		NP - "+"
	79		NM - "-"
	80		NB - blank
Next card	1-80	8E10.3	ALNT - C_{L} for metal-1igand sÿstems, zeros for ligand system

TABLE XXIV (Continued)

| Card
 Number | Columns | Format |
| :--- | :--- | :--- | | Variable Name and Function |
| :--- |
| Next MM
 cards |

C PTTMAPPTNE EROGRAM
 1WTI97), JACK(10), AH\{10), Q(9,10), EO (9;977, X14321), Y1(321), COGF (5), PK $2(8), D K(8), S O S X 16), H S X(8), P P(8), R R(8,8), V V(8), R I N V(8,8), A(8,8), B$
$3(8,8), W H(8,8), S H(8,8), E E(8,8), A L P H(10), U N T(5), C S P C(97,10), C K(80)$
 SPKI 81 ,IMI(8), IPOI日S, SIGV(8), JEQ(9)
IMENON
REAL LOGF
LOGICAL* 1 TAG/.FALSE./,TEST/.FALSE.
DATA IMI/8*O/*SIGV/8*1.1.SPK/8*0.1.Q/90*0.1
14 FORMAT
c
101 READ 15,1011 JACK
1 Formatiloab)
PKP1;PKP2, PKP3-TRIAL STABILITY CONSTANTS, NUMPH-NUMBER OF SOLUTIONS, DECINITIAL VALUE OF DIAGONAL STEP MATRIX, JREP-NUMBER OF EEPETITIONS, NN-NUMBER OF CONSTANTS CALCULATED. NF-NUMBER OF TRIAL CDNSTANTS. JO-NUMBER OF SPECIES WHOSE MOLAR EXTINCIION COEFFICIENIS ARE TO BE CALCULATED, JNO-NUMBER OF SPECIES HHDSE MOLAR.EXTINCTION COEFFICIENTS READ (5. 103) PKP1, PKP 2, PKP 3, NUMPH, DEC
, JREP, NN, NF, JO, JNO,NSP
FORMAT $F 10$-2,F10.2,F10.2,13,F6.2,13,13,13,13,13,131
LOGF-LOG OF TRIAL STABILITY CONSTANTS
READ(5,400) (LOGF(J), $j=1$,NF)
400 FORMAT (5F10.2:
C TPO-INDEX OF CONSTANTS TO BE VARIED, JEO-INDEX OF SPECIES FOR WHICH MOIAR EXTINCTION COEFFICIENTS ARE TD BE CALCULATED
401 FORMATi17131
PXLT-CL FOR LIGANO SYSTEM. CM FOR LIGAND-METAL SYSTEM, PH=-LOGI $\mathrm{H}+$ READI5,IOOI PXLT, (PHIII, I=1, NUMPH:
c^{100}
FORMATIE10.3,IOF 6.23
SPEC-ABSORBANCE READINGS, CK-BASELINE CORRECTION
SPEC-ABSORBANCE
DO $\quad 1=1$, NUMPH
7 READ (5,102) (SPECIK,I), K=1,NSP)
102 FDRMAT(161F4.3.1X1)
READ (5,102) (CK(K), K=1, NSPI
$0022 \quad \mathrm{I}=1$, NUMP
DO $22 \quad K=1$,NSP
IFISPECIK, I).LE:O.OI
E. $0.01 \operatorname{SPEC}(K, I)=0.0$
c^{22}
IITLE-TITLE FOR PLOT
READ (5,13) TTITLEII $1,1=1,20$)
C MOP-ORDINATE GOR PLOT, NCH-SYMBOLS FOR PLOT, TABI-ABSCIGSA FOR PLOT, ND,NP,NH,NB-CONTROL PARAMETERS FOR PLOT
READ (5.14) (MOP(I), $1=1,181,(N C H(1), 1=1,40),(T A B I(I), 1=1,18), N D$
alnt-Cl's for metal-ligano system, leros for ligand system READ (5,19) (ALNT(I), $1=1$, NUMPH)
C 19 FDRMAT(BEIO.3)

READT5,20) (EQT1,K). $K=1$, NSP
20 FORMATI10(F6. 1,2XI)
DO $21 \quad K=1$ ins
21 EQ $2, \mathrm{~K})=0.0$
104 FORHATIIH, 24 H ANALYSIS OF SPECTRA M-L/62H PKA AND SPECTRA OF IND IVIOUAL IONIC SPECIES BY SILLENS METHOOK WRITETS,101) (JACK(1), $1=1,10$)
105 FORMATIIMO, BH PKAI $=, F 10.3, B H$ PKAZ $=, f 10.3,8 \mathrm{H}$ PKA3 $=, F 10.3 / 8 \mathrm{H} \mathrm{N}$ IUMPH $=, 13 / 64 \mathrm{H}$ RANGE DF HAVELENGTH FRON 660 MU TO 265 MU WITH 5.0 M $2 U$ INTERVALS
HRITE(6,404) (LOGF (J), J=1, NF)
404

405 FORMAT: 405$\}$ NN, (IPPIII, IFI, NN)
 WRITE 6,406) JQ,NSP, (JEQ(J), $\mathrm{J}=1$, JQ1
 $1,13, *, J=0,4(13,0,71)$
WRITE\{6,209) JREP
WRITE(6,106) PXLT, 11 , ALNT(1), I, PH (I), I=I, NUMPH)
 $1=$,F8.3.1)
HRITE 6,6) ($(S P E C(K, 1), I=1$, NUMPH), $K=1, N S P$)
6 FORMATIIHJ, TFI2.7)
$0043 \mathrm{~K}=1$, NSP

PK $(3)=$ PKP. 3
DO $450 \quad J=1, N F$
c.

CALCULATES TAIAL
DO $10 \quad 1=1, N P K$
10 DK(I)=EXP(-2. 302585*PKII)
FKP3=1-/DK(1)
FKP2 $=1.10 K(2)$
FKP1=1. $10 K(3)$
FFFKP3.EE. 1.: FKP3 $=0.0$
c Calculates $(\mathrm{H}+1$ OD 16 I=1, NUMPH
AH(1)= EXP(-2.3025 B5*PHIII) AHHFAH(T)
CALCULATES
CALCULATES FRACTION OF LIGANO IN COMPIETEIY OISSOCIATED FORM
16 ALPH(I)=1.1I(IFKP1*FKP2*FKP 3*AHH+FKP1*FKP21*AHH+FKP1)*AHH*1, UHIN $=9999999$.
JJREP $=0$
$\mathrm{L}=(\mathrm{NN}+1) *(\mathrm{NN}+2) / 2$
c. ASSIGN INITIAL VALUES TO EE AND SH-EEIIDENTITY MATRIX, SH=PRDOUCT Of

C ASSIGN INITIAL VALUES TO EE AND SH-EEXIDENTITY MATRIX,
C TRIGONAL THIST MATRIX, S, AND OIAGONAL STEP MATRIX, H

DO $26 \quad J=1, N N$
$D D \quad 27 \quad J K=1, N N$
$1 F(J-J K)$
$28,29.2$

GO TO 2 ?
29 EE\{J, JK)=1.0
SH J. JK) $=$ DEC
27 CONTINUE
26 CONTINUE CALL THISTI SH, SOS X , NN, PP, RR,A,B,EE,WH,AH,ALPH, Q, PXLT,ALNT, DK,EO, CALL THISTISH,SQSX,NN, PP,RR,A,B,EE,WH,AH,AL
ISPEC, SOSO,NUMPH,NSP,WT,IPO,TAG,JEQ,JQ,JNO:
404 JJREP JJREP +1
WRSTE $(6,602)(1 S H(J, J K), J K=1, N N), J=1, N N)$

CALL THISTISH, SOSX,NN, PP, RR, $A, B, E E, W H, A H, A L P H, Q, P X L T, A L N T, D K, E Q$,
ISPEC, SOSO, NUMPH,NSP, WT;IPO,TAG, JEQ.JQ, JNOI
510 DO $205 \mathrm{~J}=1$; NN
AJ. JKi=EER J, JK
WH(J, JK) $=$ RR ($J+J K)$
206 CONTINUE
205 CONTINUE.
60
WRITE (6,601) (TRR(J,JK), JKEI;NN), J=1,NN
c
GALCULATE VARIATION vector to obtain constants at minimum CALL MATIN(WH, NN, A, NN, DETER
DO 207 J=1,NN
RINV $(J, J K)=A(J, J K)$
208 CONTINUE
c CALCULATE ERROR-SQUARE-SUM AT MINIMUM
CALC PINUS(PP, RINV, NN, VV, 11
$\mathrm{XB}=0.0$
$X 8=0.0$
$D O \quad 52 \quad J=1, N A$
$\mathrm{XB}_{8}=\mathrm{XB}+\mathrm{PP}(\mathrm{J}) \neq \mathrm{VV}(\mathrm{J})$
52
CONTINGE
CAII PINUSIM, BNN MSX
NIMI
NIPD
P
calculate constants at minimus
DO $54 \quad J=1, \mathrm{NN}$
JJ=1P01J1
DK(JJ)=DK(JJ)*EXP(2. 3025 85*WS $\times(J)$
PK(JJ)
CHECK FRK
CJJ)-HSX(J)
IFIOK JJI, GE, O.OI GO TO 56
NIMI $=$ NIMI +1
DK(JJ)=1.0
PK (JJ) $=-1.000$
IMI (NIMI) $=3 \mathrm{~J}$
56 MIPO 5 NO
(POTNTPO)=3J
54 CONTINUE
IF (NIMI-NE-O) CALL NIKOI B, RR,NN,EE,WH,A,XU,NIMI,IMI,NIPO,IPO,DK,PP 1, SOSX(17,SH)
IFINIMI.NE.O) 60 TO 510
WRITE(8,500) XU, PRKII), I=1;NPK)
(15. E15.5.' PKS=', (8F11.31)

KDF $=$ NS P* (NUMPH-JO)-NN
C. CALCULATE MDLAR EXTINCTION CDEFFICIENTS AND U FOR THE PBEST FIT CONSTANTS CALL ECOEF (AH,ALPH, Q, PXLT, ALNT;DK,EQ.SPEC,SOSD,NUMPH,NSP, WT,TAG.NN
1, JEQ, JQ. JNO
CHECK TO SEE IF MIKD USEO
IF(IMIII).NE.OS GO TO 701
IFISOSD.GT.UMIN.OR.TAG) GO TO 707
STORE INTERMEDIATE VALUES DF UD E THE PKS'S
704 UHIN=SDSD
DO $502 \quad 1=1$, NPK
502 SPKII)=PKITI
IF CURRENT CONSTANTS VIELD MINIMUM U AND ALL MOLAR EXTINCTION COEFFICIENTS ARE POSITIVE, CALCULATION OF STANOARD DEVIATIONS ISTATE-
707 IF (JJREP.GE.JREP.OR. 1 IASS ($(S O S D-X U 1 / S Q S D) . L E .0 .001$. AND...NDT.TAG)
160 TO 705
IFITESTI GO TO. 204
CFITAG.DRe XU.tT-0.3 GO To 507
CALCULATE SIGV
$X A=S O S D / X D F$
XA=505D/X
DD 505
TixAFRINV(J.J).
IF(T-LT.0.) GD TO 506
SIGViJ)=SQRTITH*DEC
GO 10505

CONTINUE
WRITE(6,600) (SIGV(II, $t=1$,NN)
507 DO 508 J $\mathrm{J}, \mathrm{N} \mathrm{N}$

508 CONTINUE

703 SH(J,J)=DEC
IMI(1)=0
IFITAG7 GO TO 204
TEST $=$ - TRUE
C 705
Calculate standard déviation of constants
705 CALL MULLEIRINV, B, NN, NN, NN, RR, OI
CALL MULLE $B, R R, N N, N N, N N, A, I)$
XA=SQSD/XDF
SDAB=SORT(XA)
$0053 \mathrm{~J}=1$,NPK

```
        OO=TP5(J)J=1+NN
        Jj={TPO(J)
        MB=XA*A(J,J)
        2PP(JJ)=-1.
        60 10 55
    73 PP(JJ)=SORT(XB
    55 CONTINUE
    DO 51 J*4,NPX
    51 IF(PKIJ)=EO.-1.000.OR.PK(J).EO.0.000) PP(J)=-1.000
        GUTPUT SECTION- PRINT CDNCENTRATIONS OF ALL SPECIES, MINIMUH VALUE OF
        U, BEST SET OF CONSTANTS AND THEIR STANDARD DEVIATIONS
        UR{TE{6,900) (10(J,1), J#1,8), 1*1, NUMPH)
    900 FORMAT(" ', Q4J,I) E'/1' ', BEI2.411
```



```
        K,S',(BF11.3)
    WRITE(6,706) JJREP
        WRITE{6,20i, SOSD,XU,DEC,(J,PK\JI, J=1,NPK)
    201 FORMATILHO,BH SSSD =,E15.7,6H XU =,E15.7/6H DEC =,F1O.3/(4H PKI.
        12.3H)=.F10.31)
        HRITEIG, FO21 SDAB YA, (J,PPIJ, J=1,NPKI
    202 FORMATIIH GHSDAB =,E15.5/5H XA =,EII.4/2OH STANDARD DEVIATIONS/I4
        H PK(,12,3H) =,F11.31)
        HPR(:12,3H) =,F11.3
        ILENGTH %U,* MOL. EXT: COEF. DF INDIVIDUAL
        112 FORMATI' '6X,13,6X, 3EI3.4!
        DO B K=1,NSP
        HRITEI6,112I {W,IEOCJ,Ki. J=3,51
    a CONTINUE
        DC, 1 I=1,NUHPH
        WRITE(SO4)
    4 FORMATIIHI,73H SPEC SSPC SOLUTION:
    4 FORMATMH1,73H
        00 2 K=1,NSP
        WA=EQ(1,K)*O(1,I
        00 3 J=1, 30
    JJ=JEQ\JS
    3WA=WA+EQ(JJ,K)*O(JJ,I)
    CSPC[K,1)=wA
5 FORMAT(6X,FG.3,11X,F6,3,14X,12,19X,13).
    PRITE(K,5! SPECIK.1).CS
    2 CDNTINUE
        CALCULATE X AND Y CODRDINATES, PLOT MOLAR EXTINCTION COEFFICIENTS
        NPLOT=JQQ
        i=1=JQ*NSP
        1=1
        DD & J=1,JO
        JJ= JEQ(J).
```

DO $9=1$, NSP
$Y(1)=E 0(J J, K 1 * 1.0 E-02$
${ }_{i=1}=1$
9 CONTINUE
$X H A X=265$.
$X H I N=660^{-}$
YHIN=Y(1)
DD 11 I=2,NPT
IFIYMIN.LE.YTIII GOTO 11
14 CONTINUE
YMAX=Y(1)
DO $12 \quad 1=2$,NPT
IFIYMAX.GE.Y(IH) GO TO 12
YMAX COII
CONTINUE
12 CALLPLOT IX, XMIN, XMAX,O,Y,YMIN, YMAX, 0,2,2MIN, 2MAX,O,NPT,NPLOT, 1,0,2 1) WRITE(6, 15)
 STOP

SUQROUTINE THISTISH,S2,NN,PP,RR,AA,BB,EE,WW, APB, O,T1,T,DK,EQ,SP, ISI,N.M, HT. IPO, TAG, JEO, JO, JNO
DIMENSION SH(8, $B), S 2(16), W S(8), X A(B), P P(B), R R(8,8), A A(8,8), B B(B, B)$
1, EE(8,8), CC(8),DDI81,HN(B, S),A110), B(10), O(9,iO), T(10), DK(8),
2EQ(9,97);SP(97.10),WT(97), 1PO(8), ISH(8), NEQ(9)
LOGICAL* 1 FLAG,TAG,ROH,COL
CALL ECOEFIA, $, Q, Q, T 1, T, D K$, EQ,SP; SI , N, M, WT, FLAG, NN, JEQ, JQ, JNO S211)=S1
TAGEFLAG
DO $10 \quad J=1, N N$

C vary each constant in turn, calculate u for each case $\begin{array}{lll}\text { DO } & 11 \\ \text { DO } \\ 12 & J=1, N N \\ J K=1, N N\end{array}$
DO $12 \quad \mathrm{JJ}=1 \mathrm{PO}=$
12 DK(JJ) $=$ WS(JK) *EXP(2.302585*SH(JK,J) $)$
CALL ECOEFIA, B,Q,T1,T,OK,EO,SP,SI,N,M,WT,FLAG, NN,JEQ,JQ, JNO
S2(J+1)=5)
CONTINUF
DO $13 \quad J=1, N N$
DO $14 \quad J K=1, N N$
$\mathrm{JJ}=1 \mathrm{PO}(J K)$
$\mathrm{DK}(\mathrm{J}$
14 DK(JJ)=WS(JK)*EXP(-2.302585*SH(JK,J)
CALL ECOEF $A, 8, O, T 1, T, D K, E Q, S P, S 1, N, H, W T, F L A G, N N, J E Q, J Q, J N O$ $\mathrm{JN}=\mathrm{J}+\mathrm{NN}+1$
$\mathrm{~S} 2(J N)=\mathrm{S} 1$
13 CONTINUE

INSURES TME U(M.N) VALUES ARE ON UO SIDE OF UC $\mathrm{NISH}=\mathrm{O}$
DD 50
$\mathrm{JN}=\mathrm{J}+\mathrm{N} \mathrm{N}+1 \mathrm{I}$
IF(S2(J+1).LE.S2IJNI) GO TO 50
NISH=NISH+1
ISH(NISH $=3$
ISH(NISH) $=J$
DO $51 \quad J K=2 ; N N$
$S H: J K, J\}=-S H(J K, J)$
51 SHAJK,JJ=
I $A=2 * \mathrm{NN}+1$
OO $15 \quad J=1$;NN
OD $26 \quad J K=1, N N$
16 XAIJK) $=5 H_{(J K . J)}$
$\mathrm{Jl}=\mathrm{J}+1$
vary tho constants simlatanedusly calculating a u value for each case
$8 \mathrm{DO} 19 \mathrm{JH=JL}, \mathrm{NN}$
DD $20 \mathrm{JK}=1, \mathrm{~N}$
XA(JK) $=X A(J K)+S H(J K, J M$
JJ=IPOIJK)
20. DKI JJ $)=W S(J K) * E X P(2.302585 * X A 1, S K) 3$

CALL ECDEF $A, B, Q, T 1, T, D K, E Q, S P, S 1, N, M, H T, F L: A G, N N, J E O, J O, J N O$
$1 A=(A+1$
$S 2(\mid A)=S 1$
DO $17 \quad J K=1$, NN
17 XA(JK1 $1=\mathrm{XA}(J K)-S H 1 J K, J M$
19 CONTINVE
IFINISH.EQ.OI GO:TO 42
OO $40 \mathrm{~J}=\mathrm{I}, \mathrm{NI}$ SH
JJ= ISH\{J)

40 CONTINUE
c^{42}
calculates diagonal elements of pp, rr matrices
$D D 21 J J=1, N N$
JN $=N N+J+1$
WRITE (6.60)

RR(J, J) $=152(\mathrm{~S}+1)+52(J N \rightarrow 1 / 2 .-52111$
2I CONF INUE CALCULATES OFF DIAGONAL ELEMENTS OF RR MATRIX OD $22 \quad J=1, \mathrm{NN}$ $J=J+1$
IF (JL-NN) 23.23. 22
23 IF (NISH.EO.O) GO TO 52 ROWI.FALSE.
DO 53 I $I=1$, MISM
IF (J.EQ.ISHII) ROW=.TRUE.
52 DO $24 \mathrm{JK}=\mathrm{JL}, \mathrm{NN}$
$J M=(J+1) * N N-(J+1) * J / 2+J K+1$
IFINISH.EQ.OS GO TO 55

COi= Fance

DD 54 I= 1 NISH
54 IFIJK.EQ.ISHITII COL=.TRUE.
(FIRON.AND.COL) GO TO 56
$\begin{array}{lll}\text { IFIROM.AND.-NDT.COLI } & \text { GO TO } 57 \\ \text { IFI.NOT.ROH.AND.COL } & \text { GO TO } 58\end{array}$

56 RR(J,JK) $=(S 2(J M)-S 2(1) 1 / 2,-P P(J)-P P(J K)-(R R(J, J)$ HRRIJK, JKI)/2.
 GB TD 59
5: RR(J, JK) $=(S 2(1)-52(J H) 1 / 2,-P P(J)+P P(J K)+(R R(J, J)+R R(J K, J K)) / 2$ 。
59 RR (JK. J) $=$ RR(J.JK)
24 CONTINUE
c CALCULATE a CORRECTING TRIGONAL MATRIX x
IFANN.EQ.1) GO TO 34
$\mathrm{NH}=\mathrm{NN}-1$
DO $25 \quad$ II $=1$, NM
$0026 \quad J=1, I I$
DO $27 \quad J K=1,11$
AA J. JK) $=R R(J, J K)$
$B B(J, J K)=E E(J, J K)$
27 CONTINUE
26 CONTINUE
CALL MATIN(AA, IIFBB,II,DETER $)$
DO $28 \quad J K=1,11$
$C C(J K)=-R R 111$
8 CC(JK) $=-R R(J K, 1 I+1)$
CALL PINUSICC, BB,II,00,1)

29 WHII $+1, J K)=0.0$
25 CONTINUE
34 DO $30 \quad 11=1, \mathrm{NN}$
CALL MULLEESH, WH, NN, NN, NN, AA, 11

BB(J.JKI=SHIJ.JK
SH (J, JK) ※AA(J.JK)
32 CONT I MUE
31 CONTINUE
JJ=1PO(JJ \quad N
33 DK(JJ) $=W$ SIJ)
aE TURN
c
c
c
SUBRDUTINE ECDEF (A, B, Q,T1,T,DK,EQ,SP,S1;N,M,NT,FLAG,NN,JEQ,JQ, SNO)
DIMENSION A(10), B\{101,019,10),T(10), DK(8), EQ19,97),SP197,101, WT(97
1),JEO(9),C(4,101,EC(4,97)

FDGFCALEI FLAG
FLAGEFA
FLAGEAFALSE.
IFIBT11) 20.20,10
109 FDRMAT: USE SUBROUTINE ECOEF-LHGAND PITMAPI,
601019
$0010{ }^{19} 1=1, N$
CALL EQUIL(A(1), B(1), $0, T 1, T(1), D K \dot{1}, 1)$
10 CONIINUE
C LEAST SQUARE CALCULLATIEN Of MDLAR EXTINCTION COEFFICIENTS
IFIJ.EEO.1才 GO TO 39
$S A A=0.0$
$\$ A B=0.0$
$S A C=0.0$
$S A D=0.0$
$S B B=0.0$
SBC $=0.0$
SBD=0.0
$S C C=0.0$
$S C D=0.0$
SDD $=0.0$
c
CALCULATE CONCENTRATION MATRIX
DD $21 \quad I=1, N$
IF (JO.EO:4) GO TO 24

$23 \mathrm{C}(\mathrm{J}, \mathrm{F})=0.0$
24 DO 5 JJI, J

SAAISAAAC(1)
$S A B=S A B+C 11,11 * C(2$,
SAC=SAC $+(11,1) * C\{3,1$
SAD $=5 A D+C(1,1) * C-14,1$
$S B B=S B B+C(2,1) * * 2$
$S B C=S B C+C(2,1) * C(3,1)$
$S B D=S B D+C(2,1) * C(4,1)$
SBD $=S B D+C(2,1) * C(4$,
$S C D=S C D * C(3 ; 1) * C(4,1)$
$S D D=S D D+C(4,1) * F 2$
21
1F (JQ-3) 30.28,27
C FOUR SPECIES
27 DETM=DETER4 ISAA, SAB, SAC, SAD,SAB, SBB + SBC, SBD, SAC, SBC, SCC, SCD, SAD 60 TO 34
C 28 THREE SPECIES
28 DETM $M E T E R 3$ SSAA, SAB, SAC, SAB, SBB, SBC, SAC, SBC, SCC GO TO 34
c
30 DETM=SAA*SBB-SAR*SAB
34 IF(OETM) $35,13,35$
13 WRITEI6,108)
108 FDRMATITH. DETM $=0$., CHECK MODEL':
19. CALL EXIT
$350036 \quad k=1.1$ $S A U=0.0$
$S Q U=0.0$
$S E U=0.0$
$S E U=0.0$
SEU $=0.0$
SOU $=0.0$
DO $37 \quad 1=1, \mathrm{~N}$
$U S=0.0$
$38 W S=W S+E Q(J, K)=Q(3,1)$
$W S=W S S E Q(J, K) *$
$S=S P(K, 1)-W S$
$S A U=S A U+C(1 ; 1) * S$
SBU=SBU+C(2,1)*S
SCU=SCU*C(3.t)*S

37 continue
1Ff.JO-3) 440 66.45
TWO SPECTES
DETM $=$ SAU*SBB-SBU*SAB DETM2 $=5 A A * S B U-S A B * S A U$ $E C(4 ; K)=0.0$
$E(13, K)=0.0$
GO TO 51
TMREE SPECIES
c
46 DETM $=$ DETER 3 SAU, SBU, SCU, SAB ${ }_{*} S B B_{0}$ SBC. $S A C, S B C, S C C 1$ $D E T H 2=O E T E R 3$ I $S A A, S A B, S A C$, $S A U, S B U$. SCU, SAC, SBC, SCC
 ECT4. K K $=0.0$ GO TO 49
45 DETMI =DETER4 SAU, SBU, SCU, SDU, SAB, SBB, $5 B C, 5 B D, S A G, S B C, S C C, S C D, S A D$, 1SBO.SCO. SOD SBO. SCO: SOD
DETMZ $=$ DETER4 1SBD,SCD, SDDI DETM3 $=0 E$ YER4
$1 S B 9 . S C D, S D D$; 1 SBU.SCU.SDUI
ECT4,K)=DETM/DETM
CORRECTS FOR NEGATIVE MOLAR EXTINCTION COEFFICIENTS
4 B SI=51+(TI*EC(4;K))**2*100.
$49 \mathrm{EC}(3, \mathrm{~K})=\mathrm{DETM} / \mathrm{IOETM}^{2}$
IF (EC(3,K1) 50,$51 ; 51$
$S 1=S 1+(T 1 * E(3, K) i * * 2 * 100$.
51 ECT2,KI=DETM2 JDETM
51 EC(2,KI=DETM2/DETM
IFIEC(2,K1) $52,53,53$
$5251=51+(T 1 * E C(2, K)) * * 2 * 100$ 。
$53 \mathrm{EC}(1, K)=$ DETM1/DETM
IFIECI $1, K 1) 54,36,36$
$S 1=S 1+(T 1 * E C(1, K 1) * * 2 * 100$.
$54 \mathrm{Sl}=51+1 \mathrm{~T}$
36 CONTINUE
GO TO 31
C DNE SPECIES

```
        OD So,K=1,M
        MP=0.0
        00}61\quad1=1,
```



```
    62WS=WS+EQ(J,K)*O(J,I
        WP=WP+{SP(K,IT-WS)
    S1 WQ=WQ+Q(JJ,H
    60 IF(EC(1,K)-LT_O.) S1=S1+IT1*EC(1,K1)**2*100.
    31 IFIS1.NE.O.t FLAG=.TRUE.
        CALCULATE ERRDR-SOUARE-SUM
        DO 55 I=1,N
        00 56 k=1;
        WS=0.0
        OD 32 J= JEQ(J)
        EQ(JJ,K)=EC(J,K)
    32 HS = WS + EO(JJ,K)*0{JJ,I
    OO 33 }\quad\textrm{J}=1,3N
    33 WS=WS*EQ(J,K)*O(J,I)
    56 S1xS1+(SP(K,1)-MS)**2*WT(K)
    55 CONTINU
    ENO
C
    SUBRJUTINE MIKRIB,RR,NN,EE,WH,A,XU,NIMI,IMI,NIPD,IPO,OK,PP,SO,SHI
    GRITEJ6;1)
    FQRMAT(IH .1.7HNEGATIVE CONSTANT
    CALIURN
    END
C
FUNCTION DETER 3(AA,AB,AC,BA,BB,BC,CA,CB,CC
    EVALUATES 3RD GRDER DETERMINANTS
    OETER 3=AA*(BB*CC-BC*CB)-AB* (BA*CC-BC*CA)+AC*(BA*CB-BB*CA)
    RETURN
    END
C
        FUNCTION DETER4IAA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD)
        EVALUATES 4TH ORDER DE TERMINANTS
        DETER4=AA*DETER3{BB,BC;BD,CB,CC,CD,DB,DC,DD)-AB*OETER3{BA,BC,BD,CA
        1,CC,CD,DA,DC,DD)+AC*DETER3(BA,BB,BD,CA,CB,CD,DA,DB,DDI-AD*DETER3I
    2BA,BB,BC,CA,CB,CC,OA,DB,DC)
    RETURN
C
```

C SUBRDUTINE NEWTRSI X, J.FX,DERIVI
SOLVES FOR CONCENTRATIONS OF SPECIES USING NEUTON'S METHOD
jxJ+1
1 T = 1.0
3 RETURN
2 RETURN
IF (ABS $(|X P-X| /(X P+X)\} . L T .1 .0 E-3)$ GO TO
$5 \begin{aligned} & x=x p \\ & T=T+1\end{aligned}$
IFIT.LE.50.01 G0 TO
$4 \begin{aligned} & \mathrm{J}=0 \\ & \mathrm{x}=\mathrm{xp}\end{aligned}$
RETUR
RETU
END
C
C
C
C SUBROUTINE MATINIA,N,B,M, DETERS
MATRIX INVERSION
OIMENSION IPIYOI 101 , AC 8,8$)$, B($8,81,1$ NDEX(10,2), PIVOT 110
OIMENSIOA
EQUIVALENCE IVIROW, JROW), (ICDLU, JCOLUI, (AMAK, T, SHAP)
initialization
10 DETER=1.0
$15 \mathrm{DO} 20 \quad J=1$
$20 \mathrm{IPI} \mathrm{VOIJi=0}$
c
$00 \quad 550 \quad 1=1, N$
DO 550 I=1iN
SEARCH FOR PIVOT ELEMENT
40 AMAX $=0.0$
45 DO 105 JxinN
50 IFIPIVOIJI-1) $60,105,60$
60 DO $100 \quad K=1, N \quad 105,60$.
70 IFiPIVO(KI-1) 80, 100,740
80 IFIABS(AMAXI-ABS(ATJ,K)I) 85,100,100
IRDW $=1$
I
90 ICOLU=K
95 AMAXXARJ,K
100 CONTINUE
105 CONTINUE
110 IPIVD(ICOLU)=IPIVO(ICOLU)+1
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
130 IFIIROW-ICOLUI $140,260.140$
140 DETER=-DETER
140 DETER =-DETER
150 DD $200 \quad L=1, N$
150 DD $200 \quad L=1, N$
160 SHAP $\pm A(T R O W+L)$
170 AlIROW, ()$=A(I C O L U, L)$
200 AlICDLU,LI $=5 W A P$
205 IF(M) 260, 260,210
210 DO $250 \quad i=1, \mathrm{M}$
220 SHAP=BIIROW, ${ }^{2}$)
230 B(IROW.L) $=B 1$ ICOLU.L
250 B ITCOLU,LIFSNAP
270 INDEX $(1,2)=1$ COLU

320 OETER=DETER*PIVOTII
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
330 A(ICOLU. ICOLU)=1
340 DO 350 I $=18$ N
355 (FIM) $380,380,360$
360 00 $370 \quad L=1,7$
370 BiICOLU-LI=BIICOLU,LIVPIVOT(I)
c
BBO REDUCE NON-PIVOT ROWS
380 DD $550 \quad 21=1 \% N$
390 IFILI-ICOLU) 400,550,400
420 AILI, ICOLUS=0.0
$43000 \quad 450 \quad L=1, N$
450 A(LI,LI=ATLI*LI-ACICOLU.LI*T
455 IF(M) $550,550,460$
460 D0 $500 \quad L=1, M$
550 CONTINUE
C INTERCHANGE COLUNNS
$60000710 \quad 1 \neq 1 . N$
$610 \quad L=N+1-1$
620 IFINDEX(L, 1)-INDEX(t,2) $) 630,710,630$
630 JROW=INDEXIL,1)
550 DO $705 \quad k=1$ N

670 A(K, JROH) \equiv AIK, JCOLUI
700 ACK. JCOHUI = SHAP
705 CONTINUE
710 CONTINU
40 RETUR
ENO
\mathbf{c}
\mathbf{c}
\mathbf{c}
\mathbf{c}
SUBRDUTINE MULLEIAMAT, BMAT, NRAD,NMEL, NKOL, CMAT, I FRAM)
MATRIX MULTIPLICATION
MATR I X MULTIPLICATION
DIMENSION AMAT $(B, B), B M A T(B, B), C M A T(B, B)$
DO 10 III.,NRAD
0 JI,NKOL

IFIIFRAM-11 $12,11,12$
$11 \mathrm{H}=\mathrm{W}+\mathrm{AMAT}(1, \mathrm{M}) * \mathrm{BMAT}(\mathrm{M}$,
12 IFITFRAM)
13 W=H+AMATII, 14, 13, 14 BMAT (J,M)
GD TO 30
14 = $=$ H+AMAT $(M, I) *$ BMATIK, J)
30 CONTINUE
CMATII,J)=W
CONTINUE
20 CONTINUE
10 CONTINUE

RETURN

c
c
C SUBROUTINE PINUS\{PINNE,AMAT,N, PONNE, (FRAM)
c MULTIPLICATION OF A MATRIX AND A YECTOR IMENS ION AMAT (8,8), PINNE(B), PONNE (B)
DO 10 IFI,N
$y=0.0$
00
$00 \quad \mathrm{~J}=1, \mathrm{~N}$
$11 H=H+P I N N E(J) * A M A T i{ }^{2}$
GO TO 20

CONTINUE
PONNE $11=1$
10 CONTINUE
END

SUBRDUTINE EQUILIX,Y,Q+T1,TZ,DK,II
C DETERMINE CONCENTRATIONS OF SPECIES USING NEHTON'S METHOD AND AN ITERATIVE PROCEDURE. MODEL = ML, ML2, MZL
DIMENSION O(9,10), DK(8), NNSN(900). NNL(900)
OATA NNSN/900*0/;NNL/900*O
$J=0$
c $\quad \begin{aligned} & K=0 \\ & \text { TRIAL CONSTANTS }\end{aligned}$
TRIAL CONST
B1=0K $11 / x$
$3=0 \times 131 /$
$011,11=52$
$0(2, I)=T 1$
1 NQ $=0$
$K=K+1$
NSN $=0$
NSN
$A S N=O$
S
$\mathrm{A} N \mathrm{~N}=\mathrm{OR} 2,1$
$\mathrm{NO} \mathrm{A}=\mathrm{NQ+1}$
C. CALCULATE CDNCENTRATIONSS OF PFREE LIGAND CALL NEUTRS(Q11,1),J,FX,DFX

12
OFX $=1 .+81 * A S N+4-* B 2 * A S N * O(1,1)+B 3 * A S N * * 2$
IF N, GT. O
IFIQIFII-LT.O.O.OR.QR1,II.GT-T2.OR.NQ.GE.511 GO TO
3 NSN=NSN+1 CALCULATE CONCENIRATION OF FREE METAL
CALEULATE CONCENIRATION OF FR
CALL NEWTRS $(Q(2,1), J, F 2$, DF2

$12,11 * 011,11-T 1,11+82 * 0(1,11 * Q 11,11+4, * 83 * 012,11 * 0(1,1)$

TFIJGTR.03
 NSNIKI $=$ NSN

FIOTZ.11.LT. O.O.OR.OL2.11-GT.T1.OR.NSN.GE.511 GO TO IFIABSICOLZ,I-ASNI/
CONCENTRATION OF ML
Q 13,1$\}=81 * Q\{2,11 * 0(1,1\}$
CONCENTRATION OF MLZ
($4,11=82 * 0(2,1) * 0(1,1) * 011,1$
CONCENRRATION OF M2L
A5,1I $=83 * 0(2,1)=0(2,1) * 011,1)$
80 FORAAT(C04, NO $=1(2513)$
WRITE(6.990) (NNSN(JI, J=1,K)

RE TURN
4 WRITE16,101
('0', RODT APPROXIMATED IS INADEQUATE'I
KRTYE (6,9001 101 J, I): J=1, 8)

MRITE\{6.980) (NNL(J), J=1,K)
CALL EXIT
END
$\underset{c}{\mathbf{c}}$

subroutine plot ano subroutine pot are the same as shown in the spectes NUMBER PRDGRAM

dara
SN-PCV SERIES 111
$\begin{array}{lllllllllllllll}-7.80 & -14.74 & -13.00 & 7 & 0.10 & 5 & 3 & 3 & 3 & 2 & 80\end{array}$
$12^{2} \quad 3 \quad 4 \quad 5$
$\begin{array}{lllllllll}3.000 E-05 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00\end{array}$
0045005300630075008600960105011201190124012701280128012801270125 $\begin{array}{lllllllllllllllllllllll}0124 & 0120 & 0119 & 0113 & 0109 & 0103 & 0096 & 0088 & 0079 & 0072 & 0065 & 0058 & 0055 & 0051 & 0050 & 0048 \\ 0048 & 0046 & 0047 & 0048 & 0048 & 0049 & 0050 & 0050 & 0051 & 0051 & 0051 & 0052 & 0053 & 0053 & 0054 & 0054\end{array}$ $\begin{array}{lllllllllllllllllll}0048 & 0046 & 0047 & 0048 & 0048 & 0049 & 0050 & 0050 & 0051 & 0051 & 0051 & 0052 & 0053 & 0053 & 0054 & 0054 \\ 0053 & 0052 & 0051 & 0050 & 0050 & 0051 & 0052 & 0055 & 0058 & 0053 & 0068 & 0070 & 0070 & 0070 & 00772 & 0069\end{array}$ $\begin{array}{lllllllllllllllllllll}0 & 0067 & 006 B & 0069 & 0071 & 0072 & 0074 & 0078 & 0081 & 0085 & 0090 & 0089 & 0089 & 0084 & 00820082 & 0082\end{array}$ 00550071008501000115013110148015901710180018801940197020002030206 020702090209021002040198 0186 0172015601370120010900890009000830079 0077007300710071 $\begin{array}{llllllllllllllll}0078 & 0077 & 0015 & 0072 & 0070 & 0069 & 0071 & 0074 & 0080 & 0088 & 0092 & 0095 & 0093 & 0090 & 0089 & 0084 \\ 0081 & 0079 & 0082 & 0084 & 0088 & 0089 & 0094 & 0100 & 0110 & 0120 & 0123 & 0119 & 0114 & 0108 & 0102 & 0100\end{array}$
 $\begin{array}{llllllllllllllllllll}0421 & 0451 & 0489 & 0532 & 0562 & 0576 & 0556 & 0518 & 0461 & 0398 & 0340 & 0291 & 0252 & 0223 & 0200 & 0180\end{array}$ $\begin{array}{llllllllllllllllllll}0166 & 0153 & 0146 & 0139 & 0134 & 0132 & 0130 & 0130 & 0129 & 0128 & 0127 & 0127 & 0128 & 0130 & 0132 & 0136\end{array}$ $\begin{array}{lllllllllllllllllllllll}0138 & 0139 & 0138 & 0137 & 0133 & 0136 & 0139 & 0147 & 0159 & 0172 & 0180 & 0179 & 0167 & 0151 & 0137 & 0120\end{array}$ $\begin{array}{lllllllllllllllllll}0111 & 0108 & 0112 & 0119 & 0127 & 0133 & 0145 & 0163 & 0194 & 0226 & 0232 & 0218 & 0203 & 0188 & 0175 & 0169 \\ 0102 & 0125 & 0145 & 0167 & 0189 & 0214 & 0239 & 0267 & 0293 & 0324 & 0351 & 0376 & 0403 & 0431 & 0468 & 0511\end{array}$

 $\begin{array}{llllllllllllllllllllllll}0196 & 0199 & 0199 & 0198 & 0198 & 0200 & 0208 & 0223 & 0241 & 0257 & 0264 & 0256 & 0229 & 0203 & 0178 & 0156\end{array}$
 $\begin{array}{lllllllllllllllll}0118 & 0140 & 0162 & 0182 & 0203 & 0224 & 0246 & 0276 & 0306 & 03339 & 0371 & 0408 & 0445 & 0488 & 0541 & 0608\end{array}$ $\begin{array}{llllllllllllllll}0701 & 0821 & 0969 & 1104 & 1224 & 1278 & 1262 & 1193 & 1087 & 0951 & 0812 & 0686 & 0576 & 0491 & 0429 & 0381 \\ 0341 & 0308 & 0286 & 0268 & 0257 & 0249 & 0243 & 0239 & 0236 & 0233 & 0232 & 0231 & 0233 & 0237 & 0244 & 0256\end{array}$

 $\begin{array}{llllllllllllllllllllllllllll}0797 & 0921 & 1066 & 1210 & 1321 & 1371 & 1348 & 1271 & 1158 & 1025 & 0872 & 0739 & 0631 & 0547 & 0487 & 044.1\end{array}$ $\begin{array}{llllllllllllllll}0407 & 0378 & 0362 & 0351 & 0348 & 0349 & 0350 & 0352 & 0353 & 0356 & 0358 & 0359 & 0361 & 0365 & 0370 & 0378 \\ 0382 & 0381 & 0376 & 0367 & 0362 & 0361 & 0368 & 0385 & 0405 & 0420 & 0420 & 0397 & 0357 & 0313 & 0278 & 0247\end{array}$

 $\begin{array}{llllllllllllllllllllllll}0788 & 0923 & 1062 & 1209 & 1335 & 1387 & 1368 & 1295 & 1187 & 1051 & 0913 & 0776 & 0668 & 0592 & 0539 & 0499\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0519 & 0511 & 0496 & 0480 & 0466 & 0456 & 0456 & 0466 & 0482 & 0491 & 0489 & 0463 & 0420 & 0378 & 0339 & 0306\end{array}$ $\begin{array}{lllllllllllllllll}0287 & 0286 & 0296 & 0311 & 0327 & 0341 & 0366 & 0411 & 0488 & 0572 & 0601 & 0594 & 0585 & 0558 & 0512 & 0474 \\ 0000 & 0000 & 0001 & 0001 & 0002 & 0003 & 0004 & 0005 & 0006 & 0006 & 0007 & 0008 & 0008 & 0008 & 0008 & 0009\end{array}$
 0019001900200020002000200021002100210021002100210021002200220022 0023002400240024002500270029003100330035003700390041004800520052 $00510051 \quad 00510050.004900480046004400430042004000390038003700370038$ EXIINCTION COEFFICIENTS FOR SN-PCV COMPLEXES IN IM CL-
XT.CDEFF, *10**- 20 . $0.600 \mathrm{E}-051.000 \mathrm{E}-05$ 2.000E-05 3.000E-05 4.000E-05. 5.000EEO5 6.000E-05 $\begin{array}{llllllllll}000286 & 000286 & 000143 & 000286 & 000286 & 000286 & 000286 & 000286 & 000429 & 000429 \\ 000286 & 000143 & 000143 & 000286 & 000429 & 000571 & 001143 & 001714 & 002429 & 003429\end{array}$ 004143 050714 159571 133000
065286

000143
005429
005429
058571
166857 05857
166857
123143 123143
063429 063429
064714

000143
007714
007714
068714
171000
171000
112429
112429
062286 062286
065714

000286
010143
010143
080714
174000
080714
174000
103000
103000
061143
071571

013000
093857
093857
173857
094286 094286
061000 061000
080714

000571
017000
104857 017000
104857
171429 104857
171429
087143 087143
060429 060429
096143

011857
117857
117857
166571
080714
080714
060286
060286
107857

027429
129714
129714
160714
160714
075286.
075286
060429 060429
106000

033143
140429
140429
152000
071429
061286
095143

000429
003429
040857
150429
143429
067857
062429
078429

EQUIL for Ligand Systems

```
SUBROUTINE EQUIL(X,Y,Q,TI,T2,DK,I)
DIMENSION Q(9.101,DK(8)
FKP3=1./DK\1)
FKP 2=1./OK(2)
FKP1=1./DK(3)
IF(FKP3.EQ.1.1 FKP3=0.0
IF(FKP2.EQ.1.) FKP2=0.0
XALPH=1./(1.+X*FKP1*X*X*FKP1*FKP2*X*X*X*FKP1*FKP 2*FKP 3)
XB=TL*XALPH
Q(1,I)=XB
Q(2,I)=XB*X*FKP1
Q(3,I)=XB*X*X*FKP1*FKP 2
Q(4,I)=XB*X*X*X*FKP1*FKP2*FKP3
RETURN
END
```


APPENDIX F

STABILITY CONSTANTS OF TIN-PYROCATECHOL

VIOLET COMPLEXES FROM COMPUTER

ANALYSIS OF SPECTRAL DATA

Abstract

Six computer programs have been collected, modified, or written and used to interpret absorbance data. These programs constitute a powerful method for analyzing spectrophotometric data obtained from systems containing mononuclear, polynuclear, or a mixture of mononum clear and polynuclear complexes. Three acid dissociation constants of pyrocatechol violet in $\mathrm{M} \mathrm{Cl}^{-}$solutions were determined with $\mathrm{pK}_{1}=0.261 \pm 0.003, \mathrm{pK}_{2}=7.508 \pm 0.001$, and $\mathrm{pK}_{3}=8.332 \pm 0.003$. Molar extinction coefficients of pyrocatechol violet species were calculated, Spectrophotometric data from 1 M Cl solutions of tin(IV) and pyrocatechol violet have been interpreted on the basis of the formation of $1: 1,1: 2$, and 2:1 metal-ligand complexes with $\log \beta_{11}=7.801 \pm 0.133, \log \beta_{12}=14.899 \pm 0.297$, and $\log \beta_{21}=12.922 \pm 0.342$. Molar extinction coefficients of tin(IV)pyrocatechol violet complexes were calculated.

Introduction

Studies of the absorption of visible and ultraviolet radiation have long been used to obtain information about equilibria in solution. However, since the optical absorbance of a solution is governed by a characteristic intensive factor, the extinction coefficient, as well as by the concentration of each absorbing species, interpretation of measurements of this type is complicated if several complexes coexist. Many spectrophotometric methods used in quantitative analysis have been developed without complete knowledge of the nature and properties of the absorbing species. Therefore, unambiguous methods for the determination of the number, nature, and stabilities of several absorbing
species in solution are needed.

When systems composed of several complexes in equilibrium are studied by spectrophotometry, equations describing the systems are usually nonlinear in the unknown ooefficients. Least squares curve fitting, iterative calculations, the method of continuous variations, and other graphical methods often used in these studies attempt to determine two or three of these parameters in a single experiment or a single calculation. Except in the simplest cases, the accuracy and precision of the experimental data are not sufficient to produce unambiguous results.

Experimental

Apparatus. All glassware used was Pyrex and volumetric glassware met ACS requirements. Only Class A volumetric glassware was used. Scientific Cell Company fused silica cells were used. The matched silica cells were rectangular with a one centimeter path length.

Instruments. All weighings were performed on a Mettler Type H5 balance. Samples were weighed to ± 0.001 grams. A Beckman Zeromatic pH meter equipped with a Sargent/Jena $S-30080-15 \mathrm{C}$ saturated calomel reference electrode and a Sargent/Jena $S-30050-15 \mathrm{C}$ glass electrode was used for all pH measurements. The pH meter was standardized before use with buffers prepared from pHydrion Buffer powders. Absorbance measurements were made with a Cary Recording Spectrophotometer, Model 14. All measurements were made in the visible or ultraviolet regions of the spectrum. Absorbance readings were taken from the spectra of the solutions at $50 \AA$ intervals. All readings were estimated to $\pm 0,001$
absorbance units, These absorbance readings were then punched on computer cards for analysis.

Reagents. Distilled $\mathrm{H}_{2} \mathrm{O}$ which had been passed through a mixed cationanion exchange resin was used throughout. The pyrocatechol violet (PCV or 3, $3^{\prime}, 4^{\prime}-t r i h y d r o x y f u c h s o n e-2^{\prime \prime}-$ sulfonic acid) was Eastman reagent grade. Stock solutions of PCV were prepared by dissolving appropriate amounts of the reagent in distilled $\mathrm{H}_{2} \mathrm{O}$. Baker Analyzed Reagent grade sodium stannate, $\mathrm{Na}_{2} \mathrm{SnO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, was heated at $160^{\circ} \mathrm{C}$ for approximately 24 hours to remove water of hydration. Stock $\operatorname{Sn}(I V)$ solutions were prepared by dissolving $\mathrm{Na}_{2} \mathrm{SnO}_{3}$ in 6.13 M HCl . Baker Analyzed Reagent grade hydrochloric acid was used for solution preparation and sodium chloride solutions were used to provide a constant ionic medium.

Pyrocatechol Violet Solutions, Visible and ultraviolet spectra of aqueous solutions of pyrocatechol violet at a fixed concentration of $8 \times 10^{-5} \mathrm{M}$ but of different pH 's were recorded. The pH was varied from 0.42 to 8.18 using appropriate amounts of HCl or NaOH solutions. Solution pH was measured just prior to recording of the spectra. The ionic strength was held constant by maintaining the Cl^{-}concentration at 1M, Solution compositions are given in Table III and the spectra in Figures 5 and 6.

The spectra of another series of PCV solutions were determined with the PCV concentrations ranging from $2 \times 10^{-5} \mathrm{M}$ to $7 \times 10^{-5} \mathrm{M}$ in $1 \mathrm{MCl}{ }^{-}$media, The pH of each solution was adjusted to 3.00 ± 0.05 with HCl or NaOH solutions. Solution compositions are given in Table IV and the spectra in Figure 10.

Tin(IV)-Pyrocatechol Violet Solutions. The visible and ultraviolet spectra of four series of solutions, each with a different total $\operatorname{Sn}(I V)$ concentration, were obtained. The compositions of these solutions are given in Tables VI, VII, VIII, and IX with the corresponding spectra given in Figures 12, 13, 14, and 15. These solutions were prepared by adding the required volume of $P C V$ solution to an aliquot of $\operatorname{tin}(I V)$ solution. After mixing thoroughly, enough 3.00 M NaCl was added to give a solution 1 M in Cl^{-}. The solution was diluted to volume with distilled $\mathrm{H}_{2} \mathrm{O}$ and the pH adjusted to 3.00 ± 0.05 with small amounts of HCl or NaOH. The dilution error was negligible. After adjusting the $p H$, the spectrum was obtained using a reference solution of 1 M NaCl .

Results and Discussion

Computer Programs. Six computer programs are used for the analysis of the absorbance data:

1) Matrix Rank Program
2) Species Number Program
3) Corresponding Solutions Plot Program
4) Corresponding Solutions \bar{n}, [L] Program
5) Formation Function Program
6) Pit-Mapping .

These programs constitute a generally applicable and objective method for analyzing spectrophotometric data obtained from multicomponent systems.

The matrix rank program cal culates the number of components that contribute to the absorption spectrum of a multicomponent system. The only assumption involved is that Beer's law is valid for each component.

The program calculates the number of absorbing species by performing a series of row and column operations on an absorbance matrix.

The species number program determines the number of absorbing species and gives information concerning trends in species number with wavelength or solution composition. This method is based upon the rank of an absorbance matrix.

The corresponding solutions plot program calculates corresponding solution functions, E, which are used as input for program 4. This program also plots the E functions versus total ligand concentration at each metal concentration. The corresponding solutions \bar{n}, [L] program calculates formation function data using the E functions, C_{L} and C_{M} concentrations, and the molar extinction coefficients of the ligand as input data. The formation function program calculates stability constants from the \bar{n}, [L] data obtained in program 4.

The pitmapping program is a general least squares curve fitting program which is valid for nonlinear as well as linear functions. This program, using absorbance readings, C_{L} and C_{M} concentrations, and pH 's as input data, calculates stability constants and molar extinction coefficients for mononuclear, polynuclear, or mixed mononuclear and polynuclear complexes.

Flow charts, input requirements, program listings, and typical data sets for programs 1, 2, 3, and 4 are given in Appendices A, B, C, and D. Program 5 is published elsewhere (1). A set of input requirements for the pit-mapping program is given in Appendix E along with a program listing and a typical data set. Aflow chart is given elsewhere (68).

Pyrocatechol Violet. The results of the computer analysis of the spectra obtained from the solutions given in Table III indicate the
presence of 4 pyrocatechol violet species over the pH range 0.42 to 8. 18 (Table X). The spectra are interpreted in terms of stepwise acid dissociation with the corresponding pK values determined in the pitmapping program being:

$$
\begin{aligned}
& \mathrm{pK}_{1}=0.261 \pm 0.003 \\
& \mathrm{pK}_{2}=7.508 \pm 0.001 \\
& \mathrm{pK}_{3}=8.332 \pm 0.003
\end{aligned}
$$

Tin(IV)-Pyrocatechol Violet. The results of the computer analysis of the spectra obtained from the solutions given in Tables VI, VII, VIII, and IX indicate three tin(IV)-pyrocatechol violet complexes are formed (Tables XII, XIII, XIV, and XV; Figures 16 through 25). The mole ratio method of Yoe and Jones (9) and the method of Holme and Langmyhr (15) were used to obtain information concerning the composition of the complexes. The results, shown in Figures 28, 29, and 30, indicate the presence of $1: 1,1: 2$, and 2:1 metal-1igand complexes.

The pit-mapping program was used to calculate the stabilities and molar extinction coefficients of these complexes, since the method of corresponding solutions is not valid if polynuclear species are present. The values obtained are shown below and are tabulated in Table XVIII.

$$
\begin{aligned}
& \log \beta_{11}=7.801 \pm 0.133 \\
& \log \beta_{12}=14.899 \pm 0.297 \\
& \log \beta_{21}=12.922 \pm 0.342
\end{aligned}
$$

The molar extinction coefficients of the tin(IV)-pyrocatechol violet
complexes and the four forms of pyrocatechol violet are tabulated in Table XIX.

Acknowledgement

This work was supported in part by the Research Foundation and Computer Center at Oklahoma State University, and by a training grant from the Federal Water Quality Administration.

VITA
 3
 William Duane Wakley
 Candidate for the Degree of
 Dactor of Philosophy

Thesis: STABILITY CONSTANTS OF TIN-PYROCATECHOL VIOLET COMPLEXES FROM COMPUTER ANALYSIS OF SPECTRAL DATA

Major Field: Chemistry

Biographical:
Personal Data: Born in Chandler, Oklahoma, January 23, 1942, the son of Mr. and Mrs. William A. Wakley.

Education: Graduated from Chandler High School, Chandler, Oklahoma, in May, 1959; received the Bachelor of Science degree from Oklahoma State University in May, 1964, with a major in Chemistry; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1970, with a major in Chemistry.

Professional Experience: Graduate teaching assistant, Chemistry Department, Oklahoma State University, 1964-1968.

Member: Phi Lambda Upsilon, Phi Kappa Phi, Sigma Xi.

[^0]: *Accepted value.

[^1]: *Accepted value.

