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PREFACE 

This work presents a numerical method to calculate the 

buckling modes for cylindrical panels which are simply 

supported along the curved edges o Trigonometric'-power, serie.s 

displacement expressions are substituted into partial 

differential equations similar to Donnell's stability 

equations for circular cylinders. Consideration of a 

variable radius of curvature, expressed in terms of a power 

series in the transverse coordinate, is the additional 

feature of the equations. Use of the mixed-series dis

placement expressions allows treatment of a variable radius 

of curvature and also of any boundary conditions along the 

straight edges of the panelo This method is presented as a 

tool useful in estimating the buckling resistance for non

circular panels, which are common in some types of 

structures todayo 
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CHAPTER I 

INTRODUCTION 

1o1 Statement of the Problem 

The study of buckling of structures has been of 

practical importance for decades and especially so for 

modern aerospace~ submarine, and similar metal structures. 

Recently 9 the more realistic cases involving large

deflections, creep 9 dynamic effects, initial imperfections, 

and so forthp have been emphasized in research (1). 

However, some interesting cases remain to be treated with 

the classical theoretical assumptions such as small 

deflections, undeformable normals, plane stress in the thin 

shell wall~ and Hookean materialo Moreover, the simple 

theory is a guide or starting point for more elaborate worke 

Classical buckling of cylindrical panels is a worthwhile 

field to investigate since panel members are used in 

aircraft 1 ships 9 and other stiffened structureso Recent 

works by Batdorf (2) 9 Chu and Krishnamoorthy (3), Singer, 

Meer and Baruch (4), and many others, have investigated 

circular cylindrical panels under various loadings and with 

several boundary conditionso The basis for these works 

was the Donnell shell equations first set forth in 1933 ( 5 ). 
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These famous equations proved to be a useful simplification 

in shell theory and a concise discussion of their applic

ability appears in Kraus (6), pages 221-2290 

Noncircular cylindrical shells and panels are an 

obviously more general ca~rn to be studied 9 especially since 

they are a common structure componento Marguerre first 

published a buckling paper in this field in 1942 (7), in 

which he analyzed open noncircular shells, simply supported 

along the longitudinal edges and subj ect'ed to torsion and 

compressiono Marguerre proposed, in regard to. buckling, 

2 

to "regard minimum curvature alone as decisive," a key 

pointo This work set the pattern for Kemper and Romano (8), 

who analyzed a noncircular shell under lateral pressure for 

stresses, and also for the present worko 

This study presents a general method to analyze the 

classical buckling behavior of ,cylindrical panels which are 

simply supported along the curved edgesa The boundary 

conditions are arbitrary along the straight edges and the 

radius of curvature may vary in the transverse (or circum

ferential) directiono The method also can be applied to 

closed shells with appropriate conditions of symmetry so 

that a segment of. the closed she11 · might be analyzed as an 

open shell, or panelo The basic differential equations used 

are analogous to Donnellns shell equationso The method was 

verified by comparisons with the results of other 

investigators a 



3 

1o2 Solution Approach 

The typical panel, along with the sign conventions, is 

shown in Figures 1 through 4o The local coordinate system 

is composed of the s, x, and z axes, which provide the 

transverse, longitudinal, and normal coordinates, respec

tively. The corresponding displacements are denoted by v, 

u, and w. The rotation components are ws and Wx• The local 

value of the radius of curvature is denoted by rand the 

shell thickness is ho The normal and shearing stresses, 

and the normal force, shearing force, bending moment, and 

twisting moment resultants follow conventional notation (9). 

Marguerre (7) expressed the panel curvature in terms 

of a trigonometric polynomial function of the transverse 

coordinate. Marguerre also indicated how to derive the. 

cross.section, given the curvature expression. Like 

Kemper (8 and 9)g the present study will employ a simple 

version of this expression, consisting of a constant plus 

a sinusoidally varying term~ 

( 1. 1) 

In the preceding expression, a is the average radius for a 

closed noncircular cylinder and g is a constant defining 

the degree of noncircularity. The g parameter can take 

values from zero to oneo The zero value corresponds to the 

circular cylinder and the value of one produces zero 

curvature·at points along the cylinder circumferenceo 



X,U,Wz 

Figure 1. Shell Coordinate Axes, Displacement 
and Rotation Components 

Txz+ ·· 

z 

O-x 7Txs \ Txz 

Figure 2. Stress Sign Convention 
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Figure Jo Force Resultant Sign Convention 

/ Mx 

/Mxs 

Figure 4o Moment Resultant Sign Convention 
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The basic equations.used herein are analogous to the 

uncoupled Donnell shell equationsa The solution approach 

follows that of Boyd (11) in that a mixed-series set of 

displacement expressions is employed~ trigonometri9 series 

in the longitudinal direction and power series in the 

transverse directiono To agree with the approachll the 

curvature expression is also written explicitly as a power 

serieso The displacement expressions will be"found to 

satisfy simply supported conditions along the curved edges 

of the panel~ while the boundary conditfons.are not 

specified along the straight edges by these expressionso 

6 

When the displacement and curvature expressions are 

substituted into the basic equations, a set of recurrence 

relations among the displacement series coefficients 

resultso The expressions for the boundary conditions along 

the straight edges are joined with the above-mentioned 

recurrence relations to provide enough information to solve 

the problem for the unknown buckling loadings, and for the 

values of the displacement coefficients, or more precisely, 

the modal shapeso .An advantage of the present method is 

that the boundary conditions are initially arbitrary along 

the straight edges and solutions for variou~ sets may be 

investigated with little theoretical or practical difficul tyo 

Also, more exact basic equations may be used with no 

particular difficulyo 



CHAPTER II 

FORMULATION OF THE BASIC RELATIONS 

2o1 Derivation of Recurrence Relations Among 

the Displacement Series Coefficients 

The basic equations employed in this study are 

analogous to Donnell O s equations for buckling resulting from 

lateral pressure and axial compression" They are applied to 

thin cylindrical panels of constant thickness and uniform 

temperature 1 made of isotropic ·Hookean materiala Assumptions 

are the Kirchhoff=Love hypotheses of nondeformable normals, 

plane stress in the panel wall, and small deflectionso The 

basic equations are one result of a derivation based on 

energy methods that is presented in Appendix Ao For 

completeness~ both equilibri.um and stability equations, and 

associated boundary conditionsj for cylindrical shells are 

presented therea 

The stability equations may be written in terms of the 

displacements caused by buckling, v~ u, and w by using the 

force- and moment=resul tant strain relationships: 

1 + \) 
V SS + "'"'2 

4 12 
'iii w +~-

rh2 
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where 

s, x, z = transverse, longitudinal and radial 

coordinates, respectively 

v, u, w = transverse, longitudinal and radial 

buckling displacements 

t,74 ·a4 04 4 
2 + _L = :-::"4· + 

os 2ox 2 
oS ox4 

r = local value of radius of curvature 

h = shell thickness 

v = Poisson's ratio 

D 
EhJ 

= flexural stiffness= ~~~-2 12(1-v ) 

Nx = prebuckling force resultant resulting from 

axial load, positive for tension 

Ns = prebuckling force resultant resulting from 

lateral pressure loading, positive for 

internal pressurizationo 

8 

Since the curvature is to be expressed in terms of 

power saries, the following mixed trigonometric-power series 

expressions describing the ·buckling displacements are 

chosen: 

V = I l vmn 
s (n-1) sin mn11 

m=1 n=1 
• I 0:, 0:, .:.-

l;(n-1) 
f 

u =I l umn cos mTtT] (2.4) 
m=1 n=1 

00 CIO 

w = l l wmn 
l;(n-1) sin mTfT] 

m=1 n=1 



where 'Tl is the nondimensional longitudinal coordinate 

X 
'Tl = 'L 

ands is the nondimensional transverse coordinate 

and 

s s = .(, 

L = longitudinal length 

.(,=transverse length of the middle surface 

m = number of longitudinal half waveso 

Inspection of equations (2o4) reveals that they satisfy 

simply supported boundary conditions along the edges where 

Tl = O or 1 o The following nondimensional · expression for 

cur:vature is 'adopted: 

k 
.r. = l r S

(i-1) a. 
J. 

0 (2.7) 
i=1 

The displacement expressions equations (2o4) and the 

curvature expression equation (2o7) can now be substituted 

into the stability equations, (2o1, 2o2, 2o3)o After some 

algebraic operations, the following equations are obtained: 
GD GD 

\ \ [- 4 m2n2 U ~(n-1) + 1-v o L(n-1) (n-2)U ~(n-3) + LL li mn'=' 2 ,t mn'=' 
m=1 n=1 

+ 1¥ mn(n-1 )Vmn i;(n- 2 ) + 

k 

+ v l ai 
i=1 

~(i-1 )mn Wmn~(n-1 )] 0 '=' '=' sin mni] = (208) 

9 
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_ 1 +v (n- 1) .!!!.II U ~ (n-2) 
2 .tL mn ':> + (2.9) 

1 
+ - 0 

.(,2 
,/i-1 ) f f Wnm. ~(n-1)] sin mnTJ = 0 

m=1 n=1 

+ (n-1)(n-2)(n-3)(n-4) wmn s(n-5) + 

k 

+ 122 l ai S( i-1) (l (n-1) Vmn S(n-2)_ V ¥ Umn S(n-1l 
.th i= 1 

(n-1) (n-2) Ns2 Wmn S(n-J)J sin filTtT\ = 0 
D.t 

0 (2o10) 

When the powers of s are adjusted to (n-1) and account 

is taken of the linear independep.ce of th,e terms of the 

double series, the following recurrence relations result 

among the unknown displacement coefficients: 
·, 

k 

+ " Om. l ai 6n, i Wm, n-1 + 1 = O 
i=1 



1 1 

( 1 ) V _ 2 1-v V 1+v U 
n n+ m,n+2 Clrn ~ mn - ~ 0mn m,n+1 + 

= 0 (2o12) 

V -m,n-i+2 

(2.13) 

where 

Clrn = mn.t 
L 

= {: 

n < j 

6n, j 
n ~ j 

N1 = (n+3) 

N 2 = ( n+ 3 ) ( n+ 2 ) 

N 
3 

= ( n+ 3 ) ( n+ 2 ) ( n+ 1 ) 

N 4 = ( n+ 3 ) ( n+ 2 ) ( n+ 1 ) n o 

In classical buckling problems, generally only one set 

of displacements exists for the minimum buckling load tn any 

instanceo Therefore, it is necessary to investigate a 

given shell or panel for different values of m and for 

'various sets of transverse modal shapes in order to find 

the minimum buckling loado Choosing a value form, there 
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remains a set of three recurrence relations among the 

infinite number of co.efficients of the displacement series. 

It will be necessary to choose a maximum value for n (call 

it p) and so truncate the series as an approximationo 

Inspection of the recurrence relations indicates that the 

magnitudes of the coefficients should eventually decrease 

as n increases and evidently become negligible in their 

contribution to the displaq.ementso The appropriate value 

for p must remain a matter of ju~gemento 

2.2 Statement of Boundary Conditions 

Inspection of the displacement expressions, equations 

(2-4), reveals that they satisfy the following boundary 

condit:i,on.s along the curved edges of constant x (where 

T] = 0 or 1): 

V = 0 

N Tl = K GiT] + v ( v ~ + ;) J = 0 

w = 0 

wT]T] = O, where K = Eh 
2 ( 1-v ) 

These represent the familiar case of the simply 

supported edgeo One important advantage of the presen.t 

method is that the boundary conditions are .still arbitrary 

along the straight ·edges of constant s ( whefe s = 0 or; 1). 

The three types of b9undary condition.s along the straight 

edges which were considered in the present work are: 



(1) Simply supported (SS3 in notation of Ref. 4): 

= = 
NS = O: l, l, (nvm,n+ 1 - 'VClm umn + 

m=1 n=1 

u = 0: 

w = 0: 

k 

+ l ai 6n,i wm,n-i+1)g(n-1) cos mTTTj=O 
i=1 

= = 

l I umn 
s(n-1) 

COS mTTTj = 0 
m=1 n=1 

CIC) 00 

I l wmn s 
(n-:-1) sin mnTj = 0 

m=1 n=1 
00 oc, 

13 

(2.15) 

(2.16) 

(2.17) 

Ms 0: I l [n(n+1) Wm ,n+2 - "°tn 
2 J (n-1 ) . = wmn s .sin mT'fTj = o. 

m=1 n=1 (2.18) 

(2) Simply supported with motion restricted in the trans

verse direction (SS4 in the notation of Ref._ 4): 

(3) 

Same as equations {2.16.:-2.18), except thefirst 

condition becomes 
0::, co 

V = 0: I I 
m=1 n=1 

Free edges: 
~ Cl.l 

V i:''(n- 1) sin mTTTI = 0 mn ':> 

NS = 0: I I en V m,n.+1 - "Om umn + 
m=1 n=1 

J (n-1) 
6n,i Wn-i+ 1 S COS filTTTj = 0 

(2.19) 

(2.20) 
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\ \ J (n-1) . L L Cam Vmn + n Um,n+ 1 s sin mni] = O 
m=1 n=1 

oMS aMXS 
-::=.s + 2 = 0: 
g oS 

cc GO 

l l [n0m2(2-v)Wm,n+1 -
m=1 n=1 

(2o21) 

- n ( n+ 1 ) ( n+ 2) Wm , n+ 
3

] s ( n- 1 
) sin m TTi] = 0 

(2.,22) 

Ms = 0: l l [n(n+ 1 )wm,n.+ 2 -
m=1 n=1 

2 J (n=1) . 0 - 'V'iu Wmn S Sln mni] = o (2o2J) 

Inspe6tion of these conditions will show that they 

satisfy the fuller statements of the boundary conditions as 

given in Appendix Ao Now the recurrence relations 

(equations ( 2a 11 - 2,, 13)) and the boundary conditions are 

ready for approximate solutions for the buckling eigenvalues 

and for the corresponding displacement series coefficients, 

for a given value of ma 



CHAPTER III 

NUMERICAL SOLUTION OF THE 

BUCKLING DETERMINANT 

Equations (2-11) to (2-13) represent sets of relations 

among the infinite number of unknown displacement series 

coefficientso Restricting attention to those values of 

n ~ p, the recurrence relations may be arrayed as Jp 

equations, three for each value of no In so doing, the 

assumption is made that only the first p + 2 coefficients of 

the u and v displacement series and the first p + 4 

coefficients of thew series are practically importanto 

Thus, the total number of unknown coefficients is 

Jp + 80 The eight additional equations involving the 

unknown coefficients are provided by the boundary conditions 

along the straight edges, four conditions on each edgeo 

The recurrence relations and eight boundary conditions are 

arrayed as shown in Figure 59 so as to produce a well

conditioned matrixo The terms governing the problem 

solution are those resulting from external axial compression 

and lateral pressure; the values of these which result in a 

zero value of the determinant are the eigenvalueso The 

modal shapes can be calculated for a given eigenvalue, 

though the amplitudes of the v, u, and w shapes remain 

15 
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P EQUATION 2. I I +- . 
4 TWO SETS OF BOUNDARY CONDI Tl ONS 

t-. 
, EQUATION 2.12 p 

+-- . . t TWO SETS OF BOUNDARY CONDITIONS 

p EQUATION 2.13 . 

l_.___~-~--,------' 
Figure 5o Schematic Drawing of·Matrix of 

Equilibrium Equations and 
Boundary Conditions 
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indefinite, except in relation to each othera The symbol t 

will be used to denote the number of half waves in the 

transverse di.rectiono 

The calculations were carried out on an IBM model 

360 computer in a straight-forward mannero Starting with a 

value close to the estimated eigenvalue, the determinant 

was calculated for incremental values until the sign changedo 

Then, Newton's method was used to converge as closely as 

desired to the eigenvalueo After the substitution of the 

final eigenvalue approximation into the set of recurrence 

relations 9 3p + 7 coefficients vyere determined in terms of 

the remaining coefficient, and the modal shapes in the 

transverse direction, corresponding to the eigenvalue, were 

plottedo 

Owing to the chosen dtsplacement expressions, 

equations (2o4), the modal shapes are sinusoidal in the 

longitudinal direction and the number of longitudinal half 

waves is determined by the chosen value of mo The modal 

shapes in the transverse direction may be difficult to 

categorize, for some boundary conditions~ and sometimes the 

term "half wave" will be u,sed in a rather loose wayo 

It may be noticed that the recurrence relations and 

boundary conditions, arranged as indicated in Figure 5, 

do not form the familiar eigenvalue matrix since the 

eigenvalue parameter does not appear in every term of the 

main diagonalo For this reason it is not possible to use 

an eigenvalue subroutine, which would save computation timeo 
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It does not seem feasible to use the eighth order form of 

Donnell's equation, written in terms of w only, in order to 

reduce the problem and perhaps allow use of a standard 

eigenvalue subroutine, except in the case of simply 

supported boundary conditions along the straight edges 

(cf. Refo 2). However 9 with the present form of three 

coupled equations in v, u, and w, changing the boundary 

conditions is a matter of exchanging a few cards in the 

computer program. Furthermore, the problem of encountering 

possible extraneous solutions to the eighth order equation 

is avoided ( 12) o 



CH.APTER IV 

NUMERICAL RESULTS 

4o1 Comparisons with Known ,Solutions 

4 .. 1.1 Introduction 

It was decided to substantiate the general method of 

solution described in the previous chapters by comparison 

with the results of others, and to present examples of new 

problems which may be readily solved .. Buckling solutions 

were found for the cases of axial loading, of lateral 

pressure loading, and for combination of th.e. two, for 

circular and for noncircular shells, with various sets of 

boundary conditions .. 

4 .. 1 .. 2 Axially Loaded Circular Panels 

The first case considered was the circular cylindrical 

panel under axial compressive loading and .the results are 

given graphically in Figure 6 .. The central angle was 

30' degrees and the aspect ratio was one to four, with the 

longer dimension along the strai.ght edge so In this case, as 

in many others, the panel geometry was chosen to approximate 

realistic proportions, but at ,the same time, to be advan

tageous in keeping the number of terms required in the 

19 
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Buckling Load Parameter Versus .Axial Half 
Wave Length Ratio for Axially Compressed 
Circular Panels with Simply Supported 
Straight Edges 
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displacement functions relatively few, thereby keeping 

computation time shorto 
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Referring to Figure 6, the buckling stress parameter, 

Nxa2 /D, is plotted versus the nondimen.sionalized axial half 

wave length ratio, L/ma, where m is the number of axial half 

waves and a is the radiuso The various curves correspond 

to the numbers of circumferential half waves, denoted by to 

The solid curves correspond to the solution of the buckling 

equations presented by Timoshenko (13) and the dotted lines 

represent those solutions of the corresponding Donnell's 

buckling equations which differ markedly from the former. 

Both sets of equations were solved by the substitution of 

double trigonometric seriesa 

The author's data points agree with the results 

obtained by the substitution of double trigonometric series 

into Donnell's buckling equations. Typical modal .shapes are 

shown in Figure 7, as calculated for pta aa As could be 

expected, the maximum relative magnitude is greatest for 

the normal, or w, deflectionso The maximum transverse and 

axial deflection amplitudes are successively less by 

roughly an order of magnitude, eacha Note that, according 

to the deflection expressions, equations (2a4), the u 

displacement form= 1 is greatest at either curved edge and 

zero in the center of the panel, ·lengthwise, and vice versa 

for the v and w displacementso The curves _appear~·to be 

nicely sinusoidalo 

Table I contains a comparison of some numerical results 



m = 

1 
1 
2 
2 
3 
3 
3 
4 

TABLE l 

COlVIP.ARISON WITH THE RESULTS OF TilVIO.SHENKO FOR AN AXIALLY COMPRESSED 
SilVIPLY SUPPORTED CIRCULAR CYLINDRIC.AL PANEL 

~ 
-. Nxa 

I) 
.(, 

t = Donnell Au.thor li = 52035987 

1 8200297 82D,,174 
.(,. 0 .. 25 2 9517.851 953:5.,930 L = 

1 716.,651 7l6.489 
2 26430 509 264'7 o:,723 t t 005235987 --- - = - = 
1 864e032 86J.-7 33 a ro 

2 1415 .. 256 1415.243 
3 58710128 5740 •. 789 v(Poisson I s Ratio) = Oo28 

1 



24 

for points in Figure 6 for the buckling load parameter 

obtained by the solution of Donnell's equations through the 

substitution of double trigonometric series and through the 

substitution of the author's mixed serieso On the basis of 

the above results, it is assumed that the method presented 

herein will converge to the double trigonometric series 

answer as closely as desired, given enough computer time 

and storage capacityo 

The curve labeled SS4 (following the notation of Singer 

et- a.lo (4)) represents the results obtained by cancelling 

transverse motion on the simply supported straight edgeso 

Enough points were obtained to establish a curve for lower 

values of mo As m increases, the computation time required 

increases, and for this reason the minimum buckling stress 

was not establishedo However, it seems reasonable to expect 

a minimum buckling stress greater than for the "classical" 

simply supported casea This would agree with the results 

of Rehfield and Hallauer (14)a The modal shapes for pto b 

of Figure 6 are shown in Figure 7o As can be seen from the 

shapes, no additional circumferential membrane stress along 

the straight edges is generated by the buckling displace

mentso Point c of Figure 6 represents a point from some 

other curve of the SS4 case and the modal shapes are shown 

in Figure 7o 

The next case considered. was the axially compressed 

circular cylindrical panel with free edges as presented by 

Chu and Krishnamoorthy (J)a These authors used the 
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escalated form of Donnell's shell equations, with v, 

Poisson's ratio equal to zero, and their results are shown 

in Figure 80 In this case, the panel central angle was 60° 

and the thic.kness was equal to Oo01 times the radiuso 

Point a and two other points were found as buckling loads 

for the case with Poisson's ratio equal to Oo28, in order to 

study the importance of this factoro The effect is rather 

small, on the order of 10 to 15 percento According to Chu 

and Krishnamoorthy, the minimum buckling load occurs for 

m = 1 and this was verified for pto b by obtaining solutions 

form= 1, 2, and Jo 

The modal shapes for ptso a, b, and care illustrated 

in Figure 9o It would seem to be difficult to make general 

descriptions of the modal shapes fo.r this free-free caseo 

4o 1 ~ 3 Circular Panel.s Under Normal Pressure 

The next case considered was the circular cylindrical 

panel under lateral pressure loading, as first presented 

by Singer, Meer, and Baruch (4)o Their Figure 2 is redrawn 

here as Figure 10, and the present auth.or's data points are 

indicated as open circleso Agreement is gener~lly goodo 

It would·be interesting to establish the reason for the 

differences to be noted on the lower curve, for simply 

supported boundary conditions along the straight edgeso 

Probably these are due to an insufficien.t number of 

iterations or displacement series terms, but possibly 

differences might enter through another mannero The upper 
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curve was calculated by using the three coupled Donnell 

equations, whereas the lower curve was calculated by using 

the escalated eighth order form and it has been reported 

by Batdorf (12) that errors may arise from this proce~so 

4o1o4 Oval Cylinders Under Axial Compression 

The above cases were judged sufficient to prove the 

numerical method in regard to circular cylindrical panelso 

The next case considered was the oval cylindrical panelo 

To be more exact, the panel considered was one-fourth a 

closed oval shell studied by Kempner and Chen (10) for 

buckling and for postbucklingo Kempner and Chen described 

the curvature as follows: 

1 1 { 2s) = - 1 - s cos~ r a a 

where a is the radius of a circular shell having the same 

29 

perimeter as the oval shell in question ands is a constant 

with a value taken in the range from zero to one, where 

~ = 0 corresponds to the circular cylindrical shello The 

author calculated buckling solutions for i; = 0 .. 1 and Oo5 

for a segment included between a major and a minor axis, 

with boundary conditions as illustrated in Figure 110 

The buckling calculations of Kempner and Chen assumed 

symmetry of deflections about the semi-minor axes, and due 

to the limitations on computer time, the author assumed 

symmetry about both semi-minor and semi-major axeso This 

evidently introduced a restriction on the deflection 
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configuration so that the buckling load was generally higher 

than the results of Kemp~er and Cheno 

The results are shown: in Figure 120 The ordinate 

represents buckling stress divided by the approximate 

buckling stress formula for the circular cylindrical shell: 

(4o2) 

The abscissa is the axial wave length parameter 

employed by Kempner and Chen: the axial full wave length 

divided by the perimetero The curves labeled with n* 

represent the buckling loads for c_ircular cylindrical shells, 

corresponding to the Donnell equations, and n* refers to 

the number of circumferential full waveso. Two points were 

confirmed on these curves as a checko 

The solid curves for nonzero s are the results of 

Kempner and Chen, for Donnell type equations, for the non-

circular case, with odd numbers of transverse full waves. 

The author's results determined the broken line for ~ = Oo 1 Q 



(/) 
(/) 

w 
0:: 
1-
(/) 

n*= 3 

e=o.1 

\ 
\ 
\ 
\ 
\ 

0.75 \ 
\ 

0.50 

\ 
\ ~ = 17.12 

[ = t 
.e. - 1T 0:--2 

0.25'--~~~~-'--~~~~_._~~~~---'---~-,-~~ 
0.15 0.25 0.35 0.45 0.55 

Figure 12. 

4 ;7Ta -AXIAL WAVE LENGTH HATIO'.: 

Buckling Loa~ Parameter Versus :Axi.al: .· . 
Wave Length Parameter for the · · · 
Noncircular Cylinder 

31 



w 

0 0.5 

t 
Figure 13. Relative u, v, and w Displacements 

Versus Transverse Coordinate 
Point a, Figure 12 

32 

1.0 



33 

This curve represents the buckling loads for the panel 

corresponding to a quarter section of the closed cylindero 

The modal shapes for pto a are shown in Figure 130 These 

indicate that n* = 2 for the corresponding closed cylinder, 

and the shape of the dotted curve is similar to the case 

for n* = '2 for the circular cylindero The minimum buckling 

load seems to be equal to that of the curve of Kempner .and 

Chen .. 

4o2 Study of Noncircular Cylindrical Panels 

4o2o1 Combined Loading of Circular 

Cylindrical Panels 

The next case studied was the circular cylindrical 

panel under combined axial compression and lateral pressure 

loading, with simply supported edgeso The panel had a 

central angle of 45° and the aspect ratio of the transverse 

dimension, along the middle surface, to the axial dimension 

was one to four. The ratio of, transverse length to 

thickness was 100 to 1a This problem is solved by 

.Timoshenko (13), and Figure 14 represents a plot of 

solutions for the panel at hand. Nondimensionalized 

buckling parameters have been plotted .. The substitition of 

double trigonometric series into the coupled Donnell's 

equations was used to form the buckling determinant to 

produce these resultso Each solid line is numbered 

according to the number of longitudinal and transverse half 
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waves of thew modal shape. Thus a straight line passing 

through the origin might be drawn to represent proportional 

loading and if the panel were loaded following this line, 

ideally it would pass through various buckled shapes 

corresponding to the lines traversed. Three points were 

confirmed very well by the computer program used herein. 

4.2.2 Effect of Eccentricity Upon 

Buckling Loadings 

Sinc.e the mixed-series method of solution presented 

here allows consideration of noncircularity and various 

boundary conditions, it was decided to study these effects 

on the load carrying capacity of the panel just described. 

For the sake of simplicity, the methods of loading were 

pure axial compression and pure lateral pressure. 

Equation (4.1) was chosen to describe the panel curvature. 

The values of s, the eccentricity parameter, studied were 

O, .1, .5, .7, and 1. Of course, the value § = 0 

corresponds to the circular pa...'1el and the symbol a 

represents the radius of this panel. Due to the form of 

equation (4.1), the radius of curvature varies in a sinu

soidal manner, from an initial value, denoted by a 0 , when 

s = O, to the final value, a, at the other edgea The value 

of a
0 

depends upon the value of§ but all the cases had 

the same value for a. (Actually these factors were handled 

nondimensional as .t/a
0 

and .t/ao) 

The modal shape for the minimum buckling value of pure 
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axial compression loading with simply supported boundary con~ 

di tions for the circular case shown in Figure 14 has m, the 

number of axial half waves, equal to 4 and n, the number of 

transverse half waves, equal. to 2o Forpure lateral pressure 

loading, in this case, the lowest critic al pressure corresponds 

to m = 1 and n = 1 o The buckling loading values for these 

cases, reduced by the effect of noncirculari ty, are indicated 

in Figure 14 and extrapolated broken lines indicate the probable 

buckling values for limited ranges of combined loading, for 

the values of s that were considered. The reduction in 

buckling loading with eccentricity is also shown in Figure 15. 

As set forth by Marguerre (7), an approximate value for 

buckling loading may be calculated for a noncircular panel 

by basing the buckling calculation upon the minimum value 

for curvature, when the curvature varies along the breadth 

of the panel. This seems intuitively reasonable and is 

generally borne out by the results presented in Table II, 

in which the mixed-series results are compared with the 

approximations. The approximate answers are generally 

conservative and were calculated by using Donnell's 

equations to derive the buckling determinant. The non

dimensional parameter used for the lateral pressure loading 

case did contain the maximum value for radius of curvature 

for noncircul.ar panels and seems to be a useful arrangement 

of factors, since the approximate values are conservative. 

The approximate result for axial loading for i; = 1 is non

conservative, however, and deserves further study~ 
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Figure 16 depicts thew, or normal deflection, modal 

shapes for the above mixed-series solutionso The effects of 

noncircularity are obvious for axial loading, with the shape 

changing considerably in appearance with increasing 

eccentricity, corresponding to a reduction to less than half 

the buckling loadingo For the noncircular cases, the 

deflections are greatest in the left hand parts of the 

panels where the radius of curvature has greater value, 

which is reasonableo In the case of lateral pressure 

buckling, the modal shapes remain somewhat similar for the 

different values of;, and only those for the extreme 

values of; are showno This is probably due to the normal 

pressure loading, which should tend to decrease the 

curvature in the flatter parts of the panelo (The rela

tively smaller u and v modal shapes do indicate more 

definitely the varying curvature of the panelso) It is 

possible that buckling modes other ,than those considered 

might give lower buckling loadings for the same value of 

the eccentricity parameter ;o However, this was not 

pursued in the present studyo 

4o2o3 Effects of Boundary Conditions 

Upon Buckling Loadings 

The boundary conditions along the straight edges of the 

panel considered in the previous sections were changed from 

the familiar simply supported conditions, equations (2o15-

2a18), to .the restricted simply supported conditions, 



equations (2o19, 2016-2.18). This represents cancelling 

transverse motion of the straight edgeso 

The buckling loadings are given in Figure 17, and the 

ratio of increase due to the more restricted boundary 

conditions is indicated in Figure 18, both plotted against 

the eccentricity parameter, so The corresponding modal 

shapes are shown in Figure 190 

The case. of lateral pressure loading is less compli

cated and will be discussed firsto The buckling value 

decreases with increasings at about the same rate as in 

the simply supported (SS2) case as shown in Figure 17 9 but 

for a given value of s, the buckling loading is double or 

moreo This is consistent with the typical modal shapes 

shown in Figure 19 for lateral pressure buckling, with two 

transverse half waves of normal deflection appearing,· in 

place of one as in the simply supported (SS2) case. The 

effect of noncircularity is more evident in these modal 

shapes than in the simply supported case. 
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The results for the case of axial compression are less 

conclusiveo Reference to Figure 14 shows that many critical 

loadings in this case for various values of m, the number of 

longitudinal half waves, ands, must lie relatively close 

togethero Therefore, without exhaustive computations, it 

is not too meaningful, in a practical sense, to discuss 

the stiffening effect of the SS4 boundary conditions for one 

value of m, because another value of m might possibly give 

a lower buckling value with the same SS4 boundary conditions 
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and for the same value of~· 

However, a few calculations were made form= 4, to 

produce a possible buckling mode:which might be the result 

of changing to the stiffer boundary conditions. These 

results are shown in Figures 17, 18, and. 190 The axial 

loading decreases relatively more rapidly with increasing 

eccentricity than in the SS2 simp1y supported case and this 

is reflected in Figure 18, where the magnification ratio 

decreases with increasing eccentrici tyo The w modal shapes, 

Figure 19, are reminiscent of the SS2 caseo 

4o3 Summary of Results 

The mixed-series approach to the solution of the 

buckling problem for cylindrical panels has been tested and 

demonstrated in the preceding sectionso In section 4o1o2, 

the method is tested by comparison with the buckling 

problem solution, for a simply supported (SS2) axially 

compressed circular cylindrical panel, obtained by the 

substitution of double trigonometric series into the 

Donnell stability equations. Agreement is good (see Table I). 

A few trial calculations were made for the same panel with 

restricted simply supported (SS4) boundary conditions along 

the straight edges. Then the method was checked with the 

results of others (3) for an axially loaded panel with 

free straight edges and it agreed well. 

In the following sections 401.3, 4.L4, and 4.2.1, the 

method was checked for a variety of caseso In 4.1.3, the 
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method agreed well with results (4) obtained for a circular 

cylindrical panel under normal pressure loadingo Singer 

et ala (4) calculated the SS2 answers by using the un

coupled Donnell equations and calculated the SS4 answers by 

using the escalated eighth order form of the Donnell 

equationso 

In section 4o1o4, the method agreed well with results 

obtained by Kempner and Chen (10) for an axially loaded 

oval cylindrical shello In effect, one quarter of a closed 

doubly symmetrical noncircular shell was treated as a panel 

with appropriate boundary conditions along the straight 

edges (see Figure 11)o 

Section 4o2 demonstrates the application of the mixed

series approach to a typical cylindrical panelo Comparison 

with the double trigonometric series solution, as presented 

by Timoshenko ( 13), checked satisfactorily the calculations 

for combined loading by lateral pressure and axial com

pression for the simply supported circular cylindrical caseo 

Subsequent calculations indicated the trends in buckling 

loading and modal shape produced by noncircularity and by 

stifferiing the boundary conditions along the straight edgeso 

The SS2 examples calculated had the same initial value 

for curvature and the curvature increased in a sinusoidal 

manner along the transverse direction to the maximum value. 

A good engineering approximation for the buckling loading 

is derived by re~§:r:ciing such noncircul_ar panels as circular 

panels with the respective minimum value curvatureso The 
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modal shapes for the axial loading case were affected more 

by noncircularity than for the pressure loading caseo 

Changing the simply supported (SS2) boundary conditions to 

the restricted (SS4) conditions along the straight edges 

produced considerably higher buckling loadings for both/ 

cases for the range of noncircularity consideredo The modal 

shapes were also modifiedo Care is suggested in making 

predictions of the buckling mode to be expected when 

boundary conditions are changed since solutions for various 

values of m may be relatively close to one anothero 

Computation time on the IBM 360 varied
1 

from about six 

to twelve minutes each for the data points of the cases 

considered in the present worko Some experience in using 

the computer program is necessary to conserve computer timeo 

The usual compromises between the computation time required 

and the accuracy come into consideration, and some 

additional general statements can be madea The time 

required increases with the number of waves present, and 

with the relative width of the panelo Conversely, the 

computation time is less for relatively longer panelsa 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The combined power series=-trigonometric series 

approach solves the linear stability problem for circular 

or noncircular cylindrical panels with arbitrary boundary 

conditions along the straight edges and simply supported 

boundary conditions along the curved edgeso With the wide 

variety of possible cases and with the computation time 

that is required~ it appears more practical to consider 

individual panel bu cl:d.ing problems as they arise rather 

than to generate comprehensive resultsa 

The method is based upon the substitution of a mixed= 

series into equations analogous to Donnell 0 s stability 

equationso The only additional feature in the equations 

is the consideration of a variable radius of curvature, 

expressed in terms of a power serieso Use of combined 

trigonometric=power series also allows treatment of any ,, 

boundary conditions along the straight edges of the pap.el o 

Comparison with the results of other investigators 

tested the method and the comparison was goodo The appli~ 

cation of the method was demonstrated by studying the 

effects of noncirculari ty and boundary condi.tions upon the 

stability behavior of a typical panel under axial 
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compression and under lateral pressure loadingo In general 

terms, the buckling loading is changed by noncircularity and 

is approximated well by considering the panel to be a 

circular cylindrical panel with a radius equal to the actual 

maximum value. Buckling loadings are increased for non

circular panels by applying more restrictive boundary 

conditionso 

It appears simple in theory to extend this method to 

cases with additional cross sectional properties, besides 

the radius of curvature, varying in the transverse direction. 

Some improvements in the method might be made to reduce the 

computation timeo The most obvious goal would be to seek 

some escalated form of the third equilibrium equation (2.3) 

in order to uncouple the equations (2o 1 - 2o 3) and to reduce 

the number of unknowns, and hence, the computation timeo 

However 1 in order to do this, it would be necessary also 

to account for the boundary conditions and this seems 

difficult. For longer panels 1 the Donnell equations become 

inaccurate (6, p. 228), but with the present method, more 

elaborate basic equations may easily be used. 

The method corroborated the results of others for a 

variety of cases and it is a useful tool for the investi

gation of the linear buckling of cylindrical panels. 
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.APPENDIX A 

DERIVATION OF BASIC EQUATIONS 

We derive in this Appendix A the basic equations used 

in this classical-buckling study of cylindrical shells a We 

consider thin shells of constant thickness made of homo

geneous isotropic elastic materialo To give an overall 

perspectivej the equations are derived from an energy stand

point and the equilibrium equations and the stability 

equations are presented for the above-mentioned class of 

shells, along with appropriate boundary conditions. Surface 

loadings, edge loadings and thermal loadings .are included. 

The bases for the equations are the Kirchhoff-Love 

hypothesis of nondeformable normals and the assumption of 

plane stress in the.thin shell wall. Further restrictions 

to be applied are the small-deflection assumption, and 

Donnell-type assumptions in rotation-displacement relations. 

Therefore, for a thin shell with negligible transverse 

shear deformation, the displacements at a point in the shell 

wall ( s, x, z ) are 

V = vz = VO + zwx 

u = uz = uo = zws ( A. 1) 

w = Wz = WO 

(Please refer to Figure 1o) The displacement components are 

52 



53 

vj u, and win the positives, x, and z directions 9 

respectively, and the rotation components are the rotations 

of a nondeformable normal about tangents to the respective 

lines of constants or Xo The subscript o refers to the 

middle surface valueo The strain-displacement relations for 

small deformations and rotations are, where e represents 

classical small-displacement straing 

es == e 
so + zks 

ex - ex 
0 

+ zkx (Ao2) 

esx == esx + 2zksx 
0 

where 
oV

0 w e = Ts+ so r 

dU0 e - oX XO 

ov oU0 0 e = +-sxo oX oS 
= 1 [owx - ows] 0 

kSX 2 oX oS 

The rotation components are 

or for cases in which the Donnell-type assumptions are 

applicableg 

W = oW 
S oX 

For cases involving buckling and postbucklirig, the following 

strain-displacement relations are called for ,( see Ref o 15) g 
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1 2 
's = es + 2Wx 

1 2 
tx = ex + 2Ws ( A. 6) 

These are considered sufficiently accurate for analysis of 

thin shells where deformations and rotations are small and 

deformations are small compared to ,rotations (se'e Ref. 9): 

2 e = 0 ( e ) = 0 ( w ) << 1 • 

The general stress=strain relations are assumed as 

given below 1 in a famil.iar form. The symbols o and 'T" 

represent normal and shear stress, respectively, and Eis 

Young's modulus, T is temperature, \I is Poisson's ratio and 

a. is the thermal expansion coefficientg 

E 
[ts+ ( 1 + v) a.T] Os =~ "'x -

1-\1 

E ( 1 + \)) a.T] (A.7) Ox = ~ [ex + vts -
1-v 

E 
1xs = 2(1+\I) Yxs 

The force and moment resultants are, with the thin-shell 

assumption that z << Rg 
h 

c2h NS = J Os dz 

-2 

h 

Nx = ~~ ox dz 

_h 
2 
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h 

Ms = ~"2 aszdz 
h 

=2 

h 

MX = ~2 crx zdz 
h 

=2 

h 

Nxs = Nsx = ~"2 1sx dz 

h 
=2 

h 

Msx = Mxs = ~~ ,- zdz XS (Ao 8) 

h 
-2 

where his the shell thicknesso Recasting the above 

equations into the form of force- and moment-resultant-strain 

relations results in: 

NS 
Eh [ 's + (1+v)a.T] =~ vtx -

1-v 

Nx 
Eh 

[ 'x + ( 1 + v) a,T] =~ '\,Its = 

1- \) 

Nsx = Nxs = Gh y sx 
( Ao 9) 

Ms = D(ks + ivisc) = MT 

MX = D(kx + vk) - MT s 

Eh3 
where Dis the flexural rigidity 2 , G is the shearing 

12(1=v ) 
modulus E/2( 1+v), and 
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lVI 
T 

Tzdz 0 ( Ao 10) 

With all the above presented:, one may r1:ow c_pnsider 

energy methods in order to derive the equilibrium and 

stability equationso By definition,· the internal strain 

energy, U, stored in a body under conditions of plane 

stress is 

(Ao11) 

Consider the shell to be in a state of equilibrium, denoted 

by .. superscript o, with the equilibrium displacements v 0
, 'u0

, 

w0
" Suppose that the shell can be further displaced by an 

admissible set of displac.ements denoted by S1A::perscript : 

v 0 , u 1 , w0
o Allow such a displacement that the total 

displacement can be written as follows: 
0 

U + A.U 8 0 
w + AW' 

,where A is a small arbitrary scalar factor a After substi

tution of this displacemerit distribution into the strain 

energy expression 1 and neglect of terms of higher order 

· than A 2 
P we. may write the result. as 

U =U
0 

+ A,U 1 + A
2u11 ( Ac 12) 



57 

U a = ~~~[ Os o f:s i + ox o f:x' + 'T sx o y sx a J dsdxdz 

0 0 0 .· 
+ 2 ( a c "· + o t 11 + ,- y 11 

) J dsd:xdz S S · X X, SX SX " 

We have made use of the following definitions, withe and w 

defined as before: 

t I 
s 

ts II 

0 
OS 

0 
ox 

Os i 

OS Ii 

1 o2 
0 0 1 o 2 

+ :aWx , 'x = ex + :aws 

0 0 
"f'sx · = esx · · 

Ysx' = esx' 

= tws 
a 2. 

'x 
!I = 1 

2Wx 
I 2 

Ysx 
II, = w ewe 

E [t 0 
=~ + 

' 1-'l,I s 

E 0 
=~ [tx + 

1-v 

0 
'rsx :;:: 

E ( t 0 = ~ + s 
= \I 

'fsx 
i = 

E 
( f; II = ~=2 + 

1-'V' 
s 

'f sx 
!I = 

0 
\)£x. 

0 
vts = 

Gysx 
0 

vtx u ) . 

Gy ·' SJ,C, 

\ltx Ii) 

Gysx It 

1 S X 

( 1 + \)) aT] 

( 1 + \)) o.T] 

CJ a 
X 

CJ II 
X 

Q 

E = ~2. ( t I + Vt I) 
1=v X S 

: __L2 (t II + \It 11) 
1_ \I X S 

( A~ 14) 

Also the total stresses and·strains in the adjacent state of 

equilibrium may be ~ritte~~ 
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0 
A.Os 

I >.. 2 " Os = OS + + a s 

0 
A.OX i >.. 2 . " OX = OX + + OX 

0 
+ >.. 'f sx e >.. 2 11 

'i"sx = ,.sx + 'rsx 

0 >.. 2 " 
(Aa15) 

's = ts + >..ts I + cs 

0 
>..tx I A.21:" lx = tx + + X 

'Ysx 0 

For a stat·e of stable equilibrium in the adjacent equi

, li brium state~ 

AU + AV > 0 ( Ao 16) . 

where h.V equals the negative work done by edge'artd surface 

forces (which forces may be functions of the dispiacements)o 

This may be'rewrittenas follows: 

If >.. is arbitrary, 6U' + 6V' must· be equal to zero. in order 

for AU+ tN to be posi tiveo, Then .sinc'e >.. 
2 is positive, 

6U 11 + 6V" ffil.l.St be greater than zero for stable equilibriumo 

Then the' critical configuration for neutral stability. must 

be the .set of displacements and rotations for which 

6U 11 + 6V" = Oo It happens that the first ;+elation 

6U' + 6V' = 0 gives the equilibrium equations for the basic·· 

state and· the second relation 6U''+ &V 11 =0 gives the stability 

equations foi the buckled-state disp~Lacements and :rotationso 

W~ will apply these principles to a rather general case of 

noncircular cylindrical shells and then specialize the res-µ]_ ts 

to arrive at the simplified.equations studied in this worko 
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In order to derive the equilibrium equations, we 

consider the first relation 6U' + 6V' = 0,o Calculating the 

first variation of strain energy U9 gives: 

6U' = -

+ 

+ 

+ 

+ 

0 

N .o 
s - --r 

(- ~XO gMSX 0 0 N O 0) I 
ax oS - Nx ws + sx Wx 6ws + 

( aMs° 
0 

ol'JIXS 0 0 
Nsx oWs o) 6wx' J dsdx + oS + ox - Ns Wx + 

X 

s (Nsxo6v' 0 0 
+ lVIxs o 6wx ')I 2 + Nx 6U 1 - M 6w · u X S 

X1 
s 

~ (NS O 6V 1 N O I 
. 0 

Msxo6ws') I 2 + SX 6U + lVI · 6w 1 

S X 
S1 

( Ao 17) 

ds + 

dx 0 

The·first variation of the work done by t:b:e internal shear 

forces may be written~ 
0 0 0 

&WQ = ~~[Q: 6v' + ("~: + 
0
~~) 6w' .+ Qx~&w6 ' -Q/ewx}sa.x 

X2 S2 -s Qx o 6wv I ds = s Qs o 6w' I dx a 

X1 S1 
(Ao 18) 

The first variation of the work done by the external surface 

forces is 

(Ao19) 

where the F-components may be functions of po'si tion on the 

middle surface and in the case of large deflections, also 

functions of the displacementso For the work done by the 

edge forces 9 denoted by the bars, we haye: 



on edges of constants, 

6W = 
E 

S( N 6V 1 + N 6u 0 + -Q ow 0 + M8 6wx' - M e .. , 1 )dx + S SX S SX wS 

on edges of constant x, 

After consideration of the relation 6U' - 6W' = 0 ~. . 

and the arbitrariness of 6u' Y ov', 6w' 7 etco, we can set 

forth the following Euler's equations and boundary 

conditions: 

oN o 
X 

~+ 

cN o 
sx 

as + F = 0 X 

0 0 0 0 

~Ns + oNxs + l [olVls + oMxs - N ow o + N ow o] + 
~ oX r oS oX S X SX S 

+ F = 0 s 
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(Ao21) 

0 " 

The above comprise the large-deflection equilibrium 

equations and the boundary conditions associated with these 

are as followsg 

on sides of constant s, 

NS 
0 NS l(M o is) 0 i,'v• 0 - + = = or = r s 

Nsx 
0 

Nsx 0 ou 0 0 - = or = 
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Qs 
0 

Qs + o~ (lVISX 
0 

MSX) 0 6W 1 0 - = or = 

Ms 
0 

Ms 0 or 6 ~o;~) 0 -· = = 

at corners 

X = X1 X = x2, 

lVISX 
0 

- Msx 0 = or 6W 8 = 0 (Ao22) 

on sides of constant xjl 

Nxs 
0 

NXS 
1 ( o ~ Nixs) 0 6V 1 0 = + r lVIXS = or = 

Nx 
0 Nx 0 or 6u1 0 - = = 

Qx 
0 

Qx + o~(Mxs 
0 /- ) 0 6W 1 = 0 = = lVIXS = or 

MX 
0 - M 0 e(~) 0 = or = X · oX 

at corners 

s = S11 s = S29 

Mxs 
0 - M = XS 0 or aw 1 = 0 

Linearization of the above large-deflec 1tion equilibrium 

equations, by dropping those terms containing w0 explicitly 

and by dropping terms contai.ning w0 i.n the stress resultant 

expressions, results in the. classical equilibrium equations: 

oN ° oN ° X SX 
-+ +F =0 

oX oS X 

::.N O N O (""M O ":,,11/T O ~ + 0 xs 1 01us 01usx ) 
C)S oX + r oS + oX 

0 0 0 

o (olVIx olVIsx ). o ( oMs 
cs ~ + os + os ~ + 

+ F = 0 s 

olVIXS 0). = 

ox 

N o (Ao23) 
s :r + FZ = 0 o 



.An additional simplification is the adoption of the 

Donnell-type assumptions, equations (Ao5)o Changes are 

reflected in the internal work done by shear forces: 
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dx 0 (A.24) 
s 

This simplification is then reflected in the absence of the 

transverse shear term in the second of equations (A.23). 

The corresponding boundary conditions for this case are: 

on sides of constants, 

NS 
0 

NS 0 or 6V 1 0 = = = 

Nsx 
0 

NSX 0 or ou' 0 - = = 

Qs 
0 Qs o~(MSX 

0 
ivisx) 0 ow' 0 - + - = or = 

Ms 
0 

Ms 0 or 0 (::"} 0 = = = 

at corners 

X = X1 X = X2' 

Msx 
0 

Msx 0 ,or ow' 0 (Aa25) - = -

on sides of constant x, 

Nxs 
0 

Nxs 0 ov 9 0 - = or = 

Nx 
0 

Nx - = 0 or ou' = 0 

Qx 
0 

Qx + o0s (Mxs 
0 

- ivi:xs) ow' 0 - or = 

MX 
0 MX 0 or 0 (::; ') 0 - = = 
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at corners 

or • 6w' = 0 

The Donnell-type assumptions can also be applied to the 

large-deflection equilibrium equations themselveso This 

results in the following set of equations: 

0 
cNsx 

cs + 'Fx = 0 

. ",.1\1[ 0 
. e ( Qllls 

oS. ~ + 

0 
oMXS 

oX 
0 

oMSX 

os 

= 0 
(Ao26) 

+ F = 0 z 

where the first two equations are identi'1cal in 'form to the 

corresponding classical equilibrium equations and the third 

equation is similar in form to the third of equations (Ao21)o 

The Donnell-type assumptions will also enter into the moment 

st:('.ess-resultant expressions, and change the boundary 

conditions as wello 

· The above equations give the equilibrium displacements 

and stresses due to the applied loadso Whether or not such 

a state of equilibrium is stable or unsta.ble. is decided by 

equation (Ao 16) o The critical, state occurs when 

6U 11 + 6V" = 0 

and this criterion may be used to determine the critical 

values of the load,ings and the associated displacements, 
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v', u', and w1
0 Proceeding as before, performing the first 

variation of the strain energy and the work integral V", 

and with the 

the sets of 

aNx I - + oX 

oNs ff 

oS + 

surface loadings, F, dependent on possibly bo.th 

displacements, we obtaing 

oNsx I 

cs 

oNxs I 

oX 

+ Fx = 0 

+ 1(~s
1 

olYIXS 
raa + ox 

0 I + NSX Wg + 

N Q D 

- s wx 

I 

N 0 I rfs'wx 
0 - w - + s X 

Nsx'ws o} + Fs = 0 

N ' o N o ' . N ' o\ S W X + SX. W S + SX W S ;+ 
o1VI I 

SX N . OW I N r O N' 0 ' N. ' J gS + ' X s + X ws - XS Wx - XS Wx0;-

N I 
s 

- ~ + Fz = 0 o (Ao27) 

The associated boundary conditions are given by: 

on sides of constants, 

M' 
N' s 0 or ev' 0 + ~ = = s r 

Nsx 
a = 0 or . 6U 1 = 0 

(
oM I o1VI I 

~ + 2 SX - N O I - N I w O + N O I + N I w 0) = 0 oS oX S W X S . X SX W S SX S 

or 6W' = 0 

Ms I = 0 or 6 (~:·~ = O 

at corners 

X = X1 X = X2 

lVISX 
I 

Ix = Msx 
I Ix = x2 = x1 or 6w' = 0 
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on sides of constant X1 

Mxs I 

NXS 
i + = 0 or 6V 1 

.. = 0 r 

Nx I = 0 or eug = 0 

(Ao28) 

olVIX i 
olVISX 

i 

2 Nx 
0 i Nx'ws 

0 
Nxs 

0 i N I w 0 
=0 ~ + + w~ + - wx -c)S 0 XS X 

or ow 1 = 0 

MX I = 0 or 6 (::') = 0 

at corners 

s ~- S1 s = S2 

Mxs
1 

Is -- M g I or ow' = 0 0 = S2 XS S = S1 

The stability equations (Ao 27) are seen to be similar 

in form to the equilibrium equations (Ao21)o Knowing the 

equilibrium values of force and moment resultants 1 and if 

the surface loadings are at most linear functions of dis-

placements v 1 , u', and w1
1 we can solve these equations for 

the critical values of load and temperatureo These 

equations may be reduced using the linearizing restrictions 

of small displacements a11d the Donnell-type assumption. 

We remove terms explicit in w0 in the stability equations 

and also terms involving u>
0 in the expressions for N' and M'; 

this results in the following set of equations: 

oN' 
X 

oX + 
oNsxu 

oS + Fx = 0 



aN • s 
~+ 

oN ' XS 
oX 

1 (oMS I 

+ r oS + 
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oM I 

XS N O i I ·) ox - s Wx + N sx 111 s. + F z= O 

( Ao 29) 

0 Q 

The boundary conditions associated with these equations may 

be gotten from e~uation (Aa28) by a similar processa To 

simplify these buckling relations further one may use the 

Donnell-type assumption and this results in the following: 

oN ' aN ' X SX 
~ + + Fx = 0 OX oS 

oN' s 
~+ 

01\T I 
XS 

oX 

oMxs
1 

oS N O I N O ') + X Ws - XS Wx + 

and the associated boundary conditions become: 

on sides of constant s, 

Ms D 

NS 
i +~ = 0 or 6V 1 = r 

Nsx 
I = 0 or 6u' = 

oFJIS 
I 

olV.[XS 
i 

C I C i 0 
~ + 2 - NS Wx + Nsx Ws = or 

oX 

(AaJO) 

N' s 
~+Fz = 0 

0 ao 

0 bo 

6w' ::0 Co 

Ms ! = 0 or 0(
0;~)= 0 d. 

at corners 

X = X1, X = X2 

' 
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M I I SX X = x 1 = Msx
1 

lx
2 

or 6w' = 0 eo 

( A .. 31) 
on sides of constant x, 

lVl 

Nsx 
I SX 

0 ~vo 0 fo + = or = r 

Nx I = 0 or 6U 1 = 0 go 

I I olVIx oMsx 
2 No i 0 I = 0 6w' = 0 -- + + X WS. Nxs wx or ho oX oS 

MX I = 0 or 6 (
0
;;) = 0 io 

at corners 

s = S1 s = S2 

Msx
0 

Is = S2 
= M I I sx s = S1 

or 6W 1 = 0 0 jo 

The above equations for the case of a circular cylinder 

are the Donnell buckling equations .. These equations are 

considered to be accurate when the buckling mode is not of 

an inexten·sible nature (Ref o 9) o In the present work, we 

use these equations to study the buckling under axial · 

loading and under pressure loading of cylindrical panels 

with curvatures readily expressible in the form of a power 

serieso Surface loadings which are functions of displace-

ments will not be considered and the effect 0f pressure 

loading will b.e ta.ken account of by the term 

in the third equilibrium equationo The superscript prime 

will be dropped with the understanding that the displacements 
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v', u', and w0 are measured: from the prebuckled configu

ration and the N° forces are those resultants of the 

prebuckled stateo Temperature effects in this case are 

reflected in the prebuckled force valueso 

We may rewrite equations (AoJO) using stress resultant-

displacement relations: 

,?u 1+v o2v 1-v a c/u ~ .. oW 0 
ox2 +~ o- +~ 

os 2 + = oxes r oX 

o2v 1 +v o2u 1-v 
0 

r/v i (;) 0 (Ao32) 
os 2 + o- + -2= 

ox2 + = 2 oxes os 

'v4W + 12 (oV W oU) 1 (Nx o 
r/w 0 ,,2w) 

rh2 as + r + \) ox - D 
cx 2 + NS ~ = 0 

oS 

where 

v4 04 04 4· - + 2 --2-= 
os4 + 

os 2ax2 ox4 

We will consider cylindrical panels simply supported at the 

curved edges and with arbitrary support .. conditions on the 

straight edgeso Given these boundary conditions and the 

fact that the curvature may be readily expressed in terms 

of a power series it is appropriate to choose the following 

set of displac.ement expressions: 

CIC CIC 

V = I I vmn 
~ (n-1) sin IDT'f'T1 

m=:1 n=1 

SI Oil 

, 

u =I I llmn 
c(n-1) cos m1t'T1 (Ao33) 

m=1 n=1 

m CIO 

w = l l wmn 
~(n-1) sin IDTl'f1 

m=:=l n=1 



where Tl is the nondimensional longitudinal coordinate 

X 
Tl = t 

ands is the nondimensional transverse coordinate 

0 
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(Ao 34) 

(Ae35) 

Also, tis the transverse width measured along the curved 

middle surface, Lis the axial length of the panel, and mis 

the number of axial half waveso These displacement 

expressions may be substituted into equations (A-32) to 

give recurrence relations between the various undetermined 

coefficientso 

First we nondim,ensionalize equations (A~ 32) using 

equations (A-34) and (A-35) and the following dimensionless 

curvature expression~ 

k 

= I 
i=1 

1 - t - = -P r 
a. 

1 !;
(i-1) .. 

These steps result in ·the following equ8tions: 

tu 1-v L 1-tv ~ 
L T\ T\ + ~- n .(, US I; + 2' Vi] S + \I p ;: Q 

1 0 o 2v + 1- v • o 2v + 1-t v . o 2u + o ( w ) = 0 
t2 01;2 2L2 01'\2 2.iL osoil ~ pt2 

h 2 -4 1 f1 ov v au 1 ) 
TI V w + p .(, \t O ~ + t iTi + p .(, w -

0 0' -~ () • :~2 + N:2 • ::~) . '" 0 

whE?re 

(Ao36) 

(Ao37) 
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Substitution of the o displacement expressions gives: 

f f [- f m
2,i2 Umn S(n-

1 
\ 1? 0 ~ (n-1) (n-2) U l;(n-J)+ 

m=1 n=1 mn 

1;-\1 m (n-1) V ~(n-2 ) 
+ 2" mn'=> + 

k 

+ \I l a . ~ ( i-1 ) W ( n-1 ) J . 0 .1 '=> mn mn I; sin mrr11 = 
. i=1 

_ 1-tv ( _ 1 ) mn U ~(n-2) 
~n .tL mn'=> + 

. k 

1 o ( v . ( i~ 1 ) 
+ .t 2 ° o; . L ai I; , Wmn 

1=1 

g (n- 1 j}in filTTT\ ~ 0 

.(A.38) 

cc =~(42 22 \ Y m ft W ~(n- 1 ) - 2 !!UL (n-1) (n-2) W .,(n-3) + 
L L 7' mn '=> L,t mn 'al 

m=1 n=1 

+ (n-1 ) (n-2) (n-3) (n-4) Wmn i;(n-5) ) + 

1 ~ ~(i-1) 12 (1 (n-1) V ~(n-2) 
+ .t L ai '=> h2 ,t mn '=> 

i=1 

- \) 
'k ) m

1
rr Umn l;(n-1) + .1 ) a. I;( j-1) W l;(n-1) + 

.t '-' J mn 
i=1 

( 

o 2 2 
Nx n m (n-1) 

+ 2 wmn I; = 
DL 

sin mnl] = 0 • 



When the exponential powers of s are adjusted to (n-1), 

and account is taken of the linear independence of the 

terms of the double series, these recurrence relations 

result: 

In 

k 

+ "Om l a. 6 . W . 1 = 0 1 n,1 m,n-1+ 
i=1 

a. n .. . 1 W . 
2 

= 0 
l vn,1- m,n-1+ 

'(n __ 2 + Nx o ,t, 2) °'m 2 - (n ( n+ 1 ) N so ,t, 2 + 2 °tu 2) 
-in D N

4 
Wmn D N

2 
Wm ,n+2 + 

+ wm,n+4 +~(I ai (n-i+1 )6n,i-1 vm,n-i+2 -
N4h i=1 

k 

- '\) Om I a. 6 . U . 1 + 1 n,1 m,n-1+ 
i=1 

= 0 Q 

the above, 

Om = ?~{: n < j 

6n, j 
n ? j 

N1 = n + 3 

71 
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N2 = (n+J)(n+2) 

N3 = ( n+ 3 ) ( n+ 2 ) ( n+ 1 ) 

N4 = · ( n+ 3 ) ( n+ 2 )( n+ 1 ) n 

Nx0 is the membrane stress due to axial load, positive 

for tension, and Ns 0 is the stress due to pressure loading, 

positive for internal pressureo 

The boundary conditions may be expressed, using 

equations (Ao31 and Ao3J)o Three sets of boundary 

conditions which satisfy equations (AoJ1) along the straight 

edges were considered: 

ao Simply supported (SS3 in the notation of Refo 4): 

DO Cl) 

NS = 0 I l. (nvm,n+ 1 - \l°tn umn + 
n=1 n=1 

k 

+ l r ) (n-1} · 
ai 6n,iwm,n-i+1 f; _cos mft1l · = 0 

i=1 
cc cc:, 

6U 0 l L Uran 
(n-1) 0 = • f; COS IDTrlj = . 

m=1 n=1 

Cl) cc 

6W = 0 
\ \ (n-1) . 0 L L wmn f; ' sin ilTT1] = 

m=1 n=1 

co 0:, 

\ \ 2 J (n-1) Ms = 0 : L L [n(n+1 )wm,n+2 - v0zn wmn f; · sinmn1]= Oo 
m=1 n=1 

bo Simply supported with motion restricted in the 

transverse direction (SS4 in the notation of 

Refo 4): 
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= ell 

6V = 0 l l vmn 
S (n-1) sin mnT] = 0 

l'D.=1 n=1 

= CIC! 

t,u = 0 0 l l umn 
s(n-1) cos ffi,ii\ = 0 . 

m=1 n=1 

co co 

~w = 0 . l l wmn 
s(n-1) sin ffiTTTj = 0 0 

m=1 n=1 

cc cc 

Ms 0 . l l [n(n+ 1 )wm,n+2 -
2 Wmn] !;(n-1 )sinmTTl] = Oo = . \IOm 

m=1 n=1 

Co Free edges: 

k 

l l [nVm~n+ 1 - \IOmumn + l ai 6n, i wn-i+ 1 J 
i=1 m=1 n=1 

~(n- 1 )cosmnj\= 0 

eo cc, 

Nsx = O: l l [0mVmn +num,n+1Js(n-
1

) sin ID'l'fi\ = 0 
m=1 n=1 

Cl:> = 

L. l [ n 0n/ ( 2- v) Wm' n+ 1 -
m=1 n=1 

ell co 

M9 = 0 l l [n(n+1 )Wm,n+ 2 - \101:r/wmn] i;<n .... l)sin mni] = O. 

m== 1 n=1 
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CARD 
0001 C 
0002 C 
0003 c· 
0·004 C 
000.5 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 ·c 
0011 C 
0012 C 
0013 C 
0014 C 
0015 C 
0016 C 
0017 C 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
003Q 
0031 
0032 
0033 
0034 
003,;_ 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
00'<6 
0047 
0048 
0049 
0050 
0051 
005'2 
0053 
0054 
0055 

OKLAHOMA STATE Ul\l.lVERSITY .JAC" 11. VETTER 

BUCK!. ING UNDER. COMBINED LOADING OF CYLINDRICAL PANELS 
.1tl!,lTTEN IN FORTRAN l·V ANO MAKING USE OF THE SSP SllBROUTJNE PACKAGE .. 

THI KR A 
A·SPECT = 
STEP 
FU OGE 
EPSI 
M 
N 
KAY 
PRESSR = 
START 
FINISH= 

RATIO .Of NfOTH TO THICKN.ESS OF THE PANEL 
RATIO OF WIDTH TO· AlllAL LENGTH 
INCREMENT IN BUCKLING PARAMETER VALUE 
DIVISOR USED TO AVIOO OVERFLOW OR UNDERFLOW 
ITERATION DIFFERENCE T'EST ·FACTOR 
NUMBER OF All I AL HALF WAVES 
NUMBER OF DISPLACEMENT .SERIES 'TERMS· 
NUMBER OF TERMS l'N THE CURVATURE SERIES 
CRITICAL PRESSURE BUCKLING PARAMETER 
INITIAL VALUE FOR AXIAL LOAD P-ARAMETER 
FINAL VALUE FOR BUCKUNG LOAD PARAMETER 

OOIMENSION OETI 80,801 ,WORKER 180, 801,LINGI 801, MINGl80) ,AAAAl79 9 791 9 

18888179>.CCCCI 79'1, SHAPE( 80 I ,STACK! 191,DISPLTlll·>· 
2 FORMATl6E20.81 
3 FO_RMAT I 2f 10._'5,.Elo;.8 . .-2F5.2, 11,21-2. 3Fl0.51 
6 FORMATl16X,4H8ETA.t6X 9 4HFOETI . . 
7· FORM Al' l.16X,4HBETA, 16X,4HFOET, 16·X·,4HSTEl'-, 16X • 4HEPSI .1sx ,5HTEMP31 
8 ·FORMA·T ll5X, 5HZAMBA l . 
9 FORMAT l/15lt,5HTEMP5,l6X 9 4HFOET} 

12 FORMATl/36H .HERE ARE THE VALUES OF U ANO ZARKOV/ I 
13 FORMATl/36H HERE ARE.THE VA~UES OF V ANO ZARKOV/1 
14 FORHATt/36H HERE ARE THE VALUES OF WANO ZARKOV/) 
15 FORMAT l/8H DISP1.Tl,F4.l,5H I s .IPE16.4 9 10H i'l z ,OPF3.l/l 
l70FORMATI /7X, 7H THIKRA, 13X • 6HASPECT, 15X, 4HSTEP,13X,5HFUOGE,6X, 4HEPSI 

l, lX, lHM, 2X, 1HN, 1X,3HKAY9 6X,6HPRESSR ,9X 9 5HSTART, 8ll ,6HF lN ISH/ I 
19 FORMAT llH .lOH NUM8ERs ,12,8H STACKl,I.2,3HI= alH0.51 
20llFORMAT I 1PE20. 8,E20. B. ezo. 8, OPFl0 .• 2,F 10.2.12,.213,]Fl4.3) 

REAO I 5,31 THI KRA,ASPECT.,STEP,FUOGE,·EPSI ,·M,N, KAY, F':ll:SSR,S'TAIU • 
lfl'NISH 

WRITEC6, l71. . . . 
NRITE I 6, 20) THIKRA 9 ASPEC T ,STEP,FUDGE, EPSI •M•N• KAY, PRESSR, S1J'.!\RT ,. 

lfINI SH 
DO 10 I s 1,KAY 
READ( 5,n STACK( n 

10 WRITE (6,191 J,J°,STACKIII 
ANEW· = 0.3 
Pl " 3.1415927 
EM;. M 
MAX s N + l 
MAXA z N+ 2 
NPTHRE s N + 3 
MAXB = N + 4 
·MAXC = 2•N + ,. 
MI s 2 *N + 5 
ME c 2•N + 6 
MU s 2*N +7 
MY·• 2*N + 9 

'MO z 3*N + 6 
MA= 3•N + 7 

N=24 
·N=24 

004 

006 
007 
008 
009 
011 
012 
013 
014 

·on 

046 

048 · 
049 
050 

051 

054 

056 
057 
058 
059 
060 
'061· 
062 . 

063 
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0 

~ 
ltj 

~ c::: 
1-3 ltj 
trj trj 
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ltj H 
~ l><l 
0 
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tcJ 
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CARD 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
00'73 
0074 
0075. 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
OllO 

80/80 LI ST 

000000000111n111112222222222333333333344,,444444455555555s5&6M61>6666111111111'18 
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J = 3*N+ 8 
ZAHBA = O.O 
ALFA= EH*Pl*ASPECT 
DO 100 L =l,J 
DO 100 K = l,J 

100 DET(L,KI = O.O 
C CALCULATE THE BOUNDARY CONDITIONS AND THEN SUBSTITUTE 

DET IN+l,11 = 1.0 

C 

DO 101 K = l,HAXA 
101 DETIHAXA,KI = 1.0 

.DETINPTHRE,NPTHREI = l.O 
DO 102 K = 1,HAXA 

102 OET(HAX8,HAKA + K·l = 1.0 
DET!Hl,HII = 1.0 
DO 103 K = HI,J 

103·DETIHE,KI = 1.0 
DETIHU,HUI = 2.0 
TEMPO = O.O 
DO 104 K = MU,J 
TEMPO= TEMPO+ loO 
TAMPA= TEMPO+ 1.0 

104 DETIZ•N+B,Kl = TEHPO*TAHPA 

.FDET = O.O 
PRESSR = PRESSR•PI*Pl./16. 
BETA= START 
GAHHA = ALFA•ALFA + BETA 
DO 200 K = 1,N 
AN = K 
OETIK,KI = -ALFA•ALFA 
DETIK,K+ZI = 111.0 - ANEWl/2.0l*AN•IAN + 1.0) 
DET(K,N+3+Kl = !ll.O+ANEWl/2.0l*ALFA*AN 
DET!K+MAXB,N+Z+KI = -( (l.O-ANEWl/2.0l•ALFA•ALFA 
DETIK+N+4,K+N+4) = AN•IAN+l.QI 
DET(K+4+N,K+ll = -111.0+ANEWl/2.0l*ALFA*AN 
DET!K+8+N+N,K+N+N+8l = 1.0 
DET!K+8+N+N,K+N+N+61 = IPRESSR~Z.•ALFA*ALFAl/!IAN+2.l•IAN+3.)I 

ZOOODETIK+8+N+N,K+N+N+4l=ALFA•ALFA*GAMHA/IAN*IAN+l.l*IAN•2.l*(AN+3.)I 
C THE FOLLOWlNG TERMS ARE FOR CYLINDRICAL EFFECTS, DUE TO CURVATURE 

DO 206 L = 1,N 
ENN = L 
EN4 = ENN•IENN+l.l*(ENN+2.l•IENN+3.) 
DO 204 K = 1,KAY 
!FIL - Kl 204,203,203 

203 DETIL,N+N+4+L-K+ll = ANEW•ALFA•STACKIKI 
DET!N+N+8+L,L-K+ll= -12.•THIKRA•THIKRA*ALFA*ANEW•STACK(KI/EN4· 

204 CONTINUE 
DO 206 K = 1,KAY 
IFIL-K+lJ 206,205,205 

205 OETIN+4+L,N+N+4+L-K+21 = ENN•STACKIKI 
EYE = K 
DET(N+N+8+L,N+2+L-K+21=12o*THlKRA•THIKRA•STACKIKl*IENN-EYE+l.l/EN4 

20 b CONTl NU E 
DO 216 L = l,N 
00.216 Kl= l,KAY 

064 
065 
066 
072 
077 
078 
083 

116 

115 
117 
104 
105 
106 
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108 
109 
110 
112 
113 

123 
129 
-146 

126 
127 

128 

132 
134 
140 

135 
152 
155 
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0111 
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OU4 
0115 
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0122 
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0132 
0133 
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0135 
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0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
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C 

C 

C 

C 
C 

OD 216 K2 " I.KAY 
IF iL-Kl-K2+ll 2169 249,249 

2490DE.T( N+N+8+L,N+N+4+L-Kl-K2+21 z DETIN+N+8+L 9 N+N+4+L-Kl-K2+2 I + 
1112.*THIKRA*THIKRA*STACK (K 11 *STACKI K21 1/1 L*I L+ll *ll.+21*1 L+3l I 

216 CONTINUE 
00 302 L z t.J 
00 302 K = l.J 

302 WORKERIK,LI "'·OETIK,LI/FUDGE 
WRITEl69 61 

·CALL HINVIHDRKER,J,FOET,LING9 MINGI 
,FACTOR= A8SIFDET/1000.0I 

399 TEHP l ·= FOET 

TEMP2 = BETA 
WRITEl6,21 BETA 9 FOET 
BETA= BETA+ STEP 
IFIFINISH - BETAl304 9 304 9 950 

304 GAMHA = ALF.A*ALFA + BETA 
00 850 K HY,J 
00 850 L·= Hl,J 

850 DETIK,ll = O.O 
00 305 K = l.N 
AN= K 
DETIK+B+N+N,K+N+N+81 = l.O 
OETC K+8+N+N.K+N+N+61 = I PRESSR-2.*ALFA*ALFA fll lAN+2. I *IAN+3. I l 

305 OETIK+8+N+N,K+N+N+4l=ALFA*ALFA*GAMHA/IAN*IAN+l.l*IAN+2.l*IAN+3.II 
00 316 L = l,N 
DO 316 Kl z l,KAY 
00 316 K2 = l 9 KAY 
IF IL-Kl-K2+11 316,3499 31t9 

34900ET IN+N+8+L,N+N+4+L~Kl-K2+21 = OET IN+N+8+L,N+N+4+L-Kl-K2+21 + 
lll2-*THIKRA*THIKRA*STAtKIKll*STACKIK211/IL*IL+ll*[l+21*1l+311 

316 CONTINUE 
DO 402 L = l.J 
DO 402 K = l,J 

402 WORKERIK,LI ·= DETIK9 Ll/FUDGE 

,.20 
421 

500 

405 

403 

CALL MINVIWORKER,J,FOET,LING.MINGI 
FOET = FDET/FACTOR 

IF ITEHPll 420,421,421 
IFIFDETI · 399,399,500 
IFIFOETI ~oo.399,399 

DONE STEPPING• NOW JUST USE NEWTON'S HETHOO AND JVERATE 
TEMPS= TEHP2 
TEMP3 = BETA 
TEHP,. = TEMPl 
WRITEl6•61 
WRITE16,21 BETA,FDET 
BETA= IFOET*TEHP5 - TEMP4*TEMP31/IFOET - TEMP,.) 
IFIABSIIBETA-TEMP31/STEPI-EPSII 600 9 600 9 403 
TEHP5 TEHP3 
TEHP3 BETA 
TEMP4 = FOET 

156 
157 
158 

160 
162 
163 

165 
166 
167 
lbB 
169 
170 
171 
172 
173 

175 
176 

179 
182 
183 
lB4 
185 

187 
188. 
189 
190 
192 
193 
194 
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196 
197 
19B 
199 
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202 
203 
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206 
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C 

C 

GAMMA = ALFA•ALFA + BETA 
00 851 K = MY,J 
00 S51 L Ml ,J 

851 OETIK,LI = O.O 
00 406 K = 1,N 
AN = K 
OETIK+8+N+N,K+N+N+8l = 1.0 
OETIK+8+N+N,K+N+N+6l = IPRESSR-2.•ALFA*ALfAi/l(AN+2.l*IAN+3.II 

406 OETIK+8+N+N,K+N+N+4l=ALFA*ALFA*GAMMA/IAN*IAN+l.l*l8N+2.l*IAN+3.ll 
00 416 L = l,N 

.00 416 Kl= 1,KAY 
00 416 K2 = 1,KAY 
IF (L-Kl-K2+ll 416,449~449 

44900ET (N+N+8+L,N+N+4+L-Kl-K2+2l = OET IN+N+8-tt.,N+N+4+L-Kl-K2+2l + 
1112.•THIKRA•THIKRA•STACKIKll*STACKIK211/ll*IL+ll*IL+21•1L+31l 

416 CONTINUE 

WRITE I 6,91 
WRlTE 16,21 TEMPS,FOET 
00 40', L = 1,J 
00 404 K = 1,J 

404 WORKERIK,LI = OETIK,LI/FUOGE 
ZAMBA = ZAMBA + 1.0 
CALL MINVIWORKER,J,FOET,LING,MINGI 
FOET = FOET/FACTOR 
GO TO 405 

600 WRITEI 6, 71 
WRITE16,2l BETA,FOET,STEP,EPS1iTEMP3 
TEMP= BETA•2.0/!THIKRA•PI•SQRTl48.•ll.-ANEW*ANEWIII 
TEMP= BETA*l6./IPl*PII 
WRITEl6,21 TEMP,FOET 

604 WRITE 16,81 
WR!TEl6,21 ZAMBA 
GAMHA = ALFA*ALFA + BETA 
00 852 K = MY,J 
00 852 L = Ml,J 

852 OETIK,Ll s 0.0 
407 00 408 K = 1,N 

AN = K 
OETIK+8+N+N,K+N+N+8l = 1.0 
OETIK+8+N+N,K+N+N+6l = IFRESSR-2.•ALFA*ALFAl/llAN~2.l*IAN+3.!I 

408 OETIK+8+N+N,K+N+N+4l=ALFA•ALFA*GAHHA/IAN*IAN+l.l*IAN+2.!*!AN+3.II 
00 516 L = 1,N 
00 516 Kl s 1,KAY 
00 516 K2 = 1,KAY 
IF IL-Kl-K2+11 516,549,549 

54900ET IN+N+8+L,N+N+4+L-Kl-K2+21 = OET (N+N+8+L,N+N..,.+L-Kl-K2+21 + 
1112.•THIKRA•THIKRA•STACK IKU•STACK( K21 l II L•l L+ll •I L+2 l•I L+31 I 

516 CONTINUE 
DO 707 K = 1,MAXC 
BBBBIKI a - OETIK,Mll/FUDGE 
00 707 L ~ 1,MAXC 

707 AAAAIK,LI = DETIK,LI I FUDGE 
DO 709 K = 1,NPTHRE 
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DO 709 L = l,MAXC 
AAAAIK+MAXC,LI = DETIMl+K,LI/FUDGE 

709 AAAAIL,MAXC+KI z OETIL,Ml+KI/FUDGE 
DO 713 K = 1,NPTHRE 
8B88IMAXC+KI = - OETIHl+K,Mll/fUDGE 
DO 713 L = 1,NPTHRE 

713 AAAAIHAXC+K,MAXC+LI = DETIMl+K,Ml+LI/FUDGE 
CALL MlNV IAAAA,MA,FDET,LlNG,MlNGI 
CALL GHPRD IAAAA,8888,CCCC,MA,HA,ll 
DD 710 K = 1,HAXC 

710
0

SHAPEIKI = CCCCIKI 
SHAPE I Hll = 1.0 
OD 714 K = HI, HA 

714 SHAPEIK+ll = CCCCIKI 
CALL HXOUT (4,SHAPE,J,1,0,60,132,ll 

C WE NO" SOLVE FOR THEJU-DISPLACEHENT 
ZARKOV = - 0.1 
WRlTE 16,121 
DO 900 IPY = 1,11 
TERH = O.O 
ZARKOV = ZARKOV + O.l 
DO 800 K = l,HAXA 
TERM= SHAPEIKl*IZARKOV**I K - l II~ TERH 

BOO WRITE 16,21 TERH,ZARKOV,EH 
900 DISPLTIIPYI = TERH 

CALL RATIOIDISPLTI 
00 901 (PY= 1,11 
ZARKOV = (PY - l 

901 WRITE16,15l ZARKOV,DISPLT!IPYltEH 
C NOW FOR -THE V-DlSPLACEMENTS 

ZARKOV = - 0.1 
WRITE 16,131 
DO 930 IPY = 1,11 
TERH = O.O 
ZARKOV = ZARKOV + O.l 
DO 931 K = NPTHRE,MAXC 
TERH = TERM+ SHAPEIKl*IZARKOV**IK - 1 - HAXAII 

931 WRITE 16,21 TERH,Z.ARKOV,EH 
930 DISPLT IIPYI = TERM 

CALL RATIOIDISPLTI 
DO 932 (PY= 1,11 
ZARKOV = IPY - 1 

932 WRITE 16,151 ZARKOV,DISPLTIIPYI, EH 
C NOW THE W - DI SPLACEHENTS 

ZARKOV z - O. l 
WRITE 16,141 
00 940 (PY= 1,11 
TERH = O.O 
ZARKOV = ZARKOV + 0.1 
DO 941 K = Hl,J 
TERH z TERH + SHAPEIKl*IZARKOV**IK - 1 - MAXCJI 

941 WRITE 16,21 TERH, ZARKOV, EH 
940 OISPLT IIPYI = TERM 

CALL RATlOIOISPLTI 
DO 942 I PY = l, 11 
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ZARKOV = 1PY - l 
942 WRITE (6 1 151 ZARKOV,DISPLTIIPYl,EH 
950 CONTINUE 

STOP 
ENO 
SUBROUTINE RATIOIAI 
DIMENSION Allll 
GLUNT= O.O 
00 921 !PY• 1,11 
JFC ABSIAI IPYI I - GLUNT I 921,921,920 

920 GLUNT= ABSIAIIPYII 
921° CONTINUE 

00 910 IPY = 1,11 
910 AIJPYI = IAIIPYII/GLUNT 

RETURN 
ENO 
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