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CHAPTER 1
INTRODUCTION

Even though most formal mathematics education through the under-

‘ graduate years centers around the real number systems, there are many
other number systems which are useful in mathematical investigations,
The p-adic number fields are examples. These fields were introduced by
Kurt Hensel in connection with the problem of determining when a poly-
nomial equation in several variables has a solution, Since Hensel'‘s
original investigations, p-adic numbers have found extensive applica-
tions in algebraic number theory. 1In many areas of number theoretic
investigations, their importance is comparable to the importance of the

reals. Weil (19) states in his introduction to Basic Number Theory:-

In the days of Dirichlet and Hermite, and even of Minkowski,
the appeal to 'continuous variables' in arithmetical questions
may well have seemed to come out of a magiciant's bag of tricks,
In retrospect, we see now that the real numbers appear there as
one of the infinitely many completions of the prime field, one
which is neither more or less interesting to the arithmetician
than its p-adic companions, and there is at least one language
and one technique, ..., for bringing them all together under
one roof and making them cooperate for a common purpose.

Given a prime number p, the key to conceiving of the corresponding
p-adic number field as a completion of the rational numbexrs is to
replace the concept of absolute value with divisibility by powers of p.
Distinct primes yield distinct number fields, Hence there are infi-
nitely many such number fields. The completion process is readily

accessible to students at the advanced level and is the procedure fol-



lowed in the mathematical literature when the p-adic number fields are
considered. However the completion process does not reveal the nature
of a p-adic number.

The purpose of this study is 1) to provide a development of p-adic
numbers that is accessible to senior mathematics majors, 2) to reveal
the nature of p-adic numbers in relationship to the real numbers, and
3) to consider some algebraic and topological properties of these num-
ber systems. The Hahn-Banach theorem for non-archimedean normed linear
spaces, as developed in Chapter V, provides. an interesting application
of several characteristic properties of the p-adic number fields. After
such a development, the p-adic number systems are available as a source
of examples to illustrate and, coupled with the real numbers where
corresponding properties do not always hold, to accentuate specific
mathematical concepts.

Books by Borevich and Shafanevich (3) and Bachman (1) are the major -
references for Chapter II. Bachman is also a source for the material of
Chapter III. However a paper on 'Global Fields' by Cassels (4) is
another reference for Chapter III. Cassel's material is more general
than the results for p-adic numbers in particular but adapts well to the
p-adic situation. A modification of some of his results appear in the
first part of Chapter IV. The material on non-archimedean normed linear
spaces derives from papers by Cohen (5) and Ingleton (7). The hint of
the possibility of unifying all these sources into the present form
comes from Monna's (13) paper.

Before beginning the development of the‘p—adic numbers, a brief
review of some important properties of the real numbers is given. Key

concepts are defined, symbolism is explained, and some elementary rela-



lationships between the basic concepts are stated. The reader who is

already familiar with these results may proceed directly to Chapter II, .
Sets

If S and T are arbitrary sets, then the set
SxT = {(s,t): seS and teT}

is the cartesian product of S and T. The elements of SxT are ordered

pairs. A relation between S and T is any subset of SxT while a relation

on S is any subset of SxS. Let " be a relation on S, If a pair (s,t)

is an element of v, it is customary to write s Vvt or t = "(s),

Definition 1.1. A relation " is an equivalence relation on S if

(r.1) a“va,
(1.2) a vb implies b Vv a,
(1.3) aVvband b vc implies a Vv ¢

for each a, b, and. ¢ in S.

A partition of a set S is a representation of S as the union of non-
empty mutually disjoint subsets of S. Given an equivalence relation Vv
on S, the set

[s] = {t: s vt and teS}

is an equivalence class. The collection of all equivalence classes,

S/~v, is a partition of S and:is called the quotient set gf_§!With

respect to V. Conversely, let P = {PA: Ael} be a partition of a set S..
Then ", defined by

aVvb if and onlybif a and b are in PA for some A in A,
is an equivalence relation.

A relation f from S into T is a function if t = f(s) and u = f(s)



implies t = u. The image of S under f is the set

£(S) = {t: seS and .t = f(s)].

If £(S) = T, then f is said to be onto T. The function f is a 1-1-

function if f(s) = f{u) implies s = u. The set
£l {e,8): (s,t)ef)
is the inverse of f. If X is a subset of T, then the set
£ 1) = {s: £(s)eX and ses}

is the inverse image of X. A binary operation on S is a function from

SxS into S.

A sequence is a function s from the non-negative integers into
some . set T. It is customary to write S, instead of s{n) to indicate
the sequence value at.n and to write {sn} to indicate the sequence. If
{tn} is a sequence obtained from {sn} by the deletion of certain ele-
ments, thé remaining elements retainea in their original order, then
{tm} is a subsequence of {sn}. Two sequences {sn} and {un} are equal,

{s } = {u}, if and only if s_ = u_ for each n > O,
n n n n :
Algebraic Systems

A set S is closed under an operation if the image of the operation

is in S. An algebraic system is a set S that is closed under one or

two operations. Groups, rings, integral domains, and fiel&s are alge-
braic systems. A commutative ring with unity and without divisors of
zero is an integral domain. An integral domain where every non-zero
element has an inverse is a field.

Let (G,+) denote a group. An equivalence relation v on G is com-

patible with + on G if x vy and w v z implies that x + w vy +.z for

all w, x, y, and z in G. If v is compatible with +, then + induces an



operation + on G/ defined by

[x] +, [y] = [x + y].
The algebraic system (G/Vv,+.) is a group. Let H be a subset of G such
that (H,+) is a group. Then (H,+) is a subgroup of (G,+). If (G,+) is
commutative, then for each x in G the set x + H = {x + h: heH} is a

coset of H. The collection of cosets of H, G/H, is a partition of G.

Theorem 1.2. Let (G,+) be a commutative group and let " be an equiva-
lence relation on G compatible with +. Then ([0],+) is a subgroup of
(G,+). The equivalence relation determined by G/[0] is v and (G/[O],+¢)

is the quotient group (G/%,+%).

It is usual to denote both addition in G and addition in G/~ by +. The
context makes clear which addition is intended. Operations are sub-
scripted only for emphasis.

Let (M,+,*) denote a ring. Let N be a subset of M, Then (N,+,:)
is a subring of (M,+, ) if (N,+,*) is a ring. If N is a subset of M,
then (N,+,-) is a subring of (M,+,-) if and only if x -y and x-y are in
N whenever x and y are in N. An ideal of (M,+,+) is a subring (K,+,:)
of (M,+,") such that for each x in K and y in M, x'y i1s in K. 1If an
ideal contains the unity of the.ring, then the ideal is the ring. The

ideal (K,+,-) is a principal ideal if there exists k in K such that for

each h in X, h = k-x with x in M. The element k is said to generate
(K,+,*). A principal ideal generated by k is denoted by ((k),+,-).
The ideal (K,+,°) is maximal if K is not M and if whenever (P,+,-) is
an ideal such that P properly contains K, then P = M, And (K,+,-) is
prime if x-y an element of K implies that x is in K or y is in K.

If v is an equivalence relation on M compatible with both + and -,



then ([0],+,:) is an ideal of (M,+,:). As for +, so : induces an opera-
tion on M/~ defined by
[x]-[y] = [x-y].
Furthermore if " is defined on M by.
(1.4) x vy if and only if x - y is in K,
then v is an equivalence relation on M that is compatible with both +

and .. Hence M/K = M/,

Theorem 1.3. If (M,+,') is a commutative ring with unity and N is an
equivalence relation on M compatible with both + and +; then (M/v,+;°)

is a commutative ring with unity.

Theorem 1.4. If (M,+,-) is a commutative ring with unity and if (K,+, ‘)
is an ideal of (M,+,-), then (K,+,+) is maximal if and only if (M/K,+,-)

is a field.

Example 1.5. Let (Q,+,') denote the rational number field and let S be
the collection of all sequences of rational numbers. The operations +
and * induce corresponding operations on S defined by
{sn} + {un} ={s +ul
and
{sn}'{un} = {sn-un}.

The algebraic structure (S,+,°) is a commutative ring with unity.

Let (H,+) and (K,e) be algebraic systems. An isomorphism from
_(H,+) onto (K,e) is a 1-1 function from H onto K such that
(1.5) f(x +y) = £(x)ef(y)
for all x and y in H. Also if (H,+,*) and (K,e,e) are algebraic sys-

tems, then an isomorphism from (H,+,*) onto (K,#,0) is a 1-1 function



from H onto K such that (1.5) holds and
(1.6) f(x-y) = £(x)of(y)
for all x and y in H. If there exists an isomorphism between two math-

ematical systems, then the two systems are isomorphic,
Number Theory

Let (Z,+,+) denote the ring of integers. A relation on Z,
Z(mod m), defined by
X Z y(mod m) if and only if m divides x - y
is an equivalence relation on Z. Furthermore x = y(mod m) and
w = z(mod m) implies that x + w =y +.z(mod m) and x*w = y+z(mod m).
If x = y(mod m), then y is said to be a residue of X‘modu10 m, The

equivalence class [x] determined by =(mod m) contains all residues of x

modulo m and is called'a residue class modulo m. If [x] is a residue
class modulo m, then [x] contains a_uniqﬁe non—negative,integer Zz less
than m,

Let ¢(m) denote the number of positive integers less than or equal.

to m and relatively prime to m.

Theorem 1.6. (Euler's Theorem) If a and m are relatively prime, then

a¢(m) = 1(mod m).

Theorem 1.7. The linear congruence ax = b(mod m) has a solution if and

only if.the greatest common divisor of a and m divides b,
Order

A set S is partially ordered by a binary relation < on S if.

x <y and y < z implies that x < z,



and
Xx <y and y < x implies that x =y
whenever x, y, and z are in S. A subset X of a partially erdered set S

is bounded above if there exists an element m of S such that x < m for

each x in X. The element m is an upper bound for X. An upper bound is

a least upper bound for X if for every upper bound M for X, m < M. The

concepts of bounded below, lower bound, and greatest lower bound are

similarly defined. A set is bounded if it is bounded below and bounded

above, The set S is completely ordered if it is partially ordered and

if for each x and y in S, either x <y or y < x.

Metric Spaces

Definition 1.8. A metric for a set S is a function d from SxS into R

such that

(1.7) d(x,y) > 0 with equality only if.x = y,
(1.8) d(x,y) = d(y,x),

(1.9) d(x,z) < d(x,y) + d(y,z)

for each x, y, and z in S. The set.S with metric d is a metric space

and is denoted by (S,d). Elements of.a metric space. are called points.

Absolute value is a function from the set of real numbers onto the
non-negative real numbers defined by

[xl =x, if x>0

1

-xy 1f x < 0.
The absolute value function satisfies the following conditions;
(1.10) ]x! > 0 with equality only if x = 0,

(1.11) | lxy| = [x]-]y],



(1.12) x +yl < lx + vyl
for each x and y in R, Furthermore
(1.13) ] - Iyl s Jx -yl
whenever x and y are real numbers. If d is defined from RxR into R by
d(x,y) = Ix - y|, then d is a metric on R and (R,d) is a metric space.
In a metric space (S,d), the set
s(x,r) = {y: d(x,y) < r}

is called an open sphere with center x and radius r. The set

S[x,r] = {y: d(x,y) < r}

is a closed sphere with center x and radius r.

Let (S,d) be a metric space. Then X, a subset of S, is open if for
each x in X there exists an open sphere S(y,r) such that x is in S(y,r)
and S(y,r) is a subset of X. Hence an open sphere is an open set, A

point x of a metric space (S,d) is an accumulation point of the set S if

every open set containing x also contains a point of S distinct from X“
A subset of a metric space is closed if its complement is open, Closed
sets contain all their accumulation points. Closed spheres are closed
sets. If M is a subset of S, then (M,d) is a metric space, A subset

H of M is open in (M,d) if for each x in H there is an open sphere
S(x,r) such that the intersection of M and S(x,r) is a subset of H, 1In
some metric spaces, sets are open as well as closed. A metric space

(S,d) is connected if no proper subset of S is both open and closed.

Theorem 1.9. A subset M of a space (X,d) is connected if and only if

no proper subset of M is both open and closed in (M,d).

Theorem 1.10. The intersection of any finite collection of open sets

is open. The union of any collection of open sets is open.
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The collection of all open.sets of (S,d) determined by metric d is

unique and is called the metric topology for S determined by the metric

d: When the metric d for R is determined by absolute value, the metric
is said.to be induced by | ] and. this metric topology is referred to as
the l [—topology,for R. The | ]—topology is the usual topology for R.
Suppose (S,d)} and T,&) are two metric spaces. The spaces (S,d)
and (T,a) are isometric if there exists a 1-1 function f from S onto T
such that d(x,y) =.d(f(x)}, f(y)) for all x and y in S. A function f
from S into T is continuous at a point x if the inverse image of every
open set of (T,a) which contains f(x) is an open set of (S,d). The

function f is continuous QE_§:if it is continuous at eagh‘point of S.

Theorem 1.11. Let (S,d) and (T,a) be two metric spaces. Then a func-

tion from.S into T is continuous on S if and only if for each x in S
and for each € > 0 there exists a § > 0 such that
(1.14) d(f(x),f(y)) < € whenever d(x,y) < ¢

with y in S.

A real valued function f is continuous on a subset S of R if and only

if for each x in S and.for each € > 0 there exists a § > 0 such that
[f(x) - f(y)| < € whenever |x - y| < 8

with y in S.

Let (S,d) be.a metric space. A sequence {sn} of S converges with
respect to d to a point £ if for each € > 0 there exists an N such that
(1.15) d(sn,ﬁ) < £ whenever n > N,

A sequence .which converges with respect to the metric d to a point of
the space is called c¢onvergent with respect to d. The point £ is unique.

in a metric space and is called the limit of {sn}. It is customary to
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write s > £ or lim s, = £ whenever {sn} converges to £. A sequence
{sn} of real numbers converges to a real number £ if and only if for
each € > 0 there exists an N such that
[sn - £] < € whenever n > N,
A sequence {sn} is Cauchy if for each € > 0 there exists an N such that
d(s_,s_) < € whenever m,n > N.
n’’m
A sequence {sn} of real numbers is Cauchy if for each € > 0 there exists
an N such that
Is - s I < € whenever m,n > N.
n m
A metric space (S,d) is complete with respect to the metric d if
every Cauchy sequence of S converges to a point of 'S. Let (S,d) be a
metric space. A nest of closed (open) spheres is a collection of.
closed (open) spheres that is completely ordered by set inclusion. A

metric space (S,d) is spherically complete if every nest of closed

spheres has a common point. A set X is dense in S if for each s in S

there exists a sequence {xn} in X such that x_ =+ s,

Theorem 1.12. Let (S,d) be a metric space. There exists a complete

metric space (T,a) and a subset TO dense in T such that TO arid S are:

isometric.

Definition 1.13. A metric space (T,d) is a completion of metric space

(S,d) if (T,d) is complete and S is a dense subset of T,
Infinite Series

Given the sequence {sn} of a field (F,+,'), the expression

o
S =S, + S, + ...+ S + ...
zn=0 n 0 1 n

is an infinite series. Addition of infinite series is defined by
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Z:;Osn * z:::Oun ='z:=0(5n + un)'

Multiplication of an infinite series by an element a in F is defined by

a2::=Osn_= Z:=Oasn'

It is impossible by the usual definition of addition in the field
to assign a field element as the sum of Z:;Osn‘ But it is possible to
construct a sequence of partial sums, {Z§=Osn}. If F has a metric
structure and Z£=Osn + £, then £ is the sum of the series and it is

ite ), L. If ), £, th 0 and th
= - ->
customary to write k=osn L. 1 k=Osn , then S, and the sum
of.z:LOsn is not affected by regrouping terms as long as the order of
the terms remain unchanged. If Z;;O§n'= z,also, then

aZ:;Osn + bZE;Ogn = al + bl for each a and b in F.
Vector Spaces

A vector space over a field (F,+,*) is an algebraic system

(V,F,+,*) such that (V,+) is a commutative group and ' is a function

from FxV into V such that

a'(x'+y)=ax+ay,

(a + b):x = a*x + b'x,

(a*b)x = a-(b-x), and
l1:x = x

for all x and y in V and all a and b in F. The dual usage of "+'" and
.1t should be noted. Elements of V are called vectors, elements.of F

are called scalars, and * is called scalar multiplication. Both scalar

multiplication and multiplication of scalars are indicated by juxtaposi-
tion.

Let W be a nonempty subset of V. Then (W,F;+,-) is a subspace of
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(V,F,+,*) if x and y in W and a in F implies x + y and ax are in W.

Every vector space contains ({0},F,+,*) as a trivial subspace, This

subspace will not be considered in the remainder of this paper. Let S

be a subset of V and let L(S) be the set of all elements of .the form
21Xy *.a,X, + ...+ a X,

where n is any positive integer, X1sXp,...,X, are any elements of S, and

815855.-.,8, are any scalars. Then. (L(S),F,+,") is a subspace of

(V,F,+,") and is called the subspace generated by S, The set S.is

called the set of generators of L(S).

A set of vectors {xl,xz,...,xn} is linearly independent if

81X] * ayX, ... o+ a X, =0 ;mplles-a1 =a,=...=a = 0, If a set
B = {xl,xz,...xn} is a subset of V such that L(B) = V, then B spans V.

If B is linearly independent and spans V, then B is a basis for V. Sup-
pose there exists some positive integer n such that V contains a set of

n vectors which are linearly independent, while every set of n+1 vectors

in V is not linearly independent. Then (V,F,+,") is finite dimensional
and n is the dimension of (V,F,+,*). If (V,F,+,*) is of dimension n,
then there exists.a linearly independent. subset S = {Vl,v-,...vn} of V
such that for each x in V there exists scalars ays 1 < k <€ n, such that

= A\

X =a,vy +aV, + ... +av.

Under these circumstances; it is often convenient to write

V = FVl + sz + ...+ Fvn.

A vector space which is not finite dimensional is infinite dimensional.

A vector space over the real number field is called a real vector space:

Vector spaces are also called linear spaces.

]

Example 1.14. Let (F,+,") be a field and let F' = {(xl,xz,...,xn): X

1<1i<n, is in F}. If addition and scalar multiplication are defined
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such that-(xl,xz,...,xn) + (yl,yz,...,yn) = (xl + Y1s%, *Yosenes

.n N s
X, + yn) and a(xl,xz,...,xn) = (axl,axz,..,,axn), then (F ,F,+,*) is an

n-dimensional linear. space.

Example 1.15. Let (F,+,") be a field with a metric topology and let C

denote the collection of convergent sequences of F. If addition and
scalar multiplication are defined by {s } + {§ } = {s_+ &.} and

a{sn} = {asn}, then (C,F,+,') is an infinite dimensional linear space.

Let (V,F,+,") and (W,F,+,°) be two vector spaces over the same
field F. Then an isomorphism from (V,F,+,*) onto (W,F5+,'j is a 1-1
function f from V onto W such that. |
(1.16) fx +y) = £(x) + £(y)

(1.17) f(a-x) = a-f(x)
for each x and.y in V and a in F. The function f such that (1.16) and

(1.17) hold is a linear;functidn from (V,F,+,-j into (W,F,+,-). A

linear. functional is .a linear function from a vector space into the

associated scalar field.



CHAPTER I1I
THE P-ADIC NUMBER FIELDS

There are rational numbers which cannot be expressed by any term-

inating decimal series expansion. For example,

1 2 3

(2.1) 2/3 = 6:10° " + 610 ° + 6-10" 7 + ...

where the expansion continues indefinitely with .6 as the coefficient for
every power of 10.

At the elementary level, (2.1) is easily justified, The usual pro-.
cedure is to let m equal the right-hand side of (2.1) and observe that

1 2 61070+ ...,

+ 6-10‘3 + o,

+ 6-10°
2

10m =6 + 6:10

6-107% + 610"

m

and hence that 9m = 6. Therefore m = 2/3 and (2.1) is acceptable.

To make the explanation of (2.1) exact, basic properties of con-

P . . . . o0 -n
vergent infinite series are required. Since the series Zn=l6°10 is .a

convergent geometric series with r = 1/10 < 1, there exists an m in R

o0 -n
such that zn=l6~10 = m. Therefore

© -n <0 -n
1ozn=16 1077 - ] _,6-10
converges to 9m. But
n -k n -k -n
10{}, _,6:107"} - {}, ,6-107"} = {6 - 10 }.
and {6 - 107"} converges to 6. Hence 9m =.6, m = 2/3, and (2.1) holds.
Even though
(2.2) 2/3 =4 + 15+ 3-52 + 1-55 « 350 &

with 3 and 1 alternating as coefficients in the series expansion looks

15
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strange; an elementary motivation for the statement that 2/3 is in some

sense equal to

4 +1-5 + 3-52 + 1-53 + 3'54 + ..

is even more immediate than the one given for (2.1). Let

m=4+ 1:5 + 3'52 + 1-53 + 3*54 + e

Then

3m = 12 + 3-5 + 9-52 + 3-53 + 9‘54 +

=2+ 2°5 + 35 + 9-52 + 3'53 + 9'54 + ...

= 2 + 55 + 9'52 + 3-53 + 9°54 + .,

=2+ 0 + 10'52 + 3'53 + 9'54 + .

=2+ 0+ 255 +3.5 o584 .

=2+ 0+ 0 + 5-53 + 9-54 + ..

=2+0+0+0 + 10'54 + ..
where any desired number of zeros occur on the right, Thus at the
intuitive stage, 3m = 2, m = 2/3, and (2.2) is acceptable.
In this chapter, a metric topology is defined on the set of

rational numbers such that the infinite series of (2.2) is convergent.

Then an exact mathematical explanation of (2.2) is given.
The p-adic Integers

Let .p be a prime numbef. If Z:=Oanpn is an infinite series and
sy = {Zﬁzoakpk} is the associated sequence of partial sums, then
Sh = sn_l(mod pn)
for each n > 1. The sequence of partial sums of the infinite series of
(2.2) is
(2.3) {s 3 = {4,9,84,209,2084,...}.

It is clear that S, = sn_l(mod 5n) for each n > 1.
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Definition 2.1. The set Sp consists of all sequences of integers

.3

{xn} = {xo,xl,...,xn,..
such that
(2.4) x_ = x_ . (mod p™)
) n -~ “n-1 P
for each n > 1.
In Example 1.5, it was observed that the algebraic system (S,+,*)
where S is the set of all sequences of rational numbers is a commutative

ring with unity. That (Sp,+,°) is a subring of (S,+,') and hence is a

commutative ring with unity is shown in the following theorem:

Theorem 2.2. The system (Sp,+,~) is a commutative ring with unity.

i
i

. n n, . .
Proof: Since X xn_l(mod p.) and Y yn_l(mod p ) implies

- : n, _ - JPREIR O
N A yh_l(mod P and,xnyn.— xn_lyn_l(modap ), it follows
that if {x_} and {y_} are elements of S_, then {x } - {y_} and {x_}:{y_}

n n - P n n n n

are elements of Sp. That is, (Sp,+,') is a subring of (S,+,°). Hence

(S ,+,') is a commutative ring with unity {1} = {1,1,1,...,1,...}.
p g )

The .same procedure followed in the elementary justification of
(2.2) implies that
(2.5) 2/3 =9 + 0-5 + 8-52 + 0'53 + 8-54 + ..
is ‘also acceptable. The sequence of partiallsums associated with (2.5)
is
{§n} = {9,209,209,2084,2084,...}.

Both {sn} of (2.3) and {§n} are elements of S.. An equality relation

is now defined on Sp such that S, and §n are equal in Ss.

Definition 2:3. Let {xn} and {yn} be two sequences belonging to Sp.

Then {xn} =.{yn} if and only if

— n+1l
X, = vy (mod p")
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for each n > 0.

Note that it would be appropriate to subscript "=" with "p" since.
the definition of =.depends upon p and differs from regular equality of
sequences. However once aware of the distinction, the reader will not
experience any difficulty in determining from context which equality is
under consideration.

From the fact that =(mod pn+1) is an equivalehce relation on Z for
each n 20, it follows that = is an equivalence relation on Sp‘ Hence.

the quotient set Sp/= is a partition of Sp

Definition 2.4. A p-adic integer is an element of Sp/=.

The collection of all p-adic integers is denoted by,Opf It is common
to use Greek letters to.represent p-adic integers. That is, if'{xn} is
an element of SP, then o = [{xn}] is a p-adic integer, {xn} is a repre-
sentative of o, o is determined by {xn}, and it is convenient to write
o <> {xn}. To distinguish between p-adic integers and the conventional
integers of arithmetic, the latter are referred to as rational integers.

It is possible to specify a unique representation of each p-adic
integer. Suppose o > {xn} is a p-adic integer. Let {X_ } be the unique
sequence such that for each n.> 0, in is the unique non-negative residue
modulo.\pr;l+1 less than pn+1. It follows that {xn} = {in} in the sense
of Definition 2,3 and hence that o <+ {x_I.

Since x, < pn+l for n > 0, there exists sets of integers
{ai: 0 < a; < p whenever 0 < i < n-1} and,{bi; 0 < bi < p whenever.
0 < i < n} such that

Kn—l = a5 + ap + ... +°8 1P

and
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- » n—l n
X_ = b0 + blp + oo, bn-lp o+ bnp .

The fact that a; bi for 0 < i< n-1 is proved now by mathematical

1)

induction. From X in(mod pn) for each n and the definitions of a

n-1 0
and bO’ it is clear that ay = bO' Assume that a, = bi for
0 <i<m<n-1. Then
a +a . p+...+a pn_m_1
m+1 m+2 n-1
is congruent modulo p to
b1 +ubm+2p + o +‘bn_1Pn7m_l'+ ann—m
It follows that a = bm+1(mod p) and hence that a .1 = bm+1' There-
fore a, = bi for 0 < i < m+l < n-1. Thus for every p-adic integer.

there corresponds a sequence {ao,al,az,...,ak,...} of integers such
that 0 < 8, <P and
n k
o< {J o3P 1

These observations are stated in the following theorem:

Theorem 2.5. Every p-adic integer o has a unique representative
{Z£=Oakpk} with 0 §~ak < p. Furthermore every such sequence determines

some p-adic integer.

Definition 2.6. The unique sequence {Z£=Oakpk} with 0 < a, < p which

determines o is the caponical sequence of o.

If {xn} and {yn} determine p-adic integers then both {xn + yn} and
{xnyn} determine p-adic integers since Z=(mod pn) is compatible with

both addition and multiplication.

Definition 2.7. Let o <> {xn} and B «> {yn} be p-adic integers. The

sum of a and B, o + B, is the p-adic number determined by {x + yn} and

the product of a and B, oB, is the p-adic integer determined by {xnyn}.
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If it is also the case that a <> {ﬁn} and B <« {?n}, then

X

. ﬁn(mod pn+1) and y = ?n(mod pn+1) for each.n > 0. Therefore

- o n+l DN n+l .
X, +y, = ﬁn + yn(mod p), xy = xn9n(mod P ), and neither sum nor
product of p-adic integers depends upon the representative sequence

selected.

Theorem 2.8. The algebraic system (0p,+,') is a commutative ring with
unity.
Proof: Let o < {xn} and B <> {yn}. By Definition 2.7,
[{xn}] + [{yn}] =0 + B = [{xrl + yn}]
and
| [{x }1-[{y }] = a8 = [{xy 3]
Hence = is compatible with both + and :. Since 0p = Sp/=, it follows

from Theorems 1.3 and 2.2 that (0p,+,o) is a commutative ring with

unity.

The constant sequence {0} = {0,0,...,0,...} is an element of Sp
such that for each {xn} in Sp, {Xn} + {0} = {xn}. Hence the zero
element of (0p,+,°) is the p-adic integer determined by {0,0,...,0,...}
and is denoted by 0. Infinitely many other sequences also determine the

p-adic zero. If k is any positive integer, then 0 <> {pkn}.

In partic-
ular, {pn} is a non-constant sequence that determines O.
For each rational integer z the constant sequence {z,z,...,2,...}

is ‘a sequence of Sp that determines a p-adic integer. The relationship

between (Z,+,*) and (0p,+,-) is stated in the following theorem:

Theorem 2.9. The p-adic,integers contain an isomorphic copy of the
rational integers.

Proof: Let f be a function from Z into 0p such that for each z in Z,
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f(z) is the p-adic integer determined by the constant sequence
{z,z,...,2,...}. If z # 2 then f(z) # £(£) and f is a 1-1 correspond-
ence between Z and some subset of Op° To verify (1.5) and (1.6), note
that
f(z +2) ={z+ 2,2 +2,...,2+2,,..} = £(z) + £(2)
and thatv
f(z2) = {2%2,22,...,22,...} = £(2)f(%).

Thus f is an isomorphism.

As usual, the isomorphism will be de-emphasized and Z will be
considered as a.subset of Op. That is, for each z in Z the p-adic inte-
ger z is the equivalence class containingbthe constant sequence.
{z,z,...,z,...}. However this class will be identified as the p-adic
integer z. Thus 1 <+ {1,1,...,1,...} is the unity of (Op,+,°);

Substraction and divisisioh of p-adic integers are defined in terms
of addition and multiplication. That is,

o - B =y if and only if o = B + ¥
and
o+ B =y, B#0, if and only if a .= By.

If o + {xn}, B «> {yn}, and y {zn}, it is clear that

o e n
o - B+ {xn - yn}. Hence oo - B = vy if and only if x -y =z (mod p")

for each n > 0, Furthermore o/8 = vy if and only if o <« {ynz } or

n
. . . - n+l
equivalently, if and only if x, = ynzn(mod p ) for each n > 0.
In general, elements of a commutative ring with unity need not
have multiplicative inverses. For instance, the only rational integers

which have multiplicative inverses are 1 and -1. Many p-adic integers

have multiplicative inverses.
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Definition 2,10. A p-adic integer o is a unit if and only if there.

exists a p-adic integer B such that aBf = 1, the multiplicative identity

f O,+,. °
0 (p )

A sequence which represents a p-adic unit can be identified by its first

entry as the following theorem shows.

Theorem 2.11. (3) A p-adic integer o ++.{xn} is a unit if and only

if-xO # O0(mod p).
Proof: Suppose 0 is a p-adic unit. Then there exists p-adic integer
B <= {yn} such that aB = 1. Hence {xnyn} = {1,1,...,1,...} and

Xy = 1 (mod pn+1) for each n > 0. In particular, x = 1(mod p) and

0”0

n
X, # O(mod p). Conversely, suppose x, Z O(mod p). Since

0

1

X = xn_l(mod pn) for each n 2 1, x xo(mod p) and therefore

n
Xx_ # O(mod p) for each n > 0. It follows, from Theorem 1.7 that for

n+l

each n > 0. there isva,ynvsuch that Xnyn = l(mod p~ "). Consequently

= n = n. . ) i
Xy, =X, ¥, qmodp), andy =y ,(modp), and {yn} determines a

-adic integer. Let B <> {y_}. Then for eachn > 0, x_y 1(mod p™M),
P Yn! n’n P

{xnyn} = {1}, and aB = 1. Therefore a is a p-adic unit.

A p-adic integer a determined by a canonical sequence {ZE=Oakpk} is
a unit, if and only if 2, # 0. Since a rational integer z, considered
as a p-adic integer, is determined by {z,z,...}, z is a p-adic unit if
and only if. z is not a multiple of p.. Furthermore z a p-adic unit.
implies that zfl is .a unit and hence that y’z_1 is a p-adic integer
whenever y is. a rational integer. In particular, 2/3 and 3/2 are in
05.

For each p # 2, 2 is not a multiple of p and hence 2 is a p-adic

unit. Therefore 1/2 is also a p-adic unit, Let 1/2 <+ {} k} with

n a
k=0%KkP
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n k n k = n+l
0 <a <p. Thenl ++-{Zk=02akp } and Zk=02akp Z 1(mod p° ) for each

> 0. Since

=]
\4

2aO = 1(mod p),
2a, - 1 = p and ay = (p+1)/2. From

p+1+ 2a1p = 1(mod p2),

1]

it follows that 2a1 + 1 = O(mod p) and hence that a (p-1)/2. 1t is

1

now shown by induction that.an = (p-1)/2 for n > 1. Assume that

ay = (p-1)/2 for 1 < k £ n. Then since

p+1+ (p-l)p + ...+ (p—l)pn + 2an+1pn+1) = 1 (mod pn+2),
n+l n+l _ n+2 — ) »
2a 4P +D = 0O(mod p- ) and 2a_,, + 1 = 0(mod p). That is,
a .1 = (p-1)/2. Therefore
1 , n p-1Kk
(2.6) §-+4'{(p+1)/2 + Zk=1 5P }.

Example 2.12. The number 2/3 is a 5-adic integer. If

2/3 ++-{Z£=oak5k}, then Z£=03ak5k = 2 (mod 5k+1). It is possible to

evaluate ay for each k > 0. Since

3a, = 2(mod 5),

a, = 4. From

34 + 3a,5 = 2(mod 52y,

it follows that 3a15 = -10(mod 52) and hence that 3a1 = -2(mod 5).

Therefore a] = 1. Now

3.4 + 315 + 3'a2'52 = 2(mod 53)

implies that 3a252 = -25(mod 53) and hence that 3a2 é -1(mod 5). Con-
sequently a, = 3. Since

34 + 3.1-5 + 3-3.5% + 3-a3-53 = 2(mod 5%,
3a3 = -2(mod 5) and the procedure repeats. Therefore ay = 4, a1 = 1,
and =3 In O
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2/3 < {4 + Z£=1(2 + (-1)Ky552
= {4,9,84,209,2084, ...},

From (2.6), it follows that in O5

1/2 <> {3,13,63,313,1563,...}
and hence that

3/2 +> {4,14,64,314,1564, .1,
Therefore

3/2-2/3 +> {16,126,5376,65626,3259376, ...}
= {1,1,1,1,1,...} =1

and 3/2:-2/3 = 1 in (05,+,-).

The next result is an interesting counter-part to the fundamental
theorem of the arithmetic of non-negative integers and gives insight

into the arithmetic of p-adic integers.

Theorem 2.13. (3) Every p-adic integer, distinct from zero, has a

unique representation in the form
m
o0=pE€
where m is a non-negative integer and e is a unit of the ring (OP,+,').
Proof: If o is a unit, then the conclusion follow$s with m = 0, Let

o > {xn} be a non-unit. By Theorem 2.11, x, = O(mod p). Since a # O,

0

there exists an n such that X Z 0{mod pn+1). Let m be the smallest

integer for which
X E 0(mod pm+1).

For any s > 0,
m+s m+s-

X =
m+s-1 m+s-
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and

< = 4 m+s—s)
m+s-s ~ “m+s-{s+1)

(mod p

r

m _ m
Hence X s xm_l(mod P ). But X 1= O(mod p ). Therefore the number

m+s)
s

it follows

m . . . -
y = Xx__ /p 1is an integer. Since x = xm+s_1(mod )

s m+s m+s
that yspm = ys_lpm(mod pm+s) and hence that Y = ys_l(mod ps) for s > 1.
Thus € <-—*-{yo,yl,‘,..,ys,...} is a p-adic integer. Furthermore Yo = xm/pm
and X Z 0(mod pm+1) implies that Yo Z 0{mod p) and hence that e is a
unit. From pmy = X = x_(mod pS+1), it follows that pme = ¢ and

s m+s s
that o has the desired representation.
It remains to show that the representation is unique., Suppose

o = pkn with ¥ > 0 and n + {zn} a unit. Then since {pmys} and {pmzs}

each represent a,

: - _k 1
(2.7) pmys = p 2z (mod p°' )
for each s 2 0. In particular for s = m,
' m - _Kk m+1
(2.8) P Yp =P zm(mod P )
and with s = k
-k k+1
(2.9) pmyk =p zk(mod P ).

But Theorem 2.11 implies p does not divide either Y OT Z for each

s > 0, Hence (2.8) implies k > m and (2.9) implies m > k. Therefore

m=k. If in (2.7) s is replaced by s+m, the result is
pmys+m = pmzs+m(mOd pm+s+1)
or
Ym+s = zm+s(m°d Ps+l)k
Since Yn+s = ys(mod pS+1) and Z 4s = zs(mod pS+1), it follows that

Y = zs(mod pS+1) for all s > 0 and hence that € = 1.

Theorem 2.13 reveals the simplicity of the arithmetic of p-adic
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~integers. There is a unique prime element in Op' This prime element is
p. Every non-zero element of Op is a product of a power of p and a
unit. Another useful property of Op is formalized in the following

corollary:

Corollary 2.14. The p-adic integer o <> {xn} is divisible by pk if and

only if X, F 0 (mod pn+l) whenever 0 < n < k-1.

Proof: If o = p"¢ is divisible by p~, then p* divides p" and k < m.

Since m is the smallest integer such that X # 0(mod pm+1), X =0

(mod pn+l) whenever 0 < n < k-1. Conversely, if X, = 0(mod pn+1)

whenever 0 < n < k-1, then from ¢ = pme it follows that m > k and pk

divides pm. Hence pk divides o = pme.

Corollary 2.15. The ring (Op,+,') is an integral domain.

Proof: It is sufficient to prove that (Op,+,-) has no zero divisors.,

Assume that of = 0. If o # 0 and B # 0, then a = pme and B = pnn where

£ < {xn} and n < {yn} are units, Hence pm+nx0y0 = O(mod-pk) for each

k > 0. In particular, L y, = 0(mod mn+l
P P 0’0 P

) and x;y, = 0(mod p)

0
while X Z 0 and Yo 7 0 modulo p. Since this is impossible, a = 0 or

B =0 and (Op;+,') is an integral domain.

Thus (Op,+,-), like (Z,+,-) is an integral domain. It is in this sense
that the elements of (Op,+,') are called integers.
Since (Op,+,-) is a ring, congruence modulo a p-adic integer is

defined as for rings in general.

Definition 2.16. Let o and B be p-adic integers, Then o = B(mod Y) if

and only if o - B is divisible by Y.

But o - B is divisible by y if and only if a - B is divisible by mefgWE
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where € is a unit. Therefore oo = B(mod ¥) only if o = B(mod pm) for
some m. Hence as far as congrﬁence modulo a p-adic integer is con-
cerned, considerations involving congruences modulo powers of the prime
p are sufficient.

Since (Z,+,*) is a subring of (0p,+,'), it is closed under sub-
traction. Therefore if x and y are rational integers such that
X -y = pmk, then the p-adic integer pmk must be a rational integer and
hence k is a rational integer. It follows that x = y(mod pm) in (Z,+,)
if and only if x = y(mod pm) in (0p,+,-). Thus 0p has at least pm resi-
due classes modulo pm. The fact that there are only pm such residue

class completes the proof of the following result:

Theorem 2.17. There are pm residue classes in 0p modulo pmn

Proof: To complete the proof, it is sufficient to show that every
p-adic integer is congruent to a rational integer modulo pm. Let

o > {xn} be a p-adic integer. The rational integer x is the p-adic

m-1.
integer determined by the constant sequence'{xm_l,xm_l,...}; Since
X 1 = xk(mod pk) for 0 <k < m-1,
o-x o dxg-x g.xp-x 000,00, Xm X g .
is a p-adic integer such that
T = 0(mod pk)

for 0 £ k £ m-1. From Corollary 2.14, it follows that o - X1 is div-
isible by pm. Hence
- m
o = xm_l(mod P)
where x is a rational integer.

m-1

Thus.(Op,+,-) is like (Z,+,:) in that for each n > 1, congruence
modulo pn determines respective partitions on each set consisting of

exactly pn residue classes. The p-adic integers are unlike the rational
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integers in that there is at least one residue class of p-adic integers
that has cardinality of the continuum. This observation is a consequence

of the following theorem:

Theorem 2.18. The set of p-adic integers is uncountably infinite.

Proof: From Theorem 2.5, it follows that there is a 1-1 correspondence

between the p-adic integers and the canonical sequences. Therefore it
is sufficient to show that the canonical sequences are uncountable.

Assume that the canonical sequences are countable and hence that there
is a 1-1 correspondence between the non-negative integers and the can-

onical sequences. Thus there is an exhaustive sequence of expansions:

n
aOO + aOlp + ... + aonp +
+ + + a no,
819 * @11P 1nP
+ + + no,
320 T #pP T oere TP T
+ + + no,
anO anlp annp

where 0 < aij <p for each i 2 0 and j > 0. Consider

2 k
Ao, bkp + ...

(2.10) bO + blp + bzp
such that 0 < bk < p and bk # O for each k > 0, Since (2.10) is not
one of the expansions listed, {Zi=obkpk} was not counted, This contra-

diction to the assumption that the canonical sequences are countable

implies that the set of p-adic integers is uncountable.
The p-adic Numbers

In-a manner analogbus to the development of the rational number

field from the rational integers, it is possible to construct a quotient
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field containing an isomorphic copy of (Op,+,’).

Theorem 2.19. There exists a field that contains a subset isomorphic

to (0_,+,°).
( b )

Proof: Let T = {(a,B): B # 0} be a subset of Oprp and let + and * be

operations on T defined by
(0,B) + (¥8) = (ad + By,BS)
and
(0, B) " (v,8) = (ay,B8).
Then (T,+,°) is a commutative ring with (1,1) as unity. A relation " on
T defined by
(a,B) v (v,8) if and only if ad = By,
is an equivalence relation on T. Therefore T/% partitions T. Since
(0,B) + (Y,8) ~ (A1) + (v,w) and (o,B)-(y,8) ~ (A,u)- (v,w) whenever
(a,B) v (A,u) and (Y,8) Vv (v,w), ~ is compatible with both + and -.
From Theorem 1.3, it follows that (T/™,+,.) is a commutative ring with
unity. The unity is [(1,1)]. It is clear from the definition of ~
that for each non-zero o in Op’ (a,a) is an element of [(1,1)] and hence
is a representative of the unity.

Since [(o,B)] + [(0,8)] = [(a,B)] for each [(a,B)] in T/~v, [(0,8)]
is the zero element of (T/~v,+,:). If [(a,B)]-[(A,uw)] = [(0,8)], then
(aA,BA) is an element of [(0,8)] and ard = 0., It follows that ol = 0
and hence that [(o,B)] = [(0,8)] or [(A,1)] = [(0,8)]. That is,
(T/v,+,+) 1s an integral domain.

To complete the proof, it is sufficient to show that every non-zero
element of (T/%,+,°) has an inverse. If (o,B) is not an element of
[(0,1)], then o is non-zero and (B,a) is an element of T, Since

[(@,B)][(B,a)] = [(aB,aB)], the unity of (T/v,+,:), it follows that
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[(B,0)] is the inverse of [(a,B)]. Hence every non-zero element of
(T/~v,+,+) has an inverse.

Let D be the collection of [(a,1)] such that o is a non-zero ele-
ment of Op and 1 is the p-adic unity. It is clear that D is a subset
of T/ and is closed under the operations of (T/~v,+,°). If f is the
function from Op into T/~v such that f(a) = [(a,1)], then f is an isomor-
phism from (OP,+,-) onto (D,+,-) and (T/7v,+,+) contain an isomorphic
copy of (Op,+,~).

The isomorphism is de-emphasized and OP is considered as a subset

of T/ The set T/"V is denoted by RP and the field (T/~,+,°) is denoted

b R ,+,*).
y(p )

Definition 2.20. For a given prime p, the field (Rp,+,') = (T/~n,+,°) is

the p-adic number field. Elements of Rp are p-adic numbers,

vad and B # 0 are p-adic integers, then o/f denotes the equivalence
class [(a,B)] of Rp.

Since (Op,f,-) contains an isomorphic copy of (Z,+,+), (Rp,+,')
contains an isomorphic copy of (Z,+,°). Hence (Rp,+,°) contains an
isomorphic copy of (Q,+,°). As is usual, (Q,+,:) is considered as a
subfield of (Rp,+,°)n

Each non-zero p-adic number has an unusually simple representation,

Theorem 2.21. Any non-zero p-adic number & = o/B is uniquely expressed

in the form & = pms where € is a unit and m is an integer,

Proof: Since o and B are p-adic integers, o = pkn and B = phu where

k and h are non-negative integers and where n and u are units, Hence
k-

E=0p hE where € = n/u is a unit and k-h = m is an integer. To verify

uniqueness, observe that o and B have unique representation o = pkn and
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B =.phu. Hence the representation & = pme must be unique,.
The p-value Function

There is an important function from RP into R called p-value which
is analogous to the absolute value function from R into R. A first step

towards understanding this function is the definition of order.

Definition 2.22. Let & be a p-adic number. If £ is non-zero, the order

of £ is the unique rational integer V(&) such that & = pv(g}s with € a
unit. The order of 0, v(0), is the number « where « is such that x < =

for each x in R, ® + © = o and © + n = «» for each integer n,

Three important properties of order of p-adic numbers are summarized in

the following:

Theorem 2.23. If £ and ¢ are p-adic numbers, then

(2.11) V(EL) = V(&) + v(g),
(2.12) V(E + 2) 2 min (v(E), v(2)),
(2.13) V(& + z) = min (V(E), V(7)) if v(&) # v(g).

Proof: If either £ or ¢ is zero, all three properties follow immediate-
ly from the properties of «. Otherwise :

er = BV (@) o VE) F V(@)
where €, n, and U are units. It follows that V(EZ) = v(§) + v(g). To
complete the proof, consider
(2.14) £ e V0L VO, VOR L K
where €, fj, X, and {I are units. If k < min(V(§E), v(g)), then

SVE) - kg VD) - kg g

and p divides fl. Since this.is not possible, it follows that

k 2 min(v(§), v(Z)). But (2.14) also implies that k < v(§ + z). There-
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fore V(& + £} > k 2 min(V(&), v(8)).

Condition (2.13) is proved by observing that v(§ + ) greater than
min(v(€), v(Z)) is not possible whenever V(&) # v(Z). From (2f14)’ it
follows that

SVE F D) V@ g, V) - VEN
If v(E) # v(€), then, without loss of generality, it can be assumed that
V(E) < v(z) and hence that V(§ + ) > V(E), Therefore V(§ + T) - V(&)
is greater than or equal to 1 and v(Z) - V(§) is greater than or equal
to 1 and it follows that p divides the unit fi, Since this is impos-

sible, V(& + ¢) = min(v{(E), Vv(Z)) whenever v(§) # v(T).

Division of one p-adic number by any non-zero p-adic number is
always possible since (Rp,+,-) is a field. Division by any p-adic unit
is always possible. However divisibility in (Op,+,~) is limited, This

limited divisibility can be expressed in terms of order,

Theorem 2.24. A p-adic integer a is divisible by the p-adic integer R

if and only if v(B) < v(a).

1]

Proof: 1If there exists vy in 0p such that o = By, then v(a) = v(B) +

V(y). Since v(y) > 0, it follows that v(B) < v{a). Conversely, if

v(a) - v(B)

V(B) < v(a), then a = Bp £ where € is a unit, Hence B divides
.
Order can also be used to classify p-adic numbers as p-adic inte-

gers and units.

Theorem 2,25. A p-adic number £ is an integer if and only if v(§) > 0.

(€)

Proof: The p-adic number & = pv € with € a unit is a p-adic integer

if and only if v(g) > 0.
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Theorem 2.26. A p-adic integer & is a unit if and only if v(a) = 0,

Proof: If o * exists, then aal = 1 and v(a) + v(aul) = 0. From the
fact that V(u—l) > 0, it follows that v(a) = 0, Conversely, v(a) = 0

()

\% . . . . . .
and o = p € with € a unit implies that o is a unit.

With the concept of order of a p-adic number as a convenient first

step, it is easy to define the p-value function.

Definition 2.27. The p-value function is the function | ]é from Rp into

the non-negative reals such that
Y .
gl =p ), ar g 40
p
=0, if £ = 0,

The real number [Elp is the p-value of the p-adic number &.

It follows immediately from Theorem 2,23 and Definition 2.27 that

for each £ and Z in Rp

(2.15) 'IEIP é‘O with equality only if & = 0,
(2.16) IECIP = lilplclp,
(2.17) &+ 2l < max(lg] s le] )

The inequality (2.17) is referred to as the non-archimedean property of.

] !p' It follows from (2.17) that | 'p satisfies the standard triangle

inequality of | |. That is
2.18 <
(2.18) &+ zly < Jel )+ Jel,
for each £ and ¢z in Rp.
Two additional properties of | ]p that follow immediately from
(2.16) are that ]llp = I—l]p = 1 and that lgnlp = lg[np. Also the last

three theorems can be stated in terms of p-value.

Theorem 2.28. A p-adic integer o is divisible by the p-adic integer B if
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d only if < .
and only i |alp < |B|p

Theorem 2.29. A p-adic number £ is an integer if and only if [Eip < 1.

Theorem 2.30. A p-adic integer o is a unit if and only if |oc]p =1,

As | | determines a metric on R, so | Ip determines a metric on Rp.

Theorem 2.31. The function dp from RpxRp into R defined by

i}

dp(E,ﬁ) = Clp is a metric.on Rp.

Proof: Since g - ;{p 2> 0 with equality only if £ - 7 = 0, dp(E,g) >0
with equality only if £ = z. The fact that dp(E,g) = dp(g,E) follows
from |& - glp = |-(¢ - E)[p = |z - E[p. Condition (1.9) follows from
(2.19) E-V=8-7+7 -9

and (2.18), Hence dp is a metric on Rp.

The p-adic numbers with metric dp is a metric space and is denoted
by (Rp,dp). Since | 'p satisfies (2.17) it follows from (2,18) that
2.20 d s < max(d ,z), d ,
( ) p(E 12 ( p(E z) p(C ¥))
for each &, z, and ¢ in Rp. Metric spaces with a metric that satisfies

condition (2.20) are considered in Chapter IV.
Sequences of p-adic Numbers

Let {En} be a sequence of p-adic numbers. Since (Rp,dp) is a
metric space, it follows from (1.15) that {En} converges to &£ if and
only if for each € > 0 there exists an N such that
(2.21) [En - Elp < € whenever n 3z N.

The sequence {En} is Cauchy if and oniy if for each € > 0 there exists
an N such that

(2.22) le - &

] < € whenever n,m > N.
n m'p :
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From the fact that vw(§ - £) > M is equivalent to |g - Elp < p'M, it
follows that &, ¢ if and only if for each M > 0 there exists an N

such that

(2.23) v(gn - £) > M whenever n > N,

Furthermore‘{gn} is Cauchy if and only if for each M > 0 there exists an
N such that

(2.24) v(gn - gm) > M whenever m,n » N,

There is another Cauchy criterion that depends upon the non-archimedean

nature of ] lp'

Theorem 2.32. A sequence {£_} of p-adic numbers is Cauchy if and only
q L} of p

if for each € > 0 there exists an N such that |€n+l - En]p < € whenever

n 2 N,
Proof: If {En} is Cauchy, then the conclusion follows from (2.22) with

m = n+l, If for each € > 0 there exists an N such that ]E - & < g

n+l nlp

whenever n > N, then

g, - 5|

m-1
p = i - 8D

. A

- g~ <=1 -
w02 185y - &l
<€

whenever m and n are greater than N. Hence {En} is Cauchy.

The p-value function also provides a criterion for bounded sequen-
ces, A sequence {En} of p-adic numbers is bounded above if the corres-
ponding set of p-values is bounded above or equivalently, if the set
of real numbers, {v(En)}, is bounded below.

Every Cauchy sequences of real numbers is bounded. The correspond-

ing property holds true for p-adic numbers.
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Theorem 2.,33. Every Cauchy se uence.{i } of p-adic numbers is bounded.
Y S€q n P

Proof: Let € = 1. Then since {En} is Cauchy, there exists an N such

that n > N implies | - §& < 1. For.eachn 20,
p n ,

N lp
81, = 18, - gy + Byl s maxCle, - gylo, lgyly)

implies that [En]p < max([ENlpéi? whenever n 2> N, Leta

M = O?ﬁéN(lgk]p,l). Then ]Enlp <M for each n > 0 and {g_ } is bounded.

As for the real numbers, so the following important property holds true

for sequences of p-adic numbers.

Theorem 2.34. (3) From any bounded sequence of p-adic integers, it

is possible to select a convergent subsequence.

Proof: The method of proof is to exhibit by mathematical induction a
procedure for finding a convergent subsequence, If {an} is a sequence
of p-adic integers, then it follows from Theorem 2,17 that the number
of residue classes modulo p in Op is finite. Hence there are infinitely
many terms of {an} which are convergent modulo p to some rational

integer . x All such terms yield a subsequence {un(l)} of {a } such

0
that

.

0 = xo(mod p)

for some rational integer x Now since the number of residue classes

0
modulo p2 is also finite, there are infinitely many terms of {un(l)},
and hence a subsequence {an(z)}, such that for each n
(2) = 2
o = xl(mod P)
for some rational integer Xy with X = xo(mod p). Suppose there exists
{an(k—l)}, a subsequence of {o } such that
(k—l) = k
o = xk_l(mod P)
for some rational number x . Then since the number of residue classes

k-1



37

(k-1)4

of 0p modulo pk+1 is finite, there is a subsequence {un(k)} of {an
and hence of {un} such that

(k) = xk(mod pk+1)

(k)

(6
n

11

for some rational number X - Also dh xk(mod pk+1) and

an(k) = xk_l(mod pk) implies that

k
Xy xk_l(mod P,

Hence by induction, for each k > 1 there is a subsequence {un(k)} of

(k)

{un} such that o = xk_l(mod pk) where Xy is a rational integer and

x, = xk_l(mod pk). Thus the sequence {x ..} determines

Osxlsxz,- . .’Xk"

some p-adic integer o. Consider the diagonal sequence {un(n)}. Obvi-

ously {an(n)} is a subsequence of {an}. Since o = x__, (mod p™) and

(n) - (n)

since un = xn_l(mod pn) it follows that an = a(mod pn) and hence

(n) (n) _

that an - 0 is a multiple of pn. Therefore v(an o) =.n,
v(an(n) - o) > ©, and {un(n)} éonverges to a. Consequently every

sequence of p-adic integers has a convergent subsequence,

Corollary 2.35. From any bounded sequence of p-adic numbers, it is

possible to select a convergent subsequence,

Proof: Let {En} be a bounded sequence. If v(gn) > 0 for all n, then
{En} is a sequence of p-adic integers and there ekists a convergent sub-
sequence. In case there exists an n such that v(§ ) <0, {En} bounded
implies there exists a positive rational integer k such that v(gn) > -k
for each n > 0. Let {an} = {Enpk}. Since V(Enpk) = V(g ) + k and

V(En) + k 20, it follows that {an} is a bounded sequence of p-adic
integers. By Theorem 2.34, it is possible to select a convergent sub-
sequence {ann} from {an}. Then {Ene} ='{anip—k} is a convergent

i i
subsequence of {£ I.
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'Cauchy sequences of rational numbers do not always converge with
respect to the [ ]—topology.to a rational number. For instance, the
standard algorithm for approximating the square root of 2 yields a
Cauchy sequence of rational numbers that converges to the irrational
number'?f, However every Cauchy sequence of real numbers converges with
respect to the ] l—topology to a real number., The same is true for

Cauchy sequences of (Rp,dp).

Theorem 2.36. Let {{ } be a sequence of p-adic numbers. Then g} con-

verges to a p-adic number £ if and only if {En} is Cauchy.

Proof: Assume that‘{gn} converges to £. Then for each & > 0 there

exist N, and N, such that [§_ - E[p < € whenever n > N; and

!Em - Elp < g whenever m > N If myn > N = max(Nl,NZ), then

N
g, - &

N R R R

A

max([g, - £l [&, - €l

< g
and {En} is Cauchy. Conversely, if {En} is Cauchy, then {En} is bounded
and hence contains a subsequence {gn~} which converges to £, a p-adic

1

number. But {En»} a subsequence of {f } implies that n, > n and hence
i

that

12

i

-el =g -g . +E - el,

n Y i nj p

max(|g_ - Eni}p,lini - £l

IA

< €

whenever n > N. Therefore {En} converges to &,

Corollary 2.37. The field (Rp,+,-) with the dp metric is complete.

Since the only Cauchy sequences of rational integers are the con-

/
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stant sequences, every Cauchy sequence of these integers converges to a
rational integer with respect to the [ i-topology. Hence (Z,d) is a
complete metric space. There are non-constant Cauchy sequences of
p-adic integers. For instance, let {En} be a sequence of p-adic units.
Then {EO,Elp,Ezpz,o,,,Enpn,e,.} is a non-constant Cauchy sequence that

converges with respect to dp to 0. However (Op,dp) is a complete metric

space.

Theorem 2.38. The metric space (Op,dp) is complete.

Proof: 1If {an} is a sequence of Op such that o, ~ £, then for each
€ > 0 there exists an N such that ]an - Elp < g whenever n > N. Since
| + anip < 1€lp + }anlp, it follows that

gl - T Lol < le - ol

for each n > 0. Therefore for each £ there exists an N such that

A N

whenever n > N. From Theorem 2.29, it follows that for each € > 0

]gip <1+ €.

That is, IEIP £1 and £ is a p-adic integer. Thus (Op,dp) is a complete

metric space.
Infinite Series Representation of p-adic Numbers

Since (Rp,+,°) has a metric structure, it is possible to consider
convergence of infinite series. Let {xn} be a sequence of real numbers.
~00
The infinite series Zn=0xn converges to a real number only if {xn} con-

verges to 0. More is true for infinite series of p-adic numbers.

Theorem 2.39. If {En} is a sequence of p-adic numbers, then E:=ng
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converges to a p-adic number £ if and only if {En} converges to 0,

‘ n n .
Proof: If Ek=0gk -+ £, then {Zk=ogk} is Cauchy and for each € > 0 there
exists an N such that n > N implies that

n+1 n .
Decof ~ lk=oBilp < &

Since

n+1 n
n+1lp - lzk=OF’k B Zk‘:OEklp

k2
for each n > 0, it follows that
i& - Oi < € whenever n 2 N,
n+1 P
Hence En -+ 0. Conversely, if En -+ 0, then for each € > 0 there exists

an N such that n > N implies that

- 0] <e.

lgn+1 D

From

- T+l n
i""n+lip - IZk:OEk B zk:ng[p
for each n > 0, it follows that

vn+1 n
iZkﬁoik - k=0£kip < £ whenever n > N,
Hence'{2£gogk} is Cauchy and every Cauchy sequence of p-adic numbers

converges to a p-adic number. Thus
n o .
K=otk li=ofk = &

A p-adic integer o is determined by a sequence {Xn} of rational
integers. Since each rational integer is a p-adic integer, a sequence
of rational integers is also a sequence of p-adic integers and has the
potential for converging to a p-adic integer. The following key result

gives additional insight into the structure of the p-adic integers,

Theorem 2.40. 1If the p-adic integer o is determined by the sequence

{z£=03kpk} of rational integers, then {Zﬁzoakpk} considered as a
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sequence of p-adic integers converges to o. That is, o = 2§=Oakpk.
) n k . g ] . ’ P
Proof: Let X, = Loyl and consider o - X, where x, is the p-adic
integer determined by {x ,x ,...,x_,...}. Then
n’"n n
I {xo - XX T X ,ee,0,K - xn,.o.}.
Since
X~ X_ Z 0(mod pm+1)
m n

for 0 <m < n, it follows from Corollary 2.14 that o - X, is divisible
by pn+1° Therefore v{a - xn) > n+l and v(a - xn) - o,  From (2.23) and
the definition of X it is clear that {Eizoakpk} comverges to o and

200 k
hence that o = stoakp .

In Example 2.12, it was observed that

_—— b9 - k. k-
2/3% =+ {4 + ep (2F (=15 .

Therefore {4 + E§21(2+(—1)k)5k} converges to 2/3 and
{2.25) 2/3 =4 + 15 + 3°52 + 1°53 + 3-54 +
Every real number is the limit of a sequence of rational numbers,

The same is true of every p-adic number.

Theorem 2.41. Every p-adic number is the limit of a sequence of ration-

al numbers.
Proof: Let £ = o/B be a p-adic number. Since B is a p-adic integer,
there exists a rational integer k > 0 and a p-adic unit € such that
B = pkeo Therefore & = Y/pk where Y = ae—l is a p-adic integer deter-
mined by {xn}, a sequence of rational integers. Also

Vix /PN - £) = vix /PN - /P = vix - Y) - k.
But V(x - Y) *«. Therefore v(x /p - &) >« and {xn/pk} is a sequence

of rational numbers that converges.to §.
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Hence Q is a dense subset of Rp with respect to the [ ]p—topology.
From Corollary 2.37, it follows that (Rp,+,=) is a completion of (Q,+,")
relative to the | Ip—topolog'y"°

Every real number has an infinite series representation. Again the

same is true for p-adic numbers.

Theorem 2,42, Every p-adic number has an infinite series representation

of the form Z;;Oakpm+k where m is an integer, and 0 < 2, <p for k > 0.
Proof: Let & be a p-adic number. 1If & = 0, then, from

TN Ky . 0 k
0 <+ {0,0,...}1 = {Zk:OOp }, it follows that 0 = Zk:Oakp . If £ #0,

. . . - m .
then there exists an integer m and a unit € such that £ = pe. Since

v ke Lo 00 k
£ > {zkaoakp 1 w1th_aeﬁf 0 and .0 < a, <P, €= Zk:Oakp and -
00 m+k
£ = Zk::oakp

Every rational number is a p-adic number as well as a real number
and caonsequently has. both a p-adic series representation
a. + a + a 2 + + 3 n +
0 1P -P cue P con
with 0 < ai < p for each n » 0 and a decimal series representation
i 2

b. +b.30° " +b.10% 4 ... +b 107+ ...
1 2 n

0
with 0 < bi < 10 for each n > 0, Before proceding to a detailed con-
sideration of relationships between the real and p-adic number fields,
some properties common to the respective representatives are explored.

A rational number r/s with r and s relatively prime has a finite
decimal expansion if and only if 2 and 5 are the only prime factors of
s. The analog for p-adic series representation is that a positive
rational number r/s with r and s relatively prime has a finite p-adic
series expansion if and only if s is a power of p. 1If r/s has a finite

p-adic expansion, then
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r/s = pm(ao + alp S anpn)

with 0 < ag <p, ma negative integer, and v(ao fap o, +_anpn) = 0.
Therefore r a rational integer implies that v(r) = v(s) + m = 0, that
Vv(s) = -m, and hence that s = p—mu. Since s is a positive rational
integer, u = 1 and s is a power of p. Conversely, if s = pk, then

from r/s = pms it follows that r = pk+m8. Hence k + m = 0 since

v(r) = 0. If r < p, then /s = r/pk = p_kr. Otherwise r > p,

T = Z?E awpl, and r/s = Z? zaL,pl_k Either way, r/s has a finite p-adic
i=0"1 i=0"1
expansion.

A decimal series expansion is finite or periodic if and only if
it represents a rational number. The corresponding property for p-adic

series representation is the following theorem:

Theorem 2.43. (9) A p-adic number has a finite or periodic series

expansion if and only if the number is a rational number.

Proof: It will be sufficiently general to consider

(2.25) o= A+ pkB + pk+mB + pk+2mB + .,
where
A=gag, +a + a z + + a k-1
0 T P T AP o T E P
with 0 ¢ a; < p and
2 m-1
B=by*bp+byp + uu +b 4P
with 0 < bi < p. Then
o - A= pkB + pm(pkB + pk+mB + o)

= pkB + pm(a - A).
Hence
a(l - p™ = A(L - p") + pkB,

o= A + pkB/(l -,
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and o is a rational number.

The converse is proved in several parts. Suppose first that
0 = r/s is a negative irreducible proper rational number with s > 0 and
s and p relatively prime. From Euler's Theorem, it follows that there
exists an integer and hence a smallest integer m such that
pm = 1(mod s). Let 1 - pm = zs with z an integer. It follows that
z <0, zr <0, and o = /s = zr/(1 - pm). Since a is proper,

zr < pm - 1< pm and

“ . ‘ m-1
zyr = B = bO + blp Foe., bm—lp
with 0 < bi < p whenever 0 < i ¢ m-1. Then
(2.26) OL:"B+Bpm+Bp2m+ -
since 1/(1 - pm) =1 + pm + p2m + .... Hence o has a periodic series

expansion.

In the second case, assume o is a positive irreducible rational
number, then o = N + q/s where N is a rational integer and g/s is a
negative irreducible proper rational number with s > 0, Hence
N = ay * a;pt ...t anpk_1 with 0 < a, <p whenever 0 < 1 < k-1,
Furthermore g/s has a periodic p-adic expansion of the form (2.,26).
Thus o has a periodic p-adic series representation of the form (2.25).

To complete the proof, assume that o is a negative irreducible

rational number. Then -0 is a positive irreducible rational number:

and hence has a p-adic series representation of the form (2.25). Since

O=p+ {(p-1)p + ... + (p-l)pn e,
- =0 -aqa

A' ¥ pkB' + pk+mB‘ + pk+2mB' + ..,

1

where

.2 k-1
Al = ag (2 - Dp + (ay - DR’ ¢ oo+ (g - peDp
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with 0 < a; <p whenever 0 < i < k-1 and

B= (b - pel) # (by - prl)p + e+ (b g - PP

with 0 < bi < p whenever 0 £ i < m-1. Hence -0 has a periodic p-adic:

representation.
A Geometric Model for Ep

The f-adic numbers can be placed in a one-to-one correspondence
with a subset of the Euclidean plane in many ways. The objective of
this section is to establish such‘a correspondence, and hence a geomet-
ric model,forikp, that reflects séveral of the characteristic proper—
ties of the p-adic numbers ‘From the fact that every p-adic number is
uniquely expressed-by pmﬁ where € is a unit and m is a rational integer,
it follows thét it is sufficientvto,establish_é one-to-one correspond-
ence between the p-adic units and a subset of the unit circle. There-
fore it is adequate to establish a one-to-one correspondence betweenvh
the p-adic units and a subset df}théfhalf open interval [0,1) since
the aéSéciatidn of a real number 6, 0 < 6 <1, with the pointlbn the )
unit circle'whose polar coordinates are 1 and 279 is a one-to-one.
correspdn&ence.

Every real number in [0,1) has a base p+l1 expansion

a a a
2 - % S ~n
+ + + _F - e o
n+l -

prl @)% e T e

where 0 Sﬂan < p.for each n. Let G be the set of all such expansioﬁs

‘3

with a0:¢ 0 and ay # p for each n. The set of points, also denoted
by G, ;orrespohding‘to the set G has an interesting geometric deriva-
tion. ‘Divide the half open interval [1,0) into p+l1 half open intervals

of length 1/(p+l) and ordet the réSulting intervals by increasing



46

initial points. Let Eé denote the union of the first and last sub-

intervals. That is

1 1

The set [1/(p+1),p/(p+1)), the points of [0,1) which are not in Eé,

the union of p-1 of the original p+1 half open intervals., Divide each

is

of these remaining intervals into p+l half open subintervals of equal
length and let E? denote the half open (p+1)th subinterval of the

(k+1)th original interval. That is,

k kp + k-1 k
(p+1) p+l
. 1 .2 p-1 . . .
with 1 < k < p-1. The sets El’El""’ 1 » are indicated in Figure 1
for p = 5.
1 2 3 4
El El E1 E1
| A | . | - | .Y
| L7 LJ LJ
0 LS 2 3 4 3
6 6 6 6 6

Figure 1. E? with 1 <k < 4.

The set of points of [0,1) which are not in Eé or some E? is the

union of p(p-1) half open subintervals of equal length., Divide each of

these remaining intervals into p+l subintervals of equal length and
let Eg, 1 <k <p(p-1), denote the half open (p+1)th subinterval of the

(k+1)th one of the remaining p(p-1) intervals. The set

p(p-1)
£k

-1
1 Py ok
[0,1) - E; - %;é E] - 5

k=1
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is the union of pz(p—l) half open intervals of equal length. It is

clear that this procedure can be continued indefinitely. Furthermore

o p"p-1)
G = [0,1) — E(l) - \Jl . \\j »Ek
= k=1

0

Since for each p-adic unit there is a unique sequence {an} of
rational integers with 2, # 0 and 0 < a, < p for each n, it is clear
that there is a one-to-one correspondence between the p-adic units and
the points of the plane with polar coordinates 1 and 2m6 where

(2.27) @ A

8 = —_—
bt ot

is an element of G. If € = Z§;0akpk is a p-adic unit which is also a
rational integer, then Xgéoakpk terminates, O can be calculated, and
the point (1,278) is easily determined. The location of each rational
integer less than 25 which is a 5-adic unit is indicated in Figure 2.
The images of the sets E%, 1 <k €4, are also indicated.

Rational numbers of the form yz_1 with y and zin Z, y Z 0 (mod p),
and z £ 0 (mod p) are p-adic units which are not rational integers,
The p-adic expansion of yz—l, z;ﬁoakpk, does not terminate since z is
not a power of p. Hence yz~1 can not be located on the unit circle by a
finite process. However its position can be approximated to any degree
of accuracy since if Gn = Eizoakpk, then 2W6n + 2m0 as Zigoakpk +~yz“1.

For instance, 4, 9, 84, and 209 are the first four terms of the canoni-

cal sequence that determines 2/3 as a 5-adic unit. Therefore

6m 38T 234m 14107
5 30 ° 180 ’ 1080 °

are the first four terms of {2ﬂ6n}, Furthermore

1410 .

218 - Tog0 < T40°
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Figure 2. Rational Integers Less Than
25 Which Are 5-adic Units.

Once the units of (Rp,+,°) are properly associated with a subset
of the‘unit circle,wa one-to-one correspondence between the non-zero
p-adic numbers and a subset of the plane can be determined. Let & be
a non-zero p-adic number. Then £ = pms where € is a unit, If € cor-
responds to the point (1,278), then the association of £ with (IE]p,ZﬂG)
is a one-to-one correspondence between the non-zero p-adic numbers and
a subset of the plane that extends the association of the units with a
subset of the unit circle. Thus the geometric model for the non-zero
p-adic numbers is a subset of the collection of concentric circles with
.radius p_m, m in Z. Since Iin = 0 and pm -+ 0 with respect to the

metric induced by p-value, it is natural to associate the p-adic zero
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with the center of the concentric circles,

N

Figure 3. The RelationShip Between pmﬁ, p €, and
e for € a Unit.and m 2 0.

If £ and ¢ are on circles of radius pm and pn respectively, then
IE - C]p = max(l/pm,l/pn)q Consequéﬁtly a sequence {En} converges to a
non-zero p-adic number E only if'{En} is eventually on the circle which
contains £. = Since pn »0 withvrespect to | Yp’ the condition § # 0
is necessary. From the fact that all points on any circle have the
same p-value, it follows that the sequence of p-values of a non-null
Cauchy sequence of p-adic numbers is eventually constant. This impor-
tant characteristic of the p-adic numbers is a consequénce of the non-

archimedean nature of | ]p,

Theorem 2.44. Let {En} be a non-null Cauchy Sequence of p-adic numbers,
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The sequence {‘gn]p} of real numbers is eventually constant,

Proof: Let {En} bé a non-null Cauchy sequence of p-adic numbers. Since
(Rp,dp) is complete, there exists a p-adic number & such that En + £,
Therefore there exists an N such that v(in - &) > v(§) whenever n > N.

Hence

13

V(E, - &+ &) =min(v(E - &), v(E)) = V(&)

v

and |§ | = ]E]p whenever n > N,

n'p

Theorem 2.44 has an interesting corollary which states that the

images of Q and Rp under | ’p are identical.

Corollary 2.45., Let TQ]P = {[X]p: x is a rational number} and let

R = { : £ is a p-adic number}. Then [Q]_ = |R_|_,
"L, = el s 6 s ap lal, = Ix 1,
Proof: Let £ be & p-adic number. If £ = 0, then ]E]p = 0 and IEIP is
an element of ]Q[p. 1f € # 0, then there exists a non-null Cauchy
sequence {xn} of rational numbers such that x, £ with respect to | |
Hence ‘xnlp *~[£!p with respect to | |, Furthermore there exists an N
such that |x_| = ]x |_ whenever n > N. Therefore lx ] = [E{ and
n'p n'p N'p 1%

IRp]p is a subset of ]QHP, Set inclusion the other way is obvious since

every rational number is a p-adic number.

Every concentric circle of the geometric model for Rp contains a
rational number and every rational number is on some circle. Since a
m

p-adic number £ is on a circle of radius pm if and only if ]g]p =p ,

the geometric model is consistent with Corollary 2.45. Furthermore

. -2 -1 2
!Rplp = {...,p 7,p L1,p,p ... 1.



CHAPTER III
COMPLETIONS OF THE RATIONAL NUMBER FIELD

Although the real field and the p-adic number fields are not iso-
morphic, they share many common properties. Some similarities are

illustrated by the following pairs of statements:

{3.1) COMPLETENESS
Every Cauchy sequence of p-adic (real) numbers converges to a
p-adic (real) number.

(3.2) DENSENESS OF Q
Each p-adic (real) number is the limit of some sequence of rational
numbers.,

(3.3) SERIES REPRESENTATION
A p;adic {real) number has a finite or periodic series expansion

if and only if the number is rational.

It is the purpose of this chapter to explore in detail the relationship
between the real and p-adic number fields. The chapter concludes with
the proof that the real and p-adic number fields are mathematically dis-

tinct,
Valuations

To provide a setting in which to discuss the relationship between

the real and p-adic number systems, it is helpful to consider a function

51
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from a general field into the non-negative real numbers that corresponds

to absolute value on R and p-value on Rp.

Definition 3.1. A wvaluation is a function ¢ from (F,+,') into the non-

negative real numbers such that

(3.4) ?(a) > 0 with equality only if a = 0,

(3.5) b(ab) = ¢(a)-¢(b),

(3.6) b(a + b) < d(a) + ¢(b).

it is clear that I ‘ and | [p are valuations on the real and p-adic
number fields respectively. Both | | and | lp are also valuations on

the rational number field.
As one further example of a valuation on the rational number field
(Q,+,°) consider ¥ from Q into R such that for each a in Q, Y(a) = 1 if

a# 0and P(0) = 0. It is clear that ¥ is a valuation.

Definition 3.2. The trivial valuation on a field (F,+,°) is the valua-

tion ¢ on (F,+,*) such that for each a in F,

]

¢ (a) 1, ifa# 0

[

0, if a = 0.

Some important properties of valuations in general are summarized
in the next theorem. These are familiar properties of the absolute

value valuation and were established for p-value in Chapter II.

Theorem 3,3. If ¢ is a valuation on (F,+,-), then

(3.7) o(1) = 1,
(3.8) b(-a) = b(a),
(3.9) bty = (@)L,

(3.10) |¢(a) - d(b)] < ¢(a - b)
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where a and b are in F and 1 represents the unity of (F,+,') as well as
the unity of (R,+,*).
Proof: Since l.a = a for each a in F, it follows that
b(a) = ¢(1-a) = ¢(1)9(a),
Therefore ¢(1) = 1. Since ¢(-1) > 0, and since
6(-1)6(-1) = ¢((-1?) = o) = 1,

it follows that ¢(-1) = 1. Hence

¢(-a) = ¢(-1-a) = ¢(-1)¢(a) = ¢(a).

Condition (3.9) follows from aa—1 = 1 and property (3.5). To complete

the proof, note that property (3.6) implies that

(3.11) ¢(a) - o(b) £ ¢(a - b)
and
(3.12) ¢(b) - o(a) < o(b - a).

From (3.8), (3.11), and (3.12), it follows that
-¢p(a - b) < d(a) - ¢(b) < ¢(a - b)

and consequently that |¢(a) - ¢(b)l < ¢(a - b).

Non-Archimedean Valuations

~

It has been observed that I lp is a valuation on (Q,+,*). From
(2.14) it is clear that | }p satisfies the additional condition
(3.13) ¢(a + b) < max(d(a), ¢(b)).

Since max(¢(a), ¢(b)) < ¢(a) + ¢(b), any valuation that satisfies (3.13)

also satisfies (3.6).

Definition 3.4, A valuation that satisfies condition (3.13) in addition

to (3.6) is a non-archimedean valuation., If a valuation fails to satis-

fy (3.13), then it is Archimedean,
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Formula (3.10) provides an important interplay between absolute
value and a valuation. The refinement of (3.10) for non-archimedean

valuations takes the following form:

Theorem 3.5. If ¢ is a non-archimedean valuation on F and if

¢(a) > ¢(b), then ¢(a + b) = ¢(a).

Proof: Let ¢ be non-archimedean and assume ¢(a) > ¢(b). Then

¢(a) = ¢(a + b - b) < max(d(a + b), ¢(b)). If ¢(a + b) < ¢(b), then
max (¢(a + b), ¢(b))

if

o(b) and hence ¢(a) < ¢(b). This contradicts

the assumption that ¢(a) > ¢(b)., Therefore ¢(a + b) > ¢(b) and

-

max{($(a + b), ¢(b))
¢(a) < ¢(a + b) < max(d(a), (b)) = ¢(a)

and hence that ¢(a + b) = ¢(a).

®(a + b). It follows that

One useful alternate characterization of a non-archimedean valua-

tion is given in the following theorem:

Theorem 3n6, A valuation ¢ on a field (F,+,:) is non-archimedean if and
only if for each x in F

(3.14) ${x) < 1 implies ¢(1 + x) < 1.

Proof: 1If ¢ is non-archimedean, then ¢(1 + x) < max(¢(x),1), Since
¢(1) = 1, ¢(x) <1 implies that ¢(1 + x) < 1. Conversely, assume that
(3.14) is true and that ¢ is a valuation on (F,+,'). It is necessary

to prove that ¢(x + y) < max(¢d(x), ¢(y)) for every x and y in F, This
is trivially the case if either x or y is zero. Suppose that both x

and y are non-zero elements of F. Without loss of generality, it is

possible to assume that ¢(x) < ¢(y). Then ¢(x/y) < 1. It follows that

X +Yy
y

max(¢(x), $(¥y)), ¢(x + y) < max(¢(x), ¢(y)) for every x

o(1 + x/y) < 1. That is, ¢ ) < 1. Therefore ¢(x + y) < ¢(y).

H

Since ¢(y)
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and y in F.

Corollary 3.7. A valuation ¢ on the rational numbers is non-archimedean

if and only if ¢(n) < 1 for each n in Z.

Proof: If ¢ is non-archimedean and n is a non-zero element of Z, then
¢(n) = o1 + 1 + ... + 1) <max(d(1), ¢(1),...,¢(1)) = ¢(1) = 1, Since
¢(-n) = ¢(n), ¢(n) <1 for each n in Z. Conversely, assume ¢(n) <1
for each n in Z. To show that ¢ is non-archimedean, it is sufficient
to show that ¢(x) < 1 implies ¢(x + 1) < 1 for each rational number x.

From the Binomial Theorem, it follows that

O + )™ = 60+ 0™ = oI, £

IA

I . k
Teeo® (G160,
1
for each n > 0. If ¢(x) <1, then ¢(1 + x) < (n + l)n. Therefore

1 .
¢(1 + x) < lim{n + D™ = 1 and ¢ is a non-archimedean valuation.

It is clear from a re-examination of the proof of Theorem 2.31 that
if ¢ is a valuation on a field (F,+,-), then a function d from FxF into
R such that
(3.15) d(x,y) = ¢(x - y)
for each x and y in F is a metric on F. Thus (F,d) is a metric space.
It follows that ¢ determines both a convergence and a Cauchy criteria
for sequences of elements from F. If {xn} is a sequence of F, then
{xn} converges to x if and only if for each € > 0 there exists an N
such that |
(3.16) ¢(xn - x) < € whenever n > N
and {xn} is Cauchy if and only if for each € > 0 there exists an N such

that
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(3.17) ¢(xm - xn) < £ whenever m,n > N.
If ¥ is another valuation on (F,+,:), then ¥ also determines both
a convergence and a Cauchy criteria. There is no reason to assume. that
the two valuations, ¢ and P, determine the same or even related cri-
teria. A sequence which satisfies (3.16) is said to converge with
respect to ¢. The convergence of {xn} to x with respect to ¢ is denoted
by X + x (wrtd). A sequence {xn} satisfies (3.16) if and only if there
exists an x in F such that {¢(xn - x)}is a sequence of real numbers

that converges to 0. Therefore X, TX (wrt¢) if and only if

¢(xn -x) >0 (wrtl I)a

Definition 3.8. Two valuations ¢ and Y determine the same convergence

criteria if for each sequence {xn} there exists an x such that

(3.18) ¢(xn -x) >0 (wrt] I) if and only if W(xn -x)»0 (wrt| [).

For example, consider the sequence {pn} with p a prime number, It is
clear that {p"} is not convergent (wrt| |). However {p"} is convergent
(wrt| |p). Furthermore {pn} is convergent (wrt] ]pi). Both ( Ip and

I ]pi‘determine the same convergence criteria while | [p and | | do mnot,
Equivalent Valuations

Every valuation generates a family of valuations since ¢C,
0 < c <1, defined by
0% () = GG
is a valuation if and only if ¢ is, This is proved in the following

theorem:

Theorem 3f9° If ¢ is a real number such that 0 < ¢ < 1, then ¢c is a

valuation on (F,+,+) if and only if ¢ is a valuation on (F,+,"),
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Proof: It is evident that ¢C satisfies (3.4) and (3.5) if and only if
¢ does, It remains to show that
°x + ¥) < 9°(x) + ¢°(y) if and only if 9(x + ¥) £ 6(x) * 9(y)
for each x and y in F. Let % and y be elements of F such that
P(y) < ¢(x). If x = 0, then y = 0 and the condition is satisfied.

Assume x # 0 and that ¢(x + y) < ¢(£) + ¢(y). Then

It

00+ y) = 0500 o701 +

oS0 (1 + $D)°

1A

IA

(
0° (0 (1 +
(
&

< %) (1 + ¢cy) )
- oS ‘) + ¢° )
¢ (x)

$°(x) + 9" ().
It is clear that ¢C(k +y) < ¢C(x) + ¢C(y) for 0 < ¢ <1 implies that

Olx +y) S o(x) + $(y).

It is natural to ask whether valuations generated in this way have
any common properties. In particular, do such valuations determine the
same convergence criteria. Crucial to the results of this Chapter is
the fact that the valuations of Theorem 3.9, generated by ¢, do deter-
mine the same convergence criterion, However the same is true of a more
general class of valuations, This exact relationship between valuations

is investigated in the more general context,

Definition 3,10. Let ¢ and ¥ be two non-trivial valuations on a field

(F,+,*). Then ¢ and ¢ are equivalent, ¢ i.w, if for each x in F such.

that ¢(x) < 1, it follows that ¥ (x) < 1.
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It is clear that equivalence of valuations is both a reflexive and
transitive relation. It follows from the following theorem that equiva-

lence of valuations is also a symmetric relation.

Theorem 3.11. (1) If ¢ and Y are equivalent valuations on (F,+,*),

then for each x in F such that ¢{x) = 1, it follows that ¥(x) = 1,
Proof: Since ¢ is non-trivial, there exists y in F such that y # 0
and ¢(y) < 1. For each x in F such that ¢(x) = 1, it follows that

6(x"y) = (600) () = 0(y) < 1
and hence that Y(x"y) < 1 for each n > 0. That is, P(x) < (w(y))—111 for
each n > 0. Therefore

P(x) < 1im(¢(y))_rll = 1.

Since ¢(x) = 1 if and only if ¢(1/x) = 1, it follows from the above
argument that Y(x)} > 1 also. Therefore Y(x) = 1 for each x in F such

that ¢(x) = 1.

Corollary 3.12. Equivalence of valuations is an equivalence relation.

Proof: As noted previously, reflexivity and transitivity are immediate.
Assume ¢ " Y, PY(x) < 1, and consider the three cases for ¢(x). If

o(x) > 1, then ¢{1/x) < 1, ¥(1/x) < 1, and Y(x) > 1. If ¢(x) = 1, then
P(x) = 1. It follows that Y(x) < 1 implies ¢(x) < 1. Therefore ¢ Vv ¢

implies Yy v ¢ and v is symmetric.

Theorem 3.13. Let Y and ¢ be valuations on (F,+,:). If Y = ¢c where

¢ > 0, then ¢ v ¢,
Proof: For each x in F such that ¢C(x) <1, (¢(x))c < 1 and hence

b(x) < 1.

The key result of this section is the following theorem:
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Theorem 3,14, Two non-trivial valuations ¢ and ¥ on (F,+,*) are equiva-

lent if and only if they determine the same convergence criterion.
Proof: Two valuations ¢ and Y are equivalent if it is the case that
(3.19) 0(x) < 1 if and only if ¥(x) < 1

for each x in F, The proof is completed by showing that (3,18) holds
if and only if (3.19) is true. Assume (3.,18) to be true. If ¢(x) <1,
then {(d(x)"} = {$(x™)} is a sequence of real numbers which converges
to 0. Therefore {w(xn)} converges to 0 and Y(x) < 1. Since the argu-
ment is symmetrical with respect to ¢ and ¢, (3.18) implies (3.19).
Now suppose (3.19) to be true for'{xn}, a sequence of F, If

¢(xn -x)+0 (wrtl ]), then there ekists X such that ¢(xm -x) <1
and hence such that w(xm - x) <1, Therefore for each € > 0 there
exists k such that wk(xo - x) < e. But for each k there exists an N
such that n > N implies ¢(xn - X) < (¢(Xm - x))k since ¢(xn - Xx) >0

(wrt] !). Hence

) X, - X
¢ [ <1,
(x, - x)
Xn.“,X
P o <1
(x, - %)

and
X : - ky _ . 1k
Vix, -0 <y{x, - )} = i - 0},
It follows that for each € > 0 there exists an N such that w(xn - X) < g
whenever n > N, Hence w(kn -x) >0 (wrt],]). Likewise w(xn - x) -0

(wrt] |) implies ¢{xn - x) >0 (wrt] |) whenever (3,19) holds. There-

fore (3,19) implies (3.18) and the proof is complete,

Using the ideas utilized in the proof of Theorem 3,14, it is possible to
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prove that two valuations are equivalent if and only if they determine
the same Cauchy criterion.
Let ¢1 and ¢2 be equivalent valuations on (Q,+,') and assume that

(F,,+,-) with valuation wl and (F2,+,«) with valuation wz are comple-

1,
tions of (Q,+,:) with respect to the metrics induced by ¢1 and ¢2

respectively. For each x in Fl there exists a Cauchy (wrt¢1) sequence

of rational numbers {xn} such that x_ =+ x (wrtwl), Since {xn} is also

Cauchy (wrt¢2), there exists y in F, such that X, Ty (wrth). The

2
mapping f on F1 defined by f(x) = y is a well-defined one-to-one
correspondence from F1 onto F2° Then from the fact that the limit of

a sum (product) of two convergent sequences is the sum (product) of the
limits, it follows that f is an isomorphism, Furthermore it can be
shown that f is metric preserving. Let {xn} and {wn} be sequences of Q

such that X, T X (wrtwl), X, 7Y (wrth), W, (wrtwl), and

W,z (wrth), From

1§

by (x - W)

(- + -W_ 4+ W - W
Lpl(X xn xn n n )

iA

IPI(X - Xn) + ¢1(xn - wn) + wl(wn - W)

for each n > 0, it follows that wl(x - w) < lim ¢1(xn - wn). Also

=
[\S]
—
~
1
=
—
§

= wz(xn -~y +y -2 4z —‘wn)

’J)Z(Xn - Y) + IPZ(Y - Z) + wz(z - wn)

IA

implies that lim ¢2(xn - wn) < wz(y - z)., Since lim ¢2(xn - wn) =

lim ¢1(xn - wn), it follows that wl(x - w) < wz(f(x) - f(w)). In like
manner, it can be proved that wLﬁw(f(x),— f(w)) < wl(x - w). Hence
(F1,+,°) and (F2,+,~) are isometric.

For each prime p, the p-adic numbers is a completion of the

rational numbers with respect to | |
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Definition 3.15. Two completions of a valuated field are distinct if

they are not isometric.

Theorem 3.16. The valuated fields (Rp,+,=), p a prime, and (R,+,') are

distinct completions of the rational numbexs.

Proof: Let (R_ ,d_ ) be a completion of Q with respect to | | . Sup-
- po pO pO
pose there exists a p such that (Rp,dp) is also a completion of Q with

respect to | | . By the preceding discussion, (R_,d_) and (R_ ,d_ )
Py p°p Po” Py
are isometric. Let f be an isomorphism from (Rp,+,-) onto (Rp st, )
0
Then £(1) = 1 and f(po) = Ppy. But Ipolpo = 1/pO while ‘polp = 1, Hence

f is not metric preserving and (Rp,dp) and (Rpo,d O) are not isometric,
These conflicting results imply that (Rp,dp) is not a completion of Q
with respect to [ |p0° Similarly from the fact that |p|p = 1/p while
|p| = p, it follows that (Rp,dp) is not a completion of Q with respect

to | |. Thus all completions of Q with respect to | | or | | are

p
distinct.

Ostrowski's Theorem

The theorem of this section states that any non-trivial valuation
on Q is equivalent to either absolute value or p-value for some p and
hence implies that there are no other distinct completions of Q with

respect to a valuation.

Theorem 3.17. The only non-trivial valuations on (Q,+,°) are those

equivalent to | ip or | In

Proof: Let n be a rational integer greater than 1. Every m in Z can

be expressed in the form



where 0 < a; < n-1 for i = 0,1,2,...,k. It follows that nk < m and

hence that k < (log m)/(log n). Since a; is an integer,

$la) = 01 + 1+ ... + 1)
SO + ...+ 4(1)
< n.
Thus
dm) < dlag) + 0lay) 6() + ... + d(a) (b))
s {1vom + ...+ (o)X,
If ¢(n) < 1, then

n(l + ¢(n) + ... + ¢k(n)) <n(k + 1),

If ¢(n) > 1, then ¢X(n) > ¢(n) and

n(L o+ o) ¢ ... + 05 (m) < n(k + 1OX(@).

Therefore
o) < n(k + 1) max(1,65(m)).

It follows that
log m

log m log n

(3.20) ¢ (m) < n(m“f’ 1) max(1,¢(n))

for myn > 1. Now replacing m by mT, (3.20) vields

. log m
. Tlog m N T : log n
¢ (m) < (n—T65"5'+ n)T max(l,¢(n)) .
1
Letting T =+ « and using the fact that 1im(c1 + cz)T = 1 where c, and

1
c, are constants, it follows that

log m
log n

(3.21) ¢(m) < max(1l,9(n))
There are two distinct cases to consider,

Case I: There exists an n > 1 such that ¢{(n) < 1. For eachm > 1,

log m > 0. Hence (log m)/(iog n) > 0 and it follows from (3.21) that

o{m) <€ 1. Therefore ¢ is a non-archimedean valuation,

62
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It remains to determine the exact nature of ¢, Since ¢ is not
trivial, there existg an m in Z such that ¢(m) < 1, Let p be the
smallest non-zero rational integer such that ¢(p) < 1., Since p = ab
with a and b positive and less than p implies

¢(p) = 9(a) ¢(b) = 1'1 = 1,

p is prime. From ¢(m) < 1, it follows that m > p and hence that

=qgp + rwith 0 <r <p. Ifr#0, then ¢(r) = 1 since r is a ration-
al integer less than p and ¢ is non-archimedean. Also
¢(ap) = ¢(p +p+ ... +p) < ¢(p) <1 and ¢(m) = max(¢(pq),d(r)). It
follows that ¢(m) < 1 implies that r = 0 and hence that p divides m.
Conversely, if p divides m, then m = gp and ¢(m) < 1. Thus ¢(m) < 1 if
and only if p divides m.

Now let x be a non-zero rational number. Then
X = pv(x)a/b

where p does not divide either a or b. Therefore

6(x) = 46" L.

Since p does not divide either a or b, ¢(a) = ¢(b) = 1 and

6(x) = @) ),

However ¢(p) < 1 implies there exists a real number ¢ > 0 such that

(1/p)€ = ¢(p). Consequently

6x) = @)X = am V) < x| C.
From Theorem 3.13, it follows that ¢ is equivalent to | Ip for some p.
Thus in Case I, ¢ is a non-archimedean valuation equivalent to | ip for
some p.

Case II: For each n > 1 it is the case that ¢(n) > 1. From (3.21) it

follows that
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1 1
¢(m)log m < ¢(n)1og n.

Since m > 1 whenever n > 1 and since ¢ (m) < 1 with m > 1 is Case I, both
m and ¢(m) are greater than one. Therefore the roles of m and n can be
interchanged and

1 1
pm) I8 ™ = g(n)108 M - p

where h is independent of m. Furthermore h is greater than one since
¢(n) is. Hence there exists a real number ¢ > 0 such that h = e®.
That is, ¢(m) = n®. Nowm > 1 implies n° = Im]c. Since ¢ (-m) = ¢(m)
and ¢(0) = 0, it follows that

$m) = Im|©

with ¢ > 0 for each m in Z. Thus for each rational number x = a/b

where a and b are rational integers,

Cc

o(x) = d(a/b) = d(a)/o(b) = [al/[b] = |asb|® = |x]|7,

Hence ¢ is equivalent to ‘ .

Ostrowski's Theorem and Theorem 3,17 express the relationship
between the real, p-adic, and rational number fields. There are infin-
itely many distinct completions of the rational number field with
respect to a valuation. These completions are the real and p-adic num-
ber fields with their respective valuations and there are no other such

completions.
Discrete Valuations

A real-valued function is discrete if 0 is the only accumulation
point of its range. A valuation is discrete if it is a discrete func-

tion. It is clear that absolute value is not a discrete valuation.
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However it follows from

IR

that p-value is a discrete valuation for each p.

-2 -1 2
R ={°°°’ 3 :1’ ) :H-}
p'p P P p,Dp

Definition 3.18. A valuated field is discrete if the valuation is

discrete,

For each p, (Rp,+,°) is a discrete field while (R,+,-) is not a discrete
field,

There is no connection between a sét having an algebraic structure
which is a discrete field and it having a discrete topological

structure. The discrete topology for a set is the collection of all

subsets of the set. Since {pn} converges (wrt] Ip) to 0 while lpnlp £ 0
for each n > 0, it is clear that {&: i&lp > 0} is not a closed subset
of (Rp,dp). Hence {0} is not open with respect to the | ip—topology.
Consequently the metric space (Rp,dp) is not discrete.

There is, however, an interesting relationship between the trivial

valuation on a field (F,+,-) and the discrete topology for the set F,

Theorem 3.19. Let (F,+,-) be a valuated field with valuation ¢, Then

¢ is trivial if and only if the ¢-topclogy is the discrete topology

for F.

Proof: If a topology for F is discrete, then every subset of F is open.
In particular, {a} is open for each a in F. It is known that ¢{0) = O.
Assume that there exists a,in F such that a # 0 and ¢(a) # 1, Then

¢(a) <1 or ¢(a) > 1. If ¢(a) < 1, then {a"} is a sequence of F such
that a = 0 (wrt$). Now {0} open implies that F - {0} is closed and

hence that 0 is not a limit point of any sequence of distinct points of
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F. Therefore there exists an N such that a” = 0 whenever n > N. Since
this can happen only if a = 0 and since by assumption a # 0, it follows
that ¢(a) > 1. If ¢(a) > 1, then ¢(1/a) < 1»and it follows as before
that ¢(1/a) > 1. That is, ¢(a) < 1. Hence ¢(a) = 1 for each a in F
such that a.# 0 and ¢ is trivial. Conversely, assume ¢ is the trivial
valuation. Then for each € such that 0 < € < 1 and for each a in F,
{a} = {x: ¢(x - a) < e} is open. It folloﬁs that every subset of F is

open and the topology for F induced by ¢ is the discrete topology.



CHAPTER 1V
SOME CONSEQUENCES OF THE NON-ARCHIMEDEAN PROPERTY

The set of p-adic numbers has both an algebraic and a topological
structure. Standard algebraic methods havé been used to prove that
(0p,+,=) is an integral domain and that (Rp,+,') is a field, The metric
induced by p-value has provided the essential topological properties
prerequisite to the concept of convergence of sequences, In this chap-
ter, some additional algebraic and topological properties of (Rp,+,')
and“(Op,+,~) which depend upon the non-archimedean property of p-value
are considered and compared with corresponding properties of (R,+,:) and

(Z,+,+). General characteristics of a metric space with metric d that

satisfies the inequality d(xj,z) < max{(d(x,y), d(y,z) are developed,
Ideals of (0p,+,-)

The set of p-adic integers consists of those p-adic numbers whose
p-value is less than or equal to 1. A p-adic integer q is a unit if
and only if Ia]p = 1. Let P be.the subset of 0p consisting of the non-
units. That is,

P={o: ais in 0. and |a|_ < 1}.
: P p
The set P plays an important role in describing all the ideals of

(0p,+,-). This role is now made clear.

Theorem 4.1. If P is the set of non-units of Op’ then (P,+,") is the

67
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unique maximal ideal of (Op,+,=). Furthexrmore (P,+,+) is a prime ideal, -
Proof: For each o and B in Op, if o is also in P, then

(4.1) B = fal, lel, <1

and of is an element of P. If both o and B are elements of P, then

Ia - BIP < max(la|p,|—6‘p) <1

and o - B is an element of P, Hence (P,+,:) is an ideal of (Op,+,-).
Furthermore if (M,+,-) is an ideal of (0p,+,') such that M properly
contains P, then o in M but not in P implies that a is a unit of Op'
Since the inverse of a unit is a unit, a—l is in Op and 1 is an element
of M. Thus M = 0p and {(P,+,:) is a maximal ideal of (Op’+")'

Assume (S,+,°) is also a maximal ideal of (Op,+,'). If o is an
element of S such that Ia]p = 1, then ol is in Op’ 1 is in S, and
S = Op. Since this is impossible, (S,+,*) maximal implies that ialp <1
for each o in S. Hence S is a subset of P. But this is impossible
unless S = P, Therefore (P,+,:) is the unique maximal ideal of
(Op,+,-).

To complete the proof, assume that af is an element of P. Then
from (4.1) it follows that [alp <1 or ]B]p < 1. Hence (P,+,*) is a

prime ideal.

It is possible to characterize all ideals of (Op,+,-) in terms of
P in a rather elementary manner., An important step in this direction

is the fact that (P,+,°) is the principal ideal generated by p.

Theorem 4.2. The principal ideal of (0p,+,') generated by p, ((p),+,'),
is the ideal (P,+,).
Proof: Assume a is in (p). Then there exists B in 0p such that o = pB,

From Ialp = |p|p|6| = (1/p)|B] < (1/p), it follows that o is in P and
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hence that (p) is a subset of P, If o is in P, then o = me with m > 1,

Therefore o = p-pm-IE and pm_le is in Opa Hence P is a subset of (p).

Corollary 4.3. The ideal ((p),+,:J.is prime and is the unique maximal

ideal of (Op,+,°)q

The importance of Theorem 4.2 lies in the fact that every ideal of

(0p,+,-) is related to P = (p).

Theorem 4.4. Every non-zero ideal of (Op,+,-) is of the form (Pk,+,')
where Pk = (p)k = (pk)u
Proof: Let (M,+,°) be a non-zero ideal of (0p,+,') and let
K= {v(@): 0 # aeM}. Then X is a non-empty set of positive integers,
Hence by the well-ordering principle, there exists a smallest integer k
in K. Since the inverse of a unit is a p-adic integer, pks in M implies
pk is also an element of M. Thus from the fact that (M,+,:) is an ideal
of (0p,+,°), it foliows that (pk) is a subset of M, Since each element
of M has order greater than or equal to k, M is also a subset of (pk).
Hence M = (pk)u

The fact that (p)k = (pk) for each k is established by induction

on k. It is clear that (p]k = (pk) for k = 1. Assume (p)n = (pn).

Then o in (Pn+1) implies a = pn+18 = pn(pB)° Since pn(pB) is an element
of M@ = @™ = @™, ™) is contained in ()Y, If 4 is

in-(p)n+1, then o is an element of (p)n(p). It follows that o is in
(pn)(p) and o = panY = pn+lBY, Hence (p)n+1 is a subset of (pn+1].
Thus (p)n+1 = (pn+1) whenever (p)n = (pn) and the proof of the theorem

is complete.

Corollary 4.5. Every non-zero ideal of (Op,+,-) is a principal ideal,
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Thus (0p,+,') is a principal ideal domain and the following theorem

from general ideal theory (2) holds true for (Op,+,‘).

Theorem 4.6. A non-zero ideal of (0p,+,°) is prime if and only if it is

maximal,

Corollary 4.7. The ideal (P,+,-) of (Op,+,-) is the unique prime ideal

f (0_,+,").
0(p)

Thus the ideals of (0p,+,°) have a simple relationship to each
other. As in (Z,+,°), every ideal of (OP,+,v) is principal, In both
(Z,+,+) and (0p,+,-), only prime ideals are maximal and conversely.
There are infinitely many prime (maximal) ideals of (Z,+,-). However
(Op,+,') has a unique prime (maximal) ideal which in a sense generates
all other ideals. This difference is certainly anticipated since
(Z,+,+) has infinitely many primes while (OP,+,') has a unique prime.

Since (Op,+,“) is a commutative ring with unity and since (P,+,*)
is maximal, (OP/P,+,') is a field. The elements of OP/P are the resi-
due classes of 0, modulo p. By Theorem 2.17, there are exactly p such

P

classes. Hence (OP/P,+,~) is a finite field.

Definition 4.8. The field (OP/P,+,') is the residue class field.

From the fact that (Z/(p),+,') and (OP/P,+,°) each have p elements,
it is clear that there is a one-to-one correspondence between these two
finite fields. That these two fields are isomorphic is a special case

of the following theorem:

Theorem 4.9. The residue class fields (OP/Pk,+,') an& (Z/(p)k,+,') are

isomorphic.
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Proof: For each [x] in Z/(p)k there exists [d] in Op/pk such that x is
in [a]. Define ¢ from Z/(p)k into OP/P by ¢([x]) = [a]. Since two
rational integeré are congruent modulo pk only if they are congruent
modulo pk as p-~adic integers, ¢ is well-defined, It is clear that ¢ is
onto since each p-adic integer is congruent modulo pk to a rational
integer. Let a and B be p-adic integers and let x and y be rational
integers such that x is in [a] and y is in [B]. Then x = q(mod pk) and

B(mod pk) and x = y{mod pk).

y = B(mod p~). If [o] = [B], then o
Thus [x] = [y] and ¢ is 1-1. Also X + y = o + B(mod pk), Xy = afB

{(mod pk), and it follows that ¢ is an isomorphism,

In terms of the geometric model for Rp’ the p-adic integers are on
the circles having radius less than or equal to one. . The unique prime
maximal ideal P consists of all p-adic integers on the circles having
radius less than one. Since a in P" implies [a|p < p“m, it follows
that all points of P" are on circles having radius less than or equal
to p-ma It is evident from the geometric model, as well as from the
definition of a principal ideal, that P" is a subset of P" whenever
m2>n 21,

: : m :
The residue class modulo pn determined by a = p ¢ has a simple rep-
resentation. Ifm > n > 1, then o + P" = P" since o in Pm, a subset of
n o, . . n _ o I3
P, implies o is in P, In case 0 € m < n, let € = Zk=0akp . Hence
o= ap®+a m+l ‘g m+k .
oP 1P Tt kP N

A p-adic integer

B = bO + blp + oo, bm+kp + o,

i§ an element of o + P" if and only if o = 8 (mod pn) and consequently

if and only if bO = b1 = . ‘=vbm__1 = 0 while
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for 0 <k £ n-m-1. Thus o + p is contained in the arc consisting of
the points with polar coordinates p_m and 279 where

zn—m—l ak <9 < Zn—m- ak
k=0 Jk+1 T k=0 kK+1°
(p+1) (p+1)

This half open arc that contains o + P" has the rational integer

n-m-1 n-m+l

k . s . .
ly=g 2P as its initial point. Its central angle is 2ﬂan_m/(p+l)

n+1. The residue classes of 0. modulo

and its length is ZWaH_m/(p+1) 5

(5)2 determined by pme with 0 < m < 2 are subsets of the half open arcs
indicated in Figure 4. The initial points are given for arcs on the
circle of radius 1/5. Initial points of the arcs on the circle of
radius 1 can be determined from Figure 2., The zero residue class con-

sists of all p-adic integers on ¢ircles of radius 1/5" with n > 2,

Figure 4. Arcs Containing the Non-Zero Residue
Classes of O5 Modulo (5)2,
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The distance between two p-adic numbers is determined by the metric
induced by p-value. If two p-adic numbers are located on distinct
circles, then the distance between them is the radius of the larger
circlg. Furthermore two points on the same circle can not be farther
apart than the radius of the circle containing them. On each circle
there are p-adic numbers with the distance between them equal to the
radius of the circle. For instance 2pm and pm are p-adic numbers on
mlp =p ™. No closed sphere with

. . -m . . .
center on a circle of radius p = can include a point on a circle of.

the circle of radius p " and [2p" - p

radius p_n, m # n, unless it contains all points on all circles of
radius less than or equal to p_rl

The closed spheres that have a unit as center aré easily character-
ized in terms of their radius. Let € be a unit and let r be a non-
negative real number. If r > 1, then there exists an n > 0 such that
pn <r< pn+1 and

S[e,r] = {&: ]gtp <p'l

In particular, the p-adic integers is the closed sphere with any unit
as center and with rédius greater than or equél to 1 and less than p.
If r < 1, then S[e,r] is a subset of the p-adic units, Each closed
sphere which is a subset of the units can be expressed in terms of the
elements of the residue classes. That is,

S[e,r] = € + p™

whenever p—m <r< p_m+1 < 1. For example, the closed spheres that have
a unit as center and radius greater than or equal to 1/25 and less than
1/5 consist. of the p-adic numbers on the half open arcs of the circle

of radius one in Figure 4.

Much of the above analysis holds in general for closed spheres with
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center at a p-adic number. Let § = pme with m in Z, If r > p—m, then

m

there exists an n such that p_ < p_n <r<p and

sfe,r] = {z: |c|p <p b

Now consider the case where r < p"m, If ¢ is in S[g,r], then ¢ and &
are on the same circle.and ¢ = pmn‘ Since ¢ is in S[§,r] if and only if

n is in S[e,rp "] and since S[e,rp "] = € + p " whenever p " < rp " <

-m-n+1 n

, it follows that r is in S[§,r] if and only if n is in € + pm+

-n -n+l ~m
whenever p < r < p <p .

Thus the closed spheres of Rp can be characterized in terms of

circles of radius less than-or equal to a given radius and residue

- classes. Since

sE,p™ = s[e,p "7,

the open sphere can be expressed in the same manner. This relationship
between the algebraic structure (Op,+,') and the topological structure

(Rp,dp) is a key to some surprising results related to compactness.

Theorem 4.10. Let (P,+,') be the unique maximal ideal of (Op,+,'), let

o be an element of Op’ and let S(a,r) be an open sphere with center g
and radius r.> 0. Then there exists an n such that.o + P" is a subset
of S(a,r).

Proof: Let n be the smallest integer such that p-n <7r, Ifvyis in
o+ Pn, then

Y -al,sp 7 <r

and Y is in S(a,r). Therefore S(o,r) contains o + Pn,
Compactness

Let (X,d) be a metric space, let S be a subset of X, and let C

be a family of subsets of S such that each point of S is an element of
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some member of C. Then C is a covering of S and.C is said to cover S,
If each subset of C is an open set of the metric topology, then C is an

open covering.

Definition 4.11, A subset of a metric space is compact if every open

covering has a finite subcovering.

A consequence of Theorem 4,10 is the following result which reveals

a remarkable difference between (Rp,dp) and (R,d).

Theorem 4.12° The set Op is a compact subset of (Rp,dp).
Proof: Assume that {GX: A is in A} is an open covering of'Op which does

not have a finite subcovering and let I = Op/P. Since

(4.2) o= A @+p

P [a]leX
and Z is finite, there exists 0y in Op such that
ao + P

is not finitely covered. But P = p0_ and

o0 + P =\ () +pla+P).
[a]eZ
Therefore there must be al in 0p such that
2
Oy + O4p + P

is not finitely covered. It follows by mathematical induction that

there exists {am} such that for each m > 1,

2 m~1 m
ao + alp + azp * ..t am_lp + P
is not finitely covered. Let
o = 0, + O + + m o,
- 0 1p 0. drmp LRI O Y

Since o is in Op’ there exists a GX such that a is in GX‘ Hence there
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exists an my such that o + P™0 is a subset of Gk' But Oy ¥ P + ...+
dmo—lpmo-l + P"0 is a subset of a + P"0 and consequently is a subset of
GK‘ Therefore Oy * 4P *+ ... + 0 lme’l + PO is finitely covered.

mo"
Since the assumption that there exists an open covering of Op with no

finite subcovering leads to contradictory conclusions, every open cov-

ering of Op contains a finite subcovering and 0p is compact,

Thus (Rp,dp) contains a compact set which in turn contains the
rational integers as a subset. No compact set of real numbers has this
property. This interesting observation relative to Z as a subset of the

metric space (Rp,dp) can be stated more precisely.

Definition 4.13. Let (X,d) be a metric space and let S be a subset of

X. The closuzg_g§_§_is the union of S and the set of all accumulation

points of S.

Definition 4.14. Let (X,d) be a metric space and let S be a subset of

X such that the closure of S is a compact subset of (X,d). Then S is

conditionally compact.

Theorem 4.15. The set Z of rational integers is a conditionally com-

pact subset of (Rp,dp).

Ezggff Since every p-adic integer O is the limit of the sequence of
rational integers which determines it, the closure of Z contains Op'
Conversely, let o be a p-adic integer. For each n > 0 there exists a
rational integer Y, such that o = yn(mod pn), The sequence {yn} con-

verges to o with respect to | ]po Herice 0p contains the closure of Z,

In a metric space, a set S is bounded if there exists an open

sphere that contains S as a subset. Compact sets of a metric space are
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closed and bounded. Hence the following Corollary to Theorem 4,12,

Corollary 4.16. The set of p-adic integers is a closed and bounded

subset of Rp with respect to the l Ip-topology.

In general metric spaces, it is not the case that closed and
bounded sets are compact. However closed and bounded sets of real num-
bers are compact relative to the | |-topology. The same is true for

the p-adic numbers with the | Ip—topology.

Theorem 4.17. Any closed and bounded subset of Rp is compact with res-
pect to the ] ]p—topology.
Proof: Let H be a closed and bounded subset of Rp' Then there exists
m in Z such that for each £ in H, v(&) > m. Let
K= {g/p": EeH}.

The set K is a set of p-adic integers. If o is an accumulation point of
K then there exists a sequence {En/pm} of K such that {En/pm} converges
to &. That is, for each € > 0 there exists N such that

iEn/pm - alp < e/pm whenever n > N.
It follows that for each € > 0 there exists an N such that

m
- < |
lgn P aip € whenever n > N,

Consequently {En} converges to‘pma. Now H closed implies that pma is
an element of H and hence that a is an element of K. Therefore K is
closed. As a closed subset of Op’ K is compact since a closed subset
of a compact space is compact. Thus every open covering of K has a
finite subcovering. Let {GK: Ael} be an open covering of H. For each
A in A, let M, = {E/pm: £ is in GA}' Since G, is open, for each £ in

GA there exists an € > 0 such that S(€,e) is a subset of GA' Hence
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S(E/pm,epm) is an open sphere containing E/pm and contained in MK' It
follows that MA is an open set and'{MA: A is in A} is an open covering
of K. Therefore there exists a finite subcovering, say

{ coaMy }, which covers K. Hence {GA

n

3Gy } covers H and

M, M, ,.
Al AZ n

H is compact.

G
] 2 s
1 AZ

Connectedness

It has been observed that if o is a unit, then

0p = S[a,1l] = S(a,p).

Hence Op is both an open and a closed subset of (Rp,dp). This property
of 0p implies that (Rp,dp) is not a connected space. A stronger state-

ment can be made. No subset of Rp consisting of two or more points is

connected.

Theorem 4.18. The only connected subsets of (Rp,dp) are those sets
consisting of .a single point,
Proof: Let H be a subset of (Rp,dp) and let El and EZ be two distinct

-n' Let S

points of H. There exists an n such that ]El - Ezlp =D
denote the union of all closed spheres of Rp of radius p'n‘ Since
S[E,p-n] = S(E,p_n+1), every closed sphere of Rp is open in (Rp,dp) and
S is an open set of (Rp,dp)° However the relationship between S[E,p—n]
and the residue classes implies there are only finitely many closed
spheres of radius p-n° Therefore S is also a closed subset of (Rp,dp).
It follows that H“(:\S is both an open and a closed subset of (H,dp).

From Theorem 1.9, it is clear that H is not a connected subset of

(Rp,dp). The theorem follows since every singleton set is connected.

A metric space that has only singleton sets as connected sets is said to
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be totally disconnected. The p-adic numbers with the | lp—topology is

totally disconnected.
Non-Archimedean Metric Spaces

Since for each n there are at most pn closed spheres of p-adic
numbers with radius p—n but infinitely many potential centers, some
closed sphere must have infinitely many centers. The truth is that
every point of any sphere, open or closed, is a center for the sphere,
In Op’ this is an immediate consequence of the fact that
S[a,p_n] = a + P'. That is, B in S[a,p-n] implies that B8 is in aq + P
and hence that

S[a,p_n] =+ P = B + p" = S[B,p-n].
More generally, this unusual result is a consequence of the non-archime-
dean property of the metric dp for Rp and is considered in the more
general context of a non-archimedean metric space,.

Let ¢ be a valuation on a field (F,+,-) such that

¢(a + b) < max(é(a), ¢(b))
for each a and b in F. If d is the metric on the set F defined by
d(a,b) = ¢(a - b) for each a and b in F, then
(4.3) d{x,z) < max(d(x,y), d(y,z))

for each x, y, and 2z in F,

Definition 4.19. Let (X,d) be a metric space such that d satisfies

(4.3). Then (X,d) is a non-archimedean metric space,

Theorem 4.20. Every point of a closed (open) sphere of a non-archime-

dean metric space is a center of the sphere,

Proof: The proof is given for closed spheres. The modification
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required for open spheres is clear. Let y be an element of the closed
sphere S[x,r], and consider S[y,r]. From d(x,gj < max(d(x,y), d(y,z))
and d(y,z) < max(d(x,y), d(*,z)), it follows that d(x,z) < r if and only
if d(y,z) £ r, Hence z is in S[x,r] if and only if z is in S[y,r].

That is, S[x,r] = S[y,r] and each point of a closed sphere is a center

of the sphere.

If two spheres of p-adic numbers intersect, then one contains the other.

The same is true of spheres of a general non-archimedean metric space.

Theorem 4.21. 1If two spheres of a non-archimedean metric space have a

non-empty intersection, then one of the spheres contains the other,

Proof: From z in both S[x,rl] and S[y,rz], it follows that

S[x,rl] = S[z,rl] and S[y,rz] = S[z,rz]. Hence S[x,rl] contains

S[y,rz] or S[y,rz] contains S[x,rl] as r, <1, Or I

1 1 5 °F

5 The proof

for open spheres is similar.

Corollary 4.22. If a set of spheres in a non-archimedean metric space

is such that any two intersect, then the set is a nest.

Since non-archimedean metric spaces are metric spaces, open spheres
are open sets and closed spheres are closed sets. Each open sphere of
p-adic numbers is a closed sphere. Consequently each open sphere is a
closed set. Similarly each closed sphere of p-adic numbers is open.

The next two theorems generalizes these observations for non-archimedean

metric spaces.

Theorem 4.23. Every open sphere of a non-archimedean metric space (X,d)

is a closed set in X.

Proof: Let y be an accumulation point of S{x,r). Then there exists a
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sequence {xn} in X such that x = y. It follows that there exists an N
such that n > N implies 1/n < r and d(xn,y) < 1/n. Hence
d(x,y) £ max(d(xn,x), d(xn,y)) <r

and y is an element of S(x,r).

Theorem 4.24. Every closed sphere of a non-archimedean metric space
(X,d) is an open set in X. |

Proof: Let S[x,r] be a closed sphere and let y be an element of S[x,r].
Then S[y,r] = S[x,r]. Therefore z an element of S(y,r) implies z is
also in S[x,r]. That is, for each y in S[x,r] there exists an open set
S(y,r) such that y is in S(y,r) and S(y,r) is a subset of S[x,r]. Hence

S[x,r] is open in X.

Since (Rp,dp) is a metric space, the concept of a continuous func-
tion from Rp_into any metric space is available, By Theorem 1.11, a
function f from Rp into Rp is continuous on Rp if and only if for each
€ > 0 there exists a § such that
|£(8) - f(C)lp < € whenever |& - C|p < §
with C in Rp. Similarly a function f from RP into R is continuous on

R_ if and only if for each € > 0 there exists a ¢ such that

(4.4) [£(E) - £(2)] < € whenever |& - c]p <8
with C in R .
p
Theorem 4.25. The p-value function | ]p is a continuous function from
R_ into R,
p

Proof: From l]EIp - Iglpi < |g - CIP, it follows that (4.4) is satis-

fied by | lp whenever ¢ = €,

Addition and multiplication of p-adic numbers are p-adic valued
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functions on RpxRp. To investigate the continuity of addition and

multiplication, a topology for RPXRP is required,

Theorem 4.26., Let (X ) and (X ) be two non-archimedean metric

, 1091 209
spaces., The. function D from (Xlxxz) X (Xlxxz) into R such that

D((w,x),(y,2)) = max(d; (w,y), d,(x,2))

is a metric on XIXXZ'

Proof: It is clear that D satisfies (1.7) and (1.8). Since

A

max(dl(U,y)v,d (V’Z)) S max(m'ax(dl(‘U,W),d (w,y’)),_max(dl(u,x),d (X)Z)))

1]

max (max (d; (u,w),d, (v,x)), max(d(w,y),d(x,2)))

for each (u,v), (w,x), and (y,z) in X xX2, it follows that

1
D((u,v), (y,2)) < max(D((u,v), (w,x)), D((w,x), (¥,2)))

and hence that D satisfies (4.3). But condition (4,3) implies condition

(1.9). Therefore D is a non-archimedean metric on XlxXZ.

Th R_ xR _,D h D 7)), (0, = max (d ), d s

us ( S p) where p((g z), Onud) ( p(g A) p(g u))

for each (§,z) and (X,p) in RpxRp is a metric space., The metric topo-
logy for RpxRp determined by Dp provides a criterion for continuity of

any function defined on R xR .
P P

Theorem 4.27, Addition and multiplication of p-adic numbers are con-

tinuous functions from RpxRp into Rp.

Proof: For each (£,z) and (),y) in RpxRp,

E+re-Qrwy=le-a+z-ul

IN

max([g - A[ps |2 - wly)
Dp((E,C), ()\’U))~

A

It follows that for each (£,z) in RpxRp and for each ¢ > 0 there exists

a § = ¢ such that

£+ - (A + u)]p < g whenever Dp((E,C), (A,u)) <6
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with (A,H) in RpxRp, Hence addition is continuous, Also

|ET - xulp = |EC - Eu + En - Aulp
= |g(z - W) + (E - X)ulp
< max(lglplﬁ - uip,luipi£ - KIP)
< maX(IEIP,Iulp) max(|g - ulp,la - xlpj
<

max(ialp,iulp) D, ((£,2), (A1)

and IC - u]p < 1 implies that lulp <1+ lg*p‘ It follows that for each

(£,2) in RpxRp and for each € > 0 there exists § = min(l’]i}p(leg T§|;3)

such that

leT - Kulp < e whenever‘Dp((E,CJ, Lu) < 8
with (A,u) in RPXRp° Therefore multiplication is a continuous function.

on R xR .
P P

Definition 4.28., A field with a metric such that the field operations

are continuous with respect to the metric topology is a topological

field.

From Theorem 4.27, it is clear that (Rp,+,') is a topological field,



CHAPTER V
NON-ARCHIMEDEAN NORMED LINEAR SPACES

In many of the common examples of linear spaces the associated
scalar field is either the rational, the real, or the complex number
field. Since the knowledge of a beginning student is limited to these
fields, this is understandable. However after the preceding intro-
duction to p-adic number fields, it is natural to consider linear
spaces over the p-adic number fields. 1In this chapter, normed linear
spaces over (Rp,+,*) are considered. Although not all normed linear
spaces over (Rp,+,°) have a non-archimedean norm, attention is
restricted in this chapter to the case where the norm does satisfy the

non-archimedean property.
Normed Linear Spaces

A norm for a linear space is a real-valued function that is, in

many respects, comparable to a valuation for a field,

Definition 5.1, Let (F,+,°) be a field with valuatien ¢-and-let

(V,F,+,:) be a linear space over (F,+,*). A real-valued function H H

defined on V, is a norm on V if

(5.1) ”VH 2 0 and equals 0 only if v = O,
(5.2) v+ wll < flvll + flwl]
(5.3) lavli = ¢ca) fIv]

for each v and w in V and a in F. If

84
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(5.4) lv + wll < max ([ [l

for each v and w in V, then || || is a non-archimedean norm on V,

Definition 5.2. Let (F,+,*) be a field with valuation ¢ and let

(V,F,+,+) be a linear space over F with norm H H on V. Then (V,F,+,")

is a normed linear space over (F,+,:). Such a normed linear space is

denoted by (V,F,+,-,|| |[). If] || is non-archimedean, then (V,F,+,-,|| [

is a non-archimedean normed linear space over F.

In the study of real vector spaces, the student learns that an
n-dimensional vector space can be constructed by taking all n-tuples of

real numbers as vectors. This linear space is denoted by (Rn,R,+,-).

If || || is defined on R" such that
| (x, ,x seresX )| = max Ix,l,
172 n l<isn
then H | is.a norm and (Rn,R,+,-,” ) is a normed linear space. In a

similar way, an n-dimensional linear space over the p-adic numbers can

be constructed with n-tuples of p-adic numbers as vectors.

Example 5.3. Let an denote the collection of all n-tuples of p-adic

n . . . .
numbers, Then (Rp ,RP,+,°) is an n-dimensional linear space over

(R,»+,°). If || || is defined on an such that
(5.6) €8y 8l = max &,
1°7°2 n 1<i<n i'p
then H(E sErsevr8 )|l > 0 with equality only if max |E, = 0 and
172 i 1<i<n Bl

condition (5.1) follows. From

e, .6y, 8l = 11 (68,68, 88 )]

= max Iggol
1¢isn P
= |g|_ max |&.]|_,

P 1ci<n 1P
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it follows that property (5.3) is true. The non-archimedean property

for H Il can be established as follows:

1]

[ECTETRN S0 IR (ST 451 IEH NN SUPRRIN S 40l

max lgi + Ci\

1<i<n P
< max (max(|E. | ,[z,] )
1<i<n SR

maX(lﬁiin(IEi]p,lcilp))

[WAN

max({f €, LEDMLI Lz DI

Since the non-archimedean property implies (5.2), it follows that

n . . . . .
,R ,+,°,H H) is a non-archimedean normed linear space of dimension

R
( p D

n.

A field can be considered as a linear space over itself. That is
(F,F,+,*) is a linear space whenever (F,+,:) is a field. Also (R,Q,+,-)
and (Rp,Q,+,') are linear spaces. If (F,+,:) is a field with valuation
¢, then (F,F,+,-,¢) is a normed linear space. Furthermore (R,Q,+,~,] I)
and (Rp,Q,+,°,l ]p) are normed linear spaces whenever i | and l ip are
taken as the respective valuations on (Q,+,-). If l ‘p is the valua-
tion on (Q,+,*), then (Rp’Q’+,°,l !p) is a non-archimedean normed linear
space. However (Rp,Q,+,°,I Ip) is not a normed linear space when | | is
the valuation on (Q,+,-). To see this, note that property (5.3) fails

in this case since

i2plp = |p + pip < maXCIplp,ﬁpip) = 1/p

while
2l1pl, = 201/p) = 2/p,
Let (V,F,+,°,H H) be a non-archimedean normed linear space and let

¢ be the valuation on (F,+,-). The following argument shows that ¢
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must be non-archimedean. There exists a non-zero v in V such that

o(x + y) IVl = 1 (x + y)vl]

Ixv + yv]

max(HXV” + ”YV“)
max (¢ ()| v]| o v
vl max(¢(x), ¢(y))

749

- whenever x and y are in F. It follows that

¢(x + y) $max(¢p(x), ¢(y))
and hence that ¢ is a non-archimedean valuation on (F,+,:), Thus ¢
non-archimedean on (F,+,*) is necessary for (V,F;+,°,H H) to be non-
archimedean. To see that this condition is not sufficient for the
normed linear space to be non-archimedean, consider the following
example which describes a normed linear space over Rp which fails to be

non-archimedean.

Example 5.4. Let S denote the set of all sequences {En} of p-adic
numbers such that z;;olgnlp is bounded. Then (S,Rp,+,-) is a linear

space. Define || || on S by
(5.7) e = Tolg, Ly

Then H{En}H > 0 with equality only ifv{in} = {0}, Since

Teolellen ]y = fel I oleg s

it follows from (5,7)bthat HE{EH}H

el g Ao

g 3 + Ml

I, + 2l

anolgn + Cnlp

whenever {in} and {Cn} are in S. But
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A

ZIl:=0[€n * Cn| ZIl:=0l€nlp ¥ 22=0|En‘p‘

p -

for each n > 0 implies that

2n=0lgn * Cnlp E Z1k=0|£nlp * 2k=01€n‘p'
Therefore
1t + el < e+ g
Hence H H is a norm andv(S,Rp,+,-,H H) is a normed linear space. How-

ever the non-archimedean property does not hold. To see this, consider

{¢ } = {1,0,0,...,0,...}

n

and

{c 3 =10,1,0,0,...,0,...}
Then

e+ {c}t=11,1,00,...,0,...3

and H{En} + {Cn}” = 2 while the max(H{En}H, H{CH}H) = 1, Therefore it

is not the case that H{En} + {Cn}” < max(“{in}“, H{En}”).

Let (V,F,+,-,H H) be a normed linear space. In a manner analogous

to the verification of (3.10) in the proof of Theorem 3.3, it follows

that
(5.8) v = wlll < Qv - vl
for each v and w in V. If H | is non-archimedean, then it follows as

in Theorem 3.5 that

(5.9) v+ wll = [Ivl] whenever [jv]| > [|w].
The || ||-Topology
If || H is a norm on V, then a function d from V x V into R defined
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div,w) = |v - wl|
for each v and w in V i1s a metric on V, Therefore (V,d) is a metric
space. If ” ” is non-archimedean, then (V,d) is a non-archimedean
metric space. Hence the discussion relative to non-archimedean metric
spaces in Chapter IV, as well as the discussion of metric spaces in
Chapter I, apply to the non-archimedean space (V,Rp,+,«,” ”) with the
” ”-topology. Of particular importance are the ideas of open and closed.
sets, continuous functions, convergent sequences, Cauchy sequences, and
the relationship between open spheres, closed spheres, open sets, and
closed sets,

Let (V,F,+,-,H ”1) and (W,F,+,-,H ”2) be two non-archimedean normed
linear spaces, and let f be a function from V into W. In accordance
with Theorem 1.11, f is continuous on V if and only if for each v in V
and for each € > 0 there exists a § such that

Hf(v) - f(w)“2 < € whenever Hv - w”l

with w in V, Let'{vn} be a sequence from V, Then'{vn} converges to v

with respect to || Hl if and only if for each ¢ > 0 there exists an N
such that
(5.10) v - V”l < £ whenever n > N,

n

The sequence {vn} is Cauchy (wrt|| “1) if and only if for each ¢ > 0
there exists an N such that

(5.11) lv

. vnﬂl < ¢ whenever m,n > N,

Furthermore {vn} is Cauchy if and only if for each € > 0 there exists
an N such that

(5.12) |v < ¢ whenever n > N,

n vn+1”1

As for a series of p-adic numbers, so it follows from (5.12) that an
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{ve] -
infinite series anovk has a sum if and only if v, 7 0 (wrt” Hl).
The following useful alternate characterization of continuity is
an immediate consequence of the fact that non-archimedean normed linear

spaces are metric spaces.

Theorem 5.5. If (V,F,+,°,H Hl) and (W,F,+,-,H ”2) are non-archimedean
normed linear spaces and'{vn} is a sequence from V, then a function f
from V into W is continuous if and only if

(5.13) v, TV (wrt| “1) implies f(vn) > £(v) (wrt| ”2)=

Let {vn} be a non-null Cauchy sequence of (V,F,+,+,]l |[), a non-
archimedean space. Since lv + w]| = [|v|]| whenever HVH > Hw”, it follows
as in Theorem 3.18 for (Rp,+,°) that {anH} is eventually constant.
This important consequence of the non-archimedean nature of || | is

stated for future reference.

Theorem 5.6, If {Vn} is a non-null Cauchy sequence of a non-archimedean

normed linear space, then {an”} is eventually constant,

Any property of normed linear spaces over the real number field
which depends only on properties (1.10), (1.11), and (1.12) of I I and
is independent of any special property of the real numbers, such as
order, holds true for non-archimedean normed linear spaces.v For
example, the following theorem states a property of normed linear spaces

that is dependent on properties common to any valuated field.

Theorem 5.7. Let (V,F,+,°,H ”1) and (W,F,+,',H HZ) be two normed linear
spaces and let T be a linear function from V into W, Then T is contin-
uous at every point of V or T is continuous at no point of V. 1In

particular, T is continuous on V if and only if T is continuous at 0.
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Proof: Let v and w be any two points of V and assume T is continuous at

v. Then for each € > 0 there exists a § > 0 such that

T(v) - T(w)”2 < € whenever ||v - le <8
with w in V. If y is an element of V such that ||y - w”l < § then
fw+v-y) - le < 8.

~Sincew + v - y is in Vand T(w + v - y) = T(w) + T(v) - T(y), it
follows that

Ty - Toll, = ITGv + v - y) - T,
and

Tey) - T(w)“2 < € whenever ||y - w“l < 8.

Hence T is continuous at y.

A linear function T from (V,F,+,- |l Hl) into (W,G,+,",|| ”2) is
bounded if there is a real number M such. that

ITenll, < Milvl

for each v in V. The norm gf;z_is defined as

It = inf 1 [T, < M flvl, 3.

Just as a linear function on a real normed linear space is continuous
if and only if it is bounded, so a linear function on any non-archime-
dean normed linear space over a p-adic number field is continuous if
and only if it is bounded. However the proof is more complicated in

the p-adic case.

Theorem 5.8. Let (V,Rp,+,°,” H1) be a non-archimedean mormed linear
space. A linear function defined on V is continuous if and only if it
is bounded.

"Proof: Let T be defined from V into W where (W,Rp,+,',” ”2) is a normed
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linear space. Suppose T is a continuous linear function which is not

bounded. That is, for each M > 0 there exists v in V such that

Tl > Mivily .
In particular, there exists a sequence {vn} in V and {Mn} in R such that
Mn =+ © and
(5.14) It i, > M livly .

From p > 0, it follows that there exists a smallest integer k such that

p_k < 1/(Mn”VnH1)' Hence for each m > 1 there exists k such that

1 < -k < 1
v, - vl
Since
IR | = {p™™: n is in z},

PP

there exists a sequence {En} in Rp such that

1 <E < 1

vl
From (5.14) and the fact that T(0) = 0, it follows that HVn”l # 0 for

each n. Thus if y = g v for each n > 0, then {yn} is a sequence in V

such that
byglly = Tegllvally < 1

But 1/Mn ~ 0 (wrt] |). Therefore Yy 0 (wrt]| Hl). Moreover

It il = HeTopll, =l LiTapll,
T
and {T(yn)} does not converge to 0 with respect to || “2' This is

impossible since T is continuous and y, >0 (wrt|| ”1) implies
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T(yn) + 0 (wrtl]| ”2)‘ Hence there exists an M such that

(5.15) Irenll, < mivil;

for each v in V and T is bounded.
Conversely, assume (5.15) holds. Then for each € > 0 there exists
§ = €/M such that

IT(v) - T(O)”2 < € whenever ||v - OH1 <4

and T is continuous at 0. Hence T is continuous on V.
Discrete Non-Archimedean Normed Linear Spaces

A normed linear space is discrete if the norm is discrete. That
is, a normed space is discrete if zero is the only accumulation point
of the image of the set of vectors under the norm function. The next

example indicates that there are discrete normed linear spaces.

Example 5.8. Let (an,Rp,+,',H Il) be as in Example 5.3 and let
{(Elcm),izcm),..,,En(m))} be a Cauchy (wrt| ||) sequence in an. For

each € > 0 there exists an M such that

heg, ™ - g g, g M) <
whenever m > M. 1t follows that

(m+1) (m)
€. - £, < g
o 16 il

and hence that

< € whenever m > M

(m+1) (m)

for each i, 1 < i < n. Now (Rp,+,‘) discrete and {Ei(m)} Cauchy
(wrtl Ip) for each i, 1 < i < n, implies that for any given i,
Igi(m)]p + 0 (wrt| |) or {]Ei(m)]p} is eventually constant. There are

two cases, If for each i, 1 < i < n,
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g, ™1 >0 urt] D,

then |l(£l(m),£2(m),..,,an(m))]] + 0 (wrt| |). If there exists some i
such that ]Ei(mjlp is eventually constant and non-zero, then

H(Ei(m),iz(m),...,En(m))” = max Iii(m)lp is eventually constant,
1<i<n

Thus no non-zero element of ”an” is an accumulation point. However 0
is an accumulation point of HanH since {||(p",0,...,0)||} converges to 0

(wrtl |). Hence (an,Rp,+,~,H H) is a discrete normed linear space.

The. scalar field in Example 5.8 is discrete as the next theorem
shows that it must be. However there are non-archimedean normed linear

spaces over discrete fields which are not discrete.

Theorem 5.9. A necessary but not sufficient condition for a non-
archimedean normed linear space (V,F,+,-,H H) to be discrete is that
(F,+,*) is discrete.
Proof: If (F,+,°) is not discrete, then there exists a sequence
{¢(En)} of distinct values in (R,+,*) such that ¢(£n) =1 # 0 (wrt] |).
Since V # {0}, there exists v in V such that ||v|] # 0. Therefore {e v}
is a sequence in V such that

le vl = ¢ &IVl
for each n > 0. Hence Hinv” > xllv]] # 0 (wrt| |) and (V,F,+,-,|| ) is
not discrete. It follows that if (V,F,+,-,| ||) is discrete, tﬁen
(F,+,°) is a discrete field. The following example shows that the

condition is not sufficient.

Example 5.10. Let V consist of the sequences {x } = {22=Oaipr+l} with
0 <a<pand r a rational number. Define addition and multiplication

on V such that .
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Ix b+ by b= I +y?
and
{xn} {yn} = {xnyn}
for each {xn} and {yn} in V. It is clear from the definition of addi-

tion and multiplication of p-adic numbers and Theorem 2.42 that (V,+,-

L

contains a subfield (K,+,+) isomorphic to (Rp,+,-). Furthermore

(V,K,+,+) is a linear space. Let || | from V into R be defined by

!

H{zgzoaipr+l}n = p_’r-k if k is the least integer such that a, # 0

1}

0 if 3 = 0 for each k > 0,

As for | |p in Chapter II, so || || can be shown to be a non-archimedean
norm on (V,+,:) and hence a valuation on (K,+,"). The valuated field
(K,+,*) is discrete. It remains to show that (V,K,+,‘,” H) is not

discrete. Let p_r_k be a non-zero element of ||V]]. Then

n
{n+1r + k}

is a sequence of distinct rational numbers which converges to r+k,

Since the function f defined by f(x) = px is continuoﬁs,

n r + k
{p n+l }

is a sequence of distinct terms that. coriverges to p_r_k, Hence p—r-k is

a non-zero accumulation point of ||V]| and (V,X,+,-,|| {) is'riot discrete.

It has been observed that (an,Rp,+,',H ) with || || as in (5.6) is
a discrete normed linear space and that the || H—topology is not the
discrete topology. Therefore the metric topology for a linear space

induced by a discrete non-archimedean norm does not need to be the

discrete topology for the space.
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Topological Linear Spaces

A normed linear space has both a topological and an algebraic
structure. There is an interesting relation between the metric topology
for a linear space determined by a norm and the algebraic operations
defined on the set of vectors. Some consequences of this relation are

explored in this section.

Let (V,Rp,+,~,“ H) be non-archimedean. Since H H determines a non-
archimedean metric for V, it follows from Theorem 4,26 that | | deter-
mines a topology for V x V. Furthermore ” I and ] lp together determine

a topology for Rp x V.,

Definition 5.11. A linear space (V,Rp,+,-) is a topological linear
space if vector addition is a continuous function on V x V and scalar

multiplication is a continuous function on Rp x V.

For each x, y, z, and w in V,

lx vy - el =lv-wey-a

IN

max(f|v - wll, [ly - 2l
Hence vector addition is a continuous function on V x V. Let D be the
metric on Rp x V induced by | Ip and || {|. That is,

DC(E,x), (&,y)) = max(|g - [, [Ix - v,

Then for each (£,x) and (g,y) in Rp x V,

lex - oyl = [lex - gy + gy - oyl
=lex - y) + & - ol
< max(flex - NILIE - 2D
= max([g]Jlx - vl Te - 2] v
< max(le] LIyl max(le - el Llx - ylD

max(|£] Lyl D((E,x), (£,y))
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Also ||x - y|| < 1 implies that ||y|| < 1 +=HxH. It follows that.for each
€ > 0 there exists

€

§ = min (1, ————or—
( lzlchxH~«-1)J

such that ”Ex - Cy” < € whenever D((&,x), (Z,y)) < S. Therefore scalar
multiplication is also continuous. Hence non-archimedean normed linear

spaces over (Rp,+,-) are topological linear spaces.

Definition 5.14. Two topological linear spaces over the same scalar

field are topologically isomorphic if there exists a vector space

isomorphism f between the two spaces such that both f and f-1 are

continuous.

Any n-dimensional normed linear space over the real field is topolog-
ically isomorphic to (Rn,R,+,~,H H) where

o sxyse i)l = Ixl * dxgl + oo+ I |

for each (xl,xz,,,,,xn) in R". A similar result holds true for n-dimen-
sional non-archimedean normed linear spaces over Rp' The following
sequence of theorems, due to Cohen (5), culminates with this interest-
ing result and provides additional insight into the nature of non-

archimedean normed linear spaces over (Rp,+,').

Theorem 5.15. Let (V,Rp,+,',“ H) be non-archimedean, let (W,Rp,+,',” H)

be a closed subspace, and let v be a vector in V which is not in W, If
the sequence {wn + Env} converges (wrt| ||) to a vector in V, where w
is in W and En is in Rp’ then both {wn} and {En} have limits.

Proof: Assume that {wn + Env} converges (wrt] ||) to 0 and that {En}

does not converge (wrt| lp) to 0. Then there exists a subsequence
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> €. Hence

{&. } and an € > 0 such that for each k, |&_ |
Tk n 'p

it

et on, w5 wll = 1e0] v, + £l
k "k k k

n Py

IN

(1/€)Hwnk " gn#vn.

But for each € > 0 there exists an N such that

lw_ + & V]| < e? whenever k > N.
" Tk

Consequently

i”iglwn -0l < ”E;lwn + V|| < € whenever k > N
k 7k k 'k

and {E W } converges to‘—v° But this is impossible since W is closed
and -v Es iot in W. Therefore it follows that if {wn + Env} converges
to 0, then {En} is a null sequence of p-adic numbers.

To complete the proof, suppose that the sequence {wn + g v} con-

verges‘(wrtH ”) but not necessarily to 0. Then {wn + Env} is Cauchy

and for each € > 0 there exists an N such that

[l

\2
2z

+ - - < whenever n
W1 E Voo W Ean € nev >

Therefore

\
Z

w .. =W+ (&

n+l n - En)v” < € whenever n >

n+1
and it follows from the first part of the proof that {£n+1 - En} con-
verges to 0. Hence {En} is Cauchy. Since (Rp,+,*) is complete, there

exists a £ in Rp such that for each € > 0 there exists an N1 such that

HEnv - &v]] < € whenever n > N,

By hypothesis, {wh + Env} converges to some vector, say z, in V. Hence

there exists an N2 such that

Hwn + Env - z|| < € whenever n > N, -
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Since

v - (z - &V

“wn + Env -z =& v+ gv||

A

max(”wn +E V- zl|] , HEnV - &vh,

it follows that w_~z - &v (wrt]| [|). Therefore both {w 1 and {e ¥

have limits.

Theorem 5.16. Let (V,Rp,+,-,” H) be non-archimedean. If W is a closed

subset of V and Vi,V eV are elements of V, then

2’

W+ va1 + ...+ vam is closed. In particular, any finite dimensional

subspace of (V,Rp,+,a,” ) is closed.
Proof: The proof is by induction on m. Suppose m = 1, If vy is in W,

then W + val = W and hence is closed. Assume.v1 is not in W but is in

V and that z is an accumulation point of W + val. Thus there exists

a sequence of {wn + Envl} in W+ R v

V1 that converges to z. Hence {wn}

has 1limit w and {En} has 1limit & in Rp° Since W is closed, w is in W.

Therefore {wn + Env} converges to w + Evl in W+ val. But in a metric

space limits are unique and therefore z = w + Evl. It follows that

W+ va1 contains z and is hence closed.

To complete the induction, assume G = W + va1 + ... 0+ vam is

closed and v is in V but not in G. Let y be an accumulation point of

G + va. Then there exists a sequence {gn + Env} in G + va converging
to y. By the same reasoning as before, G + va = W + val + o0 F

vam + va contains y and therefor¢ is closed. Hence for each m > O,

W + val + ...+ vam is closed. Since {0} is a closed subset of V,

it follows that va1 + ... 4 vam is closed. That is, any finite

dimensional subspace of (V,Rp,+,',”v”) is closed.

Theorem 5.17. Any n-dimensional non-archimedean normed linear space
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over (Rp,+,°) is topologically isomorphic to (an,Rp,+,-,H H) and is
complete,

Proof: Let (V,Rp,+,°,” Hl) be non-archimedean and recall that

”(EI)E2:'°'3£n)” = max lgil

1<i<n P
. . n . .
for each (El,iz,,.,,En) in R7. Suppose that {Vl,vz,...,vn} is a basis

for (V,Rp,+,.,” ”1). Define a function T from an into V such that

n
T((El’gz)-'-,gn)) - Zi=lgivi'
Since
- n
Lie1Bivi = Dietivy
implies Ei = Ci for i, 1 € i < n, it follows that T is well-defined,

It is clear that T is linear and onto. Since Z?=l£ivi # Zg:lcivi

_ Tn _ . N .
5 Ci)vi # 0 and Li=l(€i Ci)vi # 0 implies there exists

. . vh
implies 21:1(50
i such that Ei # Ci’ it follows that T(El,iz,...,in) #.T(Cl,cz,...,cn)
implies that (El,Ez,.,.,En) # (al,cz,...,cn) and hence that T is 1-1.
Therefore T is an isomorphism and T_1 exists.
(m) , (m) (m)yy - ryn (m) .
Let {T(E1 b8y el )} = {zizlgi Vi} be a sequence in V
that converges to 0 with respect to || ﬁl—topologye With W = val +
- van_1 and v = Vs it follows as in the proof of Theorem 5.15

that {En(m)} converges to 0 in RP and {22;%£i(m)vi} converges to 0 in V.

By repeating the argument n-1 times, it is clear that {Ei(m)} converges
to 0 for i, 1 < i1 < n. Hence T(El(m),Ez(m),...,En(m)) -0 (wrt” Hl)
implies that T—l(T(El(m),Ez(m),..,,En(m))) + 0 (wrt] ||) and therefore

that T ! is continuous.

To see that (an,Rp,+,‘,” 1) is complete, let
e fqp @, (m) (m)
{xn} = {(il ’EZ ,...En )}

be a Cauchy (wrt| ||) sequence of an. Then for each € > 0 there exists
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an N such that

X H =  max < £ whenever m 2> N,

Ix .. -
m+1 m 1<i<n

{(m+1) (m)
]Ei - Ei [P

Hence for each i, 1 < i < n,

< € whenever m > N

lgi(m+l) - Ei(m)lp

and {Ei(m)} is Cauchy (wrt] | Since (Rp,+,°) is complete, there

p)"
exists éi such that Ei(m) > éi (wrt | ]p). Now X

(glygzgtvv;é\n) iS in

an. Furthermore

A
m

Iy - & = max |5, - g |

. i
1<i<n

whenever m > N, x, £ (wrt“ H), and (an,Rp,+,°,H H) is complete,.

Corollary 5.18. Two non-archimedean normed linear spaces of the same

finite dimension are topologically isomorphic.
Extension of Linear Functions

Let (W,F,+,-,] ”2) and (V,F,+,+,|| ”1) be two normed linear spaces.

Assume that (WO,F,+,°,H ”2) is a subspace of (W,F,+,-,] ”2) and that T0

is a linear function from W, into V. Then T from W into V is an

0
extension gf_zo if T is linear, ||T]| = “TOH’ and T(w) = To(w) for each
w in W, . Every continuous linear functional defined on a subspace of a

0

normed linear space can be extended to the whole space so that it
remains linear and continuous and has the same norm. This result is
known as the Hahn-Banach theorem. The extension of continuous linear
functions between two real normed linear spaces has been studied by
Nachbin (13). In his paper, Nachbin gives a necessary and sufficient
condition for such an extension to be possible. Cohen (5) and Ingleton

(7) have studied extension problems for non-archimedean normed linear
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spaces. Their results are summarized in the remainder of this.chapter,

Definition 5.19. A normed linear space (V,F,+,-,|| ”1) is said to have

the extension property if, for any space (W,F,+,*,| ”2)’ every con-

tinuous linear function from a subspace of (W,F,+,-,H Hz) into
(V,F,+,~,” “1) possesses an extension of the same norm whose domain

is the whole of W.

Definition 5.20. A valuated field (F,+,-) is said to have the Hahn-

Banach property if, for any space (V,F,+,-,| ”1), every continuous lin-

ear functional defined on a subspace of (V,F,+,:,]] Hl) possesses an

extension of the same norm defined on the whole of V.

The first step in the consideration of. the extension properties of.
continuous linear functions into non-archimedean normed linear spaces

is a general result that is dependent upon Zorn's Lemma.

Zorn's Lemma. Let P be a non-empty partially ordered set with the

property that every completely ordered subset of P has an upper bound

in P. Then P contains at least one maximal element.

Theorem 5.21. Let (V,F,+," ] Hl) and (W,F,+,-,|| “2) be non-archimedean,

let (M,F,+,-,] Hz) be a proper subspace of (W,F,+,,| Hz), and let v be
in W but not in M. Then if f is a continuous linear function from M
into V that can be extended to a continuous linear function with norm
Il fll and defined on M + Fv, f can be extended to a continuous linear
function that is defined on all of W and has norm HﬂJ.

Proof: Let Dg denote the domain of a function g into V. Define P to
be the set of all continuous linear functions g such that

(Dg,F,+,-,H ”2) is a subspace of (M + FV,F,+,',” Hz), g (x) Q.f(x) for
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for each x in M and Hg” = Hfﬂ. Since f is in P, P is not empty, Define
a partial ordering > on P as follows: For g1 and g, in P, g > g, if

and only if D_ contains D_ and g,(x) = g,(x) for each x in D
&1 &2 1 2 .
Let Q be a completely ordered subset of P, An upper bound for Q

can be constructed as follows: Suppose G is a function into V such

that DG is the union of the domain of all functions. in Q and for each

x in Dg’ G(x) = g(x) where g is some function of Q such that x is in

Dg' Since for each x and y in D. there exists g, and g, with x in D

G g1

and y in D_  and since g; > gy or g, > g1 it follows that x = y implies

2
2
G(x) = G(y) and hence that G is well-defined. It is clear that G is an

upper bound for Q.
To apply Zorn's Lemma, it remains to prove that G is in P, If x

and y are elements of D,, then there is a g in P such that x and y are

G’

in Dg' Hence for each o in F, ox and x - y are.in Dg' This implies

that ox and x - y are in D, and consequently that (DG,F,+,',H H2) is a

G
subspace of (M + Fx,F,+," ]| ”2)‘ Also for o and B in F,

G(ox + By)

glox + By)

og(x) + Bg(y)

oG (x) + BG(y)

implies that. G is linear. Since G extends f, it follows from Defini-
tion 5.9 that HGH > Hf”. But for each x in DG the fact that there
exists a g in P such that G(x) = g(x) implies

(5.19) leeally = llecolly < llell Hxll, = Tl 1l

Therefore |G| < ||f]] and hence /G| = |[f]|]. It follows from (5.19) and
Theorem 5,12 that G is also a continuous linear function. Thus G is in
P and from Zorn's Lemma it is known that P has at least one maximal

element. Let ¢ be a maximal element of P. If D, is not all of W, then

¢
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there is a w in W which is not in D,. Hence ¢ can be extended to all of

¢

D¢ + Fw and ¢ is not maximal. Since this.is a contradiction, D, = W,

¢

¢ extends £, ||¢]| = |[|f]], and ¢ is a continuous linear function.

The Hahn-Banach theorem for a non-archimedean normed linear space:

over any p-adic number field is a corollary to the following theorem:

Theorem 5.22, (5) Let (F,+,°*) be a discrete field with non-trivial

valuation Y. Then (F,+,:) has the Hahn-Banach property.

Proof: Let (W,F,+,-,|| ||) be non-archimedean, let (M,F,+,+,]| ||) be a
subspace of (W,F,+,-,|| |[) and let f be a linear functional on M, It
follows from Theorem 5.21 that it is sufficient to prove the theorem
when V.= W + va. Let x be an element of the closure of W. Then
there exists a sequence {xn} such that x, > X (wrt” H); Define g by

g(x) = lim £(x ).

It is clear that g is linear and extends f to the closure of W.
Furthermore f(xn) »+ g(x) (wrty) and since F is discrete either w(f(xn))
is éventually constant or g(x) = 0, Either way, for each x in the

closure of W there exists x,, in W such that P (g(x)) = w(f(xN)). It

N
follows that ||gl| < ||f]]. But g an extension of f implies [[f]| < el .
Hence ”fﬂ = Hg” and g is continuous. Therefore it is sufficient to
prove the theorem when V = W + Fv and W is closed,

If W is closed, then there_exists € > 0 such that
{x in V: ||x - v]| < €} does not intersect W. If d is defined by
(5.20) d = inf {||x - v||: x in W},
then d > € > 0. Let k be the unique integer such that
l—lpk—l

(5.21) Il £] <d < | gt

with p some.prime number. From (5,20) and (5.21), it folloWs that
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there is ® in W such that ||® - v] < Hfﬂ_lpk. Otherwise

Ix - v]] > Hf”_lpk for each x in W and d is not the greatest lower

bound. Let ¥ = v - X. Then

(5.22) 1o = v - &l < 17"

and since x + X is in W whenever £ is,

(5.23) [0 -x =llv- ®+x 24

for all x in W.

If z is in V, then z = x + &v with x in W and € in F. Therefore
z=X+E&ve=x+E0 +E0 =w+ EC

with w = x + £€X in W and £ in F. Define ¢ from V into F such that

¢(z) = ¢(w + EF) = £(w)

for each z in V. 1t is clear that ¢ extends f. Since

]

$hzy + uz,) = O(A(w, + E0) + ulw, + ED))

O Awy + uw, + £ + 1)9)

f()\w1 + pwz)

2]

Kf(wl) +.pf(w2)

Ao (z;) + ud(z,),

¢ is linear and therefore is a linear functional,

It remains to show that ||¢]| = ||f]]. Since ¢ extends f, [[¢|| > [[f].
If |lw]| > ||£0]|, then it follows from (5.9) that [lw + &£0] = |lw]]. Also if
Iwll < llgdll, then flw + g6l = fe@]l > [lwl. Therefore |lwl| < [lw + £9]
whenever ||w] # ||£9]|. It follows that for each z in V,
V($(z)) = V(w + EV))
= Y (fw))
< 1 £l[]]wl

< [ llllw + g9



106

< [llll=].
That is, ¥(¢(2z)) < ||fllllz]] for each z in V whenever |[w| # ||£0]. 1f
Il = g0, ehen fle™ll = 91 < 117" by (5.22), Hence w(£E™w) <
gl Ile™ 5l <p®. 1t follows from the discrete nature of (F,+,:) and lin-
earity of £ that Y(£(w)) < Y(E)p""' and that for each z in V,
V() = VEW < PE)P!
< vE)fld

by (5.21). But E_lw in W implies d < || + E—lwn and consequently that

U6 ) < v + £

= [ llw + g9l
= [ ]2l
for each z in V whenever Hw” = HEVH. Therefore for each z in V

V(o(2z)) < €zl
and ol < |[£]].

Corollary 5.23. (Hahn-Banach Theorem) Every continuous linear func-

tional defined on a linear subspace of a p-adic normed linear space
can be extended to the whole space so that it remains linear and con-

tinuous and has the same norm.

Coroliary 5.24. Let (V,Rp,+,°,H ”1) be a non-archimedean normed linear
space over Rp° Then for each non-zero v in V there is a linear func-

tional f on V such that f(v) = 1 and ﬂf” = Hv”l—l.

Proof: Define g from va into Rp such that for each &Zv in va

g(Ev) = &,
Since
g((AE)v + (MT)V)

g((AE + ug)v)

g (gv) + ulgv))

i

1
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AE + UL

Ag(Ev) + ug(gv),

g is linear. Also for each &v in va

el = 12l - “;vni
and [lg] < [Ivl; ™t But
el = 11l = 1= v, i
implies [[gll > [Ml,™". Hence [lgll = [Vl;™!. By Theorem 5.22, there
exists £ extending g such that [|£] = [lv];™". It is clear that

f(v) = 1.

The following theorem provides a converse to Theorem 5,22,

Theorem 5.25. (7) 1If the Hahn-Banach Theorem holds in a normed linear

space (V,Rp,+,-,” H) then H Il is a non-archimedean norm,

Proof: From Corollary 5.24, it follows that if the Hahn-Banach Property

holds for (V,Rp,+,°,” Il), then there is a linear functional f from V

into Rp such that for each x and y in V with x + y # 0

[£0c+ yd | = iy = 1= ] T+ vl
But
[0+ vl = [£00 + £ 1) s max([£6 |, [ED )
< max (| ][I, [[£ll{l¥]})
= [ flmax (=]l Iyl .
Therefore ||x + y|| < max(|x]|,]ly]l) and || || is non-archimedean.

Cohen published Theorem 5,22 in 1948, 1In 1950, Nachbin showed
that a real linear space has the extension property if and only if it,

considered as a metric space, 'is spherically complete. Two years later
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Ingleton proved the following analog to Nachbin's result for non-

archimedean normed linear spaces.

Theorem 5.25. (7) A non-archimedean normed linear space (V,F,+,-,]] Hl)
has the extension property if.and only if the non-archimedean metric
space (V,d) with d(v,w) = Hv - w”1 is spherically complete.
Proof: Since (V,F,+,-,” ”1) is non-archimedean, the valuation ¢ on F
is non-archimedean. Assume that (W,F,+,-,H ”2) is non-archimedean and
that (M,F,+,c,” ”2) is a proper subspace. Suppose the metric space
(V,d) is spherically complete. Let T be a continuous linear function
from M into V and let X be a vector in W but not in M.

To prove that T can be extended to M + Fxg consider the collection
of closed spheres indexed by M such that for each y in M

[yl = SITG),p()] = {z: zeV and [[TO) - zll; < o)}

where p(y) = ”TH ”y - XOHZ' Since

It - Tl = ITey - vl
<l By, - v,
S My, - g+ xg - vl
< 1] maxdly, - xgl, Ty, - xgly)

i}

max(p(y ), p(y,),

T(yl) is in S[yz] or T(yz) is‘in S[yl]= Hence any two of the spheres
intersect. Since (V,d) is a non-archimedean metric space, it follows
from Theorem 4.21 that the set of spheres is a nest, Since (V,d) is

spherically complete there exists a point 24 in S[y] for each y in M.

For any x = y + Vzo,in M + FZO, define L from M + Fz_ into V such

0

that
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L(x) = L(y + vzo) = T(y) + vz

Clearly L is well-defined. Since

L(Xx1 + uxz) T(Ay1 + Ayz) + (vlk + vzu)zo

MT(r)) + vz) + u(Tl,) + v,z

AL(x;) + uL(x,),

L is linear. For each y in M, y =y + O'ZO, L(y) =-T(y) and L extends

T. Also if v # 0, then

“L(x)lll ”T(Y) + \)20“1

sV T + 2l

o) Ty - 2l

But y in M implies —v_ly is an element of M., Hence Zg is an element of

S[(Qv_ly)],. Therefore “T(—V—ly) -z < p(‘V-IY) and

ol
lLeall, < 60 o(-vy).

since o(-vy) = I [|-v7ly - zgll, = [Tl [0™) v + 2(ll, it follows that

Lol < ol vty + 20, = Il 1,

So HLH < HTH. Also L an extension of T implies HLH > HT“. It follows
from Theorem 5.21 that (V,F,+,-,H Hl) has the extension property.

To prove the converse, suppose (V,F,+,',H Hl) contains a nest of
~spheres S[p] of radius p, where p runs through some set P of positive
real numbers, such that there is no point common to all spheres.. De-
fine a real-valued function f on V as follows: For any p such that x
is not in S[p] and any y in S[p] let f(x) = Hx - Y“1« If S[pl] and
S[pz] are any two spheres of the nest, then S[pl] is a subset of S[pz]

or S[pl] contains S[pz]. Assume that S[pl] contains S[pz]. For each x
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such that x is in neither S[pl] or S[pz], if Y1 is in S[pl] and Y5 is

in S[pz] then Yo is also in S[pl] and

lyy - vyl € op <l -yl
From (5.9), it follows that
I = yolly = T -y + &g - vl
=[x - vl
That is, f is independent of the closed spheres involved in the defini-
tion of f. Furthermore x # y implies f(x) = [|x - yHl > 0., Since no
point x of V is contained in all spheres S[p], p € P, £ is defined and
positive for all x in V.

If x is in S[p] but not in S[pl], then S[p] contains S[pl] since
the collection of spheres is a nest. It follows that if y is in S[pl]
then y is in S[p] and ||x - y”l < p, Therefore
(5.24) f(x) < p whenever x is in S[p].

Consider
H={z = (x,\): xeV, AeF}.
Define addition and scalar multiplication as follows:
2p 2y = (X Ag) v (xguhp) = O X0k + ),
uz = u(x,A) = (ux,ur).
With these operations, H is a linear space. The additive identity is

(0,0). A real-valued function || H3 on H defined by

1

1}

o) £(A°
”Xill, A =20

ER S

is a non-archimedean norm. To see this, note that if z = (x,Ax) # (0,0)

then x # 0 or A # 0 and Hz[]3 > 0. Since f is strictly positive,
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Hz“3 = 0 requires A to be zero and hence that HX”l = 0, But this is
possible only if x = 0. Therefore HZH3 > 0 and equals 0 only if z = 0.
Since for W in F and z = (x,A) in H,

oy £

el

ORI I RIS
TORER

if A # 0, and _
Izl = flud; = oalIxll; = szl
if A = 0, HuZH3 = ¢(U)HZH3, It remains to prove the non-archimedean
property.
Let z = (x,)A) be an element of H. If A # 0, there is a p in P such

that
-1
lzllg = 600 fly - A7l =[x - Wil
for any y in S[p]. Since the same is trivially the case whenever ) = O,
there exists a p in P such that Hz“3 = |lx - xynl for any y in S[p]. Let

z, = (xl,xl) and Zy = (XZ,AZ) be any two points of H. Suppose x; 1s not

in S[pl] and X, is not in S[pz]. If X, is in S[pl]’ then S[pl] contains
S[p2] and X; is not in S[pz]o Thus there exists p in P such that not

both X1 and X, are in S{p]. Furthermore the same reasoning implies

there exists p in P such that none of x X5 and x, + x, are in S[p].

1’ 1 2
Therefore for any y in S[p], H21H3 = Hx1 - xlynl, “22”3 = sz - kzynl,

and Hz1 + 22”3 = |[x, + X, = (A + )\2)y”1 simultaneously. Since

1
”Xl + Xy - (kl + kz)ynl < maX(Hxl - kylnl’nxz - kqul)’

it follows that

”Zl + 22”3 < max(nzlng’ “22”3)

and hence that || H3 is a non-archimedean norm defined on H. Therefore
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(H,F,+,',H ”3) is non-archimedean.

If V' = {(x,0): xeV}, then (V',F,+,",] ”3) is a subspace of
(H,F,+,',H HS) which is topologically isomorphic to (V,F,+,-,H H). Now
if (V,F,+,',H ”1) has the extension property, then so does
(V',F,+,=,H HS)' Thus the identity mapping I from V' into V' can be
extended to a linear mapping L from H into V' such that ||L|| = ||I]| = 1.
Suppose

L((0,-1) = (x,0)).
Then for any x in V,
L{(x,1)) = (x - xO,O)

since L((0,-1) + (x,1)) = L((x,0)) = I((x,0)) = (x,0). Hence

lLcoanlly = e - %0005 =[x - %l
and
Lol < il eu Dl = Tl
for each x in V. But
lesDll, = 9 0710 = £00.

Therefore for each x in V,

[x - xoll; < £x).

In particular, for any P in P and any y in S[p] it follows from (5,22)
that

ly - xpll; < £6) < p.
That is, Xg is common to all S[p], in P, This contradiction to the

original assumption implies that V does not have the extension property.

Thus if V has the extension property then V is spherically complete.

Since F may be regarded as a one-dimensional non-archimedean space

over itself, F has the Hahn-Banach property if and only if F is spher-



113

ically complete. The following property of the p-adic number field is

an immediate consequence of Theorem 5,22 and 5,25:

Theorem 5.26. The metric space (Rp,d) is spherically complete,

The next development in the literature relating to non-archimedean

normed linear spaces pertains to completeness. A non-archimedean

Banach space is a complete non-archimedean normed linear space. It is

known, Theorem 5.17, that every finite dimensional non-archimedean
normed linear space is a non-archimedean Banach space. In particular,
" R_,+,,|l ) where || || is defined in (5.6) is such a space. Furth-

PP
ermore Rangachari and Srinivasan (15) show that if X is the set of all

(R

convergent sequences of an, then»(X,Rp,+,',” ”1) with

Ty = e, @8, 50,0 e B

13

Sup g, @,e,09, 0 e BN

is an infinite dimensional non-archimedean Banach space, Also if M is
the set of bounded sequences, then (M,Rp,+,*,” ”1) is a non-archimedean
Banach space.

Let (V,Rp,+,°) be an algebra and let ” H be defined on V such that
for each x and y in V,

lxyll = lixlffiv]
and .
el = 1

where e is the multiplicative identity of (V,Rp,+,'). Then
(V,R ,+,°,H H) is a non-archimedean Banach algebra whenever V is com-

P
plete with respect to the metric induced by H H. Non-archimedean

Banach algebras have been investigated by Monna (12) as well as
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Rangachari and Srinivasan. Rangachari and Srinivasan were concerned
with matrix transformations on non-archimedean fields, They showed
that if T' is the set of all convergence preserving matrices and H H

is defined by

Il = sup Ig, 1,
m,n

then (T,Rp,+,°,” H) is a non-archimedean Banach algebra. In his sub-
sequent article, Srinivasan (16) further develops summation processes
in thegp-adic number fields.

In the past four years, a theory of locally convex spaces over
non-archimedean valued fields in general, and p-adic fields in particu-
lar, has been developed and appears to be an excellent area for con-
tinued investigation. However the objective of this paper has been
realized. The p-adic number fields have been developed in such a manner
as to be accessible to senior mathematics majors. In the process of .
leading the reader to areas of current mathematical investigations,
several similarities and differences between the real and p-adic numbers
have been noted. This study of the p-adic number fields suggests some
interestiﬁg questions. For example, (Q,d) is neither complete or
spherically complete while (Rp,dp) is both complete and spherically
complete. The metric space (R,d) is complete but not spherically
complete. Thus every complete space is not spherically complete. Is
every spherically complete space complete? Also since Q is a subset
of Rp and since (Rp,dp) is a unique completion of (Q,dp) in accordance
with Theorem 1.12, it seems reasonable to ask if every metric space
can be embedded in a spherically complete metric space. And if so,
is there a standard process by which a non-spherically complete metric

space can be completed?
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