
UNIFORMIZABLE SPACES 

By 

DONALD FRANK SHULT 
p 

Bachelor of Science 
Northwestern University 

Evanston, Illinois 
1952 

Master of Science 
$outherq. Illinois University 

Carbondale, Illinois 
1962 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State U1;1iverpity 

in partial fulfillment of the requiremen.ts 
for the Degree of 

DOCTOR OF EDUCATION 
July, 1970 



Thesis Approved: 

The sis Adviser 

~~n~ 

ii 



PREFACE 

Uniform spaces were introduced in 1937 by A, Weil (18) in an 

attempt to generalize the idea of a metric space to a space for which 

uniform continuity and completeness could be defined without using a 

metric or a dis~ance function, lt was generally believed until this 

time that a distance function was needed to define these concepts (4;). 

Briefly stated, a uniform space consists of a set X and a non-

:::c: 
empty collection U of relations on X which satisfy certain properties 

>!< 
in such a way that U can be used to define a topology TU for X, uni-

form contin1+ity of a function, and completeness. * The collection U 

is called a uniformity for X and TU is said to be the uniform ·topology 

::i!c: 

for X induced by U • A topological space is uniformizable if its to-

pology is induced by some uniformity for X. · Chapter I is an introduc -

tion to uniformizable spaces, 

There are many different characterizations of uniformizability. 

Perhap$ the most widely known of these is the property of being com,. 

pletely regular. Completely regular spaces, first introduced by 

Tychonof! (17) in 1929, are defined in terms of the family of all con..._ 

tinuous real-valued functions on the space. This characterization is 

investigated in Chapter II. Other characterizations of uniformizability 

which also use this family of functions are studied in Chapter III. 

Chapter IV discusses various characterizations of uniformizability 

which are in terms of a family of pseudomet;rics or pseudometric 

spaces, Characterizations of uniformizable T 1 spaces are 
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investigated in Chapter V. In Chapter VI a suffic,:ient condition a,.nd 

then a necessary condition will be given in order that a uniformizable 

space will have a unique uniformity which induces the topology, 

I am very grateful for the guidance and encouragement given to 

me by my adviser Dr. Forrest Whitfield, during the preparation of 

this thesis, I also wish to thank Dr. E. K. McLachlan, Dr. John Jobe, 

a,.nd Dr. W. Ware Marsden for serving as members of my advisory 

c;ommittee. 
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CHAPTER I 

BASIC CONCEPTS AND THEOREMS 

OF UNIFORMIZABLE SPACES 

Before defining what a uniform space is, some basic definitions 

and notations must be introduced. If U is a relation on X, the1;1 u- l 

is the set {.(y,x); (x, y) EU}. U is. said to be symmetric if U = u- 1
. 

If U and V are relations on X, then 

U o V = { (x, z): (x, y) EV and· (y, z) EU for some y in X}, 
' 

The diagonal of X is the set { (x, x) : x E X} and is denoted by DX. 

If U is a relation on X and A is a sub set of X, then 

U[A] = { y E X: (x, y) EU for some x EA}. 

Although there are several equivalent definitions of a uniform 

space, the following definition in Kelly (12) will be used, 

Definition 1. 1 A uniform space (X, U,:,) is a set X and a non-
,,, 

empty collection u''' of relations on X: such that 

,,, 

(a) For any u in u 
,,, 

' DX is a sub set of u. 
,,, u-1 ,,, 

(b) For any u in u'''' 18 in u'''. 
,,, ,,, 

(c) in 
,,, 

there exists a·v in u''' such For any u u 
' 

that VoV C u. 
,,, ,,, 

(d) If u and V 
,,, 

are in u then n is in 
,,, 

' u V u . 

1 



(e) If U is in * u 

* V is in U . 

2 

and U C V C X XX, then 

Definition 1. 2 * * If (X, U ) is a uniform space, then U is ca,lled 

a uniformity for X or a uniform structure £0:i; X. Members of U,:, 

>~ 
are called entouragE;l s of U , 

,,, 
Definition 1. 3 If (X 1 u'') is a uniform space, then the uniform 

topology TU for X is the collection of all subsets O of X with the 

)!< 
property that for any x in O there exists a U in U such that 

U[x] C 0, TU is said to be induced by u*. 

It is easy to verify that TU in the preceding definition is indeed 

a topology for X, For certainly (/) and X are in Tu· For any i in 

I, an index; set, let Oi be in TU and let x be in U 0.. Then for 
ieI l 

s0m.e j in I, x is in 0.. This implies that there exists a U in u* 
J 

such that U[x] C O. and hence U[x] C U 0 .. 
J ieI l 

Therefore U 
ieI 

0. 
l, 

is a member of Tu· If G and H are in TU and X is in G n H, then 

* there are entourages U and V in U such that U[x] ( G and 

v[x] C H. Therefore u[x] n V[x] C G n H, Since 

U[x] n V[x] = (U 0V )[x] 

>:< 
and U ilV ii, in U, then G r1H isin Tu· 

The main concern of this paper is uniformizable spaces which 

will now be defined. 

DefinHion 1: 4 A topological space (X, T) is uniformizable if 

>le: 
and only if th.ere ex;i$ts a uniformity U for X such that the uniform 

* * topology induced by U is the topology T, U is called an admissible 
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* uniformity for T or U is said to be compatible with T, 

Example 1. 5 
>:r:: 

For a given set X, define U = {X x X}. It is 

* easy to verify that U is a uniformity for X. For any x in X and U 

in u*, U[x] = X, and consequently TU is the indiscrete topology for 

X. 

Example 1. 6 * For a given set X, define U to be the family of 

all relations on X which contain the diagonal of X, If U is in u*, 
-1 then U contains the diagonal and hence U does also, Therefore 

* ,...1 >l< 
U in U implies that U is in U • If V is in U,:,, then DX is in * u 

and DX o DX = DX C V, The other three properties of a uniformity 

>!<: :;!< 
are obviously true for U and so U is a uniformity for X. For any 

x e X, DX[x] = {x} 1 and hence TU is the discrete topology for X, 

As the preceding examples show, any topological space with the 

discrete or indiscrete topology is uniformizable, However, not every 

topological space is uniformizable as the following example shows. 

Exampl.e 1. 7 A topological space which is not uniformizable. 

Let X = {a,b} and let T = {0, {a}, X}, 
>:c 

If U is a uniformity for 

~' X and DX is in U , then by property (e) of a uniformity any relation 

>!< * on X containing the diagonal is in U , and hence U is the uniformity 

of Example 1. 6. 
,:r:: ::=Jr:: 

Suppose DX is not in U 1 U is in U , and U is not 

Xx X. Then without loss of generality U = DX U {(a, b)}, Because 

of property (b) of a uniformity u- l = DX U { (b, a)} is in u*, There­

fore? by property (d) of a uniformity, U n U- l = DX is in d:', But 

DX is not in u* Therefore if DX is not in u>\ d:,: = {X x X}, the 

uniformity of Example 1. 5, Since the only uniformities which can be 



defined on X are compatible with the discrete and indiscrete topolo-

gies for X, then (X, T) is not uniformizable. 

The two following definitions are often used in defining a uni-

form.ity as will be shown later. 

* B. 

* * Definition 1. 8 .A subfamily B of a uniformity U is a base 

* if and only if each entourage in U contains an entourage of 

4 

Definition I. 9 .A subfamily S,:< of a uniformity u* is a sub base 

?:< 
for U if and only if the collection of all intersections of finite sub-

>:C ,:< 
families of S is a base for U . 

Three other basic definitions which will be used in this paper 

are the following. 

Definition L 10 
* >!<: 

I£ (X, U ) and (Y, V ) are uniform spaces and 

if f is a function from X into Y, then f is uniformly continuous 

* * * -1 relative to U and V if and only if for each V in V , f
2 

(V) is in 

d:<. f
2 

is the function from X x X into Y x Y such that 

f
2

(x, y) = (f(x), f(y)) 

for any (x, y) in X x X. 

An equivalent condition for uniform continuity is that for any V 

* * in V , there is a U in U such that f
2 

(U) C V. 

Definition 1, 11 I£ (X, T) is a topological space, define C(X) 

to be the set of all real ... valued continuous £unctions defined on X, 

where the real numbers have their usual topology. 
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. Definition l, 12 The topological space (X, T) is said to be com-

pletely regular if and only if for any closed subi;;et F of X and any x 

in X - F, there exists an f in C(X) such that f(x) = 0, f(F) C { l}, 

and f(X) C [o, l ]. 

An equivalent condition for (X. T) to be c;ompletely regular is 

that for any closed subset F of X and any x e X - F, there exists an 

f in C(X) such that f(x) = l, f(F) C {O}, and f(X) C [O, 1], Another 

equivalent condition for (X, T) to be completely regular is that for 

any x in X and any neighborhood N of x, there is an f in C(X) su<;:h 

that f(x) = 0, f(X - N) C { l}, and f(X) ( [O, l]. 

The following theorems and corollaries will be frequently refer-

red to in various proofs in this paper, since they are often used to 

define .a uniformity for a set, 

Theorem 1. 13 * A non-empty family S of subsets of X x X 1s 

a subbase for a uniformity for X if 
,,, 

(a) For any s in s·~. s :) DX. 
,,, 

s-1 ,,, 

(b) 
,,, ,,, 

For any s in s 
' 

contains a member of s 
,,, ,,, 

(c) For any s s -~ 
there is a in s··- such that 1n 

' 
V 

VoV C s. 

* Proof: Let U be the collection of all relations on X which 
,,, 

contain the intersection of a finite subfamily of s'", * Since U contains 

S>~ and S>~ is non=empty, U>:, is non-empty. Let U be a member of 

* 
,,, 

u . Then there exist sets s1, S2' e 9 ... 

' 
s in s''' such that 

n n n 
u ) n S,. Since s. 1D for any i, n S. :> DX. Therefore 

1 1 1 - X 
1 1 

,,, -1 u :) DX. For any i, there exists a T. in s''' such that s. :) T .. 
1 1 1 



This implies that 

Sinc;e U contains 

But 

n 
n s. 1 
1 1 

n n 
n s~ 1 :) n T .. 
1 1 1 1 

n 
(r1 S.)-1 = 

I 1-

n 
" -1 I I S. 
I i 

U - 1 , ~ T.. -1 ,:< and consequently _) 1 1 Therefore U is in U . 

6 

1 1 

For any i, there exists a T. in S,:< such that T. o T. C S.. This 
1 1 1 1 

implies that 

n n 
n (T.oT.) C n S .. 
1 1 1 l 1 

Since 

n n n 
(n T.l o (r1 T.) c n (T. o T.), 

l 1 l 1 I 1 1 

then 

n n n 
( n T. l o ( n T. l c n s. c u. 

I 1 I 1 l i 

Since 
n 
r1 T. is in u*_ then for any U in u\ 
1 1 

there 1s a V 

that VoV C U. 

,:~ 
in U such 

If U and V are members of u,\ then each contains the inter­

section of a finite i;;ubfarnily of S>:< and hence their intersection con-

,:< 
tains the intersection of a finite subfamily of S , Therefore U r1 V 
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is in 

If u is in ":< 
and U C V C X x X, then by definition of U , V 

,:::: 
contains the intersection of a finite subfamily of S , This implies 

that Vis in u*, 

* Since the five properties of a uniformity are true and since S 

* * * is a subfamily of U , then. S is a subbase for U , 

In the next theorem and the remainder of th:Ls paper the notion of 

a pseudometric will be the same as that defined in Kelley (12). 

Theorem 1. 14 If F is a non-empty family of pseudometrics on 

X and for any p in F and r > 0, V = {(x,y): p(x, y) < r}, then 
p,r 

A,:< = {V : p e F and r > O} is a sub base for a uniformity for X, 
p,r 

::!< 
Proof: Let V be a member of A , If x E X, then p(x, x) = 0 . p,r 

and hence (4 , x) is in V p, r' Therefore DX C V p, r' 

For any (x, y), p(x, y) < r if and only if p(y, x) < r, Therefore 

V =V - l 
p, r p, r 

Now 

For if (x, z) 

is in V r 
p,2 

-1 and hence V 
p,r 

~:< 
contains a member of A , 

V roV rCV. 
P,z P, 2 p,r 

LS 1n V r o V r I then there exists a y 
P12 P,z 

and (y, z) is in V r, This implies that 
P,z 

r 
p(x, y) < 2 and 

r 
p(y, z) < 2' 

such that (x 1 y) 

which in turn irnplie s that 

p(x, z) ~ p(x, y) + p{y, z) < r. 
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Since V r 
Piz 

is in property (c) of Theorem l. 13 is true. There-

fore by Theorem 1, 13, A 
,:< 

is a subbase for a uniformity U>:< for X, 

which consists of all relations on X which contain the intersection of 

* a finite subfamily of A . 

Corollary 1. 15 I£ p is a pseudometric on X, then 

{V : r > O} p,r 

is a base for a uniformity for X which is compatible with the pseudo-

metr~c topology T for X. Therefore any pseudometric space is uni-

formizable, 

Proof: By Theorem 1. 14, A>:< is a subbase for a uniformity U,:, 

}:< 
for X, where U consists of all relations on X which contain the 

intersection of a finite subfamily of A>:<. 
,:< 

Let U be in U . Then there 
n 

are positive numbers r l' rz, ' 
r such that u J n V . If n 

1 p, r. 
1 

r is the minimum of { r l' rz, 'r }, then 
n 

n 

n VP ' r. J V p' r 
l 1 

,:::: 
and so U JV . Since V 

p,r 
is in A* and then A is 

p,r 

a base for U,:,. Actually U>:< is the collection of all relations on X 

:>!< 
which contain a member of A . 

For any r > 0 and any x e X, 

V [x] = { y : (x, y) e V } = 
p,r p,r 

an open sphere about x of radius r. 

{ y: p(x, y) < r} = S (x), 
r 

If O is in T and x is in 0, 
u 
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then there exists a U in U>!< such that U[x] C O. Since A,:< 1s a base 

for u':<, the re is an r > 0 such that V C U. This implies that 
p,r 

V [x] C U [x) 
p,r 

and hence that Sr(x) C 0. Therefore O is in the pseudometric top­

ology for X, Conversely, if O is in the pseudometric topology for 

X and x is in 0, then there is an open sphere S (x) such that 
r 

Sr(x) C 0. This implies that V [x] C O and consequently O is p,r 

in TU' Therefore TU is equal to the pseudometric topology for X 

and so the pseudometric space induced by p is uniformizable. 

Example 1. 16 The space E 
1 

is uniformizable. The collection 

of sets of the form V = { (x, y) : j x - y j < r }, r a positive number, 
r 

i,s a base for a uniformity U;,:< for E 1, called the usual uniformity for 

E 
1

. u* is compatible with the open interval topology for E 1 This 

is a direct result of Corollary 1. 15, "because if the function p from 

· E
1 x E 

1 
into. E 

1 
is defined so that p(x, y) = jx - y j for any x and y 

in E 
1

, then p is a pseudometric on E 
1 

and for any r > 0, V = V . 
p,r r 

Theorem I, 17 Let F be a non-empty family of functions such 
,,, 

that each f in F maps X into a uniform space (Y f, u·; ), Then 

is a subbase fol;' a uniformity for X. 

Proof: Let f be in F and U be in u'~, For any x E X, 

f
2 

(x, x) = (f(x), f(x)) which is in the diagonal of Yf, Since the 
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diagonal of Y f is a subset of U, f
2 

(x, x) is in U, Consequently (x, x) 

- 1 . -1 i13 in f 2 (U) and hence DX 1s a subset of £
2 

(U). 

* -1 There is a V in U f such that V = V and V C U since 

U (') U-l is a member of u'; with this property, Since 

then 

Now 

For if (x, y) is in 
-1 

f
2 

(V), then f
2

(x, y) = (f(x), f(y)) is in V. This 

implies that (f(y), f(x) ) = f
2 

(y I x) is in V which implies that (y, x) is 

-1 [-1 ]-1 [-1 ]-1 in f
2 

(V). Therefore (x, y) is in f
2 

(V) , Therefore f
2 

(U) 

-1 * contains f
2 

(V) which is in A . 

* There is a V in U f such that Vo V C U and this implies that 

-1 C -1 f
2 

(Vo V) £
2 

(U). 

Now 

~1 ~1 C .. 1 f
2 

(V)of
2 

(V) f
2 

(VoV). 

For if (x, y) is in f21 
(V) and (y, z) is in f2

1 
(V), then (f(x), f{y)) is 

in V and (f(y), f(z)) is in V. But this impliei;; that (f(x), f(z)) = f 2 (x,z) 

-1 is in Vo V which implies that (x, z) is in £
2 

(Vo V), Therefore 

there exists a member f; 1 
(V) of A* such that f2

1 
(V) o f2

1 
(V) C f2

1 
(U). 

>'< 
Therefore by Theorem 1. 13, A' is a subbase for a uniformity for X. 
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Theorem 1. 17 can be used to define a uniformity for the carte-

sian product of uniform spaces as the next corollary shows, 

Corollary 1. 18 For any a in an index set A, let (X , u*) be a 
a a 

uniform space and let Z = x X , Then the family of all sets of the 
aeA a 

fo:rm 

{ (x, y) E z X z : (x ' y ) E u}' a a 

where a is in A and U is a member of u'\ is a subbase for a uni­a 

formity for Z, This uniformity is called the product uniformity for Z. 

Proof: For any a e A, let. P be the projection of Z into X , 
a a 

By Theorem 1, 17, 

{ 
-1 

P aZ (U) : a e.A 

is a subbase for a uniformity for Z. 

pa;l(U) 

and 

-·-
For any a E A and u E u''', 

a 

= { (x, y) e Z X Z ; (P (x)i P (y)) e U} = { (x, y) e Z X Z : (x , y ) e U}. 
a a a a 



CHAPTER Il 

TEE EQUIVALENCE OF UNIFORMIZABLE, 

COMPLETELY REGULAR, AND 

(T} SPACES 

The main objective of Chapter II is to show the equivalence of 

completely regular spaces, (T} spaces, and uniformizable spaces. It 

will fir st be proved that if a space is completely regular then it is 

uniformizable, The converse of this theorem is also true but is more 

difficult to prove. In this chapter the converse will be proved by first 

proving that all uniformizable spaces are (T) spaces and then proving 

that all (T) spaces are completely regular. Some examples of spaces 

will b~ given where it can easily bE;l shown whether they are completely 

regular or not and hencE;l whether they are uniformizable . 

.ThE;l0rem 2. 1 If the topological space (X 1 T) is completely 

l;"egular, then (X, T) is uniformizable, 

~ 1 
Proof: .Let v'' be the usual uniformity for· E , By Theorem 1.17, 

{ 
-1 

= f2 (V) : f e C(X) and 

:{< 
is a subbase for a uniformity U for X. By Theorem 1. 16, all rela.., 

tionsoftheform V ={(x,y); jx-yl <r}, where r>O, formabase 
r 

* for V . Therefore 

s* = {f~ l (V r) : f e C(X) and r > 0} 

12 
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~:. 
is also a subba~e for U • The remainder of this proof will verify that 

:::~ 
U ii, c;ompatible with T. 

Let O be in TU and let x be in 0. Then there is a U in d:c 
such that U [x] C 0. Since S 

:i:c 
is a subbase for u*, 

k 

and 

then 

For any i, 

k 

such that n s. C u. 
1 1 

(flS,)[x] C U[x] 
1 1 

k 
( n s.) [x] = 

1 1 

k 

k 
n (S. [x] L 

1 ' ' 
1 

n (S. [x]) C o. 
l, 1 

S. [x] = (f
2
~ 1 (V ) ) [x]1 1 . r 

for some f E C(X) and some r > O. 

there exist rela-

Since 

(fz l (V r)) [x] = { y : I f(y) - f(x) I < r} 
-1 = f (f(x) - r 1 f(x) + r). 

Therefore, fo:t" a,.ny i, x is in S. [x] and S. [x] is in T. Consequently 
k k 1 l 

x e n (S. [x]) C 0, where n (S. [x]) is in T, Therefore O is in T. 
1 l 1 1 

Now let O be in T and let x be in O, Then, since (X, T) is 

completely regular, there is an f in C(X) such that f(x) = 0 and 

f{X ~ 0) C { 1}. It follows that (f2
1 

(V 1)) [x] C 0, For if·.'.J y is in 

(£2
1

(V
1
))[xJ. then (x,y) is in f;

1
(V

1
) and hence (f(x), f(y) is in v

1
. 
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This implies that /f(y) I = /f(x) - f(y) I < 1. Hencei since 

f(X .., 0) C {l}, 

y is in 0, Therefore, since f~
1

(V 1) is in u\ 0 is in TU. 

Consequer,.ti~ there exists a uniformity u* for X which is com.-
··t1t' 

patibl~ with T. 

This theorem and its proof shows an interesting property °.f 

completely regular spaces co nee rning uniform continuity. For any 

* completely regular space (X, T), there is a uniformity U for X corn-

patible with T such that for any f in C(X), f is uniformly continuous 

,::: :,'c 1 
relative to U and V', the usual uniformity for E , 

The next major theorem to be proved is that if a space is uni-

forrnizable then it is a (T) space. Before this can be done though, 

several definitions must be given and several lemmas will be prayed, 

Definition 2. 2 The collection of sets {Od: d ED} is said to be 

a scale of open sets U and, only if for any d in D, Od is open, D is a 

dense subset of the clo1:1ed unit interval [O, 1 ], and for any d 
1 

and d
2 

in D for which d 
1 

< d
2

, it is trµe that O d C O d , 
. l 2 

Definition 2. 3 A topological space (X, T) is called a (T) space 

if and only U for any closed set C and any x in X - C, there exists a 

scale {Od: d e D} of open sets such that for any d in D, ;x is in Od 

and Od does no~ intersect C, 

The term {T) space for the space described in the previous defi-

nition is not in common usag!:l but is used by Gaal (9). 



Lemma 2. 4 If U and V are :;relations on a set X and A is a 

sub set of X, then V [v [A~ C (U o V) [A]. 
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Proof; Let z be in U [v [AD. Then there is a y in V[A] such 

that (y, z) is in U, Since y is in V[A], there is an x in A such that 

(x, y) is in V, Therefore (x, z) is in U o V and hence z 1s in 

(U o V) [A]. 

,,, 
Lemma 2, 5 If (X, u'') is a uniform space, A C X, and TU is 

the uniform topology for X 1 then the set 

,,, 
B ;:: {x: U [x] C A fo:r some U e U ''} 

is t.he T U~interior of A. 

Proof: Let x be in the Tu-interior of A. Then there is an 0 

in TU such that x e O C A, By definition of TU' there exists a U in 
,,, 

u'' such that U [x] C 0, This implies that U [x] C A, which in turn 

implies that x is in B. Therefore the Tu-interior of A is a subset 

of B, 

Now let x be in B. By the definition of B, there is a U in u* 

such that U [x] C A. 1;3y the definition of a uniformity, there is a V 

~:<: 
in U such that Vo V C U. Assume y is in V [x] and let u be in 

V [ y ]. Then (x, y) is in V and (y, u) is in V I which implies that (x, u) 

is in Vo V. Since Vo V C U, (x, u) is in U, which implies that u is 

in U [x], Since U [x] C A 1 u is in A. Therefore U y is in V [x], 

then V [y] C A, Consequently, by the definition of B, V [x] C B. It 

;:::c 
has now been shown that for any x in B, there exists a V in U such 

that V [x] C B. 
,'< 

Consequently B is T u'"'open. Since for any U in U' 1 
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x is in U [x], then B is a subset of A, The Tu-interior of A is the 

union of all subsets of A which are Tu-open. Therefore B is a sub­

set of the T u-inter~or of A, Therefore B is the Tu-interior of A. 

* · Corollary 2. 6 I£ (X, U ) is a uniform space, x is in X1 and U 

-k 
is a member of u'', then U [x] is a Tu-neighborhood of x, 

Proof: By Lemma 2. 51 x is in the Tu-interior of U [x], The 

Tu-interior of U [x] is Tu-open and is contained in U[x]. Therefore 

U [x] is a TU ... neighborhood of x. 

~ ~ 

Lemma 2. 7 If U ,- is a uniformity for X, U is in u'', A and B 

are subsets of X, and U [A] C B ~ then A C B \ where A is the Tu"" 

closure of A and Bi is the Tu-interior of B, 

* Proof: There is a V in U · such that Vo V C U. This implies 

that (Vo V) [A] C U [A], Because of the hypothesis and Lemma 2. 4, 

V [v (A]] C B. If x is in V [A], then V [x] C V [V [A]]. But this 

implies that V [x] C B, which in tu;rn implies by Lemma 2, 5 that x 

is in the T U .... interior of B. Therefore 

r-.. -1 Now let W ;::: V , , ·V . Since W C V 1 

w [A] C V [A]. 

( 1) 

(2) 

Let x be in A. Because of Corollary 2, 6 and since W is in 1/\ W [x] 

is a Tu-neighborhood of x. Therefore there is an a in A such that 

a is also in W [x]. Since a is in W [x] 1 (x, a) is in W and, since W 

is symmetric, (a, x) is in W. Hence x is in W [A]. Because of ( 1) 
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and (2), x is in Bi. Therefore A C Bi. 

~ .-~, 

Lemma 2. 8 If u'•' is a unifo;rmity for X, A C X, i~,::~~: V, and 

* ' . . . i 
W are in U I and if U o V C W, then V [A] C W [A] 1 where V [A] is 

the Tu-closure of V [A] and W [A]1 is the Tu-interior of W [A]. 

Proof: By Lemma 2. 4, U [v [AU C (U o V) [A], Since 

U o V C W, (U o V) [A] C W [A]. Hence U [v [AD C W LA.]. There­

fore by Lemma 2. 7, V [A] C W [A,.]i. 

Lemrnc;L 2. 9 Let {U } be a sequence of entourages in a uni­
n 

:.i:, 
formity U £or X such t}i.at for any non~negati ve integer n 1 

Then: 

(i) If m and n are integers such that m > n > 0, 

then U C U . 
m · n 

(ii.) 1f n
1

, n
4

, ... , nk are integers such. that 

0 ,:S 1;- 1 < n 2 < . , . < nk, then 

Proof: Certainly U C U if m = n so consider m > n, Let · m n 

n > 0. 'J;'hen 

by the hypothesis. Assume U n+k C Un fo;r some positive Ln.teger k, 

Then by the hypothesis of the lemma, 
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u(n+k)+1 ° u(n+k)+l C un+k· 

Sinc;:e 

u(n+k)+1 C u(n+k)+1 ° u(n+k)+l' 

then unt(k+l) C Un, Therefore it is t'.tue by mathematical induction 
~·; 

that for ;:i.ny n > 0 and any j ::'.. 1, 

u . Cu. n+J n 
(3) 

If m>n>O then m=n+j, where j.:::_l, <;1.ndhenceby(3) UmC Un. 

Therefore part (i) of the conclusion is true, 

Let n 1 and n
2 

be integers such that O < n
1 

< n
2

. Then by part 

(i) of the lemma, U C U , Assume that 
n2 nl 

u o u o .• , o u
2 

C u 
1 nk nk-1 

for any ~ntegers n 1, n
2

, ... , nk such that :0 < n 1 < n 2 < ... < nk. 

Let n!, n2 , •. , , nk' nk+l be integers such that 

Then becau~e of the assumptton, 

•• ! 

This implies that 

(4) 

BY the hypothesis of this lemma, 
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(5) 

Since n
2 

- 1 > n 
1 

and because of part (i) of the conclusion of the 

lemma, 

u 1 Cu 
n2- nl 

(6) 

Because of the set inclusions in (4), (5), and (6), 

Therefore part (ii) of the Gonclusion if tru,e by mathematical induction. 

Theorem 2, 10 If a topological space (X, T) is uniformizable 

then it ia a (T) spac::e. 

* Proof; There is a uniformity U for X such that TU = T since 

(X, T) is uniformizable, Let C be a closed, subset of X and let x be 

in X,,. C, Sinc:;e X,.. C is Tu-open, there is a U 
O 

in d:< such that 

x e U 
O 

[x] C X .. C, 

A sequence {U.} of entourages in U):, can be defined in the following 
• t 

>:~ 
way. Let U 

1 
be an entourage in U such that U 

1 
o U 

1 
C u

0
. If Un 

)~ 

is in the sequence, let Un+l be an entoµrage in U such that 

Now let D be the collection of all diadic rationals in the open interval 

(0, 1) 1 that is any mun.her equal to m/2n, where n = I, 2, , . . and 

m= i, 2, .,., 2n.., 1, 
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For any d in D, d can be uniquely represented as a finite sum 
~nl -n2 -nk 

2 + 2 + , .. + 2 , where each n. is an int~ger and l . 

0 < n 1 < . , , < nk. For any d in D,. define 

= U OU O,., 
nk nk-1 

. and define O d to be (U d [x] )\ the interior of U d [x], Since U 
nl 

is in 

u,:< and since Ud :) U , 
nl 

>l<: 

U d is in U . Therefore by Lemma 2. 5, x 

is in od' for e,;1.ch d ED, Also {Od: d e D} is a collection of open 

subsets of X indexed by a dense subset of [0 1 1 ]. 

in order to show that (X 1 T) is a (T) spa<.;:e, it must finally be 

proved that for any d in D, Od does not intersect C, and that for any 

d 1 and d
2 

in D for which d 1 < d 2 , Od C Od , 
1 2 

For any d e D, 

wherd O < n
1 

< ... < nk. By Lemma 2. 9, part (ii), 

U 0 
•Ilk 

... 

Thts implies that 

Ud = (U o 
nk 

By Lemma 2, 9, part (i), u C u1• 
nl 

Therefore 
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This implies that Uix] C u
0

[x] which in turn implies that 

Since u
0

[x] does not intersect C, Od does not intersect C. 

Let d
1 

and d
2 

be in D and d
1 

< d
2

. 

sets of integers {n
1

, n 2 , . , , , nk-l} and 

that 

'l'hen there exist unique 

such 

-m -m -m. 
d2 = 2 l + 2 

2 + . . . + 2 J 

Let nk be an integer such that nk > ni, for any i ,:::_ k-1, and nk > mi' 

for any ~ .::_ j. It the~ is true that there is an integer i < j such that 

m. ,/; n., For if k - 1 < j I then k .:5. j, and hence, by the definition 
l 1 

of nk, mk f. nk .. Now if k ~ 1 ?: j and mi= ni for all i ~ j, then 

j -m. j -n. 
= ~ 2 1 = ~ 2 _1 < 

1 1 

which contradicts the assumption that d
1 

< d
2

. Therefore if k - 1?: j, 

then m. f. n. for some i < j. 
l 1 ~ 

Cqn$equently there is a smallest positive integer h such that 



for any i < h, m.= .. 1 
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n., 
;t 

(7) 

Now h < k, For otherwise, (7) implies that mk = nk' which contra ... 

diets the definition of nk. 

Fir st consider h = k. Then U = U 
n,i mi 

for i < k - l, because 

of (7). Therefore .·,c 

•• f ( 8) 

By definition of nk' nk > mh. Hence, by Lemma 2, 9, U C U 
nk mh 

since £or any i 

u C u o u o 
mh mJ. m. 1 . J.., 

'' r 0 

* U. is in U , Therefore 
1 

.. ' 

Because of (8) and (9), 

'I •• 0 U CU oU o 
n

1 
m,. m. 1 J J ~ 

Now consider h < k and suppose that nh < mh. Then 
-nh -mh+l 

nh:::. mh - l, which implies that 2 > 2 

oo -mh+l 
~ 2 -i = 2 

i=mh 

Because of (7)~ 

(9) 

( 10) 



h-1 
~ 
1 

2 
-n. h~ 1 

1:;: z 
1 

~m. 
2 1 

Therefo11e, by (10) and (11), 

h -n. j -m. 
z 2 1 > ~ 2 1

:;: d
2

, 
1 1 

Hence d
1

:;::. d
2

, since 

k~ 1 ,-n. h -n. 
Z2 1 >Z2 i 

1 1 

Hut this is a contradiction since d
1 

< d 21 Therefore when h < k, 

nh > mh. Since nh f: mh' nh > mh. S~nGe h < k, nk > nh' Since 

23 

( 11) 

nk > nk- l > , , . > n.
1 

and since nk > nh > mh' then by Lemma 2, 9 (ii) 

(12) 

· Because of the definition of h, U :;: U 
m. n. 

1 1 

for any i < h. This implies 

that 

... t". (13) 

Bec;:au.se of (12) and (13), 

Since h < j 1 

oU CU oU o,., 
m 1 m, m. , 

J J ~ + 

., 



Therefore in all c;ase s 

oU , 
m 1 

By definHion of Ud for d in D, 

and 

Ud :::U oU o .. ,oU, 
2 m. m. 1 m 1 J J., 

Therefore U o Ud C Ud , Since 
nk 1 2 

_,. 

ud "")u and u e u'r' 
- n nl 1 1 

* Likewise, sinc:e then ud e u. 
1 

_,. 

ud JU and u 
'r 

u e 
' _, m ml 2 1 

then ud e u*. 
2 

Therefore, by Lemma 2, 8, U d [x] C (U d &c] ( 
1 2 

then 

(Ud [x])
1 C (Ud [x]/. 

1 2 

24 

H~nce, by the definition of od' for d in D, .Od C od . Therefore 
l 2 

(X, T) is a (T) space, 
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The next lemma will be used to prove that if a topological space 

(X, T) is a (T) space then it is a completely regular space, 

Lemma 2.11 If {Od: de D} is a sca~e of open sets in a topo­

logical space .(X, T) and U Od = X, then the function f from X into 
l deD · 

· E I where 

f(x) = inf { d e D : x e O d} 

for any x e X 1 is a continuous realflalued function. 

Proof: It is sufficient to pl'ove that for any real number s, 

{x: f(:x:) < s} and {x: f(x) > s} are T-open subsets of X. For then 

the inverse image with respect to f of any open interval in E
1 

will be 

open in X and he11ce f will 1:;>e continuous, Let w be in {x: f(x) < s}. 

Then f(w) = inf { d e D : w e O d} < s, which implies that s is not a 

lower bound of { d e D; w e O d }. Consequently there exist a d I in D 

such that w is in Od' and d' < s, This implies that w is in 

U { 0 d : d e D and d < s } , 

Now let w be in 

U { 0 d : d e D and d < s } . 

Then there exists ad' in D such that d 1 < s and we Od,. This 

implies that 

f(w) = inf { d e D : w e O d} ::_ d', · 

Therefore f(w) < s which implies that w e {x: !(x) < s}, 

Therefore {x; f(x) < s} = U { 0 d: d e D and d < s}. For any . 
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. 2p 

d e D 1 0 d is open and there.fore { x: f(x) < s} is open, 

In order to show that {x: f(x), > s} is open, it is sufficient to 

show that {x: f(x) ~ s} is dosed. If s > 1, then {x: f(x) < s} = X, 

because the definition of f and D C [O, 1] imply that f(x) ~ 1 for 

~ny x e X, Since X is closed, {x: f(x) ~ s} is closed. 

Now suppose that s < 1 and that u is in {x: f(x) ~ s }. Then 

f(u) ~ s, which implies that inf{d e D: u e Od} < s. Let' t be a mem~ 

ber of D such that t > s. Note that sinc;e D is a d.ense subset of [0,1] 

atid $ince s < l, such at exists. Since inf{d e D: u e Od} < t, tis 

not a lower bound of {de D: u e Od }, Therefore there is a d' in D 

such that u is in O d I and d 1 < t, By the definition of a scale of open 

!:lets, Od' C Qt. This implies that u is in Ot' Therefore u is i11, 

(1 { 0 d : d e D and d > s } , 

Now let u be in 

. n { od : d E D and d > s } . 

Since s < 1 and since D is dense in [O, l], then for any r > 0 there 

exists a t e D such that s < t < s + r. Therdore u is in Ot which 

~mpHes that inf{d e D: u eOd} .:::_ t. Consequently f(u) .:::_ s + r, Since 

r was arbitrarily chosen, f(u) < s, which implies that u is in 

· {x: f(x) ~ s}, Therefore 

{x:f(x):s_s}:. n {Od:deD and d>s}. ( 14) 

It will next be shown that 

(") { 0 d : d E D . and d > s } = f1 { 0 d : d e D and d > s } 



from w~ic::h it will follow by (14) that {x: £(x).:;:, s} is closed, For 

any d ED, od C od' and hence 

n {Od:deD, d>s}C n {Od:d1;D, d>s}. 

27 

L,et w be a member of n {Od: de D and d > s}~ Since s: < 1 and 

since D is dense in [0 1 1 ], if d is in D and d > s then there exists a 

t e D suc;h that s < t < d, <\ C Od by definition of a scale of open 

sets, Because of the choice of w, w is in Ot, and this implies that 

w is ~n od. Cqnsequeri.tLy w is in n {Od: d ED and d > s }. 

Therefore 

11 { O d : d e D and d > s } = n { 0 d : d e D and d > s } . 

Therefore {x: f(x) .:S. r;;} is the intersection of a family of clo!;ied sets 

and hence is itself a closed set, Since 

X .,. {x : f(x) ~ s }. = {x: f(x) > s}, 

then {x : £(x:) > s} is an open set. 

Theorem 2. 12 If (X, T) is a (T) space then (X, T) is complete-

1 y r·e gula r~ 

Proof: Let C be a closed subset of X and let x be in X - C. 

Since (X, T) is a (T) space, there is a sc;ale of open sets {Od: d e D} 

such that 1 for any d in D, x is in Od and Od does not intersect C. 

First a scale of open sets will be defined such t:\lat the union of the 

open sets is .X, and then an f in C(X) will be defined using this sc:;:ale 

and Lemma 2, 11. 
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First con1:?ider the case where 1 is in D, For a11.y d in D for 

which d < 1, define Gd = 0 d; and for d = 1, define Gd = X. For any 

d in O for whic;:h d < 11 Cd C G 1 = X 1 Fo:r any d
1 

and d 2 :i.n D - { l} 

for which d 1 < d 2 , Gd = 9d C Od = Gd . Therefore {Gd: din D} 
1 l 2 2 

is a scale of open sets, 

Now s1,1ppose that 1 i D. Let D 1 = P U { l}. For any d :i.n D 1 

define Gd= od and for d = 1, define Gd::; X, Since [o, 1] C D and 

DC "i5' 1 [0 1 l] C D'. Therefore D 1 is dense in [O, l], Then, as was 

done when 1 E D, it can be s:P.own that {Gd: d E D 1
} is a sea.le of open 

sets. 

Therefore in either eas~ there exist a scale of open, sets 

{ F d : d e .6.} such that 

and su.ch that for any cl e .6. for which d < l I x. is :i.n · F d and F d does 

not inter13ect C. By Lemma 2, 11 there exist a func;:tion f in C(X) 

such that for any x in X, f(x) = inf { d e .6.: x e F d}. Since .6. C [0 1 l ], 

then O < f(x) < 1 fo+ all x in X, which implies that f(X) ( [O I l J. If 
....., -

a is in C then a is not in F d for any d, in I). less th.an l. Since 

then a ii;, :i.n Fcl for d = 1. The;refore f(a) = 1 and henc~ f(C) C { l}. 

Since x is in F d for aU d in .6. ~nd since .6. is a dense subset of 

[o, 1]. the11 f()C) = inf .6. = o, 

Theorems 2.. 11 2. 10, and 2, 12 show that uniformizable spaces, 

(T) spaces, and completely regular spaces are eg_uivalent. These 
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three theorems show that if a space i$ c;ompletely ;regular then it is a 

(T) space; bu.t this depends on first showing that a c;:ompletely regular 

space is '\lnifol!'mizable. It c;:an be proved rather easily, without :men., 

ti<;ming uniformizable spaces, that if a space is completely regular 

then ~t ~s a (T) i:,pace. 

Theorem 2~ 13 If a ~pac;e {X, T) is c;ompletely regular then it 

is a (T) space, 

Proof: Let C be a closed subset of X and let x be in X - C, 

Then, by definition of corp.pletely :regular, the:ve exists a function f in 

C(X) such that f(x) = 0, f(C) C { 1}, and f(X) C [o, 1 J. Let D = [o, I). 

'For any d in D, define 

S~nce for any d, (-()'.), i + }) is open in E
1 and f is in C(X), then 

Od is an open subset of X. 

Let a. and b be in D suc;h that a < b, Since f is continuous, 

~ £~1 '(c ,a . l )')'c f-1 (<. a l )) C f-1 fie' a l ]1' 
Q a = "' 00 • 2 + 2 ~oo, 2 + 2 ~ -oo, 2 + 2 1J' 

Since 

then 

Therefore O a C Ob ari.d hence { 0 d: d ~ D} is a scale of open sets, 



For any d in D 1 d/2 + 1/2 2:. 1/2. Therefore for any d m D, 

f(x) := Q < d/2 + 1/2; which imp~ies that X is in 0d. 

For any d in D, let u be in Od' Then u is in X and 

f(u) < d/2 t 1/2, Since d <, 1, 1/2 + 4/2 ~ l, This implies that 

f(u) < l. Since f(C) ( { l}, u is not in C. Therefoi:e for any d in 

D, Od does not intersect C, Con,sequenHy (X, T) is a (T) space, 
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For some spaces it is difficult to show that there is or is not an 

admissible uniformity. Sine~ uniformizable spaces and completely 

regular spaces a·re equivalent, it is sometimes easier to sh0w that a 

spac:e is uniformizable or not by $hawing that it is or is not completely 

reg'Ular. The next theorem will show that a completely regular space 

i$ regular, An example of a space will then be given which is easily 

shown to be not regula:t;' and hence not uoiformizable. 

Definition 2, 14 .A topological spac:e (X, T) is said to be regular 

if, and only if, for any closed subset ~ of X and ar;iy x in X - C, 

there exif;lt disjoint open $Ubsets O and O such that x is in O and 
X C X 

C ( 0. 
C 

Theorem 4, 15 If a topologic;al spac:e (X, T) is completely regu-

lar then it is regular, 

Proof: Let C be a closed s1,1b set of X and let x be in X - C, 

Since (X, T) is completely regv.lar there exists an f in C(X) such 

C { } "'11 I .. 1 I that f(x) == O and f(C) 1, Hence f ((.,.l, l 2)) and f ((1 2,2)) 

are) disjoint opl;'ln subsets of X containing respec;tively x and C, 

Example .z .. 16 Let X be an infin.ite set and let T be the cofin~te 

topology for X, That i.s, 0 is in T if and only if O is the empty set 
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or X - 0 is finite. Tp.en it is easy to show that (X, T) is not regular~ 

Fol" let x and y be in X such that x :/:- y. Then { y} is closed and 

x i { y}, I£ there exist disjoiqt open sets ox· and Oy such that x ~s 

in O and { y} C O , then X - 0 is finite. Th~s implies that O is 
X y X . y 

finite. S~nce O is open and non~empty, X.,, 0 is finite. Therefore 
Y· . y 

X::: O U (X,,. 0 ) is finite; which is a contradiction since X was 
y y 

given to be an infinite set, Consequently no two disjoint open sets 

separate x and {y}. So (X, T) is not regular. By Theorem 2. 15 

(X, T) is not completely regular. Therefore (X, T) is not uniform!-

zable. 



CHAPTER UI 

'VARIOUS. CHARACTERIZATIONS OF 

UNIFQRMIZA:BLE SPACES 

USING C(:X) 

The prqperty of being a completely regular space is a character-

ization of unifo;rrpizable spac;:e s which involves the family of functions 

C(X). There are several other c;haracter:i,zations of uni,formizable 

" spaces which make 1,1.se of C(X). Thi.s chapter will investigate these 

various characterization$. 

:Oefinition 3. 1 A family F of functions defined on a space 

• 
(X, T) is said to distinguish point$ and closed sets if and only if for 

;any d0sed subset A of X and any X in X -A, there is an f in F such 

that f(x) is not in f(A). 

Theorem 3, 2 A space (X, T) is completely regular if and only 

if C(X) distinguishes pain.ts and c;losl:ld sets. 

( 

Proof: Let (X, T) be c:ompletely regular, A be a closed l"/Ubset 

qf X, pond x be in X - A, Then there exists an f in C(X) such that 

f(~) ::; 0 and f(A) C { l}, Since f(A) is either the empty set o'r is 

{ l}i f(A) is either the empty set or is { 1}. Therefore f(x) ~s not in 

£(A), 

Suppose that C{X) distinguishes points and closed E1ets. Let A 

be a closed subset of X and let x be in X ,,,A, Then there is an f in 

32 
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C(X) suqh that f(x) is npt in. f(A). Because of Example I, 16, E;
1 

is 

uniformizable. As was shown in Chapter II, any uniformizable space 

is completely regular, Therefore E
1 

is completely regular. f(A) is 

a closed subset of E 
1 

and f(x) is not in f(A). Therefore there exists 

a g in C(E
1

) such that g(f(x)) = O, g(f(A)) C { l} and g(E
1

) C [O, 1]. 

g o f is in C(X) and (g o f)(x) = 0. Since 

(g O f)(A) = g(f(A)) C g(f(A) ), 

then (g o f)(A) C { l}. Since f(X) C E 
1 

and since g(E 
1

) C [O, 1 ], 

( g o f) ( X) = g ( f ( X) ) C [ 0 , 1 ] . 

Therefo:re (X, T) is completely regular. 

Defin~tion 3, 3 ;If (X, T) is a topological space, then the weak 

topo~ogy induced by C(X) is the topology for X which has as a subbase 

the set {f"" 1
(G); f ~ C(X) and G open in E

1
}. 

Theo3;em 3. 4 If (X, T) is completely regular; then the weak 

topology T' induced by C(X) is equal to T, 

Proof: Let O be in T and let p be in O. Then there exists an 

f in C(X) suc;h thq,.t f(p) = 0 and f (X - 0) C { l}. Therefore p is in 

{"
1

( (-1, 1) ). If x is in C 1
( (-1, 1)), f(x)-/: 1, :Henc;e x i:;i in 0. 

-1 C 1 Therdore f ((-1,1)) 0. Since (-1,1) is open in E and f i:;i in 

C(X), f-
1

( (...,1, 1)) is in T'. Therefore O i$ in T', 

Now let O be in T' and let p be in 0. By definition of T', 

there exi:;it open sets 0 11 o
2

, , , . , On in E
1 

and functions 

f
1

, f
2

, .. 1 , fn in C(X) such that :p is in 
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n ~l n £. (o:) c o. 
1 :i, 1 

-1 f. (O.) is in T, and hence 
1 :i. 

n I n C ( o, ) is in T. 
1 1 1 

Conse~ 

quently O is in T, The1;efore T 1 = T . 

. Definition 3. 5 If (X, T) Ls a topological space then a subset A 

of X is a zero set in X if and only i.f A = {x: f(x) = O} where f is in 

C(X). The collection of all ?,ero sets in X is denoted by Z(X), 

Definition 3, 6 * A collecti<;m B of subsets of a topological space 

,:,: 
(X, T) is a base for the closed sets in X if and only i£ each set in B' 

::::c 
is dosed and each closed subset 0£ X is th1;:: intersection of sets in B . 

J.,,emma 3, 7 If (X, T) is a topolog:i.c;:al space, f is in C(X). and 

r is a real number~ then {x: f(x) > r} and {x: f(x).::: r} are zero 

sets in X, 

Proof; {x: f(x) > r} = {x ! ( (f ~ r) /1. 0) (x) = O}, where 

( (f~ r) /1. 0) (x) = min {(f- r) (x), O}, 

Also 

{x: f(x) .:'.: r} = {x: ( (f.., 1;) V 0) (x) = O}, 

where 

( (f rr r) V O)(x) = max { (f., r)(x), O}. 

Since the fonctions (f - r) /1. 0 and (f .. r) V O are in C(X), then, by 

definition of zero sets, {x: f(x) :::_ r} arid {x: Hx) ~ r} are zero 

sets in X, 
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Lemma 3. 8 If (X, T) is a topological space and if A and B 

are ze;ro 9ets in X, then A U B is a zero set in X. 

Proof: There is an f in C(X) su.c;h that A = {x: f(x) = O} and 

there is a g in C(X) such that B = {x : g(x) = O}. Now 

A U B = {x: (fg) (x) = O} 

and fg is in C(X). Therefore A U B is a zero set in X. 

These two lemmas will now be used to prove the next theorem. 

Theorem 3, 9 If (X, T) is a topological space with the property 

that the weak topology induced by C(X) is equal to T, then Z(X) is a 

base for the closed s~ts in X. 

Proof: For any A in Z(X) there fs an f in C(X) ~rnch that 

A= f~ 1({0}). Since {O} is closed in E 1, f- 1({0}) is closed in X. 

Therefore each set in Z (X) is closed, 

It mu.st now be shown that each cLosecl. subset of X is the inter-

sec;;tion of sets in Z(X), Let C be a closed sµbset of X. Then X - C 

is open. By the hypothesis of the theorem 

(

K. 
J .. I x - c = u n £. (I.)) , 

jEM 1 
1 1 

where each I. is an open interval in E
1 

and each £. is in C(X). 
1 1 

C:;: X .. 

For any i, 

~j 

U (n C 
1 

(I.)) = 
jeM l ~ 1 

'.ii'.· 1· . 
~' )." . 

K. 

( YJ ~l ~ f. (X - I.) . 
l l 

jeM 
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for some real q.urnbers a and b, :Now 

Therefore, by Lemma 3. 7 and the generalization of Lemma 3, 8 to a 

finite number of zero sets, 

K. 

(J C 1 
(X - L) 

1 l, l 

is a zero set in X for any j in M, Therefore C is the intersection of 

zero sets in X 1 Therefo;re Z (X) is a base for the c::lo:,ed sets in X. 

Theorem 3, 10 If Z(X) is a ba13e for the closed setl3 in a topo.,. 

logical space (X, T), then (X, T) il3 completely regular, 

Proof: Let F be a closed subset of X and let p be in X - F. 

* By th!il hypothesis, there is a subfamily B of Z(X) suc;h that 

~< 
F = fl {B : B e B }. 

~·-
Sinc; e p is not in F, thert;i is a B' in B '' such that p is not in B 1

, 

By definition o~ Z(X), there is an f in C(X) such that B' = C 1({0}), 

Thi13impliesthat f(B')C {O}. Sinc::e FC B', f(F) C f(B'), which 

implies that f(F) C {O}. Since p is not in B', f(p) = a and a-:# 0. 

Define a function g from X into· E 1 such that for any ~·· in X, 

g(x) = f(x), Then g e C(X), g(p) = 11 and g(F) C {O}, 
a 

Define a function h from X into E
1 

such tha~ h(x) = 0 if 

g(x) ~ 0 1 h(x) ;,:: g(x) if O ~ g(~) ~ 1, and h(x) = 1 if g(x) > I. Then 
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h(F) C {O}, h(p) = 11 and h(X) ( [0 1 1]. The function h is in C(X) 

since h(x) = min {max {g(x:), O}, l} for any x in X, 

Theorems 3. 2, 3. 4, 3. 9, and 3, 10 give three more characteri~ 

zations of completely reg'lJ.la:r ~pac;e s or, eqµivalently, uniformizable 

space~. Theorems 3. 4, 3. 9, and 3, 10 show that if a space (X, T) is 

completely regular, then Z(X) is a base for the c;losed sets in X. 

The proof of the following theorem shows the same thing without any 

mentiqn of the weak topology for X. 

Theorem 3. 11 If a topological space (X, T) is completely 

regular, then Z(X) is a base for the closed sets in X, 

Proof: Let F l;>e a closed non~empty sub set of X such that 

F-:/- X, Let p .be in X - F. Since (X, T) is completely regular, there 

exist~ an f in C(X) such that f(p) ;:; 0, f(F) = { 1} 1 and f(X) C [0 1 1]. 

Define a func;tion g from E 
1 

into· E 
1 such that g(x) ;:; 1 ., x for any 

. El 
~ 1n , Stnc;e g is continuous, g o f is in C(X), Also 

(g q f)(p) == g(O) = L 

Now, (go f) (F);:; {O}, since for any x in F, (go£) (x) ::: g(l) = 0, 

Therefore p is not in (go £)"" 1({0}) and F C (go f)-
1

({0}). 

(go f)- 1({0}) is a zero set. Thel'efore 

if p E X., F, theJ;"e is an A 1; Z(X) such that pi A and F C A. (15) 

~< 
Define A = {A: A e Z(X) and F C A}. Clearly 

,•, 
If p is not in F ~hen, bec;:ause of ( 15 ), there exist:;; an A in A' such 
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* * Consequently n {A: A EA } C F and therefore F = n {A; A EA }. 

That i~ to say, F is the intersection of zero sets in X~ 

The function h from X into E 1 
sq.ch that h(x) = 0 for all x in 

X is in C(X) an,d {x;: h(~) = O} = X. Therefore X is in Z(X), The 

function h' from X into ._E 1 such that h'(x) = 1 for all x in X is in 

C(X) and {x: h(x) = O} = 0, Therefore 0 is in Z(X), 

Therefore any closed subset ot X is the intersection of zero 

sets in X .. E:ach set in Z(X) is a closed subset of X, Therefore 

Z(X) is a base for the close<:! sets in X. 

The next characterization of completely regular or uniformi-

zable spaces mc;kes use of the family of all continuous functions from 

a space into the extenc;led real Une and the concepts of lower semi-

continuous functions and the upper envelope of a family of functions. 

Can$equently some definitions and lemmas concerning these concepts 

will have to be introd',lced before proving the characterization. 

Definition 3, 12 A real .. valued function f defined on a topologi-

cal space (X, T) is said to be lower sem\-continuous at a in X i£ and 

only if for any h < f(a) 1 there exists a neighborhood V of a such that 

f(V) C (h 1 +c;xJ), The function f is lower semi-continuous on X if and 

only if f is lower semi-continuous at each point of X, 

Lemma 3. 13 Let (X 1 T) be a topological space. A real.,.valueq. 

function f is Lower semi-continuous on X if and only if for any real 

number K, r l ( (I:<, +oo) ) is open in X. 

Proof: As :rnrne f is lower semi-c:;:ont~nuous on X and let K be 
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a real number, Let a be in f,. 1( (K, too)). Then f(a) > K, By defini-

tion of lower semi ... continuous, there is a neighborhood V of a such 

C -1 
that f(V) (K, +oo), This implies that V C f ( (K, +oo) ), Therefore 

-1 
f ( (K, +oo)) is an open subset of X, 

-1 Suppose that for any real n\lmber K, f ( (K, +oo)) 1s open in 

-1 X. Let a be in X and let h < f(a), Then f ( (h1 +oo)) is open in X. 

Since a is in C 1 
( (h, +oo) ) 1 V = f- l ( (h, +oo) ) is a neighborhood of a, 

Clearly f(V) ( {h, +oo), Therefore f is lower semi-continuous at a. 

Since a was arl;>itrarily chosen, f is lower semi-continuous on X • 

. Lemma 3. 14 lf O is an open subset of the topological space 

(X, T), then the characteristic function q> is lower semi-continuous 
0 

on X. 

Proof: lf K > 1, then cp- 1
( (K, +oo)) is the empty set. If 

- 0 

0 ,:S K < 11 then 
., 1 -1 cp
0 

( (K, +IX>)) = 0, If K < 0 1 then cp
0 

( (K, +oo)) == X. 

Therefore by Lemma 3, 13 1 cp is lower serni-continuous on X. 
0 

.Definition 3, 15 A real-vatu,ed function g defined on the space 

ex. T) is said to be the upper envelope of { \ : i E I}' a famHy of func­

tions from :x; imto the extended real line, if and only if 

g(x) 

for each x in X. 

= sµp {f.(x): i e I} 
l 

Theorem 3. 16 Let (X, T) be a topological space. If every 

real.,-valued lower semi-continuoui,; function f defined on X is the 

* upper envelope of the family G of all continuous functions g from 

X into the extended real Line R for which g < f, then (X, T) is 
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completely regular, 

Proof: Let C be a c;:losed subset of X and let p be in X - C, 

Thep. X ... C is an open set and thus, by Lemma 3. 14, the characteris -

tic function <?x,..c is lower semi-continuous on X, Therefore cpX-C 
~ * is the µpper envelope of the family G of all continuous functions g 

from X into R for which g i <?x..,c· Since cpx~c(P) = 1, 

* * sup {g(p); g e G } :;: 1. Therefore there exists a g in G such that 

0 < g(p). This implies that g(p) = a, where a> 0. 

Define g + to be a function. from X into R such that 

for any x iq. X. + Since g is continuous, the function 

uous, 

Define the function h from X into R such that 

h(x) 
+ 

;::: min { l I g (x) } . 
a 

+ 
L 

a 
is contin ... 

Thie;; function h is also continuous. For any x in X, h(x) < 1 and 

g +(~) ~ 0. This implies that g +~x) :::_ 0 which implies that h(x) > 0, 

Therefo:re h(X) C [O, l]. Now g +(p) = max {O, a} = a~ since a> 0, 

Therefore h(p) = min {1 1 l} = 1. 

Let x be in C, Then <l>x_c(x) = 0. Since g < <lx~c' then 

g(x) < 0, This implies that h(x) = min {I, OJ:;: 0, Therefore 

h(C) C {O}. Therefore (X 1 T) is completely regular. 

'l'he next theorem will be the converse of Theorem 3. 16. These 

two theorems will then give a new characterization of comJ?letely reg .. 

ular or uniformizable spaces. A lemma will first be proved. 
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•• 
Lemma 3. 17 I£ (X, T) is a completely regular space and f is 

a real-valued lowe:r semi-continuous function defined on X such that 
A 

f(X) C [-1, l]l then for any p in X and any real number a< f(p), 

there exists a g in C(X) such that g .:::_ f, g(p) > a, and g(X) C [-1 1 I]. 

:f>roof: Let (X, T) be completely regular and let f be a lower 

semi ... continuous real valued function defined on X such that 

f(X) c; [-1, I]. Let p be in X and let a< f(p). Either a< -1 or 

a > .. 1. 

If a< -1, define a function g in C(X) such that g(x) == -1 for 

all x in X. Then g<f, g(p) == ,..,1 > a,and g(X)C [-1,1]. 

Now let a > -1. Sinc:e f is lower semi-continuous at p, there 

exists a neighborhood V of p such that f(V) C (a, +co), Since (X, T) 

is completely regular, there is a function h in C(X) suc;h that h(p) = 0, 

h(X - V) C { l}, and h(X) C [o, l]. 

Define a function g from X into E 
1 

such that 

g(x) = a - (a+l), h(x), 

Since h is in C(X), g is in <;;(X), If x is not in V, then h(x) = I, and 

hence g(x) = -1, Since :((X) C [-1, 1], g(x) ~ f(x). If xis in V, then 

t(x) > a, because f(V) C (a, +co), Now since h(X) C [O, l] and 

a+ 1 > O, 0 < (a+ 1) , h(x) .:::_ a+ I. This implies that 

-1 ~ g(x) = a ~ (a+ 1) · h(x) ~ a, 

Since g(x) < a < f(x), g(x) < f(x}. Therefore g .::s_ L Now 

g(p) = a - (a+l) • h(p) = a. 

The.refore g(p) ~ a. Sip.ce g ~ f and since f(X) C [-1, 1], then 
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g(x) < 1 for any x in X. Since g(x) > -1 for all x. in X 1 then 

g(X) C [-1, 1 ] • 

. Theorem 3, 18 I£ (X, T) is completely regular, then every real-

valued lower semi-continuous function f defined on X is the upper 
~; 

envelope of the family G of all continuous functions g from X into 

the extended real line R for which g .:::_ f. 

Proof: Let f be a real-valued lower semi-continuous function 

defined on X. The arctan function is a strictly increasing homeomor-

phisr:p. f;rom R onto (-rr/2, rr/2), arc tan 
Therefore the func;:tion g = Tr 72 

is a strictly increasing homeomorph~sm from R onto (-1, 1). Now 

let the extended real line R have th,e usual order topology induced by 

the· l(:l s s than relation on R. Then there e;:idsts a continuous extension 

h of g to·R, where h(-oo)= -1 ci.nd h(+oo) = l, The function his a 

strictly increasing homeomorphism from R onto [-1, l]. Therefore 

h o f is a real-valued function defined on X such that 

(h O f) (X) C ['"" 1, 1 ]. 

The function ho f is Lower semi-continuous. For if k :::::_ 11 

-1 n. -1 then (ho f) ( (k, +oo)) = VJ and if k < -1, (ho f) ( (k, +oo)) = X, If 

-1 < k < 1, there is an r in R such that k = h(r). Therefore, since 

-1 ] h is st:rictly increasing, h ( (k, +oo)) = (r, +oo . This implies that 

-1 (h o f) ( (k, +oo)) -1 ] = £ ( ( r, +oo ) . 

-1 ] By Lemma 3. l3 1 f ( (r 1 +oo ) is open in X. Therefore for any real 

-1 number k, (h o f) ( (k, +c;x:i) ) is open in X. Hence by Lemma 3. 13, 

h o f is lower semi .. continuous, 
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In order to show that f is the upper envelope of d\ it must be 

>:< 
shown that for any p in X and•'any a < f(p), there exists a g' in G 

such that a.:::, g'(p). Therefore let p be in X an,d a < f(p). Since h 

is strictly increasing h(a) < (h o f) (p), Because h o f satisfies the 

hypothesis of Lemma 3, 17 and h(a) < (h o f) (p), there exists a g in 

C(X) such that g < h o f, h(a) :5_ g(p), and g(X) C [-1, 1 ], 

' "h £ . h"" 1 ' . tl . ' h~ l f s1.nce L e unc;tion 1s stnc · y 1nc;reas~ng, o g .:::, , 

Therefo];'e, 

-1 
Since h 

and g are c:ontinuous functions, h - l o g is a continuous function from 

X into R, h h 
... 1 ,:, 

'r us o g is in G . S:i,nce h"" 1 is strictly increasing 

. -1 .,.1 -1 
and since h(a) < g(p) 1 then a = h (h(a)) ~ h (g(p)) = (h o g) (p), 

* Therefore f is the upper envelope of G . 



CHAPTER IV 

CHARACTERIZATIONS OF UNIFORMIZABLE 

SPACES BY MEANS OF PSEUDOMETRICS 

Uniformizable spaces may be c;haracterized in terms of pseudo-

metric s:paces oi, families of pseudometdcs (2). It will be proved.in 

this chapter that the family of spaces which can be embedded in a 

product 0£ pseudometric spaces is the same as the family of unifo;rm-

izable spaces, This can be done either by using the definition of com-

pletely regular spaces or the definition of uniformizable spaces, In 

this chapter it will also be shown that a space is uniformizable if and 

only if th1,ne is a non-empty family qf pseudometric s defined on the 

space for which the collec;:tion of open spheres determined by this 

family is a subbase for the topology of the space. 

Theorem 4. ~ If (X, T) is a completely regular spt;1..ce 1 then X 

is homeomorphic to a subspace of a product of pseudometri.c spaces. 

Proof: The family C(X) can be u,sed to define a family of pseu­

dometric s on X, For any f in C(X) define df to be a function from 

X ip.to E
1 

X £ 1 such that 

dix, y) = / f(x) ,. f(y) I 

for any x and y in X. It can quickly be verified that df is a pseudo ... 

met:ric on X, 

44 
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Let (X, df) be the a:;;sociated pseudometric space. Now define 

a function g from X into 

Z = X { (X, df) : f e C,(X)} 

such that g(x)f ;;:: x for any x in X and any f in C(X). Let Z have 

the product topology. For any f in C(X), let Pf be the projectioJ?. of 

Z into (X, df). For any £ in C(X), Pf o g is the identity map, since 

(Pf o g)(x) = Pig(x)) - g(x\ ::; x. 

Let Sr(a) be an open sphere in (X, df)' where f is in C(X), Then 

S (a). 
r 

Sr(a) = {x: df(x,a) < r} = {x: /f(x).,. f(a)/ < r} = f-
1

((£(a) - r,f(a)+r)), 

Since £ is continuous £-
1

( (f(a) - r, f(a) + r)) is an open set in (X, T), 

and therefore Pf o g ~s continuous. Since Pf o g is continuous for 

any f in C(X), g is conUnuou.$ (12 1 p. 91). 

The function g is a 1-1 mapping. For let x and y be in X such 

that x f. y and let f be in C(X). Then g(x)f = x and g(y)f = y, which 

implies that g (Ji;) f. g (y), 

It will next be shqwn that g is an open mapping. For any open 

set O in (X, T) it must be shown that g(O) is open in g(X). If y is 

in g(O), then y = g(x) for some x in O. Since (X, T) is completely 

regular there exists an p.. in C(X) such that h(x) = 0 and h(X - O) C { l}. 

-1 
Let Oh:; h ( (~l, 1) ), Clearly 

x is in oh a11d oh C O, ( 16) 
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Now Oh= {ueX; /h(u)/ < l} = {ueX: /h(u)-h(x)/ < l} sinceh(x)=O. 

Also { u e X: I h(u) - h(x) I < l} = {u e X: dh(u, x) < l}. Therefore 

Oh is an open sphere in the pseudometric space (X, dh). ( 1 7) 

Because of ( 16 L y is in g(Oh) and g(Oh) C g(O). 

If it can now be ~hown that g(Oh) is open in g(X), then g(O) 

will be open in g(X). This will be accomplished by using the fact that 

Ph is continuous. Because of (17) and the previous statement, 

-1 -1 n Ph (Oh) is open in Z. This implies that Ph (Oh) . g(X) is open 

in g(X). But 

{g(x) e z: x e X and g(x)h e Oh} 

= {g(x) e Z: x e X and x eOh} 

Consequ(;lntly g(Oh) is open in g(X) and hence g(O) is open in g(X), 

Therefore g is an open mapping, It is therefore true that g is a 

homeomorphism from (X, T) onto a subspace, g(X), of a product z· 

of pseudome tri,c spai::es, 

Lemma 4. 2 Any pseudometric space is completely regular. 

Proof: Let (X1 p) be a pseudomet:ric space. Let C be a dosed 

subset of X and let y be in X ~ C, lf C = cp. then define a fuqction f 

from X into. E 
1 

such that f(x) = 0 for all x in X. Then f is in 

C(X), f(y) = 0, f(C) C { IL and f(X) C [o, 1]. So assume that C is 

not empty. Define F from X into E 
1 

such that 

F(x) = D(C 1 x) = inf {p(x, y) : y E C}. 
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F is a continuous function (12, p. 120), Since y is not in C and C is 

closed, then D(C, y) = r > 0. 

1 
Define the functiqn g from· X into E such that 

(F I\ D (C, y)) (x) 
= D(C; y) . 

for any x in X, For any two functions h
1 

and h
2 

in C(X), h
1 

I\ h
2 

is in C(X) (5, p. 133). Therefore g is in C(X), Let x be in X, Then 

(FI\ D (C 1 y)) (x) = min {F(x), D(C 1 y)}, 

where ·· F(x) ;:_ 0 and D(C, y) > 0. Therefore (F I\ D (C, y)) (x) > 0 

which implies that g(x) ;:_ 0, . Also (FI\ D (C, y)) (x) .::_ D (C, y) which 

implies that g(x) ::s_ 1. Therefore g(X) C [0 1 1]. 

g(y) = min {F(y), I;> (C, y)} = 
I D(C,y) 1, 

~ince F(y) = D (C, y). If x is in C then 

g(x) = min {F(x), O (C, y)} = 
D (C, y)' .. I 0, 

. 
since · F(x) = 0 when x is in C. This implies t}i.at g(C), C {O}, 

Th~refore (X, p) is cmnpletely regular. 

Lemma 4, 3 If1 for any· i in an index set I, X. is completely 
l 

regular, then the product Flpace Z = x X. is completely regular. 
ieI l 

Proof: Let C be a closed subset of Z and let y be in Z ~ C. 

Then Z.,, C is qpen and hence there ls a f~nite subset F of I i:;uch 

that 
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y E n (P7 1
(G.)) c z ... c, 

ie .If 1 1 

( 18) 

where for each i in F, G. is opE;ln in X. and P. is the projection of 
1 , 1 1 

z onto xi. Let i pe in F, Then P. (y) is in G. and X. is com-
1 1 1 

pletely regular. Therefore there exists an f. in C(X;) such that 
1 1 

Since 1:>oth f. and F. are continuous, f. o P. is in C(Z), Define a 
1 1 1 + 

funcHon g from Z into E 
1 

such that 

g(x) = max { (£. o P.) (x) : i ~ F }. 
1 1 

For 11ny functions f 1, f
4

, ... , fk in C(Z), the function h defined on 

Z, su,c:;h that 

is in C(Z) (5 1 p, 133). Therefore g if:! in C(Z). Fol' any i in F, 

(f. o P.) (y) = O, l::>y (19), Thus g(y) = 0, If x is i!'.l C then, becai;ise 
1 1 , 

of (18), there is a j in F suoh that x ts not in P~ 1 
(G.), This impliE:l s 

J J 

that P.(x) is in X ... G .. 
j J J 

Because of (19). f.(P.(x)) = 1 ,;3.nd hence 
J J 

g(x) > l, Sinc;e f{:X) C [o, 1] for each i. in F, g(Z) C [o, 1 ], Con .. 

seq\lently g(x) = 1. Therefore g(C) C {I}. The product space Z is 

therE:lfore completely regular. 

Lemm.a 4, 4 fl non ... empty subspFtc:;e of a completely regular 

space is complE:ltely reg\llar, 

Proo£: Let (X, T) be completdy regular and let Y be a non~ 

empty sul::>space of X. Let F be a dosed subset of the subspace Y 
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and let y be in Y - F. Then F = G n Y, where G is a c;losed subset 

of the space X. Since y is not in G n Y, y is not in G, Since the 

space X is completely regular, there exi,sts an f in C(X) such that 

f(y) == o, f(G) C {IL and f(X) C [O, l]. Now let g = £/Y, Since the 

restriction of f to any non~empty subset of X is continuous, g is in 

C(Y). Since y is in Y, g(y) = f(y) = 0, For any x in F, x is in Y, 

and hence g(x) = f(x), Sinc:e F C G and f(G) C { l}; then 

f(F) C { l}. Therefore for any x in F, g(x) = 1. Coni;;eq-q.ently 

g(F) C { l}. Since f(X) C [o. l] and g(Y) = f(Y) C f(X), then 

g(Y) C [o. 1L 

Lemma 4. 5 If the space CX, T) is homeomorphic to a com­

pletE:lly regular spacE;), (Y, T 1), then (X 1 T) ii;; completely regular, 

Proof: Let f 'be a homeomorphii;;m from (X, T) onto (Y 1 T'). 

Let F be a closed subset of X and let y be in X"" F. Then f(F) is 

a closed s-q.bset of Y, Since y is not in F, f(y) is not in f(F), Since 

(Y, T') is a completely regular space, there exists an h in C(Y) such 

that 

h(f(y)) = O, h(f(F)) C {l}, and h(Y) C [0 1 l]. (20) 

Since f and h a:re continupus g ::; h o £ is in C(X) and 

g(y) = h(f(y) = 0, For any x in F, g(x) = h(f(x) ), where f(x) is in 

f(F), Therefore, because of (20), g(x) = 1. Hence g(F) C { l}. 

Since h(Y) C [o, 1]1 then g(:X) = h(f(X)) C [o, 1]. Therefore (X, T) 

is a completely regular space. 

Theorem 4, 6 If the space (X, T) is homeomorphic to a sub­

space of a prod-q.ct of pseudometric epaces, then (X, T) is completely 
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regula:v. 

:Proof: Let f be a homeomorphism from (X, T) onto a subspace 

of Z .,. X X., where X. is a pseudometric space for ecl,ch i in I, By 
. I 1 1 
l,E 

Lem:ma 4. 2, Xi is completely regular for each i in. I. Because of 

Lemm.a 4, 3, Z is completely regular, Therefore, by Lemma 4, 4, 

f(X) is completely regular. Hence by Lemn;ia 4, 5, (X, T) is com~ 

pletely regular, 

Theorems 4. 1 and 4. 6 show that the family of completely regu~ 

lar spaces i,s the same as th~ family of spaces which qrn be embedded 

in a product of pseudometric spaces. As shown in Chapter II, the 

family of completely regular spaces is the same as the family of uni-

formizable spaces, Therefore Theorems 4, 1 and 4. 6 can be proved 

by using the concept of a uniform space instead of using the con,c;ept 

c;if a completely reg1,1lar space. The next two theorems will do this, 

Several lemmas will Hrst be prQvl:)d, 

Lemma 4. 7 A produc;t of uniformizable spaces is uniformi,~ 

zable. 

Proof: For any a in A 1 let (Xa, Ta) be a uni.formizable space. 
,::: -

Then, for ei.ny a in A, there ie a uniformity U for X which is com .. a a 

patible with T , Let (Z, T) be the product space determined by 
a 

{ (X., T ) : a e A}, By Corollary 1, 18, the collecqon of all sets of 
a a 

thy form { (x, y) e Z X Z ; (x , y ) Ei U }, where a is in A cl,nd U is 
a a a a 

* * in U., is a sub base for a uniformity U for Z called the product 
a 

uniformity. Let TU be the uniform topology for Z induced by U,:,. 

If TU = T, then (Z, T) is uniformizable. 
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So let O be in TU and let u be in O. Then there exists a U 

,:c >I< 
in U such that U [u] C 0, By definition of U , there is a finite sub-

set F of A such that 

B = n { (x, y) E z X z : (x 'y ) E u } C u J 
· a a a aeF 

where, for each a in F, U is in 
a 

>::: u. 
a 

Therefore B [u] C U [u] C 0, 

and 

B [u] = { V; (u, v) E B} = I! { V ! (u , V ) E U } 
F a a a aE 

= I! { V: V E U [u ] }, 
F a a a 

cj,E 

The re fore n { v: v e U [u ]} C Q. By Corollary 2. 6, fo;r each a 
F a a a 

ae 
in F, U [u ] i~ a T -neighborhood of u • Consequently, for any a a a a a 

in F, there exists an O in T such that u e O C U [u ] , There-
a a a a a a 

fore 

U E I! 
aeF 

{v e Z: v e O } C n {v e Z: v e U [u ]} C 0, 
a · a ae F a a a 

By the definition of hhe product topology for Z, n { v e Z : v e O } 
F 

a a 
ae 

is in T. Therefore O is in T. 

Now let O be in T and let u be in 0. There exists a finite 

subset F of A such that u e n { w e Z : w e O } C 0, where for 
aeF a a 

each a in F, 0 is in T , Consequentiy for each a in F, there 
· a a 

,,, 

exists a U in u''' such that U [u ] C O . Therefore 
a a a a a 

u e 11 {we Z ! w e U [u]} C fl {we Z: w e O }. 
ae F a a a ae F a a 

But n {w E z: w E u [u ] } = N [uL where 
aeF a a a 
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)'' 

N ,::; n { (:x:, y) : (x , y ) Eu '}. Since N if;i in u ,, and because of 
ae F a a a 

Corollary 2, 6~ N [u] is a Tu-neighborhood of u. Since N [u] ( 0, 0 

is a T u""neighl;>0rhood of u. Consequently O is in TU' 'l'herefore 

T = TU ao.d (Z, 'l') is unUormizable. 

Lemma ~. 8 A subspace of a uniform\zable space i1;1 uniformi-

zable. 

Proof: Let (X, T) be a uniformizable space and let Y be a sub~ 

space of X, Then there exists a uniformity d:' for X compatible 

with T. Define U~ to be {U II (Y X Y) : U e U:1,,} and let A be in 

, * * · Uy, Then A = U 11 (Y x Y) for some U in U , Since 

Dy C DX C u, then Dy C u n (Y X Y) ;:: A, 

A,lso A~ l = [U 11 (Y x Y) r l = U- l (") (Y x Y). Since 

~ 1 u -1 . . * A 1s in Uy· * Now there is a V in U such that 

VO V ( u, >l< 
Thii, implies that V n (Y x Y) is in UY and 

[v n (Y x Y)] o [v n (Y x Y)] C u n (Y x Y) = A, 

Let C and B 

where U arid 

be in u;. Then C = U n (Y, X Y) and B = V r) (Y x Y), 

* V are in U . Hence C r1 B = (U n V) fl (Y x Y), 

* where U r\ V is in U . Therefore C n B * is in Uy, Suppose 

:il< 
D = u n (Y X Y) C B C y X Y, where u is in u . Then 

(U u B) n (Y X Y) ;:: [ u n (Y X Y)] u B = B. 

Sini;:e U U B is in u\ B is in u;. Therefore u; is a uniformity 

for Y, 

In order to show that the subspace Y is uniformizable it must 
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::i!c 
be proved that the topology T' induced by Uy is equal to the relative 

topology Ty for Y. Therefore let O be in Ty and let x be in O. 

Then O = 0 n Y, where G is in T. Sinc::e d:~ is compatible with T, 

>::: 
there exists a U in U i;;uch that U [x] C G, Therefore 

U [x) (J Y C G r'1 Y. Since (U 0 (Y X Y)) [x] = U [x] (: Y I then 

(U (] (Y x Y)) [x] C 0, 
~::: 

Because U n (Y x Y) is in Uy, O is in T'. 

Now let O be in T I and let ;x be in 0, Then there exist a U in 

u* such that (U n (Y x Y)) [x] C 0, Hence U [x] n Y C o. By 

Corollary Z, 6, U [x] is a T-neighborhood of x, Therefore there 

exists a T .. open set G such that x E G C U [x], This implies that 

~ 1; G n Y C U [x] n Y C 0, Since G n Y is in TY' 0 is in, Ty· 

Therefore Ty = T and so the subspace Y is un,iformizabLe. 

Definition 4, 9 
,· 

?:t; 
lf (X, U ) is a uniform i,;pace and Y C X, then 

* {U r1 (Y x Y): U EU } 

,,, 
is called the relative uniformi!!y for Y or the relativization of U ,, to 

Y(lZ,p.182), 

Lemma 4, 10 If a spac::e (X, T 1) is homeomorphic to a uniform~ 

izable space (Y,T
2

), then (X,T 1) isalso unifo:rmizable., 

ti:: 
Proof: Let U be a uniformity fo:r Y which is compatible with 

T 
2 

and let f be a homeomorphism from X onto Y, By Theorem l, 1 7, 

{£21 (U): U e u*} is a subbase for a uniformity V,:~ for X, Actually 

{£2
1 

(U) : U E u*} is a baee for v'\ Let TV be the topology for X 

* which is induced by V • It must be shown that TV = T 1. 

Let O be in TV and let x be in 0, 

such that V [x] C 0. There is a U in U 
~::: 

* There exists a V in V 

such that £2
1 

(U) C V, 
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which im.plie s tha,.t 

(f2
1

(U)) [x] C V [x] C O. (2 1) 

By Lemma 2. 5 1 f(x) is in G:,:: int {U [f(x)] ), the T
2
-interior of 

U [f(x)]. Clea,rly x is in f-
1

(G). Let u be in £- 1 (G). Then f("q.) is 

in G which i.mplie s that f(u) is in U [f(x) ]. Hence f2 (x, u) = (f(x),f(u)) 

is in U, whic;;h implies that (x,u.) is in f2
1
(U). Thus u is in 

(f2
1
(U)) [x], and hence, by (21) 1 u is in 0. Therefore C 1

(G) C 0, 

Since G is in T 
2 

and f is in C(X), Cl (G) is T 
1 
-open. It has been 

shown then that x e (''\G) C 0 1 where f-
1

(G) is T 
1

-open. There­

fore O il'i in T 1 . 

Now let O be in T 
1 

and let x be in O. Since f is a homeo ... 

-·-
morph~ sm, f(O) is in T 

2 
and f(x) is in f(O). The re is a U in u''' 

such that 

U [f(x) J C f(O). (2 2) 

I,.,et y be in (f2
1 

(U)) [x]. -1 
Then (x, y) is in f

2 
(U), which implies that 

(f(x) 1 f(y)) is in U. This impUef:l that f(y) is in U [f(x)]. Because of 

(?2), f(y) is in f(O), Sin<;:e f is one-to ... one 1 y i.s in O. Therefore 

(f "' 1(U))[] CO s· f- 1(U) i . v~c d ' ' . . 
2 

. x · . 1nce 2 · s 1n . an. since x 1s 1n 

(£2
1 
(U)) [x], 0 is in T v· Therefore T 1 ;:: T v• at1d hence (X. T 1) is 

uniformizab\ei. 

Theorem 4. 11 If a space (X, T) i!'i homeomorphic;; to a sub-

space of a product of pseudometric spacef:!, then (X, T) is uniform-

izable. 

Proof: Let f be cl,. homeomorphism from the space (X, T) onto 
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a subspac;:e of Z = .x. X., a prodµ.ct of pseudometric spaces. Because 
id l 

of Corollary 1. 5, X. is uniform.izable for each i in I. Then, beca-use 
1 

of Lemma 4, 7, Z is uniformizable. f(X) is uniformizable by Lemma 

4, 8. Therefore by Lemm.a 4, 10, (X, T) is -unifo:rmizable, 

The following lemmas are needed to prove the converse of 

Theorem 4 1 11. 

Lemma 4, 12 
,:c 

If (X, U ) is a -q.niform space, then for any U in 

* * U there is a symmetric V in U s-uch that Vo Vo V C U. 

* * Proo£: Let U be in U . Then there is a W in U such that 

w Ow C u. lf V = w n w"' 1 
then, by properties of uniformity, V 

* is in U , V is symmetric, and Vo V C U. Therefore for any U in 

~ * u'', there is a symmetric V in U' such that Vo V C U. Therefore, 

* * for any U in U ·, there extst symmetric members V 
1 

and V 2 of U 

such that V 1 o V 1 C U and V 2 o V 
2 

C V 
1

. Since V 2 C V 2 o V 21 

Vz C vl. Therefore Vzo (V2o Vz)-C vl O vl and hence 

V 2 0 V 2 0 V 2 C u, 

Lemma 4. 13 
,:< 

For each ?- in A 1 let (X., U ) be a uniform · · a a 

"* space, Let £ be a function from the -µ,niform space (Y, y ) into 

(Z, u*) where Z = 
,:c 

x X and U is the product uniformity for Z. 
aEA a 

* If, for any a in A, P o f is uniformly continuous relative to V 
a 

* * * Ua, then f i1:; uniformly conUn-q.ous relative to V · and U . 

and 

Prooft Let V be a member of the su,bbase of the product uni-

formity, Then V = (P'"'l) (U ) = {(x, y): (x , y ) E U}. where U is 
a 2 a a a 

* in U and a is in A, Bence a 



Since P o f a 

(Paof)""~(U) 

:;: £
2
"" 1 { (:x:, y) t (:X: 1 y ) E U} = 

a a 
-1 

(Pao f) 2 (U), 

* is uniformly continuous relative to V * and U , then a 

* is in V . Therefore 
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f2
1 (V) is in v* for any V in the subbase of u*. (23) 

* For any W in U , 

n . 
"' -1 

::::; r 1 f2 (V.) 
1 1 

* n where each V. is in the subbase of U , Because of (23) 1 n £
2
""

1 
(V.) 

l 1 * 1 ~·~ 1 
is in V , Therefore £2 (W) is in V' since it contains a member of 

* * * V , Therefore f is uniformly continuous relative to V and tJ . 

Ler:runa 4,, 14 * Let (X, U ) be a uniform space and let d be a 

pseuc;iometric on X. Then d is uniformly continuous relative to the 

pi;-oduc;t uniformity for X X X and the usual uniformity for E
1 if, 

~:i; 
and only if, for any r > 0, Vd . is in U , 

Ir 

Proof: Suppose d is uniformly cqntinuous relative to the pro­

duct uniformity for X x X and the usual uniformity for E
1

• Let 

r>O and Ur= {(:x:,y); l:x: ... yl < r}. Then d2
1

(Ur) is in the pro­

duct uniformity for X x X, By CoroUary 1. 18, the product unHorm-

ity has a supbase consisting of set13 of the form 

::i:<.: 

where u e u 
-1 fore d 2 (Ur) 

{((:x: 1 y), (u,v)); (:x:,u) eU} 

or {( (x;, y) 1 (u, v)): (y, v) EV}, * where V EU • There-

contains a finite intersection of sets of this type, It 

can easily be shown that a finite intersection of sets in the subbase of 
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the product uniformity contains a set 

{ ( (xJ y) 1 {u, v) ) : (x, u) E V and (y~ v) E V}. 

:i:, 
where V is in U , Therefore 

Let {:x; 1 y) be tn V. Then ( (x, x), (x1 y)) is in d21 
(Ur) b.ecause 

(x, x) e V and because of (24). Therefore d 2( (x,:x;), (x, y)) is in Ur' 

whiqh implies thM j d('?C, x) .., d{x, y) I :;: d(x, y) < r, Bence {x, y) is in 

vd .· 
' r 

* :::~ 
Therefore V C V d, r and, since V is i,n U , V d, r is in U , 

~* 
Suppose now that for any r > 0, Vd is in U . Let U be in 

, r 

the usl..lal uniformity for E
1

, Th~n there exists an r > 0 such that 

Ur= {(x,y): lx-yj < r} CU. Let 

M:;: {((x,y),{u,v)): (x,u) EVd .!.. and (y,v) EVd !. }. 
'2 '2 

* By the supposition V d E. is in V I and hence M is in the produqt 
J 2 

uniformity for X X x. It will now be shown that M C dz 1 (U J:.). Let 

( (x, y) {u, v) ) be in M. Then 

r r 
d(x, u) < 2 and d(y, v) < r· (2 5) 

Now d(:x;, y) :5. d(x, u) + d(u, v) + d{v, y). Therefore by (25), 

d(x, y) - d(u, v) < r. ,Also d{u, v) ~ d{u, x) + d(x, y) + d(y~ v). There-

fore by (25), d(u, v) ~ d(x;, y) < r. Because of these last two inequal­

ities, I d(xr y) ... d('\.1, v) j < r. Hence d 2 ( (:x;, y), {u, v)) is in Ur' and 

-1 C -1 consequently ( (x~ y) 1 (u, v)) is in d 2 (Ur)' Therefore M d 2 (Ur)' 

which implies that MC d~ 1(U). Since M ii;; in the product uniformity 
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for X x X, d2
1 

(U) al130 is in the produ,ct uniformity. By the defini-

tion of uniformly continuous, d is uniformly conttnuous relative to the 

product unHol.'mity for X x X and the 'l.lsual u'niformity for E 1 , 

The next lemma is often called The Metrization Lemma, It will 

~:( 
be needed later in this chapter to prove that any uniformity U for a 

$et X can be generated l,)y the family of all pseudome:trics on X which 

are uniformly continuous rel1:itive to u,:< and the usual uniformity for 

E
1

1 Th~ M~trization Lemma is also used to prove that a uniformity 

can be generated by a single pseudometric if and only if the uniformity 

has a countable base (12,p, 186). 

Lemma 4. 15 Let {U , n > O} be a sequence of subsets of 
n 

:X: x X such that 

( i) uo = XX X. 

(ii) u :) DX for any n, 
n 

(iii) u 
n+l 0 un+l O un+l C u for any n., 

n 

(iv) Each u is symmetric. 
n 

Then there is a pseudometric d on X such that for any n > 1, 

Proof: Define a fu.nction f f:rom Xx X into E
1

, such that 

-n f(x, y) = 2 if there exists a least posHive integer n for which (x, y) 

is not in U , and f(x, y) = 0 if (x, y) is in each U . Define a function n · n 

d from X x X into, E 
1 

such that d(x, y) is the infimum of the set of 
n 

all sums ~ !(x.,x.+l), where {x.: 0 < i < n + l} i:;; a sequence of 
O tl ;i. _,...., 

points in X, x 0 = x, and xn+ 1 = y. For nhe sake of convenience call 

any finite sequenc;e x 0 , x 1, , •. , xn+l in X a chain of n + 2 points 



n 
and. caJl ~ f(x., x. 

1
) the length of the chain from :x:

0 
to xn+ 

1
• It 

0 . l. ~+ 
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follows from the definition of d and properties of the infimum that d 

is a pse1,1dometric on X (15, p. 130), 

It will fir st be shown that for any n > 1, 

Un C { {x, y) : d(:x:, y) < 2 -n}. 

Let (x, y) be in U . Because of (ii) and (iii,), {U } is a monotonicaUy 
n n 

decreasing sequence of sets 1 Therefore for each i .::_ n, (x, y) is in 

U., Hence, by definition of £1 f(x, y) < 2 -n. Since f(x, y) is the 
1 

length of a. cha,.in from x to y and since d(x, y) is thE) infimum of the 

lengths of all chains from x to y, d(x, y) .::_ f(x, y). Therefore 

-n 
d(x, y) < 2 1 

In order to prove the other set inclusion in the conclusion of the 

lemma it will first be shown that 

n 

f(xO' xn+l) < 2 ~ £(xi' xi+l)' 

for any cha,.in of two or more points. If n:: 0 or equivalently if the 
n 

chain has two points, then 4 £(xi' xi+l) = 0 implies that 
0 

f(x
0

, xn+l) = 0, Assume, for any chain of n + 2 points, where 

n:::, o, that 

n 
~ £(xi' xi+ 1) ::: 0 implies that £(x01 xn+l) ::: 0, 

n+l 
Cons~d~r a chain of; n + 3 points such that ~ f(x,, X, + l) = 0, 

0 1 l. n 
Then 

~ £(xi, xi+l) = 0 and f(xn+l~ xn+z)::: 0 1 since £ .;;:_ 0. By the assump .. 

tion, £(x
0

, xn+l) = 0. Consequently 1 by definition of £, (x0 , xn+l) and 

(xn+l' xn+z) are in Um for c:1,ny m, Therefore (x0 , xn+z) is in 
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ll o U for any m. Sinc;e 
m m 

U oU CU oU oU CU 1 m m m m m m-

for any m ~ 1, then (x0 , xn+z) is in Um for any m. Consequently, 

by the definition of £, f(x
0

, xn+2 ) = 0, It has been proved by mathe-

matical induction, for any chain of two or more p<;>ints, that 

n 

if ~ £(xi, xi+ 1) = 0 then f(x: 0 , xntl) = 0. 

The re fore for any chain of two or more points, 

n n 

~£{x.,x.tl) 
O l l 

= O implies that f(x 0 , xn+l) ~ 2 ~ f(xi,xi+l). (26) 

lt will now be proved by mathematic;al induction that, for any 

chai11. of two or more points, 

n n 

if ~ f(xPxi+l) f. 0, then f(x 0 ,xn+l) < 2 ~ f{xi,xi+l). {27) 

Assume in the following argument t4at for any chain of twq or more 

poiq.ts, 

n 
~ f(x., x.+ 1) f. 0, 
O 1 1 

If n = 0 or equivalently if the chain has two points, then 

n 

f(x0 , xn+l) < 2 ~ £(xi' xi+l). 

Assume the inequaHty to be true for any n ~ q .. 1, where q ~ 1, and 

for any chain of n + 2 points. Consider a chain of q + 2 points and 



let 

It must be shown that f(x0 , xq+l) < 2a, Now if a> 1 /4 then 

f(x 0 , xq+l) ~ 2~, since f(x: 01 xq+l) ~ 1 /2, Therefore assume that 

a < 1 /4, If there e:x:ists a largest integer j such Uiat 

j-1 
2l f(x:.,x.+ 1) < a/2, 
0 1 1 
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let k = j. Otherwise let k = 0, Note that k ~ q since a is positive, 

If k = 0, f(x 0 , xk) = 0 ~ a. If k > 1 then, by the induction hypothesis 

and the definition of k, 

k.,. l 

f(x 0 ,xk) < 2 ~ f(xi,xi+l) .:':. 2 (a/Z) = a, 

Therefore 

(28) 

If k i;;: q, then f(xk,xk+l) = f(x ~x +l) ~ a. 
q k q q 

If k < q and 

2l f(x.,x.+ 1) > a/4 1 then 2l f(x.,x.+
1

) < 
k+ 1 1 1 0 1 1 --

a/2. This contradicts the 
q 

definition of k. Therefore if k < q, then 2l {(x., x.+ 1) < a/2. By 
k+l l ~ -

the indµqtion hypothesis 

Hence f(xk+l' xq+ 1) ~ 2 (a/ 2) = a if k < q, Define m to be the 

smallest positive integer such that 

(29) 
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· Note that since a < 1 /4 1 m:::, 3, Suppose that (x
0

, xk) is not in 

Um-l' Then let p be the smallest positive intE;iger such that (x
0

, xk) 

is not in U . Then p < m which implies that 2-P > 2-m. By defini .. . p 

tion of f, z-P = f(x
0

, xk). By (28), 2 -:() < a. But, since p < m, this 

contradicts the definition of m. Therefore (x01 xk) is in Um- l' By 

the same reasoning (xk,xk+l) and (xk+Pxq+l) are in Um-l' There­

fore, if k = q, then (x0 ,xq+l) ii, in Um-lo Um-l' and, i£ k < q, 

then, (x0 ,xqtl) ii,in um_ 1 oum_ 1 ourp. ... l' Now, by(i)and(ii), 

u. loU lcu loU loU 1CU ?' m... m- m,.. m- m- m ..... 

Therefore (x0 , xq+l) is in um_ 2 in either case. Now if (x0 , xq+l) 

is in U i for each i, then f(x0 , xq+ 1) = 0 < 2a. ~f (x0 , xq + 1) is not in 

each Ui' then let j be the leai;;t integer such that (x0 , xq+l) is not in 

Uj. Then, by definition of f, f(x 01 xg.+ 
1
) = 2 -j. Since (x

0
, xq+ 

1
) is 

in U 2 and sincE;l {U : n > O} is a monotonically decreasing 
m- n _,.. 

sequence, then j > m - 2. 

h ( ) < 2 .-m+l, 
t at f x 0 , xq+l 

. -m 
f(xo, ~qtl) ··:5. i • 2 < 2a, 

n 

This implies that j :::_ m - 1 and hence 

Consequently, bec:;ause of (29), 

Ther\;':£ore 1 by mathematical induction, 

f(x
0

,xp.+l) :::_2I:f(xi,xi+ 1), for any chain of two or more points. (30) 
0 

-n Let d(x, y) < 2 , wher~ n ~ 1, H n = 1, then U 
1 

= X x X 
n-

and hence (x, y) is in Un-l' Let n > 1. Bec:ause of (30), 

Q. 

1/2 · f(x,y)< ~f(x. 1 x.+ 1) 
· ....,, O 1 1 

for any chain from x 0 = x to xn+ 1 = y, Therefore, by definition of 
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d, 1/2 • f(x, y) <, d(x 1 y), and hence 

-n+l 
f (x, y) < 2 d (x1 y) < 2 . (3 1) 

If f(x, y) = 0, thEln, by the defin.iti0p of f, (x, y) is in Up- l' Assume 

f(x, y) -:# 0 and (x, y) is not in U 1. Then there is a least positive 
n-

integer r such that (x, y) is not in U and f(x, y) = 2-r. Then, by 
r 

th t ' < 1 Thi.· s · 1 · th t 2 ., r > 2 - n + 1 h · h e assu,mp 10n, r __ n - . tmp 1,es a -· , w ic 

implies th.at f(x, y) > 2 -n+ 
1

, But this contradicts (31). Therefore, 

if f(x 1 y) -j:. O, then (x, y) is in Un~ 1. Therefore, for any n > 1, 

{(x,y): d(x,y) < 2-n} CU 
1

. 
n-

Lemma 4, 16 ~ * H (X, u'') is a uniforr;n space, then U is gener-

i;l.ted by the family P of all pseudometrics on X which are uniformly 

continuqus relative to the product unifor:µiity for X x X and the usu.al 

uniformity for E 1• 

Proof: P is non-empty. For if p is a function from X x X 

into, E 1 such that p(x, y) = 0 . for any (x, y), then p is a pseudomet;dc 

~< 
011, X, For any r > 0, V = X x X, which is in U , Therefore, by 

p,r 

Lemrna 4. 14, p. is in P, By Theorem 1. 14, {V : p e P and r > O} 
p,r 

:>:< 
is a su.bbase for a u.niforwity VP for· X. It will be now be shown 

* * th<l,t u = u . 
p * n Let U be in U . Then U :) n V , , where for each i 1 p. 

p 1 Pi r i 1 

is in P and r. > 0, By the definition of P and by Lemma 4, 14, 
1 

* V , is in U for each. i, ThereforEl, by properti, es of a uniformity, 
p, r. I 

'J,. 1 * 
U is in U , 

Let U he in u*. 
:>:< 

Define a sequence of entourages in U in the 
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followin~ way. Let u
0 

::: X x X. Define U 1 to be a symmetric entou-

* j rage in U such that U 1 Q U 
1 

o U 1 C U. For any i ,?:_ l, define Ui+l 

* to be a symmetric:; entourage in U such that Ui+l o Ui+l o Ui+l C Ui. 

It is possible to do this because of Lemma 4, 12. This sequence satis-

fies the hypothe~is of Lemma 4, 15. Therefore there exists a pseudo-

metric d on X such that 

U C {(x, y): d(x, y) < 2"'n} C U 
1 

for any n > 1. (32) 
n n~ 

Let r > 0, Then there is c1, positive integer m such that 2-m < r. 

Therefore, by (32), u C vd . m , r 
:* 

Since U is in U , Vd is in m ,r 
?:< 

U Hence by Lemma 4, 14, d is in P. This implies th.at V d, 
114 

* 1s in Up' Bec;:ause of (32), V d, 114 C U 1• Since 

then V d, 114 C U. 

Lemma 4. 17 

Henoe U is in 
,,, 

u"' 'i' 

p 

~}: ;11: 
Therefore U = U . 

p 
I 

>!< 
If f is a functicm from the uniform space (X, U ) 

* . into the unif9rm space (Y, V ) and f is unifo:r:_mly continuous relative 
' - -- ---

* :ijc 
to U and V , then f is qontinuous relative to the uniform topologies 

of these spaqes. 

~:< 
P:roo,f: Let O be in the uniform topology TV induced by V and 

let x be in C 1 (0). Ther;i. f(x) is in O and hence there is a V in v* 

such that 

V [f(x)] C 0, 

Since f is uniformly contim.;i.~us/ f2
1 

(V) 

Therefore £2 (U) C v_. Let y be in U [x]. 

>:< 
::: U, for some U in U . 

(3 3) 

This i;mpHe s that (x, y) is 
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in U, Then £
2 

(x, y) :;:, (f(x), f(y)) is in V which implies that f(y) is in 

V[f(x)]. By (33), £(y) is in O and hence y is in £- 1(0). The;refore 

U [x] C £"" 
1 
(0). Hence f- l (0) is in the uniform topology TU induced 

* by U 1 . Therefore f is i.:;:ontinuous relative to TU and TV' 

Theorem 4 1 18 If a space (X, T) is uniformizable, then it is 

homeo:morphic to a subspace of a produc;:t of pi,eudometric :;;paces. 

,,, 

Proof; Since (X, T) is uniformizc1-ble there is a uniformity u''' 

for X which is compatible with T, Let F be the family of pseudo-

metrics on X whic;h are uniformly continuous relative to the product 

uniformity for X x X and the usual uniformity fo:r E
1

• As shown in 

the proof of Lemma 4, 16, F is non-empty, For any d in F, let 

(X, d) be the associated pseudometric space. Let Z be the product 

space determined by these pseudometric spac;;:es, For any d in F, 

* let Ud be the uniformity for X generated by d, By Corollary 1. 15, 

* * Ud is compatible with the pi;;eudometric topology of {X, d). Let V 

be the product uniformity for Z determined by the family {u:: d e F} 1 

Define. a fu.r,i.ction f from X into Z such that f(x)d == x, for any x in 

X and any d in F. Note that f is deHned in the same way that the 

function g is Theorem 4, 1 was definecl, except that now the inde~ set 

£qr Z ii? different. As was done for Theorem 4. 1, it can be shown 

that for any d in F, Pd o f is an identity mapping, It follows direct­

ly that for c:1,ny d in F, (Pd o £) 2 is an identity mapping, Therefore 

;>:( ~ 1 
for any U in Ud' (Pd o £) 2 · (U) = U, There is an r > 0 such that 

,:c: 
By Lemma 4. 16 1 F generates U , Hence V is in U>:<. 

Canseq1r1,ently for any d in F, Pd o £ is unifor:rnly continuous relative 

* * to U and Ud. Therefore, by Lemma 4, 13, f i13 uniformly continuous 
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* ,:, 
:r;elaH ve to U and V , Because of Lernma 4 1 17, f is continuous 

,·~ 
relative to T and the topology TV for Z which is induced by V'. As 

shown in the p:roof of Lemm,a 4, 7, TV is the product topology fo;r Z, 

The;refore f is c:;ontinuous relative to T and the produc~ topology for 

Z, It can easi.ly be verified, as was done for the func;:tion g in Theo-

rem 4, l, that f is a one -to .,..one mapping. Define the function h from 

X onto f(X) :: Y such that h(x) :: f(x) for any x in X. Then h is 

one -to-one and is continuous relative to T and the relative topology 

Ty for Y. Let g be the inverse of h and let V; be the relativization 

* of V to Y, It will now be shown. that g i.s uniformly continuous rela-

,:c * 
tive to Vy and U 1 

>le -1 
Because g2 (U) = h 2 (U) = f 2 (U) for any U in U , g is uni-

* * formly continuous provided that f
2 

(U) is in Vy for every U in U . 

* * So let U be in U , Since F generates U , U contains 

n 
nv 
1 

d, 1 r.' 
1 1 

where, for each i, cl,. i!'l in F and r. > 0, 
1 1 

Therefore 

Since f is one .. to-one, f
2 

is also one-to-one, and hence 

n 

f2(U) :) nl f2(V d., r.). 
1 1 

For any d in F and r > 0, the set 

W :: { (x, y) E Z X Z ! (Xd' yd) E V d, r} n [y X Y] 

(34) 
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is in Now let (x, y) be in W. Then (xd' yd) is in V d, rl and 

there exist a and b in :X: such that x ;:: f(a) and y ;:: f(b). By defini~ 

tion of t, xd ;:: f(a)d ;:: a and yd = f(b)d ;:: b. Hence (a, b) is in V d, r 

and (x, y) ;:: f
2

(a, b), Consequently (x, y) is in f
2

(V d, r). Therefore 

''I 

W C f2 (V d, ;rJ, and hence f2 (V d, r) is in v;. Because of (34) and 

the r>rope:r,tier;; of a uniformity, f2 (U) is in V ;. Therefore g is uni ... 

,x * 
formly continuous relative to Vy and U , i As shown in the proof of 

,,, 

Lemma 4, 8, the topology induced on Y by V; is the relative topology 

l' y of the s-q.bspace Y. Consequently I because of Lemma 4, 17 1 g is 

continuous relative to Ty and T. Therefore h is a homeomorphism 

from X onto Y I a subspace of Z, 

Lemma 4. 16 and Theorem l, 14 result in the following charac­

te:rization for a uniformity or uniform structure for a set X. If u* 

1 h * f f if is a collection of re aUons on X, t en U is a uni ormity or X ... 

and only if there exists a non-empty family P of pseudometric s 

* defined on X suc:h that {Vd : d e P, r > O} is a subbase for U . 
• r 

This definition is given by Bourbaki (3 1 p, 139). Sometimes a uniform 

structure is defined to be a non-empty family of pseudometrics with 

certain statec;l prpperties (11, p, 217), 

The,last theorem in this chapter is a characteri;zation of uni-

formizable spaces in terms Qf a family 0£ pseudometrics. It states 

that the topology of any uniformizable space can be generated by the 

open spheres associated with a family of pseµdometri.cs, 

Theorem 4. 19 A topological space (X, T) is 1,miformizable if 

and only if there exists a n,on-empty famqy F of pseudometrics on X 

EiUCh that the co!iection of open spheres 



{Sd (x):d1; F, r>O, and xe X} 
Ir 

is a sul)ba,se for T, 
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Proof; Suppose (X, T) is uniformizable .. As was done in Theo-

rem 4, 11 a family of pseudometrics F == { df: f e C(X)} can be 

defined, where d/x, y) == / f(x) ,., f(y) /, for any f in C(X) and any x 

and y in. X. Since ap.y constant function is c;:ontinuous, F is non-

empty. For any f in C(X) and any r > 0 

sd (x) = { y ; df(x, y) < r} 
f' r 

= { y: I f(x) - f(y) I < r} 

-1 
~ f ((f(x) - r, f(x) + r)). (3 5) 

Therefore, siq.qe f is con,tinuous, Sd (x) ~sin T, 
f' r 

Consequently 

{Sd (x):d eF, r > O} CT. 
'r 

Let O be in T and let x be in, 0, Sinqe (X, T) is completely 

regular, then, by Theorem 3. 4, T is the weak topology indue:ed by 

C(X). Therefore 

;x e 
n 
n c 1 

(G.) c o, 
l l 1 

where each £. is in C(X) and G. is open in E
1

. 
' l l ' 

For any 

and hence there is an r. > 0 such that 
l 

£.( x) e ( £..( x) - r. , £. (x) + r . ) C G .. 
l 'I l l l l 

Hence 

C -1 £.(x) + r.)) £. (G.). 
l l l l 

i, £.(x) e G. 
l l 



Therefoll'e 

n 1 n . 1 
:x: E n C ( (f.(x) - r., t,(x) + r.)) C n C (G.) Co. 

11 l ll l 1 l l 

Because of (35), 

n 

X E n sd (x) C o. 
1 · f.' l;' i 

l 

Therefore 

{ sd r(x): d E F, r > o, aqd X E X} 
' 

is a subbase for 'X'. 

Now suppose that there is a non-empty family P of pseudo-

metrics on X such that 

>:C 
, S ;: { Sd (x) : d E p I r > Q} 

, Ir 

is a s-ubbase for T. By Theorem 1. 14, 

{ Vd : d E p and r > 0} 
. ' r 

,:~ 
is a 131;tbbase for a uniformity U for X. Let TU be the topology 

* induced by U , It will now be shown that TU := T and hence that 

(X, T) is unifal;'mi;z;able. 

Let O be in TU and let x be in 0, Since finite intersections 

* * of relations in A for a base for U , then 

where, for each i, 

n 

0 ::)(nl vd.,r.)[x], 
l l 

* Vd is in A , . , r. 
l l 

Now 
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( n vd ) [x] 
. 1 i' 1; i 

:: (11 (Vd.,r.[x]) 
. i l, 

and the last set contains x. Since 

is. in T, 0 is in T. 

n 

nl. (Sd.,r.(x)) 
1 :J. 

Now let O be in T and let x be in 0, 

for T. then 

n 

* Since S ii:; a $1.lbbase 

X E n (Sd (x.) ) C o. where for each i, 
1 .• r. i 

l. 1 . 
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For each i, there isa ti such that sd.,t.(x) C sd,,r_(xi). Therefore 
1 1 1 l, 

which implie 13 that 

Sin~e 

then 

n n 

n sd .• t. (:x:) C n sd (x. L 
1 1' 1 1 i' 1

\ 
1 

n 

n s4 ., t. (x) C o. 
1 1 l 

n n 

n
1
· Sc;i., t.(x) = (n V cl.. t) [x] 1 

1 :J. 1 i 1 i 

n 

(n
1 

vd_,t.)[>i:] Co. 
~ l. 

* n * Since A is a subbase for U , then n V d. • t. is in U . Therefore 0 
1 1 l 

is in T '(J' 'l'herefore T :: TU and (X, T) is -u.niformizable~ 



CHAPTER V 

CHARACTERIZATIONS OF 

TYCHONOFF SPACES 

If a completely regular space is also a T 
1 

space, then, it has 

some interesting characterizations besides those mentioned in the 

previous c;hapters, These variou$ characterizations will be examined 

in this chapter, All of the characterizations wUl be in terms of em­

beddings, except for the first which will be in terms of C(X). Several 

definitions must first be stated. 

DefinJtion 5, 1 A topological space is c\. Tychonof£ space if and 

on.ly :i,f it is c;ompletely regular and T 
1

• 

There is no general agreement about the name of this type of 

space. The clefinition given a,bove agrees with that of Kelley (12). 

CullEln (5) calls this space a c9mpletely regular space. Since a com,.. 

pletely regular space is alf:!o a regular space 1 the T 
1 

property and 

the T 
2 

property are equivalent properties for a completely regular 

$pace, Therefore the T 
1 

property in this definition c;:an be replaced 

by the T
2 

property. 

Definition 5. 2 A .family F of function$ on X: distinguishes 

points if and only if1 for any two distinct points x c;1.nd y in X, there 

exists an £ in F such that f(x) ~ f(y). 
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Theqrem 5, ~ A topological space (X, T) is a Tychonoff space 

if and only if C(X) distinguif?hes points and distinguishes points and 

c:losed sets, 

Proof: By Theorem 3. 2 (X, T) is completely regular if and only 

if C{X) disting'Q.ishes points and closed sets, 

Suppose first that (X, T) is a Tychonoff spc;1.ce and let x anc;l y 

be in X such that x 1 y t Since {X1 T) is T 
1

, { y} is a closed set and 

x e {y}, Therefore, since (X, T) is completely regular, there is an 

f in C(X) such that f{x) = 0 and· f(y) = l, Hence f(x) -1-, f(y), There -

fore i£ (X 1 T) is a Tychonoff space, then C(X) distinguishes points. 

Suppose now that C(X) disting1+ishes points, Let x and y be in 

X such that x 'f Yt Then there exists an f in C(X) such that 

f(x) -:I f(y). Since E
1 

is Hausdorff, there exists two disjoint open 

$'tlbsets G and H of E
1 

such that f(;x) is in G and f(y) is in H. 

Then x is in (" 1(G) and y is in f-
1

(H), Since f is continuous ('"
1

(G) 

and C' 1 (H) are open subsets of X, Also C 1 (G) and C 1 
(H) c1-re dis-

joint, Therefore if C(X) distinguishes points, tht:m (X, T) is T 1• 

Conseql;lenUy (X, T) is a Tychonoff space if and only if C(X) distin-

guishe s points and distinguishes points and closed setf?, 

Definition 5. 4 I£ for any i in an indexing set Q, X. = [o, l )1 
l 

and [O, 1] has t;ht;: usual topology, then x X., with the product topol­
. Q l 
~E ' 

ogy, is called a cube, 

Theorem 5, 5 A tc::>pological space (X, T) is a Tychonoff space 

U and qnly if it can be embedded in a cube . .. 

Proof: Assume (X, T) is a Tyc;honoff space, Let 
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F = {f e C(X): f(X) C [o, 1]} 

F 
and let I be the cube indexed by F, Define a function e from X into 

F 
I such that, for any x in X and any f in F, e(x)f = f(x), For any 

f in F, let Pf be the projection of IF onto [0, llr Then, for any f in 

F and any x in X, (Pf o e)(x) = e(x)f = f(x). Therefore, for any f in 

F, Pf o e = f, which implies that Pf o e is continuous, Therefore 

e is a continuous function ( lZ, p. 91). 

Let x and y be in X suc;h that x 'I- y. Since (X, T) is com .. 

pletely regular and T 
1

, there exists an f in F such that f(x) = 0 

and f(y) = 1, Hence e(x)f 'I- e (y) f and consequently e (x) 'I- e (y), 

Therefore e is one-to-one, 

Finally it must be shown that e is an open mapping. So let 0 

be an open subset of X and let y be in e(O). Then theve is an x in 

0 such that e(x) = y. Since (X, T) is completely regular, there 

exists an f in · F such that 

f(x) = 0 and f(X-0) C {l}, (36) 

Let 

· F -1 
N = {w e I : w f e [o, 1)} =; Pf ([o, 1) ), 

The ~nterval [O, 1) is an open subset of the space [O, 1] and hence N 

. . IF 1s open 1n , Therefore · N n e(X) is open in the subspace e(X) 

of IF. Because of (36) yf = e(x)f = f(x) = 0, Therefore by definition 

of N, y is in N, Since y is in e(X), y is in· N n e(X). Now 

N n e(X) C e(O), For, u in ·N n e(X) implies that u' is in ,N and 

u = e(w), where w is in X. Therefore uf = e(w)f = f(w) is in [O, 1), 

and hence f(w) i:, 1. Because of (36), w is in 0. Consequently u is 
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in e(O). Therdore y EN n e(X) C e(O), where N n e(X) is open 

in the subspace e(X). This impUes that e(O) is open in the subspace 

e(X), Therefore the spac;:e (X, T) c;an be embedded in the cube IF. 

Now suppose that (X, T) can be embedded in a cube IQ. Then 

since the space [O, l] is a pseudometric space, (X, T) can be eml;:>ed-

ded in a product of pseudometric; spc;1.ces. Therefore, by Theorem 

4, 6, (X, T) is completdy regular. The space [O, l] is a T 
1 

space, 

Since a product of T 
1 

spaces is a T 
1 

space, IQ is a T 
1 

space. Let 

f be a homeomorphism from X onto a subspace of IQ and let x be m 

X. Then {f(x)} is closed in IQ, Since f is continuous, f- 1{f(x)} 

is closed in X, Since f is OQ.e ... to-one, f- l {f(x)} = {x} and hence 

{x} is closed in X. Therefore (X, T) is a T 
1 

space. Consequently 

(X, T) is a Tychonoff $pace. 

Theorem 5. 6 A topologic;al space (X, T) is a Tychonoff space 

if and only if it can be embedded in a product of metric spaces. 

Proof; If (X, T) is a Tychonoff space, then by Theorem 5. 5 

(X, T) can be embedd,ed in a cube. Since a cube is a product of metric: 

spaces, (X, T) can be embedd~d in ~ product of metric spaces. 

Suppose (X, T) can be <';!m,bedded in a product of metric spaces, 

Since a metric $pace is a pseudometric space, (X, T) can be embedded 

in a product of pseudomet;i.,ic spaces. Hence, by Theorem 4, 6, (X, T) 

is completely regular. Since a metric space is a T 
1 

space, (X, T) 

can be embedded in a product of T 
1 

spaces. It was shown in the last 

part of the proof of Theorem 5, 5 that any space which ca.n be embedded 

in a product of T 
1 

spaces is also a T 
1 

space. Thus (X, T) is a T 
1 

space, Therefore (X, T) is a Tychonoff space. 



Theorem 5. 7 A topological space is a Tychonoff space if and 

only i£ it can be embedded in a compact Bausdorff space. 
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Proof: SuppoE;;e (X, T) is a Tychonoff space. By Theorem 5, 5, 

(X, r) can be embedded in a cube. The closed unit interval with its 

U$ual topology is compact and Hausdorff. Tychonoff 1 s product theorem 

states that a product of compact spaces is compact. Also a product 

of Hausdorff spaces is a Hausdorff space. Therefore the cube is a 

compact Hausdorff space, and hence (X 1 T) can be embedded in a com­

pact Hau[:idorff space, 

Suppose (X, T 
1

) can be embedded in a compact Hausdorff space 

(Y, T
2

), A compact Hausdorff space ii:i a normal space. Therefore 

(Y, T
2

) is a normal space. Let C be a closed subset of Y and let x 

be in Y - C. Sinc;:e (Y I T 
2

) is a Hausdorff space it is a T 
1 

space, 

and hence {x} is a closed subset of Y. According to Urysohn 1 s 

lemma, if A and B are disjoint closed subsets of a normal space X, 

then there exists an f in C(X) such that f(X) C [O, 1], f(A) C {O}, 

and f(B) C {1}. Therefore there exists an fin C(Y) such that 

!(Y) C [O, l] 1 f(x) = 0, and f(C) C {1}. Therefore (Y, T 2 ) is a com­

pletely regular space. Therefore, by Lemma 4, 4 and Lemma 4. 5, 

(X, T 
1

) is completeLy regular. As was shown in the last part of the 

proof of Theorem 5, 5, a space which <:;an be embedded in a 1' 
1 

space 

is also a T 
1 

space. Hence (X, T 
1

) is a T 
1 

space. Therefore (X, T 1) 

is a Tychonoff space. 

Deftnition 5, 8 A topological space (X 1 T 
1

) has a Hausdorff 

compac;:tificatton if and only if the re exists a compact Hausdorff space 

(Y, T
2

) and a homeomorphism f from X onto a dense subspace of Y. 
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Theorem 5. 9 A topological space (X, T 
1

) is a Tychonoff space 

if and only if it has a Hausdorff compactification. 

Proof: If the space (X, T 
1

) has a Hausdorff compac:::tification 

then it can be embedded in a compact Hausdorff space. Therefore, by 

Theorem 5. 7, (X, T 
1

) is a Tychonoff space, 

Suppose (X, T 
1

) is a Tychonoff space, By Theorem 5, 7, (X, T 
1

) 

c;:an be embedded in a compact Hausdorff space (Y, T 2 ). Hence there 

exists a homeomorphism f from X onto M, where M is a subspace 

of Y. M, the T 2 -closure of M, is a closed sub set of Y. Any closed 

subset of a -compact space is compact. Therefore M is compact, Any 

subspace of a Hausdorff space is Hausdorff. Hence M is Hausdorff. 

Also M is a dense subspace of M, since the c;losure of M relative to 

the subspace M is M. Therefore f is a homeomorphism from X onto 

M, where M is a dense subspace of the compact Hausdorff space M. 

Therefore (X, T 
1

) has a Hausdorff compactification. 



CHAPTER VI 

THE UNIQUENESS OF ADMISSIBLE 

UNIFORMITIES 

In the previous chapters, conditions under which a topological 

space has an admissible uniformity were investigated. It is a natural 

outcome of this to ask when a uniformizable space has a unique admis­

sible uniformity. A sufficient condition for a uniformizable space to 

have a unique admissible uniformity is that the space be compact. 

This was first proved by A. Weil (18). Doss (7) proved that a neces ­

sary and sufficient condition for a Hausdorff uniformizable space to 

have a unique admissible uniformity is that for any two normally 

separable sets at least one must be compact. The problem of charac­

terizing spaces with a unique admissible uniformity has also been 

studied by Newns (13) and Gal (9). In this chapter it will be proved 

that if the space is uniformizable and compact then it has a unique 

admissible uniformity. It will also be proved that the criterion given 

by Doss is a necessary condition for a uniformizable space to have a 

unique admissible uniformity. Then this necessary condition will be 

used to show why various uniformizable spaces have more than one 

admissible uniformity. 

In the following two lemmas, subsets of X x X which are said 

to be closed, open, neighborhoods of points, or closures of sets will 

be so in terms of the product topology for X x X dete r mined by a 

77 
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u1,1.iform. topology for X. 

Lemma 6. 1 The fam~ly of closed members of a 1,rnUormity is 

a base for the uniformity, 

* ~ Proof: Let U be a uniformity for X and let U be in u'''. By 

* Lemma 4, 12, there is a symmetric V in U such that Vo Vo V C U. 

It will be shown that V C Vo Vo V. Let (a, b) be in V. By Corollary 

2. 6, V[a] and V[b] are TU ~n.eighborhoods of a and b respectively. 

Then there exist sets G and H in TU such that 

(a, b) e G X H C V [a] X V [b], 

Therefore V [a] x V [b] is a neighborhood of (a, b). Hence 

V [a] x V [b] intersects V. So let (x, y) be a member of V which is 

also in V [a] x V [b ]. Then (a, x) and (b, y) are in V. Since V is 

symmetric, (y, b) is in V, Because (a, x) 1 (x, y), and (y, b) are in 

V, (a, b) is in Vo Vo V. Therefore V CV o Vo V which implies that 
~ ~ 

V ( U. V is in u''' sinqe V C V and V is in U ~. V is closed. Con-

')'"' * 
sequeqtly ei;i.ch member of U '' contains a closed member of U . 

Therefore the closed members of U,:, form a base for u*, 

Lemma 6. 2 The interior of any member of a uniformity is 

also in. the uniformity. 

Proof: Let U be in u':<, a uniformity for X. By Lemma 4. 12 
.,, 

there is a symmet:dc V in u'" such that Vo Vo V C U. It will be 

shown that V C int U, the interior of U relative to the product 

topology for X X X determined by Tu· So let (x, y) be in V. As was 

shown in the proof of Lemma 6, 1, V [x] X V [y] is a neighborhood of 



79 

(x, y) relative to the product topology. Now V [x] x V [y] C U. For 

if (ti, v) e V [x] X V [y], then (x, u) and (y, v) are in V. Since V is 

syrrimetric, (u, x) is in V. Hence (u, v) is in Vo Vo V, which implies 

that (u, v) is in U. Because of the ~ast set inclusion U is c1, neighbor-

hood of (x, y). This implies that (x, y) is in int U. Therefore 

V C intU. Since V is in u\ intU is in d!<, 

Theorem 6. 3 If (X, T) is a compact unifo:i;mizable space then 

the re is a un~que uniformity u~' for X whic;h is compatible with T. 

In fact d:' is the set of all neighporhoods of DX. 

* Proof: Let U be a uniformity for X such that TU :: T. Let 

* * U be in U'. By Lemma 6. 2, int U is in U . This implies that 

DX C int U1 Sim;e int U is open in the product space X x X and 

since int U C U, then U is a neighborhood of DX. 

;Now let N be a neighborhood of DX. Then. there is an open 

subset G of the product space such that DX C G C N. By Lemma 

6. 1, there exists a family A,:, of dosed members of u* which is a 

base for U,:,, 
,I, 

Let B = n {U: u E -4\."'} and let (x, y) be in B. Since 

(x 1 x) is in G, there are T .,,open sets O 
1 

and o
2 

such that 

(x, :x) e o
1 

x o
2 

C G. There is a U in u* such that U [x] C o
2

, 

since· d!< is c;ompatible with T, There exists a V in A,:, such that 

V ( U, Since (x, y) is in B, then (x, y) is in U. This implies that 

y is in U [x], and hence that y is in o
2

. This implies that (x, y) is 

in o
1 

X o
2 

and hence that (x, y) is in G. Consequently B C G. 

Therefore X X X - G C X X X - B. Consequently 

:::< 
X XX ... B = U {X x X - U: U e A } :,) X X X - G. 
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Beca\lse (X, T) is compact and because of Tychonof£1 s produc;t theo-

rem, the produc;:t space XX X is c;ompact, Since any closed subset 

of a compact space is compact, X x X - G is compact, For any U 

* * in•A I XX X - U is open. Therefore {Xx X - U: U eA} is an 

open covering of X X X ,.,. G. Hence there is a finite subfamily 

{U 
1

, u
2

, • , . , Un} of A~:< such that 

n 
U {X X X - U.} ) X XX .. G. 
1 1 

Hence 

n 
XX X - n U. :) X x X - G, 

1 1 

n 
which implies that n u. C G. 

1 
1 .,, n 

Since each U. is in u''', n U. 
1 1 1 

Since G C N, then 

>l<: 
is in U Thus N is 

n 
nu. c N. 

1 
1 J, 

in u'''. The re -

* fore U is the set of all neighborhoods of the diagonal in the product 

space. 

Compactness is not necessary in order that a uniformizable 

$pace have a unique admissible uniformity. An example of a uniform-

izable space with a unique admissible uniformity which is not a com-

pact spacl;) ha1;1 been given by Dieudonn~ (6), If (Xl T) is a uniform-

izable space for which X is finite, then (X, T) is a compact space, 

and hence, by Theorem 6. 3, (X, T) will have a unique admissible 

uniformity. Because of this there is a one -to-one correspondence 

between the topologies for a finite set X for which the resulting 

spaces are completely regular and the uniformities which may be 

defined for X, 
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Theorem 6. 3 caq, be used to prove a theorem which is analogous 

to a theorem, in analysis. 

Theorem 6,4 If (X, u*) and (Y, v*) are 1,rniform spaces, 

(X, TU) is compact, and f is a continuous function from X into Y 

relative to TU and TV' then. f is uniformly continuous relative to 

,:~ * 
U and V. 

Proof: Defin,e Pa and Pb to be the projections of Y X Y into 

Y such that Pa (u 1 v) ;:: u and Pb (u 1 v) ;:: v for any u and v in Y. Let 

0 be in Ty. Then 

(P of)~ 1 (0) 
a 2 

= f- l (P- l (0)) = 
2 a 

-1 
f
2 

(0 X Y) 

= {(x, y): (f(x). f(y)) E Ox Y} 

-1 
But this last set is f (0) x X, which is open in the product space 

X x X. Therefore Pa o f2 is continuous relative to the product to­

pology for X X X and T v· Sim~larly it can be shown that Pb o f2 

is also continuous relative to the same topologies. Therefore f2 is 

continuoul:3 relative to the product topology for X x X and the product 

?~ 
topology for Y x Y. Now let V be in V . By Lemma 6, 2, int V is 

>'c 
in V' ~ which implies that Dy C int V. For any (x, x) in DX, 

f
2

(x, x)::: (f(x), f(x)) is in Dy and hence is in intV. Therefore 

C 
-1 

DX f
2 

(int V), Since int V is open in' Y x Y and /:l ince f 2 is con-

tinuous, f2
1 (intV) is open in Xx X. Hence £21 (int V) is a neigh­

borhood of DX in the product space X x X. Since 

-1 C f2,..l (V), f2 (int V) 

then £2
1 

(V) is a neighborhood of DX. Since (X., TU) is compact and 
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because of Theorem _6. 3, £2
1 (V) is in u*. Therefore f 1s uniformly 

:::=:: * 
continuous relative to U and V . 

The next theorem will give a necessary condition £pr a space 

to have a unique admi!'lsible uq.iformity, It is part of the previously 

mentioned theorem by Doss (7). Before it is proved,. a number of 

definitions and lemma will be presented. 

Definition 6, 5 A filter on a set X is a non-empty collection 

F* of subsets of X which have the following properties. 

(i) The empty set is not a member of F*. 

(ii) The intersection of the sets in any finite subfamily 

* * of F is also a member of F . 

* (iii) Any subset of X which contc1.ins a member of F is 
,,, 

a member of F'', 

Definition 6. 6 * is said to be a base of the filter F on the 

* * * set X if and only if B C F and each member of F contains a 

:::=:: 

member of B , 

* Definition 6, 7 If F is a filter on (X, T) and x is in X, then 

* x is a cluster point of F if and only if x is in the T ... closure of each 

,:c 
;:,et in F . 

,,, 
De£inition 6, 8 If F'' is a filter on (X, T) and x is in X, then 

~:=:: 
x is a lim,it point of F or, F* converges to x, if and only if every 

:::r.: 
T-neighborhood of x is a member of F , 

~:r.: ,,.T .. 

Definition 6, 9 . A filter F on a uniform space (X, u''') is said 

* :i!< 
to be a Cauchy filter on (X, U ) or relative to U if and only if for 
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* * any U in U , there is an ,N in F such that N x N C U. 

Definition 6. 10 Two subsets A and B of (X, T) are said to be 

normally separable if and only if A and B a:r:-e closed, disjoint, and 

there is an fin C(X) such that f(A) C {O} and f(B) C {l}. 

Lemma 6. 11 * If G is a non-empty collection of subsets of X 

with the property that the inte :rsection of the seti;; in any finite sub-

* * £amily of G is non-empty, then there is a filter F on X such that 
... ,.. ')'( 

c''' C F', 

* . Proof: Let F be the collection of all subsets of X such that 

* each contains the intersection of the sets in a finite subfamily of G .. 

Then, F>:, is a non-empty collection of non-empty sets ancl G>:< C F*. 

Obviously any subset of X whic;h contains a member of F* will be a 

>:c * 
men;iber of F . Let H be the collecticn of all sets which are the 

- * intersection of the sets in a finite subfamily of G and let 

* Fl' F 2 , .. ~· , F n be in F . Then for any i F. ) G., where G. 1s 
1 1 1 

* in H , Since 

n n 
n F

1
. ) n G. 

1 1 1 

n 
and since n G. 

1 
is the intersection of a finite number of sets in d\ 

n l X' n F. is in F'', 
1 

* Therefore F is a fi~ter on X. 
1 

Lemma 6. 12 * * If F is a Cauchy filter on (X, U ), a uniform 

* space, then any cluster point of F relative to TU is a limit point of 

'):< 

F :relative to Tu· 

-·, 
Proof; Let x be a cluster point of F" relative to TU and let 
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':::c * * U bein U , There is a V in U such that VoV CU. Since F :is 
.,, 

a Cauchy filter, there exists an, N in F'' suc;h that N x N C V. By 

Corollary 2. 6, V [x] is a TU.,.neighborhood of x. - Since x is a cluster 

* point of F relative to TU' then x is in the Tu-closure of N and 

consequently V [x] n N :f. (IL Let a be in V [x] n N. Then (x 1 a) is 

in V and a is in, N. Now N C U [x]. For if b is in N, then 

(a, b) e N x N C V, 

Since (x, a) and (a, b) are in V, 

(x,b) eVoV CU. 

This implies that! b is in U [x], By property (iii) of a filter, U [x] is 

in F\ Since { U [x]: U e u*} is a base, for the T U~neighborhood 

:::¢ 
system of x 1 then any T U .. neighborhood of x is in F . Therefore x 

>l< 
is a limit point of F relative to Tu· 

Lemma 6. 13 If (X, T) is a Hc;i.usdorff space, then no filter on 

X can have more than one limit point. 

Proof: Let F* pe a filter on X and let x and y be limit points ,, ' 

* of F suc;h that x f:. y. Since (X, T) is Hausdorff there are two dis~ 

joint neighborhoods O and O of x and y respectively. Since x is 
X y 

* * a limit po~nt of F , 0 is a member of F . Likewise O is a mem .. X , y 

* ber of F , . Hence, by properties of a filter, 0. n O :f. (IL But 
X y 

Ox and Oy are disjoint. Therefore x ::: y. 

Lemma 6. 14 If (X, T) has the property that every filter on X 

has at least one clus~ir point, then (X, T) is compact, 
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Pi,oof; Suppose (X, T) is qot c:ompact, Then there is a family 

)!< 
G of closed subsets of X whic;h has an empty intersection but which 

,.-i ,:< 
has the property that the intersection of each finite sub.!amily of G 

't 

is non-empty. . * * Since the intersec;Hon of the sets in G is empty, G 

is noq-empty. By Lemma 6. 11, there is a filter F* on X such that 

* ( * ,:c G '-r- F . By the hypothesis, F has a ciuster point x, Since x 

* belongs to the closure of each set in F , then x belongs to the closure 

* * of each set in G', Sinc;e the sets in G' are dosed, x is in the inter-

* * section of the sets in G , But the intersection of the sets in G is 

empty, Therefore (X, T) is compact. 

, .. 
Lemma 6. 15 If {u':, i e I} is a family of uniformities for X 1 

~ 
;,', ?'( 

S' ::: U t] 'i is a subbase for a uniformity for X. 
h I 

then 

* Proof: Clearly, eac;h member of S contains the diagonal of X. 

* * For any u in s' I there is a j in I such that u is in u'., 
J 

,,, 
Since u·: 

J 
1 * * is a uniformity, U~ is in U. and there exists a V in U. suc;h that 

J J 
* * Rll l . * V o V C U, Since U j ( S , U and V are in S . Therefore, by 

' :!c: 
Theqrem· 1. 1~, s' is a,. subba:;ie fo:ti a uniformity for X. 

· Lemma. 6. 16 lf (X, T) is a uniformizable space and F is the 

family of all uniformities for X which are compatible with T, then 

* >lt: ~:( 
S ..: U {U : U e F} 

* * is a subb1;1.se fo:r a uniformity W' on X, Moreove;1; W is c;ompatible 

with T and, for any f in C(X), f is uniformly continuous relative to 

* ;i:~ 1 W and the u1H;1.al uniformity V for E , 

Proof: By Lemmg. 6. 15 1 s* is a :;;ubbase for a unifon:r1ity W~:~ 
-· F 1 
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for X, +t must be-shown that TW = T, Let O be a T~open set and Let 

x be in O. Since (X, T) is uniformizable there is a uniformity U,:, for 

)', 

X compatible with T, Bence there is a U in U' such that U [:x:] C O. 

>~ ~< >:< >:C 
Since U C S I U C W . Therefore O is T w-open.. Now let 0 

be Tw-open and let x be in 0. 
>!< 

Then there is a U in W such that 

U [:x:] C O. Since s'I.' is a suqbase for w* 1 there exist relations 

Therefore 

* , n 
in s such that n u. C u. 

1 1 

n n 

This implies that 

f1 (U. [:x:]) = 
1 1 

( n u.) [x] C u [:x:Ji 
1 1 

n 
n (u. [xJ) c o. 
1 1 

Because of Corollary 2, 6 and because each U i is a member of a uni,., 

f ormity compatible with T I U. [:x:] is a T .. neighborhood of x for each 
;I, 

i. Therefore O is a T-neighb0rhood of x. Thus O is a T-open set, 

Since · T = T W' W~:, is compatible with T. Since (X, T) is uniform., 

izable, it is completely r~g\llar. As was shown in the proof of Theo-

rem 2. 1, 

1 , ,,, 
p = Uz (V): f E C(:X:) and V e V~} 

>!<; 
is a subbase for a uniformity UC £or X which is compatible with T. 

* >~ >l< -1 >!~ 
Since P C UC C S C W , f2 (V) ii;i in W for each f !n C(X) and 

each V in v*. Therefore, for any f in C(X) 1 f is uniformly contin-

>I< >l< 
uous relative to W and V , 

Lemma 6, 17 ~f (X,T) is a uniformizable space and F,:, is a 

filter op. X wi~hout a cluster point in X 1 then. there is a unJformity 
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;I: 
£or· X compatible with T such that F is a Ca,uchy filter .relative 

* to U . 

Proof: Let a 1;: X and let N be a neighborhood of a, Since 
a 

a is not a cluster point of F)!c, there is an F in F::~ and a neighbor-

hood N
1 

of a such that N
1 

f'1 F is empty. Let N::: Na f'1 N
1

. Then 

N is a neighborhood of a, N C N , and N n F is empty. Since 
a 

(X, T) is uniformizable, (Xf T) is completely regular. Therefore 

there exists an f in C(X) suqh that f(a) ::: 0 and f(X - N) i:: { l}. 

Since fCX-N, f(F)={l}, 

Now let r > 0, Since f is continuous, then for any x in X 

there exists a neighborhood Mr of x such that / f(x) - f(y) / < r for 
X 

any y in M:. Let N: be the set of all points y in X for which 

/f(x) ~ f(y)/ 'j( r, 

Let 

Since Mr C Nr then Nr is a neighborhood of x. 
X x' X 

V ::: 
r 

U (Nr X Nr ). 
XE;X X X 

!t is true that F x F C V r' For let b be in F. Then f(b) ::: 1 

d b . . Nr 
an 1s 1n b' Since f(y) = 1 for any y in F, /f(b) - f(y)/::: 0 < r 

for any y in F, This implies that y is in N~ for any y in F. Thus 

F C N~ and hence F X F C N~ x N~. Since N~ x N~ C V r' 

F x F ( V . (37) 
r 

It will now be shown that {V r: r > O} is a base for a uniformity 

for X, Let r > 0 and let (x, x) be in DX. Since / f(x) - f(x) / < r, 

x is in Hence (x1 x) is in N: X N: which implies that (x, x) is 

in V r' Therefore, for any r > 0, DX C V r' 



Let (u, v) be in V . Then for some x in X 1 (u, v) is in 
r 
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Nr X Nr. This implies that (v1 u) is in Nr X Nr which implies that 
X X . X X 

(v, u) is in V , Therefore for any r > 0, V is symmetriG, 
r r 

Let (x,z) be in. Vr/4 o Vr/ 41 Then there is a y suchthat 

(x, y) and (y. z) are in V r/4' 
Therefore, there is a u 1n X such that 

(x, y) is in Nr/4 
X 

Nr/4 and there is a Vin X such that (y, z) 
u u 

·Nr/4 X Nr/4 This implies that 
V V ' 

1£(u) -f(x)I < r/4, 1£(u)-f(y)I < r/4, 1£(v) -f(y)/ < r/4, 

and 1£(v) - f(z) I < r/4. The first two inequalities imply that 

I f(x) - f(y) I < r /2 and the last two inequalities imply that 

I f(y) - f(z) I < r /2. Now these la~ter two inequalities imply that 

is in 

jf(x) - f(z)j < r. Therefore z is in Nr, 
X 

Since x is in Nr, (x, z) 
X 

. . Nr Nr lS 1n , X , 
X X' 

This implies that (x, z) is in V . . r Consequently 

vr/4ovr/4 C vr. Therefore, by Theorem 1. 13, {V : r > O} is a 
r 

>!i: 
subbase for a unUormity U N for X. a, Now let U be in u* N" a,. 

Then 

there exist po13itive num.bers r 1, r
2

, ..• , rn such that 

Let r~ be the minimum of {r 1, r
2

, ... , rn}, It is a straightfor­

ward exercise to show that 

Therefore {V r: r > O} * is a base for U · N' a, 

Suppose that r < 1 /2 and that x is in V r [a], Then (a, x) is 

in V r which implies that (a 1 x) is in N: x N:1 for some u in X. 
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This implies that I f(u) ... f(a) / < r and / f(u) .,. f(x) / < r. Therefore 

jf(a) - f(x)/ < 2r < 1, Since f(a) = 0, jf(x)j < 1. Since 

f(X-N) = {l}, xii;, in·N, which ts a subset of N. Therefore 
a 

if r < 1/2, then V [a] C N , (38) 
r a 

Now let x be in X, r > 0, and y be in Nr. Since x isin Nr 
X X 1 

(x, y) · · Nr X Nr. lS 1n X X So (x, y) 

Therefore · Nr C V [x]. Since 
X r 

is in V and hence y is in 
r 

Nr ts a neighborhood of x, 
X 

a T-neighborhood of x. Therefore, 

V [x]. 
r 

V [x] is 
r 

for any x in X and r > 0, V [x] is a T-neighborhood of x. (39) 
r 

The results of the last two paragraphs will be used later in this 

proof. Presently though, it has been shown that, for any a in X and 

for any neighborhood N of a, the associated collection {V : r > O} 
a r 

-·-
is a base for a uniformity u'''. N for X. By Lemma 6. 15, 

a, 

s* = U {u:, N' a e X and N a neighborhood of a} 

is a subbase for a uniformity v* for X. 
>!t 

It will now be shown that U 

is compatible with T. 

Let O be a Tu-open set and let x be in 0. Then there is a U 

in U:I.< such that U [x] C Q. Then there exist uniformities U 
1

, U 
2

, 

. ' . ~ u 
n 

>::: 
in S such that 

n 
u :) n u .. 

l 1 

For each U., there is a set V such that U. 
r. 1 l 

n 1 

c1.n,d hence ( n V ) [x] C u [x]. 
1 ri · 

:) V . 
r. 

l 

Since 

Therefo;re 
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n 
( r1 V ) [x] = 

1 ri 

n 

n 
r1 (V [x]), 
1 ri 
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then r1 (V [x]) C 0. 
1 ri 

By statement (39), V [x] is a T-neighbor­
r. 

1 

hood of x for each i. Therefore O is a T-neighborhood of x. Hence 

0 is a T-open set. 

Let O be a T-.open set and let x be in 0. Since O is a T-

neighborhoqq. of x and because of (38), there exists an r > 0 such 

that V [x] C 0. 
r 

>!< 
Since V is in U , 0 is a TU-open set. r . 

>le 
Finally it must be shown that F is, a Cauchy filter relative to 

~ * u'''. Let V be in U . Then there exist sets V I V , , .. 
n r 1 r2 

such that V ) n V , Because of (37), there exists an F. 
· 1 ri n ;i. 

,v 
r 
~ 

in F , 

for each i, such that F. X F. C V . Let F = n F.. Then. F is 
1 1 r. 

1 
1 

n J,. 

in F* and F X F C f1 V 1 Therefore F X F C V. Hence F* is 
1 r. 

1 * a Caµc:hy filter relative to U , 

Theorem 6, 18 If (X, T) is a space with a unique uniformity 

compatible with T, then, for any two normally separable subsets of 

X, at least one is compact. 

Proof: Let (X, T) be a space with a unique uniformity U,:< com-

pati'ble with T and suppose A and B are two normally separable 

subsets of X such that neither is compact. By the definition of nor. 

mally separable, there is an f in C(X) such that f(A) C {O} and 

f(B)C{l}, 
'" ' 

Let U '" be the uniformity for X refe:i;-red to in Lemma 
w ,., 

6. 16. Then u'' = U and hence f is uniformly continuous relative w .. 
>l::: ~c 1 , 

to U and the usual uniformity V for E By Lemma 6. 14, there 

is a filter F* on A such that no point of A is a cluster point of F,:, 

relative to TA' the relativization of. T to A. Let F be in F,:,, The 
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closure F of F relative to T is a sub set of A, since f C A and 

since A is T-closed. The closure of F relative to TA is equal to 

A I) F, which, by the previous statement, is equal to F, Therefore 

* no point in A is a cluster point of F relative to T, For any x in 

,:< - -
X -A and any F in F , x is not in F, since F C A, Therefore uo 

point of X is a cluster point of F,:c relative to T. In a similar manner 

* H can be shown that there is a filter G on B such that no point of X 
J, 

* is a cluster point of G . Let s''' = {FUG:FeF 
:::c: ::l:; 

and G e G } . 

' * Clearly S is non-empty. For any finite subfamily 

>:< 
{ F. U G. : 1 < i < n } of S , 

l 1 

n n 
n (F. u G.) ) n F .. 
1 1 l 1 1 

n n 
>,'< 

Since F is a filter 1 (') F. and n (F. U G.) are non-empty. 
1 1 1 

1 1 ~ 
Because of Lemma 6. 11, there is a filter H'" on X such that 

s* C H,J<. As explained in the proof of Lemma 6, 11, H* is the collec-

tion of sets such that each contains the intersection of a finite number 

of sets in S. Let x e X. Then x is not a cluster point of either F* 

or G,:<, Therefore, there is an F in F* and a G in G* such that x 

is not in F and x is not m G. Hence x is not m F U G = F O G, 

Since F U G is in H\ x is not a cluster point of H*. Thus no 

. :{: 
point of X is a cluster point of H • Because of Lemm.a 6. 17 and 

>!< 
because of the fact that the uniformity for X is unique, H is a 

>l< 
Cauchy filter on X relative ~o U . 

Let f(H*) = {f(H): H e H*}. Since H,:c is non-empty, f(H>:<) is 
,,, 

non-,,empty. For any H in H,,,, f(H) is non~empty, If 

{f(H.): 1 < i < n} 
l 
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* is a subfamily of f(H ), then 

n n 
() f(H.) =:) f(() H.). 
1 1 1 1 

n n 
Since () H. is in H\ f(() H.) is in f(H>:\ Let K* be the callee~ 

;L . 1 

1 l l ~' >:< 
tion of all subsets of E which contain a member of f(H ). Then K 

is a filter on· E
1 

because of the previously 13tated properties of f(H>:<). 

Let V be in v*, the usual uniformity for E
1 

Since f is uniformly 

* >:< -1 . )::: 
continuous relative to U and V , then f

2 
(V) is in U , 

>l< ,::: 
is a Cauchy filter on X relative to U , there is an H in H such that 

C 
..,1 

H x H . f
2 

(V). This implies that f(H) x f(H) C V. Since f(H) is 

,::: ~:< 1 ;::< 
in K , K is a Cauchy filter on. E relative to V . 

Let H be in H*. Tp.en 

n 
· B =:) () (F. U G. ), 

1 1 1 

where, for each i, F. is in F* a,.nd G. is in c*. There is an x in 
1 1 

n n * * () F. and a y in () G., since F and, G are filters. Since 
1 1 1 1 

f(A) C {O} and f(B) C {l}, f(x) :; 0 and f(y) :; 1. Now {O, l} C f(H), 

because x and y are in H. Since f(H*) is a base for K>\ 0 and 1 

>l< 
are in K, for any K in K . Therefore O and 1 are clu::iter points 

of K>:<. By Lemma 6. 12, 0 and 1 are limit points of K* But E
1 

'" is a Hausdorff space and, by Lemma 6. 13, K''' can have no more 
I 

than one limit point. Because of this contradiction the original sup-

position in the proof is not true, Therefore both A and B are com-

pact. 

Example 6. 19 Let X be the set of positive real numbers and 



let T be the open interval topology for X. If A = { 1, 3, 5,.,.} and 

B = {2,4, 6, 1 •• } then A,. and B are closed disjoint sets, Define a 

function f from X into,E
1 

such that f(x) = x for O < x .:::_ l, 
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f(x) = x - 2n for any integer n > 1 and 2n < x.< 2n + l, and such 

that f(x) = -x +, 2n for any integer n > I and 2n - I < x. < 2n. Then 

f is in C(X), f(A) ( { I}, and f(B) C {O}. Therefore A and B are 

normally separable. Since A and B are unbounded, neither set is 

compact. Therefore, by Theorem 6, 18, (X, T) does not have a unique 

admissible uniformity. One admissible uniformity for the space is 

the uniformity which has as a base sets of the type 

{ (x, y) e X x X: /x - y / < r}, where r > 0, A different admissible 

uniformity for the space is the uniformity which has as a base sets 

of the form {(x,y) e Xx X: /x - y/ < rx}, where r > 0 and xis in 

X. 

Example 6, 20 Let X be an infinite set and let T be the dis­

crete topology for X, There are two disjoint infinite subsets A and 

B of X aqd these sets are closed. Define a function f from X into 

E 
1 

such that f(x) ;:: 1 for x in B and f(x) = 0 for x in X - B. Then 

f is in C(X), f(A) ( {O}, and f(B) C {l}, Therefore A and B are 

normally separable, 'rhe set A is not compact since { {x}: x e A} 

is an open covering of A which doesn't contain a finite sub-covering 

of A, Likewise the set B is not compact, Therefore by Theorem 

6. 18, (X, T) does not have a unique admissible uniformity. 

Theorem 6. 18 can be used tb show that any' Euclidean space 

En, where n > 2, d,oes not have a uniq-µe uniformity compatible with 

its topology. Let A= {(x
1

, ~ 21 •. , 1 xn): x 1 :::.. 1 and xi= 0 for i > l} 



and B = { (x 1, x 2 , , • , , xn) ; ~n > 1 and ~\ = 0 for i < 1.1}. Then A 

and B are disjoint closed subsets of En. En is a normal space, 

Therefore, by Urysohn I s lemma, there is an f in C(X) such that 

f(A) C { O} and f(B) C { l}. Consequently A and B are normally 

separable. Neithe:i:" A nor B is compact. Therefore, by Theorem 

6. 18, the $pace En, for 1.1 > 2, does not have a 1+nique admissible 
--, 

uni£o:rmity, 

If~ metric space (X, d) has two disjoint, closed, unbcmnded 
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subsets A and B, then it does not have a unique admissi,ble uniformity. 

A and B are normally separable because (X, d) is a normal space and 

because of Urysohn's lemma. Neither A nor B is compact since a 

compact subset of a metric spac:e must be bounded. Therefore by 

· Theorem 6, 18, (X, d) does not have a unique admissible uniformity. 
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