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PREFACE

Uniform spaces were introduced in 1937 by A, Weil (18) in an
attempt to generalize the idea of a metric space to-a space for which
uniform continuity and completeness could be defined w';thout using a
metric or a distance function, It was generally believed until this
time that a distance function was needed to define these concepts (4).

Briefly stated, a uniform space consists of a set X and a non-
empty collection Uﬂ< of relations on X which satisfy certain properties
in such a way that U* can be used to define a topology TU for X, uni-

form continuity of a function, and completeness, The collection U

is called a uniformity for X and T., is said to be the uniform topology

U
for X induced by U*. A topological space is uniformizable if its to-
poelogy is induced by some uniformity for X. Chapter I is an introduc-
tion to uniformizable spaces,

There are many different characterizations of uniformizability.
Perhaps the most widely known of thése is the property of being com~
pletely regular. Completely regular spaces, firgt introduced by
Tychonoff (17) in 1929, are defined in terms of the family of all con=
tinuous real-valued functions on the space. This characterization is
investigated in Chapter II. Other characterizations of uniformizability
which also use this family of functions are studied in Chapter III,

Chapter IV discusses various characterizations of uniformizability

which are in terms of a family of pseudometrics or pseudometric

spaces, Characterizations of uniformizable T1 spaces are

iil



investigated in Chapter V. In Chapter VI a sufficient condition and
then a necessary condition will be given in order that a uniformizable
space will have a unique uniformity which induces the topology,

I am very grateful for the guidance and encouragement given to
fne by my adviser Dr. Forrest Whitfield, during the preparation of
this thesis, Ialso wish to thank Dr,. E. K., McLachlan, Dr. John Jobe,
and Dr. W. Ware Marsden for serving as members of my advisory
committee.

I am especially thankful for the encouragement and support of

my wife Ruth, who sacrificed much that I might finish this degree,
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CHAPTER I

BASIC CONCEPTS AND THEOREMS

OF UNIFORMIZABLE SPACES

Before defining what a uniform space is, some basic definitions

and notations rﬁust be introduced. If U is a relation on X, then U"1

is the set {(y,x): (x,y) €eU}. U is said to be symmetric if U = U—l.

If U and V are relations on X, then
UoV = {(x,2): (x,y) €V and '(y,z) e U for some y in X},

The diagonal of X is the set {(x,x):x ¢ X} and is denoted by DX.

If U is a relation on X and A is a subset of X, then
U[A] = {y eX:(x,y) € U for some x e A}.

Although there are several equivalent definitions of a uniform

space, the following definition in Kelly (12) will be used,

- Definition 1.1 A uniform space (X, U*) is a set X and a non-~

empty collection U’ of relations on. X such that

(a) For any U in U*, D, is . a subset of U.

X
(b) For any U in U, vl s in U.
{c) For any U in U*, there exists a’'V in U  such

that VoVv (C U.

(d) If U and V are in U*, then U M V isin U .



(6) If Uisin U and U C V C X x X, then

ale
V isin U .

.Definition 1.2 If (X, U>‘<) is a uniform space, then U is called

a uniformity for X or a uniform structure for X, Members of U*

are called entourages of U>P.

Definition 1.3 If (X, U*) is a uniform space, then the uniform

topology TU for X is the collection of all subsets O of X with the

property that for any x in O there exists a U in o such that

Ulx] C O, T,, is said to be induced by U*.

U

It is easy to verify that T_. in the preceding definition is indeed

U

a topology for X, For certainly ¢} and X are'in T For any. i in

U

and let x be in U O.. Then for
U iel

some j in I, x is in Oj° This implies that there exists a U in U

I, an index set, let Oi be in T

such that Ulx] C Oj and hence U[x] C U Oi' Therefore U Oi
iel iel
is a. member of TU. If G and H are in TU and x is'in G () H, then
%
there are entourages U and V in U such that Ulx] C G and

VIx] C H. Therefore Ulx] M VIx] C G M H. Since
Ulx] N vix] = (UuNV)x]

and UMYV isin U, then GMH isin Ty.
The main concern of this paper is uniformizable spaces which

will now be defined.

Definition 1.4 A topological space (X, T) is uniformizable if

and only if there exists a uniformity U for X such that the uniform

topology induced by U is the topology T. U>‘< is called an admissible



uniformity for T or U is said to be compatible with T,

Example 1.5 For a given set X, define U = {X xX}. Itis

easy tg verify that U isa uniformity for X, For any x in X and U

in Ua\, U[x] = X, and consequently T._. is the indiscrete topology for

U
X.

- Example 1.6 For a given set X, define U” to be the family of

all relations on X which contain the diagonal of X, If U is in U*,
then U contains the diagonal and hence le does also, Therefore

U in U* implies that U“1 is in U*. I1f V is in U*, then DX is in Uz:<
and DXO'DX = DX (C V., The other three properties of a uniformity

are obviously true for U and so U is a uniformity for X. For any

x e X, DX[x] = {x}, and hence T__ is the discrete topology for X,

U

- As the preceding examples show, any topological space with the
discrete or indiscrete topology is uniformizable. However, not every

topological space is uniformizable as the following example shows.

Example 1.7 A topological space which is not uniformizable.

Let X = {a,b} and let T = {¢, {a}, X} If U is a uniformity for

¥
X and DX isin U , then by property (e) of a uniformity any relation

on X containing the diagonal is in U , and hence U is the uniformity

of Example 1. 6. Suppose-DX is not in U*? U is in U*, and U is not

X x X. Then without loss of generality U =Dy U {(a,b)}. Because

1

of property (b) of a uniformity U = = DX U {(b,a)} is in U*. There-

fore, by property (d) of a uniformity, U M U= Dy isin U . But

D. is notin U . Therefore if D is notin U, U ={X xX}, the

X

uniformity of Example 1.5. Since the only uniformities which can be

X



defined on X are compatible with the discrete and indiscrete topolo-

gies for X, then (X, T) is not uniformizable,

The two following definitions are often used.in defining a uni-

formity as will be shown later.

So

-Definition 1.8 A subfamily B ofa uniformity U is a base

for U if and only if each entourage in U" contains an entourage of

e
brd

B 0

Definition 1,9 A subfamily S of a uniformity U is a subbase

for U?'C if and only if the collection of all intersections of finite sub-

i

. * *
families of S 1is a base for U .

Three other basic definitions which will be used in this paper

are the following.

Definition 1. 10 If (X,U") and (Y, :V*) are uniform spaces and

if £ is a function from X into Y, then f is uniformly continucus
relative to U and V' if and only if for each V in v, fgl(V) is in

U%. f2 is the function from X x X into Y x Y such that

£,(x,y) = (=), {{y))
for any (x,y) in X x X.

. An equivalent condition for uniform continuity is that for any V

i

in V?', there is a U in U such that fZ(U) Cv.

Definition 1, 11 If {X,T) is a topological space, define C(X)

to be the set of all real-valued continuous functions defined on X,

where the real numbers have their usual topology.



-Definition 1, 12 The topological space (X, T) is said to be com-

pletely regular if and only if for any closed subset F of X and any x
in- X - F, there exists an f in C(X) such that f(x) = 0, f(F) C {1},

and £(xX) C [0, 1].

An equivalent condition for (X, T) to be completely regular is
that for any closed subset F of X and any x ¢ X - F, there exists an
f in C(X) such that f(x) = 1, £(F) C {0}, and £(X) C [0,1). Another
equi%ra.lent condition for (X, T) to be completely regular is that for
any x in X and any neighborhood N of x, there is an f in C(X) such
that f(x) =0, f(X-N) C {1}, and £X) C [0, 1].

The following theorems and corollaries will be frequently refer-
red to in various proofs in this paper, since they are often used to

~define a uniformity for a set,

Theorem 1,13 A non-empty family S of subsets of X xX is

a subbase for a uniformity for X if
(a) Forany S in S, S D Dy
(b) For any S in S*, s™! contains a member of S .

(c) For any S in S*, there isa V in.S such that

VoV C S.

. Proof: Let U* be the collection of all relations on X which

si¢ sk
contain the intersection of a finite subfamily of S, Since U contains
S and S is non-empty, U is non-empty. Let U be a member of

ol

U . Then there exist sets Sl’ S Sn in S such that

9 e @ o 9
2 n

. n :
! z "\ o
U oM S;. Since S, Dy for any i, (P S, D) Dy. Therefore

X
1 s‘:
U D Dy. For any i, there existsa T, in S" such that S;l D T..



This implies that

n
Since U contains () Si’

1
n
vl 5 syl
1 1
But
n n
(N syt =gt
1t 1 ¢t

n \’<
and consequently y! DEA T.l, Therefore U™! isin U .
1 %
For any i, there exists a le in S such that Tio T.l C Si' This

implies that

1

n n
M (T.oT.) C M 8S..
1 i i 1

Since
n n n
(M T)o(M T.) C M(T.0oT.),
1 i 1t O
then
n n n
(N THo (N THC NS CU
b Ot p i

n b3 sk ok
Since M Ti is in U", then for any U in U , there isa V in U< such
1
that VoV ( U.
If U and V are members of U%, then each contains the inter-

section of a finite subfamily of S  and hence their intersection con-

tains the intersection of a finite subfamily of S*, Therefore U M V



is in U*.

If Uisin U and U C V C X x X, then by definition of U*, V
contains the intersection of a finite subfamily of S*. This implies
‘that Vv is.-in U*,

Since the five properties of a uniformity are true and since -S*
is a subfamily of U*, then,S* is a subbase for U*,

In the next theorem and the remainder of this paper the notion of

a pseudometric will be the same as that defined in Kelley (1‘2),

Theorem 1. 14 If F is a non-empty family of pseudometrics on

X and for any p in F and r > 0, Vp .= {(x,y): p(x,y) <r}, then

A = {Vp P ¢F and r > 0} is a subbase for a uniformity for X.

3

Proof: Let V r be a member of A>l<. If x €eX, then p(x,x)=0

P

and hence (x,x) is'in V . Therefore Dy Cv

; p, T
For any (x,vy), p(x,y) <r if and only if p(y,x) <r, Therefore
A% = V'"1 and hence le contains a member of A .
P T P, T P, T
Now

V. roVv_r CV .
psz_ pyz‘ pxr

For if (x,2z) isin V_ r o V_ r, then there exists a y such that (x,y)
paz psf v
isin V_ r and (y,z) isin V_ r, This implies that
ps”z“ ps’z

r T
p(x,y) < 3 and ply, z) <3,
which in turn implies that

p{x, z) < p{x,y) + ply,z) < r.



Since Vp'i is in Ax, property (¢) of Theorem 1. 13 is true. There-
?2 |< \l{
fore by Theorem 1,13, A" is a subbase for a uniformity U for X,

which consists of all relations on X which contain the intersection of

43

a finite subfamily of A .

-Corollary 1. 15 If p is a pseudometric on X, then

e
bd

A = {Vv

pr,:r>0}

'is a base for a uniformity for X which is compatible with the pseudo-
metric topology T for X. Therefore any pseudometric space is uni-

formizable,

" Proof: By Theorem 1. 14, A>F is a subbase for a uniformity U
for X, where U>‘< consists of all relations on X which contain the
intersection of a finite subfamily of A", Let U be in U>‘<. Then there

r

n
are positive numbers r , ¥, suchthat U ) MV . If

P, T

1" "2 1 i

r is the minimum of {rl, r C T }, then

2,

n
MV A\
1 p,rij p, T

and so U D'V_ _. Since V isin A" and A" C U, then A" is
ps r s T
a base for U . Actually U~ is the collection of all relations on X

. . ok
which contain a member of A ,

For any r > 0 and any x ¢ X,

Vp,r[X] = {y: (%) eVp’ 1= yrplxy) <r} = 8 (x),

an open sphere about x of radius r. If O is in TU and x is in O,



: Sk 3
then there exists a U in U such that U[x] (C O, Since A is a base

for U*, there is an r > 0 such that Vp . (C U. This implies that

?

v, L[x] C Ulx]

and hence that Sr(x) (C O. Therefore O is in the pseudometric top-
ology for X, Conversely, if O is in the pseudometric topology for
X and x. is in O, then there is an open sphere Sr(x) such that

S (x) (C Q. This implies that V r,[x] ( O and consequently O is

r Ps

in TU' Therefore TU is equal to the pseudometric topology for X

and so the pseudometric space induced by p is uniformizable.

Example 1. 16 The space ok is uniformizable, The collection

of sets of the form Vr = {(x,y): lx_y’ <r}, r a positive number,

is a base for a uniformity o for'El, called the usual uniformity for

’El. U* ‘is compatible with the open:interval topology for- El. This

is a direct result of Corollary 1. 15, because if the function p from
\El X El in’co.E1 is defined so that p(x,y) = ,xuyl for any x and y

in;El, then p is a pseudometric on El and for any r > 0, Vp r Vr“

Theorem 1. 17 Let F be a non~empty family of functions such

that each f in F maps X into a uniform space (Yf,U?). Then

ate 1
E -

A" = (N U): feF and U Uy}

is a subbase for a uniformity for X.

Proof: Let f be in F and U be in U>';° For any x ¢ X,

f{x,x) = (f{x), f{(x)) which is in the diagonal of Y

2 Since the

f ’
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diagonal of Y. is a subset of U, fz(x, x) is in U, Consequently (x, x)

f
is in fz_'l(U) and hence DX is a subset of fgl(U).
There is a2 V in Ua; such that V= V™! and Vv C U since
U MU' is a member of Ui with this property. Since
-1 -1

£ V) C 1),

then

Now

For if (x,y) is in f:;l (V), then. fZ(X’ y) = (f{x), f(y)) is in V. This

implies that (f(y), f(x)) = fz(y,x) is in V which implies that (y,x) is

1 -1

in fé (V). Therefore (x,y) is in [fz (V)]Hl. Therefore-[fél(U)]m1

contains fél(V) which is in A",

3

There is a V in U, such that VoV (C U and this implies that

f
elwvovy C £1
2 2 :
- Now
f;l(V)ofgl(V) C f;l(VoV).

For if (x,y) is in f2 (V) and (y,z) is in fgl(V.), then (f(x), f(y)) is

in V and (f(y),f(z)) is in V. But this implies that (f(x),f(z)) = ,(x,z)

Al
is in VoV which implies that (x,z) is in f;l(VoV), Therefore

there exists a member fél (V) of A" such that fél(V)o fél(V) C fgl(U).

Therefore by Theorem 1. 13, A" is a subbase for a uniformity for X,
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Theorem 1, 17 can be used to define a uniformity for the carte-

sian product of uniform spaces as the next corollary shows,

Corollary 1. 18 For any a in an index set A, let (Xa’ UZ) be a

uniform space and let Z = Xa’ Then the family of all sets of the
acA
form

{(x,y) eZ xZ:(x_,y,) eU},

where a is in A and U is a member of Ua, is a subbase for a uni-

formity for Z, This uniformity is called the product uniformity for Z.

Proof: For any a ¢ A, let. Pa be the projection of Z into Xan

By Theorem 1,17,

-1

{PaZ

(U):aeA and Ue Ua}

is a subbase for a uniformity for Z. For any a e A and U e U;,

-1
PaZ (U)



CHAPTER I1I

THE EQUIVALENCE OF UNIFORMIZABLE,
COMPLETELY REGULAR, AND

(T) SPACES

The main objective of Chapter II is to show the equivalence of
completely regular spaces, (T) spaces, and uniformizable spaces, If
will first be proved that if a space is completely regular then it is
uniformizable, The: converse of this theorem is also true but is more
difficult to prove. In this chapter the converse will be proved by first
proving_tﬁat all uniformizable spaces are (T) spaces and then proving
that all (T) spaces are completely regular. Some exa.rhples of spaces
will be given where it can easily be shown whether they are completely

regular or not and hence whether they are uniformizable.

Theorem 2.1 If the topological space (X,T) is completely

regular, then (X, T) is uniformizable,

Proof: .Let V' be the usual uniformity for E!. By Theorem 1.17,

* -1

B = {f; (V):feC(X) and V eV}

is a subbase for a uniformity U>‘< for X. By Theorem 1, 16, all rela-
tions of the form Vr = {(x,y): ]x~y’ <r}, where r > 0, form a base
for 'V%. Therefore

* Ugl(vr);fech) and r > 0}

1l

S

12
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b ‘
is also a subbase for U . The remainder of this proof will verify that
]

U is compatible with T,

Let O bein T.. and let x be in O. Then there is a U in U>'<

U
such that U[x] C O. Since S>'< is a subbase for U*, there exist rela-
k
3 .
tions S,, S,;, .., , S, in S such that M S, C U. Since
1 2 k T
"k
(M s)) [x] C Ulx]
1
and
k k
(M s,)[x] = M (s, [x]),
1 ! 1 ¢t
then

For any i,

for some f e C(X) and some r > 0.

(51 V) B = {y e |8y - 0] <x} = £HER) - x, £x) + ).

Therefore, for any i, x is in S, [x] and S; [x] is in T. Consequently

k k
xe M (Si [x]) C O, where M (Si [x]) is in T, Therefore O is in T.
1 1

Now let O be in T and let x be in O, Then, since (X, T) is

completely regular, there is an f in C(X) such that f(x) = 0 and

§X-0) C {1}. It follows that (fél (V) [x] C 0. For iy isin
(f_;l(vl))[x], then (x,y) is in fgl(vl) and hence (i(x), (y) is in V.
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This implies that lf(y)l = [f(x) - f(y)] < 1. Hence; since

y is in O, Therefore, since fél(Vl) is in U='<, O is in TU.
COn}sequeme"yﬁ there exists a uniformity U>"< for X which is com-
i A

patible with T.

This theorem and its proof shows an interesting property of
completely regular spaces concerning uniform continuity. For any
completely regular space (X, T), there is a uniformity U* for X com-
patible with T such that for any f in C(X), f is uniformly continuous
relative to U* and V*, the usual uniformity for-El,

The next major theorem to be proved is that if a space is uni-
formizable then it is a (T) space. Before this can be done though,

several definitions must be given and several lemmas will be proved,

Definition 2.2 The collection of sets {Od: d ¢ D} is said to be

a scale of open sets if and only if for any d in D, Od is open, D is a |

and d

dense subset of the closed unit interval [0, 1], and for any d1 2

in.D for which d

1<d2, it is true that F)d C Od .

1 2

Definjtion 2,3 A topological space (X, T) is called a (T) space

if and only if for any closed set C and any x in X -C, there exists a ‘

scale {Od: d e D} of open sets such that for any d in D, x is in Od

and Od does not intersect C,

The term (T) space for the space described in the previous defi-

nition is not in common usage but is used by Gaal (9).
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Lemma 2,4 If U and V are relations on a set X and . A is a

subset of X, then U[V[A]] C (UoV)[al],

Proof; Let z be in U[V [A]:] Then there is a vy in V[A] such

—r

that (y,z) is in U, Since y is in V[A], there is an x in A such that
(x,y) is in V., Therefore (x,z) is in UoV and hence z is in

(UaV)I[A]

Lemma 2,5 If (X,U>'<) is a uniform space, A ( X, and TU is

the uniform topalogy for X, then the set
B = {x:U[x] C A for some U EU>‘<}

is the TU-interior of A.

Proqf: Let x be in the TU—interior of A, Then there is an O

in TU such that x ¢ O ( A, By definition of TU, there exists a U in
U* such that U[x] C O, This implies that U[x] C A, which in turn
implies that x is in B. Therefore the TUv—interior of A is a subset
of B,

Now let x be in B, By the definition of B, there is a U in U*
such that U[x] C A. By the definition of a uniformity, there isa V
in u” such that VoV (C U, Assume y is in V[x] and let u be in
Vy]. Then (x,y) isin V and (y,u) is in V, which implies that (x,u)
isin VoV. Sin'c‘e VoV (C U, (x,u) is in U, which implies that u.is
in Ulx], Since U[x] C A, u is in A. Therefore if y is in V [x],
then V[y] (C A. Consequently, by the definition of B, V [x] C B It
has now been shown that for any x in B, there exists a V in U* such

that V[x] C B, Consequently B is T__-open, Since for any U in U>'<,

U
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x is in U[x], then B is a subset of A, The TU-interior of A is the

union of all subsets of A which are TU—open. Therefore B is a sub-

set of the TUwinterior of A, Therefore B is the TUvinterior of A.

. 5 :
‘Corollary 2.6 If (X,U ) is a uniform space, x is in X, and U

*
is a member of U", then U[x] is a T, -neighborhood of x,

U

Proof: By Lemma 2.5, x is in the T_ -interior of U[x], The

U

T -interior of Ulx] is T(;-open and is contained in Ul[x]. Therefore

U[x] is a T, ~neighborhood of x.

U

Lemma 2.7 If U is a uniformity for X, U is in U', A and B
are subsets of X, and U[A] C B, then AC Bl, where A is the Ty-

closure of A and B' is the T..-interior of B.

U

Proof: Thereisa V in U suchthat VoV C U. This implies
that (VoV)[A] Ccu [A], Because of the hypothesis and Lemma 2, 4,
vIv[all C B. If x is in V[A], then V[x] C V[V[A]]. But this
irhplies that V [x] (C B, which in turn implies by Lemma 2, 5.that X

is in the TUwinterior'o‘f B. Therefore

vialC sl (1)

Now let W=V M ~V"1. Since W (C V,
wlA] C vial (2)

Let x be in A, Because of Corollary 2,6 and since W is in Ua‘, W [x]
is a TU—neighborhood of x, Therefore there is an a in-A such that
a is also in W[x]. Since a is in W[x], (x,a) is in' W and, since W

is symmetric, (a,x) is in W. Hence x is in W [A]. Because of (1)
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and (2), x is in B'. Therefore A ( B

Lemma 2.8 If U is a upiformity for X, A C X, if

W are in Uq‘, and if UoV (C W, then vVIA] C W[A], where VI[A] is

the TU-closure of V[A] and W[A]1 is the TU-interior of W[A]

Proof: By Lemma 2.4, [ :l C (UoV)[A]. Since
Uov C W, (Uov[ ]Cw[ . Hence U[ :]Cw . There-

fore by Lemma 2.7, V[A] C WI[AT.

Lemma 2.9 Let {Un} be a sequence of entourages in a uni-

formity U for X such that for any non-negative integer n,
Un+1 ° Un+1.’ C 'Un'

Then:
(i) If m and n are integers such that m >n > 0,

then Um C Un.

(i) If o, nz, +ve s my are integers such that
O»it‘11<n2}<.,. < 0y then
U oU o,..oU (U
Bk kel ) B

Proof: Certainly UmC U if m =n soconsider m>n, Let

n > 0. Then

Un+1 ° Un+1 C Un

by the hypothesis.  Assume 'Un+kC U for some positive integer k,

Then by the hypothesis of the lemma,
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U U

(n+k)+1 © Yintiay+1 © Upiier
Since

U QU

i)+ C Ugnaiy+1 @ Ugntky+1°

then Un+(k+l) C U Therefore it is t%'ue. by mathematical induction

that for any n> 0 and.any j > 1,

u .,.Cu. (3)

If m>n>0 then m =n+j, where j > 1, and hence by (3) U, C U
Therefore part (i) of the conclusion is true,
Then by part

Let n, and n, be integers such that v0 <n, <n

1 2 ' 1 2°
(i) of the lemma, U_ ( U_, Assume that
n, oy
U oU oc..,oU (C U
nk n 1 2 1
for any integers oy, nz, cers By such that .0 < n, < n, <.,..< n,.
Let nl, nz, e nk, nk+l be integers such that
0.§n1< n2<...<nk< nk+l'
Then because of the assumption,
S oU o..,0U (CU .
k+l Pk 3 n2
This implies that
(U oU o...0U JoU (C U oU . (4)
T+l k 3 "2 n2 2

By the»hypothe sis of this lemma,



U oU (CuU . (5)
n2 n2 n2*1

Since n, - 1> n, and because of part (i) of the conclusion of the

—_—

lemma,
Un2_1C Unl. ‘ (6)

Becaugse of the set inclusions in (4), (5), and (6),

U oU o...0U0 (C U .
Dyl N np R

Therefore part (ii) of the conclusion. if tru,e'by mathematical induction.

Theorem 2, 10 If a topological space (X, T) is uniformizable

then it is a (T) space.

b3
Proof; There is a uniformity U for X such that TU = T since

(X, T) is uniformizable., Let C be a closed subset of X and let x be

in X~C, Since X~C is T. -open, thereisa U, in U such that

U 0

X € UO[X]CX-»-C,

A sequence {Ui} of entourages in U™ can be defined in the following
way, Let U, be an entourage in U* such that U,0 U, C Ugy- If U,

is in the sequence, let Un

b
+1 be an entourage in U such that

Un+l © Un+1 C Un'

- Now let D be the collection of all diadic rationals in the open interval

(0, 1), that is any number equal to m/ZI.l, where n =1, 2, , and
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For any d in D, d can be uniquely represented as a finite sum
-n -n -n

2 1 + 2 2 +,..+2 k,‘where each o, is an integer and

0< n, < .,.<n

1 For any d .in D, define

K’

and define O, to be (Ud[x])l, the interior of Ud[x]. Since U_  is in
’ 1

U" and since Uy :)Un » Uq isin U". Therefore by Lemma 2.5, x

1 .
is in Od, for each d €D, Also {Od: d eD} is a collection of open

subsets of X indexed by a dense subset of [0, 1].
. In order to show that (X,T) is a (T) space, it must finally be
proved that for any d in D, Od does not intersect C, and that for any

d, and d

1 2

For any d ¢ D,

in D for which d1 < dz, Odl C Odz.

wherd 0 < n, <...<n

1 K By Lemma 2.9, part (ii),

U o..,oU C u_,
‘nk nz nl

This implies that

U, =(U o..,0U )oU
n tl

CU ou ,
ny 2 n

1 1 ™
By Lemma 2.9, part (i), U/ C U,. Therefore
B3| |

u oU CUoU

A
1 1 1

By definition of the sequence {Un}, U, o U1 C UO. Therefore UdCUO.
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This implies that Ud[x] C Uo[x] which in turn implies that
i
Od - (U:d[x]) C UO[X]-

0[x] does not intersect C, Od does not intersect C,

Let d1 and d2 be in D and d1 < dZ' Then there exist unique

Since U

sets of integers {nl, Doy err s nk-l} and {ml, Moy oo s mJ} such
that
0< n1< n2<,e.< oy 1
0<m)<m,<,. <m,
d1 = 2~n1 + 2“n2‘+ vee F Zﬂnk—l, and
d, = A P P,
Let oy be an integer such that n, > n., for any i< k-1, and n, > m,,

for any i.f_ jo It thep is true that there is an integer i < j such that

m, # n,, Forif k- 1<j, then k. < j, and hence, by the definition

of ny, my ‘;4 oy - .Now if k ~1>j and m; = n, for all i < j, then
J '-'mi j "‘n.l k‘—l "‘ni
d, = 2 2 =Z 2 < Z 2 =d.,
2 1 1 ~ ] 1

which contradicts the assumption that d1 < dZ' Therefore if k~1> j,
then m, # n, for some 1< j.
Consequently there is a smallest positive integer h such that |

mh;f n, . Now
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for any i< h, m, = r;i, (7)

Now h < k, For otherwise, (7) implies that my = 0, which contra-

-dicts the definition of ny .
First consider h = k, Then Un = Um for i<k-1, because
v i ‘i '
of (7). . Therefore

CUm'.

| By definition of Dy By > m, . Hence, by Lemma 2,9, Un .

k

U (CU oU .,,0U
m, m, m; ) my

: s
since for any i Ui isin U , Therefore

UnCUmOUm o.,,oU | (9)

k j j-1 ™h

Because of (8) and (9),

U oU 0,..00U
’ n

- CUmoUm 0...00U

1 j a1 my

Now consider h < k and suppose that n, < m,. Then
' -0y ~mh+1
n, < my - 1, which:-implies that 2 > 2

—

I, 0o c=mqt1
2 1< x o2tz2 B
i=m

h

Therefare

~m.

-.nh

oo
v
[§V]

(10)

Because of (7),
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h-1 -n, h-1 -m,
> 2 =z 2 % S (11)
1 1
Therefore, by (10) and (11)
h -n; j  -m,
i 1
=z 2 > 22 = dZ'
1 1
Hence d-1'~>— dz, since
k-1 =+n. h -1n,
dj= z2 ‘>z2
1 1

But this is a contradiction since d1 < dZ' Therefore when h < Kk,

nh_>_ my . Since 0y # mh, ny > m, . Since h<k, n_ > 0y . Since ‘

k

K k-1 > ... > o, and since ny > ny > my, then by Lemmaea 2, 9 (ii)

U oU oc.,.oU (C U_. (12)
L S T | Py My

- Because of the definition of h, Um = Un- for any i < h. This implies
, , i H .
that

Since h.< j,

U oU_ 0,..00U CU oU 0..,00U
My Mhed my my. m



Therefore in all cases

By definition of Ud for d in D,

.Ud

1
c
o
a
o]
o
a

1 Bp-1 k-2 0y

‘and

Therefore Un oU

C Ud . Since
k 2

d

sl

U, DU and U € U,
dp) 7 'y n

"
3

then U, € U . Likewise, since

d1
U, DU and U_ ¢ U,
2 1 ™
then U e U . Therefore, by LLemma 2,8, U
d2 : d,
Since
— S—
1 1
then

Uy, [x])' C SRR

24

Hence, by the definition of .Od' for d in D, ._Od C Od . Therefore

1
(X, T) is a (T) space,

2
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The next lemma will be used to prove that if a topological space

(X, T) is a (T) space then it is a completely regular space,

Lemma 2,11 If {O’ :d e D} isa scale of open sets in a topo-
; d P

logical space (X, T) and U O,4 = X, then the function f from X into
1 deD '
'E”, where

f(x) = inf {d e D: x ¢ Od}

for any x'e X, is a continuous realwalued function.

. M:' It is sufficient to prove that for any real number s,
{x:f(x)<s} and {x:f(x)> s} are T-open subsets of X, For then
the inverse image with respect to f of any open interval in El will be
. open in X and hence f will be continuous, Let w be in {x: f(x) <s}.
Then f(w) = inf{d e D‘: W € Od} < s, which implies that s is not a
lower bound of {d €D ; w ¢ Od }. Consequently there exist a d' in D

such that w is in Od' arid d' < s, This implies that w is in
U{Od:deD and d < s},
Now let w be in
U{Od:deD and d <s}.

_ Then there exists a d' in D such that d' <s and w e Od" This
implies that
f(w) = inf{d e D: we O4} < d'.’

Therefore f(w) < s which implies that w e {x: f(x) < s}.

Therefore {x; f(x) < s} = U {Od: deD and d< s}. For any
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d ¢ D, Oci is open and therefore {x: f(x) < s} . is open,

In order to show that {x: f(x).> s} is open, it is sufficient to
show that {x: f(x) < s} is closed. If s> 1, then {x:f(x)< s}= X,
because the definition of f and D (C [0, 1] imply that f(x) < 1 for
any x ¢ X, Since X is closed, {x:f(x)< s} is closed.

Now suppose that s < 1 and that u is'in {x: f(x) <s}. Then
f(u) < s, which implies that inf{d ¢eD: u e Od} < s. Let t be a mem-
ber of D such .that t > s, Note that since D is a dense subset of [0,1]
and since s <1, such a t exists, Since inf{d eD: u eOd} < t, tis
not a lower bound of {d eD:ue Od-}. Therefore there isa d' in D
such that u is in Od' and d' < t, By the definition of a scale of open

vs,ets, '—6d' C O, This implies.that u is in O,. Therefore u isin
m{Od:d ¢eD and d> s},
Now let u be_in
M {Od:d eD and d>s}.

Since ‘s <1 and since D is dense in [0, 1], then for any r > 0 t‘heré
e;c_ists a te D such that s' <t<s+r, Therefore u- isin Ot which
-implies that inf{d e D: u e Od} < t. Consequently f(u) < s + r, Since
r was arbitrarily chosen, ffu) < s; which implies that u is in

{x:1(x) < s}, Therefore
{x:f(x) < s} = M {0 :deD and d>s}, (14)
It will next be shown that

M {O4:d ¢D .and d>.s} = m{ﬁd:deD and d>s}
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from which it will follow by (14) that {x: f(x) < s} is closed, For

any d €D, OdC 6d’ and hence
M {Od:deD, d>s}vam {ad:ng, d>s}.

Let w be a member of M {(_)d: deD and d> s}, Since s<1 and
since D is dense in [0,1], if d is'in D and d > s then there exists a
t e D such that s <t<d, 61: C O, by definition of a scale of open
sets, Because of the choice of w, w is in 6t’ and this implies that
w is in O, an_sequently w is in /M {Od: deD and d>s}.

Therefore
M {O4:d eD and d>‘s} = M {O4:d €D and d>s}.

Therefore {x: f(x) < s} is the intersection of a family of closed sets

and hence is itself a closed set, Since

X - {x:{(x)< s}' = {x: {(x)> s},

—

then {x: f(x)> s} is an open set.

.Theo_rver_n 2. 12 If (X,T) is a (T) space then (X, T) is complete-

ly regular;

M: IL.et C be a closed subset of X and let x be in X -C.
Since (X, T) is a (T) space, there is a scale of open sets {Od: de .D}
such tha,t,vfor any d in D, x is in Od and Od does not intersect C.
First a scale of open sets will be defined such that the union of the
oﬁen sets is X, and then an f in C(X) will be defined using this scale

and Lemma 2, 11,
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First congsider the case where 1 is inaD. For any d in D for

which d <1, define G, = Oy; and for d = 1, define Gy = X. Forany

d
d in D for which d <1, Ed C G, = X, Forany d1 and dz.in D -{1}
for which d, < d,, Gdl = le C Odz = Gdz. Therefore {Gd: d in D}

is a scale of open sets,

Now suppose that 1 ¢ D. Let D'=D U {1}. For any d in D,
define Gd = Qd and for d :. 1, define Gd
DC D, [0, 1] C D'. Therefore D! is dense in [0, 1], Then, as was

= X, Since [0,1] C D and

done when 1 ¢ D, it can be shown that {Gd: d ¢D'} is a scale of open

sets.
Therefore in either case there exist a scale of open sets
{Fd: d e A} such that
U Fy =X
deA

and such that for any d € A for which d <1, x.is in:Fd and 'Fd does
not intersect C, By.Lemma 2,11 there exist a function f in C(X)

such that for any x in X, f(x) = inf{d ¢ At x ¢ Fd} Since A C [0, 1],
then 0 < f(x).<1 for all x in X, which iriqplies that £(X) C [0, 1]. If

a is in C then a is not in Fd for any d in A less than 1. Since

‘a. e U Fd'

deA
then a 1is in>Fd for d = 1, Therefore f(a) = 1 and hence £(C) C {1}.
Since x-.is-in»Fd for all d in A and since A is a dense subset of
[0, 1], then f(x) = infA = 0,
Theorems 2.1, 2, 10, and 2, 12 show that uniformizable spaces,

(T) spaces, and completely regular spaces are equivalent. These
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‘three theorems show that if a space is gcompletely regular then it is a
(T) space; but this depends on first showing that a completely regular
space is uniformizable. It can be proved rather easily, without men-
tioning uniformizable spaces, that if a space is completely fegular

then it is-a (T) space.

Théorem 2,13 Ifa Space (X, T) is completely regular then. it

is a (T) space,

Proof: Let C bea closed subset of X and let x be in X~ C,
Then, by definition of completely regular, there exists a function f in
C(X) such that f(x) =0, £(¢)C {1}, and £X)C [0,1], Let D =[o0,1].

‘For any d in D, define

d 1 d 1
Odz{xex:f(x)<-2- + —2-} = f ((.noo, > + z))_

b

Since for any d, (-co, % + 2’) is ogpen in E1 and f is in C(X), then
O‘d is an open subset of X,
Lef a2 and b be in D such that a <b, Since f is continuous,

oy Pt B g v D) et o 1)
Sincq

(-oo,% + %-]C (,,oo,g-'# %—),
then

Apmte et o)

Therefore 6a C Ob and hence {Od: deD} is a scale of open sets,
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For any d in D, d/2 + 1/2 > 1/2. Therefore for any d in D,
f(x) = 0<d/2 +1/2; which implies that x is in Od.

- Forany d in D, let u be in O Then u is in X and

d'
f(u) <d/2 +1/2. Since d< 1, 1/2 +4d/2 < 1, This implies that
f(u) < 1. Since f(C) C {1}, u is not in C, Therefore for any d .in

D"'Od does not intersect C. Consequently (X, T) is a (T) space,

For some spaces it is difficult to show that there is or is not an
admissibl»e uniformity. Since uniformizable spaces anci completely
regular SI;aCGS‘a‘re equivalent, it is sometimes easier to show that a
space is uniformizable or not by showing that it is or is not completely
regular. The next theorem will show that a completely regular space
‘is regular, An example of a spacé will then be given which is easily

shown to be not regular and hence not uniformizable.

-Definition 2, 14 A topological space (X, T) is said to be regular

if, and only if, for any closed subset C of X and any x in X-C,
there exist disjoint open subsets OX and OC such that x is in O, and

c Co,.

,Theo,rem' 4.15 If a topologigal space (X, T) is completely regu-

lar then it is regular,

Proof: Let C be a closed subset of X and let x be in X ~C,
Singe (X, T) is completely regular there exists an f in C(X) such
that f(x) = 0 and £(C) C {1}, Hence f“’l((d, 1/2)) and f“l((l/z,z))

~are disjoint open subsets of X containing respectively x and C,

‘Example 2,16 Let X be an infinite set and let T be the cofinite

tapology for X, That is,'- O isin T if and only if O is the empty set
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or X -0 is finite. Then it is easy to show that (X, T) is not regular,
Forlet x and y be in X such that x # y. Then {y} is closed and

x ¢ {y}. If there exist disjoint open sets o/ and OY such that x is
in Q_ and {y} C Oy' then X ~O_ lS finite, This implies that Oy'is
finite. = Since Oy- is open and non-empty, X - OY is finite. Therefore
X = OY U (X;Oy) is finite; which is a contradiction since X was
given to be an infinite set, Consequently no two disjoint open sets
separaté x and {y}. So (X,T) is not regular. By The’orém 2,15
(X, T) is not completely regular. Therefore (X, T) is not uniformi«l-

zable,



CHAPTER III

VARIOUS CHARACTERIZATIONS OF
UNIFORMIZABLE SPACES

USING C(X)

The property of being a ciamplete,ly regular space is a character-
ization of uniformizable spaces which involves the family of functions
C(X). . There are several other characterizations of uniformizabie
spaces which make use ‘of C(X).‘ This chapter will investigate these

various characterizations.

. Y
- : ”»

Defip,ition 3.1 A family F of furictions defined on a space

. .
(X, T) is said to distinguish points_ and closed sets if and only if for
any closéd subset A of X and any x in X - A, there is an f in F such

that f(x) is not in f(A).

Theorem 3.2 A space (X, T) is completely regular if and only

if C(X) distinguishes points and closed sets,

M: Let (X, T)(bev completely regular, A be a closed subset
of X, and x be in X-A, Then there exists an f in C(X) such that
f(x) = 0 apd f(A) C {1}, Since f(A) is either the empty set or is
{1}, f(A) is either the empty set or is {1}. Therefore f(x) is not in
A | |
| Suppose that C(X) distinguishes points and closed s,ets.‘ Let A

be a closed subset of X and let x be in X ~A, Then there is an f in

32
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————

C(X) such that f(x) is not 1n f(A), Because of Example 1, 16, El ié

uniformizable. . As was shown ‘in Chapter II, any uniformizable space
is completely regular, Therefore El is completely regular. f(A) is
a closed subset of El and f(x) is not in 'f_(XS. Therefore there exists
a g in C(E}) such that g(f(x)) =0, g(f{&))C {1} and g(E)) C [o, 1.

gof isin C(X) and (g o f)(x) = 0. Since
(g o £)(A) = g(f(A)) C g(f(A)),
then (g o £)(a) C {1}. Since £(X)C E! and since g(E!) C o, 1],
| (g o (X) = g(f(x)) C [o, 1]
Therefore (X,T) is completely regular.

De,fini_tiqn‘?)‘, 3 If (X, T) is a topological space, then the weak

topology induced by C(X) is the topology for X which has as a subbase

the set {£71(G): f¢C(X) and G open in E'}.

-Theorem 3.4 If (X, T) is completely regular, then the weak

topology T' induced by C(X) is equal to T,

. M: Let O bein T and let p be in O, Then there exists an
f in C(X) such that f(p) = 0 and {(X-0) C {1}. Therefore p is in
f”l((-l,‘l))._ If x is in f“l((.-l, 1)), f(x) # 1, Henge x is in O,
Therefore f”l((—l,l)) C O.v Since (~1,1) is open in E1 and f is in
c(x), £3((-1,1)) isin T'. Therefore O isin T',

Now let O be in T! and 1¢t‘p be in O, By definition of T!',

there exist open sets Ol’ OZ’ te v s On in\El and functions

f., £

X fn in C(X) such that p is in

2) «ep 3
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S |
M £, 7(0.) C 0.
1 ! !

- n

For any i, f;l (0,) is'in T, and hence M fi_l (O,) is in T. Conse-
g 1 "

quently O is in T, Therefore T'.= T,

-Definition 3.5 If (X, T) is a topological space then a subset A

of X is a zero set in X if and only if A = {x: f(x) = 0} where f is in

C(X). The collection of all zero sets in X is denoted by Z(X),

b
Definition 3,6 A collection B of subsets of a topological space

3
(X, T) is a base for the closed sets in X if and only if each set in B

sl
is closed and each closed subset of X is the intersection of sets in B .

Lemmav;’:,? If (X,T) is a topological space, f is in C(X), and
r is a real number, then {x: f(x) > r} and {x:{(x) <r} are zero

sets in X,

Proof: {x:f(x)>r} = {x: ((f-r) A 0)(x) = 0}, where

((f~1) A 0)(x) = min {(f-r)(x), 0},

Also
(i f(x) <t} = {x: ((f=1) v 0)(x) = 0},
where
((E-1) v 0) (%) = max {(f-7)(x), 0}.

Since the functions (f-r) A 0 and (f-r) V 0 are in C(X), then, by
definition of zero sets, {x:f(x)>r} and {x:f(x)<r} are zero

sets in . X,
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~Lemma 3.8 If (X,T) is a topological space and if A and B

are zero sets in X, then A U B is a zero set in X,

- Proof: There is an .f in C(X) such that A = {x: f(x) = 0} and

there is a g in C(X) such that B = {x: g(x) = 0}, Now
AU B = {x: (fg) (x) = 0}
and fg is in C(X). Therefore A U B is a zero set in X.

These two lemmas will now be used to prove the next theorem.

-Theorem 3,9 If (X, T) is a topological space with the property
that the weak topology induced by C(X) is equal to T, then Z(X) is a

Vba.se for the closed sets in X.

'M: For any A in Z(X) there 1s an f in C({X) such that
A= £1({0}). Since {0} is closed in E', £1({0}) is closed in X.
Therefore each set in Z(X) is closed,

It must now be shown that each closed subset of X is the inter-
éection of sets in . Z(X), Let C be a closed subset of X.. Then X -C

is open. By the hypothesis of the theorem

5
X-.C= U (m fi“l(l.)),
jeM "1 t

where each Ii is an open interval in E1 and each fi is in C(X).

Therefore

I N . J *‘1
(U £ (X- Ii)) .
jeM 1

O
1
e
4
| Sy
m
<
—
—
=
4
—
——
—
~—
i

For any i,
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1/

=1 .
fi (X~I.l) = ‘fi k(—oo,a.] ¥, [b,+oo)),

for some real numbers a and b, Now

f, 1(("00,8.] U [b, +00)) = {x:f(x)<a} U {x:{(x)>b},

1

Therefore, by Lemma 3.7 and the generalization of Lemma 3,8 to a

finite number of zero sets,

is a zero set in X for any j in M, Therefore C is the intersection of

zero sets in X, Therefore Z(X) is a base for the closed sets in X.

, Theor‘em 3,10 If Z(X) is a base for the closed sets in a topo-

logical space (X, T), then (X, T) is completely regular,

Proof: Let F be a closed subset of X and let p be in X -F.

By thebhypothesis, there is a subfamily B of Z(X) such that
. %
F=MN{B:BeB }.

Since p.is not in F, there isa B' in B* such that p is not in B',
By definition of Z(X), there is an.f in C(X) such that B'= fnl({O}).
This implies that f(B') C {0}. Since F C B/, ‘f(F) C £(B'), which
.implies that £(F) C {0}. Since p is notin B', f(p) = a and a.# 0.
Define-a function g from X i‘nto‘E1 such that for any x:in X,
glo) = 2L, Then g < C(X), g(p) = 1, and g(F) C {0},
Défine a fﬁnction h from X into vEl éuch that h(x) = 0 if

g(x)< 0, h(x) = g(x) if 0< g(x)< 1, and h(x) = 1 if g(x) > 1. Then
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F)C {0}, h(p) =1, and h(X) C [0,1]. The functien h is in C(X)

since h(x) = min {max {g(x), 0}, 1} for any x in X,

Theorems 3.2, 3.4, 3,9, and 3, 10 give three more characteri- -
zations of corﬁpletely regular spaces or, equivalently, uniformizable
spaces, Theorems 3.4, 3.9, and 3, 10 show that if a space (X, T) is
completelyv regulair, then Z(X) is a base for the closed sets in X.
The proof of the following theorem shows the same thing without any

mention of the weak topology for  X.

Theorem 3.11 If a topological space (X, T) is completely

regular, then Z(X) is a base for the closed sets in X,

Proof; Let F be a closed non~empty subset of X such that
F# X, Let pbein X-F, Since (X, T) is completely regular, there
exists an f in C(X) such that f(p) = 0, £(F) = {1}, and £(X) C [0, 1].
Define a function g from vEl into»El such that g(x) =1 -x for any

X in:El, Since g is continuous, g o f is in C(X), . Also

(g 90-f)(p) = g(0) = 1,

- Now, (g of) = {0}, since for any x in F, (g o f)(x) = g(l) = 0,
Therefore p is notin (g o f)~ {O} and F(C (go f)"l({O}).

(g o f)” {0} is a zero set. Therefore
if pe X-F, there is an-A ¢ Z(X) such that p¢ A and F C A. (15)
Define A" = {A:Aez(X) and F(C A}. Clearly
FC M{A:AcAT}.

If p is not in F then, because of (15), there exists an A in A" such
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that p is not in-A, This implies that p isnotin M {A: A EA%}.
Consequently . (M) {A: A EA*} (C F and therefore F= () {A: A eA*}.
That is to say, F is the intersection of zero sets in X\

The function h from X into -El such that h(x) = 0 for all x in
X is'in C(X) and {x:h(x) = 0} = X, Therefore Xiis in-Z(X), The
function h' from X into ‘\El such that h'(x) = 1 for all x in X is in
C(X) and {x:h(x) = 0} = §. Therefore @ is in Z(X),

Therefbre any closed subset of X is the intersection of zero
sets in X, . Each set in .Z(X) is.a closed subset of X, Therefore

| Z(X) is a base for the closed sets in X,

. The next characterization of completely regular of uniformi-
zable spaces makes use of the family of all continuous functions from
a2 space into the extended real line and the concepts of lower semi-
continuous functions and the upper envelope of a family of functions.
Consequently some definitions and lemmas concerning these concepts

will have to be introduced before proving the characterization.

Definition 3,12 A real-valued function f defined on a topologi-
-cal space (X,T) is said to be lower semi-continuous at a in X if and
only if for any h < f(a), there exists a neighborhood V of a such that
£(V) C (h, +o0), . The function f is lower semi-continuous on X if and

only if f is lower semi-continuous at each point of X,

Lemma 3.13 Let (X, T) be a topological space. . A real-valued

function f is lower semi-continuous on X if and only if for any real

number K, £ 1((K,+o0)) is open in X.

Proof: Assume f is lower semi~continuous on X and let K be
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a real number, Let a be in £ 1((K,+w)). Then f(a)> K, By defini-
t>ion of lower semi-continuous, there is a neighborhood V of a such
that £(V) C (K, +o0). This implies that V C £ '((K,+w)), Therefore
f_l( (K, +o0) ) is an open subset of X,

Suppbse that for any real number K, f—l( (K, too)) is open in
X. Let a be'in X and let h < f(a), Then f,l*l((h, +)) is open in X.
. Since a is in f”l( (h,+0)), V = f-l( (h, +0)) is a neighborhood of a,
Clearly f(V)(C (h,+o). Therefore f is lower semi-continuous at a.

Since :a was arbitrarily chosen, f is lower semi-continuous on X.

‘Lemma 3.14 If O is an open subset of the topological space

(X, T), then the characteristic function ¢o ‘is lower semi-continuous

on X,

- Proof: If K> 1, then ¢;1((K,+oo)) is the empty set, If
0< K <1, then ¢]'((K,+00)) =0, I K<O0, then ¢ ((K,+wm))= X.

Therefore by Lemma 3, 13, ¢, ‘is'lower semi-continuous on X.

vDefinit_:ion ‘3, 15 A real-valued function g defined on the space

(X, T) is said to be the upper envelope of {fi : 1 eI}, a family of func-

tions from X into the extended real line, if and only if
g(x) = sup {f;(x):1i eI}
for each x in X,

‘Theorem 3.16 Let (X, T) be a topological space, If every

real-valued lower semi-continuous function f defined on X is the
upper envelope of the family G of all continuous functions g from

-X.into the extended real line R for which g < f, then (X, T) is
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completely regular,

. Proof: Let C be a closed subset of X and let p be'in X -C,
Then X ~C is an open set ahd thus, by Lemma 3, 14, the characteris-
tic function ¢X~C -is lower semi-continuous on X, Therefore ¢X-C
is the upper envelope of the family G" of all continuous functions g
from X into R for which g ¢ Since ¢X_C(p) =1,
sup {g(p): g « G>'-<} = 1. Therefore there exists a g in G such that
0 < g(p). This implies that g(p) = a, where a > 0.

Define g+ to be a function from X into R such that

g (x) = max {0, g(x)}

: +
for any x:in X.  Since g is continuous, the function -g; .is contin-

uous,

Define the function h from X intob R such that
")
h(x) = min {1, 5—52‘—,}.

This functioﬁ h is also continuous‘. For any x in X, h(x) <1 and
g+(x) > 0. This implies that ’i-ffﬂ > 0 which implies that h(x) > 0,
Therefore h(X)C [0,1]. Now g+(p) = max {0,a} = a, since a > 0,
Therefore h(p) = min-{1,1} = 1,

Let x be'in C, Then ¢XQC(X) = 0. Since g S—‘bXHC’ then
g(x). < 0, This implies that h(x) = min {1, 0} = 0,‘ Therefore

h(C) C {0}, Therefore (X, T) is completely regular.

The next theorem will he the converse of Theorem:3.16. These
two theorems will then give a new characterization of completely reg-

ular or uniformizable spaces. A lemma will first be proved.
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‘Lemma 3. 1;7 If (X, T) is a completely regular space and f is

a real-valued lower semi-continuous function defined on X such that
A ) ‘
£f(X) C [-1,1]} then for any p in X and any real number a < f(p),

there exists a g in C(X) such that g < f, g(p) > a, and g(X) C [-1,1].

Proof: Let (X, T) be completely regular and let f be a lower
semi-continuous real valued. function defined on X such that
£(X) C; [-1,1]. Let p bein X and let a < f(p). Either a < -1 or
a > -1,

If a < -1, define a function g in C(X) such that g(x) = -1 for
all x in X. Then g<f{, g(p)=-1>a, and gX)C [-1,1].

Now let a > -1. Since f is lower semi-continuous at p, there
exists a neighborhood V of p such that f£(V) C (a, +oo). Since (X, T)
is completeiy regular, there is a function h in C(X) such that h(p) = 0,
h(X -V) C {1}, and h(X) C [0, 1].

Define a function g from X into ~E1 such that
g(x) = a - (a+l) - h(x).

Since h is in C(X), g is in C(X), If x-is notin V, then h(x) = 1, and
hence g(x) = -1, Since £(X)C [-1,1], g(x) < f(x). If x isin V, then
f(x) > a, because f(V)( (a,+m), Now since h(X) C [0, 1] and

a+1>0, 0< (a+1)-h(x)<atl. This implies that
1< g(x) = a-(a+l)- hx) < a.

Since g(x) < a <f(x), g(x) <f(x). Therefore g < f, Now

g(p) = a - (a+1) - h(p) = a.

Therefore g(p) > a. Since g < f and since £(X) [-1,1], then
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g(x) < 1 for any x in X. Since g(x) > -1 for all x. in X, then

g(X) C [-1,1].

-Theorem 3,18 If (X, T) is completely regular, then every real-

valued lower semi-continuous function f defined on X is the upper
*
envelope of the family G = of all contihuous functions g from X into

the extended real line R for which g < f.

© . Proof: Let f be a real-valued lower semi-continuous function

defined on X, The arctan function is a strictly increasing homeomor-
arctan
7

is a strictly increasing homeomorphism from R onto (-1,1).  Now

phism from R onto (-w/2,w/2). Therefore the function g =
let the extended real line R have the usual order topology induced by
the less than relation on R. . Then there exists a continuous extension
h of g to R, where h(-o) = -1 and h(+m) = 1, The function h is a
'strictly increasing homeomorphism from R onto [-1,1], Therefore

h of is a real-valued function defined on X such that

(h o £)(X) C [-1,1].

The function h o f is lower semi-~-continuous. For if k > 1,

Lk, +0)) = ¢ and if k < -1, (héf)”l((k,+oo))=x, If

then (h o f)~
-1'< k<1, thereisan r inr-ﬁ such that k = h(r). Therefore, since

h.is strictly increasing, h~1( (k, +o0)) = (r,+oo]. This implies that

(h o f) 1((k, +mo)) = 'f'l((r, +00 ]).

By Lemma 3, 13, f'l( (r,+oo]) is open in X. Therefore for any real
number k, (h o-f)-l( (k, +00)) is open in X. . Hence by Lemma 3. 13,

hof is lower semi~continuous,
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" In order to show that f is the upper envelope of G*,, it must be
shown that for any p in X and'any a < f(p), there exists a g' in G*
such that a < g'(p). Therefore let p be in X and a < f(p). Since h
is strictly increasing h(a) < (h o f) (p), Because h o f satisfies the
hypothesis of Lemma 3, 17 and h(a) < (h o f) (p), there exists a g .in
C(X) such that g< hof, h(a)< g(p), and g(X) C [-1,1], Therefore,

-

since the function h'-1 is strictly increasing, h ~ o g < f, Since h-1

and g are continuous functions, h"1 og isa continuous function from
—_— : ke - . o . .
X . into R, Thus hﬂl og is'in G , Since h ! is strictly increasing

and since h(a) < g(p), the.ﬁ a = h’l(h(a.)) < h 7 (g(p)) = (h~1 o g)(p).

Therefore f is the upper envelope of G .



CHAPTER IV

CHARACTERIZATIONS OF UNIFORMIZABLE

SPACES BY MEANS OF PSEUDOMETRICS

Uniformizable spaces may be characterized in terms of pseudo-
metric spaces or families of pseudometrics (2). It will be proved'in
this chapter that the family of spaces which can be embedded.in a
product of pseudometric spaces is the same:as the family of uniform-
-izable spaces, This can be done either by using the definition of com-
pletely regular spaces or the definition of uniformizable spaces, In
this chapter it will also be shown that a space is uniformizable if and
only if there is a non-empty family of pseudometrics defined on the
space for which the collection of open spheres determined by this

family is a subbase for the topoiogy of the space.

Theorem 4.1 If (X,T) is a.‘complete‘ly regular space,. then X

-is homeomorphic to-a subspace of a product of pseudometric spaces.

- Proof: The family C(X) can be used to.define a family of pseu-
dometrics on X, . For any f in C(X) define célf to be a function frem

-X.into:El X.E1 such that
d(x,y) = [f(x) - £(y)]

for any x and y in X. It can quickly be verified that d, is a pseudo-

f
metric on X,

44
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Let (X,df) be the associated pseudometric space. Now define

a function g from X into
Z = X {(X, df) 1 f e C(X)}

such that .g(x)f =x forany x in X and any f in C(X). Let Z have

the product topology. For any f in C(X), let Pf be the projection of

Z into (X,df). For any {f in C(X), Pf o g is the identity map, since

(P, o g)(x) = Pylg(x)) = glx),

n
®

Let Sr(a) be an open sphere in (X, df), where f is in C(X), Then

(P o g) !(S,(a)) = S_(a).

S_(a) = {x:d x,a) <r} = {x: |£(x) - f(a)] <z} = £ ((f(a) - r,f(a) +1)),

Since f is continuous f_l( (f(a) - r, f(a) + r)) is an open set in (X, T),
and therefare P; o g is continuous. Since P, o g is continuous for
any f in C(X), g 1is continuous (12, p.91).

The function g is a 1-1 mapping. For let x and y be in X such
that x # y and let f be in C(X). Then g(x)f = x and g(y‘)f =y, which
implies that g(x) # g(y),

It will next be shown that g is an open mapping. For any open
set O in (X, T) it must be shown that g(O) is open in g(X). If y is
in g(O), then y = g(x) for some x in O, Since (X,T) is completely
regular there exists an h.in C(X) such that h(x) = 0 and h(X-0O)(C {1}

Let O, = h (-1, 1)), Clearly

x is in Oy and OhC o, (16)
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'Now Oh= {ueX; lh(u)l < 1} {ueX: lh(u) ~h(x)l < 1} since h(x) =0,

1]

Also {ueX: |h(u)-h(x)| <1}={ueX:d, (4,x) <1}. Therefore

h

Oh is an gpen sphere in the pseudometric space (X,dh). (17)

Because of (16), v is in g(0,) and g(0,) C g(O).

If it can now he shown that g(Oh) is open in g(X), then g(O)
will be open in g(X). This wili be accomplished by using the fact that
Ph is continuous. Because of (17) and the previous statement,
P;1(0,) is open in Z. This implies that P7'(0,) M g(X) is open

~in g(X). But

D

i)

La
1l

{g(x) ¢ Z:x X and g(x), ¢ O, }

{g(x) ¢ Z:x eX and x EOh.}

g(0y).

Consequently g(Oh) is open in g(X) and hence g(O) is open in g(X),
Therefore g is an open mapping, It is therefore true that g is a
homeomorphism from (X, T) onto a subspace, g(X), of a product Z’

of pseudometric spaces.
Lemma 4.2 Any pseudometric space is completely regular.

Proof: Let -(Xi,.»p) be a pseudometric space., Let C be a closed
subset of X and let y be'in X-C, If C = ¢, then define a function f
from X into E' such that f(x) = 0 for all x in X. Then f is in
C(X), f(y) =0, f(C)(C {1}, and f(X) C [0,1], So assume that C is

not empty, Define F from X into El such that

F(x) = D(C,x) = inf {p(x,y): y € Ch
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F is a continuous functioh (12, p. 120), Since y is notin C and C is
dlosed, then D(C,y) =r > 0.

Define the function g from X into El such that

_ (FADIC,y)(x)
ex = =gy

for any x in X, F‘or any two functions h1 and h2 in C(X), h1 A h2

is in C(X)(5,p. 133). Therefore g is in C(X). Let x be in X, Then
(FAD(C,y))(x) = min {F(x), D(C,y)},

where - F(x) > 0 and D(C,y) > 0. Therefore (FAD(C,y))(x)>0
which implies that g(x) > 0.. Also (F AD(C,y))(x). < D(C,y) which

implies that g(x) <1, Therefore g(X)C [0, 1].

min ‘{F(Y)} D(C:Y)} —_ 1,

since F(y) = D(C,y). If x is in C then

_ min {F(x), D(C,y)} _
g(X) - D(C, y) ™ L = O:
since "F(x) = 0 .when x is in C. This implies that g(C).C {0},

Therefore (X, p) is comp“le‘cely regular.

Lemma 4.3 If, for any i in an index set I, X, is completely

regular, then the product space Z = X X, is completely regular.
iel :

 Proof: Let C be aclosed subset of Z and let y be'in Z - C,
Then Z -C is open and hence there is a finite subset F of I such

that



48

ye O (PTHG))

; Cz-c, (18)
ieF .

where for each i in F, G, is openin X, and P; is the projection of
Z onto Xi' Let i be in F, Then Pi(y) is in C—i and Xi is com-
pletely regular. Therefore there exists an fi in C(Xi) such that

£(P;(y)) = 0, £(X-G) C {1}, and £ (X)) C [0,1], (19)

it

Since hoth fi and Pi are continuous, fi o Pi is in C(Z). Define a

function g from Z into E1 such that
g(x) = max {(fi o Pi) (x):1e¢F}

f. in C(Z), the function h defined on

For any functions fl, fZ" cees By

Z, suc¢h that -
h(x) = max {f (%), £,(x), ..., f (=)}

is in C(Z) (5,p.‘133). Therefore g is in C(Z). For any i in F,

(fi o P,l)(y) =0, by (19). Thus g(y)=0. If x is in C then, because
of (18), there is a j in F such thé.t X is not in ijl(Gj), This implies
that PJ( x) is in Xj " Gj" Because of (19),. fj(Pj(x_)) = 1 and hence
g(x) > 1, Singe f, (X)C [0,1] for each i in F, g(Z) C [0,1], Con-
sequently g(x) = 1, Therefore g(C)(C {1}. The product space Z is

therefore completely regular.

Lemma 4,4 A non-empty subspace of a completely regular

space is completely regular,

Proof: Let (X, T) be completely regular and let Y be a non-
empty subspace of X, ILet F be a closed subset of the subspace Y
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and let y bein Y-F. Then F =G M Y, where G is a closed subset
of the space X. Since y isnotin G (Y, y is not in G,  Since the
space X is completely regular, there exists an f in C(X) such that
f(y) = 0, £(G)C {1}, and £(X)C [0,1]. Now let g =£|Y, Since the
restriction of f to any non-empty subset of X is continuous, g is in
C(Y). . Since y is'in Y, g(y) = {{y) = 0, For any x in F, x isin Y,
and hence g(x) = f(x), Since F (C G and f(G) C {1}, then
f(F) C {1}. Therefore for any x in F, g(x) = 1. Consequently
g(F) C {1}. Since £X)C [0,1]and g(Y) = £(Y) C £X), then

g(v) C [o, 1],

-Lemma 4.5 If the space (X, T) is homeomorphic to a com-

pletely regular space, (Y, T'), then (X, T) is completely regular,

. M: Let f be a homeomerphism from (X, T) onto (Y, T"),
Let F be a closed subset of X and let y be in X~ F. Then f(F) is
a closed subset of Y. Since y is not in F, f(y) is not in f(F), Since
(Y, T') is a.completely regular space, there exists an h in C(Y) such

that

h(f(y)) = 0, h(f(F)) C {1}, and h(Y)C [0, 1]. (20)

Since f and h are confinuous g =hof is in C(X) and

g(y) = h(f(y) = 0, For any x in F, g(x) = h(f(x)), where f(x) is in
f(F), Therefore, because of (20), g(x) = 1. Hence g(F)C {1}.
Since h(Y) C [0, 1], then g(X) = h(f(X)) C [0,1]. Therefore (X, T)

is a completely regular space.

Theorem 4,6 If the space (X,T) is homeomorphic to a sub~

space of a product of pseudometric spaces, then (X, T) is completely



50

regular,

Proof: Let f be a homeomoxphism from (X, T) onto a subspace

of Z = .>< Xi’ whe re Xi is a pseudometric space for each i in I, By
Lemma t:‘lz, Xi is completely regular for each i in' I. Begause of
Lemma 4.3, Z is completely regular, Therefore, by Lemma 4, 4,
f(X) is completely regular. Hence by Lemma 4,5, (X, T) is com-

pletely regular,

Theorems 4.1 and 4.6 show that the family of completely regu-
lar spaces is the same as the family of spaces which can be embedded
.in a product of pseudometric spaces. As shown in Chapter II, the
family of completely regular spaces is the same as the family of uni-
formizable spaces, Therefore Theorems 4,1 and 4.6 can be proved
by using the concept of a uniform space instead of using the concept
of a completely regylar space. The next two theorems will do this,

Several lemmas will first be proved,

Lemma 4.7 A product of uniformizable spaces is uniformi-

zable.

M: For any a in A, let (Xa, Ta) be a uniformizable space.
Then, for any a in A, there is a uniformity U:for'Xa which is com~
‘patible with Ta" Let (Z,T) be the product space determined by
{(Xa, T ):ac A}, By Corollary 1,18, the collection of all sets of

the form {(x,y)e¢Z x Z: (xa', y

) e U_}, where a isin A and U_ .is
a a » 2

prd 5 ‘ 4
in Ua’ is a subbase for a uniformity U “ for Z called the product
uniformity. Let TU be the uniform topology for Z induced by U,

If T, =T, then (Z,T) is uniformizable.



51

So let O be in TU and let u be in O. Then there exists a U
in U='< such that Ulu] C O, By definition of U%, there is a finite sub-
set F of A such that
B= M {(x,y)eZxZ:(x,y )eU_}CT,
‘ a’’a a
aelF
where, for each a in F, Ua is in Uz. Therefore Blu] C Ulu] C O,

and

B [u]

1}

(vi(wv) B} = N {vi,v)eU,)

q,?F {v: v, €U, [ua]}.

Therefore (M {v: v, € Ua [ua]} (C O. By Corollary 2,6, for each a
aeF
in: F, Ua [ua] is a Ta—neighborhood of u . Consequently, for any a
in F, there exists an O in T_ suchthat uw ¢ O (C U_[u ]. There-
a a a a a’ a

fore

ue M {veZ:v.e 0.} C MN{veZ:v_eU [u]}C o.
aekF a a aeF a a @

By the definition of the product topology for Z, M {veZ: v, € Oa}
aelF
is;in T. Therefore O is in T.

Now let O be in T and let u be in O. There exists a finite
subset F of A suchthat ue M {we Z:w, e Oa} C O, where for
aeF

each a in F, Oa is in Taq Consequently for each a in F, there

exists a Ua in Ua such that Ua [ua] C Oa. Therefore

ue M {WeZzwae Ua[ua]}c M {WeZ:Wae Oa}.
aeF aeF

But a.OF {weZ: w € Ua [ua]} = N[u], where
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N= M {(x,y):(x_,y.) «U_}. Since N is in U~ and because of
aeF a ‘a a.

Corollary 2,6, N[u] is a T -neighborhood of u. Since N[u]l]C O, O

U

U Therefore

T = TU and (Z,T) is uniformizable.

Lemma 4,8 A subspace of a uniformizable space is uniformi-

zable,

Proof: Let (X,T) be a uniforrhiza.ble space and let Y be a sub-~
space of X, Then there exists a uniformity U for X compatible
with T. Define UY tobe {UMN(YxY):UeU } andlet A be in

*
U

1 Then A=U M (Y xY) for some U in U*. Since

-DYCDXCU, then DYCUﬂ(YxY)=A,

Also At unyxnIt=ut (¥ xY). Since

U"l € Uma A“1 is in U;, Now there is a V in Uh< such that

VoV U, This implies that V /M (Y x Y) is in U; and
VA xnlelvN (¥xN]ICUN (YY) = A,

Let C and B be in UY Then C=U M (Y, xY) and B =V M (Y x 1),

where U and V arein U . Hence C M B =(UMV) M (Y xY),
sk . o,

where U MV is in U . Therefore C (B is in U;, Suppose

D=UMN(YxY)CBC YxY, where U is in U . Then

(UU B N(YxY) =[Uu (Y xY)]U B =B,

. * g ' ‘ %
Since U U B isin U , B is in US;' Therefore Uy is 3 uniformity
for Y,

In order to show that the subspace Y is uniformizable it must
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be proved that the topology T' induced by U; is equal to the relative

topology TY for Y. Therefore let O be in TY and let x be in O.

Then O =G M Y, where G is in T, Since U s compatible with T,
there exists a U in U* such that U[x](C G, Therefore
Ulx] MY C GMY. Since (U M (YxY))[x]=U[x]r\.Y, then

(UM (Y xY))[x] C O, Because U M (Y x Y) is in UX, 0 isin T

Y’
Now let O be in T' and let x be in O, Then there exist a U in

la

U" such that (U M (Y x Y))[x] C O, Hence Ulx] N Y C O. By
Corollary 2, 6, U [x] is a T -neighborhood of x, Therefore there

exists a T~open set G such that x ¢ G C U[x]. This implies that
xeGmYCU[]mYCo Since G MY isin Ty, O isin T

Therefore TY- = T and so the subspace Y is uniformizable.

v

Definition 4, 9 If (X, U?S) is a uniform space and Y ( X, then

“

(UN (YxY):TeU }

oK
is called the relative uniformity for Y or the relativization.of U to

Y (12, p. 182);

Lemma 4,10 If a space (X, Tl) is homeomorphic to a uniform-

izable space (Y’TZ)’ then (X’Tl) is also uniform‘iza.ble.,

m: I_,et:‘Uﬂ< be a uniformity for Y which is compatible with
T, and let f be a homeomorphism from X onto Y, By Theorem 1,17,
{fZ (U): U e U*} is a subbase for a uniformity v* for X. Actually
{5;'(U): U € U™} isa base for V', Let T, be the topology for X
which is induced by V*, It must be shown that TV = Tl. |

Let O be in TV and let x be in O, There exists a V in V*

e
such that V[x] C O. Thereisa U in U such that £5°(0) C v,
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which implie s that

(55" () [x] C vix] C o. 21)

By Lemma 2.5, f(x) is in G = int (U [f(x) ]), the 'Tz-interior of

Ulf(x)]. Clearly x isin f7(G), Let u be in £ }(G). Then f(y) is
in G which implies that f(u) is in U[f(x)]. Hence £, (x, u) = (£(x),f(u))
is in tI, which implies that (x,u) is in fél(U). Thus u is in

;1U)) [x], 2nd hence, by (21), u is in O. Therefore £ (G) C O.

Since G isin T 1

(f

and f is in C(X), f~
1

> (G) is T1~open. It has been

shown then that x ¢f" (G) (C O, where f"l(G) is T, ~open. There-

1
fore O is in Tl.
Now let O be in 'I‘1 and let x be in O, Since f is a homeo-

morphism, £(O) is jn T, and f(x) is in £(0). Thereisa U in U

2
such that

U lf(x)] C £(0). (22)

Let y be in (£57(U))[x]. Then (x,y) isin f; (U), which implies that
(f(x), f(y)) is in U. This implies that f(y) is in U [f(x)]. Because of
(22), f(y) is in f(O), Since f is one-to-oene, y is in O, Therefore
(fil(U))[x] (C 0. Since f?:l‘(U) is in v* and since x is in

v , and hence (X’Tl) is

-1 .. —_—
(f2 (U))[x], O is in T,,. Therefore T’1 = TV

uniformizable,

Theorem_f}. 11 Ifa space (X, T) is homeomorphic to a sub-

space of a product of pseudometric spaces, then (X, T) is uniform-

izable.

Proovf: Let f be 3 homeomorphism from the space (X, T) onto
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a subspace of Z = .x. Xi’ a product of pseudometric spaces. Because
: iel .

of Corollary 1. 5, Xi is uniformizable for each i in I. Then, because

of Lemma 4,7, Z is uniformizable. f(X) is uniformizable by Lemma

4,8. Therefore by Lemma 4. 10, (X, T) is uniformizable,

The following lemmas are needed to prove the converse of

Theorem 4, 11.

-Lemma 4,12 If (X, U>'<) is a uniform space, then for any U in

whe

* e
U there is a symmetric V in U such that VoVoV (C U.

. Proof: Let U be in U>P. Then there isa W in U>'< such that

WoW C U, If VWM W"l then, by properties of uniformity, V

)
isin U, V is symmetric, and VoV ( U. Therefore for any U in

b

U", there is a symmetric V in U" such that VoV (C U. Therefore,

b3 s
for any U in U ., there exist symmetric members V. and V, of U

1 2

19V, C U and VzovVZ C Vi Since V, C V,oV

VZ C V.. Therefore V,o (V,o0 V,Z)'C V,o V, and hence

such that V 21

Vy,0V,0V, C U,

-Lemma 4,13 For each 2 in A, let (X, U:) be a uniform
~space, Let f be a function from the uniform space (Y, V) into

(Z,U*) where Z = = Xa and U is the product uniformity for Z.
aeA ;
If, for any a in A, Pao f is uniformly continuous relative to v and

)

sk sk S
Ua’ then f is uniformly continuous relative to V' and U .

Plfoo_f: Let V be a member of the subbase of the product uyni-

~1
a

formity, Then V = (P )2 (Ua) = {(x,y): (xa,ya) ¢ U}, where U is

X .. _
in Ua and a is in A, Hence
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, ~1 -1
S (V) = £ {(xy) (x,,y,) €U} = (P o D)7, (U),

sk 5k
Since Pao f is uniformly continuous relative to V and Ua’ then

. C o >:‘
(Pao f) é (U) is in V . Therefore

fil(V) is in V' for any V in the subbase of u”. (23)

- For any W in U,

f’l(W)j)f”l(rrIWV)vrrl\£‘1
2 DR UV = 5

1 (v;)

. K8 n
where each Vi is in the subbase of U , Because of (23), M f;l (Vi)
sle sle 1
is in V', Therefore fil(W) is in V' since it contains a member of

%k ' % %
V', Therefore f is uniformly continuous relative to V' and U .

*
Lemma 4,14 Let (X,U ) be a uniform space and let d be a
pseudometric on X, Then d is uniformly continuous relative to the
product uniformity for X X X and the usual uniformity for»E1 if,
o
is in U ,

and only if, for any r >0, V
d, r

Proof: Suppose d . is uniformly continuous relative to the pro-
duct uniformity for X x X and the usual uniformity for El. Let
r>0Q and Ur = {(x,¥): |x-y| < r}. Then d;l(Ur) is in the pro-
duct uniformity for X x X, By Corollary 1. 18, the product uniform-

ity has'a subbase consisting of sets of the form
{((x,y)s (0, v)) 1 (x,u) €U}

where U eU  or {tx,y), (u,v)): ({y,v) eV}, where V ¢ U", There-

1

fore di (U,) contains a finite intersection of sets of this type. It

can easily be shown that a finite intersection of sets in the subbase of
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the product uniformity contains a set
{((XJY)a (u:V)): (xﬂ'u‘) eV .a'nd (Y,V) GV}:

i £ -
where V is:in U , Therefore

GHU) Dy (V) (k) eV and (y,v) e V). (24)

Let (x,y) be in V. Then ((x,%), (x,y)) isin d;' (U ) because

(x,x) € V and because of (24), Therefore dz( (%,%), (x,y)) is in Ur’
which implies that [d(x,x) - d(x,y)] = d(x,y) < r. Hence (x,y) is'in
d,r and, since V is in U , Vd,'r is in U ,
Suppose now that for any r > 0, Vd . is in U . Let U be in

]

A% Therefore V (. V

d, r
"~ the usyal uniformity for- El, Then there exists an r > 0 such that
U = {(,y): [x-y] <r}C U. Let

r

M= {((xy),(w,v)): (x,u) eV, r and (y,v) eV T }.
. ) )

% ..
By the supposition Va r is in U , and hence M is in the product.
2 2 . .
uniformity for ‘X x X, It will now he shown that M (C dgl (Ur)' Let

((x,y)(u,v)) bein M. Then

d(x,u) < > and d(y,v) < -25 ' . (25)

R

Now d(x,vV) _<;_‘d(x,u) +d(u, v) + d(v,y). Therefore by (25),
d{x,y) - d(u,v) <'r. Also d(u,v) < d(u,x) +d(x,y) +d(y,v). There-
fore by (25), d(u,v) - d(x,y) < r. Because of these last two inequal-

ities, |d(x,y) -~ d{u,v)| < r. Hence dy((%,y), (4, v)) is in U, and

consequently ((x,y),(u,v)) isin dél (Ur)* Therefore M d;l(U
-1
5 (

)s

r

which implies that M ( d] (U). Since M is in the product uniformity
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for X x X, dsl(U) also is in the product uniformity. By the defini-
tion of uniformly continuous, d is uniformly continuous relative to the

product uniformity for X x X and the ysual u.niformity for- El,

The next lemma is often called The Metrization Lemma, It will
- be needed later in this chapter to prove that any uniformity U* for a
set X can be generated by the family of all pseudom,eitrics on X which
are uniformly continuous relative to U>:< and the usué.l uniformity for
vElY The Metrization Lemma is also used to prove th'a.t a uniformity

can be generated by a single pseudometric if and only if the uniformity

has a countable base (12,p, 186).

‘Lemma‘4. 15 Let {Un, n > 0} be a sequence ‘of subsets of
X x X such that
(i) U, = X xX.
(ii) Un‘D DX for any n,
(i) U 30U 00 C U for any n.
(iv) Each Un is symmetric.

Then there is a pseudometric d on X such that for any n > 1,
U C{xy):dx,y)<2™y CU__;

Proof: Define a function f from X X X into. E1 "such that

fix,y) =277

if there exists a least positive integer n for which (x,y)
is not in Un’ and f(x,y) =0 if (x,y) is in each Un' Define a function

d from X x X into»E1 such that d(x,y) is the infimum of the set of

n

all sums = f(xi*xi+l)’ where {xi: 0<i<n+ 1} is a sequence of
0 | -7

points in X, Xg = X, and X 41 =Y For the sake of convenience call

any finite sequence Kgr Xpo vee 0 X in X a chain of n+2 points
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n

and call = f(xi, X ) the length of the chain from x ., to It
-0

i+1 0 7 Fnt1r
follows from the definition of d and properties of the infimum that d
is a pseudometric on X (15, p. 130),

It will first be shown that for any n > 1,

U, C {(x,y):d(x,y) < 277}

Let (x,y) be in Un' Because of (ii) and (iii), {Un} is a monotonically
- decreasing sequence of sets, Therefore for each i< n, (x,y) is in
Ui‘ . Hence, by definition of f, f(x,y) < 2™". Since f(x,y) is the
length of a chain from x to y and since d(x,y) is the infimum of the
lengths of all chains from x to y, d(x,y) < f(x,y). There‘fore

d(x,y) < 27"

In order to prove the other set inclusion in the conclusion of the

lemma it will first be shown that

f(XO’ *n+1

for any chain of two or more points. If n = 0 or equivalently if the

n ‘
chain has two points, then E,f(xi, x_i+1) = 0 implies that
0
f(XO' xn+1) = 0, Assume, for any chain of n + 2 points, where
n-> 0, that
n
Z())f(xi, xi+1) = 0 implies that f(xo, Xn+1) = 0,
_ : n+l
Consider a chain of n + 3 points such that X f(xi, xi+1) = 0, Then
n ’ 0
20 f(xi, xi+1) = 0 and f(xn+1a xn+2) =0, since f> 0. By the assump-

tion, f(xo, X = 0. Consequently, by definition of f, (xo, x and

n+1) n+1)

are in Urn for any m, Therefore (xo, X is in

(xn+1’ xn+2) n+2)
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U..° Um for any m, Since

U,oU, CU_ oU oU C Umrl

for any m > 1, then (xo, xn+2) is in Um for any" m. . Consequently,

by the definition of f, f(x ) = 0. It has been proved by mathe-

0’ ®*n+2

matical induction, for any chain of two or more points, that

) = 0 then f(xo, xn-i-l) =

Therefore for any chain of two or more points,

f(x = 0 implies that f(x

0’ *n+1

oMp

n
N ) < 22 8, x,

It will now be proved by mathematical induction that, for any

chain of two or more points,

n n
if %f(xi_,xiﬂ) # 0, then f(xp, %) < 2 %}f(xi,xi+1), (27)

Assume in the-folloWing argument that for any chain of twq or more

points,

n
'z f(x,x,,,) # 0,
0

i’ i+l

If n=0 or equivalently if the chain has two points, then

f(xo,x ) < 2 f(x.l,x.H_l).

oMp

n+1

Assume the inequality to be true for any n< q - 1, where gq> 1, and

for any chain of n + 2 points, Consider a chain of q + 2 points and
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let
q
a = g;f(xi,xi+l).
It must be shown that f(XO’xq+1)‘—<— 2a, Now if a > 1/4 then

1( < 2a, since f(x < 1/2, Therefore assume that

X1 ¥q+1) 0' ¥q+1)

a < 1/4, Ifthere exists a largest integer j such that

j-1

2 f(Xi, X,

) < al2,
0 i+l

let k = j. Otherwise let k = 0, Note that k < q since a is positive,

If k=0, f(xo,x )=0<a. If k>1 then, by the induction hypothesis

k >
and the definition of k,

f(xo,xk) <2 ZOJ f(x.,xi

Therefore

for k >0, f(xo,xk) < a. (28)
Iqus; q, then f(xk,xk+l) :kf(xq?xq+1) < a. If k< gq and
> f(x.,x. .) > a/2, then Z f(x,,x., ,) < a/2. This contradicts the
K1 i? i+l 0 AR q
definition of k. Therefore if k <gq, then X f(x,,x, 1) < a/2.. By
K+l b oME T
the induction hypothesis
q
fop 1 ¥qe1) £ 2 kfl Exge %5 49)-

K]

. Hence f(x ) <2(a/2) = a if k<q. Define m tobe the

k+1' g+l

smallest positive integer such that

2 < a. (29)
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‘Note that since a <.1/4, m >3, Suppose that (xo,x is not in

1)

U Then let p be the smallest positive integer such that (xo,xk)

m-1"

is not in Up. Then p <m which implies that 2P > 2™, By defini-

tion of f1, 27P = f(xo,x-). By (28), 2“p_<_ a. But,- since p < m, this

k
contradicts the definition of m. Therefore (xo,xk) is in Um 1+ By
the same reasoning (Xk’xk+1) and (xk+1’xq+l) are in Um—-l' There-

fore, if k = q, then (XO’Xq+1) is in Urn o Um and, if k <gq,

-1 -1?

‘then (XO’xq+1) is in Um-»lo Um-l o Umql' Now, by (i) and (ii),

Umwlo Um-—l Cu

oU oU_ C Uno2e

mw1 m-1

Therefore (XO’Xq+1) is in Umwz in either case, Now if (xo,xq+1)

is in Ui for each i, then f(xo, y=0< 2a. If (XO’xq+1) is not in

xq+ 1 -

each Ui’ then let J be the least integer such that ( is not in

XO’xq+1)

‘ . s o] . .
Uj' Then, by definition of f, f(x ) =2 “, Since (xo,xq+1) is

O’Xq+1

in Um 2 and since {Un: n > 0} is a monotonically decreasing
sequence, then j > m -2, This implies that j> m - 1 and hence

<2

< ) ~m+1
0’ q+l’ — '

that f(x Consequently, because of (29),

f{ ). <2+ Z'mv_<_ 2a, Therefore, by mathematical induction,

*0’ xq+1

n
) S2Tf(x,%

f(x . ;

X0’ X fl for any chain of two or more points, (30)

1)

Let d(x,y) <2™", where n>1, If n= 1, then U = X xX

=1
and hence (x,y) is in Un-—l’ Let n > 1. Because of {30),

for any chain from x, = x to x

0 4l =Y Therefore, by definition of
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d, 1/2 - {(x,y) < d(x,y), and hence

-n+l

f(x,y) < 2d(x,y) < 2 (31)

If f(x,y) =0, then, by the definition of f, (x,y) is in Un . - Assume

-1

f(x,y)# 0 and (x,y) is notin U Then there is a least positive

n-1°
integer r such that (x,y) is not in Ur and f(x,vy) = 27F, Then, by

-n+l

the assumption, r < n - 1. This implies that 278> 2 , which
= p Z

implies that f(x,y) > 2—n+1' But this contradicts (31), Therefore,
if f(x,y) # 0, then (x,y) is'in Un-,l' Therefore, for any n> 1,

{x,y):dx,y) <277} CU_ .

‘Lemma 4.16 If (X, U*) is a uniform space, then U is gener-
-ated hy the»family P of all pseudemetrics on X which are uniformly
continuous relative to the product uniformity for X x X and the usual

uniformity for: E1 .

- Proof: P is non-empty., For if p is a function from X x X

into'El such that p(x,y) = 0 for any (x,y), then p is a pseudometric

on X, Ferany r >0, V = X x X, which is in U"<, Therefore, by

P, r

Lemma 4. 14, p.is in P, By Theorem 1. 14, {Vp PP P and r > 0}

is a subbase for a uriiformityuz; for ‘X, It will be now be shown
% -
that U_=1U
p n »
Let U he in UI; Then U O MV —_ where for each i, P,

1 Pty
is in P and . > 0, By the definition of P and by Lemma 4. 14,
Vo, isin U" for each i, Therefore, by properties of a uniformity,
EE %k :
U isin U,

sk b3
Let U be in U , Define a sequence of enfourages in U in the
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following way. Let U, = X x X. Define U, to be a symmetric entou-

0
rage in U% such that U

1

oU1 (C U. For any i>1, define U,

.U i+l

1 1

b3
to be a symmetrlq entourage in U such that Ui+1 o) Ui+1 o Ui+1 C Ui'

It is possible to do this because of Lemma 4, 12. This sequence satis-

fies the hypothesis of Lemma 4, 15, Therefore there exists a pseudo-

metric d on X such that

U C {(xy):dxy) < 27"y C U, ., forany n> 1, (32)

Let r >0, Then there is a positive integer m such that 2" < r.

Therefore, by (32), U__ C V4 . Since U_ is in U, Vq , isin
] s
a

U . Hence by Lemma 4,14, d is in P, This implies that Vd 1/4

is in Up’ | Because of (32), Vd, 1/4 C Uy. Since

U1C UloUloUlC U,
/
e % *
then Vd, 1/4 C U. Hence U isin Up" Therefore U = Up'

/
Lemma 4.17 If { is a function from the uniform space (X, U"‘)

. o .
into the uniform space (Y,V ) and f is uniformly continuous relative
% * N . . .
to U and V , then f is gontinuous relative to the uniform topologies.

of these spaces.

Proof: Let O be in the uniform topology TV induced by V' and

let x be in fql(O‘). Then f(x) is in O and hence there is a v in.V"\
such that

v f(x)] C o, (33)
21 (V) = U, for some U in U,

Therefore fZ’(U) C V. Let y be in U[x]. This implies that (x,y) is

Since f is uniformly continuous, f
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in U, Then f,(x,y) = (£(x), £(y)) is in V which implies that f(y) is in
vV [f(x)]. By (33), £f(y) is in O and hence y is in f'l(O). Therefore
U[x] C f-'l(O). Hence f—l(O) is in the uniform topology TU induced

X
by U, Therefore f is continuous relative to T,  and TV'

8]

Theqrem 4.,‘ 18 If a space (X, T) is uniformizable, then it is

homeomorphic to-a subspace of a product of pseudometric spaces.

Proof; Since (X, T) is uniformizable there is a uniformity u*
for X which is compatible with T, Let F be the family of pseudo-
metrics on X which are uniformly continuous relative to the product
uniformity for X x X and the uéua.l uniformity for'El. As shown in
the proof of Lemma 4, 16, F is non-empty, For any d in F, let
‘,(X,d) be the associated pseudometric space. Let Z be the product
space determined by these pseudometric spaces, For any d in F,

*

let Ud be the uniformity for X generated by d, By Corollary 1.15,
n

' Ud is compatible with the pseudometric topology of (X,d). Let V==<
be the product uniformity for Z determined by the family {'Uz:d e F},
Define a function f from X into Z such that f(ic)d = x, for any x in
X and any d in F. Note that f is defined in the same way that the
function g is Theorem 4,1 was defined, except that now the index set
for Z is different, As was done for Theorem 4.1, it can be shown
‘that for any d in F, Pd of is an identity mapping. It follows direct-
ly that for any d in. F, (Pd o f)2 is an identity mapping, Therefore
for any U in Uz, (Py 0 f);i‘l (U) = U, There isan r >0 such thgt

u D Vd, ,+ By Lemma 4. 16, F generates U*, Hence U is in U™,

Consequently for any d in F, Pd o f is uniformly continuous relative

to U and UZ. Therefore, by Lemma 4. 13, f is uniformly continuous
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relative to U* and V*, Because of Lemma 4, 1‘7, f is continuous
relative to T and the topology TV for Z which is induced by V*. As
shown in the proof of Lemma 4,7, 'I‘V is the product topology for Z,
Therefore f is continuous relative to T and the product topology for
Z, It can easily be verified, as was done for the function g in Theo-
rerﬁ 4, 1, that f is a one-to-one mapping. Define the function h from
X onto f(X) =Y such that h(x) = f(x) for any x in X. Then h is
one-to-one and is continuous relative to T and the relative topology
be the relativization

Y
o
of V. to Y, It will now be shown that g is uniformly continuous rela-

TY for Y. Let g be the inverse of h and let V

sk sic
tive to VY and U ,

Because gil(U) = h,(U) = £,(U) for any U in U*, g is uni-

formly continuous provided that fZ(U) is in V;{ for every U in U’F.

% . E3
So let U be in U , Since F generates U , U contains

n
M Vv ,
1 49T

where, for each i, d,i is in- F and r, >0, Therefore

n
£,(U) D fz(? Va., r)e
1 1

is also one-to-one, and hence

Since f is one-to-one, f2
n
L) DO 5V ). (34)

For any d in: F and r > 0, the set

W = {(x,y) ¢eZ x Z (x,d,yd) eVd’r}- M [y x Y]
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Cis in VY' Now let (x,y) be in W, Then (xd,yd) is in Vd,r’ and
there exist a and b in X such that x = f(a) and y = f(b). By defini-

tion of f, X4 = f(_a.)d = a and Yq = f(b)d = b.  Hence (a,b) is:in Vd

and (x,y) = fz(a,b), Consequently (x,y) is in fZ(Vd r)' Therefore
.. %

W C fZ(Vd, I)’ and hence fZ(Vd, 1‘) is in VY. Because of (34) and

the properties of a uniformity, fZ(U) is in VY Therefore g is uni-

Y
Lemma 4,8, the topology induced on Y by V

formly continuous relative to Vv and U>P, . As shown in the proof of

Y
TY of the sybspace Y. Consequently, because of Lemma 4.17, g is

is the relative topology

continuous relative to T, and T. Therefore h is a homeomorphism

Y

from X onto Y, a subspace of Z,

Lemma 4. 16 and Theorem 1, 14 result in the following charac-
»térization for a uniformity or uniform structure for a set X, If U":;
is a collection of relations on X, then U#< is a uniformity for X if
and only if therer exists a non-empty family P of pseudome‘trics
defined on X such that {Vd, . d e P, r> 0} is a subbase for U*.
This définition is given by Bourbaki (3, p, 139). Sometimes a uniform
structure is defined to be a no'n-empt:y family of pseudometrics with
certain stated properties (11, p.217),

The last theorem in this éhapter'is a Cha‘.ra.bcteriza.tion of uni-
formizable spaces in terms of a,> family of pseudometr_ics. It sfa.tes
that the topology of any uniformizable space can be g‘ene‘ra.ted by the

open spheres associated with a family of pseudometrics,

Theorem 4.19 A topolegical space (X, T) is uniformizable if
and only if there exists a non-empty family F of pseudometrics oen X

such that the collection of open spheres
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{Sd L[¥):deF, r>0, and x¢ X}

!

is a subbase for T,

- Proof; Suppose (X, T) is uniformizable.. As was done in Theo-
rem 4, 1, a family of pseudometrics F = {df: f e C(X)} can be
defined, where d(x,y) = [f(x) = £(y)], for any f in C(X) and any x
and y in X. Since any constant function is continuous, F is non-

empty. For any f in C(X) and any r> 0

»
"

{y:dyxy) <r}

H

{y: [fx) - f(y)| < r}

f"l( (f(x) - r, f(x) + r)). (35)

1!

Therefore, since f is continuous, Sd r(x) is in T, Consequently
f’ .

{84 ) :deF, r>0} C T.

Let O be in T and let x be in O, Since (X,T) is completely
regular, then, by Theorem 3.4, T is the weak topology induced by

C(X). Therefore

where each fi is in C(X) and Gi is open in,Elg For any i, fi(x) € Gi

and hence there is an r. > 0 such that

. Hence



Therefore
n -1 n -1

Therefore

{Sd r(k):deF,r>0, and x ¢ X}

is'a subbase for T,
Now suppose that there is a non-empty family P of pseudo-

metrics on X such that

b .
S = {S (x);de P, r>0}

d, r

is a subbase for T. By Theorem 1, 14,

g

{Vv :deP and r>0} = A

d, r

is a subbase for a uniformity U for X, Let T.. be the topology

U

%
~induced by U ., It will now be shown that T.. = T and hence that

U
(X, T) is uniformizable.

Let O he in TU

of relatigns in A" for a base for U>P, then
n
o D(fl\ Vg ) L

v k3 2 >‘=
where, for each i, Vd , 1isin A, Now
17

it i

and let x be in O, Since finite intersections

69



70

n n’ n .
(r; Ve p)El= 0wy LIk = D sy L =)
i’ 7 1 A | 1

and the last set contains x. Since
0
M (S
1

is in T, O isin T,
Now let O be in T and let x be in O, Since S" is a subbase

for T, then

(x.)) C O, where for each i, S,

n
x el ('Sd.,r. i d.,,r." i
: 1 i’y T

For each i, there is a t such that’ Sd ¢ (x) C Sd (xi). Therefore

s b ¥}

i’ i i1
n n '
M S (x) CMS (%.),
1 d-iti 1 dip ri 1

1

which implies that

Since

then
n o '
1 FANES ‘

% n i
Since A is a subbase for Ua, then M Vd t is in U . Therefore O
ot

1 i’

is in T{,. Therefore T = T . and (X,T) is uniformizablﬂe, -

U U



CHAPTER V

CHARACTERIZATIONS OF

TYCHONOFF SPACES

If a completely regular space is alsoa T, space, then it has

1
some interesting characterizations hesides those mentioned in the
previous chapters, These various characterizations will be examined
in this chapter,  All of the characterizations will he in terms of em-

beddings, except for the first whiCh will be in terms of C(X). Several

definiti_ons must first be stated.

Definition 5, 1 A topological space is a Tychonoff space if and

only if it is c:ompletely.regula.r and Tl'

There is no general agreement about the name of this type of
space. The definition given above agrees with that of Kelley (12).
- Cullen (5) calls this space a completely regular space. Since a com-
pletely regular space is also-a regular space, the T1 property and
the T2 property are equivalent properties for a completely regular
space, Therefore the T, property in this definition can be replaced

by the Tz property.

Definition 5.2 A family F of functions on X distinguishes
points if and only if, for any two distinct points x and y in X, there

exists an f in. F such that f(x) # f(y).
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Theorem 5,3 A topological space (X, T) is a Tychonoff space

if and only if C(X) distinguishes points and distinguishes points and

closed sets,

- Proof: By Theorem 3.2 (X, T) is completely regular if and only
if C(X) distinguishes points and clased sets,

Suppose first that (X, T) is a Tychonoff space and let x and y
be in X such that x #y, Since (X, T) is T, {y} is a closed set and
x € {y}, Therefore, since (X, T) is completely regular, there is an
f in C(X) such that f(x) = 0 and f(y) =1, Hence f(x) # f(y), There-
fore if (X, T) is a Tychoneff space, then C(X) distinguishes points.

Suppose now that C(X) distinguishes points, Let x and y be in
X such that x # y, Then there exists an f in C(X) suc;h that
f(x) # £(y). Since‘El is- Hausdorff, there exists two disjoint open
subsets G and H of E1 such ‘that: f(x) is in G and f(y) is in H,
~Then x is in f”l(G) and y is in f—l(H), Since f is continuous f'l(G) .

-1 1(

and f "(H) are open subsets of X, Also f "(G) and f—‘l(H) are dis-

joint, Therefore if C(X) distinguishes points, then (X, T) is T,
Consequently (X, T) is a Tychonoff space if and only if C(X) distin~

guishes points and distinguishes points and closed sets,

Definition 5.4 If for any i in an indexing set Q, X, = [0, 1],

and [0,1] has the usual topology, then x Xi’ with the product topol-
ieQ
ogy, is called a cube,

Theorem 5,5 A topological space (X, T) is a TYchonoff space

if a_L'nd only if 1t can be embedded in a cube.

Proof: Assume (X,T) is a Tychonoff space, Let
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F = {feC(X):{(xX)C [0,1]}

and let IF be the cube indexed by F, . Define a function e from X into
vIF such that, for any x in X and any f in F, e(x)f= f(x), For any
f in F, let Pf be the projection of IF onto [0, 1], Then, for any f in
F and any x in X, (Pf o e)(x) = e(‘x)f = f(x), Therefore, for any f in
F, Pf oe = f{ which implies that Pf 0 ¢ is continuous, Therefore
e is a continuous function (12, p. 91).

~Let x and y be in X such that x # y. Since (X,T) is com-

pletely regular and T, there exists an f in F such that f(x) = 0

1

and f(y) = 1, Hence e(x)f # e(y)f and consequently e(x) # e(y),
Therefore e is one-td-one,

Finally it must be shown that e is an open mapping. So let O
be an open subset of X and let y be in e(0O), Then there is an x .in
O such that e(x) = y. Since (X, T) is completely regular, there

exists an f in ' F such Eha.t
f(x) = 0 and £(X-0) C {1}, (36)

Let

N={wel iw,elo, 1)} = P71 ([0, 1)),

The interval [0,1) is an open subset of the space [0, 1] and hence N
is open in IF, Therefore N (M) e(X) is open in the subspace e(X)
of IF. Because of (36) Vg = e(x)f = f(x) = 0, Therefore by definition
of N, vy isin N, Since y is in e(X), y isin N M e(X)., Now

N M eX) C e(Q), For, u in ‘N M e(X) implies that u is in N and
u=e(w), where w is in X, Therefore u,= e(w);f = f(w) is in [0, 1),

f

and hence f(w) # 1, Because of (36), w is in O, Consequently u is
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in - e(0), Therefore yeN M e(X) C e(0), where N M e(X) is open
-in the subspace e(X). This implies that e(O) is open in the subspace

e(X), Therefore the space (X, T) can be embedded in the cube IF.

- Now suppose that (X, T) can be embedded. in a cube IQ. Then

- since the space [0, 1] is a pseudometric space, (X, T) can be embed-
ded in a product of pseudometric spaces. Therefore, by Theorem

4,6, (X, T) is completely regular. The space [0,1] isa T, space.

1

spaces is a T1 space, IQ is a T1 space, Let

f be a- homeomorphism from X onto a subspace of IQ and let x be in

Since a product of T1

'X. Then {f(x)} is closed in IQ, Since f is continuous, f_l{f(x)}
is closed in X, Since f is one-to-one, f—l{f(x)} = {x} and hence

{x} is closed in X. Therefore (X, T) isa T, space. Consequently

1
(X, T) is a Tychonoff space.

Theorem 5.6 A topological space (X, T) is a Tychonoff space

if and only if it can be embedded in a product of metric spaces.

Proof; If (X, T) is a Tychonoff space, then by Theorem 5.5

(X, T) can be embedded in a cube. Since a cube is a product of metric
spaces, (X, T) can be embedded in a product of metric spaces.
Suppoese (X, T) can be embedded in a product of metric spaces,
Since a metric space is a pseudometric space, (X, T) can be embedded
-in a product of pseudometric spaces. Hence, by Theorem 4,6, (X, T)

is completely regular, Since a metric space is a T. space, (X,T)

1

can be embedded in a product of T1 spaces, It was shown in the last
part of the proof of Theorem 5, 5 that any space which can be embedded

in a product of T, spaces is also a T1 spage, Thus (X,T) isa T

1

1
space, Therefore (X,T) is a Tychonoff space.
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~Theorem 5.7 A topological space is a Tychonoff space if and

only if it can be embedded in a compact Hausdorff space.

. Proof: Suppose (X, T) is a Tychonoff space. By Theorem 5,5,
(X, T) can be embedded in a cube. The closed unit interval with its
‘usual topology is éompact and ﬂausdorff, Tychonoff's product theorem
states that a product of compact spaces is compact. - Also a product
of Hausdorff spaces is a Hausdorff space., Therefore the cube is a
compact Hausdorff space, and hence (X, T) can be embedded in'a com-
pact Hausdorff space, |

Suppose (X, Tl) can be embedded in a compact Hausdorff space

(Y, T A compact Hausdorff space is a normal space. Therefore

2):

(Y, T,) is a normal space. Let C be a closed subset of ¥ and let x

2)

be in Y - C. Since (Y,T is'a-Hausdorff space it is a T, space,

2) 1
and hence {x} is a closed subset of Y, According to Urysohn's
lemma, if A and B are disjoirit closed subséts of a normal space X,
then there exists an f in C(X) such that £(X) C [0,1], f(A) C {0},
and f(B) C {1}. Therefore there exists an f in C(Y) such that

fy) C [0,1], f(x) =0, and £(C) C {1}, Therefore (Y, T,) is a com-
pletely fegular space. Therefore, by Lemma 4,4 and Lemma 4. 5,
(X, Tl) is completely regular, As was shown in the last i)a.rt of the
proof of Theorem 5,5, a s?ace-which can be embedded in a Tl space

is alsora T, space. Hence (X’Tl) is a T1 space. Therefore (X’Tl)

1

is a Tychonoff space.

-Definition 5,8 A topological space (X, T.) has a Hausdorff

1)

compactification if and only if there exists a compact Hausdorff space

(Y, T,) and a homeomorphism f from X onto a dense subspace of Y.

2)
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Theorem 5 9 A topological space (X, Tl) is a Tychonoff space

if and only if it has a Hausdorff compactification.

Proof: If the space (X, T,) has a Hausdorff compactification

1)
then it can be embedded in a compact Hausdorff space. . Therefore, by

Theorem 5.7, (X, T,) is a Tychonoff space,

L
Suppose (X, Tl) is a Tychonoff space, By Theorem 5,7, (X, Tl)
can be embedded in a compact Hausdorff space (Y, TZ)G Hence there
exists:a homeomorphism f from X onto M, where M is a subspace
of Y. M, the Tz-clo_sure of M, is a closed subset of Y. Any closed
subset of a compact space is compact. Therefore M is compact, Any
subspace of a Hausdorff space is Hausdorff. Hence M is Hausdorff.
Also M is a dense subspace of M, since the closure of M relative to
the subspace M 'lSIK/I". Therefore f is 2 homeomorphism from X onto
M, where M is a dense subspace of the compact Hausdorff space M.

Therefore (X, T,) has a Hausdorff compactification.

1)



CHAPTER VI

THE UNIQUENESS OF ADMISSIBLE

UNIFORMITIES

In the previous chapters, conditions under which a topological
space has an admissible uniformity were investigated. It is a natural
outcome of this to ask when a uniformizable space has a unique admis-
sible uniformity. A sufficient condition for a uniformizable space to
have a unique admissible uniformity is that the space be compact.
This was first proved by A, Weil (18). Doss (7) proved that a neces-
sary and sufficient condition for a Hausdorff uniformizable space to
have a unique admissible uniformity is that for any two normally
separable sets at least one must be compact. The problem of charac-
terizing spaces with a unique admissible uniformity has also been
studied by Newns (13) and G4l (9). In this chapter it will be proved
that if the space is uniformizable and compact then it has a unique
admissible uniformity. It will also be proved that the criterion given
by Doss is a necessary condition for a uniformizable space to have a
unique admissible uniformity. Then this necessary condition will be
used to show why various uniformizable spaces have more than one
admissible uniformity,

In the following two lemmas, subsets of X x X which are said
to be closed, open, neighborhoods of points, or closures of sets will

be so in terms of the product topology for X x X determined by a
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uniform.topology for X,

Lemma 6.1 The family of closed members of a uniformity is

a base for the uniformity,

Proof: Let U* be a uniformity for X and let U be in U*. By
Lemma 4, 12, there is a symmetric V in U* such that VoVoV ( U,
_ It will be shown that V( VoVoV. Let (a,b) bein V. By Corollary
2.6, Vla] and V[b] are TU

Then there exist sets G and H in TU such that

-neighborhoods of a and b respectively.

(a,b) eG x H C V[a] x v [b],

Therefore V[a]x V[b] is a neighborhood of (a,b). Hence

Vial x V[b] intersects V. So let (x,y) be-a member of V which is
‘alsoin V{a]l x V[b]. Then (a,x) and (b,y) are in V. Since V is
symmetric, (y,b) is in V, Because (a,x), (x,y), and (y,b) are in

V, (a,b) isin VoVoV. Therefore V ( VoVoV which implies that
VCu. Vis in U" since V C V and V is in U*. ¥ is closed. Con-
sequently each member of U* contains a closed member of U*.

Therefore the closed members of U>.< form a base for U*,

-Lemma 6.2 The interior of any member of a uniformity is

also in the uniformity.

Proof: I.et U be in U*, a uniformity for X. By Lemma 4. 12
there is'a symmetric V in U" such that VoVoV C U. It will be
shown that V (C int U, the interior of U relative to the product

topology for X x X determined by T So-let (x,y) be in V. As was

U
shown in the proof of Lemma 6.1, V[x] x V[y] is a neighborhood of
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(x,y) relative to the product topology. Now V x] x vly] C U. For
if (u,v) e V[x] x V[y], then (x,u) and (y,v) are in V. Since V is
symmetric, (u,x) is in V. Hence (u,v) is'in VoV oV, which implies
that (u,v) is in U, Because of the last set inclusion U is a neighbor-
hood of (x,y). This implies.that ‘(x, y) is in intU. Therefore

Vv C intU. Since V isin U, intU is in U,

Theorem 6.3 If (X,T) is a compact uniformizable space then

E
there is a unique uniformity U for X which is compatible with T.

In fact U is the set of all neighborhoods of DX'

Proof: Let U be a uniformity for X such that TU = T. Let
U be in U . By Lemma 6.2, intU is in U". This implies that

DX C int U, Since intU is open in the product space X x X and

since intU (C U, then U is a né.ighborhood of Dy

Now let N be a neighborhood of D Then there is an open

X
subset G of the product space such that Dy C G CN. By Lemma
6.1, there exists a family P:'< of closed members of U>P which is a

base for U . Let B= M{U:U ¢A"} andlet (x,y) be in B. Since

(x,x) is in G, there are T-open sets O1 and O2 such that

(x, x) € Ql X O2 ( G. Thereisa U in U=:< such that Ulx] C OZ’

since U is compatible with T, . There existsa V in A* such that
Vv C U, Since (x,y) is in B, then (x,y) is in U. This implies that
y is in U [x] and hence that y is in OZ' This implies that (x,y) is
in O

X O, -and hence that (x,y) is in G. Consequently B (C G.

1 2
Therefore XX X -G (( X x X - B, Consequently

XxX-B=U {XxX-U:UecA}DIXxX-G.



80

Because (X, T) is compact and because of Tychonoff's product theo-
rem, the product space X x X is compact, Since any closed subset
of a compact space is compact, X x X - G is compact. For any U
in:A*, X xX - U 1is open. Therefore {X xX -U:U ¢ A*}_ “is an
open covering of X Xx X - G, . Hence there is a finite subfamily

{Ul, U,y v Un} of A" such that

2!

n
U{XxX-U} D XxX-G
1

Hence

n
XxX-NU DXxX-G,
1

n ~ n
which implies that M U, C G. Since G C N, then M UivC N,
1 s n sk 1 *
Since each U, isin U, M U, isin U . Thus N isin U . There-
v 1
fore U is the set of all neighborhoods of the diagonal in the product

space.

Compactness is not necessary in order that a unifox;mizable
space have a unique admissible uniformity. An example of a uniform-
izable space with a unique admissible uniformity which is not a com-
pact space has been given by Dieudonné (6), If (X, T) is a uniform-
izable space for which X is finite, then (X, T) is a compact space,
and hence, by Theorem 6.3, (X, T) will have a unique admissible
uniformity, Because of th"15 there is a one-to-one correspondence
between the topologies for a finite set X for which the resulting
spaces are completely regular and the uniformities which may be

defined for X,
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Theorem 6.3 can be used to prove a theorem which is analogous

to-a theorem in analysis,

) b3 %k
Theorem 6.4 If (X,U ) and (Y,V ) are uniform spaces,

(X, T is compact, and f is a continuous function from X into Y

u)

relative to TU and'Tv, then.f is uniformly continuous relative to

5k 3k
U and V ,

Proof: Define Pa and P, to be the projections of Y X Y into

b
Y such that Pa(u, v) = u and Pb(u, v) =v forany u and v in Y. Let

O be in TV' Then

(P o,fz)“l(O) =2t = fil(Ox Y)

{(x,y): (f(x),f(y)) eO xY}

But this last set is f_l(O) x X, which is open in the product space

X x X. . Therefore Pa o f, is continuous relative to the product to-

2

pology for X X X and T,,. Similarly it can be shown that Pb o f2

v
is also continuous relative to the same topologies. Therefore fZ.is
continuous relative to the product topology for "X x X and the prodﬁct
topelogy for Y x Y. Now let V he in V*. By Lemma 6,2, intV is
in V*, which implies that Dy C intV. For any (x,x) in Dy,

fo(x,x) = (f(x), f(x)) 1is in DY and hence is in intV. Therefore

o
DX C f£1 (intV), Since intV is open in‘'Y x Y and since fz.is con~

tinuous, . f£1 (intV) is open in X x X. Hence f£1 (int V) is a neigh-

borhood of DX in the product space X x X. Since

fil (int V) C fgl (V),

then .f""1 (V) is a néighbarhood of D

2 Since (X"TU) is compact and

X
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because of Theorem 6. 3, fél (V) is in U>'<. Therefore f is uniformly

wle ate
. . " -
continuous relative to U and V .

The next theorem will give a necessary condition for a space
to-have a unique admissible uniformity, It is part of the previously
mentioned theorem by Doss (7).  Before it is proved, ‘a number of

definitions and lemma will be presented.

, Definit:ion 6,5 A filter on a set X is a non-empty collection

ol

" F  of subsets of X which have the following properties.
(i) The empty set is not a member of F*.
(ii) The intersection of the sets in.any finite subfamily
of is also a member of ,F*.
(iii) Any subset of X which contains a member of F* is

B
a member of F ,

- Definition 6. 6_ Ba< is said to be a base of the filter- Fa‘ on the

set X if and only if B C F  and each member of F contains a

s
member of B ,

Definition 6.7 If F is a filter on (X, T) and x isin X, then

x:is a cluster point of F if and only if x is in the T-closure of each

kK
set in F .

Definition 6,8 If F  is a filter on (X, T) and x is in X, then

x is a limit point of F' or, F converges to x, if and only if every

T-neighborhood of x is a member of F>'<,v

Definition 6. 9 A filter F  on a uniform space (X, Ua‘) is said

to be a Cauchy filter on (X, Ua\) or relative to U if and only if for
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any U in Uq‘, there is an N in F' such that N x N C u.

Definition ‘6. 10 Two subsets A and B of (X, T) are said to be

normally separable if and only if A and B are closed, disjoint, and

there is;an f in C(X) such that f(A) C {0} and £(B) C {1},

Lemma 6.1]1 If Gq< is'a non-empty collection of subsets of X

with the property that the intersection of the sets: in any finite sub-
1 : &
family of G is non-empty, then there is a filter F on X such that

G?.Q C F>,<?

- Proof: Let F’:< be the collection of all subsets of X such that
each contains the intersection of the sets in a finite subfamily of G*..
Then: Fﬂ< is a non-empty collection of non-~empty sets and Gﬂ< C F*.
Obviously any subset of X which contains a member of l'“>:< will be a
member of F*. Let H* be the collecti'on of all sets which are the
intevr4sec_tion of the sets in a finite subfamily of G* and let

X . ' .

Fl’ For vens Fn be in:F . Then for any i F, D Gi’ Whe;'e Gi is
'3

in‘H>. Since

n n
NF D0

n v o
and since M Gi is the intersection of a finite number of sets in G,
n 1, .

: S B
M F, is in - F , Therefore F is a filter on X.
1

Lemma 6.12 If F is a Cauchy filter on (X, U'ﬁ), a uniform

space, then any cluster point of F  relative to T.. is a limit point of

U

ale

F relative to TU'

Proof: Let x be a cluster in‘nt of F' relative to TU and let
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3 3k &
U bein U, Thereisa V in U" such that VoV (C U. Since F :is
a Cauchy filter, there exists an N in F such that N xN C V. By

Corollary 2,6, V[x] is a T, -neighborhood of x. Since x is a cluster

U

sk
point of F relative to TU, then x is in the TU-closure of N and

conseqtently VIx] " N#0. Let a bein V[x] M N. Then (x,a) is

in V and a isin'N. Now N (C U[x]. For if b is in N, then

(a,b) e N x N C Vv,

Since (x,a) and (a,b) are'in V,
(x,b) e VoV ( U.

This implies that!b is in U[x]. By property (iii) of a filter, U[x] is

in F?‘c‘. Since {U[x]: U e U>'<'} is a base for the T —neighborhbod

U

-system of x, then any T__~neighborhood of x is in F>'<. Therefore x

U

‘is a limit point of F relative to Ty

Lemma 6.13 If (X, T) is a Hausdorff space, then no filter on

X can have more than one limit point,

. M:v Let F* be a filter on. X and let x and y be 1}imit points
of F* such that x # y. Sinqe (X, T) is ' Hausdorff there are two dis~
joint neighborhoods Ox and Oy of x and 'y respectively., Since x is
a lrimit point of F*, Ox is a member of FJ‘ Likew\ise Oy is a mem -
ber' of F*.v . Hence, by properties of a filter, OX M Oy # @. But

Ox and Oy are disjoint., Therefore x =y,

Lemma 6,14 If (X, T) has the property that every filter on X

has at least one cluster point, then (X, T) is compact;
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_1:_’_:5'&9_{; Su‘ppo‘,se. (X, T) is not compact, Then there is a family
G* of closed subsets of X which haé an empty intersection but which
has the property that the intersection of each finite subégmily of G*
is non-empty. . Since the intersection of the sets in C‘:"< is empty, C‘:{<
is non-empty. By Lemma 6. 11, there is a filter ‘F* on X such that
G C F*. By the hypothesis, F' has a cluster point x, Since x
belongs to the closure of each set in F*‘,‘ then x belongs to the closure
of each set in G*, Since the sets in C}b:< are closed, x is in the inter -
-section of the sets in G*, But the intersection of the sets in G>=< ‘is

empty, Therefore (X,T) is compact.

Lemma 6.15 If {U?, iel} is a family of uniformities for X,

then S = U U?'; is a subbase for a uniformity for X,
iel

. K
- Proof: Clearly, each member of S> contains the diagonal of X.

For any U in S*, there is a j in I such that U is in Uh, Since U?;

is a uniformity, U"1 is in‘U?; and there exists a V in U>; such that

-1

He B x
VoV C U, Since -Uj C S8, U and V arein. S . Therefore, by

Theorem:1. 13, Sq is a subbase for a uniformity for X,

‘Lemma 6,16 If (X,T) is a uniformizable space and F is the

family of all uniformities for X which are compatible with T, then

o

s = U {U

e e

U € F}

e % .
is a subbase for a uniformity W on X, Moreover W is compatible
with T and, for any f in C(X), { is uniformly continuous relative to

W* and the usual uniformity V' for E,

Proof: By Lemma 6,15, S is a subbase for a uniformity W~
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for X, It must be shown that T, =T, Let O be a T-open set and let

W
x be in Q. Since (X,T) is uniformizable there is a uniforrnity'U;:< for
X compatible with T, Hence there isa U in U* such that U[x] C o,
Since U” C S*, U C w*. Therefore O is T -open. Now let O
be Tw—open and let x be in O. Then there isa U in W>:< such that

U [x] (C O. Since S* is a subbase for W*, there exist relations

i ! n
., U in S such that M U, C U. This implies that

U, U, ..
1 2 1
n n
N lxD) = (D Uy lx] C ulxl,
1 1
Therefore

n
M (Ui[x]) C o.
1

Because of Corollary 2,6 and because each Ui is a member of a uni-
formity compatible with T, Ui [x] is a T -neighborhood of x for each
i, Therefore QO is a T-neighborhood of x. Thus O is a T-open set,

ale
<

- Since T = TW’ W" is compatible with T, Since (X, T) is uniform-
izable, it is completely regular. - As was shown in the proof of Theo-
rem 2.1,

-1

SHV) i feCX) and VeV

P = {f

is a s_ubbé.se for a uniformity U(; for X which is compatible with T,
Since PCULCS C W, f?:l (V) isin W' for each f in C(X) and
each V in V. Therefore, for any f in C(X), f is uniformly contin-

- 3k
‘upus relative to W and V ,

Lemma 6,17 If (X,T) is a uniformizable space and F isa

filter on X without a cluster point in X, then there is a uniformity
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b3 %
U for X compatible with T such that F - is a Cauchy filter relative

to U .

- Proof: Let a ¢ X and let Na be a neighborhood of a, Since
a is not a cluster point of F*, there is an F in F* and a neighbor-
hood N.1 of a such that N, M F is empty. Let N = N, M Nl'
N is a neighborhood of a, N (C N_, and N M F is empty. Since

Then

(X, T) is uniformizable, (X, T) is completely regular, Therefore
there exists-an f in C(X) such that f(a) = 0 and f(X - N) = {1}
Since f C X-N, {(F) = {1},

Now let r > 0, Since f is continuous, then for any x in X
there exists a neighborhood M; of x such that ',f(x) - f(y)l < r for
any vy in M; Let N; be the set of all points y in X for which
|f(x) - f(y)] < r. Since M:; C N;, then \N; is a neighborhood of x.

Let

It is true that F x F C V.. Forlet b be in F. Then f(b) =1

and b is in NI

,- Since f(y) =1 for any y in F, |[f(b) - f(y)| = 0<r

for any y in F, This implies that y is in N,; for any y in F. Thus
- T S r . r r
FC Nb and hence F x F .(C Ny, x Ng. Since N x Np C V..
FxF C Vr. (37)

It will now be shown that {Vr: r>0} isa base for a uniformity

for X, Let r>0 andlet {x,%x) bein D Since ,f(x) - f(x)| < r,

x*
X is in N;, Hence (x,x) isin ‘N; X N:; which implies that (x, x) is

in Vr' Therefore, for any r > 0, Dy C V...
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Let (u,v) be in Vr' Then for some x in X, (u,v) is in
NT x N; This implies that (v,u) is in N X N:; which implies that
(v,u) is in Vr' Therefore for any r > 0, Vr is symmetric,

Then there is a y such that

Let (x,z) be 1n_Vr/4 o Vr/4’
(x,y) and (y,z) are in Vr/4' Therefore, there is a u in X such that
(%, y) is'in vN£/4 X NE/4 and fhereis a v in X such that (y,z) is in

/4

'N£/4 X Nf’ .  This implies that.

[f(u) - £(x)| < r/4, [f(u) - i(y)| < r/4, |f(v) - £(y)]| < r/4,

and ]f(v) - f(z)l < r/4. The first two inequalities imply that

|£(x) -~ £(y)| <r/2 and the last two inequalities imply that

,f(y) - f(z)! < r/2. Now these latter two inequalities imply that
,f(x) - f(z)} < r, Therefore z . is in ‘N:;, Since x .is in N:;, (x, z)
is'in vN; X N;, This implies that (x, z) is in Vr' Consequently

Vr/4 ) Vr/4 C V.. Therefore, by Th_eo?em 1.13, {Vr: r> 0} is a

subbase for a uniformity Ua,N for X. Now let U be in Ua.,N' Then
there exist positive numbers Ty ré, cee s T such that
n
U oOM Vr .
1 i

Let r, be the minimum of {rl, Top eee s rn}' It is a straightfor-

ward exercise to show that

-
NV =V
1 T Tk

Therefore {Vr: r >0} is a base for Ua.,N'

Suppose that r < 1/2 and that x is in Vr [a]l. Then (a,x) is

in V_ which implies that (a,x) is in Ni X NE, for some u in X.
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This implies that |f(u) - f(a)| < r and |f(u) - £(x)| < r. Therefore
|f(a) - f(x)| < 2r <'1, Since f(a) =0, |f(x)| < 1. Since

f(X-N) = {1}, x is in N, which is a subset of N_. Therefore
if r<1/2, then Vr[a] C N,. (38)

Now let x be in X, r > 0, and y be in N;. Since x-is in ‘N;,
(x,v) is in N; X N;. So (x,y) isin V_ and hence y is in V_[x].
Therefore ~N; C Vr [x]. Since ‘N; is'a neighborhood of x, Vr [x] is

a T-neighborhood of x. Therefore,
for any x in X and r > 0, Vr [x] is a T-neighborhood of x, (39)

The results of the last two paragraphs will be used later in this
proof, Presently though, it has been shown that, for any a in X and
for any neighborhood N of a, the associated collection {Vr: r> 0}

is a base for a uniformity UZ, for X. By Lemma 6. 15,

3 N

sk

S = U {Ua N’ @ € X and N a neighborhood of a}

is a.subbase for a uniformity Ua< for X. It will now be shown:that U
is compatible with T.

Let O be a TU~open set and let x be in O. Then there is a U .

in U such that U[x] C O. Then there exist uniformities U, U,

E
cr e g Un in S such that

1

n
U MU,
1

For each Ui’ there is a set Vr such that Ui D) Vr . Therefore
’ n i : i

and hence (/M V

R

U D rnw V. )[x] C Ulx]. Since
1 _

i i



90

n
(M Vv_)[x] = ? (V. [x]),

i

n

then M (Vr [x]) C O. By statement (39), V. [x] is a T-neighbor-
1 i i

hood of x for each i. Therefore O is a T-neighborhood of x. Hence

O is a T-open set.
Let O bea T-open set and let x be in O, Since O isa T-
neighborhood of x and because of (38), there exists an r > 0 such

that Vr[x] C 0.  Since Vr is in U*, O is a T__-open set.

U
Finally it must be shown that F is a Cauchy filter relative to
U". Let V bein U . Then there existsets V_ , V., ..., V
n Tl T2 D
such that V.0 M V_ . Because of (37), there exists an Fi in F,
1 i n
for each i, such that Fi X Fi C Vr . Let F=M Fi' Then F is
%k n 1’ 1 bd
in ¥ and FxF C M Vo Therefore F x F (( V. Hence F is
1 i
td
a Cauchy filter relative to U ,

r

Theorem 6,18 If (X, T) is a space with a unique uniformity
compatible with T, then, for any two normally separable subsets of .

X, at least one is compact.

Proof: Let (X, T) be a space with a unique uniformity U* com -~
patible with T and suppose A and B are two normally separable
subsets of X such that neither is compact. By the definition of nor-
mally separable, there is an f in C(X) such that f(A) C {0} and
f(B).C {1}, Let Uv;' Be trzh‘éﬁﬁﬁiformity for X referred to in Lemma
6.16. Then U>:‘< = Uw and hence f is uniformly coentinuous relative
to U* and the usual uniformity V=:< for- El. By Lemma 6, 14, there
is a filter F* on A such that no point of . A is a cluster peint of F*

relative to T the relativization of\ T to A, ’ Let F be in F='<, The

A?
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closure F of F relative to T is a subset of A, since f ( A and
since A is T-closed. The closure of F relative to'TA is equal to

‘A M F, which, by the previous statement, is equal to F, Therefore
no point in-A is a cluster point of‘ F‘>:< relative to T. For any x in

X -A and any F in F*,. x is not in f‘, since F (C A, Therefore no
point of X is a cluster point of F* relative to T. In a similar manner
it can be shown that there is a filter -G* on B such that no point of X
is a cluster point of G*. Let S = {F U G:F e F' and G ¢ Gk}
Clearly S>:< is non-empty. . For any finite subfamily

{Fi,U Gi: 1<i<n} of S*,

1

n n
N (F. JG) DN F,.
1t t 1

Since,F* ‘is a filter, r? F.l and ;11\ (F.1 U Gi) are non-empty,
Because of Lemma 6. 11, there is a filter H>:< on X such that

S>':< C H*. As explained in the proof of Lemma 6,11, H>:< is the collec-
tion of sets such that each contains the intersection of a finite number
of sets in S, Let xeX. Then x is not a cluster point of either‘F*
or G*. Therefore, there is an F in Fﬁ< ‘and a G in G>:< such that x
is not in F and x is not in G. Hence x is notin F U G = F”D’E,
Since F U G is‘ in‘H*, x is not a cluster point‘gf H*. Thus no
point of X is a cluster point of H*.v» Because of Leﬁlma 6,17 and
because of the fact that the uniformity for X is unique, H>:c is a
Cauchy filter on X relat_ive t§<U>}<',

Let £(H') = {f(H):He¢H }. Since H is non-empty, £(H ) is

non-empty, . For any-H in}[—fﬁy f(H) is non-empty, . If

{f(H): 1< i< n}
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e

is a subfamily of f(H ), then
n
M £f(H,) D £§(N
1

n ES o ES B
Since M) Hi is in H , f(m'Hi) is in f(H ). Let K be the collec-
1 ’ 1 E b
tion of all subsets of E1 which contain a member of f(H ). Then K

ale

is a filtver._on.El because of the previously stated properties of f(Hﬂ ).

Let V be in V>“, the usual uniformity for El. Since f is uniformly

continuous relative to U and V , then fgl(V) isin U . Since H

is. a Cauchy filter on X relative to U>'<, there is an H in H such that
HxH C fgl (V).  This implies that f(H) x f(H) C V. Since f(H) is
in K>-'<, K isa Cauchy filter on.E1 relative to V>'<.

Let H be in H . Then

n
"H D M (F, U G,).
1 1 1

where, for each i, F.1 is in F* and Gi is in G>F. There is an x in
n ’ n sk S

M Fi and a y in ﬁ G., since F and G -are filters. Since

1 ‘ .

f(A) C {0} and £(B) C {1}, =0 and f(y) = 1. Now {0,1}(C f(H

ate

because x and y are in H. Since f(H’P) is a base for'K*, 0 and 1
are in K, for any K in K*. Therefore 0 and 1 are cluster points
of K. By Lemma 6.12, 0 and 1 are limit points of K . But E.
.is a Hausdorff space and, by Lemma 6. 13, K* can have no more
than one limit point. Because of this contradiction the original sup-

position in the proof is not true, Therefore both A and B are com-

pact.

) Example 6.19 Let X be the set of positive real numbers and
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let T be the open interval topology for X. If A= {l,3,5,...} and
B = {2,4, 6,...} then A and B are closed disjoint sets, = Define a
function f from X into,El such that f(x) =x for 0< x<1,

f(x) = x - 2n for any integer n >1 and 2n.< x< 2n + 1, and such
that f(x) = -x + 2n for'any integer n>1 and 2n - 1< x< 2n. Then
f is'in C(X), f(A) . C {1}, and £(B) C {0}. Therefore A and B are
normally separable. Since A and B are unbounded, neither set is
compact. Therefore, by Theorem 6, 18, (X, T) does not have a unique
admissible uniformity. One admissible uniformity for the space is
the uniformity thich has as a base sets of the type

{(x,y) eX xX: |x - y| <r}, where r>0. A different admissible
uniformity for the space is the uniformity whic;_h has as a base sets

of the form {(x,y) e X x X: Ix - yl < rx}, where r >0 and x is in

X.

Example 6,20 Let X be an infinite set and let T be the dis-

crete topology for X, There are two disjoint infinite subsets A and
B of X and these sets are closed., Define a function f from X into
-"E1 such-that f(x) =1 for x in B and f(x) =0 for x.in X ~B. Then
f is in C(X), f(A) C {0}, and £(B) C {1}. Therefore:A and B are
normally separable, The set A is not compact since {{x}:x eA}
is.an open covering of A §vhich doesn't contain a finite sub-covering
of A, Likewise ‘the set B is not compact, Therefore bSr Theorem

6.18, (X,T) does ﬁot have a unique admissible uniformity.

Theorem 6. 18 can be used to show that any Euclidean space
»En, where n _>_‘ 2, does not have a unique uniformity compatible with

its topology. Let A = {(xl, Koy ens g xn) rx> 1 and x; =0 fori> 1}
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and B = {(xl, Koo vee s Xn) : xnzl and x, = 0 for i< n}. Then:-A
and B are disjoint closed subsets of E", E" is a normal space,
Therefore, by Urysohn's lemma, there is an f in C(X) such that
fA) C {0} and £f(B) C {1}. Consequently- A and B are normally
separable. Neither A nor B is compact, Therefore, by Theorem
6.18, the space~.'En, for n-> 2, does not have a unique.admissible
unifermity,

. If 3 metric space (X,d) has two disjoint, closed, unbounded
subsets A and B, then it does not have a unique admissible uniformity,
A and B are normally separable because (X,d) is a normal space and
because of Urysohn's lemma.  Neither A nor B is compact since a
compact subset of a metric space must be bounded. Therefore by

‘Theorem 6, 18, (X,d) does not have a unique admissible uniformity.



10,

11,

12,

13'

14,

BIBLIOGRAPHY

Behrend, F, A, "Uniformizability and Compactlfla.blllty of
Topolog:,cal Spaces.! Mathematische Zeitschrift, 67(1957),
203-210. 1 ' :

Bourbaki, Nicolas. Elements of Mathematics, General Topology,
Part I. Paris: Herman, 1966,

Bourbaki, Nicolas,. Elements of Mathematics, C.-eneral Topology,
Part II, Paris: Herman, 1966.

Bushaw, D. Elements of General Topology. New York: John
- Wiley and Sons, Inc., 1963.

Cullen, Helen F. Introduction to General Topology. Boston:
D. C,. Heath and Company, 1968,

Dieudonné J. "Un exemple d'espace normal non susceptible
I'une structure uniforme d'espace complet,'" Comptes
Rendus, 209 (1939), 145-147, o

Doss, Raouf, '"On Uniform Spaces with a Unique Structure.'
American Journal of Mathematics, 71 (1949), 19-23.

. Engelking, R, OQutline of General Topology,. Amsterdam: North-

Holland Publishing Compa.ny, 1968

Gaal, S, A. Point Set TopologX New York: Academic Press,
1964 ’

Gdl, I, S, "Uniformizable Spaces with a Unique Structure,
Pa.c1f1c Journal of Mathematlcs, 9 (1959), 1053-1060,

Gillman, 1,, and Jerison, M, Rings of Contmuous Functions,
Princetan; D, Van Nostrand Company, Inc., 1960,

- Kelley, John L. General Togologx New York: D, Van Nostrand

Company, Inc., 1955,

Newns, W, F, "Uniform Spaces with Unique Structure.'" Ameri-
can Journal of Mathematics, 79 (1957), 48-52, ’

Samuel, P, '"Ultrafilters and Compactification of Uniform
Spaces " Transactions of the American Mathematical Soci-~
ety, 64 (1948), 100-131. '

95



15,

16.

17.

18.

19,

96

Schubert, Horst, Topology. Boston: Allyn and Bacon, Inc,,

1968,

Stone, M, H. '"Applications of the Theory of Boolean Rings to
General Topology,!"" Transactions of the American Mathemat-
ical Society, 41 (1937), 376-481,

Tychonoff, A, '"Uber die topologische Erweiterung von R&umen, "
Mathematische Annalen, 102 (1929), 544-561. -

Weil, A, '"Sur les espaces 4 structure uniforme et sur la topolo-
gie générale.' Actualities Scientifiques ﬂlndustrielles, 551
(1937), ) | |

Zeighami, Elaine. Uniform Spaces, Thesis, Oklahoma State
University, 1969, ‘




VITA
=2
Donald Frank Shult
Candidate for the Degree of

Dogctor of Education

Thesis; UNIFORMIZABLE SPACES

Major Field: Higher Education

Biographical:

Per

- Edu

sonal Data; Born in Kewanee, Illinois, August 8, 1929, the
son of Carroll and Doris Shult,

cation: Graduated from Fairbury Township High School,
Fairbury, Illinois, in May 1947; received the Bachelor of
Science degree from Northwestern University, Evanston,
Illinois, in June, 1952, with a major in mathematics; re-
ceived the Master of Science degree from Southern Illinois
University, Carbondale, Illinois, in August, 1962, with a
major in mathematics; completed requirements for the
Doctor of Education degree at Oklahoma State University in
July, 1970. ' ‘

Professional Experience: Graduate assistant in the Department

Pro

of Mathematics, Southern Illinois University, 1960-1962;
instructor in the Department of Mathematics, Elmhurst
College, 1962-1963; assistant professor of mathematics,
Ohio Northern University, 1963-1966; graduate assistant in
the Department of Mathematics and Statistics, Oklahoma
State University, 1966-1970,

fessional Organizations: Member of the Mathematical Asso-
ciation of America and Pi Mu: Epsilon. :



