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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem, Pattern classification covers an 

extremely broad spectrum of problems ranging from the design and imple-

mentation of actual recognition devices to the philosophical question 

of learning and intelligence. A major step in pattern recognition com~ 

mon to all these problems consists of developing procedures which clas-

sify observations such that a particular strategy is optimized. This 

step can be formulated as follows. A set of N measurement pairs 

1 2 N (!1 ,e ), (!
2

,e ), ••• ,(~,e) are given as sample (training) patterns. 

X. ,i = 1,2, ••• ,N, are vector measurements drawn from one of the several 
-1. 

possible 
A 
ek, when 

Categ r 'e f p ttern 9 8 9 The 8i's take the form o 1. so a s l' 2,.,., R• 
' 

the measurement X. is identified as being from category ek. 
-1. 

After development of a pattern classification procedure, only the meas-

urement ! is available and an estimate is desired of the category from 

which the measurement X was drawn. 

For probabilistic patterns with known probability distribution 

functions, a Bayes' procedure can be used to arrive at an 11 optimum11 

decision rule. If all the information about the distribution functions 

is not known, then the unknown information must be estimated from the 

given sample patterns. This problem of estimating unknown information 

and using the estimators to arrive at a classification procedure is 

generally referred to as "learning to recognize patterns 11 • 

1 
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Usually a sample identification scheme furnishes the identification 

ei for the sample pattern X .• In many practical situations the sample 
1. 

identification scheme may incorrectly identify some of the training 

samples. For example in attempts to classify severe storm patterns 

using electromagnetic data drom the storms, meteorological measurements 

such as reports of hail will be used as standards for identifying the 

sample patterns. Often these reports of hail are unreliable and hence 

there is a possibility of some incorrectly identified sample patterns. 

Another exa~ple where there is a possibility of incorrect identification 

of sample patterns occurs in attempts to classify lightning discharges 

into cloud to cloud or cloud to ground type based on electromagnetic 

data. Here the sample identification is based on visual sightings of 

the discharges. In many occasions, the discharge is only partly visible 

and hence the possibility of incorrect identification. lhese examples 

give the motivation for investigating pattern recognition schemes where 

the information in 8i is known to be occasionally incorrect. 

Depending on the nature of information available in the form of 

i 
8 1 s, the problem of learning to recognize patterns can be subdivided 

into three classes. If ei contains identification of the true category 

from which X. was drawn, then learning is said to take place with a 
-1. 

11 perfect teacher 11 , If no identification of the true category, 8,, is 
1. 

available then this class of problems is referred to as 11 learning with-

out a teacher 11 , In between these two is the problem of 11 learning with 

an imperfect teacher", where the imperfect teacher is characterized by 

i-1, ••• ,R 

and 
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I\ 
P(9.j9.) = ~ .. 

J 1 J1 
i,j=l, ••• ,R 

~ji < ~ii i + j 
This dissertation is concerned with developing procedures for learning 

to recognize patterns with an i~perfect teacher. 

1.2 Existing Solutions. Various solutions to the problem of 

11 learning with a perfect teacher" have been proposed in the literciture. 

A recent survey of the literature on the solutions to the problem is 

given by Ho and Agarwala (1), and Nagy (2). These solutions can in gen-

eral be divided into two major categories, parametric and nonparametric. 

In parametric methods a functional form of the conditional densities is 

assumed to be known except for a set of parameters. These parameters 

are estimated from the given set of identified sample patterns. Either 

simple point estimators or Ba,yesian estimators are used. A commonly 

used estimation procedure makes use of the recursive properties of 

Bayes' estimators. In addition to these, several sequential decision 

procedures are also available. Fu and his associates (3,4) have studied 

various aspects of sequential methods as applied to pattern recognition 

problems. The sequential probability ratio test used by Fu will require 

the smallest number of features to reach a classification decision on 

the average. Fu also suggested a time varying stopping boundary to 

assure that a classification decision is reached in a finite time. 

Three of the most commonly used nonparametric methods are the 

nearest neighbor rule, threshold logic and the method of potential func-

tions. The nearest neighbor rule, first proposed by Fix and Hidges (5) 

assigns! to the same category as that of its nearest neighbor among the 

identified sample patterns. The performance of the nearest neighbor 
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rule has been analyzed by Cover and Hart (6), The threshold logic unit 

is a linear categorizer which assigns! to category e
1 

if !T~ > w0 and 

to e
2 

otherwise, The weights Wand w0 are determined iteratively 

through a t1trainingt1 procedure, Proofs for convergence of these pro ... 

cedures can be found in Nilsson (7), The object in the method of poten~ 

tial functions, first developed by Aizerman (8) and Braverman (9), is 
m 

to find a function $(X) = ~ ~- (X)W. 
i=l l. - l. 

defined on the pattern space 

which is positive for all !€91 , The~- 1 s are a set of orthonormal func-
1. 

tions specified ahead of time. Assuming certain normative conditions, 

the use of the theory of stochastic approximation leads to a sequence 

of weights which will converge to the optimum W. 1 s, 
l. 

In addition to these methods there is another elegant method pro~ 

posed by Sprecht (10), called the polynomial discriminant function meth-

od, In this method, the density functions fxje. are estimated in a 
- l. 

polynomial form and discriminant functions are formed using these poly-

nomials, One of the main advantages of this method is that estimation 

can be done serially and this results in a reduction of storage require-

ments on the computer, 

Although our society seems to abound with real life examples of 

11 learning without a teacher 11 not much analytical work has been done 

towards solving this general problem. Fralick (ll) first suggested a 

bounded scheme for learning to recognize the presence of signal in a 

noisy channel. Fralick 1 s scheme makes use of the recursive properties 

of a Bayest solution to realize a machine of finite size. Patrick and 

Hancock (12) extended this scheme to more general situations, There 

are many other methods suggested by various authors which are claimed 

to 11work11 in some sense. But very little analysis or computational 
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results have been reported. A summary of several of these procedures 

is given by Spragins (13). 

Extention of methods like the one proposed by Fralick to the prob-

lem of learning with an imperfect teacher is extremely difficult. No 

finite size parametric schemes have been proposed. This is because of 

the fact that no finite dimensional sufficient statistics exist for the 

parameters of the densities involved and the reproducing properties of 

Bayesian procedures are lost due to additional terms introduced by the 

imperfect teacher. Imperfect identificaqon also causes an overlap in 

the training patterns and this makes error correcting procedures, like 

that used wi:th threshold logic, to fai 1 to converge. Duda and Singleton 

(14) have shown that for orthogonal patterns the average weight vector 

converges to a solution vector even though the training patterns are 

incorrectly labelled. However this is not true for nonorthogonal pat-

terns or for patterns with continuous components. 

Whitney and Dwyer (15) have analyzed the performance of the nearest 

neighbor rule with an imperfect teacher and have shown that the expected 

risk, R, is bounded by 
n 

* (1 - ~) + (2~ - l)R < R 
n 

* * < (1 - ~) + (2~ - 1)[2R (1 - R )] 

Where~ is the probability that the imperfect teacher correctly identi­

* fies a sample and R is the Bayes' risk. The above bounds are good when 

there are only two categories of patterns. 

1,3 Present Contributions. In this dissertation a decisibn rule 

for dichotomizing patterns with an imperfect teacher is derived. Using 

a nonparametric estimator for the unknown densities appearing in the 

decision rule, a procedure for learning to dichotomize patterns with an 
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imperfect teacher is given. It is shown that the proposed learning 

scheme has an asymptotic average risk equal to the Bayes' minimum risk. 

For nonoverlapping densities and for densities with overlap less than 

(1 - S) it is shown that the average asymptotic performance of the pro­

posed learning scheme is better than the teacher and the nearest neigh­

bor rule. It is also shown that for nonoverlapping densities the 

learning scheme performs better than the teacher on the average after 

looking at a finite number of sample patterns. 

Using these results as motivation, feedback is considered as a 

means of improving the performance of the learning scheme. Several 

different feedback schemes are considered and their relative advantages 

and disadvantages are given. It is shown that a feedback learning 

scheme using a threshold in feedback provides an easy method for com­

bining the learning scheme's own knowledge with that of the teacher. 

Expressions for the threshold are derived in terms of Sand the sample 

size n using two different approaches. The idea of feedback is extended 

to the case of unequal sample size (P(8
1

),>> P(e
2
)). Results of simula~ 

tions of the proposed learning schemes with and without feedback are 

presented. 



CHAP'.1,'ER II 

LEARNING TO RECOGNIZE PATTERNS WITH AN IMPERFECT TEACHER 

2.1 Introduction. The main object of pattern recognition is to 

derive a decision rule for classifying a pattern f into one of the R 

possible categories e
1

, ••• ,8R such that a particular strategy is opti­

mized. Statistical decision theory can be used as means to establish 

discriminant functions for classifying probabilistic patterns. The 

strategy to be optimized is specified in terms of a loss function Lij' 

defined for i = l, ••• ,R and j = l, ••• ,R. The loss function L .. repre-
1. J 

sents the loss incurred when the machine or the stud~nt places a pattern 

actually belonging to category j into category i. If a machine classi-

fies patterns such that the "average value!! of L .. is minimized, the 
l. J 

machine is said to be optimum. Such a machine is also known as a Bayes' 

machine, 

For symmetrical loss function of the form 

(2. L 1) 

where t .. is the kronecker delta function, it has been shown (7) that 
l. J 

the Bayes' machine uses discriminant functions of the form 

oe. (~) ,= P('ei)fx1e. <~I(\) 
l. •. - l. 

(2.1.2) 

P(8i) is the prior probability of ocqurance of category ei and 

fxle. (~lei) is the probability density function of pattern f given that 
- l. 

7 
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it belongs toe .• The machine assigns a given pattern~ to category e. 
i i 

if 

j = 1, ••• ,R; j + i (2.1.3) 

It is assumed in Equation 2,1,2 that all information relevant to 

the prior probabilities P(9i) and the conditional ~ensities f!/ei were 

completely known, However~ in practice, this information is only par-

tially known and the unknown information must be learned (estimated) 

, from the given set of label led sample patterns. Several parametric (7) 

and nonparametric methods (6,10) are available for estimating the un-

known information in the discriminant functions, the information associ-

ated with o9 . (~) being estimated from $amples which are known to belong 
i 

to category e.' i,e. from samples 11;1.belled as e .• 
i i 

2.2 Deci$ion Rule for Pattern Recosnition with an Imperfect 

Teacher. A decision rule similar in form to the one described in Sec-

tion 2,1 can be derived for learning with an imperfect teacher. The 

fl · A 
imperfect teacher labels the sample patterns as B1 , ••• ,EJR with the 

probability of correct labeling given by 

I\ 
P(8.j8.)=S .. , 

i i ii 
i= l,,,.,R (2.2.1) 

and the probability of incorrect l~beling given by 

i,j = 1, ••• ,R (2.2,2) 

In this dissertation it will be assumed that 

I\ . 1 
P(e.1e.> = 13 > -R; 

i i 
i=l,,,.,R (2,2.3a) 
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and 

( A I ) [ 1 - @ } • Pe. ei = 1 ' J R .. 
i,j = l, ••• ,R; i + j (2.2.3b) 

Also it will be assumed that the various probability density functions 

are independent of the label if the true categories were known, i.e. 

I\ 
f ... (x I e . , e . ) = 

I" - 1. J ! ei,ej 
f (x I e.); 
xje. - J 
- J 

i,j = l, ••• ,R. (2.2.4) 

Due to the randomness of the labeling scheme of the teacher, character-

ized by Equations 2.2.3 and 2.2.4, the learning scheme does not know 

which of the sample patterns are correctly labelled. The only labeling 

I\ I\ 
information available to the student is one of e1 , ••• ,eR. Hence in 

order to learn from these incorrectly labelled samples, it is necessary 

to derive a decision rule in terms the probabilities P(~1), ••• ,P(~R) 

and the respective probability density functions f A , ••• ,f A rather 

!I 81 !I 9R 

than in terms of P(91),.,.,P(9R) and fxje , ••• ,fxje • 
- 1 - R 

Unless otherwise mentioned, the loss function used in the analysis in 

the following sections will be the one described in Equation 2.1.1. 

Theorem 2.2.1. With an imper£ect teacher characterized by Equa-

tions 2.2.3 and 2.2.4, and a loss function specified by Equation 2.1.1, 

a decision rule using discriminant functions of the form 

I\ 
~ P(9. )f A (x) 

1 xje. -
- 1. 

is equivalent to a Bayes' (<;>ptimum) decision rule using discriminant 

functions of the form 
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for classifying patterns. 

Proof~ The above theorem can be proved by showing that 

D t. (,!) :: D t (,!) if and only if D9 i (,!) :: D9 . (,!) 
1 J J 

thus establishing that the two decision rules are equivalent. 

Using Bayes 1 theorem and Equation 2.2.3, the prior probability of 

A 
9. occurring is 

1 

P(~.) 
1 

R 
= r: 

~l 
(2.2,5) 

and the probability distribution function of K given that Xis lab~lled 

A 
as e. is 

1 

Using the condition given in Equation i.2.4, it follows that 

A R A 

F " <.! I e . ) = ~ fx I e <.! I ek) P < ek I e . ) 
x1e. 1 ~1 - k 1 

- 1 

A 
F A <.!I 9.) = 
xj e. 1 

- 1 

R 
E 

~l 

k.:/=i 
(2.2,6) 

Since the existance of density functions is indirectly implied in 

A 
assumption 2.2.4, the probability density function f A (,!/9.) can be 

!I ei i 

obtained from Equation 2.2.6 as, 



R 

[P(e.)~fxJe <~Je.) + ~ 
1. - i 1. k=l 

l<.fi 

11 

(2.2.7) 

Hence 

A similar exprei'jsion can be obtained for DA (;) and from these two 
e. 

equations it follows that J 

(~R - 1) [ () ( )} = R 1 °e ~ - 0e .! 
i j 

Since~>! by assumption, it follows from the above equation that 

DA (;),>PA (~) ..... Pe.(~) > De.(~) 
~i ej i J 

and 

(2.2.8) 

The right hand side of Equation 2.2.8 defines the decision boundary 

between the domains of category e. and e. and it can be seen from the 
1. J 
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above equation that DA (~)=DA (~) leads to the same bounda~y. Hence 
e. e. 

1 J 

discriminant; functions D8 . (~) and DA (~) are equivalent. 
1 e. 

1 

Based on Theorem 2,2,1, the decision rule for classifying a given 

pattern~ with an imperfect teacher is: 

(1) compute DA (~) 
ei 

= P($i)f A (~/$.) for i = 
x I e. i 

l,,,.,R; 

- ;t 

(2) assign x to category ei if DA (~)>DA (~) j 
e. e. 

l,.,,,R; j 4= i. 

1 J 

(2,2,9) 

A machine using the above decision rule will classify~ into the same 

category as the Bayes' machine, 

2,2,2 Special Cases of ~heorem 2,2,1, The 'J;'wo Category Problem, 

When there are only two categories of patterns e1 and e2 , the imperfect 

teacher is characterized py 

A 
P(8.j8.)= 

1 1 

A 
P(e.je.) = 1 ~ 13; 

J .1 

I\ 
f A (x I e . ' e . ) 

" - 1 J x I e., e. 
- 1 J 

i = 1,2 

i,j = 1,2; i 4= j 

f x I e . <~ I e . ) 
- J J 

i' j 1,2 

The second step in decision rule 2,2,9 can now be implemented by evalu-

ating the sign of a single discriminant function 

(2,2,11) 

(2.2,12) 



classification can be made according to the rule, 

and 

assign~ to e1 if DA(~)> 0 
8 

13 

assign~ to 82 if DA(~)< 0 
e 

(2. 2. 13) 

The following corollaries can be derived for the two category 

problem. 

Corollary 2.2.1. If S < t, decision rule 2.2.13 still can be used 

for classifying patterns with minimum risk if DA(~) in 2.2.11 is changed 
8 

to 

(2.2.14) 

Proof of this corollary follows directly from Equation 2.2.12. 

Corollary 2.2.2. 
1 

If S = 2, then no classification will result 

from decision rule 2.2.13. 

From Equation 2.2.12, it can be seen that DA(~)= 0 for every~ if 
8 

Hence 2.2.13 does not give any classification, 

1 In fact, when S = 2 the probability density functions f A and 

!l 81 
functions f A become 

!1 82 

The probability density function of!, without any labels, is 



fx(~) 

1 Hence when.~= 2, 

14 

(2.2.15) 

Equation 2.2.15 implies that there is no information available in the 

labels for discrimination p~rpo~es. This is a problem of learning with-

out a teacher and several methods are available for solving this prob-

lem (13). 

Corollary 2.2.3, If the densities fxie <~1e1) and fxje (~182) do 
- 1 - 2 

not overlap then 

(2.2.16) 

is equivalent to the discrimin~nt function used by a Bayes' machine. 

Proof, The Bayes' machine uses a diseriminant f~nction of the form 

For non overlapping densities, the above discriminant function is 

equivalent to 

(2,2.17) 

-·· 1 . . .. . 
The set of~ where both the densities are zero have a 

measure zero and hence ignored. 
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The above equation impliee 

and hence 

) 
From Equation 2.2.7 
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Hence 

P(91)P(92) 
= 

P(~l)P(~2) 

1 If S > 2, Equation 2.2.19 shows that the discriminant functions 2.2.16 

and 2.2.17 are equivalent. 

can be used to classify patterns optimally. 

It can be seen from Equation 2.2.16 that DA(~) does not involve 
e 

the exact value of S• The only information the learning scheme needs 

to know is whether S >tor S < t • 

If the densities overlap, Sis involved in the discriminant func-

A A 
tion D,._(~) given by Equation 2.2.11 through P(91) and P(92). 

e 

" and P(e2) were not known, they can be estimated from the number of times 

A A 
e1 and e2 occur in the labels (7). However estimation of P(e1) and 

P(e2), for use in discrimin~nt function of the form 

from estimates of P(~1) and P(~2) is not possible without a knowledge 

of the value of S, The same is true for estimates of fXl 8 (~181) and 
- 1 

A 
fXl 8 (~182) from estimates ot f A (~181) and 
- 2 x1e · 

- 1 
A 

deriving the decision rule in terms of P(81), 

fXI~ (~182) has the added advantage that the exact value of Sneed not 
- 2 

be known for learning with an imperfect teacher. 

2.3 Learning With an Imperfect Teacher. In the decision rule 

given in Equation 2.2.9, it was assumed that the prior probabilities 
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A A 
P(8.), and probability density functions f A (~j9.) were known. How-

l. x I e. 1. 
- l. 

ever, in practice, the information relevant to P(~.) and f A (~I~,) 
1. xi e. 1. 

- l. 

for the R categories is only partially known and the unknown information 

must be learned (estimated). In the remainder of this dissertation it 

will be assumed that R = 2 and 
A 

that P(e
1

) and 
I\ 

P(92) are known. It will 

further be 1 1 of, assumed that~> 2. (~ < 2 can be taken care as ex-

plained in Corollary 2.2.1.) The distribution functions will be 

assumed to be absolutely continuous. No structural form for the density 

A A 
functions f 11. <~1e1 ) and f A (~182 ) will be assumed. 

!I e1 !I e2 

The densities can be estimated (learned) from a set of incorrectly 

labelled, independent sample patterns !
1

, ••• ,X ; Y
1

, ••• ,Y • The X. 1 s 
-nl n2 -1. 

A 
are sample patterns with labels e

1
, the labeling done by an imperfect 

teacher characterized by Equation 2.2.3, and are identically distributed 

density function f I" . 
! 91 

The random vectors with a common probability 

It 
Y. 's are sample patterns with labels e

2
, 

-1. 
and are identically distributed 

with a common probability density function f A. 

Kl82 

Parzen (16) has proposed and analyzed a class of non-parametric 

method of estimating univariable density functions. Murthy (17) extend-

ed this method to multivariable density functions. The propoerties of 

the above estimators are discussed in Appendix A. Using estimators of 

II. 
the form proposed by Parzen, an estimate off A (~191 ) based on n1 in-

!I e1 

dependent identically distributed sample patterns x
1

, ••• ,X is 
- -nl 

n1 

~ 
k=l 

1 ____,..... 
_g 

(2nl (2.3.1) 
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I\ 
and an estimate off A (~182 ) based on n2 independent identically dis-

~.l 82 

tributed sample patterns Y1, ••• ,Y is 
n2 

1 

(2.3,2) 

In Equations 2.3.1 and 2.3.2 pis the dimension of the pattern space. 

A I\ I\ I\ I\ 
Using the estimators f I\ (~ie1) and f I\ (~182) for f I\ (~18 1) 

~l 81;n1 ~l 82;n2 !1 81 
I\ 

and f I\ (~182 ) in 2.2.11 and 2.2.13, the procedure for learning to 

~I 82 · 

recognize patterns with an imperfect teacher is: 

(1) Using the incorrectly identified sample patterns, 

X
1

, ••• ,X ; Y
1

, •.•• ,Y , 
- -n - -n 

1 2 
estimate 

(2) Using estimators t I\ (~1~1) and 
~l 81;n1 

I\ I\ I\ I\ I\ I\ 
DI\(~) = P(81)f A <~I 81) P(82 )f I\ 

~l 81;n1 ~I e2 ;n2 e 

(3) Assign X to 

I\ 
e1 if DI\(~) > 0 

e 

and 

I\ 
82 if DI\(~) < 0 

e 

I\ 
<~I 82) 

compute 

(2,3.3) 

(2.3.4) 

2.4 Asymptotic Performance of the Learning Scheme. Using the con-

sistency properties of the estimators t I\ and t A , the asymp-
~l81;nl ~1e2;n2 

totic pe~formance of the learning scheme proposed in the preiious 



paragraph can be analyzed, 

Theorem 2.4,1, The estimate of the discriminant function 

converges to 

with probability one as n1 , n2 .......... 00 • 

Proof. From Equations A.2.8 and A.2.9, for every e > 0 

Also, if 

and 

then 

<£ 
2 

19 

(2.4.1) 

(2.4.2) 

A A A A A A A A I 
P(9l)[f A (!191).,f A (!l91)] ... P(92)[f A (!192).f A (~192)] < €, 

!l 81;nl !1 91 · !l 82;n2 !1 92 

(2.4.3) 
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" " A A 
Since the estimators f A (~181), 

!l 81;nl 
f A (~182) are independent, 
!I e2 ;n2 

from (2.4.2) and (2.4.3), 

" ,,. f " <~ I e1 > J 
!I et 

f " <.!I ~2) JI 
;1 82 

< i } 
2 

As n1,n2 __..,. oo each term on the right hand side of the above equation 

is equal to 1~ and hence 

" " " " " ~ P [ [ P < e 1 ) f " <.! I e 1 ) ~ P < e 2 ) f " <! I e 2 ) J 
!l 91;nl !l 82;n2 

~ [P(31)f A (!131) ~ P(32)f A (!13
2

)]1 < €} = 1 

!I 81 !I 82 

(2 .4.4) 

Equation 2.4.4. implies that 

converges to 

with probability 1. 

The result of Theorem 2.4.1 can be used to evaluate the asymptotic 

risk associated with learning with an imperfect teacher. Convergence 
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that, with probability one, x will be classified into the same category 

by decision rule 2.3.4 an~ 2.2.13, It has been shown in Theorem 2.2.1 

that the decision rule 2.2.13 is equivalent to the decision rule of a 

Bayest (optimum) machine. Therefore, with probability one, the learning 

scheme described in 2.3,4 classifies x into the same category as a 
. -

Bayes' machine. Hence the Gonditional risk rs(~;n1 ,n2) associated with 

classifying~ according to 2.3.4, converges to the Bayes 1 conditional 

·k 
risk, r (~), with probability one, i.e. 

For a symmetrical loss functiop of the form given in 2.1.1 the Bayes' 

conditional risk is given by 

(2.4.6) 

As a consequence of 2.4,5, 

Taking the average on both sides with respect to fx(!), the average 

risk associated with learning with an imperfect teacher is 

(2,4.7a) 

where 

P(e1)fxle <~1s 1) > P(e2)fxie (:5.je2), and 
- 1 - 2 

P(82)fx1e <~1e2) > P(81)fx1e <~1e1) 
- 2 - 1 
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The right hand ~ide of Equation 2.4.7a is the Bayesl risk and hence 

* R ::;:: R 
s 

(2. 4. 7b) 

Equation 2.4.7b states that the av~rage asymptotic risk for learning 

with an imperfect teacher is equal to the Bayes', minimum, risk. 

2.4.1 Comparison of Performance of the Learning Scheme With the 

Imperfect Teacher and the Nearest Neighbor Rule (NNR). 

2.4.la Non Overlapping Densities. If the conditional densities 

* fXl 6 (!,16 1) and fXl 6 <!.162) do not overlap then the Bayes' risks, R, is 
- 1 - 2 

* R = 0 (2.4.8) 

From Equation 2.4.7, the average asymptotic risk for the learning scheme 

is 

* R = R = 0 (2.4.9) 
s 

From Whitney (15), the average asymptotic risk for the nearest neighbor 

rule R is given by 
n 

R = l .. ~ . n 

The average risk for the imperfect teacher is 

(2.4.10) 

(2.4.11) 

From Equations 2.4.8, 2.4.9, 2.4.10, and 2.4.11, it can be seen that, 

on the average, the proposed learning scheme is better than the imper-

feet teacher and the nearest neighbor rule. 
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2.4.lb Overlapping Densities. If the conditional densities over-

lap, then the learning scheme better the performance of the imperfect 

teacher only if 

* R < (1 .. S) (2.4.12) 

~._ 2 
If R > 1 .. S then the optimum Bayes' scheme itself has a greater 

avera,ge risk than the imperfect teacher and hence the learning scheme 

'~ whose asymptotic average risk is equal to R canaot be expected to do 

better than the imperfect teacher. 

However, for the nearest neighbor rule Whitney (15) ha,s shown that 

the average asymptotic risk is bounded by 

* R > (1 ~ S) + (2S ~ l)R (2,4,13) n-

* 1 From Equation 2.4.13 it can be seen that if R is less than 2 then 

* R > R = R n s 

Hence the learning scheme is better than the neal!'est neighbor rule if 

* 1 R is less than 2 

2.5 Finite Sample Performance of the Learning Scheme. In the 

previous sections the asymptotic performance of the proposed learning 

scheme was analyzed and it was shown that if the density functions do 

not overlap then, on the average, the learning scheme performs better 

than the teacher. In this section it will be shown that the learning 

scheme performs better than the teacher, on the average, after being 

2 In order for the teacher to be this good, he must have extra in-
formation other than a complete knowledge of the density functions. 



presented with a finite number of sample patterns ! 1 , • • • ,!n ; 1:1 , • • • ,.Yn • 
1 2 

From Corollary 2.2,3, the lea~ning scheme for classifying patterns 

when the density functions do not overlap is: 

(2.5.1) 

(2.5.2) 

A given patt~rn ~ from category e1 is therefore classified correctly i~ 

(2.5,1) is satisfied and will be incorrectly classified if (2,5.2) 

holds. Assigning a value of +1 for covrect classification and O for 

incorr~ct classification, the gain assoGiated with classifying a pattern 

~ form a category e1 is 

(2 .5 .J) 

Theorem 2.5.1 

where 

(2.5.4a) 

and 

2 4 
1) J -( 2-/n-)~p (2.5.4b) 



Proo~. Let 

and let 

A A 
Since the estimators f A and f A are independent, the right 

!l 91;nl !l 92;n2 

hand side of the inequality becomes 

~ P(I~ A <!l~1) - f 11. <!l~1>I <¥I ~89 1} 
!j 9l;nl !1 91 

P(jt A (!lft2) . f A (~182)1 < ¥ l ! 891] 
~le2;n2 !1 92 

~ P( 12 A <! l~1) - f A <! 1~1) 12 < D: I !€91} 
!l 91;nl !1 91 

(2.5.6) 

Let us consider 



26 

> 1 - (2. 5. 7) 

by Chebyshev 1 s inequality. From Equation A.2.9, 

Substituting (2.5.8) in (2.5.7), the right hand side 0£ (2.5.7) becomes 

~ [1 (2.5.9) 

Similarly 

(2.5.10) 

If ~ee1 then ~eo1, and on o1 

A P(81) 
£ A <! I 81 ) = ~ A · f x I e <~ I 81 ) 
!P\ . P(l\) - 1 

I 

and 
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(2. 5 .11) 

Substituting (2.5.9), (2.5.10) and (2.5.11) in (2.5.6), one obtains 

where 

I\ I\ 
P(e

1
) P(e1)P(~

2
) 2 4 

cl= I\ [P(e
1

)p(e
2

)(2S - l)J 
(2 /n)p P <el) 

" I\ 
P(91) P(e

1
)P(e2) 2 4 

C = A Cr<e
1

)P(e2 )(2S - l)J 
2 P(e2) (2 /TI/ 

and hence the proof of the theorem. 

Substituting the results of Theorem i.5.1 in Equation 2.5.3, the 

gain of the l~arning system associated with classifying a pattern~ 

from category e1 becomes 

A similar expression can be derived fro the gain associated with classi-

fying a sample~ from ~ategory e
2

• The gain of the teacher for classi~ 

fying ~ ~rom category e1 is 

By setting 
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one can solve for n1 and n2 , the sample size required by the learning 

scheme to better the performance of the teacher. Hence the justifica-

tion for the cl~im that, in the case of non~overl~pping densities, the 

learning scheme performs better than the teacher on the average after 

looking at a finite num'oer of sample p~t,terns. As an example, if 

fXIS (~191) ~ 1, and equ~l prior proba'oilities P(91) and P(9 2), then on 
- 1 

the average the learning scheme with a sample size n1 ,n2 = 150 will 

better an imperfect teacher with S = 0.9~ 

The sample size required by the learning scheme to better the per• 

formance of the teacher is given below in Table I. The densities used 

in these sample calculations are assumed to be uniformly distributed 

over non~overlapping intervals of unit length, with P(9 1) = P(92) ~ !· 

TABLE I 

SAMPLE SIZE REQUIRED BY THE LEARNING SCHEME TO PERFORM BETTER 
TH.AN THE TEA,CHER 

s ' 0.60 0.70 o. 80 o. 90 

Approximate 

Sample Size 5000 1800 500 300 

nl+ n2 
; 

0. 95 

1600 
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A rather surprising inference that can be derived from this example 

is that the learning scheme requires less samples to better the ~er~ 

formance of a mediocre teacher than the number of samples it requires 

to better either a very ~ad or a very good teacher, i.e. it is easier 

to better a mediocre teacher. 

In the following lemma, the dependency of the perfor~ance of the 

learning scheme on S ts investigated. 

Lemma 2.5.1, For su~ficiently large sample size, L(S,~,n1,n2) 

given in Equation 2,5,4 increases as S increases, 

where 

A /1. 
P(8 1)S 

1 1 (S) 
1 4 

P(81)P(82) 
2 -- (P(e

1
)P(8

2
) (2[3 1)) 

~ (2 /rr) P " P(e1)fx1e <~1e1) 
- 1 

A A 
1 4 P ( 1\ )P ( 82) 2 

P(8
1

) (1 .. $) 
L2 (S) = -· ( 1)) A .. 

rn; (2 /TI)p P(81)P(e
2

) (2S· .. 
P(e2)fx1e <~1e1) 

- 1 

(2,5.12) 

When n1 and n2 are large [1 - 1 1 (S)]and [1 ~ 1
2

(S)] are greater than 

dL2 (S) dL1 (S) 
zero; then if dS and dS are shown to be negative, the lemma is 

proved, 

2 
d P(81)P(82) 

a~ ( S) where a is a constant not involving S 
dS c~s ~ 1 >2 
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P(~1)P(~2)
2

(2S + 1) S A A 
=.. + -------,,,..

2 
[P(9

1
)P(9

2
)[P(9

2
) ... P(91)] 

(213 • o 3 
(213 - 1) 

+ P(~2 )(1 ~ 2~)[P(9
1

) - P(92)] 4} 

P(~
1

)P(~2 )
2

(2S + 1) 

= - (2S - 0 3 

dLl (13) 
--<O 

dl3 



Similarly it can be shown that 

Hence 

from Equation 2.5.12. 

A similar result can be derived for a sample x from category e
2

• 

Lemma 2.5.1 impUes that for a given sample size, a learning scheme 

with a better teacher acquires more knowledge than a scheme with a 

comparitively poor teacher. 

The results derived in Sections 2.4 and 2.5 have been verified 

through simulations on the computer. The simulation results are dis-

cussed in the next section. 

2.6 Simulations. The proposed learning scheme was simulated on 

the IBM-360 computer for both overlapping and non-overlapping de~sity 

functions. The various density functions used in the simulations are 

31 

shown in Figures 1 and 2, The prior probabilities for the categories 

1 were set equal to 2. Samples were drawn from the two categories e1 and 

A A e2 and were labelled as e1 or e2 according to 

I\ 
P(e.1e.) = 1 - ~; 

J 1 
i,j 

i = 1,2 

1,2; i + j 
I\ I\ 

Using the incorrectly labelled samples, the densities f ,.. (~18 1) 
!l81;nl 

I\ A 
and f ,.. (~182) were estimated according to (2.3.1) and (2.3.2). 

!I 82 ;n2 



P(Si) = 1/2 

0.5 1.0 
X 

P(Sz)= 1/2 

1.5 2.0 

Figure 1. Non-overlapping Densities Used in· 
Simulation 

Figure 2, Overlapping 'Densitiel'usecl 
in Simulat;i.ons 

32 
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Fifty additional test samples were drawn from the two categories and 

the learning scheme was asked to classify these samples into e
1 

and e
2 

according to the decision rule: 

classify the sample~ as coming from e1 if 

classify the sample~ as coming from e
2 

if 

The risk for the learning scheme was calculated based on the classifica-

tion of fifty test samples, the loss function being +l for incorrect 

classification and O for correct classification, For each value of S, 

ten runs were made with 75 and 100 training samples (n
1 

+ n
2 

= 75, 100) 

and the average risk for the learning scheme was calculated. The re-

sults of the simulations are shown in Figures 3 and 4. 

Figure 3 shows the plot of ~verage risk versus S for the learning 

scheme for non-overlapping densities shown in Figure 1. The Bayes' risk 

* R for non-overlapping densities is zero and the average risk for the 

imperfect teacher is (1 - S). Figure 4 shows the same plot for over-

lapping densities shown in Figure 2. The Bayes' risk now is 0.125 and 

the average risk for the teacher is (1 - S). 

From Figures 3 and 4 the following theoretical results can be 

verified: 

(1) The average asymptotic risk for the learning scheme converges 

to the Bayes' risk (as derived in Section 2.4); 

(2) For non-overlapping densities the learning scheme betters the 
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imperfect teacher, and the NNR after looking at a finite 

number of sample patterns (as derived in Section 2.5). 

(3) For overlapping densities, the learning scheme is better than 

* the teacher if R < 1 - ~ (derived in Section 2.4). In Figure 

4, this corresp0nds to~< 0.875. 

(4) For a given number of training samples, the average risk de~ 

creases as~ increases (as derived in Section 2.5). 

It must be pointed out here that the plots represent only the 

11 average 1i performance of the learning system. On an individual run, 

the performance of the learning scheme will depend on the number of 

correctly labelled samples. If a particular sequence of sample patterns 

had too many incorrect labels, then the performance of the learning 

scheme will be worse than the 11 average 11 performance. To illustrate 

this point, a summary of the performance of the learning scheme on 

individual runs is given in Table II for the non-overlapping densities 

shown in Figure 1. 



TABLE II 

SUMMARY OF PERFORMANCE! 

~ 
, Average 

1 2 3 4 5 6 7 8 9 10 Number 

of Errors 

0.60 9 2 0 28 4 14 0 33 2 29 12.1 

0.70 0 0 0 14 2 l 0 0 0 3 2 

0.8 0 0 0 1 1 1 0 0 0 0 0.3 

Densities; As in Figure l 

Sample Size: 75 

Test Samples: 50 

1Entries in the table denote the number of errors made by the learning s-cheme in classifying the test 
samples. 



CHAPTER III 

FEEDBACK LEARNING SCHEMES 

3.1 Introduction. This chapter is concerned with investigating 

the possibility of "feedback" as a means of improving the performance 

of learning schemes with an imperfect teacher. The term 11 feedba\:-k 

learning scheme" is used here in conjunction with learning schemes 

which, instead of simply accepting the incorrectly labelled sample pat­

terns provided by the imperfect teacher, attempt to question and possib­

ly correct the labelling on some of these sample patterns. The ques~ 

tioning and relabelling at a particular stage of learning is based on 

the "knowledge" acquired by the learning scheme up to that stage. Since 

the learning scheme uses its own knowledge in an attempt to improve its 

performance the term "feedback learning" was thought to be appropriate. 

The term 11 f eedback11 is not used here in the usual sense. However, 

the student detects an error in a probabilistic sense and initiates cor~ 

rection. This is analogous to feedback in control systems where an 

error detected in a deterministic sense leads to correction. Thus fee<;l­

back broadly applies. Nevertheless, the reader may prefer other terms. 

For example, since the student is continuously changing his learning 

procedure as his knowledge increases the term adaptive learning or 

adaptive editing can be used. The term data refinement can also be 

used to describe this so called feedback. 

For analysis purposes it will be assumed that there are only two 

38 
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categories of patterns e1 and 

fxre and fXjS .• Equal prior 
_, 1 - 2 

e
2 

with non~overlapping density function$ 

1 
probabilities, P(9 1) = P(82) = 2, will be 

assumed. The case of unequal prior pro~abilities will be discussed at 

the end of Chapter IV. It will also be assumed that~ is greater than 

1 1 
2. If~ is less than 2, this can be taken care of as described in 

Corollary 2,2,1, Under assumptions just stated, justification for con-

sidering feedback as a means of improving the performance of learning 

schemes will be given. Several possible feedback schemes will be dis-

cussed and it will be shown that a thresholded feedback has many desire-

able properties over other schemes. 

3,2 Justification for Feedback. Before going into theoretical 

justification for considering feedback, a rather philosophical motiva. 

tion will be given based qn an example that is of common occurrence in 

classrooms, Such an example is the attempt of a student (presumably 

with much less knowledge than his teacher) to question and possibly 

correct an inadvertent error made by his teacher, In spite of the fact 

that most of the student's knowledge is derived from his teacher he is 

still able to use this knowledge to occasionally correct his teacher, 

Even though correcting trivial errors do not necessarily mean an in-

crease in knowledge, most of the student 1 s learning takes place through 

questioning what is being said in an intelligent way. Hence it seems 

that such questioning and possibly correcting the labelling information 

supplied by the teacher in pattern recognition problems is all too 

relevant especially if th1: teacher is known to be imperfect. 

Theoretical justification for considering the possibility of feed-

back in learning schemes is based on the results described in Chapter 

II, It was shown in Chapter 11 that the learning scheme performs better 
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than the teacher in the asymptotic case. It was also shown that the 

learning scheme performs better than the imperfect teacher after looking 

at a finite number of samples and that the finite sample performance of 

the learning scheme improves as 13 increases. In Appendix B, it is 

shown that the average rate of learning at initial stages increases as 

13 increases. These results indicate that any improvement in 13 will re~ 

sult in an improvement in the performance of the learning scheme. Since 

the learning scheme performs better tha,n the teacher after looking at a 

finite number of samples the student (the terms learning scheme and 

student a,re used in the same context) can verify the labelling given by 

the teacher based on his knowledge and correct some of the labels. Such 

correction if done successfully will result in a lesser number of in-

correct labels in the sample patterns and hence lead to better perform-

ance. 

A computer simulation will now be discussed to illustrate the 

effectiveness of this correction. An initial set of 75 sample patterns 

were drawn from the densities shown in Figure 1, with P(8 1 ) = P(82 ) = f. 
An imperfect teacher characterized by 13 = 0.7 labelled these samples as 

A. A. 
e1 and e2 • Using these incorrectly labelled samples the student learned 

the densities f A. and f A.. Fifty additional sample patterns were 

~.1 81 !1 82 

drawn and these samples were labelled by the impeifect teacher and the 

student. The student ignored the teacher's labelling and did his own 

labelling according to: 

A. A. A. A. A. 
Label X as e1 if f A. <~I 81 > > f A. <~ I 82 > -

!l81;nl !I e2 ;n2 
(3.2.1) 

I\ I\ I\ I\ I\ 
Label X as 82 if f I\ <~ 182 > > f A <~I 81 > - x1e2;n2 !l81 ;nl 
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The form of the estimators ~ 
" 

and ~ 
" 

is given in Section 
!l 91;nl !I e2 ;n2 

2.3~ A summary of the labelling for the teacher and the student is 

given in Table III. It can be seen from Table III that the performance 

of the student will be better if the additional samples were used with 

the labelling provided by the student himself since the stµdent 1 s 

labelling contains fewer incorrect labels than the teacher. However, 

it must be mentioned here that the student's labelling does not really 

improve~' but improves the ratio of the number of samples with correct 

labels to the total number of samples. 

Example 3,2.1. 

fXIS and fxie are same as those shown in Figure 1 
1 2 

= 75 

Total no. of test samples= 50 

~ = Number of samples correctty labelled 
E Total number of samples labelled 
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TABLE III 

SUMMARY OF LABELLING: STUDENT VS TEACHER 

Run Teacher Student 

Number of Number of ~E Number of Number of 
No. Correct Labels Incorrect 

[E(~E)=~] Correct Labels Incorrect ~E 
Labels Labels 

1 35 15 0.70 50 0 1.0 

2 39 11 0.78 so 0 1.0 

3 36 14 0.72 so 0 1.0 

4 37 13 0.74 36 14 0.72 

5 27 23 0.54 48 2 O. 96 

6 34 16 0.68 49 1 0.98 

7 37 13 0.74 so 0 1.0 

8 37 13 0.74 so 0 1.0 

9 34 16 0.68 so 0 1.0 

10 30 20 0 •. 60 47 3 0.94 

Ave 34 .6 15.4 0.692 48 2 o. 96 

3.3 Types of Feedback. It has been shown through a simulation in 

the previous section that the learning scheme can use its own knowledge 

through feedback to correct the labelling provided by the teacher. 

Three different types of feedback will be considered in this section 

and their merits and demerits will be discussed. 

The first feedback scheme to be considered uses a combination of 

the labelling provided by the teacher and the student. When the 

(n + 1)6t sample ~l (n=t\+n2) is presented, the student provides his 
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own label for ~l based on his present knowledge. The label on ~l 

probided by the teac;her is checked for agreement and the sample X 1 is 
' -n+ 

used by the student to update his knowledge if there is agreement. 

Otherwise ~l is discal;'ded. The alogart't'hm for this feedback scheme 

is: 

/\ /\ /\ /\ 
Label X as el and update f /\ if f /\ <~11 81) > 

"'"flt 1 !I el ;nl !I 81 ;nl 
/\ /\ 
f /\ (X 1182) and if teacher says el 
!I 82 ;n2 -n-t 

(3.3.1) 
/\ /\ /\ /\ 

Label X as 82 and update f /\ if f 1ti (X 1 1e2) > -n+l !l 82in2 ! 182 ;n2 -n+ 

Otherwise discard ~ 1• 

Let us now Look at N additional samples processed by the student 

according to (3.3.1). Out of these N samples the teacher will on the 

average label Nl3 samples correctly and N(l p S) samples incorrectly. 

Denoting the probability of correct labelling of the student by Ss, and 

assuming independence, the combined labelling scheme on the average 

labels N~~s 1:1amples correctly, N(l - 13)(1 - S) samples incorrectly and 
s 

discards the remaining samples, On the average out of the Nl3 saniplE)s 

correctly labelled by the teacher, the combined labelling scheme throws 

away (Nl3 - Npll3 ) samples and out of the N(l ~ S) samples incorrectly 
s 

labelled by the teacher [N(l - 13) .. N(l - 13)(1 - 13 )] samples are thrown s 

away, If 13 is greater than 13, it can be shown that more incorrectly 
s 

labelled samples are thrown away than correctly labelled samples. Hence 

throwing away samples does not seem to be bad. 
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However, the probability of correct classification for the student 

is dependent on the value of ~land the particular string of samples 

thus far presented to the learning scheme. In this situa~ion the 

argument given in the previous par~graph does not apply. Rather than 

throwing away samples it may be advantageous to correct the labels on 

the samples being thrown away and use these samples in the learning 

process. The feedback schemes discussed below are designed to make use 

of all the sample patterns. 

In the second feedback scheme to be investigated no samples are 

thrown away. The student accepts the label provided by the teach~r on 

the first NF samples without questioning. On subsequent samples the 

student completely ignores the information supplied by the teacher and 

does his own labelling according to: 

Label ~+las e1 if 
A A 

fx1e ;n <~+11 91) > fx1e ;n <!N+ll 92) 
~ 1 1 - 2 2 

II. 

> f;le1;n1 <!N+l lel) 

(3.3.2) 

Depending on the label, XN. 1 is used to update the estimate of the ,... + 
appropriate density function. 

Two of the obvious disadvantages of this method are that there is 

no control over the amount of feedback and that the teacher is com-

pletely ignored. Even though the teacher is known to be imperfect, 

there is still useful information in the label supplied by the teacher 

1 if Sis greater than I· The lack of control on the amount of feedback 

results in a large probability of incorrect feedback at the tails of 

the probability density functions. A numerical example is given in 
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Table IV. 

Example 3 .3. L 

fxle and fxle are same as in Figµre 1 
1 2 

were coi;nputed using normal approximations given in 

Appendix B 

TABLE IV 

PERFORMANCE OF FEEDBACK SCHEMt 3.3.2 

P(correct feedbacklxee 1) P(Incorrect feedbacklxee 1) Ratio of 
fx1e (xl81) 

1 ;;: pl = P2 pl :p2 

2 0.85 0.15 5. 6:1 

1 0.775 0.225 3 .O:t 

0.5 0.70 0.30 2.,5:1 

0.25 0.()4 0.36 1. 8: 1 

Table IV contains the probability of correct feedback and probabili~ 

ty of incorrect feedback associated with classifying a sample~ from 

category e1 for various values of fxie (~181). Normal approximations 
- 1 
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discussed in Appendix B were used to calculate these probabilities. 

From the values listed in Table lV it can be seen that there is a large 

probability of incorrect feedback if fXle (_!191) is small, 
- 1 

Also at 

these points the ratio of probability of torrect feedback to probability 

of incorrect feedback is low, 

The only way to improve the performance of this feedback scheme is 

to wait longer before starting feedback, This leads to the question, 

what is the 11 opti.mum11 value of starting feedback NF? To answer this 

question a complete knowledge of the prior probabilities and the density 

functions are required, besides a criteria to be 11 optimized 11 • No 

attempt has been made towards obtaining an exact answer for this ques .. 

tion. However two special cases of interest, NF= 0 and NF= cc, have 

been considered. When NF= O, the student completely ignores the 

teacher from the beginning a.nd the feedback scheme 3,3,2 is analogous 

to learning without a teacher. lf NF= cc, the student would have 

acquired knowledge equivdent to that of a l3ayesl scheme, and no further 

improvement in the student's knowledge is possible due to feedl:;,ack since 

the limiting knowledge is independent of 13. Hence neither starting 

feedback too early nor waiting till too late is good, A compromise is 

to delay feedback till the teacher ha? provided the learning scheme 

with more correctly labelled patterns than inc0rrectly labelled pat~ 

terns; the probability of such an event can be used t9 determine the 

starting point NF, 

The thresholded feedback scheme considered in the next section 

implicitly provides an an$wer to the question of finding the 11 !:,est 11 NF. 
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3.4 Threshold in Feedback. Some of the disadvantages of the first 

two methods of feedback can be overcome by using a threshold in the 

feedback. When a sample pattern ~+l is presented to the feedback 

learning scheme, the label on the sample supplied by the teacher is 

either accepted or changed by the student according to the following 

algorithm: 

Accept the labe~ provided by the teacher if 

and 

A A A A A 
change the label to el if f A (~+1181) > f A (!N+lle 2) + T 

! 1e1 ;n1 !I e2 ;n2 

A A A A A 
change the label to 82 if f A Q~N+ll82) > f A (~+ll81) + T 

;le2;n2 !l81;n1 

(3.4.1) 

In algorithm (3.4.1), n1 ,n2 ~ 1, N ~ n1 + n2 and Tis the threshold. 

After the label is decided !N+l is used.to update the estimate of the 

density function corresponding to the accepted label. 

It can be seen from (3.4.1) that the learning scheme ignores the 

teacher only if the density f~.mctions differ by more than T, Loo!:;ely 

stated the label provided by the teacher is questioned and changed only 

if the student is certain that the teacher is wrong and the student 

accepts whatever the teacher says if he is not sure of himself. This 

scheme does not throw away samples like in the first scheme described. 

Also feedback is done rather selectively unlike the second method where 

feedback was done on each sample. 
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The threshold feedback scheme has the following desirable proper-

ties: 

1) Feedback starts at the modes of the density functions. 

2) There is control over the amount o~ feedback. 

3) By choosing T to be decreasing function of N, the teacher 

can be gradually phased out. 

These properties can be established using the theorems proved in 

Appendix B. 

It is shown in Theorem B0 4.1 that the maximum probability of feed-

back occurs at the maximum value of fXl 9 (~19 1) if the given pattern.! 
- 1 

is from category e1 and that if xis from category 9
2 

the maximum 

probability of feedback occurs at the maximum value of fXl 9 (_!19 2). 
- 2 

This implies that feedback starts where the density functions have 

large values. In regions where the density functions have large values, 

the densities are well separated and hence the student feels confident 

to challenge the teacher in these regions. Accordingly there is more 

feedback in these regions as desired. An illustrative eJi;ample is given 

below. 

Example 3.4.L 

T = 0.1 

P(correct feedbackjx€9 1) and P(Incorrect feedbacklx€9 1) 

were calculated according to Equation B.4.1 
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TABLE V 

PERFORMANCE OF T.HRESHOLDEO FEEDBACK SCHEME 

P(correct P(incorrect Ratio of 

fxje <~1 91) feedbacklxee 1) feedbackjxee 1) P (feedbackj'.lCe:9
1

) 
pl:p2 - 1 = P1 = P2 

2 0.788 0.03 0.818 26:1 

1 .646 .13 o. 776 4.9:1 

0.5 .so .15 0.65 3.3:1 

0.25 .36 .13 0.49 2.8:1 

From the example it can be seen that the proba,bility of feedback 

gets lower and lower as the V,1:ilue of :Exie decreases. 
- 1 

Table V also 

gives the probability of correct feedback and the probability of incor-

rect feedback for several values of fXjS • Comparing these values with 
- 1 

those listed in Table lV for a feedpack scheme without threshold, it 

can be seen the use of a threshold lowers the probability of incorrect 

feedback at the tail end of the den~ity function. Also the ratio of 

the probability of correct feedback to the probability of incorrect 

feedback is better with a threshold. 

In Lemma B.4.1 it is shown that increasing T decreases the amount 

of feedback and vice versa. Hence by varying the threshold T the amount 

of feedbaGk can be controlled, as opposed to the total lack of control 

on the amount of feedback in a feedback !>Cherne without thre$hold. Lemma 

B.4.1 also shows that, by choosing T to be a decreasing function of N, 

the amount of feedback can be increased as the learning progresses. 
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This way the teacher can be gradually phased out as desired. The 

gradual phasing out of the teacher also provides an answer to the ques­

tion of finding the optimum starting point for feedback, NF, required 

in the second feedback scheme (3.3.2). 

Based on the comparison given th~s far, it ts apparent that the 

feedback scheme with threshold is better than the other schemes con­

sidered. One of the problems associated with a feedback learning scheme 

with a threshold is the selection of the threshold T. Two methods are 

given in the next chapter for selection of thres~old. 



CHAPTER IV 

SELECTION OF THRESHOLD 

4.1 Introduction, Thip chapter is concerned with finding an ex~ 

press ion for the threshold l' in terms of S, and the sample size n. Be .. 

fore going into the actual derivation one might deduce the fprm of T as 

follows. It has been shown in Chapter II that for a given sc!,mple size 

n, the performance of the learning scheme improves as S increases. 

Hence for a given n, there should be more feedback in a learning scheme 

with a better teacher than in a learning scheme with a relatively bad 

teacher. This implies T should be a decreasing function of S since the 

amount of feedback increases as T decreases. Also it has been shown 

that T must~ 0 as n ~>oo, Since the variance of the discriminant 

1 function is a function of /n' it is intuitively obvious that T must also 

1 
be decreasing as rn· 

Two methods are given in the following sections for deriving an 

expression for T, for the equal sample size case. These approaches are 

later extended to the unequal sample size case. In ,11 these deriva-

tions non-overlapping densities will be assumed, As has been mentioned 

earlier in Chapter 11, with a large overlap in the densities the learn~ 

ing scheme can not perform better than the teacher and hence feedback 

is not good in these cases. 

For purposes of analysis in this chapter the normal approximations 

I\ f" of the estimators f!ISl;n and !IS
2

;n described in Appendix B will be 
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used. 

4,2 Minimax Approach, In this rather pessimistic approach the 

objective is to do feedpack in such a way that the chances of incorrect 

feedback are minimum, Hence the quantity of interest is the probability 

of incorrect feedback. This probability is a function of 13,n and the 

values of the density functions fxje and fXle at~' the sample being 
- 1 - 2 

fed back. The dependency on the density function is undesirable since 

these are quantities that we are trying to estimate. It is shown in 

this section that the dependency on the density functions can be removed 

by looking at the maximum value 0£ the probability of incorrect feed-

back. An expression for Tis. derived by setting an upper bound on this 

maximum probability of incorrect feedback, 

Theorem 4.2.1. P(Incorrect feedbackl~ee1 ) is maximum at!!{)' where 

~ee1 is such that 

where 

and 

Proof. From B.4.1 

J
[-T-(Zi3-l)a]c = L 

P(Incorrect feedbacki~e91) ~ ~~0,1~:S 

C = 
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It will now be shown that Lhasa maxim~m at 

T a=---(2S ~1) 

dL /a (213-1) .. [T + (213.-l)a] 

da = - c [ a 2 Ta J 

a(2!3~l) _ [T + (213-l)a] 

= - c[ 3 /2 2 J 
a 

[ a(2S-l) = TJ 
= ~ C 3 /2 

2a 

2 . 
d L = .. .£ ~ [a (213-.l) ., T] 
da 2 da · 3/2 

a 

3 
2 · .. 

= _ £ [a (2§-0-[a (213 .. 1) -T)3 /2 £i 
2 B 

a, 

__ £ [3T - a(213-l)] 
- 4 5/2 

q. 

At 



Hence Lhasa ma~imµm at T = (213-l)a. This implies 
L 

p(incorrect feedback ~e:e1l;n) = f N(Q,l)ds has a maximum at.!() if 
T -ex, 

f~
191 

(~0 191) = 
213

_1• Hence the proof the the theorem. The example 
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discussed on page 48 illustrates this theorem. A similar result can °Qe 

derived for ~e:e2 • 

Using Theorem 4.2.1 one can obtain the maximum value of 

P(incorrect feedbackl~e:a
1

;n) as 

where 

2T 
k C 

(T/213-1) 2 

= N(O,l)dl; 

l .e. 
4 . 2 

C = n (2 /TT) 

(4.2.1) 

Similarly it oan be shown that the maximum P(incorrect feedbackl~e:92;n) 

2T 
. . k c;: 

(T/2!3,-1) 2 

= N(O,l)dl; 

From (4,2,1) and (4.2.2) it can be seen that the maximum value of 

P(incorrect feedback!n) 

k k 

I 
.. 2T 2c(2i3-l) z 

= N(O,l)dl; 

~cc:, 

(4.2.3) 
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Using Equation 4.2.3, the expression for the threshold can be ob-

tained by setting m~ximum value of P(incorrect feedoaokln) equal to a, 

i.e. 

k 7::: 

J
""2T 2c(2~-l) 2 

N(O,l)d!;;::;;a 

•CXl 

From the table ot normal integrals, the value t can be determine9 such a 

that 

Comparing Equation 4,2.5 and 4,2~4 it Gan b~ seen that 

where 

t2 

T= a 
2 .. 

4c (2~-1) 

2 
t a 

= 
4(2 /TT)p /n 

C 

T :- a - rn <2~-n 

t2 
a 

C =----
a 4(2/rf)P 

(2~ .. 1) 

(4.2.5) 

(4.2.6) 
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Choosing T according to Equation 4,2,6 guarantees that on the 

average the maximum proba,oility of inqorrect feedbc:1.ck at any given 

stage of learning is equal to the desired value a. For any given pat~ 

tern~ the probaoility of incorrect feedback is less than or equal to 

a. The expression for T given in (4,2,6) has the desired properties 

that the teacher is gradually phased out, the amount of feedback at a 

given stage is more for a learning scheme with a good teacher compared 

to a learning scheme with a comparativeiy bad teaqher and T decreases 

d . · l h ~ d h f ~ accor ing to ;'i:i' t e same rate o+ ecrease as t e variance o. t~,e esti~ 

mator of discriminant function, 

4.3 Decision Theor;x Approach. In the decision theo:u approach 

towards finding an expression for the threshold T, vahies &re assigned 

to the possible out comes of feedback and Tis chosen such that the 

11 average valµe 11 is maximized. The decision tree for this problem is 

shown in Figure 5, The tree is drawn as if the true category of the 

pattern~ to be fed back is known to the de~ision maker, the decision 

being the choice of threshold T. For each value of T there are three 

possible outcomes, namely,~ is correctly fed back, no feedoack or xis 

incorrectly fed back. The 11v,;;tlues 11 associated with these outcomes are 

a 1 ,0 and ~b' respective\y, a',b' > O. Us;i.ng the probabilities of these 

outcomes the "average vai,lue" of feedback can be compute<:! and T can be 

chosen such that the average value is maximized, 

Theorem 4.3,!, 'L'he "average value" associated with feeding back a 

th sample ~ee1 , at then stage of learning, 

E[v1 (T)} = a' P(correct feedbackl~ee 1 ;n) 

~b' P(incorrect feedback!~ee 1;n), (4.3,1) 



• 
• 

• 

CHOICE OFT 

• 

CORRECT 
FEEDBACK 

(a' ) 

NO 
FEEDBACK 

(O l 

INCORRECT 
FEEDBACK t (-b' I 

VALUES 

( 
CORRECT 

FEEDBACK 
(a') 

NO 
FEEDBACK 

(0) 

INCORRECT 
FEEDBACK 

(-b') 

Figure 5. Decision Tree for Selection Threshold (E;tjual 
Sample Size) 
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is maximum if Tis cho~en to be 

Proof. 

b' 
lqge a' 

T = ~--..--.~---
2 (2 in/ In (2S-. l) 

Substituting these probabiliti~s in (4,3,1) 

E{V
1 

(T)} = 

where 

and 

·a 1 N(O,l)d~ 

[r.., (2j3 .. l)a]c 
IT 

C = 

[ .. r-(213-l)a.]c 
/a 

-b 1 N(O,l)d~ 

Taking the derivative with respect to T, it follows that 
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(4.3 .2) 
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2 2 2 2 
c [b [ c [T+(2S~l)a] } [ c [r-<~!-l)a] }]. = ./ 2 . . , e:icp ,. . . . . . .,. a ' e:x:p - -
Tia 2a 

Setting ~T [E[V1 (T)]} = 0 gives 

since 

c.;ifO 
~ 

Taking logarithm on both sides 

where 

2 2 2 2 
log b 1 ~ .S..-2 . [T + (2S~l)a] = log a' - .s:,_ [T - (2S~1)a] 

e .a e 2a 

2 
C 

2.a 
b' 4aT(2S-l) ~ log (-· 

1
) e a 

b' log (-. ) 
T = e a' 

2 (2 /TDP In (2S-0 

= In (2S .. 1) (4.3.3) 
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d2 co 
It can be shown tha1; ~ (E[V1 (T)]} is negative at T=/n (2!3-l)' 

dT 
Hence E(v1 (T)} is maximum at T given in Equation 4.3,3. Proceeding 

along the same lines it can be shown that E[v
2

(T)}, the "average value" 

associated with feeding back a sample _!e:9 2, is also maximum at T given 

in Equation 4.3,3. This implies that irrespective of whether _!e:9 1 or 

_!e:9 2 , the "average value" of feedback is maximum if Tis chosen 

according to (4,3,3), 

The form of T given in (4.3.3) is the same as the one given in 

Equation 4.2.6 for the minimax approach. The only difference is in 

the constants appearing in the exp~ession. These constants are deter-

mined by the choice of the maximum value of the p~obability of incorrect 

feedback, or the value function and hence are subjective in nature. 

The algorithm for feedback now is: 

Acccept the label provided by the teacher if 

Relabel x as 

A A A A A 

el if f A (.!191) > f A (,!192) + T 
!l81;n !l82;n 

A A A A A 

92 if f A <.!I 82) > f A <.!I 81) + T (4.3.4) 
!I e2 ;n !I el ;n 

where Tis the threshold given in Equation 4.2,6 for the ~inimax 



approach and in Equation 4.3.3 for the decision theory approach. 

4.4 Extension of Decision Theory Approach to the Unequal Sample 

Size Case. For the equal sample size case n1 = n2 = n, an e~pression 

for the threshold Twas derived in the previous ~ection and it was 

shown that the value of T given in Equation 4.3.3 maximizes both 

E[v1 (T)} and E(V2(T)}. With ~nequal sample size n1 ~ n
2

, it can be 

shown that 
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bl 
log (-· ,) e a 

(4.4.1) 

maximizes E[v
1 

(T)} and 

bl 
log (-

1
) 

e a 
(4.4.2) 

maximizes E[V2 (T)}. Since it is not known if ~€6 1 or ~Pe2 , the above 

expressions are of no use. We need to further average ELv
1 

(T)} and 

E[V2 (T)} with respect to P(9 1)fX!e and P(62)fX!e respectively and 
- 1 - 2 

find T that maximizes this average. The decision tree shown in Figure 5 

is redrawn in Figure 6 for this purpose. 

The quantity to be maximized now is 

co 

E[V(T)} = P(6 1 ) f
00 

f!S_lel (~le 1)(a 1 [P(correct feedback.lzs.€~ 1 ;n~,n2)] 

~ b;[P(incorrect feedbackl~ee 1 ;n1 ~n2)]}d~ 

co 

+ P(92) Io:, f;1e2 (~le2)[a 1[P(correct feedbackl!~e2;nl,n2)] 

~ b'[P(incorrect feedbackl~ee 2 ;n
1

,n2)]}d~, 

(4.4.3) 



CHOICE 
OFT 

OUTCOMES VALUES 

CORRECT FEEDBACK (a.) 

NO FEEDBACK(O) 

INCORRECT FEEDBACK (-b') 

CORRECT FEEDBACK(~) 

NO FEEDBACK(O) 

INCORRECT FEEDBACK(-o) 

Figure 6. Decislon Tree for Selection of Threshold 
(Unequal Sample Size) 
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In order to be able to maximize E(V('l')} with respect to T, the 

density functions fXle and fx le must be specif~ed completely. 
- 1 ....,. . 2 

'this 

is very unreaspnable since if these densities were known th1;m Bayes' 

procedure completely specifies the disoriminant function and there is 

no need for any learning. Even if these densities were known there is 

still the problem of finding the value of T that maximizes E(V(T)} 

given in Equation 4.4,3. An example will illustrate this difficulty. 

Let us assume that fxie and fXle are two univariate density 
- 1 - 2 

functions of random variables uqiformly distributed over non-overlapping 

intervals of length 1. Substituting for the various probabilities on 

the right hand side of Equation 4,4,3 and taking derivative with respect 

to T, 

2 
61 c2 2 

+ ffn c2 exp[- r [T+ (213,..1) J }] 

(4.4.4) 

where 



64 

Setting ~T [E[V(T)} = 0 in order to solve for extremum, it can be seen 

from (4.4.4) that even for very simpie forms of fXIS and fxie one has 
- 1 - 2 

to solve a transcendental equation. For more general forms of the 

density functions, Equation 4.4.4 takes a more complicated integral form 

and no closed expression for T can be obtained by setting 

d dT [E[V(T)]j = O. 

However an expression for T can be obtained by using approximations 

as explained below. Let us assµme that the unequal sample size results 

from unequal prior probabilities P(91) and P(e2) such that 

(4.4,5) 

Now, 

~ A . A ·. 
P(91l81)P(91)+P(91I 92)P(82) 

SP(e1) 

Hence 

(4.4.6) 
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I\ 
Equation 4.4.6 staies that the probability that a sample labelled as e1 

by the teachet, being actually from category e
1

, is approximately equal 

to one. Hence there is no need for the student to quest:ion the S?:mples 

I\ 
labelled as e1 • 

I\ 
Looking at the samples labelled as e

2
, 

and 

(1-S)P(e
1

) 

p <~2) 

j3P(9
2

) 
= 

P(~2) 

(4.4.7) 

Inequality (4.4.7) implies that the probability that a sample labelled 

I\ 
as e2 by the teacher is from categqry e1 is much larger than the proba-

bility that the sample is actually from category e2• Hence samples 

I\ 
labelled as e2 by the teacher need to be checked, and reclassified if 

necessary. 

for example if a tot!;ll of N labelled patterns are given, then 

N[P(9 1)(l~S) + P(9
2

)S] patterns will, on the average, carry the label 

I\ e2 • But of these, NP(9 1)(1-j3) samples will, on the average, be from 

category e1 , Since NP(8 1)(1-S) >> NP(92)13, while feeding back samples 
I\ 

labelled as e2 one needs to be concerned abQut these large numbers of 

samples ~rom category e1 and hence maximize the ~unction 



The value of T that ma~imizes E[V! (T)} is given by 

where 

bl 
log (-

1
) 

e a r = . . 
2 (2 /rDP (2~-1) 

= co [ ~ (1-~)J 
(2~-1) fni + rn; 

The algorithm for feedback now is: 

A 
Change the label on X only if teacher said e2 and 
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(4.4.8) 

(4.4.9) 

4.5 Extension of Minima~ Approach to the Unequal Sample Size Gase. 

The argument given in the previous section about relabelling only those 

sampl~s with labels ~2 can be used to obtain a value for the threshold 

Tusing the minimax approach. The quantity of interest now is: 

As in Theorem 4,2,1 it ca,n be shown that the maximum 
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and the maximum valt,1e of P(incorrect feedbackl!.e:e 1 ;n11 n2) is given by 

where 

By setting 

J 
... 2T\ (2j3 .. 1 / 2cl 

N(O,l)dl; 

,.ep 

~1 F 
1 _§_ 1:.§. 

.F. [~+ ~J 
2 

1 2 
(Z /IT) 

1: },, 

J
-2T 2 (2j3 ... 1) 2 c

1 

N(O,l)dl; .:: 

..-o:;, 

ct being the desired mf1.:x;imum value of P(inco't;rei;:t feed'bac;.kl!.ee 1 ;n1 ,n2), 

the value of T can 'be obtained as 

(4.5.l) 

where 

C ==~-....,..,. .. -
ct 4 (~ /n)p 

The algorithm for f~edback now is: 



A 
Change the label on 3. only if the teacher said e2 and 
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(4.5.2) 

4.6 Comments. Even though the e~pressions for the threshold T 

derived in this chapter display many desirable properties, no claim can 

be made about the 11 optimality11 of these expressions. One of the short 

comings of the analysis presented in this chapter lies in treating~ as 

constant. Due to feedback the 11 ef£ ective value of ~11 , defined as the 

ratio of the number of samph patte:i;-ns with oorrect labels to the total 

number of sample patterns, is changing. A formulation of this change 

is difficult, if at all possible. Even though probability staternents 

can be made about correct feedback and incorre~t feedback, these involve 

the unknown densities. Whereas for the teacher, ~ is independent of~' 

the sample being labelled, the performance of the student will depend 

on the value of~ and the performance of the student in the past. If 

the student has been incorrectly feeding back the initial samples, then 

subsequent samples will aho be incorrectly fed b!l,ck. This fundamental 

difference in the labelling procedure prevents an analysis of perform~ 

ance of the feedback learning scheme as was done in Chapter II for the 

learning scheme without feedback. 

The performance of the proposed feedback learning scheme is evalu~ 

ated through simulations in the next chapter. 



CHAPTER V 

SlMULATION RESULTS 

5.1 Introdµction. For reasons outlined in earlier chapters a 

complete theoretical analysi~ of the proposed feedback scheme is ex-

tremely difficult, if at all possible. This chapter is concerned with 

presenting the results of computer simul~tions of the feedback learning 

scheme, Three different learning situations, characterized by non~ 

overlapping densities and equal prtor probabilities, non-overlapping 

densities and unequal prior prob,abilities I and overlapping dEmsities 

and equal prior probabilities were simulated and the results are pre-

sented below. 

5 .2 Simulations With Non-ov
1
erlappins Densities; Equal Prior 

Probabilities. The densities £Xie and fXje used in this part of the 
,... 1 - 2 

simulations are shown in Fig~re 1, A total of Nt samples were drawn 

1 from these densities with equal prior probabilities P(e1) = P(e2) = 2. 
/\ I\ 

These samples were labelled as e1 and e2 by an imp~rfect teacher, char-

acterized by Equation 2.2.10. The learning scheme without feedback 

accepted the label provided by the teacher and the densities f ,. and 
xle1 

f ,. estimated according to (A.2.7). Based on the final estimates 
x1e2 

(N = N + N ) each test sa~ple Z was cla$si~ 
t tl t2 

fied as follows: 
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and as 

(5.2.1) 

The feedback learning scheme questioned the label on the sample 

patteJ:"ns Zn+l and modified the label according to the following r~le: 

where 

Accept the label provided by the teacher if 

II. II. 

T _ 0.141./2 
- ./n (2~-1) 

< T 

(5.2.2) 

(5.2.3) 

In (5.2.2) f 11. and f A ~re the estimates off A and f 11. 

x[el;n xje2;n x1el x1e2 

based on a total of n sample patterns, Depending on the label on zn+l 

provided by (5,2.2), the corresponding estimate was updated and this 

procedure was repeated on all the sample patterns, Based on the final 
II. II. 

estimates f 11. and f II. , the test sample z was classified 
xle1;N x1e2 ;N 

tl . t2 
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according to cs.2.1). 

For each value of Sten runs were made with two different sample 

sizes, Nt = 20 and Nt = 60. In each run the performance was computed 

based on the classification of forty test samples, and the average risk 

was calculated by averaging the risk on the ten runs (the loss function 

is 1 for misclassification and O for co~rect classification). Figure 7 

shows the plot of this simulation results for Nt = 20 and Figure 8 shows 

the plot of this simulation results for Nt = 60. 

It can be seen from Figures 7 and 8 that feedback on the average 

impl;"oves the performan,ce of the learning scheme. A rather interesting 

aspect of these plots is that feedback does not seem to improve the 

performance very much for both highet;" and lower values of s. At lower 

lower values of S, i.e. with a very bad teacher, the amount of feedback 

is small because the student does not learn enough to question his 

teacher very often. At higher values of S, i.e. with a very good teach-

er, the student acquires his Umiting knowledge q'-'ickly and feedback 

does not help here since feedback does not increase the limiting know~ 

ledge. Hence it appears that feedback is most effective when the teach~ 

er is mediocre. 

A summary of labelling on one of the computer runs for S = 0.6 is 

presented in Table VI to il 11.,istrate th~ relabelling of samples due to 

feedback and the gradual phasing out of the teacher. The second and 
A A 

third columns in Table VI contain san;tple::; labelled as e1 and e2 +espec-

tively by the teacher and columns four and five contain samples re~ 
A A 

labelled as e
1 

and e2 by the feedback sche~e. N is the stage of learn-

ing. It can be seen from Table Vl that at initial stages of learning 

the feedback scheme accepts the lab~l provided by the teacher on most 
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TABLE VI 

SUMMARY OF LABELLING WITH FEEDBACK 

STAGE OF SAMPLES LABELLED BY SAMPLES RELABELLED BY 
LEARNING TEACHER 

~ FEEDBACK SCHEME 
A5- 9, AS- 0~ AS- a AS-0a. 

1 Oe5!J20 0.48503 0.55020 0.48503 
2 Oe5S779 0.69131 0.59779 0.69131 
3 0.54465 1.44743 0,54465 1.44743 
4 0.61472 1.51854 o •. 61472 1.51854 
5 o.37303 1.62923 0.37303 1.629<!3 
5 1.5,,,07 0.45135 1.54007 o.45135 
7 Oe6f.136 Oe68274 o.66136 o.68274 
8 1.23579 1.51217 1.23579 1.51217 
9 1.76557 o.46808 1.76557 0.46808 
10 1.17509 1.72767 1.7509 1.72767 
11 0.65530 0.41548 0.65530 0.41548 
12 o.22466 le74882 0.22,.66 1.74882 
13 1.65705 1.59076 1.65705 l.';9076 
14 0.41132 0.54918 0.41132 o.54918 
15 0.30575 1.71383 .0.30675 1. 71383 
16 0.42291 0.45123 0.42291 0.45123 
17 1.56166* 0.00403 ·0.62163 1.56166 
18 1.59375* 1.73901 0.62428 0.88043 
19 0.62163 1.23685 0.10900 1.59375 
20 0.62428 1.55017 0.28518 1.73091 
21 0.10980 le85793 0.36264 1.23685 
22 0.20510 lo4fl777 o.35588 1.55017 
23 o. 36264 1.57811 0.57933 1.85793 
24 0.35588 1.77813 o.54739 1.46777 
25 0.577933 0.02556 0.65951 1.57811 
26 0 .. 54739 1.42832 0.92683 1.77813 
27 l.5fl060* l. .60593 . o. 72246 0.02556 
28 0.65951 1.26315 0.84848 1.42832 · 
29 o.92683 1.21079 o.64566 1.58060 
30 0.72246 0.84848* Q.37283 1.60953 
31 0064566 1.82512 0.62532 1.26315 
32 0.37283 1.62251 0.11055 1.21079 
33 1.81883* 1.91005 0.41068 1.82512 
34 1.71398* o.62532* o.66308 1.62251 
35 0.77855 1.18466 o.76831 1.8.1883 
36 0.41068 1.55648 0.41078 1.91005 
'H Oe6f10A 1.13248 o.r;a1a4 1.71398 
38 0.76831 J.41078* 0.45755 l.lfl466 
39 0.5fl84 0.45755* 0.54628 1.55648 
40 0.5'i528 l..44212 o.13978 1.13248 
41 0.1:.978 0.74364* o.74364 lo44212 
42 1.25586* 1.20546 o.57119 1.25586 
43 0.57119 1.56648 0.69249 1. 2 0546 
44 Q.69249 0.42697* 0.42697 1.56648 
45 1.73285* 1.80929 0.45230 l.732A5 
46 l.4S229* 0.45230* 0.76117 1.80929 
47 1.20659* 1.43123 0.43915 1.45229 
48 1.68309* 1.52286 0.81978 1.20659 
49 0.76117 0.43915* 0.13040 -1.432)3 
50 0.81978 0.13040* ----~- 1.68309 
51 ------ ------ ------ 1. 52286 

*-DENOTES SAMPLES LABELLED INCORRECTLY BY TEACHER AND 
CORRECTLY RELABELLED BY THC FEEDBACK SCHE~E 
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of the sample patterns. As learning progresses, more and more samples 

are correctly relabelled and for large values of Nall the incorrectly 

labelled samples are relabelled correctly, i.e. the teacher is ignored 

completely. 

It must be mentioned here that these plots only represent the per~ 

formance on the average. The performance of the learning scheme on any 

given set of samples will depend on the teacher's labelling on these 

samples. A summary of pe);'formance of the feedback scheme on ten dif-

ferent sets of samples is given below in Table VII to illustrate this. 

TABLE VII 

SUMMARY OF PERFORMANCE WITH FEEDBACK1 

~ 1 2 3 4 5 6 7 8 9 10 
Average 

Risk 

0.55 o.o 0 .1 o.o o.o 0.6 o.4 o. 94 0.80 0.025 1.0 0 .385 

0,6 o.o 0.25 o.o o.o 0.025 0.025 0,0 o.o o.o o.o 0.03 

0.65 0.0 0.05 0.025 o.o o.o 0.125 o.o o.o o.o o.o 0.02 

0.8 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
-

Densities: 

Sample S~ze Nt = 20 

1Entries in table denote the risk for the feedback scheme. 
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5.3 Simul5tion With Non-,overlapping Densities; Unequal Sample 

Size. For this part of the simulation the densities used are as shown 

in Figure 1. The prior probabilities were set at P(8
1

) = 0.9 and 

P(82) = 0.1. The simulation procedure is similar to the one ~iven in 

Section 5.2 except for the feedback part. As derived in Section 4.4 

I\ 
feedback was done only on samples with labels e2 as follows. 

where 

T = 0 • 141 [ L + 1 ... [3] 
(2[3-,l) /ni lnz 

I\ I\ 
where n1 , n2 are the number of samples labelled as e1 and e2 resp~c-

tively among then samples. 

The results of the simul~tion are shown in Figure 9. [Since the 

A A 
algorithm is derived for P(8 1) >> P(8

2
), the lowest value of S used in 

I\ 
this simulation was 0.65. This corresponds to P(8 1) = .62 and 

A 
P(8

2
) = 0.38.] From these plots it can be seen that once again the 

average risk of a feedback learning scheme is less than that of a 

learning scheme using no feedback. 

5.4 Simulation With Overlapping Densities. It has been mentioned 

earlier that feedback is meaningful only if the student can perform 

better than the teacher. With a large overlap in the densities, to be 

precise if the Bayes 1 risk is greater than (1-S), the student cannot 

perform better than his teacher. Hence feedback is not meaningful in 

these situations. For this reason, no analysis was done in previous 
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chapters on feedback with overlapping densities, However, a simulation 

was done to investigate the performance of the feedback learning scheme 

with a small overlap in the density functions, 

The density functions used in this simulation are shown in Figure 

2, Other aspects of this simulation are identical to the one described 

in Section 5,2, The results of this simulation are shown ~lotted in 

Figure 10, It can be seen from these plots that feedback seems to 

improve the average performance for values of Sup to 0.75, For higher 

values of S, because of overlap the student cannot perform better than 

the teacher and hence it is better to accept the label provided by the 

teacher rather than questioning it, But since overlap was not consid~ 

ered in deriving the expression for threshold, the feedback scheme 

simulated tries to relabel the examples and this results in a compara~ 

tively poor performance, 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary. A decision rule was derived for classifying patterns 

into one of the two possible categories~ with an imperfect teacher. A 

procedure for learning to recognize patterns with an imperfect teacher 

was developed ~sing nonparametric estimators of the unknown density 

functions. The asymptotic performance of the proposed learning scheme 

was analyzed. The finite sample performance of the proposed learning 

scheme was analyzed unde:i; the assumptions that the density functions 

are smooth and non-overlapping. Based on the results of the analysis 

justification for considering feedback as a means of improving the per­

formance of the learning scheme was given. Several schemes of feedback 

were considered and the properties of the feedback scheme using a thres­

hold were derived using the normal approximations to the distribution 

of the estimators of the unknown density functions. Assuming equal 

sample size, methods of selecting the value of threshold were given and 

these methods are used to derive an approximate method of selecting the 

value of threshold for the unequal sample size case. The thresholded 

feedback scheme was simulated on the computer and the results were pre .. 

sented. 

6.2 Conclusions. It has been shown that the learning scheme pro-­

posed in Chapter II has an average asymptotic risk equal to Bayes' 

(minimum) risk. For non-overlapping densities the performance of the 

80 
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learning scheme is better than that of the imperfect teacher and the 

neare~t neighbor rule, Also the learning scheme performs better than 

the teacher on the average even with a finite number of sample patterns, 

With overlapping densities, if the overlap is less than (1-S), the 

average asymptotic performance of the proposed learning scheme is still 

better than that of the teacher and the nearest. neighbor rule. The pro.-

posed learning scheme does not require the exact value of S, the proba-

bility of correct labelling by the teacher. The only knowledge required 

1 is if Sis greater than or less than 2• Also the learning scheme makes 

use of the incorrectly labelled sample patterns without requiring the 

correct label of the sample patterns, 

The use of a threshold in the feedback learning scheme offers a 

simple, logical way to combine a student's knowledge with what is being 

given to him by the teacher. For non~overla,pping densities the average 

performance of the feedback learning scheme seems to be better than 

that of a learning scheme not using feedback. For lower values of S, 

i.e. for a very bad teacher, feedback does not help much since the know~ 

ledge acquired by the student in the initial stages of learning is small 

and hence the amount of feedback is small too. For higher values of S, 

i.e. with a very good teacher no significant improvem~nt irl performance 

results due to feedback. Hence it appears that feedback is good where 

the teacher is mediocre. 

Feedback results in an improvement in the performance in learning 

situations with unequal sample size. However, such a claim could not 

be made when the densities overlap. Further research needs to be done 

in this area. 
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6.3 Susgestions for Further Research. The concept of feedback in 

learning with an imperfect teacher can be applied to other pattern 

recognition methods such as the nearest neighbor rule and threshold 

logic. This concept may also be used in parametric pattern recognition 

methods using Bayesian recursive estimation procedures. Even though 

several different feedback schemes were considered in this dissertation 

and the thresholded feedback scheme was shown to be better than the 

other methods considered, this does not mean that the thresholded feed­

back scheme is the 11 1:;)est 11 • Investigation needs to be done on the possi­

bility of feedback schemes other than the ones mentioned in this disser­

tation. Also further research needs to be done on using feedback when 

the density functions overlap. Another area of rese~rch that needs to 

be explored is concerned with the estimators of density functions. A 

major problem in this area is the determination of a satisfactory 

11 smoothtng factor 11 to be used in Sprecht ! s approximation. Forms of 

estimators other than the ones suggested by Parzen (16) and Murthy (17) 

need to be investigated. 
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APPEND!X A 

ESTIMATION OF DENSITY FUNCTIONS 

A.1 Parzen's Method. Let x1 ,x2 , ••• ,Xn ~e independent random vari­

ables identically distributed as a univariate random variable X whose 

distribution function FX(x) is absolutely continuous with probability 

density function fX(x). A clas$ of estimators of the form 

fx, (x) ,n 

n x-X 

= nh~n) ~ K[h(n~J 
j=l 

(A .1.1) 

have been proposed by Parzen for estimating fX(x), The estimate defined 

in Equation A.1.1 is asymptotically unbiased and consistent at all 

points x at whtch the probability density function is continuous tf h(n) 

and K(y) satisfy the following conditions: 

lim h(n) = 0 
n~co 

lim 
n ·-fco 

St.JP 
-co< y < co IK(y)I < co 

co 

J IK(y) ldy < co 
-co 

lim lyK(y) I = 0 
y~co 

co 

J K(y)dy = 1 
•CO 
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(A.1.2) 

(A .1.3) 
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A.1.1 Bias and Variance of Parzen's Estimate, If the transform 

of K(y) has a characteristic exponent two, then the bias of the estimate 

" fx, (x) is given by ,n 

(A .1.4) 

II 

If the density function fx(x) is smooth, the second derivative fX(x) is 

small and 

" b[fx, (x)] ~ o ,n (A .1. 5) 

" The variance of fX;n(x) may be computed oy writing the estimator as an 

average, 

n 
1 

r: vnk 
n k;:::,l 

of independent random variables identically distributed as 

Parzen has shown that the variance of V is 
n 

cr2[vn] ~ h~n) fx(x) f:,:, K2(y)dy 
-c:o 

" and hence the variance of fX (x) is ;n 

c:o 
2/1. 1 J 2 a [fx;n(x)] ~ nh(n) fx(x) K (y)dy 

-c:o 

(A .1.6) 

A.1.2 Consistency and Asymptotic Normality of Parzen 1 s Estimate. 

Since his chosen such that it satisfies Equation A.1.2, it can be seen 



I\ 
from Equations A.1.4 and A.1.6 that the bias and variance of fx·n(x) 

'. 
tends to zero as n tends to infinity, 

I\ 
Hence fX (x) is a coµsistent ;n 

I\ 
estimate of fX(x). Parz~n also shows that fx, (x) is asymptotically ,n 

normally distributed, by showing that 

I\ 
[fx, (x) - fx(x)] 

P[ ,n A 

cr[fx;n(x)] 

1 C 1 2 
< c} -J /"Zif J exp[- 2 y ]dy as n ~ oo 

.,.oo 
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Parzen also gives an idea of the closeness of the normal approximation 

from the Berry-Essen bound. 

A.2 Extension of Parzen 1 s Method to the Multivariat~ Case. Murthy 

(17) has extended Parzen 1 s results to the multivariate case, The form 

of estimators proposed by Murthy for estimating a multivariate density 

function fx ~), 

X = 

X 
p 

based on a set of n independent identically distributed vectors 
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is given by 

1 n p 
- !:: ( TT B. )K(B

1 
[X.

1
-x

1
], ••• ,B [X .... x ]) 

n j=l i=l in n J pn JP p 
(A. 2 .1) 

1 
Setting p = 1 and Bln = h(n) in Equation A.2.1, it can be seen that the 

above estimator reduces to that proposed by Parzen for the univariate 

case given in Equation A. l, l. The mult:i.dimensional 11window11 

K(x 1 ,:ic
2 , ••• ,x) = K(+x

1
i+x

2 , ••• ,+:ic) ,, p - - -p 

i=l, ••• ,p 

and 

(X) (X) 

J , ... ,J K(x
1

,x
2

, ... ,xn)d:ic
1

, ... ,dxn =.1 
.a:, _a:, ' 

The sequence of non~negat:i.ve constants B. satisfy 
in 

B . ~ a:, as n ---i a:, 
in 

p 

i=l, ••• ,p 

( TT B. ) 
i=l 1.n 

-------)0 as n ~ a:, 
n 

(A .2. 2) 

(A .2. 3) 

(A. 2. 4) 

If the above conditions hold it has been shown th~t for large n the 

bias of the estimator 

(A.2, 5) 
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and the variance of the ~stimator 

(A. 2. 6) 

As derived by Parzen, Murthy has also derived the consistency and 

asymptotic normality of the estimators fX;n(!_). 

A major disadvantage of the estimators of Parzen and Murthy is that 

all the samples x
1

, ••• ,X must be permanently stored in the computer. 
- -n 

This presents a problem when the samples X. are of large dimensions and 
-1 

when the number of samples n is large, both of which are common in pat~ 

tern recognition problems. Sprecht (10) has developed a method which 

would require a fixed storage capacity using a "window", K(x
1 

,x
2

, ••• ,x ), 
. . p 

similar in form to a multivariable normal density function. Hence in 

order to be able to make use of Sprecht 1 s method, the following form of 

estimators has been used in this dissertation: 

n 
" 1 1 fx· (x) - ~ r: 12· 
- ,n - vn p 

j=l (2TT) 

1 

~[x=X.]T[x-X.](n)p 
exp( - J ; -J } (A .2. 7) 

From Equations A.2.5 and A.2.6, the asymptotic bias and the variance of 

the estimator in Equation A.2.7 are 

fx (!_) 

c?crx. (x) J ~ -~-­
_,n - In (2 /n)P 

(A .2. 8) 

(A .2. 9) 

For the purpose of analysis of the feedback scheme discussed in this 
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dissertation the property of asymptotic normality of the estimator will 

" be used and fX;n(~) will be treated as a normally distributed random 

variable with the mean fX(~) and the variance given in Equation A.2.9. 

A.3 Sprecht's Approximation. The form of fX;n(~) suggested by 

Sprecht is 

where 

X. ip 

" 

T 
-[X.-x] [X.-x] 

exp[ -i - 2 -i - }] 

and x = 

2cr 

x. ip 

are p dimensional vectors. fX;n(~) can be rewritten as 

where 

B. = 
l 

1 p 2 
-2 ~ X •. 

. 1 lJ 
J= 

(A .3 .1) 

Using Taylor series expansion and the multinomial theorem, the second 

term on the right hand side can be written as a polynomial Dn(~) and 

A 
fx· (x) can be written as ,n -



T 
:x; X n 

[e;x:p(~ - 2)]D (~) 
2a 

where 

= Dn + Dn oo ..• o 10 X + ••• 0 1 

The coe£ficients Dn are given by 
zl:z:2 ••• zl 

= 

where 

Noting that 

+ Dn x 
00 ••• 1 p 

z 
X p + 

p 

... 

... 
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(A.3. 2) 

(A .3 .3) 

(A .3 .4) 

(A .3. 5) 

it can be seen that a recursive relationship exists for Dn 
z 1 ,z2 ••• zp 

Hence for a fixed number of terms Min the Taylor series, one needs to 

" store only M coefficiencts of the polynomial to represent fX;n(~) 

given in Equation A.3.2. These coefficients can simply be updated 

through the recursive Equation A.3.5 when additional samples become 

available. For problems involving large dimensionality and large number 
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of samples the saving in storage requirements on the computer is 

appreciable. 

One of the major problems associated with Sprecht 1 s method is the 

selection of a satisfactory 11 smoothing factor". Sprecht gave an ex-

pression for a as a function of n, such that the expected mean square 

" error of the estimate f!,n(.!.) is minimum where fx(.!.) is a normal density 

function with mean zero and variance one, This however does not guaran-

tee that the expected mean square error will be minimum for other forms 

of fx(.!.)· The author's advisor, Dr. Breiphol suggested that a be taken 

as 

n 
- 2 i:: (X. - x) 

i::X. 
i=l 

1 
1 

a= n(n 1) 
X= - n 

This leads to 

E (X) 

J - 2 " E[ [x - x] fX;n(x)dx} = Variance of X 

Further work needs to be done in this area. 



APPENDIX B 

ANALYSIS OF PROPOSED LEARNING SCHEME RELATED TO FEEDBACK 

B.1 Introduction. This part of the appendix is concerned with 

analyzing the performance of the proposed learning scheme related to 

feedback. It will be assumed that there are only two categories of 

patterns with non~overlapping densities and equal prior probabilities. 

Normal approximations of the estimators of densities given by Parzen 

and Murthy will be used. 1 
~ will ~e assumed to be greater than 2, the 

1 case of~< 2 can be taken care of through Corollary 2,2.1, The 

sample size n used in this ap1;>endix is assumec;i to be large enough to 

justify the use of asymptotic normal properties of the estimators. 

B.2 Normal Approximation. 

Lemma B.1. The estimator of the discriminant function 

is asymptotically normally distributed with a mean 

and variance 

DA(~) 
e 

/n (2 /rr)P 
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Proof. From (A.2.8), and (A,2.9) 

and 

The estimators are independent because ot the assumption of independent 

samples, and hence 

Substituting 

and 

it fallows that 
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f x I e <~ I e 1) + f x I e <! I e 2) 
- 1 . - 2 ) 

/n (2 /TI)p 
(B.2.1) 

fx1e <~le1) 
"' I"' I - 1 

- f "' (~ e2) "'N «2s-1)fx 18 <.! e1), ~.-----· --) 
!l8

2
;n - 1 /n (2 (TI)p 

(B.2,2) 

fx1e <.!le2) 
II. II. - 2 

- f "' <.! I e2) '"'-' N < - < 2s-1) fx 18 <.! I e2) , · ) 
!I 82 ;n - 2 /n (2 v'rr)P 

(B. 2. 3) 

The approximations given in (B.2.1), (B.2.2), and (B.2.3) will be used 

in the following sections. 

B.3 Analysis of Performance. 

Lemma B.3.lo P(correct classificationl_!e81 ;n) --11 as n -too where 

n = n1 = n2 is the sample size used in estimating the densities. 

Proof. 

P(correct classificationj_!e81 ;n) = P[~II. (~) > 01_!€8 1] 
e ;n 

(B.3.1) 
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Hence 

b 2 
The notation J N(µ,cr )d~ denotes the integral 

a 

b 2 J J;;;l exp[~ l (µ.~!;) }ds 
2 2 

a cr cr 

Substituting the above integral in (B.3.1), it follows that 

P(correct classification!~ee1;n) 

(B.3,2) 

where 

As n -~ oo, the lower limit of the above integral-~ ""° and hence 

P(correct classificationl~ee1;n) --t 1 as n -~ "°• 

A similar proof can be given for P(correct classification!~ee
2

;n). 

Using these results the following theorem can be proved., 
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Theorem B.3.1. For a symmetrical loss function given in Equation 

2.1.1 the average conditional risk associated with classifying a pattern 

! -~ O, as n -~o:i~ 

Proof. The conditional risk is given by 

(r (x) = 0 if X is correctly clcl,ssified n- based on 
sample size n 

= 1 if X is misclassified 

P(correct classificationj~;n) = P(8 1)P(correct classificationl~€81 ;n) 

+ P(82)P(correct classificationl~€62 ;n) , 

From Lemma B ,3 .1, as n -~ o:i, 

and 

P(correct classification,~;n) -) P(8 1) + P(82) = 1 

P(incorrect classificationl~;n) ~~ 0 

-1, 
E (r (x)) -) 0 = r (_x), the conditional Bayes t risk, n-

(B ,3, 3) 

(B.3,4) 

Taking expectation with respect to fX(~), it can be seen that the 

average asymptotic risk for the"learning scheme is equal to the Bayes 1 

risk as was shown in Chapter II. 

Lemma B,3,2. For a given sample size n
1 

= n2 = n, n being large, 

P(correct classificationj~;n) increases as~ increases, 
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Proof. 

P(correct classificationl~;n) = P(91)P(correct classificationl~ee1 ;n) 

+ P(e2 )P(correct classificationi~ee2 ;n) 

co fx1e <~le1) 
= f(91) J N[(2S-l)fx1e <~rel), - 1 . . ]ds 

0 - 1 /n (2 /TI) p 

o fx1e <~1 92) 
+ P(e2) J N[=<2s-1)fxie c~1e2), - 2 ]<ls. 

-co - 2 /n (2 (il)p 

d dS {P(correct classificationl~;n} = 
co 

d dS {P(el) N(O,l)ds 
1 

-<2s-1)[fxie <~le1)<2 /n)P /nJ~ = L1 - 1 

(2S .. 1)[f~le2 <~le2)<2 /TI)P /n]~ = L2 

} 

(B .3. 5) 

where 

1 1 2 
N (O, 1) L = /m exp{- 2 L } 
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From (B.3.5) it can be seen that~~ [P(correct classificationj~;n)} is 

always greater than zero at all points~ where the densities are greater 

than zero. Hence as~ increases the probability of correct classifica~ 

tion also increases. 

An expression for the rate of learning can be derived using the 

normal approximations as follows. 

• 6. d 1 
Rate of learm,ng = dn [P(correct classificationj~~n)} 

-oo 

~n [P(correct classificationl~;n)} = 

= (2~-1) 
(2 /TT)p/2 ~ 

3 I 4 [ P < 8 1 ) [ f x I e <~ I 81 ) J 
4n - 1 

• N(0,1) 

Ll 
k 

+ P<e2)[fx1e <~le2)]2 • 
- 2 

N(0,1) }. 

L2 
(B. 3 • 6) 

1 Even though n is discrete, it is treated as a continuous variable 
in this theorem. 
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The rate of learning given in (B.3.6) is good for large values of n 

only. 

Another quantity of interest in studying the rate of learning is 

the average rate of learning defined as 

P(correct classificationl~;n) 
Average rate of learning~..-..-~..-~~_,...,......,....,......,....,......,....,......,....,......,....,......,..._,.._ 

n 
(B.3. 7) 

Using the above definition the following lemma can be easily established. 

Lemma B.3.3. The average rate of learning for a given sample size 

n increases as~ increases. 

Proof. In Lemma B.3.2 it was shown that 

P(correct classificationl~;n) increases as~ increases. Substituting 

this result in (B.3. 7) it immediately follows that the average rate of 

, learning for a given sample size n increases as~ increases. 

1 For every value of~> 2, the asymptotic learning approaches that 

of a Bayes machine independent of~. Hence the rate of learning does 

not depend on ~, in fact the rate of learning -J O as n-+ ro for every 

1 value of~> 2. 

B.4 Use of Threshold in Feedback. With a threshold T, the proba-

bility of correct classification and the probability of incorrect clas-

sification for ~€91 are given by 

P( correct I 8 , ) _ 
classification~€ l'n -

, , , X€ ;n P ( incorrect I 8 ) 
classification - 1 

(B.4.1) 
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Similar expressions for !€9
2 

can be derived. Using these, the proper­

ties of the proposed feedback learning scheme can be analyzed. 

Theorem B.4.1. Under assumptions stated in Section B.l, 

P(feedbackl~ee1;n) increases as fxie (~le1) increases 
- 1 

Proof. 

From (B. 2 • 2) , 

I p k 
Denoting fXle (~ e1) by a, and [/n (2 /if) ] 2 by c, the above equation 

- 1 
can be written as 

[T-<.}!-l)a]c 

= 1 - N(O,l)dl; 

[ -T-<.}! .. l)a]c 

Taking derivative with respect to a 

[T-~-l)a]c 

~a [P(feedbacklxee1 ;n)} = - ~a [ N(O,l)dl; } 

[-T- ~-l)a]c 
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r.:[ ] [T~(2~~1)a]c 
1 T .. (2~-l)a 2 2 c "a -<2~ .. l). - 2 /a 

= ., /2TT exp[-[ rt:: ] c) [ a .J 

r.:c ] [T+(2S~l)a]c 
1 T+(2S,.l)a 2 2 C v a "'(2~-l) + 2 ./a 

+ /2TT exp [ - [ /"'Ia ] c }[ a J 

_ ~1- [ cT-(2S~l)a]2 2} , ~ c-T-(2S=l)a] 
- - /2TT exp - ffa c 2 3 /2 

a 

_i_ . [-[T+(2S-l)a]2 2} • ~ c-(2S-l)a+TJ 
+ /'2rr exp :;Ta c 2 3 /2 

a 

T _l_ . c [ [ [T-(2S-l)a]2 2} [ [T+(2S-l)a]2 2}] = ffn 2a3/2 exp ~ /2a . c + exp ,. ffa c 

+ 1 (2S-l)c [ [ [T-(2S-l)a]2 2} [ [T+(2S~l)a]2}] am 2a3/2 exp "' /'2a" . C • exp ,. ffa, 

(B.4,2) 

The first form of the apove expression is greater than zero and in the 

second term, the exponential factors can be grouped as 

because T > O, a> 0 and (2~~1) > 0, Hence from (B.4.2) 

Hence the maximum value of feedback for a sample ~e91 occurs if 

Similarly it can be shown that the maximum value of feedback for a 

sample ~e92 occurs if fxj 9 (~j92) is maximum, 
- 2 

This theorem is used in 

Section 3.4 to establish that with a threshold, the feedback starts 

where the densities are maximum. 



Lemma B .4 .1. P[f eedbackj~;n} increases as the threshold T is 

decreased and vice versa, 

Proof. Denoting fx I e (~ j el) by a, and [ (2 /TT/ mi~ by c 
- 1 

[T-(213-l)a]c = 
/a 1

2 

P[feedback,~€91 ;n} = 1 - N(O,l)ds 

[-T-(2S-l)a]c = 
fi 1

1 

dP I dT [feedback ~€91 ;n} = < 0 
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Hence as T increases, P(feedback,~€8
1

;n) decreases, A similar argument 

can be given for P(feedback!~ee
2

;n). Combining the two it can be seen 

that P[feedback!~;n} d~creases as T increases and vice versa, 

Lemma B,4,1 is used in Section 3.4 to establish that by varying T, 

the amount of feedback can be controlled. 

An immediate consequence of Lemma B,4,1 is the possibility of a 

gradual phasing out of the teacher. If Tis chosen as a decreasing 

function of n, the sample size, then in the initial stages of learning 

Twill be large and the learning scheme can be made to depend more on 

the teacher than on his own knowledge. As n--} ex,, T -~ 0 and 

[ T .. (2i3"'l)a] .;a .. C 

P(feedback\~e9
1

;n) = 1 ~ N(Q,l)ds 

[ ~T-(2@~l)a] . /a C 



-(2~ .. l)ac 
/a 

-1 1 - N(O,l)ds 

-(2@-l)ac 
fi 

= 1 as n---;oo 

Similarly P(feedbackl~ee2;n)-+ 1 as n ~ro. Hence as n -)co, every 

sample is fed back with proability 1 and the teacher is completely 

phased out. 
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