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CHAPTER T
INTRODUCTION

1,1 Statement of the Problem., Pattern classification covers an

extremely broad spectrum of problems ranging from the design and imple-
mentation of actual recognition devices to the philosophical QUestion.
of learning and intelligence. A major step in pattern recognition com-
mon to all these problems consists of developing procedures which clas-
sify observations such that a particular strategy is optimized. This
step can be formulated as follows. A set of N measurement pairs
(zl,el),(52,92),...,(§ﬁ,eN) are given as sample (training) patterns.

X, ,i=1,2,...,N, are vector measurements drawn from one of the several

-1

possible categories of patterns 61,62,.,.,9R. The ei's take the fofm
gk’ when the measurement E; is identified as being from category ek.
After development of a pattern classification p;ocedure, only the meas~
urement X is available and an estimate is desired of the category from
which the measurement X was drawn.

Fof probabilistic patterns with known probability distribution
functions, a Bayes! procedure can be used to arrive at an "optimum"
decisién rule. 1If all the information about the distribution functions
is not known, then the unknown information must be estimated from the
given sample patterns. This problem of estimating unknown information

and using the estimators to arrive at a classification procedure is

generally referred to as '"learning to recognize patterns'.



Usually a sample identification scheme furnishes the identification
ei for the sample pattern Xi° In many practical situations the sample
identification scheme may incorrectly identify some of the training
samples. For example in attempts to classify severe storm patterns
using electromagnetic data drom the storms, meteorological measurements
such as reports of hail will be used as standards for identifying the
sample patterns. Often,thése reports of hail are unreliable and hence
there is a possibility of some incorrectly identified sample patterns.
Another example where there is a possibility of incorrect identification
of sample patterns occurs in attempts to classify lightning discharges
into cloud to cloud or cloud to ground type based on electromagnetic
data. Here the sample identification 1s based on visual sightings of
the discharges. In many occasions, the discharge is only partly wvisible
and hence the possibility of incorrect identification. These examples
give the motivation for investigating pattern recognition schemes where
the information in Gi is known to be occasionally incorrect.

Depending on the nature of information available in the form of
» Gi's, the problem of learning to recognize patterns can be subdivided
into three classes. If Gi contains identification of the true category
from which &i was drawn, then learning is said to take place with a
"perfect teacher”. If no identification of the true category, Gi, is
available then this class of problems is referred to as "learning with-
out a teacher". 1In between these two is the problem of "learning with

an imperfect teacher!", where the imperfect teacher is characterized by

A P
P(Gijei) = Bii’ i 2= 1,e0e,R

and



A .
P(ejlei)=Bji l,J=1,o-o,R

B.. <B.. i4 ] .

ji ii

This dissertation is concerned with developing procedures for learning

to recognize patterns with an imperfect teacher.

1.2 Existing Solutions. Varioﬁs solutions to the problem of
"learning with a perfect teacher" have been proposed in the literature.
A recentbsurvey of the literature on the solutions to the problem is
given by Ho and Agarwala (1), and Nagy (2). These solutions can in gen-
eral be divided into two major categories, parametric and nonparametric.
In parametric methods a functional form of thé conditional densities is
assumed to be known except for a set of parameters. These parameters
are estiﬁated f:om the given set of identified sample patterns. Either
simple point estimators or Ba&esian estimators are used. A commonly
used estimation procedure makes use of the recursive properties of
Bayes'! estimators. In addition to these, several sequential decision
procedures are also available. Fu and his associates (3,4) have studied
various aspects of sequential methods as applied to pattern recognition
problems. The sequential probability ratio test used by Fu will require
the smallest number of features to reach a classification decision on
the average. Fu also suggested a time varying stopping boundary to
assure that a classification decision is reached in a finite time.

Three of the most commonly used‘nonparametric methods are the
nearest neighbor rule, threshold logic and the method of potentigl func-
tions. The nearest neighbor rule, first prdposed by Fix and Hidges (5)
assigns X to.the same category as that of its nearest neighbor among the

identified sample patterns. The performance of the nearest neighbor



rule has been analyzed by Cover and Hart (6). The threshold logic unit
is a linear categorizer which assigns X to category Ql if K?E > WO and

to 6, otherwise. The weights W and W, are determined iteratively

2

through a "training" procedure. Proofs for convergence of these pro-

0

cedures can be found in Nilsson (7). The object in the method of poten-
tial functions, first developed by Aizerman (8) and Braverman (9), is
to find a function y(X) = .;i_éi(ﬁ)wi defined on the pattern space
which is positivg for all g;el. The Qi's are a set of orthonormal func-
tions specified ahead of time. Assuming certain normative conditions,
the use of the theory of stochastic approximation leads to a sequence
of weights which will converge to the optimum Wi's.

In addition to these methods there is another elegant method pro-
posed.by Sprecht (10), called the polynomial discriminant function meth-

od. In this method, the density functions £ are estimated in a

X] 8,
polynomial form and discriminant functions are formed using these poly-
nomials. One of the main advantages of this method is that estimation
can be done serially and this results in a reduction of storage require-
ments on the computer.

Although our society seems to abound with real life examples of
"learning without a teacher" not much analytical work has been done
towards solving this general problem. Fralick (11) first suggested a
bounded scheme for learning to recognize the presence of signal in a
noisy channel. Fralick'!s scheme makes use of the recursive properties
of a Bayes' solution to realize a machine of finite size. Patrick and
Hancock (12) extended this scheme to more general situations. There

are many other methods suggested by various authors which are claimed

to "work" in.-some sense. But very little analysis or computational



results have been reported. A summary of several of these procedures
is given by Spragins (13).

Extention of methods like the one proposed by Fralick to the prob-
‘lem of learning with an imperfect teacher is extremely difficult. No
finite size parametric schemes have been proposed. This is because of
the fact that no finite dimensional sufficient statistics exist for the
parameters of the densities involved and the reproducing properties of
Bayesian procedures are lost due to additional terms introduced by the
imperfect teacher. Imperfect identification also causes an overlap in
the training patterns and this makes error correcting procedures,-like
that used with threshold logic, to fail to converge. Duda and Singleton
(14) have shown that for orthogonal patterns the average weight vector
converges to a solution vector even though the training patterns are
incorrectly labelled. However this is not true for nonorthogonal pat-
terns or for patterns with continuo;s components.

Whitney and Dwyer (15) have analyzed the performance of the nearest
neighbor rule with an imperfect teacher and have shown that the expected

risk, Rn, is bounded by
* * *
(1 -B)+ (2 - 1R <R < (1 -p)+ (2B - 1J[2R (1 - R )]

Where B is the probability that the imperfect teacher correctly identi-
%*
fies a sample and R 1is the Bayes! risk. The above bounds are good when

there are only two categories of patterns.

1.3 Present Contributions. 1In this dissertation a decision rule

for dichotomizing patterns with an imperfect teacher is derived. Using
a nonparametric estimator for the unknown densities appearing in the

decision rule, a procedure for learning to dichotomize patterns with an



imperfect teacher is given. It is shown that tﬁe proposed learning
scheme has an asymptotic average risk equal to the Bayes' minimum risk.
For nonoverlapping'densiﬁies and for densities with overlap less than
(L - B) it is shown that the average asymptotic performance of the pro-
posed learning scheme is better than the teacher and the nearest neigh-
bor rule. It is also shown that for nonoverlapping densities the
learning scheme performs better than the teacher on the average after
looking at a finite number of sample patterns.

Using these results as motivation, feedback is considered as a
means of improving the performance of the learning scheme. Several
different feedback schemes are considered and their relative advantages
and disadvantages are given. It is shown that a feedback learning
scheme using a threshold in feedback provides an easy method for com-
biﬁing.the learning scheme's own knowledge with that of the teacher.
Expressions for the threshold are derived in terms of B and the sample
size n using two different approaches. The idea of feedback is extended
to the case of unequal sample size (P(el),>> P(Gz)). Results of simula-
tions of the proposed learning schemes with and without feedback are

presented.



CHAPTER II
LEARNING TO RECOGNIZE PATTERNS WITH AN IMPERFECT TEAGHER

2.1 Introduction. The main object of pattern recognition is to

derive a decision rule for classifying a pattern X into one of the R
possible categories 61,...,6R such that a particular strategy is opti-
mized. Statistical decision theory can be usea as means to establish
discriminant functions for classifying probabilistic patterns. The
strategy to be optimized is specified in terms of é loss function Lij’
defined for i =1,...,R and j = 1,...,R. The loss function Lij repre-v
sents the loss incurred when the machine or the student places a pattern
actually belonging to category j iﬁto category i. If a machine classi-
fies patterns such that the '"average value!! of Lij is minimized,,the
machine is said to be optimum. Such a machine is also known as a Bayes'

machine.

For symmetrical loss function of the form

L. .=1-¢,, . (2.1.1)
ij- 1j

where gij is the kronecker delta function, it has been shown (7) that

the Bayes' machine uses discriminant functions of the form

’De.(ﬁ) = P(8)f (x]8,) . (2.1.2)

X|e,
1. - 1
P(ei) is the prior probability of occurance of category Gi and

fX]G (EIQi) is the probability density function of pattern X given that



it belongs to,ei. The machine assigns a given pattern X to category Oi
if
Dy (x).> Dy (x) j=1,.0,R5 j A1 . (2.1.3)
i T :
It is assumed in Equation 2.,1.2 that all information relevant to

the prior probabilities P(Oi) and the conditional densities f were

X6,
. -1
completely known. However, in practice, this information is only par-
tially known and the unknown information must be learned (estimated)
.from the given set of labelled sample patterns. Several parametric (7)
and nonparametric methods (6,10) are available for estimating the un-
known information in the discriminant functions, the information associ-
ated with De (x) being estimated from samples which are known to belong

1
to category ei, ise. from samples labelled as,ei.

2.2 Decision Rule for Pattern Recognition with an Imperfect

Teacher. A decision rule similar in form to the one described in Sec~
tion 2.1 can be derived for learning with an imperfect teacher. The
imperfect teacher labels the sample patterns as 81,...,6R with the
probability of correct labeling given by
A .
P(8,]8.) =B, ;> i=1,.04,R , (2.2.1)

and the probability. of incorrect labeling given by

A
P(ej]ei) =By < By i,j=1,..0,R . (2.2.2)

11
i4 ]
In this dissertation it will be assumed that

A
P(eilei) =8> %; i=1,...,R (2.2.3a)



and
A - ) ;
P(ejlei)= {H}; i,j= 1,0..,R; i+ j a (2.2.3b)

‘Also it will be assumed that the various probability density functions

are independent of the label if the true categories were known, i.e.

A
£ A (1]61,9.) = f (x[6.)3 1, = 1y000,R o (2.2.4)
X[8,.8. I oxle, b

] =1
Due ‘to the randomness of the 1ébeling scheme of the teacher, character-
ized by Equations 2.2.3 énd 2.2.4, the learning scheme does not know
which of the sample patterns are correctly labelled. The oﬁly labeling
informati@n available to the student is one of 61""’8R' Hence in
order to 1earn from these incorrectly labelled samples,. it is necessary
to derive a decision rule in terms the probabilities P(81>,...,P(6R>

yeessf rather

1

and the respective probability density functions f

A A
x18," " xl

than in terms of P(el),...,P(GR).and fﬁ'el,'.',féleR.

Unless otherwise mentioned, the loss function used in the analysis in

the following sections will be the one described in Equation 2.l.1l.

Theorem 2.2.1. With an imperfect teacher characterized by Equa-

tions 2.2.3 and 2.2.4, and a loss function specified by Equation 2.1.1,

a decision rule using discriminant functions of the form

is equivalent to a Bayes' (optimum) decision rule using discriminant

functions of the form

Dg (©) = P8y o ()

1

o,
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for classifying patterns.

Proof i The above theorem can be proved‘by showing that

D, (x) > D, (x) if and only if D, (x) = D, (x) H
8= 8" | 7 T 8T
i 23

thus establishing that the two decision rules are equivalent.

Using Bayes' theorem and Equation 2.2.3, the prior probability of

A . :
ei occurring is

IéRA R L8
P(6,) = Z P(6, [8,)P(8,) = P(8,)8 + kzl PO G 5 (2.2.5)

ki
and the probability distribution function of X given that X isilabelled
A
8

‘as 0, is
i

( |3 6, )P (8 ]3 )
F X )
1 &lgi,ek— i’k k! i

A

X8,

o
e

Using the condition given in Equation 2.2.4, it follows that

A
A R A R 4 P(8,[8,)P(8,)
F , x|8,)= % F (x|8,)P(0,]8,) = & F (x|8,) ‘ ,
5131 19 D 41N slit SR It S (LN 19y P(’G\i)
P, )8 = —L (peepF, . (x[o,) + 5 peo,) By |8} -
x§, 7 7 pd) RN e R X|g, =k
| ' k#l (2.2,6)

Since the existance of density functions is indirectly implied in

A
assumption 2.2.4,. the probgbility density function f (ilei) can be

A
X[6,

obtained from Equation 2.2.6 as,
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A | 1 - B
£ L, (x[6,) = {P(6,)Bfy 4 (x]0.) + z P(8,) )y o (x[6,)) .
&lle\i l I 177X e, —l I7X|6 ="k
i ki
(2.2.7)
Hence
g @ = POBE o (x[0) + z (8 Dy g &lo)
1 k+i
A similar expression can be obtained for D* (x) and from these two
9.
J

equations it follows that

A X - D (x)

9. .
i J

]

P(8,)BE (x[6,) - P(Gj)Bf |9 (x[e )

X|e.
L §

1 -
+ P<ej>(§——;—@ xls, (x]0,). - B (8, >(—Jf-‘>fXle x]6,)

]

1 -
(e - g1 (PC@Eg o &l9) - PO ix)e @lop]

(BR-l

FT (0 @ - %, E9)

Since B > % by assumption, it follows from the above equatioh that
x) > D (x) 4——) Dy (x) > Dy (x)
ei J j

and

Dy ()= Dy (@) 4P Dy (©) = Dej(gg) . (2.2.8)
i A ‘

The right hand side of Equation 2.2,8 defines the decision.boundary

.between the domains of category ei and ej and it can be seen from the
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above equation that Da (%) = DA (x) leads to the same boundary. Hence

0, ,ej
discriminant functions Dei(z) and ng(i) are equivalent.
i
Based on Theorem 2.2.1, the decision rule for classifying a giveﬁ

pattern x with an imperfect teacher is:

(1) compute D, (x) = P(ei)f (ﬁlei) for i = 1,..4,R}

0

A
X|e.
i 219

(2) assign x to category 8, if D, (x) > D, (x) j=1,..4,R5 j 4 i.

0. 0.
1 J

(2.2.9)

A machine using the above decision rule will classify x into the same

category as the Bayes' machine.

2.2.2 Special Cases of Theorem 2.2.1, The Two Category Problem.

When there are only two categories of patterns 91 and 62, the imperfect

teacher is characterized by

A 1 . , 9
P(eilei)r:B >2 H i=1,
A 3 * . 0]
P(ej[ei) =1 =83 i,j=1,25 1 4 j (2.2.10)
£ x[6.,0) = £, (x]8,) 1,j=1,2
X .30,.) = X . s] = L1, o
A -— 2
élei,ej i77] ﬁlej j

The second step in decision rule 2.2.9 can now be implemented by evalu-

ating the sign of a single discriminant function

( [3 ) (2.2.11)

DA = PBDE o @8 - pEE , &8,

A
0 X[8, x|e,

= [28 _.1][P(el)f§‘[el(x_[el) - P(ez)fyez(g_[e?_)] (2.2.12)
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classification can be made according to the rule,

assign x to 61 if DA(§) >0

3]
and
assign x to 92 if DA(x) <0 . (2.2.13)
= A=
The following corollaries can be derived for the two category
problem.

Corollary 2.2.1. 1If B < %, decision rule 2.2.13 still can be used

for classifying patterns with minimum risk if DA(K) in 2.2.11 is changed

to

=28t @8 -edDe @8 . @2
° X 1[5, X8

Proof of this corollary follows directly from Equation 2.2.12,

Corollary 2.2.2. 1If B = %, then no classification will result

from decision rule 2.2.13.

From Equation 2.2.12, it can be seen that D,(x) = 0 for every x if
8
B = %. Hence 2.2.13 does not give any classification,

In fact, when B8 = % the probability density functions £ , and
a X |6
functions £ , become

x|9,

£ x|8)) = PGy g ([8) + SOV (x]8,)

X[9; =1 =172

_ A
£ . &[98, = P<91>fx|e (x]8,) + P(ez)fx|e (x]8,) .
|9, =11 )

The probability density function of X, without any labels, is
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B = PO (x]0) + P(8))fx o, 19) :
Hence when 8 = %,
A
f (x]6,) = £ (x|6,) = £,(x) . (2.2.15)
x|8, % x)8, 2 X7

Equation 2.2;15 implies that there is no information agvailable in the

labels for discrimination purposes. This is a problem of learning with-

>

out a teacher and several methods are available for solving this prob-

lem (13).
Corollary 2.2.3, If the densities.leel(glel) and f&[OZ(EIQZ) do
not overlap then
D) =f , |8 -f , x|8) (2.2.16)
o |9, x|®,

is equivalent to the discrimingnt function used by a Bayes! machine.
Proof, The Bayes' machine uses a discriminant function of the form

P(O)f, o (x]6)) » P(8,)E, 1, (x]0)) .

5[91 K'GZ

For non overlapping densities, the above discriminant function is

equivalent to

De(?i) = f‘&'el(ﬁlel) - f-&lez(?f-lez) . (2;2.17)
. . ) al
Since, if x€6,, then f&lez(ilez) = 03 leel(zlel) > 0" and hence
fﬁlel(ilel) > leez(ilez),= 0 .

_.A.k.l,_ v B . L L.
The set of x where both the densities are zero have a
measure zero and hence ignored.



15

The above equation implies

POy (x[0)) > f§|92(§|92) -0

and hence

P8 )Ey o (x]8)) > P(8,)E

(x]6,) =0
X8, xe, %1%

) .
From Equation 2.2.7

A
|8, X| 8, (6

+ (1 - B)P(ez)fyez(flez)}

1
- — {(1 - B)P(8,)f (x]6,)
P(xe?_) 1fx )0, 2%
+ BR(9))Ey o 19,
=72
1 .
= ——a———— {P(8,)f (x]6,)
r@ped)y T EIS #1%
[gp(8,) - (1 - BIP(E))]
- P(ez)fgc_|92(5|e-2)
(e B - - 8)2(6,)7)
1
= —x—x— (P(8)f (x]8,2[ (28 - 1)P(6,)]
r@prdy P EE "1 2
- P(ez>f§|92<§|92>[<2B-1)P<el>]}
P(8,)P(6,) . o) o]
= (2B-1){E,, (x|0)f . (x]0,)}.
r@ @) xjo, *I% %o, %

(2.2.18) -



Hence

P(el)P(Gz)

D, (X)) = ——————=
p@)rd)

8_.

(28 - 1Dy (x) : (2.2.19)

If- 8 > %, Equation 2.2.19 shows that the discriminant functions 2.2.16
and 2.2.17 are equivalent., If B < %, instead of using D, (x), 'DA(E)

' ' ] )

can be used to classify patterns optimally.

It can be seen from Equation 2.,2.16 that DA(§) does not involve

G
the exact value of 8. The only information the learning scheme needs
to know is whether 8 > % or B < % .

If the densities overlap, B is involved in the discriminant func-

A A -A
tion DA(E) given by Equation 2.2.11 through P(el) and P(Gz). If P(Gl)
A .

A
and P(62) were not known, they can be estimated from the number of times

A A
91 and 62 occur in the labels (7). However estimation of P(el) and

P(62), for use in discriminant function of the form

§|61 Klez

: A A
from estimates of P(el) and P(GZ) is not possible without a knowledge

of the value of B. The same is true for estimates of lee (x|6 ) and

A A
fXle (x]6,) from estimates of £ (5|91) and A ]6,). Hence
=172 X|9, o |e
deriving the decision rule in terms of P(e ) P( Ié (x|9 ) and

fX 6 (x|6 ) has the added advantage that the exact value of B need not
2192

be known for learning with an imperfect teacher,

2.3 Learning With an Imperfect Teacher. In the decision rule

given in Equation 2.2.9, it was assumed that the prior probabilities
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A A
P(Gi), and probability density functions £ (§|ei) were known. How-

x |8,
- 1

: A A
ever, in practice, the information relevant to P(ei) and £ (§|Gi)

A
x|8,

for the R‘categories is only partially known and the unknown information

must be learned (estimated). In the remainder of this dissertation it
A A

will be assumed that R = 2 and that P(el) and P(92) are known. It will

%. B < % can be taken care of, as ex- ¢

plained in Corollary 2.2.1.) The distribution functions will be

further be assumed that B >

assumed to be absolutely continuous. No structural form for the density

A A
functions f (§|91) and £ , (5|92) will be assumed.
X| 8, .
=172

The densities can be estimated (learned) from a set of incorrectly

A
X[8,

labelled, independent sample patterns X ,...,§n H Yl,...,Yn . The §i's

1

are sample patterns with labels 31, the 1abe1iﬁ; done by anzimperfect
teacher characterized by Equation 2.2.3, and are identically distributéd
random vectors with a common probability density function £ A . The
Xi's are sample patterns with labels gZ’ and are identically distributed

with a common probability density function f

A
218,
Parzen (16) has proposed and analyzed a class of non-parametric
method of‘estimating univariable density functions. Murthy (17) extend-
ed this method to multivariable density functions. The propoerties of
the above estimators are discussed in Appendix A. Using estimators of

A
the form proposed by Parzen, an estimate of £ (§|91) based on n, in-

A 1
X|8,
dependent identically distributed sample patterns §l,.o.,§n is
71
Ty 5
n _ . P
L RV e —p P 2 ,
2(_|91,n1 1 k=1 2
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A
and an estimate of £ (§|62) based on nz.independent identically dis-

A
x18,
tributed sample patterns Yl""’Yn is
2
1
n 1T i)
A A 1 2 1 '[i - X‘i] [_}5_ - le(HZ)
f A (5[62) =7—E~—' z - Exp{ - 2 } .
v §|62;n2 2 k=1 5
(2m) (2.3.2)

In Equations 2.3.1 and 2.3.2 p is the dimension of the pattern space.

A A A A A
Using the estimators £ , (x[8;) and £, (x]9,) for £ (x|8))
§|91;n1 §|92;n2 X|®
A
and £ A (§|92) in 2.2.11 and 2.2.13, the procedure for learning to
XIG
=172

recognize patterns with an imperfect teacher is:

(1) Using the incorrectly identified sample patterns,

XiseeesX 3 Yoseea,Y , estimate £ A and £ A H
! o T X|8, = X|6
=171 -2
A
(2) Using estimators ? A (§|61) and ? A (§|62), compute
X|8;5n; §|92;n2
A A A A A A A
D, (x) = P(6,)f (x]6,) - P(8,)E (x|8 ) 5 (2.3.3)
Ax IR ! 27 A Xl
__| l,nl §|92,n2
(3) Assign X to
o
6, if DA(x) >0 )
5]
and
A
92 if Do(x) <O . (2.3.4)
=

2.4 Asymptotic Performance of the Learning Scheme. Using the con-

sistency properties of the estimators ? A and ? A , the asymp-
§|el;n1 §|Gz;n2

totic performance of the learning scheme proposed in the previous



paragraph can be analyzed.

Theorem 2.4.1,

A A A
D,(x) = P(el)f A

A=
]
converges to

D) = B(B)E

—

A A A
(x|8)) - P(8,)f A

2(_|91;n1

A &[8) - 2@t
6 |6 X

1

with probability one as n;, n, —P .

Proof.

A A A A
lim P{ POIE (x]6,) - £, (x|el)]
e X|8,in, 2(_|91
A A A : A
lim P{[P(0,)[f A (x]8,) -~ £ A (x]6,)]
n—ow 2 Xle sn 2 Xle =2
2 21V 2 =172
Also, if
A
P(O,)LEf (x|8;) - £ A (|8 )]
%18, 5 1 X6 L
X|8,5n, X|8,
and
A A A A
POOE 5 (x]8)) - £ , (x]|6,)]
2 X050, 2 x|o, ' ?
_l ) _| 2
then
A A A
P(8,)[f (x|6.)-£ 5 x|6)]-P(6)LE ,
1 x|3 sn L x|e -l 2 x|e 3N
=1¥1°7 =7 =172°"2

x|92;n

i

A x]8)
x[6,

£
2

Nj®

ST

A
(x]8,)

From Equations A.2.8 and A.2.9, for every € > 0

The estimate of the discriminant function

19

(2.4.1)

(2.4.2)
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A A A A
Since the estimators £ , (§|el), £ A (5|92) are independent,
: §|61;n1 ‘ §|92;n2
from (2.4.,2) and (2.4.3),
A __A A A
P{[POIE ,  &x|8;) - £ , (x]9))]
! X|9,5n, ! x|3 !
=M1 =M
A A
- POHE o @|9,) - £ 4 (x]6)]] < e}
" X|6,in x|6 .
2772 =172
A A A
> {|p(8,)(E |9 - £ o &[eDI] <3
=710 = :
A A A A
P{{P@OE o (x|8,) -f , (x|8)]| <=
2 18,3 27 x|s, ' 2 2
X|8y5m, X]8,

As n];n2 ——p ® each term on the right hand side of the above equation

is equal to 1, and hence

A A A A A A
P{{[PDE ,  &|8) - PGBHRE ,  (x]8)]
X|9;5m) x|y,

-'EP(gl)f A (§|31) - P(gz)f (§|32)] <el=1 . (2.4.4)
1

X| x|8,

Equation 2.4.4. implies that

({8, - )2
2|9 2 x|8.sn

2772

(x 62)

pB)Ht
1 Xlelinl

converges to

p@ )t x)8,)

A A
A (§|91) - P(ez)f
0 2

A
X|9, X|6
- with probability 1.
The result of Theorem 2.4.1 can be used to evaluate the asymptotic

risk associated with learning with an imperfect teacher. Convergence
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A A
of Dy(x) = P(6;)

A A A
A (x|9 ) - P(92)f A (x'ez) to Dp(x) implies
: x| 8 X

171 2 i) ®

that, with probability one, x will be classified into the same category
by decision rule 2.3.4 and 2,2.13. It has been shown in Theorem 2.2.1
that the decision rule 2.2.13 is equivalent to the decision rule of a
Bayes‘ (optimum) machine. Therefore, with proBability one, the learning
scheme described in 2.3.4 classifies x into the same category as a
Bayes'! mgchine. Hence the conditional risk rs(i;nl’nZ) gssociated with
classifying x according to 2.3.4, converges to the Bayes' conditional

%
risk, r (x), with probgbility one, i.e.
*
rs(ginl,nz) fﬁ r (x) as nl,n2 ~ é with probability one. (2.4.5)

For a symmetrical loss function of the form given in 2,1,1 the Bayes'

conditional risk is given by
r*(i) = min{P(91| X), P(e2|§)} . (2.4.6)
Ag a consequence of 2.4.3,
E{r (x,nl,nz)} =r (x) as n;,n, —} .

Taking the average on both sides with respect to fx(ﬁ)’ the average

q—

risk associated with learning with an imperfect teacher is

R_=[ r*(gg)fz(_(gg)dg

= P(8)) %‘ leel<§|el)d§+ P(8,) f[)’ fél%(gez)d;_ (2.4.73)
b, b,
where
D, = {x ='P(el)f_)Sle (x]8,) > P(8,) x|e (x]8,), and
D, = {x: P(SZ)féle (x]8,) > P(8)) x|e (x|8;) .
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The right hand side of Equation 2.4.7a is the Bayes! risk and hence
R =R . (2.4.7b)

Equation 2.4.7b states that the average asymptotic risk for learning

with an imperfect teacher is equal to the Bayes', minimum, risk.

2.4.1 Comparison of Performan¢e of the Learning Scheme With the

Imperfect Teacher and the Nearest Neighbor Rule (NNR) .

2.4.1a Non Overlapping Densities. If the conditional densities

%*
‘ o .
f&‘GI(ilel) and f&lez(ilez) do not ovgrlap then the Bayes' risks, R , is
R'=0 . C(2.4.8)

From Equation 2.4.7, the average asymptotic risk for the learning scheme

is
R =R =20 . (2.4.9)

From Whitney (15), the average asymptotic risk for the nearest neighbor

rule Rn is given by
Rn= 1 - B . (2-4-10)
The average risk for the imperfect teacher is

R.o=1-8 . (2.4.11)

From Equations 2.4.8, 2.4.9, 2.4.10, and 2.4.11, it can be seen that,
on the average, the proposed learning scheme is better than the imper-

fect teacher and the nearest neighbor rule.
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2.4.1b Overlapping Densities. If the conditional densities over-
lap, then the learning scheme better the performance of the imperfect

teacher only if
*
R™ < (1= 8) . (2.4.12)

If R* >1 - Bz then the optimum Bayes' scheme itself has a greater
average risk than the imperfect teacher and hence the learning scheme
whose asymptotic average risk is equal to R* cannot be expected to do
better than the imperfect teacher.

However, for the nearest neighbor rule Whitney (15) has shown that

the average asymptotic risk is bounded by
*
Rn > (1 ~B)+ (28 - L)R e (2.4.13)

‘ *
From Equation 2.4.13 1t can be seen that if R is less than % then

Hence the learning scheme is better than the nearest neighbor rule if

% 1
R 1is less than 7 .

2.5 Finite Sample_Performancean the_Learning‘Scheme. In the

previous sections the asymptotic performance of the proposed learning
scheme was analyzed and it was shown that if the density functions do
notboverlap then, on the average, the learning scheme performs better
than the teacher. 1In this section it will be shown that the learning

scheme performs better than the teacher, on the average, after being

2In order for the teacher to be this good, he must have extra in-
formation other than a complete knowledge of the density functions.
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presented with a finite number of sample patterns X .,ﬁn 3 Y. see.,Y

-1 1 1 ~n

2
From Corollary 2.2.3, the learning scheme for classifying patterns

when the density functions do not overlap is:

A A
Assign x to 6, if £ (x]198,) > £ (xla ) (2.5.1)
. 1 X|3 sn., L X|8 in. 2
=¥’ 2’72
A A
Assign x to 0, if % x[8,) > % =8y . @52
2 2 A 1% A RIS
2(_‘9 X|91,nl i

A given pattern x from category 91 is therefore classified correctly if
(2.5.1) is satisfied and will be incorrectly classified if (2,5.2)
holds. Assigning a value of 41 for correct classification and 0 for
incorréct classification, the gain associated with classifying a pattern

x form a category 91 is

g (xle ,nl,nz) = P{f A (§[81) > ? A (Elgz)lieel} (2.5.3)
—l{l 2199319

Theorem 2.5,{

2, &lf y > 2 (x|62)|5e61} > L(B,nny,%)
X830y |e -
where
[ S T Ll
L(B,n,,n,x) = [1 - . 1 = == (2.5.4a)
1 f— fXle (x|9 ) fnz fXIG (x|9 )
and
A A )
Loren rledy o L
@) P58 (28 - D7 (5 /7yP
P(0,) P(e )P(G )
¢ = —1 [ - . (2.5.4b)



Proof. Let
8)>0
D = fx A X8 - £ A (x]9,) ;
X119, X{8,
and let
D, = {x fx |6 (x|6,) > 0}
A .,
PIE . @IS >E . (x]8,)] xeo,)
X]0;3n; X|825n2
A A D
>rl|f @8-, @[] <F N
X|8, sn x|6;,
l 1’1 211
A A A
£ x[8,) - £ o x|6)| <2 | xeo,]
i), 2 gy 2] T2 |2
X|8,5m, X9,
A A
Since the estimators f A and f A are independent, the right
§‘61;n1 X|625n2
hand side of the inequality becomes
self h @B - e @S] <] xesy)
X - A X = X€
X|6m T X8 201 =2 !
A A D
P{I? (x)8,) - £ (x|92)\ <3 | xe8,}
%|8,5n x| 6
X|9,5m, 21%
A , A 12 D2
L B N L
X}, sn XIO
X|9;n, 21%1
A A A 2 D2 ‘
P{‘f A &[0 - £ A<z<_|82>| <27 | xe8;} . (2.5.6)
X|0,5m, x|e,

Let us consider

25
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2
A 2
P{lf A (x[el) SIE A (x|el)| <D—4v
§|el;nl X198,
A2 D
=1-2{f o @B -f e[ 277)
X|6,in X{6
X9y 5m) 1
E{lf A &8 - £ A &0 ][]
' X[63ny 19,
>1 - _ > (2.5.7)
D
A
by Chebyshev's inequality. From Equation A.2.9,
f]f o @) -, a8 L £, 8. @.5.8)
x|e in, xlel /"" (2/")p x|e

Substituting (2.5.8) in (2.5.7), the right hand side of (2.5.7) becomes

f (x|6 )
. X106
Y1 - ___I.__.____ I B (2.5.9)
/A @/mP D
Similarly
A
A 2 X|® 4
le o x[8,) - £ A (x[E)) P<Xyzn-—3 " 3]
x|8, 5, x|8, /a, @/MP D
(2.5.10)
If geel then geDl, and on D1
P(8,)
A 1
£ (x16,) = \ (x[8,)
§|©1 1°1 P(gl) glel 1
A P(Gl) )
£ o x|8,) = (1 -B) —x— (x]6
x|, | p(3,) “xjo, %

and
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P(8.)P(0,)
D = 1 2

- ——5 (@8 - )E
JERIICN

Substituting (2.5.9), (2.5.10) and (2.5.11) in (2.5.6), one obtains

' P{g A (Elgl) > £ A‘ (§|32> ieel}eg
§|915n1 - §|925n2 ‘
Cc,B : c,(1 - B)
(1 - ———0 - —F———
J?q f§|91(§|91) \ /?5 félel(grel)
where
A A
J_Re)  RGRRG)
. A A
. P(el) P(el)P(ez) 2 A
) =

P, TEIPOPCE DT e

and hence the proof of the theorem.
Substituting the results of Theorem 2.5.1vin Equation 2.5.3, the
gain of the learning system associgted with classifying a pattern x
from category 91 becomes
c.8 c,(1 - B)

8, (x 8;3n;,m,) SO - y L0 - ‘ '
/) f§|91(35|el) /ny f§|92(§'|92)

A similar expression can be derived fro the gain associated with classi-
fying a sample x from category 92. The gain of the teacher for classi-

fying x from category 91 is

By setting
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one can solve for n, and Ny, the sample size required by the learning
scheme to better the performance of the teacher. Hence the justifica-
tion for the claim that, in the case of non-overlapping densities, the
learning scheme performs better than the teacher on the average after
1ookiﬁg at a finite number of sample patterns. As an example, if
f§|91(£'91) = 1, and equal prior probabilities P(Gl) and P(Gz), then on
the average the learning scheme with a sample size By sfy = 150 will
better an imperfect teacher with B = 0.9,

The sample size required by the learning scheme te better the pér-
formance of the teacher is given below in Table I. The densities used

in these sample calculations gre assumed to be uniformly distributed

over non-overlapping intervals of unit length, with P(Sl) = P(Gz) = %.

TABLE I

SAMPLE SIZE REQUIRED BY THE LEARNING SCHEME TO PERFORM BETTER
THAN THE TEACHER

B ' 0.60 0.70 0.80 0,90 0.95
Approximate
Sample Size 5000 1800 500 300 1600

oyt Dy
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A rather surprising inference that can be derived from this example
is that the learning scheme requires less samples to better the per-
formance of a mediocre teacher than the number of samples it requires
to better either a very bad or a véry good teacher, i.e. it is easier
to better a mediocre teacher.

In the following lemma, the dependency of the performance of the

learning scheme on B is investigated.

Lemma 2.5.1. For sufficiently large sample size, L(B,i,nl,nz)

given in Equation 2.5.4 increases as B increases.
Proof. L(B,g,nl,nz) can be written as

=[1 - L @I - 1,8]

where
e = ) 4 , P(e )P(e ) )2 P(® )B
YA eumP PG )P(e @ D JCRLICIEN
.
P(e )P(e ) P(e )(1 - B)
L,(8) = == —* SICh )P(e )(ZB-- 1>)2
s a/mP P8 >foe (x]6,)
4 , dL, (B) dL, ()
E." L(B!i!n'l’nz) = []- - Ll(B)J["’ J + [1 Ll L (B)][‘“ - I1a dB ]
(2.5.12)

When n, and n, are large (1 - Ll(B)]and [1 = LZ(B)] are greater than

sz(B) dLl(B)

and —=—— are shown to be negative, the lemma is

zero; then if

dp dg
proved.
dL, (8) 4 P )P(ez)
T a B ( 5 B) where a is a constant not involving B
(28 - 1)
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1771 Ao A2 (28 - D 2@ - 1] B
= = P(8))P(5,)) [P(e )P(e ) ]
= E @ - DY s - 1) %
A A2
P(9.)P(6,) (2B + 1)
- B ed) Spd)ed))
(2B - 1) (28 - 1) ,
+ P(e )P(e ) [P(e )1}
pBHrB)H% 28 + 1 5
= - ‘ 3 FE— > (p(e )P(e )[P(8,)-P(8])]
(28 - 1) 28 - 1)
, Y 2
+ p@,)( - 28)[2(8)) - P(8,)]%]
pBpB %28 + 1) A P(e )-P(e )
e LI IRl
(28 - 1) (28 - 1)° |
A , [P(§1> - P(32>]2
+ P(8)) (1 - 2B) — 5}
- | (28 - 1)
P(e )P(G ) (28 + 1) B A A A A
= - 5 P(8;)P(8,)[P(6)) ~ P(8,)]
28 - 1)’ (ZB - 1)
. -_—_ﬁ-——§ P(e )[P(e ) - P(e )12
28 - 1)
JCRIICH 8
= ——2 0+ 2@, + Bl (E)) - p,)]] - —
: 28 - 1)° (28 - 1)
A 42
P(GZ)[P(Gl) - P(5,)]
| p@)rd)
= - —*—~——~—~—[(B+1)P(9 )+BP(9 )]- 3P(92>EP(6 )= P(e )7
(2 ~ 1) (2B-1)
Hence

dLl(B)

<0 ’
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Similarly it can be shown that

dLy (8)

——d'é——<0 .

Hence
4 {LB;x,n,,n,)} <0
dp i )

from Equationb2.5.12,

A siﬁilar resuit can be derived for a sample x from category 92.
Lemma 2.5.1 implies that for a given sample size, a learning scheme
with a better teacher acquifes more knowledge thaﬁ a scheme with a
comparitively poor teacher.

The results derived in Sections 2.4 and 2.5 have been verified

through simulations on the computer. The simulation results are dis-

cussed in the next section.

2.6 Simulations. The proposed learning scheme was simulated on

the IBM-360 computer for both overlapping and non-overlapping deﬁsity
functions. The various density fuhctions used in the simulations are -
shown in Figures 1 and 2, The prior probabilities feor the categeries
were set equal to %. Samples were drgwn from the two categories 61 and

A A
92 and were labelled as 91 or 92 according to

A 1, o
P(6,8,) =B >3 ; i=1,2
A 3 . * 3
P(ejlei) =1~ B3 i,j=1,25 i * j
A A
Using the incorrectly labelled samples, the densities £ , (§|el)
X|8,sn
=1
A A
and £ A (§|92) were estimated according te (2.,3.1) and (2.3.2).

§|92;n2
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fyjo,(XI60)
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Figure 1. Non-overlapping Densities Used in -
: Simulation ‘ - :
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Y
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Figure 2. 
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in Simulations
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Fifty additional test samples were drawn from the two categories and
the learning scheme was asked to classify these samples into 61 and 62

according to the decision rule:

classify the sample x as coming from 6, if

1

A AL A A
e (x|9)) fX AL (x]6,)
|6ymy X[6,im,

classify the sample X as coming from 92 if
A A A A
£ A (xle ) > f A (x|e ) .
X|9.3n, 2 X6, 3n, L
X|8y5my X]8,5ny

The risk for the learning scheme was calculated based on the classifica-
tion of fifty test samples, the loss function being +1 for incorrect
classification and O for correct classification, For each value of B,

ten runs were made with 75 and 100 training samples (nl + n, = 75, 100)

2
and the average risk for the learning scheme was calculated. The re-
sults of the simulations are shown in Figures 3 and 4.

Figure 3 shows the plot of average risk versus B for the learning
scheme for non-overlapping densities shown in Figure l. The Bayes' risk
R* for non-overlapping densities is zero and the average risk for the
imperfect teacher is (1 - B). Figure 4 shows the same plot for over-
lapping densities shown in Figure 2. The Bayes! risk now is 0,125 and
the average risk for the teacher is (1 - B).

Erom Figures 3 and 4 the following theoretical results can be
verified:

(1) Thé average asymptotic risk for the learning scheme converges

to the Bayes!' risk (as derived in Section 2.4);

(2) For non-overlapping densities the learning scheme betters the
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imperfect teacher, and-tﬁe NNR after looking at a finite
number of sample patterns (as derived in Séction 2.5),
(3) For overlapping dénsities,‘the learning scheme 1is beﬁter thaﬁ
the teacher if R* ; i - B (dérived in Section 2.4). In Figure
4, this corresponds to»B < 0,875,
(4) For a given'numbér of fraining saméleé, the average fisk de-
' .Ccreases aé.B ihcreases (as:derivediin Section-2.5).
‘it must be ﬁointéd out here that the p1qts1represent'6ply;the
"average! performanée.of théjleafningISYStem. ‘Oﬁ'ah'indiQidual.run;
the perforﬁance of the learning scheme will depend on the4numbér:of
correctly‘labelied‘éamplés. If a particular séqqencevbf‘Sample patterns
had too many incorfeétflabels; then;thé ﬁérformaﬁceiof the 1earnihg-"v
scheme will be.wofseithan‘thé‘"évéfagé“ipeffSrﬁanée.. To i11ug£fa£e
‘this point, a summary of.thé performance of the leérning schemé on ?
individual runs is given in Téble I1 for ﬁhé noﬁuovefiapping dénsities

shown in Figure 1.



TABLE IT

SUMMARY OF PERFORMANCE.

Run # _ Average
4 5 6 7 -8 9 10 Number
B of Errors
0.60 28 4 14 0 33 2 29 ] 12.1>
0.70 14 2 ] 1 | o | o 0o 3 2
0.8 1 1 1 0 0 0 0 0.3

Densities: As in Figure 1
Sample Size: 75

Test Samples: 50

samples.

1Entries in the table denote the number of errors made by the learning scheme in classifying the test

1 C



CHAPTER III
FEEDBACK LEARNING SCHEMES

3.1 TIntroduction. This chapter 1s concerned with investigating

the possibility of “feedback" as a means of improving the performance
of learning schemes with an imperfect teacher. The term "feedback
learning scheme" is used here in conjunction with learning schemes
which, instead of simply accepting the incorrectly labelled sample pat-
terns provided by the imperfect teacher, attempt to question and possib-
ly correct the labelling on some of these sample patterns. The ques-
tioning and relabelling at a particular stage of 1earning is based on
the "knowledge" acquired by the leérning scheme up to that stage. Since
the learning scheme uses its own knowledge in an attempt tobimprove its
performance the term "feedback learning" was thought to be appropriate.
The term '"feedback!" is not used here in the usual sense. However,
the student detects an error in g probabilistic sense and initiates cor-
rection. This is analogous to feedback in control systems where an
error detected in a deterministic sense leads to correction. Thus feed—.
back broadly applies. Nevertheless, the reader may prefer other terms.
For example, since the student is continuously changing his learning
procedure as his knowledge increases the term adaptive learning or
adaptive editing can be used. The term data refinement can also be
used to describe this so called feedback.

For analysis purposes it will be assumed that there are only two

38
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categories of patterns 91 and 62 with non-overlapping density functions

and £ Equal prior probabilities, P(Gl) = P(ez) = %, will be

fxje, 2 fxo,"
assumed. The case of unequal ptior probabilities will be discussed at
the end of Chapter IV. It will also be assumed that B is greater than
%. If B 1is less than l, this can be téken care of as described in
Corollary 2.2.1. Under assumptions just stated, justification for con-
sidering feedback as a means of improving the performance of learning
schemes will be given. Several possible feedback schemes will be dis-

cussed and it will be shown that a thresholded feedback has many desire-

able properties over other schemes.

3.2 Justification for Feedback. Before going into theoretical

justification for considering feedback, a rather philosophical motiva-~
't;on will be given based on an example tﬁat is of common occurrence in
classrooms. Such an example ié the attempt of a student (presumably
with much less knowledge than his teacher) to question and possibly
éorrect an inadvertent error made by his teacher. In spite of the fact
that most of the student's knowledge is derived from his teacher he is
still able to use this knowledge to occasionally correct his teacher.
Even though correcting trivial errors do not necessarily mean an in-
crease in knowledge, most of the student's learning takes place through
questioningrwhét is being said in an intelligent way. Hence it seems
that such questioning and possibly correcting the labelling information
supplied by the teacher in pattern recognition problems is all too
relevant especially if the teacher is known to be imperfect.
Theoretical justification for considering the possibility of feed-
back in learning schemes is based on the results described in Chapter

IT. It was -shown in Chapter II that the_iearning scheme performs better
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than the teacher in the asymptotic case. It was also shown that the
learning scheme performs better than the imperfect teacher after looking
at a finite number of samples and that the finite sample performance of
the learning scheme improves as B increases. In Appendix B, it is

shown that the average rate of learning at initial stages increases as

B increases. These results indicate that any improvement in B will re-
sult in an improvement in the performance of the learning scheme. Since
the learning scheme performs better than the teacher after looking at a
finite number of samples the student (the terms learning scheme and
student are ugsed in the same context) can verify the labelling given by
the teacher based on his knowledge and correct some of the labels. Such
corréction if done successfully will result in a lesser number of in-
correct labels in the sample patterns and hence lead to better perform-
ance.

A computer simulation will now be discussed to illustrate the
effectiveness of this correction. An initial set of 75 sample patterns
were drawn from the densities shown in Figure 1, with P(Gl) = P(Gz) = %.
An imperfect teacher characterized by B = 0.7 labelled these samples as
8

A
1 and 92, Using these incorrectly lahelled samples the student learned

A and f
§|e1 X|

the densities f . Fifty additional sample patterns were

2

>

drawn and these samples were labelled by the imperfect teacher and the
student. The student ignored the teacher's labelling and did his own

labelling according to:

A
Label x as 91 if £, . (§|el) > fX A (§|92)
X|8;3n; 18,30,
(3 5201)
A A A A A
Label x as 8, if £ ‘(xle Y > f (x]6,) .
= 2 A X199 A XY
X16,5n, §|91;n1
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A
The form of the estimators £ and % is 'given in Section

§‘81;n1
2,3, A summary of the labelling for the teacher and the student is
given in Table III. It can be seen from Table IIT that the performance
of the student will be better if the additional samples were used with
the labelling provided by the student himself since the student's
labelling contains fewer incorrect labels than the teacher. However,
it must be mentioned here that the student's labelling does not really
improve B, but improves the ratio of the number of samples with correct

labels to the total number of samples.

Example 3.2.1.

1

B=0.70; P(8)) = P(8,) = 5

f and fX

X6 are same as those shown in Figure 1
l B

18,

Total no. of test samples = 350

B = Number of samples correctly labelled
E™  Total number of samples labelled
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TABLE IT11

SUMMARY OF LABELLING: STUDENT VS TEACHER

Rﬁn Teacher - FStudent
No. Coz:zzirLZ£els ?22:§2625 [E(ZE)=B] cafﬁizirLZ£els ﬁzzziiegi P
Labels 'E Labels

1| 35 15 0.70 50 0 1.0
5 39 11 0.78 50 0 1.0
3 36 14 0,72 50 0 1.0
4 37 13 | 0.74 36 14 0.72
5 27 23 0.54 48 2 | 0.96
6 34 16 0.68 49 1 0.98
7 37 13 0.74 50 0 1.0
8 37 13 0.74 50 0 1.0
9 34 16 0.68 50 0 1.0
10 30 20 0.60 47 3 0,94

Ave ‘34.6 15.4 0.692 : | 48>‘ 2 0.96

3.3 Types of Feedback. It has been shown through a simulation in

the previous section that the learning scheme can use its own knowledge
through feedback to correct the labelling provided by the teacher.
Three different types of feedback will be considered in this section
and their merits and demerits will be discussed.

The first feedback scheme to be considered uses a combination of
the labelling provided by the teacher and the student. When the

st ) . . .
(n+ 1) sample §n+1(n=n1+n2) is presented, the student provides his
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own label for §n+l bgsed on his present knowledge. The label on §n+l
probided by the teacher is checked for agreement and the sample §n+1 is
used by the student to update his knowledge if there is agreement.

Otherwise X ., is discarded. The alogatithm for this feedback scheme

is:
Label X g d d ? f g X 8 ) >
abel X, as 8, and update x|8 a 1 ad o (—n+ll e
=910 X| 1’71
? (X_ .18.) and if teach 0
L 6 . —n+1| ,) and if teacher says 6, R
X|8,yiny
(3.3.1)
A A A
Label §n+l as 62 and update fX g . if fX g . (§n+1|62) >
X|8y5n, X|8,4n,
A A
£ A . (§n+1|61) and if teacher says 92 ’
_&Ie mn

1°71

Otherwise discard X L

Let us now look at N additional samples processed by the student
according to (3.3.1). Out of these N samples the teacher will on the
' average label NB samples correctly and N(1 - B) samples ingcorrectly.
Denoting the probability of correct labelling of the student by Bs, and
assuming independence, the combined labelling scheme on the average
labels NBBs samples correctly, N(1 - B)(1 - BS) samples incorrectly and
discards the remaining samples. On the average out of the NB samples
correctly labelled by the teacher, the combined labelling scheme throws
awvay (NB - NBBé) samples and out of the N(1 - B) samples incorrectly
labelled by the teacher [N(1 - B) = N(L - B)(1 "Bs)] samples are thrown
away. If Bs is greater than B, it can be shown that more incorrectly
labelled samples are thrown away than correctly labelled samples. Hence

throwing away samples does not seem to be bad.
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However, the probability of correct classification for the student
is dependent on the value bf §n+i and the particular string of samples
thus far presented to the learning scheme. 1In thisbsituation the
argument given in the previous parggraph do;s not apply. Rather than
throwing away samples it may be advantageous to correct ﬁhe labels on
the samples being thrown away and use these samples in the learning
process. The feedback schemes discussed below are designed to make use
of all the sample patterns.

In the second feedback scheme to be investigated no samples are
thrown away. The student accepts the label provided by the teacher on
the first NF samples without questioning. On subsequent samples the

student completely ignores the information supplied by the teacher and

does his own labelling according to:

A A
Label Xygip 28 8 IF fyjo sn Gy l®) > f>_<_|ez;n2(§N+1'92)

Label X

A
Nyl @S 92 if £

A
x 16,50, Ene1182) > f§|91;n1(§N+1|el>

23R

Depending on the label, X

X1 is used to update the estimate of the

appropriate dénsity function.

Two of the obvious disadvantages of this method are that there is
no control over the amount of feedback and that the teacher is com-
pletely ignored. Eyen though the teacher is known to be imperfect,
there is still useful information in the label suypplied by the teacher
if B is greater than %. The lack of control on the amount of feedback
results in a large probability of incorrect feedback at the tails of

the probability density functions. A numerical example is given in



Table IV.

Example 3.3.1.

P{correct feedbacklxeel} and P{Incorrect feedbacklxeel}

B= 0.63 P(el) = P(GZ) = 0.5

fx'e and fXle are same as in Figure 1

1 2

n n, = 16

1= "2

were computed using normal approximations given in

Appendix B

TABLE IV

PERFORMANCE OF FEEDBACK SCHEME 3.3.2

45

- P(correct feedbacklxeel)P(Incorrect feedbacklxeel) Ratio of
fXle (x18,) _ 3 :
1 =P = Py P1°Py
2 0.85 0.15 5.6:1
1 0.775 0.225 3.0:1
0.5 0.70 0.30 2.5:1
0.25 0.64 0.36 1.8:1

Table IV contains the probability of correct feedback and probabili-

ty of incorrect feedback associated with classifying a sample x from

category 81 for various values of fXle (ilel). Nérmal approximations
=71
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discussed in Appendix B were used to calculate these probabilities,
From the values listed in Table IV it can be seen that there is a large

probability of incorrect feedback if £ (§|el) is small, Also at

X|e,
these points the ratio of probability of correct feedback to probability
of incorrect feedback is low.

The only way to improve the performance of this feedback scheme is
to wait longer before starting feedback. This leads to the qgestion,
what is the "optimum" value of starting feedback NF? To answer this
question a complete knowledgepof the prior probabilities and the density
functions aré required, besides a criteria to be "optimized". No
attempt has been made towards obtaining an exact answer for this ques=

tion. However two special cases of interest, NF = 0 and N, = «, have

F
been considered. - When NF = 0, the student completely ignores the
teacher from the beginnihg and the feedback scheme 3.3.2 is analogous

to learning without a teacher. If NF = o, the student would have
acquired knowledge equivalent to that of a Bayes! scheme, and no further
~improvement in the student's knowledge is possible due to feedback since
the limiting knowledge is ihdependent of B. Hence neither starting

. feedback too early nor waiting till too late is good. A compromise is
to delay feedback till the teacher has provided the learning schéme
with more correctly labelled patterns than incorrgétly labelled pat~-
terns; the probability of such an event can be used to determine the
starting point NF'

The thresholded feedback scheme considered in the next section

implicitly provides an answer to the question of finding the "best™" NF'
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3+¢4 Threshold in Feedbhack. Some of the disadvantages of the first

two methods of feedback can be overcome by using a threshold in the
feedba¢k. When a sample pattern §N+1 is presented to the feedback
learning scheme, the label on the sample supplied by the teacher is
either accepted or changed by the student according to the following

algorithm:

Accept the labe]l provided by the teacher if

A
fy'e\l;n —N+1[9 ) - fx|32 . —N+1|9 )| <T
) i

and

‘ A . A I
change the label to 8, if f§|31, (§N+1|6 ) > f&‘% . N+1 9 ) + T

A A A

change the label to 8, if f.X 132 . . 119 ) > fygl . )_<N+llel) + T .

(3.4.1)

p 2L N=mn +n

After the label is decided X

In algorithm (3.4.1), n;,n and T is the threshold.

a1 is used‘to update the estimate of the
density function corresponding to the accepted label.

It cén be seen from (3.4.1) that the learning scheme ignores the
teacher only if the density functions differ by more than T. Looselj
stated the label provided by the teacher is questioned and changed only
if the student is certain that the teacher is wrong and the student
accepts whatever the teacher says if he is not sure of himselff This
scﬁeme does not throw away samples like in the first scheme described.

Also feedback is done rather selectively unlike the second method where

. feedback was done on each sample.
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The threshold feedback scheme has the following desirable proper-
ties:

1) Feedback starts at the modes of the density functions.

2) There is control over the amount of feedback.

3) By choosing T te be decreasing function of N, the teacher

can be gradually phased out.

These properties can be established using the theorems proved in
Appendix B.

It is shown in Theorem B.4,1 that the maximum probability of feed-
back occurs at the maximum value of fﬁlel(ilel) if the given pattern x
is from category 91 and that if x is from category 62 the maximum

probability of feedback occurs at the maximum value of f&lez(ilez).

This implies that feedback starts where the density functiens have
large values. In regions wheré the density functions have large values,
the densiﬁies are well separated and hence the student feels confident
to challenge the teacher in these regions. Accordingly there is more

feedback in these regions as desired. An illustrative example is given

below.

Example 3..4.1 .

£ and leG are as shown in Figure 1

Xle 2

1

T= 0.1

P(correct feedbacklxeel) and P(Incorrect feedback xeel)

were calculated according to Equation B.4.l
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TABLE V

PERFORMANCE OF THRESHOLDED FEEDBACK SCHEME

P(correct - P(incorrect ' \ | Ratio of
f§|el(5|91) feedpfcklxeel) feedyick|xeel) P (feedback|xe8, ) b, P,
=P =P
2 0.788 0.03 0.818 26:1
1 646 .13 0.776 4.9:1
0.5 .50 | .15 0.65 1 3.3:1
0.25 .36 .13 0.49 2.8:1

From the example it can be seen that the probability of feedback

gets lower and lower as the value of f decreases. Table V also

_}glel
gives the probability of correct feedback and the probability of incor-

rect feedback for several values of f Comparing these values with

X8,
those listed in Table IV for a feedback scheme without threshold, it

can be seen the use of a threshold lowers thé probability of incorrect
feedback at the tail end of the density function. Also the ratio of

the probability of correct feedback to the probability of incorrect
feedback is better with a threshold.

- In Lemma B.4.1 it is shown that increasing T decreases the amount
of feedback and)vice versa. Hence by varying the thresheld T the amount
of feedback can be controlled, as opposed to the total lack of coptrol
on the amount of feedback in a feedback scheme without threshold. Lemma

B.4.1 also shows that, by choosing T to be a decreasing function of N,

the amount of feedback can be increased as the learning progresses.
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This way the teacher can be gradually phased out as desired. The
gradual phasing out of the teacher also provides an answer to the ques-
tion of finding the optimum starting point for feedback, NF’ required
in the second feedback»scheme (3.3.2).

Based on the comparison given thus far, it is apparent that the
feedback scheme with threshold is better than the other schemes con-
sidered. One of the problems associated with a feedback learning scheme
with a threshold is the selection of the threshold T. Two methods are

given in the next chapter for selection of threshold.



CHAPTER IV
SELECTION OF THRESHOLD

4.1 Intrpduction. This chapter is concerned with finding an ex-

pression for the threshold T in terms of B, and the sample size n. Be-~
fore going into the actual derivation one might deduce the form of T as
follows. It has been showh in Chapter II that for a given sample size
n, the performance of the learning scheme improves as B increases.
Hence for a given n, there should be more feedback in a learning scheme
with a better teacher thaﬁ in a learning scheme with a relatively bad
teacher. This implies T should be a decreasing function of B since tﬁe
amount of feedback increases as T decreases. Also it has been shown
that T must =3 0 as.n -~} o, Since the variance of the discriminant
function is a function of\%ﬁ, it is intuitively obvious that T must also
be decreasing as‘%ﬁ.

Two methods are given in the following sections for deriving an
expression for T, for the equal sample size case, These approaches are
léter extended to the unequal sample size case. In all these deriva-
tions non~overlapping densities will be assumed. As has been mentioned
earlier in Chapter‘II, with a large overlap in the densities the iearn-
ing scheme can not perform better than the teacher and hence feedback
is not good in these cases.

Forbpurposes of analysis in this chapter the nofmal approximatlons

A
and fX|e ‘n degscribed in Appendix B will be

- ?9°?

A
of the estimators fXlelsn

51
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used.

4.2 Minimax Approach. In this rather pessimistic approach the

objective is to do feedback in such a way that the chances of incorrect
feedback are minimum. Hence the quantity of interest is the probgbility
of incorrect feedback. This probability is a function of B,n and the
values of the density functions f_)Slel and fglez at X, the sample being
fed back. The dependency on the denéity function is undesirable since
these are quantities that we are trying to estimate. It is shown in
this section that the dependency on the density functions can be removed
by looking at the maximum value of the probability of incorrect feed-

back. An expression for T is derived by setting an upper bound on this

maximum probability of incorrect feedback.

Theorem 4.2.1. P(Incorrect feedbacklgeel) is maximum at X5 where

50661 is such-that
‘23‘1’f§191<£o|91> =1 .

Proof., From B.4.1

,[-T-(2B-1)a]c
' Ja

P(Incorrect feedback|§eel) = | N(0,1)dg

= L

where
p 1
2 4
c=(2/M n
and
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will now be shown that L has a maximum at‘

gﬁ: (zs'l),"ET +j(§sr1>a]

Lo .o B —
a(28-1) - KL% <zg-1>a1
= - c[ — , 3/2 ]
a
o . [22B-D) - T
el SV
2a
S0 sy 1 8 g (xl0) = 5E
€L ed (208D -1
el b rl NV
-3 .
_ e ar@e-D-(a@8-1)-113/2/3
2 X
--£ [a(stl)f[a(zs-l)-IJ3/g
T2 572 1.

[3T - a(28-1)]
a5/2

o

T = (28-1)@2
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Hence L has a maximum at T = (2B-1)a. This implies
p(incorrect feedback ieelpn) = I N(Q,1)d€ has a maximum at X4 if
-0
T .
f&lel(ﬁolel) = 351" Hence the proof the the theorem. The example
discussed on page 48 illustrates this theorem. A similar result can be:
derived for §€e2‘

Using Theorem 4.2.1 one can obtain the maximum value of

P(incorrect feedback ngel;n) as

—2T
(1/28-1)* |
= | N(0,1)d8 | (4,2.1)

C

=00

where

1 P
c = n4(2 /’T‘r)z .

Similarly it can be shown that the maximum P(incorrect feedbacklieez;n)
2T

(1/28-1)%
~| w(0,1)de . (4.2.2)

-

¢

=00

From (4.2,1) and (4.2.2) it can be seen that the maximum value of -

P(incorrect feedback'n)

L L
-2T%c (2B~1)7
=| N(,1)ae . (4.2.3)

=0
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Using Equation 4.2.3, the expression for the threshold can be ob~

tained by setting maximum value of P(incorrect feedback]n) equal to @,

i.€4

~2T%c(28-1>%
N(0,1)dE = o . (4.2.4)

-0

From the table of normal integrals, the value ta can be determined such
that

=t
o4

N(0,1)dE = « . (442.5)

-0

Comparing Equation 4.2.5 and 4,2.4 it can be seen that

1 1
21% (28-1)% = ¢t_

o4
T = 7R (8:2:6)

where

C

® L0 /P
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Choosing T according to Equation 4.2.6 guarantees that on the
average the maximum probability of incorrect feedback at any given
stage of learning is equal to the de#ired value @. For any given pat~
tern x the probability of incorrect feedback is less thgn or equal to
«. The expression for T given in (4,2.6) has the desired propertieg
that the teacher is gradually phased out, the amount of.feedbaék at a
given stage is more for a learning scheme with a good teacher compared
to a learning scheme with a comparatively bad teacher and T decreases
according to\%ﬁ, the same rate of decrease as the variance of the esti-

mator of discriminant function,

4.3 Decision Theory App:oaqha In the decision theory apprpach
towards finding an expression for the threshold T, values are assigned
to the possible out comes of feedback and T is chosen such that the
"average value! is maximized. The décision tree for this problem is
shown in Figure 5, The tree is drawn as if the true caﬁegory of the
pattern x to be fed back is known to the decision maker, the decision
being the choice of threshold T. For each value of T there are three
possible outcomes, namely, x is correctly fed back, no feedback or x is
incorrectly fed back. The "values! associated with these outcomes are
a',0 andeb' respectively, a',b!' > 0. Using the probabilities of these
outcomes the "average value'" of feedback can be computed and T can be

chosen such that the average value is maximized,

Iheorem 4.3L}Q The "average value! associated with feeding back a

sample ieel, at the nt“n

stage of learning,

E[Vl(T)} = a' P(correct feedback’ieel;n)

~b! P(incorrect feedback|xed,;n), (4.3.1)
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is maximum if T is chosen to be

h!
loge 77
T = — ‘ ‘ . (4.3.2)
22 /MP /7 (28-1)
Proof.
j' [ | | f§|91(§’|el)]
P(correct feedback|xed.) = | N[(2B-1)f (x| 8,), ———]dE
- 29, T X8, =1 o mP /s
o j'T fz‘el(ﬁlel)]
P(incorrect feedback|xed,) = | N[(2B-1)f x|8,), ——————]dg .
(28 =], 2o =1 o mP

Substituting these probabilities in (4.3.1)

oo v [-T-(2B-1)a]c
[1-(28-1)alec
S B

where
=71
and
p 1l

c= @2/ a* )

Taking the derivative with respect to T, it follows that
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, , 2. . 2
SHELV, (]} = [ expl- SLI=EBDal ) oy

, 2 2
'[/_';F exp{- < [T+(§g”1)a]ﬂ}(— ;—g)

2 2 2 2
.7%3 [blexp{~ < [T+(§gfl)a]‘} - atexpl- & [T—(gg-l)a] 1.

it

Setting %T {E[VI(T)]] = 0 gives

2 2 2 2
q‘[T+(§Syl)a] } - a'exp{— c [T“(ggﬁl)a]‘} ,

blexp{-

since

c
77 *
Taking logarithm on both sides

| 2 v 2 |
logd' - o= [T+ (28-1)al% = log a' - 5= [T - (28-1)al’

2
o7 T+ @8-1a)% - [T - (28-1)a)?} = log D)

e ‘a'

2

c » _ bt
e 4aT(2B-1) = 1oge(a,)

log (EL)

e a!

202 /P /R (28-1)

T

c

0

=m (4-3-3)

where
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b!
log_ (=)
C _'e 'a"""

0 2(2.,/1'1)p
& (alv, (]} 9
It can be shown that —5 {(E[V, (T) is negative at T = =—"=—"<»
dT2 1 /n (28-1)

Hence E{Vl(T)} is maximum at T given in Equation 4.3:3, Proceeding
along the éame lines it can be shown thét E{Vé(T)}, the '"gverage value!
associated with feeding back a sample ieez, is also maximum at T given
in Equation 4.3.,3. This implies that irrespective of whether §é61 or
geez, the "average value" of feedback is maximum if T is chosen
according to (4.3.3).

The form of T given in (4.,3.3) is the same as the one given in
Equation 4.2.6 for the minimax approach. The only difference is in
the constants appearing in the expression. These constants are deter-
- mined by the choice of the maximum value of the probability of incorrect
feedback, or the value function and hence are subjective in nature.

The algorithm for feedback now is:
Acccept the label provided by the teacher if

A B
A =z A (£|92) <T )
glel;n X|8,in

Relabel x as-

A A A
x[6,) > £ o (x]8) + T (4.3.4)

where T is the threshold given in Equation 4.2,6 for the minimax



61

approach and in Equation 4.3.3 for the decision theory approach.

4.4 Extension of Decision Theory Approach to the Unequal Sample

Size Qase. For the equal sample size case n1 = n2 = n, an expression
for the threshold T was derived in the previous section and it was
shown that the value of T given in Equation 4.3.3 maximizes both

E[Vl(T)} and E{Vz(T)}. With unequal sample size n, # n,; it can be

shown that

log (—~)
T AL 2 4 LB, (4.4.1)

L7 2 /MPee-1y Vi VR,

maximizes E{Vl(T)} and

bt

log( —) '
) = /E_ }_P) (44.2)
2(2/—)"(26 1y Y™

maximizes E{VZ(T)}. Since it is not known if 5691 or Egez, the above
expressions are of no use. We need to further average E{VI(T)} and

E{VZ(T)} with respect to P(el)f and P(e respectively and

x[8, X|e

find T that maximizes this average, The dec1slon tree shown in Figure 5
is redrawn in Figure 6 for this purpose.
The quantity to be maximized now is

E(V(D} = 2(6)) [ £y o (x]0){a'[P(correct feedback|xep,sn,,n,)]

xle,
~ b'[P(incorrect feedbacklieel;nl,nz)]}di

+ P(Gz) I f (x|9 ){a'[P(correct feedback|xe6 sny,m, )]

- b'[P(lncorrect feedback'xee ,nl,n )]}dx.
(4.4.3)
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CHOICE OUTCOMES VALUES
OF T

p CORRECT FEEDBACK (a')
NO FEEDBACK (0)

INCORRECT FEEDBACK (-b'}

CORRECT FEEDBACK (a')

NO FEEDBACK (0)

INCORRECT FEEDBACK (~b)

Figure 6. Decision Tree for Selection of»Thresﬁold
(Unequal Sample Size) '
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In order to be able to maximize E{V(T)} with respect to T, the

density functions fXIG and f must be specified completely, This
X189,

v X|s,

is very unreasonable since if these dengities were known then Bayes!

procedure completely specifies the diseriminant function and there is

no need for any learning, Even if these densities were known there is

still the ﬁroblem of finding the value of T that maximizes EfV(T)}

given in Equation #.4.,3. An example will illustrate this difficulty.
Let ué assume that f§|9 and fXIe afe two univariate density

functions pf random variables uniformly distributed over mon-overlapping

intervals of length 1. Substitutiﬁg for the various probabilities on

tﬁe right hand side of Equation 4.4.3 and taking derivative with respect

to T,

2
&5 BV} = P~ B ¢} expl- ’2"'1' [T-(28-1)7%]

2
c

+\;fﬁ ci exp{ - fl [T+(28f1)]2}]

2
1 : 2
+ P(92>["'\/—2-ﬁ' 2 exp{ "'2"'— (25"1)] }
‘ 2
+ bl c., expf{-~- _& [T+ (28~ 1)] }]
/22m T2 P 2
(4.4.4)
where
1 B (1-B) +%

= (== + al
LT g e VT

L [”B + (lnﬁ)]%
@ /mP Vi /oy
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Setting %T {E[V(T)} = 0 in order to solve for extremum, it can be seen
from (4.4.4) that even for very simple forms of £ and f - one has
‘ xje, ™ fxJe,

to solve @ transcendental equaﬁion.» For more general forms of the
density functions, Equation 4.4.4 takes a more complicated integral form
and no closed expression for T can be obtained by setting
& BV} = o.

However an expression for T can be obtained by uﬁing approximations
as explained below. Let us assume that the unequal sample size results

from unequal prior probabilities P(el) and P(GZ) such that

- > - N 4-4,
P, . 1-P (4:43)

Now,

JCATIIICID

P(0 |3 )
v’ = A
| P(el)

A
R(§,| 0,)P(8))

=

P(Sllel)P(el)+P(gll62)P(Oé>

BR(6,)
T PR +(1-BIP(,)

Since P(el) >> P(ez) from (4.4.5),
P(Gl)B >> P<62)(1v5)

Hence

= ].. L] (404,6)
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Equation 4.4.6 states that the probability that a sample labelled as 31
by the teacher, being actually from categorybel, is approximately equal
to one. Hence there is no need for the student to question the samples
labelled as 31.

A
Looking at the samples labelled as 6

2’
(1-B)P(8,)
P(e,[8,) = --——————~
P(e )
and
BP(8,)
p(o,|8,) = = .
' P(8,)
Since P(Gl)(lwﬁ) >> P<62>B’
A A
P(8;]8,) > P(6,]6)) ' (424.7)

Inequality (4.4.7) implies that the probability that a sample labelled
as 82 by the teachei is from category 91 is much larger than the proba-
bility that the sample is actually from category 92-’ Hence samples
labelled as 62 by the teacher need to be checked, and reclassified if
necessary.

For example if a total of N labelled patterns are given, then
N[P(el)(lwﬁ) + P(GZ)B] patterns will, on the average, carry the label
62. But of these, NP(Gl)(l—B) samples ﬁill, on the average, be from
category 91, Since NP(el)(l-B) >> NP(Gz)B, while feeding back samples
labelled as 32 one needs to be concerned about these large numbers of
samples from category 91 and hence maximize the function

_ correct incorrect .
E{V1<T)} - a'P(feexilback xe ,nl,n )-b! P(feedback ieel’nl’n2) *
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The value of T that maximizes E{Vl(T)} is given by

bt
1°ge(ZT)

B 1-p)
SR K 4 LB
202 /AP (28-1) V™1 )

B_, (-B)y (4.4.8)

where

1
loge(ET)
c _——ta

07 20 /)P

The algorithm for feedback now is:

A
Change the label on X only if teacher said 92 and

2 8y+r . (4.4.9)

4.5 Extension of Minimax Approach to the Unequal Sample Size Case.

The argument given in the previous section about relabelling only those
A
samples with labels 92 can be used to obtain a value for the threshold -

T using the minimax approach. The quantity of interest now is:

T fx10, *I9)
p(ineorTeCt ]y o snin) = [ N[ (2B-1E, o (x[0)) LR B
feedback |[X€91°om) = ] NL(B-Difyje &I " AT+ R,

As in Theorem 4.2.1 it can be shown that the maximum

P(incorrect feedback Eeelsnl,nz) occyrs if

T= (28-Dfy g (x[8)
1%
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and the maximum value of P(incorrect feedback|5691;n1,n2) is given by

Xk L
' HZTZ(ZBP].) zci

N(0,1)dE

J =00

where

By setting

272 (281)%
=27 B~ Cl ”tQ/

N(0,1)dg

#

NO,1)dE=a

-0 =00

o being the desired maximum value of P(incorrect feedbacklgeel;nl,nz),

the value of T can be obtained as

2

T ap-n@/mP YR YN
Ca B __ﬁ
= (28-1) Q7=f /‘"] | (4:5.1)
where
i
¢ = —2
Y 4 /MP

The algorithm for feedback now is:
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A
Change the label on x only if the teacher said 92 and

A A A
£ A (§|Gl) >f A (ilez) + T . (4.5.2)
§|92;n2

4.6.-Comments. Even though the expressions for the threshold T

derived in this chapter display many desirable properties, no claim can
be made about the '"optimality" of these expressions., One of the short
comings of the analysis presented in this chapter lies in treating B as
constant. Due to feedback the "effective value of B", defined as the
ratio of the number of sample patterns with correct labels to the total
number_of sample patterns, is changing. A formulation of this change
is difficult, 1f at all possible. Even though probability statements
can be made about correct feedback and incorrect feedback, these involve
the unknown dengities. Whereas for the teacher, B is independent of x,
the sample being labelled, the performance of the student will depend
on the value of x and the performance of the student in the past. If
the student has been incorrectly feeding back the initial samples, then
subsequent samples will also be incorrectly fed back, This fundamental
difference in the labelling procedure‘prevents an analysis of perform-
ance of the feedback learning scheme as was done in Chapter I1 for the
learning scheme without feedback.

The performance of the proposed feedback learning scheme is evalu~

ated through simulations in the next chapter.



CHAPTER V
STMULATION RESULTS

d+1 Introduction. For reasons outlined in earlier chapters a

complete theoretical analysis of the proposed feedback scheme is ex~
tremely difficult, if at all possible. This chapter is concerned with
presenting the results of computer simulations of the feedback learning
scheme, Three differgnt learning situations, characterized by non~
overlapping densities and equai prior probabilities, non-overlapping
densities and unedual prior probabilities, and overlapping densities
and equal prior probabilities were simulated and the results are pre-

sented below.

5.2 vSimulations With Non-overlapping Densities; Equal Prior

Probabilities. The densities f and f£,,. used in this part of the
‘ ‘ Klel llez

simulations are shown in Figure l. A total of Nt samples were drawn

from these densities with equal prior prebabilities P(el) = P(ez) = %.

A A
These samples were labelled as 91 and 92 by an imperfect teacher, char-

acterized by Equation 2{2.10. The learning scheme without feedback

accepted the label provided by the teacher and the densities £ L, and

xle,
£ A estimated according to (A.2.7), Based on the final estimates
xle2
A A
£ A and £ , (Nt = Nt + Nt ) each test sample Z was classi~.
X|8, 3N, X| 6, 5N, 1 2

1 2

fied as follows:

69
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o, i, @bp>? @b
XI8 5N X8, ;N

and as

A A '
P >E a Gl . (5.2.1)
Xlel:Nt
2 . 1

A A
1f £, (z]8

2 .
X]8,3N,

The feedback learning scheme questioned the label on the sample

patterns Zn+1 and modified the label according to the following rule:

Accept the label provided by the teacher if

? 2 18-t (z L)
A Y * A <T
X8 3n DL X|8,in T2
1 2
Label Z 8 i ? 18.)> 1% 2 18.)4
abel Zyypas Oy LB L a (B l8)) > 8 a0 (2180 + T
X169, 5n X16,3
1 2
A A ‘ A |
Label Z , as 8, 1f £ o (2 ,]6,)>f , . (241180 + T
XIQZ; X'els
(5-2.2)
where
0.141 /7
e B — — e sea e s M 50 .
T 7% (28-D) (5.2.3)

A A '
In (5.2.2) £ , and £ , are the estimates of f L, and £ ,
X[8,sn X|e, sn x|, xle,

based on a total of n sample patterns. Depending on the label on Zn+l

provided by (5,2.2), the corresponding estimate was updated'and this
procedure was repeated on all the sample patterns. Based on the final

A A
estimates £ and £, , the test sample Z was classified
Xx|e, ;N X}6, 3N
1 tl 2 t2
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according to (5.2.1).

For each value of B ten runs were made with two different sample
sizes, Nt = 20 and Nt = 60, 1In each run the performance was computed
based on the classification eof forty test samples, and the average risk-
was calculated by averaging the risk on the ten runs (the loss function
is 1 for misclassification and O for correct classification). Figure 7
shows the plot of this simulation regults for Nt = 20 and.Figure 8. shows
the plot of this simulation results for Nt = 60.

It can be seen from Figures 7 and 8 that feedback on the average
improves the performancekof the learning scheme. A rather interesting
aspect of these plots is that feedback does not seem to improve the
performance very much for‘both higher and lower Qalues of Ba At lower
lower values of‘B, i.e. with a very bad teacher, the amount of feedback
is small because the student does not learn enough to question his
teacher very often. At higher values of B, i.e. with a very good teach-
‘er, the studenf acquires his limiting knowledge quickly and feedback
does not help here since feedback does not increase the limiting know~
ledge. Hence it appears that. feedback is most effective when the teach-
er is mediocre. |

A summary of labelling on one of the computer runs for B = 0.6 is
presented in Table VI to illustrate the relabelling of samplés due to
feedback and the gradual phasing out of the teacher. The second and
third columns in Table VI contain samples lébelled as 81 and‘le\2 respec--
tively by the teacher and columns four and‘five contain samples re-
labelled as 81 and 82 by the feedback scheme. N is the stage of learn-

ing. It can be seen from Table VI that at initial stages of learning

the feedback scheme accepts the label provided by the teacher on most
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¥-DENOTES SAMPLES LABELLED INCORRECTLY BY TEACHER AND

SUMMARY OF LABELLING WITH FEEDBACK

TABLE VI

SAMPLES LABELLED BY

AS-§,

- 0458020

055779

-0a54465

0.61472
0.37303
154207
0.66136
1.23579
176557
117509

0465530

0.22466
1.65705
0.41132
0.30575
0.42291

TEACHER

AS- 8,

0.48503
0.69131
1.44743
1.51854
0.45135
068274
1.51217
046808
1.72767
0.41548
1.74882

" 1459076

156166%

1¢59375%
0.62163
0.62228
0.10980
0.28518
0.36264

' 0.35588
0.577933

0054739
1.58060%
0+65951
0492683
0.72246
0664566
0.37283
1.81883%
1.71398%
0.77855
0.41068
0.6€308
0476831
0.5€184
054528
0.1:978
1.25586%
0.57119
0.69249
1.73285%
1.45229%
1.20659%
1.68309%
0.76117
0.81978

—— et o e

0.54918
1.71383
0.45123 -
C.88403 '
1.73901
1423685
1.55017

1.85793

1446777
1.,57811
1.77813
0.02556
1.42832
1.60593

1426315

1.21079
0.84848%
1.82512
1.62251
1.91005
0.62532%
1.18466
1.55648

1.13248 .

Je41078%
0.45755%
1044212
0.74364%
1.20546
1.56648
0.42697%
1.80929
0.45230%
1.43123
1.52286
0.43915%
0.13040%

SAMPLES RELABELLED BY
FEEDBACK SCHEME

AS- 8

0.55020
0.59779
0.54465
0.61472
0.37303
1.54007

066136
123579

1.76557
1.7509
065530

u0.22466
1465705
" 0e41132
030675

0.42291

062163

0.62428
0.10980

"'0a28518
0036264
0.35588

0.57933
0.54739
0.65951
0.92683

 0.72246

0.84848

064566

0.37283

0.62532 .

0.77855

'0.41068

0.66308
0.76831
0.41078
0,58184
0445755
0.54628
0.13978
0.74364
0.57119
0.69249

1 0,42697
0.45230. -
0.76117 "
0443915

0.81978
0.13040

CORRECTLY RELABELLED BY THU FEEDBACK SCHEME

AS'S;

0.48503
0.69131
le44743
1.51854
1.62923

0445135

068274

1.51217
0.46808

1.72767
0.41548
l.74882
1.59076

0454918 -
1.71383 -
0.45123
1.56166
0.88043

1.59375
1.73091
1.23685
1.55017
1.85793
1.46777
1.57811
1.77813

0.02556 ' .
142832 -
1.58060:

1.60953
1.26315
1.21079:

l.82512

1.62251
1.81883

1.91005

1,71398
1.18466
1.55648
1.13248
1e44212
1.25586
1.20546
1.56648
1.73285
1.80929
1.45229
1.20659

1463213

1.68309
1.52286
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of the sample patterns. As learning progresses, more and more samples
are correctly relabelled and for large values of N all the incorrectly
labelled samples are relgbelled correctly, i.e. the teacher is ignored
completely.

It must be mentioned here that these plots only represent the per=
formance on the average. The performance of the learning scheme on any
given set of samples will depend on the teacher's labelling on these
samples. A summary of performance of the feedback scheme on ten dif-

ferent sets of samples is given below in Table VII to illustrate this.

TABLE VII

SUMMARY OF PERFORMANCE WITH FEEDBACKl

Run # 1 2 3 41 s 6 7 8 9 10 Average
B Risk
0.55 | 0.010.1 0.0 0.010.6 0.4 0;94 0.80(0.025 1.6 0.385
0,6‘ | O.C 0.25 0.0?i 0.0 0.625 0.025)0.0 0.0 O;O | 0.0 0.03
0.65 0.0 0.05 Oa025 0.0 6.0 0.125{0,0 0.0 |0.0 | 0.0 | 6.02
0.8 0.0{0.0 j0.0 |0.0f0.0 0.0 0.0 |0.0 0.0‘ O.OV 0.0 |

Densities: As in Figure 1; P(Gl) = P(ez) = %

Sample Size Nt = 20

1Entries in table denote the risk for the feedback scheme.
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5.3 Simulation With Non-overlapping Densities} Unequal Sample

Size. For this part of the simulation the densities used are as shown

in Figure 1. The prior probabilities were set at P(Gl) = 0.9 and
P(62) = 0.1. The simulation procedure is similar to the one given in
Section 5.2 except for the feedback part. As derived in Section 4.4

A
feedback was done only on samples with labelsg 62 as follows.

A .
Relabel Zn+l as GL if £ A (2

where

p o Q141 [_& ._B_]
R /—I /—E

A

where n,, n, are the number of samples labelled as 61 and 62 respec-

1’ 72

tively among the n samples.
The results of the simulation are shown in Figure O. [since the
A A .
algorithm is derived for P(el) >> P(ez), the lowest value of B used in
A
this simulation was 0.65. This corresponds to P(el) = .62 and
A
P(ez) = 0038.3 From these plots it can be seen that once again the
average risk of a feedback learning scheme is less than that of a

learning scheme using no feedback.

5.4 Simulation With Overlapping Densities. It has been mentioned

earlier that feedback is meaningful only if the student can perform
better than the teacher. With a large overlap in the densities, to be
precise if the Bayes' risk is greater than (1-B), the student cannot
perform better than his teacher. Hence feedback is not meaningful in

these situations. For this reason, no analysis was done in previous
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chapters on feedback with overlapping densities. However, a simulation
was done to investigate the performance of the feedback learning scheme
with a small overlap in the density functionms.

The density functions used in this simulation are shown in Figure
2. Other aspects of this simulation are identical to the one described
in Section 5.2. The results of this simulation are shown plotted in
Figure 10, 1t can be seen from these plots that feedback seems to
improve the average performance for values of B up to. 0.75, For higher
valués of B, because of overlap the student cannot perform better than
the teacher and hence it is betﬁer to accept the label provided by the
tegcher rather than questioning it. But since overlap was not consid-
ered in deriving the expression for threshold, the feedback scheme
simulated tries to relabel the examples and this results in a compara-

tively poor performance.
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CHAPTER VI
SUMMARY AND CONCLUSTONS

6.1 Summary. A decision rule was derived for classifying patterns

into one of the two ﬁossible categofieé, with an imperfect teacher. A
procedure for learning to recognize patterns with an imperfect teacher
was deVeloped using nonparametric estimators of the unknown density
functions. The asymptotic performance of the proposed learning scheme
was analyzed. The finite sample perférmance of the proposed Learning
scheme was analyzed under the assumptions that the density functions
are smooth and non-overlapping. Based on the results of the analysis
justification for considering feedback as a means of improving the per-~
formance of the learning scheme was given. Several schemes of feedback
were considered and the properties of the feedback scheme using a thres-
hold were derived using the normal approximations to the distribution
of the estimators of the unknown density functions. Assuming equal
sample size, methods of selecting the value of threshold were given and
these methods are used to derive an approximate method of selecting the
value of threshold for the unequal sample size case. The thresholded
feedback scheme was simulated on the computer and the results were pre-

sented.

6.2 Conclusions, It has been shown that the learning scheme pro--

posed in Chapter II has an average asymptotic risk equal to Bayes'

(minimum) risk. For nen-overlapping demsities the performance of the
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learning scheme is better than that of the imperfect teacher and the
nearest neighbor rule. Also the learning scheme performs better than
the teacher on the average even with a finite number of sample patterns.
With overlapping densities, if the overlap is less than (l-B), the
average asymptotic performance of the proposed learning scheme is still
better than that of the teacher and the nearest neighbor rule. The pro-
posed learning scheme does not require the exact value of B, the proba-
bility of correct labelling by the teacher. The only knowledge required
is if Bis greater than or less than l, Also the learning scheme makes
use of the incorrectly labelled sample patterns without requiring the
correct label of the sample patterns,

The use of a threshold in the feedback learning scheme offers a
simple, logical way to combine a student's knowledge with what is being
given to him by the teacher. For non-overlapping denéities the average
performance of the feedback learning scheme seems to be better than
that of a learning scheme not using feedback. For lower values of B,
i.e. for a very bad teacher, feedback does not help much since the know-
1edge'acquired by the student in the iﬁitial stages of learning is small
and hence the amount of feedback is small too. For higher values of B,
i.e. with a very good téacher no significant improvement in performance
results due to feedback. Hence it appears that feedback is good where
the teacher is mediocre.

Feedback results in an improvement in the performance in learning
situations with unequal sample size. However, such a claim could not
be made when the densities overlap. Further research needs to be done

in this area.
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6.3 Suggestions fog Further Research. The concépt of feedback in
learning with an imperfect. teacher can be applied to other patte?n
recognition methods such as the nearest neighbor rule and threshold
logic. This concept may also be used in parametric pattern recognition
methods using Bayesian recursive estimation procedures. Even though
several different feedback schemes were cqnsidered in this dissertation
and the thresholded feedback scheme was shown té be better than the
other methods considered, this does not mean that the thresholded feed~
back scheme is the "hest", Investigation needs to be done on the possi-
bility of feedback schemes other than the ones mentioned in this disser-
tation. Also further research needs to be done on using feedback when
the density functions overlap. Another area of research that needs to
be explored is concerned with the estimators of density functions. A
ma jor problem in this area is the determination of a satisfactory
“smoothing factor" to be used in Sprecht'!s approximation. Forms of
estimators other than the ones suggested by Parzen (16) and Murthy (17)

need to be investigated.
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APPENDIX A

ESTIMATION OF DENSITY FUNCTIONS

A.l Parzen's Method. Let Xl’XZ""’Xn he independent random vari-
ables identically distributed as a univariate ‘random variable X whose
distribution function Fx(x) is absolutely continuous with probability

density function fx(x). A class of estimators of the form

n x~-X,
Esn®) = T '51 K{""lh(n)} (A.1.1)

have been proposed by Parzen for estimating fx(x). The estimate defined
in Equation A.l.1 is asymptotically unbiased and consistent at all
points x at which the probability density function is continuous if h(n)

and K(y) satisfy the following conditions:

-
lim h(n) = 0 '
n—o
” (A.1.2)
lim {—];](:—7} =0
nae DR(n b
sup a
- <y <co|K(y)|<oo
[ |rm]ay <o
) > (A.1.3)
lim |yK(y)| =0
y e
K(y)dy = 1 .
L !
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A.l.l Bias and_Variance of Parzen's Estimate. If the transform

of K(y) has a characteristic exponent two, then the bias of the estimate

A
fx;n(X) is given by

2 ©
olf, lai e [ yR@ay . @)

1
If the density function fx(x) is smooth, the second derivative fx(x) is

b[f ( ] O . AL' '5

A
The variance of fx_n(x) may be computed by writing the estimator as an
. 3

average,

1 n
fX;n(X) =T kil Vnk
[x-x, ]
1 x-Xy
Vok = '@ Ry

of independent random variables identically distributed as

_ 1
n _ h(n)

x=X]
h(n) ’

\Y% K([
Parzen has shown that the variance of Vn is
2 1 > 2
o [Vn] _’!-h—(n—) fX(x) 'L, K™ (y)dy
A
and hence.the variance of fx,n(x) is
H

cz[?x;n(x)] o~ E’HI?ET £, () J: k% (y)dy : (A.1.6)

A.1.2 Consistency and Asymptotic Normality of Parzen's Estimate.

Since h is chosen such that it satisfies Equation A.l1l.2, it can be seen
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‘ A
from Equations A.l1.4 and A.1.6 that the bias and variance of fX'n
LR

(%)

A
tends to zero as n tends to infinity. Hence fx,n(x) is a consistent
b

: A
estimate of fx(x). Parzen also shows that fX'n(x) is asymptotically
5

normally distributed, by showing that

. c
1 1 2
SC}“—)/—ﬁf exp[- 5 y“ldy as n —= .
=00

Parzen also gives an idea of the closeness of the normal approximation

from the Berry-Essen bound.

A.2 Extension of Parzen's Method to the Multivariate Case. Murthy

(17) has extended Parzen's résults to the multivariate case, The form

of estimators proposed by Murthy for estimating a multivariate density

function fx(g),

based on a set of n independent identically distributed vectors

&p'"‘”.&n’

X1
Xi2
X. = .
—1
X,
_ Tip |
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is given by

A ; nop
f (_}E) = E E ( T Bin)K(Bln[le-xl]!""Bpn[xjp_xp]) (szol)

Setting p = 1 and Bln = E%HT in Equation A.2.1, it can be seen that the
above estimator reduces to that proposed by Parzen for the univariate
case given in Equation A.l.1. The multidimensional 'window!"

K(xl,x ,...,xp) must-satisfy

2

K(XI’XZ""’xp) >0
K(xl,gz;...,xp) =_Kthl,i32,.,.,i}P) . (A.2.2)

For non-negative x and x12,x22,..,,xp2 such that

11°%21 0 %51

Xilzxiz 1=1,nog’p

K(xll,x21,...,xp1) < K(XIZ’XZZ""’po)

and

vr a'av,:rmK(Xl,Xz,...,Xn)dxl,--c,dxn=_11 ° (A0203)

=D

The sequence of non-negative constants Bin satisfy

Bin-—ﬁ ® gs n—}w i=1,0es,p

—0as n— . (A.2.4)

If the above conditions hold it has been shown that for large n the

bias of the estimator

Bfgx.n(g)] ad o (A.2,5)
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and the variance of the estimator

P
m B

2.4 i=1
o [f_&;n(gc_)] &

in

@ Q 2
) f§(§> Im,...,ImK-(xl,xz,...,xp)dxl,...,dxp .
(A.2.6)

As derived by Parzen, Murthy has aléo derived the consistency and
asymptotic normality of the estimators fx;n(i).

A major disadvantage of the estimators of Parzen and Murthy is that
all the samples Kl""’zn must be permanently stored in the computer.
This presents a problem when the samples Ki are of large dimensions and
when the number of samples n is large, both of which are common in pat-
tern recognition problems. Sprecht (10) has developed a method which
woﬁld require a fixed storage capacity using a "window?", K(xl,xz,..;,xpL
similar in form to a multivariable normal density function. Hence in
order to be able to make use of Sprecht's method, the following form of
estimators has been used in this dissertation=

1

~[§_=X.]T[§-2(_.] (n)p
exp{ J' 2 : } *

Fho»

/\

(A.2.7)

H ™M B

/_ 1 (mP/2

From Equations A.2.5 and A.2.6, the asymptotic bias and the variance of

the estimator in Equation A.2.7 are

A (a4
b[fﬁ;n(g)] 0 (A.2.8)
2 A x@®
o lfy, ] ——r . (4.2.9)
=’ /a2 /mP

For the purpose of analysis of the feedback scheme discussed in this
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dissertation the property of asymptotic normality of the estimator will

A .
be used and fX'n(E) will be treated as a normally distributed random
? .

-_—

variable with the mean fX(E) and the variance given in Equation A.2.9.

A.3 Sprecht'!s Approximation. The form of £ (x) suggested by

Xin
Sprecht is
T
A 1 1 2 ~[x -x17(%, -x] |
fn® 77 5 ln T exp{ 57—} o (A3.1)
=’ cemP’e oP i=1 20
where
~ 7 [ 7]
i1 X1
12 ®12
. = ° andx= .
X, X,
ip ip

A
are p dimensional vectors. fX'n(x) can be rewritten as
in >

_ ' <, X +X X, Ao otx X, +B
A 1 X'x .1 B X X, et X, e 4B,
fX;n(z) = p 72 [eXP(*"E“QJ{H T exp[—= ] 1% P1p 173
- o (Zn)p 20 i=1 o
where

P2

Bi= -% z Xi' .
=1

Using Taylor series expansion and the multinomial theorem, the second
term on the right hand side can be written as a polynomial Dn(g) and

f X) can be written as
g;n(—) a W ;
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A - 1 XX
fyin® = 573 [exp (- =510 () (4.3.2)
o (2m) - 20
where
n n
D7) =Dpy. .0+ Do ...0%1 T+ * Doo,..1%
D X + D x2'+
T P20...0%0 T e T P, 2% T 0
n z z z :
+ D_ X1 X2 see XD A aoe . (A.3.3)
Zl,zzoguzp l 2 P
The coefficients D" are given by
Z z --cZ
172 1
n Z z 2z B,
n _ 1 1 1,72 p i
b, yZoeeaZ 2h n .Z Xil Xig o Xip exp ( 2) ’
1°72 p z,lz,l...2 1o i=1 c
1°72 p
wheré
h ES Zl -+ 22 + e Zp . (A0304)
Noting that
z. z zZ B
1 2 P ]
Xor1 1 Xng1 2 oe Xppp p ¥R 0)
Dn+1 : _ -n_ o n
= = - - s
Zl’z2'°'zp ntl zl,zz...zP 2.1z 1euuz 1 02h4(m+l)
1°72 P :
(A.3.5)
it can be seen that a recursive relationship exists for Dz 2 z °
l, 2000
Hence for a fixed number of terms M in the Taylor series, one needs to
A

store only M coefficiencts of the polynomial to represent fX'n(x)

. in =
given in Equation A.3.2. These coefficients can simply be updated
through the recursive Equation A.3.5 when additional samples become

~available. For problems involving large dimensionality and large number
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of samples the saving in storage requirements on the computer is
appreciable.

One of the major problems associated with Sprecht's method is the
selection of a satisfactory !'smoothing factor". Sprecht gave an ex-
pression for ¢ as a function of n, such that the expected mean square

A
error of the estimate fX n(£> is minimum where fX(5> is a normal density
b

function with mean zero and variance one, This however does not guaran-
tee that the expected mean square error will be minimum for other forms
of fX(5>' The guthor's advisor, Dr. Breiphol suggested that ¢ be taken

as

- =2
& -0 EX,

_ i==1 . - __Z_L_

o= n(n - 1) ’ *="7 *
This leads to
? }
B{[ x x3p FIdx} = EX)
—_2 A
E{I [x - x] fx.n(x)dx} = Variance of X .
H

Further work needs to be done in this area.



APPENDIX B

ANALYSIS OF PROPOSED‘LEARNING SCHEME RELATED TO FEEDBACK

B.1 Introduction. This part of the appendix is concerned with
analyzing the performance of the proposed learning scheme related to
feedback. It will be assuﬁed that there are only two categories of
patterns with non-overlapping densities and equal prior probabilities.
- Normal approximations of the estimators of densities given by Parzen
and Murthy will be used. B8 will be assumed ;0 be greater than %, the
case of B < % can be taken care of through Corollary 2,2.1, The
sample size n used in this appendix is assumed to be large enough to

justify the use of asymptotic normal properties of the estimators.

B.2 Normal Approximation.

Lemma B.l1. The estimator of the discriminant function

A A
£ a0 (x]8)
5‘92;n

is asymptotically normally distributed with a mean

D,(x) = (28-1)[f (x|6,) - f (x16.,)]
ATE B-1) X|6, x| §|92§|2

and variance
(x]8,)

fgg|el(-’5|91) + f§|92

/7 (2 TP
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Proof. From (A.2.8), and (A.2.9)

A
£ A (_Iel)
A A A X186,
X8, sn x|, /o @y/mP
and
A
£ a8
A A A §l62
t A (i'ez)NN(f A (P}_{_Iez)’ ) ) i
X|8,m x18, /7@ /mP

The estimators are independent because of the assumption of independent

samples, and hence

A A A A A :
? (x[6.) - ¢ (x]8,) ~NE 5 @B - £, x]8,),
x|8 0 1 x|f i 2 x|8 = 2 x8, T2
_..| ]_’n -.-‘ z,n —I 1 --I 2
A A
£ oa &[0+ £, (x]8)
X|6 ‘ X|6
2% 2%
/T @2 ymP
Substituting

£ (x) = Bf (x]18,) + (1-B)f x1]9,)
5'81 X|8,; |8, x|e, 18,

and

3 (x) = (1-B)f (x]9,) + Bf (x]8,) ,
28, xjo, ®1%1) + Pixje, 1%

it follows that
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By =t o GIBDE B v N@BDlEy &8 @lo)],
CH X|8;5n X|8,sn =1 =2
o, 190 + Fyo, 18
‘ : ) . (B.2.1)
/@ /P
1f 5391, then'fXle (Elez) = 0, and
| =152
| £ 0
A A A A §|91(§’|' 1
X630 X|8,3n 219 /a2 y/mP
(B.2,2)
-If Eeez, then fXle (glel) = 0, and
s
f q
A A A A yez(i'ez)
Eoa @lep) - f A (x]8) v NG(BDEg 0 ([0,
X|85n X[8,3n =1%2 /a2 /mPF
(B.2.3)

The approximations given in (B.2.1), (B.2.2), and (B.2.3) will be used

in the following sections.

B.3 Anélysis of Performance.

Lemma B.3.1l. P(correct classification zeel;n) —+ 1 as n =) «» where

n=n, =n, is the sample size used in estimating the densities.

1 2

Proof.

) A
P(correct classification §eel;n) = P[DA x) >0 5691] . (B.3.1)
Bin

1f zeel, from (B.2.2)



' (x[8,)

A 1
D, (x)~N((2B-1)f (x1]9 ), —_—) .
Bin ™ xie, 00 S P

Hence

- (3_{_\91)
p(D, () >0|xe6,1=[ N((28- "Deyjq @10, 20 e
95n- 0 /T @y/mP

b
The notation f N(p,cz)dg denotes the integral
' a

s exp{- —--iLii-*}dé

Substituting the above integral in (B.3.1), it follows that

P(correct classificationlﬁeel;n)

96

- (X|9 ) -
%
= N((ZB 1f (xle ), , )dE = N(0,1)dE . (B.3.2)
5 219 /7 @ /P ILl |
where
- (2B~ 1)fx‘e (xlel)
L, = » .
' f&lel(i‘-lel) ,
/R (@2 ymPF

As n —y o, the lower limit of the above integral —) -« and hence
P(correct classificationlieelin)'—ﬁ 1 as n —) o,
A similar proof can be given for P(correct classification|xe8

Using these results the following theorem can be proved..

2

ST) .
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Theorem B.3.1. For a symmetrical loss function given in Equation

2.1.1 the average conditional risk associated with classifying a pattern

X — 0, as n — >,

Proof. The conditional risk is given by

0 if

]

(r_(x)
n

is correctly classified

|

based on
sample size n
= 1 if x is misclassified

P(correct classification|xjn) = P(GI)P(correct classification‘geel;n)

+ P(GZ)P(correct classification'geezsn) .
From Lemma B.3.,l, as n —) o,
P(correct classification|x;n) ~—)P(61) + P(ez) =1
and
P(incorrect classificationlg;n)-—ﬁ 0 . (B.3.3)
‘Hence, as n - o
. *
E(rn(g))‘—~)0 = r (x), the conditional Bayes' risk. (B.3,4)

Taking expectation with respect to fx(g), it can be seen that the

average asymptotic risk for the’ learning scheme is equal to the Bayes'

risk as was shown in Chapter II.

Lemma B.3.2. For a given sample size n, = n

1 g =T, n being large,

P(correct classification]x;n) increases as B increases,
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Proof.

P(correct classificationlﬁ;n) = P(Gl)P(correct classificationlzeelin)

+ P(GZ)P(correct classification|§€92;n)

(e,

/7 @ /AP

(3<_|61)

= P(8)) jo NE<23-1>f§|91<§|‘el>, 1dg

f§|62(5192>

(x]0,), —————1d,

0
+ P(6,) N[-(2B-1)f
2 im /a2 /mP

x|8,

%E {P(correct classificationlzsn} =

("o

4 {p(e,) |N(O,1)aE
B 1 ’

- (281, o (x]6) 2 /P /i1 = L

X6,

~ : P 5
(25,,1>[f§|92(3<_|92>(2 /mT/al% =1,

+ P(8,) | N(0,1)d§ }
J o
_ P /=%,

”P(91>2[f§|el(3‘-|91>(2/-ﬁ> /nl® = N(0,1) .
1

+ P(ez)Z[fxle (x]8,) (2 /mP /317 - NGO, 1)
=% L
2
(B.3.5)

where

1 1 .2
N(0,1) | = == exp{- = L}
L J2n 2
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From (B.3.5) it can be seen that %ﬁ {P(correct classificationlg;n)} is
always greater than zero at all points x where the densities are greater
than zero. Hence as B8 increases the brobability of correct classifica-
tion also increases,

An expression for the rate of learning can be derived using the

normal approximations as follows.

Rate of learning A %; {P(correct classificationlz;n)}

P(correct claésificationlg;n) =
-
P(8,) | N(0,1)dE

-(2'6—1_)[f§|61<§§91)<2 /P VR = 1

(28-D)LE, o (x]6,) 2 /MP /7% =

X|e, k2

+ P(8,) | N(0,1)dE

-

%; {P(correct classificationlzin)} =

P(8)) (28-1)[f, 1, (x]8)) 2 /MPI? 4n§,4 © N(0,1)

X |6

D% 1 .
+ P(62)(25-1)[f§'92(§|62)(2\/ﬁ) ] 4n3/4 N(0,1)

p/2
= (-1 2L (p(o, (s

5
(x]6.)1% - N(0,1)
4n3/4 1

x|e,

Ly
3.
Ly
(B.3.6)

+ PO)[E 1, (216,077« N(O,1)

X|e,

1Even though n is discrete, it is treated as a continuous variable
in this theorem.
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The rate of learning given in (B.3,6) is good for large values of n
only.
Another quantity of interest in studying the rate of learning is

the average rate of learning defined as

P(correct classification|§;n)

Average rate of learning = Y ‘ . (B.3.7)

Using the above definition the following lemmg can be easily established.

Lemma B.3.3. The average rate of learning for a given sample size

n increases as B increases.

ggggg. In Lemma B.3.2 it was shown that
P(correct classificationlz;n) increases as B increases. Substituting
>this result in (B.3.7) it immediately follows that the average rate of
"learning for a given sample size n increases as B increases.
For every value of B > %, the asympfotié learning approaches that

of a Bayes machine independent of B. Hence the rate of learning does

not depend on B, in fact the rate of learning —} 0 as n-—)w'for every

1

value of B > 7

B.4 Use of Threshold in Feedback. With a threshold T, the proba-

bility of correct classification and the probability of incorrect clas-

sification for 5391 are given by

( correct ' 0. in) = T N((28-1)f ( |6 ; f§|el(ilel)>dg
classification|=%°1’™ = T ) ‘§|01 215 ’ti 2 /P

( incorrect xe0. 3n) = jT N((ZB»l)f (xle ) leel(ziel))dg
classification xe 1’ - Y o .&'61 =171 ’¢GT (2\/ﬁ)P ' ’

(B.4:1)
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Similar expressions for xe8, can be derived. Using these, the proper-

2

ties of the proposed feedback learning scheme can be analyzed.

Theorem B.4.1. Under assumptions stated in Section B.l,

P(feedback‘geelin) increases as f§|61(§|91) increasgs .
Proof .
A A
P(feedbacklxe@ sn) = P{|f A (x]8,) = £ A (x]8,) > T |=xeb }
' -1 X|6.5n 1 XIG in 2 -
0, o1 o ?T
=11 =172
A A A A
=1-P{ £ o (x]0) - f o (x|8,) <T|zxed } .
X% X9 E¢Y9)
X|6,sn X|8,5n
215 215
From (B.2.2),
T e [0}
=1 - [ NLeB-DE o &lo), ———Tag .
T 219 /A (2 /mP

P
Denoting f (§|el) by a, and [/m (2 /MPIE by ¢, the above equation

X|8,

can be written as
P[T—(Zﬁ-l)a
7a o ©

- N(O,l)dg .

[‘T“ (}_E“’l)ajc

it
—

J

Taking derivative with respect to a

[T” (‘/Z%“I)ajc

& [P(feedback|xes sm)} = - = { [ N0, 1)ag )

da
: [fT"iigfl)a]c
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- [T-(28-1)ale
Cﬁ['(ZBPI)] = 2‘/'5 ]

—J—,Z=—~T“<2§““a12¢?}[ .

== e % exp{-[

+ 755 e -(HEGEDRY 2y —— A
= - 735 el (B2 2y L £ E—L~‘T‘<§ 5Ll
+ 7= expl [FBIAY2 2y ——B————’”ag}ga* ]
= 1 7 57z Lo UAER0" ) v enal TR ()

+ o 7 B Loxp(-(FRRR" &) - enp (R

(B.4.2)

The first form of the above expression is greater than zero and in the

second term, the exponential factors can be grouped as
' 2
rI-(28-1)a-2 2 c ~
exp{-[=75=""1" <"}1 - exp{-~ == [4Ta(28-1)]}] > O ;
because T > 0, a > 0 and (28=1) > 0. Hence from (B.4,2)

d
&7 {plfeedback|xes sn]} > 0 3 a=fy, (x]0) .

x|,
Hence the maximum value of feedback ﬁor a sample §681 occurs if

fé‘el(ilel) is maximum,

Similarly it can be shown that the maximum value of feedback for a

sample xeb, occurs if £ (Elez) is maximum} This theorem is used in

2 X|e,
Section 3.4 to establish that with a threshold, the feedback starts

where the densities are maximum.
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Lemma B.4.1. P{feedback|x;n} increases as the threshold T is

decreased and vice versa.

Proof. Denoting fxle (glel) by a, and [(2\/ﬁ)p\/ﬁj% by ¢
v =171

(11-G08-1ale _ |
Ja -
P{feedback|xe6,sn} = 1 - | N(0,1)d§
[-Tw(ZBnl)a]c oL

Ja -7l
S (feedback|xed sn} = - = N(0,1)| - =N(0,1)| <O
dT + 2 1’ —_ /E ] L ‘/'E L L e

2 1

Hence as T increases, P(feedbacklieel;n) decreases. A similar argument
can bebgiven for P(feedback]geez;n). Combining the two it can be seen
that P{feedback|x;n} decreases as T increases and vice versa.

Lemma B.4.l is used in Section 3.4 to establish that by varying T,
the amount of feedback can be controlled.

An immediate consequence of Lemma B.4.,l is the possibility of a
gradual phasing out of the teacher. If T is chosen as a decreasing
function of n, the sample size, then in the initial stages of learning
T will be large and the learning scheme can be made to depend more on

the teacher than on his own knowledge. As n—}o, T — 0 and

~

P(feedback Eeelin) =1 - | N(O,1)dE

\J [“T“iagfl)a]c
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- (2B8-1)ac
Ja
—3 1 - | N(0,1)dE

-(28-1)ac
J Ja

=1 as n—3 o .

Similarly P(feedbacklgeezsn)-—ﬁ ] as n — «», Hence as n —) =, every
sample is fed back with proability 1 and the teacher is completely

phased out.
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