I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES
II. AN ALGORITHM FOR THE DETERMINATION

OF THE SHAPE PARAMETERS OF
INFRARED ABSORPTION BANDS

By
ARTHUR STANLEY ROSENBERG f^{2}
Bachelor of Science Eniversity of Vermont
Burlington, Vermont
1955
Master of Science
Massachusetts Institute of Technology
Cambridge, Massachusetts
1959

```
Submitted to the Faculty of the Graduate College
            of the Oklahoma State University
    in partial fulfillment of the requirements
            for the Degree of
            DOCTOR OF PHILOSOPHY
            May, 1970
```


I. A VIbRATIONAL STUDY OF THE CYANOETHYLENES
II. AN ALGORITHM FOR THE DETERMINATION

OF THE SHAPE PARAMETERS OF

INFRARED ABSORPTION BANDS

Thesis Approved:

Dean of the Graduate College

762700

ACKNOWLEDGEMENTS

I am greatly indebted to my research director, Dr. J. P. Dev1in, for his guidance, counsel and patience during the course of these investigations.

I would also like to express my gratitude to Dr. O. C. Dermer for his efforts in proofreading this manuscript, to Dr. E. J. Eisenbraun for his encouragement and counsel, and to Continental Dil Company for the use of their laboratory and computer facilities during portions of these studies.

The study reported in Part I of this thesis was supported in part by the National Science Foundation under Grant GP-688.

TABLE OF CONTENTS

Chapter Page
PART I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES
I. INTRODUCTION 2
Vibrational Spectra 2
The Potential Function 5
The Central Force Field 6
The Simple and Modified Valence Force Fields 7
The Urey-Bradley Force Field 7
The Scope of the Present Investigation 10
II. SPECTROSCOPIC STUDIES OF THE CYANOETHYLENES 11
III. EXPERIMENTAL 14
IV. INTERPRETATION OF THE SPECTRUM OF .1,1-DICYANOETHYLENE 17
V. FORCE CONSTANT CALCULATIONS 27
Calculations Excluding Tetracyanoethylene 31
Calculations Including Tetracyanoethylene 40
VI. DISCUSSION 51
PART II. AN ALGORITHM FOR THE DETERMINATION OF THE SHAPE PARAMETERS OF INFRARED ABSORPTION BANDS
I. INTRODUCTION 56
The Problem 56
The Shape of Infrared Absorption Bands 57
The Effect of Finite Slit Widths 62
Studies of Infrared Band Profiles 65
The Scope of the Present Investigation 65
Chapter Page
II. DEVELOPMENT OF THE ALGORITHM 67
The Calculated Spectrum 67
The Least-Squares Procedure 70
III. EXPERIMENTAL 73
General 73
Data Acquisition 73
Evaluation of the Spectral Slit Width 74
IV. RESULTS AND DISCUSSION 76
Synthetic Spectra 76
Carbonyl Stretching Bands of Aliphatic Esters 88
Carbon-Hydrogen Bending Bands of Simple Aromatic Hydrocarbons 99
Summary and Conclusions 106
SELECTED BIBLIOGRAPHY 109
APPENDIX 112

LIST OF TABLES
Table Page
PART I
I. The Cyanoethylenes 12
II. Infrared Spectrum of 1,l-Dicyanoethylene 19
III. Results of Zero-Order Calculation for 1,1-Dicyanoethylene 25
IV. Urey-Bradley Force Constants for the Cyanoethylenes 28
V. Force Constants and Dispersions Obtained from Overlay Calculations Excluding Tetracyanoethylene 32
VI. Observed and Calculated Planar Fundamental Frequencies for Acrylonitrile 34
VII. Observed and Calculated Planar Fundamental Frequencies for Fumaronitrile 35
VIII. Observed and Calculated Planar Fundamental Frequencies for Maleonitrile 36
IX. Observed and Calculated Planar Fundamental Frequencies for 1,1-Dicyanoethylene 37
X. Observed and Calculated Planar Fundamental Frequencies for Tricyanoethylene 38
XI. Distribution of Potential Energy among Planar Internal Coordinates of Fumaronitrile 41
XII. Distribution of Potential Energy among Planar Internal Coordinates of Maleonitrile 42
XIII. Distribution of Potential Energy among Planar Internal Coordinates of l,l-Dicyanoethylene 43
XIV. Observed and Calculated Planar Fundamental Frequencies for Tetracyanoethylene 44
XV. Force Constants and Dispersions Obtained from Calculations Including Tetracyanoethylene 46
XVI. Relative Chemical Shifts for a Series of Vinyl Compounds 53
PART II
XVII. Results from Analyses of Synthetic Spectra Containing One Band 77
XVIII. Results of Zero-Slit Calculations 80
XIX. Results from Analyses of Synthetic Spectra Containing Two Bands 82
XX. Band Parameters for Synthetic Spectra Containing Three Bands 85
XXI. Refined Parameters for Band 3 of the Three-Band Synthetic Spectra 86
XXII. Band-Shape Parameters for the Carbonyl Stretching Band of Methyl Oleate 91
XXIII. Band-Shape Parameters for the Carbonyl Stretching Band of Ethyl Acetate 95
XXIV. Molar Absorptivity for the Carbony1 Stretching Band of Ethyl Acetate 96
XXV. Refined Band Shape Parameters for the Carbonyl Stretching Region of Di-n-Butyl Oxalate Spectra 97
XXVI. Molar Absorptivities for the Carbonyl. Stretching Region of Di-n-Butyl Oxalate Spectra 98
XXVII. Refined Band Shape Parameters for the C-H Bending Bands of Aromatic Hydrocarbons 102
XXVIII. Refined Carbon-Hydrogen Bending Band Parameters for Mixtures of Aromatic Hydrocarbons 103
XXIX. Input Requirements for Program Bandfit 114

LIST OF FIGURES

Figure Page
PART I

1. Infrared Spectrum of 1,1-Dicyanoethylene 18
2. Gas Phase Contours for a Planar Asymmetric Top with $I_{A} / I_{B}=0.4$ 23
3. Urey-Bradley Force Constants for the Cyanoethylenes 30
4. Some Canonical Forms for Tetracyanoethylene 49
PART II
5. The Triangular Spectral Slit Function 65
6. Single-Band Synthetic Spectrum with $4 \mathrm{~cm}^{-1}$ Spectral Slit 78
7. Two-Band Synthetic Spectrum with $7 \mathrm{~cm}^{-1}$ Spectral Slit and $S / N=100$ 84
8. Three-Band Synthetic Spectrum with $4 \mathrm{~cm}^{-1}$ Spectral Slit and $S / N=200$ 87
9. Result of Fitting a Two-Band Function to a Three-Band Synthetic Spectrum 89
10. Observed and Calculated Carbonyl Stretching Bands for Methyl Oleate with $1.5 \mathrm{~cm}^{-1}$ Spectral Slit 93
11. Observed and Calculated Carbonyl Stretching Bands for Di-n-Butyl Oxalate with $3 \mathrm{~cm}^{-1}$ Spectral Slit 100
12. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and m-Xylene with $2.2 \mathrm{~cm}^{-1}$ Spectral Slit 104
13. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and m-Xylene with $1 \mathrm{~cm}^{-1}$ Spectral Slit 105
14. Observed and Calculated Carbon-Hydrogen Bending Bands for o-Xylene, \underline{m}-Xylene and t-Butylbenzene with $2.1 \mathrm{~cm}^{-1}$ Spectral S1it 107

PART I

A VIBRATIONAL STUDY OF
THE CYANOETHYLENES

CHAPTER I

INTRODUCTION

Vibrational Spectra

Infrared and Raman spectroscopy furnish one of the most powerful methods for investigating the internal forces of molecules. The vibrational frequencies, derived from spectroscopic studies, are functions of the kinetic and potential energies of the system. The kinetic energy is a function of molecular geometry and atomic masses and the potential energy is determined by the forces within the system. Therefore, if the geometry and mass distribution of a molecule are known, the vibrational frequencies of the molecule can be used to obtain information concerning the forces acting during the vibrational motions.

For a molecule containing N atoms, $3 N$ coordinates are necessary to define the system at any point in time. Of these, 3 coordinates are necessary to define the center of mass of the molecule with respect to an external reference and, for a nonlinear molecule, 3 define rotational motions about the major axes of the molecule. The remaining $3 \mathrm{~N}-6$ coordinates are available to describe the motions of the component atoms with respect to the rotating coordinate system; that is, the molecular vibrations.

Each of the above-mentioned $3 N-6$ degrees of freedom corresponds to a normal mode of vibration of the molecule. In a normal mode, all
nuclei move in phase and at the same frequency. Amplitudes of displacement from the equilibrium position may be different for each nucleus, but each must reach its maximum displacement at the same time and each atom must pass through its equilibrium position at the same time. The frequency associated with a normal mode is known as a normal, or fundamental, frequency.

In discussing kinetic and potential energy of a vibrating system it is convenient to introduce the concept of mass-weighted cartesian coordinates q_{i}. These are defined by the equations

$$
\begin{align*}
q_{i}=\sqrt{M} M_{j} \Delta X_{i}, \quad i & =1,2, \ldots, 3 N \tag{1}\\
j & =1,2, \ldots, N
\end{align*}
$$

where M_{j} is the mass of the j th atom and ΔX_{i} is one of the three cartesian displacement coordinates for the j th atom. In terms of these coordinates, the kinetic energy is

$$
\begin{equation*}
2 T=\sum_{i=1}^{3 N} \dot{q}_{i}{ }^{2} \tag{2}
\end{equation*}
$$

where the dot implies differentiation with respect to time. For small displacements, the potential energy can be expressed as

$$
\begin{equation*}
2 V=\sum_{i=1}^{3 N} \sum_{j=1}^{3 N} f_{i j} q_{i} q_{j} \tag{3}
\end{equation*}
$$

where the $f_{i j}$ are force constants given by

$$
\begin{equation*}
f_{i j}=\left(\frac{\partial^{2} v}{\partial q_{i} \partial q_{j}}\right)_{0} \tag{4}
\end{equation*}
$$

The zero subscript implies the equilibrium position, that is, $q_{i}=q_{j}=0$.

Although it would be possible to describe the normal modes of vibration in terms of the $3 N$ mass weighted cartesian coordinates, it is more advantage ous to introduce a system of normal coordinates. These are defined as

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{k}}=\sum_{i=1}^{3 N} 1_{k_{i} q_{i}}, k=1,2 \ldots, 3 \mathrm{~N} \tag{5}
\end{equation*}
$$

in which the coefficients $1_{k i}$ are chosen such that, in terms of the normal coordinates, the kinetic and potential energies have the forms

$$
\begin{equation*}
2 T=\sum_{k=1}^{3 N} \dot{Q}_{k} \quad 2 V=\sum_{k=1}^{3 N} \lambda_{k} Q_{k}^{2} \tag{6}
\end{equation*}
$$

Thus the potential energy involves no cross products while the kinetic term retains the same form as in Equation 2. In normal coordinate space, then, each coordinate corresponds to one of the normal modes of the molecule. The λ_{k} of Equation 6 are related to the fundamental frequencis v_{k} by

$$
\begin{equation*}
\lambda_{k}=4 \pi^{2} v_{k}^{2} \tag{7}
\end{equation*}
$$

There is no problem in considering $3 N_{\text {, }}$ rather than $3 N-6$, normal coordinates since translation and rotation may be considered as normal modes with zero frequency.

The Potential Function

Virtually all'studies of molecular force fields are based on the assumption that the vibrational motions are harmonic. This assumption would be expected to be true if the motions involved only infinitesimal displacements of the atoms from their equilibrium positions. Nevertheless, the success of quadratic potential energy functions in describing the force fields of many molecules confirms the validity of the harmonic approximation.

For the purpose of developing the potential function, the vibrational potential energy may be expressed in terms of $3 \mathrm{~N}-6$ internal displacement coordinates. These are most conveniently chosen as the instantaneous changes in the bond lengths and bond angles in the molecule. Under the assumption of harmonic motion, the potential energy in terms of the internal displacement coordinates is

$$
\begin{equation*}
2 V=\sum_{i=1}^{3 N-6} \sum_{j=1}^{3 N-6} f_{i j} \Delta R_{i} \Delta R_{j} \tag{8}
\end{equation*}
$$

where ΔR is an internal displacement coordinate and $f_{i j}$ is the force constant. This equation is entirely analogous to equation 3 , the only difference being that a different coordinate set is used.

Equation 8 defines the general valence force field. This field includes not only the $3 \mathrm{~N}-6$ principal force constants ($i=j$), but also all interaction force constants ($i \neq j$). In the absence of symmetry considerations there are then $(3 N-5)(3 N-6) / 2$ force constants to be evaluated to define this field. Since there are only $3 \mathrm{~N}-6$ vibrational degrees of freedom, the system is clearly underdetermined. In general,
however, considerations of molecular symmetry reduce the number of unique force constants to be determined. Consider, for example, the planar vibrations of tetracyanoethylene. There are 17 degrees of freedom associated with the planar modes so that, if symmetry is neglected, 153 force constants would have to be evaluated to define the general valence force field. When molecular symmetry is taken into account, the number of unique force constants to be determined is reduced to 30 . Even so, the problem is still underdetermined in that only 17 fundamental frequencies are available.

In addition to the above mentioned difficulties, the general valence force field does not present a clear picture of the nature of the interactions between nonbonded atoms. In order to decrease the number of force constants and to permit a clearer interpretation of the forces acting within a molecule, various assumptions concerning the nature of the force field have been made. These assumptions have led to the pos: tulation of a number of special force fields. ${ }^{1}$ Some of these are described below.

The Central Force Field

The central force field is based on the assumption that interactions exist in a molecule along the lines connecting pairs of atoms and that every atom exerts influence on every other atom, independent of whether the atoms are bonded to each other or not. The number of independent force constants required for this field is $N(N-1) / 2$, a number quite small compared to the $(3 N-5)(3 N-6) / 2$ required for the general valence force field. This mode1, however, has not given satisfactory results ${ }^{2}$ and is now seldom used.

The Simple and Modified Valence Force Fie1ds

The simple valence force field is similar to the central force field in its treatment of forces acting between bonded atoms, but does not include interactions between nonbonded atoms. Instead, it is assumed that a force constant is associated with the angle between bonds which opposes a change in the bond angle. This field can usually account for all molecular bending vibrations and in this respect is superior to the central force field. However, the lack of quantitative agreement between frequencies calculated on the basis of the simple valence force field and those actually observed indicate that this field is best regarded as only a rough approximation.

The modified valence force field consists of the simple valence force field with the addition of one or more judiciously chosen interaction terms. This generally leads to a set of force constants which can be evaluated in such a manner as to reproduce the observed frequencies we11. It is not, however, always possible to predict just which of the interaction constants it is necessary to include. In fact, several different sets of force constants may adequately describe the frequencies of a given molecule. In addition to this lack of uniqueness, it is usually difficult to give a meaningful interpretation for the selected interaction constants.

The Urey-Bradley Force Field

The Urey-Bradley force field (UBFF) ${ }^{3}$ may be considered as a simple valence force field modified to include central forces between nonbonded atoms. The potential energy can be expressed in terms of the
basic UBFF as

$$
\begin{align*}
2 V=2 & \sum_{i} K_{i}^{\prime} r_{i} \Delta r_{i}+\sum_{i} K_{i}\left(\Delta r_{i}\right)^{2}+2 \sum_{j} H_{j}^{\prime}\left(\Delta \alpha_{j}\right)+ \\
& \sum_{j} H_{j}\left(\Delta \alpha_{j}\right)^{2}+2 \sum_{k} F_{k}^{\prime} q_{k} \Delta q_{k}+\sum_{k} F_{k}\left(\Delta q_{k}\right)^{2} \tag{9}
\end{align*}
$$

where r_{i} is an equilibrium bond distance, α_{j} a bond angle and q_{k} an equilibrium distance between nonbonded atoms. K and H are bond stretching and bending force constants respectively and F represents a force constant between nonbonded atoms. The linear terms in equation 9 are necessary because the set of internal coordinates used, which includes the q_{k}, is no longer linearly independent. The q_{r}, however, are related to the r_{i} and α_{j} by a simple geometric relationship. It is therefore possible to evaluate the $H_{j}{ }^{\prime}$ and the $K^{\prime}{ }_{i}$ in terms of the $F^{\prime}{ }_{k}{ }^{\text {o }}$ Based on the assumptions that, at nonbonded distances usually encountered, the principal force acting between nonbonded atoms is repulsive and that this repulsive force is proportional to $1 / r^{9}$, it is common practice to reduce the number of necessary force constants further by setting F^{\prime} equal to $-0.1 F$. It has been pointed out that this practice is unwarranted in that the F_{k} may represent stabilizing as we11 as destabilizing forces. ${ }^{4,5}$ The elimination of F^{\prime} probably does little harm, however, since it is probably small compared to F.

The UBFF was first used extensively by Shimanouchi. ${ }^{6}$ Since then it has been used successfully by many workers for a wide variety of molecular types.

Urey-Bradley force constants (UBFC's) are, to some extent, transferable; that is, force constants which have been evaluated for one molecule can often be used to calculate normal frequencies for similar molecules. This transferability has been studied extensively and Shimanouchi has published a compilation of UBFC's useful for many small molecules. ${ }^{7}$ As a direct result of this transferability of force constants, it is possible to treat several molecular species in one normal coordinate calculation, evaluating force constants for similar groupings only once. ${ }^{8}$ This technique, called an overlay calculation, makes it possible to determine UBFC's for a series of related molecules instead of attempting to determine a complete set for one molecule. The agreement between observed and calculated frequencies genera11y worsens as the number of molecules included in an overlay calculation is increased. This is because one is attempting to fit more data with the same number of parameters. The uncertainties in the calculated force constants decreases, however, and their possible physical significance increases.

Overend and co-workers have written a set of computer programs to perform an overlay normal coordinate analysis in which force constants are refined by an iterative least-squares method. ${ }^{9}$ The algorithm used in the force constant calculations will not be discussed here as it is thoroughly described in a recent reference. ${ }^{10}$ The above-mentioned computer program was modified slightly and used extensively throughout this investigation.

The primary purpose of this investigation was to evaluate a consistent set of Urey-Bradley force constants for the planar modes of the series of cyanoethylenes: acrylonitrile, fumaronitrile, maleonitrile, 1,1-dicyanoethylene, tricyanoethylene and tetracyanoethylene. ${ }^{11}$ These molecules were selected because they comprise a set of structurally similar molecules in which the degree of electron delocalization varies widely from one end of the series to the other. This provided an ideal situation to test the transferability of UBFC's under conditions of varying resonance. In addition, it was felt that confirmation of certain assignments in the spectrum of tetracyanoethylene could be accomplished by an overlay calculation involving all the cyanoethylenes.

The experimental phase of this study involved the preparation of 1,1-dicyanoethylene and the determination of its infrared spectrum. The infrared data, together with infrared and Raman data from the literature for the other cyanoethylenes, was used in a variety of overlay Urey-Bradley calculations.

The overlay calculations have resulted in a satisfactory assignment of the planar modes of 1, 1-dicyanoethylene. In addition, the assignments for two of the tetracyanoethylene fundamentals have been changed.

CHAPTER II

SPECTROSCOPIC STUDIES OF THE CYANOETHYLENES

The cyanoethylenes (Table I) provide an interesting example of a series of structurally similar molecules in which the degree of $\pi-$ electron delocalization varies smooth1y throughout the series. Since these resonance effects should result in a weakening of the $C \equiv N, C=C$ and perhaps the $\mathrm{C}-\mathrm{H}$ bonds with a corresponding strengthening of the $\mathrm{C}-\mathrm{C}$ bonds, the series provides an interesting ground for the transferability of UBEC's since deviations from transferability should have physical significance in terms of bonding differences. In addition, the possibility of modifying the UBFC of an open-chain molecule to include a resonance parameter is presented. The inclusion of such a parameter has been reported only for cyclic molecules. 12-16

Halverson and co-workers ${ }^{17}$ have reported a complete assignment for the infrared and Raman spectra of acrylonitrile. No vibrational analysis of the planar modes was attempted, but a 4-term modified valence force field was used to calculate approximate frequencies for the four out-of-plane modes.

Spectra and assingments have been reported for fumaronitrile, $18-20$ maleonitrile, 19,20 tetracyanoethylene 19,20 and tricyanoethylene. 18 There are some differences between the spectra reported by Long and George 19 and those reported by Devlin, Overend and Crawford ${ }^{18}$ and Miller, et al. 20 For those cases where differences occur, the

TABLE I

THE CYANOETHYLENES

Compound	X_{1}	X_{2}	X_{3}
Acrylonitrile	H	H	H
Fumaronitrile	H	CN	H
Maleonitrile	H	H	CN
1,1-Dicyanoethylene	CN	H	H
Tricyanoethylene	CN	CN	H
Tetracyanoethylene	CN	CN	CN

assignments proposed by Miller have been chosen for use in this investigation.

Devlin and co-workers ${ }^{18}$ have performed an overlay UBFF vibrational analysis for acrylonitrile, fumaronitrile and tricyanoethylene. As a result of this calculation, a set of 16 force constants were determined from the 35 observed planar fundamental frequencies. As had been previously reported, ${ }^{21}$ they found it necessary to include a quadratic cross term between trans-hydrogen bending coordinates in the potential function. This term was introduced to provide more accurate calculated values for the frequencies of in-plane rocking modes involving hydrogen. Examination of the potential energy distributions for acrylonitrile and fumaronitrile indicate that this force constant is involved mainly in $\mathrm{C}=\mathrm{C}$ stretching and $\mathrm{C}-\mathrm{H}$ rocking and deformation vibrations.

There are thus reasonably firm assignments for the planar modes of all but one of the cyanoethylenes. Vibrational spectra and assignments have more recently been published for 1,1 -dicyanoethylene. ${ }^{11}$ The remaining chapters of this work are concerned with the problem of the vibrational spectrum of this compound and with overlay normal coordinate analyses including all the cyanoethylenes.

EXPER IMENTAL

As was noted in the introduction, the experimental phase of this work consisted of the preparation of 1,1 -dicyanoethylene and the determination of its infrared spectrum。 Some experimental difficulty was encountered in the handling of this compound. It is easily polymerized in the presence of any source of labile protons. Many nucleophiles are also effective in initiating polymerization. As a result of this, extreme care was taken to exclude contaminants, particularly water vapor, during preparation and transfer of 1,1 -dicyanoethylene.

The first synthesis of 1,1 -dicyanoethylene was reported by Ardis and co-workers. ${ }^{22}$ Two basic synthetic schemes were presented. These are outlined in equations 1 and 2 . In this work, the synthesis involving

I

the pyrolysis of $1,1,3,3$-tetracyanopropane (I) was chosen.

The synthesis of I was accomplished by the method of Die1s ${ }^{23,24}$ as outlined in equation 3. Malononitrile (Eastman Practical Grade)

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{C}(\mathrm{CN})_{2}+\mathrm{H}_{2} \mathrm{CO} \xrightarrow{\text { piperidine }} \mathrm{NC}^{\mathrm{NG}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{CN}}^{\mathrm{CN}} \tag{3}
\end{equation*}
$$

I
was purified by fractional distillation and condensed with formaldehyde (as formalin) in ethanol solution. The resultant solid material was washed with dilute sulfuric acid and with water and recrystallized from a 2:1 mixture of acetonitrile and benzene. The purified I thus prepared melted sharply at $137^{\circ} \mathrm{C}$ 。 Yields for this reaction were typically about 40% of theoretical, based on malononitrile as the limiting reagent.

In our early attempts to synthesize III, a closed system involving several ampule-to-ampule distillations was used for the pyrolysis of I. Yields using this apparatus were disappointingly low. We therefore reverted to a method similar to that used by Ardis. ${ }^{22}$ Dried I and $\mathrm{P}_{2} \mathrm{O}_{5}$ were placed in a Claisen flask and covered with dry Pyrex wool. The side tube of the flask was connected to a receiver containing $\mathrm{P}_{2} \mathrm{O}_{5}$ and dry benzene. The receiver was cooled in a Dry Iceacetone bath and the system was evacuated to about 10 torr. The flask was then heated to $180^{\circ} \mathrm{C}$ until pyrolysis was completed. The material in the receiver was melted and the benzene solution was fractionally distilled through a 20 cm vacuum-jacketed Vigreux column. The frac-tion boiling over the range $50.0-51.2^{\circ} \mathrm{C}$ at 10 torr was taken as 1,1-dicyanoethylene. The distilled material was stored in the cold over $\mathrm{P}_{2} \mathrm{O}_{5}$. No attempt was made to determine the yield in the pyrolysis.

Standard sampling cells, fitted with cesium iodide windows, were used in determining the infrared spectrum of III. All transfers were carried out in a dry box which was well purged with dry nitrogen. The cells were purged separately with dry nitrogen for one hour prior to use. For the determination of the spectrum of gaseous III, the samplong cell was placed in an electrically heated oven and maintained at a temperature in excess of $170^{\circ} \mathrm{C}$ during the spectral scan. Since it has been reported ${ }^{25}$ that poly(1,1-dicyanoethylene) undergoes depolymerization at temperatures above $160^{\circ} \mathrm{C}$, it was hoped that this would prevent deposition of the polymer in the gas sampling cel1. Some polymer, however, was always formed during determination of the spectrum of gaseous III.

Much of the spectrum of 1,1-dicyanoethylene was recorded using a Perkin-Elmer Model 221 prism-grating spectrophotometer. More recent measurements were made with a Perkin-Elmer Model 521 dual-grating instrument. A Beckman IR-7 spectrophotometer with cesium iodide optics was used to determine spectra over the $200-250 \mathrm{~cm}^{-1}$ region. The parameters of the Perkin $-E 1$ mer instruments were set so that the spectral slit width was $1.2 \mathrm{~cm}^{-1}$ at $1000 \mathrm{~cm}^{-1}$.

For the region above $500 \mathrm{~cm}^{-1}$, well known absorption bands of polystyrene, atmospheric water vapor, atmospheric CO_{2} and indene were used to calibrate the frequency scale of the spectrophotometer. ${ }^{26}$ No attempt was made to calibrate below this point. It is estimated that spectral features are determined to within $2 \mathrm{~cm}^{-1}$ over the range $3500-$ $500 \mathrm{~cm}^{-1}$ and to within $5 \mathrm{~cm}^{-1}$ below $500 \mathrm{~cm}^{-1}$.

CHAPTER IV

INTERPRETATION OF THE SPECTRUM OF 1,1-DICYANOETHYLENE

If it is assumed that l,l-dicyanoethylene is planar, then it must belong to the point group $C_{2 v}$. Group theoretic considerations would lead one to expect that the 18 normal modes of vibration would be distributed among the symmetry classes as follows:

$$
\Gamma_{\mathrm{vib}}=7 \mathrm{~A}_{1}+2 \mathrm{~A}_{2}+3 \mathrm{~B}_{1}+6 \mathrm{~B}_{2}
$$

Of these, the modes belonging to classes A_{1}, B_{1} and B_{2} will exhibit infrared activity while all of the normal vibrations would be expected to be Raman-active. The planar vibrations belong to symmetry classes A_{1} and B_{2} and thus will all be infrared-active. As a consequence of the fact that 16 of the 18 normal vibrations are infrared-active, the infrared spectrum (Figure 1 and Table II) is quite rich in intense bands. However, with the aid of gas-phase band contours and a set of frequencies calculated for the planar modes from the overlay force constants used for acrylonitrile, fumaronitrile and tricyanoethylene, ${ }^{18}$ it was possible to make a satisfactory assignment of the planar modes. As is the case for the other cyanoethylenes, the assignment of the out-ofplane modes is still unsatisfactory.

1,1 Dicyanoethylene is an asymmetric top, the moments of inertia about the three principal axes being

Figure 1. Infrared Spectrum of 1,1-Dicyanoethylene

TABLE II

INFRARED SPECTRUM OF 1,1-DICYANOETHYLENE

Liquid	Gas	Assignment
3964		$3037+939=3976$
3932		
3880		
3735		$596+3140=3736$
3498		$2248+1262=3510$
3390		
3288		
3175		
3135	3140	ν_{13}
3091		
3036	3037	ν_{1}
2966		$720+2248=2968$
2933		
2864		$2255+620=2875$
'2846		$1604+1262=-2866$
2791		$2 \times 1394=2788$
2741		$2248+494=2742$
2653		$1394+1262=2656$
2610		
2531		$1604+939=2543$
2503		$2 \times 1394=2788$
2482		$2248+240=2488$

TABLE II (Continued)

Liquid	Gas	Assignment
2334		$1394+939=2333$
2248	2255	v_{2}
2245	2248	v_{13}
219.5		$1262+939=2201$
1974	1917	$2 \times 983=1966$
1890		$1394+494=1888$
1722		
1605		$983+620=1603$
1594	1604	v_{3}
1511		
1478		
1445		Polymer?
1395	1394	v_{4}
1362		
1256	1262	ν_{15}
1227		$2 \times 620=1240$
1182		Polymer
1088		
983	959	v_{10}
939		v_{16}
890		$720+170=890$
850		
762	758	$596+170=766$
720	709	$v_{5}(?)$

TABLE II (Continued)

Liquid	Gas	Assignment
685	620	Polymer?
620		v_{11}
606	587	v_{6}
596	v_{17}	
494		Polymer? 469
415	$170+240=410$	
383		$2 \times 170=340$
367		$v_{18}(?)$
339	v_{7}	
240		

$$
\begin{aligned}
& I_{A} \simeq 77.2 \times 10^{-40} \mathrm{~g} \mathrm{~cm}^{2} \\
& I_{B} \simeq 176.3 \\
& I_{C} \simeq 253.5
\end{aligned}
$$

For this molecule, the A-axis lies in the molecular plane and corresponds to a line drawn through the center of mass perpendicular to the line of the $C=C$ bond. The C-axis is perpendicular to the plane of the molecule.

The band contours to be expected for gas-phase spectra of planar asymmetric top molecules are well known. ${ }^{27}$ For a molecule such as 1,1-dicyanoethylene, where $I_{A} / I_{B} \simeq 0.44$, we would expect that modes for which the change in dipole moment is along one of the major axes would exhibit A-, B- or C-type contours (corresponding to dipole change along the A-, B- or C-axis, respectively) as shown in Figure 2. Since 1,1-dicyanoethylene is of $\mathrm{C}_{2 \mathrm{v}}$ symmetry, it is to be expected that each normal mode will involve a net dipole change along one or the other of the major axes; i.e., there will be no mixing of contour types.

Of the more intense bands only the two at 959 and $620 \mathrm{~cm}^{-1}$ showed C-type structure. These were immediately assigned to the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ and C-C-C out-of-plane wagging modes (v_{10} and v_{11}, respectively). The frequency of the third infrared active out-of-plane mode was apparently beyond the range of our spectrophotometer. No evidence of the infrared inactive out-of-plane modes has been found. By comparison with other cyanoethylenes the A-type bands at 3135 and $1262 \mathrm{~cm}^{-1}$ were assigned to the B_{2} species stretch $\left(v_{13}\right)$ and CH_{2} rock $\left(v_{15}\right)$. The B-type bands at 1604, 1395 and $709 \mathrm{~cm}^{-1}$ were similarly assigned to the $\mathrm{C}=\mathrm{C}$ stretch (v_{3}) and CH_{2} deformation $\left(v_{4}\right)$ and the $\mathrm{C}-\mathrm{C}$ stretch $\left(v_{5}\right)$ of the A_{1} species.

Figure 2. Gas-Phase Contours for a Planar Asymmetric Top with $I_{A} / I_{B}=0.4$

Because of either weak gas-phase band intensities, lack of band structure or overlapping bands, the remaining fundamentals have been assigned primarily on the basis of frequencies calculated using the set of overlay Urey-Bradley force constants (UBFC) previously mentioned. ${ }^{18}$ The observed and calculated frequencies, together with mode assignments, are shown in Table III. The calculated frequencies agree very closely with those assigned on the basis of band shapes and, except for three cases, permit immediate assignment of relatively intense bands to the remaining planar modes.

There was considerable hesitation in assigning the medium intensity band at $720 \mathrm{~cm}^{-1}$ as v_{5} since the calculated value of $762 \mathrm{~cm}^{-1}$ is assignable as $\left(v_{6}+v_{7}\right)$, whereas no combination bands or overtones were found to explain the $720 \mathrm{~cm}^{-1}$ band. This, plus the greater intensity of the $720 \mathrm{~cm}^{-1}$ band, led to its assignment at v_{5}. Unfortunately v_{7}, used in the assignment of the $762 \mathrm{~cm}^{-1}$ band as $\left(v_{6}+v_{7}\right)$, was not itse1f observed. However, the value $155 \mathrm{~cm}^{-1}$ calculated from the transferred UBFC was in fair agreement with the frequency of $170 \mathrm{~cm}^{-1}$ required to explain (by combination bands and overtones) the bands at 890,762 and $339 \mathrm{~cm}^{-1}$. Thus the assignment of v_{7} as $170 \mathrm{~cm}^{-1}$ is given. The third difficulty arose in the assignment of v_{18} and has not been completely resolved. The original calculated value of $278 \mathrm{~cm}^{-1}$ for v_{18} seemed to suggest that a band observed at $240 \mathrm{~cm}^{-1}$ should be assigned as v_{18}. However, subsequent attempts to adjust the force constants so as to give an improved set for the entire molecular series invariably yielded a calculated frequency of about $275 \mathrm{~cm}^{-1}$ for v_{18}, as can be seen in the next chapter. Nevertheless, the $240 \mathrm{~cm}^{-1}$ band is currently assigned as v_{18} and only a normal coordinate treatment of the

TABLE III

RESULTS OF ZERO-ORDER CALCULATION
FOR 1,1-DICYANO ETHYLENE

Symmetry Species	No.	$V_{\text {obs }}$.	$v_{\text {calc }}$.	Assignment ${ }^{(a)}$
A_{1}	1	3036	2999	C-H Stretch
	2	2248	2238	$\mathrm{C}=\mathrm{N}$ Stretch
	3	1594	1597	C=C Stretch
	4	1395	1412	HCH Bend
	5	720	765	C-C Stretch
	6	596	566	$\mathrm{C}(\mathrm{CN}){ }_{2}$ Scissor
	7	170	157	$\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ Bend
B_{2}	13	3135	3103	C-H Stretch
	14	2245	2237	$\mathrm{C} \equiv \mathrm{N}$ Stretch
	15	1256	1304	HCH Bend
	16	939	956	C-C Stretch
	17	494	521	$\mathrm{C}(\mathrm{CN}){ }_{2}$ Rock
	18	240	278	$\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ Bend

(a) from the calculated potential energy distribution
out-of-plane modes can help in confirming or disproving this assignment. The assignments discussed herein appear in Table II. In addition, features have been assigned to combination, overtone or impurity bands where such an assignment was logically feasible.

CHAPTER V

FORCE CONSTANT CALCULATIONS

There are several prerequisites necessary before an overlay force constant analysis based on spectroscopic data can be attempted. First, a choice of a molecular force field must be made. As has been mentioned earlier, the Urey-Bradley force field has been selected for this investigation. Within the constraints of the force field a set of meaningful force constants must then be defined and initial values either estimated for them or transferred from similar molecules. The molecular geometry must be known, and finally, firm frequency assignments for at least most of the fundamental modes must be available.

For the planar vibrations of the cyanoethylenes a potential function involving 18 force constants was defined. A list of these constants is shown in Table IV. As before, K implies a bond stretching force constant, H a bending constant and F the interaction between nonbonded atoms. Here F is restricted to the interaction between atoms which are 1,3 with respect to each other, i.e., to the interaction between nonbonded atoms which are bonded to a common atom. The force constant C (for cis) is associated with nonbonded interactions between atoms which are 1,4 to each other and which have a cis relationship with respect to the 2,3 bond. There are, of course, three possible types of cis nonbonded interactions for the cyanoethylenes; $\mathrm{H}-\mathrm{H}, \mathrm{H}-\mathrm{C}$, and C-C. Throughout this investigation it was assumed that only the

TABLE IV

UREY-BRADLEY FORCE CONSTANTS FOR THE CYANOETHYLENES

Force Constant

$\mathrm{K}_{\mathrm{C}=\mathrm{C}}$	6.56
K_{CH}	\} 4.83
${ }^{*}{ }_{\text {CH }}$	
${ }^{\mathrm{CN}}$	16.73
K_{CC}	5.17
${ }^{\mathrm{H}} \mathrm{C}=\mathrm{CH}$	0.37
${ }^{\mathrm{H}} \mathrm{C}=\mathrm{CC}$	0.52
$\mathrm{H}_{\mathrm{HCH}}$	0.40
${ }^{\mathrm{H} C \mathrm{CH}}$	0.32
$\mathrm{H}_{\mathrm{CCN}}$	0.30
$\mathrm{H}_{\mathrm{CCC}}$	0.237
$\mathrm{F}_{\mathrm{C}=\mathrm{CH}}$	0.42
$\mathrm{F}_{\mathrm{C}=\mathrm{CC}}$	0.76
$\mathrm{F}_{\mathrm{HCH}}$	0.00
$\mathrm{F}_{\mathrm{CCH}}$	0.18
$\mathrm{F}_{\mathrm{CCC}}$	0.64
$\mathrm{C}_{\mathrm{CC}=\mathrm{CC}}$	-0.04
Tr	0.06

(a) The units of K, F and C are in mdyne/ A and H is in 10^{-11} erg radian ${ }^{-2}$.
last of these could be large enough to influence the calculated results. A pictorial representation of these selected force constants is shown in Figure 3 using acrylonitrile and tricyanoethylene as examples. The force constants are shown along the internal coordinates with which they are nominally associated. It should be noted that two CH stretching constants $K_{C H}$ and ${ }^{K *}{ }_{C H}$ are shown, During the course of this investigation it was found necessary to define one constant for the case where there are two hydrogens on a carbon $\left(\mathrm{K}_{\mathrm{CH}}\right)$ and another for the case where there is only one $\left(\mathrm{K}_{\mathrm{CH}}\right)$. The last entry in Table IV represents the interaction between trans-hydrogen bending coordinates previously mentioned.

Refined force constant values for acrylonitrile, fumaronitrile and tricyanoethylene by Dev1in, Overend and Crawford ${ }^{18}$ were used as a starting point in this work. The initial values used are listed in Table IV. Their value of 4.83 mdyne/A was used for both K_{CH} and K_{CH} since they used only one CH stretching constant for the 3 molecules.

Wilcox and co-workers, using microwave spectroscopy, have determined bond lengths and angles for acrylonitrile. ${ }^{28,29}$ They concluded that the molecule is planar and thus belongs to symmetry groups C_{S}. The equilibrium bond distances and angles proposed are:

$\mathrm{C}-\mathrm{H}$ bond	1.07 A
$\mathrm{C}=\mathrm{C}$ bond	1.34 A
$\mathrm{C}-\mathrm{C}$ bond	1.445 A
$\mathrm{C}-\mathrm{N}$ bond	1.159 A
$\mathrm{C}=\mathrm{C}-\mathrm{C}$ angle	121.5°
$\mathrm{C}=\mathrm{C}-\mathrm{H}$ angle	120°

Other workers using electron diffraction ${ }^{30,31}$ and microwave spectroscopy ${ }^{31,32}$ have determined slightly different values for these parameters. Bond lengths for tetracyanoethylene have also been reported ${ }^{33}$

Figure 3. Urey-Bradley Force Constants for the Cyanoethylenes
which agree closely with those given by Wilcox. For the purpose of this investigation the bond lengths and bond ang1es given by Wilcox were employed. It was not felt that the small differences reported would affect our calculations noticeably. Moreover, the use of these values would make the present calculations more consistent with the earlier cyanoethylene work.

The calculations to be presented in the remainder of this chapter have been divided into two basic groups, calculations excluding tetracyanoethylene and calculations in which tetracyanoethylene is inc1uded. This partition is based on early evidence ${ }^{20}$ that the bonding within tetracyanoethylene is not representative of the molecular series. Thus, force constants for the other five compounds were evaluated prior to consideration of tetracyanoethylene.

Calculations Excluding Tetracyanoethylene

Starting with the force constant values given in Table IV, overlay calculations involving the following sets of molecules have been performed: 1) fumaronitrile and maleonitrile, 2) fumaronitrile, maleonitrile and tricyanoethylene, 3) acrylonitrile, fumaronitrile, maleonitrile and tricyanoethylene and 4) all cyanoethylenes save tetracyanoethylene. The refined force constants resulting from these calculations are listed in Table V as $\Phi(1)$ through $\Phi(4)$. Calculated planar frequencies for each molecule appear in Tables VI-X. Although the percent errors in the frequencies and the stability of the force constants in sets (1), (2) and (4) are quite satisfying, these results were achieved only after extensive preliminary calculations. Set (3)

TABLE V
FORCE CONSTANTS AND DISPERSIONS OBTAINED FROM OVERLAY CALCULATIONS EXCLUDING TETRACYANOTHYLENE ${ }^{\text {(a) }}$

Force Constant	$\Phi(1)$	$\sigma_{\Phi(1)}$	¢(2)	${ }^{\circ} \Phi(2)$	Φ (3)	$\sigma_{\Phi(3)}$	$\Phi(4)$	$\sigma_{\Phi}(4)$
$\mathrm{K}_{\mathrm{C}=\mathrm{C}}$	6.88	0.13	6.82	0.10	6.72	0.15	6.82	0.09
K_{CH}	__(d)	-	-	-	$4.74{ }^{(b)}$	0.06	4.94	0.03
${ }^{*}{ }_{\mathrm{CH}}$	4.55	0.06	4.54	0.06			4.56	0.04
K_{CN}	16.99	0.11	16.94	0.10	16.85	0.15	16.94	0.08
K_{CC}	4.52	0.22	4.56	0.16	4.96	0.22	4.63	0.11
$\mathrm{H}_{\mathrm{C}=\mathrm{CH}}$	0.29	0.09	0.29	0.08	0.29	0.06	0.35	0.03
$\mathrm{H}_{\mathrm{C}=\mathrm{CC}}$	0.44	0.07	0.46	0.06	0.55	0.10	0.43	0.05
${ }_{\mathrm{HCH}}$	-	-	-	-	0.42	0.03	0.39	0.01
$\mathrm{H}_{\mathrm{CCH}}$	0.21	0.10	0.21	0.07	0.33	0.05	0.17	0.03
$\mathrm{H}_{\mathrm{CCN}}$	0.30	0.02	0.30	0.02	0.29	0.02	0.30	0.01
$\mathrm{H}_{\mathrm{CCC}}$	-	-	0.24	(c)	0.24	(c)	0.24	(c)
$\mathrm{F}_{\mathrm{C}=\mathrm{CH}}$	0.51	0.11	0.49	0.10	0.50	0.09	0.43	0.04
$\mathrm{F}_{\mathrm{C}=\mathrm{CC}}$	1.05	0.11	0.94	0.09	0.80	0.13	0.88	0.07
$\mathrm{F}_{\mathrm{HCH}}$	-	-	-	-	0.	(c)	0 。	(c)

TABLE V (Continued)

Force Constant	$\Phi(1)$	$\sigma^{\underline{\underline{s}}(1)}$	重(2)	$\sigma_{\text {d }}(2)$	Φ (3)	$\sigma_{\text {玉 }}(3)$	$\Phi(4)$	$\sigma_{\Phi(4)}$
$\mathrm{F}_{\mathrm{CCH}}$	0.52	0.14	0.53	0.10	0.26	0.07	0.57	0.06
$\mathrm{F}_{\text {CCC }}$	-	-_-	0.80	0.10	0.75	0.16	0.86	0.07
${ }^{\text {C }} \mathrm{CC}=\mathrm{CC}$	0.08	0.05	0.04	0.05	0.05	0.07	0.04	(c)
Tr	0.06	(c)	0.06	(c)	0.06	(c)	0.06	(c)
$\begin{aligned} & \text { Av. \% Error } \\ & \text { in } v^{\prime} s \end{aligned}$	0.87		1.11		1.31		1.09	

(a) Force constants are in mdyne/A exept for the bending constants, which are in $10^{-11} \mathrm{erg} / \mathrm{rad}{ }^{2}$.
(b) Only one CH stretching constant was considered in this calculation.
(c) The value of the corresponding force constant was constrained.
(d) A line indicates that the calculation is independent of the indicated force constant.

TABLE VI

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR ACRYLONITRILE

$v_{\text {obs }}$	$v(3)^{(a)}$	$v(4)$
3125	3090	3137
3078	3076	3064
3042	2987	3031
2239	2233	2236
1615	1604	1604
1416	1423	1407
1282	1280	1280
1096	1059	1090
869	862	868
570	574	569
242	250	251
Av. \% Error	1.18	0.66

(a) The number in parentheses refers to the corresponding Φ in Table V.

TABLE VII

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR FUMARONITRILE

Symmetry	$v_{\text {obs }}$	$v(1)^{(a)}$	$v(2)$	$v(3)$	$v(4)$
A_{g}	3049	3056	3052	3069	3057
	2232	2234	2231	2231	2234
	1611	1616	1610	1615	1613
	1297	1297	1294	1298	1292
	1002	1006	1008	994	1005
	545	530	520	518	514
B_{u}	261	268	266	265	266
	3067	3073	3068	3087	3069
	1260	2242	2237	2236	2239
	1001	958	1259	1264	1260
	538	523	990	982	996
	155	154	518	518	516
		153	153	152	
			1.81	1.32	1.24

(a) The number in parentheses refers to the corresponding Φ in Table V.

TABLE VIII

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR MALEONITRILE

Symmetry	$v_{\text {obs }}$	$v(1)^{(a)}$	$v(2)$	$v(3)$	$v(4)$
A_{1}	3072	3063	3059	3077	3062
	2230	2238	2235	2234	2237
	1597	1592	1585	1588	1582
	1200	1202	1203	1183	1205
	877	884	880	886	883
B_{2}	480	480	466	465	463
	126	122	119	119	117
	3072	3067	3063	3080	3065
	1371	1371	1372	1393	1381
	1012	1010	1011	996	1009
	714	729	715	715	705
	269	279	273	2233	2236
		0.88	1.22	1.49	1.57

(a) The number in parentheses refers to the corresponding Φ in Table V.

TABLE IX

> OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR 1,1-DICYANOETHYLENE

Symmetry	$v_{\text {obs }}$	$v(4)^{(c)}$	$v(7)$
A_{1}	3036	3033	3036
	2248	2245	2246
	1594	1606	1598
	1395	1405	1391
	720	$763^{(a)}$	752
B_{2}	596	589	592
	170	$160^{(a)}$	$160^{(a)}$
	3135	3137	3136
	2245	2233	2235
	1256	1259	1262
	939	934	936
	494	519	481
	240	$2766^{(a)}$	266

(a) Not weighted in calculation.
(b) Calculated on basis of weighted frequencies only.
(c) The number in parentheses refers to the corresponding Φ in Table V or Table XV.

TABLE X
OBSERVED AND CALCULATED PLANAR FUNDAMENTAL
FREQUENCIES FOR TRICYANOETHYLENE

$v_{\text {obs }}$.	$v(2)^{(a)}$	$v(3)$	$v(4)$	$v(6)$	$v(7)$
3043	3061	3079	3064	3043	3043
2249	2243	2244	2245	2246	2246
2234	2235	2238	2237	2235	2236
2210	2230	2233	2232	2229	2232
1594	1607	1606	1606	1581	1584
1327	1330	1353	1333	1329	1332
1171	1169	1189	1163	1181	1176
1000	998	990	1002	995	995
780	794	797	790	778	770
591	589	588	596	600	601
506	521	518	516	498	494
447	461	461	458	442	443
275	278	276	278	273	273
155	158	157	159	158	158
	119	119	117	111	111
Av. \% Error	1.02	1.24	0.99	0.72	0.87

(a) The number in parentheses refers to the corresponding Φ in Table V or Table XV.
is from such a calculation and is included only to demonstrate the guidance obtained from preliminary results.

These calculations were originated with the constraints (a) force constants for similar internal coordinates are equal for all members of the series, (b) $C_{C C=C C}=-0.04$, (c) $T r=0.06$, (d) $H_{C C C}=0.237$ and (e) $\mathrm{F}_{\mathrm{HCH}}=0.0$. A comparison of the results of calculations (2) and (3) resulted in a modification of constraint (a). The molecules fumaronitrile, maleonitrile and tricyanoethylene considered in (2) contain only a single type of hydrogen, i.e., one alpha to a cyano group. An average error of $9 \mathrm{~cm}^{-1}$ was obtained for the $\mathrm{C}-\mathrm{H}$ stretching frequencies. However, in calculation (3) acrylonitrile, which contains a $\left(\mathrm{CH}_{2}\right)$ group, was also considered and the average error in C-H stretching frequencies jumped to $23 \mathrm{~cm}^{-1}$ and K_{CH} increased from 4.54 to 4.74 mdyne/A. At this point it became clear that two $\mathrm{C}-\mathrm{H}$ stretching force constants should be allowed, one for each type of CH bond. This was done in calculation (4). The average error in the $v_{C H}$ fell back to $9 \mathrm{~cm}^{-1}$, even though 1,1 -dicyanoethylene is also considered in this calculation. Further, two well determined $K_{C H}$ force constants emerged: $\mathrm{K}_{\mathrm{CH}}=4.56$ for hydrogen alpha to cyano and $\mathrm{K} *_{\mathrm{CH}}=4.94$ for hydrogen in a $\left(\mathrm{CH}_{2}\right)$ grouping.

Multiple values for the force constants associated with other internal coordinates would perhaps be warranted. There are, for example, large errors in the calculated frequencies for v_{6} and v_{17} in fumaronitrile, for v_{6} in maleonitrile and for v_{17} in I, l-dicyanoethylene. The potential energy distributions, based on calculation (4), for these molecules are shown in Tables XI-XIII. It is clear that these modes are highly dependent on $\mathrm{F}_{\mathrm{C}=\mathrm{CC}}$ and that there should perhaps be more
than one force constant describing this interaction.
No attempt has been made to redetermine Tr in this investigation since no additional molecules containing trans hydrogen were considered. However, on the basis of potential energy distributions, constraint (b) was eliminated. In calculation (2), $\mathrm{C}_{\mathrm{CC}=\mathrm{CC}}$ adopted a value of 0.04 mdyne/A during the least squares analysis and this value was used in subsequent calculations.

Calculations Inc1uding Tetracyanoethylene

A zero-order calculation for tetracyanoethylene using the UBFC's given in Table IV has already been reported. ${ }^{20}$. Since the calculations described above seemed to yield a set of force constants more representative of the series, a new zero-order calculation was performed using $\overline{\text { I }}(4)$. The results of this calculation are given in Table XIV. Since the average error in frequency for the original zero-order calculation is 4.05%, there is only slight improvement on using the $\Phi(4)$. Nevertheless, on the basis of this calculation, v_{17} and v_{24}, originally assigned as 426 and $443 \mathrm{~cm}^{-1}$ respectively, were switched. This brings v_{17} more in line with the calculated value of $451 \mathrm{~cm}^{-1}$.

With this additional evidence that the bonding in tetracyanoethylene is not typical of the series, the approach to the vibrational analysis was altered. Rather than attempt to include this molecule in overlay calculations with other members of the series, a minimum number of force constants were transferred from overlay calculation (2) and the remaining constants were then adjusted in a least squares analysis involving only tetracyanoethylene. Thus $C_{C C=C C}$ was assigned the value of 0.04 mdyne/ A and $H_{C C C}$, as for this entire study, was fixed

TABLE XI
DISTRIBUTION OF POTENTIAL ENERGY AMONG PLANAR INTERNAL
COORDINATES OF FUMARONITRILE

Force Constant	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}
$\mathrm{~K}_{\mathrm{C}=\mathrm{C}}$	0.4	0.2	59.2	19.7	0.9	2.3	0.0	0.0	0.0	0.0	0.0	0.0	
$\mathrm{~K}_{\mathrm{CH}}$	89.0	0.1	0.0	0.1	0.4	0.0	0.0	88.3	0.1	0.0	0.2	0.2	0.3
$\mathrm{~K}_{\mathrm{CN}}$	0.0	86.5	1.9	0.0	7.1	3.9	0.5	0.0	85.9	0.4	13.7	0.0	0.0
$\mathrm{~K}_{\mathrm{CC}}$	0.1	11.4	10.9	0.7	37.9	21.2	2.8	0.1	11.5	4.6	65.8	1.1	0.8
$\mathrm{H}_{\mathrm{C}=\mathrm{CH}}$	0.1	0.1	10.3	27.3	0.0	0.9	0.4	0.0	0.0	33.6	0.7	6.7	4.1
$\mathrm{H}_{\mathrm{C}=\mathrm{CC}}$	0.2	0.0	0.0	3.6	14.7	11.4	6.9	0.0	0.0	0.3	0.0	18.2	18.3
$\mathrm{H}_{\mathrm{HCC}}$	0.0	0.0	5.4	6.0	6.4	2.1	1.4	0.0	0.0	19.2	0.4	0.8	1.6
$\mathrm{H}_{\mathrm{CCN}}$	0.0	0.0	0.4	0.4	2.1	22.3	74.8	0.0	0.0	0.4	0.0	49.3	50.3
$\mathrm{~F}_{\mathrm{C}=\mathrm{CH}}$	3.9	0.0	2.0	26.9	0.0	0.2	0.3	5.5	0.0	19.2	0.5	3.4	2.0
$\mathrm{~F}_{\mathrm{C}=\mathrm{CC}}$	0.1	0.8	3.3	2.1	7.1	34.4	11.4	0.0	1.7	1.8	9.3	19.7	20.2
$\mathrm{~F}_{\mathrm{CCH}}$	6.3	0.8	4.8	8.6	23.4	1.1	1.3	6.1	0.9	26.4	9.6	1.8	3.1
Tr	0.0	0.0	1.8	4.7	0.0	0.2	0.1	0.0	0.0	-5.8	-0.1	-1.1	-0.7

(a) Based on the results of calculation (4).

DISTRIBUTION OF POTENTIAL ENERGY AMONG PIANAR INTERNAL COORDINATES OF MALEONITRILE ${ }^{\text {(a) }}$

Force Constant	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}
$\mathrm{~K}_{\mathrm{C}=\mathrm{C}}$	0.4	0.2	70.1	6.0	5.2	0.7	0.1	0.0	0.0	0.0	0.0	0.0	
$\mathrm{~K}_{\mathrm{CH}}$	88.7	0.1	0.0	0.1	0.2	0.1	0.4	88.5	0.1	0.0	0.4	0.0	0.0
$\mathrm{~K}_{\mathrm{CN}}$	0.0	86.2	1.4	1.0	11.1	0.2	0.0	0.0	86.3	1.8	7.6	4.1	0.2
$\mathrm{~K}_{\mathrm{CC}}$	0.1	11.4	8.8	1.7	62.7	0.2	0.2	0.1	11.4	11.9	40.6	18.9	0.9
$\mathrm{H}_{\mathrm{C}=\mathrm{CH}}$	0.0	0.0	4.9	28.8	1.7	2.8	3.2	0.1	0.1	37.0	0.2	4.0	0.4
$\mathrm{H}_{\mathrm{C}=\mathrm{CC}}$	0.0	0.0	0.7	0.0	1.1	12.7	19.2	0.2	0.0	1.3	12.4	17.7	4.6
$\mathrm{H}_{\mathrm{HCC}}$	0.0	0.0	4.3	13.7	0.1	1.1	2.3	0.0	0.0	12.4	6.5	1.5	0.8
$\mathrm{H}_{\mathrm{CCN}}$	0.0	0.0	0.1	0.0	1.0	56.3	42.1	0.0	0.0	0.0	1.6	13.4	85.0
$\mathrm{~F}_{\mathrm{C}=\mathrm{CH}}$	4.6	0.0	2.5	22.4	2.4	1.0	1.7	4.8	0.0	21.1	0.2	2.4	0.2
$\mathrm{~F}_{\mathrm{C}=\mathrm{CC}}$	0.1	1.1	2.8	0.2	10.1	19.2	21.5	0.1	1.2	0.7	6.0	37.1	7.1
$\mathrm{~F}_{\mathrm{CCH}}$	6.1	0.9	4.0	26.1	4.4	1.5	3.7	6.2	0.8	13.7	24.4	0.8	0.8
$\mathrm{C}_{\mathrm{CC}=\mathrm{CC}}$	0.0	0.0	0.0	0.0	0.2	4.1	5.5	0.0	0.0	0.0	0.2	0.0	0.0

(a) Based on the results of calculation (4).

TABLE XIII
DISTRIBUTION OF POTENTIAL ENERGY AMONG PLANAR JNTERNAL
COORDINATES OF 1,1 -DICYANOETHYLENE

Force Constant	ν_{1}	ν_{2}	v_{3}	v_{4}	v_{5}	${ }^{1} 6$	v_{7}	v_{13}	v_{14}	v_{15}	${ }^{1} 16$	v_{17}	v_{18}
$\mathrm{K}_{\mathrm{C}=\mathrm{C}}$	0.0	0.2	58.1	17.0	6.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
K_{CH}	93.8	0.0	0.5	1.1	0.0	0.0	0.0	95.1	0.0	0.0	0.2	0.2	0.1
K_{CN}	0.0	86.2	0.9	1.1	9.1	2.7	0.1	0.0	85.9	7.6	4.8	1.4	0.2
K_{CC}	0.0	10.1	4.6	4.8	44.3	9.6	0.0	0.0	12.8	42.3	32.8	4.4	0.0
$\mathrm{H}_{\mathrm{C}=\mathrm{CH}}$	0.1	0.0	8.7	17.6	0.3	0.0	0.0	0.1	0.0	22.8	38.2	2.8	0.7
$\mathrm{H}_{\mathrm{C}=\mathrm{CC}}$	0.0	0.0	0.6	0.7	2.2	7.9	5.3	0.1	0.1	9.9	0.4	25.0	11.3
$\mathrm{H}_{\mathrm{HCH}}$	0.2	0.0	19.3	39.2	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{H}_{\mathrm{CCN}}$	0.0	0.0	0.5	0.6	3.7	27.7	67.5	0.0	0.0	0.8	0.2	26.1	72.8
${ }^{\mathrm{CCCC}}$	0.0	0.0	0.7	0.7	2.5	8.6	5.8	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{F}_{\mathrm{C}=\mathrm{CH}}$	5.2	0.0	2.3	16.5	1.3	0.0	0.0	4.6	0.0	12.5	20.8	1.4	0.3
$\mathrm{F}_{\mathrm{C}=\mathrm{CC}}$	0.1	1.1	3.1	0.2	25.5	5.6	6.1	0.1	1.2	4.5	2.7	38.7	14.5
$\mathrm{F}_{\mathrm{HCH}}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{F}_{\text {CCC }}$	0.0	2.3	0.6	0.7	4.4	37.7	15.3	0.0	-0.1	-0.4	-0.3	0.0	0.0

(a) Based on the results of calculation (4).

TABLE XIV

OBSERVED AND CALCULATED PIANAR FUNDAMENTAL FREQUENCIES FOR TETRACYANOETHYLENE

Symmetry	$\nu_{\text {obs }}$.	$v(4)$	$v(5)$	$v(6)$	$v(7)$	$v(8)$
A_{g}	2235	2243	2248	2243	2246	2230
	1569	1622	1570	1582	1576	1570
	677	617	637	633	632	639
	535	529	515	518	514	516
	130	130	130	130	130	130
$\mathrm{B}_{1 \mathrm{u}}$	2263	2248	2251	2247	2248	2268
	958	982	982	985	975	979
	579	594	604	599	601	603
	165	170	170	170	170	170
$\mathrm{B}_{2 \mathrm{u}}$	2230	2236	2240	2237	2237	2241
	1155	1109	1150	1148	1142	1151
	443	451	435	437	437	436
	119	112	104	104	104	103
$B_{3 \mathrm{~g}}$	2247	2231	2236	2232	2233	2236
	1282	1299	1282	1278	1283	1282
	490	509	481	485	482	481
	254	276	269	270	270	269
Av. \% Error		2.88	2.74	2.69	2.76	2.66

at $0.237 \times 10^{-11} \mathrm{erg} / \mathrm{rad}^{2}$. This left 7 UBFC 's to be determined by 17 frequencies.

The resulting force constants (Φ (5) in Table XV) do not differ greatly from the $\Phi(4)$. The differences which are present are easily explained. For example, the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bonds are apparently significantly weaker and the $\mathrm{C}-\mathrm{C}$ bond much stronger than in the other cyano-: ethylenes, as would be expected on the basis of increased electron delocalization. A comparison of the $\Phi(1)$ and $\Phi(2)$ indicates that this trend is detectable in tricyanoethylene before becoming critical in tetracyanoethylene. The agreement of the calculated with the observed frequencies for this calculation (Table XIV) is still not striking. Force constants for overlay calculations involving tetracyanoethylene and tricyanoethylene [$\Phi(6)$] and tetracyanoethylene, tricyanoethylene and 1,1-dicyanoethylene [$\Phi(7)$] also appear in Table XV. Calculated frequencies corresponding to these Φ 's are shown in Tables IX, X and XIV. These calculations were of no significant value in determining either the force constants or the vibrational assignment for tetracyanoethylene. Rather (7) is included because it is the only calculation in which $\mathrm{F}_{\mathrm{HCH}}$ was allowed to vary. The refined value of 0.02 mdyne/A supports the choice of $\mathrm{F}_{\mathrm{HCH}}=0.0$ as used in the other calculations. Calculation (6) is of some value in confirming that bonding in tricyanoethylene is intermediate to that of tetracyanoethylene and the other four molecules of the series. Furthermore, this calculation hints that the effect of an alpha cyano group on the $\mathrm{C}-\mathrm{H}$ bond in tricyanoethylene is somehow attenuated, since the C-H stretching constant adopts a value midway between those found for K_{CH} and $\mathrm{K}_{\mathrm{CH}}^{*}$ in calculation (4).

TABLE XV
FORCE CONSTANTS AND DISPERSIONS OBTAINED (FROM CALCULATIONS
INCLUDING TETRACYANOETHYLENE

Force Constant	$\Phi(5)$	$\sigma_{\Phi(5)}$	क(6)	$\sigma_{\Phi(6)}$	$\Phi(7)$	$\sigma_{\text {¢ }}(7)$	重(8)	$\sigma_{\underline{\Phi}(8)}$
$\mathrm{K}_{\mathrm{C}=\mathrm{C}}$	6.26	0.26	6.37	0.16	6.36	0.17	6.34	0.26
K_{CH}	_ (c)	-	-	-	5.01	0.07	-	-
${ }^{\mathrm{K}} \mathrm{CH}^{\text {C }}$	-	-	4.62	0.10	4.71	0.11	-	-
K_{CN}	16.76	0.22	16.70	0.14	16.77	0.12	16.88	0.23
K_{CC}	5.22	0.26	5.17	0.19	5.12	0.17	5.19	0.25
$\mathrm{H}_{\mathrm{C}=\mathrm{CH}}$	__-	-	0.25	0.09	0.40	0.04	-	-
${ }^{\mathrm{H}} \mathrm{C}=\mathrm{CC}$	0.31	0.08	0.30	0.06	0.34	0.06	0.31	0.08
$\mathrm{H}_{\mathrm{HCH}}$	-	_-_	-	-	0.42	0.04	-	-
${ }^{\mathrm{H}} \mathrm{CCH}$	-	-	0.40	0.17	0.34	0.09	-	-
$\mathrm{H}_{\mathrm{CCN}}$	0.31	0.04	0.31	0.02	0.31	0.02	0.31	0.04
$\mathrm{H}_{\mathrm{CCC}}$	0.24	(b)	0.24	(b)	0.24	(b)	0.24	(b)
$\mathrm{F}_{\mathrm{C}=\mathrm{CH}}$	-	-	0.49	(b)	0.29	0.08	-	-
$\mathrm{F}_{\mathrm{C}=\mathrm{CC}}$	0.67	0.19	0.73	0.11	0.65	0.09	0.66	0.18

TABLE XV (Continued)

Force Constant	$\Phi(5)$	$\sigma_{\text {雨(5) }}$	$\Phi(6)$	$\sigma_{\Phi(6)}$	Φ (7)	$\sigma_{\Phi(7)}$	$\Phi(8)$	$\sigma_{\text {車(8) }}$
$\mathrm{F}_{\mathrm{HCH}}$	-	-	-	_	0.02	0.06	-	-
$\mathrm{F}_{\mathrm{CCH}}$	-	_	0.27	0.16	0.32	0.16	-	-
$\mathrm{F}_{\mathrm{CCC}}$	0.97	0.13	0.93	0.08	0.94	0.07	0.96	0.13
$\mathrm{C}_{\mathrm{CC}=\mathrm{CC}}$	0.04	(b)	0.04	(b)	0.04	(b)	0.04	(b)
Tr	-	-	-	-	-	-	-	-
p	-	-	-	-	-	-	0.06	0.05

(a) Force constants are in mdyne/A except for the bending constants, which are in $10^{-11} \mathrm{erg} / \mathrm{rad}^{2}$.
(b) The value of the corresponding force constant was constrained.
(c) A line indicates that the calculation is independent of the indicated force constant.

Seemingly the UBFF cannot adequately encompass the effects which the resonance stabilization in tetracyanoethylene has on the vibrational energy. Scherer and Overend ${ }^{13}$ have developed a method whereby the UBFF is modified to correct for resonance effects in aromatic rings. This method should be useful in considering electron delocalization effects in tetracyanoethylene, as will be developed below.

Several canonical forms for tetracyanoethylene are shown in Figure 4. Many more forms could be written on the basis of molecular symmetry. Considering Figure 4, stretching of the bond labeled (1) would tend to stabilize structures (b) and (c) and thus increase the energy necessary to stretch bonds (2), (3), (4) and (5). This can be expressed by the inclusion of cross terms $\rho \Delta R_{1} \Delta R_{2}, \rho \Delta R_{1} \Delta R_{3}, \rho \Delta R_{1} \Delta R_{4}$, and $\rho \Delta R_{1} \Delta R_{5}$ in the potential energy function. Here ρ is the Kekule' constant to be adjusted in the least squares calculation and the ΔR are bond length internal displacement coordinates corresponding to the numbered bonds in Figure 4. Conversely, compression of bond (1) would stabilize structure (a), giving rise to cross terms $\rho\left(-\Delta R_{1}\right) \Delta R_{6}$, $\rho\left(-\Delta R_{1}\right) \Delta R_{8}$ and $\rho\left(-\Delta R_{l}\right) \Delta R_{9}$. These, together with similar terms which arise from consideration of the remaining bond stretching coordinates, comprise a set of cross terms which is added to the basic UBFF. The results of such a calculation appear as $\Phi(8)$ in Table $X V$ and the calculated frequencies are shown in Table XIV. This calculation was performed exactly as was calculation (5) except that the Kekule' constant ρ was added to the set of force constants to be refined. Although there is some improvement in the agreement between calculated and observed frequencies for calculation (8) over calculation (5), the agreement is still not satisfactory. Better results might be had if more

Figure 4. Some Canonical Forms for Tetracyanoethylene
than one Kekule' constant were used. This would remove the inherent assumption that all canonical forms contribute to the bond-bond intractions to the same extent。 One calculation which included 3 Kekule' constants would not converge, possibly because, with 9 stretching modes primarily determined by 6 stretching force constants, the problem was too nearly exactly determined.

Nevertheless, the results of calculation (8) indicate that the modification is in the right direction. Compared to the $\Phi(5), K_{C=C}$ and $K_{C N}$ increase slightly while $K_{C C}$ decreases slightly. As would be expected, the bending and nonbonded interaction constants show little or no change.

CHAPTER VI

DISCUSSION

As a result of the overlay calculations reported in the previous chapter, a set of force constants $\Phi(4)$ has been determined which adequately determines the planar fundamental modes of all cyanoethylenes with the exception of tetracyanoethylene. Satisfactory results for tetracyanoethylene were not derived, even when effects of electron delocalization were considered.

Considering the results of calculations (1), (2) and (4), it is surprising that the error in the calculated frequencies is nearly constant regardless of the number of molecules included in the overlay. The average percent errors in calculated frequencies for these three calculations are $0.87,1.11$ and 1.09 respectively. The only difference between calculations (1) and (2) lies in the fact that tricyanoethylene is included in (2) but not in (1). It thus appears again that the inclusion of tricyanoethylene does introduce some bonding features not common to the other four molecules. This effect is undoubtedly a result of increased conjugation.

The average percent error (1.09%) quoted for calculation (4) is somewhat misleading. During that calculation neither v_{5}, v_{7} nor v_{13} of 1,1-dicyanoethylene were weighted so that error in these modes was not included in the average. If the presently assigned values of 720,170 and $240 \mathrm{~cm}^{-1}$ are used, the average percent error is increased to 1.49
for the entire calculation. Also, it would seem that the results of calculation (4) confirms the assignment of v_{7} as $170 \mathrm{~cm}^{-1}$ while favoring the alternate assignment of v_{5} as $762 \mathrm{~cm}^{-1}$ and suggesting that v_{13}, tentatively assigned as $240 \mathrm{~cm}^{-1}$, has not as yet been observed.

Examination of stretching force constants calculated for other small molecules indicates that resonance effects are important even in lower cyanoethylenes. In calculation (4) a value of 6.82 mdyne/A was adopted by $K_{C=C}$. A similar calculation for ethylene yields a value of 7.46. mdyne/A. ${ }^{21}$ Likewise, for a series of saturated nitriles $K_{C N}=$ 18.2-18.5 and $\mathrm{K}_{\mathrm{CC}}=3.1-3.2$ mdyne/ A as opposed to 16.94 and 4.63 mdyne/ A in this investigation. ${ }^{7}$ It is clear that, for the cyanoethylenes, the $C=N$ and $C=C$ bonds are weaker and the $C-C N$ bond is stronger than would be expected in the absence of delocalization.

It is quite apparent that the $\mathrm{C}-\mathrm{H}$ bond is significantly weakened by an alpha-cyano group. Consideration of the force constants for cis-, trans- and gem-difluoroethylenes shows the same phenomenon for an alpha-fluorine, ${ }^{34}$ whereas an alpha-bromine has very little effect. ${ }^{21}$ In fact the weakening of the $\mathrm{C}-\mathrm{H}$ bond is definitely correlated with the magnitude of the $F_{H X}$ interaction which has the values $1.10,0.57$ and 0.33 mdyne/A when X is $F, C N$ and $B r$ respectively. It is also known that the $\mathrm{C}-\mathrm{H}$ bond is lengthened by an adjacent fluorine. ${ }^{35}$ Further, the relative chemical shifts in the nuclear magnetic resonance spectra of a large number of vinyl compounds show that alpha electronegative groups have the effect on the electron density about hydrogen which is typical of hydrogen bonding. 36,37 These data, summarized in Table XVI, show that a strong correlation also exists between these electron densities and the magnitude of F_{HX}. These facts indicate the possible
existence of an intramolecular hydrogen bond. If this is so, then the interaction force constant $F_{H X}$ is a measure of the strength of this hydrogen bond, not a measure of the $\mathrm{H}-\mathrm{X}$ repulsive force.

TABLE XVI

RELATIVE CHEMICAL SHIFTS FOR A SERIES OF VINYL COMPOUNDS

(a) Units for chemical shifts are hertz.
(b) Units are mdyne/A.

The positive value adopted by $C_{C C=C C}$ may be indicative of a stabilizing interaction between cis carbon atoms. Thus one might expect ΔH for the cis-trans conversion to be greater than zero, as is the case for the 1,2 -difluoroethylenes. 38 However, fumaronitrile is
predominant at equilibrium, suggesting that ΔH is less than zero. This indicates that, for the cyanoethylenes, resonance stabilization, which favors the trans configuration, dominates over any stabilizing cis nonbonded interaction.

An alternative explanation for the magnitude of the nonbonded interaction constants is suggested by the work of Bruns et al. ${ }^{39}$ The results of a semi-empirical molecular orbital calculation for OF_{2} raise the possibility that many nonbonded interaction force constants are greatly inflated by electron delocalization. Thus $F_{H X}$ may not be an accurate measure of a nonbonded interaction but may arise mainly from a (CH,CX) bond-bond interaction term. If this is true, then no conclusions concerning the nature of the nonbonded interaction can be drawn from considerations of the sign or magnitude of the force constant since its effect would be effectively masked by that of the bondbond interaction.

PART II

AN ALGORITHM FOR THE DETERMINATION OF

THE SHAPE PARAMETERS OF INFRARED

ABSORPTION BANDS

CHAPTER I

INTRODUCTION

The Problem

There are basically two types of information which may be derived from an infrared spectrum, the positions of absorption bands and their intensities and shape factors. Band positions are indicative of the energy associated with the vibrational or vibrational-rotational tran-. sitions causing the absorption and, because of this, have been used for decades in studies of inter- and intramolecular forces. The work in Part I is but one example of the use of spectroscopic data for this purpose.

Intensity and shape information have not been used extensively as a tool for the interpretation of infrared spectra. Whereas primary frequency standards make it possible to exchange band position data between laboratories, no intensity standards have been developed for use with ordinary laboratory spectrophotometers. A1so, observed intensity values are highly dependent on instrumental parameters. As a result, it is almost impossible to compare uncorrected data from different instruments. Finally, any given infrared absorption band, being of finite line width, is often overlapped with an adjacent band. This overlap adds to the difficulty in evaluating the intensity and shape factors for either band.

The purpose of this investigation was to develop a mathematical technique whereby accurate intensity and shape information could be derived from ordinary infrared spectra.

The Shape of Infrared Absorption Bands

Seshadri and Jones ${ }^{40}$ have published a definitive review article concerning the shapes of infrared absorption bands. The discussion in this section is largely based on this review, with additional references as cited.

Consideration of absorption and emission spectra of materials in gas phase indicates that there are three factors which contribute to the line width of spectroscopic transitions. These are radiation damping, the Doppler effect and collision broadening.

According to classical theory, ${ }^{41}$ radiation damping arises because a vibrating electric charge radiates, and thus constantly loses, energy. As a consequence the amplitude of vibration is diminished while the natural frequency ν_{o} of the oscillator is maintained. A damped vibration of this type is not monochromatic; its frequency distribution may be determined by a Fourier analysis of the electric moment as a function of time. This yields

$$
\begin{equation*}
I_{v}=\frac{\Delta v / 2 \pi}{\left(v-v_{0}\right)^{2}+(\Delta v / 2)^{2}} \tag{1}
\end{equation*}
$$

where I_{v} is the intensity at frequency v and Δv is the line width at half-height in cm^{-1}. The line width is given by

$$
\begin{equation*}
\Delta v=\frac{4 \pi e^{2}}{3 m c^{2}} v_{o}^{2} \tag{2}
\end{equation*}
$$

where m and e are the mass and charge, respectively, of the oscillator and c is the speed of light. In terms of wavelength the line width is

$$
\begin{equation*}
\Delta \lambda=\frac{4 \pi e^{2}}{3 \mathrm{mc}^{2}}=1.17 \times 10^{-4} \AA \tag{3}
\end{equation*}
$$

According to quantum mechanics, the natural line width (equivalent to radiation damping in the classical treatment) arises because each of the two energy levels E_{1} and E_{2}, between which a transition occurs, is not sharp but has a finite width ΔE_{1} and ΔE_{2} respectively. The expression for the half width of the transition is then made up of the term widths of the two states:

$$
\begin{equation*}
\Delta v=\Delta \mathrm{E}_{1} / \mathrm{h}+\Delta \mathrm{E}_{2} / \mathrm{h} \tag{4}
\end{equation*}
$$

where h is the Planck constant. Applying the Heisenberg uncertainty principle:

$$
\begin{align*}
& \Delta E_{1} \cdot \Delta t_{1} \sim h / 2 \pi \tag{5a}\\
& \Delta E_{2} \cdot \Delta t_{2} \sim h / 2 \pi \tag{5b}
\end{align*}
$$

where Δt_{1} and Δt_{2} are the average times that the molecule remains in energy states E_{1} and E_{2}. Under the assumption that only infrared fundamental bands are to be considered; i.e., that all transitions are between the ground and first excited states, the band width can be expressed as

$$
\begin{equation*}
\Delta v=\frac{4 \pi e^{2}}{m c^{2}}\left(v_{2,1}^{2} f_{2,1}\right) \tag{6}
\end{equation*}
$$

where $\mathrm{f}_{2,1}$ is the oscillator strength of the transition whose frequency is $v_{2,1}$.

A comparison of equations 2 and 6 shows that the quantum mechanical treatment differs from the classical approach by a factor of $3 \mathrm{f}_{1,2}$. The oscillator strengths of infrared transitions are less than unity ${ }^{40}$ so that the value derived from the classical model may be regarded as an $u p p e r$ limit to the true natural line width. Line widths calculated by this method are of the order of $10^{-6} \mathrm{~cm}^{-1}$ at $1000 \mathrm{~cm}^{-1}$. Since observed band widths are of the order of $1-20 \mathrm{~cm}^{-1}$, it may be concluded that radiation damping is relatively unimportant in the evaluation of infrared absorption band shapes.

Doppler broadening results from thermal motion of the molecules. Molecules having a velocity component, V, toward or away from the radiation source will absorb or emit at the frequency v according to

$$
\begin{equation*}
v=v_{o}(1 \pm \mathrm{V} / \mathrm{c}) \tag{7}
\end{equation*}
$$

where v_{0} is the frequency which would be observed for the molecule at rest. The fraction of molecules within a velocity range ∂V is given by

$$
\begin{equation*}
\frac{d n}{n}=\left[\frac{M}{2 \pi R T}\right]^{\frac{1}{2}} \exp \left[-(M / 2 R T) v^{2}\right] d v \tag{8}
\end{equation*}
$$

where M is the molecular weight of the gas, R is the gas constant and T is the absolute temperature. The total intensity at frequency v is then

$$
\begin{equation*}
I_{v}=\left[\frac{M c^{2}}{2 \pi R T v_{0}^{2}}\right]^{\frac{1}{2}} \exp \left[-\left(\frac{M c^{2}}{2 R T v_{0}^{2}}\right)\left(v-v_{o}\right)^{2}\right] \tag{9}
\end{equation*}
$$

The Doppler effect thus predicts a Gaussian band shape with a band width given by

$$
\begin{equation*}
\Delta v=2(\ln 2)^{\frac{1}{2}}\left[\frac{2 \mathrm{RT}}{\mathrm{Mc}^{2}}\right]^{\frac{1}{2}} v_{0} \tag{10}
\end{equation*}
$$

Using equation 10 with $\nu_{0}=1000 \mathrm{~cm}^{-1}$ and a molecular weight of 100 at $20^{\circ} \mathrm{C}, \Delta v$ is calculated to be $1.2 \times 10^{-3} \mathrm{~cm}^{-1}$. This is less than the limits of precision in infrared spectroscopy and it may then be concluded that Doppler broadening is too sma11 to affect band shape measurements.

Collision broadening arises from a perturbation of the energy levels of an absorbing or emitting molecule caused by close approach of other molecules. The effect of such perturbations on a band profile was first derived by Lorent. z^{42} and later refined by Van Vleck and Weisskopf. ${ }^{43}$ Classically, the equation of motion for an oscillator of natural frequency ω_{0} radians/sec., mass m and charge e with an electrical field E cos ωt is

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=e E \cos \omega t \tag{11}
\end{equation*}
$$

This differential equation has a solution of the form:

$$
\begin{equation*}
x=C_{1} \exp (i \omega t)+C_{2} \exp \left(i \omega_{0} t\right)+C_{3} \exp \left(-i \omega_{0} t\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=\frac{e E}{m\left(w_{0}^{2}-\omega^{2}\right)} \tag{13}
\end{equation*}
$$

and C_{2} and C_{3} are determined by the nature of the collision. As the result of a collision, X and $d X / d t$ have taken on values which determine the behavior of the oscillator until the occurrence of the next collision. In order to evaluate an average value of X over the
varying time intervals from the last collision, equation 12 is multiplied by the probability that the molecule will collide again after a lapsed time θ. The probability is given by

$$
\begin{equation*}
n(t)=\frac{1}{V} \exp \left(-\frac{1}{V}\right) d \theta \tag{14}
\end{equation*}
$$

where V is the mean time between collisions. The resulting equation for $\overline{\mathrm{X}}$ (the average value) is a function containing real and imaginary parts and, for the imaginary part, it can be shown that the absorption coefficient α at frequency ω is

$$
\begin{equation*}
\alpha_{\omega}=\frac{2 \pi n e^{2}}{m c} \cdot{\underset{\omega}{\omega}}_{\omega_{0}}\left[\frac{1 / V}{\left(\omega_{m} \omega_{0}\right)^{2}+(1 / v)^{2}}-\frac{1 / v}{\left(\omega+\omega_{0}\right)^{2}+(1 / v)^{2}}\right] \tag{15}
\end{equation*}
$$

where n is the number of molecules in the system. This equation defines a profile which will be referred to in succeeding portions of this work as a Lorentz profile. On modifying the expression so that it is more useful for the analysis of infrared absorption spectra, equation 15 becomes ${ }^{40}$

$$
\begin{equation*}
\alpha_{v}=\frac{K}{\pi} \frac{\Delta v / 2}{\left(v-v_{0}\right)^{2}+(\Delta v / 2)^{2}} \tag{16}
\end{equation*}
$$

where K is a function of the particular band. At $v=v_{o}$, equation 16 yie1ds

$$
\begin{equation*}
\alpha_{v o}=\frac{2 K}{\pi \Delta v} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{K}{\pi}=\frac{\alpha_{v_{0}} \Delta v}{2} \tag{18}
\end{equation*}
$$

Making the appropriate substitution and designating $\alpha_{v o}$ as A_{0}, the peak absorbance of the absorbing species, and α_{V} as A_{V}, the absorbance at frequency v, equation 16 may be written

$$
\begin{equation*}
A_{v}=\frac{A_{0}(\Delta v / 2)^{2}}{\left(v-v_{0}\right)^{2}+(\Delta v / 2)^{2}} \tag{19}
\end{equation*}
$$

Finally, multiplying numerator and denominator by $(2 / \Delta v)^{2}$ yields

$$
\begin{equation*}
A_{v}=\frac{A_{0}}{1+(2 / \Delta v)^{2}\left(v-v_{0}\right)^{2}} \tag{20}
\end{equation*}
$$

Although the above derivations arise from consideration of the behavior of gases, many workers have used the Lorentz function or modifications of it in studies involving condensed materials.

The Effect of Finite S1it Widths

When a spectrometer is set to transmit radiation of a given frequency a frequency band of finite width is actually transmitted. The energy distribution of this band is generally symmetrical about the nominal frequency and its width is a function of the mechanical s1it settings, resolving power and optical aberrations of the spectrometer. The transmittance observed for a sample at any frequency v ' is thus not only dependent on the absorption coefficient at v ' but is also a function of the absorption coefficients across the detected frequency band. If the energy distribution over the detected frequencies is designated as $g\left(v, v^{\prime}\right)$, the apparent transmittance value, $T_{v}{ }^{a}$, is given by ${ }^{44}$

$$
\begin{equation*}
T_{v^{\prime}}^{\dot{z}}=\frac{\int_{T v g}\left(v, v^{\prime}\right) d v}{\int g\left(v, v^{\prime}\right) d v} \tag{21}
\end{equation*}
$$

where the convolution is performed over the range of detected frequencies. It is apparent from this equation that the magnitude of error introduced by a symmetric slit function is dependent on $\partial^{2} T_{v} / \partial v^{2}$. Where the slope of the observed spectrum is relatively constant, T_{v}^{a} will approach T_{v}. However, where the slope is changing rapidly, as is the case near the center of an absorption band, considerable error results. Moreover, the relative error varies for bands of different intensity ${ }^{45,46}$ giving rise to the curvature often observed in Beer's law plots derived from data taken at large slit widths.

The function $g\left(v, v^{\prime}\right)$ may be visualized by considering the effect of scanning a spectrometer with a finite spectral slit width across a region of the spectrum containing an infinitely narrow absorption band, The signal observed under these conditions could be regarded as the locus of $g\left(v, v^{\prime \prime}\right)$, where $v^{\prime \prime}$ is the position of the absorption. For very narrow slits $g\left(v, v^{\prime}\right)$ may be regarded as a diffraction function with a large maximum at v^{\prime}. If the slits are wide compared to the wavelength of the transmitted radiation, as is usually the case in infrared spectrometry, the secondary maxima of the diffraction function may be disregarded, and the distribution regarded as approximately triangulars 44 as shown in Figure 5. The triangular distribution actually applies only to the situation where the entrance and exit slits are of equal size, but this configuration is used in all commercial infrared spectrometers. The function depicted in Figure 5 may be described by the equation

$$
g\left(v, v^{\prime}\right)=\left\{\begin{array}{l}
S-\left|v^{\prime}-v\right|,\left|v^{\prime}-v\right| \leq S \tag{22}\\
0,\left|v^{\prime}-v\right| \geq S
\end{array}\right.
$$

Figure 5. The Triangular Spectral Slit Function
where S, the spectral slit width, is defined as half the frequency interval subtended by the spectrometer when set to v '.

Studies of Infrared Band Profiles

Most of the significant work in the study of the shapes of infrared absorption bands has been done by Jones and co-workers. 40, 47-49 Their study has included the Lorentz and Gauss functions and the sum and product functions of these two. At present, Jones is using the Lorentz-Gauss sum function almost exclusively。 ${ }^{50}$ It should be pointed out that the primary object of this group is to reduce infrared data to a minimal number of numerical indices, not to extract true intensity data.

Abramowitz and Bauman ${ }^{51}$ and Fraser and Suzuki ${ }^{52}$ have also used Lorentz-Gauss sum and product functions, but the former have concluded that, at narrow slit widths, most absorption bands are almost purely Lorentzian. Early work in this laboratory indicates that this conclusion is correct. In a study of the hydrogen bonding of esters and alcohols, overlapped carbonyl stretching absorption bands were successfully resolved on the basis of a Lorentz band shape ${ }^{53,54}$ The same algorithm was used to resolve carbon-hydrogen stretching bands in the spectra of aliphatic molecules. 55

The Scope of the Present Investigation

For the purposes of this investigation infrared absorption bands are regarded as Lorentz functions convolved by a triangular slit function. This mathematical model was chosen because (1) unlike the earlier models used in this laboratory and elsewhere, the effect of
finite slits is included as a separable factor and (2) it is felt, in light of the above discussion of the factors influencing band shape, that the parameters derived from this model would have more physical significance than those calculated using more complex models such as the Lorentz-Gauss sum function.

A computer program was designed and written for the purpose of performing the calculations necessary for the analysis. Several spectra, containing varying amounts of noise, were synthesized and used in testing the convergence characteristics of the program.

The experimental phase of this study consisted of the acquisition of data from infrared spectra of several esters and simple aromatic compounds. The former were chosen because their carbonyl stretching bands are well isolated from other bands while the latter provided a system of relatively narrow out~of~plane hydrogen bending bands which are highly susceptible to slit broadening. In addition, the various aromatic compounds provided the opportunity to determine the effectiveness of the model in the separation of overlapping bands.

The infrared data was then fitted to the model described above. The results clearly show that the slit-convolved Lorentz function is quite adequate to fit the observed data. In addition, analysis of data taken at several different slit widths indicate that the mathematical analysis is reasonably effective in removing distortion from this cause.

DEVELOPMENT OF THE ALGORITHM

The Calculated Spectrum

An infrared absorption spectrum containing one or more bands may be regarded, in the absence of slit perturbations, as a summation of functions of the type given in equation 20. Under this assumption, the absorbance calculated for any frequency v is then

$$
\begin{equation*}
A_{v}^{0}=\sum_{i=1}^{N} \frac{A_{0 i}}{1+\left(2 / \Delta v_{i}\right)^{2}\left(v-v_{0 i}\right)^{2}}+\beta \tag{23}
\end{equation*}
$$

where $A_{O_{i}}, \Delta v_{i}$, and $v_{0_{i}}$ are the peak absorbance, line width and band position, respectively, for the $i-t h$ band and N is the number of bands contributing to the spectrum. The zero superscript on the left hand side denotes that the absorbance has been calculated under the assumption of zero slit width. The constant β is included to absorb small baseline errors.

The basic physical quantity measured by most commercial spectrometers is transmittance. It is thus more meaningful to perform the band shape analysis in terms of this variable. Also, for reasons which will become clear later, it is more convenient to regard the spectrum not as a continuous function but as a vector composed of discrete samples taken at equal increments of the independent variable (frequency).

The transmittance calculated for the $k=$ th data point of the calculated spectrum is thus

$$
\begin{equation*}
T_{k}^{o}=\exp \left[-\sum_{i=1}^{N} \frac{A_{0 i}^{\prime}}{1+\rho_{i}\left(v_{k}-v_{0 i}\right)^{2}}-\beta^{\prime}\right] \tag{24}
\end{equation*}
$$

where $A_{0 i}^{\prime}=2.303 A_{0 i}, \beta^{\prime}=2.303 \beta, \rho_{i}=\left(2 / \Delta \nu_{i}\right)^{2}$ and ν_{k} is the frequency corresponding to the k-th datum.

In terms of discrete samples, the expression for the slit function (equation 22) becomes

$$
g\left(v, v_{k}\right)= \begin{cases}s-\left|v_{k}-v_{k+j}\right|=s-j x ; & j=0,1,2, \cdots, m \\ 0, & j \geq m\end{cases}
$$

where m is the number of samples contained in Scm^{-1} and x is the samp1ing interval. The slit convolution can then be expressed as a summation

$$
\begin{equation*}
T_{k}^{c a l c}=a_{o} T_{k}^{o}+\sum_{j=1}^{m} a_{j}\left(T_{k+j}^{o}+T_{k-j}^{o}\right) \tag{26}
\end{equation*}
$$

where $T_{k}{ }^{c a 1 c}$ is the value calculated for the k-th datum. The coefficients a_{j} are easily shown from equation 25 to be

$$
\begin{align*}
& a_{j}=\frac{S-j x}{F} ; \quad j=0,1,2, \cdots, m-1 \tag{27a}\\
& a_{m}=\frac{S-m x}{2 F} \tag{27b}
\end{align*}
$$

where F is the normalization factor given by

$$
\begin{equation*}
\mathrm{F}=2 \mathrm{mS}-\mathrm{m}^{2} \mathrm{x} \tag{28}
\end{equation*}
$$

The factor of 2 is included in the numerator of equation 27 b to make the numerical integration in equation 26 conform to the trapezoidal rule.

An alternative model for the slit convolution may be developed if it is assumed that any $2 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ region of the calculated spectrum is we11 approximated by a simple polynomial in $S-\left(v_{k}-v\right)$, such as

$$
\begin{equation*}
T_{Z}^{o}=\sum_{i=0}^{m} a_{i} z^{i},-S \leq z \leq s \tag{29}
\end{equation*}
$$

where $Z=S-\left(v_{k}-v\right)$ and M is the degree of the polynomial. The convoIution is then

$$
\begin{equation*}
T_{k}^{c a l c}=\frac{\int_{0}^{S} T_{Z}^{0}(S-Z) \partial Z+\int_{-S}^{0} T_{Z}^{0}(S+Z) \partial Z}{\int_{0}^{S}(S-Z) \partial Z+\int_{-S}^{0}(S+Z) \partial Z} \tag{30}
\end{equation*}
$$

Substituting the expression for $\mathrm{T}_{\mathrm{Z}}^{\mathrm{O}}$, the integrals are easily evaluated and the expression for $T_{k}{ }^{c a l c}$ becomes

$$
\begin{equation*}
T_{k}^{c a 1 c}=2 \sum_{i=0}^{m} \quad \delta_{i}\left(\frac{1}{i+1}-\frac{1}{i+2}\right) a_{i} S^{i} \tag{31}
\end{equation*}
$$

where δ_{i} is unity for even i and zero for odd i. The a_{i} are readily determined from the T_{k}^{o} by use of the simplified least-squares procedure outlined by Savitsky。 ${ }^{56}$ The computer program developed in this inves tigation allows the use of either slit convolution model.

The Least-Squares Procedure

The object of this algorithm is to choose a set of $3 \mathrm{~N}+\mathrm{l}$ band parameters $A_{0 i}: \Delta v_{i}, U_{0 i}$, and β for a spectrum containing N bands such that the best fit is obtained between the observed and calculated transmittance values. According to the least-squares criterion, this is achieved when the sum of squares of the deviations is a minimum:

$$
\begin{equation*}
\sum_{k=1}^{P}\left(T_{k}^{\text {obs }}-T_{k}^{c a l c}\right)^{2}=\text { minimum } \tag{32}
\end{equation*}
$$

where P is the number of elements in the vector of observed transmittance values. Since the $\mathrm{T}_{\mathrm{k}}^{\text {calc }}$ are not Iinearly related to the band parameters, the Gauss-Newton nonlinear regression method was chosen for the analysis. ${ }^{57}$

For the sake of convenience, the various band parameters are now regarded as elements of a parameter vector whose elements are Q_{i}, where $i=1,2, \cdots, 3 N+1$. A set of initial parameter values, Q_{i}^{\prime}, are estimated and used to calculate a vector of the $\mathrm{T}_{\mathrm{k}}{ }^{\text {calc }}$. If the initial estimate is reasonably close to the true value, the residual function may be linearized by using a first order Taylor's expansion

$$
\begin{equation*}
R_{k}^{\prime}=\left(T_{k}^{o b s} \ldots T_{k}^{c a l c}\right)^{\prime}=\sum_{i=1}^{3 N+1}\left(\frac{\partial T_{k}}{\partial Q_{i}}\right)^{\prime} \Delta Q_{i} \tag{33}
\end{equation*}
$$

where $\Delta Q_{i}=Q_{i}-Q_{i}$ and the primes indicate that the indicated terms are to be evaluated for the approximate values of the parameters. This equation is linear and may be solved for the ΔQ_{i} by ordinary least-
squares methods, viz.:

$$
\begin{equation*}
\overline{\Delta Q}=B^{-1} \bar{Z} \tag{34}
\end{equation*}
$$

where $\overline{\Delta Q}$ is a vector of the $\Delta Q_{i}, B^{-1}$ is the inverse of a matrix B whose $i, j-$ th element is

$$
\begin{equation*}
B_{i j}=\sum_{k=1}^{P}\left(\frac{\partial T_{k}^{c a 1 c^{\prime}}}{\partial Q_{i}}\right)^{\prime}\left(\frac{\partial T_{k}^{c a l_{k}}}{\partial Q_{j}}\right)^{\prime} \tag{35}
\end{equation*}
$$

and \bar{Z} is a vector whose $i-t h$ component is

$$
\begin{equation*}
Z_{i}=\sum_{k=1}^{P}\left(R_{k} \frac{\partial T_{k}^{c a 1 c}}{\partial Q_{i}}\right)^{\prime} \tag{36}
\end{equation*}
$$

The $Q_{i}{ }_{i}^{\prime}$ are adjusted by the ΔQ_{i} and the process is repeated until minimum for equation 32 is obtained.

A computer program (BANDFIT) has been written to implement the algorithm outlined in this chapter. The digitized infrared spectrum together with a set of band parameter estimates and control information comprise the input data for this routine. From the parameters and the specified spectral slit function, a calculated spectrum is generated and the error sum of squares is evaluated. The partial derivative sums necessary for the construction of matrix B are calculated at this time. Matrix B is then inverted, the $\Delta Q ' s$ are evaluated and the original estimate set is updated. The problem is then recycled using the new parameter set. This process is repeated until either a minimum in the error sum of squares has been reached or the fractional improvement in the sum of squares for two successive cycles falls below
the limit set by the user. A listing of program BANDFIT and instructions for its use may be found in the Appendix.

CHAPTER III

EXPERIMENTAL

General

All materials, with the exception of solvents, used in this investigation were purified by preparative gas chromatography before use。 Solvents were used without further purification.

Infrared sampling cells were calibrated in the normal manner from their diffraction pattern. Standard deviations in these calibrations were determined to be less than 0.4 percent relative to the path length.

The true zero reading for the slit micrometer of the infrared spectrometer was determined by plotting the square root of single beam energy:vs the micrometer index. The intercept of this plot was taken as the zero offset error and was used to correct subsequent micrometer readings.

Data Acquisition

A11 spectra were determined using a Perkin-Elmer Model 621 doublebeam infrared grating, spectrometer. The spectrometer was equipped with an encoding device so that digitization of transmittance values could be commanded at equal frequency intervals. These intervals could be varied from 0.1 to $10.0 \mathrm{~cm}^{-1}$. All data for this investigation were
acquired at intervals of either 0.5 or $0.2 \mathrm{~cm}^{-1}$. The transmittance data were recorded as 3-digit numbers on computer-compatible magnetic tape for processing at a later time.

The scanning rate for all spectra was kept below $1 \mathrm{~cm}^{-1} / \mathrm{sec}$. This was done to minimize servo errors which might become important at higher rates.

Solution and solvent spectra were determined separately. During computer processing each solution spectrum was divided by the appropriate solvent spectrum to yield the equivalent of a differential spectrum determined with perfectly matched cells. This was done to cancel out all effects arising from cell aberrations and differences between the refractive indices of the salt plates and the solution.

Evaluation of the Spectral Slit Width

The equation given by Seshadri and Jones ${ }^{40}$ was used to determine spectral slit width values in this investigation. For a spectrometer set at frequency v with a mechanical slit width w_{S}, S is given by

$$
\begin{equation*}
S=\frac{v^{2} d}{N n F}\left[1-\left(\frac{n}{2 v d}\right)^{2}\right]^{\frac{1}{2}}\left\{w_{s}+\left[\left(\frac{F}{B v}\right)^{2}+w_{A}^{2}\right]^{\frac{1}{2}}\right\} \tag{37}
\end{equation*}
$$

where d is the grating spacing, N is the number of grating passes, n is the order of the spectrum, F is the focal length of the monochromator, B is the limiting aperture of the spectrometer and ${ }^{W} A$ is the virtual mechanical slit width arising from aberrations. All terms save B and W_{A} were available from either the instrument settings or the manufacturer's 1iterature. The effective aperture was determined from a measurement of the illuminated portion of the grating and w_{A} was
assigned the value of 0.004 cm as recommended by Seshadri and Jones.
A constant physical slit width was employed for spectra taken in the region $1950-1550 \mathrm{~cm}^{-1}$ since this procedure gives more flexibility in choosing a spectral slit width than does the instrumental slit program and since $\partial S / \partial v$ for a constant w_{s} is small in this region. For spectra in the $800-650 \mathrm{~cm}^{-1}$, however, use of the slit program was necessary because the size of the derivative precluded the use of fixed slits.

CHAPTER IV

RESULTS AND DISCUSSION

Synthetic Spectra

Abstract

As was mentioned previousily, synthetic spectra were used to evaluate the band shape analysis computer program. Before discussing the results of these analyses, it would be appropriate to describe the method used to generate the spectra. For each synthetic spectrum, a vector of transmittance values was generated using equations 24 and. 26. A "noise" vector was also generated by indexing a table of random normal deviates with a pseudorandom number generator. This vector was then scaled to the desired signal-to-noise ratio (S / N) and combined with the transmittance vector to yield the synthetic spectrum. Before analysis, each datum was truncated to three decimal places so as to conform to the data format of the real spectrometer.

Three sets of synthetic spectra were analyzed using program BANDFIT. The first set was composed of 24 spectra, each containing a single band with $A_{0}=1.0, \Delta v=1.0, \Delta v=10.0 \mathrm{~cm}^{-1}$ and $v_{0}=1000 \mathrm{~cm}^{-1}$. Transmittance vectors spanned the range $1050 \approx 950 \mathrm{~cm}^{-1}$ with a sampling interval of $0.5 \mathrm{~cm}^{-1}$. Results of the least-squares procedure appear in Table XVII, and a graph of the synthetic spectrum and that calculated on the basis of the refined parameters for the case where $S=4.0 \mathrm{~cm}^{-1}$ and $S / N=200$ is shown in Figure 6. Refined values for v_{0} and β do not

TABLE XVII
RESULTS FROM ANALYSES OF SYNTHETIC SPECTRA CONTAINING ONE BAND

Spectral S1it Width, cm^{-1}	S/N	$\frac{\text { Refined }}{\text { Ao }}$	$\frac{\text { Parameters }}{\Delta v, \mathrm{~cm}^{-1}}$	Error Sum of 2 Squares $\times 10^{2}$	Least-Squares Cycles
0 。	400	1.0012	9.98	0.105	3
	200	1.0034	9.95	0.410	3
	100	1.0069	9.90	1.615	3
	50	1.0142	9.80	6.397	3
1.	400	1.0018	9.97	0.099	5
	200	1.0035	9.95	0.407	4
	100	1.0080	9.89	1.621	4
	50	1.0160	9.78	6.420	4
2 。	400	1.0019	9.97	0.102	7
	200	1.0044	9.94	0.401	6
	100	1.0081	9.89	1.603	6
	50	1.0159	9.78	6.352	5
4.	400	1.0016	9.98	0.103	10
	200	1.0042	9.95	0.394	9
	100	1.0080	9.90	1.563	8
	50	1.0162	9.79	6.231	7
7.	400	1.0012	9.98	0.092	12
	200	1.0018	9.97	0.361	11
	100	1.0043	9.94	1.435	10
	50	1.0082	9.88	5.698	9
10.	400	0.9994	10.00	0.081	15
	200	1.0009	9.98	0.320	14
	100	1.0007	9.97	1.286	13
	50	1.0010	9.93	5.075	12

Figure 6. Single-Band Synthetic Spectrum with
$4 \mathrm{~cm}^{-1}$ Spectral Slit
appear in the table since v_{0} converged to the true value in all cases and β was constrained at zero. For the most part, the other two parameters converged to reasonably accurate values. There does, however, appear to be a relationship between S / N and the calculated values for A_{o} and Δv. The reason for, this dependence is not completely understood, but it is believed to arise from a local bias in the noise vector. This is plausible since a single vector, scaled to give the various S/N values, was used for all spectra in the set. An examination of the noise pattern indicated some bias in the vicinity of the band center but it was not of sufficient magnitude to be responsible for the observed deviations. In any case, the effect is probably due to an artifact and is unimportant at moderate noise levels.

The relationship between the spectral slit width and the number of cycles taken in the analysis is a direct result of the fact that initial estimates of the parameter values were taken from the simulated spectrum. For wide spectral slits, therefore, the estimates are farther from the true values than for narrow slits and the least-squares procedure consequently requires more iterations to converge. Also, at smaller values of S / N, the error sum of squares levels off sooner because of the uncertainty introduced by the noise. This is the cause of the apparent relationship between S / N and the number of calculation cycles.

Five of the spectra referred to in Table XVII (those with $\mathrm{S} / \mathrm{N}=$ 200) were re-analyzed under the assumption that $S=0$; that is, that the spectra could be fitted by an unperturbed Lorentz function. Ala" "i though the results of these calculations (Table XVIII) indicate that, : for spectral slit width values of $4 \mathrm{~cm}^{\text {¹ }}$ and below, the error sums of

TABLE XVIII
RESULTS OF ZERO-SLIT CALCULATIONS ${ }^{\text {a }}$

Spectral Slit Width, cm^{-1}	Refined Parameters			$\begin{array}{r} \text { Error Sum } \\ \text { of } \text { Squares } \times 10^{2} \\ \hline \end{array}$	Least-Squares Cycles
1.	0.9991	9.98	-0.0001	0.407	3
2.	0.9818	10.14	-0.0003	0.402	3
4.	0.9169	10.77	-0.0015	0.458	3
7.	0.7895	12.37	-0.0042	0.862	4
10.	0.6702	14.54	-0.0078	1.578	4

a) $\mathrm{S} / \mathrm{N}=200$ for all spectra.
squares are comparable with those reported in Table XVII, it is apparent that A_{o} and Δv have converged toward the apparent parameter values rather than the true values. Thus, a simple Lorentz function may be used to fit experimental data taken at narrow spectral slit widths but the calculated band parameters derived will not be independent of the instrument slit width.

The second set of 24 synthetic spectra considered each contain two bands with $A_{01}=1.0, A_{02}=0.5, \Delta v_{1}=\Delta v_{2}=10.0 \mathrm{~cm}^{-1}, v_{01}=1010$ cm^{-1} and $v_{02}=990 \mathrm{~cm}^{-1}$. For these spectra the range was $1060-940 \mathrm{~cm}^{-1}$ with a sampling interval of $0.5 \mathrm{~cm}^{-1}$. Results of the least-squares analyses for these spectra, shown in Table XIX, display the same types of trends and dependencies as were observed for the set of single band spectra. Again, the ν_{0} values are not listed since these parameters converged to the theoretical values in all cases. A plot of synthetic and calculated spectra for a representative member of the set appears in Figure 7.

A third set of synthetic spectra, each consisting of three bands, was also subjected to band shape analysis. The parameters used in the synthesis of the spectra are listed in Table XX. The results of the analyses for bands 1 and 2 are similar to those already discussed. The refined parameter values for the third band are noteworthy, however, and appear in Table XXI. Even though this band appears as an unresolved shoulder on the $1000 \mathrm{~cm}^{-1}$ band (see Figure 8) the least-squares analysis resulted in reasonably accurate parameter values in most cases. Exceptions are for those spectra generated with large spectral slit widths and/or high noise levels. Since the presence of band 3 was not obvious in plots of the $10 \mathrm{~cm}^{-1}$ spectral slit spectra, these

RESULTS FROM ANALYSES OF SYNTHETIC SPECTRA CONTAINING TWO BANDS

Spectral Slit Width, cm^{-1}	S/N	Refined Parameters				Error Sum	Least-Squares Cycles
		$\dot{\mathrm{A}}_{01}$	$\Delta v_{1}, \mathrm{~cm}^{-1}$	${ }^{\text {A }} 02$	$\Delta v_{2}, \mathrm{~cm}^{-1}$	of Squares $\times 10^{2}$	
0 。	400	1.0038	9.95	0.5002	10.04	0.107	4
	200	1.0071	9.90	0.5002	10.07	0.441	4
	100	1.0149	9.81	0.5005	10.14	1.784	4
	50	1.0304	9.61	0.5010	10.27	6.880	4
1.	400	1.0037	9.95	0.5002	10.03	0.114	8
	200	1.0065	9.92	0.5007	10.04	0.447	8
	100	1.0136	9.83	0.5010	10.10	1.761	7
	50	1.0271	9.66	0.5021	10.20	6.844	6
2.	400	1.0022	9.97	0.5005	10.01	0.113	10
	200	1.0055	9.93	0.5007	10.03	0.433	9
	100	1.0106	9.87	0.5015	10.06	1.738	8
	50	1.0214	9.74	0.5031	10.13	6.803	7
4.	400	1.0001	10.00	0.5006	9.99	0.107	11
	200	1.0008	9.99	0.5010	9.99	0.421	10
	100	1.0016	9.98	0.5023	9.97	1.685	9
	50	1.0037	9.96	0.5041	9.94	6.597	9
7.	400	0.9970	10.03	0.4998	9.99	0.097	13
	200	0.9941	10.07	0.4997	9.97	0.383	12
	100	0.9881	10.13	0.4999	9.93	1.537	11
	50	0.9768	10.26	0.5001	9.85	5.962	10

TABLE XIX (Continued)

Spectral slit Width. cm^{-1}	S/N	Refined Parameters				Error Sum	Least-Squares Cycles
		${ }^{\text {A }}$	$\Delta v_{1}: \mathrm{cm}^{-1}$	${ }^{\text {A }} 02$	$\Delta v_{2}=\mathrm{cmP}^{-1}$	of Squares $\times 10^{2}$	
10.	400	0.9966	10.02	0.4978	10.05	0.085	17
	200	0.9937	10.04	0.4963	10.09	0.332	15
	100	0.9876	10.07	0.4915	10.21.	1.331	14
	50	0.9743	10.17	0.4850	10.37	5.293	13

Figure 7. Two-Band Synthetic Spectrum with $7 \mathrm{~cm}-1$
Spectral Slit and $S / N=100$

TABLE XX
band parameters for synthetic spectra CONTAINING THREE BANDSa

Band	$\frac{\mathrm{A}_{0}}{2}$	$\frac{\Delta v, \mathrm{~cm}^{-1}}{}$	$v_{0}, \mathrm{~cm}^{-1}$ 1
2.4	15.0	1020	
3	1.0	10.0	1000

a) Spectra consist of 271 data points over the region $1070-935 \mathrm{~cm}^{-1}$.

TABLE XXI

REFINED PARAMETERS FOR BAND 3 OF THE THREE-BAND SYNTHETIC SPECTRA

Spectral S1it Width, cm^{-1}	S/N	${ }^{A_{03}}$	$\Delta v_{3}, \mathrm{~cm}^{-1}$	$\underline{v_{03}}, \mathrm{~cm}^{-1}$
0.	400	0.0991	10.06	985.0
	200	0.0979	10.13	984.9
	100	0.0960	10.19	984.8
	50	0.0919	10.39	984.7
1.	400	0.0993	10.11	985.0
	200	0.0982	10.25	985.0
	100	0.0964	10.53	985.0
	50	0.0929	11.11	985.0
2.	400	0.0993	10.19	985.0
	200	0.0987	10.35	985.1
	100	0.0976	10.71	985.1
	50	0.0951	11.49	985.2
4.	400	0.0999	10.18	985.1
	200	0.0999	10.42	985.1
	100	0.1001	10.82	985.3
	50	0.1008	11.81	985.6
7.	400	0.1007	10.26	985.1
	200	0.1013	10.47	985.2
	100	0.1030	10.91	985.3
	50	0.1072	11.89	985.7
10.	400	0.0972	9.29	984.6
	200	0.0961	9.11	984.5
	100	0.0916	7.67	984.0
	50	0.0922	5.88	983.5

Figure 8. Three-Band Synthetic Spectrum with $4 \mathrm{~cm}^{-1}$
Spectral Slit and $\mathrm{S} / \mathrm{N}=200$
spectra were analyzed again under the assumption that only two bands were present in the spectrum. The result of one such analysis is : shown in Figure 9. The difference between the synthetic and calculated curves makes it apparent that an error of this type would not go undetected in an actual analysis.

The algorithm developed in this investigation has thus been proved capable of evaluating the true band parameters for a variety of synthetic spectra. It must be noted, however, that these spectra are ideal cases in that a Lorentzian band shape, triangular slit function and normally distributed noise are presumed. The following two sections of this chapter examine the applicability of the algorithm to the analysis of real spectra.

Carbonyl Stretching Bands of Aliphatic Esters

Four solutions of methyl oleate in n-tridecane were prepared and their infrared spectra determined at two different spectral slit widths over the $1800-1700 \mathrm{~cm}^{-1}$ region. Data from these spectra were analyzed in three phases. In the first phase, the data taken within $10 \mathrm{~cm}^{-1}$ of the carbonyl stretching band were fitted to a single band model. This was done to diminish the effect of any possible unresolved bands on the calculations. The refined parameters from these analyses were then used to calculate a spectrum over the entire $1800-1700 \mathrm{~cm}^{-1}$ range. Differences between the observed and calculated curves were examined to determine if further bands should be incorporated in the model. Finally, least-squares calculations based on the revised estimates were performed.

Figure 9. Result of Fitting a Two-Band Function to a
Three-Band Synthetic Spectrum

Results for the analyses involving data in the vicinity of the methyl oleate carbonyl stretching band are shown in Table XXII. On the basis of the observed intensities, the molar absorptivity (e) for the data at each slit value was calculated. Thus, with $1.5 \mathrm{~cm}^{-1} \mathrm{slits}$ $\varepsilon=(57.70 \pm 0.36) \mathrm{M}^{-1} \mathrm{~mm}^{-1}$ while for the data taken at $3.2 \mathrm{~cm}^{-1}, \varepsilon=$ $(55.99 \pm 0.36) \mathrm{M}^{-1} \mathrm{~mm}^{-1}$. Using the refined intensities, however, the molar absorptivities are (59.87 ± 0.39) and $60.84 \pm 0.68) \mathrm{M}^{-1} \mathrm{~mm}^{-1}$, respectively. Although no "true" value exists for comparison, the indications are that the molar absorptivities based on the refined parameters tend toward a single, and presumably correct, value. Also, there is a distinct improvement in the refined Δv values over those observed. The mean values for the measured band widths are $(11.66 \pm 0.04) \mathrm{cm}^{-1}$ and $(12.17 \pm 0.07) \mathrm{cm}^{-1}$, respectively, for the $1.5 \mathrm{~cm}^{-1}$ and $3.2 \mathrm{~cm}^{-1}$ data while the corresponding means for the refined parameters are (11.34 ± 0.06) and $(11.28 \pm 0.05) \mathrm{cm}^{-1}$.

Montigny ${ }^{46}$ has published a table of coefficients whereby, for given values of apparent band intensity, apparent band width and spectral slit width, the ratio of apparent to true band width for a slitbroadened infrared absorption band may be evaluated. Using these coefficients, expected values for the refined $\Delta v^{\prime} s$ were calculated and appear as the rightmost column of Table XXII. The mean deviation between the refined and calculated band widths is 1.4 percent relative to the calculated value, certainly within acceptable limits for this parameter. Since Montigny's calculations were based on the assumption that an absorption band may be regarded as the convolution of a Lorentz function with a triangular slit function, the agreement observed here serves as justification for the choice of this model in the present

TABLE XXII

BAND-SHAPE PARAMETERS FOR THE CARBONYL STRETCHING bAND OF METHYL OLEATE ${ }^{a}$

Spectral Slit Width, cm^{-1}	Concentration M.	Observed Parameters			Refined Parameters			Calculated Values for $\Delta v, \mathrm{~cm}^{-1}$
		A_{0}	$\Delta v, \mathrm{~cm}^{-1}$	$\underline{v_{0}, \mathrm{~cm}^{-1}}$	A_{0}	$\Delta u, \mathrm{~cm}^{-1}$	$v_{0}, \mathrm{~cm}^{-1}$	
1.5	0.00976	0.2786	11.73	1747.2	0.2846	11.42	1747.5	11.55
	0.01294	0.3642	11.66	1747.3	0.3750	11.39	1747.5	11.48
	0.01667	0.4694	11.68	1747.4	0.4843	11.32	1747.6	11.51
	0.01966	0.5513	11.58	1747.3	0.5675	11.25	1747.5	11.42
3.2	0.00976	0.2700	12.26	1747.0	0.2866	11.34	1747.3	11.51
	0.01294	0.3558	12.22	1747.1	0.3778	11.32	1747.4	11.48
	0.01667	0.4537	12.07	1747.2	0.4906	11.21	1747.4	11.37
	0.01966	0.5362	12.13	1747.0	0.5734	11.26	1747.3	11.45

a) Sample path for all spectra was 0.4788 mm .
investigation.
The differences between the observed and refined band position values are the result of a small amount of skew in the observed absorption bands. Because of this, the center of the band calculated by least squares does not correspond exactly to the position of zero slope.

Spectra calculated using the refined parameters from Table XXII were compared with the observed spectrum over the $1800-1700 \mathrm{~cm}^{-1}$ region. One such comparison is shown in Figure 10. Differences between the curves indicate that two more bands, one at $1726.5 \mathrm{~cm}^{-1}$ and one at $1706.5 \mathrm{~cm}^{-1}$, should be included in the model. This was done and the calculations repeated. The results for the expanded model were less than satisfactory in that the parameters calculated for the additional bands varied marked1y from spectrum to spectrum and the calculated band widths often assumed unrealistically large ($50-100 \mathrm{~cm}^{-1}$) values. As would be expected, however, inclusion of the additional bands did result in a better fit between observed and calculated spectra. The error sums of squares for the three-band mode1 were lower by a factor of about 30 than equivalent calculations based on a single band. This behavior could indicate that another factor, such as spectrometer imbalance in a region of atmospheric absorbance, is instrumental in causing the deviations. The fact that all carbony1 stretching spectra examined in this investigation exhibited some structure in this region lends credence to this explanation.

Data from the carbonyl stretching region of spectra of ethyl acetate in \underline{n}-tridecane were analyzed in a slightly different fashion. Preliminary calculations indicated the presence of a small band at $1729 \mathrm{~cm}^{-1}$ in addition to the carbonyl absorbance at $1748 \mathrm{~cm}^{-1}$. The

Figure 10. Observed and Calculated Carbonyl Stretching Bands for Methy1 Oleate with $1.5 \mathrm{~cm}^{-1}$ Spectra1 Slit
band width for this minor feature was determined graphically as was an approximate value for the molar absorptivity. These values were then included in least-squares analyses of the $1800-1700 \mathrm{~cm}^{-1}$ region of the spectrum but were constrained to their original values so that only parameters for the carbonyl stretching band were refined. The results of these calculations appear in Table XXIII. A comparison of the observed and refined values for Δv clearly demonstrates the power of the algorithm. Whereas the means of the observed values are 9.19, 10.45 and $12.48 \mathrm{~cm}^{-1}$ for spectra taken at spectral slit widths of $2.6,5.0$ and $7.5 \mathrm{~cm}^{-1}$ respectively, the mean for all 18 refined values is (8.66 $\pm 0.16) \mathrm{cm}^{-1}$. Also, the refined band widths agree reasonably well with the theoretical values shown in the last column. The behavior of the refined intensity parameters is shown in Table XXIV. Although there is a 26 percent difference between the observed molar absorptivities for the 2.6 and $7.5 \mathrm{~cm}^{-1}$ data, the refined intensities clearly define a single molar absorptivity.

Carbonyl stretching spectra for n-tridecane solutions of di-nbutyl oxalate were also studied. This compound exhibits strong bands at 1774 and $1748 \mathrm{~cm}^{-1}$ arising from out-of-phase and in-phase motions of the two carbonyl groups. In addition, there is a small unresolved band in the vicinity of $1720 \mathrm{~cm}^{-1}$. Transmittance data were gathered over the 1825 to $1700 \mathrm{~cm}^{-1}$ region and analyzed on the basis of this threeband model. The refined parameters from these analyses are listed in Table XXV and the molar absorptivity values calculated from the refined intensities appear in Table XXVI. No observed parameters are listed since comparison of these with the refined values is meaningless in the presence of extensive overlap.

TABLE XXIII

BAND-SHAPE PARAMETERS FOR THE CARBONYL STRETCHING BAND OF ETHYL ACETATE

Spectral Slit Width, cm^{-1}	Concentration M	Observed Parameters			Refined Parameters			Calculated Values for $\Delta v, \mathrm{~cm}^{-1}$
		A_{0}	$\Delta v, \mathrm{~cm}^{-1}$	$v_{0}, \mathrm{~cm}^{-1}$	A_{0}	$\Delta v, \mathrm{~cm}^{-1}$	$v_{0}, \mathrm{~cm}^{-1}$	
$2.6{ }^{\text {a }}$	0.00324	0.1332	9.38	1747.8	0.1421	8.64	1747.9	8.64
	0.00648	0.2629	9.21	1748.2	0.2789	8.41	1748.3	8.53
	0.01027	0.4151	9.12	1747.8	0.4333	8.76	1748.0	8.49
	0.01381	0.5367	9.10	1748.0	0.5626	8.69	1748.1	8.51
	0.01717	0.6786	9.17	1747.8	0.7015	8.93	1748.0	8.61
	0.02054	0.8130	9.18	1747.8	0.8391	8.96	1748.1	8.66
$5.0{ }^{\text {a }}$	0.00324	0.1175	10.52	1747.3	0.1414	8.21	1747.6	8.13
	0.00648	0.2313	10.67	1747.6	0.2742	8.56	1747.7	8.42
	0.01027	0.3624	10.47	1747.6	0.4282	8.64	1747.7	8.29
	0.01381	0.4722	10.36	1747.6	0.5582	8.67	1747.8	8.26
	0.01717	0.6022	10.33	1747.6	0.7060	8.84	1747.8	8.34
	0.02054	0.7082	10.37	1747.6	0.8310	8.95	1747.8	8.57
$7.5^{\text {b }}$	0.00324	0.1010	12.73	1747.2	0.1389	8.32	1747.6	8.14
	0.00648	0.1919	12.86	. 1747.5	0.2651	8.49	1747.7	8.49
	0.01027	0.3097	12.52	1747.6	0.4255	8.65	1747.8	8.24
	0.01381	0.4090	12.31	1747.6	0.5639	8.67	1747.8	8.10
	0.01717	0.4803	12.27	1747.6	0.6673	8.74	1747.8	8.15
	0.02054	0.5955	12.16	1747.5	0.8269	8.87	1747.7	8.16

a) Sample path was 0.4801 mm .
b) Sample path was 0.4789 mm .

TABLE XXIV

MOLAR ABSORPTIVITY FOR THE CARBONYL STRETCHING BAND OF ETHYYL ACETATE

Spectral Slit Width, cm^{-1}	Molar Absorptivity, $\mathrm{M}^{-1} \mathrm{~mm}^{-1}$	
	Observed Intensities	Refined Intensities
2.6	$81.31+0.91$	$83.26+0.73$
5.0	71.22 ± 0.83	83.12 ± 0.80
7.5	$59.92 \pm 0.74{ }^{\text {a }}$	$83.29 \pm 0.69^{\text {a }}$
a) A_{0} for the value.	solution was not u	rmination of this

TABLE XXV
REFINED BAND SHAPE PARAMETERS FOR THE CARBONYL STRETCHING REGION OF DI-N-BUTYL OXALATE SPECTRA ${ }^{\text {a }}$

Spectral Slit Width, cm^{-1}	centrati M.	A_{01}	$\Delta v_{1}, \mathrm{~cm}^{-1}$	$v_{01}, \mathrm{~cm}$	A_{02}	$\Delta v_{1}, \mathrm{~cm}^{-1}$	$\underline{v_{02}, \mathrm{~cm}^{-1}}$	${ }^{\text {A }} 03$	$\Delta v_{3}, \mathrm{~cm}^{-1}$	$v_{03}, \mathrm{~cm}^{-1}$
3.0	0.00627	0.1077	13.01	1774.3	0.2230	10.91	1748.0	0.0184	36.11	1732.7
	0.01152	0.1975	13.75	1774.4	0.4230	10.75	1748.2	0.0103	25.24	1718.1
	0.01783	0.3027	13.80	1774.6	0.6451	10.78	1748.3	0.0175	25.36	1714.2
	0.02318	0.3924	13.91	1774.4	0.8279	10.82	1748.1	0.0228	23.67	1713.7
4.4	0.00627	0.1083	13.53	1773.9	0.2270	11.03	1747.8	0.0096	22.91	1720.7
	0.01152	0.1974	13.75	1774.2	0.4195	10.90	1748.1	0.0136	25.04	1717.5
	0.01783	0.3033	13.67	1774.1	0.6449	10.74	1747.9	0.0196	28.64	1714.0
	0.02318	0.3921	13.83	1774.2	0.8278	10.80	1747.9	0.0252	25.93	1713.2
6.0	0.00627	0.1084	13.01	1773.9	0.2293	10.02	1747.8	0.0227	30.89	1734.8
	0.01152	0.1982	13.65	1774.1	0.4268	10.55	1747.8	0.0127	21.80	1717.1
	0.01783	0.3042	13.74	1774.1	0.6606	10.45	1747.8	0.0175	25.66	1714.7
	0.02318	0.3947	13.74	1774.1	0.8506	10.48	1747.8	0.0239	23.53	1713.8
10.0	0.00627	0.1105	12.95	1773.7	0.2410	9.81	1747.7	0.0198	30.71	1731.9
	0.01152	0.2052	13.35	1774.0	0.4486	9.96	1747.8	0.0132	23.04	1718.8
	0.01783	0.3111	13.64	1774.0	0.7093	9.68	1747.8	0.0197	29.19	1714.6
	0.02318	0.4038	13.66	1774.0	0.9184	9.74	1747.7	0.0258	23.77	1713.8

a) Sample path for all spectra was 0.4780 mm .

TABLE XXVI
MOLAR ABSORPTIVITIES FOR THE CARBONYL STRETCHING REGION OF DI-N-BUTYL OXALATE SPECTRAa

Spectral S1it Width, cm^{-1}	ε_{1}	${ }^{\boldsymbol{\epsilon}} 2$	ε_{3}^{b}
3.0	35.18 ± 0.13	74.68 ± 1.24	2.25 ± 0.09
4.4	35.11 ± 0.11	74.37 ± 0.77	2.08 ± 0.06
6.0	35.39 ± 0.09	76.94 ± 0.66	2.00 ± 0.26
10.0	36.14 ± 0.35	84.13 ± 0.63	2.26 ± 0.07

a) The units for ϵ are $M^{-1} \mathrm{~mm}^{-1}$.
b) Data for the 0.00627 M solution were not used in the calculation of these entries.

Examination of the table entries for the two major bands indicates that, for the data taken at spectral slit widths of 3.0 and $4.4 \mathrm{~cm}^{-1}$, all parameters tend to converge to a common value. The uncertainty in the parameters for the small feature at about $1715 \mathrm{~cm}^{-1}$ was not unexpected, considering the small magnitude of the molar absorptivity and the fact that it appears on the wing of a much stronger band. They are more stable, however, than the small bands postulated for methyl oleate. It is therefore concluded that the band is real. A plot of observed and calculated spectra for this ester is given in Figure 11.

Intensity and band width parameters for the $1748 \mathrm{~cm}^{-1}$ band calculated using the $6.0 \mathrm{~cm}^{-1} \mathrm{slit}$ data deviate somewhat from those calculated from the data taken with 3.0 and $4.4 \mathrm{~cm}^{-1}$ slits. For the spectra determined with $S=10 \mathrm{~cm}^{-1}$, parameters for all but the $1715 \mathrm{~cm}^{-1}$ band have deviated significantly from the narrower slit width values. It thus appears that, for medium to strong absorption bands, shape parameters calculated using data taken at wide slit widths are unreliable. It should be noted, however, that slits of 6.0 and $10.0 \mathrm{~cm}^{-1}$ are far wider than those used in normal spectrometric work. One may conclude, therefore, that the least-squares algorithm has successfully described the carbonyl stretching region of the butyl oxalate spectrum.

Carbon-Hydrogen Bending Bands of

Simple Aromatic Hydrocarbons

Aromatic compounds bearing ring hydrogen atoms generally exhibit one or more $\mathrm{C}-\mathrm{H}$ bending bands in the $900-600 \mathrm{~cm}^{-1}$ region of the infra:red spectrum. The final phase of this investigation involved a study of these bands for carbon disulfide solutions of toluene, o-xylene,

Figure 11. Observed and Calculated Carbonyl Stretching Bands for Di-n-Buty1 Oxalate with $3 \mathrm{~cm}^{-1}$ Spectral Slit
$\underline{m}-x y l e n e$ and t-butylbenzene. Spectra were determined over the region $800-650 \mathrm{~cm}^{-1}$ at frequency intervals of $0.2 \mathrm{~cm}^{-1}$. Individual solute concentrations varied from 0.0306 to 0.1044 M and the spectral slit widths employed ranged from 1.0 to $2.2 \mathrm{~cm}^{-1}$.

Several least-squares analyses were performed involving spectra of solutions containing a single solute. The results for 35 such calculations are summarized in Table XXVII. The refined parameters for the individual hydrocarbons were then used as initial estimates for analyses of the spectra of solutions containing two or more solutes.

As can be seen from Table XXVIII, most of the refined parameters for the spectra of mixtures fall within one or two standard deviations of the values derived from the spectra of single component solutions. Notable exceptions are those parameters for the $693.2 \mathrm{~cm}^{-1}$ toluene band and the 690.1 m-xylene band which were calculated from data acquired at a spectral slit width of $2.2 \mathrm{~cm}^{-1}$. Although the observed data are apparently well described by the calculated model (see Figure 12), the molar absorptivity and band width values calculated for these absorbances do not agree with those listed in Table XXVII. It therefore seems that the algorithm cannot accurately resolve bands which are so extensively overlapped. Better values for these parameters are calculated from the data taken with $1.0 \mathrm{~cm}^{-1}$ slits. Here the apparent overlap is not so severe (see Figure 13) and the algorithm is more effective. It is also possible to calculate accurate parameters from the $2.2 \mathrm{~cm}^{-1}$ data if Δv and v_{0} for the overlapped bands are constrained to the initial values for 5 or 6 cycles. The success of this procedure, however, is somewhat predicated on the accuracy of the initial estimates. For the case of the mixture of o-xylene, \underline{m}-xylene and t-butylbenzene,

TABLE XXVII

REFINED BAND SHAPE PARAMETERS FOR THE C-H BENDING bands of aromatic hydrocarbons

Compound	$v_{0}, \mathrm{~cm}^{-1}$	e, $\mathrm{M}^{-1} \mathrm{~mm}^{-1}$	$\Delta v, \mathrm{~cm}^{-1}$
Toluene ${ }^{\text {a }}$	727.9 ± 0.1	52.52 ± 0.86	4.15 ± 0.08
	693.2 ± 0.1	17.17 ± 0.43	4.49 ± 0.09
o-Xylene ${ }^{\text {b }}$	741.5 ± 0.0	61.55 ± 0.38	3.87 ± 0.04
$\underline{\text { m-Xylene }}{ }^{\text {a }}$	767.8 ± 0.0	34.29 ± 0.65	4.53 ± 0.09
	690.1 ± 0.1	17.22 ± 0.17	3.86 ± 0.21
\underline{t}-Buty1benzene ${ }^{\text {b }}$	761.7 ± 0.1	27.34 ± 0.12	3.92 ± 0.14
	697.1 ± 0.1	31.04 ± 0.67	5.65 ± 0.18

a) Spectral slit width varies from 1.0 to $2.2 \mathrm{~cm}^{-1}$.
b) Spectral slit width is $2.1 \mathrm{~cm}^{-1}$.

TABLE XXVIII
REFINED CARBON-HYDROGEN BENDING BAND PARAMETERS FOR MIXTURES OF AROMATIC HYDROCARBONS

Components	Spectral S1it Width, cm^{-1}	$v_{0}, \mathrm{~cm}^{-1}$	$\varepsilon, \mathrm{M}^{-1} \mathrm{~mm}^{-1}$	$\Delta v, \mathrm{~cm}^{-1}$
Toluene $+\underline{m}$-Xylene	2.2	767.8	34.72	4.42
		727.9	51.77	4.08
		694.0	12.23	1.99
		690.8	23.16	6.20
Toluene + m-Xylene	1.0	767.7	36.21	4.58
		727.8	53.21	4.31
		693.2	16.92	4.42
		690.1	17.97	3.59
o-Xylene, m-Xylene, t-Butylbenzene	2.1	767.7	33.79	4.35
		761.9	27.90	4.22
		741.5	61.16	3.88
		697.2	30.87	5.60
		689.9	15.16	3.76

Figure 12. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and \underline{m}-Sylene with $2.2 \mathrm{~cm}^{-1}$ Spectral Slit

Figure 13. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and m-Xylene with $1 \mathrm{~cm}^{-1}$ Spectral Slit
the value calculated for the width of the $690 \mathrm{~cm}^{-1} \underline{m}-x y l e n e$ band is only slightly lower than the single-component value. A plot of observed and calculated spectra for this mixture is shown as Figure 14.

Summary and Conclusions

The purpose of this invetigation was to develop an algorithm whereby reliable values for the shape parameters of infrared absorption bands could be calculated. In achieving this end, a mathematical model was devised wherein an infrared spectrum is represented by a set of one or more Lorentz functions convolved with a triangular spectral slit function. This model was implemented in the form of a digital computer program (BANDFIT) which serves to calculate the shape parameters for each component band of a spectrum.

The effectiveness of program BANDFIT was evaluated initially on the basis of calculations involving synthetic spectra. In the second phase of the study real data, taken from the infrared spectra of aliphatic esters and simple aromatic hydrocarbons, were subjected to analysis. The results of these calculations demonstrate that band shape parameters derived from these analyses may be used to generate spectra which closely approximate those determined experimentally. In addition, the calculated parameters are physically significant in that, for a given set of spectral features, they are essentially unaffected by changes in spectral slit width.

The algorithm is not entirely successful in the determination of shape parameters for systems of strongly overlapped bands. It appears that unrealistic band width and intensity values result if the features are approximately one band width apart and if the ratio of the spectral

Figure 14. Observed and Calculated Carbon-Hydrogen Bending Bands for o-Xylene, $\underline{m}-X y l e n e$ and $t-B u t y 1 b e n z e n e$ with $2.1 \mathrm{~cm}^{-1}$ Spectral Slit
slit width to the apparent band width is greater than about 0.25 . For greater frequency separation, however, accurate determination of shape parameters is easily accomplished, even for bands appearing as unresolved shoulders. This is evidenced by the calculations involving the three band synthetic spectrum and by the set of self-consistent parameters derived for the $1715 \mathrm{~cm}^{-1}$ band in di-n-buty1 oxalate spectra.

It thus appears that infrared solution spectra are accurately described by the mathematical model devised and implemented during this investigation. Extraction of the shape parameters for a spectrum on the basis of this model is one step toward the removal of distortions introduced by the examining instrument. It is apparent, however, that there are other factors which influence the shapes and positions of infrared absorption bands. Perturbations of the detected signal by the electrical and mechanical systems of the spectrophotometer are probably instrumental in band broadening and in the skewing of peaks. As was previously mentioned, the effects of such distortions can possibly be eliminated by a deconvolution of the observed signal with the inverse of the instrument transfer function. Development of algorithms to evaluate the transfer function and to implement the deconvolution are the next logical steps in this field of research.

SELECTED BIBLIOGRAPHY

1. E. B. Wilson, Jr., J. C. Decius and P. C. Cross, "Molecular Vibrations," McGraw-Hill, New York, 1955.
2. G. Herzberg, "Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N. J., 1945.
3. H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).
4. J. P. Devlin, J. Chem. Phys. 39, 2385 (1963).
5. J. P. Devlin, J. Chem. Phys. 41, 2951 (1964).
6. T. Shimanouchi, J. Chem. Phys. 17, 245, 734 and 848 (1949).
7. T. Shimanouchi, Pure Applied Chem. 7, 131 (1963).
8. J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta 19, 117 (1963).
9. J. Overend and J. R. Scherer, J. Chem. Phys. 32, 1289, 1296 and 1720 (1960).
10. B. D. Latimer, "A Vibrational Study of Some Trihaloboroxines," (unpublished Ph.D. thesis, Ok1ahoma State University, 1966).
11. A. Rosenberg and J. P. Devlin, Spectrochim. Acta 21, 1613 (1965).
12. S. Cailifano and B. Crawford, Jr., Spectrochim. Acta. 16, 889 (1960).
13. J. Scherer and J. Overend, Spectrochim. Acta 17, 719 (1961).
14. J. Scherer, J. Chem. Phys. 36, 3308 (1962).
15. G. Zerbi, B. Crawford, Jr. and J. Overend, J. Chem. Phys. 38, 127 (1963).
16. M. Scrous, C. diLauro and S. Califano, Spectrochim. Acta 21, 571 (1965).
17. F. Halverson, R. F. Stamm and J. J. Whalen, J. Chem. Phys. 16, 808 (1948).
18. P. Devlin, J. Overend and B. Crawford, Jr., Spectrochim. Acta: 20, 23 (1964).
19. D. A. Long and W. O. George, Spectrochim Acta 19, 1717 (1963).
20. F. A. Miller et al., Spectrochim. Acta 20, 1233 (1964).
21. J. R. Scherer and J. Overend, J. Chem. Phys. 33, 1681 (1960).
22. A. E. Ardis et al., J. Am. Chem. Soc. 72, 1305 (1950).
23. O. Diels, H. Gartner and R. Kasck, Ber. 55, 3439 (1922).
24. O. Diels and B. Conn, Ber. 56, 2076 (1923).
25. A. E. Ardis and H. Gilbert, U. S. Patent 2,535,827 (Dec. 26, 1950); Chem. Abstr. 45, $3196^{\text {b }}$ (1951).
26. International Union of Pure and Applied Chemistry, "Tables of Wavenumbers for the Calibration of Infra-red Spectrometers," Butterworths, Washington, D. C., 1961..
27. G. Herzberg, "Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N. J., 1945, pp. 468-484.
28. W. S. Wilcox, J. H. Goldstein and J. W. Simmons, J. Chem. Phys. 22, 516 (1954).
29. "Tables of Interatomic Distances and Configurations in Molecules and Ions," Special Publication No. 11, The Chemical Society, London, 1958.
30. M. Aoualt and C. St. Arnaud, Can. J. Phys. 35, 504 (1957).
31. "Tables of Interatomic Distances and Configurations in Molecules and Ions, Supplement 1956-1959," Special Publication No. 18, The Chemical Society, London, 1965.
32. C. C. Costain and B. P. Stoicheff, J. Chem. Phys. 30, 777 (1959).
33. D. A. Bekoe and K. N. Trueblood, Z. Krist. 113, 1 (1960).
34. N. C. Craig et al., Ohio State Symposium on Molecular Structure and Spectroscopy, June 1964.
35. V. W. Laurie and D. T. Pence, J. Chem. Phys. 38, 2693 (1963).
36. V. W. Bruge1, T. Anhe1 and F. Frucksberg, Z. E1ektrochem. 64, 1121 (1960).
37. A. A. Bothner-By, J.Am. Chem. Soc. 83, 231 (1961).
38. N. C. Craig and E. A. Entemann, J. Am. Chem. Soc. 83, 3047 (1961).
39. R. Bruns, L. Raff, and J. P. Dev1in, Theoret. Chim. Acta (Ber 1.) 14, 232 (1969).
40. K. S. Seshadri and R. N. Jones, Spectrochim. Acta 19, 1013 (1963).
41. H. Morgenau and W. W. Watson, Revs. Modern Phys. 8, 22 (1936).
42. H. A. Lorentz, Konik1. Ned. Akad. Wetenschap. Proc. 8, 591 (1906).
43. J. H. VanV1eck and V. F. Weisskopf, Revs. Modern Phys. 17, 227 (1945).
44. J. R. Nie1sen, V. Thornton and E. B. Dale, Revs. Modern Phys. 16, 307 (1944).
45. D. A. Ramsay, J. Am. Chem. Soc. 74, 72 (1952).
46. P. Montigny, Spectrochim. Acta 20, 1373 (1964).
47. R. N. Jones, K. S. Seshadris, N. B. W. Jonathan and J. W. Hopkins, Can. J. Chem. 41, 750 (1963).
48. J. Pitha and R. N. Jones, Can. J. Chem. 44, 3031 (1966).
49. J. Pitha and R. No Jones, Can. J. Chem. 45, 2347 (1967).
50. R. N. Jones, personal communication, 1969).
51. S. Abramowitz and R. P. Bauman, J. Chem. Phys. 39, 2757 (1963).
52. R. D. B. Fraser and E. Suzuki, Ana1. Chem. 41, 37 (1969).
53. H. F. Smith and A. S. Rosenberg, J. Chem. Soc., 5391 (1963).
54. A. S. Rosenberg and H. F. Smith, J. Chem. Soc., 5395 (1963).
55. A. S. Rosenberg and H. F. Smith, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 1964.
56. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).
57. H. O. Hartley, Technometrios 3, 269 (1961).

APPENDIX

Instructions for Use of the Computer Program

Program BANDFIT was designed to implement the algorithm developed in this investigation. It is written in the Fortran $I V$ programming language for execution on an IBM System $360 / 65$ digital computer with full operating system. In its present configuration the program is limited to the analyses of spectra containing 10,000 or fewer digital values and which are composed of a maximum of 10 absorption bands.

The program consists of a main routine and seven subroutines; SPCTRM, SMTH1, SCAN, C $\triangle N M A T, ~ L \emptyset R N 3, ~ P L \emptyset T 1$ and SCALAB. A1so, a local subroutine (GDATE) is used to determine the date of the analysis. If this routine is not available the call to it and references to the variable DATE should be deleted. The functions of the other subroutines are briefly outlined below.

Subroutine SPCTRM is used to read ordinate values for the observed spectrum either from punched cards or from a user disk file. A call to entry point DISK of this subroutine serves to initialize the disk file. The program is written so that the method of reading the observed spectrum may be changed by simply modifying SPCTRM. Subroutine SMTH1 is used to digitally smooth the observed spectrum, SCAN generates the vector of coefficients employed in the slit convolution and C \varnothing NMAT is called to calculate the orthogonal polynomical coefficients required by both SMTH1 and SCAN. The calculated spectrum,
error sum of squares and the sums of partial derivatives used in the least-squares calculation are evaluated in LøRN3. Finally, subroutines PLØT1 and SCALAB are used to generate graphs of the observed and calculated spectra and of the error function. In order to use PL $\emptyset T 1$, the Calcomp (California Computer Products, Inc.) plotter subroutine package must be available. If it is not, calls to all entry points of subroutine PLØT1 should be eliminated from the main program.

Input requirements for program BANDFIT are detailed in TABLE XXIX. Although two types of spectrum header cards are described in the table, only one is required for a given problem. Also, it should be noted that band intensity estimates are input in terms of molar absorptivity rather than absorbance. This is done so that the same estimates may be used for the data from a series of solutions. The absorbance estimate is calculated in the program from the molar absorptivity, concentration and ce11 path values.

Printed output for a typical problem consists of the error sum of squares and parameter set for each calculation cycle and a list of the final refined parameter values together with estimates of their uncertainties. Listings of the observed and calculated spectra, punched and plotted output are optional as selected by control variables.

INPUT REQUIREMENTS FOR PROGRAM BANDFIT

Card	Columns	Format	Variable Name and Function
Record	1-2	I2	KARD $=1$ for the first and KARD $=2$ for the second of the 2 record cards.
	5-80	19 A 4	ALPHA, any alphanumeric information desired to describe the prob1em.
Control	1-2	I2	KARD $=3$
	3-8	16	$N \emptyset \mathrm{PR} \emptyset \mathrm{B}$, the problem number.
	9-11	I3	If NPLT $=2$, plots will be generated for the observed and ca1culated spectra and for the error function. If NPLT $=1$, only the observed and calculated spectra will be plotted. If NPLT = 0 , no plotting is done.
	12-14	I3	LTYPE = 1 if the observed spectrum is in transmittance units, LTYPE $=2$ if it is in absorbance units.
	15-17	I3	NPEAK, the number of absorption bands in the spectrum.
	18-20	I3	IHØLD is nonzero if any of the parameter estimates are to be constrained. If IH $\varnothing \mathrm{LD}=-1$, all parameters are constrained and a zero-order calculation is performed.
	21-23	I3	If $M \emptyset D E=1$ the observed spectrum is to be input from cards, if $M \emptyset D E=2$ it is accessed from the disk file.

TABLE XXIX (Continued)

Card	Columns	Format	Variable Name and Function
Control	24-26	13	NGATE; if greater than zero the observed spectrum will be smoothed with an NGATE-point polynomial function of degree NPDLY (see below).
	27-29	I3	NPØLY
	30-32	I3	IFPNCH, if nonzero the final calculated spectrum will be punched on cards.
	33-35	I3	IFPRNT controls printing of the observed and calculated spectra. There are options for no listing (IFPRNT $=0$), a single-spaced (IFPRNT = 1), or a double-spaced (IFPRNT = 2) listing。
	36-45	F10.5	TSTP; if the fractional improvement in the error sum of squares for two successive cycles falls below this value, the problem is terminated.
	46-55	F10.5	$D X$, the abcissa interval for the calculated spectrum. If $D X$ is not input, the value for EDX (see below) is used.
	56-60	F5. 2	FACTOR, used to scale the vector of corrections before the parameters are updated. If not input, a value of 1.0 is assumed.
Spectrum Header $(\mathrm{M} \emptyset \mathrm{DE}=1)^{\mathrm{a}}$	1-5	15	IDENT, the spectrum number.
	9-15	F7.0	XSTART, the starting frequency for the spectrum.
	16-20	F5. 1	EDX, the abcissa sampling interval for the observed spectrum.

TABLE XXIX (Continued)

Card	Columns	Format	Variable Name and Function
Spectrum Header$(M \phi D E=1)^{a}$	21-25	I5	NIPTS, the number of data points in the observed spectrum.
	31-40	F10.5	BEGIN and END (see below) define the frequency range to be considered in the analysis. If not input, the range is determined from the spectrum.
	41-50	F10.5	END
Spectrum$\begin{aligned} & \text { Header } \\ & (\mathrm{M} \emptyset \mathrm{DE}=2)^{\mathrm{b}} \end{aligned}$			
	1-5	15	IDENT, the spectrum number.
	11-20	F10.5	BEGIN, see above.
	21-30	F10.5	END, see above.
Parameter ${ }^{\text {c }}$	1-2	I2	KARD $=4$
	11-20	F10.5	EO, the initial molar absorptivity value in $\mathrm{M}^{-1} \mathrm{~mm}^{-1}$.
	21-25	I5	IHEO, the number of cycles for which EO is to be constrained.
	31-40	F10.5	DELNU, the initial value for Δv in cm^{-1}.
	41-45	I5	IHRH \emptyset, the number of cycles for which DELNU is to be constrained.
	51-60	F10.5	XNU, the initial value for v_{0} in cm^{-1}.
	61-65	I5	IHNU, the number of cycles for which XNU is to be constrained.

TABLE XXIX (Continued)

Card	Columns	Format	Variable Name and Function
Instrument	1-2	I2	KARD $=5$
	11-20	F10.5	BETA, the initial value for the constant β.
	21-25	I5	IHBETA, the number of cycles for which BETA is to be constrained.
	26-30	I5	MPDLY, the degree of polynomial to be used for the slit integration. If MPØLY $=0$, a trapezoidel rule integration is performed.
	31-40	F10.5	SLIT, the spectral slit width in cm^{-1}.
	41-50	F10.5	XL , the path of the sampling cell in mm.
Concentration	1-2	I2	KARD $=6$
	11-80	10F7.4	$C(1)$ through $C(10)$, the concentration to be associated with each absorption band. NPEAK values must be entered.

a) This card must be followed by cards containing the observed spectrum punched in 2014 format.
b) For this mode of input, the spectrum and header information are expected to be on a direct access disk file. Refer to the listing of subroutine SPCTRM for the required format.
c) There must be NPEAK parameter cards.

Program Listings

```
C.... PROGRAM BANDFIT
C
C.... REQURES SUBROUTINES SCAN, LORNZ, PLOTl, SMTHL, COMMAT,
C.... SCALAB, SPCTRM
C
    DEFINE FILE 712500,1288, L,KEY)
    OIMENSION ALOHA138),B(31,32),BSAVE(31),C(10),D(51),DATE(2),
    L
        2 (HEO(101,1HNU(10),IHRHDIIO),NDX(32),NHOLO(31,2),
    3 VAR(31);w5(55), PLBL(9)
    DIMENSIGN IR(5000), PLBL1(6)
    EQUIVALENCE (IR(1),FREQ(1))
    COMMON A(31,32),A0(101,CON(51),DELSO,DX,ENU(5OOO1,FTR(5000), .. ..BAFOQ13%
                FREQ(500O), FREOH1, NCOLS,NEAX,NPEAK, NROWS,NTPTS, NXPTS,
            l FREQ(5OOO), FREGH1, NCOLS, NEAX,NPEAK,NROLS,NTPTS,NXPTS,
            1
            REAL*8 A,B,WS.
    DATA PLBL/'GALC','DAN','D OB','SVD','SPEC',TRA',', P', SANDNI7C
    1 'ROB '," %, BLANK, lERO/: ',O%/, SAMOOLBO
```



```
C.... FORMAT STATLMENTS.
C
    5000 FORMAT(12,2x,19A4)
    5001 FORMAT (12,16,913,2F10.5,F5.2)
    5003 FORMAT (12,8X,F10.5,215,2F10.5)
    5005 FORMAT(12,8x,1OFT.4)
    5006 FORMAT(L2,8X,3(F10.5,15,5x))
```



```
    1*)! BANDO2GO
    6001 FORMAT(1LH1,19A4///1X,19A4//)
    6002 FORMAT (14)
    GOO3 FORMATILHO,5X,5OHSPREAD TOO GREAT BETNEEN FHI ANO FLO
        1 ,5X,9HTHEY ARE 2(2X,F10.51)
    6004 FORMAT (/1'O',13X, SLIT WIDTH', 7X, 'FREQLO", 7X, FREOHI', 7X,
    1 CELLPATH:/,O, 15x,F5.2,8x,FB.2,5x,F8.2,8X,F7.4/1/
BANDOOIC
C
    OIMENSION ALPHA(38),B(31,32),BSAVE(31),C(1O),D(51),BATE(2),
        2 [HEO(10),IHNU110), (HRHOLIO),NDX(32),NHOLO(31,2),
                            BADOOOZa
                            BANDOEZB
                            8ANOOM4/
    BANOOC5%
    BAN!am60
    BANOMU7%
        BANYOOBO
    BANDOROg
    BANDEIO!
    BAwoelll
    BANDO120
    BAWOM13%
    BANDO14O
    BANOO15%
8ANDO16%
EANDOROE
BANOO210
BAW\capO220
BANDO23O
BANOQz40
BaNDO250
BANDO26%
    BANDO290
    BANOO3OD
BANOOS2?
BANOOB30
BANDES44
BANHO}35
```



```
    3 '%,ZOK,PEAK ABSORBANCE CONCENTRATION') BANOOS7%
6005 FURMAT (10, 21X,12,8X,F6.4,9X,FB.5) BANDO380,
```



```
    LEAKS = 12//15X,'THE INITLAL ESTLMATES OF THE PARAMETERS ARE ....'BANOTAOB
    2//3X,'PEAK',7X,'EO',7X,'HOLD'6X,'DELNU',5X, 'HOLD'7X, NU'7X,'HOLD'IBANDO4lO
GOO7 FORMAT (G,'ISX,'.... IMPROVEMENT IN FIRST PHASE'). BANDO42O
SOO8 FORMAT (/'O*** ENTERING lOTHS CYCLE ON ITERATION',I3,"***'/ BANDOG3E
    1. 'O,5X,'PREVIOUS SUM SQ. = ', E14.7,5X, BaNDOG40
    2 'CURRENT SUN SQ. = ',E14.7) BANOO450
6009 FORMAT (1HO,15x,35H.... IMPROVEMENT FOUND ON PEAK ND. I4) SANDO45O
6010 FORMAT(1H1) BANDO47O
6011 FORMAT (/'O",5X,'.... SUM OF SQUARES FOR ITERATIDN',I3,' = ', BANOO4gC
```



```
    2 O*,5X,'PEAK',8X,'EO',18X, DELNU',17X,'NU') BANDOSOM
```



```
    1****)
GANma52%
6013 FORHAT (1HO,15X,28H%* HALTED AFTES 25 CYCLES %*1 BANOOS3C
6014 FORMAT (1HO,///,1OX,27HPROBLEM COMPLETED ON CYCLE ISI BANDO54O
GOL5 FORMATILHO,5X,36H... SUM OF SOUARES STATIONARY AFTER IB, 2K, GHCYCLSANOOS5O
    IES...)
B4N0056%
```



```
    M OF SOUARES = E13.S1 b,bavO580
6OL7 FORMAT I'O,5X,'MQLAR',8X;'ABSORBANCE*, LIX,'LINE WIOTH',I2X, B, BANDO5OO
    1. 'FREQUENCY:f' ABSORPTIVITY , '3'VALUE STO DEV',6X)% bANDOGOO
601.8 FORMAT (10:,2X,2F9.4,1PE12.4,OPFg.2,1PE12.4,0PF1O.1,1PE12.41. BANOO610
6019 FORHAT (////*, 23X;'ABSORBANCE*,21X,FRANSMITTANCE*/// BANDOG2O
    1 *,5X, 'FREQUENCY',5X,'OBSERYED',5X,'CALCULATED',IOX, BANDOG3O
    2 OBSERVEO',5x, CALGULATEO') BANDOG4O
6020 FOXMAT: (A1,14,2X,F7.1,2(4X,F10.4),9X,F10.4,4X,F10.4,8X,2F10.4) BANDO650
6021 FORMAT (1HO,//,5x,29HSUH OF SQUARES FOR ABSORBANCE,10X, 32HSUM OF SOBANOO6GO
    IUARES FOR TRANSMITTANCE//10X,E20.8,10X,E20.8)
    BARDO670
6022 FORMAT(10',3X,12,4X,3(F10.4,3X, (1, [2,')',3X))
    BANOOtBE
6023 FORMAT (//:O LARGEST ABSORBANCE.ERROR AT',F7.1,' CM-1%/% BANOOG9N
    1 : DBSERVED TRANS = ,7,F7.4,5X, CALCO TRANS = ',F7.4) BANOOTOQ
```

```
    6024 FORMAL i/*O OBSERVEO ANO CALCD CURVES HAVE BEEN PLOTTEO*)
```



```
    IGREE ',13,* B**) BANDU73N
```



```
    1,5H CM-1)
    6027 FORAGAT (//1H,32x,2A4)
    6028 FOR鿾(' ',7x,12,4x,3(F10,5,11x)1
```



```
    EOBO FORMAT (O ERROR CURVE HAS BEEN PIOTTED')
    6031 FORMAT (1, '24X, BETA =, FO,5,5X, HOLO = , 13/ BANOOROO
        1 O,,29X,OMMPING FAGTOR = ,F5.2/%) BANDOIG
    BO32 FORMAT (10, 4X, BETA = , F9.5)
```



```
    801 FGRMAT (15,3x,F7.0, 55.1,15)
    802 FORMAT (2014)
C
c
C.... MMaflamze.
C
    CALL GOATE (DATE)
    CALL OISK
    LIGHT = !
    IFLAG=1
C
C... READ TWO ALPHANUMERIC INFORMATION GARDS, NRITE PAGE HEAOTNG.
c
```



```
    IF(KARQ.EQ.1) GO TO 3
        IF (KARO.EQ.-7) GO T0 43
    2 IF(LIGHT.EQ.1) WRITE (6,6000) KARO
        LIGHT = 2
        go ro 1
    3 REAO (5,5000) KARO, (ALPHAIL),1=20,39)
        IF(KARO.NE.2) GO TO?
        WRITE (6,6001) (ALPHA(I), = = = 38)
    BANDO750
    BANOO76O
    BANDOT9%
    ANOC8??
    GAND1059
```

```
    WR1TE (6,602% DATE
C
C.... READ PROPLEM CONTROL CAKD.
C
    REAO (5.5001) KARD,NOPROE,NPLT,LPROB,NPEAK, IHDLD,MODE,NGATE,
    I NPGLY,IFPNCH,IFPRNT,ISTP,OX,FACTOR
    IF(KARO.NE.3) GOTOZ
    IF (FACTOR.EE.0.O) FACTOR = 1.0
C
C.... READ IN SPECTRAL DATA.
C
    CALL SPCTRM ILIGHT, NOOE,EDX,娄:
    IF (DX.LE.0.O) OX = EOX
    IF (NGATE.EQ.O) GOTO ?
C
C.... SMOUTH THE DATA.
C
    CALL SMTHL (NGATE,NPOLY,WS)
    CALL SMLH2 (NXPTS,ETR,ETR)
C
c.... imitlallze plot Routlme.
C
    IF (NPLT.EG.O) GO TO 31
        60 T0 (20,31), IFLAG
    20 CALL PLOTL
    IFLAG = ?
C
C.... INITHALIZE MATAIX NHOLD. NHCLDGI,D IS A FLAG 保 HNDICATE IF
C.... A PARAMETER IS TO BE HELD CONSTANT. NHOLDII,2) CONTAINS
C.... THE NUMQER OF CYCLES FOR WHICH THE PARAMETER IS TO BE HELD
C.... CONSTANT.
C
    31 D0:30 I = 1,31
    NHOLD(1,1)=1
    NHOLD(1,2)=0
```

BANDI660
BANOLOTO
BANOI680
BANDIO9の
BANOIIOn
BAMO111？
BANO 1120
BANOI 13 ？
BANOM142
BANDI 150
BAND1 160
BANOIITB
BANDI 18 BC
BANDI 190
BAND 1200
BAND1 210
BANDI220
BAND 1230
BAND 1240
BANDI250
BAND 1260
BANDI27！
BANDI280
BAND1290
BANOI 390
SANOL31\％
BANDI320
BANOI 330
BANOL340
BANOI 350
SANOI 366
BANDI 370
BANO1380
BANDI 390
BANOI400

```
    30 CONTINUE BANOI4IO
C
C.... REAO PEAK PARAMETER CARDS.
C
            DO:4 1 = 1.NPEAK
    READ(5,50O6) KARD,EO(I), IHEO(I),DELNU(I), IHRHO(I), XNU(I), IHNO(I)
    RHOII) = 4.0/(DELNU(I) = DELNU(I):
    IF (KARD.NE.4) GO TO 2
    4 \text { CONTINUE}
C
C.... READ ESTIMATE OF CONSTANT TERM, NLMQER OF ITERATIONS IT IS TO BE
C.... HELD CONSTANT, THE DEGREE OF POLYNOMIAL TO BE USED IN SLIT CON-
C.... VOLUTION, THE SPECTRAL SLIT WIDTH AND THE CELL THICKNESS.
C
    READ (5,5003) KARO,BETA,HHBETA,MPGLY,SLIT,XL
    IF(KARD.NE.5) GO TO 2
C
C... READ CONCENTRATION VALUES TG BE ASSOCIATED WITH EACH PEAK.
C
    READ(5,5005) KARD,(C)(1),.j= 1,10)
    IF(KARD.NE.6) GO TO 2
C.
C.... CALCULATE PEAK AbSORBANCE ESTIMATES.
C
    DO:5 J = 1,NPEAK
    AO(J)=EO(J): XL* C(J)
    5 CONTINUE
        IFISLIT.LE.O.O) GO.10 51
C
C... BUILD VECEOR TO BE USED IN SLIT CONWOLUTION.
C
    CALL SCANI SLIT,OX,MPOLY,NMAX,D,WSI
    NAP = NMAX + 1
    DO:50 NI = 1,NMP
    CON(NI) = O(NI)
```

BANDI410
BANDI 42 ?
BANOI 430
SAND 1440
BANO1450
BAND1459
SAND 1470
BANO1486
BAND 490
BANDL 500
BANDI 510
BANO1520
BANO 1530
BANOL 54 !
BANDI 550
BANO156\%
BAND157
BAND1580
8 ANDI 590
BANO 1600
BAND 1610
BANDI 620
BAND1630
BAND 1640
BANDI 650
BANOI 660
BANO 1670
BAND 1680
BANDIG90
BANOL 700
BAND 1710
BANOL 720
BANDI 730
BAND 1740
BAADI 750

```
    50 CONTINUE GANDL760
        CONILNUE B B BNOL76%
    51 NMAX = 0. BAND1780
    CON(1) = 1.0
C
C.... WRITE PEAK PARAMETERS.
C
    6 HRITE(6,6006) NOPROQ,NPEAK
        DO:60 I = 1,NPEAK
        WRITE(6,6022) I, EO\I),IHED(I),DELIU(I),IHPHO(I), XNU(I),IHNU(I)
    60 CONTINUE
    WRITE (6,6031) BETA,IHBETA,FAGTOR
        WRITE (6,6026) DX
    IF (NGATE.NE.O) NRITE (6.6025) NGATE,NPOLY
C
C.... BUILD MATRIX NHOLD.
C
    NPK2 = 2 * NPEAK
    NDEL = 0
    IF(IHOLD.LE.G).GOTO 8
    00 602 L = 1,NPEAK
    I=L+1
    IFIMEO(L).LE.O) GO TO bOO
    NDEL = NDEL + 1
    WHOLD(I,1)=2
        NHOLD(I,2)= IHEO(1)
    600.IF(LHRHO(L).LE.0) GO TD 601
        NDEL = NOEL + 1
        IS = I + NPEAK
        NHOLD(IS,1)=2
        NHOLC(IS,2)= LHRHOUL
    601 IF(IHNUIL).LE.O) GO TO 60Z
        NDEL:= NDEL + 1
        IS = I + NPKZ
        NHOLD(IS,1)=2
    BANDI78O
    BANDI790
    BANO1 gOO
    BANO1810
    BANDIG2%
    BANDI830
    BANOL84C
    BANDIG50
BANDI 8&%
BANOLETO
BAND1880
BANDI 890
BANOI900
BANOIC10
BANDI920
BANOL93O
BAND1940
BANOL950
BANDI }96
BANO1970
BANO1980
BANDI 990
BANO2000
BANO2010
BANO2020
BAND2\30
8AND2040
BANO2050
BANO206O
BANOZ070
BANO2080
BAND2090
BAND2100
```

```
    NHOLD(15,2)= 1HNU(L)
    6 0 2 ~ C D N I I N U E ~
    If (IHBETA.LE.0) GOTO 8
    NOEL = NDEL + 
    NHOLD(1,1)=2
    NHOLD(1,2) = LHBETA
C
C... CALCulate the limits of the FREQuENGY VEGTOR ASSOCIATED WITH THE
C.... Calculated spectrum.
C
            8 ISLIT = SLIT/DX + 0.001
            XSLIT = DX * ISLLT
            FREQLO = ENU(NXPTS) - XSLIT
            FREQHI = ENU(1) + XSLIT
            NTPTS = (1.0/DX)*(FREQHI - FREQLO ) + 1.O
            IFINTPTS .LT.50001 GO.TO.12
            WRITE (6,6003) FREQLG ,FREQHI
            LIGHT = 2
            60 10 1
    12 WRITE(6,60O4) SLIT,FREQLO,FREQHI,XL,NXPTS
            DO 13J=,1,NPEAK
            WRITE(6,6005) J,AO(J),C(J)
C
C.... scale concentratIGN VAluES and peak absorbance estimates.
C
            C(J)=C(J)* XL
            AO(J) = AO(J)*2.302585
    13 CONTINUE
            BETA = BETA * 2.302585
            IF(LPROB.EQ.1) GO TO 17
C
C.... IF THE INPUT SPECTRAL DATA IS IN TER的S OF ABSORBANCE, CGNVERT
C.... TO TRANSMITTANCE.
C
    DO.14K=1,NXPTS
```

BAND211.
BANO2120
BAWOZ130
BAND2140
BANO2150
BANO2160
BANO2170
BAND2180
BANO2190
BANO2205
BAND2210
8 AND 2220
8AND2230
BANO2240
BAND2259
BAND2260
BANO2270
BANO2280
BANO2290
BAND2300
BAND2310
BAND 2320
BANO 2330
BANO2340
BAND2350
BAND2360
BAND2370
BAND2380
3 ANO 2390
BAND2400
BANO 2410
BAND2420
BAND2430
BAND2440
BANO2450

```
        EXPN = - 2.302585 *ETROK) BANO2460%
        ETR(K)= EXP(EXPN) SAND2470
    14 CONTINUE BANO2480
    17 IF (IHOLO.GE.O) WRITE (6,00LO) BAND2490
C
C.... BUILD FREQUENCY VECTOR FOR THE CALCJLATED SPECTRUM.
C
        DO 19 K=1,NTPTS
        FREQ(K)= FREQHI - (K-1)*DX
    19 CONTINUE
C
C... INITIALIZE FOR FIRST CYCLE OF LEAST-SQUARES.
C
        KGO = I
        ITER = 1
        NROWS = 3 % NPEAK + 1
        NCOLS = NROWS + 1
        NPK = 0
        KBETA = 0
        LAST = 1
        IF (IHOLD.LT.0) LAST = 2
        SUMSQ = 1.0 E 30
        DO 200.1 = 1,NROWS
        BSAVEIIT =0.0
    200 CONTINUE
C
C.... BEGIN ITERATIVE LEAST-SQUARES LODP.
C.... calcllate dimensiuns of coefficient matrix b for current cycle.
C
        21 NROWB = NRONS - NOEL
        NCOLB = NCOLS - NDEL
C
C.... INITLALLZE ANO BUILD MATRIX A.
C
    DO 210:I=1,NROWS
```

BANO2460
BAND 2470
BANO2480
BANO2490
BaNO2500
BAND2510
BANOZ52\%
BANO2530
BANO2540
BANO2550
BAND2560
BANO2570
BAND 2580
BAND 2590
BAND2600
BANO2610
BANOZ620
BAND2630
BAND2640
BAND2650
BAND2660
BAND2670
BAND2680
BANO2690
BAND2700
BAND2710
8 AND 272%
BANO273
BANO2740
BAND 2750
BAND2760
SAND 2770
BANO2790
BAND2790
BANO2800

```
        00 210 3 = 1,NCOLS
        A(I,J)=0.0
    210 CONTINUE
        DELSQ = 0.0
        CALL LORNS (LAST)
C
C..... PROBLEM FINISHEO?
C
    G0 10 (212,40),LAST
C
C.....NO, CALCULATE PERCENT IMPROVEMENT.
C
    212 PERCNT = 1.O - DELSQ/SUMSQ
C
C.....test far divergence or convergence.
C
        IF (PERCNT.LT.0.01 GOTO (294,290,29), KGO
        IF (PERCNT.EQ.O.) GO TO 28
        IF(PERCNT.LT.TSTP.AND.KGO.EQ.1) GO TO 38
        G0 TO (33,321,32), KGO
C
C.....BUILO A VECTOR CONTAINING THE INDECES OF THOSE ROWS OF MATRIX A
C.....WHICH NILL BE LOADED INTO MATRIX B.
C
            22K=0
            00:221 I = 1,NCOLS
            IGO:= NHOLD(I,l)
            60 10 (220,221),160
            220k=k + 1
            NDX(K)=1
        221 CONTINUE
C
C.....BULLD MATRIX B.
C
    00:223 I = 1;NROWB
```

BAND2 810
BAND2820
BAND 2830
BAND2840
BAND285 ${ }^{2}$
BANO2860
BAND2870
BAND 2885
BAND2990
BAND2 900
BANO2910
BAND2920
BAND2 930
BAND2940
BAND2950
BAND2960
BANO297S
BANO2980
BADO2 290
BANO3000
BAND 3010
BAND3020
BAND3030
BANO 3045
BAND3050
BANO3060
BANO 3070
BAND3080
BAND3090
BANO3 100
BANO 110
BANOS 120
B4NO 3130
BANO3140
BANO3150

```
        1S = NDX(I)
        00 222 J = 1,NCOLB
        JS = NOX(J)
        B(I,J)=A(IS,NS)
    222 CONTINUE
    223 CONTINUE
C
C.....INVERT MATRIX B.
C
    DO 27K = 1,NROWB
    IF(B(1,1).LT.0.0000011)G0 T0 36
    TEMP = 1.0/B41,1)
    DO 23 J = 1,NROWB
    JP=J+1
    NS(J) = TEMP*B(1;JP)
    23 CGNTINUE
    WS(JP) = TEMP
    00 25 J = 2,NROWB
    TEMP = B(J,1)
    JM = J-1
    DO:24 L = 1,NROWB
    LP=L*1
    B(JM,L)=B(J,LP) - TEMP*WS(L)
    24 CONTINUE
    B(JM,LP) = - TEMP * WS(LP)
    25 CONTINUE
    DO 26 J:=1,NCOLB
    B(NROWB,J)=WS(J)
    26 CONT INUE
    27 CONTINUE
C
C.... SCALE GORRECTIONS BY DAMPING FACTOR.
C
DO:18 K=1,NROWB
    B(K,1)=FACTOR * B(K,1)
```

BANO 3160
BAND 3170
BANOU18\%
BAND3190
BANO 3200
BAND 3210
BANO 320
BANO 236
BAND 3240
BANO3250
BAND3260
BANO 327 ?
BANO 328
BAND 329
BAND3300
BANO3310
BAND 320
BAND 330
BANO3 340
BAND3 350
BAND3 360
BAND 3370
BANO 3380
BAND3390
BANO 3400
BAND 3410
BANO 3420
BAND 343
BANO 3440
BAND3450
BAND 3460
BAND3470
BANO3480
BAND 3490
BAND 3500

```
    18 CONTINUE
        NP = NPEAK
        360}=
        |}=
    IF (NHOLD(1,1).GT.1) GOTO 269
    M = 1
    BSAVE(1)= B(1,1)
    BETA = BETA + BSAVE(1)
C
C.....SAVE CORRECTIONS FOR THOSE PARAMETERS NOT HELD GONSTANT.
C
    269 00 276 L = 2,NROWS
        I=L-1
        IGO = NHOLO(L,I)
        60.10 (270,275),160
C
C.....UPDATE ESTLMATES.
C
    270M=M+1
        BSAVE(L)= B(M, 1)
    271 IF(1.LE.NP) GO TO (272,273,274),J60
        NP = NP + NPEAK
        360=360 + 1
        GO T0 271
272 A041) = AO(1) + B(解,D)
        50 10 276
    273 IM = I - NPEAK
        TEMP = RHO(IM)
        TEST = BM, 1)
    277 IF (GEMP+TEST).GT.0.O) GOTO 278
        TEST = 0.9 * TEST
        G0 10 277
278 TESTL = TEMP/4
279 TEST2 = TEMP + TEST
        IF (TEST2.GT.TEST1) GOTO.280
```

BANO 3510
BANO 3520
BANOS 530
B4NO354
BAND 3550
BANO3560
BANOS570
BANOS580
BANO3590
BANO3600
8ANO 3610
BAND 3620
BAND 3630
BAND3640
8 ANO 3650
BANO3660
BANO3670
BANO 3680
BAND 3690
BANO 3700
BAND3710
BAND3720
BANO3 730
BAND 3740
BANO3750
BANOS760
BANO3770
BAND3780
BAND3790
BAND 3800
BANO3810
BAND3820
BAND 3830
BANO 3846
BANOSE50

```
        TEST =0.9* TEST
        G0 10 279
    280B(M,1) = TEST
        BSAVE(L) = TEST
        RHO(1M) = RHO(IM) + B(M, 1)
        GO T0 276
    274 IM = I - NPK2
        XNU(IM) = XNU(IM) + B(朝,I)
        GO 10 276
C
C.....tEST TO DETERMINE IF A PARAMETER bEING HELO CONSTANT SHOULD be
C.....ALlOWED TO VARY.
C
        275 IF(ITER.LE.NHOLOIL,21) GO TO 276
        NHOLO(L,1) = 1
        NHOLO(L,2) = 0
        NDEL = NDEL - 1
    276 CONTINUE
        IF (mHOLO(1,1).LE.1) GO TO 281
        IF (ITER.LE.IHBETA) GO TO 281
        WHOLO(1,1)=1
        NHOLD(1,2)=0
        NDEL = NDEL - 1
    281 IF(NDEL.LT.O) NOEL = 0
C
C.....rECYCLE.
C
    60:10 21
C.....IF THE PROBLEG HAS QIVERGED, TRY O.1 OF THE CALCULATED
C.....cORRECTIONS.
C
    294 D0:293 1=1,NPEAK
        IP = 1 * NPEAK + 1
        IPP = IP + NPEAK
```

BANOS 860
BANOS 870
BANOSBOO
BANO3890
BAND3900
BAND3910
BANO3920
BAND 3930
BANO3940
BANDS 950
BAND 396
BANO3970
BANO3980
BAND3990
BANO4OOC
BANO4O10
BANO4020
BAND4030
BAND4949
BANU4T50
BANO406O
BANO4070
BANO408O
BAND4090
BAND 4100
BAND4110
BAND 4120
BAND4130
BANO4 140
BAND 4150
BAND 4160
BAND4 170
3 AND 4180
BANO4 190
BAND4200

```
        AO(I)= HOLDEO(1) + 0.1*BSAVE(I+1) BAND4210
        RHO(I) = HOLDRH(I) + 0.1*BSAVE(IP)
        XNUII) = HOLDXN(II + 0.1*BSAVE{IPP)
    293 CONTINUE
    gETA = HOLOBE + O.1去BSAVE(1)
    KGO = 2
    WRITE (G.6OO8) LTER,SUMSQ,DELSQ
    G0.10 21
C
C.....IF PROBLEM STILL DIVERGES, TRY O.I OF THE CALCULATED
C.....GORRECTIONS FOR EACH PEAK IN TURN.
C
    290.00:292 I=1,NPEAK
            AO(1) = HOLDEO(I)
            RHO(I) = HOLORH(I)
            XNUYII = HOLDXN(I)
292 CONT INUE
    29 IF (NHOLD(1,1).GT.1).OR.(KBETA.GT.0)): GO TO 291
    BETA = HOLDBE + 0.1*BSAVE(L)
    KBETA = 1
        60 10 35
291 NPK = NPK + 1
    IF(NPK.GT.NPEAK) GO TO 39
    NPK1 = NPK + NPEAK
    NPK2 = NPK1 + NPEAK
    AO(NPK) = HOLOEO(NPK) + 0.1 * BSAVE(NPK + 1)
    RHO(NPK) = HOLORHTNPK) + 0.1 * BSAVE(NPK1 + 1)
    XNU(NPK) = HOLDXN(NPK) +0.1 * BSAVE(NPK2 * 1)
    IF (NPK.GT.1) GU TO 351
    BETA = HOLOBE
    60 10 35
351 1T=NPK - 1
    AO(IT)= HOLDEO(IT)
    RHOIIT)= HOLDRHIITS
    XNU(IT) = HOLOXN(IT)
```

BAND 4210
BANO4220
SAND 4230
BAND 4240
BANO 4250
BAND 460
BAND 4270
BANO4230
BAND 4290
BANO 4300
BANO 4310
BAND4320
BAND4330
BANO4340
BANO4350
BANO 4360
BAND4370
BAND 4380
BAND 4390
BANO 4400
BAND4410
BANO4420
BANO 4430
BAND 444 ?
BANO4450
BAND4460
BAND 4470
BAND 4480
BAND4490
BANO4500
BANO4 510
BANO 4520
BAND 4530
BAND4540
BAND 4550

```
    35 kGO = 3
    60.10 21
C
C.....UPDATE ERROR SUA OF SQUARES* PRINT GURRENT ESTIMATES.
C
        32 WRITE (6.5009) NPK
            G0 10 33
    321 WRITE (6,6007)
        33 SUMSQ = DELSQ
            WRITE 16,601l: ITER,SUMSQ,PERCNT:
            KGO = 1
            ITER = ITER + I
            NPK = 0
            KBETA =0.
            0O 34 11 = 1,NPEAK
            EOL1 = A0(11) * 0.4342945/C(11)
            DELX = 2.0/SQRTIRHO(II))
            WRITE(6,6028) I1,EOIL ,DELX ,XNLILI
C
C.....STURE RESULTS FROM CURRENT CYCLE.
C
            HOLOEO(11) = AOU11)
            HOLDRH(IL)= RHO(II)
            HOLOXN(IL)= XNO(II)
        3% CONTINUE
            BB = 0.434295* BETA
            WRITE (6,6032) BB
            HOLOBE = BETA
            IF(LTER.GT.25) GO TO 37
C
C.....RECYClE.
C
            60.10 22
C:
C.....SINGULAR MATRIX, DU FINAL CALCULATION ON previOUS ESTIMATES.
```

BAND 4560
SAND4570
BANO 4580
BAND4590
BAND 4600
BAND 4610
BAND4620
BAND4630
BAND4640
SAND4650
BANO4660
SANO 4670
BANO4680
BAND 4690
BAND4700
BANO4710
BAND 4720
BANO 4730
BAND 4740
BAND 4750
BAND 4760
BAND 476
BANO 4780
3ANO4790
SAND 4800
BANO 4810
BAND 4820
BAND 4830
BANO 4840
BANO4850
BANO 4860
BAND 4870
SAND 4880
BAND 4890
SANO4900

```
C
    36 WRITE 16,6012) K,ITER
        G0 10 390.
C
C.....PROBLEM EXCEEDED MAXIMUM NUMBER OF CYCLES.
C
    37 WRITE (6,6013)
        GO TO 40
C
C.... NO CHANGE IN SUM OF SQUARES, TERMINATE.
C
    28 WRITE (6,6015) ITER
        GO TO 40
C
C.....ProbleM COMPleted.
C
    38 WRITE (6,6914) ITER
        GO TO 40
C
C.....NO IMPROVEMENT ON TENTHS CYCLE, DO FINAL GALCULATION ON PREVIOUS
C.....ESTLMATES.
C
    39 WRITE (6,6029)
    390 LAST = 2
        DO 391 11 = 1,NPEAK
        AO(11)= HOLDEO(11)
        RHO(I1) =HOLDRHYI1)
        XNU(11)= HOLOXN(II)
    391 CONTINUE
        BETA = HOLDBE
        GO T0 21
C
C.....PRINT FINAL RESULTS.
C
    40.WRITE (6,6016) NOPROB,OELSQ
    BAND4910
    BAND4920
    BAND4920
    BAN04940
    BAND4950
    BANO4960
    BAND4970
    BANO498O
    BANO4990
    BANO5000
    BAND5010
    BANO5020
    BANO5030
    BAND5040
    BAND5050
    BAND5060
    BAND5070
    BANO5080
    BAND5090
    BANOS100
    BAND5110
    BAND5120
    BANOS }13
    BANO514%
    BANO5150
    BANDS 160
    BANOS170
    BAND5180
    BAND5190
    BAND5200
    BAND5210
    BANO5220
    BAND5230
    BAND5230
    BAND5250
```

```
    WRITE (6.6017)
    MDF = NXPTS - NROWB
    M=0
    DO 45 J=1, NROWS
    VAR(J) =0.0
    IF (IHOLD.LT.0) GO TO 45
    JGO = NHOLD(J,1)
    G0,10 (44,45), 160
44.M=M + 1
    VAR(J)= DELSQ*B(M,N+1//NDF
45 CONTINUE
    DO 41-J = 1,NPEAK
    JP = J + NPEAK
    JPP = JP + NPEAK
    AA = AO(J) * 0.4342945
    EOJ = AA/C(J)
    DEL = 2.0/SQRT(RHO(J))
    SIGAO =0.434295 * SQRT (VAR(J+1))
    TEMP = 1./(RHO(3)**3)
    SIGDEL = SQRT(TEMPrVAR(JP+I))
    SIGXNU = SQRT(VAR(JPP+1))
41 WRITE (6,6018) EOJ,AA,SIGAO,DEL,SIGDEL,XNUUJ),SIGXNU
BB = 0.434295* BETA
SIGBET=0.434295 * SQRT(VAR(1))
WRITE (6,6033) BB,SIGBET
CCHAR = BLANK
IF (IFPRNT.GT.I) GCHAR = ZERD
IF (IFPRNT.GT.0) WRITE (6.6019)
IBIG:= 1
BIG=0.0
SUMAB = 0.0
SUMTR = O.O
DO:42 K = 1,NXPTS
ETRK = ETR(K)
RK=R(K)
```

BANO5260
BANO5270
BANO5280
BAND5290
BAND5300
BAND5310
BAND 5320
BAND5330
BAND 5340
BANO5 350
BAND 5360
BAND5370
8 ANO5380
BANO5390
BAND 5400
BAND5410
BAND5420
BANO5430
BANO5446
BAND5450
BANDS460
BANO5470
BANOS4BO
BAND5490
BAND5500
BANO 5510
BAND5 520
SAND 5530
BAND5540
BANDS550
BANO 5560
BAND5570
BANO5580
BANO5590
BAND5600

```
    xx = -ALOGIOIETRK)
    XY = - ALOG10(RK)
    SUNTR = SUMTR + (ETRK - RK) * (ETRK - RK)
    SUMAB = SUMAB + iXX - XY) * (XX - XY)
    ERRA = XX - XY
    ERRT = ETRK - RK
    TEST = ABS(ERRA)
    IF (TEST.LE.BIG) GO TO 52
    1B1G=k
    BIG = TEST
    S2 CONTINUE
    IF:IFPRNT.EQ.O1 -GO TO 42
    WRITE (6,6020) CCHAR,K,ENLIK),XX,XY,ETRK,RK,ERRA,ERRT
    42 CONTINUE
    HRITE (6,6O21) SUMAB,SUMTR
    WRITE (6,6023) ENUIIBIG),ETR(IBIG),R(IBIG)
    KGO = 1
    LIGHT = I
C
C.... PUNCH CALCULATED SPECTRU解.
C
    IF (IFPNCH.EQ.O) GQ T0 47
    WRITE (G,8OL) NOPROB,ENULL),EDX,NXPTS
    DO 46 K=1,NXPTS
    46 [R(K)=1000*((K) + 0.5
    HRITE (8,802) (lem), k=I,NXPTS)
C
C.... PLOT RESULTS.
C
    47 IF (NPLT.EG.0) GO TO 1
        XHI = ENUIL
        CALL STRLNG (CUL),4)
        w<ITE (0.6002) NOPROB
        PLBL(9)= C(1)
        CALL PLUTZ (XHI,EDX,NXPTS,PLBL,36,1)
```

BANOS620
BANOS620
BANOS630
BAND 5646
BANO5650
BANDS660
BANOS 670
BANOS680
BANO5690
BANOS 700
BAND5710
BANOS720
BANO5 730
BANOS740
BANO5750
BANOS 760
BANDS 770
BANOS 780
BAWO5790
8ANOS800
BANO5810
BANO5820
Bands 836
BANOSE40
BANOS 850
BANOSE6"
BANDSE7\%
BANOS880
BANO5890
BANDS 900
BANO591\%
BANO5920
BANO5930
BAND5940
BanOS950

```
    CALL PLOT3 (R,XHI,EDX,NXPTSI SANOS96O
    CALL PLOT4 IETR,XHI,EOX,NXPTS.3: BANOSG7O
    WRITE (6,6024) BANO5980
    IF INPLT.LT.2).GOTO 1 BANDS990
    DO 48 K=1,NXPTS BANOGOOO
    ETRK = ETR(K) BAND6010
    ETRK = ALOGLO(Q (K)/ETRK) BANOGOZO
    IF (ETRK.LT.-0.2) ETRK = -0.2 BaNOGO30
    IF.(ETRK.GT.O.2) ETRK = 0.2 BANOGO40
    48ETR(K) = ETRK
    PLBLI(6)=C(1)
    CALL PLOT2 (0.,0.,-1,PLEL1,24,2)
    CALL PLOT3 (ETR,XHI,EDX,NXPTS)
    WRITE (6,6030)
C
C.....GET A NEW PROBLEM.
C
    60.10 1
C
C....END OF JOR.
C
    4 3 ~ I F ~ I I F L A G . G T . I ) ~ C A L L ~ P L O T 5 ~
        STOP
        END
    SUBRDUTINE SCAN (SLIT,OX,NPOLY,MPMT,SCNSET,X) SEANOGLO
C. WRITTEN BY A S RUSENBERG S 5 12 67 SCANOO2O
C MOOIFIEO 5.7.69
C
C CALCllATES A SET OF CONVOLVING NUMBERS, SCNSET IOF DIMENSION
56aNOO30
SCANO044
C
    MPNTHI TG BE USED IN SCANNING A DIGITIZEO SPECTRUN WITH A TRIANG-SCANOOGO
C
    ULAR SPECTRAL SLIT FUNCTION. SCANOOTG
    SL
    SLIT= SPECTRAL SLIT WIDTH IN GM-I. SCANOOGO
```

 DIMENSION SCNSET(51)
 REAL \(\% 8\) A \((4,55), X(55)\)
 InITIALIZATION
 TERM = SLIT/DX
 IF (NPOLY.LT.2) GO TO 5
 MPNT \(=\) TERM +0.5
 IF (MPNT.GE. 1) GOTO 1
 4 MPNT \(=0\)
 SCNSET(1) \(=1\).
 RE TURN
 1 IF (EPOLY.GT.6) NPQLY \(=6\)
 IF (NPGLY.LT.Z) NPQLY \(=2\)
 IT \(=\) NPOLY/2
 IF (IT.GT. MPNT) \(\quad I I=\) MPNT
 calculate a matrix.
 NPOLY \(=2\) 2HIT
 \(\mathrm{NROR}=1 T+1\)
 \(I P A R=0\).
 LPNT \(=\) MPNT +1
 GALL CONMAT INROW, LPNT, IPAR, \(A, X\),
 SCALE A AND BUILD SCNSET.
 TERM \(=\) TERM \(\div\) TERM
 NPOLY \(=\) THE GEGREE OF PULYOULAL TO BE USED IN FITTING OROINATE
 SCANO 120
 \(B X=A B C I S S A\) INCREMENT, IN CM-I; FOR THE OIGITIZED SPECTRUM.
 SCANOLS
 VAlUES OVER A TWO SPECTRAL SLIT WIOTH INTERVAL OF THE SPECTROM. SCANOL4O
 if NPOLY IS LESS Than 2, The SET OF CONVOLVING NUMBERS WLL be sCanolso
 calculated accoroing to the trapezol d rule.
 SCANOL69
 SCANO 170
 \(x\) IS AN ARRAY GOOBBLE WORDI TO BE USED AS SCRATCH AREA FOK MATRIX SCANOIBO
 INVESSON.
INVERSION.
REQUIRES SUBROUTLNE CONMAT.
x IS AN ARRAY GOOUBLE WCRDI TO BE USED AS SURATCH AREA FOK MATRIX SCANOIBO
INVERSION.
SCANO 200
SCANO210
SCANO220
SCANOZ30
SCANO240
SCANO250
SCANO260
SCANO270
SCANO2BO
SCANO290
SCANOBOO
5 SANO 310
SCANOS20
SCANO 330
SCANO
SCANO340
SCANO 359
SCANO 360
SCANO110
SCANO 370
SCANO 380
SCANO390
SCANO40Y
SCANO410
SCANO420
SCANO 430
SCANO44O

```
    TEMP = 1.
    IT = 1
    00.2 I=1,LPNT
    SCNSETHI)= A(1,I)
2 CONTINUE
    00:3 I=2, NROW
    IT=IT+2
    TEMP = TEMP * TER暞
    FACTOR = IT*IIT + 1)
    FACTOR = 2.*IEMP/FACTOR
    00:3 j=1,LPNT
    SCNSET(J) = SCNSET(J) + FACTOR*A(I,J)
3 CONTINUE
    RE TURN
5MPNT = TERM + 0.001
    IF IMPNT.LT.I) GOTO 4
    LPNT = MPNT + 1
    TEMP = SLIT - MPNT*DX
    SUM = TEMP/2
    SCNSETILI = SUM
    DO 6 I=2,MPNT
    TEMP = TEMP + DX
    SCNSET(I) = TEMP
    SUM = SUM + TEMP
6 CONTINUE
    SCNSET(LPNT) = SLIT
    SUM = 2*SUM + SLIT
    DO 7. I= L, LPNT
    SCNSET(I)= SCNSET(E)/SUM
7 CONT INUE
    RETURN
END
```

SCANO 450
SCANO 460
SCANO470
SCANO 480
SCANO490
SCANO500
SCANO510
SCANOS20
SCANO 530
SCANO54O
SCANO550
SCANO 560
SCANO 570
SC ANO 580
SCANOS90
SCANO600
SCANO619
SCANO62\%
SCANO630
SCANOG40
SCANO650
SCANO660
SCANO670
SCANO680
SCANO690
SCANO 700
SCANO 710
SCANO 720
SCANO 730
SCANO 749
SCANO 750
SCANO 760


```
I FREQS5OOL,FREQHI,NCOLS,NMAX,NPEAK,NROWS,NTPTS,NXPTS,
2 PRTSUM(31), RHO(10),R(5000),T(5000), XNUL10), ISLIT,KEY,BETA
REAL*B A
C
c... BuIld vector of absOrbance values for calculated spectrum.
    C
    NROWM = NROWS - 1
00:100.J:= 1,NTPTS
T(J) = BETA
100 CONTINUE
        DO 2 J = 1,NPEAK
        RHOJ = RHO(J)
        XNUS = XNU(S)
        DO:1K=1,NTPTS
        FDIFF = XNUS - FREQ(K)
        DENK = 1.0 + RHOJ % FDIFF F FDIFF
        T(K)=T(K) +AO(J)/DENK
    1 CONTINUE
    2 CONTINUE
C
C.... CONVERT TO TRANSMITTANCE.
C
    DO:4K}=1,NTPTS
    T(K)=EXP(-T(K))
    4 CONTINUE
C
C.... convolve calculateg spectruph with Sllit function, build
C.... MATRIX A.
C
    NMP = NMAX + 1
    CONS = CON(NMP)
    K = SLIT
    DO 14 J = 1,NXPTS
    k = k*1
                            LORNON30
                            LORNo:30
                            NO04O
LORNO050
LORNOOGO
LORNOO7%
LORMO08O
LBRNO090
LORNO loO
LORNO110
LORNO120
LGRNO130
LDRNO140
LORNO150
LORNO160
LORNO170
LORNOI8O
LORNO190
    LORNO200
    LORNO210
LORNO220
LORNO230
    LORNO24O
    LORNO250
LORNO260
LORNO270
LORNO280
LORNO290
LORNO}30
    LORNO31O
    LORNO}32
    LORNO330
    LORNO340
LORNOS50
LORNO360
```

```
    TK =T(K) LORNO370
    SUMTN = 0.0. LORNO300
    Jump = 1
    DO 5 L:= 1,NROWM
    PRTSUM(L) = 0.0
5 CONTINUE
    00 11 IL= 1,NPEAK
    12=11+NPEAK
    13=12 + NPEAK
    IFINMAX .NE.OI GO TO }
    SUMTN = 0.O
    G0.10.
300 8N = 1,NHAX
    NJ=NMP - N
    CONIN = CON(NJI
    KPN = K +N
    KMN =K - N
    IF{KMN.EQ.O) KMAS = 1
    TKPN = T(KPN)
    IKMN = T(KMN )
    GO TO 150,511, JumP
50 SUMTN = SUMTN + CONIN * (TKPN + TKMN)
51 GO TO (53,8), LAST
53 V3 = XNU(IL) - FREQ(KPN)
    V4 = XNUIILI - FREQ\KMN)
    v1=v3*v3
    V2 = V4 *V4
    DENP = 1.0.+ RHO\II|*V1
    DENM = 1.0 + RHO\II) *V2
    T1 = TKPN/(DENP * DENP)
    T2 = TKMN/ IDENM * DENM)
7 PRTSUMIIL)= PRTSUMILI) + CONIN * (TKPN/DENP + TKMN/DENA)
    PRISUH(12)= PRTSUM(12) + CONIN * (V1 * T1 + V2 * T2)
    PRTSUM(13)=PRISUM(I3) + CONIN* (V3* TI * V4 * T2)
8 CONT INUE
```

LORNO 370
LORNO 360
LORNO 390
LORNO400
LORNO410
LORNO 420
LORNO 430
LORNO440
LORNO 450
LORNO46\%
LORNO470
LORNO480
LORNO490
LORNO 500
LORNO 510
LORNO 520
LORNO 530
LORNO 540
LORNO 550
LORNO560
LORNO 570
LORNO 580
LORNO 590
LORNOGOQ
LORNOG10
LORNO620
LORNO630
LORNO64
LORNO650
LORNO660
LORNO676
LORNO680
LDRNO690
LORNO 700
LORNO 710

```
        960 T0 (90,10), JUMP LORNO720
90 JUMP = 2
    R(J)=CONS*TK
    DELTA = ETR(J) - R(J)
    DELSQ = DELSQ + DELTA * DELTA
    GO TO (10,14),LAST
    LORNO730
    LORNO 740
    LORHO}75
    LORNO760
    10 DENKD = XNU(11) - FREQ(K)
    DENKV = DENKD * DENKD
    DENK = 1.0 + RHO(LI) * DENKV
    DENS = DENK * DENK
    PRTSUM(IL) = - (TK/DENK + PRTSUM(IL))
    PRTSUM(12)=AO(11)* (TK % DENKV/DENS + PRTSUM(12)) LORNO830
    PRTSUG(13)=2.0* RHO(11) * AOILI) * (TK * DENKD/DENS + PRTSUMILLORNGQ4O
    131)
    11 CONTINUE
    DO:13 I1 = 1,NROWM
    I1P=11+1
    DO 12 12 = 11,NROWM
    I2P=I2 + I
    A(11P,I2P)=A(ILP,12P) + PRTSUM(I11*PRTSUM(12)
    12 CONTINUE
        A(IIP,NCOLS: = AILIP,NCOLS) + PRTSUMIII)*DELTA
        A(1,I1P)=A(1,11P)-PRISUM(II)*R(J)
    13 CONTINUE
    A(1,1)=A(1,1)+R(J)*R(J)
    A(1,NCOLS) = A(I,NCOLS) - R(J)*DELTA
    14 CONTINUE
    G0.TO (140,16),LAST
C
C.o.. IF NOT THE laST CYGLE, COMPLETE BUILDING OF MATRIX A.
C
    140.00 15 K = 2,NRONS
        kM = K-1
        OO 15L= 1,KM
        A(K,L) = A(L,K)
    CORNO850
    LORNO860
    LORNO870
    LORNO88O
    LORNO890
    LORNO900
    LORNO910
    LORNO920
    LORNO93O
    LORNO94%
    LORNO950
    LGRMOg60
    LTR答970
    LORNO98O
    LORNO990
    LORNIOOO
    LORN1010
    LORNLO2O
    LORNI030
    LORN1040
    LORN1050
    LORNI 06O
```

```
    15 CONTINUE
    16. RE TURN
        END
        SUBROUTINE PLOTL
        DIMENSION BUEF(750),Y(500), PLABEL(20)
C.....INITIALIZE.
    CALL PLOTS (BUFF,3000)
    CALE PLOT (0.,-31.,3)
        CALL PLOT (O.,-29.,-3)
        JOB = 0
        SIZE = 0.07
        TEST := SIZE + 0.01
        TEST = TEST * TEST
        RETURN
        ENTRY PLOTZ (XHI,OX,NPNT,PLABEL,NLABEL,ITYPE)
C.....START A NEW PAgE.
        JOB = JOB + 1
        IF (JOB.EQ.1) GO.TO 3
        IT = MOO (3OB,2) + 1
        G0 10 (1,2),11
    CALL PLOT (-1.0,10.5,-3)
        GO TO 3
    2 CALL PLOT (13.0, -11.5,-3)
    3 CALL PLOT (14.0,0.,2)
        CALL PLOT (14.0.11.82)
        CALL PLOT (O.,11.,2)
        CALL PLOT (O.,O.,2)
        XIOB = JOE
        CALL SYMBOL 10.5,0.07,0.14, PLOT ,0.,51
        CALL NUMBER (1.1,0.07,0.14, XJOB,0.,-1)
        CALL PLOT (1.0.0.5,-3)
C.....ORAN AXES.
    IF (NPNT.LT.G).GOTO }
```

LORN1076
LORN1080
LORT1090

PLOTOOLO
PLOT0020
PLOT0030
PLOTGO40
PLOTG050
PLOT006\%
PLOT0070
PLOT0080
Plotoge9
PLOTOIOD
PLOTOL1O
PLOTO120
PLOTOL30
PLOTO 140
PLOTOL50
PLOT0160
PLOTO170
Plotolbo
PLOTO190
PLOTO200
PLOTO210
PLOTO220
Plotoz30
PLOTO24
PLOTO250
PLOTO260
PLOTE270
PLGTO280
PLOT0290
PLOTO300

```
            XLO = XHL - (NPNT-1)*DX PLOTOSIO
            CALL SCALAB (XHI,XLG,OX,12.5,XSTART,XINCR) PLOTO320
    760 T0 (3,9), ITYPE
    8 CALL AXIS 10.,0.,'TRANSMITTANCE:,13,10.,90.,0.,0.1,10.1
        GO TG 10
    9 CALL AXIS (0.,0.,"ABSORSANCE',10,10.,90.,-0.2,0.04,10.) PLOT0360
    10 CALL AXIS 10.,O.,'FFEQUENEY, CM-1:,-15,12.5,0.,XSTART,XINCR,10.)
        CALL PLOT (12.5,0.,3)
        CALL PLOT (12.5,10.,2)
        CALL PLOT (0.,10.,2)
        CALL SYMBOL (0.5,10.18,0.14,PLABEL,O.,NLABEL)
        RE TURN
        ENTRY PLOTS (X,XHL,DX,NPNT)
C.....DRAW A LINE PLOT.
        FACIOR = 10.
    IF (ITYPE.EQ.1) GO TO 11
        DO 6 I=1,NPNT
        6Y(I)=Y(I)+0.2
        FACTOR = 25.
    11YY = FACTOR * Y(L)
    XX = \XHI - XSTART\/XINCR
    DIF = DX/XINCR
    CALL PLOT (XX,Y变,3)
    00.4 I=2,NPNT
    XX = XX - DIF
    YY = FACTOR * Y(I)
    CALL PLOI:(XX,YY,2)
    4 \text { CONTINUE}
    RETURN
    ENTRY PLOT4 (Y,XHI,DX,NPNT,IBCO)
C.o...DRAN A POLNT PLOT.
    XOLD =-1.
    YOLD = -1.
    DIF = DX/XXNCR
    XX = (XHI - XSTART)/XINCR + DIF
    GO TO (B,9l, ITYPE OX,12.5,XSTART,XINCR)
    PLOT0336
    PLOTO340
    PLUTO}35
PLOTO370
PLOT0380
PlOT0390
PLOTO400
PLOTO410
PLOTO420
PLOTO430
PLOTO440
PLOTO450
PLOTO460
PLGT0470
PLOTO480
PLOTO490
PLOTO500
PLOTO510
PLOTO520
PLOTO530
PLOTO540
PLOFO550
PLOT0560
PLOTO570
PLOT0580
PLGT0590
PLOTO600
610
PLOTO620
PLGTO630
PLOTO640
PLOT0650
```

```
    DO 5 1=1, NPNT PLOTO660
    XX = XX - DIF
    YY= 10*Y(1)
    DIST2 = (XOLO-XX)* (XOLD-XX) + (YOLD-YY)*(YOLD-YY)
    IF (DISIZ.LE.TEST) GOTO 5
    CALL SYABOL (XX,YY,SIZE,IBCD,O.,-1)
    XOLO = XX
    YOLD = YY
    5 CONTINUE
    RETURN
    ENTRY PLOT5
C.....TERMINATE.
    CALL PLOT (18.0.0*,-3)
    CALL PLUT (0.,0.,999)
    RETURN
    END
    SUBROUTLNE SMTHL (NPNT,NPOLY,X) SMTHOOLO
C. WRITIEN BY,A:S ROSENBERG S 1267, SMTHOO2O
C: FIRSI SECTION: SMTHOO3O
C: CALCULATES A MATRIX B TO BE USED IN A LEAST-SQUARES SMOOTHING OF SMTHOO4O
C. DIGITAL DATA.
C NPNT = NUMBER DF:DAIA POINTS IN SMOOTHING GATE.
C. NPGLY = DEGREE OF POLYNOMIAL TO BE GSED TO FIT NPNT DROINATE
                    VALUES.
    * IS A dOUble-hord array used for SGratch.
    REQUIRES SUBROUTINE CONMAT.
    DIMENSION B(7,13)
    REAL*8 A(4,17), X(25)
C. INITIALIZE.
    KOUNT = 1
    IF (MOOINPNT,21,NE.1) NPNT = NPNT + 1
    IF (NPNT.GT.25), NPNT = 25
    IF(NPNT.LT.5) NPNT = 5
    PLDTO670
    PLOTOG80
    PLOTO690
    PLOTO700
    ploTO710
    PLGTO720
    PLOTO730
    plUTO74%
    PLOTO}75
    PLOT0760
    PLOTO770
    PLOTO780
    PLOTO790
    PlOTO800
    PLOTS810
SMTH0030
SmTH0056
SMTHOD6O
S勫TH0070
SMTHOOSO
SMTH0090
SWTHO100
54THO110
SMTHO120
SMTHO130
SMTHO140
SMTHO150
SWTHOL6O
SMTHO170
```

```
    IF(NPGLY.GT.6) NPOLY = 6 5MTHO180
    IF (NPOLY.LT.2) NPOLY = 2 SMTHOIOO
    IF. (NPOLY.GE.NPNTI NPOLY = NPNT - 2 S SNTHOLOO
    COMPUTE PARITY AND DIMENSIUNS OF INTERMEDIATE MATRIX A.
    IPAR = MOD (NPOLY,2)
    NROLI = NPOLY/2*1
    LPNT = INPNT - 11/2 +1
    GALCULATE EVEN (OR ODO: ROWS OF B.
    1 CALL CONMAT (NROW,LPNT,IPAR,A,X)
    I=IPAR + I
    DO 3 J=1,NROW
    00.2 k=1,LPNT
    B(1,K)=A(J,K)
    CONT INUE
    I=1+2
    3 CONTINUE
    FINI SHED WITH FIRSI SECTION?
    IF (KOUNT.GT.L) RETURN
    NO.....CALCULATE ODD IOR EVENI RONS OF B.
    KOUNT = 2
    I=NPOLY - 1
    NROW = 1/2+1.
    IPAR = MOD (1,2)
    G0.TO 1
    SECONO SECTION:
    ENTRY SMTH2 (N,YIN,YOUT)
    OPERATES ON AN ARRAY OF DIGIIIZEO DATA YIN WITH GATRIX B. THE
    SMOQTHEQ DATA IS PLACED IN ARRAY YOUT, YIN AND YOUT MAY REFER TO
    THE SANE ARRAY IN THE CALLING PROGRAM.
    N IS THE DIMENSION CF ARRAYS YIN AND YDUT.
    GIMENSION YIN(1), YOUT (I)
    DIMENSION COEF(7)
    STORE FIRST NPNT DATA PQINTS IN TEMPDRARY STGRAGE.
    00 4 I=1,NPNT
    X(I) = YIN(I)
    SMTHOZ10
    S阵THO220
    SMTHO230
    SMTHO240
    SmTHO250
    SMTHO260
    SNTHO270
    SUTHO280
    SMTHO290
    SMTHO3OO
    SMTHO310
    SMTHO320
    SNTHO330
    SHTHO349
    SMTH0350
    SMTHO360
    SMTHO370
    SMTH0380
    SMTH0390
    SMTHO400
    S4TH0410
    SMTHO420
    5%THO430
    SMTHO440
    SmTH0450
    SmTHO460
    SMTH0470
    SMTHO480
    SMTHO490
    SuTHO500
    SMTHOSIO
    SMTHOS20
```

```
    4 CONTINUE SMTHO530
        MPNT = LPNT-1 SMTHO540
c. Calcullate smoothed values for first lpNt data points.
    NROW = NPOLY + 1. SMTHO560
    KOUNI = 1
    5 OD 8 K=1,NROW SMTHOS8O
    SUM1 = 0.0%
    IPAR = MOO (K,21
        DO 7 L=1,MPNT
    M:= NPNT - L + 1
    IF (IPAR.EQ.O) GO TO 6
    SUML = SUM1 + (X(L) + X(M))*B(K,L)
        G0 IO 7
    6 SUML = SUMI + (X(L) - X(M) )*B(K,L)
    7 CONTINUE
    COEF(K) = SUNL + XILPNT)*B(K,LPNT)
    8 CONIINUE
    IF.(KOUNT.GT.1) GO.TO 14
    DO 10 1=1, LPNT
    L=L - LPNT
    J:= 1
    SUML = 0.0.
    00.9 K=1, NROW
    SUMI =SUMI + J*COEF(K)
    J=J*L
    9 \text { CONTINUE}
    YOUT(I) = SUMI
    10 CONTINUE
    SMOUTH MAIN BODY OF DATA.
    M=N - 2%MPNT
    D0 13 I=2,相
    DO. }11\{=2,NPN
    k= J-1
    X(K)= X(3)
11 continue
SMTHO550
SMTHO560
SMTH0570
SMTHO590
SMTHO600
SMTH0610
SMTHOG20
    SMTHO630
SMTHO640
SMTH0650
    SMTH0660
    SMTH0670
    SMTH0630
    SMTHO690
    SMTHO700
    SMTHO710
    SATHO720
    SMTHOT30
    SMTHO740
    SMTHO750
    SMTHO760
    SMTHO770
SMTHO780
SMTHO790
SWTHO800
SWTHO81O
SMTHO820
SMTHO830
SMTHO840
SMTHO850
SMTHO86%
SMTHO870
```

```
    X(NPNT) = YININPNT * T - L) SMTHO880
    SUML = Q. SMTHOg90
    DO 12 J=1, mpNT
    SMTHO900
K = NPNT - J + L
    Suml = SUMl + (x (J) + X(k)}咅B(I,J)
12 CONTINUE 
12 CONTINUE 
13 CONTINUE
C
OPERATE ON LAST MPAT DATA POUNTS.
KOUNT = 2
GO TO }
14 DO 16 I=1,MPNT
    J = 1
    SUM1 = 0.0
    DO 15 K=1, NROU
SUML = SUML + COEF (K)*J
    J=1 *
15 cONTINUE
    L=N - MPNT + I
    YOUT(1)= SUMI
16 CONTINUE
    RE TURN
ENO
SUBRCUTLNE CONMAT (NROW,LPNT,IPAR,A,X)
CNMTOOLO
C WRITTEN SY A S ROSENBERG 5 12 b7
G CORRECTED 7.10.67
CNMTOO2O
CWMTOO30
SMTHO91O
SNTH0920
SMTHOg30
SMTHO950
TH0960
SMTH1010
SMTHIO20
SMTHIO30
SMTH1040
SMTH1050
SMTH1060
SATHIO70
SMTHIO80
SMTH1090
SmTHILON
GUILDS AND INVERTS AN AUGMENTEO AATRIX A USED IN CALCULATING A CNMTOG4O
LEAST-SQUARES CONYOLVING SET.
CNMTOO50
THE DIMENSIONS OF A ARE NROW BY INRON + LPNTI.
CNMTOObO
IF IPAR=O, AN EVEN SET OF PDLYNOALALS IS INVOLVED. IF IPAR=1, THE CGMTOOTO
SET IS 000.
CNMTO080
X IS A VECTUR USED AS WUREING STORAGE IN THE MATRIX INVERSIGN
CNMTOO90
ROUTINE.
CNMTO100
```

```
    REAL*8 A(4,55), X(55),SUN(7),TEMP
    IT = NROB + I
    MPNT = LPNT - 1
    NCBL = NRON + LPNT
    IF:(IPAR.NE.O) GO IO 2
    DO.1 I=1,LPNT
    J = I + NROW
    A(1,j)=1.
    X(I) = 1.
    l CONTINUE
    GO TO 4
    2 DO 3 I=1,LPNT
    J=1 - LPNT
    K=NROLN + I
    A(1,K) = J
    X(I)= = J*J
    3 CONTINUE
    BUILD REMAINDER OF AUGMENTING MATRIX.
    4 IF (NROW.LE.1) GO 10.13
    OO 5 I=2.NROW
    DO.5 J=1,LPNT
    K = LPNI - J
    K = K*K
    L:= NROw * J
    A(I,L)=K*A(I-1,L)
    5 CONT INUE
    calculate Sums
    13 SUM(1) =0.0
    00 6 1=1,MPNT
    SUM(1)=SUM(1)+2.*x(1)
6 CONIINUE
    SUM(1) = SUNLL) + X(LPNT)
    IF (NROW.LE.1) GO TO 14
    IT = 2*NRON - 1
```

CNMTO110
CNMTO120
CNMTO 130
CNMTO 440
CNMTOL50
CNMTOL60
CNMTO 170
CNMTO189
CNMTO190
CNMTO200
CNMTO210
CNMTO220
CNMTO230
CNMTO240
CNMTO250
CNMTO260
CNMTO270
CNMTO280
CNMTO290
CNMT0300
CWMTO 310
CNMTO320
CNMTO330
CNMTO 4 O
CMMTO350
CNMTO360
CNato370
CHWTO380
CNMTO390
CNMTO409
CNMTO410
CNMTO420
CNMTO430
CNMTO440
CNMTO450

```
    00 7. K=2,11
    SUM(K) = 0.0
    DO 7 I=1,MPNT
    J = I - LPNT
    J=J*J
    X(I) = J*X(I)
    SUM(K)=SUM(K) + 2**X(1)
    7 CONTINUE
    BUILD LEFT-HAND SIDE OF MATRIX.
    14 DO 8 I=1,NROW
    DO:8 J=1,NROW
    K=1+J-1
    A(I,J) = SUNM(K)
8 CONTINUE
    INVERT AUGMENTED MATRIX.
    NCOLM = NCOL - 1
    DO 12 I=1,NROW
    TEMP = 1.0/A(1,1)
    DO:9 J=1,NCOLM
    JP=J + 1
    X(J) = TEmP * A(L;JP)
O CONTINUE
    X(JP) = TEMP
    IF:(NROW.LE.1). GO 10 15
    GO 11 J=2,NROW
    TEMP = A(S,1)
    JM= J - 1
    OO 10 L=1,NCOL去
    LP=L+1
    A(JM,L) = A(J,LP) - TEMP*X(L)
10 CONTINUE
    A(JM,LP) = -TEMP积(LP)
11 CONTINUE
1500 12 j=1,NCOL
    A(NROW,N) = X(J)
```

CNMTO460
CNATO 470
CNMTO480
CNMTO490
CNMTO500
CNMTO 510
CNMTO520
CNHTO530
CNWTO540
CNMTO550
CNMTO560
CNMTO 570
CNHTO580
CN却TO590
GNMTO600
CNMTO610
CNMTO620
GNMTO530
CNMT064
CNMTO650
CNMTO660
CNMTOG70
CNMTO6BO
CNMTO690
cNMTO700
CMMTO710
CNMTO 720
CHMTO 730
CNMTO740
CNMTO 750
CNMTO760
CNMTO770
CNMTO 780
CNMTO 790
CNMTOB00

```
    12 CONTINUE CNMTO810
        RE TURN
    END
    CNMTO820
    CNATO830
        SUBROUTINE SEALAB (XMAX,XMIN,XINCR,S,XSTART,DX) SCALOOLO
C.....WRIITEN BY A S ROSENBERG SCALOD2O
C....ABCISSA SCALIHG ROUTINE FOR SUBROUTINE PLOTI.
C....USED IN PLACE OF SUEROUTINE SCALE IN CALCOMP PLOTTER PACKAGE.
    DX = (XMAX - XMIN)/5
        IF (0x) 1,7,2
    70X=1.0
        XSTART = XMAX + 0.5
        RETURN
    1 TEMP = XMAX
```



```
        XMIN = TEMP
        DX= -DX
    2 1DX = 0.4343 * ALOG(DX)
        IXMX = XMAX * (10.g** (-IDX)) +0.99
        XSTART = IXMX
        XSTART:= XSTART (10.0**IDX)
        DX = ALOGIO ((XSTART - XMIN)/S)
        IDX = DX
        TEMP = IDX
        DX = 10.0**(OX-TEMF)
        TEMP = 1.0
    3 IF (0X-1.0) 4.6.5
    4 OX=DX * 10.0
        10x = 10x-1
        GOT0}
    5 TEMP = 1.5
    IF (DX.LE.1.5) GOT06
    TEMP = 2.0
    IF (OX.LE.2.0) GO 10 6
SCAL003O
SCALO040
SCALOOSO
SCALg060
SCALOO7O
SCALOO8O
SCAL0090
SCAL0100
SCALO110
SCALO120
SCALO130
SCALO140
SCALO150
SCALO160
SCALO170
SCALO180
ScALO190
SCALO200
SCALO210
SCA10220
SCALO230
SCALO240
SCALO250
SCALO260
SCAL0270
SCAL0280
SCAl.0290
SCALOBOO
```

```
    TEMP=4.0 SCALOS10
    IF:(0X.LE.4.0) GO TO 6 SCALO32O
    TEMP = 5.0
    IF.(DX.LE.5.0) GO 106
    TEMP = 8.0
    IF (DX.LE.8.O) GO TO 6
    TEMP = 10.0
    6 DX = TEMP * (10.0**IDX)
    OX=-Dx
    RETURN
    END
    TEMP = 5.0
    SCALO330
    SCALO34O
    SCALO350
    SCALO360
    SCALO370
    SCALO380
    SCALG390
    SCALO400
    SCALO410
```

```
    SUBROUTENE SPCTRM (LIGHT,MODE,EDX,*)
```

 SUBROUTENE SPCTRM (LIGHT,MODE,EDX,*)
 OIMENSION IT(20), IDNO (5001, INDEX(500), XOATE(2),Y(10000)
 OIMENSION IT(20), IDNO (5001, INDEX(500), XOATE(2),Y(10000)
 COMMON A(31,32),A0(10),CDN(51),DELSQ,DX,ENU(5000),ETR(5000),
 COMMON A(31,32),A0(10),CDN(51),DELSQ,DX,ENU(5000),ETR(5000),
 1. FREQ(5000), FREQHI,NCOLS,NMAX,NPEAK,NROWS,NTPTS,NXPTS,
 1. FREQ(5000), FREQHI,NCOLS,NMAX,NPEAK,NROWS,NTPTS,NXPTS,
 2 PRTSUM131),RHO(101,R15000),T(50O0), XNU(10),ISLIT,REY,BETA
 2 PRTSUM131),RHO(101,R15000),T(50O0), XNU(10),ISLIT,REY,BETA
 EQUI VALENCE (R(1),Y(1)),(T(1),Y(5001))
 EQUI VALENCE (R(1),Y(1)),(T(1),Y(5001))
 REAL*8 A
 REAL*8 A
 IF (MODE.EQ.2) GO TO 6
 IF (MODE.EQ.2) GO TO 6
 C.... READ SPECTRUM HEADER CARO.
C.... READ SPECTRUM HEADER CARO.
READ (5,501): IDENT,XSTART,EDX,NIPTS,BEGIN, END
READ (5,501): IDENT,XSTART,EDX,NIPTS,BEGIN, END
501 FORMAT (15,3X,F7,0,F5.1,15,5X,2F10.5)
501 FORMAT (15,3X,F7,0,F5.1,15,5X,2F10.5)
C.... CALCULATE INDICES OF INITIAL AND FIMAL POINTS TO BE INPUT.
C.... CALCULATE INDICES OF INITIAL AND FIMAL POINTS TO BE INPUT.
JBRNCH}=
JBRNCH}=
10 XENO = XSTART - (NIPTS-1)*EDX
10 XENO = XSTART - (NIPTS-1)*EDX
IF (BEGIN.GT.XSTART.GR.BEGIN.LT.XEND) EFGIH = XSTART
IF (BEGIN.GT.XSTART.GR.BEGIN.LT.XEND) EFGIH = XSTART
IF (ENO.GT.BEGIN.OR.END.LT.XEND) ENO = XEND
IF (ENO.GT.BEGIN.OR.END.LT.XEND) ENO = XEND
IBEGIN = IXSTART - BEGINI/EDX + 1
IBEGIN = IXSTART - BEGINI/EDX + 1
IENO = (XSTART - END //EDX + 1
IENO = (XSTART - END //EDX + 1
NXPTS = IENO - IBEGIN + 1
NXPTS = IENO - IBEGIN + 1
IF.(NXPTS.LE.5000) GO TO (1,9), JBRNCH
IF.(NXPTS.LE.5000) GO TO (1,9), JBRNCH
C.... ERROR RETURIN.
C.... ERROR RETURIN.
WRITE (6,601)
WRITE (6,601)

```
    SPCTOO10
```

 SPCTOO10
 SPCT0020
 SPCT0020
 SPCTSO3O
 SPCTSO3O
 SPCTO040
 SPCTO040
 SPCTOO5O
 SPCTOO5O
 SPCTO060
 SPCTO060
 SPCTOK7%
 SPCTOK7%
 SPCTO0g0
 SPCTO0g0
 SPCTO090
 SPCTO090
 SPCTOLOO
 SPCTOLOO
 SPCTOL1%
 SPCTOL1%
 SPCTOL20
 SPCTOL20
 SPCTO130
 SPCTO130
 SPCTO140
 SPCTO140
 SPCTO150
 SPCTO150
 SPCTO160
 SPCTO160
 SPCTO170
 SPCTO170
 SPCTO180
 SPCTO180
 SPCTO190
 SPCTO190
 SPCTO200
 SPCTO200
 C....ERROR RETURN. SPCTO210
C....ERROR RETURN. SPCTO210
SPCTO220

```
SPCTO220
```

```
    601 FORMAT (O:,5x, TOU MANY DATA POINTS, PRODLEM TERMINATED';
        LIGHT = 2
        RE TURN 1
C.... INPUT LOOP.
    1 IBRNCH = 1
        L=1
        00 5 I=1,NPTS,20
        IN = 20
        IP}=I+1
        IF (IP.GT.NIPTS) IN = 20*NIPTS - IP
C.... READ ONE DATA CARO.
        READ (5,502) (IT(J), J=1,IN)
    502 FORMAT (2014)
        GO 10. (2,5), IBRNCH
        2 DO 4 J=1,IN
        K=I + J-I
C.... TEST TO SEE IF DATA POINT IS WITHIN PROPER SPECTRAL REGION.
        IF (K.LT.IBEGIN) GOTO4
        IF (K.LE.IEND) GO TO 3
        IBRNCH = 2
        GO.T0 5
C.... Transfer value to transmititance vector and calculate
C... - CORRESPGNOING ELEMENT OF F{EQUENCY V ECTOR.
    3 ETR(L) = IT(J)/1000.
        ENUIL) = BEGIN - (L-1)*EDX
        L = L + 1
    4 \text { CONT INUE}
    5 CONT INUE
        WRITE (6,603) IOENT,BEGIA,END
    603 FORMAT (/'O',9X, SPECTRUN:,16,' READ FROM CARDS; RANGE =',
        1
            F7.1,:TO*,F7.1)
        RE TURN
        6 READ (5,503): IDENI,BEGIN,END
    503 FORMAT (15,5x,2F10.5)
        DO:7 1=1,NSPEC
```

SPCTO23 SPCTO24 SPCTO250 SPCTO260
SPCTA270
SpCTO28
SPCTO290
SPCTM300
SPCTOB10
SPCTO320
SPCTO 330
SPCTO 340
SPCTO350
SPCTO360
SPCTO370
SPCTM380
SPCT0390
SPCTO400
SPCTO410
SPGTO42\%
SPCTO430
SPCTO4\%
SPCTO450
SPGT0460
5 PCTO470
SPC 10480
SPCTO490
SPGTO500
SPCTS510
SPCTO520
SPCTO530
SPCTO540
SPGTO550
SPCTO560
SPCTO570

```
    IF (IDENT.NE.IDNOLII) GOTO 
    KEY = INDEX(I)
    GO 108
    7 CONT INUE
    WRITE (6,602) IDENT
602 FORMAT ('O:,5X,'SPECTRUM*,IE,* NOT ON DISK')
    LGHT = 2
    RETURN 1
    8 REAO (T.KEY) LOENT,XSTART,EDX,NIPTS,INST,XOATE,(Y(I), I=1,315)
    JBRNCH = 2
    G0 T0 10
    9 IF (IENO.LE.315) GOTO 13
    DO 11 1=316,IEND,322
    IP}=1+32
    READ (T'KEY) (Y(J); J=I,IP)
11 CONTINUE
13 DO 12 I=1,NXPTS
    IM=1-1
    IP = IM + IBEGIN
    ETR(I)= Y(IP)
    ENUTII = BEGIN - IM*EDX
12 CONTINUE
    WRITE (6,604) IDENT,BEGIN,END
604 FORMAT (/'0',9X,'SPECTRUN',IB,' READ FROM DISK, RANGE =',
    1. F7.1;'TO*,F7.1)
        RE TURN
        ENTRY DISK
    KEY=1
    READ (7'KEY) NSPEC,NREC,IDND, INOEX
    RE TURN
    END
```

SPCTO580
SPCTO590
SPCT0609
5PCTO6IC
5 PC To6z\%
SPCT0630
SPCTO640
SPGT0650
SPCT0660
SPCTO670
SPCTO689
SPCT0690
SPC 19700
5PGTO710
SPCTO720
SPCTO730
SPCTO74
SPCTO750
SPCT0760
SPGTG770
SPCTO780
SPCT0790
SPCT0800
SPCTO8IG
SPCTO820
SPCTO830
SPCT0849
SPCTO850
spCTO860
SPCTOB7\%
SPCTOABE

VITA

2
Arthur Stanley Rosenberg
Candidate for the Degree of
Doctor of Philosophy

Thesis: I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES
II. AN ALGORITHM FOR THE DETERMINATION OF THE SHAPE PARAMETERS OF INFRARED ABSORPTION BANDS

Major Field: Chemistry
Biographical:
Personal Data: Born in New York City, New York, January 27, 1933, the son of Jack and Evelyn Rosenberg.

Education: Graduated from Teaneck High School, Teaneck, New Jersey in 1951; received the Bachelor of Science degree from the University of Vermont in 1954; received the Master of Science degree from the Massachusetts Institute of Technology in 1959; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1970.

Professional Experience: Associate Research Scientist, Continental Oil Company, 1959-65; Research Scientist, Continental Oil Company, 1965-1969; Senior Research Scientist, Continental Oil Company, 1969 to present.

Membership in Professional Societies: American Chemical Society and The Chemical Society (London).

