I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES

II. AN ALGORITHM FOR THE DETERMINATION

OF THE SHAPE PARAMETERS OF

INFRARED ABSORPTION BANDS

Bу

ARTHUR STANLEY ROSENBERG

University of Vermont Burlington, Vermont 1955

Master of Science Massachusetts Institute of Technology Cambridge, Massachusetts 1959

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1970

STATE UNIVERSIT LISRARY OCT 14 1970

I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES

II. AN ALGORITHM FOR THE DETERMINATION

OF THE SHAPE PARAMETERS OF

INFRARED ABSORPTION BANDS

Thesis Approved:

A. Paul al evenis
Thesis Adviser
Ocherner
You E. Moore
El Eismbour
J. Lange
D. Aurbam
Dean of the Graduate College

762700

ACKNOWLEDGEMENTS

I am greatly indebted to my research director, Dr. J. P. Devlin, for his guidance, counsel and patience during the course of these investigations.

I would also like to express my gratitude to Dr. O. C. Dermer for his efforts in proofreading this manuscript, to Dr. E. J. Eisenbraun for his encouragement and counsel, and to Continental Oil Company for the use of their laboratory and computer facilities during portions of these studies.

The study reported in Part I of this thesis was supported in part by the National Science Foundation under Grant GP-688.

TABLE OF CONTENTS

Page

65

.

. .

PART I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES

I.	$INTRODUCTION \dots \dots$
	Vibrational Spectra2The Potential Function5The Central Force Field6The Simple and Modified Valence Force Fields7The Urey-Bradley Force Field7The Scope of the Present Investigation10
II.	SPECTROSCOPIC STUDIES OF THE CYANOETHYLENES 11
III.	EXPERIMENTAL
IV.	INTERPRETATION OF THE SPECTRUM OF 1,1-DICYANOETHYLENE 17
ν.	FORCE CONSTANT CALCULATIONS
	Calculations Excluding Tetracyanoethylene 31 Calculations Including Tetracyanoethylene 40
VI.	DISCUSSION
	PART II. AN ALGORITHM FOR THE DETERMINATION OF THE SHAPE PARAMETERS OF INFRARED ABSORPTION BANDS
I.	INTRODUCTION
	The Problem56The Shape of Infrared Absorption Bands57The Effect of Finite Slit Widths62Studies of Infrared Band Profiles65

The Scope of the Present Investigation

Chapter II. DEVELOPMENT OF THE ALGORITHM .

	General	. 			73
	Data Acquisition	• • • • • • •	• •		73
	Evaluation of the Spectral Slip	t Width	•••	• •	74
IV. RESUI	TS AND DISCUSSION	• • • • • • • • •	••	••	76
	Synthetic Spectra				76
	Carbonyl Stretching Bands of A	liphatic Esters			88
	Carbon-Hydrogen Bending Bands	of Simple			
	Aromatic Hydrocarbons	- • • • • • • •		· •	99
	Summary and Conclusions	• • • • • • •	• •	•••	106
SELECTED BIE	LIOGRAPHY		• •		109
APPENDIX .					112

v

Page

67

67 70

73

LIST OF TABLES

Table

Page

,

LUUN I

I.	The Cyanoethylenes	٠	12
II.	Infrared Spectrum of 1,1-Dicyanoethylene	•	19
III.	Results of Zero-Order Calculation for 1,1-Dicyanoethylene	•	25
IV.	Urey-Bradley Force Constants for the Cyanoethylenes .	•	28
V.	Force Constants and Dispersions Obtained from Overlay Calculations Excluding Tetracyanoethylene	•	32
VI.	Observed and Calculated Planar Fundamental Frequencies for Acrylonitrile	•	34
VII.	Observed and Calculated Planar Fundamental Frequencies for Fumaronitrile		35
VIII.	Observed and Calculated Planar Fundamental Frequencies for Maleonitrile	e .	36
IX.	Observed and Calculated Planar Fundamental Frequencies for 1,1-Dicyanoethylene	•	37
Χ.	Observed and Calculated Planar Fundamental Frequencies for Tricyanoethylene		38
XI.	Distribution of Potential Energy among Planar Internal Coordinates of Fumaronitrile	•	41
XII.	Distribution of Potential Energy among Planar Internal Coordinates of Maleonitrile		42
XIII.	Distribution of Potential Energy among Planar Internal Coordinates of 1,1-Dicyanoethylene	•	43
XIV.	Observed and Calculated Planar Fundamental Frequencies for Tetracyanoethylene	•	44

Table		
xv.	Force	Сс

XV.	Force Constants and Dispersions Obtained from Calculations Including Tetracyanoethylene	46
XVI.	Relative Chemical Shifts for a Series of Vinyl Compounds	53
J	PART II	
XVII.	Results from Analyses of Synthetic Spectra Containing One Band	77
XVIII.	Results of Zero-Slit Calculations	80
XIX.	Results from Analyses of Synthetic Spectra Containing Two Bands	82
XX.	Band Parameters for Synthetic Spectra Containing Three Bands	85
XXI.	Refined Parameters for Band 3 of the Three-Band Synthetic Spectra	86
XXII.	Band-Shape Parameters for the Carbonyl Stretching Band of Methyl Oleate	91
XXIII.	Band-Shape Parameters for the Carbonyl Stretching Band of Ethyl Acetate	95
XXIV.	Molar Absorptivity for the Carbonyl Stretching Band of Ethyl Acetate	96
XXV.	Refined Band Shape Parameters for the Carbonyl Stretching Region of Di-n-Butyl Oxalate Spectra	97
XXVI,	Molar Absorptivities for the Carbonyl Stretching Region of Di-n-Butyl Oxalate Spectra	98
XXVII.	Refined Band Shape Parameters for the C-H Bending Bands of Aromatic Hydrocarbons	102
XXVIII.	Refined Carbon-Hydrogen Bending Band Parameters for Mixtures of Aromatic Hydrocarbons	103
XXIX.	Input Requirements for Program Bandfit	114

vii

LIST OF FIGURES

PART I

1.	Infrared Spectrum of 1,1-Dicyanoethylene	18
2.	Gas Phase Contours for a Planar Asymmetric Top with $I_A/I_B = 0.4$	23
3.	Urey-Bradley Force Constants for the Cyanoethylenes	30
4	Some Canonical Forms for Tetracyanoethylene	/19

PART II

5.	The Triangular Spectral Slit Function
6.	Single-Band Synthetic Spectrum with 4 cm $^{-1}$ Spectral Slit 78
7.	Two-Band Synthetic Spectrum with 7 cm ⁻¹ Spectral Slit and $S/N = 100$
8.	Three-Band Synthetic Spectrum with 4 cm ⁻¹ Spectral Slit and $S/N = 200$
9.	Result of Fitting a Two-Band Function to a Three-Band Synthetic Spectrum
10.	Observed and Calculated Carbonyl Stretching Bands for Methyl Oleate with 1.5 cm ⁻¹ Spectral Slit
11.	Observed and Calculated Carbonyl Stretching Bands for Di- <u>n</u> -Butyl Oxalate with 3 cm ⁻¹ Spectral Slit 100
12.	Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and <u>m</u> -Xylene with 2.2 cm ⁻¹ Spectral Slit 104
13.	Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and <u>m</u> -Xylene with 1 cm ⁻¹ Spectral Slit 105
14.	Observed and Calculated Carbon-Hydrogen Bending Bands for <u>o</u> -Xylene, <u>m</u> -Xylene and <u>t</u> -Butylbenzene with 2.1 cm ⁻¹ Spectral Slit

PART I

A VIBRATIONAL STUDY OF

THE CYANOETHYLENES

CHAPTER I

INTRODUCTION

Vibrational Spectra

Infrared and Raman spectroscopy furnish one of the most powerful methods for investigating the internal forces of molecules. The vibrational frequencies, derived from spectroscopic studies, are functions of the kinetic and potential energies of the system. The kinetic energy is a function of molecular geometry and atomic masses and the potential energy is determined by the forces within the system. Therefore, if the geometry and mass distribution of a molecule are known, the vibrational frequencies of the molecule can be used to obtain information concerning the forces acting during the vibrational motions.

For a molecule containing N atoms, 3N coordinates are necessary to define the system at any point in time. Of these, 3 coordinates are necessary to define the center of mass of the molecule with respect to an external reference and, for a nonlinear molecule, 3 define rotational motions about the major axes of the molecule. The remaining 3N-6 coordinates are available to describe the motions of the component atoms with respect to the rotating coordinate system; that is, the molecular vibrations.

Each of the above-mentioned 3N-6 degrees of freedom corresponds to a normal mode of vibration of the molecule. In a normal mode, all

nuclei move in phase and at the same frequency. Amplitudes of displacement from the equilibrium position may be different for each nucleus, but each must reach its maximum displacement at the same time and each atom must pass through its equilibrium position at the same time. The frequency associated with a normal mode is known as a normal, or fundamental, frequency.

In discussing kinetic and potential energy of a vibrating system it is convenient to introduce the concept of mass-weighted cartesian coordinates q... These are defined by the equations

$$q_{i} = \sqrt{M}_{j} \Delta X_{i}, \qquad i = 1, 2, \dots, 3N$$

 $j = 1, 2, \dots, N$ (1)

where M_{j} is the mass of the jth atom and ΔX_{i} is one of the three cartesian displacement coordinates for the jth atom. In terms of these coordinates, the kinetic energy is

$$2T = \sum_{i=1}^{3N} \dot{q}_i^2$$
 (2)

where the dot implies differentiation with respect to time. For small displacements, the potential energy can be expressed as

$$2V = \sum_{i=1}^{3N} \sum_{j=1}^{3N} f_{ij}q_{i}q_{j}$$
(3)

where the f are force constants given by

$$f_{ij} = \left(\frac{\partial^2 v}{\partial q_i \partial q_j}\right)_0$$
(4)

The zero subscript implies the equilibrium position, that is,

 $q_{i} = q_{j} = 0.$

Although it would be possible to describe the normal modes of vibration in terms of the 3N mass weighted cartesian coordinates, it is more advantageous to introduce a system of normal coordinates. These are defined as

$$Q_k = \sum_{i=1}^{3N} 1_{ki} q_i, k = 1, 2 ..., 3N$$
 (5)

in which the coefficients 1_{ki} are chosen such that, in terms of the normal coordinates, the kinetic and potential energies have the forms

$$2T = \sum_{k=1}^{3N} \dot{Q}_k \qquad 2V = \sum_{k=1}^{3N} \lambda_k Q_k^2 \qquad (6)$$

Thus the potential energy involves no cross products while the kinetic term retains the same form as in Equation 2. In normal coordinate space, then, each coordinate corresponds to one of the normal modes of the molecule. The λ_k of Equation 6 are related to the fundamental frequencis v_k by

$$\lambda_{k} = 4\pi^{2} v_{k}^{2}$$
(7)

There is no problem in considering 3N, rather than 3N-6, normal coordinates since translation and rotation may be considered as normal modes with zero frequency.

The Potential Function

Virtually all studies of molecular force fields are based on the assumption that the vibrational motions are harmonic. This assumption would be expected to be true if the motions involved only infinitesimal displacements of the atoms from their equilibrium positions. Nevertheless, the success of quadratic potential energy functions in describing the force fields of many molecules confirms the validity of the harmonic approximation.

For the purpose of developing the potential function, the vibrational potential energy may be expressed in terms of 3N-6 internal displacement coordinates. These are most conveniently chosen as the instantaneous changes in the bond lengths and bond angles in the molecule. Under the assumption of harmonic motion, the potential energy in terms of the internal displacement coordinates is

$$2V = \sum_{i=1}^{3N-6} \sum_{j=1}^{3N-6} f_{ij} \Delta R_{i} \Delta R_{j}$$
(8)

where ΔR is an internal displacement coordinate and f_{ij} is the force constant. This equation is entirely analogous to equation 3, the only difference being that a different coordinate set is used.

Equation 8 defines the general valence force field. This field includes not only the 3N-6 principal force constants (i = j), but also all interaction force constants (i \neq j). In the absence of symmetry considerations there are then (3N-5)(3N-6)/2 force constants to be evaluated to define this field. Since there are only 3N-6 vibrational degrees of freedom, the system is clearly underdetermined. In general,

however, considerations of molecular symmetry reduce the number of unique force constants to be determined. Consider, for example, the planar vibrations of tetracyanoethylene. There are 17 degrees of freedom associated with the planar modes so that, if symmetry is neglected, 153 force constants would have to be evaluated to define the general valence force field. When molecular symmetry is taken into account, the number of unique force constants to be determined is reduced to 30. Even so, the problem is still underdetermined in that only 17 fundamental frequencies are available.

In addition to the above mentioned difficulties, the general valence force field does not present a clear picture of the nature of the interactions between nonbonded atoms. In order to decrease the number of force constants and to permit a clearer interpretation of the forces acting within a molecule, various assumptions concerning the nature of the force field have been made. These assumptions have led to the postulation of a number of special force fields.¹ Some of these are described below.

The Central Force Field

The central force field is based on the assumption that interactions exist in a molecule along the lines connecting pairs of atoms and that every atom exerts influence on every other atom, independent of whether the atoms are bonded to each other or not. The number of independent force constants required for this field is N(N-1)/2, a number quite small compared to the (3N-5)(3N-6)/2 required for the general valence force field. This model, however, has not given satisfactory results² and is now seldom used.

The Simple and Modified Valence Force Fields

The simple valence force field is similar to the central force field in its treatment of forces acting between bonded atoms, but does not include interactions between nonbonded atoms. Instead, it is assumed that a force constant is associated with the angle between bonds which opposes a change in the bond angle. This field can usually account for all molecular bending vibrations and in this respect is superior to the central force field. However, the lack of quantitative agreement between frequencies calculated on the basis of the simple valence force field and those actually observed indicate that this field is best regarded as only a rough approximation.

The modified valence force field consists of the simple valence force field with the addition of one or more judiciously chosen interaction terms. This generally leads to a set of force constants which can be evaluated in such a manner as to reproduce the observed frequencies well. It is not, however, always possible to predict just which of the interaction constants it is necessary to include. In fact, several different sets of force constants may adequately describe the frequencies of a given molecule. In addition to this lack of uniqueness, it is usually difficult to give a meaningful interpretation for the selected interaction constants.

The Urey-Bradley Force Field

The Urey-Bradley force field (UBFF)³ may be considered as a simple valence force field modified to include central forces between non-bonded atoms. The potential energy can be expressed in terms of the

basic UBFF as

$$2V = 2 \sum_{i} K'_{i}r_{i}\Delta r_{i} + \sum_{i} K_{i}(\Delta r_{i})^{2} + 2 \sum_{j} H'_{j}(\Delta \alpha_{j}) + \sum_{j} H_{j}(\Delta \alpha_{j})^{2} + 2 \sum_{k} F'_{k}q_{k}\Delta q_{k} + \sum_{k} F_{k}(\Delta q_{k})^{2}$$
(9)

where r_i is an equilibrium bond distance, α_j a bond angle and q_k an equilibrium distance between nonbonded atoms. K and H are bond stretching and bending force constants respectively and F represents a force constant between nonbonded atoms. The linear terms in equation 9 are necessary because the set of internal coordinates used, which includes the q_k , is no longer linearly independent. The q_r , however, are related to the r_i and α_j by a simple geometric relationship. It is there-fore possible to evaluate the H_i' and the K'_i in terms of the F'_k .

Based on the assumptions that, at nonbonded distances usually encountered, the principal force acting between nonbonded atoms is repulsive and that this repulsive force is proportional to $1/r^9$, it is common practice to reduce the number of necessary force constants further by setting F' equal to -0.1F. It has been pointed out that this practice is unwarranted in that the F_k may represent stabilizing as well as destabilizing forces.^{4,5} The elimination of F' probably does little harm, however, since it is probably small compared to F.

The UBFF was first used extensively by Shimanouchi.⁶ Since then it has been used successfully by many workers for a wide variety of molecular types.

Urey-Bradley force constants (UBFC's) are, to some extent, transferable; that is, force constants which have been evaluated for one molecule can often be used to calculate normal frequencies for similar molecules. This transferability has been studied extensively and Shimanouchi has published a compilation of UBFC's useful for many small molecules. As a direct result of this transferability of force constants, it is possible to treat several molecular species in one normal coordinate calculation, evaluating force constants for similar groupings only once.⁸ This technique, called an overlay calculation, makes it possible to determine UBFC's for a series of related molecules instead of attempting to determine a complete set for one molecule. The agreement between observed and calculated frequencies generally worsens as the number of molecules included in an overlay calculation is increased. This is because one is attempting to fit more data with the same number of parameters. The uncertainties in the calculated force constants decreases, however, and their possible physical significance increases.

Overend and co-workers have written a set of computer programs to perform an overlay normal coordinate analysis in which force constants are refined by an iterative least-squares method.⁹ The algorithm used in the force constant calculations will not be discussed here as it is thoroughly described in a recent reference.¹⁰ The above-mentioned computer program was modified slightly and used extensively throughout this investigation.

The Scope of the Present Investigation

The primary purpose of this investigation was to evaluate a consistent set of Urey-Bradley force constants for the planar modes of the series of cyanoethylenes: acrylonitrile, fumaronitrile, maleonitrile, l,l-dicyanoethylene, tricyanoethylene and tetracyanoethylene.¹¹ These molecules were selected because they comprise a set of structurally similar molecules in which the degree of electron delocalization varies widely from one end of the series to the other. This provided an ideal situation to test the transferability of UBFC's under conditions of varying resonance. In addition, it was felt that confirmation of certain assignments in the spectrum of tetracyanoethylene could be accomplished by an overlay calculation involving all the cyanoethylenes.

The experimental phase of this study involved the preparation of 1,1-dicyanoethylene and the determination of its infrared spectrum. The infrared data, together with infrared and Raman data from the literature for the other cyanoethylenes, was used in a variety of overlay Urey-Bradley calculations.

The overlay calculations have resulted in a satisfactory assignment of the planar modes of 1,1-dicyanoethylene. In addition, the assignments for two of the tetracyanoethylene fundamentals have been changed.

CHAPTER II

SPECTROSCOPIC STUDIES OF THE CYANOETHYLENES

The cyanoethylenes (Table I) provide an interesting example of a series of structurally similar molecules in which the degree of π -electron delocalization varies smoothly throughout the series. Since these resonance effects should result in a weakening of the C=N, C=C and perhaps the C-H bonds with a corresponding strengthening of the C-C bonds, the series provides an interesting ground for the transferability of UBEC's since deviations from transferability should have physical significance in terms of bonding differences. In addition, the possibility of modifying the UBEC of an open-chain molecule to include a resonance parameter is presented. The inclusion of such a parameter has been reported only for cyclic molecules.

Halverson and co-workers¹⁷ have reported a complete assignment for the infrared and Raman spectra of acrylonitrile. No vibrational analysis of the planar modes was attempted, but a 4-term modified valence force field was used to calculate approximate frequencies for the four out-of-plane modes.

Spectra and assingments have been reported for fumaronitrile, $^{18-20}$ maleonitrile, 19,20 tetracyanoethylene 19,20 and tricyanoethylene. 18 There are some differences between the spectra reported by Long and George 19 and those reported by Devlin, Overend and Crawford 18 and Miller, et al. 20 For those cases where differences occur, the

assignments proposed by Miller have been chosen for use in this investigation.

Devlin and co-workers¹⁸ have performed an overlay UBFF vibrational analysis for acrylonitrile, fumaronitrile and tricyanoethylene. As a result of this calculation, a set of 16 force constants were determined from the 35 observed planar fundamental frequencies. As had been previously reported,²¹ they found it necessary to include a quadratic cross term between trans-hydrogen bending coordinates in the potential function. This term was introduced to provide more accurate calculated values for the frequencies of in-plane rocking modes involving hydrogen. Examination of the potential energy distributions for acrylonitrile and fumaronitrile indicate that this force constant is involved mainly in C==C stretching and C-H rocking and deformation vibrations.

There are thus reasonably firm assignments for the planar modes of all but one of the cyanoethylenes. Vibrational spectra and assignments have more recently been published for 1,1-dicyanoethylene.¹¹ The remaining chapters of this work are concerned with the problem of the vibrational spectrum of this compound and with overlay normal coordinate analyses including all the cyanoethylenes.

CHAPTER III

EXPERIMENTAL

As was noted in the introduction, the experimental phase of this work consisted of the preparation of 1,1-dicyanoethylene and the determination of its infrared spectrum. Some experimental difficulty was encountered in the handling of this compound. It is easily polymerized in the presence of any source of labile protons. Many nucleophiles are also effective in initiating polymerization. As a result of this, extreme care was taken to exclude contaminants, particularly water vapor, during preparation and transfer of 1,1-dicyanoethylene.

The first synthesis of 1,1-dicyanoethylene was reported by Ardis and co-workers.²² Two basic synthetic schemes were presented. These are outlined in equations 1 and 2. In this work, the synthesis involving

$$\frac{\text{NC}}{\text{NC}} - \text{CH} - \text{CH}_{2} - \text{CH}_{\text{CN}} - \frac{180^{\circ} \text{ C}}{\text{P}_{2}^{\circ} \text{ 5}} + \text{H}_{2} \text{C} = \text{C} (\text{CN})_{2} + \text{H}_{2} \text{C} (\text{CN})_{2}$$
(1)

III

$$CH_{3}C - 0 - C - CH_{3} - \frac{600 - 650^{\circ}}{CN} + H_{2}C = C(CN)_{2} + CH_{3}C - OH$$
(2)

the pyrolysis of 1,1,3,3-tetracyanopropane (I) was chosen.

Ι

II

The synthesis of I was accomplished by the method of $\text{Diels}^{23,24}$ as outlined in equation 3. Malononitrile (Eastman Practical Grade)

$$2H_{2}C(CN)_{2} + H_{2}CO \xrightarrow{\text{piperidine}}_{NC} NC \xrightarrow{\text{CH-CH}_{2}-CH}_{CN} (3)$$

was purified by fractional distillation and condensed with formaldehyde (as formalin) in ethanol solution. The resultant solid material was washed with dilute sulfuric acid and with water and recrystallized from a 2:1 mixture of acetonitrile and benzene. The purified I thus prepared melted sharply at 137⁰ C. Yields for this reaction were typically about 40% of theoretical, based on malononitrile as the limiting reagent.

In our early attempts to synthesize III, a closed system involving several ampule-to-ampule distillations was used for the pyrolysis of I. Yields using this apparatus were disappointingly low. We therefore reverted to a method similar to that used by Ardis.²² Dried I and $P_2 0_5$ were placed in a Claisen flask and covered with dry Pyrex wool. The side tube of the flask was connected to a receiver containing $P_2 0_5$ and dry benzene. The receiver was cooled in a Dry Iceacetone bath and the system was evacuated to about 10 torr. The flask was then heated to 180° C until pyrolysis was completed. The material in the receiver was melted and the benzene solution was fractionally distilled through a 20 cm vacuum-jacketed Vigreux column. The fraction boiling over the range 50.0 - 51.2° C at 10 torr was taken as 1,1-dicyanoethylene. The distilled material was stored in the cold over $P_2 0_5$. No attempt was made to determine the yield in the pyrolysis. Standard sampling cells, fitted with cesium iodide windows, were used in determining the infrared spectrum of III. All transfers were carried out in a dry box which was well purged with dry nitrogen. The cells were purged separately with dry nitrogen for one hour prior to use. For the determination of the spectrum of gaseous III, the samplong cell was placed in an electrically heated oven and maintained at a temperature in excess of 170° C during the spectral scan. Since it has been reported²⁵ that poly(1,1-dicyanoethylene) undergoes depolymerization at temperatures above 160° C, it was hoped that this would prevent deposition of the polymer in the gas sampling cell. Some polymer, however, was always formed during determination of the spectrum of gaseous III.

Much of the spectrum of 1,1-dicyanoethylene was recorded using a Perkin-Elmer Model 221 prism-grating spectrophotometer. More recent measurements were made with a Perkin-Elmer Model 521 dual-grating instrument. A Beckman IR-7 spectrophotometer with cesium iodide optics was used to determine spectra over the 200 - 250 cm⁻¹ region. The parameters of the Perkin-Elmer instruments were set so that the spectral slit width was 1.2 cm⁻¹ at 1000 cm⁻¹.

For the region above 500 cm⁻¹, well known absorption bands of polystyrene, atmospheric water vapor, atmospheric CO₂ and indene were used to calibrate the frequency scale of the spectrophotometer.²⁶ No attempt was made to calibrate below this point. It is estimated that spectral features are determined to within 2 cm⁻¹ over the range 3500 - 500 cm⁻¹ and to within 5 cm⁻¹ below 500 cm⁻¹.

CHAPTER IV

INTERPRETATION OF THE SPECTRUM OF 1,1-DICYANOETHYLENE

If it is assumed that 1,1-dicyanoethylene is planar, then it must belong to the point group C_{2v} . Group theoretic considerations would lead one to expect that the 18 normal modes of vibration would be distributed among the symmetry classes as follows:

 $\Gamma_{vib} = 7A_1 + 2A_2 + 3B_1 + 6B_2$

Of these, the modes belonging to classes A_1 , B_1 and B_2 will exhibit infrared activity while all of the normal vibrations would be expected to be Raman-active. The planar vibrations belong to symmetry classes A_1 and B_2 and thus will all be infrared-active. As a consequence of the fact that 16 of the 18 normal vibrations are infrared-active, the infrared spectrum (Figure 1 and Table II) is quite rich in intense bands. However, with the aid of gas-phase band contours and a set of frequencies calculated for the planar modes from the overlay force constants used for acrylonitrile, fumaronitrile and tricyanoethylene,¹⁸ it was possible to make a satisfactory assignment of the planar modes. As is the case for the other cyanoethylenes, the assignment of the out-ofplane modes is still unsatisfactory.

1,1-Dicyanoethylene is an asymmetric top, the moments of inertia about the three principal axes being

Figure 1. Infrared Spectrum of 1,1-Dicyanoethylene

Liquid	Gas	Assignment
3964		3037 + 939 = 3976
3932		
3880		
.3735		596 + 3140 = 3736
3498		2248 + 1262 = 3510
3390		
3288		
3175		
3135	3140	^v 13
3091		
3036	3037	^v 1
2966		720 + 2248 = 2968
2933		
2864		2255 + 620 = 2875
2846		1604 + 1262 = 2866
2791	х.	2 x 1394 = 2788
2741		2248 + 494 = 2742
2653		1394 + 1262 = 2656
2610		
2531		1604 + 939 = 2543
2503		$2 \times 1394 = 2788$
2482		2248 + 240 = 2488

INFRARED SPECTRUM OF 1,1-DICYANOETHYLENE

Liquid Gas	Assignment
2334	1394 + 939 = 2333
2248 2255	v ₂
2245 2248	v ₁₃
2195	1262 + 939 = 2201
1974 . 1917	$2 \times 983 = 1966$
1890	1394 + 494 = 1888
1722	
1605	983 + 620 = 1603
1594 1604	v ₃
1511	
1478	
1445	Polymer?
1395 1394	υ4
1362	
1256 1262	^v 15
1227	$2 \times 620 = 1240$
1182	Polymer
1088	
983 959	^v 10
939	^v 16
890	720 + 170 = 890
850	
762 758	596 + 170 = 766
720 709	v ₅ (?)

TABLE II (Continued)

Liquid	Gas	Assignment
685	ĸ	Polymer?
620	620	v ₁₁
606		
596	.587	ν ₆
494		. ^v 17
469		Polymer?
415		170 + 240 = 410
383		
367		
339		$2 \times 170 = 340$
240		v ₁₈ (?)
170		. ^v 7

,

TABLE II (Continued)

$$I_A \simeq 77.2 \times 10^{-40} \text{ g cm}^2$$

 $I_B \simeq 176.3$
 $I_C \simeq 253.5$

For this molecule, the A-axis lies in the molecular plane and corresponds to a line drawn through the center of mass perpendicular to the line of the C=C bond. The C-axis is perpendicular to the plane of the molecule.

The band contours to be expected for gas-phase spectra of planar asymmetric top molecules are well known.²⁷ For a molecule such as 1,1-dicyanoethylene, where $I_A/I_B \simeq 0.44$, we would expect that modes for which the change in dipole moment is along one of the major axes would exhibit A-, B- or C-type contours (corresponding to dipole change along the A-, B- or C-axis, respectively) as shown in Figure 2. Since 1,1-dicyanoethylene is of C_{2v} symmetry, it is to be expected that each normal mode will involve a net dipole change along one or the other of the major axes; i.e., there will be no mixing of contour types.

Of the more intense bands only the two at 959 and 620 cm⁻¹ showed C-type structure. These were immediately assigned to the H-C-H and C-C-C out-of-plane wagging modes (v_{10} and v_{11} , respectively). The frequency of the third infrared active out-of-plane mode was apparently beyond the range of our spectrophotometer. No evidence of the infrared inactive out-of-plane modes has been found. By comparison with other cyanoethylenes the A-type bands at 3135 and 1262 cm⁻¹ were assigned to the B₂ species stretch (v_{13}) and CH₂ rock (v_{15}). The B-type bands at 1604, 1395 and 709 cm⁻¹ were similarly assigned to the C=C stretch (v_3) and CH₂ deformation (v_4) and the C-C stretch (v_5) of the A₁ species.

Because of either weak gas-phase band intensities, lack of band structure or overlapping bands, the remaining fundamentals have been assigned primarily on the basis of frequencies calculated using the set of overlay Urey-Bradley force constants (UBFC) previously mentioned.¹⁸ The observed and calculated frequencies, together with mode assignments, are shown in Table III. The calculated frequencies agree very closely with those assigned on the basis of band shapes and, except for three cases, permit immediate assignment of relatively intense bands to the remaining planar modes.

There was considerable hesitation in assigning the medium intensity band at 720 cm⁻¹ as v_5 since the calculated value of 762 cm⁻¹ is assignable as $(v_6 + v_7)$, whereas no combination bands or overtones were found to explain the 720 $\rm cm^{-1}$ band. This, plus the greater intensity of the 720 cm⁻¹ band, led to its assignment at v_5 . Unfortunately v_7 , used in the assignment of the 762 cm⁻¹ band as $(v_6 + v_7)$, was not itself observed. However, the value 155 cm⁻¹ calculated from the transferred UBFC was in fair agreement with the frequency of 170 ${
m cm}^{-1}$ required to explain (by combination bands and overtones) the bands at 890, 762 and 339 cm⁻¹. Thus the assignment of v_7 as 170 cm⁻¹ is given. The third difficulty arose in the assignment of v_{18} and has not been completely resolved. The original calculated value of 278 cm⁻¹ for v_{18} seemed to suggest that a band observed at 240 $\rm cm^{-1}$ should be assigned as v_{10} . However, subsequent attempts to adjust the force constants so as to give an improved set for the entire molecular series invariably yielded a calculated frequency of about 275 cm⁻¹ for v_{18} , as can be seen in the next chapter. Nevertheless, the 240 cm⁻¹ band is currently assigned as v_{18} and only a normal coordinate treatment of the

TABLE III

Symmetry Species	No.	v _{ob} s.	vcalc.	Assignment ^(a)
A ₁	1	3036	2999	C-H Stretch
	2	2248	2238	C≡N Stretch
	3	1594	1597	C=C Stretch
	4	1395	1412	HCH Bend
	5	720	765	C-C Stretch
	6	596	566	C(CN) ₂ Scissor
	7	170	157	C-C≡N Bend
		``		
^B 2	13	3135	3103	C-H Stretch
	14	2245	2237	C=N Stretch
	15	1256	1304	HCH Bend
	16	939	956	C-C Stretch
	17	494	521	C(CN) ₂ Rock
	18	240	278	C-C≡N Bend

RESULTS OF ZERO-ORDER CALCULATION FOR 1,1-DICYANO ETHYLENE

(a) from the calculated potential energy distribution

out-of-plane modes can help in confirming or disproving this assignment.

The assignments discussed herein appear in Table II. In addition, features have been assigned to combination, overtone or impurity bands where such an assignment was logically feasible.

CHAPTER V

FORCE CONSTANT CALCULATIONS

There are several prerequisites necessary before an overlay force constant analysis based on spectroscopic data can be attempted. First, a choice of a molecular force field must be made. As has been mentioned earlier, the Urey-Bradley force field has been selected for this investigation. Within the constraints of the force field a set of meaningful force constants must then be defined and initial values either estimated for them or transferred from similar molecules. The molecular geometry must be known, and finally, firm frequency assignments for at least most of the fundamental modes must be available.

For the planar vibrations of the cyanoethylenes a potential function involving 18 force constants was defined. A list of these constants is shown in Table IV. As before, K implies a bond stretching force constant, H a bending constant and F the interaction between nonbonded atoms. Here F is restricted to the interaction between atoms which are 1,3 with respect to each other, i.e., to the interaction between nonbonded atoms which are bonded to a common atom. The force constant C (for cis) is associated with nonbonded interactions between atoms which are 1,4 to each other and which have a cis relationship with respect to the 2,3 bond. There are, of course, three possible types of cis nonbonded interactions for the cyanoethylenes; H-H, H-C, and C-C. Throughout this investigation it was assumed that only the

TABLE	IV
-------	----

UREY-BRADLEY	FORCE	CONSTANTS	FOR	THE	CYANOETHYLENES
--------------	-------	-----------	-----	-----	----------------

Force Constant	Initial Value ^(a)
K _{C=C}	6.56
КСН	
^{К*} СН	\$4.85
к _{сп}	16.73
^K cc	5.17
^H C=CH	0.37
^H C=CC	0.52
^н нсн	0.40
н _{ссн}	0.32
HCCN	0.30
^H ccc	0.237
F _{C=CH}	0.42
^F C=CC	0.76
F _{HCH}	0.00
FCCH	0.18
FCCC	0.64
C _{CC=CC}	-0.04
Tr	0.06

(a) The units of K,F and C are in mdyne/A and H is in 10^{-11} erg radian⁻².
last of these could be large enough to influence the calculated results. A pictorial representation of these selected force constants is shown in Figure 3 using acrylonitrile and tricyanoethylene as examples. The force constants are shown along the internal coordinates with which they are nominally associated. It should be noted that two CH stretching constants K_{CH} and K^*_{CH} are shown. During the course of this investigation it was found necessary to define one constant for the case where there are two hydrogens on a carbon (K_{CH}) and another for the case where there is only one (K^*_{CH}). The last entry in Table IV represents the interaction between trans-hydrogen bending coordinates previously mentioned.

Refined force constant values for acrylonitrile, fumaronitrile and tricyanoethylene by Devlin, Overend and Crawford¹⁸ were used as a starting point in this work. The initial values used are listed in Table IV. Their value of 4.83 mdyne/A was used for both K_{CH} and K^*_{CH} since they used only one CH stretching constant for the 3 molecules.

Wilcox and co-workers, using microwave spectroscopy, have determined bond lengths and angles for acrylonitrile.^{28,29} They concluded that the molecule is planar and thus belongs to symmetry groups C_{s} . The equilibrium bond distances and angles proposed are:

C-H bond	1.07A
C=C bond	1.34A
C-C bond	1,445A
C-N bond	1.159A
C=C-C angle	121.5 ⁰
C=C-H angle	120 ⁰

Other workers using electron diffraction 30,31 and microwave spectroscopy 31,32 have determined slightly different values for these parameters. Bond lengths for tetracyanoethylene have also been reported 33

which agree closely with those given by Wilcox. For the purpose of this investigation the bond lengths and bond angles given by Wilcox were employed. It was not felt that the small differences reported would affect our calculations noticeably. Moreover, the use of these values would make the present calculations more consistent with the earlier cyanoethylene work.

The calculations to be presented in the remainder of this chapter have been divided into two basic groups, calculations excluding tetracyanoethylene and calculations in which tetracyanoethylene is included. This partition is based on early evidence²⁰ that the bonding within tetracyanoethylene is not representative of the molecular series. Thus, force constants for the other five compounds were evaluated prior to consideration of tetracyanoethylene.

Calculations Excluding Tetracyanoethylene

Starting with the force constant values given in Table LV, overlay calculations involving the following sets of molecules have been performed: 1) fumaronitrile and maleonitrile, 2) fumaronitrile, maleonitrile and tricyanoethylene, 3) acrylonitrile, fumaronitrile, maleonitrile and tricyanoethylene and 4) all cyanoethylenes save tetracyanoethylene. The refined force constants resulting from these calculations are listed in Table V as $\overline{\Phi}(1)$ through $\overline{\Phi}(4)$. Calculated planar frequencies for each molecule appear in Tables VI-X. Although the percent errors in the frequencies and the stability of the force constants in sets (1), (2) and (4) are quite satisfying, these results were achieved only after extensive preliminary calculations. Set (3)

FORCE	CONSTANTS A	ND DISPERS	LONS OBTAINED	FROM OVERLA	Y CALCULATION	S EXCLUDING	TETRACYANOT	HYLENE ^(a)
	<u></u>		 					
Force Constant	<u>Φ(1)</u>	σ _{Φ(1)}	<u> </u>	रू(2)	₫(3)	σ (3)	₫(4)	ر ⊈(4)
K _{C=C}	6.88	0.13	6.82	0.10	6.72	0.15	6.82	0.09
^К СН	(d)			<u> </u>	4.74 ^(b)	0.06	4.94	0.03
K* _{CH}	4.55	0.06	4.54	0.06			4.56	0.04
K _{CN}	16.99	0.11	16.94	0.10	16.85	0.15	16.94	0.08
^K CC	4.52	0.22	4.56	0.16	4.96	0.22	4.63	0.11
^H C=CH	0.29	0.09	0.29	0.08	0.29	0.06	0.35	0.03
^H C=CC	0.44	0.07	0.46	0.06	0.55	0.10	0.43	0,05
H _{HCH}	` <u></u>				0.42	0.03	0.39	0.01
^H CCH	0.21	0.10	0.21	0.07	0.33	0.05	0.17	0.03
H _{CCN}	0.30	0.02	0.30	0.02	0.29	0.02	0.30	0.01
н _{ссс}			0.24	(c)	0.24	(c)	0.24	(c)
^F C=CH	0.51	0.11	0.49	0.10	0.50	.0.09	0.43	0.04
^F C=CC	1.05	0.11	0.94	0.09	0.80	0.13	0.88	0.07
FHCH	·		·····		0.	(c)	0.	(c)

TABLE V

Force Constant	Φ (1)	σ ₅₍₁₎	∳(2)	σ _{⊉(2)}	Φ (3)	σ _{⊉(3)}	⊕(4)	^𝔅 _Φ (4)
^F CCH	0.52	0.14	0.53	0.10	0.26	0.07	0.57	0.06
FCCC			0.80	0.10	0.75	0.16	0.86	0.07
C _{CC=CC}	0.08	0.05	0.04	0.05	0.05	0.07	0.04	(c)
Tr	0.06	(c)	0.06	(c)	0.06	(c)	0.06	(c)
Av. % Error in v's	0.87		1.11		1.31		1.09	

TABLE V (Continued)

(a) Force constants are in mdyne/A exept for the bending constants, which are in 10^{-11} erg/rad².

(b) Only one CH stretching constant was considered in this calculation.

(c) The value of the corresponding force constant was constrained.

(d) A line indicates that the calculation is independent of the indicated force constant.

TABLE VI

	/	·····
^v ob s	v(3) ^(a)	v(4)
3125	3090	3137
3078	3076	3064
3042	2987	3031
2239	2233	2236
1615	1604	1604
1416	1423	1407
1282	1280	1280
1096	1059	1090
869	862	868
570	574	569
242	250	251
Av. % Error	1.18	0.66

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR ACRYLONITRILE

(a) The number in parentheses refers to the corresponding ϕ in Table V.

n an an an Arthur an Arthur an Arthur an A				ti se ti s	
Symmetry	ν _{obs.}	v(1) ^(a)	v(2)	ע(3)	v(4)
Ag	3049	3056	3052	3069	3057
	2232	2234	2231	2231	2234
	1611	1616	1610	1615	1613
	1297	1297	1294	1298	1292
	1002	1006	1008	994	1005
	545	530	520	518	514
	261	268	266	265	266
B _u	3067	3073	3068	3087	3069
	2240	2242	2237	2236	2239
	1260	1258	1259	1264	1260
	1001	992	990	982	996
	538	523	518	518	516
	155	154	153	153	152
Ave. % Error	. · ·	0.86	1.11	1.32	1.24

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR FUMARONITRILE

TABLE VII

(a) The number in parentheses refers to the corresponding Φ in Table V.

TABLE VIII

Symmetry	^v ob s .	v(1) ^(a)	v(2)	v(3)	v(4)
A ₁	3072	3063	3059	3077	3062
	2230	2238	2235	2234	2237
	1597	1592	1585	1588	1582
	1200	1202	1203	1183	1205
	877	884	880	886	883
	480	480	466	465	463
	126	122	119	119	. 117
^B 2	3072	3067	3063	3080	3065
	2250	2237	2234	2233	2236
	1371	1371	1372	1393	1381
	1012	1010	1011	996	1009
	714	729	715	715	705
	269	279	278	277	279
Av. % error		0.88	1.22	1.49	1.57

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR MALEONITRILE

(a) The number in parentheses refers to the corresponding Φ in Table V.

TABLE IX

Symmetry	. 10 .	v(4) ^(c)	ν(7)
Λ	ob s .	3033	3036
<u>-1</u>	0000	2022	2020
	2248	2245	2246
	1594	1606	1598
	1395	1405	1391
	720	.763 ^(a)	752
	596	589	592
	170	160 ^(a)	160 ^(a)
^B 2	3135	3137	3136
	2245	2233	2235
	1256	1259	1262
	. 939	934	936
	4 94	519	481
	240	276 ^(a)	266
Av. % Error		0.91 ^(b)	1.63 ^(b)

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR 1,1-DICYANOETHYLENE

(a) Not weighted in calculation.

- (b) Calculated on basis of weighted frequencies only.
- (c) The number in parentheses refers to the corresponding Φ in Table V or Table XV.

TABLE X

vobs.	v(2) ^(a)	v(3)	v(4)	ע(6)	v(7)
3043	3061	3079	3064	3043	3043
2249	2243	2244	2245	2246	2246
2234	2235	2238	2237	2235	2236
2210	2230	2233	2232	2229	2232
1594	1607	1606	1606	1581	1584
1327	1330	1353	1333	1329	1332
1171	1169	1189	1163	1181	1176
1000	998	990	1002	995	995
780	794	797	790	778	770
591	589	588	596	600	601
506	521	518	516	498	. 494
447	461	461	458	442	443
275	278	276	278	273	273
155	158	.157	159	158	158
	119	119	117	. 111	111
Av. % Error	1.02	1.24	0.99	0.72	0.87

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR TRICYANOETHYLENE

(a) The number in parentheses refers to the corresponding Φ in Table V or Table XV.

is from such a calculation and is included only to demonstrate the guidance obtained from preliminary results.

These calculations were originated with the constraints (a) force constants for similar internal coordinates are equal for all members of the series, (b) $C_{CC=CC}^{=}$ -0.04, (c) Tr = 0.06, (d) $H_{CCC}^{=}$ 0.237 and (e) $F_{HCH} = 0.0.$ A comparison of the results of calculations (2) and (3) resulted in a modification of constraint (a). The molecules fumaronitrile, maleonitrile and tricyanoethylene considered in (2) contain only a single type of hydrogen, i.e., one alpha to a cyano group. An average error of 9 cm⁻¹ was obtained for the C-H stretching frequencies. However, in calculation (3) acrylonitrile, which contains a (CH₂) group, was also considered and the average error in C-H stretching frequencies jumped to 23 cm⁻¹ and K_{CH} increased from 4.54 to 4.74 mdyne/A. At this point it became clear that two C-H stretching force constants should be allowed, one for each type of CH bond. This was done in calculation (4). The average error in the v_{CH} fell back to 9 cm⁻¹, even though 1,1-dicyanoethylene is also considered in this calculation. Further, two well determined K_{CH} force constants emerged: $K_{CH} = 4.56$ for hydrogen alpha to cyano and $K_{CH}^* = 4.94$ for hydrogen in a (CH₂) grouping.

Multiple values for the force constants associated with other internal coordinates would perhaps be warranted. There are, for example, large errors in the calculated frequencies for v_6 and v_{17} in fumaronitrile, for v_6 in maleonitrile and for v_{17} in 1,1-dicyanoethylene. The potential energy distributions, based on calculation (4), for these molecules are shown in Tables XI-XIII. It is clear that these modes are highly dependent on $F_{C=CC}$ and that there should perhaps be more

than one force constant describing this interaction.

No attempt has been made to redetermine Tr in this investigation since no additional molecules containing trans hydrogen were considered. However, on the basis of potential energy distributions, constraint (b) was eliminated. In calculation (2), $C_{CC=CC}$ adopted a value of 0.04 mdyne/A during the least squares analysis and this value was used in subsequent calculations.

Calculations Including Tetracyanoethylene

A zero-order calculation for tetracyanoethylene using the UBFC's given in Table IV has already been reported.²⁰ Since the calculations described above seemed to yield a set of force constants more representative of the series, a new zero-order calculation was performed using $\Phi(4)$. The results of this calculation are given in Table XIV. Since the average error in frequency for the original zero-order calculation is 4.05%, there is only slight improvement on using the $\Phi(4)$. Nevertheless, on the basis of this calculation, v_{17} and v_{24} , originally assigned as 426 and 443 cm⁻¹ respectively, were switched. This brings v_{17} more in line with the calculated value of 451 cm⁻¹.

With this additional evidence that the bonding in tetracyanoethylene is not typical of the series, the approach to the vibrational analysis was altered. Rather than attempt to include this molecule in overlay calculations with other members of the series, a minimum number of force constants were transferred from overlay calculation (2) and the remaining constants were then adjusted in a least squares analysis involving only tetracyanoethylene. Thus $C_{CC=CC}$ was assigned the value of 0.04 mdyne/A and H_{CCC} , as for this entire study, was fixed

TABLE XI

Force Constant	υ ₁	v ₂	υ ₃	υ ₄	v ₅	^v 6	⁵ 7	υ ₁₃	υ ₁₄	^v 15	v ₁₆	^v 17	^v 18
K _{C=C}	0.4	0.2	59.2	19,7	0.9	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K _{CH}	89.0	0.1	0.0	0.1	0.4	0.0	00	88.3	0.1	0.0	0.2	0.2	0.3
K CN	0.0	86.5	1.9	0.0	7.1	3.9	0.5	0.0	85.9	0.4	13.7	0.0	0.0
^к сс	0.1	11.4	10.9	0.7	37.9	21.2	2.8	0.1	11.5	4.6	65.8	1.1	0.8
^H C=CH	0.1	0.1	10.3	27.3	0.0	0.9	0.4	.0.0	0.0	.33.6	0.7	6.7	4.1
^H C=CC	0.2	0.0	0.0	.3.6	14.7	11.4	6.9	0.0	0.0	0.3	0.0	18.2	18.3
H _{HCC}	0.0	0.0	.5.4	6.0	6.4	2.1	1.4	0.0	0.0	19.2	0.4	0.8	1.6
^H CCN	0.0	0.0	0.4	0.4	2.1	22.3	74.8	0.0	0.0	0.4	0.0	49.3	50.3
^F C=CH	3.9	0.0	2.0	26.9	0.0	0.2	0.3	5.5	0.0	19.2	0.5	3.4	2.0
^F C=CC	0.1	0.8	3.3	2.1	7.1	34.4	11.4	0.0	1.7	1.8	.9.3	19.7	20.2
^F CCH	6.3	0.8	4.8	8.6	23.4	1.1	1.3	6.1	0.9	26.4	9.6	1.8	3.1
Tr	0.0	.0.0	1.8	4.7	0.0	0.2	0.1	0.0	0.0	-5.8	-0.1	-1.1	-0.7

DISTRIBUTION OF POTENTIAL ENERGY AMONG PLANAR INTERNAL COORDINATES OF FUMARONITRILE (a)

(a) Based on the results of calculation (4).

TABLE XII

												· · · · ·	a a a contra pro-
Force Constant	v_1	⁰ 2	ν ₃	υ ₄	ν ₅	ν ₆	⁰ 7	^v 13	^v 14	^v 15	^v 16	⁰ 17	v ₁₈
K _{C=C}	0.4	0.2	70.1	6.0	5.2	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0
к _{СН}	88.7	0.1	0.0	0.1	0.2	0.1	0.4	88.5	.0.1	0.0	0.4	0.0	0.0
K _{CN}	0.0	86.2	1.4	1.0	11.1	0.2	0.0	0.0	86.3	1.8	7.6	4.1	0.2
K _{CC}	0.1	11.4	8.8	1.7	62.7	0.2	0.2	0.1	11.4	11.9	40.6	18.9	0.9
^H C=CH	0.0	0.0	4.9	28.8	1.7	2.8	3.2	0.1	0.1	37.0	0.2	4.0	0.4
^H C=CC	0.0	0.0	0.7	0.0	1.1	12.7	19.2	0.2	.0.0	1.3	12.4	17.7	4.6
H _{HCC}	0.0	0.0	4.3	13.7	0.1	1.1	2.3	0.0	0.0	12.4	6.5	1.5	0.8
^H CCN	0.0	0.0	0.1	0.0	1.0	56.3	42.1	0.0	0.0	0.0	1.6	13.4	85.0
^F C=CH	4.6	0.0	2.5	22.4	2.4	1.0	1.7	4.8	0.0	21.1	0.2	2.4	0.2
^F C=CC	0.1	1.1	.2.8	0.2	10.1	19.2	21.5	0.1	1.2	0.7	6.0	37.1	7.1
FCCH	6.1	0.9	4.0	26.1	4.4	1.5	3.7	6.2	0.8	13.7	24.4	0.8	0.8
CC=CC	0.0	0.0	0.0	0.0	0.2	4.1	5.5	0.0	0.0	0.0	0.2	0.0	0.0

DISTRIBUTION OF POTENTIAL ENERGY AMONG PLANAR INTERNAL COORDINATES OF MALEONITRILE (a)

(a) Based on the results of calculation (4).

TABLE XIII

Force Constant	ν ₁	^v 2	ν ₃	υ ₄	ν ₅	^v 6	^ت 7	^v 13	^v 14	^v 15	^v 16	^v 17	v ₁₈
K _{C=C}	0.0	.0.2	58.1	17.0	6.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
к _{СН}	93.8	0.0	0.5	1.1	0.0	0.0	0.0	95.1	0.0	0.0	0.2	0.2	0.1
K _{CN}	0.0	86.2	0.9	1.1	9.1	2.7	0.1	0.0	8 [:] 5 • 9 [:]	7.6	4.8	1.4	0.2
к _{сс}	0.0	10.1	.4.6	4.8	44.3	9.6	0.0	0.0	12.8	42.3	32.8	4.4	0.0
H _{C=CH}	0.1	0.0	8.7	17.6	0.3	0.0	0.0	0.1	0.0	22.8	38.2	2.8	0.7
^H C=CC	0.0	0.0	0.6	0.7	2.2	7.9	5.3	0.1	0.1	9.9	0.4	25.0	11.3
^н нсн	0.2	.0.0	19.3	39.2	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H _{CCN}	0.0	0.0	0.5	0.6	3.7	27.7	67.5	0.0	0.0	.0,8	0.2	26.1	72.8
^н ссс	0.0	0.0	0.7	0.7	2.5	8.6	5.8	0.0	0.0	0.0	0.0	0.0	0.0
^F c <i>=</i> CH	5.2	0.0	2.3	16.5	1.3	0.0	0.0	4.6	0.0	12.5	20.8	1.4	0.3
^F C=CC	0.1	1.1	3.1	0.2	25.5	5.6	6.1	0.1	1.2	4.5	2.7	38.7	14.5
F _{HCH}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0
Fccc	0.0	2.3	0.6	0.7	4.4	37.7	15.3	0.0	-0.1	-0.4	-0.3	0.0	0.0

DISTRIBUTION OF POTENTIAL ENERGY AMONG PLANAR INTERNAL COORDINATES OF 1,1-DICYANOETHYLENE^(a)

(a) Based on the results of calculation (4).

TABLE XIV

Symmetry	obs.	v(4)	v(5)	v(6)	ບ(7)	v(8)
A	2235	2243	2248	2243	2246	2230
8	1569	1622	1570	1582	1576	1570
	677	617	637	633	632	639
	535	529	515	518	514	516
	130	130	130	.130	130	130
B _{1u}	2263	2248	2251	2247	2248	2268
	958	982	982	985	975	979
	579	594	604	599	601	603
	165	170	170	170	170	170
^B 2u	2230	2236	2240	.2237	2237	2241
	1155	1109	1150	1148	1142	1151
	443	451	435	437	437	436
	119	112	104	104	104	103
^B 3g	2247	2231	2236	2232	.2233	2236
Ŭ	1282	1299	1282	1278	1283	1282
	490	509	481	485	482	481
	254	276	269	270	270	
Av. % Error		2.88	2.74	2.69	2.76	2.66

OBSERVED AND CALCULATED PLANAR FUNDAMENTAL FREQUENCIES FOR TETRACYANOETHYLENE

at 0.237 x 10^{-11} erg/rad². This left 7 UBFC's to be determined by 17 frequencies.

The resulting force constants ($\Phi(5)$ in Table XV) do not differ greatly from the $\Phi(4)$. The differences which are present are easily explained. For example, the C=C and C=N bonds are apparently significantly weaker and the C-C bond much stronger than in the other cyanoethylenes, as would be expected on the basis of increased electron delocalization. A comparison of the $\Phi(1)$ and $\Phi(2)$ indicates that this trend is detectable in tricyanoethylene before becoming critical in tetracyanoethylene. The agreement of the calculated with the observed frequencies for this calculation (Table XIV) is still not striking.

Force constants for overlay calculations involving tetracyanoethylene and tricyanoethylene $[\Phi(6)]$ and tetracyanoethylene, tricyanoethylene and 1,1-dicyanoethylene $[\Phi(7)]$ also appear in Table XV. Calculated frequencies corresponding to these Φ 's are shown in Tables IX, X and XIV. These calculations were of no significant value in determining either the force constants or the vibrational assignment for tetracyanoethylene. Rather (7) is included because it is the only calculation in which F_{HCH} was allowed to vary. The refined value of 0.02 mdyne/A supports the choice of $F_{HCH} = 0.0$ as used in the other calculations. Calculation (6) is of some value in confirming that bonding in tricyanoethylene is intermediate to that of tetracyanoethylene and the other four molecules of the series. Furthermore, this calculation hints that the effect of an alpha cyano group on the C-H bond in tricyanoethylene is somehow attenuated, since the C-H stretching constant adopts a value midway between those found for $K_{
m CH}$ and $K_{
m CH}^{\star}$ in calculation (4).

FORCE	CONSTANTS	AND	DISPERSIONS	OBTAINED	FROM	CALCULATIONS
10100	001101111110		DIDIERO IONO	001	(a)	OTHOU MIT FORD
INCLUDING TETRACYANOETHYLENE						

Force Constant	₫(5)	σ ⊈(5)	⊉(6)	σ <u>Φ</u> (6)	⊉(7)	σ ∳(7)	⊈(8)	σ , <u>Φ</u> (8)
K _{C=C}	6.26	0.26	6.37	0.16	6.36	0.17	6.34	0.26
КСН	(c)				5.01	0.07		
K*CH			4.62	0.10	4.71	0.11		
^K CN	16.76	0.22	16.70	0.14	16.77	0.12	16.88	0.23
K _{CC}	5.22	0.26	5.17	0.19	5.12	0.17	5.19	0.25
^H C=CH			0.25	0.09	0.40	0.04		
H _{C=CC}	0.31	0.08	0.30	0.06	0.34	0.06	0.31	0.08
^Н нсн	· <u></u>				0.42	0.04	·	
HCCH	* :)	0.40	0.17	0.34	0.09		
H _{CCN}	0.31	0.04	0.31	0.02	0.31	0.02	0.31	0.04
HCCC	0.24	(b)	0.24	(b)	0.24	(b)	0.24	(b)
F C=CH			0,49	(b)	0.29	0.08	· <u></u>	
F _{C=CC}	0.67	0.19	0.73	0.11	0.65	0.09	0.66	0.18

TABLE XV

TABLE XV (Continued)

Force Constant	∳(5)	$\sigma_{\Phi(5)}$	₫(6)	⁰ ₫(6)	Φ(7)	σ _Φ (7)	∳(8)	σ _{Φ(8)}
F _{HCH}		and an	-	1	0.02	0.06		
F _{CCH}			0.27	0.16	0.32	0.16		
FCCC	0.97	0.13	0.93	0.08	0.94	0.07	0.96	0.13
C _{CC=CC}	0.04	(b)	0.04	(b)	0.04	(b)	0.04	(b)
Tr								
ρ							0.06	0.05

(a) Force constants are in mdyne/A except for the bending constants, which are in 10^{-11} erg/rad².

(b) The value of the corresponding force constant was constrained.

(c) A line indicates that the calculation is independent of the indicated force constant.

Seemingly the UBFF cannot adequately encompass the effects which the resonance stabilization in tetracyanoethylene has on the vibrational energy. Scherer and Overend¹³ have developed a method whereby the UBFF is modified to correct for resonance effects in aromatic rings. This method should be useful in considering electron delocalization effects in tetracyanoethylene, as will be developed below.

Several canonical forms for tetracyanoethylene are shown in Figure 4. Many more forms could be written on the basis of molecular symmetry. Considering Figure 4, stretching of the bond labeled (1) would tend to stabilize structures (b) and (c) and thus increase the energy necessary to stretch bonds (2), (3), (4) and (5). This can be expressed by the inclusion of cross terms $\rho \Delta R_1 \Delta R_2$, $\rho \Delta R_1 \Delta R_3$, $\rho \Delta R_1 \Delta R_4$, and $\rho \Delta R_1 \Delta R_5$ in the potential energy function. Here ρ is the Kekule' constant to be adjusted in the least squares calculation and the ΔR are bond length internal displacement coordinates corresponding to the numbered bonds in Figure 4. Conversely, compression of bond (1) would stabilize structure (a), giving rise to cross terms $\rho(-\Delta R_1) \Delta R_6$, $\rho(-\Delta R_1)\Delta R_8$ and $\rho(-\Delta R_1)\Delta R_9$. These, together with similar terms which arise from consideration of the remaining bond stretching coordinates, comprise a set of cross terms which is added to the basic UBFF. The results of such a calculation appear as $\Phi(8)$ in Table XV and the calculated frequencies are shown in Table XIV. This calculation was performed exactly as was calculation (5) except that the Kekule' constant p was added to the set of force constants to be refined. Although there is some improvement in the agreement between calculated and observed frequencies for calculation (8) over calculation (5), the agreement is still not satisfactory. Better results might be had if more

than one Kekule' constant were used. This would remove the inherent assumption that all canonical forms contribute to the bond-bond intractions to the same extent. One calculation which included 3 Kekule' constants would not converge, possibly because, with 9 stretching modes primarily determined by 6 stretching force constants, the problem was too nearly exactly determined.

Nevertheless, the results of calculation (8) indicate that the modification is in the right direction. Compared to the $\Phi(5)$, $K_{C=C}$ and K_{CN} increase slightly while K_{CC} decreases slightly. As would be expected, the bending and nonbonded interaction constants show little or no change.

CHAPTER VI

DISCUSSION

As a result of the overlay calculations reported in the previous chapter, a set of force constants $\Phi(4)$ has been determined which adequately determines the planar fundamental modes of all cyanoethylenes with the exception of tetracyanoethylene. Satisfactory results for tetracyanoethylene were not derived, even when effects of electron delocalization were considered.

Considering the results of calculations (1), (2) and (4), it is surprising that the error in the calculated frequencies is nearly constant regardless of the number of molecules included in the overlay. The average percent errors in calculated frequencies for these three calculations are 0.87, 1.11 and 1.09 respectively. The only difference between calculations (1) and (2) lies in the fact that tricyanoethylene is included in (2) but not in (1). It thus appears again that the inclusion of tricyanoethylene does introduce some bonding features not common to the other four molecules. This effect is undoubtedly a result of increased conjugation.

The average percent error (1.09%) quoted for calculation (4) is somewhat misleading. During that calculation neither v_5 , v_7 nor v_{13} of 1,1-dicyanoethylene were weighted so that error in these modes was not included in the average. If the presently assigned values of 720, 170 and 240 cm⁻¹ are used, the average percent error is increased to 1.49

for the entire calculation. Also, it would seem that the results of calculation (4) confirms the assignment of v_7 as 170 cm⁻¹ while favoring the alternate assignment of v_5 as 762 cm⁻¹ and suggesting that v_{13} , tentatively assigned as 240 cm⁻¹, has not as yet been observed.

Examination of stretching force constants calculated for other small molecules indicates that resonance effects are important even in lower cyanoethylenes. In calculation (4) a value of 6.82 mdyne/A was adopted by $K_{C=C}$. A similar calculation for ethylene yields a value of 7.46 mdyne/A.²¹ Likewise, for a series of saturated nitriles $K_{CN}^{=}$ 18.2-18.5 and $K_{CC}^{=}$ 3.1-3.2 mdyne/A as opposed to 16.94 and 4.63 mdyne/A in this investigation.⁷ It is clear that, for the cyanoethylenes, the C=N and C=C bonds are weaker and the C-CN bond is stronger than would be expected in the absence of delocalization.

It is quite apparent that the C-H bond is significantly weakened by an alpha-cyano group. Consideration of the force constants for cis-, trans- and gem-difluoroethylenes shows the same phenomenon for an alpha-fluorine,³⁴ whereas an alpha-bromine has very little effect.²¹ In fact the weakening of the C-H bond is definitely correlated with the magnitude of the $F_{\rm HX}$ interaction which has the values 1.10, 0.57 and 0.33 mdyne/A when X is F, CN and Br respectively. It is also known that the C-H bond is lengthened by an adjacent fluorine.³⁵ Further, the relative chemical shifts in the nuclear magnetic resonance spectra of a large number of vinyl compounds show that alpha electronegative groups have the effect on the electron density about hydrogen which is typical of hydrogen bonding.^{36,37} These data, summarized in Table XVI, show that a strong correlation also exists between these electron densities and the magnitude of $F_{\rm HX}$. These facts indicate the possible existence of an intramolecular hydrogen bond. If this is so, then the interaction force constant F_{HX} is a measure of the strength of this hydrogen bond, not a measure of the H-X repulsive force.

TABLE XVI

RELATIVE CHEMICAL SHIFTS FOR A SERIES OF VINYL COMPOUNDS

$H_{B} C = C H_{C}$						
X	$\delta_{B} - \delta_{C}(a)$	δ _A - δ _C	F _{HX} (b)			
F	7,7	89	1.10			
C1	32	37	0.57			
CH3	34	37	0.55			
Br	25	19	0.33			
OCH ₃	91	99				

(a) Units for chemical shifts are hertz.

(b) Units are mdyne/A.

The positive value adopted by $C_{CC=CC}$ may be indicative of a stabilizing interaction between cis carbon atoms. Thus one might expect ΔH for the cis-trans conversion to be greater than zero, as is the case for the 1,2-difluoroethylenes.³⁸ However, fumaronitrile is

predominant at equilibrium, suggesting that ΔH is less than zero. This indicates that, for the cyanoethylenes, resonance stabilization, which favors the trans configuration, dominates over any stabilizing cis nonbonded interaction.

An alternative explanation for the magnitude of the nonbonded interaction constants is suggested by the work of Bruns et al.³⁹ The results of a semi-empirical molecular orbital calculation for OF_2 raise the possibility that many nonbonded interaction force constants are greatly inflated by electron delocalization. Thus $F_{\rm HX}$ may not be an accurate measure of a nonbonded interaction but may arise mainly from a (CH,CX) bond-bond interaction term. If this is true, then no conclusions concerning the nature of the nonbonded interaction can be drawn from considerations of the sign or magnitude of the force constant since its effect would be effectively masked by that of the bondbond interaction.

PART II

AN ALGORITHM FOR THE DETERMINATION OF THE SHAPE PARAMETERS OF INFRARED

ABSORPTION BANDS

CHAPTER I

INTRODUCTION

The Problem

There are basically two types of information which may be derived from an infrared spectrum, the positions of absorption bands and their intensities and shape factors. Band positions are indicative of the energy associated with the vibrational or vibrational-rotational transitions causing the absorption and, because of this, have been used for decades in studies of inter- and intramolecular forces. The work in Part I is but one example of the use of spectroscopic data for this purpose.

Intensity and shape information have not been used extensively as a tool for the interpretation of infrared spectra. Whereas primary frequency standards make it possible to exchange band position data between laboratories, no intensity standards have been developed for use with ordinary laboratory spectrophotometers. Also, observed intensity values are highly dependent on instrumental parameters. As a result, it is almost impossible to compare uncorrected data from different instruments. Finally, any given infrared absorption band, being of finite line width, is often overlapped with an adjacent band. This overlap adds to the difficulty in evaluating the intensity and shape factors for either band.

The purpose of this investigation was to develop a mathematical technique whereby accurate intensity and shape information could be derived from ordinary infrared spectra.

The Shape of Infrared Absorption Bands

Seshadri and Jones⁴⁰ have published a definitive review article concerning the shapes of infrared absorption bands. The discussion in this section is largely based on this review, with additional references as cited.

Consideration of absorption and emission spectra of materials in gas phase indicates that there are three factors which contribute to the line width of spectroscopic transitions. These are radiation damping, the Doppler effect and collision broadening.

According to classical theory,⁴¹ radiation damping arises because a vibrating electric charge radiates, and thus constantly loses, energy. As a consequence the amplitude of vibration is diminished while the natural frequency v_0 of the oscillator is maintained. A damped vibration of this type is not monochromatic; its frequency distribution may be determined by a Fourier analysis of the electric moment as a function of time. This yields

$$I_{\upsilon} = \frac{\Delta \upsilon/2\pi}{(\upsilon - \upsilon_{o})^{2} + (\Delta \upsilon/2)^{2}}$$
(1)

where I is the intensity at frequency v and Δv is the line width at half-height in cm⁻¹. The line width is given by

$$\Delta v = \frac{4\pi e^2}{3mc^2} v_0^2$$
(2)

where m and e are the mass and charge, respectively, of the oscillator and c is the speed of light. In terms of wavelength the line width is

$$\Delta \lambda = \frac{4\pi e^2}{3mc^2} = 1.17 \times 10^{-4} \text{ \AA}$$
 (3)

According to quantum mechanics, the natural line width (equivalent to radiation damping in the classical treatment) arises because each of the two energy levels E_1 and E_2 , between which a transition occurs, is not sharp but has a finite width ΔE_1 and ΔE_2 respectively. The expression for the half width of the transition is then made up of the term widths of the two states:

$$\Delta v = \Delta E_1 / h + \Delta E_2 / h \tag{4}$$

where h is the Planck constant. Applying the Heisenberg uncertainty principle:

$$\Delta E_1 \cdot \Delta t_1 \sim h/2\pi$$
 (5a)

$$\Delta E_2 \cdot \Delta t_2 \sim h/2\pi \tag{5b}$$

where Δt_1 and Δt_2 are the average times that the molecule remains in energy states E_1 and E_2 . Under the assumption that only infrared fundamental bands are to be considered; i.e., that all transitions are between the ground and first excited states, the band width can be expressed as

$$\Delta v = \frac{4\pi e^2}{mc^2} \left(\frac{2}{v_{2,1}^2} f_{2,1} \right)$$
(6)

where $f_{2,1}$ is the oscillator strength of the transition whose frequency is $v_{2,1}$. A comparison of equations 2 and 6 shows that the quantum mechanical treatment differs from the classical approach by a factor of $3f_{1,2}$. The oscillator strengths of infrared transitions are less than unity⁴⁰ so that the value derived from the classical model may be regarded as an upper limit to the true natural line width. Line widths calculated by this method are of the order of 10^{-6} cm⁻¹ at 1000 cm⁻¹. Since observed band widths are of the order of 1-20 cm⁻¹, it may be concluded that radiation damping is relatively unimportant in the evaluation of infrared absorption band shapes.

Doppler broadening results from thermal motion of the molecules. Molecules having a velocity component, V, toward or away from the radiation source will absorb or emit at the frequency v according to

$$v = v_0 (1 \pm V/c)$$
(7)

where v_0 is the frequency which would be observed for the molecule at rest. The fraction of molecules within a velocity range ∂V is given by

$$\frac{dn}{n} = \left[\frac{M}{2\pi RT}\right]^{\frac{1}{2}} exp \left[(M/2RT)v^2 \right] dv$$
(8)

where M is the molecular weight of the gas, R is the gas constant and T is the absolute temperature. The total intensity at frequency v is then

$$I_{\upsilon} = \left[\frac{Mc^2}{2\pi RT \upsilon_o^2}\right]^{\frac{1}{2}} \exp\left[-\left(\frac{Mc^2}{2RT \upsilon_o^2}\right) (\upsilon - \upsilon_o)^2\right]$$
(9)

The Doppler effect thus predicts a Gaussian band shape with a band width given by

$$\Delta v = 2 (\ln 2)^{\frac{1}{2}} \left[\frac{2RT}{Mc^2} \right]^{\frac{1}{2}} v_0$$
(10)

Using equation 10 with $v_0 = 1000 \text{ cm}^{-1}$ and a molecular weight of 100 at 20° C, Δv is calculated to be 1.2 x 10^{-3} cm^{-1} . This is less than the limits of precision in infrared spectroscopy and it may then be concluded that Doppler broadening is too small to affect band shape measurements.

Collision broadening arises from a perturbation of the energy levels of an absorbing or emitting molecule caused by close approach of other molecules. The effect of such perturbations on a band profile was first derived by Lorentz⁴² and later refined by Van Vleck and Weisskopf.⁴³ Classically, the equation of motion for an oscillator of natural frequency ω_{o} radians/sec., mass m and charge e with an electrical field E cos ω t is

$$m \frac{d^2 X}{dt^2} + \omega_0^2 X = eE \cos \omega t$$
(11)

This differential equation has a solution of the form:

$$x = C_1 \exp(i\omega t) + C_2 \exp(i\omega_0 t) + C_3 \exp(-i\omega_0 t)$$
(12)

where

$$C_1 = \frac{eE}{m(\omega_0^2 - \omega^2)}$$
(13)

and C_2 and C_3 are determined by the nature of the collision. As the result of a collision, X and dX/dt have taken on values which determine the behavior of the oscillator until the occurrence of the next collision. In order to evaluate an average value of X over the

varying time intervals from the last collision, equation 12 is multiplied by the probability that the molecule will collide again after a lapsed time θ . The probability is given by

$$n(t) = \frac{1}{V} \exp \left(-\frac{1}{V}\right) \partial \theta \qquad (14)$$

where V is the mean time between collisions. The resulting equation for \overline{X} (the average value) is a function containing real and imaginary parts and, for the imaginary part, it can be shown that the absorption coefficient α at frequency ω is

$$\alpha_{\rm w} = \frac{2\pi n e^2}{mc} \cdot \frac{w}{w_{\rm o}} \left[\frac{1/V}{(w - w_{\rm o})^2 + (1/V)^2} - \frac{1/V}{(w + w_{\rm o})^2 + (1/V)^2} \right] (15)$$

where n is the number of molecules in the system. This equation defines a profile which will be referred to in succeeding portions of this work as a Lorentz profile. On modifying the expression so that it is more useful for the analysis of infrared absorption spectra, equation 15 becomes⁴⁰

$$\alpha_{\upsilon} = \frac{K}{\pi} \frac{\Delta \upsilon/2}{(\upsilon - \upsilon_{o})^{2} + (\Delta \upsilon/2)^{2}}$$
(16)

where K is a function of the particular band. At $v = v_0$, equation 16 yields

$$\alpha_{vo} = \frac{2K}{\pi\Delta v}$$
(17)

$$\frac{K}{\pi} = \frac{\alpha_{\upsilon o} \Delta \upsilon}{2}$$
(18)

Making the appropriate substitution and designating α_{vo} as A_o , the peak absorbance of the absorbing species, and α_v as A_v , the absorbance at frequency v, equation 16 may be written

$$A_{v} = \frac{A_{o}(\Delta v/2)^{2}}{(v - v_{o})^{2} + (\Delta v/2)^{2}}$$
(19)

Finally, multiplying numerator and denominator by $\left(2/\Delta\upsilon\right)^2$ yields

$$A_{v} = \frac{A_{o}}{1 + (2/\Delta v)^{2} (v - v_{o})^{2}}$$
(20)

Although the above derivations arise from consideration of the behavior of gases, many workers have used the Lorentz function or modifications of it in studies involving condensed materials.

The Effect of Finite Slit Widths

When a spectrometer is set to transmit radiation of a given frequency a frequency band of finite width is actually transmitted. The energy distribution of this band is generally symmetrical about the nominal frequency and its width is a function of the mechanical slit settings, resolving power and optical aberrations of the spectrometer. The transmittance observed for a sample at any frequency v' is thus not only dependent on the absorption coefficient at v' but is also a function of the absorption coefficients across the detected frequency band. If the energy distribution over the detected frequencies is designated as g(v,v'), the apparent transmittance value, T_v^a , is given by⁴⁴

$$T_{\upsilon'}^{a} = \frac{\int T_{\upsilon g}(\upsilon, \upsilon') d\upsilon}{\int g(\upsilon, \upsilon') d\upsilon}$$
(21)

where the convolution is performed over the range of detected frequencies. It is apparent from this equation that the magnitude of error introduced by a symmetric slit function is dependent on $\partial^2 T_v / \partial v^2$. Where the slope of the observed spectrum is relatively constant, T_v^{a} will approach T_v . However, where the slope is changing rapidly, as is the case near the center of an absorption band, considerable error results. Moreover, the relative error varies for bands of different intensity^{45,46} giving rise to the curvature often observed in Beer's law plots derived from data taken at large slit widths.

The function g(v,v') may be visualized by considering the effect of scanning a spectrometer with a finite spectral slit width across a region of the spectrum containing an infinitely narrow absorption band. The signal observed under these conditions could be regarded as the locus of g(v,v'), where v' is the position of the absorption. For very narrow slits g(v,v') may be regarded as a diffraction function with a large maximum at v'. If the slits are wide compared to the wavelength of the transmitted radiation, as is usually the case in infrared spectrometry, the secondary maxima of the diffraction function may be disregarded, and the distribution regarded as approximately triangular, ⁴⁴ as shown in Figure 5. The triangular distribution actually applies only to the situation where the entrance and exit slits are of equal size, but this configuration is used in all commercial infrared spectrometers. The function depicted in Figure 5 may be described by the equation

$$g(\upsilon,\upsilon') = \begin{cases} S - |\upsilon' - \upsilon|, |\upsilon' - \upsilon| \le S \\ 0, |\upsilon' - \upsilon| \ge S \end{cases}$$
(22)

Figure 5. The Triangular Spectral Slit Function
where S, the spectral slit width, is defined as half the frequency interval subtended by the spectrometer when set to v'.

Studies of Infrared Band Profiles

Most of the significant work in the study of the shapes of infrared absorption bands has been done by Jones and co-workers.^{40,47-49} Their study has included the Lorentz and Gauss functions and the sum and product functions of these two. At present, Jones is using the Lorentz-Gauss sum function almost exclusively.⁵⁰ It should be pointed out that the primary object of this group is to reduce infrared data to a minimal number of numerical indices, not to extract true intensity data.

Abramowitz and Bauman⁵¹ and Fraser and Suzuki⁵² have also used Lorentz-Gauss sum and product functions, but the former have concluded that, at narrow slit widths, most absorption bands are almost purely Lorentzian. Early work in this laboratory indicates that this conclusion is correct. In a study of the hydrogen bonding of esters and alcohols, overlapped carbonyl stretching absorption bands were successfully resolved on the basis of a Lorentz band shape.^{53,54} The same algorithm was used to resolve carbon-hydrogen stretching bands in the spectra of aliphatic molecules.⁵⁵

The Scope of the Present Investigation

For the purposes of this investigation infrared absorption bands are regarded as Lorentz functions convolved by a triangular slit function. This mathematical model was chosen because (1) unlike the earlier models used in this laboratory and elsewhere, the effect of

finite slits is included as a separable factor and (2) it is felt, in light of the above discussion of the factors influencing band shape, that the parameters derived from this model would have more physical significance than those calculated using more complex models such as the Lorentz-Gauss sum function.

A computer program was designed and written for the purpose of performing the calculations necessary for the analysis. Several spectra, containing varying amounts of noise, were synthesized and used in testing the convergence characteristics of the program.

The experimental phase of this study consisted of the acquisition of data from infrared spectra of several esters and simple aromatic compounds. The former were chosen because their carbonyl stretching bands are well isolated from other bands while the latter provided a system of relatively narrow out-of-plane hydrogen bending bands which are highly susceptible to slit broadening. In addition, the various aromatic compounds provided the opportunity to determine the effective-compounds.

The infrared data was then fitted to the model described above. The results clearly show that the slit-convolved Lorentz function is quite adequate to fit the observed data. In addition, analysis of data taken at several different slit widths indicate that the mathematical analysis is reasonably effective in removing distortion from this cause.

CHAPTER II

DEVELOPMENT OF THE ALGORITHM

The Calculated Spectrum

An infrared absorption spectrum containing one or more bands may be regarded, in the absence of slit perturbations, as a summation of functions of the type given in equation 20. Under this assumption, the absorbance calculated for any frequency v is then

$$A_{v}^{0} = \sum_{i=1}^{N} \frac{A_{0i}}{1 + (2/\Delta v_{i})^{2} (v - v_{0i})^{2}} + \beta$$
(23)

where A_{0i} , Δv_i , and v_{0i} are the peak absorbance, line width and band position, respectively, for the i-th band and N is the number of bands contributing to the spectrum. The zero superscript on the left hand side denotes that the absorbance has been calculated under the assumption of zero slit width. The constant β is included to absorb small baseline errors.

The basic physical quantity measured by most commercial spectrometers is transmittance. It is thus more meaningful to perform the band shape analysis in terms of this variable. Also, for reasons which will become clear later, it is more convenient to regard the spectrum not as a continuous function but as a vector composed of discrete samples taken at equal increments of the independent variable (frequency).

The transmittance calculated for the k-th data point of the calculated spectrum is thus

$$T_{k}^{o} = \exp \left[-\sum_{i=1}^{N} \frac{A_{0i}'}{1 + \rho_{i} (v_{k} - v_{0i})^{2}} - \beta' \right]$$
(24)

where $A'_{0i} = 2.303 A_{0i}$, $\beta' = 2.303 \beta$, $\rho_i = (2/\Delta v_i)^2$ and v_k is the frequency corresponding to the k-th datum.

In terms of discrete samples, the expression for the slit function (equation 22) becomes

$$g(v,v_{k}) = \begin{cases} S - |v_{k}-v_{k+j}| = S - jx; \quad j = 0,1,2,\cdots,m \\ 0, \qquad j \ge m \end{cases}$$
(25)

where m is the number of samples contained in S cm^{-1} and x is the sampling interval. The slit convolution can then be expressed as a summation

$$T_{k}^{calc} = a_{o} T_{k}^{o} + \sum_{j=1}^{m} a_{j} (T_{k+j}^{o} + T_{k-j}^{o})$$
 (26)

where T_k^{calc} is the value calculated for the k-th datum. The coefficients a_i are easily shown from equation 25 to be

$$a_{j} = \frac{S - jx}{F}$$
; $j = 0, 1, 2, \cdots, m-1$ (27a)

$$a_{\rm m} = \frac{S_{\rm -mx}}{2F}$$
(27b)

where F is the normalization factor given by

$$F = 2mS - m^2 x$$
 (28)

The factor of 2 is included in the numerator of equation 27b to make the numerical integration in equation 26 conform to the trapezoidal rule.

An alternative model for the slit convolution may be developed if it is assumed that any 2 S cm⁻¹ region of the calculated spectrum is well approximated by a simple polynomial in S - $(v_k - v)$, such as

$$T_{Z}^{0} = \sum_{i=0}^{m} a_{i}Z^{i}$$
, $-S \le Z \le S$ (29)

where Z = S - $(v_k - v)$ and M is the degree of the polynomial. The convolution is then

$$T_{k}^{calc} = \frac{\int_{0}^{S} T_{z}^{o} (S-z)\partial Z + \int_{-S}^{0} T_{z}^{o} (S+Z) \partial Z}{\int_{0}^{S} (S-Z)\partial Z + \int_{-S}^{0} (S+Z) \partial Z}$$
(30)

Substituting the expression for T_z^o , the integrals are easily evaluated and the expression for T_k^{calc} becomes

$$T_{k}^{calc} = 2 \sum_{i=0}^{m} \delta_{i} \left(\frac{1}{i+1} - \frac{1}{i+2}\right) a_{i} S^{i}$$
 (31)

where δ_{i} is unity for even i and zero for odd i. The a are readily determined from the T_{k}^{0} by use of the simplified least-squares procedure outlined by Savitsky.⁵⁶ The computer program developed in this investigation allows the use of either slit convolution model.

The Least-Squares Procedure

The object of this algorithm is to choose a set of 3N+1 band parameters A_{0i} , Δv_i , v_{0i} , and β for a spectrum containing N bands such that the best fit is obtained between the observed and calculated transmittance values. According to the least-squares criterion, this is achieved when the sum of squares of the deviations is a minimum:

$$\sum_{k=1}^{P} (T_k^{obs} - T_k^{calc})^2 = \min(m)$$
(32)

where P is the number of elements in the vector of observed transmittance values. Since the T_k^{calc} are not linearly related to the band parameters, the Gauss-Newton nonlinear regression method was chosen for the analysis.⁵⁷

For the sake of convenience, the various band parameters are now regarded as elements of a parameter vector whose elements are Q_i , where $i=1,2,\cdots,3N+1$. A set of initial parameter values, Q'_i , are estimated and used to calculate a vector of the T_k^{calc} . If the initial estimate is reasonably close to the true value, the residual function may be linearized by using a first order Taylor's expansion

$$R_{k}' = (T_{k}^{obs} - T_{k}^{calc})' = \sum_{i=1}^{3N+1} \left(\frac{\partial T_{k}}{\partial Q_{i}}\right)' \Delta Q_{i}$$
(33)

where $\Delta Q_i = Q_i - Q'_i$ and the primes indicate that the indicated terms are to be evaluated for the approximate values of the parameters. This equation is linear and may be solved for the ΔQ_i by ordinary leastsquares methods, viz.:

$$\overline{\Delta Q} = B^{-1} \overline{Z}$$
(34)

where $\overline{\Delta Q}$ is a vector of the ΔQ_i , B^{-1} is the inverse of a matrix B whose i,j-th element is

$$B_{ij} = \sum_{k=1}^{P} \left(\frac{\partial T_{k}^{calc}}{\partial Q_{i}}\right)^{\prime} \left(\frac{\partial T_{k}^{calc}}{\partial Q_{j}}\right)^{\prime}$$
(35)

and \overline{Z} is a vector whose i-th component is

$$Zi = \sum_{k=1}^{P} \left(R_{k} \frac{\partial T_{k}^{calc}}{\partial Q_{i}} \right)$$
(36)

The Q_i' are adjusted by the ΔQ_i and the process is repeated until minimum for equation 32 is obtained.

A computer program (BANDFIT) has been written to implement the algorithm outlined in this chapter. The digitized infrared spectrum together with a set of band parameter estimates and control information comprise the input data for this routine. From the parameters and the specified spectral slit function, a calculated spectrum is generated and the error sum of squares is evaluated. The partial derivative sums necessary for the construction of matrix B are calculated at this time. Matrix B is then inverted, the ΔQ 's are evaluated and the original estimate set is updated. The problem is then recycled using the new parameter set. This process is repeated until either a minimum in the error sum of squares has been reached or the fractional improvement in the sum of squares for two successive cycles falls below

the limit set by the user. A listing of program BANDFIT and instructions for its use may be found in the Appendix.

6 s.

CHAPTER III

EXPERIMENTAL

General

All materials, with the exception of solvents, used in this investigation were purified by preparative gas chromatography before use. Solvents were used without further purification.

Infrared sampling cells were calibrated in the normal manner from their diffraction pattern. Standard deviations in these calibrations were determined to be less than 0.4 percent relative to the path length.

The true zero reading for the slit micrometer of the infrared spectrometer was determined by plotting the square root of single beam energy vs. the micrometer index. The intercept of this plot was taken as the zero offset error and was used to correct subsequent micrometer readings.

Data Acquisition

All spectra were determined using a Perkin-Elmer Model 621 doublebeam infrared grating spectrometer. The spectrometer was equipped with an encoding device so that digitization of transmittance values could be commanded at equal frequency intervals. These intervals could be varied from 0.1 to 10.0 cm⁻¹. All data for this investigation were

acquired at intervals of either 0.5 or 0.2 cm⁻¹. The transmittance data were recorded as 3-digit numbers on computer-compatible magnetic tape for processing at a later time.

The scanning rate for all spectra was kept below 1 cm⁻¹/sec. This was done to minimize servo errors which might become important at higher rates.

Solution and solvent spectra were determined separately. During computer processing each solution spectrum was divided by the appropriate solvent spectrum to yield the equivalent of a differential spectrum determined with perfectly matched cells. This was done to cancel out all effects arising from cell aberrations and differences between the refractive indices of the salt plates and the solution.

Evaluation of the Spectral Slit Width

The equation given by Seshadri and Jones⁴⁰ was used to determine spectral slit width values in this investigation. For a spectrometer set at frequency v with a mechanical slit width w_s, S is given by

$$S = \frac{v^2 d}{NnF} \left[1 - \left(\frac{n}{2vd}\right)^2\right]^{\frac{1}{2}} \left\{w_s + \left[\left(\frac{F}{Bv}\right)^2 + w_A^2\right]^{\frac{1}{2}}\right\}$$
(37)

where d is the grating spacing, N is the number of grating passes, n is the order of the spectrum, F is the focal length of the monochromator, B is the limiting aperture of the spectrometer and w_A is the virtual mechanical slit width arising from aberrations. All terms save B and w_A were available from either the instrument settings or the manufacturer's literature. The effective aperture was determined from a measurement of the illuminated portion of the grating and w_A was

たいたいの

assigned the value of 0.004 cm as recommended by Seshadri and Jones.

A constant physical slit width was employed for spectra taken in the region 1950-1550 cm⁻¹ since this procedure gives more flexibility in choosing a spectral slit width than does the instrumental slit program and since $\partial S/\partial v$ for a constant w is small in this region. For spectra in the 800-650 cm⁻¹, however, use of the slit program was necessary because the size of the derivative precluded the use of fixed slits.

CHAPTER IV

RESULTS AND DISCUSSION

Synthetic Spectra

As was mentioned previously, synthetic spectra were used to evaluate the band shape analysis computer program. Before discussing the results of these analyses, it would be appropriate to describe the method used to generate the spectra. For each synthetic spectrum, a vector of transmittance values was generated using equations 24 and 26. A "noise" vector was also generated by indexing a table of random normal deviates with a pseudo-random number generator. This vector was then scaled to the desired signal-to-noise ratio (S/N) and combined with the transmittance vector to yield the synthetic spectrum. Before analysis, each datum was truncated to three decimal places so as to conform to the data format of the real spectrometer.

Three sets of synthetic spectra were analyzed using program BANDFIT. The first set was composed of 24 spectra, each containing a single band with $A_0 = 1.0$, $\Delta v = 1.0$, $\Delta v = 10.0 \text{ cm}^{-1}$ and $v_0 = 1000 \text{ cm}^{-1}$. Transmittance vectors spanned the range 1050-950 cm⁻¹ with a sampling interval of 0.5 cm⁻¹. Results of the least-squares procedure appear in Table XVII, and a graph of the synthetic spectrum and that calculated on the basis of the refined parameters for the case where S = 4.0 cm⁻¹ and S/N = 200 is shown in Figure 6. Refined values for v_0 and β do not

TABLE XVII

Spectral Slit 	<u>s/n</u>	Refined <u>Ao</u>	Parameters ∆v, cm ⁻¹	Error Sum of Squares x 10 ²	Least-Squares Cycles
0.	400	1.0012	9.98	0.105	3
	200	1.0034	9.95	0.410	3
	100	1.0069	9.90	1.615	- 3
	50	1.0142	9.80	6.397	3
1.	400	1.0018	9.97	0.099	5
	200	1.0035	9.95	0.407	4
	100	1.0080	9.89	1.621	4
	.50	1.0160	9.78	6,420	. 4
2.	400	1.0019	9.97	0.102	7
	200	1.0044	9.94	0.401	6
	100	1.0081	9.89	1.603	6
	50	1.0159	9.78	6.352	5
4.	400	1.0016	9.98	0.103	10
	200	1.0042	9.95	0.394	9
	100	1.0080	9.90	1.563	8
	50	1.0162	9.79	6.231	7
7.	400	1.0012	9.98	0.092	12
	200	1.0018	9.97	0.361	11
	100	1.0043	9.94	1.435	10
	.50	1.0082	9.88	5.698	9
10.	400	0.9994	10.00	0.081	15
	200	1.0009	9.98	0.320	14
	100	1.0007	9.97	1.286	13
	50	1.0010	9.93	5.075	12

RESULTS FROM ANALYSES OF SYNTHETIC SPECTRA CONTAINING ONE BAND

Figure 6. Single-Band Synthetic Spectrum with $4\ {\rm cm}^{-1}$ Spectral Slit

appear in the table since v_{o} converged to the true value in all cases and β was constrained at zero. For the most part, the other two parameters converged to reasonably accurate values. There does, however, appear to be a relationship between S/N and the calculated values for A_{o} and Δv . The reason for this dependence is not completely understood, but it is believed to arise from a local bias in the noise vector. This is plausible since a single vector, scaled to give the various S/N values, was used for all spectra in the set. An examination of the noise pattern indicated some bias in the vicinity of the band center but it was not of sufficient magnitude to be responsible for the observed deviations. In any case, the effect is probably due to an artifact and is unimportant at moderate noise levels.

The relationship between the spectral slit width and the number of cycles taken in the analysis is a direct result of the fact that initial estimates of the parameter values were taken from the simulated spectrum. For wide spectral slits, therefore, the estimates are farther from the true values than for narrow slits and the least-squares procedure consequently requires more iterations to converge. Also, at smaller values of S/N, the error sum of squares levels off sooner because of the uncertainty introduced by the noise. This is the cause of the apparent relationship between S/N and the number of calculation cycles.

Five of the spectra referred to in Table XVII (those with S/N = 200) were re-analyzed under the assumption that S = 0; that is, that the spectra could be fitted by an unperturbed Lorentz function. Although the results of these calculations (Table XVIII) indicate that, for spectral slit width values of 4 cm⁻¹ and below, the error sums of

TABLE XVIII

Spectral Slit Width, cm ⁻¹	Refin Ao	ed Para ∆µ, cm~	meters 1 ß	Error Sum <u>of Squares x 10²</u>	Least-Squares Cycles
1.	0.9991	9.98	-0.0001	0.407	3
2.	0.9818	10.14	-0.0003	0.402	3
4.	0.9169	10.77	-0.0015	0.458	3
7.	0.7895	12.37	-0.0042	0.862	4
10.	0.6702	14.54	-0.0078	1.578	4

RESULTS OF ZERO-SLIT CALCULATIONS^a

a) S/N = 200 for all spectra.

,

squares are comparable with those reported in Table XVII, it is apparent that A_0 and Δv have converged toward the apparent parameter values rather than the true values. Thus, a simple Lorentz function may be used to fit experimental data taken at narrow spectral slit widths but the calculated band parameters derived will not be independent of the instrument slit width.

The second set of 24 synthetic spectra considered each contain two bands with $A_{01} = 1.0$, $A_{02} = 0.5$, $\Delta v_1 = \Delta v_2 = 10.0 \text{ cm}^{-1}$, $v_{01} = 1010 \text{ cm}^{-1}$ and $v_{02} = 990 \text{ cm}^{-1}$. For these spectra the range was 1060-940 cm⁻¹ with a sampling interval of 0.5 cm⁻¹. Results of the least-squares analyses for these spectra, shown in Table XIX, display the same types of trends and dependencies as were observed for the set of single band spectra. Again, the v_0 values are not listed since these parameters converged to the theoretical values in all cases. A plot of synthetic and calculated spectra for a representative member of the set appears in Figure 7.

A third set of synthetic spectra, each consisting of three bands, was also subjected to band shape analysis. The parameters used in the synthesis of the spectra are listed in Table XX. The results of the analyses for bands 1 and 2 are similar to those already discussed. The refined parameter values for the third band are noteworthy, however, and appear in Table XXI. Even though this band appears as an unresolved shoulder on the 1000 cm⁻¹ band (see Figure 8) the least-squares analysis resulted in reasonably accurate parameter values in most cases. Exceptions are for those spectra generated with large spectral slit widths and/or high noise levels. Since the presence of band 3 was not obvious in plots of the 10 cm⁻¹ spectral slit spectra, these

TABLE XIX

RESULTS FROM ANALYSES OF SYNTHETIC SPECTRA CONTAINING TWO BANDS

Spectral Slit			Refined P	arameters	Error Sum	Least-Squares		
Width, cm ⁻¹	S/N	A	Δv_1 , cm ⁻¹	A ₀₂	Δv_2 , cm ⁻¹	of Squares x 10 ²	Cycles	
0.	400	1.0038	9.95	0.5002	10.04	0.107	4	
	200	1.0071	9.90	0.5002	10.07	0.441	4	
	100	1.0149	9.81	0.5005	10.14	1.784	4	
	50	1.0304	9.61	0.5010	10.27	6.880	4	
1.	400	1.0037	9.95	0.5002	10.03	0.114	8	
	200	1.0065	9.92	0.5007	10.04	0.447	8	
	100	1.0136	9.83	0.5010	10.10	1.761	7	
	50	1.0271	9.66	0.5021	10.20	6.844	6	
2.	400	1.0022	9.97	0.5005	10.01	0.113	10	
	200	1.0055	9.93	0.5007	10.03	0.433	9	
	100	1.0106	9.87	0.5015	10.06	1.738	8	
	50	1.0214	9.74	0.5031	10.13	6.803	7	
4.	400	1,0001	10.00	0.5006	9.99	0.107	11	
	200	1.0008	9.99	0.5010	9,99	0.421	10	
	100	1.0016	9.98	0.5023	9.97	1.685	9	
	50	1.0037	9.96	0.5041	9.94	6.597	9	
7.	400	0.9970	10.03	0,4998	9.99	0,097	13	
	200	0.9941	10.07	0.4997	9,97	0.383	12	
	100	0.9881	10.13	0.4999	9.93	1.537	11	
	50	0.9768	10.26	0.5001	9.85	5.962	10	

TABLE XIX (Continued)

Spectral Slit			Refined Pa	arameters		Error Sum	Least-Squares	
Width, cm ⁻¹	S/N	A ₀₁	Δv_{1} cm ⁻¹	A ₀₂	$\Delta v_2 \cdot cm^{-1}$	of Squares x 10^2	Cycles	
10.	400	0.9966	10.02	0.4978	10.05	0,085	17	
	200	0.9937	10.04	0.4963	10.09	0.332	15	
	100	0.9876	10.07	0.4915	10.21	1.331	14	
	50	0.9743	10.17	0.4850	10.37	5.293	13	

Figure 7. Two-Band Synthetic Spectrum with 7 cm⁻¹ Spectral Slit and S/N = 100

ç

TABLE XX

BAND	PARAMETERS	FOR	SYNI	THETIC	SPECTRA
	CONTAINI	NG TH	IREE	BANDSE	1

Band		Δv , cm ⁻¹	υ ₀ , cm ⁻¹
1	0.4	15.0	1020
2	1.0	10.0	1000
3	0.1	10.0	985
مِسْمَوْدِ الْعَمَانِ اللَّهُ عَلَيْنَ اللَّهُ عَلَيْنَ الْعَالَيْنِ الْعَالَيْنِ الْعَالَيْنِ الْعَالَيْنِ ال المُعَالَي المُعَالَي اللَّهُ عَلَيْنَ اللَّهُ عَلَيْنَ اللَّهُ عَلَيْنَ الْعَالَيْنِ الْعَالَيْنِ الْعَالَي ال	ng constant sa	ann a chail an ann ann ann ann ann ann ann ann ann	

a) Spectra consist of 271 data points over the region 1070-935 $\rm cm^{-1}$.

TABLE XXI .

REFINED PARAMETERS FOR BAND 3 OF THE THREE-BAND SYNTHETIC SPECTRA

Spectral Slit Width, cm ⁻¹	S/N	^A 03	∆v ₃ , cm ⁻¹	v ₀₃ , cm ⁻¹
0.	400	0.0991	10.06	985.0
	200	0.0979	10.13	984.9
	100	0.0960	10.19	984.8
	50	0.0919	10.39	984.7
1.	400	0.0993	10.11	985.0
	200	0.0982	10.25	985.0
	100	0.0964	10.53	985,0
	50	0.0929	11.11	985.0
2.	400	0.0993	10.19	985.0
	200	0.0987	10.35	985,1
	100	0.0976	10.71	985.1
	50	0.0951	11.49	985.2
4.	400	0.0999	10.18	985.1
,	200	0.0999	10.42	985.1
	100	0.1001	10.82	985.3
	50	0., 1.008	11.81	985.6
7.	400	0.1007	10.26	985.1
	200	0.1013	10.47	985.2
	100	0.1030	10.91	985.3
x	50	0.1072	11.89	985.7
10.	400	0.0972	9.29	984.6
	200	0.0961	9.11	984.5
	100	0.0916	7.67	984.0
	50	0.0922	5.88	983.5

spectra were analyzed again under the assumption that only two bands were present in the spectrum. The result of one such analysis is shown in Figure 9. The difference between the synthetic and calculated curves makes it apparent that an error of this type would not go undetected in an actual analysis.

The algorithm developed in this investigation has thus been proved capable of evaluating the true band parameters for a variety of synthetic spectra. It must be noted, however, that these spectra are ideal cases in that a Lorentzian band shape, triangular slit function and normally distributed noise are presumed. The following two sections of this chapter examine the applicability of the algorithm to the analysis of real spectra.

Carbonyl Stretching Bands of Aliphatic Esters

Four solutions of methyl oleate in <u>n</u>-tridecane were prepared and their infrared spectra determined at two different spectral slit widths over the 1800-1700 cm⁻¹ region. Data from these spectra were analyzed in three phases. In the first phase, the data taken within 10 cm⁻¹ of the carbonyl stretching band were fitted to a single band model. This was done to diminish the effect of any possible unresolved bands on the calculations. The refined parameters from these analyses were then used to calculate a spectrum over the entire 1800-1700 cm⁻¹ range. Differences between the observed and calculated curves were examined to determine if further bands should be incorporated in the model. Finally, least-squares calculations based on the revised estimates were performed.

Figure 9. Result of Fitting a Two-Band Function to a Three-Band Synthetic Spectrum

Results for the analyses involving data in the vicinity of the methyl oleate carbonyl stretching band are shown in Table XXII. On the basis of the observed intensities, the molar absorptivity (¢) for the data at each slit value was calculated. Thus, with 1.5 cm⁻¹ slits $\varepsilon = (57.70 \pm 0.36) \text{ M}^{-1} \text{mm}^{-1}$ while for the data taken at 3.2 cm⁻¹, $\varepsilon = (55.99 \pm 0.36) \text{ M}^{-1} \text{mm}^{-1}$. Using the refined intensities, however, the molar absorptivities are (59.87 ± 0.39) and $60.84 \pm 0.68) \text{ M}^{-1} \text{mm}^{-1}$, respectively. Although no "true" value exists for comparison, the indications are that the molar absorptivities based on the refined parameters tend toward a single, and presumably correct, value. Also, there is a distinct improvement in the refined Δ_D values over those observed. The mean values for the measured band widths are (11.66 \pm 0.04) cm⁻¹ and (12.17 \pm 0.07) cm⁻¹, respectively, for the 1.5 cm⁻¹ and 3.2 cm⁻¹ data while the corresponding means for the refined parameters are (11.34 \pm 0.06) and (11.28 \pm 0.05) cm⁻¹.

Montigny⁴⁶ has published a table of coefficients whereby, for given values of apparent band intensity, apparent band width and spectral slit width, the ratio of apparent to true band width for a slitbroadened infrared absorption band may be evaluated. Using these coefficients, expected values for the refined Δv 's were calculated and appear as the rightmost column of Table XXII. The mean deviation between the refined and calculated band widths is 1.4 percent relative to the calculated value, certainly within acceptable limits for this parameter. Since Montigny's calculations were based on the assumption that an absorption band may be regarded as the convolution of a Lorentz function with a triangular slit function, the agreement observed here serves as justification for the choice of this model in the present

TABLE XXII

BAND-SHAPE PARAMETERS FOR THE CARBONYL STRETCHING BAND OF METHYL OLEATE^a

Spectral Slit	Concentration	Obs	Observed Parameters			ned Paramet	ers	Calculated Values	
Width, cm ⁻¹	M	0	∆υ, cm ⁻¹	v ₀ , cm ⁻¹	^A 0	Δv , cm ⁻¹	v ₀ , cm ⁻¹	for Δv , cm ⁻¹	
1.5	0.00976 0.01294	0.2786 0.3642	11.73 11.66	1747.2 1747.3	0.2846 0.3750	11.42 11.39	1747.5 1747.5	11.55 11.48	
	0.01667 0.01966	0.4694 0.5513	11.68 11.58	1747.4 1747.3	0.4843 0.5675	11.32 11.25	1747.6 1747.5	11.51 11.42	
3.2	0.00976 0.01294	0.2700	12.26 12.22	1747.0 1747.1	0.2866 0.3778	11.34 11.32	1747.3 1747.4	11.51 11.48	
	0.01667 0.01966	0.4537 0.5362	12.07 12.13	1747.2 1747.0	0.4906 0.5734	11.21 11.26	1747.4 1747.3	11.37 11.45	
								1	

a) Sample path for all spectra was 0.4788 mm.

investigation.

The differences between the observed and refined band position values are the result of a small amount of skew in the observed absorption bands. Because of this, the center of the band calculated by least squares does not correspond exactly to the position of zero slope.

Spectra calculated using the refined parameters from Table XXII were compared with the observed spectrum over the 1800-1700 $\rm cm^{-1}$ region. One such comparison is shown in Figure 10. Differences between the curves indicate that two more bands, one at 1726.5 cm^{-1} and one at 1706.5 cm⁻¹, should be included in the model. This was done and the the calculations repeated. The results for the expanded model were less than satisfactory in that the parameters calculated for the additional bands varied markedly from spectrum to spectrum and the calculated band widths often assumed unrealistically large (50-100 cm⁻¹) values. As would be expected, however, inclusion of the additional bands did result in a better fit between observed and calculated spectra. The error sums of squares for the three-band model were lower by a factor of about 30 than equivalent calculations based on a single band. This behavior could indicate that another factor, such as spectrometer imbalance in a region of atmospheric absorbance, is instrumental in causing the deviations. The fact that all carbonyl stretching spectra examined in this investigation exhibited some structure in this region lends credence to this explanation.

Data from the carbonyl stretching region of spectra of ethyl acetate in <u>n</u>-tridecane were analyzed in a slightly different fashion. Preliminary calculations indicated the presence of a small band at 1729 cm^{-1} in addition to the carbonyl absorbance at 1748 cm^{-1} . The

Figure 10. Observed and Calculated Carbonyl Stretching Bands for Methyl Oleate with 1.5 cm⁻¹ Spectral Slit

band width for this minor feature was determined graphically as was an approximate value for the molar absorptivity. These values were then included in least-squares analyses of the 1800-1700 cm⁻¹ region of the spectrum but were constrained to their original values so that only parameters for the carbonyl stretching band were refined. The results of these calculations appear in Table XXIII. A comparison of the observed and refined values for Δv clearly demonstrates the power of the algorithm. Whereas the means of the observed values are 9.19, 10.45 and 12.48 cm⁻¹ for spectra taken at spectral slit widths of 2.6, 5.0 and 7.5 cm⁻¹ respectively, the mean for all 18 refined values is (8.66 \pm 0.16) cm⁻¹. Also, the refined band widths agree reasonably well with the theoretical values shown in the last column. The behavior of the refined intensity parameters is shown in Table XXIV. Although there is a 26 percent difference between the observed molar absorptivities for the 2.6 and 7.5 cm^{-1} data, the refined intensities clearly define a single molar absorptivity.

Carbonyl stretching spectra for <u>n</u>-tridecane solutions of di-<u>n</u>butyl oxalate were also studied. This compound exhibits strong bands at 1774 and 1748 cm⁻¹ arising from out-of-phase and in-phase motions of the two carbonyl groups. In addition, there is a small unresolved band in the vicinity of 1720 cm⁻¹. Transmittance data were gathered over the 1825 to 1700 cm⁻¹ region and analyzed on the basis of this threeband model. The refined parameters from these analyses are listed in Table XXV and the molar absorptivity values calculated from the refined intensities appear in Table XXVI. No observed parameters are listed since comparison of these with the refined values is meaningless in the presence of extensive overlap.

TABLE XXIII

Spectral Slit	Concentration	0b s	erved Param	neters	Refin	led Paramet	er s	Calculated Value s
Width, cm ⁻¹	M	^A 0	∆v, cm-1	v ₀ , cm ⁻¹	0	∆v, cm ⁻¹	v ₀ , cm ⁻¹	for ∆v, cm ⁻¹
2.6^{a}	0.00324	0.1332	9.38	1747.8	0.1421	8,64	1747.9	8,64
210	0.00648	0.2629	9.21	1748.2	0.2789	8.41	1748.3	8.53
	0.01027	0.4151	9.12	1747.8	0.4333	8.76	1748.0	8.49
	0.01381	0.5367	9.10	1748.0	0.5626	8.69	1748.1	8.51
	0.01717	0.6786	9.17	1747.8	0.7015	8.93	1748.0	8.61
	0.02054	0.8130	9.18	1747.8	0.8391	8.96	1748.1	8.66
5.0^{a}	0.00324	0,1175	10.52	1747.3	0.1414	8.21	1747.6	8.13
	0.00648	0.2313	10.67	1747.6	0.2742	8.56	1747.7	8.42
	0.01027	0.3624	10.47	1747.6	0.4282	8.64	1747.7	8.29
	0.01381	0.4722	10.36	1747.6	0.5582	8.67	1747.8	8.26
	0.01717	0.6022	10.33	1747.6	0.7060	8,84	1747.8	8.34
	0.02054	0.7082	10.37	1747.6	0.8310	8.95	1747.8	8.57
7 5 ^b	0.00324	0.1010	12.73	1747.2	0.1389	8.32	1747.6	8,14
7.5	0.00648	0.1919	12.86	1747.5	0.2651	8,49	1747.7	8.49
	0.01027	0.3097	12.52	1747.6	0.4255	8.65	1747.8	8.24
	0.01381	0.4090	12.31	1747.6	0.5639	8.67	1747.8	8.10
	0.01717	0.4803	12.27	1747.6	0.6673	8.74	1747.8	8.15
	0.02054	0.5955	12.16	1747.5	0.8269	8.87	1747.7	8.16

ч.

BAND-SHAPE PARAMETERS FOR THE CARBONYL STRETCHING BAND OF ETHYL ACETATE

a) Sample path was 0.4801 mm.

b) Sample path was 0.4789 mm.

TABLE XXIV

MOLAR ABSORPTIVITY FOR THE CARBONYL STRETCHING BAND OF ETHYL ACETATE

Spectral Slit	Molar Absorpt	ivity, M ⁻¹ mm ⁻¹
Width, cm ⁻¹	Observed Intensities	Refined Intensities
2.6	81.31 <u>+</u> 0.91	83.26 <u>+</u> 0.73
5.0	71.22 <u>+</u> 0.83	83.12 <u>+</u> 0.80
7.5	59.92 <u>+</u> 0.74 ^a	83.29 <u>+</u> 0.69 ^a

a) A for the 0.01771M solution was not used in determination of this value.

TABLE XXV

DEEINEN	DAND	CUVDE	DADAMETEDC	FOD	TUE	CADDOMVI	CUDETCUINC
VEL THED	DAND	OUALE	FARAPLE LERO	rur	LUC .	CARDONIL	STREICHING
	RE(JUN UI	DI-N-BUIXI	LOXA	MATI	SPECTRA	•

Spectral Slit Width, cm ⁻¹	Concentratio M.	AA	Δv_1 , cm ⁻¹	v ₀₁ , cm ⁻¹	A 02	Δv_1 , cm ⁻¹	v ₀₂ , cm ⁻¹	A ₀₃	Δv_3 , cm ⁻¹	-1
3.0	0.00627	0.1077	13.01	1774.3	0.2230	10.91	1748.0	0.0184	36.11	1732.7
	0.01152	0.1975	13.75	1774.4	0.4230	10.75	1748.2	0.0103	25.24	1718.1
	0.01783	0.3027	13.80	1774.6	0.6451	10.78	1748.3	0.0175	25.36	1714.2
	0.02318	0.3924	13.91	1774.4	0.8279	10.82	1748.1	0.0228	23.67	1713.7
4.4	0.00627	0.1083	13.53	1773.9	0.2270	11.03	1747.8	0.0096	22.91	1720.7
	0.01152	0.1974	13.75	1774.2	0.4195	10.90	1748.1	0.0136	25.04	1717.5
	0.01783	0.3033	13.67	1774.1	0.6449	10.74	1747.9	0.0196	28.64	1714.0
	0.02318	0.3921	13.83	1774.2	0.8278	10.80	1747.9	0.0252	25.93	1713.2
6.0	0.00627	0.1084	13.01	1773.9	0.2293	10.02	1747.8	0.0227	30.89	1734.8
	0.01152	0.1982	13.65	1774.1	0.4268	10.55	1747.8	0.0127	21.80	1717.1
	0.01783	0.3042	13.74	1774.1	0.6606	10.45	1747.8	0.0175	25.66	1714.7
	0.02318	0.3947	13.74	1774.1	0.8506	10.48	1747.8	0.0239	23.53	1713.8
10.0	0.00627	0.1105	12.95	1773.7	0.2410	9.81	1747.7	0.0198	30.71	1731.9
	0.01152	0.2052	13.35	1774.0	0.4486	9.96	1747.8	0.0132	23.04	1718.8
•	0.01783	0.3111	13.64	1774.0	0.7093	9.68	1747.8	0.0197	29.19	1714.6
	0.02318	0.4038	13.66	1774.0	0.9184	9.74	1747.7	0.0258	23.77	1713.8

a) Sample path for all spectra was $0.4780\ \text{mm}.$

TABLE XXVI

Spectral Slit Width, cm ⁻¹	<u>و</u> 1	<u>وم</u>	¢3 ^b
3.0	35.18 <u>+</u> 0.13	74.68 <u>+</u> 1.24	2.25 <u>+</u> 0.09
4.4	35.11 <u>+</u> 0.11	74.37 <u>+</u> 0.77	2.08 <u>+</u> 0.06
6.0	35.39 <u>+</u> 0.09	76.94 <u>+</u> 0.66	2.00 ± 0.26
10.0	36.14 <u>+</u> 0.35	84.13 <u>+</u> 0.63	2.26 <u>+</u> 0.07
	· · · ·		

MOLAR ABSORPTIVITIES FOR THE CARBONYL STRETCHING REGION OF DI-N-BUTYL OXALATE SPECTRA^a

a) The units for ϵ are $M^{-1}mm^{-1}$.

b) Data for the 0.00627M solution were not used in the calculation of these entries.

Examination of the table entries for the two major bands indicates that, for the data taken at spectral slit widths of 3.0 and 4.4 cm⁻¹, all parameters tend to converge to a common value. The uncertainty in the parameters for the small feature at about 1715 cm⁻¹ was not unexpected, considering the small magnitude of the molar absorptivity and the fact that it appears on the wing of a much stronger band. They are more stable, however, than the small bands postulated for methyl oleate. It is therefore concluded that the band is real. A plot of observed and calculated spectra for this ester is given in Figure 11.

Intensity and band width parameters for the 1748 cm⁻¹ band calculated using the 6.0 cm⁻¹ slit data deviate somewhat from those calculated from the data taken with 3.0 and 4.4 cm⁻¹ slits. For the spectra determined with S = 10 cm⁻¹, parameters for all but the 1715 cm⁻¹ band have deviated significantly from the narrower slit width values. It thus appears that, for medium to strong absorption bands, shape parameters calculated using data taken at wide slit widths are unreliable. It should be noted, however, that slits of 6.0 and 10.0 cm⁻¹ are far wider than those used in normal spectrometric work. One may conclude, therefore, that the least-squares algorithm has successfully described the carbonyl stretching region of the butyl oxalate spectrum.

Carbon-Hydrogen Bending Bands of Simple Aromatic Hydrocarbons

Aromatic compounds bearing ring hydrogen atoms generally exhibit one or more C-H bending bands in the 900-600 cm⁻¹ region of the infrared spectrum. The final phase of this investigation involved a study of these bands for carbon disulfide solutions of toluene, <u>o</u>-xylene,

<u>m</u>-xylene and <u>t</u>-butylbenzene. Spectra were determined over the region 800-650 cm⁻¹ at frequency intervals of 0.2 cm⁻¹. Individual solute concentrations varied from 0.0306 to 0.1044 M and the spectral slit widths employed ranged from 1.0 to 2.2 cm⁻¹.

Several least-squares analyses were performed involving spectra of solutions containing a single solute. The results for 35 such calculations are summarized in Table XXVII. The refined parameters for the individual hydrocarbons were then used as initial estimates for analyses of the spectra of solutions containing two or more solutes.

As can be seen from Table XXVIII, most of the refined parameters for the spectra of mixtures fall within one or two standard deviations of the values derived from the spectra of single component solutions. Notable exceptions are those parameters for the 693.2 cm⁻¹ toluene band and the 690.1 m-xylene band which were calculated from data acquired at a spectral slit width of 2.2 cm⁻¹. Although the observed data are apparently well described by the calculated model (see Figure 12), the molar absorptivity and band width values calculated for these absorbances do not agree with those listed in Table XXVII. It therefore seems that the algorithm cannot accurately resolve bands which are so extensively overlapped. Better values for these parameters are calculated from the data taken with 1.0 cm $^{-1}$ slits. Here the apparent overlap is not so severe (see Figure 13) and the algorithm is more effective. It is also possible to calculate accurate parameters from the 2.2 cm⁻¹ data if Δv and v_{λ} for the overlapped bands are constrained to the initial values for 5 or 6 cycles. The success of this procedure, and however, is somewhat predicated on the accuracy of the initial estimates. For the case of the mixture of o-xylene, m-xylene and t-butylbenzene,

TABLE XXVII

REFINED BAND SHAPE PARAMETERS FOR THE C-H BENDING BANDS OF AROMATIC HYDROCARBONS

.

Compound	v ₀ , cm ⁻¹	ε, M ⁻¹ mm ⁻¹	$\Delta_{\upsilon}, \text{ cm}^{-1}$
Toluene ^a	$727.9 \pm 0.1 \\ 693.2 \pm 0.1$	52.52 \pm 0.86 17.17 \pm 0.43	4.15 <u>+</u> 0.08 4.49 <u>+</u> 0.09
o-Xylene ^b	741.5 <u>+</u> 0.0	61.55 <u>+</u> 0.38	3.87 <u>+</u> 0.04
<u>m</u> -Xylene ^a	767.8 ± 0.0 690.1 ± 0.1	34.29 ± 0.65 17.22 ± 0.17	4.53 ± 0.09 3.86 ± 0.21
<u>t</u> -Butylbenzene ^b	$\begin{array}{r} 761.7 \pm 0.1 \\ 697.1 \pm 0.1 \end{array}$	$27.34 \pm 0.12 \\ 31.04 \pm 0.67$	3.92 ± 0.14 5.65 ± 0.18

a) Spectral slit width varies from 1.0 to 2.2 cm⁻¹.

b) Spectral slit width is 2.1 cm⁻¹.

TABLE XXVIII

REFINED CARBON-HYDROGEN BENDING BAND PARAMETERS FOR MIXTURES OF AROMATIC HYDROCARBONS

Components	Spectral Slit Width, cm ⁻¹	v_0 , cm ⁻¹	$\epsilon, M^{-1}mm^{-1}$	Δυ, cm ⁻¹
Toluene + m-Xylene	2.2	767.8	34.72	4.42
		727.9	51.77	4.08
		694.0	12.23	1.99
		690.8	23.16	6.20
Toluene + m-Xylene	1.0	. 767.7	36.21	4.58
· ·		727.8	53.21	4.31
-		693.2	16.92	4.42
		690.1	17.97	3.59
o-Xylene, m-Xylene,	2.1	767.7	33.79	4.35
t-Butylbenzene		761.9	27.90	4.22
_ `		741.5	61.16	3.88
		697.2	30.87	5.60
		689.9	15.16	3.76

Figure 12. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and <u>m</u>-Sylene with 2.2 cm⁻¹ Spectral Slit

Figure 13. Observed and Calculated Carbon-Hydrogen Bending Bands for Toluene and <u>m</u>-Xylene with 1 cm⁻¹ Spectral Slit

the value calculated for the width of the 690 cm⁻¹ <u>m</u>-xylene band is only slightly lower than the single-component value. A plot of observed and calculated spectra for this mixture is shown as Figure 14.

Summary and Conclusions

The purpose of this invetigation was to develop an algorithm whereby reliable values for the shape parameters of infrared absorption bands could be calculated. In achieving this end, a mathematical model was devised wherein an infrared spectrum is represented by a set of one or more Lorentz functions convolved with a triangular spectral slit function. This model was implemented in the form of a digital computer program (BANDFIT) which serves to calculate the shape parameters for each component band of a spectrum.

The effectiveness of program BANDFIT was evaluated initially on the basis of calculations involving synthetic spectra. In the second phase of the study real data, taken from the infrared spectra of aliphatic esters and simple aromatic hydrocarbons, were subjected to analysis. The results of these calculations demonstrate that band shape parameters derived from these analyses may be used to generate spectra which closely approximate those determined experimentally. In addition, the calculated parameters are physically significant in that, for a given set of spectral features, they are essentially unaffected by changes in spectral slit width.

The algorithm is not entirely successful in the determination of shape parameters for systems of strongly overlapped bands. It appears that unrealistic band width and intensity values result if the features are approximately one band width apart and if the ratio of the spectral

Figure 14. Observed and Calculated Carbon-Hydrogen Bending Bands for <u>o</u>-Xylene, <u>m</u>-Xylene and <u>t</u>-Butylbenzene with 2.1 cm⁻¹ Spectral Slit

slit width to the apparent band width is greater than about 0.25. For greater frequency separation, however, accurate determination of shape parameters is easily accomplished, even for bands appearing as unresolved shoulders. This is evidenced by the calculations involving the three band synthetic spectrum and by the set of self-consistent parameters derived for the 1715 cm⁻¹ band in di-<u>n</u>-butyl oxalate spectra.

It thus appears that infrared solution spectra are accurately described by the mathematical model devised and implemented during this investigation. Extraction of the shape parameters for a spectrum on the basis of this model is one step toward the removal of distortions introduced by the examining instrument. It is apparent, however, that there are other factors which influence the shapes and positions of infrared absorption bands. Perturbations of the detected signal by the electrical and mechanical systems of the spectrophotometer are probably instrumental in band broadening and in the skewing of peaks. As was previously mentioned, the effects of such distortions can possibly be eliminated by a deconvolution of the observed signal with the inverse of the instrument transfer function. Development of algorithms to evaluate the transfer function and to implement the deconvolution are the next logical steps in this field of research.

SELECTED BIBLIOGRAPHY

- E. B. Wilson, Jr., J. C. Decius and P. C. Cross, "Molecular Vibrations," McGraw-Hill, New York, 1955.
- G. Herzberg, "Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N. J., 1945.
- 3. H. C. Urey and C. A. Bradley, Phys. Rev. <u>38</u>, 1969 (1931).
- 4. J. P. Devlin, J. Chem. Phys. <u>39</u>, 2385 (1963).
- 5. J. P. Devlin, J. Chem. Phys. <u>41</u>, 2951 (1964).
- 6. T. Shimanouchi, J. Chem. Phys. <u>17</u>, 245, 734 and 848 (1949).
- 7. T. Shimanouchi, Pure Applied Chem. 7, 131 (1963).
- 8. J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta <u>19</u>, 117 (1963).
- 9. J. Overend and J. R. Scherer, J. Chem. Phys. <u>32</u>, 1289, 1296 and 1720 (1960).
- B. D. Latimer, "A Vibrational Study of Some Trihaloboroxines," (unpublished Ph.D. thesis, Oklahoma State University, 1966).
- 11. A. Rosenberg and J. P. Devlin, Spectrochim. Acta 21, 1613 (1965).
- 12. S. Califano and B. Crawford, Jr., Spectrochim. Acta 16, 889 (1960).
- 13. J. Scherer and J. Overend, Spectrochim. Acta 17, 719 (1961).
- 14. J. Scherer, J. Chem. Phys. <u>36</u>, 3308 (1962).
- 15. G. Zerbi, B. Crawford, Jr. and J. Overend, J. Chem. Phys. <u>38</u>, 127 (1963).
- M. Scrous, C. diLauro and S. Califano, Spectrochim. Acta <u>21</u>, 571 (1965).
- 17. F. Halverson, R. F. Stamm and J. J. Whalen, J. Chem. Phys. <u>16</u>, 808 (1948).

- P. Devlin, J. Overend and B. Crawford, Jr., Spectrochim. Acta <u>20</u>, 23 (1964).
- 19. D. A. Long and W. O. George, Spectrochim Acta 19, 1717 (1963).
- 20. F. A. Miller et al., Spectrochim. Acta 20, 1233 (1964).
- 21. J. R. Scherer and J. Overend, J. Chem. Phys. 33, 1681 (1960).
- 22. A. E. Ardis et al., J. Am. Chem. Soc. 72, 1305 (1950).
- 23. O. Diels, H. Gartner and R. Kasck, Ber. 55, 3439 (1922).
- 24. O. Diels and B. Conn, Ber. <u>56</u>, 2076 (1923).
- 25. A. E. Ardis and H. Gilbert, U. S. Patent 2,535,827 (Dec. 26, 1950); Chem. Abstr. <u>45</u>, 3196^b (1951).
- 26. International Union of Pure and Applied Chemistry, "Tables of Wavenumbers for the Calibration of Infra-red Spectrometers," Butterworths, Washington, D. C., 1961.
- 27. G. Herzberg, "Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N. J., 1945, pp. 468-484.
- W. S. Wilcox, J. H. Goldstein and J. W. Simmons, J. Chem. Phys. <u>22</u>, 516 (1954).
- 29. "Tables of Interatomic Distances and Configurations in Molecules and Ions," Special Publication No. 11, The Chemical Society, London, 1958.
- 30. M. Aoualt and C. St. Arnaud, Can. J. Phys. 35, 504 (1957).
- 31. "Tables of Interatomic Distances and Configurations in Molecules and Ions, Supplement 1956-1959," Special Publication No. 18, The Chemical Society, London, 1965.
- 32. C. C. Costain and B. P. Stoicheff, J. Chem. Phys. <u>30</u>, 777 (1959).
- 33. D. A. Bekoe and K. N. Trueblood, Z. Krist. <u>113</u>, 1 (1960).
- 34. N. C. Craig et al., Ohio State Symposium on Molecular Structure and Spectroscopy, June 1964.
- 35. V. W. Laurie and D. T. Pence, J. Chem. Phys. 38, 2693 (1963).
- 36. V. W. Brugel, T. Anhel and F. Frucksberg, Z. Elektrochem. <u>64</u>, 1121 (1960).
- 37. A. A. Bothner-By, J. Am. Chem. Soc. 83, 231 (1961).

38.	Ν.	C. Craig and E. A. Entemann, J. Am. Chem. Soc. <u>83</u> , 3047 (1961).
39.	R.	Bruns, L. Raff, and J. P. Devlin, Theoret. Chim. Acta (Berl.) <u>14</u> , 232 (1969).
40.	К,	S. Seshadri and R. N. Jones, Spectrochim. Acta 19, 1013 (1963).
41.	H.	Morgenau and W. W. Watson, Revs. Modern Phys. 8, 22 (1936).
42.	Н.	A. Lorentz, Konikl. Ned. Akad. Wetenschap. Proc. <u>8</u> , 591 (1906).
43.	J.	H. VanVleck and V. F. Weisskopf, Revs. Modern Phys. <u>17</u> , 227 (1945).
44.	J.	R. Nielsen, V. Thornton and E. B. Dale, Revs. Modern Phys. <u>16</u> , 307 (1944).
45.	D.	A. Ramsay, J. Am. Chem. Soc. <u>74</u> , 72 (1952).
46.	Ρ.	Montigny, Spectrochim. Acta <u>20</u> , 1373 (1964).
47.	R.	N. Jones, K. S. Seshadris, N. B. W. Jonathan and J. W. Hopkins, Can. J. Chem. <u>41</u> , 750 (1963).
48.	J.	Pitha and R. N. Jones, Can. J. Chem. <u>44</u> , 3031 (1966).
49.	J.	Pitha and R. N. Jones, Can. J. Chem. <u>45</u> , 2347 (1967).
50.	R.	N. Jones, personal communication, 1969).
51.	S.	Abramowitz and R. P. Bauman, J. Chem. Phys. <u>39</u> , 2757 (1963).
52.	R.	D. B. Fraser and E. Suzuki, Anal. Chem. <u>41</u> , 37 (1969).
53.	H.	F. Smith and A. S. Rosenberg, J. Chem. Soc., 5391 (1963).
54.	Α.	S. Rosenberg and H. F. Smith, J. Chem. Soc., 5395 (1963).
55.	Α.	S. Rosenberg and H. F. Smith, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 1964.
56.	A.	Savitzky and M. J. E. Golay, Anal. Chem. <u>36</u> , 1627 (1964).
57.	H.	0. Hartley, Technometrics <u>3</u> , 269 (1961).

APPENDIX

Instructions for Use of the Computer Program

Program BANDFIT was designed to implement the algorithm developed in this investigation. It is written in the Fortran IV programming language for execution on an IBM System 360/65 digital computer with full operating system. In its present configuration the program is limited to the analyses of spectra containing 10,000 or fewer digital values and which are composed of a maximum of 10 absorption bands.

The program consists of a main routine and seven subroutines; SPCTRM, SMTH1, SCAN, CØNMAT, LØRN3, PLØT1 and SCALAB. Also, a local subroutine (GDATE) is used to determine the date of the analysis. If this routine is not available the call to it and references to the variable DATE should be deleted. The functions of the other subroutines are briefly outlined below.

Subroutine SPCTRM is used to read ordinate values for the observed spectrum either from punched cards or from a user disk file. A call to entry point DISK of this subroutine serves to initialize the disk file. The program is written so that the method of reading the observed spectrum may be changed by simply modifying SPCTRM. Subroutine SMTH1 is used to digitally smooth the observed spectrum, SCAN generates the vector of coefficients employed in the slit convolution and CØNMAT is called to calculate the orthogonal polynomical coefficients required by both SMTH1 and SCAN. The calculated spectrum,

error sum of squares and the sums of partial derivatives used in the least-squares calculation are evaluated in LØRN3. Finally, subroutines PLØT1 and SCALAB are used to generate graphs of the observed and calculated spectra and of the error function. In order to use PLØT1, the Calcomp (California Computer Products, Inc.) plotter subroutine package must be available. If it is not, calls to all entry points of subroutine PLØT1 should be eliminated from the main program.

Input requirements for program BANDFIT are detailed in TABLE XXIX. Although two types of spectrum header cards are described in the table, only one is required for a given problem. Also, it should be noted that band intensity estimates are input in terms of molar absorptivity rather than absorbance. This is done so that the same estimates may be used for the data from a series of solutions. The absorbance estimate is calculated in the program from the molar absorptivity, concentration and cell path values.

Printed output for a typical problem consists of the error sum of squares and parameter set for each calculation cycle and a list of the final refined parameter values together with estimates of their uncertainties. Listings of the observed and calculated spectra, punched and plotted output are optional as selected by control variables.

TABLE XXIX

INPUT REQUIREMENTS FOR PROGRAM BANDFIT

Card	Column s	Format	Variable Name and Function
Record	1-2	12	KARD = 1 for the first and KARD = 2 for the second of the 2 record cards.
	5-80	19A4	ALPHA, any alphanumeric information desired to describe the problem.
Control	1-2	12	KARD = 3
	3-8	16	NØPRØB, the problem number.
	9-11	13	If NPLT = 2, plots will be generated for the observed and cal- culated spectra and for the error function. If NPLT = 1, only the observed and calculated spectra will be plotted. If NPLT = 0, no plotting is done.
	12-14	13	LTYPE = 1 if the observed spectrum is in transmittance units, LTYPE = 2 if it is in absorbance units.
	15-17	13	NPEAK, the number of absorption bands in the spectrum.
	18-20	13	IH \emptyset LD is nonzero if any of the parameter estimates are to be constrained. If IH \emptyset LD = -1, all parameters are constrained and a zero-order calculation is performed.
	21-23	13	If $M\phi$ DE = 1 the observed spectrum is to be input from cards, if $M\phi$ DE = 2 it is accessed from the disk file.

TABLE XXIX (Continued)

· · · · · ·

Card	Column s	Format	Variable Name and Function
Control	24 - 26	13	NGATE; if greater than zero the observed spectrum will be smoothed with an NGATE-point polynomial function of degree NPØLY (see below).
	27-29	13	NPØLY
	30-32	13	IFPNCH, if nonzero the final calculated spectrum will be punched on cards.
	33-35	_ 13	IFPRNT controls printing of the observed and calculated spectra. There are options for no listing (IFPRNT = 0), a single-spaced (IFPRNT = 1), or a double-spaced (IFPRNT = 2) listing.
	36-45	F10.5	TSTP; if the fractional improvement in the error sum of squares for two successive cycles falls below this value, the problem is terminated.
	46 - 55	F10.5	DX, the abcissa interval for the calculated spectrum. If DX is not input, the value for EDX (see below) is used.
	56-60	F5.2	FACTOR, used to scale the vector of corrections before the para- meters are updated. If not input, a value of 1.0 is assumed.
Spectrum	1-5	15	IDENT, the spectrum number.
$(M \not O D E = 1)^a$	9-15	F7.0	XSTART, the starting frequency for the spectrum.
	16-20	F5.1	EDX, the abcissa sampling interval for the observed spectrum.

TABLE XXIX (Continued)

Card	Columns	Format	Variable Name and Function
Spectrum	21-25	15	NIPTS, the number of data points in the observed spectrum.
$(M\phi DE = 1)^a$	31-40	F10.5	BEGIN and END (see below) define the frequency range to be con- sidered in the analysis. If not input, the range is determined from the spectrum.
÷	41-50	F10.5	END
Spectrum			
Header $(M \not O D E = 2)^b$	1-5	15	IDENT, the spectrum number.
	11-20	F10.5	BEGIN, see above.
	21-30	F10.5	END, see above.
Parameter ^C	1-2	12	KARD = 4
	11-20	F10.5	EO, the initial molar absorptivity value in M^{-1} mm ⁻¹ .
	21-25	15	IHEO, the number of cycles for which EO is to be constrained.
	31-40	F10.5	DELNU, the initial value for Δv in cm ⁻¹ .
	41-45	15	IHRHØ, the number of cycles for which DELNU is to be constrained.
	51-60	F10.5	XNU, the initial value for v in cm ⁻¹ .
	61-65	15	IHNU, the number of cycles for which XNU is to be constrained.

Card	Column s	Format	Variable Name and Function
Instrument	1-2	12	KARD = 5
	11-20	F10.5	BETA, the initial value for the constant β .
	21-25	15	IHBETA, the number of cycles for which BETA is to be constrained.
	26-30	15	MPØLY, the degree of polynomial to be used for the slit integra- tion. If MPØLY = 0, a trapezoidel rule integration is performed.
	31-40	F10.5	SLIT, the spectral slit width in cm^{-1} .
~	41-50	F10.5	XL, the path of the sampling cell in mm.
Concentration	1-2	12	KARD = 6
	11-80	10F7.4	C(1) through $C(10)$, the concentration to be associated with each absorption band. NPEAK values must be entered.

TABLE XXIX (Continued)

a) This card must be followed by cards containing the observed spectrum punched in 2014 format.

b) For this mode of input, the spectrum and header information are expected to be on a direct access disk file. Refer to the listing of subroutine SPCTRM for the required format.

c) There must be NPEAK parameter cards.

Program Listings

	T		O AND O AT A
C PRUGRAM BANDEL	Ť		DANDUUIU
		C MATTERS CONSIGNAT	BANDOUZU
C REQUIRES SUBRU	CALAD COCTOM	, SMINI, CUNMAI,	DANUVUDU DANODOVO
	SCALAD, SPLIKA		DANUUU4U DANDOORO
C DEETNE ETHE 71	3645 1300 1 VENI		DANUOUDU Danuoozo
DEFINE FILE /1	234491200919851 48/301 8/31 331 86845/311	CITAL DISTLA DATE (2)	0AN00000 0AN00070
DIPENSION ALM	MA(38),D(31,32),D3AVE(31) MA(38) (0/10) MO(0E0/10)	(10) D(10) D(10) D(10) D(10) D(10)	OANUMUN OANDAAUA
	NULLUI,EULLUI, HULUEULLUI, Aliai lunuliai lupudliai	$\begin{array}{c} HULUKH(101; \mathsf{HULUKH(101;)} \\ HULUKH(101; \mathsf{HULUKH(101;)} \\ HULUKH(101; \mathsf{HULUKH(101;))} \\ \end{array}$	DANUUUUUU DANDADAAA
	(1)) WELEEV DEDITOR	NUX (327, NHOLD(31, 27,	CANDOUSS CANDOIDD
DIMENCION 197	(311 W3(3))//FLOC(7) 50001 D(911/4)		QANDO110
	10/11 CDEO(11)		BANDDIID
COMMON AFRE A	1N(17) NEW(17) 2) AA(18) CON(51) BELSA B	Y. EMHIRAAA). ETD(SAAA).	AMODIZO AMODIZO
I EDENIS	AAAIDI, CONTJIA, DELJUKI AAAI SENALI NERI SENMAYEND	EAV.NORUC.NTOTC.NYDTC.	RANDOILDO
2 DQ T CHM	(31), $040(101, 04500)$, $T(50)$	CARTINGUSTATI TSTAALTST	RETA RANDOISO
	()1/ JUIO(10/ JU()000/ JU()0	VV//XNU(IV//ISEI//KE//	RANDO160
DATA DIRI /ICA	ICT ID ANT TO OBT ISVO T.	ISDECT. ITOA I.I. DI.	8 A NO O 1 7 O
	$\mathbf{R} = \mathbf{I} + $	I TOTI	RANDOTRO
DATA DIRI1/10	0 1 10 CH1.19VE 1.1 01		BANDO100
C DATA FLULIT	RED TROUTERNE T		RANDO 200
C EDDMAT STATEME	NTC	•	
C			RAND0220
5000 FORMAT(12.2X.)	944)		84ND0230
5001 FORMAT (12,16.	913-2F10-5-F5-21		RÁN00240
5003 FORMAT (12.8X.	F10.5.215.2F10.5)		BAND0250
5005 FORMAT(12.8X.1	0F7.4)		BAND0260
5006 FORMAT(12.8X.3	(E10.5.15.5X))		BAND0270
6000 FORMAT(1H0 .//.	2X.15(1H*).13H CARD NJMBE	R 15.13H OUT OF ORDER.	15(1HBAND0280
1~))		· · · · · · · · · · · · · ·	BAND0290
6001 FORMAT(1H1,19A	4///lX,19A4//)		BAND0300
6002 FORMAT (14)		•	8AND0310
6003 FORMAT(1H0.5X,	50HSPREAD TOO GREAT BETWE	EN FHI AND FLO	BAND0320
1 ,5X,9HTHEY	ARE 2(2X,F10.5))		BAND0330
5004 FORMAT (// '0 .	13X, 'SLIT WIDTH', 7X, 'FREQ	LO',7X, 'FREQHI',7X,	BAND0340
1 *CELL	PATH 1/ 10 1,15X, F5.2,8X, F8.	2,5X,F8.2,8X,F7.4///	BANDO 350

	2 *0*,21X,*NUMBER OF EXPERIMENTAL POINTS =*,15///	BANDO 360
	3 '0',20X, 'PEAK ABSORBANCE CONCENTRATION')	BANDO 370
	6005 FORMAT (101,21X,12,8X,F6.4,9X,F8.5)	BAND0380
	6006 FORMAT(101,22X, 1***** PROBLEM NUMBER 15, 1 *****//20X, NUMBER OF	PBANDU390
	1EAKS = 'I2//15X, 'THE INITIAL ESTIMATES OF THE PARAMETERS ARE	- 'BAND0400
	2//3X, 'PEAK', 7X, 'EO', 7X, 'HOLD'6X, 'DEL NU', 5X, 'HOLD'7X, 'NU'7X, 'HOLD'	•)BAND0410 .
1	6007 FORMAT (10 1, 15X, 1 IMPROVEMENT IN FIRST PHASE!).	BANDO 420
,	6008 FORMAT (/'O*** ENTERING 10THS CYCLE ON ITERATION', 13, ****/	BAND0430
	1 $10^{1},5X, 1PREVIOUS SUM SQ. = 1, E14.7, 5X,$	BAND0440
	2 'CURRENT SUM SQ. = ', $E14.7$)	BANDO450
	6009 FORMAT(1H0,15X,35H IMPROVEMENT FOUND ON PEAK NO. 14)	BAND0460
	6010 FORMAT(1H1)	BAND0470
	6011 FORMAT (/*0*,5X,* SUM OF SQUARES FOR ITERATION*,13,* = *,	BAND0480
	1 E13.6,**,19X,F11.6/*0*,20X,* PARAMETER SET*/	BAND0490
	2 '01,5X, 'PEAK',8X, 'E01,18X, 'DELNU',17X, 'NU')	BAND0500
	6012 FORMAT(1H0,26H**** SINGULAR MATRIX, SFT 13,14H ON ITERATION 13,4	H*BAND0510
	1 ** *)	BAN00520
	6013 FORMAT(1H0,15X,28H** HALTED AFTER 25 CYCLES **)	BANDO 530
	6014 FORMAT(1H0,///,1OX,27HPROBLEM COMPLETED ON CYCLE I3)	BAND0540
	6015 FORMAT(1H0,5X,36H SUM OF SQUARES STATIONARY AFTER 13,2X, 9HCY	CLBAND0550
	1ES)	8AND0560
	6016 FORMAT(1H1,20X,27HRESULTS FOR PROBLEM NO. 16,4H///25X,17H	SUBAND0570
	1M OF SQUARES = E13.6)	8AND0 580
	6017 FORMAT (101,5X, MOLAR',8X, ABSORBANCE',11X, LINE WIDTH',12X,	BAND0590
	1 FREQUENCY // ABSORPTIVITY , 3(*VALUE STD DEV*,6X))	BAND0600
	6018 FORMAT (101,2X,2F9.4,1PE12.4,0PF9.2, 1PE12.4, 0PF10.1, 1PE12.4)	BAND0610
	6019 FORMAT (////1.1,23X, 'ABSORBANCE',21X, TRANSMITTANCE'///	BAND0620
	<pre>1 . ',',5X,'FREQUENCY',5X,'OBSERVED',5X,'CALCULATED',10X,</pre>	BAND0630
	2 'OB SERVED', 5X, 'CALCULATED')	BAND0640
	6020 FORMAT (A1, I4, 2X, F7.1, 2(4X, F10.4), 9X, F10.4, 4X, F10.4, 8X, 2F10.4)	BAND0650
	6021 FORMAT(1H0,//,5X,29HSUM OF SQUARES FOR ABSORBANCE,10X,32HSUM OF	SQBAND0660
	LUARES FOR TRANSMITTANCE//10X,E20.8,10X,E20.8)	BAND0670
	6022 FORMAT("0",3X,12,4X,3(F10.4,3X,"(",12,")",3X))	BAND0680
	6023 FORMAT (// 10 LARGEST ABSORBANCE ERROR AT +, F7.1, CM-1+/	BAND0690
	1 OBSERVED TRANS =', F7.4, 5X, 'CALCD TRANS =', F7.4}	BANDO 700

(9)/ FORMAR (14) OBCCOVCO AND CALCO CUDVES HAVE DEEN DIGTTEON	8 A M 1 7 7 7
ANDE EDOMATIINI EV 133 DATA SMOOTHED HILL I.I.I.I DOINT DOLVNOMI	AL DE DERANDO77
OUZD FURMAIL V. JOXY *** DATA SHOUTHED WITH 'JID) - FUINT FULTHORIN	AL OF MEDAINDUSES
LOKEE '9109' **'}. Ago fugaat 1100 ev aantin odetigat chove calchiated at integnat	C DECE DRANDATA
6026 FURMAL 1100,0X,444010EURELIUAL CURVE CALCULATED AT INTERVAL	S UFFJAZOANUUIT Dango 767
	041007010 8 ANGA76
6021 FURMAL $1/71H$ $32X_3ZA41$	DANUU /04
6028 FURMAI(* *,7X,12,4X,31F10.5,11X))	BANDUTT
6029 FURMAL ('0', 5X, ' NU IMPRUVEMENT IN 10THS LYCLE')	BANDO 780
6030 FORMAT ('O ERROR CURVE HAS BEEN PLOTTED')	BAND0791
6031 FORMAT ('0',24X,'BETA =',F9.5,5X,'HOLD =',13/	BANDOBO
1 '0',29X,'DAMPING EACTOR =',E5.2//)	BAND0810
6032 FORMAT (101,4X,1BETA =1,F9.5)	BAND0820
6033 FORMAT (//!O',18X,'BETA =',F8.4,5X,'STB DEV =',1PE11.4)	BAND0830
801 FORMAT (15,3X,F7.0,F5.1,15)	. BAN D084(
802 FORMAT (2014)	8AND0851
C	84ND086(
C ·	BANDO 87
C INITIALIZE.	8AND() 88(
C	BAND0890
CALL GDATE (DATE)	8AND0 900
CALL DISK	BAND091
LIGHT = 1	8AND 0 92
IFLAG = 1	BAND0930
C	8AN9094/
C READ TWO AIRHANUMERIC INFORMATION CARDS, WRITE PAGE HEADIN	G. BANDO25
	84ND7964
1 READ (5.5000.END=43) KARD.(ALPHA(1).I=1.19)	BAND 97
F(KARD, FO.1) GO TO 3	8AND0984
IF (KARD.F.O9) GO TO 43	8AND099
2 IE(LIGHT.ED.1) WRITE (6.6000) KARD	BANDION
= 1 GHT = 2	8ANDI 010
	BANDIOZ
3 READ (5, 5000) KARD. (A) REAT = 20.381	RANDIAN
$I = \{(x,y) \in (y,y) \in$	8 A ND 1 04/
A BANK HONDON BACKA BACKA CANA AND AND AND AND AND AND AND AND AND	2014 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

6. L.

	WRITE 16.60271 DATE	RANDIAA
c		
	READ PROBLEM CONTROL CARD.	RANDIOR
с	ALTER FALSELS CONTRACTE CRATE	RAND1000
	READ (5.5001) KARD.NOPROR.NPLT.LPROB.NPEAK.THOLD.MODE.NCATE.	BAND1102
	NPOLY_IEPNCH_IEPPNT_ISTD_DY_IEPCTOP	RANDIIIC
	IFIKARD, NE. 3) GO TO 2	BAND112/
	$IF (FACTOR_{-1}F_{-}) = FACTOR_{-} = 1.0$	RANDIIZ
n-		RANDI 14/
	READ IN SPECTRAL DATA.	RANDIIS
~		RANDI 16/
2	CALL SPCTRM (LIGHT.MODE.EDX.E1)	RAND117
	IE (DX, IE, 0, 0) OX = EDX	RANDIIR
	IE (NGATE, ED.0) = GO TO 7	BAND1190
		BAND1200
	SMODTH THE DATA.	BAND121(
~		BAND122(
-	CALL SMTHE (NGATE NPOLY WS)	RAND123
	CALL SMTH2 (NXPTS, ETR, ETR)	BAND1240
		BAND1250
	INITIALIZE PLOT ROUTINE.	BAND126
		BAN0127
7	IF (NPLT.EQ.O) GO TO 31	BAND128
	GO TO (20,31), IFLAG	BAND129
20	CALL PLOTI	BAND130
	IFLAG = 2	8AND1310
a. 		BAND1 320
	INITIALIZE MATRIX NHOLD. NHOLD(I,1) IS A FLAG TO INDICATE IF	8AND1330
	A PARAMETER IS TO BE HELD CONSTANT. NHOLD(1,2) CONTAINS	8AND134(
	THE NUMBER OF CYCLES FOR WHICH THE PARAMETER IS TO BE HELD	BAND135
	CONSTANT.	BAND1360
		BAND137
31	00 : 30 I = 1,31	8AND138
	$NHOLD(\mathbf{I},1) = 1$	BAND1 390
	$NHOLD(\mathbf{I}, 2) = 0$	BAND140

30	CONTINUE	BAND1410
С		BAND1420
C	READ PEAK PARAMETER CARDS.	BAND1430
C		8AND1440
	$DO \langle 4 I \rangle = 1, NPEAK$	BAND1450
	READ(5,5006) KARD, EO(I), IHEO(I), DELNU(I), IHRHO(I), XNU(I), IHNU(I)	BAND1460
	$RHO(\mathbf{I}) = 4.0/(DELNU(\mathbf{I}) * DELNU(\mathbf{I}))$	BAND1470
	IF (KARD.NE.4) GO TO 2	BAND1480
- 4	CONTINUE	BAND1490
С н		BAND1500
C	READ ESTIMATE OF CONSTANT TERM, NUMBER OF ITERATIONS IT IS TO BE	BAND1510
C	HELD CONSTANT, THE DEGREE OF POLYNOMIAL TO BE USED IN SLIT CON-	BAND1.520
C	VOLUTION, THE SPECTRAL SLIT WIDTH AND THE CELL THICKNESS.	BAND1 530
C		BAND1540
	READ (5,5003) KARD, BETA, IHBETA, MPOLY, SLIT, XL	BAND1550
	IF (KARD. NE.5) GO TO 2	BAND1560
C		BAND1570
C	READ CONCENTRATION VALUES TO BE ASSOCIATED WITH EACH PEAK.	BAND1 580
C		BAND1 590
	READ(5,5005) KARD, $(C(J), J = 1, 10)$	BAND1600
	IF(KARD.NE.6) GO TO 2	BAND1610
C .		BAND1620
C	CALCULATE PEAK ABSORBANCE ESTIMATES.	BAND1630
C .		BAND1640
	$DO_{15} J = 1, NPEAK$	8AND1 650
	AO(J) = EO(J) * XL * C(J)	BAND1660
5	CONTINUE	BAND1670
	IF(SLIT.LE.0.0) GO TO 51	BAND1680
C a		8AND1690
C	BUILD VECTOR TO BE USED IN SLIT CONVOLUTION.	8AND1 700
C :		8AND1710
	CALL SCAN(SLIT, DX, MPOLY, NMAX, D, WS)	BAND1720
	NMP = NMAX + 1	BAND1730
	$DO_{50} NI = 1, NMP$	BAND1740
	CON(NI) = D(NI)	BAND1750

50	CONTINUE	84ND1 760
	SO TO 6	8AND1 770
51	NMAX = 0	84ND1 780
21	CON(1) = 1.0	BΔND1790
ſ.		BAND1 800
С	WRITE PEAK DARAMETERS.	84N01810
E -	MAILE FEAR FARMAGEFERUE	BAND1820
С., А	WEITELS SOOS MODERS NDEAK	BAND1830
U	$\frac{1}{1} = 1$	BAND1 840
		8AMD1 850
40	ANTINE CONTINE	BAND1 860
00	WDITE (6.6031) BETALIHRETA.EACTOR	RAND1 270
	WRITE 16,60261 DY	BAND1970
	TE (NCATE NE D) WRITE (6.6025) NGATE NOD V	RANDI SOD
C .	II THORICONCOU WAITE TO TO 201 NOR CYNTOL	BANDI GOD
С	RULLO MATRIX NHOLO.	BAND1 91 0
6 C	DOLLD HAMIN HIDED.	84ND1920
VAL	$NPK2 = 2 \times NPFAK$	BAND1930
	NDEI = 0	84ND1 940
	$\mathbf{IE}(\mathbf{IH}0 0_{1} \mathbf{E}_{0}) = 0 + 0$	- 84ND1950
	DD = 6D2 + = 1 .NPEAK	84ND1 950
	I = I + I	BAND1970
	IF(LHEO(L), LE. 0) GO TO 600	BAND1 980
	NDEI = NDEI + 1	BAND1 990
	$NHOLD(\mathbf{I},1) = 2$	BAND2 000
	NHOLD(1,2) = IHEO(L)	BAND2010
60 0	IF (IHRHO(L).LE.0) GO TO 601	BAND2020
	NDEL = NDEL + 1	8AND2030
	IS = I + NPEAK	BAND2040
	NHOLD(15,1) = 2	BAND2050
	NHOLD(IS,2) = IHRHO(L)	BAND2060
601	IF(IHNU(L).LE.0) GO TO 602	BAND2070
	NDEL = NDEL + 1	BAND2080
	IS = I + NPK2	BAND2090
	NHOLD(IS,1) = 2	BAND2100

	NHOLD(IS,2) = IHNU(L)	BAND211
602	CONTINUE	BAND212
	IF (IHBETA.LE.O) GO TO 8	BAND213
	NDEL = NDEL + 1	BAND214
	NHOLD(1,1) = 2	BAND215
	NHOLD(1,2) = IHBETA	BAND216
C .		BAND217
C	CALCULATE THE LIMITS OF THE FREQUENCY VECTOR ASSOCIATED WITH THE	BAND218
C	CALCULATED SPECTRUM.	BAND219
C		BAND220
8	ISLIT = SLIT/DX + 0.001	BAND221
	XSLIT = DX * ISLIT	BAND2 22
	FREQLO = ENU(NXPTS) - XSLIT	BAND223
	FREQHI = ENU(1) + XSLIT	BAND224
	NTPTS = $(1.0/DX)*(FREQHI - FREQLO) + 1.0$	BAND225
	IF (NTPTS .LT.5000) GO TO 12	BAND226
	WRITE (6,6003) FREQLO ,FREQHI	BAND227
	LIGHT = 2	8AND228
	GD TO 1	BAND229
12	WRITE(6,6004) SLIT, FREQLO, FREQHI, XL, NXPTS	BAND230
	DO $13 J = 1$, NPEAK	8AND231
	WRITE(6,6005) J,AO(J),C(J)	BAND232
C		BAND233
6	SCALE CONCENTRATION VALUES AND PEAK ABSORBANCE ESTIMATES.	8AND234
C .		BAND235
	C(J) = C(J) * XL	BAND236
	AO(J) = AO(J) + 2.302585	BAND237
13	CONTINUE	BAND238
	BETA = BETA * 2.302585	8AND239
	IF(LPROB.EQ.1) GO TO 17	BAND240
С		BAND241
C	IF THE INPUT SPECTRAL DATA IS IN TERMS OF ABSORBANCE, CONVERT	BAND242
C	TO TRANSMITTANCE.	BAND243
C .		BAND244
	$DO_{14} K = 1, NXPTS$	BAND245

EXPN = -2.302585 * ETR(K)	8AND2460
ETR(K) = EXP(EXPN)	BAND2470
14 CONTINUE	BAND2480
17 IF (IHOLD.GE.O) WRITE (6,6010)	BAND2490
C .	BAND2 500
C BUILD FREQUENCY VECTOR FOR THE CALCULATED SPECTRUM.	BAND2 510
C	BAND2 520
DO 19 K=1.NTPTS	BAND2530
FREQ(K) = FREQHI - (K-1)*DX	BAND2540
19 CONTINUE	BAND2 550
C	BAND2 560
C INITIALIZE FOR FIRST CYCLE OF LEAST-SQUARES.	BAND2570
C	BAND2 580
KGO = 1	BAND2 590
ITER = 1	BAND2600
NROWS = $3 \times NPEAK + 1$	BAND2 61 0
NCOLS = NROWS + 1	BAND2 620
NPK = 0	BAND2630
KBETA = 0	BAND2 640
LAST = 1	BAND2650
IF (IHOLD.LT.O) LAST = 2	BAND2 660
SUMSQ = 1.0 E 30	BAND2670
$DO_2OO_I = 1$, NROWS	BAND2680
BSAVE(I) = 0.0	BAND2690
200 CONTINUE	BAND2700
C and a second	8AND2710
C BEGIN ITERATIVE LEAST-SQUARES LOOP.	BAND2720
C CALCULATE DIMENSIONS OF COEFFICIENT MATRIX B FOR CURRENT CYCLE	• BAND2730
C at the second s	BAND2.74 0
21 NROWB = NROWS - NDEL	BAND2750
NCOLB = NCOLS - NDEL	BAND2 760
Carl Carl Carl Carl Carl Carl Carl Carl	BAND2770
C INITIALIZE AND BUILD MATRIX A.	BAND2780
C in the second s	BAND2 790
DO(210 I = 1.NROWS	BAND 2 800

DU ZIU U - IYNCULU			RAND2810
$\Lambda(F_{2}, I) = 0.0$			8 A ND 2 82 0
21α CONTINUE	•		8 A ND 2 830
netso = 0.0			8 A ND 2 840
CALL LOONS (LAST)			9AN02040 9AN02850
CALL LONIO (LASI)			BAND2 050
			BAND2870
C FRODELN I INISHED:			BANDZOTO
C. CD. TO 1212 .401 .1 AST			BAND2 000
00 10 1212 9401 1LAST			BAND2070
	T IMDONVEMENT		DANU2 900
C CALUGEATE FERGE	VI INFROVENENT •		BAND2 20
$\frac{1}{212} DEPCNT = 1 \sigma = 0EF$	SOZSHMSO		BAND2 920
CIE FERGINI - 140. J DEL	7 AL 3 AU 3 A		BAND2 950
C TEST END DIVEDCENCE	OD CONVERCENCE		8 A NO 2 050
C C. HEST TON DIFERGENCE			BAND2 950
TE IDEDENT IT A AL	CO TO (204-200.20). KCO		8 AND 2 970
TE (PERCNT EO.O.)	CO TO 28		RAND2 980
TE OFORNI LT. TSTD. A	NO.KGO.FO.1) CO TO 38		RAND2 CON
CO TO (33.321.321.			RAND2 000
00.10.1000219277 1	\\\		BAND3010
C	AINING THE INDECES OF THO	SE DOUS OF MATRIX	A BAND3010
CWHICH WILL BE LOADE	A INTO MATRIX B.	SE NONS OF ANALALA	RAND3020
C.			84ND3040
22 K = 0			BAND3050
DO 221 I = 1.00015			BAND30AD
SO Les 4 Lynoodd			BAND3070
IGO = NHOLD(L.L)			BAND3080
IGO = NHOLD(I,1) GO IO (220,221),IGO			
IGO = NHOLD(I,I) GO TO (220,221),IGO 220 K = K + 1			BAND3090
IGO = NHOLD(I,I) GO TO (220,221), IGO 220 K = K + 1 NDX(K) = I			BAND3 090 BAND3 100
IGO = NHOLD(I,1) GO TO (220,221),IGO 220 K = K + 1 NDX(K) = I 221 CONTINUE			BAND3090 BAND3100 BAND3110
IGO = NHOLD(I,1) GO TO (220,221),IGO 220 K = K + 1 NDX(K) = I 221 CONTINUE C			BAND3090 BAND3100 BAND3110 BAND3120 BAND3120
IGO = NHOLD(I,1) GO TO (220,221),IGO 220 K = K + 1 NDX(K) = I 221 CONTINUE C CBUILD MATRIX B.			BAND3090 BAND3100 BAND3110 BAND3120 BAND3120 BAND3130
IGO = NHOLD(I,1) GO TO (220,221),IGO 220 K = K + 1 NDX(K) = I 221 CONTINUE C CBUILD MATRIX B. C			BAND3090 BAND3100 BAND3110 BAND3120 BAND3120 BAND3130 BAND3140
IGO = NHOLD(I,I) GO TO (220,221),IGO 220 K = K + 1 NDX(K) = I 221 CONTINUE C CBUILD MATRIX B. C DD 223 I = 1.NRDWB			BAND3090 BAND3100 BAND3110 BAND3120 BAND3130 BAND3140 BAND3150

	IS = NDX(I)			BAND3160
	DO 222 J = 1, NCOLB			BAND3170
	JS = NDX(J)			BAND3180
	B(I,J) = A(IS,JS)			BAND3190
22 2	CONTINUE			BAND3200
223	CONTINUE		:	BAND3210
C .			$(x_1, y_2) \in \mathcal{F}_{1,2} \cap \mathcal{F}_{2,2}$	BAND3220
C	.INVERT MATRIX B.			BAND3230
C 5				BAND3240
	DO 27 K = 1, NROWB			BAND3250
	IF(B(1,1).LT.0.000001) GD TO 36			BAND3260
	TEMP = 1.0/B(1,1)			BAND3270
	DO 23 J = 1, NROWB			BAND3280
	JP = J + 1			BAND3290
	WS(J) = TEMP * B(1, JP)			BAND3300
23	CONTINUE			BAND3310
	WS(JP) = TEMP			BAND3320
	$DD_25 J = 2, NROWB$			BAND3 330.
	TEMP = B(J,I)			BAND3340
				BAND3 350
	DO 24: L = 1, NROWB			BAND3 360
	$LR = L_{2} + 1_{2}$			BAND3370
	B(JM,L) = B(J,LP) - TEMP * WS(L)			BAND3380
24	CONTINUE			BAND3 390
	B(JM,LP) = - TEMP * WS(LP)			BAND3400
25	CONTINUE			8AND3410
	DO 26 J = 1, NCOLB			8AND3420
	B(NROWB, J) = WS(J)			BAND3430
2.6	CONTINUE			BAND3440
27	CONTINUE			BAND3450
C a				BAND3460
C	SCALE CORRECTIONS BY DAMPING FACTOR.			BAND3470
C				BAND3480
	DO 18 K=1,NROWB			8AND3490
	B(K,1) = FACTOR * B(K,1)			BAND3500
		•		
•				

18 CUNTINUE	8AND3510
NP = NPEAK	BAND352 0
JGO = 1	BAND3530
$\mathbf{M} = 0$	BAND354 0
IF (NHOLD(1,1).GT.1) GO TO 269	BAND3 550
M = 1	BAND3 560
BSAVE(1) = B(1,1)	BAND3570
BETA = BETA + BSAVE(1)	BAND3 580
C ()	BAND3 590
C SAVE CORRECTIONS FOR THOSE PARAMETERS NOT HELD C	ONSTANT. BAND3600
	BAND3610
269 DD 276 I = 2.NRDWS	BAND3620
I = I - I	RAND3620
$I_{GO} = NHOLO(1, 1)$	BANDZ64A
ca = ra (27A - 276) + ca	DANDOCTO
τ Γ	DANDO CON
	DANUDODU
C OPDATE ESTIMATES.	BAN0307V
	BANU368U
	BAND3690
BSAVELLI = B(M,L)	BAND3 700
271 IF(I.LE.NP) GU TU (272,273,274), JGU	BAND3710
NP = NP + NPEAK	BAND3720
$\mathbf{JGO} = \mathbf{JGO} + 1$	BAND3730
GO TO 271	BAND3740
272 AO(I) = AO(I) + B(M,1)	BAND3750
GO TO 276	BAND376 0
273 IM = I - NPEAK	BAND3770
TEMP = RHO(IM)	BAND3780
TEST = B(M, 1)	BAND3790
277 IF ((TEMP+TEST).GT.0.0) GO TO 278	BAND 3 800
TEST = 0.9 * TEST	BAND3810
GO TO 277	BAND3820
278 TEST1 = TEMP/4	BAND3 830
279 TEST2 = TEMP + TEST	BAND3 840
IF (TEST2.GT.TEST1) GO TO 280	BAND3 850
	این هور میه است همانه (۲۰۰۰ دست ا

TEST = 0.9 * TEST	BAND3 860
GU TU 279	BAND387
280.B(M.1) = TEST	BAND3 880
BSAVE(L) = TEST	BAND3 89(
RHO(IM) = RHO(IM) + B(M.1)	BAND3 900
GD TO 276	BAND391
274 IM = I - NPK2	BAND3 92 (
XNU(IM) = XNU(IM) + B(M,1)	BAND393(
GO TO 276	BAND3 94(
C	BAND3 950
CTEST TO DETERMINE IF A PARAMETER BEING HELD CONSTANT SHOULD BE	BAND 3 960
CALLOWED TO VARY.	BAND397(
	BAND398(
275 IF(ITER.LE.NHOLD(L,2)) GO TO 276	BAND 3 99(
NHOLD(L,1) = 1	BAND4000
NHOLD(L, 2) = 0	BAND4010
NDEL = NDEL - 1	BAND4020
276 CONTINUE	BAND403
IF (NHOLD(1,1).LE.1) GO TO 281	BAND404
IF (ITER.LE.IHBETA) GO TO 281	BAND405(
NHOLD(1,1) = 1	8AND406(
NHOLD(1,2) = 0.	BAND407
NDEL = NDEL - 1	BAND408 0
281 IF (NDEL.LT.0) NDEL = 0	BAND4090
	8AND410
CRECYCLE.	BAND411
C L C C C C C C C C C C C C C C C C C C	8AND412(
GO TO 21	BAND413
	BAND414
CIF THE PROBLEM HAS DIVERGED, TRY 0.1. OF THE CALCULATED	BAND415
CCORRECTIONS.	BAND416
C	BAND417
294 DD 293 I=1,NPEAK	BAND418
IP = I + NPEAK + 1	BAND419
IPP = IP + NPEAK	BAND4200

AO(I) = HOLDEO(I) + 0.1*BSAVE(I+1) RHO(I) = HOLDRH(I) + 0.1*BSAVE(IP)	1. • • • 1. • • • • • • • • • • • • • •
RHO(I) = HOLDRH(I) + 0.1*BSAVE(IP)	BAND4210
	BAND4220
XNU(I) = HOLDXN(I) + 0.1*BSAVE(IPP)	BAND4230
293 CONTINUE	8AND4240
$BETA = HOLDBE + 0.1 \neq BSAVE(1)$	BAND4250
KGO = 2	BAND4260
WRITE (6,6008) ITER, SUMSQ, DELSQ	BAND4270
GO TO 21	BAND4280
	BAND4290
CIF PROBLEM STILL DIVERGES, TRY 0.1 OF THE CA	LCULATED BAND4300
CCORRECTIONS FOR EACH PEAK IN TURN.	BAND4310
	BAND4320
290 DU 292 I=1,NPEAK	BAND4330
AO(I) = HOLDEO(I)	BAND4340
RHO(I) = HOLDRH(I)	BAND4350
XNU(I) = HOLDXN(I)	BAN04360
292 CONTINUE	BAND4370
29 IF ((NHOLD(1,1).GT.1).OR.(KBETA.GT.0)); GO T	0 291 BAND4380
BETA = HOLDBE + 0.1 * BSAVE(1)	BAND4390
KBETA = 1	BAND4400
GOVITO 35	BAND4410
291 NPK = NPK + 1	BAND4420
IF (NPK.GT.NPEAK) GU TU 39	8AND4430
NPK1 = NPK + NPEAK	8AND4440
NPK2 = NPK1 + NPEAK	BAND4450
AU(NPK) = HULDEU(NPK) + 0.1 * BSAVE(NPK + 1)	BAND4460
$RHU(NPK) = HU(DKH(NPK) + U_{\bullet}) + DSAVE(NPK) + U_{\bullet}$	1) BANU4470
XNUINPK) = HULUXNUNPK) + U.I * BSAVEINPKZ + -	LI BAND4480
ETA - HOLODE	DAND4 490
CO TO 25	
251 FT - NDV - 1	
AOTIN = HOLDEOTIN	BAND4 520
AU(11) - HULDEV(11) $PUO(11) - HULDEV(11)$	9AND4540
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	BAND4550
ANO(117) = HOLDAN(117)	0AN94339

```
35 \text{ KGO} = 3
                                                                          BAND4560
      GO TO 21
                                                                          BAND4570
C
                                                                          BAND4580
C.... UPDATE ERROR SUM OF SOUARES, PRINT CURRENT ESTIMATES.
                                                                          BAND4590
С.
                                                                          BAND4600
   32 WRITE (6,6009) NPK
                                                                          BAND4610
      GO TO 33
                                                                          8AND4620
  321 WRITE (6.6007)
                                                                          BAND4630
   33 SUMSQ = DELSQ
                                                                          BAND4640
      WRITE (6,6011) ITER, SUMSO, PERCNT
                                                                          8AND4650
                                                                          BAND4660
      KGO = 1
      ITER = ITER + 1.
                                                                          BAND4670
      NPK = 0
                                                                          BAND4680
      KBETA = 0
                                                                          BAND4690
      DO_{34} II = 1, NPEAK
                                                                          BAND4700
      EOI1 = AO(11) * 0.4342945/C(11)
                                                                          BAND4710
      DELX = 2.0/SQRT(RHO(I1))
                                                                          BAND4720
      WRITE(6,6028) II,E0I1 ,DELX
                                      .XNU(II)
                                                                          BAND4730
C.
                                                                          BAND4740
                                                                          BAND4750
C....STORE RESULTS FROM CURRENT CYCLE.
C
                                                                          BAND4760
      HOLDEO(11) = AQ(11)
                                                                          BAND4770
      HOLORH(II) = RHO(II)
                                                                          8AND4780
      HOLDXN(I1) = XNU(I1)
                                                                          BAND4790 .
   34 CONTINUE
                                                                          BAND4800
      BB = 0.434295 * BETA
                                                                          BAND4810
      WRITE (6,6032) BB
                                                                          BAND4820
      HOLDBE = BETA
                                                                          BAND4830
      IF(LIER.GT.25) GO TO 37
                                                                          BAND4840
                                                                          BAND4850
С.
C....RECYCLE.
                                                                          BAND4860
                                                                          BAND4870
C
      GO TO 22
                                                                          8AN04880
C +
                                                                          8AND4890
C....SINGULAR MATRIX, DO FINAL CALCULATION ON PREVIOUS ESTIMATES.
                                                                          8AND4900
```

C					BAND4910
36 WRITE (6,6012) K,ITER					8AND4920
GO TO 390 -					BAND4930
C					BAND4 940
C PROBLEM EXCEEDED MAXIMUM	NUMBER OF	CYCLES.			BAND4950
					BAND4 960
37 WRITE (6,6013)					BAND4970
GO TO 40					BAND498 0
C .					BAND4990
C ND CHANGE IN SUM OF SQUA	RES, TERMIN	ATE.			BAND5000
					BAND5010
28 WRITE (6,6015) ITER					BAND 5 0 2 0
GO TO 40 /					BAND5030
C c					BAND5040
CPROBLEM COMPLETED.					BAND5050
C .		•			BAND5 06 0
38 WRITE (6,6014) ITER			· .		BAND5070
GO TO 40					BAND5080
C					BAND5090
CNO IMPROVEMENT ON TENTHS	CYCLE, DO	FINAL CAL	CULATION	ON PREVIOUS	SBAND5100
CESTIMATES.	•				BAND5110
C				•	BAND5120
39 WRITE (6,6029)					BAND5130
390 LAST = 2					BAND5140
00.391.11 = 1, NPEAK					BAND5 150
AO(11) = HULDEO(11)					BAND5 160
RHU(II) =HULDRH(II)					BAND5170
XNU(11) = HULDXN(11)					BAN05180
391 CUNTINUE					BAND5190
BETA = HULDBE					BANUSZUO
GU TU ZI					BAND5 210
					BANDSZZU
LPRINT FINAL RESULTS.					BAND5230
	** * **				BANU5240
40 WRITE (6,6016) NUPRUB, UE	:LSQ				BANUSZOU

4J CONTINUE BAND5360 $DD (41 - J = 1, NPEAK$ BAND5370 $JP = J + NPEAK$ BAND5380 $JPP = JP + NPEAK$ BAND5390 $AA = AO(J) * 0.4342945$ BAND5400 EOJ = AA/C(J) BAND5410 DEL = 2.0/SQRT(RHO(J)) BAND5420	45 CONTINUE BAND5360 DD 41-J = 1,NPEAK BAND5370 JP = J + NPEAK BAND5380 JPP = JP + NPEAK BAND5390 AA = AO(J) * 0.4342945 BAND5400 EOJ = AA/C(J) BAND5410 DEL = 2.0/SQRT(RHO(J)) BAND5420
4^{-} CONTINUE BAND5360 $DD : 41 - J = 1, NPEAK$ BAND5370 $JP = J + NPEAK$ BAND5380 $JPP = JP + NPEAK$ BAND5390 $AA = AO(J) * 0.4342945$ BAND5400 EOJ = AA/C(J) BAND5410 DEL = 2.0/SQRT(RHO(J)) BAND5420	45 CONTINUE BAND5360 D0 (41-J = 1,NPEAK BAND5370 JP = J + NPEAK BAND5380 JPP = JP + NPEAK BAND5390 AA = A0(J) * 0.4342945 BAND5400 E0J = AA/C(J) BAND5410 DEL = 2.0/SQRT(RH0(J)) BAND5420
4J $CONTINUC$ BAND5360 DD $41 - J = 1$, NPEAK BAND5370 $JP = J + NPEAK$ BAND5380 $JPP = JP + NPEAK$ BAND5390 $AA = AO(J) * 0.4342945$ BAND5400 EOJ = AA/C(J) BAND5410 DEL = 2.0/SORT(RHO(J)) BAND5420	45 CONTINUE BAND5360 D0 41 J = 1,NPEAK BAND5370 JP = J + NPEAK BAND5380 JPP = JP + NPEAK BAND5390 AA = AO(J) * 0.4342945 BAND5400 E0J = AA/C(J) BAND5410 DEL = 2.0/SORT(RHO(J)) BAND5420
4J = 0.41 - J = 1, NPEAK BAND5370 $JP = J + NPEAK$ BAND5380 $JPP = JP + NPEAK$ BAND5390 $AA = AO(J) + 0.4342945$ BAND5400 EOJ = AA/C(J) BAND5410	45 CONTINUE DD (41 - J = 1, NPEAK JP = J + NPEAK JPP = JP + NPEAK AA = AO(J) + 0.4342945 EOJ = AA/C(J) BAND5360 BAND5370 BAND5380 BAND5390 BAND5400 BAND5410
JP = J + NPEAK BAND5380 $JP = J + NPEAK$ BAND5380 $JPP = JP + NPEAK$ BAND5390 $AA = AO(J) * 0.4342945$ BAND5400	45 CONTINUE BAND5360 DD 41-J = 1,NPEAK BAND5370 JP = J + NPEAK BAND5380 JPP = JP + NPEAK BAND5390 AA = AO(J) * 0.4342945 BAND5400
DD (41 - J = 1, NPEAK) $JP = J + NPEAK$ $JPP = JP + NPEAK$ $BAND5380$ $BAND5390$	$45 \text{ CONTINUE} \\ DD 41 - J = 1, \text{NPEAK} \\ JP = J + \text{NPEAK} \\ JPP = JP + \text{NPEAK} \\ BAND5380 \\ BAND5390 \\ $
DD = 41 - J = 1, NPEAK $JP = J + NPEAK$ $BAND5380$	45 CONTINUE DD 41-J = 1,NPEAK JP = J + NPEAK BAND5380
DO (41-J = 1, NPEAK BAND5370	45 CONTINUE DD 41-J = 1, NPEAK BAND5360
VAR(J) = DELSQ*B(M,M+1)/NDF BAND5350	VAR(J) = DELSQ*B(M,M+1)/NDE BAND5350

```
XX = -AIOGIOIFTRK
                                                                              84N05610
      XY = - ALOGIO(RK)
                                                                              8AND5620
      SUMTR = SUMTR + (FTRK - RK) \Rightarrow (FTRK - RK)
                                                                              8AND5630
      SUMAB = SUMAB + IXX - XYI * IXX - XYI
                                                                              BAND5640
      ERRA = XX - XY
                                                                              BAND5650
      FRRT = FTRK - RK
                                                                              BAND5660
      TEST = ABS(ERRA)
                                                                              BAND5670
      IF (TEST. F.BIG) GO TO 52
                                                                              8AND5680
      IBIG = K
                                                                              BAN05690
      BIG = TEST
                                                                              BAND5700
   52 CONTINUE
                                                                              8AND5710
      IF (IFPRNT.EQ.0) GO TO 42
                                                                              BAND5720
      WRITE (6,6020) CCHAR, K, ENU(K), XX, XY, ETRK, RK, ERRA, ERRT
                                                                              BAND5730
   42 CONTINUE
                                                                              BAND5740
      WRITE (6,6021) SUMAB, SUMTR
                                                                              BAND5750
      WRITE (6,6023) ENU(IBIG), ETR(IBIG), R(IBIG)
                                                                              BAND5760
      KGO = 1
                                                                              BAND5770
      IIGHT = 1
                                                                              BAND5780
C
                                                                              8AND5790
C.... PUNCH CALCULATED SPECTRUM.
                                                                              BAND 5800
C
                                                                              BAND5810
     IF (IFPNCH.EQ.0) GO TO 47
                                                                              BAND5820
      WRITE (8,801) NOPROB, ENU(1), EDX, NXPTS
                                                                              BAND5830
      DO 46 K=1.NXPTS
                                                                              BAND5840
   46 \text{ IR}(\text{K}) = 1000 \text{ *R}(\text{K}) + 0.5
                                                                              BAND5850
      WRITE (8,802) (IR(K), K=1,NXPTS)
                                                                              BAND5860
C
                                                                              BAND5870
C.... PLOT RESULTS.
                                                                              BAND5880
C. .
                                                                              BAND5890
   47 IF (NPLT.EQ.0) . GO TO 1
                                                                              BAND5 900
      XHI = ENU(1)
                                                                              BAND5 910
      CALL STRING (C(1),4)
                                                                              BAND5920
      WRITE (0.6002) NOPROB
                                                                              BAND5930
      PLBL(9) = C(1)
                                                                              8AND5940
      CALL PLOTZ (XHI, EDX, NX PTS, PLBL, 36, 1)
                                                                              8AND5 950
```

CALL PLOTS (R, XHI, EDX, NXPTS)	BAND5 960
CALL PLOT4 (ETR, XHI, EDX, NXPTS, 3)	BAND5970
WRITE (6,6024)	BAND5 980
IF (NPLT.LT.2) GO TO 1	8AND5990
DO 48 K=1,NXPTS	BAND6000
ETRK = ETR(K)	BAND6010
ETRK = ALOG10(R(K)/ETRK)	BAND 6020
IF (ETRK.LT0.2) ETRK = -0.2	8AND6030
IF (ETRK.GT.0.2) ETRK = 0.2	BAND5040
48 ETR(K) = ETRK	BAND6050
PLBL1(6) = C(1)	BAND6 060
CALL PLOT2 (0.,0.,-1,PLBL1,24,2)	BAND6070
CALL PLOT3 (ETR, XHI, EDX, NXPTS)	BAND6 080
WRITE (6,6030)	8AND6090
C	BAND5100
CGET A NEW PROBLEM.	BAND6110.
C .	BAND6120
GO TO 1	BAND6130
C	BAND6140
CEND OF JOB.	BAND6150
C ·	BAND6160
43 IF (IFLAG.GT.1) CALL PLOTS	BAND6170
STOP	8AND6180
END	BAND6190

		DANUOITU
	SUBROUTINE SCAN (SLIT, DX, NPOLY, MPNT, SCNSET, X)	SCAN0010
C	WRITTEN BY A S ROSENBERG 5 12 67	SCAND020
C	MODIFIED 5.7.69	SCAN0030
C		SCAN0040
С.	CALCULATES A SET OF CONVOLVING NUMBERS, SCNSET (OF DIMENSION	SCAN0050
C a	MPNT+1) TO BE USED IN SCANNING A DIGITIZED SPECTRUM WITH A TRIANG-	-SCANDO60
C :	ULAR SPECTRAL SLIT FUNCTION.	SCAND070
С		SCAN0080
C a	SLIT = SPECTRAL SLIT WIDTH IN CM-1.	SCAN0090
С		SCANO 100
-----	---	------------
С.	DX = ABCISSA INCREMENT, IN CM-1, FOR THE DIGITIZED SPECTRUM.	SCANO110
C		SCAN0120
C o	NPOLY = THE DEGREE OF POLYNOMIAL TO BE USED IN FITTING ORDINATE	SCAN0130
С	VALUES OVER A TWO SPECTRAL SLIT WIDTH INTERVAL OF THE SPECTRUM.	SCAN0140
C	IF NPOLY IS LESS THAN 2, THE SET OF CONVOLVING NUMBERS WILL BE	SCANO150
C	CALCULATED ACCORDING TO THE TRAPEZOID RULE.	SCANO160
С		SCANO170
С -	X IS AN ARRAY (DOUBLE WORD) TO BE USED AS SCRATCH AREA FOR MATRIX	SCAN0180
C .	INVERSION.	SCAN0190
С		SCANO200
C	REQUIRES SUBROUTINE CONMAT.	SCAN0210
C .		SCAN0220
	DIMENSION SCNSET(51)	SCAN0230
	REAL #8 A(4,55),X(55)	SCAN0240
C	INITIALIZATION	SCAN0250
	TERM = SLIT/DX	SCAN0260
	IFAL(NPOLY.LT.2) GO TO 5	SCAN0270
	MPNT = TERM + 0.5	SCANO280
	IF (MPNT.GE.1) GO TO 1	SCAN0290
	4 MPNT = 0	SCAN0300
	SCNSET(1) = 1.	SCAN0310 -
	RETURN	SCAN0320
	$1 \text{ IF} (\text{NPOLY.6T.6}) \qquad \text{NPOLY} = 6$	SCANO 330
	IF (NPOLY.LT.2) NPOLY = 2	SCAN0340
	IT = NPOLY/2	SCAN0350
	$IF (IT.GT.MPNT) \qquad IT = MPNT$	SCAN0360
C.	CALCULATE A MATRIX.	SCAN0370
	NPOLY = $2 \times IT$	SCAN0380
	NROW = IT + 1	SCAN0390
	IPAR = 0	SCAN0400
	LPNT = MPNT + 1	SCAN0410
	CALL CONMAT (NROW, LPNT, IPAR, A, X)	SCAN0420
C .	SCALE A AND BUILD SCNSET.	SCAN0430
	TERM = TERM * TERM	SCAN0440

2	TEMP = 1. $IT = 1$ $DO 2 I = 1, LPNT$ $SCNSET(I) = A(1,I)$ $CONTINUE$ $DO 3 I = 2, NROW$ $IT = IT + 2$ $TEMP = TEMP * TERM$ $FACTOR = IT*(IT + 1)$ $FACTOR = 2.*IEMP/FACTOR$	SCAN0450 SCAN0460 SCAN0470 SCAN0480 SCAN0490 SCAN0500 SCAN0500 SCAN0520 SCAN0520 SCAN0540
		SCANU550
	SUNSET(J) = SUNSET(J) + FAUTUR*A(I,J)	SCANU560
3	CONTINUE	SCAN0570
	RETURN	SC A NO 580
5	MPNT = TERM + 0.001	SCAN0590
	IF (MPNT.LT.1) GO TO 4	SCAN0600
	LPNT = MPNT + 1	SCAN0610
	TEMP = SLIT - MPNT *DX	SCAN0620
	SUM = TEMP/2	SCAN0630
	SCNSET(1) = SUM	SCAN0640
	DD 6 I=2, MPNT	SCAN0650
	TEMP = TEMP + DX	SCAN0660
	SCNSET(I) = TEMP	SCAN0670
	SUM = SUM + TEMP	SCAN0680
6	CONTINUE	SCAN0690
	SCNSET(LPNT) = SLIT	SCAN0700
	$SUM = 2 \times SUM + SLIT$	SCANO710
	DO = 7 = I = 1, LPNT	SCAN0720
	SCNSET(I) = SCNSET(I)/SUM	SCAN0730
7	CONTINUE	SCAN0740
	RETURN	SCAN0 750
	END	SCAN0760

SUBROUTINE LORN3 (LAST)

a

LORN0010

1	FREQ(5000), FREQHI, NCOLS, NMAX, NPEAK, NROWS, NTPTS, NXPTS,	LORN0030
2	PR TSUM(31), RH0(10), R(5000), T(5000), XNU(10), ISLIT, KEY, BETA	LORN0040
-	REAL*8 A	LORN0050
C		1 0RN0060
C	BUILD VECTOR OF ABSORBANCE VALUES FOR CALCULATED SPECTRUM.	LORN0070
C		LORN0080
-	NROWM = NROWS - 1	LORN0090
	DO 100 J = 1.NTPTS	LORNO100
	T(J) = BETA	LORNOIIO
100	CONTINUE	L 0R N0 120
	$DO 2 J = 1 \cdot NPEAK$	1 0RN0130
	RHOJ = RHO(J)	LORNO140
	XNUJ = XNU(J)	LORNO150
	$DO = 1 K = 1 \cdot NTPTS$	LORNO160
	FDIFF = XNUJ - FREQ(K)	LORNO170
	DENK = 1.0 + RHOJ * FDIFE * FDIFE	LORNO180
	T(K) = T(K) + AO(J)/DENK	LORNO190
1	CONTINUE	LORNO200
2	CONTINUE	LORNO210
С .		LORNO220
C	CONVERTATO TRANSMITTANCE.	LORN0230
С		LORN0240
	$DO_4 K = 1, NTPTS$	L 0RN0250
	T(K) = EXP(-T(K))	LORN0260
4	CONTINUE	LORN0270
C :		LORNO 280
C	CONVOLVE CALCULATED SPECTRUM WITH SLIT FUNCTION, BUILD	LORN0290
C	MATRIX A.	L OR NO 300
С.		LORN0310
	NMP = NMAX + 1	LORN0320
	CONS = CON(NMP)	LORN0330
	$\mathbf{K} = \mathbf{ISLIT}$	LORN0 340
	DO 14 J = 1, NXPTS	LORN0350
	K=K+1	LORN0360

TK = T(K)	LORNO 370
SUMTN = 0.0	LORNO 380
JUMP = 1	LORN0390
$DO_{15} L = 1$, NROWM	LORNO 400
PRTSUM(L) = 0.0	LORNO410
5 CONTINUE	L 0RN0 420
DO 11 II = $1 \cdot NPEAK$	LORNO430
 I2 = I1 + NPEAK	LORNO440
I3 = I2 + NPEAK	LORN0450
IF (NMAX .NE.O) GO TO 3	LORN0460
SUMTN = 0.0	L ORNO 470
60. TO 9	I 0RN0480
3 D 1 S N = 1.NMAX	L 08N0490
N.I = NMP - N	LORNO 500
CONIN = CON(NJ)	I DRNO 510
KPN = K + N	I DRN0520
KMN = K - N	I 0RN0 530
IF(KMN,FQ,Q) KMN = 1	I ORNO 540
TKPN = T(KPN)	I 08 NO 550
TKMN = T(KMN)	I ORNO 560
GO. TO (50.51). JUMP	I ORNO 570
50 SUMTN = SUMTN + CONIN * (TKPN + TKMN)	I OR NO 580
51 GA TA (53-8) I AST	I NRN0 590
53 V3 = XNU(L1) - FREQ(KPN)	1 0RN0 600
V4 = XNU(II) - FREQ(KMN)	LORNO 610
V1 = V3 + V3	I ORNO620
V2 = V4 + V4	LORNO630
DENP = 1.0 + RHO(11) * V1	LORNO 640
DENM = 1.0 + RHO(11) * V2	I ORNO 650
$T1_{1} = TKPN/(DENP_{1} \neq DENP)$	LORNO 660
$T_2 = TKMN/(DENM * DENM)$	LORNO670
7 PRTSUM(II) = PRTSUM(II) + CONIN * (TKPN/DENP + TKMN/DENM)	LORNO680
PRTSUM(12) = PRTSUM(12) + CONIN * (V1 * T1 + V2 * T2)	LORNO690
PRTSUM(13) = PRTSUM(13) + CONIN * (V3 * T1 + V4 * T2)	LORNO 700
8 CONTINUE	LORNO710

9 GD TD (90.10). JUMP	I ORNO 720
90 JUMP = 2	I DRNO 730
R(J) = CONS * TK + SUMTN	I ORNO 740
DELTA = ETR(J) - R(J)	L ORNO 750
DELSQ = DELSQ + DELTA * DELTA	LORNO760
GO TO (10,14),LAST	LORNO770
10 DENKD = XNU(I1) - FREQ(K)	LORN0780
DENKV = DENKD * DENKD	L ORNO 790
$DENK = (1.0) + RHO(11) \neq DENKV$	LORN0 800
DENS = DENK * DENK	LORNO 810
PRTSUM(II) = - (TK/DENK + PRTSUM(II))	L ORNO 820
PRTSUM(12) = AQ(11) * (TK * DENKV/DENS + PRTSUM(12))	LORNO830
PRTSUM(13) = 2.0 * RHD(11) * AO(11) * (TK * DENKD/DENS + P	RTSUM (ILORNO 840
13))	L OR NO 850
11 CONTINUE	LORN0 860
DO(13 II) = 1, NROWM	LORNO 870
$\mathbf{IIR} = \mathbf{II}_{1} + \mathbf{I}_{2}$	LORNO 880
DO 12 I2 = $I1, NROWM$	LORN0 890
I2P = I2 + 1	LORN0 900
A(11P,12P) = A(11P,12P) + PRTSUM(11)*PRTSUM(12)	LORN0 910
12 CONTINUE	LORN0 920
A(IIP, NCOLS) = A(IIP, NCOLS) + PRTSUM(II)*DELTA	LORNO930
A(1, IIP) = A(1, IIP) - PRTSUM(II) * R(J)	LORN0 940
13 CONTINUE	LORN0 950
A(1,1) = A(1,1) + R(J) * R(J)	LORN0 960
$A(1, NCOLS) = A(1, NCOLS) - R(J) \neq DELTA$	LORN0 970
14 CONTINUE	LORN0 980
GO.TO (140,16),LAST	LORNO 990
	LORN1 000
C IF NOT THE LAST CYCLE, COMPLETE BUILDING OF MATRIX A.	LORNIOIO
	LORN1020
140 DD 15 K = 2, NROWS	L DRN1 030
KM = K - 1	LORN1 040
DD 15 L = 1,KM	LORN1 050
A(K,L) = A(L,K)	LORN1 060

	15 CONTINUE			LORN1070	
	16 RETURN			LORN1 080	
	END			LORN1 090	
	SUBDOUTING DIOTI			01070010	
	JUDRUUTINE-PLUTI. DIMENETON DUFFIZEDI VIEDEL DIADFIZZDI			PLUIVVIV	
	C INTIALIZE			PLUTUUZU	
	$C \bullet \bullet \bullet \bullet INITIAL E C \bullet a$			PLUIUUSU	
	CALL FLUIS (DUFF, DUUV) CALL FLUIS (DUFF, DUUV)	. ~		PLOTO 040	
	CALL FLOI 10+97310937 CALL DIGT 10 -20 -21			PLUIVUDV DI OTOAKA	
	$\frac{100}{100} = 0$				
	JUD = U			PLUIVUIU	
	$\mathbf{J} \mathbf{L} \mathbf{C} = \mathbf{U} \cdot \mathbf{U} \mathbf{I}$			PLUIUUOU	
	TEST - SIZE T VAVL			PLUIQUAU	
	1E31 - 1E31 (* 1E31 De Thda			PLUIUIUU	
	CATON DEDTO (VIII DV NONT DEADEL MEADEL ITVOE)			PLUIVIIV	
	C STADT A NEW DACE		1	PLUIUIZU . DLOTOIZO	
	$G \bullet \bullet \bullet \bullet \bullet SIAKI \land A INEW PAGE \bullet$			PLUIUIDU . BIOTAIAA	
	JUB = JUB + 1			PLUIU140	
	1F*(JUD*EQ*1), 50-10-5			PLUIUISU	
	1 = MUU(JUB) + 1			PLUIU LOU	
	$\bigcup_{i \in I} \bigcup_{i \in I} \bigcup_{j \in I} \bigcup_{i \in I} \bigcup_{i \in I} \bigcup_{j \in I} \bigcup_{i \in I} \bigcup_{i \in I} \bigcup_{i \in I} \bigcup_{j \in I} \bigcup_{i \in I} \bigcup_{i$			PLUIUI/U	
	$1 (ALL \ PLU \neq \ (-1 \cdot U \neq 1 \cup 0) = 3)$			PLUIUI8U	
				PLUIU190	
	2 (ALL PLUE (L3, U) = 11.3; = 3)			PLUIUZUU .	
	$3 \text{ UALL PLUE} (1 \pm 4 \circ U_{\mathcal{F}} U_{\mathcal{F}} + 2)$			PLUIUZIO	
	CALL PLUI (114) (110) (2)			PLUIUZZO	
				PLUIUZ3U.	
-	$\begin{array}{c} LALL PLU1 \{U \circ g U \circ g Z\} \\ U I S D \end{array}$			PL010240	
	XJUB = JUB			PLUI0250	
	CALL SYMBUL (0.5,0.07,0.14, PLU) *,0.,51			PLU10260.	
	$CALE \ NUMBER \ (1 \cdot 1 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 14 \cdot XJUB \cdot 9 \cdot 9 \cdot 11)$			PLU10270	
	$LALL PLU = \{L \cdot U : U$			PL010280	
	U HRAN AXES.			PL010290	
	IF (NPNILIGO) GUIO 7			PL0T0300	

XIO = XHI - (NPNT-1) = OX	PLOT0310
CALL SCALAR (XHI.XLD.DX.12.5.XSTART.XINCR)	PI 0T0320
7.60.TO (8.9). ITYPE	PI 010320
8 CALL AXIS $10_{2}, 0_{3}, 1$ TRANSMITTANCE 13, 10, 90, 0, 0, 1, 10,)	PI 0T0 340
GO TO 10	PI 010 350
9 CALL AXIS (00. ABSORBANCE'.10.10. 900.2.0.04.10.)	PL0T0360
10 CALL AXIS (0.,0., FREQUENCY, CM-1', -15, 12, 5, 0., XSTART, XINCR, 10.)	PL010370
CALL PLOT (12.5.03)	PLOT0 380
CALL PLOT (12.5.102)	PLOT0390
CALL PLOT (0102)	PLOT0400
CALL SYMBOL (0.5,10.18,0.14, PLABEL, 0., NLABEL)	PL0T0410
RETURN	PE0T0420
ENTRY PLOT3 (Y, XHI, DX, NPNT)	PLOT0430
CDRAW A LINE PLOT.	PLOT0440
FACTOR = 10.	PL0T0450
IF (ITYPE.EQ.1) GO TO 11	PLOT0460
DO 6 I=1, NPNT	PLOT0470
6.Y(1) = Y(1) + 0.2	PLOTO480
FACTOR = 25.	PLOT0490
11 $YY = FACTOR * Y(1)$	PLOT0 500
XX = (XHI - XSTART)/XINCR	PLOTO510
DIF = DX/XINCR	PL0T0520
CALL PLOT (XX,YY,3)	PL0T0530
DO 4 I=2, NPNT	PLOT0 540
XX = XX - DIF	PLOT0550
YY = FACTOR * Y(I)	PLOT0 560
CALL PLOT (XX,YY,2)	PLOT0 570
4 CONTINUE	PLOT0580
RETURN	PLOT0 590
ENTRY PLOT4 (Y, XHI, DX, NPNT, IBCD)	PLOT0600
CDRAW A POINT PLOT.	PLOT0610
XOLD = -1.	PLOTO620
YOLD = -1.	PLOT0630
DIF = DX/XINCR	PLOT0640
XX = (XHI - XSTART) / XINCR + DIF	PLOTO650

	00 5 I=1,NPNT			PL0T0660
	$XX = XX - DIF_{0}$			PLOT0670
	YY.)= 10 .* Y(I).			PLOT0 680
	DIST2 = (XOLD-XX)*(XOLD-XX)	+ (YOLD-YY)*(YOLD-YY)		PLOT0690
	IF (DIST2.LE.TEST) GO TO 5			PL0T0700
	CALL SYMBOL (XX,YY,SIZE,IBCD	,0.,-1)		PLOT0710
	XOLO = XX			PLOT0720
	YOLO = YY			PL0T0730
i	5 CONTINUE			PL0T0740
	RETURN			PLOT0750
	ENTRY PLOTS			PLOTO760
C	TERMINATE.			PLOTO770
	CALL PLOT (18.0,0.,-3)			PLOT0780
	CALL PLOT (0.,0.,999)			PLOTO790
	RETURN			PLOT0800
	END			PLOT0810
				• ·
	SUBROUTINE SMTHI (NPNT.NPOLY	• X }		SMTHOOLO
C	WRITTEN BY A S ROSENBERG	5 12 67		SMTH0020
č	EIRST SECTION:	and the line with		SMTHDOBO
C .	CALCHEATES A MATRIX B TO BE I	ISEN IN A LEAST-SOLLARES	SMOOTHING OF	SMTH0040
C .	DIGITAL DATA.	COFF IN W FEWGS OBDUNCED		SMTHO050
Č.	NPNT = NUMBER OF DATA POINTS	IN SMOOTHING GATE.		SMTH0.060
č	NPDIY = DEGREE OF POLYNOMIAL	TO BE USED TO FIT NPNT	ORDINATE	SMTHO070
č	VALUES.		0110 211111	SMTHOORO
c .	X IS & DOUBLE-WORD ARRAY USE	D FOR SCRATCH.		SMTHOOGO
č	REQUIRES SUBROUTINE CONMAT.			SMTH0100
~ ^	DIMENSION B(7.13)			SMTHOILO
	RFAL *8 A(4.17).X(25)			SMTH0120
C.	INITIAL IZE.			SMTHOIRO
~ ^	$K \cap I N T = 1$			SMTH0140
	IF (MODINPNT.2).NE.1) NPNT	= NPNT + 1		SMTH0150
	TE (NPNT.GT.25) NPNT	= 25		SMTH0160
	– μ,	i in ar		

		IF ((NPOLY, GT.6)) NPOLY = 6	SMTH0180	
		IF (NPOLY.LT.2) NPOLY = 2	SMTH0190	
		IF (NPOLY.GE.NPNT) NPOLY = NPNT - 2	SMTH0200	
C		COMPUTE PARITY AND DIMENSIONS OF INTERMEDIATE MATRIX A.	SMTH0210	
		IPAR = MOD(NPOLY.2)	SMTH0220	
		NROW = NPOLY/2 + 1	SMTH0230	
		LPNT = (NPNT - 1)/2 + 1	SMTH0240	
C	4	CALCULATE EVEN (OR ODD) ROWS OF 8.	SMTH0250	
	1	CALL CONMAT (NROW, LPNT, IPAR, A, X)	SMTH0260	
		I = IPAR + I	SMTH0270	
		DO 3 J=1, NROW	SMTH0280	
		DD 2 K=1,LRNT	SMTH0290	
		B(I,K) = A(J,K)	SMTH0300	
	2	CONTINUE	SMTH0310	
		I = I + 2	SMTH0320	
	3	CONTINUE	SMTH0330	
C	1	FINISHED WITH FIRST SECTION?	SMTH0340	
		IF (KOUNT.GT.1) RETURN	SMTH0 350	
C		NOCALCULATE ODD (OR EVEN) ROWS OF B.	SMTH0360	
		KOUNT = 2	SMTH0370	
		I = NPOLY - 1	SMTH0380	
		NROW = 1/2 + 1	SMTH0390	
		IPAR = MOD(1,2)	SMTH0400	
		GOATO 1 a	SMTH0410	
C	•	SECOND SECTION:	SMTH0420	
		ENTRY SMTH2 (N,YIN,YOUT)	SMTH0430	
C		OPERATES ON AN ARRAY OF DIGITIZED DATA YIN WITH MATRIX B. THE	SMTH0 440	
C		SMOOTHED DATA IS PLACED IN ARRAY YOUT. YIN AND YOUT MAY REFER TO	SMTH0450	
C	•	THE SAME ARRAY IN THE CALLING PROGRAM.	SMTH0460	
C	•	N IS THE DIMENSION OF ARRAYS YIN AND YOUT.	SMTH0470	
		DIMENSION YIN(1), YOUT(1)	SMTH0480	
		DIMENSION COEF(7)	SMTH0490	
C	• 4	STORE FIRST NPNT DATA POINTS IN TEMPORARY STORAGE.	SMTH0500	
		DO 4 I=1.NPNT	SMTH0510	
		X(I) = YIN(I)	SMTH0520	

4 CONTINUE	SMTH0 530
MPNT = LPNT - 1	SMTH0 540
C CALCULATE SMOOTHED VALUES FOR FIRST LPNT DATA POINTS.	SMTH0550
NROW = NPOLY + 1	SMTH0560
KOUNT = 1	SMTH0570
5 DO 8 K=1, NROW	SMTH0 580
SUM1 = 0.0	SMTH0590
IPAR = MOD(K,2)	SMTH0600
DO T L=1, MPNT	SMTH0610
M = NPNT - L + 1	SMTH0620
IF (IPAR.EQ.O) GO TO 6	SMTH0630
SUM1 = SUM1 + (X(L) + X(M)) * B(K,L)	SMTH0640
GO TO 7	SMTH0650
$6 \text{ SUM1} = \text{ SUM1} + (X(L) - X(M)) * B(K \cdot L)$	SMTH0660
7 CONTINUE	SMTH0670
$COEF(K) = SUML + X(IPNT) * B(K \cdot IPNT)$	SMTH0.680
8 CONTINUE	SMTH0690
IF (KOUNT.GT.I) GD. TO 14	SMTH0700
DO = I = I = I = I = I = I = I = I = I =	SMTH0710
I = I - IPNT	SMTH0720
	SMTH0730
SUMI = 0.0	SMTHO 740
00.9 K=1.NROW	SMTH0750
SIIM1 = SIIM1 + 1*COFF(K)	SHTHO 760
	SMTH0770
9 CONTINHE	SMTH0780
VOIT (I) = SIMI	CMTHA70A
10 CONTINUE	SHITTE STATE
Γ SMONTH MAIN RODY OF DATA.	CMTHASIA
$M = N - 2 \times MDNT_{\circ}$	SHILL STORE
DO = 12 $I=2.4$	DISTINCT OF CONTRACT
DO = 1 J + 2 J R	
	SA THOUTU SA THOUTU
$\mathbf{N} = \mathbf{V} + \mathbf{V} + \mathbf{V}$	SMINUOJU. Cmitudoka
$\Delta \mathbf{I} \mathbf{N} = \Delta \mathbf{I} \mathbf{J} \mathbf{I}$	SHIRUGOU CMTUDG70
II CONTINUE	SMINUGIU
	· ·

	X(NPNT) = YIN(NPNT + I - I)	SMTHO 880
	SUM1 = 0.	SMTH0890
	DO 12 J=1,MPNT	SMTH0 900
	K = NPNT - J + 1	SMTH0910
	$SUM1 = SUM1 + (X(J) + X(K)) \neq B(I,J)$	SMTH0920
	12 CONTINUE	SMTH0930
	YOUT(MPNT+I) = SUM1 + X(LPNT)*B(1,LPNT)	SMTH0 940
	13 CONTINUE	SMTH0 950
C.	OPERATE ON LAST MPNT DATA POINTS.	SMTH0960
	KOUNT = 2	SMTH0970
	GD TO 5	SMTH0980
	14 DD 16 I=1, MPNT	SMTH0990
	J = 1	SMTH1000
	SUM1 = 0.0	SMTH1010
	DO 15 K=1,NROW	SMTH1020
	SUMI = SUMI + COEF(K)*J	SMTH1 030
	J = 1 * J	SMTH1040
	15 CONTINUE	SMTH1 050
	L = N - MPNT + I	SMTH1060
	YOUT(L) = SUM1	SMTH1070
	16 CONTINUE	SMTH1 080
	RETURN	SMTH1090
	END	SMTH1100
	SUBROUTINE CONMAT (NROW, LPNT, IPAR, A, X)	CNMT0010
C	WRITTEN BY A S ROSENBERG 5 12 67	CNMT0020

C	WRIFIEN BY A S RUSENBERG 5 12 67	CNMI0020
C.	CORRECTED 7.10.67	CNMT0030
С	BUILDS AND INVERTS AN AUGMENTED MATRIX A USED IN CALCULATING A	CNMT0040
C .	LEAST-SQUARES CONVOLVING SET.	CNMT0050
C	THE DIMENSIONS OF A ARE NROW BY (NROW + LPNT).	CNMT0060
C .	IF IPAR=0, AN EVEN SET OF POLYNOMIALS IS INVOLVED. IF IPAR=1, THE	CNMT0070
C	SET IS ODD.	CNMT0080
C	X IS A VECTOR USED AS WORKING STORAGE IN THE MATRIX INVERSION	CNMT0090
С.	ROUTINE.	CNMT0100

	REAL*8 A(4,55),X(55),SUM(7),TEMP	CNMT0110
C	INITIALIZE AND BUILD FIRST ROW OF AUGMENTING MATRIX.	CNMT0120
	IT = NROW + 1	CNMT0130
	MPNT = LPNT - 1	CNMT0140
	NCOL = NROW + LPNT	CNMT0150
	IF (IPAR.NE.O) GO TO 2	CNMT0160
	DO.1. I=1,LPNT	CNMT0170
	J = I + NROW	CNMT0180
	A(1, J) = 1.	CNMT0190
	X(1) = 1.	CNMT0200
	1 CONTINUE	CNMT0210
	GD TO 4	CNMT0220
	2 DO 3 I=1,LPNT	CNMT0230
	J = I - LPNT :	CNMT0240
	K = NROW + I	CNMT0250
	A(1,K) = J	CNMT0260
	X(I) = J÷J	CNMT0270
	3 CONTINUE	CNMT0280
С	BUILD REMAINDER OF AUGMENTING MATRIX.	CNMT0290
	4 IF (NROW.LE.1) GO TO 13	CNMT0300
	DO 5 I=2, NROW	CNMT0310
	DO 5 J=1+LPNT C	CNMT0320
	$\mathbf{K} = \mathbf{L} \mathbf{P} \mathbf{N} \mathbf{T} = \mathbf{J}$	CNMT0330
	$K = K \ast K$	CNMT0340
	L = NROW + J	CNMT0350
	A(I,L) = K * A(I-1,L)	C NMTO 360
	5 CONTINUE	CNMT0370
C is	CALCULATE SUMS	CNMT0380
1	3 SUM(1) = 0.0	CNMT0390
	DO 6 I=1, MPNT	CNMT0400
	SUM(1) = SUM(1) + 2.*X(1)	CNMT0410
	6 CONTINUE	CNMT0420
	SUM(1) = SUM(1) + X(LPNT)	CNMT0430.
	IF. (NROW.LE.1) GO TO 14	CNMT0440
	$IT = 2 \times NROW - 1$	CNMT0450

$DD_{1} = \frac{7}{12} + \frac{1}{12}$	CNMT0460
SUM(K) = 0.0	CNMT0470
DO, 7 I=1. MPNT	CNMT0480
J = I - I R N T	CNMT0490
	C.NMT0 500
X(I) = J * X(I)	CNMT0510
SUM(K) = SUM(K) + 2.*X(I)	CNMT0520
7 CONTINUE	CNMT0530
C BUILD LEFT-HAND SIDE OF MATRIX.	CNMT0540
14 DO 8 1=1, NROW	CNMT0550
DO = 8 J=1, NROW	CNMT0560
$\mathbf{K} = \mathbf{I} + \mathbf{J}_{0} - \mathbf{I}_{0}$	CNMT0570
A(I,J) = SUM(K)	CNMT0580
8 CONTINUE	CNMT0590
C. INVERT AUGMENTED MATRIX.	CNMT0600
NCOLM = NCOL - 1	CNMT0610
DO 12 I=1,NROW	CNMT0620
TEMP = 1.0/A(1,1)	CNMT0630
DD:9 J=1, NCOLM	CNMT0640
JP = J + 1	CNMT0650
X(J) = TEMP * A(1, JP)	CNMT0660
9 CONTINUE	CNMT0670
X(JP) = TEMP	CNMT0680
IF (NROW.LE.1) GO TO 15	CNMT0690
DO - 11 = J = 2, NROW	CNMT0700
TEMP = A(J,1)	CNMT0710
JM = J - 1	CNMT0720
DO 10 L=1,NCOLM	C NMTO 730
$L \mathbf{P} = L + 1$	CNMT0740
A(JM,L) = A(J,LP) - TEMP*X(L)	CNMT0750
10 CONTINUE	CNMT0760
A(JM,LP) = -TEMP * X(LP)	CNMT0770
11 CONTINUE	CNMT0780
15 DO 12 J=1,NCOL	CNMT0790
A(NRDW,J) = X(J)	CNMT0800

12 CONTINUE RETURN		CNMTO
END		CNMTO
SUBROUTINE SCALAB (XMAX, XMIN	XINCR, S, XSTART, DX)	SCALO
CWRITTEN BY A S ROSENBERG	7-3-67	SCALO
CABCISSA SCALING ROUTINE FOR S	SUBROUTINE PLOTI.	SCALO
C USED IN PLACE OF SUBROUTINE S	SCALE IN CALCOMP PLOTTER PACKAGE.	SCALO
DX = (XMAX - XMIN)/S		SCALO
IF (DX) 1,7,2		SCALO
7 DX = 1.0		SCALO
XSTART = XMAX + 0.5		SCALO
RETURN		SCALO
1 TEMP = X MAX		SCALO
XMAX = XMIN		SCALO
XMIN = TEMP		SCALO
DX = -DX		SCALO
$2 \text{ IDX} = 0.4343 \times \text{ALOG}(\text{DX})$		SCALO
IXMX = XMAX * (10.0**(-IDX))	+ 0.99	SCALO
XSTART = IXMX		SCALO
XSTART = XSTART * (10.0**IDX))	SCALO
DX = ALOGIO ((XSTART - XMIN))	/S) []	SCALO
IDX = DX		SCALO
TEMP = IDX		SCALO
$DX = 10.0 \pm (DX - TEMP)$		SCALO
TEMP = 1.0		SCALO
3 IF (DX - 1.0) 4,6,5		SCALO
4 DX = DX * 10.0		SCALO
IDX = IDX - 1		SCALO
GO TO 3		SCALO
5 TEMP = 1.5		SCALO
IF (DX.LE.1.5) GO TO 6		SCALO
TEMP = 2.0		SCALO
IF (DX.LE.2.0) GO TO 6		SCALO
i		

,		
		-
	TEMP = 4.0	SCALOBIO
	$\mathbf{I} = \{0\}$	SCAL0320
	TEMD = 5.0	SCAL0320
	16 (0) + 5 (0) + 60 + 10 + 6	SCALO 340
	TEMD = 9 ft	SCALO 350
	IE I = 0.00	SCALO360
	TEMD = 10.0	SCAL0300
 Æ	$\frac{10}{10} = 1000$	CCALUDIU .
0	DX = DY	SCALO 200
		SCAL0390
		SCALOHOU
		JUALOHIU
	SUBRAUTINE SPOTRM (LIGHT.MODE.EDY.*)	SPCTAALA
	OIMENSION = IT(20), IDNO(500), INDEY(500), YDATE(2), V(10000)	SPC T0020
	COMMON = A(31,32), AO(10), CON(51), DE(SO, DY, ENU(5000), ETR(5000).	SPCTOGED
3	EREDISONI, EREDHI.NCOLS.NMAY.NDEAK.NROWS.NTDIS.NYDIS.	SPCTODOJO
د م	DOTCHMIZII.DUAIAI.DISAAAI.TISAAAI.YNNUNSINTEISIAAFISI DOTCHMIZII.DUAIAI.DISAAAI.TISAAAI.YNNIAAI.ICIIT.KEV.BCTA	SPCTODED
. 4	$CONTWATENCE = \{0,1\}, \forall \{1\}\}, \{T,1\}, \forall \{5,0\}\}$	SPCTORA
	DEALERSE A	SPC 10000
	TE INDRE ED 21 CO TO 6	SOLTUGA
ſ.	READ SDECTRIM HEADER CARD.	SPCTOCOO
	READ (5.501) TOENT.YSTART.EDY.NIDIS.BECIN.END	SPCTAIAA
60.1	ENDMAT ($15.24.67$ 0.65 1.15.54.2610 5)	SOCTATIA
r. 501	CALCHATE INDICES OF INITIAL AND SIMAL DOINTS TO BE INDIT	SPCTOILO
	ARDNAL - 1	SPC TO 120
7 #3	$YEART = YCTART = (NIDTC-1) \times ENY$	SPC TO 140
10	$IE_{A} = ASTART = ATTAS TART S TARTS TARTS TARTS TO RECTARTS EXCLASS A STARTS TARTS TART$	SPCTO150
	16 + 16 + 16 + 16 + 16 + 16 + 16 + 16 +	SPCTAIGA
	IRECIN = I Y START - RECINIZERY + 1	SPCT0100
	ISLOIN = (YSTART = ENO)/EDY + 1	SPCTO120
	$\frac{1}{1} \frac{1}{1} \frac{1}$	SPCTOIOO
	TE (INYDTS) = 50001 CO TO (1.9) CH	SPC TO 200
C .	FRRAR RETURN.	SPETA210
U#.***	LANDA ALIONNO WRITE (A.AAI)	SPCT0220
	MALIE JUJUULE.	JIVIVALV

601 FORMAT ('0',5X, TOO MANY DATA POINTS, PROBLEM TERMINATED')	SPC T0 230
LIGHT = 2	SPCT0240
RETURN 1	SPC T0 250
C INPUTALOOP.	SPCT0260
1 IBRNCH = 1	SPCT0270
L = 1	SPC TO 280
D0 5 I=1, NIPTS, 20	SPCT0290
IN = 20	SPC T0 300
IP = I + 19	SPC TO 310
IF (IP.GT.NIPTS) $IN = 20 + NIPTS - IP$	SPCT0320
C READ ONE DATA CARD.	SPC T0 330
READ $(5,502)$ (IT(J), J=1,IN)	SPC T 0 340
502 FORMAT (2014)	SPCT0350
GO TO (2,5), IBRNCH	SPC T 0 360
2 DO 4 J=1,IN	SPCT0370
$\mathbf{K} = \mathbf{J} + \mathbf{J} - \mathbf{I}$	SPCT0380
C TEST TO SEE IF DATA POINT IS WITHIN PROPER SPECTRAL REGION.	SPCT0390
IF (K.LT.IBEGIN) GO TO 4	SPCT0400
IF (K.LE.IEND) GO TO 3	SPCT0410
IBRNCH = 2	SPCT0420
GO. TO 5	SPCT0430
C TRANSFER VALUE TO TRANSMITTANCE VECTOR AND CALCULATE	SPCT0440
C CORRESPONDING ELEMENT OF FREQUENCY VECTOR.	SPC T0 450
3 ETR(L) = IT(J)/1000.	SPC T0 460
ENU(L) = BEGIN - (L-1) * EDX	SPCT0470
L = L + 1	SPC TO 480
4 CONTINUE	SPC T0 490
5 CONTINUE	SPC TO 500
WRITE (6,603) IDENT, BEGIN, END	SPC T 0 510
603 FORMATE(/101,9X, SPECTRUM1,16, TREAD FROM CARDS, RANGE = 1,	SPC T 0 520
1 F7.1, TO, F7.1)	SPC T0 530
RETURN	SPC T0 540
6 READ (5,503) IDENT, BEGIN, END	SPC TO 550
503 FORMAT (15,5X,2F10.5)	SPCT0560
DO 7 I=1, NSPEC	SPCT0570

	IF (IDENT.NE.IDNO(I)) GO TO 7	SPC TO 580
	KEY = INDEX(I)	SPC T 0 590
	GO TO 8	SPC T 0 600
. 7	CONTINUE	SPCT0610
	WRITE (6,602) IDENT	SPCT0620
602	FORMAT ('0',5X, 'SPECTRUM', 16, 'NOT ON DISK')	SPCT0630
	LIGHT = 2	SPCT0640
	RETURN 1	SPCT0650
8	READ (7*KEY) IDENT, XSTART, EDX, NIPTS, INST, XDATE, (Y(I), I=1, 315)	SPCT0660
	JBRNCH = 2	SPCT0670
	GO TO 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10	SPC T0 680
9	IF (IEND.LE.315) GO TO 13	SPCT0690
· · ·	DO 11 I=316,IEND,322	SPC TO 700
	IP = I + 321	SPC T0 71 0
	READ $(7'KEY)$ $(Y(J), J=I,IP)$	SPCT0720
11	CONTINUE	SPCT0730
13	DB 12 I=1,NXPTS	SPCT0740
	IM = I - 1	SPCT0750
	IP = IM + IBEGIN	SPC T 0 760
	ETR(I) = Y(IP)	SPC T0 770
	$ENU(I) = BEGIN - IM \neq EDX$	SPCT0780
12	CONTINUE	SPCT0790
	WRITE (6,604) IDENT, BEGIN, END	SPC T 0 800
604	FORMAT (/'0',9X,'SPECTRUM',I6,' READ FROM DISK, RANGE =',	SPC TO 810
	1. F7.1,* TO*,F7.1)	SPC T 0 820
	RETURN	SPCT0830
	ENTRY DISK	SPCT0840
	KEY = 1	SPCT0850
	READ (7'KEY) NSPEC, NREC, IDNO, INDEX	SPCT0860
	RETURN	SPCT0870
	END	SPC T0 880
·		

• ;

VITA

2

Arthur Stanley Rosenberg

Candidate for the Degree of

Doctor of Philosophy

Thesis: I. A VIBRATIONAL STUDY OF THE CYANOETHYLENES II. AN ALGORITHM FOR THE DETERMINATION OF THE SHAPE PARAMETERS OF INFRARED ABSORPTION BANDS

Major Field: Chemistry

Biographical:

- Personal Data: Born in New York City, New York, January 27, 1933, the son of Jack and Evelyn Rosenberg.
- Education: Graduated from Teaneck High School, Teaneck, New Jersey in 1951; received the Bachelor of Science degree from the University of Vermont in 1954; received the Master of Science degree from the Massachusetts Institute of Technology in 1959; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1970.
- Professional Experience: Associate Research Scientist, Continental Oil Company, 1959-65; Research Scientist, Continental Oil Company, 1965-1969; Senior Research Scientist, Continental Oil Company, 1969 to present.

Membership in Professional Societies: American Chemical Society and The Chemical Society (London).