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Note:

NOMENCLATURE

Description

time~dependent, polynomial coefficient i, for the tem-
perature approximation

frequency factor for reaction i, sec™!

x—-temperature derivative at heated surface

mole fraction for species i in reaction expression,
moles of species i/mole of reactant

constant pressure specific¢ heat, cal/gm-°K

mass fraction of solid converted in reaction 1,
gm Solid;/gm Solid;

mass fraction of solid converted in reaction 3,
gm Solidg/gm Solid,

activation energy for reaction i, cal/mol

frequency factor parameter for reaction i (see TableVI)
weighting function m

heat flux parameter (see Table VI)

Gas species 1

non-dimensional heat generation term i

time-dependent polynomial coefficient n for heat gener-
ation approximation term i

heat transfer coefficient, cal/cm?-sec-°K

time-dependent polynomial coefficient n for approxi-
mation term i

For symbols having both a dimensional and non-dimensional repre-
sentation, an asterisk (%) is used to denote the dimensional
Table IV defines the non-dimensional quantity.



Symbol

B

e -
-
.

e

. rate constant for reaction i, sec”

Description

effective thermal conductivity based on constant unit
area

thermal conductivityvof solid based on solid area
1
exponential part of the rate constant

exponential part of the ‘rate constant at the approxi-
mating. strip j '

slab thickness, between insulated and heated surfaces,
cm

molecular weight of species i

rate of generation of species i per unit volume from
all reactions ‘

rate of generation of species i per unit volume from
reaction j

number of approximating strips

number of ordinary differential equations, 4N + 2
Nusselt number (see Table VI)

heat of reaction i, cal/gm of reactant

rate of generation of heat in reaction i per unit
volume

rate of generation of heat from all reactions per unit
volume

‘heat flux, cal/cm?-sec

universal gas:constant, 1.986 cal/mole-°K
heat .of reaction i parameter (see Table VI)
Solid species 1

temperature, ;K

convective. heat source temperature

time, sec



Symbol
ok
x*

0%
E%

Subscripts

1,2,00046

Description

mass flux, gm/cm®-sec

. slab distance from insulated surface, cm

effective density of total solid, mass of solid/constant

unit volume s

actual .density of total solid, mass of solid/volume of
solid ' ’ o

. Degcription

initial value, time = 0

:species ‘-number

Radiant heating boundary condition

Convective heating boundary condition

xiv



CHAPTER I
INTRODUCTION

When a porous solid such as wood, cellulose or a polymer foam is
heated, its temperature rises at a rate dependent on the rate of surface
heating and upon the rate of heat conduction into the solid. The solid
continues to absorb heat until the temperature is high enough for chem-
ical reactions to be important. These reactions cause changes in local
temperatﬁre and solid composition thué affecting future reactions. If
it were possible to specify all reactions and their rates, one could, in
principle, predict the behavior of the solid, given the boundary condi-
tions and physical properties.

For many years, experimental studies have been made of thermal
decomposition of porous solids. Industries have been concerned with im-
proving fuels such as coke and charcoal. The Forest Service has under-
taken extensive investigations to understand the spread of forest fires
and - the gffectivness of flame retardants. Insurance companies and
agencies concerned with Building Codes are interested in fire spread in
ferent methods of fireproofing. Problems of self-heating and ignition
alsc arise when materials are stored for long .periods of time in ships
and warehouses. Airlines are concerned with fire spread‘in the interi-
ors of planes when cloth or plastic materials ignite. The Armed Force;

study effects of flame weapons on combustible targets such as buildings,



wooden ships and fuel soaked earth. The study of nuclear weapon
effects presents problems involving ignition and sustained combustien.
Recontly, the aerospace industry has been interested in'heating ef-
fects on solids because of the use of char—forming ablative heat
shields on re-entry spacecraft. Another area of interest is the
study of effects of in-depth reactions on solid oropellant combustion.
All industries are involved with the use of polymer foams. These
foams are used for electrical, thermal and acoustical insulation as
well as lightweight structoral applications. Finally, cellulose
products used in the textile and paper industries are subject to
pyrolysis roactions. These few examples demonstrate the usefulness
of improving the mathematical analysis of pyrolysis of porous solids.
Thefe are two main obstacles in performing an analysis; extreme
complexity in the physical processes and mathematical difficulties in
solving the resulting equations. In the.present_field, more is known
about the qualitative physical events than has boen previously in-
corporated in the mathematical solution. However, large digital com-

puters have enabled more complex problems to be solved and, therefore,

more physically‘realistic models to be studied. Thus, the pﬁrpose of
the present work is to incorporate more of the known physical eyents
into the mathematical analysis of porous solid pyrolysis.

This report is composed of four major sections. The first sec-
tion presents background information as to the experimental results
that indicate the important physical events. Also included is a dis-
cussion of previous mathematical analyses. The.second section out-
lines the development of the mathematical equations and boundary con-

ditions. The third section describes the method used in solving the



equations and the fourth section presents the results and interpre-

tations of the computer solutions.
Background

Wood has been in use since the beginning of time and is still
the widest used porous solid today. As a result, a great‘deal of
experimental work has been done on wood and its compbnents.

The three major components of wood are hemicellulose, cellulose,
and lignin with approximately half being cellulose. The thermal de-
composition rate of wood closely follows that of cellulose whereas
hemicellulose decomposes faster, and lignin, slower. Thus, many ex-
pefiments are done with cellulose to better understand the pyrolysis
of wood and other materials. Also, cellulose can be made into homo-
geneous samples having a wide choice of closely controlled densities
‘and physical constants.

Browne (5)1 reviews the theories of the combustion of wood up‘
to 1963 while MacKay (13) gives a review of information on the ther-
mal degradation of cellulose up to 1967. Shafizadeh (17) presented,
in 1968, a complete review of the experimental information on the
pyrolysis and combustion of cellulosic materials and includes effects
of flaﬁeéretarding chemicals.

In one type of experiment, a slab of cellulose is placed into a

_constant temperature furnace that is being flushed with an inert gas.

Usually, the temperature at certain points is recorded as well as the

1Throughout the report, numbers in parenthesis after a proper
name refer to an entry in the Bibliography.
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weight of the slab. As heat enters the cellulose, its temperature
rises and causes pyrolysis reactions which pfoduce a different solid
-and evolve gases. Since some solid has been changed to a gas the
solid becomes more porous. The feactions proéeed into the solid
while the gases flow through the pores and out the surface. Higher
temperatures increase the reaction rate, producing more gases and
incréasing the porosity. . Thus, at a given :instant, the solid is in
various stages bf decomposition ranging from the virgin material deep
within tﬁe solid, through the more porous reacting solid, to the in-
ert highly porous hot char next to the surface. Of course, continued
heating to higher temperatures would eventually decompose the char.
However, in most practical situations one is concerned with the events
from the initial heating,to.thevproduction of'char. |

The gases evolved from the reactions are very‘important in
ignition and combustion studies since these gases may ignite and

]

burn. The first gases that are formed are primarily nbn—combustible

water vapor and carbon dioxide. Next, more combustible carbon mon-

‘ oxide, hydrogen and the highly inflammable levoglucosan, sometimes

called tar, are evolved. Also produced are methane, formaldehyde,

methanol and acids.. Efforts in flame-proofing materials afe directed
toward producing less tar and more non-combustible gases. Thus, be-
fore a completé understanding of ignition and combustion stages can
be obtained, a thorough investigation of the initial pyrolysis events
must be made.

The first comprehensive analjtical model of initial pyrolysis was

formulated by Bamford, et al (1), in conjuction with their experiments

on wood. Slabs of wood of various thicknesses were heated either on



both sides by flames from a burner or on one side by a radiant heater.
Measurements were made of the central slab temperature, depth of char,
and time required to achieve sustained burning for the flame heated
slabs and piloted ignition? for the radiantly heated slabs.

In the analysis, the slabs were considered to behave as a one-
dimensional solid heated by a surface-temperature-~dependent convective
heat flux. The unsteady heat conduction equation included a term for
heat generation within the slab. Heat generation was considered to
be from a single exothermic reaction and was expressed as a constant
heat of reaction times a reaction rate. The reaction rate was ex-

3 In additionm to

pressed as a first-order, Arrhenius-type reaction.
the heat of reaction, Bamford assumed constant thermal conductivity,
specific heat, surface heat transfer coefficient, activation energy
and pre-exponential factor. The latter two constants were chosen by
matching the calculated central slab temperature with the experimen-
tally measured one. The temperature was found from the energy equa-
tion by a finite-difference method and the mass loss was determined

by a finite-difference approximation to the species conservation equa-
tion. The calculations for the central temperature, based on a single
overall reaction, did not agree with measured values when different
slab thicknesses were used. This indicates that more than one reac-

tion needs to be considered.

Weatherford (21) used the same constants and equations as Bamford

2piloted ignition occurs when a small flame placed near a heated
surface acts as an ignition source for the evolving gases.

3An Arrhenius-type reaction is one that expresses the reaction
rate constant as k = a exp(~E*/R°T*). See Nomenclature for the defi-
nition of the symbols.



and calculated the. surface temperature and vapor-generation rate.
Source temperatures considered for the convective boundary condition
varied between 667°K and 767°K. Calcﬁlations were continued until
the vapor generétién rate reached lO_“gm/cmz—sec,-begame constant,
of reached a maximum. He used a finite~difference'teéhnique and
showed that undulations which Bamford found in the gas-generation
rate curves were caused by too large a step size in the finite-
difference approximations. Weatherford proposed that a criterion
for wood to sustain stable burning would be the departure of its
surface temperature or vapor-generation rate from the solution for
the infinite thickness case.

Experiments were performed by Weatherford and Sheppard (22) on
gonvectively heated slabs to determine piloted ignition times. Vari-
ous slab thicknesses, bulk densities, and heat source temperatures
were used, The data showed that small changes in density or slab 
thickness. exerted significant influence on the ignition time. For
the range of variables considered, the surface temperature calculated
with the heat generation term included was within 10% of the solution
for an inert slab.

Lawson and Simms (l1) considered piloted and spontaneous igni-
tion" of wood slabs heated on one side by radiation. Times to igni-
tion were recorded for various radiation intensities and different.
species of wood. By extrapolatiﬁg graphs of radiation intensity vs.
ignition~time out to infinite time,‘a minimum intensity necessary

for ignition was determined for slabs thick enough to be considered

“Spontaneous ignition relies on the conditions of the heated
material for ignition.



a semi-infinite solid. For most speciés, a constant minimum intensity
was found for each of the two types of ignition.

Martin (14) heated thin cellulose slabs by‘radiation and measured
(not all simultaneously) the spontaneous ignition time, temperatures
within the slab, weight loss and composition of the gaseoué products
for various radiation intensities. The temperature profiles differed
considerably from the theoretical ones for a semi~infinite, inert
solid having constant thermal properties. A maximum in the rate of
evolution of volatile products occurred near the ignition time but no
evidence was found for an ignition criterion based on a threshold rate
of volatile evolution. Evidence of competing reactions was seen by
observing a different finai weight of char for different heating rates.,
Char formed from the levoglucosan reaction was found to be negligible.

In. the preceding ignition work, the two types of boundary condi-
tipns considered were a constant_fadiative heat flux and a convective
heat flux. The combination of radiation heating with Newtonian cool-
ing at the surface, considered by Lawson and‘Simms, can be considered
as a psuedo-convective case. The factors which seem to be the most
important in ignition are the gas composition and generation rate and
surface temperature, all of which depend on the nature of the pyroly-
sis reactions. These factors were considered in developing the results
of - this study.

To obtain more information on the kinetics of reactions, techni-
ques were developed by the physical chemists. Some of these techni-
ques are Thermogravimetric analysis (TGA) and Differential Thermal
analysis (DTA). A better understanding of the nature of the reactioms

helps to explain the causes of differing experimental results as well



as determining the effects of adding firé retardant chemicals.

Broido and Kilzer (4) presented a critique on the knowledge of
the mechanism of cellulose pyrolysisvto 1961 and indicated that more
detail was needed in interpreting the reaction mechanism as well as in
experimental studies. They pointed out that previous considerations
of the reaction products as only gas, tar, and char failed to explain
many of the observed experimental results. The important effects of
trace impgrities on the internal reactions caused many earlier experi-
mental results to be questioned.

Kilzer and Broido (9) present data from a number of cellulose
pyrolysis observations made by TGA, DTA, mass spectrometric thermal
analysis (MTA) and gas and paper chromatographic analysis of the prod-
ucts. The results show that as a cellulose sample is heated, a slight-
ly endothermic reaction starts at about 220°C causing the pure cellu-
lose to lose water and form a "dehydrocellulose." (This is after
vaporization of any extra-cellulosic moisture). Next, a strongly endo-
thermic reaction becomes evident at about 2 0°C in which the remaining
pure cellulose depolymerizes and volatilizes as tar, thus competing
with the first reaction for the original cellulose. The third major
reaction is strongly exothermic and results in the '"dehydrocellulose"
decomposing into a number of gaseous products and residual char. Each
of the three processes actually involve a number of reactions. They
concluded that the pyrolysis of cellulose must be described by at
least two competing endothermic reactions and a consecutive exothermic
reaction.

Broido (3) presenfs TGA and DTA results of cellulose containing

practically no contamination (<.0l%) and containing as much as 1.5%



KHCO3. The results showed that as little as 0.15% contamination can
significantly affect the pyrolysis reactions. The addition of 1.5%
KHCO3 lowered by 80°C the temperature at which significant decomposi-
tion began but eliminated the flame-producing reactions in favor of
those leading to glowing combustion..

Tang and Neill (18), in their experiments on the effects of salts
on wood and its components, supported the reaction stages described by
Broido. They showed that the effect of the salts was to lower the
overall activation energy, stimulating the dehydration reaction.

Further effects of multiple reactions were seen Qhen Murty and
Blackshear (15) showed that the overall activation energy decreased
with radius for heated cylinders of cellulose. The frequency factor
varied unsystematically while incubation of the interior caused the
amount of solid that occurred at a given temperature to decrease
toward the center. This also suggests that the reaction rate de-
creased toward the center.

Tinney (20) heated small wooden dowels in a constant temperature
furnace and measuréd the center temperature and raté of weight loss. 
During his calculations for temperature‘ana weight loss, he changed
the overall aétivation energy, frequency factor and heat of reaction
to a new value in an attempt to simulate the apparent changes during
wood pyrolysis. He obtained fair agreemen; between experimental and
calculated values for the surface'temperature and weight loss but poor
agreement for the center temperature. He concluded that more than one
change in the parameters would be necessary to match the center tem-
peratures for exothermic reactions.

Thus, investigations into the reaction mechanisms of cellulose
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have shown the existence of and provided information on multiple
reactions while pyrolysis experiments have shown the need for consid-
eration of more than one overall reaction.

The same pattern of three major reactions in porous cellulose_is
found in the study of the pyrolysis of polymer foams. Hilado (8) des-
cribes the combustion process of urethane foams which parallels simi-
lar events seen in cellulose and other organic polymers. Tilley, et
al (19), include DTA and TGA analysis of the pyrolysis of urethane
foams and find three major regions of weight loss as a function of
temperature. They associate the weight loss regions with three major
reactioné whose rates were fitted to the Arrhenius equation. Lear-
month and Osborn (12) present the results of the pyrolysis of phenolic
resins and describe three main types of products; gases, tars, and
carbon residue. As with cellulose, the above references indicate that
the nature of the products and the rate of decomposition‘of polymer
foams vary with temperature, rate of temperature rise, and endother-
mic and exothermic reactions. Thus, learning how different factors
influence the pyrolysis of cellulose will contribute to the under-
standing of the pyrolysis of many organic polymers as well as cellu-
lose and wood.

In summary, the mathematical analysis of the pyrolysis of cellu-
lose or wood has been limited to consideration of the unsteady heat
conduction equation with heat generation from one exothermic reaction.
Experiments have shown that more than one reaction needs to be con-
sidered and should include competing and consecutive, endothermic and
exothermic reactions. The effect of a density-dependent effective

thermal conductivity also needs to be studied. Also, since previous
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mathematical studies involved specific ignition events with limited
parameter values, a general analysis is needed to establish the rele-
vant parametérs and present results of the influence of parameter
variations on the pyrolysis évents. The development and solution of

the equations as given in the remaining sections will be pointed

toward these objectives. .



CHAPTER II
THE MATHEMATICAL ANALYSIS
Geometry

As shown in Figure 1, the porous solid is considered to be an
infinite slab of finite thickness, L. The slab is heated at the front
surface and insulated against heat or mass transfer at the back sur-
face. These conditions also apply to one-half of a slab of thickness
2L that is symmetrically heated.

Two types of heating conditions will be ansideredvfor depositing

energy at the front surface. The first is a’iime—dependent, radiative

" heat flux and the second is a convective heat flux.
Energy Equation

Heat is transferred into the slab from the surface by conduction
and causes chemical reactions which either absorb or generate heat.
;'Gaseous products that are fogmed from the reactions flow out of the
solid. ' It is assumed that any heat transferred between the flowing
gases and the solid does not‘sigﬁificantly change the solid tempera-
ture. This is approximately true since the increasing porosity and
cracks allow the gas to flow out with little solid area contact ana
short residence time.

Specific heat andrthermal conductivity of the solid material are

considered constant for the ranges in temperatures to be encountered.

12
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Also, the heats of reaction per mass of reactant afe constant. Finally,
the dimensions of the slab are assumed constant and a psuedo—density:&,
based on a constant‘unit volume, will be used. ”
With these considerations, the energy equation for the solid can
be written by applying the conservation of ‘energy to a differential
volume and ﬁaking the limit as thevthickness gdes to zero.v The result

is valid at every x—~position within the solid and is given by

. aT* 93 . oT* 21
&Cat* - 3x*(1\3x*) +Q (2.1)

I II ITI

Term I = = Rate of accumulation of thermal eﬁergy per unit volume
Term II = Net rate of conduction of thermal energy per unit®volume
Term III = Rate of heat generation by chemical reaction per unit volume

Effective Thermal Conductivity

- The cross section of a porous solid can be divided into two areas;

< thé area océupied by solid material, Asolid’ and the void area occupied

by gas (see Figure 2).

Figﬁre 2. Representation of Unit
and Solid Areas
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Heat conduction in the slab occurs only through the solid area, .

Asolid' Since the solid area changes, it is more convenient to base

the equations on the total unit area, Aunit’ which is constant because

of the assumption that the slab dimensions are constant. Thus, an

effective conductivity, K, based on the total unit area is defined by

Aunit =K Asolid

where K is the thermal conductivity of the solid material and is con-
sidered constant. The ratio of the areas can be expressed as a density

ratio by considering a unit -thickness. . Then,

Asolid _ o*
unit 'E*

where E% is the density of the solid material (i.e., no porosity) and.
is considered constant.
With the above equations, an expression for the effective thermal

conductivity becomes

*
K = Kg %% A (2.2)

where K; and pg are the effective éonductivity and density at time 0.
Substituting Equation (2.2) into term II of Equation (2.1), ex-
panding and dividing by p*C gives

aT* Ko 327 Ko ppx 3T Q"
atk  ppC ax*2 | p¥Cp* dx* 3x* | p*C

(2.3)

I I1a IIb ITI

Previous investigators did not consider that the changing effective
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" thermal conductivity affected the energy equation. They argued in--
correctly that sincé the thermal diffusivity, K/p*C, remained_consfént,
then term Ila was the only conduction contribution. This approximation
can only be true if term IIb is negligible. Froﬁ another viewpoint,
we might consider that previous workers have unintentionally cqmbiﬁed
terms ITb and III into a new, equivalent, heat generation term. Term
ITb wili always be negative or zero and thus introduces an equivalent
endothermic heat generation term thét will vary throughout the slab

as well as time. As a result, heat generation calculations based on
an energy equation that considers the effective thermal conductivity
to be a constant may calculate values that largely include a distance
aﬁd time dependency from the conductiQity change. This investigation
will include calcﬁlations to determine how a density-dependent thermal

conductivity may affect the resulté.
Boundary Conditions

Consideration of a surface with changing porosity introduces sev-
eral possibilities for the surface heating conditions. For the radiant
heat flux! condition, all the energy strikes the solid either at the
surface or at some small depth due to the pores (see Figure 3).

It is assumed that the depth at which the energy is deposited is
small enough to consider iﬁ all at the surface. Therefore, the amount
of radiant energy striking the surface is not dependenf on the amount
of solid present. The rate at which'the energy is conducted into the

solid, however, is dependent on the porosity through the effective

lHeat flux refers to the total energy per constant unit area per
unit time. ; ‘
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q* RADIANT HEAT FLUX

Figure 3. Radiant Heat Flux Depositedi at the
Surface ’ ‘

thermal conductivity. Thus, the first possibility is a time-dependent
heat flux at the surface with a density~dependent, effective thermal
‘cénductiVity. This condition will be called Case 1. For comparison
purposes, Case 0 will denote problems with the heat flux treated as in
Case 1 but with the effective thermal conductivity considered constant.
Another possibility is when the energy deposited at the surface
decreases in proportion to the amount of solid at the surface. This
is difficult to justify physically but might apprdximate a.radiative
heat flux reduced by opaque gases flowing from the solid or, if energy
was lost from the surface by re-radiation and conduction to the gases
at an equivalent rate. The resulting condition is the same as Case 0
but with term IIb included in the energy equation (2.3). Thus, the
contribution of the change in the effective thermal conductivity to the
energy equation can be found. This condition will be called Case 2.
For the convéctive heat flux condition, three cases also are de~
veloped. Case 0 considers nc change in the effective thermal ccnduc~

tivity and a constant convective heat transfer coefficient. Case 1
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considers a density—depenﬁent, effective thermal conductivity and a
constant convective heat transfer coefficient. This is equivalent to
saying that the convective fluid at the surface is always in contact
with the solid as the surface becomes more porous. Case 2 considers
that the convective heat transfer coefficient and the effective ther-
mal conductivity decrease as the solid at the surface decreases. This
would mean that the convective gases were in contact with the solid

that was present only at the surface (see Figure 4).

Figure 4. Convective Heat
Flux at the
Surface

Cases 1 and 2 represent an upper and lower boqnd on the physical
events for the convective case with the intermediate Case 0 probably
being a good assumption.

At the instant heat is applied, the slab, solid;, is at a constant
temperature and density. With the insulated boundary at x* = 0 and the

heated surface at x* = L, the boundary conditions for radiant and con-

vective heating become
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For time = 0
T*(x*, 0) =T} (2.4a)
p*(x*, 0) = p¥(x*, 0) | (2.4b)
é;(x*, 0) =0, i=2,3,...,6 (2.4c)
At x*‘= 0

9T*

=5 =0 (2.4d)

dp* = 0 (2.4e)

At x* = L: Type I (Radiative)

3T*

Case 0 i
Oax*

q*(t*) (2.4F)

% QT#
Case 1 pr 9%
Kogg'ax*

g*(t*) (2.4g)

oT*

Case 2 S
Oax*

q* (t*) (2.4h)2

At x* = L: Type II (Convective)

oT*

Case 0 Pl h(T% - T*) (2.41)

Case 1 Ko % =——x = h(T* - T%) (2.43)
o .

Case 2 h(T* - T*) (2,4k)2

2Equations (2.4h;k) would normally have the term p*/pg multiplying
the terms on both sides of the equal sign but is shown.already canceled,
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Equation (2.4) represents the boundary conditions that will be used
with the energy and species equations for completely specifying the
problem, Equation (2.4e) can be determined by taking the x-derivative

of the species equations (see Appendix F).
Chemical Reactions

The reactions that will be considered are shown in Figure 5 with
identification of each species for the case of cellulose. Of course,
the same reaction scheme or any combination of the reactions may be
used for many other materials.

Even though these reactions represent only the overall effects of
a number of reactions, they include the major pyrolysis events in most
porous solids. Also, three competitive and consecutive reactions are
just enough to enable a large number of possible effects to be studied.

Steps leading to expressions for the heat generated by the reac-
tions and the rate of species production begin with writing the reac-
tions on a mole basis:

Ky
.Sl -_— szz + b3G3

S, — bgSg + bsGs

. , moles of Speciesi
= rate of reaction i, b.

where S = Solid, G = Gas, k i = Tole of reactant’

i

Let Mi‘= Molecular weight of Species i. Then, mass is conserved if

M; = boMy; + bgMj for reaction 1
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SOLID,

REACTION 2 REACTION 1

GAS,4 - GAS3 SOLIDZ
REACTION 3
GAS5  SOLIDg
REACTIONS 1 and 2 are COMPETITIVE

REACTIONS 1 and 3 are CONSECUTIVE

For Cellulose:

Solid;-= original cellulose
Solid; = "déhydrocellulpse"
Gasj = water vapor
Gas, = "tar" (levoglucosan)
Gasg = Co, CO,, Hy0, etc.

= char

Solidg

Figure 5. Reactions in the Slab
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M; = byMy for reaction 2

My, = bgMg + bgMs for reaction 3.

Letting cy = boMy/M; =vém So/gm Sq 02cp 51
cé = bgMg/My = gm Sg/gm S, 0 Scp =1

the reactions may then be written on a gram basis noting that

1 = byMy/M;
kg
Sy —r ¢85, + (1 -~ Cl) Gj3 (2.53)
ko
K3
Sy ™ cy8g + (1 - Cz) Gsg (2.5¢)

It is assumed that all reactions are first-order?® homogeneous reac-
tions, i.e., the rate of decrease of reactant is proportional to the
amount bf reactant present. The proportionality constant is given by
the reaction rate constant. It is expected that basic homogeneous
reactions will be first order., However, when several reactions are
occurring simultaneously, the resulting overall effect may be of zero
order or some intermediate value, Shafizadeh (17) discusses experi-
mental results that determine the order of cellulose reactions, most
of which indicate the reactiomns to be first order with some reports
of zero order depending on the experiment. Most analyses also con-

sider the reactions to be first order.

30rder refers to the exponent on the mass term in the reaction
rate equation, (dp?)/(dt*) = —pfkl .



With the reaction order specified, the rate of species production
can be expressed.
Let m; , = rate of generation of species i per unit volume as a

result of reaction j.. Then,

.y % °r *
mp,1 = —piky mp. ] = c1p1k) 3 m3,1 = (1 - ¢;) piky
.y N .1 %
my,2 = -ptky my 2 = P1ky
LI ] * l' * " *
mp, 3 = ~pok3 ; mg,3 = Copok3y 3 ms,3 = (1 - cp) poks

Now, the total rate of generation of species i is found by summing

over all reactions.

.y ]

m, =) m,

1 1,

i |

m = —p¥k; - o¥k, (2.6a)
1;15, = cpfky - p3ks (2.6b)
L] . *

3= (1-cy) piky (2.6¢)
n, = pTk, (2.6d)
" *

mg = (1 -~ cy) poks (2.6e)
mg = Ccop3ks , (2.6£)

For the heat of reaction given as Qi = heat generated in reaction
. o
i per unit mass reacted and for Qf = rate of generation of heat per

unit volume in reaction i, then,

[ ] ey [ )
Q = Qumy, 1 3 Q2 = Qomy, o 3 Q3 = Qzmp,3 .
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Summing over all reactions, Z Qi, gives the total rate of generation
i
of heat per unit volume, Q', or also

. % )

Q' = -QipTk; - QzpTky ~ Q3p2k3 (2.7)
For the reaction rate constant, ki, the usual assumption is made

that the dependency of the rate of reaction i on the temperature is

given by the Arrhenius expression, k. = a, exp(—Ei/RdT*)r

Species Equations

14

The conservation of a solid species within a unit volume requires
that the rate of accumulation of a species within the volume equals
the réte'of production of the species from chemical reactions. Taking
the 1limit as the volume thickness goes to zero giveé an equation that

is valid at any x4position,

QL
©

|

B Rt

Qo

T
R
=

Since the species production equations are given by Equation (2.6),
the rate of change of each solid species at any position within the
slab is

*
9] :
3% = eikr - efky | (2.82)

Q
©
N

cip¥ky - poks (2.8b)

Qo
e
-

Q
je]
o
i

Q
ct
*

= Cngkg (2.8c)
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Non-Dimensional Equations

The equations and boundary conditions are non-dimensionalized in
order to determine relevant pérameter groupings and minimize the number
of parameters which affect the calculations. Reference values used to
non-dimensionalize the variables aré selected as being a characteristic
dimension of the problem. Usually, the reference value will enable the
non—-dimensional quantity to have an order of magnitude of unity. For
the slab, the independent variables, x* énd‘t*, are non—-dimensionalized
by the slab.thickness and the characteristic conduction time, the
Fourier number. The dependent variables p: are ﬁon—dimensionalized by
the initial density, pg. The temperature is non-dimensionalized by

consideration of the boundary conditions. The resultant non-dimensional

variables are given in Table I.(see Nomenclature for symbol identification).

TABLE I

NON-DIMENSIONAL VARIABLES

Dependent Variables Independent Variables
I - T8 R <
TR"q*OL/KO L
*
o= TF o1 PoCL
q*
1T
*
o =i
i pf
w*CL
W=



When the non-dimensional variables»are substituted into the
energy equation (2.3), the species equation (2.8), and the boundary
conditions (2.4), the referencequantities become grouped into non-
dimensional parameters. It is the value.of the particular combina-
tion of reference quéntities as given in the new parameters that
determine the character of the solutions rather than the values of
the reference quantities themselves. The resulting new parameters

are given in Table II.

TABLE II

NON-DIMENSIONAL PARAMETERS

Definition DescriEtiOn
E%
E, = i?%% : Activation Energy Parameter
Ko{1/a,) |
= Frequency Factor Parameter
Fy = —o%ca? quency
Qi ;
= Heat of Reaction Parameter
Ri = CT%
%*
qoL . .
EBT%‘ (Badlatlve)
G = . Heat Flux Parameter
T* - T}
—f—fg——— (Convective)
Nu = hL Nusselt Number

Ko,

The resulting non-dimensional energy equation is

26
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2
9T _ 9Ty 1 3p 3T Ry p1. — Ry pp. —
—_—= e T — = ——(— - _
it ox p. 39X 909X FlG( p) 1 FZG(O 2 F3G o ) k3 (2.9)

3p1 ky  ky ‘

——t = _pl(—-—-Fl + —Fz) (2.10a)
302 _ .. k1 k3

5t czlplF,1 sz3 (2.10b)
306 Eg

S = 202 T (2.10¢)

where iﬁ = exp[—Ei/(l + GT)]. Finally, the non-dimensional boundary

conditions are

t=20
T(x, 0) =0 (2.11a)
p(x, 0) =1 =p,(x, 0) (2.11b)
o, (x, 0 =0, 1=2,3,...,6 (2.11c)
x =0
9T =0 (2.11d)
X
Bpi
= =0, i1=1,2,...,6 (2.11e)
x =1 Type I (Radiative)
Case 0 %% = q(t) (2.11f)
d
Case 1 T _a() (2.11)

3 p(1, t)



Case 2

aT

—_—

ax

q(t)

x = 1: Type II (Convective)

Case 0
Case 1

Case 2

3T
oxX

Nu (1 - T)
_Nu (1 -1T)
p(1, t)

Nu (1 - T)

28

(2.11h)

(2.111)

(2.113)

(2.11k)

Therefore, the problem to be solved consists of Equations (2.9),

(2.10), and (2.11).



CHAPTER III
SOLUTION OF THE EQUATIONS
Background

There are basically two approaches available for the computer
solution of non-linear partial differential equations. The first is
the finite-difference method where the derivatives are replaced by
finite differences. _A; each step, .a system 6f linear algebraic equa-
tions must be solved. Computer programs are usually complex and re-
quire large core storége. The second approach is the integral method.
Bagically, it reduces the partial differential equations to a system
of ordinary differential equations by integrating over one variable.
The ordinary differential equations can then be solved by any one of
a number of highly developed techniques.

There have been a number of different integral approaches used
to reduce the partial differential equations. The simplest approach
is to divide the region of integration info strips and replace the
derivatives across the strips by‘finite differences. However, a large
number of strips ére required to obtain good accuracy. Other simple

techniques have been discussed by Goodman (7).
Method of Integral'Relations

Berlotserkovskii and Chushkin (2) present the essential features

of the method of Integral Relations, as generalized by Dorodnitsyn, and

29
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discuss a number of sample problems in the field of Gas Dynamics.
This method offers the best accuracy and the fewest number of neces-
sary approximating strips of any of the integral techniques.

The basic approach is to‘multiply the partial differential equa-
tion by a "weighting" function, f(x), and then integrate with respect
to its independent variable. Functions within the integrals are then
approximated by an interpolation formula. This enables the integrals
to be evaluated and results in a system of ordinary differential equa-
tions in the remaining independent variable. The final system of equa-
tions can then be solved by such standard techniques as Runga-Kutta or
an Adams method. The accuracy of the method is improved by increasing
the number of strips in the region.

In contrast to a finite difference technique, this method approx-
imates an integral inétead of a derivative. Thus, the approximated
function is smoothér than the integrand and can be represented by a
smaller number of interpolation strips. Also, the integral can be con-
tinuous even when the integrand is discontinuous. Another considera-
tion is that computer storage requirements are small.

The weighting functions used to multiply the partial differential
equations are arbitrarily chosen exéept for some general restrictions.
They must generate as many independent partial differential equations
as there are interpolating points and thus must be linearly independ-
ent. They ére also used to insure convergence of an integrand at any
point within the region. Finally, they should enable the approximat-

ing functions to be more accurate in regions of greater importance.
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Application of the Method of Integral Relationms

The energy equation (2.9) along with the boundary conditions
(2.1%) will be reduced by applying the method of Integral Relations
to the x-variable. The Integral method will not need to be applied
to the species equations (2.10) since they do not contain derivatives
with respect to x.

The first step is to multiply the energy equation (2.9) by a
weighting function fm(x) and then integrate between the slab bound-

aries. The result is

1 1 2 1
aT 3T 1 9p 3T
JO fm(x) s;-dx JO fm(x) qu-dx + IO fm(x) E'§§'§§'dx

- é’ii; I; fm(x) ﬁi dx (3.1)

where Hy = %— (%1—) kg (3.2a)
Hy = ?—i (pp—l) K (3.2b)

Hy = %{% (%2—) k3 (3.2¢)

Next, the slab is divided into (N - 1) strips by (N - 2) equally
spaced planes parallel to the boundaries x = 0 and x ='1. With the
boundaries, this gives N points where the equations and boundary con-
ditions will be applied, (N 2 2). Therefore, there must be N inde-
pendent equafions like equation (3.1). This is obtained by choosing
a system of linearly independent weighting functions, fm(x), with
m=1, 2, . « ., N. Since the temperatures increase toward the heated

surface, x = 1, this region will have a greater importance in the
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problem than the back surface, x = 0. Therefore, the weighting func-
tions will be selected to give more "weight" to this region and enable
the approximations to be more accurate. The linearly independent

functions are chosen as

fm(x) = [1, x, X29 L T R X(N_l)]

i.e., £ ) = LD @12, ..., W (3.3)

With this set of fm's, Equation (3.1) becomes!

1 1y '
A @D g 23T L o1y o]
dt |g X =1 X=

f1 -
+ (m‘— Dim - 2) JO x(m_3) Tdx + (4n p » E_Q

1 _ 2
- J x(m b &n p - 3;1 dx

0 8X2
1 _
- (m-1) J Ln . x(m 2) 3T dx
0 9X
3 n o
—%ZJx(ml)Hidx,(m=l,2, Ce LM
i=1 /0

(3.4)

In the next step, the integrands are approximated by polynomials
in x with time-dependent coefficients. The number of terms will equal
the number of interpolation points, N, plus any additional terms that

can be determined from applying the boundary conditions. Thus, the

Isee Appendix A.
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temperature can be approximated with a polynomial having (N + 2) terms
since two boundary conditions for the temperature derivative are known.

The approximations will then be

T(x, t) = Nfsz( )(tj o x D (3.5a)
n=l %
32 N (n-1)
gnp === ) J (t) = x (3.5b)
9x? n=1 l(n)
np * %I-= g J2( )(t) x(n—l) (3.5¢)
x4 n
R, N+1
H, = F—l ) Hy ny®) x (@D (3.5d)
in=1

The problem now centers around finding the polynomial coefficients, and
thus, the temperature as given by Equation (3.5a). Substituting the
approximations (3.5) into Equation (3.4) and integrating2 gives N equa-

tions for the temperature coefficients, A(n)(t):

dA N dA
1 (1) 1 (n+2) _
T ng (m + n + l) dt = (1 +1ino) B|x=l
n+1
- (m - 1) nzl =D Awe2)
N
1
- nzl (m +n - l) Jl(n)
» N~-1 1
- (m 1) nzl (m\+ n - l) J2(n+l)
L P RNy
G iil Fi el D +n-1 i(n)
m=1, 2, « « = , N) (3.6)

2See Appendix B.
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Another equation must be included with Equation (3.6) in order to solve
for the (N + 1) unknowns. This equation is formed by using the temper-
ature approximation (3.5a) in one of the boundary conditions (2,11£f-k),
depending on the Type and Case, and then differentiating with respect

to time. The results for Case 1 are

N+2 dA .
- — () _ -1 dp(1, t) , 1 dgq
PRCEE @ (=) B+ 23 e 1 070
N+2 dA
N - (@) _ -N(1 -T) dp
nZl (p *o 1) dt - [ p2 dt]x=1 » Lype 11 (3.7b)

Equations (3.6) and (3.7) form a set of (N + 1) equations each contain-
ing (N + 1) ordinary first-order derivatives of the temperature coeffi-
cients on the left side. The derivatives are equated to terms.composed
only of the temperature coefficients and species densities. Thus, this
system of equations can be solved simultaneously to give an explicit
equation in canonical form for each of the derivatives of the tempera-
ture coefficients.

The time~dependent coefficients in Equations (3.5b, c, d) are
determined by evaluating the approximatiqns at eaqh of the N strips,
X = xj. For example, Equation (3,5b) would become
N+-2

=gtnp (x,t) ) (m-1)A
J n=1

(n-1) . xSn——Z)

N
LT ® s y ()

(n
G=1,2, ..., 0N
A set of algebraic equations are thﬁs formed for each approximation

and can be solved simultaneously for the coefficients. The additional

term in Equation (3.5d) is found by taking the x-derivatives of the
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approximation and the approximated function, Equation (3.2), and apply-
ing the boundary conditions (2.11d and e).

The remaining unknowns are the soiid species 1, 2, and 6. As
stated previously, the equations defining the time derivatives of the
species, Equation (2.10), do not contain x-derivatives and thus do not
need to be integrated with respect to x. By treating x as a parameter,
the species equations are applied at each xj to obtain a set of N first

order ordinary differential equatibns already in canonical form for

each solid species. Thus, at x = Xj, i=1,2, ..., N
dpl . iﬁ . ié .
T -, . G_JJ.+.__L1) (3.8a)
dt A 1,j F F
1 2
do, . El . _123 )
———Ll= c.p . ———’J- - p . > » (3n8b)
dt 1°1,5 °F, 2,j F,
dp, . k. .
_ 6,3 _ PR
dt ©2P2,3 F, (3.8¢)
— _Ei
where ki,j = exp[— ) (n—l)]
1+6 ) A ¥
n=1 n)J

In summary, there are (4N + 2) fiyst—-order differential equations
of the form
df,

—l = Fj(fl, £y v v v o £

= 4N + 2
e t) Ne 4

Ne’

resulting from (N + 2) equations for the temperature coefficients and
N equations for each of the three solid species. The system of equa-

tions was then solved by a general integration subroutine which
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employed an Adams-Moulton technique (10).
" Initial Conditions

In order to étart the solution for the (4N + 2) unknowns, their
initial values must be given. The temperature approximation (3.5) is
used in the boundary conditions (2.11) to obtaip equations for the
initial values of the coefficients.3‘

The initial temperature coefficients are

Aqy (@ =0 (3.9a)
A(z)(O) =0 _ (3.9b)
N+2
(n-1) _ ’
L A@@ TS0 sy G99
N+2
) (a-1) By (@ =1 (3.9d)

n=3

Using the values of xj at each of the interpolation points in Equation
(3.9¢) produces (N - 1) equations which can be solved simultaneously
with Equation (3.9d) for the N coefficients. The result, shown in
Figure 6, is an (N + 1)-order polynomial for the initial temperature

T = 0 that passes through zero at N points and has a. slope of 1.0 at

1 and a slope of 0.0 at x = 0.

M
1l

The initial species values are obtained directly by applying the

boundary conditions (2.11b, c) at each xj:

(3.10a)
p2(xj, O) = ps(xj, O) = 0 (j=l’2,o n,N)‘ (3,_L0b)

pl(xi, 0)

35ee Appendix c.



Figure 6. Temperature Profiles at Time = 0 for
, Various N Interpolation Strips



38

Equations (3.5) through (3.10) constitute the complete problem
to be solved on a digital computer to obtain temperature and species

histories within the slab.
Summary of the Integral Technique

The purpose of the integral technique is to reduce the second-
order partial differential‘enefgy equation to a system of first—order
ordinary differential equations that are then solved by an Adams-
Moulton technique. The preceding discussion has described in detail
the steps necessary to accomplish this and is now summarized.

First, divide the slab by N equally spaced planes parallel to
the boundaries. Then, multiply the energy equation by a system of
N linearly independent weighting functions that "weight" the heated
boundary of the slab. Integfate the weighted equations over the slab
to obtain N independent integral relations. Approximate the functions
remaining under the integrals &ith polynomials in x having time-
dependent coefficients. Complete the integration to obtain a system of
(N + 2) first-order ordinary aifferential equations for the time-
dependent, temperature coefficients. Apply the solid épecies equations
at the N strips to obtain 3N first-order ordinary differential equa-
tions. Use the boundary conditions to evaluate the initial values of
the temperature coefficients and local solid species. Solve the sys-
tem of (4N + 2) differential equations by an Adams-Moulton technique
for the temperature coefficients»(and'thus the slab temperature dis-

tribution) and N local densities of each solid species at a given time.
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Computer Programming

The computer programs were develpped to solve Equations (3.5)
through (3,10) for the temperature profiles and local solid species
concentration. From the calculated local solid species concentrations
and their time derivatives, additional variables were calculated; the
local amounts of each gas species produéed from the N strips, the total
amount of each gas species produced from the slab, the local rate of
mass loss, the mass flux from the slab, and the average solid density
for the slab,

The'toﬁal amount of each gas species that was produced from each

of the N strips was found from the solid species densities by"

- P Pe . .
Gasy = (1 ~ cl)(clc2 + E;O : (3.11a)
: Pe P2
Gasy = 1= py = 7= o= (3.11b)
Pe
Gasg = (1 - ¢cy) vy (3.11e)

An Nth order polynomial in x having (N + 1) time-dependent coeffi-
cients was then used to approximate the average slab production of each
gas species. The coefficients were evaluéted by simultaneously salving
the (N + 1) equations that are fo?med from applying Equation (3.11) at
the N strips and the zero x-derivative of the solid species at x = O,~
Integrating the approximations over the slab gives the total amount of

each gas species produced from the slab. Likewise, the local values

“See Appendix E.
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of the total solid species were used to obtain the average solid for
the slab (called the Total Weight in the computer output).

The local gas generatipn rate was calculated by taking the nega-
tive of the sum of the local solid generation rates

dp; dpp dpg

_(dt t3 T )

In the program, this value is called the Mass Loss Rate and is propor-
tional to the reaction rate.

Finally, to find the mass flux out of the slab, a polynomial of
(N + 1) terms was formed based on the local gas generation rates and
the zero x~derivative of the generation rate at x = 0., Integrating
the polynomial over the slab then gives the mass flux at the surface.

The programs that were written for the Integral technique solu-
tion are the MAIN program and subroutine DERFUN, A variagle listing
is given in Appendix G. Programé already in existence were used for
the simultaneous solutions of the algebraic equations (subroutine SIMQ
(16)) and the solution of the ordinary differential equations (subrou-
tines START AND KAMSUB (10)). A description of the use of the latter
three subroutines is given in Appendix H as well as a complete program
listing of all routines in Appendix I. The basic steps followed in
the computer programs are given in Table III with an expanded descrip-

tion given in Appendix J.



TABLE IIT

BASIC COMPUTING STEPS

Read the number of approximation strips, N.
Read the parameter values and the program control constants.

Calculate the initial values of the unknowns (Equations 3.9
and 3.10).

Calculate the 3N time derivagtives of the local solid species
(Equation 3.8).

Calculate the coefficients for the interpolation formulas
(Equation 3.5).

Calculate the (N + 2) time derivatives of the temperature co-
efficients (Equations 3.6 and 3.7).

Integrate the (4N + 2) time derivatives to obtain values of
the unknowns at the new time step.

Calculate the local values for the gas species, gas generation
rate, temperature, and total solid.

Calculate the average slab values for the gas species, mass
flux, and total solid.
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CHAPTER IV
COMPUTER RESULTS
Introduction

Most of the computer work involved the development of both the
integral technique and the computer technique as well as checking the
accuracy of the results, However, this section will consider only
some of the final results of the computer calculations.

Since a large number of parameters and possible parameter values
were involved in addition to the various boundary conditions and reac-
tions, a study was first made of the influence of individual parameters
and events énd then of the effects of combinations of events. The
ihvestigation of the influence of individual events was also necessary
to the development of the computer technique since the selection of
the program constants was highly dependent on the values of the prob-
lem parameters,

These results are not able to cover in depth all possible effects
and combinations of the parameters but will show some of the major
effects and trends for all the boundary condition cases and reaction

combinations.
Parameter Values

Since the reaction scheme used in the program is based on organic

solids such as cellulose and wood, the parameter values were chosen
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from published data on these substances. As discussed earlier,
Weatherford used the same physical and kinetic constants as Bamford,
which represents values for one overall reaction in wood; their cal-
culations were based on an activation energy of 33 kcal per mole and
a frequency factor of 5 x 108 per second. Tang gives typical acti-
vation energies and frequency factors for cellulose in two tempera-
ture rangés; 23 and 54 kcal per mole for the activation energy and
0.3 x 10° and 0.6 x 10’ per second for the frequency factor for tem-
peratures frém 280°C to 350°C. Murty and Blackshear also present
kinetic constants which varied throughout cellulose ffom‘l3.6 to |
22.6 kcal per mole for the activation energy and from 2 x 10" to

4 x 105 per second for the frequency factor. Similar values also
apply to polymer foams as Tilley, et al, mention an activation energy

ol3 per second for one

of 50 kcal per mole and a frequency factor of 1
of the major reactions in urethane»foams. For three reactions, basic
activation energies and frequency factors were chosen which were in
the range of the reported values and which gave maximum reaction rates
in the temperature ranges reported by Broido:\

The overall heats of reaction for wood and cellulose are of the
same magnitude with wood being exothefmic and cellulose, endothermic.

iy
! w0

Weatherford used -86 cal per gm“for wood while Tang reported %88 call

per gm for cellulose. ‘Broido describes the three major reactions of
celiulose as slightly endothermic, highly endothermic and highly exo-
thermic. For the three reaction cases, basic heats of reaction were
chosen which demonstrated Broido's findings and had an overall heat

of reaction similar to the published values.

A basic value for the radiant heat flux was chosen as the maximum
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initial heat flux in Weatherford's experiments. While experimental
radiant heat fluxes are normally much higher than Weatherford's ini-
tial convective value, the slab thicknesses used are much smaller.
Therefore, the numerator, qL, of the heat flux parameter, G, would
be of the same magnitude in either case,

The dimensional values used in computing the basic parameters
are giveh in Table IV, with the resulting Ilon—dimensional parameters
given in Table V. The particular parameter values used in each com-

puter run given in the results are presented in Table VI.
The Inert Slab

Inert slab calculations were made and compared with known solu-
tions. Carslaw and Jaeger (6) give the exact solution for an inert
slab heated by .a constant heat flux. As shown in Figure 7, increas-
ing the nﬁmber of approximating strips gives a more accurate answer,
and, a good approximation for the inert case was obtained with only
three approximating strips. Increasing the number of approximating
strips results in curves whiqh lie midway between the exact solution
and the previous approximation.

For the convective boundary condition, Weatherford (23) graphs
the solution for the surface temperature of an inert slab. Figure 8
shows that three approximating points again give the exact solution
except for the early times. Higher approximations are practically
indistinguishable from the exact solution for all times and for the
chosen parameters.

Thus, the exact solutions show that the integral technique can

accurately represent the linear portion of the problem. However,
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TABLE IV

BASIC DIMENSIONAL CONSTANTS
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PO

10"
108
10°
/gm

/gm
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© + « s o+« « « . 0.833 gm/gm

» 0.55 cal/gm-°K

23,844 cal/mole

31,000 cal/mole

35,748 cal/mole

4.4 x 10~ cal/cm?-sec-°K

2.7 x 10~% cal-cm/cm®-sec-°K

1.0 em

. +16.5 cal/gnm

+165 cal/gm

-94.2 cal/gm

0.081 cal/cm?-sec

1.986 cal/mole-°K

300°K

0.6 gm/cm®
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TABLE V

BASIC NON-DIMENSIONAL PARAMETERS

46

. 2.0

. 40.0

. 52.0

. 60.0

. 0.1 x 1077
. 0.1 x 10~°
. 0.1 x 10712
. 1.0

. 1.535

. +0.1

. +1.0

-0.571



Run

Number B.C. Case

210
211
213
220
222
223
226
228
229
243
261
262
263
264
265
080
081
082
083

125

Hote:

0

0

1

1

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
50
50
48
50
50
50

55.66

PARAMETER VALUES USED

52
52
52
52
52
55.66
55.66
55.66
55.66
55.66

55.66

60

60

60

60

60

60

60

60

60

10-8
10~8
1078
10~8
10-8

10-8

10-8
10-8
10-8
10-8
10-10
10_10
10-10
5x10-19
10—10
10-10

10-10

TABLE VI

For the constant heat flux boundary condition, B.C.
mic reactions denoted by (~) and endothermic reactions by (+).

IN COMPUTED RESULTS

F3 Ry Ry R3
_ 0 _ —-—
- 0 _ -
J— 0 —_— -—
- 0 _ -
-— +.3 - —_
— +.3 - -
_— -.3 - -
_ 0 _— -
- 0 - -
- +.3 — -
10-13 +.1 +1.0 ~-.571
10-12 +.1 +1.0 -.571
10-12 +.1 +1.0 -.571
10712 +.1 +1.0 ~-.571
10712 +.1 +1.0 ~.571
10-12 0 0 0
10712 0 0 0
10-12 0 0 0
10712 0 0 0
_— 0 0 0
- 0 0 0
- 0 0 0

.833

.833

833

833

833

.833

1.0

1.0

2,0

1.0

1.0

1.5

1.75

1.45

For the convective heated boundary conditién, B.C. = 1.

2.0

2.0

2.0

2.0

2.0

Exother-
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there are no exact solutions for checking the validity of the techni-

que when including the non-linear terms for the generated heat and the
change in effective thermal conductivity. For this reason, the method
of computation was made to allow any order of approximation to be used,
enabling the results to be generally checked by comparing with a higher

approximation,
One Reaction--Case O

In order to interpret the results with multiple reactions, the
single reaction cases were studied first. Initially, a constant effec-
tive thermal conductivity was assumed.

In Figure 9 the temperature history of the front and back surfaces
are shown.for a.slab heated by a constant heat flux and an exothermic
reaction. = The front surface temperature follows the inert value until
the reaction begins to generate heat, causing the temperature to in-
crease at a higher rate. As the reaction proceeds into the slab, the
amount of generated heat increases, thereby increasing the amount of
conducted heat. This has two major effects: temperatures within the
slab begin to deviate from the "ineft" value even before a reaction
starts at that particular location, and the temperéture rise becomes
increasingly steeper at greater depths.

As the reaction ends at the heated surface, the temperature in-
creases at a constant rate that is higher than the inert value, showing
that the rate of heat conduction into the slab is less due to the in~-
creased internal temperatures. A result of the accumulation of gener-
- ated and conducted heat 1s that the temperature at the back surface

(adiabatic surface) becomes higher than the slab just ahead of it for
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a short time, up until the reaction reaches its maximum. An abrupt
drop in the rate of temperature rise then follows as the reaction in
the slab ends. When the reaction ceases, the rate of temperature rise,
compared to the inert solution, ranges from higher at the front sur-
face to lower at the back surface, Of course, after this transient
period,; the temperatures throughout the slab would become parallel to
the inert solution with an offset from the inert values.

Results for an endothermic reaction are shown in Figure 10.
Effects are similar to the exothermic reaction except with an oppo-
site sign. Note that the reaction events are spread over a longer
time period, and the temperature rise becomes parallel-to the inert
solution very quickly after the slab is through reacting.

Another basic differénce in the character of endothermic and exo~-
thermic reactions can be seen in Figures 11 and 12 where temperature
profiles are given as the reaction proceeds through the slab. Thié
time the endothermic reaction is discussed first. The profiles ail
have a slope of 1,0 at the front surface and zero af the back surface. .
The earliest profile shows the temperature distribution when the front .
surface reaction starts. The next profile (t = 1.33) was taken when
the surface reaction rate is at its maximum. The effect of the energy
absorbed by the reaction is to depress the temperature rise, i.e., the
front temperature rise is less than the back surface. Likewise, as
the reaction proceeds through the slab, the profiles show the.same
effect with the last profile showing that the reaction is at the back
surface. -

For the exothermic reaction, however, the profiles are warped

because of the reaction, as seen in Figure 12. The increasing times



TEMPERATURE (Tg)

32

28

24

[N

0.8f

04

53

[y
O

RUN 223

1 ] 1 1 1 I 1

04 o8 1.2 1.6 2.0 24
TIME(t)

Figure 10. Effect of Heat of Reaction: Temperature
History of Front and Back Surfaces--
One Endothermic Reaction, Constant Heat
Flux, Case O

2.8



TEMPERATURE (Tg)

1 T 1 l

ool  RUN 243 -

(1.83)
(155)
w
(133) 2
(0.96)

1 1

1
0 0.2 04 06 0.8 i.0
' DISTANCE(X)

Figure 11. Effect of Heat of Reaction: Tem~
perature Profiles for One Endo-

thermic Reaction--Constant Heat
Flux, Case O



TEMPERATURE( T )

55

1 1 I i
v o (1.54)
2o} RUN 226
(1.44)
(136) —~
(L30) w
=
-
(L22) -
(1.08)
0.8 J
e i ) ]
0 0.2 04 06 0.8 1.0
DISTANCE (X)
Figure 12. Effect of Heat of Reaction: Temper-

ature Profile for One Exothermic
Reaction, Constant Heat Flux, Case O



56

trace the reaction through the slab with the back part briefly achiev-
ing a higher temperature than the middle as described earlier. Because
of the profiles warping, a larger number of approximating strips is
needed for‘eXOthermic reactions than for an equivalent endothermic
reaction. |

The reaction rate shows another striking difference between endo-
thermic and exothermic processes. Figure 13 demonstrates that the
maximum reaction rate increases for exothermic reéctions at distances
farther into the slab. The curves show the progression of the reaction
through the slab and show the reaction rate distribution at six'timesnb
These are the times when the reaction rate reached a maximum at each
of the six interpolation strips. The maximum reaction rate at the back
surface is more than two and one-half times the rate at the front sur-
face. This is a result of the higher temperature rise from the in-
creasing amount of heat conducted ahead of the reaction. Since the
rate of reaction is dependent on the product of the amount of reactant
and the temperatureQdependént rate constant, the additional conducted
heat causes the temperature to be slightly higher for a given amount
.of reactant, thus increasing the reaction rate. This is shown in
Figure 14 where the back surface always has a higher temperature than
the front surface for a given amount of reactant. t

Qf course, the increase in the reaction rate through the slab.
also means that the heat generation rate increases. For reactions
having higher heats of reaction, more heat would be generated causing
the difference in the reaction rates to be greater. Finally, by com—
paring the times at which the maximum rate occurred at each x-position,

it is seen that the velocity of the '"reaction zone'" increased as it
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prbceeded into the slab. Two factors contribute to this: the increas-
ing rate of reaction and the longer residence times at greater depths
resulting in less solid remaining for the reaction.

For the endothermic reaction, Figure 15 shows thaf the maximum
reaction rate decreases ffom the front to the back surface. This indi-
cates that a result of the»energy absorption is a lower temperature
for a given reactant density. The difference in times at which the
maximum reaction rate occurred again shows that the ":eaction wave"
accelerated as it traveled farther.into the slab. Thus, the longer
reacting times for the interior solid contributed more to increasing
the velocity of the "reaction wave" than the decreasing reaction rate
did to retard it.

A difference of major importance in the effects of the endother-
mic and exothermic reactions is shown by the mass flux curves in
Figure 16. The area under the mass flux curves equals the total mass
of solid lost from the slab and is the same in both cases. The
exothermic reaction was completed in half the time of the endothermic
reaction, and the maximum mass flux was increased by three times. The
"lump" on the side of the endothermic curve‘near the end of the reac-
tion is apparently due to the increasing reaction rate near the insu-
lated surfacg.

Figure 17 gives the solid distribution for both reaction cases as
points in the slab reached a given density. The solid distribution
profiles were étéeper for the exothermic reaction than for the endo-
thermic reaction up until the reaction was nearly completed. This is
a result of the longer residence times of the solid interior for the

endothermic reaction.
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_The previous discussion has been concerned with the differences
in endothermic and exothermic reactions under the same heating condi-
tions. The effect of a change in the heat flux parameter alone can be
seen by making the heat of reaction parameter zero. Figure 18 gives
the reaction rate vs. surface temperature for two difference values
of G. Not only does increasing the heat flux cause an increase in the
reaction rate but it also causes the maximum reaction rate to occur at
a higher temperature. Since a given temperature fixes the reaction
rate constant, the increase comes from a larger value for the density
of reactant (see Equation 2.10a). This is verified by Figure 19 which
shows the increase in the reactant present at a given temperature.
This effect is a result of a higher rate of increase in the reaction
temperature with increasing G, giving the solid less time to react,
thus making more solid available at a given temperature.

In summary, the computations have given temperature profiles and
" histories for exothermic and endothermic reactions with constant para-
meters. The heat generated‘or absorbed from the reactions have been
shown to have a great effect on the solid ahead of and behind the
reactions, not only with réspect to temperatures, but also reaction
rates and mass flux. Increasing the heat flux parameter was shown to
increasé the‘maximum reaction raté and also the temperature at which

it occurs.
One Reaction—--Cases 1 and 2

Temperature histores were calculated to show the effect of a vari-
able effective thermal conductivity. A density-dependent, effective

thermal conductivity affects both the front surface boundary condition
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and the energy equation for Case 1 or just the energy equation for
Case 2.

Figure 20 shows, for the convecfive héating case, the surface
temperature history for Cases 1 and 2 and also the cqnstant effective
thermal conductivity Cése 0. The heat of reaction parameter is zero
so the temperature deviations from the constant conduétivity case occur
only from the changes in the effective thermal conductivity and the
heat transfer coefficient. For Case 1 the heat trénsfer coefficient
is constant while the effective thermal conductivity decreases as solid
is lost. The result is that the rate of heat conducted from the sur-
face 'is less, causing the temperature to increase.

For Case 2 the heat transfer coefficient and the effective ther-
mal conductivity both decrease és solid is lost, with the result that
the surface boundary condition is the same as the constant effective
conductivity cése while the decreasing effective conductivity appeaféas
an equivalent endothermic contribution in the energy equation. Neither
case causes the temperature to deviate much from the constant effective
conductivity solution for the parameters that were used. The primary
reason is that the temperature dependency in the surface boundary con-
dition causes a compensating effect in both cases. For Case 1, as the
surface temperature tends to rise, the difference in the source and
surface temperatures becomes less, decreasing the heat flux to the
-surface and partially decreasing the rate of increase of the surface
temperature. Likewise, for Case 2, as the surface temperature tries
to rise at a slowér rate, the temperature difference is greater causing
a higher heat flux. As higher source témperatures are used, the trend

would be for a greater effect of the changing effective thermal
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conductivity on the temperature since the surface and source tempera-
ture difference would increase, thus decreasing the influence of a
changing'sﬁrface temperature.

When the radiation boundar& condition is used, the effects are
more pronounced.. For no heat dfvreaction and a constant heat flux
input, Figure 21 shows how the decreasing effective thermal conducti~-
vity affects the surface temperature history (Case l). Sihce the ef-
fective conductivity depends on the amount of solid present, calcula-
tions were made for two final solid densities, 50% and 807 of the orig-
inal density. The temperature increases faster as the amount of final
solid decreases. The slope of the temperature rise after the reaction
has been completed is the inverse of the final density. As the solid
drops from its original density to 50%, the surface boundary condition
shows that the slope of the temperature profile increases from 1 to 2.
For 80% of the original solid density, the'slope increases from 1 to
1.25. Thus, for Case 1, low final solid densities will greatly affect
the slab temperatures.

Case 2 for the constant heat flux condition has essentially the
same boundary conditions as the constant effective thermal conductivity
case but iﬁcludes the effect_of the change in the effective conducti-
vity in the energy equation. .Figure 22 gives the temperature history
for the front and back surfaces with no heat of reaction. The result
shows that the changing effective thermal conductivity appears in the
energy equation as an endothermic reaction if the heat inpﬁt decreases
so as to hold constant the slope of thé'sugface temperature profile.
This contfibution does not occur at exactly the same time as a true

endothermic reaction because the heat generated from a reaction depends
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on the time rate-of-change of the solid, while the contribution from
the variable conductivity depends on the product of the rates of change
of density and temperature with respect to x (see Equations 2.3, 2.7,
and 2.8).

The combination of an endothermic reaction and a changing effec~
tive thermal conductivity is given in Figure 23. This figure shows
the surface temperature history for Cases 1 and O together with Case 1
having an endothermic reaction. For Case 1 with the reaction, the rate
of temperature rise first begins to decrease from the constant effec-
tive conduétivity case, indicating that the endothermic reaction is
affecting the temperature more than the changing effective conductivity.
As the reaction proceeds, the high rate of increase of the temperature
from the changing conductivity eventually causes the temperature to in-
crease at a greater rate until the surface reaction ends and the rate
of temperature rise is parallel to the Case 1 value. The overall ef-
fect of the changing effective conductivity cénnot be represented by
a single equivalent reaction.

The effect of a density-dependent, effective thermal conductivity
and heat transfer coefficient is ﬁegligible for convective heating
when source temperatures are low. For radiant héating and high source
- temperature convective heating, the change in effective thermal con-
ductivity can greatly affect the temperature history of the slab.

This is especially true as the final densities become smaller. These
effects must be carefully considered when interpreting temperature

histories.
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Three Reactions-~Case 0

The effects of parameter changes on the competing reactions were
studiéd-with zero heats of reaction and a constant effective thermal
conductivity. Figure 24 shows typical deﬁsity curves for the three
solid species and Gas,. Gasj and Gasy are not shown since they are
similar to Gas,. As Solid; réacts; it gives off Gas3 and forms Solid;.
At higher temperatures the competing reaction tends fo form more Gasy
from Solid; . As the temperature rises, Solid; begins to give off Gasg
and form Solidg. When the rate of reaction of Solid, equals its rate
of formation, it species curve reaches a maximum. The final species
present is Solidg with Gasy indicating the total amount produced from
the slab,

For cellulose, Gasy is the flammable species that competes for
Solid;. Its iﬁportance in ignitiqn and combuétion occurs in several
ways; ignition may occur if the surface temperature and the quantity
of Gasy evolving is high,‘while sustained combustion depends on the
rate as well as the quantity of Gasy evolving. Figure 25 indicates
that a change in the heat flux parameter does not have as much effect
on fhe‘total.amount of Gasy produced as it does on tﬁe rate of evolu-
tion and the time when it is evolved. The maximum rate of production
of Gasy (indicated by the slope of the curves) is not much greater for
the higher heat flux parameter case bﬁt the maximum is attained quicker
and held thfoughout most of the reaction.

The amount of Solid; thaﬁ does not form Gasy has gone to produce
~‘the other species. Since a higher heat flux produces more Gasy, less
Solid; is available for the other species. Figure 26 shows that the

amount of char formed is less for the higher heat flux but like Gasy,
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its rate of formation is higher and time of formation is much sooner
than for the lower heat flux case.

One theory for the addition of chémicals to the solid for fire
retardant purposes is that it tends to lower the activation energy for
the first reaction thus producing more char and less Gasy. Figure 27
shows that lowering the activation energy for reaction 1 by 47 increased
the amount of char by 30%, which also greatly reduced the amount of
Gasy produced. The reaction times were about the same with the rate of
production then depending on the amount of Solidg produced.

The largest experimental error in the kinetic constants occurs in
the determination of the frequency factor since the actual mass of re-
actant is difficult to determine for multiple reactions. Figure 28
shows the effect of a change in the frequency factor for reaction 1 on
the amount of_Solidg produced. Increasing the frequency factor by a
factor of 5 increased the amount of char by a factor of 3.

The amount of solid present may be important to slab strength con-
siderations as well as for thermal conductivity effects. Figure 29
shows the total solid history for changes in the activation energy of
reaction 1. The early times of the reaction show less solid present
for the lower activation energy case and the latter times show more
solid present. The higher activation energy case delays the reaction
of Solid;, causing more total solid to be available in the early times,.,
In fact, combinations of the kinetic constants could produce a cross-
over point>of equal amount of solid for high and low activation ener-
gies that was less than some value for strength requirements. This
would mean that addition of fire retardant chemicals could produce a

solid that burned slower but failed quicker than an untreated solid.



DENSITY SOLIDg (pg) .

0.6

05

o
D

(©]
(&3]

o
n

ol

E, =48 (RUN 082)

] i 1

ot | .
06 0.8 1.O 1.2 4 |6 1.8

TIME(t)

Figure 27. Effect of Change of Activation Energy
Parameter for Reaction 1: Production
of Solidg at x = 1.0--Convective Heat-
ing, Three Reactions, Case 0

78



'DENSITY SOLIDg (Pg)

Ol

0.5

0.3}

02f

F, = 5x10™
(RUN 080)

F, = 1072
(RUN 083)

|

' ,
08 10 .2 14 le 1.8
TIME(t)

Figure 28. Effect of Change of Frequency Factor
Parameter for Reaction 1: Produc~-
tion of Solidg at x = 1.0--Convective
Heating, Three Reactions, Case O

79



SOLID DENSITY (p)

i 1 1 0 1
o8t 4
i E,=48 (RUN 082) }
0.6 i
E, = 50 (RUN 080) ]
Q4+ . 4
0.2+ .
O I A H 1 i 1 J 1 { 1 1 H 1 | 1 H o
0 0.2 04 06 0.8 1.0 12 14 16 1.8
TIME(t)

Figure 29.

Effect of Change of Activation Energy of
Reaction 1: Production of Total Solid
at x = 1.0--Convective Heating, Three
Reactions, Case 0

~ey



81

In conclusion, this section showed how the competing reactions
affected the production of Solidg and Gas, when changes were made in

the kinetic constants and heat flux parameter.
Three Reactions with Heats of Reaction

After investigating the influence of separate events, the problem
was calculated with all the reactions and heats of reaction included.
For the radiantly heated boundary condition, the density-dependent,
effective thermal conductivity case was used with a constant heat flux
at the surface and no heat losses (Case 1). Cases 0 and 2 are not
presented since Case 1 isvcloser to the actual physical situation, and
similar effects of the two cases are shown by the convective heated
boundary conditions.

Figure 30 gives the temperature history for the radiantly heated
slab with endothermic, competing reactions producing Gasiz, Solidy, and
Gasy, and an exothermic reaction producing Gass and Solidg. At the
surface, the endothermic reactions and the decreasing effective ther-
mal conductivity tend to cancel the héat production effects while the
endothermic reactions and the decreasing conducted heat effects the
temperatures farther into the slab. Eventually, the exothermic reac—
tion at the surface combines with the decreasing effective thermal con~
ductivity to increase the temperature from the inert solution. An
effect due to the approximation technique is seen next as the surface
temperature tends to level off when the exothermic reaction ends and
the interior endothermic reactions continue. When the exothermic re-
action starts at the next approximation point (x = 0.8), the tempera-

tures all increase .at a steep rate as the combined effects of heat
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generated and the decreasing effective thermal conductivity force the
temperature up. In reality, the surface temperature would continue
increasing when its exothermic reaction ended for the reaction would
be coﬁtinuing into the slab, decreasing the heat conducted from the
surface. Figure 31 shows the production of Solidg and Gasy at x = 1.0
and x = 0.8 (the next approximating strip). The slopes of the species
curve is pfoportional to the rate of the reaction producing that spe-
cies. The rate of reaction 2 (producing Gasy) begins increasing at

X = 0.8 before it starts decreasing at x = 1.0, Thus, the finite dis-
tance between the approximating strips does not visibly affect the
temperature history. The rate of reaction 3 (producing Solidg) however,
is almost zero at # = 1.0 before it becomes significant at x = 0.8.
Therefore, the effect of the finite distance is as though the reaction
was turned off and then on. This shows how the width of the reaction
zone can affect any approximation technique that uses a finite number
of points to represent the slab. Without changing the parameters or
kinetic constants, this error can be reduced by increasing the number
of approximating strips and thus decreasing the distance between the
strips. This also illustrates the difficulty. in calculating the tem-
peratures for this type of boundary condition with exothermic reactions
because, as the reaction proceeds into the solid, the reaction rate
increases, the temperatures increase, and the higher temperature reac—
tions (here, the exothermic reaction) dominate, causing the tempera-
tures to increase more, increasing the mass loss and decreasing the
effective thermal conductivity. This quickly becomes a runaway situ-
ation with the slab probably following different boundary conditions

after a short period of time due to re-radiation or ignition. Of
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course, selected values of the reaction constants are possible that
would enable this case to be calculated accurately but would probably
not be physically realistic.

For the convectively heated boundary condition, three reactions
are used, first with a constant effective thermal conductivity and then
with the Case 2 conditions. Figure 32 -gives the temperature history
of the front and back surfaces. The initial endothermic reactions
cause the surface temperature to fall below the inert solution until
the exothermic reaction increases the temperature above the inert value.
At the back surface, the decreasing conducted heat and the endothermic
reactions cause the rate of temperature rise to become less than the
inert solution. However, as the exothermic reaction begins generating
heat from the front surface, the heat begins to accumulate and increases
the reaction rate Within-the solid and finally causes the back surface
temperature to exceed the frqnt surface temperature. The initial endo-
thermic character of the reactions caused the competing reactions to
produce more Solid,, and thus more Solidg, part of the way into the

"solid. As the exothermic reaction began to dominate, the competing
reactions began producing more Gasy, and thus, less Solidg. Table VII
shows the final slab distribution of Solidg.

If the heat flux parameter is decreased slightly from 1.5 to 1.45,
then the first competing reaction will produce more Solid,, and thus
Solidg, by being held longer af the lower temperatures. Figure 33
shows the difference in the temperature histories of the front and
back surfaces for the two heat flux cases. The smaller heat flux de-
lays the heating events and, by producing more Solidg, causes the exo-

thermic reaction to produce more heat and increase the slab temperatures
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TABLE VII

SLAB DISTRIBUTION OF SOLIDg

Density of Solidg

= G = 1.45 G = 1.5 6 =1.75
1.00 .5248 .5195 .4975
0.75 .5260 .5209 .5005
0.50 .5241 .5193 .5008
0.25 .5209 .5161 L4984
0.00 .5192 .5143 4965

at the later times. .

The mass flux also reflects the change in the heat flux parameter.
Figure 34 shows that the higher heat flux not only causes the mass flux
to increase and occur sooner, but also tends to separate the two main
gas producing events which occur as a result of the overall reaction
rate increasing in the slab after initially decreasing.

The higher heat flux was then used with the Case 2 boundary con-
dition that considers a density-dependent, effective thermal conductiv~-
ity and heat transfer coefficient. Figure 35 gives the temperature
hisfories for the two surfaces compared with the Case 0 solution.. The
resulting effect is that of an endothermic reaction that occurs over
the entire temperature range but occurs slightly "out-of-phase" with
the other reactions (as described earlier). Also the exothermic reac-
tion tends to be dampened since the trend to increase the change in den-

sity and temperature in the x-direction would givea higher endothermic
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contribution from the conductivity term. Figure 36 shows that the
mass flux is modified from the resulting lower surface heat flux.
This section presented the results of three competitive and con-
secutive reactions with endothermic and exothermic heats pf reaction.
It was found that a small change in the heat flux parameter greatly
affects the temperature history, mass flux, and final char distribu-
tions. Higher heat flux values also make heat transfer coefficients
and effective thermal conductivity effects more important. A major
effect of the competing‘reaction is to cause a change in the charac-

ter of the reactions throughout the slab.
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CHAPTER V
SUMMARY

The literature pertaining to the pyrolysis of porous solids was
reviewed for information regarding the extent of previous mathematical
analyses and experimental determination of the important physical
events. As a result, the mathemdtical analysis was extended to include
competitive and consecutive, homogeneous reactions with reactant deple-
tion and consideration of both‘a constant and density-dependent, effec-
tive thermal conductivity, Two types of surface heating for a finite
thickﬁess, infinite slab were considered: a constant heat flux, radia-
tive_type,and a constant source temperature, convective type. A density-
dependent, as well as a constant, heat transfer coefficient for convec-
tive heating was included in the various cases that were studied. The
characteristic non—-dimensional parameters were also developed for both
types of boundary conditiqns.

In order to solve the resulting unsteady, non-linear, second—ordef,
partial differential equation, a numerical technique was developed,
based on the method of Integral Relations. The technique requires only
a small amount of computer storage and can obtain aécurafe results for
most cases with three to six approximating strips. The ability to ob-
tain better approximations by increasing the number of approximating
strips is limited only by the longer computer times required.

The computed results presented temperature and species histories
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and slab profiles as well as mass flux, reaction rates, and weight loss
information. It was shown that the heat generated or absorbed from

the reactions has a great effect on the solid ahead of and behind

the reactions as weli as in the reaction zone, not only with respect

to temperature, but also reaction rates and mass flux. An increas-

ing surface heat flux increases the maximum reaction rate and the
temperature at which it occurs.

The effect of a density-dependent, effective thermal conductiv-
ity and heat transfer coefficient is negligible for convectiyve heat-
ing when source temperatures are low, For radiant heating and high
source temperature convective heating, the change in effective ther-
mal conductivity can greatly affect the temperature history of the
slab. This is especially true as the final densities become smaller.
These effects must be carefully considered when interpreting temper-
- ature histories. ”

Small changes in the activation energies, frequency factors,
and surface heat flux, greatly affect the time and rate of produc-
tion of species for competing reactions while only slightly affecting
the quantity produced.

The competing reactions cause a'change in the charécter of the
overall reaétion throughout the slab and enable small changes in
the surface heat flux to greatly affect the temperature history, mass

flux, and final char distributions.
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APPENDIX A
INTEGRATION OF EQUATION (3.1)

Starting with Equation (3.1), each term can be integrated as shown.

1 1 2 1
\ 3T _ 32T 1 9p OT
Jo fm(x) ot JO fm(x) %2 dx + JO fm(x) p 93X 9X dx
I II III
3 n
l —
-5 .Z jo £ (x) H dx (3.1)
i=1
IV

Term I:

Using Leibnitz's rule

. fm(x) T dx = 0 fm(x) 3¢ &

e

I
Term II:

Integrating by parts

3T

1 42 ' 1 A 1 1 d%f
0 fm(X) ax2 dx = fm 3%

m m
0 - 'ax— + a2 T dx (Aol)

0
IT

Since

fm(x) =1, X, X%, ¢« « o X(N—l) = X(m—l), m=1,2, ..., N)

(A.23a)
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then
df df df
m _ (m~2) 1 _ 2 _
= ‘- (m 1) x i 0, = 1 (A.2b)
and

d?f

—E;% = (m-1)(m - 2) x(m—B)

Therefore, Equation (A.l) is

0 (boundary condition)

1 2 T’ =0« =
J £ 2 dx = o "j%g(’ -@-D T+ F0ER 2
o Flx=1 x=0 =1 >
IT
1 _
+(m-1)(m- 2 JO AL Y
Term III:
Write-%-gi as éﬁ&%;Bl then, integrate Term III by parts.

1 3(2n p) 3T aT| ! ! 92T

Jofm———ax de-fm'lnp"a—}zo—ofm n p —Bzd
IIT
I P
0 ° dx X

Using Equation (A.2)

1
a(4n p) 3T . _ .3
Jo fm Ix  9X dx = fn o X

1 . 2
T - J x(m D fnp %—%-dx
_ 0 X
x=1

ITI

(1 (m-2) 3T
- (m - 1) JO np *x P dx

Term IV:

Substitute for fm(x) from Equation (A.2a)

(A.2¢)
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fl D~

1 1y
J x(m 1 H, dx
170 *

Putting the equivalent expression for each term back into Equation

(3.1) yields Equation (3.4).



APPENDIX B
INTEGRATION OF EQUATION (3.4)

Substituting the approximations (3.5) into Equation (3.4) and .

multiplying the x-polynomials result in

a [r N2 (mrtn-2) 3T N2
T JO Z Ay dx = == . - (m - 1) Zl Ay +Aq) L
1 N+2 _
+ (m - D(m - 2) J z A(n) (mtn-4) dx
E [t (m+n-2)
+ 4n 3* el JO nz Jl(n)
1 (m¥n-3)
- (m.- 1) JO ) 32 (m) dx
1 3 Ry N (wtn-2) dx (B.1)
-G z -F-'— z H ‘
i=1 170 -
Integrate Equation (B.1) aﬁd obtain
N+2 1 B0 | N+2
L D g - @rme Bl - @-D Zl Amy ¥ A Tne2
| Nerz _1 If ()
tm-D@=-2) ] (A, - Ly,
n e €Y B
N 1 L 3 NEl
- (m-1) (——==)J - = ﬁﬁ
m nzl mn-2""2()" G iZ F, b ()
(3.2)
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Where B =-§I
ox
x=1

and depends on the type and case of boundary condition

being considered. Terms 2, 3, and 4 to the right of the equal sign in

.Equation (B.2) can be combined in the following way: First, rewrite as

N+2

-m-1) A - m@-1) ] A, , +A + (m-1) A
L noy (@ €] (G F

N+2

+m-Dm=-2) ) (—=——) A

oo W +n - ? (n)

then, the A(l) terms will cancel for all values of m and the remaining

terms will combine to give

N’Zfz [(m - Dm-2) M2 w-1

L (m+n-3)f(m'lﬂAm)='m'l)£2oﬁrn-a)ﬁm

When the temperature approximation (3.5a) is used in the boundary con-

dition (2.11d), the result is that A (t) = 0. Therefore, the summa-

(2)

tion index on the above term can be changed to

N
(n+ 1)
- @- 1 nzl @+n- D @) (B.3)

Likewise, the first term of Equation (B.2) can be written as

N dA
@8) 1 (nt+2)
+ Zl (m +n + 1) dt (B.4)

Substituting expressions (B.3) and (B.4) into Equation (B.2) gives

Equation (3.6),



APPENDIX C
EVALUATION OF INITIAL TEMPERATURE COEFFICIENTS

The temperature approximation (3.5a) is used in the boundary con-
ditions (2.1la, d) to evaluate the initial values for the coefficients

in the following way.

Since
T(x, 0) = 0
then
N+2
L Ay © D 2 (c.1)
n=1
giving
A 0) =0 . C.2
(1) © (c.2)
Since
3T
0x x=0 = 0
then
A 0) =0 ' {C.3
(2)( ) (C.3)

- —p0, X __a@ _1
At x =1, t = 03 5x o1, 0) ~1° all cases

Therefore,
N+2
) (@-1) Ay © =1 (C.4)

n=3

Equations (C.1) to (C.4) are also Equations (3.9).
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APPENDIX D

CALCULATION OF THE TEMPERATURE IN
AN INERT SLAB BY THE

INTEGRAL METHOD

For the inert slab only the first two terms of Equation (2.9) are

needed:

3T 34T
—a? = 3X2 (Del)

The boundary conditions will be Equation (2.1la, d, f):

T(x, 0) = 0 (D.2)
T
_g; = (D.3)
=()
T : ) \
— = 1 (constant heat flux) (D.4)
ox x=1

Following the steps outlined in Chapter III, "Summary of the Inte-
gral Technique," the slab is divided by two planes (N = 2), the sur-
faces x = 0 and x = 1. Equation (D.l) is multipliéd by the weighting

functions, fm(x) = 1, x, and integrated over the slab:

1 Tdx=19+— -1« = - T(1, t) - 0O+ TCO, £ty - O
0 oxX ox _
x=1 x=0

{D.5a}
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d 1 . )
——Jx-de=(l)-% —(0)—;’% ~T(, t) - 14T, t) -1
x=1 x=0

(D.5b)

Using the temperature approximation, Equation (3.5a),

N+2

= (n—l) - 2 ! 3
T(x, t) ngl A(n)(t) X A(l) + A(z)x + A(B)X + A(4)x
(D.6)
Equation (D,3) gives
A(Z) =0 (D.7)
while Equation (D.4) gives
2A(3) + 3A(4) =1 (D.8)
Using Equation (D.6) and (D.7) in (D.5) gives
—d-[l(A + A, \x? +A,,.x3) dx =1 (D.%a)
dt jo (D) (3) (4) T
~‘-1—J1(A x-‘I-A x4+ A, x") dx=1-A,, -A,. (D.9b)
dt o L (3) (4) (3) (4) '
Integrating
dA, -, dA dA
@ 173 177G \
&t "3 7a ti i ot (D-102)
dA dA dA
R O I i ) I S €O _ o
2 dc TITE tsTa T lTAm T Aw (P

Taking the derivative of Equation (D.8) and using Equation {(D.10) elim-
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4 _1_277(3
dt 7 3 3 dt
dA dA
L 1703 .
Tt + AT =1 (D.11a)
dA dA
@, 7253 _,
3 —EE~—~+ Iﬁ It = 4 2A(3) (D.11b)

Solving Equation (D.11) simultaneously gives explicit equatioms

for each coefficient:

dA
1 _1,5
Tt =% + 3‘A(3) (D.12a)
dA
(3) _ <
ers 5 lOA(B) {(D.12b})
Integrating (D.12b)
A = l-+ c, e”l0E {D.13)
(3) 2 1 '
Substituting Equation (D.13) inte (D.12a) and integrating
A = t -1 c.e~t0t 4 ¢ {D.14)
(@B 6 1 2 ' :

Using the initial conditions (D.2) at both N strips together with
Equations (D.8), (D.13), and (D.14) evaluates the two constants. The

coefficients then become

- 1, -0t _
A(l) =t + 7 (e 1
1 _ a.-10t
_ —10t
A(4) = @
A = 0

(2)
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Equation (D.6) then becomes
T(x, t) =t+%xz-%+%(l—6x2+4x3) e~ 10t

Compare with the exact solution from Carslaw and Jaeger (6):

- l.2_ 1,2 LS A -2
T(x, t) = t +-2 X 6 + = (1L - 5 X + 5% ¥ . . ) e o o



APPENDIX E
CALCULATION OF GAS SPECIES

By identifying the fraction of each.solid species that is consumed
or produced in the various reactions, the mass balance equations (2.5)

can be used to calculate the gas species.
P1,1 = mass of solid; converted to product in reaction 1
p1,2 = mass of solid; converted to product in reaction 2

p2,1 = mass of solid; produced in reaction 1

p2, 3 = mass of solid; converted to product in reaction 3

P1s P2s and pg are the calculated solid species that are present at a
given instant. o3, oy, and psare the gas species that have been pro-
duced up to a given point in time.

Then,

=

=p1 +tp1,1 +pr1,2

1

c1p1,1 = p2,1 = P2 + P2 33 (1-c)e1 1 =p3
P1,2 = Py
C202 3 = 06 3 (1 - 02)02’3 = pg

Using these relations, the amount of each gas species can be found

from the solid species:
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Pe e2 06
= + — = e
02,1 P2 Co ’ pl’l (3] c1Co
P2 Ps
= — — = E.l
pg = (1 c1)(Cl c]c2) Gas3 (E.la)
(%] Pe
—_ — - s = Eolb
py =1 = p (Cl C1C2) Gasy ( )
1l - co
pg = ¢ - ) pg = Gasg (E.1lc)
V4

Equations (E.l) then become Equations (3.11).



APPENDIX F

DERIVATION OF EQUATION (2.4e)

Start with the species

divide by p? .

9(an o)

ot*

and take the x-~derivative

3 n pf
B —)
ax* at*

equation for Solid; (2.8a)

-of (k1 + kp)

]

*(kl + kz) R

dk;  9ko
T

Since ki = a, exp[(-E:)/(R°T*)], then

ok,
i

a E% ~F*
1" ar+ >

Ax*

1
= TR 5% °XP(FETw)

at x = 0, Equation (2.4d) gives

thus, at x = 0

9T*

i
aki
aex = 0

109

(F.1)
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Equation (F.l) then becomes

3 4n pf

ot*

)
ox*

( ) =0

Reverse the order of differentiation,

3 in p?

ax*

= ) =0

integrating,

3 4n p?

ax®

f(x) + ¢

or also,

*
1 %P1

pE e - e

ap-}:

1

Since oF TRE is not a function of time, it can be determined by evalu-

1 .
ating it at any one value of time. At £t = O, p? = pg, a constant.
dp¥* .
1
Therefore, Txx 0 for all time at x = 0. The same approach is taken

for other solid species so that Equation (2.4e) can be shown for the

total solid by

% % *
apx _ °P1 . 8p2>+ % 0
Ix*  9xk Ix* = 9x*

at x = 0 for all time.



APPENDIX G
LISTING OF COMPUTER PROGRAM VARIABLES
Main Program

Computer Variable

with Mathematical
Maximum Dimension Variable Description
A(N+2) A Polynomial temperature coefficient
B (N*N) Matrix coefficients for columnwise
-input to SIMQ--destroyed in compu-
tation
E(3) By Activation energy parameter for
‘ reaction 1
G G Surface heat flux parameter
N N Number of interpolation strips
R(3) Ri Heat of reaction parameter
T t Time variable
X(N) X, x-value of jth interpolation strip
Y(202) Variables used in START and KAMSUB
to store unknowns and derivatives
AB(N) Vector of original constants for
" input to SIMQ--Returns solution
values
BO Nu Nusselt number
C5(N+1) Polynomial coefficients for average
solid (weight)
c1(N) pl i Local density of Solid;
3
C2(N) - p2 3 Local density of Solidj
3
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Computer Variable

with Mathematical
Maximum Dimension Variable
C3(N ,
(M) P34
C4(N .
(W) 4,3
C5(N .
(W) °5, 3
C6(N .
(N P61
DI n
Fl Fy
F2 Fy
F3 Fj
KS
LN (N-1)
NE (4N+2)
S3(N+1)
S4(N+1)
S5(N+1)
XJ
XP
AP1 (N+1)
AP2 (n+2)

BCS((N-1)2)
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Description

Local total mass of Gasz produced

from strip j

Local total mass of Gasy produced
from strip j

Local total mass of Gass produced
from strip j

Local density of Solidg
Summation dummy index

Frequency factor parameter for
reaction 1

Frequency factor parameter for
reaction 2

Frequency factor parameter for
reaction 3 :

Flag in SIMQ: O = normal sclution,
1 = singular solutioca (see Appen-

‘dix H)

Program constant

Number of unknowns—-for START and
KAMSUB :

Polynomial ccefficients for total
mass of Gasjy produced from slab

Polynomial ceefficients for tetal
mass of Gasy produced from slab

Polynomial coefficients for total
mass of Gasg produced from slab

Intermediate computational value
Intermediate computational value
Program constant-

Summation dummy index + 2

Matrix coefficients for total
solid polynomial--input to SIMQ



Computer Variable
with - Mathematical
Maximum Dimension ’ Variable

BDC ((N-1)2)

BS3((N-1)2)

BS4 ((N~1)2)

BS5((N-1)2)

CSl } Cl
CSZv Co
DCT (N+1)
DEL
DLP
DSM(N)
IBC
M1 (n-1)
IP1 (ntl)
1P2 (n+2)
JM1 (m-1)
MER
MOP
NP1 (N+1)
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Descriptipn

Matrix coefficients for gas gener-
ation polynomial--input to SIMQ

Matrix coefficients for total Gas,
polynomial--input to SIMQ

Matrix coefficients for total Gasy
polynomial-~input to SIMQ

Matrix coefficients for total Gass
polynomial~--input to SIMQ

Mass fraction of Solidj converted
to Solid;

Mass fraction of Solid; converted
to Solidg

Polynomial coefficients for gas
generation rate

‘Initial time step-size

Fraction used to reduce time step—
size

Local solid density time-derivative

Boundary condition type: O = Type
I, 1 = Type II (see Chapter 11}

Summation dummy index 1
Summation dummy index + 1

Summation dummy index + 2

4
i

Summation dummy index

Error calculation option in KAMSUB:
1 = relative error, 2 = absoclute
error

Integration option for KAMSUB:

1 = Runga-Kutta, 2 = Adams fixed
step size, 3 = Adams variable step
size

Program constant



Computer Variable
with
Maximum Dimension

Mathematical
Variable

NP2
NSQ

RCS(N)

WGT
XJI
ASUM

BBCS(N-1)

BBDC(N-1)

BBS3(N-1)

BBS4(N-1)

BBS5(N-1)

CSUM

DELT

DLMN

DLMX

ERMN
ERMX
FLUX
FSUM

SPC3

(N+2)

N2
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Description

Program constant
Program constant

Local total solid density at strip
J

Slab weight-—-average solid density
Intermediate computational value
Intermediate computational value

Vector of original constants for
input to SIMQ

Vector of original constants for
input to SIMQ

Vector of original constants for
input to SIMQ

A3

Vector of original constants f
input to SIMQ

@]
et

Hh
(@]
=

Vecter of original constants
input to SIMQ

Intermediate computational value

Difference in present and previous-—
ly printed time-step

Minimum allowable time-step in
KAMSUB

Maximum allowable time-step in
KAMSUB

Minimum allowable error for KAMSUB
Maximum allowable error for KAMSUB
Mass flux from slab

Intermediate computaticnal value

Total mass of Gasi produced from
slab



. Computer Variable
with Mathematical
Maximum Dimension Variable

SPC4

SPC5

SSFX(N)
TEND

TMIN

TPRT

XPTH

ICOND

NPRNT

TMPTR(N)

MCOUNT

NCOUNT
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Description

Total mass of Gas, produced from
slab

Total mass of Gasy produced from
slab

Local gas generation rate
Time value to end calculation

Minimum value of DELT for printing
all values

Value of time when values are
printed

Intermediate computational value
Effective thermal conductivity
case: 0 = Case 0, 1 = Case 1,

2 = Case 2 (see Chapter II)

Value of i for printing every ith
time step

Local temperature

Punch and/or print option: 0 =
print only, 1 = print and punch

Number of time-steps computed since
the last printed step

Subroutine DERFUN

Variables already described in the Main Program will not be listed

as they are either in common or perform the same function.

Computer Variable

with Mathematical
Maximum Dimension Variable

M m

Q(3)

Description

Summation dummy index

Intermediate computational value



Computer Variable

with Mathematical
Maximum Dimension Variab}e‘
AN N
BG((N-1)2)
BI (n+i)
BN (mtn-1)
BT((N-1)?)
DA (N+2) 44 ()
dt
GS(N) Jl(n)(t)
GT (N) Jz(n)(t)
HS(3, N+1) Hy (n)(t)
Qs q(t)
BBG(N-1)
BBT (N-1)
BH1 ((N+1)2)
BH2 ((N-1)2)
BH3((N-1)?)
BII n(n+1)
BMN (m#n+1)
BM1 m
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Description

Number of interpolation strips

Matrix coefficients for ianput to
SIMQ

Summation dummy index + 1
Summation dummy indices - 1

Matrix coefficients for input to
SIMQ

Derivative of polynomial tempera-
ture coefficients

Polynomial coefficients for effec~
tive conductivity integral approxi-
mation

Polynomial coefficients for effec-
tive conductivity integral approxi-

mation

Polynomial ccefficients for heat

‘generation from reaction i integral

approximation

Time dependent surface heat flux
function

Vector of original censtants for
input to SIMQ

Vector of original constants for
input to SIMQ

Matrix coefficients for input tc
SIMQ

-Matrix coefficients for imput te

SIMQ

Matrix coefficients for input te
SIMQ

Summation dummy index term
Summation dummy indices + 1

Summation dummy index



Computer Variable

with - Mathematical
Maximum Dimension Variable
BM2 (m—l)
BM3 (D)
oKl
CK2
K3
DCL(N) T
dt
DC2 (V) 4% (n)
dt
DC6 (N) €6 (n)
dat
DQS dq
dt
DRG
TP1
TP2
TP3
XX1 (D)
ANP2
ASRF-
BBH1 (N+1)
BBH2 (N+1)
.BBH3(N+1)
BRCS
BSUM
CNDX

Qescription
Summation dummy index -~ 1
Summation dummy index + 1
Intermediate computational value
Intermediate computational value
Intermediate computational value

Local time derivative of Solid;
density

Local time derivative of Solid,
density

Local time derivative of Solidg
density

Derivative of time dependent suxr-
face heat flux function

Intermediate computational value
Intermediate computatiﬁnél value
Intermediate computational value
Intermediate computatienal value
Summation dummy index

Intermediate computational value
Intermediate computational wvalue

Vector of original constants for

“input to SIMQ

Vector of original constants for
input to SIMQ

Vector of original constants feor
input to SIMQ

Intermediate computational value
Intermediate computational value

Intermediate computational value
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Computer Variable

with Mathematical
Maximum Dimension Variable Description
DNDX : Intermediate computational vaglue
DSUM Intermediate computational value
SUBK(3, N) 'E. Exponential term of local reaction
i,(n) . :
v rate, constant for reaction i
TSLP . Intermediate computational value
XJII , Intermediate compﬁtational value

XJP1 Intermediate computational value



APPENDIX H
DESCRIPTION OF THE SUBROUTINES SIMQ, START, AND KAMSUB

Description of the Subroutine SIMQ

%’\ﬁﬂﬁh

SIMQ

006000000.'Oﬂﬁ@@o@ul00l\&uv“ﬂeﬂoOi‘eﬂOOOQQOIOUQDBqumﬁﬂlﬂlll.ltooﬁ‘a@SIMQ

. SIMQ

SUBROUTINE SIMG SIMQ

e e . - e . e . .S51MO

C PURPOSE SIMQ
o OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMQ
¢ AX=5 SIMQ
c . SIMQ
' USAGE SIMQ
G CALL. SIMQIAGBoNoKST. - o oo . e e e .. STMG
C SIMO
C DESCRIPTION OF PARAMETERS SIMQ
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE., THESE ARE 51MQ
c CESTROVED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SIMO
4 N BY N SIMQ
€ B » VECTOR OF ORIGINAL CONSTANTS (LENGTH N) . THESE . ARE SIMQ
C REPLACED BY FINAL $OLUTION VALUES: VECTOR X SIMQ
c N =~ NUMBER OF EQUATIONS AND VARIABLES, N MUST BE oGT. ONEa SIMG
< KS -« DUTPUT DIGIY SIMO
c 0 FOR A NORMAL SOLUTION SIMQ
C 1 FOR A SINGULAR SET OF EQUATIONS SIMQ
e e, e . sIMa
C REMARKS i SIMQ
c MATRIX A MUST BE GENERAL. SIMQ
C IF MATRIX IS SINGULAR s SOLUTION VALUES ARE MEANINGLESS. SIMQ
C AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX SIMQ
C INVERSION {MINVY AND MATRIX PRODUCT (GMPRDI. SIMQ
d e o o v . ... SIMQ
o SUBROUTINES AND FUNCTION SUBPROGRAMS REQURED SIMQ
c NONE SiMQ
d » SIMQ
C . "METHOD SIMQ
c METHOD OF SOLUTION 18 BY ELIMINATION USING LARGEST PIVOTAL 5IMQ
Lo DIVISORS EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMG
i ROWS WHEN NECESSARY TO AVOID DIVISION B8Y ZERO OR SMALL SIMQ
¢ ELEMENTS. - SEMQ
C THE FORWARD SOLUTION TO OBTAIN VARIABLF N 1S DONE IN SIMQ
c N STAGES» THE BACK SOLUTION FOR THE OTHER VARIABLES I§ SIMO
¢ CALCULATED BY SUCCESSIVE SUBSTITUTIONS, FINAL SOLUTION SIMQ
€ VALUE S ARE DEVELOPED. IN. VECTOR Ba WITH VARIABLE 1 IN 8{1)s SIMQ
€ VARTABLE 2 IN Bl2)sescanosos VARIABLE N IN B(Nla . SIMG
c-. IF NO PIVQT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0 SIMQ
€ THE MATRIX 1S CONSIDERED SINGULAR AND KS 1S SET TO 1. THIS SIMQ
c. TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMQ
C _ 51MQ
’C—""‘"_'GO‘O'GQ'Q’DGﬁl°’000QO‘D‘B0‘0'.'5‘0009ﬂ0ﬁﬂnOoﬁw'ﬁ'DOBOD00'099099'9000'00@00l'.GﬂBQSz"AO
c SIMG
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G0}
002
003
Q04
05
006
007
008
009
010
a1l
012
013
014
015
016
017
018
MOY
029

02

638
039
040
041
042
043
044
045
046
047 -
048
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Description of the Subroutines START and KAMSUB

Solution of Ordinary Differential Equations

Purpose. Numerical solution of Ne simultaneous first-order ordi-
nary differential equationms.
Type. FORTRAN IV.

Mode of Operation. Real, single, and double precision arithmetic.

General Description. The available subroutine package performs

numericai integration of Ne (Ne < 100) simultaneous first~order ordi-
nary differential equations. The integration may be carried forward or
backﬁard from a specified Ne-set of one-point boundary conditions. The
user has the option of selecting the Runge-Kutta or the Adams-Moulton
method of numerical integration, When using the Adams-Moulton techni-
que, the user may try a fixed step size or he may let the routine cal-
culate its own step size based on minimum and maximum limits on the
integration errors.

In addition to the user's main or calling program, three subrou-
tines are used. Two of these are SUBROUTINE KAMSUB (NSTART) and SUB-
ROUTINE START (M1, M2, M3, Al, A2, A3, A4, A5, A6). The third, entitied
SUBROUTINE DERFUN, is prepared by the user to define the functional
forms of his differential equations.

The internal operation of the integration is carried ocut indowble-
precision arithmetic in order to improve the accuracy. The so%utions
available externally are in single precision numbers. |

Instructions for Usage.

1) The user provides in his main program the following sequence

of instructions:



a)

b)

c)
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Declare a common block: COMMON Y(202)
Define the boundary conditions:
Y(1), Y(2);}.-.?. , Y(Ne), Y(Ne + 1)
where Y(Ne + 1) is the initial value of the independent
variable.
Call the subroutine START to begin the integration process.
The subroutine requires that nine arguments be provided.
The function of each of these paraméters is described below.
CALL START (M1, M2, M3, Al, A2, A3, A4, A5, A6)

where M1, M2, M3 are fixed+point numbers and Al, A2, . . .
A6 are floating-point numbers,

M1 - The number of equations (ML < 100)

M2 - Option Parameter

M2 = 1 Integrates by Runge~Kutta Method

M2 = 2 Integrates by Adams-Moulton Method
with fixed step size

M2

il
W

Integrates by Adams-Moulton Method

with the step size internally calcu-

lated based on specified error limits.

M3 - Option parameter for error determination.

M3 = 1 Error calculated as relative error.
M3 = 2 Error calculated as absolute error.

Al - The step size. (If M2 = 3, this is used as a
first trial value and then adjusted so that the
error conforms to the limits.) A negative value
causes backward integration.

A2 ~ Maximum value of integration error at each step.
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A3 - Minimum value of integration error at each step.

A4 - Largest permitted step size.
A5 - Smallest permitted step size.
A6 - The factor used to reduce the step size when M2 =3

and the integration error is too large.
Notes: (l)'M3, A2 through A6 are applicable only
if M2 = 3.
(2) If A3=0, the routine sets A3= A2/55,
(3) A6 is specified normally as 0<A6<1;
however, an initial value of zero will
cause the routine to set A6 = 1/2.

d) Call the subroutine KAMSUB (1) for each step of the independ-
ent variable. The call is repeated until the integration
has béen carried fo fhe desired final value of the independ-
ent variable. To preserve the sdlution for later calcula-
tions or printing, it is necessary to store the values after
each call of KAMSUB. The block Y(202) only holds the cur-
rent values of the solution.,

2)vThe user defines the spécific functionél forms of the differ-
ential equation te be integrated in. a subroutine DERFUN, = The
equations must be expressed as firét—order equations. The
common block Y is utilized as follows:
YL, Y(2), . ,l. , Y(Ne) - The values of the dependent
variables.
Y(Ne + 1) - The corresponding wvalue cf the
independent variable,

Y(Ne + 2) - The current step size.



Y(Ne + 3), . . ., Y(2Ne + 2) - The current values of the
derivatives.
where Y(Ne + 3) is the derivative of Y(1) and Y(Ne + 4) is the

derivative of Y(2), etc.

Caution teo User

A labeled common block SHARE is used to transfer data internally.

The user should not use a common area with this name.



APPENDIX I

COMPUTER LISTING OF ALL PROGRAMS

.Bossn LIST

TCARD

0000G000NT LI V111 111222222222233333333334444446444555555555566666660666T11T111

_ponpy  CH Ak A 0 A 36RO R RO 3Ok 30 SO B0k SO KA A R AR A AR O e AR g ok R e ok e ol R ok ok RO R
0002 % MAIN program i
003 CxIMIS PROGEAM LS THE ENTRY POINT TO THE_INTEGRAL _MEVYHOD SOLUTION QF #*%
0d%a  CREIHE PARTIAL DIFFERENTIAL EQUATIONS. A
Q005 3 %

“ALL ARKAYS ARE DIMCNSTUNED AND EQUIVALENCED ACCORDING TO THE ORDER *%

12345675901 23456189012345678901234567T890123456T8901234567890123456789012345

Q00s
000t CAPPROXIMATION. AND CAN BE INSERTED AS A GROUP BETWEEN THE | OE%R
0004 N Y(202% AND THE FIRST FORMAT STATEMENT. ok
aona (s ~ kol
0010 CaxALL INPUT DATA IS READ IN AT THE BEGINNING OF THE PKOGRAM. Ao
L QOLL AR e . ) - X
N01e MEOFUNCTION OF THIS BEGINNING ROUTINE IS 10O CALCULATE THE INITIAL #%
L0018 L CERVALLES FUR THE POLYNIMIAL TEMPERATURE COEFFICIENTS AND THE INITIAL ¥x
0014  Cx%500 0 SPCCIES VALUES, SEND THE NECESSARY INFORMATION T THE ENTRY  *¥
0015 _CaxPOINT Bk THE OPDINARY DIFFERENTIAL EQUATIONS INTEGRATJON ROUTINE, %%
0016 @~ CH&RECOIVE THE WEW INTEGRATED VALUES AT THE NEXT TIME STEP, MAKE Lk
0017 CH¥NFCUSSARY. CALCULATIONS BASED ON THE NEW VALUES, PUNCH AND/OR PRINT #x
0018 Cx%ITHE DESIRED INFURMATIUON AND RETURN TO THE INTEGRATION FOR ANUOTHLR %%
0019 GESTIME STEP. . e
0020 C#x woE
0())1 CaxTHE CALCULATIUN OF YH[ OKODINARY DIFFERENTIAL EQUATIONS BY THE ks

CE*INTPGRAL METHUD 1S DONE IN ROUTINE 'NERFUNY WHICH IS CALLED ONLY #%

BY THE DRDINARY DIFF, EQ. RUUTINE. o - o N
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Tk *x
0025 L THE ROUNINE *SIMQY SOLVES A SET OF SIMULTANEUUS ALGEBRAIC EQUAT JONS**
0026  CH¥AND WILL PRINT AN S.S. MESSAGE IF THE MATRIX IS SINGULAR. *%
Q21  CEex ol
D02 8 € % 4t 502 40 A e AR itk o e e A o e 2o o e oo o R R R R R e R R R R O R Rk

L0029 o _COMMUN YLE202) J - .
0030 LOURLE PRfClSION H}(J),QB(&),X(()) GyBS3(25),B54(25),8S502%),BBS3(5

0031 1), RBSAL5)  BBSS(5) DCTIT) 4BCS(25) y8RCSI51 ,BRCI25) (BBDC(S)

0032 CUMMON/CUMA/X 3Gy EL3 yREI Iy FLUXSLNyNSI4 N, NEyF1,F2,F3,CS1,0S2
0033 L NP2, P WG T, [COMD 1 1BC B0, DSMI6) 4 APT

0034 DIMENSTUN Cl(Dé):fZ(Db)gCi(ﬁ)yf‘)(())|(,()( é)yA(ﬂ),TMPfH( 6),C4l6)y
0035 . 1RCSL6)S3CT) 254070550 7)SSFX{6),CS(T)

Q036 EQUIVALENCE (YL1),CHlE1)) 4L¥¢ 7)7(?(1)'1(Y‘13),C5(1));(Y(I‘)ly/\(l)),
VRO LAY Ty e e L I

Q038 1000 FURMAT(I3)

0039 _ 1001 FORMATLUL 6, 8) o ~
0040 1010 FURMATISH X{J), 4Xs LIHTEMPERATURE, 3X,LIHTOTAL SULID, 4X,9HSPECIES
0041 L 1, 5X,OHSPECIES 2, SXIHSPECIES 64 5X;9HSPECIES 345X, 9HSPLECLES 4,
0042 25X UHS SPECTES Sy 1501 MASS LUSS RATE)

20043 1MLL . FORMATU3H J=,12,1X,9E14.5) o .
0044 1500 FOHMAT(?BH MASS FLUX AT SURFACE =yE16,.649X 14HTOTAL WEIGHT =,E16.6
QC4s 1)

0046 2000 FORMATI(L16.8)

0047 Z010  FURMATIS1I0ATA) o - S

004k 2020 FURMAT{eH €I ~~y(‘lb-bp{:H E2 =,F16.6,6H E3 =,E£16.6,6H Rl =,
C004Y 10166461 RZ =401ba6y6H R3 =,E16.6) o S
0U4% 0 O30 FORMATL6H F1 =yElbeb,6H T2 =,El6.6,6H F3 =,E16.6,

L 009] 1 b1t CSL=3FLba.6,6H €527,1F1lba6)

0062 20060 FURMATEAH TEND=3E16.0646H ,[l{).(’).()H BO =4£16.0)

0053 2080 LURMATI&(2H X,1242H =,D16,611 ] o
0094 204h FURMATINHE G = D146}

0065 2070 FORMATE3N N=y13, 5%, 3HNE=¢134 SX,4HMOP=,13, 5X,4HMER=



80/80 LIST

OGS0 00 I LI LT N YL 222 200 23y A G s G a4 G 4 B 555 5N 5550666666 6667 1TTIT:
L A2D45610390123456789012345678901234567890123450678901234567890123456789012345¢

CARD
0056 1y 13, 5X, THMCOUNT=, {3, 5X,6HNPRNT=,[3,5%X,6HICOND=,13,5X4HIBC=,[3}

057 2222 FURMAT(615) N o T T
0058 3000 FORMAT(LIHOFOR TIME =,E13.,5,5%,13HTOTAL GAS 3 =,E13.5,4X,13HTOTAL
0059 1GAS & =,613.5,4%4 L3HTOTAL GAS 5 =,613.5]

0060 3001 FORMAT(IIH S$,5. FOR - 53)
3002 FORMATUL3H §.8. FOR S4)
3003 FORMATIL3H S.5. FOR §5) - ) -
3333 AT(HH ERMX=,616.6, LX,5HERMN=, E16.6,1X,5H0LMX=,El6.

L E10, A6 IX, OHOLP =,61646y 1X SHIMINS Elb.6) '

4000 FORMAT(ILIN S5.5. FOR A)

MHQQQPHWQﬁﬁﬁ, FORMAT(AF20, 6),W“‘.,m“_,.”mm.“ e e
. 0067 555 FORMAT(6D13.5) '
_m“QOoﬂm_bbhh FORMAT(6EY3.>) o o e

0069 TO00 FORMATI{I3H S.S. FOR CS ) i

0070 7777 FORMAT(I5,5E15.61) :

0071 6000 FORMAT(L3H S.S. FOR BDCY

! 0012 C * ﬁ**¢%**R[AU ALL INPUT DAIA«k#%$#*¥v#*#**u#v***#*ﬂ#*t*4*‘7#‘*#N**t

TooTy T READ T15,1000% Ny NE,MOP,MERyMCUUNT , NPRNT , TCOND, £8C
0074 READ £5,2000)F 38 F1,F2,F3,CSEC82, TENDDFL s B0, ERMX o ERMNy DLMX ;DLMN,
70075 DR TMIN )
00716 READ(S, 100V (X LT I=1yN 1+ e
0077 CA%orkdckssddokkPRINT ALL INPUT DAT AR R Ak &0 3 4ok e 30 00Rok 3ok 3 % e 400 oo sl fok
bows o WRITEL6,2010) . e i
GoTo WRITE{6,20T0IN, WNE , MUP, MER yMCOUNT s NPRNT , ECOND, IBC :

WRITE(6:20203E,R -
T R TR (6, 20301 F L, F2,F3, T Cst,cs2 T T T ’
WRITE (6, 2040} TEND ,DEL 48U L
WRITE {6y 3333TERNMK, E RMN,DLAX, DLMN,DLP, THMIN
WRITER6,2050) 61, XTI}, 151 4N )
“lelt(b./ns))a ’
_ IF{MCOUNT.CQ.OIG0 105 3 o o
LoaakGRrx Rt FE DESER {n, PUNL“ ALL INPUT DATAS RS F ok wfooeok o gk o ok lok &
WRITE( 7, 22220, NE , MOP , MER , MCOUNT ¢ MPRNT s B
WRITET Ty 4 b4b L R F L F2,Fas CST,C82TEND, DO ERMXG ERMN, DUMN DLEN,
CADLPSTHMIN
WRIf[((,SbSH)X,L
3 V!TIA(IZE T]ME TG ZERO*##***K###%vo*#v*#****###**t#u##t$*

r#.on EAREHRAFAEESET PROGRAM CONSTANTSH® 20 ddor 0 d 4 % g e X g AR ROk dof o ool e e e
LN=N=T ; :
e NP2ENGD2 e [ I
Nsu NN
b P l—N' l e n e e e o e 2 e o e [P .. Ce e e e e e - [ e
0699 APTI=NP L B i
0100 Cwnmmsspatns #%CALCULATE INITIAL POLYNOMIAL TEwii #aTURE COEFFICIENTSHeeke
0101 AC11=0. ;
0102 A(2)=0, S e
SO T T § T B ¥ B = S |
0104 DO LS 1=LyN ) T |
- Ol()l\,w T k, _“ ( I~1 ) ,(I Ni‘ T T T T e ) ) %
0106 BUK =X {J+ 1) x5 {141) o i
0107 15 TCONTTNUF ;
Loyos o LEEN . . ) S
0169 B{L1 =01
0110 ‘ ABE 4 V=0,

[T S

(=3

(@]



. 80780 LIST

0000000001 1LLL11111122222222223333333333444444444455555555556660660666T7T7TT71T1

123456789012345618901234567890123456789012345678901234567890123456789012345

CARD

LQLLl 20 __CUNTINUC e _ e -
ol12 BINSQI=NPL
Qll3 ABL N)=1,
0lla CALL SIMQUB,AB, NsKS)
0lis 1EIKS oNC LOIURITEL6,4000) T
0116 D0 2% I=1, N
0117 ACTH23=AB LY
OL1B  Casrssssriceds®SET IN[TIAL LOCAL SOLID SPECIES VALUES®¥ &k &iddsirsdhbrkions
0119 Ci{iy=1,
ol20 c2{1)=0. :
ot2z 25 CONTENUE ‘
0123 CoreendornsrioxENTLR RE S INTEGR IN START
ol24 ¢ ROUTINE o g g R AR R e d bk G o e AR R oK o A ol TR AR AR X
0125 CALL STARTINE , MOP JMER,DEL ; ERMX, ERMNyDLMX , DLMN, DLP}
0126 TPRT=0.
01217 L _NGUUN I L B
0128  Coakasiomitontx GRATE ORDINARY DIFFERENTIAL EQUATIONS EOR VALUES OF
012y ¢ i VARTABLES AT THE NEXT TIME STEP# &k ffhdth s fkxtondorn -
0130 31 CALL KAMSUH([)
0131 DELT=T-T1PRY
0132 NCOUNT=NCOUNT + 1 :
QL33 Cxmwmxysdsssxr | THE TOTAL NUMBER OFf TIME STLPS OR THE TOTAL LENGTH OF
0134 C TIME SINCE THE LAST PRINTED STEP IS THE DESIRED VALUE, !
0135 ¢ THEN THE CALCULATIONS WILL PRUCEED, OTHERWISE THE PROGRAM !
0136 C WILL RETURN TO INTEGRATE FOR THE NEXT TIME STEP.wwskwktikes |
0137 FE{NCOUNT . GE .NPRNT .ORLOELT . GE . TMINIGO TO 32
0138 GO T 31
0139 32 TPRY=T L
0140  Céxosetdrkys SOLID SPECIES VALUES, CALCULATE THE LOCAL
0141 C . . VALUE; IHBNfAQH GAS SPECIES, MASS FLUX AND TUTAL SOLID AS
0la? ¢ WELL AS THC POLYNOMIAL COEFFICIENTS FOR THE OVERALL i
0143 ¢ : AVERAGE GAS SPECIES, MASS FLUX AND SOLID WEIGHT . eswidkksiex
0144 CS{Ll)=CL{Ll1+C2¢1i+Cu(l)
014% C${2)=0, e |
0l46 NCOUNT=0
014t XP=Co 1) /CSL/CS2+C240/CSY . . e}
0148 C3(L)={1.~-CSL)=xp :
0149 C4il)=1.~CLEl)-Xp - i
0150 C5{13=(1,~C52)%Co6i}) /082 :

) -0 e RESALV=CLELaC200Y+COLRY - S
0142 SSEX({LY==-0DSM{1)
0153 D140 J=2 N o . e
0154 SSFX( JI==USM(J :
0155 XPTi4=CAtI)/C51/CS2+C2( 4)/CS] o
D C3{J)=(1.,~CSLy*XPTH
0157 =L ~GL{JI~XPTH L o
0158 G5 AT =Cs2)=C6 {17852
0159 XJ=X(J) o L
Ql60 ASUM=0,
0161 DU 135 E=1,NP?
ol62 IMl=1-1 i
0163 (#ﬂvt#t:#»#vﬂ$(AL(ULATL THE LOCAL TEMPERATURE USING THE NEW TEMPERATURE |
0i64 'C . R e g B R A X vﬂu«v*#x(*#‘!#*#*#*#vt’#**#*#***##v#

Ql6sS

'!
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LB0/BO LAIST .

000000000 T LT LI T1T1122222222323333333333444444444455555555556666066666TTTTTT
3456789012345678901234567890123456789012345678901234567890123456789012345¢

CARD
__0los TEL1.GT. NG00 TO 135

0l67 IP1=1+1 )
0168 K= {d= 1)+ TMI%LN
0169 X1 =XJg%%1p1
o170 o BCSCRI=EXSY . .
0171 BRCIKY=X T
Q172 BS3K I e e e e e

0173 BS4(K)=
0174 BSO(KYI=XJ]

017% 135  CONYLINUE

LQLTO ML e e e e I
o117 RCSEJY= CL{LY+ C2EJ1y CHEDD
0174 BBSILIMI)=C3LJ)-C3 (1)
Q179 BOSa4{dMly=CalJ)~-C4{1}
0180 BHSH LML =C5(J)~C5(1]}

0181 BOCSEIMLI=RUSEJI-RECS (L)
0182 o BBDCLIMLY=DSMEJI-DSMELY

0183 TMPTR (3 Y=ASUM -
0184 140 GUNTINUE e - o
0ras FSUM=0.
0186 CSUM=0, .
0187 TF{LM.EQ.1160 10 142
0188 CALL SIMQ(BS3,BOS3,LNyKSY R R .
0189 VFURS DHE COVWRETE 16,3001}
0190 CALL SIMAUIDBS4, B854, LN, KSY . e
0191 {F(KS.NE OYWRITF (6,3002)
0192 CALL SIMQ{BSS,BBS5 ,LNyKS)
0193 [FI{KS NE-OTWRITE(6,3003]
0194 O GALL SIMGUBCS,BBCS,LN,KS) o -

0195 [F{KS . HNE COYWRITEL G, 7000}
L0196 CALL SIMQUBDCBBDC,LNyKSY I
0197 TF{KS  NELOYWRITEL6,8000)
0198 142 DB 143 1=1,LN
0199 [P2=1+7
0200 _APZ=Lvl
G201 CSUIP2Y=0BCSTTS
0202 . CSUM=CSUMeCS{IPRY/AP2 L. .. e
0203 DETCYP2y=88DCTY ’ o '
0204 SHLIP2I=RAS3{I)

0205 Saiip231=bBBS4l 1]

0206 $5{1P21=RBS5( 1}

0207 FSUM=FSUMsDCT (TP 2Y/7AP2
0208 143 CUNTENGE . e e e e e
0209 B T o BT B 1 1 O U o

0210 DCT12)=0,

0211 FLUX=~FSUM=DCT (1}

‘0212 3T=CSUMECS L)

0213
0214 S4(11=C ~ e
0215 S5{11=¢5(1) -

0216 53{23=0,

0217 54121=0,

0218 $5(2y=0. B L e

0219 THPTRT1 = ACL)
0220 SPC3=0.

fomt

N3



80/80 LIST

00000001 111 L VL 1122222222223 F444444454465555556
123450789017 a5a (40123456 TRI0 12 3956790123456 7490123456 189012345 bivanlzaam

(ARP
0221 spla=n,
ozz« SPCH=,
0223 T N O T W OO S
(224 Hi=1
0220 SPCssaPL sy S3{1)Y/01
0226 SPCH=NPCa% Sati)/DI
0ot SPCH= PGy 55 ([ 0L
0r2 141 CUNTERUE
L2l Q00 T0 33 .
0230 DLAIREDN, PUNGE QUTPUTS &t 8 8 6 ik 64
PRy . m\lllé7,nbh<)f ﬁpcs,svca,)v(),rtuA,wur
0742 ARLTEL T, d777H 00 PMPTRES) ZRCSEI) o CH LA, C2 03 Cotud, 030D, L4 100,C05¢8
0283 PhySeixidbed=1,n)
0244 CéAfaiirsasnpPRIN] (UTPUT R4 ad so s R Ear R ik e Gl p bk SR g 2 3ok v A SR TR R
Q245 33 WRITL (6230000 L20PC3 500y SPCO . e e e e
0230 WK (6, 1010}
02s¢ WAl U La, FLEI O, THPTRESE G RESTIY, CLEJ) C20d), Coldd, LIl Catd,C50)
0240 1 SSTREaY,d=1 ,N)
D730 WITTF (6 19001 LUK HG
0240 CHkagsvensedssdf [IME L IMIT [S NOT REACHED, RETURN {0 INTEGRAT [ON
Q241 CROMEENE AR AR R R R R A G B AR AR R R GRS R R R AR R
024> TFATGELTENDYSTUP
0244 ] G0t 3y

074%% ED

128



80/80 LIST

0000u0NUOLITT UL LL1222222222233333333334444444444555555555566666660666T7T7T7717
u__l/jhﬂblﬂ“ot?}q;07H901?iq;6789012}45618001254567890)234)67890l254567H90l234m

CARD
L00UY L SUBKOUTING _DEREUN.
0002 ¢ X’iﬂf‘n‘ﬂ( /->'w<ﬂ1*«#wé(*ktttv'.17‘xxkr##v*****ik##ﬂ*####*#!é‘##t####&###**#####v#
Q003 _Cx¥% . X
00u4 (##[Hls RUUTINE IS THE COMPANTON PROGRAM FOR THE INTEGRAL MCTHOD ¥
L0005, LON. OF YHE PARTIAL DIFFERENTIAL EQUATIONS, e . bk
0006 (¢ ) . (24
UOQOI.“; MUL TANEOUS ORDINARY DIFFERENTIAL EQUATIONS ARE FORMED AND %%
0008 Tt GIVE A SYSTEM OF EXPLICIT FIRST ORDER ORDINARY *x
0009 __CEDIFEER INTIAL CQUATIONS e ——— x
0010 C¥x wE
001 L. CrxINPUT . LS THE. VARITABLES AT THE NEW TIME STEP AND COMES FROM THE = %%
0012 CH#&*INTEGRATHON ROUTINC ., %
OLEN e SO VL e e L ., L. RE
0014 ("*UUIPU! lu VHE DLRIVAVIVES OF THE VARTABLES AT THE SAME TIME STEP *¥
001y CoedeAnND WEFUBRNS THIM 10 THE INTEGRATLON RDUTINE X%
00l6  Cax ) A
L00L T, CHRDPAENSIONED AND. EQUIVALENCED VARTABLES CHANGE WITH THF ORDER QF  THE #4
0018 CHAXAPPROXIMATION AND CAN BE INSERTED AS A GROUP BETWEEN THE FIRSY WA
0019 _CErDOUBLE PRECISION STATEMENT AND THE SECOND CONTINUATION CARD OF THE #4
0026 CASLOUIVALLACE STATEMENT, %
Q21 Lx* . g
0027 CEETHE RUUTINE STIMUY SULVES A SET oF SIMULTANEUUS AL GEBKATC FQUAT[ONS**
L0023 CH#AND WELL PRANT AN 5.5, MESSAGE IF THE MATREX IS SINGULAR. = | b
0024 Ckax i
0025 LR RO A0 OO XK OR S O 5100 A¢Ao  k R RO RO K A A ARl e KO e R e AR e A
N026 COMMUN Y ({202}
0021 DUy b BPRECISTUN DIXP.DLUQ,,GQW_ -
002y DBOURE E PRECISTUN G, UMM, ASUM, BSUM, LSUM,IS(P.UR«.HS(!, T)yCNDX,
0029 LBNGBGEZY )y BRILAY L BH2{25 ) BH3025) 4 BBGLS BRHIL T BBH2{5),
QO30 2p8BH3ITO) yOML s GS61RCST6),SUBKIESE, h).Q(i),X(bl;LKllb).LK/(6),CK4(u),
BEHED B G Le BT (20, 80710} L
0032 CHMMEN/C MA/X.L,L(i)yR(s).FlUX LNy NSQ.N. Nty FLyF24F3,C81,082
00373 LaNP g Pl woT LCOND IHG 4 B0y DSMIO) cAPL N
00734 DEMENSTON BCLL6Y D026, 000161, A(ﬂ).DA(a).Cl(b).LZ(bl,(b(b)
CQUAh I ALENCE (YL, CR i Y T L2 YRR, CHTL M Y LL9) ATLY ),
Q0%6 l(Y(Rl).l)’(\(29),0(1(1)).(Y(1 )’D(?(ll).(Y(él),ULo(l)).(Y(47),HA¢1
OIS N 4 S
003H 5500 FURMAT{12H $S.5. FOR GS)
0039, 6000 FORMATLI2H S, 5. FUR_GT)
0040 6500 FURMAT(I3H S.4%. EOR ML)
L004L 6501 TURMATELAM 5.5, FOR H32) -
0042 650, FURMAT(I3H S.S. FOR HS3)
00473 9537 FURMAT({12H S.5. FUR DA} o ) . o
0044 {#v:n&#***t%*ﬁLALCU|ATF T RATLO GOF THE HEAT FLUX PARAMETER TO THE
0045 € PRE-EXPUONENITAL PARAM&rgx¢**«4tvm$vxv#*#v*rtv#t**#v*#mvkxaAw
0044 QULY “RELY/FI
_00&7 LQE2YERE2) /B2 _ . _ .
0048 GEIY=RI3I/F3
L0049 CANENG -
[s10-3¢] {1h=0,
0051 cu«anxx#i%=$*kLALCULATL THE REACTION RATE CONSTANTS AND THE POLYNOMIAL
0052 @ CORTFICTENTS FOR HEAT GENERATIUN TINTEGRAUR®&# ks v en ki a
0083 o RCSUEYECLILMeC201I+COl) e
0044 N0 40 1=1,2
0055 SURK{ Ly LY =DEXP{=E(L} /(1. +G¥ALLE))

129
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80/BO  LIST

0000000001 LI L Ll 1122202202223 33333333344444444445555555555686666666671111171
- 1234567890123456789012345678901234567890123456789012345567890123456789012345¢
CARD .
0056 HS{1y1)=CH LY #SUBKEL L) /RCSEL) e e e e e
0057 HS (1,2
0058 40 CONTINUE
0059 ‘ SUBK(3 1) =DFXPI~EL3) /(1. +G*A(1} )]
0060 HSL3,L)=C2( L) %5uBKIY, 1)/RL5(1) e
0061 HS(3,21=0,
0062 CK1(1) (L)1ESUBKL Ly L) /FL i
0063 CK2(1) CLVESUBKL 2, 1) /F2
10064 CK3ULY=C2{L)¥SUBK( 3,11 /F3
0065 DCILL)Y==CKLE{IY=CR2(1)
0066 DC24L)=CSIRCKILL-CKA(LY . e e
0067 DCG6 L) =CS24CKI(1)
0068 DSM([)=DL1!!)#DC’(!!_ caqly .- e
0069 GSCLY=DLOGIKCS (1Y 1E2 . %A(3)
0070 Gre11=0,
0071 ANP2=A(NP2)
0012 NO_60, J=2sN_ . e e e S S
0073 ASUM=0.
00T4  BSUME O e e e
10075 CSUM=0.
L0076 XJ=X ()}
10077 - DO 45 1=1,4NP?
i M1 T
0080  CSUM=CSUMtA(TIEXJEL ) L -
fFUTVOTOVLNY GO TO 45
I1P2=1+2 .
Bl=1+1
SN - L 0 S0 Bl B A SO
Xdl=xJsn]
0086 . XJPl=XJEr{Iel) o o

ASUMSASUMABT#ATIP2 Y% XIT
BSUM=BSUMEBTIXAL IP2E*X AT

K=(J=LY+IMLFLN
10090 (*********‘ﬂﬁf" CULATE PULYNOMIAL COEFFICIENTS FOR INTEGRALS

0091..C- REPRESENTING A CHANGE IN THERMAL CONDUCT IVITV® kddwkdidhksss
10092 BRI e e e S
0093 BYIKY =0T
loog4. BHILK) =XJP]
0095 BH2 (K1 =XJP1
0096 B K o e e e e
0097 45 CONTINUE !
0098 ASUMS ASUMEAPLEANP 2 ¥ X JE &N e
0099 TBSUM=ASUN+ANSAP LRANP 24X J %% (N-1) B -
0100 JML=y-1
0101 TRCSTJI=CITII+FCA(AIFCHLIN
0102 . DRGEDLOGIRCS( 41 L
0103 ARG LML) =DRGEBSUM-GSTT Y
0104 BBT(JMI)=DRGEASUM o
0105 N »0 23 -
0106 SUBK (L, J)*ULXP(-F(L)/(l.iG#CSUM))
0107 50 LONTINUF
o108 BBHIEJMLY=CLIJ I *SUBK {15 J) /RCSEII-HS L1, 1) i e
0109 BRHZ2 {TIMIY=CTCIVESUBKT2 4 JI/RCS (J)-HS 1241}
oLlo BHHj(JMl)jgglgl*CUHK(5.Jl/RLS(J)—HS(3;1! e




BO/80  LIST

T CARD

bkl

o112

QONB0UNNDI T LI L] L1122277222222333333333344445444445555555556666066660667 117111

S1234507890123456(89012349074901234560789012345678901234567890123456789012345¢

e GELAOQN 20 LA SUBK L JV/F
CR2UIP=CTOIVHSUBKL2, ) /F2

JREAD B 0 T V1. ¥ W B =1 0 GV D RSV PN W

CotgrerensbnstCALLULATE LUCAL SULID SPECIES DERLIVATIVES#®n ek ot xatt dxik &4

0lts
LOLIS o DEL Y E-CKL LD -CK2 (J)
nire DE2AAYCSEACKE(IY~CKINS)
D% A NCOHEI)=02%CKA ) .
olly NSMLIY=DCHL LI +DC2 031 +DC6 (J)
01149 o LONTLHAL .
0lzu LECUNLLDLLIGH T 90
0121 CALL SIMOLBGBRGLNIKS)
012> EF RS ONEL ORI TE [6,5500)
0123, .. . CALL SIMQ{BTBBY ,LMHeKS)
0124 ) TFAKS MO LONWRITE (6 46000) )
L2 LAl SIMOLiMYBHMY LN WKSY [ .
01206 [FKS ONELONHRITE LS 4500}
0127 CCALL STMQIBHZ,, BBIHZ LN oKS)
01213 LEIKS JHELOIWRETE(6,b501)
0129 CALL STMQUBHI BRI LN 4KS)
0130 FEORS GNECOIWRITE (O, 6502)
0131 90, CONELNUE e,
o132, ASRE=D,
0133 LDUYS JEha LN
0134 NERE R )
QL3S o P22 T . _
0136 GSLIPYI=HBG( L) :
01371 GULIPL) =BT} B
0133 ST L, 12 =0BHL(TY
Q13w . . HS(Z2elp2)=dBu2{l)
0140 a3, IP2)=83H301)
D14l L ASHF=ASRE€ALIP2)
0142 9% CUNELNUP
PRAE/R ASRE=ASKEXALLVOAUNYZ )
0144 (rrdewxsrase26CALCULATE POLYMOMIAL COEFFICIENTS FOR THE TEMPERATURE
0l4s G DERIVATIVE wiTH CHUICE OF BOUNDARY CONDITEUNS AND THERMAL
Ol4at ¢ . CONDUCTIVITY EFFLCTSR G xr ae h g d w a e D s e g ey e gz oy
Q14 . CDNDX =DSMEN) » :
0144 CNDX=ACS (M)
L0144 LFEALLCUND LB, 136G _—
010 CRCSEN) =L
JOMsE o DHDXE0. . R
0157 CIFCEGUNDLEWLDICHDX =1,
COIs - 96 TR2ENT) '
0154 [FAIBCEQ EITP2={1 . ~BUXASRF) -
1o ISEP=4)  4DLIGHC 2/RCS MY o e
O0iL5k BROS=BOLRLSINY
L0157 BOCLID M=, N
AlLvE ASUM=0 .
C01bY  BSUM=0.
016Gy C5UM=,
D6l NSUM=0, o -
0lel Hidl =M
Ve o DDUT0S =1y NPY
oLb4 M=o [ -1 :
CYes D 100 J=1,43
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80/B0O  LIST

A OO T T Y T T T2 002720 22233343333134444444444565555555556066606660667711117
123096 135012 3650 (30012 3006 1890 123456 7890123456 TB9012 3456 749012 3456 189012 3496

CCARL )

01t CSUMTCSUMAGES b 2S5 (d, 1) /78N

0lot 10 CONT MU

LA IR, 6T NG TU 108 N

Oba Beati=™Me ¢

0170 CREES RN

Q111 BSUM=BSUMEBMI*ALT+ 2} /BN

IRE K Mi 1o pp

0173 Bt bK) =1 /7 4MN

0114 CLEUIEAND L ERL0360 1) 10

nLIe ASUM=ASUMEGN( 1)/ BN

0176 CPHOLLGTL L6010 105

01/ DSUM=DSUMTGTEL+ 117 BN

oLy 105 CONTINNE

01149 BlLEM) =1, /Z1iM]

_Qlsn LI s N0 P

D1H) Xx1=i+l )

S 0lyp TUUINC 00 L) XXE=XXTHHRCS

0163 BHILL) =X X1

) TRIPEE |

Olan BAHT MY = TSL P~ BM2 23 SUM= ASUN=BM2 2D SUM=( SUM/ G
Olue 110 CONTINUE L :

0147 ‘ ipy=n, )

01 4R 10300501

0119 FFOIBLL.E0IG0 10 1HL

Qa0 TP3=0.

01y} IP1=BRCS

0192 - CLEE BN ) =11 o : o
01y . BOHLIMP LY =~ 1 P2 %00 7RCSTNY ZRCSINY € 1P 3/RCSONY T
0174 CALL STAQUBIL, BUHT (NPT KS)

orsn THF RS JNE LI HRITE(6,49500)

0190 DS 1=2,NP

01497 DACTET Y =RIHLCL)

QU 115 CuNTINUE o L
aloa DALY =03HLT1)

Q200 T DAY =0,

0201 REVURN

0ane Y

02073 FUNCTION QST

0204 AS5=1. ~ o
078 RETURN

0206 END

T0207 7T T FUNCTEON DRSET)

0208 DAs=Eo.

0209 T TRETURN:

0210 ¢ ND
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80780 LIST

DO T T T T I 227220227 23933333 033444444644445555555555606866666L8TTTTTTH
CE234567A459) 123456 TAINL2 1436 T390123456T7890123450 7890123456 7890123456 189012 345¢

| Doks

(AR

CARD
. 0041 SHBRUOUTING SEMGEA, N, Ny KS)
0092 DEUBLE PRECISTILN DABS
0003 DOUBLE PRECISTUN BIGA, SAVE, ALLY,B{ L)
J0oo0n ¢ i
-~ 00y ¢ FORWARD SULUTION
0006
0001 10L=0.0
QuIE KS=0
0039 AR ——
0010 DO 65 Jd=1,N
_oovy JY=det
0012 Jd=Jdd+Ne )
0013 BLGA=D
00L4 (EENEEN|
0015 D0 20 1=d,N i
0016 L . .
_oory G C SEARCH FDR MAXIMUM COEFFICLENT IN COLUMN
001a ¢ )
0019, Ad=1Td )
002.0 LFCODARSERICAY-DABSEACTIN ) LGELO0.3G0 TO 30
002} BIGA=ALT S - B
0072 THAY =
0023 30 - COUNTINUE
0024 € ' )
_007u ¢ TEST FUR PIVUY LESS THAN TOLLRANCE {SINGULAR MATRIX)
0026 € ‘ :
0021 FECIDABSIBIGAI-TOL 1. GF.0.000 TO 42
00728 G
Looes CRETURN
0030 ¢
0Nt C CINTIRCHANGE ROWS 1F NECESSARY
00472 C
0033 40 F1=deNEL g2 ) e
0034 I T=THAX=J i
0035 DL SO K=dsN
0036 TliEllaN
0037 o i2=lleld
0034 SAVE=A{L1)
0034 ALEL)=AL12) e
004D AT172 7 =SAVE
C 0041 C S
Tooed 07 DIVIOD LWUATION BY LEADING COLFFICTENT
__0041 € . .
0044 B0 ALY SALTEY /G TGA
L 0044 SAVE=u{IMAX )
004t HCTMAK Y =000
0047 , BESYESAVE/RIGA
To0as ¢ T
S ooa ¢ FLIMINATE MEXT VARIABLE
Toosn ¢ :
0051 i F{id=r) Wb 0ol TO 10
0057 IS AN o o
L0053 DD eh IXEJY N
0054 IXJg=10%5+¢1¥

SiM

S

SiMe
STM.
S1M7
SEML
STM,

S

S IMi
SIM.
5 1M
S I M(
STH(
StM

5

SIH,
ST
SIN
StM:
Sit

YT

STMi
SIME
5 Mt
S M
SIH.

Teim

S M
SIme
SHt
StM
REED

TSiM

SiMe
SiM
St
STM

TRIM

51M
St
SIM
SiM:
SiH
Sm
S M
SiM:
S 1M
S M
S

ST

51M:
STM
St
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BO/BO LIST

CO00C0NN0T1 11l LI1122222222223333333333444444444455555555556666666666111117
123900 7390123456 7840123456 T3901234560789012345678901234567890123456789012345¢

S Mt
ST Mt
SIM

Sit
SIMi
SIM

SIm
SIM-
SIM

CARD
Q050 LU0 60 IX=dYaN
F00% 7 [XJIX=NHLJX=1) 11X
L0058k PAX = XX LT e e e e e
TOOG% A0 ALTAIX)=A0IxdXI=tALIXDY*ALSIXT)
0005 L Hh BEIX R0 I~ LB s FALIX DY )
o061 ¢
.0hoe? € PACK SOLUTION .
L0063 C
_0064 10 NYzN=L e et et et oo et e e
0065 REREIY
L 006E )30 J=1anY
noat (A=1T-)
. Q06w o IREN=
. 006G [C=N
Loore DOBO K=ty N
0071 BOER) =B IR =A(LAIRBLIC)
L0072 [A=]A-N
0073 40 1C=1C~1
0074 RETURN.
QnThH END

STM
S1M.
SIM
SIM
SIM
SIM
SIM
SIM
SIM
SIM
SiM
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. BO/80 LIST

Q00000NN0111111111122222222223333333333444444444455555555556666666666T7TT1T17T

123656789012345678901234567390123456789012345678901234567890423456 189012345/

CARD

L0001 SUBROUTINE KAMSUBINSTART). S . S

s 0002 COMMON Y (202}
0003 GOMMON ASHARE /NN, SPACE s MODE (KKA,ELMAX  FIMIN,F2MAX, EQMIN, FACT
0004 DIMEMSTON DELY(4,1000yBETL4) ,XVI5),FV(4,100)}
0005 COMMON/INTDAT/2(5,202} 4 LERR
0006 NOUBLE PRECISION YU{5,100)
0007 C _ e
0008 . C NG INFORMATION 1S REQUIRED IN THIS SUBROUTINE
Q009 C : : .
0010 IFENSTARTLLE.OIGD TO 9977
0011 LF{MODELEQ,1)0H 10 1001 -

0012 G4 TU 2000

0013 € . RUNGETKUITA. -
0014 1000. LL=1 )
Q015 1001 XTM2=Y{N2)
00lLé6 XTM3=XV{MM)
0017 DO 1034 K=1,4 I .
0018 XTML=BFT{K]
0019 DO_1350 1=1,NN e e
0020 DELY{K TI=SXTM2 %FEV (MM, 1)
0021 Q=YUIMM, 1)
0022 1350 vYII1=Q#XTML ~ %DELY{K, I}
0023 O YINPLYSXTMLAXTM2+XTM3 .
0024 CALL DERFUN
0025 DU1100- I=L NN e . e
0026 IPN2=1 +N2
0027 1100  FV{MM, 1I=Y{ [PN2)
0028 1034 CONVINUF )

0029 MMPL=MM+1 . . e e e e e e e e e

0030 DY 1039 1=1,NN
0031 DEL=Z{DELY (o 1) +2.0%DFLYI2; [} +2.,Q0%DELY (3, [)+DELY14,I))/9WO :
0032 YULMMP Y, Ty=YU {44, L }+DEL ¢
0033 YOI =YULMMP L, 1) : 3
0034 1039 -CONTINUE . . :
0035 MMEAMPY B e e e e
0034 XV AR =XV (MHA=1 ) vy (N2T :
0037 YANPUE=XV MY e e
0038 CALL DERFUN: i
0039 LE{MUUE, £0, 1060 TO 42 :
0040 DU 150 T=1 NN
004l LPN2=1#N2 ) 3 o .
0042 150  FVAMM, IJ=Y({IPN2) i
Q043 TEAMMUNE 4)GO TO 1001 i SR i
0044 C TON ’ ' o ’ :
0045 2000 - XTM2=Y (M2} '
0040 i DO 2048 1=1,NN

0047 DEL=XTM2 ¥ {55.0%FV 4,1 )-59,0%FV{3,1)y e
0048 L¥37.0%FV(2, [1=9.0%FV(1,111724.0 :
..0049 YU =YULe DVPDEL ) e
0050 204% DELY{L,1)=Yil)
0051 YINPL)=XVI4)+XFM2 : i
Q0%2 TALL DERFUN ) I
0053 XVASY=YUNPL ) ] :
0054 D0 2051 T=1,NN !
‘0055 IPN2=]¢N2
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80/80 LIST

U0Nn0N00N0 L TV IT I LIT1222222222233333333 3344444 4445445555555555666606666671TTTT

136

1)]4567%901234567%90125466789012346678901&JQ56I8901234567890123456]§90123456,

. CARD

0056 DEL=XTM2 #(9.0%Y(IPN2)+19,0%FV 4y )

0047 1-5.0%FV{3, [ 1+FVI2,11)/24.0 )
0058 YU(S, [)=YUL4, [J+DEL : . :

. 0059 2051 Y(I)1=YU(S,1)

0060 CALL DFRFUN e B

2. 0061 [F(MODE.NELIVGU TO 42
0062 . C CRROR_ANALYSIS . : )

0063 SSE=0.0 i !
0064 DO_3033 T=1,NN
0065 EPSIL=RFABS(Y(T)-DELY{1s1))

.. 0066 IF{KKALFQ.2)G0 TO 3307 ¥
0067 IFEYL1).EQ.0.}GD TO 3307 :
0068 EPSIL=EPSIL/ABSIYLYYY B

10069 3307 IF(ISSE-EPSIL).LT.0.)SSE=EPSIL i
0070, 3033 CONTINUE :

©T0071 [FI{EIMAX=SSE).GT.0, )60 TO 3035 . :
0072 [F{L{ABS(YIN2))-E2MIN).GT.0.)G0 TO 4340 e

; 0073 GO TO 42

L0074 3035 1F({SSE-LIMINY.C 60 Y042 . B ‘

¢ 00178 IF((E2MAX=ABS (V1 RSN IRV EETY)

! 0076 GU- 10 42

f 0077 4340 Li=1
.. 0078 LR R Y
0079 MM=1 .
0080 YIN2)=Y(N2}¥FACT e
; 0081 GU TO 1001,
i 0082 '5360. IFILL.EQ.LIGHD TU 42 .
; 0033 XVi2)y=xV(3]
. 0084 XV{3)=XV[S} B
; 0085 DD 5363 1=1,4NN
! 006 Fv(2,11=Fvid, [ i
! Q0R7 [PNZ2=T+N2
1 0opas FV(3,1)=Y{IPN2)
i 0089 YULZ 1)=YUI3,1)
0090 5363 YU(3,[)=YU(5;1) o
0091 YINZVY=2,0%Y(N2)

0092 [ERR = 2 o
0093 LL=2
0094 MM=3
0095 GO T0 1001

: 0096 € EXIT RUUTINE o
it 0097 42 IF{MODE.EQ.1)GD TO 43
L0098 N0 707 K=1,4 B _
| 1 0099 CLKYNPL Y= XVIK)
' 0100 T{K N2 =XVIK+L)-XVIK)
i 0101 DO 707 T=1L,NN -
0102 Z{Ky1)= YULK,1)
0103 PNz = N2+
0104 707 -2(KyIPN2)= FVIK,I) o
0105 43 TI5 NPT XV1s)
0106 DO 708 1= I,NN
0107 Zi5,11= YU(s,1)
i.._o1o08 IPN2 . = N2+ 1 :
o109 7097 £(5,1PN2)= YTIPNZ)
| .B110 Z{5,N2)= YIN2)




...80480 LIST

GUO0DNONOLY LI 11 11202222222223333333333446444444445555555555606066666667171717

0’8 1 %5 USRI D 1 N .o G - S

CARD

123450739012345678201234507890.1234567689012345678901234567890123456789012345

0112 XVAK)=XVIK+])
0113 Dil 42 =] o NN
olti4 FVIKy TI=FVIK+L 1)
LOLLS X2 YUK D YUK e R b e et en e e et et
otié6 Lt
JOulr o MM=A L [
RN RS XVUGh=XV{5)
0119 D52 T=1,NN
0120 IPNZ=T #N2
012 . BV BhEY L IPN2 R - __ e e e
D122 52 YUl L) =YU(a,1)
0123 AFAMODE.EQ.3IGO TU T L N [
0124 RE TURN
0126 9917  CONTINUE
0126 Xv({2)=0.
e QY27 XV E0. B I e
0128 [ERR = 3
L0129 o ALPHAEYANN®DLY _ B o
0130 EPY=0,0
n13l MM= |
o132 TF{MODC BN L MM=4
. 0133 L BETLL 5 . . S
0l3a BETE2)=0.5
L0135 SoBETERYFLLO0 L . - N
0lsh BETE4)=0.0
Q137 W2ENNt 2
0138 Y{N2)=SPACE
_ 0149 Lo NRYENNED . .
0140 TR=E1Y,0/2T0.0
R O A S XM=Y NP L)Y . . .
0142 FEOEEMINGLF L0 )L IMINSEIMAX/55.0
0143 IEAFALTLE Q) FALT=0. - — _
0144 CALL DERFUN
o0bas DU R2D 1= NN ) .
0146 [PN2=]+N2
______ Olat . oz, =0, -
ol4ag FVE3,10=0.
0144 EVAM S Y=Y 1P2] - e e o e et et
0150 YUul2,1)=0.
LOLSY Uy y=0.
0152 320 YULMM, T =Y (1)
LLQLs3 GO 10 1000 B
oLn4 73 F=ARS(XV{4)=-At PHA) E
0155 PFLLE~CPMILLELO0L)GO TU 2000 .
0156 [PM={
O REYURNG
0158 LND
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138

80780 LIST

! Lo 1234561890 123456789012345678901234567890123456789012345678901234561789012345¢

CARD
4 )
LO0DY o CSUBRUUFINE STARTAMI M2y M3, AL, A20A3, A4, A5 AG) . . .
{0002 CUMMUN/SHARE /NN, SPACE , MODE s KKA» ELMAX, C1MINy E2MAX sE2MIN,FACT
L0003«

000w C N INFORMATLON IS REQUIRED IN THIS SUHHOUT[NE

..1_0005 NN=EM ] e - [ S S

. 0006 MODE=M2
WROOT L KKAEMY

0008 EIMAX=A2
0009 EIMIN=A3

on1n E2MAX=A4 ‘
LQOL L ERMINEAS e o
T 0012 FACT=Ab .

0013 SPACE=Al N e e

0014 CALL KAMSUB (O}
001% RETURN

00l6 END

t
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Card Numbers

MAIN

73-76

78-85
86
88-91

93
95-99

101-117

119-122

125

126-127

130

DERFUN
46-50.

53-142

(1)

(2)

(3)

(4)
(5)
(6)
(7)

(8)

(9)

(10)

(11)

(12)

(13) -

. APPENDIX J

COMPUTER PROGRAM STEPS

Step Description

Enter MAIN program and read the number of approxi-
mation strips, N, and the program control constants.

Print all the input data.

Decide whether to punch the input data.
If desired, punch the input data.
Inifialize time to zero. |

Set internal program constants.

Calculate the initial polynomial temperature coeffi-
cients (Equation 3.9).

Set the initial solid species densities (Equation
3.10).

Enter the ordinary differential equations integra-
tion START program with its program control constants.
Return to MAIN.

Initialize program constants.

Enter the ordinary differential equations integra-
tion program KAMSUB to calculate the unknowns at the

‘next time step. Enter subroutine DERFUN from KAMSUB

to calculate the ordinary differential equations.

Calculate program constants.
Calculate the reaction rate constants, the polyno-

mial coefficients for the heat generation integral
(Equation 3.5d), the polynomial coefficients for the
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Card Numbers

143-200

203-210

201

MAIN

137

144-228

229
231-233
235-239

242-243

(14)

(15)

(16)

(17)

(18)

(19)
(20)
(21)

(22)

140

Step Description

integralé representing a change in the effective

‘thermal conductivity (Equation 3.5b, c¢), and the

local solid species derivatives.

Calculate the polynomial coefficients for the tem-
perature derivative (Equation 3.6) including the
surface boundary condition (Equation 3.7a or b) with
terms depending on the type of boundary condition
(Radiative or Convective) and case (0, 1, or 2) be-
ing considered. ’

Give functions for time-dependent radiative heat
flux and its derivative (constant flux considered).

Return derivatives of the variables to KAMSUB to be
integrated for values at the new time step. Return
values to MAIN.

If the total number of time steps or the total
length of time since the last printed step is not
the desired value, go back to KAMSUB and integrate
for the next time step; otherwise continue with the
values of variables at this time step.

Calculate the local values for each gas species, tem—
perature, mass loss rate, and total solid; including
the polynomial coefficients for the overall average
values of each gas species, mass flux, and total
weight. :

Decide whether to punch the output.

If desired, punch the output.

Print the output,

If the desired total length of time has not been

reached, go back to KAMSUB and integrate for the
next time step; - otherwise stop.

Note: Card numbers refer to the program listings given in Appendix I.
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