By
JERROLD GEORGE RITTMANN
Bachelor of Science in Mechanical Engineering Texas Western College
El Paso, Texas 1964
Master of Science
Oklahoma State University
Stillwater, Oklahoma 1966

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1970

A COMPUTER STUDY OF THE PYROLYSIS
OF POROUS SOLIDS

Thesis Approved:

762696

PREFACE

This work represents the initial effort by Oklahoma State University's Engineering Research to provide basic research into pyrolysis and combustion phenomenon in support of its Eglin Project. Therefore, I would like to thank Professor Clarence Johnson and Dr. Vincent Haneman in particular, and Engineering Research in general, for supporting and funding this project.

I wish to express my gratitude to my thesis advisor, Dr. Ronald Panton, for his guidance, insight, and availability throughout all phases of this work. Also, I would like to thank Dr. John Wiebelt for serving as Chairman of my Graduate Committee and Dr. Billy Crynes for serving on the Committee and for his interest in the project. Thanks are due Professor L. J. Fila not only for serving on the Committee but also for his advice and counsel thraughout all my Graduate work. In addition, I want to thank Dr. Roger Schoeppel and Dr. Robert Robinson for consenting to substitute on my Oral Committee.

I wish to express my appreciation to the Oklahoma State Computer Center for funding the great amount of computer time required for this project, to Dr. Henry Sebesta for providing an important computer subroutine, to Miss Louise Thompson for her fine job in typing the final draft of the thesis; to Mr. Eldon Hardy for his fine work in drawing the figures, and to the Mechanical Engineering Department for providing me with support throughout my Graduate studies.

This work could not have been completed without the love and sacrifice of my wife, Mary Jo, and my children, Cheri, Evan, Brian, and Jeaniece. Together with my parents, George and Gladys Rittmann, they gave this work a personal purpose and meaning and it is to them that this is dedicated.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Background. 3
II. THE MATHEMATICAL ANALYSIS. 12
Geometry 12
Energy Equation 12
Effective Thermal Conductivity. 14
Boundary Conditions 16
Chemical Reactions. 20
Species Equations 24
Non-Dimensional Equations 25
III. SOLUTION OF THE EQUATIONS 29
Background. 29
Method of Integral Relations. 29
Application of the Method of Integral Relations 31
Initial Conditions. 36
Summary of the Integral Technique 38
Computer Programming 39
IV. COMPUTER RESULTS 42
Introduction. 42
Parameter Values. 42
The Inert Slab. 44
One Reaction--Case 0 50
One Reaction--Cases 1 and 2 63
Three Reactions--Case 0 73
Three Reactions With Heats of Reaction 81
V. SUMMARY. 93
BIBLIOGRAPHY 95
APPENDIX A - INTEGRATION OF EQUATION (3.1). 97
APPENDIX B - INTEGRATION OF EQUATION (3.4) 100
Chapter Page
APPENDIX C - EVALUATION OF INITIAL TEMPERATURE COEFFICIENTS 102
APPENDIX D - CALCULATION OF THE TEMPERATURE IN AN INERT SLAB BY THE INTEGRAL METHOD 103
appendix e - Calculation of gas species 107
APPENDIX F - DERIVATION OF EQUATION (2.4e) 109
APPENDIX G - LISTING OF COMPUTER PROGRAM VARIABLES 111
APPENDIX H - DESCRIPTION OF THE SUBROUTINES SIMQ, START, AND KAMSUB. 119
APPENDIX I - COMPUTER LISTING OF ALL PROGRAMS 124
APPENDIX J - COMPUTER PROGRAM STEPS 139

LIST OF TABLES

Table Page
I. Non-Dimensional Variables 25
II. Non-Dimensional Parameters. 26
III. Basic Computing Steps 41
IV. Basic Dimensional Constants 45
V. Basic Non-Dimensional Parameters 46
VI. Parameter Values Used in Computed Results 47
VII. Slab Distribution of Solid 6 88

LIST OF FIGURES

Figure Page

1. Porous Solid Being Heated 13
2. Representation of Unit and Solid Areas 14
3. Radiant Heat Flux Deposited at the Surface 17
4. Convective Heat Flux at the Surface 18
5. Reactions in the Slab 21
6. Temperature Profiles at Time $=0$ for Various N Interpolation Strips 37
7. Comparison of Approximate Solutions With Exact Solution for Constant Heat Flux Case 48
8. Comparison of Approximate and Exact Solutions for Convective Heating, $\mathrm{Nu}=2$ 49
9. Effect of Heat of Reaction: Temperature
History of Front and Back Surfaces -- Constant Heat Flux, One Exothermic Reaction, Case 0 51
10. Effect of Heat of Reaction: Temperature History of Front and Back Surfaces -- One Endothermic Reaction, Constant Heat Flux, Case 0 53
11. Effect of Heat of Reaction: Temperature Profiles for One Endothermic Reaction -- Constant Heat Flux, Case 0 54
12. Effect of Heat of Reaction: Temperature Profile for One Endothermic Reaction, Constant Heat Flux, Case 0 55
13. Effect of Heat of Reaction: Reaction
Rate in Slab for One Exothermic
Reaction -- Constant Heat Flux, Case 0 57
14. Effect of Heat of Reaction: Temperature vs. Reactant Density, Front and Back Surfaces -- Constant Heat Flux, One Exothermic Reaction, Case 0 58
Figure15. Effect of Heat of Reaction: Reaction Ratein the Slab -- Constant Heat Flux -- OneEndothermic Reaction, Case 060
15. Effect of Heat of Reaction: Mass Flux From Slab for Exothermic and Endothermic Reactions, Constant Heat Flux, Case 0 61
16. Effect of Heat of Reaction: Comparison of Solid Density Profiles for Exothermic and Endothermic Reactions -- Constant Heat Flux, Case 0 62
17. Effect of Heat Flux Parameter: Surface Reaction Rate vs, Temperature -- Constant Heat Flux, Case 0 64
18. Effect of Heat Flux Parameter: Surface Reactant Density vs. Temperature -- Constant Heat Flux, Case 0 65
19. Effect of Variable Effective Thermal Conductivity and Heat Transfer Coefficient: Temperature History of Front Surface Convective Boundary Condition, Cases 1 and 2 67
20. Effect of Solid Density on Effective Thermal Conductivity: Temperature History of Front Surface for Final Solid Densities of 0.5 and 0.8 - Constant Heat Flux, Case 1 69
21. Effect of Conductivity Change on Energy
Equation: Temperature History of
Front and Back Surfaces for Constant
Heat Flux -- Case 2 70
22. Effect of Heat of Reaction: Temperature History of Front Surface for Constant Heat Flux -- Case 1, With and Without
Heat of Reaction 72
23. Selected Species Histories for Three
Reactions -- Convective Heating, Case 0 74
24. Effect of Heat Flux Parameter: Production
of Gas from $\mathrm{x}=1.0$-- Constant Heat
Flux, Three Reactions, Case 0 75
25. Effect of Heat Flux Parameter: Production
of Solid 6 at $x=1.0 \ldots$ Convective Heating,
Three Reactions, Case 0. 76
26. Effect of Change of Frequency Factor

Parameter for Reaction 1: Production
of Solid 6 at $x=1.0--$ Convective
Heating, Three Reactions, Case 079
29. Effect of Change Activation Energy
of Reaction 1: Production of Total
Solid at $\mathrm{x}=1.0$-- Convective Heating,
Three Reactions, Case 080
30. Effect of Heat of Reaction: Temperature
History at $\mathrm{x}=1.0$ and $\mathrm{x}=0.8$ for
Constant Heat Flux -- Three Reactions
With Heats of Reaction, Case 1 82
31. Effect of Heat of Reaction: Production
of Solid 6 and Gas4 at $x=1.0$ and $x=0.8$,
Constant Heat Flux, Three Reactions, Case 1 84
32. Effect of Heat of Reaction: Temperature
Histories of Front and Back Surfaces for Convective Heating, Three Reactions With Heats of Reaction, Case 0, $G=1.5$ 86
33. Effect of Heat Flux Parameter: Temperature Histories of Front and Back Surfaces -- Convective Heating -- Three Reactions With
Heats of Reaction, Case 0 87
34. Effect of Heat Flux Parameter: Mass Flux
from Slab -- Convective Heating, Three
Reactions, Case 0 89
35. Effect of Variable Conductivity and
Heat Transfer Coefficients:
Temperature History of Front and
Back Surfaces for Convective
Heating -- Three Reactions With Heats of Reaction, Cases 0 and 2 90
36. Effect of Changing Conductivity: Mass Flux From Slab for Convective Heating -Three Reactions With Heats of Reaction, Cases 0 and 2 . 9

NOMENCLATURE

$A_{i} \quad$ time-dependent, polynomial coefficient i, for the temperature approximation
a_{i}

B
b_{i}

C
c_{1}
c_{2}
E_{i}^{*}
F_{i}
f_{m}
G
G_{i}
\bar{H}_{i}
$H_{i, n}$
h
$J_{i, n}$
frequency factor for reaction $i, \sec ^{-1}$
x-temperature derivative at heated surface
mole fraction for species i in reaction expression, moles of species $i / m o l e$ of reactant
constant pressure specific heat, cal/gm- ${ }^{\circ} \mathrm{K}$
mass fraction of solid converted in reaction 1 , gm Solid $/$ /gm Solid ${ }_{l}$
mass fraction of solid converted in reaction 3 , $\mathrm{gm} \mathrm{Solid}_{6} / \mathrm{gm}$ Solid 2
activation energy for reaction i, cal/mole
frequency factor parameter for reaction i (see TableVI)
weighting function m
heat flux parameter (see Table VI)
Gas species i
non-dimensional heat generation term i
time-dependent polynomial coefficient n for heat generation approximation term i
heat transfer coefficient, cal/ $\mathrm{cm}^{2}-\mathrm{sec}-{ }^{\circ} \mathrm{K}$
time-dependent polynomial coefficient n for approximation term i

Note: For symbols having both a dimensional and non-dimensional representation, an asterisk ($*$) is used to denote the dimensional value. Table IV defines the non-dimensional quantity.

Symbol	Description
K	effective thermal conductivity based on constant unit area
$\overline{\mathrm{K}}$	thermal conductivity of solid based on solid area
k_{i}	rate constant for reaction i, sec-1
\bar{k}_{i}	exponential part of the rate constant
$\overline{\mathrm{k}}_{i, j}$	exponential part of the rate constant at the approximating strip j
L	slab thickness, between insulated and heated surfaces, cm
M_{i}	molecular weight of species i
\dot{m}_{i}^{\prime}	rate of generation of species i per unit volume from all reactions
$\dot{m}_{i, j}^{\prime}$	rate of generation of species i per unit volume from reaction j
N	number of approximating strips
Ne	number of ordinary differential equations, $4 \mathrm{~N}+2$
Nu	Nusselt number (see Table VI)
Q_{i}	heat of reaction i, cal/gm of reactant
$\dot{Q}_{\underline{i}}$	rate of generation of heat in reaction i per unit volume
\dot{Q}^{\prime}	rate of generation of heat from all reactions per unit volume
q	heat flux, cal/ cm^{2}-sec
R°	universal gas constant, $1.986 \mathrm{cal} / \mathrm{mole}{ }^{\circ} \mathrm{K}$
R_{i}	heat of reaction i parameter (see Table VI)
S_{i}	Solid species i
T*	temperature, ${ }^{\circ} \mathrm{K}$
T_{∞}^{*}	convective heat source temperature
t^{*}	time, sec

```
w* mass flux, gm/cm}\mp@subsup{}{}{2}-\textrm{sec
    x* slab distance from insulated surface, cm
    \rho* effective density of total solid, mass of solid/constant
unit volume
actual density of total solid, mass of solid/volume of
solid
```

Subscripts
Description
0
$1,2, \ldots, 6$
R
Radiant heating boundary condition

C
Convective heating boundary condition

CHAPTER I

INTRODUCTION

When a porous solid such as wood, cellulose or a polymer foam is heated, its temperature rises at a rate dependent on the rate of surface heating and upon the rate of heat conduction into the solid. The solid continues to absorb heat until the temperature is high enough for chemical reactions to be important. These reactions cause changes in local temperature and solid composition thus affecting future reactions. If it were possible to specify all reactions and their rates, one could, in principle, predict the behavior of the solid, given the boundary conditions and physical properties.

For many years, experimental studies have been made of thermal decomposition of porous solids. Industries have been concerned with improving fuels such as coke and charcoal. The Forest Service has undertaken extensive investigations to understand the spread of forest fires and the effectivness of flame retardants. Insurance companies and agencies concerned with Building Codes are interested in fire spread in buildings, structural damage to supporting members and effects of different methods of fireproofing. Problems of self-heating and ignition also arise when materials are stored for long periods of time in ships and warehouses. Airlines are concerned with fire spread in the interiors of planes when cloth or plastic materials ignite. The Armed Forces study effects of flame weapons on combustible targets such as buildings,
wooden ships and fuel soaked earth. The study of nuclear weapon effects presents problems involving ignition and sustained combustion. Recently, the aerospace industry has been interested in heating effects on solids because of the use of char-forming ablative heat shields on re-entry spacecraft. Another area of interest is the study of effects of in-depth reactions on solid propellant combustion. All industries are involved with the use of polymer foams. These foams are used for electrical, thermal and acoustical insulation as well as lightweight structural applications. Finally, cellulose products used in the textile and paper industries are subject to pyrolysis reactions. These few examples demonstrate the usefulness of improving the mathematical analysis of pyrolysis of porous solids. There are two main obstacles in performing an analysis; extreme complexity in the physical processes and mathematical difficulties in solving the resulting equations. In the present field, more is known about the qualitative physical events than has been previously incorporated in the mathematical solution. However, large digital computers have enabled more complex problems to be solved and, therefore, more physically realistic models to be studied. Thus, the purpose of the present work is to incorporate more of the known physical events into the mathematical analysis of porous solid pyrolysis. This report is composed of four major sections. The first section presents background information as to the experimental results that indicate the important physical events. Also included is a discussion of previous mathematical analyses. The second section outlines the development of the mathematical equations and boundary conditions. The third section describes the method used in solving the
equations and the fourth section presents the results and interpretations of the computer solutions.

Background

Wood has been in use since the beginning of time and is still the widest used porous solid today. As a result, a great deal of experimental work has been done on wood and its components.

The three major components of wood are hemicellulose, cellulose, and lignin with approximately half being cellulose. The thermal decomposition rate of wood closely follows that of cellulose whereas hemicellulose decomposes faster, and lignin, slower. Thus, many experiments are done with cellulose to better understand the pyrolysis of wood and other materials. Also, cellulose can be made into homogeneous samples having a wide choice of closely controlled densities and physical constants.

Browne (5) ${ }^{1}$ reviews the theories of the combustion of wood up to 1963 while MacKay (13) gives a review of information on the thermal degradation of cellulose up to 1967. Shafizadeh (17) presented, in 1968, a complete review of the experimental information on the pyrolysis and combustion of cellulosic materials and includes effects of flame-retarding chemicals.

In one type of experiment, a slab of cellulose is placed into a constant temperature furnace that is being flushed with an inert gas. Usually, the temperature at certain points is recorded as well as the

[^0]weight of the slab. As heat enters the cellulose, its temperature rises and causes pyrolysis reactions which produce a different solid and evolve gases. Since some solid has been changed to a gas the solid becomes more porous. The reactions proceed into the solid while the gases flow through the pores and out the surface. Higher temperatures increase the reaction rate, producing more gases and increasing the porosity. Thus, at a given instant, the solid is in various stages of decomposition ranging from the virgin material deep within the solid, through the more porous reacting solid, to the inert highly porous hot char next to the surface. Of course, continued heating to higher temperatures would eventually decompose the char. However, in most practical situations one is concerned with the events from the initial heating to the production of char.

The gases evolved from the reactions are very important in ignition and combustion studies since these gases may ignite and burn. The first gases that are formed are primarily non-combustible water vapor and carbon dioxide. Next, more combustible carbon monoxide, hydrogen and the highly inflammable levoglucosan, sometimes called tar, are evolved. Also produced are methane, formaldehyde, methanol and acids. Efforts in flame-proofing materials are directed toward producing less tar and more non-combustible gases. Thus, before a complete understanding of ignition and combustion stages can be obtained, a thorough investigation of the initial pyrolysis events must be made.

The first comprehensive analytical model of initial pyrolysis was formulated by Bamford, et al (1), in conjuction with their experiments on wood. Slabs of wood of various thicknesses were heated either on
both sides by flames from a burner or on one side by a radiant heater. Measurements were made of the central slab temperature, depth of char, and time required to achieve sustained burning for the flame heated slabs and piloted ignition ${ }^{2}$ for the radiantly heated slabs.

In the analysis, the slabs were considered to behave as a onedimensional solid heated by a surface-temperature-dependent convective heat flux. The unsteady heat conduction equation included a term for heat generation within the slab. Heat generation was considered to be from a single exothermic reaction and was expressed as a constant heat of reaction times a reaction rate. The reaction rate was expressed as a first-order, Arrhenius-type reaction. ${ }^{3}$ In addition to the heat of reaction, Bamford assumed constant thermal conductivity, specific heat, surface heat transfer coefficient, activation energy and pre-exponential factor. The latter two constants were chosen by matching the calculated central slab temperature with the experimentally measured one. The temperature was found from the energy equation by a finite-difference method and the mass loss was determined by a finite-difference approximation to the species conservation equation. The calculations for the central temperature, based on a single overall reaction, did not agree with measured values when different slab thicknesses were used. This indicates that more than one reaction needs to be considered.

Weatherford (21) used the same constants and equations as Bamford

[^1]and calculated the surface temperature and vapor-generation rate. Source temperatures considered for the convective boundary condition varied between $667^{\circ} \mathrm{K}$ and $767^{\circ} \mathrm{K}$. Calculations were continued until the vapor generation rate reached $10^{-4} \mathrm{gm} / \mathrm{cm}^{2}-\mathrm{sec}$, became constant, or reached a maximum. He used a finite-difference technique and showed that undulations which Bamford found in the gas-generation rate curves were caused by too large a step size in the finitedifference approximations. Weatherford proposed that a criterion for wood to sustain stable burning would be the departure of its surface temperature or vapor-generation rate from the solution for the infinite thickness case.

Experiments were performed by Weatherford and Sheppard (22) on convectively heated slabs to determine piloted ignition times. Various slab thicknesses, bulk densities, and heat source temperatures were used. The data showed that small changes in density or slab thickness exerted significant influence on the ignition time. For the range of variables considered, the surface temperature calculated with the heat generation term included was within 10% of the solution for an inert slab.

Lawson and Simms (11) considered piloted and spontaneous ignition ${ }^{4}$ of wood slabs heated on one side by radiation. Times to ignition were recorded for various radiation intensities and different species of wood. By extrapolating graphs of radiation intensity vs. ignition-time out to infinite time, a minimum intensity necessary for ignition was determined for slabs thick enough to be considered

[^2]a semi-infinite solid. For most species, a constant minimum intensity was found for each of the two types of ignition.

Martin (14) heated thin cellulose slabs by radiation and measured (not all simultaneously) the spontaneous ignition time, temperatures within the slab, weight loss and composition of the gaseous products for various radiation intensities. The temperature profiles differed considerably from the theoretical ones for a semi-infinite, inert solid having constant thermal properties. A maximum in the rate of evolution of volatile products occurred near the ignition time but no evidence was found for an ignition criterion based on a threshold rate of volatile evolution. Evidence of competing reactions was seen by observing a different final weight of char for different heating rates. Char formed from the levoglucosan reaction was found to be negligible.

In the preceding ignition work, the two types of boundary conditions considered were a constant radiative heat flux and a convective heat flux. The combination of radiation heating with Newtonian cooling at the surface, considered by Lawson and Simms, can be considered as a psuedo-convective case. The factors which seem to be the most important in ignition are the gas composition and generation rate and surface temperature, all of which depend on the nature of the pyrolysis reactions. These factors were considered in developing the results of this study.

To obtain more information on the kinetics of reactions, techniques were developed by the physical chemists. Some of these techniques are Thermogravimetric analysis (TGA) and Differential Thermal analysis (DTA). A better understanding of the nature of the reactions helps to explain the causes of differing experimental results as well
as determining the effects of adding fire retardant chemicals. Broido and Kilzer (4) presented a critique on the knowledge of the mechanism of cellulose pyrolysis to 1961 and indicated that more detail was needed in interpreting the reaction mechanism as well as in experimental studies. They pointed out that previous considerations of the reaction products as only gas, tar, and char failed to explain many of the observed experimental results. The important effects of trace impurities on the internal reactions caused many earlier experimental results to be questioned.

Kilzer and Broido (9) present data from a number of cellulose pyrolysis observations made by TGA, DTA, mass spectrometric thermal analysis (MTA) and gas and paper chromatographic analysis of the products. The results show that as a cellulose sample is heated, a slightly endothermic reaction starts at about $220^{\circ} \mathrm{C}$ causing the pure cellulose to lose water and form a "dehydrocellulose." (This is after vaporization of any extra-cellulosic moisture). Next, a strongly endothermic reaction becomes evident at about $280^{\circ} \mathrm{C}$ in which the remaining pure cellulose depolymerizes and volatilizes as tar, thus competing with the first reaction for the original cellulose. The third major reaction is strongly exothermic and results in the "dehydrocellulose" decomposing into a number of gaseous products and residual char. Each of the three processes actually involve a number of reactions. They concluded that the pyrolysis of cellulose must be described by at least two competing endothermic reactions and a consecutive exothermic reaction.

Broido (3) presents TGA and DTA results of cellulose containing practically no contamination ($<.01 \%$) and containing as much as 1.5%
KHCO_{3}. The results showed that as little as 0.15% contamination can significantly affect the pyrolysis reactions. The addition of 1.5% KHCO_{3} lowered by $80^{\circ} \mathrm{C}$ the temperature at which significant decomposition began but eliminated the flame-producing reactions in favor of those leading to glowing combustion.

Tang and Neill (18), in their experiments on the effects of salts on wood and its components, supported the reaction stages described by Broido. They showed that the effect of the salts was to lower the overall activation energy, stimulating the dehydration reaction.

Further effects of multiple reactions were seen when Murty and Blackshear (15) showed that the overall activation energy decreased with radius for heated cylinders of cellulose. The frequency factor varied unsystematically while incubation of the interior caused the amount of solid that occurfed at a given temperature to decrease toward the center. This also suggests that the reaction rate decreased toward the center.

Tinney (20) heated small wooden dowels in a constant temperature furnace and measured the center temperature and rate of weight loss. During his calculations for temperature and weight loss, he changed the overall activation energy, frequency factor and heat of reaction to a new value in an attempt to simulate the apparent changes during wood pyrolysis. He obtained fair agreement between experimental and calculated values for the surface temperature and weight loss but poor agreement for the center temperature. He concluded that more than one change in the parameters would be necessary to match the center temperatures for exothermic reactions.

Thus, investigations into the reaction mechanisms of cellulose
have shown the existence of and provided information on multiple reactions while pyrolysis experiments have shown the need for consideration of more than one overall reaction.

The same pattern of three major reactions in porous cellulose is found in the study of the pyrolysis of polymer foams. Hilado (8) describes the combustion process of urethane foams which parallels similar events seen in cellulose and other organic polymers. Tilley, et al (19), include DTA and TGA analysis of the pyrolysis of urethane foams and find three major regions of weight loss as a function of temperature. They associate the weight loss regions with three major reactions whose rates were fitted to the Arrhenius equation. Learmonth and Osborn (12) present the results of the pyrolysis of phenolic resins and describe three main types of products; gases, tars, and carbon residue. As with cellulose, the above references indicate that the nature of the products and the rate of decomposition of polymer foams vary with temperature, rate of temperature rise, and endothermic and exothermic reactions. Thus, learning how different factors influence the pyrolysis of cellulose will contribute to the understanding of the pyrolysis of many organic polymers as well as cellulose and wood.

In summary, the mathematical analysis of the pyrolysis of cellulose or wood has been limited to consideration of the unsteady heat conduction equation with heat generation from one exothermic reaction. Experiments have shown that more than one reaction needs to be considered and should include competing and consecutive, endothermic and exothermic reactions. The effect of a density-dependent effective thermal conductivity also needs to be studied. Also, since previous
mathematical studies involved specific ignition events with limited parameter values, a general analysis is needed to establish the relevant parameters and present results of the influence of parameter variations on the pyrolysis events. The development and solution of the equations as given in the remaining sections will be pointed toward these objectives.

CHAPTER II

THE MATHEMATICAL ANALYSIS

Geometry

As shown in Figure 1, the porous solid is considered to be an infinite slab of finite thickness, L. The $s l a b$ is heated at the front surface and insulated against heat or mass transfer at the back surface. These conditions also apply to one-half of a slab of thickness 2L that is symmetrically heated.

Two types of heating conditions will be considered for depositing energy at the front surface. The first is a time-dependent, radiative heat flux and the second is a convective heat flux.

Energy Equation

Heat is transferred into the slab from the surface by conduction and causes chemical reactions which either absorb or generate heat. Gaseous products that are formed from the reactions flow out of the solid. It is assumed that any heat transferred between the flowing gases and the solid does not significantly change the solid temperature. This is approximately true since the increasing porosity and cracks allow the gas to flow out with little solid area contact and short residence time.

Specific heat and thermal conductivity of the solid material are considered constant for the ranges in temperatures to be encountered.

Figure 1. Porous Solid Being Heated

Also, the heats of reaction per mass of reactant are constant. Finally, the dimensions of the slab are assumed constant and a psuedo-density p. based on a constant unit volume, will be used.

With these considerations, the energy equation for the solid can be written by applying the conservation of energy to a differential volume and taking the limit as the thickness goes to zero. The result is valid at every x-position within the solid and is given by

$$
\begin{gather*}
\rho^{*} c \frac{\partial T^{*}}{\partial t^{*}}=\frac{\partial}{\partial x^{*}}\left(\mathrm{~K}_{\mathrm{L}}^{\partial \mathrm{x}^{*}}\right)+\dot{Q}^{\prime} \tag{2.1}\\
\text { II III }
\end{gather*}
$$

Term I : Rate of accumulation of thermal energy per unit volume Term II = Net rate of conduction of thermal energy per unit* volume Term III = Rate of heat generation by chemical reaction per unit volume

Effective Thermal Conductivity

The cross section of a porous solid can be divided into two areas; the area occupied by solid material, $A_{\text {solid, }}$, and the void area occupied by gas (see Figure 2).

Figure 2. Representation of Unit and Solid Areas

Heat conduction in the slab occurs only through the solid area, Asolid. Since the solid area changes, it is more convenient to base the equations on the total unit area, $A_{\text {unit }}$, which is constant because of the assumption that the slab dimensions are constant. Thus, an effective conductivity, K, based on the total unit area is defined by

$$
\mathrm{K}_{\mathrm{unit}}=\bar{K}_{\mathrm{A}_{\text {solid }}}
$$

where $\overline{\mathrm{K}}$ is the thermal conductivity of the solid material and is considered constant. The ratio of the areas can be expressed as a density ratio by considering a unit thickness. Then,

$$
\frac{A_{\text {solid }}}{A_{\text {unit }}}=\frac{\rho^{*}}{\rho^{*}}
$$

where $\bar{\rho}^{*}$ is the density of the solid material (i.e., no porosity) and is considered constant.

With the above equations, an expression for the effective thermal conductivity becomes

$$
\begin{equation*}
K=K_{0} \frac{\rho^{*}}{\rho_{\tilde{*}}^{*}} \tag{2.2}
\end{equation*}
$$

where K_{0} and ρ_{0}^{*} are the effective conductivity and density at time 0 .
Substituting Equation (2.2) into term II of Equation (2.1), expanding and dividing by $\rho * C$ gives

$$
\begin{align*}
& \frac{\partial T^{*}}{\partial t^{*}}=\frac{K_{0}}{\rho_{0}^{*} C} \frac{\partial^{2} T}{\partial x^{*}}+\frac{K_{0}}{\rho_{0}^{*} C \rho^{*}} \frac{\partial \rho^{*}}{\partial x^{*}} \frac{\partial T^{*}}{\partial x^{*}}+\frac{\dot{Q}^{\prime}}{\rho^{*} C} \tag{2.3}\\
& \text { IIa IIb }
\end{align*}
$$

Previous investigators did not consider that the changing effective
thermal conductivity affected the energy equation. They argued incorrectly that since the thermal diffusivity, $\mathrm{K} / \rho * \mathrm{C}$, remained constant, then term IIa was the only conduction contribution. This approximation can only be true if term IIb is negligible. From another viewpoint, we might consider that previous workers have unintentionally combined terms IIb and III into a new, equivalent, heat generation term. Term IIb will always be negative or zero and thus introduces an equivalent endothermic heat generation term that will vary throughout the slab as well as time. As a result, heat generation calculations based on an energy equation that considers the effective thermal conductivity to be a constant may calculate values that largely include a distance and time dependency from the conductivity change. This investigation will include calculations to determine how a density-dependent thermal conductivity may affect the results.

Boundary Conditions

Consideration of a surface with changing porosity introduces several possibilities for the surface heating conditions. For the radiant heat flux ${ }^{1}$ condition, all the energy strikes the solid either at the surface or at some small depth due to the pores (see Figure 3).

It is assumed that the depth at which the energy is deposited is small enough to consider it all at the surface. Therefore, the amount of radiant energy striking the surface is not dependent on the amount of solid present. The rate at which the energy is conducted into the solid, however, is dependent on the porosity through the effective

[^3]

Figure 3. Radiant Heat Flux Depositied at the Surface
thermal conductivity. Thus, the first possibility is a time-dependent heat flux at the surface with a density-dependent, effective thermal conductivity. This condition will be called Case l. For comparison purposes, Case 0 will denote problems with the heat flux treated as in Case 1 but with the effective thermal conductivity considered constant.

Another possibility is when the energy deposited at the surface decreases in proportion to the amount of solid at the surface. This is difficult to justify physically but might approximate a radiative heat flux reduced by opaque gases flowing from the solid or, if energy was lost from the surface by re-xadiation and conduction to the gases at an equivalent rate. The resulting condition is the same as Case 0 but with term IIb included in the energy equation (2.3). Thus, the contribution of the change in the effective thermal conductivity to the energy equation can be found. This condition will be called Case 2.

For the convective heat flux condition, three cases also are developed. Case 0 considers no change in the effective themal conductivity and a constant convective heat transfer coefficient. Case 1
considers a density-dependent, effective thermal conductivity and a constant convective heat transfer coefficient. This is equivalent to saying that the convective fluid at the surface is always in contact with the solid as the surface becomes more porous. Case 2 considers that the convective heat transfer coefficient and the effective thermal conductivity decrease as the solid at the surface decreases. This would mean that the convective gases were in contact with the solid that was present only at the surface (see Figure 4).

Figure 4. Convective Heat Flux at the Surface

Cases 1 and 2 represent an upper and lower bound on the physical events for the convective case with the intermediate Case 0 probably being a good assumption.

At the instant heat is applied, the slab, solid ${ }_{1}$, is at a constant temperature and density. With the insulated boundary at $x^{*}=0$ and the heated surface at $x^{*}=\mathrm{L}$, the boundary conditions for radiant and convective heating become

For time $=0$

$$
\begin{align*}
& T^{*}\left(x^{*}, 0\right)=T_{0}^{*} \tag{2.4a}\\
& \rho^{*}\left(x^{*}, 0\right)=\rho_{1}^{*}\left(x^{*}, 0\right) \tag{2.4b}\\
& \rho_{i}^{*}\left(x^{*}, 0\right)=0, \quad i=2,3, \ldots, 6 \tag{2.4c}
\end{align*}
$$

At $x^{*}=0$

$$
\begin{align*}
& \frac{\partial \mathrm{T}^{*}}{\partial \mathrm{x}^{*}}=0 \tag{2.4d}\\
& \frac{\partial \rho^{*}}{\partial \mathrm{x}^{*}}=0 \tag{2.4e}
\end{align*}
$$

At $\mathrm{x}^{*}=\mathrm{L}$: Type I (Radiative)

$$
\text { Case } 0 \quad K_{0} \frac{\partial T^{*}}{\partial x^{*}}=q^{*}\left(t^{*}\right)
$$

Case 1

$$
\begin{equation*}
\mathrm{K}_{0} \frac{\rho^{*}}{\rho_{0}^{*}} \frac{\partial T^{*}}{\partial x^{*}}=q^{*}\left(\mathrm{t}^{*}\right) \tag{2.4~g}
\end{equation*}
$$

Case $2 \quad \mathrm{~K}_{0} \frac{\partial T^{*}}{\partial \mathrm{x}^{*}}=\mathrm{q}^{*}\left(\mathrm{t}^{*}\right)$

At $\mathrm{x}^{*}=\mathrm{L}: \quad$ Type II (Convective)
Case $0 \quad \mathrm{~K}_{0} \frac{\partial \mathrm{~T}^{*}}{\partial \mathrm{X}^{*}}=\mathrm{h}\left(\mathrm{T}_{\infty}^{*}-\mathrm{T}^{*}\right)$

Case $1 \quad \mathrm{~K}_{0} \frac{\rho^{*}}{\rho_{0}^{*}} \frac{\partial \mathrm{~T}^{*}}{\partial \mathrm{x}^{*}}=\mathrm{h}\left(\mathrm{T}_{\infty}^{*}-\mathrm{T}^{*}\right)$

Case 2

$$
\mathrm{K}_{0} \frac{\partial \mathrm{~T}^{*}}{\partial \mathrm{X}^{*}}=\mathrm{h}\left(\mathrm{~T}_{\infty}^{*}-\mathrm{T} *\right)
$$

$(2,4 \mathrm{k})^{2}$

[^4]Equation (2.4) represents the boundary conditions that will be used with the energy and species equations for completely specifying the problem. Equation (2.4e) can be determined by taking the x-derivative of the species equations (see Appendix F).

Chemical Reactions

The reactions that will be considered are shown in Figure 5 with identification of each species for the case of cellulose. Of course, the same reaction scheme or any combination of the reactions may be used for many other materials.

Even though these reactions represent only the overall effects of a number of reactions, they include the major pyrolysis events in most porous solids. Also, three competitive and consecutive reactions are just enough to enable a large number of possible effects to be studied.

Steps leading to expressions for the heat generated by the reactions and the rate of species production begin with writing the reactions on a mole basis:

$$
\begin{aligned}
& S_{1} \xrightarrow{k_{1}} b_{2} S_{2}+b_{3} G_{3} \\
& S_{1} \xrightarrow{k_{2}} b_{4} G_{4} \\
& S_{2} \xrightarrow{k_{3}} b_{6} S_{6}+b_{5} G_{5}
\end{aligned}
$$

where $S=$ Solid, $G=$ Gas, $k_{i}=$ rate of reaction $i, b_{i}=\frac{\text { moles of Species } i}{\text { mole of reactant }}$. Let $M_{i}=$ Molecular weight of Species i. Then, mass is conserved if

$$
M_{1}=b_{2} M_{2}+b_{3} M_{3} \quad \text { for reaction } 1
$$

REACTIONS 1 and 2 are COMPETITIVE

REACTIONS 1 and 3 are CONSECUTIVE

```
For Ce11ulose:
    Solid}\mp@subsup{]}{}{-}= original cellulos
    Solid}2 = "dehydroce1lulose"
    Gas 3 = water vapor
    Gas}4 = "tar" (levoglucosan
    Gas}5=\textrm{CO},\mp@subsup{\textrm{CO}}{2}{},\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ , etc.
    Solid}\mp@subsup{}{6}{= char
```

Figure 5. Reactions in the Slab

$$
\begin{array}{cc}
M_{1}=b_{4} M_{4} & \text { for reaction } 2 \\
M_{2}=b_{6} M_{6}+b_{5} M_{5} & \text { for reaction } 3 \\
\text { Letting } \quad c_{1}=b_{2} M_{2} / M_{1}=g m S_{2} / \mathrm{gm} \mathrm{~S}_{1} & 0 \leq c_{1} \leq 1 \\
c_{2}=b_{6} M_{6} / M_{2}=g m S_{6} / \mathrm{gm} \mathrm{~S}_{2} & 0 \leq c_{2} \leq 1
\end{array}
$$

the reactions may then be written on a gram basis noting that $1=b_{4} M_{4} / M_{1}$

$$
\begin{align*}
& S_{1} \xrightarrow{k_{1}} c_{1} S_{2}+\left(1-c_{1}\right) G_{3} \tag{2.5a}\\
& S_{1} \xrightarrow{k_{2}} G_{4} \tag{2.5b}\\
& S_{2} \xrightarrow{k_{3}} c_{2} S_{6}+\left(1-c_{2}\right) G_{5} \tag{2.5c}
\end{align*}
$$

It is assumed that all reactions are first-order ${ }^{3}$ homogeneous reactions, i.e., the rate of decrease of reactant is proportional to the amount of reactant present. The proportionality constant is given by the reaction rate constant. It is expected that basic homogeneous reactions will be first order. However, when several reactions are occurring simultaneously, the resulting overall effect may be of zero order or some intermediate value. Shafizadeh (17) discusses experimental results that determine the order of cellulose reactions, most of which indicate the reactions to be first order with some reports of zero order depending on the experiment. Most analyses also consider the reactions to be first order.
${ }^{3}$ Order refers to the exponent on the mass term in the reaction rate equation, $\left(\mathrm{d} \rho_{1}^{*}\right) /\left(\mathrm{dt} \mathrm{t}^{*}\right)=-\rho_{1}^{*} \mathrm{k}_{1}$.

With the reaction order specified, the rate of species production can be expressed.

Let $\stackrel{\circ}{m}_{\dot{i}, j}^{\prime}=$ rate of generation of species i per unit volume as a result of reaction j. Then,

$$
\begin{array}{ll}
\dot{m}_{1,1}^{\prime}=-\rho_{1}^{*} k_{1} ; & \dot{m}_{2,1}^{\prime}=c_{1} \rho_{1}^{*} k_{1} ; \\
\dot{m}_{3,1}^{\prime}=\left(1-c_{1}\right) \rho_{1}^{*} k_{1} \\
\dot{m}_{1,2}^{\prime}=-\rho_{1}^{*} k_{2} ; & \dot{m}_{4}^{\prime}, 2=\rho_{1}^{*} k_{2} \\
\dot{m}_{2,3}^{\prime}=-\rho_{2}^{*} k_{3} ; & \dot{m}_{6,3}^{\prime}=c_{2} \rho_{2}^{*} k_{3} ; \\
\dot{m}_{5,3}^{\prime}=\left(1-c_{2}\right) \rho_{2}^{*} k_{3}
\end{array}
$$

Now, the total rate of generation of species i is found by summing over all reactions.

$$
\begin{align*}
& \dot{m}_{\dot{i}}^{\prime}=\sum_{j} \dot{m}_{i, j}^{\prime} \\
& \dot{m}_{1}^{\prime}=-\rho_{1}^{*} k_{1}-\rho_{1}^{*} k_{2} \tag{2.6a}\\
& \dot{m}_{2}^{\prime}=c_{1} \rho_{1}^{*} k_{1}-\rho_{2}^{*} k_{3} \tag{2.6b}\\
& \dot{m}_{3}^{\prime}=\left(1-c_{1}\right) \rho{ }_{1}^{*} k_{1} \tag{2.6c}\\
& \dot{m}_{4}^{\prime}=\rho_{1}^{*} k_{2} \tag{2.6d}\\
& \dot{m}_{5}^{\prime}=\left(1-c_{2}\right) \rho{ }_{2}^{*} k_{3} \tag{2.6e}\\
& \dot{m}_{6}^{\prime}=c_{2} \rho_{2}^{*} k_{3} \tag{2.6f}
\end{align*}
$$

For the heat of reaction given as $Q_{i}=$ heat generated in reaction i per unit mass reacted and for $\dot{Q}_{i}^{\prime}=$ rate of generation of heat per unit volume in reaction i, then,

$$
\dot{Q}_{1}^{\prime}=Q_{1} \dot{m}_{1,1}^{\prime} ; \quad \dot{Q}_{2}^{\prime}=Q_{2} \dot{m}_{1}^{\prime}, 2 ; \quad \dot{Q}_{3}^{\prime}=Q_{3} \dot{m}_{2}^{\prime}, 3 .
$$

Summing over all reactions, $\sum_{i} \dot{Q}_{i}^{\prime}$, gives the total rate of generation of heat per unit volume, \dot{Q}^{\prime}, or also

$$
\begin{equation*}
\dot{Q}^{\prime}=-Q_{1} \rho_{1}^{*} k_{1}-Q_{2} \rho_{1}^{*} k_{2}-Q_{3} \rho_{2}^{*} k_{3} \tag{2.7}
\end{equation*}
$$

For the reaction rate constant, k_{i}, the usual assumption is made that the dependency of the rate of reaction i on the temperature is given by the Arrhenius expression, $k_{i}=a_{i} \exp \left(-E_{i}^{*} / R^{\circ} T^{*}\right)$.

Species Equations

The conservation of a solid species within a unit volume requires that the rate of accumulation of a species within the volume equals the rate of production of the species from chemical reactions. Taking the limit as the volume thickness goes to zero gives an equation that is valid at any x-position,

$$
\frac{\partial \rho_{\mathrm{i}}^{*}}{\partial \mathrm{t}^{*}}=\dot{m}_{\dot{1}}^{\prime} .
$$

Since the species production equations are given by Equation (2.6), the rate of change of each solid species at any position within the slab is

$$
\begin{align*}
& \frac{\partial \rho_{1}^{*}}{\partial t^{*}}=-\rho_{1}^{*} k_{1}-\rho_{1}^{*} k_{2} \tag{2.8a}\\
& \frac{\partial \rho_{2}^{*}}{\partial t^{*}}=c_{1} \rho_{1}^{*} k_{1}-\rho_{2}^{*} k_{3} \tag{2.8b}\\
& \frac{\partial \rho_{6}^{*}}{\partial t^{*}}=c_{2} \rho_{2}^{*} k_{3} \tag{2.8c}
\end{align*}
$$

Non-Dimensional Equations

The equations and boundary conditions are non-dimensionalized in order to determine relevant parameter groupings and minimize the number of parameters which affect the calculations. Reference values used to non-dimensionalize the variables are selected as being a characteristic dimension of the problem. Usually, the reference value will enable the non-dimensional quantity to have an order of magnitude of unity. For the slab, the independent variables, x^{*} and t^{*}, are non-dimensionalized by the slab thickness and the characteristic conduction time, the Fourier number. The dependent variables ρ_{i}^{*} are non-dimensionalized by the initial density, ρ_{0}^{*}. The temperature is non-dimensionalized by consideration of the boundary conditions. The resultant non-dimensional variables are given in Table I (see Nomenclature for symbol identification).

TABLE I
NON-DIMENSIONAL VARIABLES

Dependent Variables

$$
\mathrm{T}_{\mathrm{R}}=\frac{\mathrm{T}^{*}-\mathrm{T}_{0}^{*}}{\mathrm{q}_{0}^{*} \mathrm{~L} / \mathrm{K}_{0}}
$$

$$
\mathrm{T}_{\mathrm{C}}=\frac{\mathrm{T}^{*}-\mathrm{T}_{0}^{*}}{\mathrm{~T}_{\infty}^{*}-\mathrm{T}_{0}^{*}}
$$

$$
\mathrm{q}=\frac{\mathrm{q}^{*}}{\mathrm{q}_{0}^{z}}
$$

$$
\rho_{i}=\frac{\rho_{i}^{*}}{\rho_{\hat{\theta}}^{*}}
$$

$$
\mathrm{w}=\frac{\mathrm{w}^{*} \mathrm{CL}}{\mathrm{~K}_{0}}
$$

Independent Variables
$x=\frac{x^{*}}{L}$
$\mathrm{t}=\frac{\mathrm{K}_{0} \mathrm{t}^{*}}{\rho_{0}^{*} \mathrm{CL}^{2}}$

Abstract

When the non-dimensional variables are substituted into the energy equation (2,3), the species equation (2.8), and the boundary conditions (2.4), the referencequantities become grouped into nondimensional parameters. It is the value of the particular combination of reference quantities as given in the new parameters that determine the character of the solutions rather than the values of the reference quantities themselves. The resulting new parameters are given in Table II.

TABLE II
NON-DIMENSIONAL PARAMETERS

Definition
Description

$$
\begin{array}{ll}
E_{i}=\frac{E_{i}^{*}}{R^{\circ} T_{0}^{*}} & \text { Activation Energy Parameter } \\
F_{i}=\frac{K_{0}\left(1 / a_{i}\right)}{\rho_{0}^{* C L^{2}}} & \text { Frequency Factor Parameter } \\
R_{i}=\frac{Q_{i}}{\mathrm{CT}_{0}^{*}} & \text { Heat of Reaction Parameter } \\
G= \begin{cases}\frac{q_{0}^{*} \mathrm{~L}}{\mathrm{~K}_{0} \mathrm{~T}_{0}^{*}} & \text { (Radiative) } \\
\frac{T_{\infty}^{*}-T_{0}^{*}}{T} & \text { (Convective) }\end{cases} \\
\mathrm{Nu}=\frac{\mathrm{hL}}{\mathrm{~K}_{0}^{*}} & \text { Heat Flux Parameter }
\end{array}
$$

The resulting non-dimensional energy equation is

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\frac{\partial^{2} T_{2}}{\partial x^{2}}+\frac{1}{\rho} \frac{\partial \rho}{\partial x} \frac{\partial T}{\partial x}-\frac{R_{1}}{F_{1} G}\left(\frac{\rho_{1}}{\rho}\right) \bar{k}_{1}-\frac{R_{2}}{F_{2} G}\left(\frac{\rho_{1}}{\rho}\right) \bar{k}_{2}-\frac{R_{3}}{F_{3} G}\left(\frac{\rho_{2}}{\rho}\right) \bar{k}_{3} \tag{2.9}
\end{equation*}
$$

The non-dimensional species equations are

$$
\begin{align*}
& \frac{\partial \rho_{1}}{\partial t}=-\rho_{1}\left(\frac{\bar{k}_{1}}{F_{1}}+\frac{\bar{k}_{2}}{F_{2}}\right) \tag{2.10a}\\
& \frac{\partial \rho_{2}}{\partial t}=c_{1} \rho_{1} \frac{\bar{k}_{1}}{F_{1}}-\rho_{2} \frac{\bar{k}_{3}}{\bar{F}_{3}} \tag{2.10b}\\
& \frac{\partial \rho_{6}}{\partial t}=c_{2} \rho_{2} \frac{\bar{k}_{3}}{F_{3}} \tag{2,10c}
\end{align*}
$$

where $\bar{k}_{i}=\exp \left[-E_{i} /(1+G T)\right]$. Finally, the non-dimensional boundary conditions are

$$
t=0:
$$

$$
\begin{align*}
& T(x, 0)=0 \tag{2.11a}\\
& \rho(x, 0)=1=\rho_{1}(x, 0) \tag{2.11b}\\
& \rho_{i}(x, 0)=0, \quad i=2,3, \ldots, 6 \tag{2.11c}
\end{align*}
$$

$x=0:$

$$
\begin{align*}
& \frac{\partial T}{\partial x}=0 \tag{2.11d}\\
& \frac{\partial \rho_{i}}{\partial x}=0, \quad i=1,2, \ldots, 6 \tag{2.11e}
\end{align*}
$$

$\mathrm{x}=1$: Type I (Radiative)

$$
\begin{array}{ll}
\text { Case } 0 & \frac{\partial T}{\partial x}=q(t) \\
\text { Case } 1 & \frac{\partial T}{\partial x}=\frac{q(t)}{\rho(1, t)} \tag{2.11g}
\end{array}
$$

Case $2 \quad \frac{\partial T}{\partial x}=q(t)$
$\mathrm{x}=1:$ Type II (Convective)

Case $0 \quad \frac{\partial T}{\partial x}=N u(1-T)$

Case $1 \quad \frac{\partial T}{\partial x}=\frac{N u(1-T)}{\rho(1, t)}$

Case $2 \quad \frac{\partial T}{\partial x}=\mathrm{Nu}(1-\mathrm{T})$

Therefore, the problem to be solved consists of Equations (2.9), (2.10), and (2.11).

SOLUTION OF THE EQUATIONS

Background

There are basically two approaches available for the computer solution of non-linear partial differential equations. The first is the finite-difference method where the derivatives are replaced by finite differences. At each step, a system of linear algebraic equations must be solved. Computer programs are usually complex and require large core storage. The second approach is the integral method. Basically, it reduces the partial differential equations to a system of ordinary differential equations by integrating over one variable。 The ordinary differential equations can then be solved by any one of a number of highly developed techniques.

There have been a number of different integral approaches used to reduce the partial differential equations. The simplest approach is to divide the region of integration into strips and replace the derivatives across the strips by finite differences. However, a large number of strips are required to obtain good accuracy. Other simple techniques have been discussed by Goodman (7).

Method of Integral Relations

Berlotserkovskii and Chushkin (2) present the essential features of the method of Integral Relations, as generalized by Dorodnitsyn, and
discuss a number of sample problems in the field of Gas Dynamics. This method offers the best accuracy and the fewest number of necessary approximating strips of any of the integral techniques.

The basic approach is to multiply the partial differential equation by a "weighting" function, $f(x)$, and then integrate with respect to its independent variable. Functions within the integrals are then approximated by an interpolation formula. This enables the integrals to be evaluated and results in a system of ordinary differential equations in the remaining independent variable. The final system of equations can then be solved by such standard techniques as Runga-Kutta or an Adams method. The accuracy of the method is improved by increasing the number of strips in the region.

In contrast to a finite difference technique, this method approximates an integral instead of a derivative. Thus, the approximated function is smoother than the integrand and can be represented by a smaller number of interpolation strips. Also, the integral can be continuous even when the integrand is discontinuous. Another consideration is that computer storage requirements are sma11.

The weighting functions used to multiply the partial differential equations are arbitrarily chosen except for some general restrictions. They must generate as many independent partial differential equations as there are interpolating points and thus must be linearly independent. They are also used to insure convergence of an integrand at any point within the region. Finally, they should enable the approximating functions to be more accurate in regions of greater importance.

Application of the Method of Integral Relations

The energy equation (2.9) along with the boundary conditions (2.11) will be reduced by applying the method of Integral Relations to the x-variable. The Integral method will not need to be applied to the species equations $(2,10)$ since they do not contain derivatives with respect to x .

The first step is to multiply the energy equation (2,9) by a weighting function $\mathrm{f}_{\mathrm{m}}(\mathrm{x})$ and then integrate between the slab boundaries. The result is

$$
\begin{align*}
\int_{0}^{1} f_{m}(x) \frac{\partial T}{\partial t} d x= & \int_{0}^{1} f_{m}(x) \frac{\partial^{2} T}{\partial x^{2}} d x+\int_{0}^{1} f_{m}(x) \frac{1}{\rho} \frac{\partial \rho}{\partial x} \frac{\partial T}{\partial x} d x \\
& -\frac{1}{G} \sum_{i=1}^{3} \int_{0}^{1} f_{m}(x) \bar{H}_{i} d x \tag{3.1}\\
\bar{H}_{1}= & \frac{R_{1}}{F_{1}}\left(\frac{\rho_{1}}{\rho}\right) \bar{k}_{1} \tag{3.2a}\\
\bar{H}_{2}= & \frac{R_{2}}{F_{2}}\left(\frac{\rho_{1}}{\rho}\right) \bar{k}_{2} \tag{3.2b}\\
\bar{H}_{3}= & \frac{R_{3}}{F_{3}}\left(\frac{\rho_{2}}{\rho}\right) \bar{k}_{3} \tag{3.2c}
\end{align*}
$$

Next, the slab is divided into (N - 1) strips by (N - 2) equally spaced planes paralle1 to the boundaries $\mathrm{x}=0$ and $\mathrm{x}=1$. With the boundaries, this gives N points where the equations and boundary conditions will be applied, ($\mathrm{N} \geq 2$). Therefore, there must be N independent equations like equation (3.1). This is obtained by choosing a system of linearly independent weighting functions, $f_{m}(x)$, with $\mathrm{m}=1,2$, 。 . . N. Since the temperatures increase toward the heated surface, $x=1$, this region will have a greater importance in the
problem than the back surface, $x=0$. Therefore, the weighting functions will be selected to give more "weight" to this region and enable the approximations to be more accurate. The linearly independent functions are chosen as

$$
\begin{gather*}
f_{m}(x)=\left[1, x, x^{2}, \ldots, x^{(N-1)}\right] \\
\text { i.e., } \quad f_{m}(x)=x^{(m-1)}, \quad(m=1,2, \ldots, N)
\end{gather*}
$$

With this set of f_{m}^{\prime} 's, Equation (3.1) becomes ${ }^{1}$

$$
\left.\begin{array}{rl}
\frac{d}{d t} \int_{0}^{1} x^{(m-1)} T d x= & \left.\frac{\partial T}{\partial x}\right|_{x=1}-\left.(m-1) T\right|_{x=1}+\left\{\begin{array}{l}
\left.T\right|_{x=0} ; m=2 \\
0
\end{array}\right\} m \neq 2
\end{array}\right\}
$$

In the next step, the integrands are approximated by polynomials in x with time-dependent coefficients. The number of terms will equal the number of interpolation points, N, plus any additional terms that can be determined from applying the boundary conditions. Thus, the

[^5]temperature can be approximated with a polynomial having ($\mathrm{N}+2$) terms since two boundary conditions for the temperature derivative are known. The approximations will then be
\[

$$
\begin{align*}
T(x, t) & =\sum_{n=1}^{N+2} A_{(n)}(t) \cdot x^{(n-1)} \tag{3.5a}\\
\ln \rho \cdot \frac{\partial^{2} T}{\partial x^{2}} & =\sum_{n=1}^{N} J_{1}(n)(t) \cdot x^{(n-1)} \tag{3.5b}\\
\ln \rho \cdot \frac{\partial T}{\partial x} & =\sum_{n=1}^{N} J_{2}(n)(t) \cdot x^{(n-1)} \tag{3.5c}\\
\bar{H}_{i} & =\frac{R_{i}}{F_{i}} \sum_{n=1}^{N+1} H_{i(n)}(t) \cdot x^{(n-1)} \tag{3.5d}
\end{align*}
$$
\]

The problem now centers around finding the polynomial coefficients, and thus, the temperature as given by Equation (3.5a). Substituting the approximations (3.5) into Equation (3.4) and integrating ${ }^{2}$ gives N equations for the temperature coefficients, $A_{(n)}(t)$:

$$
\begin{align*}
& \frac{1}{m} \frac{d A}{d t}(1)+\sum_{n=1}^{N}\left(\frac{1}{m+n+1}\right) \frac{d A}{d t}(n+2)=\left.(1+\ln \rho) B\right|_{x=1} \\
& -(m-1) \sum_{n=1}^{N}\left(\frac{n+1}{m+n-1}\right) A_{(n+2)} \\
& -\sum_{n=1}^{N}\left(\frac{1}{m+n-1}\right) J_{1}(n) \\
& -(m-1) \sum_{n=1}^{N-1}\left(\frac{1}{m+n-1}\right) J_{2}(n+1) \\
& -\frac{1}{G} \sum_{i=1}^{3} \frac{R_{i}}{F_{i}} \sum_{n=1}^{N+1}\left(\frac{1}{m+n-1}\right) H_{i(n)} \\
& (\mathrm{m}=1,2, \ldots, \mathrm{~N}) \tag{3.6}
\end{align*}
$$

[^6]Another equation must be included with Equation (3.6) in order to solve for the $(N+1)$ unknowns. This equation is formed by using the temperature approximation (3.5a) in one of the boundary conditions (2.11f-k), depending on the Type and Case, and then differentiating with respect to time. The results for Case 1 are

$$
\begin{align*}
& \sum_{n=1}^{N+2}(n-1) \frac{d A}{d t}(n) \\
& \sum_{n=1}(q)\left(\frac{-1}{\rho^{2}(1, t)}\right) \frac{d \rho(1, t)}{d t}+\frac{1}{\rho} \frac{d q}{d t} \text {, Type I (3.7a) } \tag{3.7b}\\
& \sum_{n=1}^{N+2}\left(\frac{N}{\rho}+n-1\right) \frac{d A(n)}{d t}=\left[\frac{-N(1-T)}{\rho^{2}} \frac{d \rho}{d t}\right]_{x=1} \text {, Type II }
\end{align*}
$$

Equations (3.6) and (3.7) form a set of $(N+1)$ equations each containing ($N+1$) ordinary first-order derivatives of the temperature coefficients on the left side. The derivatives are equated to terms composed only of the temperature coefficients and species densities. Thus, this system of equations can be solved simultaneously to give an explicit equation in canonical form for each of the derivatives of the temperature coefficients.

The time-dependent coefficients in Equations (3.5b, c, d) are determined by evaluating the approximations at each of the N strips, $x=x_{j}$. For example, Equation (3.5b) would become

$$
\begin{array}{r}
\sum_{n=1}^{N} J_{1(n)}(t) \cdot x_{j}^{(n-1)}=\ln \rho\left(x_{j}, t\right) \cdot \sum_{n=1}^{N+2}(n-1) A_{(n)}(t) \cdot x_{j}^{(n-2)} \\
(j=1,2, \cdots, N)
\end{array}
$$

A set of algebraic equations are thus formed for each approximation and can be solved simultaneously for the coefficients. The additional term in Equation (3.5d) is found by taking the x-derivatives of the
approximation and the approximated function, Equation (3.2), and applying the boundary conditions (2.11d and e).

The remaining unknowns are the solid species 1,2 , and 6 . As stated previously, the equations defining the time derivatives of the species, Equation (2.10), do not contain x-derivatives and thus do not need to be integrated with respect to x. By treating x as a parameter, the species equations are applied at each x_{j} to obtain a set of N first order ordinary differential equations already in canonical form for each solid species. Thus, at $x=x_{j}, j=1,2$, . . . , N

$$
\begin{equation*}
\frac{\mathrm{d} \rho_{1, j}}{\mathrm{dt}}=-\rho_{1, j}\left(\frac{\overline{\mathrm{k}}_{1, j}}{\mathrm{~F}_{1}}+\frac{\overline{\mathrm{k}}_{2, j}}{\mathrm{~F}_{2}}\right) \tag{3.8a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \rho_{2, j}}{d t}=c_{1} \rho_{1, j} \frac{\bar{k}_{1, j}}{\bar{F}_{1}}-\rho_{2, j} \frac{\bar{k}_{3, j}}{F_{3}} \tag{3.8b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \rho_{6, j}}{d t}=c_{2} \rho_{2, j} \frac{\bar{k}_{3, j}}{F_{3}} \tag{3.8c}
\end{equation*}
$$

where

$$
\bar{k}_{i, j}=\exp \left[\frac{-E_{i}}{1+G \sum_{n=1}^{N+2} A_{(n)} x_{j}^{(n-1)}}\right]
$$

In summary, there are $(4 \mathrm{~N}+2)$ first-order differential equations of the form

$$
\frac{d f_{j}}{d t}=F_{j}\left(f_{1}, f_{2}, \ldots, f_{N e}, t\right) \quad N e=4 N+2
$$

resulting from ($N+2$) equations for the temperature coefficients and N equations for each of the three solid species. The system of equations was then solved by a general integration subroutine which
employed an Adams-Moulton technique (10).

Initial Conditions

In order to start the solution for the ($4 \mathrm{~N}+2$) unknowns, their initial values must be given. The temperature approximation (3.5) is used in the boundary conditions (2.11) to obtain equations for the initial values of the coefficients. ${ }^{3}$

The initial temperature coefficients are

$$
\begin{align*}
A_{(1)}(0) & =0 \tag{3.9a}\\
A_{(2)}(0) & =0 \tag{3,9b}\\
\sum_{n=3}^{N+2} A_{(n)}(0) x_{j}^{(n-1)} & =0 \quad j=2,3, \ldots, N \tag{3.9c}\\
\sum_{n=3}^{N+2}(n-1) A_{(n)}(0) & =1 \tag{3.9d}
\end{align*}
$$

Using the values of x_{j} at each of the interpolation points in Equation (3.9c) produces ($\mathrm{N}-1$) equations which can be solved simultaneously with Equation (3.9d) for the N coefficients. The result, shown in Figure 6 , is an ($N+1$-order polynomial for the initial temperature $T=0$ that passes through zero at N points and has a slope of 1.0 at $\mathrm{x}=1$ and a slope of 0.0 at $\mathrm{x}=0$.

The initial species values are obtained directly by applying the boundary conditions (2.11b, c) at each x_{j} :

$$
\begin{align*}
\rho_{1}\left(x_{j}, 0\right) & =1 \tag{3.10a}\\
\rho_{2}\left(x_{j}, 0\right)=\rho_{6}\left(x_{j}, 0\right) & =0 \quad(j=1,2, \ldots, N) \tag{3.10b}
\end{align*}
$$

[^7]

Figure 6. Temperature Profiles at Time $=0$ for Various N Interpolation Strips

Equations (3.5) through (3.10) constitute the complete problem to be solved on a digital computer to obtain temperature and species histories within the slab.

Summary of the Integral Technique

The purpose of the integral technique is to reduce the secondorder partial differential energy equation to a system of first-order ordinary differential equations that are then solved by an AdamsMoulton technique. The preceding discussion has described in detail the steps necessary to accomplish this and is now summarized.

First, divide the slab by N equally spaced planes parallel to the boundaries. Then, multiply the energy equation by a system of N linearly independent weighting functions that "weight" the heated boundary of the slab. Integrate the weighted equations over the slab to obtain N independent integral relations. Approximate the functions remaining under the integrals with polynomials in x having timedependent coefficients. Complete the integration to obtain a system of $(N+2)$ first-order ordinary differential equations for the timedependent temperature coefficients. Apply the solid species equations at the N strips to obtain 3 N first-order ordinary differential equations. Use the boundary conditions to evaluate the initial values of the temperature coefficients and local solid species. Solve the system of ($4 \mathrm{~N}+2$) differential equations by an Adams-Moulton technique for the temperature coefficients (and thus the slab temperature distribution) and N local densities of each solid species at a given time.

Computer Programming

The computer programs were developed to solve Equations (3.5) through (3.10) for the temperature profiles and local solid species concentration. From the calculated local solid species concentrations and their time derivatives, additional variables were calculated; the local amounts of each gas species produced from the N strips, the total amount of each gas species produced from the slab, the local rate of mass loss, the mass flux from the slab, and the average solid density for the slab,

The total amount of each gas species that was produced from each of the N strips was found from the solid species densities by ${ }^{4}$

$$
\begin{align*}
& \operatorname{Gas}_{3}=\left(1-c_{1}\right)\left(\frac{\rho_{6}}{c_{1} c_{2}}+\frac{\rho_{6}}{c_{1}}\right) \tag{3.11a}\\
& \operatorname{Gas}_{4}=1-\rho_{1}-\frac{\rho_{6}}{c_{1} c_{2}}-\frac{\rho_{2}}{c_{1}} \tag{3.11b}\\
& \operatorname{Gas}_{5}=\left(1-c_{2}\right) \frac{\rho_{6}}{c_{2}} \tag{3.11c}
\end{align*}
$$

An $N^{\text {th }}$ order polynomial in x having $(N+1)$ time-dependent coefficients was then used to approximate the average slab production of each gas species. The coefficients were evaluated by simultaneously solving the $(N+1)$ equations that are formed from applying Equation (3.11) at the N strips and the zero x-derivative of the solid species at $x=0$. Integrating the approximations over the slab gives the total amount of each gas species produced from the slab. Likewise, the local values

[^8]of the total solid species were used to obtain the average solid for the slab (called the Total Weight in the computer output).

The local gas generation rate was calculated by taking the negative of the sum of the local solid generation rates

$$
-\left(\frac{d \rho_{1}}{d t}+\frac{d \rho_{2}}{d t}+\frac{d \rho_{6}}{d t}\right)
$$

In the program, this value is called the Mass Loss Rate and is proportional to the reaction rate.

Finally, to find the mass flux out of the slab, a polynomial of $(\mathrm{N}+1)$ terms was formed based on the local gas generation rates and the zero x -derivative of the generation rate at $\mathrm{x}=0$. Integrating the polynomial over the slab then gives the mass flux at the surface.

The programs that were written for the Integral technique solution are the MAIN program and subroutine DERFUN. A variable listing is given in Appendix G. Programs already in existence were used for the simultaneous solutions of the algebraic equations (subroutine SIMQ (16)) and the solution of the ordinary differential equations (subroutines START AND KAMSUB (10)). A description of the use of the latter three subroutines is given in Appendix H as well as a complete program listing of all routines in Appendix I. The basic steps followed in the computer programs are given in Table III with an expanded description given in Appendix J.

TABLE III

BASIC COMPUTING STEPS

1. Read the number of approximation strips, N.
2. Read the parameter values and the program control constants.
3. Calculate the initial values of the unknowns (Equations 3.9 and 3.10) 。
4. Calculate the 3 N time derivatives of the local solid species (Equation 3.8).
5. Calculate the coefficients for the interpolation formulas (Equation 3.5) 。
6. Calculate the $(N+2)$ time derivatives of the temperature coefficients (Equations 3.6 and 3.7).
7. Integrate the $(4 N+2)$ time derivatives to obtain values of the unknowns at the new time step.
8. Calculate the local values for the gas species, gas generation rate, temperature, and total solid.
9. Calculate the average slab values for the gas species, mass flux, and total solid.

CHAPTER IV

COMPUTER RESULTS

Introduction

Most of the computer work involved the development of both the integral technique and the computer technique as we11 as checking the accuracy of the results. However, this section will consider only some of the final results of the computer calculations.

Since a large number of parameters and possible parameter values were involved in addition to the various boundary conditions and reactions, a study was first made of the influence of individual parameters and events and then of the effects of combinations of events. The investigation of the influence of individual events was also necessary to the development of the computer technique since the selection of the program constants was highly dependent on the values of the problem parameters.

These results are not able to cover in depth all possible effects and combinations of the parameters but will show some of the major effects and trends for all the boundary condition cases and reaction combinations.

```
Parameter Values
```

Since the reaction scheme used in the program is based on organic solids such as cellulose and wood, the parameter values were chosen
from published data on these substances. As discussed earlier, Weatherford used the same physical and kinetic constants as Bamford, which represents values for one overall reaction in wood; their calculations were based on an activation energy of 33 kcal per mole and a frequency factor of 5×10^{8} per second. Tang gives typical activation energies and frequency factors for cellulose in two temperature ranges; 23 and 54 kcal per mole for the activation energy and 0.3×10^{6} and 0.6×10^{7} per second for the frequency factor for temperatures from $280^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$. Murty and Blackshear also present kinetic constants which varied throughout cellulose from 13.6 to 22.6 kcal per mole for the activation energy and from 2×10^{4} to 4×10^{6} per second for the frequency factor. Similar values also apply to polymer foams as Tilley, et al, mention an activation energy of 50 kcal per mole and a frequency factor of 10^{13} per second for one of the major reactions in urethane foams. For three reactions, basic activation energies and frequency factors were chosen which were in the range of the reported values and which gave maximum reaction rates in the temperature ranges reported by Broido.

The overall heats of reaction for wood and cellulose are of the same magnitude with wood being exothermic and cellulose, endothermic. Weatherford used -86 cal per gm for wood while Tang reported +88 cal per gm for cellulose. Broido describes the three major reactions of cellulose as slightly endothermic, highly endothermic and highly exothermic. For the three reaction cases, basic heats of reaction were chosen which demonstrated Broido's findings and had an overall heat of reaction similar to the published values.

A basic value for the radiant heat flux was chosen as the maximum
initial heat flux in Weatherford's experiments. While experimental radiant heat fluxes are normally much higher than Weatherford's initial convective value, the slab thicknesses used are much smaller. Therefore, the numerator, $q L$, of the heat $f l u x$ parameter, G, would be of the same magnitude in either case,

The dimensional values used in computing the basic parameters are given in Table IV, with the resulting non-dimensional parameters given in Table V. The particular parameter values used in each computer run given in the results are presented in Table VI.

The Inert Slab

Inert slab calculations were made and compared with known solutions. Carslaw and Jaeger (6) give the exact solution for an inert slab heated by a constant heat flux. As shown in Figure 7, increasing the number of approximating strips gives a more accurate answer, and, a good approximation for the inert case was obtained with only three approximating strips. Increasing the number of approximating strips results in curves which lie midway between the exact solution and the previous approximation.

For the convective boundary condition, Weatherford (23) graphs the solution for the surface temperature of an inert slab. Figure 8 shows that three approximating points again give the exact solution except for the early times. Higher approximations are practically indistinguishable from the exact solution for all times and for the chosen parameters.

Thus, the exact solutions show that the integral technique can accurately represent the linear portion of the problem. However,

BASIC DIMENSIONAL CONSTANTS

TABLE V

BASIC NOAT-DIMENSIONAL PARAMETERS

TABLE VI

PARAMETER VALUES USED IN COMPUTED RESULTS

$\begin{aligned} & \text { Run } \\ & \text { Number } \end{aligned}$	B.C.	Case	$\underline{E_{1}}$	E_{2}	E_{3}	${ }^{\text {F }}$	$\underline{\mathrm{F}_{2}}$	${ }^{\text {F }}$	$\underline{\mathrm{R}_{1}}$	$\underline{\mathrm{R}_{2}}$	$\underline{\mathrm{R}_{3}}$	$\stackrel{c_{1}}{ }$	c_{2}	\underline{G}	Nu
210	0	1	40	--	--	10^{-8}	--	--	0	--	--	. 5	--	1.0	--
211	0	1	40	--	--	10^{-8}	--	--	0	--	--	. 8	--	1.0	-
213	1	2	40	--	--	10^{-8}	--	--	0	--	--	. 5	--	1.535	2.0
220	1	1	40	--	--	10^{-8}	--	--	0	--	--	. 5	--	1.535	2.0
222	0	1	40	--	--	10^{-8}	--	--	+. 3	--	--	. 5	--	1.0	--
223	0	0	40	--	--	10^{-8}	--	--	+. 3	--	--	. 5	--	1.0	-
226	0	0	40	--	--	10^{-8}	--	--	-. 3	--	--	. 5	--	1.0	--
228	0	0	40	--	--	10^{-8}	--	--	0	--	--	. 5	--	1.0	--
229	0	0	40	--	--	10^{-8}	--	--	0	--	--	. 5	--	2.0	-
243	0	0	40	--	--	10^{-8}	--	--	+. 3	--	--	. 5	--	1.0	--
261	0	1	40	52	60	10^{-9}	10^{-11}	10^{-13}	+. 1	+1.0	-. 571	. 9	. 833	1.0	--
262	1	0	40	52	60	10^{-8}	10^{-10}	10^{-12}	+. 1	+1.0	-. 571	. 9	. 833	1.5	2.0
263	1	0	40	52	60	${ }^{10-8}$	10^{-10}	10^{-12}	+.1	+1.0	-. 571	. 9	. 833	1.75	2.0
264	1	0	40	52	60	${ }_{10-8}$	10-10	10^{-12}	+.1	+1.0	-. 571	. 9	. 833	1.45	2.0
265	1	2	40	52	60	10^{-8}	10^{-10}	10^{-12}	+. 1	$+1.0$	-. 571	. 9	. 833	1.75	2.0
080	1	0	50	55.66	60	10^{-10}	10^{-11}	10^{-12}	0	0	0	. 9	. 833	1.535	2.0
081	1	0	50	55.66	60	10-10	10^{-11}	10^{-12}	0	0	0	. 9	. 833	2.0	2.0
082	1	0	48	55.66	60	10^{-10}	10^{-11}	10^{-12}	0	0	0	. 9	. 833	1.535	2.0
083	1	0	50	55.66	60	5×10^{-10}	10^{-11}	10^{-12}	0	0	0	. 9	. 833	1.535	2.0
125	0	0	50	55.66	--	10^{-10}	10^{-11}	--	0	0	0	. 5	--	1.0	--
131	0	0	50	55.66	--	10^{-10}	10^{-11}	--	0	0	0	. 5	--	1.5	--
1.43	0	2	55.66	--	--	10^{-10}	--	--	0	0	0	. 5	--	1.0	--

Note: For the constant heat flux boundary condition, B.C. $=0$. For the convective heated boundary condition, B.C. $=1$. Exothermic reactions denoted by (-) and endothermic reactions by (+).

Figure 7. Comparison of Approximate Solutions With Exact Solution for Constant Heat Flux Case

Figure 8. Comparison of Approximate and Exact Solutions for Convective Heating, $\mathrm{Nu}=2$
there are no exact solutions for checking the validity of the technique when including the non-1inear terms for the generated heat and the change in effective thermal conductivity. For this reason, the method of computation was made to allow any order of approximation to be used, enabling the results to be generally checked by comparing with a higher approximation.

One Reaction--Case 0

In order to interpret the results with multiple reactions, the single reaction cases were studied first. Initially, a constant effective thermal conductivity was assumed.

In Figure 9 the temperature history of the front and back surfaces are shown for a slab heated by a constant heat flux and an exothermic reaction. The front surface temperature follows the inert value until the reaction begins to generate heat, causing the temperature to increase at a higher rate. As the reaction proceeds into the slab, the amount of generated heat increases, thereby increasing the amount of conducted heat. This has two major effects: temperatures within the slab begin to deviate from the "inert" value even before a reaction starts at that particular location, and the temperature rise becomes increasingly steeper at greater depths.

As the reaction ends at the heated surface, the temperature increases at a constant rate that is higher than the inert value, showing that the rate of heat conduction into the slab is less due to the increased internal temperatures. A result of the accumulation of generated and conducted heat is that the temperature at the back surface (adiabatic surface) becomes higher than the slab just ahead of it for

Figure 9. Effect of Heat of Reaction: Temperature History of Front and Back SurfacesConstant Heat Flux, One Exothermic Reaction, Case 0
a short time, up until the reaction reaches its maximum. An abrupt drop in the rate of temperature rise then follows as the reaction in the slab ends. When the reaction ceases, the rate of temperature rise, compared to the inert solution, ranges from higher at the front surface to lower at the back surface. Of course, after this transient period, the temperatures throughout the slab would become parallel to the inert solution with an offset from the inert values.

Results for an endothermic reaction are shown in Figure 10. Effects are similar to the exothermic reaction except with an opposite sign. Note that the reaction events are spread over a longer time period, and the temperature rise becomes parallel to the inert solution very quickly after the slab is through reacting.

Another basic difference in the character of endothermic and exothermic reactions can be seen in Figures 11 and 12 where temperature profiles are given as the reaction proceeds through the slab. This time the endothermic reaction is discussed first. The profiles all have a slope of 1.0 at the front surface and zero at the back surface. The earliest profile shows the temperature distribution when the front surface reaction starts. The next profile ($t=1.33$) was taken when the surface reaction rate is at its maximum. The effect of the energy absorbed by the reaction is to depress the temperature rise, i.e., the front temperature rise is less than the back surface. Likewise, as the reaction proceeds through the slab, the profiles show the same effect with the last profile showing that the reaction is at the back surface.

For the exothermic reaction, however, the profiles are warped because of the reaction, as seen in Figure 12. The increasing times

Figure 10. Effect of Heat of Reaction: Temperature History of Front and Back Surfaces-One Endothermic Reaction, Constant Heat Flux, Case 0

Figure 11. Effect of Heat of Reaction; Temperature Profiles for One Endothermic Reaction--Constant Heat Flux, Case 0

Figure 12. Effect of Heat of Reaction: Temperature Profile for One Exothermic Reaction, Constant Heat Flux, Case 0
trace the reaction through the slab with the back part briefly achieving a higher temperature than the middle as described earlier. Because of the profiles warping, a larger number of approximating strips is needed for exothermic reactions than for an equivalent endothermic reaction.

The reaction rate shows another striking difference between endothermic and exothermic processes. Figure 13 demonstrates that the maximum reaction rate increases for exothermic reactions at distances farther into the slab. The curves show the progression of the reaction through the slab and show the reaction rate distribution at six times. These are the times when the reaction rate reached a maximum at each of the six interpolation strips. The maximum reaction rate at the back surface is more than two and one-half times the rate at the front surface. This is a result of the higher temperature rise from the increasing amount of heat conducted ahead of the reaction. Since the rate of reaction is dependent on the product of the amount of reactant and the temperature-dependent rate constant, the additional conducted heat causes the temperature to be slightly higher for a given amount of reactant, thus increasing the reaction rate. This is shown in Figure 14 where the back surface always has a higher temperature than the front surface for a given amount of reactant.

Of course, the increase in the reaction rate through the slab also means that the heat generation rate increases. For reactions having higher heats of reaction, more heat would be generated causing the difference in the reaction rates to be greater. Finally, by comparing the times at which the maximum rate occurred at each x-position, it is seen that the velocity of the "reaction zone" increased as it

Figure 13. Effect of Heat of Reaction: Reaction Rate in Slab for One Exothermic Re-action--Constant Heat Flux, Case 0

Figure 14. Effect of Heat of Reaction: Temperature vs. Reactant Density Front and Back Surfaces--Constant Heat Flux, One Exothermic Reaction, Case 0
proceeded into the slab. Two factors contribute to this: the increasing rate of reaction and the longer residence times at greater depths resulting in less solid remaining for the reaction.

For the endothermic reaction, Figure 15 shows that the maximum reaction rate decreases from the front to the back surface. This indicates that a result of the energy absorption is a lower temperature for a given reactant density. The difference in times at which the maximum reaction rate occurred again shows that the "reaction wave" accelerated as it traveled farther into the slab. Thus, the longer reacting times for the interior solid contributed more to increasing the velocity of the "reaction wave" than the decreasing reaction rate did to retard it.

A difference of major importance in the effects of the endothermic and exothermic reactions is shown by the mass flux curves in Figure 16. The area under the mass flux curves equals the total mass of solid lost from the slab and is the same in both cases. The exothermic reaction was completed in half the time of the endothermic reaction, and the maximum mass flux was increased by three times. The "lump" on the side of the endothermic curve near the end of the reaction is apparently due to the increasing reaction rate near the insu1ated surface.

Figure 17 gives the solid distribution for both reaction cases as points in the slab reached a given density. The solid distribution profiles were steeper for the exothermic reaction than for the endothermic reaction up until the reaction was nearly completed. This is a result of the longer residence times of the solid interior for the endothermic reaction.

Figure 15. Effect of Heat of Reaction: Reaction
Rate in the Slab--Constant Heat Flux-One Endothermic Reaction, Case 0

Figure 16. Effect of Heat of Reaction: Mass Flux From Slab for Exothermic and Endothermic Reactions-Constant Heat Flux, Case 0

Figure 17. Effect of Heat of Reaction: Comparison of Solid Density Profiles for Exothermic and Endothermic Reactions--Constant Heat Flux, Case 0

The previous discussion has been concerned with the differences in endothermic and exothermic reactions under the same heating conditions. The effect of a change in the heat flux parameter alone can be seen by making the heat of reaction parameter zero. Figure 18 gives the reaction rate vs. surface temperature for two difference values of G. Not only does increasing the heat flux cause an increase in the reaction rate but it also causes the maximum reaction rate to occur at a higher temperature. Since a given temperature fixes the reaction rate constant, the increase comes from a larger value for the density of reactant (see Equation 2.10a). This is verified by Figure 19 which shows the increase in the reactant present at a given temperature. This effect is a result of a higher rate of increase in the reaction temperature with increasing G, giving the solid less time to react, thus making more solid avaịlable at a given temperature.

In summary, the computations have given temperature profiles and histories for exothermic and endothermic reactions with constant parameters. The heat generated or absorbed from the reactions have been shown to have a great effect on the solid ahead of and behind the reactions, not only with respect to temperatures, but also reaction rates and mass flux. Increasing the heat flux parameter was shown to increase the maximum reaction rate and also the temperature at which it occurs.

One Reaction--Cases 1 and 2

Temperature histores were calculated to show the effect of a variable effective thermal conductivity. A density-dependent, effective thermal conductivity affects both the front surface boundary condition

Figure 18. Effect of Heat Flux Parameter: Surface Reaction Rate vs. Temperature--Constant Heat Flux, Case 0

Figure 19. Effect of Heat Flux Parameter: Surface Reactant Density vs. Temperature-Constant Heat Flux, Case 0
and the energy equation for Case 1 or just the energy equation for Case 2.

Figure 20 shows, for the convective heating case, the surface temperature history for Cases 1 and 2 and also the constant effective thermal conductivity Case 0. The heat of reaction parameter is zero so the temperature deviations from the constant conductivity case occur only from the changes in the effective thermal conductivity and the heat transfer coefficient. For Case 1 the heat transfer coefficient is constant while the effective thermal conductivity decreases as solid is lost. The result is that the rate of heat conducted from the surface is less, causing the temperature to increase.

For Case 2 the heat transfer coefficient and the effective thermal conductivity both decrease as solid is lost, with the result that the surface boundary condition is the same as the constant effective conductivity case while the decreasing effective conductivity appearsas an equivalent endothermic contribution in the energy equation. Neither case causes the temperature to deviate much from the constant effective conductivity solution for the parameters that were used. The primary reason is that the temperature dependency in the surface boundary condition causes a compensating effect in both cases. For Case 1, as the surface temperature tends to rise, the difference in the source and surface temperatures becomes less, decreasing the heat flux to the surface and partially decreasing the rate of increase of the surface temperature. Likewise, for Case 2, as the surface temperature tries to rise at a slower rate, the temperature difference is greater causing a higher heat flux. As higher source temperatures are used, the trend would be for a greater effect of the changing effective thermal

Figure 20. Effect of Variable Effective Thermal Conductivity and Heat Transfer Coefficient: Temperature History of Front Surface, Convective Boundary Condition, Cases 1 and 2
conductivity on the temperature since the surface and source temperature difference would increase, thus decreasing the influence of a changing surface temperature.

When the radiation boundary condition is used, the effects are more pronounced. For no heat of reaction and a constant heat flux input, Figure 21 shows how the decreasing effective thermal conductivity affects the surface temperature history (Case 1). Since the effective conductivity depends on the amount of solid present, calculations were made for two final solid densities, 50% and 80% of the original density. The temperature increases faster as the amount of final solid decreases. The slope of the temperature rise after the reaction has been completed is the inverse of the final density. As the solid drops from its original density to 50%, the surface boundary condition shows that the slope of the temperature profile increases from 1 to 2 . For 80% of the original solid density, the slope increases from 1 to 1.25. Thus, for Case 1 , low final solid densities will greatly affect the slab temperatures.

Case 2 for the constant heat flux condition has essentially the same boundary conditions as the constant effective thermal conductivity case but includes the effect of the change in the effective conductivity in the energy equation. Figure 22 gives the temperature history for the front and back surfaces with no heat of reaction. The result shows that the changing effective thermal conductivity appears in the energy equation as an endothermic reaction if the heat input decreases so as to hold constant the slope of the surface temperature profile. This contribution does not occur at exactly the same time as a true endothermic reaction because the heat generated from a reaction depends

Figure 21, Effect of Solid Density on Effective Thermal Conductivity: Temperature History of Front Surface for Final Solid Densities of 0.5 and 0.8 --
Constant Heat Flux, Case 1

Figure 22. Effect of Conductivity Change on Energy Equation: Temperature History of Front and Back Surfaces for Constant Heat Flux-Case 2
on the time rate-of-change of the solid, while the contribution from the variable conductivity depends on the product of the rates of change of density and temperature with respect to x (see Equations 2.3, 2.7, and 2.8).

The combination of an endothermic reaction and a changing effective thermal conductivity is given in Figure 23. This figure shows the surface temperature history for Cases 1 and 0 together with Case 1 having an endothermic reaction. For Case 1 with the reaction, the rate of temperature rise first begins to decrease from the constant effective conductivity case, indicating that the endothermic reaction is affecting the temperature more than the changing effective conductivity. As the reaction proceeds, the high rate of increase of the temperature from the changing conductivity eventually causes the temperature to increase at a greater rate until the surface reaction ends and the rate of temperature rise is parallel to the Case 1 value. The overall effect of the changing effective conductivity cannot be represented by a single equivalent reaction.

The effect of a density-dependent, effective thermal conductivity and heat transfer coefficient is negligible for convective heating when source temperatures are low. For radiant heating and high source temperature convective heating, the change in effective thermal conductivity can greatly affect the temperature history of the slab. This is especially true as the final densities become smaller. These effects must be carefully considered when interpreting temperature histories.

Figure 23. Effect of Heat of Reaction: Temperature History of Front Surface for Constant Heat FIux-Case I, With and Without Heat of Reaction

Three Reactions--Case 0

The effects of parameter changes on the competing reactions were studied with zero heats of reaction and a constant effective thermal conductivity. Figure 24 shows typical density curves for the three solid species and $\mathrm{Gas}_{4} . \mathrm{Gas}_{3}$ and Gas_{5} are not shown since they are similar to Gas_{4}. As Solid ${ }_{1}$ reacts, it gives off Gas_{3} and forms Solid . At higher temperatures the competing reaction tends to form more Gas ${ }_{+}$ from Solid . As the temperature rises, Solid ${ }_{2}$ begins to give off Gas 5 and form Solid $_{6}$. When the rate of reaction of Solid $_{2}$ equals its rate of formation, it species curve reaches a maximum. The final species present is Solid $_{6}$ with Gas_{4} indicating the total amount produced from the slab.

For cellulose, Gas_{4} is the flammable species that competes for Solid ${ }_{l}$. Its importance in ignition and combustion occurs in several ways; ignition may occur if the surface temperature and the quantity of Gas_{4} evolving is high, while sustained combustion depends on the rate as well as the quantity of Gas_{4} evolving. Figure 25 indicates that a change in the heat flux parameter does not have as much effect on the total amount of Gas_{4} produced as it does on the rate of evolution and the time when it is evolved. The maximum rate of production of Gas_{4} (indicated by the slope of the curves) is not much greater for the higher heat flux parameter case but the maximum is attained quicker and held throughout most of the reaction.

The amount of Solid $_{1}$ that does not form Gas_{4} has gone to produce the other species. Since a higher heat flux produces more Gas $_{4}$, less Solid ${ }_{l}$ is available for the other species. Figure 26 shows that the amount of char formed is less for the higher heat flux but like Gas_{4},

Figure 24. Selected Species Histories for Three Reactions-Convective Heating, Case 0

Figure 25. Effect of Heat Flux Parameter: Production of Gas 4 from $x=1.0-$ Constant Heat Flux, Three Reactions, Case 0

Figure 26. Effect of Heat Flux Parameter: Production of Solid ${ }_{6}$ at $x=1.0--C o n v e c t i v e$ Heating, Three Reactions, Case 0
its rate of formation is higher and time of formation is much sooner than for the lower heat flux case.

One theory for the addition of chemicals to the solid for fire retardant purposes is that it tends to lower the activation energy for the first reaction thus producing more char and less Gas ${ }_{4}$. Figure 27 shows that lowering the activation energy for reaction 1 by 4% increased the amount of char by 30%, which also greatly reduced the amount of Gas $_{4}$ produced. The reaction times were about the same with the rate of production then depending on the amount of Solid 6 produced.

The largest experimental error in the kinetic constants occurs in the determination of the frequency factor since the actual mass of reactant is difficult to determine for multiple reactions. Figure 28 shows the effect of a change in the frequency factor for reaction 1 on the amount of Solid $_{6}$ produced. Increasing the frequency factor by a factor of 5 increased the amount of char by a factor of 3 .

The amount of solid present may be important to slab strength considerations as well as for thermal conductivity effects. Figure 29 shows the total solid history for changes in the activation energy of reaction 1. The early times of the reaction show less solid present for the lower activation energy case and the latter times show more solid present. The higher activation energy case delays the reaction of Solid $_{1}$, causing more total solid to be available in the early times. : In fact, combinations of the kinetic constants could produce a crossover point of equal amount of solid for high and low activation energies that was less than some value for strength requirements. This would mean that addition of fire retardant chemicals could produce a solid that burned slower but failed quicker than an untreated solid.

Figure 27. Effect of Change of Activation Energy Parameter for Reaction 1: Production of Solid $_{6}$ at $\mathrm{x}=1.0-$ Convective Heating, Three Reactions, Case 0

Figure 28. Effect of Change of Frequency Factor Parameter for Reaction 1: Production of Solid 6 at $x=1.0-$ Convective Heating, Three Reactions, Case 0

Figure 29. Effect of Change of Activation Energy of Reaction 1: Production of Total Solid at $\mathrm{x}=1.0--$ Convective Heating, Three Reactions, Case 0

In conclusion, this section showed how the competing reactions affected the production of Solid $_{6}$ and Gas $_{4}$ when changes were made in the kinetic constants and heat flux parameter.

Three Reactions with Heats of Reaction

After investigating the influence of separate events, the problem was calculated with all the reactions and heats of reaction included. For the radiantly heated boundary condition, the density-dependent, effective thermal conductivity case was used with a constant heat flux at the surface and no heat losses (Case 1). Cases 0 and 2 are not presented since Case 1 is closer to the actual physical situation, and similar effects of the two cases are shown by the convective heated boundary conditions.

Figure 30 gives the temperature history for the radiantly heated slab with endothermic, competing reactions producing Gas 3_{3}, Solid ${ }_{2}$, and Gas_{4}, and an exothermic reaction producing Gas_{5} and Solid_{6}. At the surface, the endothermic reactions and the decreasing effective thermal conductivity tend to cancel the heat production effects while the endothermic reactions and the decreasing conducted heat effects the temperatures farther into the slab. Eventually, the exothermic reaction at the surface combines with the decreasing effective thermal conductivity to increase the temperature from the inert solution. An effect due to the approximation technique is seen next as the surface temperature tends to level off when the exothermic reaction ends and the interior endothermic reactions continue. When the exothermic reaction starts at the next approximation point ($x=0.8$), the temperatures all increase at a steep rate as the combined effects of heat

Figure 30. Effect of Heat of Reaction: Temperature History at $\mathrm{x}=1.0$ and $\mathrm{x}=0.8$ for Constant Heat Flux--Three Reations with Heats of Reactions, Case 1
generated and the decreasing effective thermal conductivity force the temperature up. In reality, the surface temperature would continue increasing when its exothermic reaction ended for the reaction would be continuing into the slab, decreasing the heat conducted from the surface. Figure 31 shows the production of Solid Sa $_{6}$ and Gas $_{4}$ at $\mathrm{x}=1.0$ and $x=0.8$ (the next approximating strip). The slopes of the species curve is proportional to the rate of the reaction producing that species. The rate of reaction 2 (producing Gas $_{4}$) begins increasing at $x=0.8$ before it starts decreasing at $x=1.0$. Thus, the finite distance between the approximating strips does not visibly affect the temperature history. The rate of reaction 3 (producing Solid) $_{\text {) however, }}$ is almost zero at $\mathrm{x}=1.0$ before it becomes significant at $\mathrm{x}=0.8$. Therefore, the effect of the finite distance is as though the reaction was turned off and then on. This shows how the width of the reaction zone can affect any approximation technique that uses a finite number of points to represent the slab. Without changing the parameters or kinetic constants, this error can be reduced by increasing the number of approximating strips and thus decreasing the distance between the strips. This also illustrates the difficulty in calculating the temperatures for this type of boundary condition with exothermic reactions because, as the reaction proceeds into the solid, the reaction rate increases, the temperatures increase, and the higher temperature reactions (here, the exothermic reaction) dominate, causing the temperatures to increase more, increasing the mass loss and decreasing the effective thermal conductivity. This quickly becomes a runaway situation with the slab probably following different boundary conditions after a short period of time due to re-radiation or ignition. Of

Figure 31. Effect of Heat of Reaction: Production of Solid 6 and Gas_{4} at $x=1.0$ and $x=0.8--$ Constant Heat Flux, Three Reactions, Case 1
course, selected values of the reaction constants are possible that would enable this case to be calculated accurately but would probably not be physically realistic.

For the convectively heated boundary condition, three reactions are used, first with a constant effective thermal conductivity and then with the Case 2 conditions. Figure 32 gives the temperature history of the front and back surfaces. The initial endothermic reactions cause the surface temperature to fall below the inert solution until the exothermic reaction increases the temperature above the inert value. At the back surface, the decreasing conducted heat and the endothermic reactions cause the rate of temperature rise to become less than the inert solution. However, as the exothermic reaction begins generating heat from the front surface, the heat begins to accumulate and increases the reaction rate within the solid and finally causes the back surface temperature to exceed the front surface temperature. The initial endothermic character of the reactions caused the competing reactions to produce more Solid $_{2}$, and thus more Solid $_{6}$, part of the way into the solid. As the exothermic reaction began to dominate, the competing reactions began producing more Gas $_{4}$, and thus, less Solid 6 . Table VII shows the final slab distribution of Solid $_{6}$.

If the heat flux parameter is decreased slightly from 1.5 to 1.45 , then the first competing reaction will produce more Solid $_{2}$, and thus Solid $_{6}$, by being held longer at the lower temperatures. Figure 33 shows the difference in the temperature histories of the front and back surfaces for the two heat flux cases. The smaller heat flux delays the heating events and, by producing more Solid $_{6}$, causes the exothermic reaction to produce more heat and increase the slab temperatures

Figure 32. Effect of Heat of Reaction: Temperature Histories of Front and Back Surfaces for Convective Heating, Three Reactions with Heats of Reaction, Case 0, $\mathrm{G}=1.5$

Figure 33. Effect of Heat Flux Parameter: Temperature Histories of Front and Back Surfaces-Convective Heating--Three Reactions with Heats of Reaction, Case 0

TABLE VII
SLAB DISTRIBUTION OF SOLID $_{6}$

	Density of Solid		
	$\mathrm{G}=1.45$	$\mathrm{G}=1.5$	$\mathrm{G}=1.75$
1.00	.5248	.5195	.4975
0.75	.5260	.5209	.5005
0.50	.5241	.5193	.5008
0.25	.5209	.5161	.4984
0.00	.5192	.5143	.4965

at the later times.
The mass flux also reflects the change in the heat flux parameter. Figure 34 shows that the higher heat flux not only causes the mass flux to increase and occur sooner, but also tends to separate the two main gas producing events which occur as a result of the overall reaction rate increasing in the slab after initially decreasing.

The higher heat flux was then used with the Case 2 boundary condition that considers a density-dependent, effective thermal conductivity and heat transfer coefficient. Figure 35 gives the temperature histories for the two surfaces compared with the Case 0 solution. The resulting effect is that of an endothermic reaction that occurs over the entire temperature range but occurs slightly "out-of-phase" with the other reactions (as described earlier). Also the exothermic reaction tends to be dampened since the trend to increase the change in density and temperature in the x-direction would give a higher endothermic

Figure 34. Effect of Heat Flux Parameter: Mass Flux. from Slab--Convective Heating, Three Reactions, Case 0

Figure 35. Effect of Variable Conductivity and Heat Transfer Coefficients: Temperature History of Front and Back Surfaces for Convective Heating--Three Reactions with Heats of Reaction, Cases 0 and 2
contribution from the conductivity term. Figure 36 shows that the mass flux is modified from the resulting lower surface heat flux. This section presented the results of three competitive and consecutive reactions with endothermic and exothermic heats of reaction. It was found that a small change in the heat flux parameter greatly affects the temperature history, mass flux, and final char distributions. Higher heat flux values also make heat transfer coefficients and effective thermal conductivity effects more important. A major effect of the competing reaction is to cause a change in the character of the reactions throughout the slab.

Figure 36. Effect of Changing Conductivity: Mass Flux from Slab for Convective Heating--Three Reactions with Heats of Reaction, Cases 0 and 2

CHAPTER V

SUMMARY

The literature pertaining to the pyrolysis of porous solids was reviewed for information regarding the extent of previous mathematical analyses and experimental determination of the important physical events. As a result, the mathematical analysis was extended to include competitive and consecutive, homogeneous reactions with reactant depletion and consideration of both a constant and density-dependent, effective thermal conductivity, Two types of surface heating for a finite thickness, infinite slab were considered: a constant heat flux, radiative type, and a constant source temperature, convective type. A densitydependent, as well as a constant, heat transfer coefficient for convective heating was included in the various cases that were studied. The characteristic non-dimensional parameters were also developed for both types of boundary conditions.

In order to solve the resulting unsteady, non-linear, second-order, partial differential equation, a numerical technique was developed, based on the method of Integral Relations. The technique requires only a small amount of computer storage and can obtain accurate results for most cases with three to six approximating strips. The ability to obtain better approximations by increasing the number of approximating strips is limited only by the longer computer times required.

The computed results presented temperature and species histories
and slab profiles as well as mass flux, reaction rates, and weight loss information. It was shown that the heat generated or absorbed from the reactions has a great effect on the solid ahead of and behind the reactions as well as in the reaction zone, not only with respect to temperature, but also reaction rates and mass flux. An increasing surface heat flux increases the maximum reaction rate and the temperature at which it occurs.

The effect of a density-dependent, effective thermal conductivity and heat transfer coefficient is negligible for convective heating when source temperatures are low. For radiant heating and high source temperature convective heating, the change in effective thermal conductivity can greatly affect the temperature history of the slab. This is especially true as the final densities become smaller. These effects must be carefully considered when interpreting temperature histories.

Small changes in the activation energies, frequency factors, and surface heat flux, greatly affect the time and rate of production of species for competing reactions while only slightly affecting the quantity produced.

The competing reactions cause a change in the character of the overall reaction throughout the slab and enable small changes in the surface heat flux to greatly affect the temperature history, mass flux, and final char distributions.
(1) Bamford, C. H., J. Crank, and D. H. Malan. "The Combustion of Wood, Part I." Proc. of Camb. Phil. Soc., Vol. 42, 1946, 166.
(2) Belotserkovskii, O. M. and P. I. Chushkin. "A Numerical Method of Integral Relations." (tr.) USSR Comp. Math \& Math. Phy., Vol. 5, 1963, 823.
(3) Broido, A. "Thermogravimetric and Differential Thermal Analysis of Potassium Bicarbonate Contaminated Cellulose." Pyrodynamics, Vo1. 4, 1966, 243.
(4) Broido, A. and F. J. Kilzer. "A Critique of the Present State of Knowledge of the Mechanism of Cellulose Pyrolysis." Fire Res. Abstr. Rev., Vol. 5, 1963, 157.
(5) Browne, F. L. "Theories of the Combustion of Wood and Its Control." USDA Forest Products Lab., Report No. 2136, 1958.
(6) Carslaw, H. S. and J. C. Jaeger. Conduction of Heat in Solids, Oxford Press, Second Edition, 1959.
(7) Goodman, T. R. "Application of Integral Methods to Transient Nonlinear Heat Transfer." Advances in Heat Transfer, Vo1. 1, Academic Press, 1964, 51.
(8) Hilado, C. J. "Flame Retardant Urethane Foams." J. of Cellular Plastics, September, 1968, 339.
(9) Kilzer, F. J, and A. Broido. "Speculations on the Nature of Cellulose Pyrolysis." Pyrodynamics, Vol. 2, 1965, 151.
(10) Lastman, G. J. "Solution of N Simultaneous First-Order Ordinary Differential Equations by Either the Runge-Kutta Method or by the Adams-Moulton Method With a Runge-Kutta Starter, Using Partial Double-Precision Arithmetic." University of Texas Computation Center, UTD2-04-047, March, 1964.
(11) Lawson, D. I. and D. L. Simms. "The Ignition of Wood by Radiation." Brit. J. of App1. Phys., Vol. 3, 1952, 288.
(12) Learmonth, G. S. and P. Osborn. "Pyrolysis of Phenolic Resins, IV." J. of App1. Poly. Sci., Vol. 12, 1968, 1815.
(13) MacKay, G. D. M. "Mechanism of Thermal Degradation of Cellulose: A Review of the Literature." Canada Department of Forestry and Rural Development, Departmental Publication No. 1201, 1967.
(14) Martin, S. "Diffusion-Controlled Ignition of Cellulosic Materials by Intense Radiant Energy." Tenth Symposium (International) on Combustion, The Combustion Institute, 1965, 877.
(15) Murty, K. A. and P. L. Blackshear, Jr. "An X-Ray Photographic Study of the Reaction Kinetics of A1pha-Cellulose Decomposition." Pyrodynamics, Vol. 4, 1966, 285.
(16) Oklahoma State University Computer Center. "Solve a System of Simultaneous Linear Equations--Symmetric Matrix." SIMQ, OSU 0231, February 1, 1968.
(17) Shafizadeh, F. "Pyrolysis and Combustion of Cellulosic Materials." Advances in Carbohydrate Chemistry, Vol. 23, Academic Press, 1968, 419 .
(18) Tang, W. K. and W. E. Neill. "Effect of Flame Retardants on Pyrolysis and Combustion of Alpha Cellulose." J. Poly. Sci.-Part C. 1964, 65.
(19) Tilley, J. N., et al. 'Thermal Degradative Behavior of Selected Urethane Foams Related to Variations of Constituents: Part II, Chemical Reactions in Urethane Decomposition." Jo of Cellular Plastics, February, 1968, 56.
(20) Tinney, E. R. "The Combustion of Wooden Dowels in Heated Air." Tenth Symposium (International) on Combustion, The Combustion Institute, 1965, 925.
(21) Weatherford, W. D, Jr. "Mathematical Study of Wood-Burning Mechanisms." Southwest Research Institute, NBS Contract CST-362, 1962.
(22) Weatherford, W. D., Jr., D. M. Sheppard, and M. L. Valtierra. "An Experimental and Mathematical Study of the Mechanisms of Wood Ignition." Southwest Research Institute, NBS Contract CST1102 Final Report, November, 1965.
(23) Weatherford, W. D., Jr. and D. M. Sheppard. "Basic Studies of the Mechanism of Ignition of Cellulosic Materials." Tenth Symposium (International) on Combustion, The Combustion Institute, 1965, 897.

APPENDIX A

INTEGRATION OF EQUATION (3.1)

Starting with Equation (3.1), each term can be integrated as shown.

$$
\begin{gathered}
\int_{0}^{1} f_{m}(x) \frac{\partial T}{\partial t}=\int_{0}^{1} f_{m}(x) \frac{\partial^{2} T}{\partial x^{2}} d x+\int_{0}^{1} f_{m}(x) \frac{1}{\rho} \frac{\partial \rho}{\partial x} \frac{\partial T}{\partial x} d x \\
\\
\quad-\frac{1}{G} \sum_{i=1}^{3} \int_{0}^{1} f_{m}(x) \bar{H}_{i} d x
\end{gathered}
$$

Term I:

Using Leibnitz's rule

$$
\frac{d}{d t} \int_{0}^{1} f_{m}(x) T d x=\int_{0}^{1} f_{m}(x) \frac{\partial T}{\partial t} d x
$$

I

Term II:
Integrating by parts

$$
\begin{equation*}
\int_{0}^{1} f_{m}(x) \frac{\partial^{2} T}{\partial x^{2}} d x=\left.f_{m} \frac{\partial T}{\partial x}\right|_{0} ^{1}-\left.\frac{d f}{d x} T\right|_{0} ^{1}+\int_{0}^{1} \frac{d^{2} f m}{d x^{2}} T d x \tag{A,1}
\end{equation*}
$$

II

Since

$$
\begin{equation*}
f_{m}(x)=1, x, x^{2}, \ldots, x^{(N-1)}=x^{(m-1)},(m=1,2, \ldots, N) \tag{A.2a}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d f_{m}}{d x}=(m-1) x^{(m-2)}, \frac{d f_{1}}{d x}=0, \frac{d f_{2}}{d x}=1 \tag{A.2b}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} f_{m}}{d x^{2}}=(m-1)(m-2) x^{(m-3)} \tag{A.2C}
\end{equation*}
$$

Therefore, Equation (A.1) is

$$
\int_{0}^{1} f_{m} \frac{\partial^{2} T}{\partial x^{2}} d x=\left.\frac{\partial T}{\partial x}\right|_{x=1}-\left.\frac{\partial T}{\partial x}\right|_{x=0} ^{0 \text { (boundary condition) }}-\left.(m-1) T\right|_{x=1}+\left\{\begin{array}{l}
\left.T\right|_{x=0} ; m=2 \\
; m \neq 2
\end{array}\right\}
$$

II

$$
+(m-1)(m-2) \int_{0}^{1} x^{(m-3)} T d x
$$

Term III:
Write $\frac{1}{\rho} \frac{\partial \rho}{\partial x}$ as $\frac{\partial(\ell n \rho)}{\partial x}$ then, integrate Term III by parts.

$$
\begin{aligned}
\int_{0}^{1} f_{m} \frac{\partial(\ln \rho)}{\partial x} \frac{\partial T}{\partial x} d x= & \left.f_{m} \cdot \ln \rho \cdot \frac{\partial T}{\partial x}\right|_{0} ^{1}-\int_{0}^{1} f_{m} \cdot \ln \rho \cdot \frac{\partial^{2} T}{\partial x^{2}} d x \\
& -\int_{0}^{1} \ln \rho \cdot \frac{d f_{m}}{d x} \cdot \frac{\partial T}{\partial x} d x
\end{aligned}
$$

Using Equation (A.2)

$$
\int_{0}^{1} f_{m} \frac{\partial(\ln \rho)}{\partial x} \frac{\partial T}{\partial x} d x=\left.\ln \rho \cdot \frac{\partial T}{\partial x}\right|_{x=1}-\int_{0}^{1} x^{(m-1)} \ln \rho \cdot \frac{\partial^{2} T}{\partial x^{2}} d x
$$

III

$$
-(m-1) \int_{0}^{1} \ln \rho \cdot x^{(m-2)} \cdot \frac{\partial T}{\partial x} d x
$$

Term IV:
Substitute for $f_{m}(x)$ from Equation (A. 2a)

$$
\frac{1}{G} \sum_{i=1}^{3} \int_{0}^{1} f_{m} \bar{H}_{i} d x=\frac{1}{G} \sum_{i=1}^{3} \int_{0}^{1} x^{(m-1)} \bar{H}_{i} d x
$$

Putting the equivalent expression for each term back into Equation (3.1) yields Equation (3.4).

APPENDIX B

INTEGRATION OF EQUATION (3.4)

Substituting the approximations (3.5) into Equation (3.4) and multiplying the x-polynomials result in

$$
\begin{align*}
\frac{d}{d t} \int_{0}^{1} \sum_{n=1}^{N+2} A(n)^{x^{(m+n-2)} d x=} & \left.\frac{\partial T}{\partial x}\right|_{x=1}-(m-1) \sum_{n=1}^{N+2} A(n)+\left.A_{(1)}\right|_{m=2} \\
& +(m-1)(m-2) \int_{0}^{1} \sum_{n=1}^{N+2} A(n)^{(m+n-4)} d x \\
& +\left.\ell n \rho \cdot \frac{\partial T}{\partial x}\right|_{x=1}-\int_{0}^{1} \sum_{n=1}^{N} J_{1}(n)^{(m+n-2)} d x \\
& -(m-1) \int_{0}^{1} \sum_{n=1}^{N} J_{2}(n)^{(m+n-3)} d x \\
& -\frac{1}{G} \sum_{i=1}^{3} \frac{R_{i}}{F_{i}} \int_{0}^{1} \sum_{n=1}^{N+1} H_{i(n)} x^{(m+n-2)} d x \quad\left(B_{0} 1\right) \tag{B,1}
\end{align*}
$$

Integrate Equation (B.1) and obtain

$$
\begin{align*}
\sum_{n=1}^{N+2}\left(\frac{1}{m+n-1}\right) \frac{d A}{d t}= & {\left[\left.(1+\ell n \rho) B\right|_{x=1}-(m-1) \sum_{n=1}^{N+2} A_{(n)}+A_{(1)}\right]_{m=2} } \\
& +(m-1)(m-2) \sum_{n=1}^{N+2}\left(\frac{1}{m+n-3}\right) A(n)-\sum_{n=1}^{N}\left(\frac{1}{m+n-1}\right) J_{l}(n) \\
& -(m-1) \sum_{n=1}^{N}\left(\frac{1}{m+n-2}\right) J_{2}(n)-\frac{1}{G} \sum_{i=1}^{3} \frac{R_{i}}{F_{i}} \sum_{n=1}^{N+1} \frac{1}{m+n-1} H_{i(n)}
\end{align*}
$$

Where $B=\left.\frac{\partial T}{\partial x}\right|_{x=1}$ and depends on the type and case of boundary condition being considered. Terms 2, 3, and 4 to the right of the equal sign in Equation (B.2) can be combined in the following way: First, rewrite as

$$
\begin{aligned}
& -(m-1) A_{(1)}-(m-1) \sum_{n=2}^{N+2} A_{(n)}+\left.A_{(1)}\right|_{m=2}+\left.(m-1) A_{(1)}\right|_{m \geq 3} \\
& +(m-1)(m-2) \sum_{n=2}^{N+2}\left(\frac{1}{m+n-3}\right) A_{(n)}
\end{aligned}
$$

then, the $A_{(1)}$ terms will cancel for all values of m and the remaining terms will combine to give

$$
\sum_{n=2}^{N+2}\left[\frac{(m-1)(m-2)}{(m+n-3)}-(m-1)\right] A_{(n)}=-(m-1) \sum_{n=2}^{N+2} \frac{(n-1)}{(m+n-3)} A_{(n)}
$$

When the temperature approximation (3.5a) is used in the boundary condition (2.11d), the result is that $A_{(2)}(t)=0$. Therefore, the summation index on the above term can be changed to

$$
\begin{equation*}
-(m-1) \sum_{n=1}^{N} \frac{(n+1)}{(m+n-1)} A_{(n+2)} \tag{B,3}
\end{equation*}
$$

Likewise, the first term of Equation (B.2) can be written as

$$
\begin{equation*}
\frac{1}{m} \frac{d A}{d t}(1)+\sum_{n=1}^{N}\left(\frac{1}{m+n+1}\right) \frac{d A}{d t}(n+2) \tag{B,4}
\end{equation*}
$$

Substituting expressions (B.3) and (B.4) into Equation (B.2) gives Equation (3.6).

APPENDIX C

EVALUATION OF INITIAL TEMPERATURE COEFFICIENTS

The temperature approximation (3.5a) is used in the boundary conditions (2.1la, d) to evaluate the initial values for the coefficients in the following way.

Since

$$
T(x, 0)=0
$$

then

$$
\begin{equation*}
\sum_{n=1}^{N+2} A(n)(0) x^{(n-1)}=0 \tag{C.1}
\end{equation*}
$$

giving

$$
\begin{equation*}
A_{(1)}(0)=0 . \tag{C.2}
\end{equation*}
$$

Since

$$
\left.\frac{\partial T}{\partial x}\right|_{x=0}=0
$$

then

$$
\begin{equation*}
A_{(2)}(0)=0 \tag{C,3}
\end{equation*}
$$

At $x=1, t=0 ; \quad \frac{\partial T}{\partial x}=\frac{q(0)}{\rho(1,0)}=\frac{1}{1}, \quad$ all cases Therefore,

$$
\begin{equation*}
\sum_{n=3}^{N+2}(n-1) A_{(n)}(0)=1 \tag{C,4}
\end{equation*}
$$

Equations (C.1) to (C.4) are also Equations (3.9).

APPENDIX D

CALCULATION OF THE TEMPERATURE IN

AN INERT SLAB BY THE

INTEGRAL METHOD

For the inert slab only the first two terms of Equation (2,9) are needed:

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}} \tag{D.1}
\end{equation*}
$$

The boundary conditions will be Equation (2.11a, d, f):

$$
\begin{aligned}
& T(x, 0)=0 \\
& \left.\frac{\partial T}{\partial x}\right|_{x=0}=0 \\
& \left.\frac{\partial T}{\partial x}\right|_{X=1}=1 \quad \text { (D.2) } \\
& \text { (D.3) }
\end{aligned}
$$

Following the steps outlined in Chapter III, "Summary of the Integral Technique," the slab is divided by two planes ($N=2$), the surfaces $x=0$ and $x=1$ 。 Equation (D.1) is multiplied by the weighting functions, $f_{m}(x)=1, x$, and integrated over the slab:
$\frac{d}{d t} \int_{0}^{1} 1 \cdot T d x=\left.1 \cdot \frac{\partial T}{\partial x}\right|_{x=1}-\left.1 \cdot \frac{\partial T}{\partial x}\right|_{x=0}-T(1, t) \cdot 0+T(0, r) \cdot 0$
$\frac{d}{d t} \int_{0}^{1} x \cdot T d x=\left.(1) \cdot \frac{\partial T}{\partial x}\right|_{x=1}-\left.(0) \frac{\partial T}{\partial x}\right|_{x=0}-T(1, t) \cdot 1+T(0, t) \cdot 1$

Using the temperature approximation, Equation (3.5a),

$$
\begin{equation*}
T(x, t)=\sum_{n=1}^{N+2} A_{(n)}(t) x^{(n-1)}=A_{(1)}+A_{(2)} x+A_{(3)} x^{2}+A_{(4)} x^{3} \tag{D.6}
\end{equation*}
$$

Equation (D.3) gives

$$
\begin{equation*}
A_{(2)}=0 \tag{D.7}
\end{equation*}
$$

while Equation (D.4) gives

$$
\begin{equation*}
2 \mathrm{~A}_{(3)}+3 \mathrm{~A}_{(4)}=1 \tag{D.8}
\end{equation*}
$$

Using Equation (D.6) and (D.7) in (D.5) gives

$$
\begin{gather*}
\frac{d}{d t} \int_{0}^{1}\left(A(1)+A(3)^{x^{2}+A}(4) x^{3}\right) d x=1 \tag{D.9a}\\
\frac{d}{d t} \int_{0}^{1}\left(A(1)^{x+A}(3)^{x^{3}+A}(4)^{x^{4}}\right) d x=1-A_{(3)}-A_{(4)} \tag{D.9b}
\end{gather*}
$$

Integrating

$$
\begin{aligned}
& \frac{d \mathrm{~A}(1)}{\mathrm{dt}}+\frac{1}{3} \frac{\mathrm{dA}(3)}{d t}+\frac{1}{4} \frac{\mathrm{dA}(4)}{d t}=1 \\
& \frac{1}{2} \frac{\mathrm{dA}(1)}{\mathrm{dt}}+\frac{1}{4} \frac{\mathrm{dA}(3)}{\mathrm{dt}}+\frac{1}{5} \frac{\mathrm{dA}(4)}{d t}=1-\mathrm{A}_{(3)}-\mathrm{A}_{(4)} \quad \text { (D.10b) }
\end{aligned}
$$

Taking the derivative of Equation (D.8) and using Equation (D.10) eliminates $\frac{\mathrm{dA}(4)}{\mathrm{dt}}$:

$$
\begin{align*}
& \frac{d A}{d t}(4)=\frac{1}{3}-\frac{2}{3} \frac{d A}{d t} \\
& \frac{d A}{d t}(1) \tag{D.11a}\\
& \frac{d t}{6} \frac{1}{6} \frac{d A}{d t} \tag{D.IIb}\\
&=1 \\
& 3 \frac{d A}{d t}+\frac{7}{10} \frac{d A}{d t}=4-2 \mathrm{~A}(3)
\end{align*}
$$

Solving Equation (D.11) simultaneously gives explicit equations for each coefficient:

$$
\begin{align*}
& \frac{d A}{d t}(1) \tag{D,12a}\\
& \frac{d}{6}+\frac{5}{3} A_{(3)} \tag{D.12b}\\
& \frac{d A}{d t}(3) \\
& \frac{d}{}=5-10 A_{(3)}
\end{align*}
$$

Integrating (D.12b)

$$
\begin{equation*}
A_{(3)}=\frac{1}{2}+c_{1} e^{-10 t} \tag{D,23}
\end{equation*}
$$

Substituting Equation (D.13) into (D.12a) and integrating

$$
\begin{equation*}
A_{(1)}=t-\frac{1}{6} c_{1} e^{-1 Q t}+c_{2} \tag{D.14}
\end{equation*}
$$

Using the initial conditions (D.2) at both N strips together with Equations (D.8), (D.13), and (D.14) evaluates the two constants. The coefficients then become

$$
\begin{aligned}
& A_{(1)}=t+\frac{1}{4}\left(e^{-10 t}-1\right) \\
& A_{(3)}=\frac{1}{2}\left(1-3 e^{-10 t}\right) \\
& A_{(4)}=e^{-10 t} \\
& A_{(2)}=0
\end{aligned}
$$

Equation (D.6) then becomes

$$
T(x, t)=t+\frac{1}{2} x^{2}-\frac{1}{4}+\frac{1}{4}\left(1-6 x^{2}+4 x^{3}\right) e^{-10 t}
$$

Compare with the exact solution from Carslaw and Jaeger (6):
$T(x, t)=t+\frac{1}{2} x^{2}-\frac{1}{6}+\frac{2}{\pi^{2}}\left(1-\frac{\pi^{2}}{2} x^{2}+\frac{\pi^{4}}{24} x^{4}-\ldots.\right) e^{-\pi^{2} t}-\ldots$.

APPENDIX E

CALCULATION OF GAS SPECIES

By identifying the fraction of each solid species that is consumed or produced in the various reactions, the mass balance equations (2.5) can be used to calculate the gas species.

$$
\begin{aligned}
& \rho_{1,1}=\text { mass of solid }{ }_{1} \text { converted to product in reaction } 1 \\
& \rho_{1,2}=\text { mass of solid }{ }_{1} \text { converted to product in reaction } 2 \\
& \rho_{2,1}=\text { mass of solid }{ }_{2} \text { produced in reaction } 1 \\
& \rho_{2,3}=\text { mass of solid }{ }_{2} \text { converted to product in reaction } 3
\end{aligned}
$$

ρ_{1}, ρ_{2}, and ρ_{6} are the calculated solid species that are present at a given instant. ρ_{3}, ρ_{4}, and ρ_{5} are the gas species that have been produced up to a given point in time.

Then,

$$
\begin{gathered}
1=\rho_{1}+\rho_{1,1}+\rho_{1,2} \\
c_{1} \rho_{1,1}=\rho_{2,1}=\rho_{2}+\rho_{2,3} ;\left(1-c_{1}\right) \rho_{1,1}=\rho_{3} \\
\rho_{1,2}=\rho_{4} \\
c_{2} \rho_{2,3}=\rho_{6} ;\left(1-c_{2}\right) \rho_{2,3}=\rho_{5}
\end{gathered}
$$

Using these relations, the amount of each gas species can be found from the solid species:

$$
\begin{align*}
\rho_{2,1} & =\rho_{2}+\frac{\rho_{6}}{c_{2}} ; \quad \rho_{1}, 1=\frac{\rho_{2}}{c_{1}}+\frac{\rho_{6}}{c_{1} c_{2}} \\
\rho_{3} & =\left(1-c_{1}\right)\left(\frac{\rho_{2}}{c_{1}}+\frac{\rho_{6}}{c_{1} c_{2}}\right)=\text { Gas }_{3} \tag{E.1a}\\
\rho_{4} & =1-\rho_{1}-\left(\frac{\rho_{2}}{c_{1}}+\frac{\rho_{6}}{c_{1} c_{2}}\right)=\text { Gas }_{4} \tag{E.1b}\\
\rho_{5} & =\frac{\left(1-c_{2}\right)}{c_{2}} \rho_{6}=\operatorname{Gas}_{5} \tag{E,Ic}
\end{align*}
$$

Equations (E.1) then become Equations (3.11).

APPENDIX F

DERIVATION OF EQUATION (2.4e)

Start with the species equation for Solid ${ }_{l}$ (2.8a)

$$
\frac{\partial \rho_{1}^{*}}{\partial t^{*}}=-\rho_{1}^{*}\left(k_{1}+k_{2}\right),
$$

divide by ρ_{1}^{*},

$$
\frac{\partial(\ln \rho \%)}{\partial t^{*}}=-\left(k_{1}+k_{2}\right),
$$

and take the x-derivative

$$
\begin{equation*}
\frac{\partial}{\partial x^{*}}\left(\frac{\partial \ln \rho \frac{1}{1}}{\partial t^{*}}\right)=-\left(\frac{\partial k_{1}}{\partial x^{*}}+\frac{\partial k_{2}}{\partial x^{*}}\right) . \tag{F,1}
\end{equation*}
$$

Since $k_{i}=a_{i} \exp \left[\left(-E_{i}^{*}\right) /\left(R^{\circ} T^{*}\right)\right]$, then
at $x=0$, Equation (2.4d) gives

$$
\frac{\partial T^{*}}{\partial \mathrm{X}^{*}}=0
$$

thus, at $\mathrm{x}=0$

$$
\frac{\partial k_{i}}{\partial x^{*}}=0
$$

Equation (F.1) then becomes

$$
\frac{\partial}{\partial x^{*}}\left(\frac{\partial \ln \rho \stackrel{*}{1}}{\partial t^{*}}\right)=0
$$

Reverse the order of differentiation,

$$
\frac{\partial}{\partial t^{*}}\left(\frac{\partial \ln \rho_{1}^{*}}{\partial x^{*}}\right)=0
$$

integrating,

$$
\frac{\partial \ln \rho_{1}^{*}}{\partial x^{*}}=f(x)+c_{1}
$$

or also,

$$
\frac{1}{\rho_{1}^{*}} \frac{\partial \rho_{1}^{*}}{\partial x^{*}}=f(x)+c_{1}
$$

Since $\frac{1}{\rho_{1}^{*}} \frac{\partial \rho_{1}^{*}}{\partial x^{*}}$ is not a function of time, it can be determined by evaluating it at any one value of time. At $t=0, \rho_{1}^{*}=\rho_{0}^{*}$, a constant. Therefore, $\frac{\partial \rho_{1}^{*}}{\partial x^{*}}=0$ for all time at $x=0$. The same approach is taken for other solid species so that Equation (2.4e) can be shown for the total solid by

$$
\frac{\partial \rho^{*}}{\partial x^{*}}=\frac{\partial \rho_{1}^{*}}{\partial x^{*}}+\frac{\partial \rho_{2}^{*}}{\partial x^{*}}+\frac{\partial \rho_{6}^{*}}{\partial x^{*}}=0
$$

a.t $\mathrm{x}=0$ for all time.

APPENDIX G

LISTING OF COMPUTER PROGRAM VARIABLES

Main Program

Computer Variable with	Mathematical	
	Variable	Description
A(N+2)	${ }^{\text {A }}$ (n)	Polynomial temperature coefficient
$B(N * N)$		Matrix coefficients for columnwise input to SIMQ--destroyed in computation
E (3)	E_{i}	Activation energy parameter for reaction i
G	G	Surface heat flux parameter
N	N	Number of interpolation strips
R(3)	R_{i}	Heat of reaction parameter
T	t	Time variable
$\mathrm{X}(\mathrm{N})$	x_{j}	x-value of $j^{\text {th }}$ interpolation strip
Y (202)		Variables used in START and KAMSUB to store unknowns and derivatives
$A B(N)$		Vector of original constants for input to SIMQ--Returns solution values
BO	Nu	Nusselt number
CS ($\mathrm{N}+1$)		Polynomial coefficients for average solid (weight).
C1 (N)	$\rho_{1, j}$	Local density of Solid ${ }_{1}$
C2(N)	${ }^{\rho}{ }_{2, j}$	Local density of Solid ${ }_{2}$

Computer Variable with	Mathematical	
Maximum Dimension	Variable	Description
C3(N)	${ }^{\rho} 3, \mathrm{j}$	Local total mass of Gas_{3} produced from strip j
C4 (N)	${ }^{\circ} 4, j$	Local total mass of Gas_{4} produced from strip j
C5 (N)	$\rho_{5, j}$	Local total mass of Gass produced from strip j
C6(N)	${ }^{\rho} 6, j$	Local density of Solid 6
DI	n	Summation dummy index
F1	F_{1}	Frequency factor parameter for reaction 1
F2	F_{2}	Frequency factor parameter for reaction 2
F3	F_{3}	Frequency factor parameter for reaction 3
KS		Flag in SIMQ: $0=$ normal solution, $1=$ singular solution (see Appendix H)
LN	($\mathrm{N}-1$)	Program constanc
NE	(4N+2)	Number of unknowns--for START and KAMSUB
S3 ($\mathrm{N}+1$)		Polynomial coefficients for total mass of Gas 3 produced from slab
S4($\mathrm{N}+1$)		Polynomial coefficients for total mass of Gas_{4} produced from slab
S5 ($\mathrm{N}+1$)		Polynomial coefficients for total mass of Gas 5 produced from slab
XJ		Intermediate computational value
XP		Intermediate computational value
AP1	($\mathrm{N}+1$)	Program constant
AP2	$(\mathrm{n}+2)$	Summation dummy index +2
$\operatorname{BCS}\left((\mathrm{N}-1)^{2}\right)$		Matrix coefficients for total solid polynomial--input to SIMQ

Computer Variable with Maximum Dimension	Mathematical Variable	
	Variable	Description
$\operatorname{BDC}\left((\mathrm{N}-1)^{2}\right)$		Matrix coefficients for gas generation polynomial--input to STMQ
BS3 $3\left((\mathrm{~N}-1)^{2}\right)$		Matrix coefficients for total Gas 3 polynomial--input to SIMQ
$\operatorname{BS4}\left((\mathrm{N}-1)^{2}\right)$		Matrix coefficients for total Gas 4 polynomial--input to SIMQ
$\operatorname{BS} 5\left((\mathrm{~N}-1)^{2}\right)$		Matrix coefficients for total Gas 5 polynomial--input to SIMQ
CS1	c_{1}	Mass fraction of Solid ${ }_{1}$ converted to Solid 2
CS2	c_{2}	Mass fraction of Solid_{2} converted to Solid 6
$\mathrm{DCT}(\mathrm{N}+1)$		Polynomial coefficients for gas generation rate
DEL		Initial time step-size
DLP		Fraction used to reduce time stepsize
DSM(N)		Local solid density time-derivative
IBC		Boundary condition type: $0=$ Type I, $1=$ Type II (see Chapter II)
IM1	$(\mathrm{n}-1)$	Summation dummy index - 1
IPI	$(\mathrm{n}+1)$	Summation dummy index +1
IP2	$(\mathrm{n}+2)$	Summation dummy index +2
JM1	(m-1)	Summation dummy index - 1
MER		```Error calculation option in KAMSUB: 1 = relative error, 2 = absolute error```
MOP		```Integration option for KAMSUB: 1 = Runga-Kutta, 2 = Adams fixed step size, 3 = Adams variable step size```
NP1	($\mathrm{N}+1$)	Program constant

Computer Variable with	Mathematical Variable	
Maximum Dimension	Variable	Description
NP2	($\mathrm{N}+2$)	Program constant
NSQ	N^{2}	Program constant
RCS (N)	${ }^{j}$	Local total solid density at strip j
WGT		Slab weight--average solid density
XJI		Intermediate computational value
ASUM		Intermediate computational value
$\operatorname{BBCS}(\mathrm{N}-1)$		Vector of original constants for input to SIMQ
$\operatorname{BBDC}(\mathrm{N}-1)$		Vector of original constants for input to SIMQ
BBS 3 ($\mathrm{N}-1$)		Vector of original constants for input to SIMQ
BBS4 ($\mathrm{N}-1$)		Vector of original constants for input to SIMQ
BBS5 ($\mathrm{N}-1$)		Vector of original constants for input to SIMQ
CSUM		Intermediate computational value
DELT		Difference in present and previoualy printed time-step
DLMN		Minimum allowable time-step in KAMSUB
DLMX		Maximum allowable time-step in KAMSUB
ERMN		Minimum allowable error for KAMSUB
ERMX		Maximum allowable error for KAMSUB
FLUX		Mass flux from slab
FSUM		Intermediate computational value
SPC3		Total mass of Gas 3 produced from slab

Computer Variable with	Mathematical	
Maximum Dimension	Variable	Description
AN	N	Number of interpolation strips
$B G\left((N-1)^{2}\right)$		Matrix coefficients for input to SIMQ
BI	$(\mathrm{n}+1)$	Summation dummy index +1
BN	$(m+n-1)$	Summation dummy indices - 1
BT ($(\mathrm{N}-1)^{2}$)		Matrix coefficients for input to SIMQ
$\mathrm{DA}(\mathrm{N}+2)$	$\frac{\mathrm{dA}_{(\mathrm{n})}}{\mathrm{dt}}$	Derivative of polynomial temperature coefficients
GS (N)	$J_{1(n)}(t)$	Polynomial coefficients for effective conductivity integral approximation
GT (N)	$J_{2(n)}(t)$	Polynomial coefficients for effective conductivity integral approximation
HS ($3, \mathrm{~N}+1$)	$H_{i,(n)}^{(t)}$	Polynomial coefficients for heat generation from reaction i integral approximation
QS	$q(\zeta)$	Time dependent surface heat flux function
BBG($\mathrm{N}-1)$		Vector of original constants for input to SIMQ
BBT ($\mathrm{N}-1$)		Vector of original constants for input to SIMQ
$\mathrm{BH1}\left((\mathrm{~N}+1)^{2}\right)$		Matrix coefficients for input to SIMQ
BH2 $2\left(\begin{array}{l}\text { (}\end{array}\right.$		Matrix coefficients for input to SIMQ
BH3 $\left((\mathrm{N}-1)^{2}\right)$		Matrix coefficients for input to SIMQ
BII	$n(n+1)$	Summation dummy index term
BMN	$(m+n+1)$	Summation dummy indices +1
BM1	m	Summation dummy index

Computer Variable with	Mathematical	
Maximum Dimension	Variable	Description
BM2	(m-1)	Summation dummy index - 1
BM3	$(\mathrm{n}+1)$	Summation dummy index +1
CK1		Intermediate computational value
CK2		Intermediate computational value
CK3		Intermediate computational value
DC1 (N)	$\frac{\mathrm{dC}_{1(\mathrm{n})}}{\mathrm{dt}}$	Local time derivative of Solid density
DC2 (N)	$\frac{\mathrm{dC}_{2(\mathrm{n})}}{\mathrm{dt}}$	Local time derivative of Solid_{2} density
DC6 (N)	$\frac{\mathrm{dC}_{6(\mathrm{n})}}{\mathrm{dt}}$	Local time derivative of Solid 6 density
DQS	$\frac{\mathrm{dq}}{\mathrm{dt}}$	Derivative of time dependent surface heat flux function
DRG		Intermediate computational value
TP1		Intermediate computational value
TP2		Intermediate computational value
TP3		Intermediate computational value
xxI	(m+1)	Summation dummy index
ANP2		Intermediate computational value
ASRF		Intermediate computational value
BBHI ($\mathrm{N}+1$)		Vector of original constants for input to SIMQ
BBH2 ($\mathrm{N}+1$)		Vector of original constants for input to SIMQ
BBH3 $(\mathrm{N}+1)$		Vector of original constants for input to SIMQ
BRCS		Intermediate computational value
BSUM		Intermediate computational value
CNDX		Intermediate computational value

Computer Variable
with
Maximum Dimension

DNDX
DSUM
SUBK $(3, N)$
TSLP
XJII
XJPI

Description

Intermediate computational value Intermediate computational value Exponential term of local reaction rate constant for reaction i

Intermediate computational value

Intermediate computational value
Intermediate computational value

APPENDIX H

DESCRIPTION OF THE SUBROUTINES SIMQ, START, AND KAMSUB

Description of the Subroutine SIMQ

c		SIMQ	001
C		SIMO	002
6		SIMQ	003
c	SUBROUTIAE SIMO	SIMO	004
C		SIMO	005
c	PURPOSE	SIMQ	006
c	OBTAIA SOLUTION OF A SET OF SIAMLTANEOUS GINEAR EQUATIONSD	SIMQ	007
c	$A X=5$	SIMQ	008
C		SIMG	009
c	USAGE	51 MQ	010
c	CALL SIMOIAOBONOKSI.	SIMO	011
c		SIMO	012
C	DESCRIPTION OF PARAMETERS	SIMQ	013
C.	A - MATRIX OF COEFFICIENTS STORED COLUMNHISEO THESE ARE	51 Mo	014
c	DESTROYED [N THE COMPUTATION. THE SIZE OF MATRIX AASY	S1MO	015
C		SIMQ	016
c	B - VECTOR OF ORIGINAM CONSTANTS ILENGTH NB THESE ARE	SIMO	017
C	REPLACED BY FINAL SOLUTION VALUES: VECTOR $X^{\text {a }}$	SIMQ	018
C	N - number of equations and variables. N MUST be ogt one	51 MO	MOL
c	kS - output digit	SIMO	020
C	- FOR A NORMAL SOLUTION	SIMQ	021
c	IFOR A SIAGULAF SET OF EQUATJONS	SIMQ	02?
C		SIMO	023
C	REMARKS	SIMC	024
c	MATRIX A MUST BE GENERAL.	SIMQ	025
C	If MAYRIX IS SINGULAR SOLUTION VALUES ARE MEANINGLESS.	SIMO	025
c	AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX	SIMQ	027
C	INVERSION \{MINV: AND MATRIX PROOUCT \{GMPRD?	SIMO	028
c		SIMO	029
c	SURROUTINES AND FUNCTION SUGPROGRAMS REQUIRED	SIMQ	030
C	NONE	SIMQ	031
C		SIMQ	032
C	MEYHOD	SIMQ	033
6	METHOO OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL	SIMQ	034
r	DIVISOR, EACH STAGE OF ELIMINATJON CONSISTS OF INTERCHANGINGS	5 SMO	035
\because	ROWS WHEN NECESSARY TO AVOSD DIVISION BY ZERO OR SMALI	SIMQ	036
6	ELEMENTS.	SIMQ	037
6	THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN	SIMQ	038
6	N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS	SIMO	039
$¢$	CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION	SIMQ	040
c	VALUES ARE DEVELOPED. IN VECTOR B WITH. VARIABLE 1 IN 8A11\%.	SIMQ	041
c	VARIABLE 2 IN B 2),	SIMO	042
c	IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0 ,	SIMQ	043
6	THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO I THISTOLERANCE CAN BE MOOIFPED BY REPLACING THE FIRST STATEMENT.	SIMQ	044
c		SIMa	045
C		SIMQ	046
c		SIMO	. 047
c		SIMC	048

Description of the Subroutines START and KAMSUB

Solution of Ordinary Differential Equations

Purpose. Numerical solution of Ne simultaneous first-order ordinary differential equations.

Type. FORTRAN IV.
Mode of Operation. Real, single, and double precision arithmetic.
General Description. The available subroutine package performs numerícal integration of $\mathrm{Ne}(\mathrm{Ne} \leq 100)$ simultaneous first-order ordinary differential equations. The integration may be carried forward or backward from a specified Ne-set of one-point boundary conditions. The user has the option of selecting the Runge-Kutta or the Adams-Moulton method of numerical integration. When using the Adams-Moulton technique, the user may try a fixed step size or he may let the routine calculate its own step size based on minimum and maximum limits on the integration errors.

In addition to the user's main or calling program, three subrowtines are used. Two of these are SUBROUTINE KAMSUB (NSTART) and SUBROUTINE START (M1, M2, M3, A1, A2, A3, A4, A5, A6). The third, entitied SUBROUTINE DERFUN, is prepared by the user to define the functional forms of his differential equations.

The internal operation of the integration is carried out in doubleprecision arithmetic in order to improve the accuracy. The solutions available externally are in single precision numbers.

Instructions for Usage.

1) The user provides in his main program the following sequence of instructions:
a) Declare a common block: COMMON Y(202)
b) Define the boundary conditions:

$$
Y(1), Y(2), . . ., Y(N e), Y(N e+1)
$$

where $\mathrm{Y}(\mathrm{Ne}+1)$ is the initial value of the independent variable.
c) Call the subroutine START to begin the integration process. The subroutine requires that nine arguments be provided. The function of each of these parameters is described below.

CALL START (M1, M2, M3, A1, A2, A3, A4, A5, A6) where M1, M2, M3 are fixed-point numbers and A1, A2, . . . , A6 are floating-point numbers.

M1 - The number of equations (M1 ≤ 100)
M2 - Option Parameter
M2 = 1 Integrates by Runge-Kutta Method
M2 = 2 Integrates by Adams-Moulton Mechod with fixed step size

M2 = 3 Integrates by Adams-Moulton Method with the step size internally calculated based on specified error limits.

M3 - Option parameter for error determination.
M3 = 1 Error calculated as relative error.
M3 $=2$ Error calculated as absolute error
A1 - The step size. (If M2 = 3, this is used as a first trial value and then adjusted so that the error conforms to the limits.) A negative value causes backward integration.

A2 - Maximum value of integration error at each step.

```
    A3 - Minimum value of integration error at each step.
        A4 - Largest permitted step size.
        A5 - Smallest permitted step size.
        A6 - The factor used to reduce the step size when M2 = 3
        and the integration error is too large.
        Notes: (1) M3, A2 through A6 axe applicable only
        if M2 = 3.
            (2) If A3 = 0, the routine sets A3=A2/55.
            (3) A6 is specified normally as 0<A6<1;
        however, an initial value of zero will
        cause the routine to set A6 = 1/2.
d) Call the subroutine KAMSUB (1) for each step of the independent variable. The call is repeated until the integration has been carried to the desired final value of the independent variable. To preserve the solution for later calculations or printing, it is necessary to store the values after each call of KAMSUB. The block \(Y(202)\) only holds the cuxrent values of the solution.
```

2) The user defines the specific functional forms of the differential equation to be integrated in a subroutine DERFUN. The equations must be expressed as first-order equations. The common block Y is utilized as follows:

$Y(1), Y(2), \ldots, Y(N e)-$	The values of the dependent
	variables.
$Y(N e+1) \quad$	The corresponding value or the
	independent variable。
$Y(N e+2) \quad-$	The current step size。

```
    Y(Ne + 3), . . . , Y( 2Ne + 2) - The current values of the
    derivatives.
where Y(Ne + 3) is the derivative of Y(1) and Y(Ne + 4) is che
derivative of Y(2), etc.
```


Caution to User

A labeled common block SHARE is used to transfer data internally. The user should not use a common area with this name.

APPENDIX I

COMPUTER LISTING OF ALL PROGRAMS

$80 / 80$ LIS

0000000001111111111222222222333333333344444444445555555555666666666777777
123456789012345678901234567890123456789012345678901234567890123450789012345
CARO


```
            900000n00111111111122222222223133733333444444444455555555556666666606777777
            123454709012,659369012345678901234567390123456789012345610901234561090123454
GAK:
    022! . . SPG4=0!
```



```
-0223 - - 124 141 1=1.N2L
    #224
    0<2's sugsenecs: S\111/01
```



```
    02se WKilf(o.lol0)
```



```
    0230}\quad11,SS1\times(d),d=1,N
    023... WHIIF(b:lsoolllux,WGl
```



```
    0<4:' 1F/T.GE,TENO)51OP
    0243 (6) 10 31
    0244 % (10)
```


\qquad

APPENDIX J

COMPUTER PROGRAM STEPS

73-76	(1) Enter MAIN program and read the number of approxi-
mation strips, N, and the program control constants.	

DERFUN
46-50 (12) Calculate program constants.
53-142 (13) Calculate the reaction rate constants, the polynomial coefficients for the heat generation integral (Equation 3.5d), the polynomial coefficients for the

Step Description

integrals representing a change in the effective thermal conductivity (Equation $3.5 b, c$), and the local solid species derivatives.

143-200 (14) Calculate the polynomial coefficients for the temperature derivative (Equation 3.6) including the surface boundary condition (Equation 3.7a or b) with terms depending on the type of boundary condition (Radiative or Convective) and case (0,1 , or 2) being considered.

203-210 (15) Give functions for time-dependent radiative heat flux and its derivative (constant flux considered).

201 (16) Return derivatives of the variables to KAMSUB to be integrated for values at the new time step. Return values to MAIN.

MAIN
137 (17) If the total number of time steps or the total length of time since the last printed step is not the desired value, go back to KAMSUB and integrate for the next time step; otherwise continue with the values of variables at this time step.

144-228 (18) Calculate the local values for each gas species, temperature, mass loss rate, and total solid; including the polynomial coefficients for the overall average values of each gas species, mass flux, and total weight.

229 (19) Decide whether to punch the output.
231-233 (20) If desired, punch the output.
235-239 (21) Print the output.
242-243 (22) If the desired total length of time has not been reached, go back to KAMSUB and integrate for the next time step; otherwise stop.

Note: Card numbers refer to the program listings given in Appendix I.

VITA
 Jerrold George Rittmann
 Candidate for the Degree of
 Doctor of Philsophy

Thesis: A COMPUTER STUDY OF THE PYROLYSIS OF POROUS SOLIDS
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in DeWitt, Arkansas, February 20, 1938, the son of George and Gladys Rittmann.

Education: Graduated from St. Paul's High School, Concordia, Missouri in 1955; attended the University of Chicago, Chicago, Illinois, from 1955 to 1957; attended Baltimore Junior College in 1958; received the Bachelor of Science in Mechanical Engineering degree from Texas Western College, E1 Paso, Texas, in August, 1964; received the Master of Science degree in Mechanical Engineering from Oklahoma State University, Stillwater, Oklahoma, in May, 1966; completed the requirements for the Doctor of Philosophy degree in May, 1970.

Experience: Chemical analyst for the Glidden Paint Company, Curtis Bay, Maryland, from June, 1959, to Marcn, 1961; employed as a Student Engineer for the E1 Paso Natural Gas Products Laboratory, El Paso, Texas, from April, 1961, to January, 1964; employed as a Student Assistant by Schellenger Research Lab, El Paso, Texas, from January to August, 1964; employed as a Graduate Teaching Assistant from June, 1965 to June, 1967, Staff Research Assistant from July, 1967 to June, 1969, by Oklahoma State University.

[^0]: ${ }^{1}$ Throughout the report, numbers in parenthesis after a proper name refer to an entry in the Bibliography.

[^1]: ${ }^{2}$ Piloted ignition occurs when a small flame placed near a heated surface acts as an ignition source for the evolving gases.
 ${ }^{3}$ An Arrhenius-type reaction is one that expresses the reaction rate constant as $k=a \exp \left(-E * / R^{\circ} T^{*}\right)$. See Nomenclature for the definition of the symbols.

[^2]: ${ }^{4}$ Spontaneous ignition relies on the conditions of the heated material for ignition.

[^3]: ${ }^{1}$ Heat flux refers to the total energy per constant unit area per unit time.

[^4]: ${ }^{2}$ Equations (2.4h,k) would normally have the term ρ^{*} / ρ_{0}^{*} multiplying the terms on both sides of the equal sign but is shown already canceled.

[^5]: ${ }^{1}$ See Appendix A.

[^6]: ${ }^{2}$ See Appendix B.

[^7]: ${ }^{3}$ See Appendix C .

[^8]: ${ }^{4}$ See Appendix E.

