
A COMPUTER STUDY OF THE PYROLYSIS 

OF POROUS SOLIDS 

By 

JERROLD GEORGE RITTMANN 

Bachelor of Science 1n 
Mechanical Engineering 
Texas Western College 

El P;3.so, Texas 
1964 

Master of Science 
Oklahoma Stace Universicy 

Stillwater, Oklahoma 
1966 

Submicted to che Facul t y of che Graduate College 
c f •he Oklahoma Seate University 

in partial f ulfi l lment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
May, 19 70 



A COMPUTER STUDY OF THE PYROLYSIS 

OF POROUS SOLIDS 

Thesis Approved : 

() , ~ n -
Dean oftheGraduate College 

ii 



PREFACE 

This work represents the initial effort by Oklahoma State 

University's Engineering Rese~rch to provide basic research into 

pyrolysis and combustion phenomehon in support of its Eglin Proj~ct. 

Therefore, I would like to thank Professor Clarence Johnson and 

Dr. Vincent Han.eman in particular, and Engineering Research in general, 

for supporting and funding this project. 

I wish to express my gratitude tp my thesis advisor, Dr, Ronald 

Panton, for his guidance, insight, and availability throughout all 

phases of this work. Also, I would like to thank Dr. John Wiebelt for 

serving as Chairman of my Graduate Committee and Dr. Billy Crynes for 

serving on the Committee and for his interest in the project. Thanks 

are due Professor L. J. Fila not only for serving on the Committee but 

also for his advice and counsel throughout all my Graduate work. 

In addition, I want to thank Dr. Roger Schoeppel and Dr. Robert 

Robinson for consenting to substitute on my Oral Committee. 

I wish to express my appreciation to the Oklahoma State Computer 

Center for funding the great amount of computer time required for this 

project, to Dr. Henry Sebesta for providing an important computer 

subroutine, to Miss Louise Thompson for her fine job in typing the 

final draft of the thesis, to Mr. Eldon Hardy for his fine work in 

drawing the figures, and to the Mechanical Engineering Department for 

providing me with support throughout my Gra~uate studies. 

iii 



This work could not have been completed without the love and 

sacrifice of my wife, Mary Jo, and my children, Cheri, Evan, Brian, 

and Jeaniece. Together with my parents, George and Gladys Rittmann, 

they gave this work a personal purpose and meaning and it is to them 

that this i~ dedicate~. 

iv 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

Background .. 

II. THE MATHEMATICAL ANALYSIS. 

Geometry ..... 
Energy Equation. . • , .... 
Effective Thermal Conductivity ..••. 
Boundary Conditions . . ..•. 
ChemiGal Reactions ••.. 
Species Equations ••• , . 
Non-Dimensionai Equations . 

III. SOLUTION OF THE EQUATIONS •. 

. . . 
. . 

Page 

l 

3 

12 

12 
12 
14 
16 
20 
24 
25 

29 

Background. • • . • • • . • • • . • • . 29 
Method of Integral Relations. . . • • . 29 
Application of the Method of Integral 

Relations . . . . . . . . . . . 31 
Initial Conditions, •.•.. , . • . . . 36 
Summary of the Integral Technique. . . . . . . . . • 38 
Computer Programming. • . ........ , . 39 

IV. COMPUTER RESULTS . 

Introduction. 
Parameter Values. 
The Inert Slab .. 
One Reaction--Case 0. 
One Reaction--Cases 1 and 2 
Three Reactions--Case O , .• , . 
Three Reactions With Heats of Reaction .. 

V. SUMMARY .. 

BIBL"JOGRAPHY. . 

APPENDIX A - INTEGRATION OF EQUATION (3.1). 

APPENDIX B - INTEGRATION OF EQUATION (3.4) .. 

V 

42 

42 
42 
44 
50 
63 
73 
81 

93 

95 

97 

100 



Chapter 

APPENDIX C - EVALUATION OF INITIAL TEMPERATURE 
COEFFICIENTS . . •.... 

APPENDIX D - CALCULATION OF THE TEMPERATURE IN AN 
INERT SLAB BY THE INTEGRAL METHOD. 

APPENDIX E - CALCULATION OF GAS SPECIES ... 

APPENDIX F - DERIVATION OF EQUATION (2.4e), . . 
APPENDIX G - LISTING OF COMPUTER PROGRAM VARIABLES .. 

APPENDIX H - DESCRIPTION OF THE SU~ROUTINES SIMQ~ 
START, AND KAMSUB ......• , 

APPENDIX I - COMPUTER LISTING OF ALL PROGRAMS 

APPENDIX J - COMPUTER PROGRAM STEPS • , ... 

vi 

Page 

102 

103 

107 

. . • 109 

111 

. . • 119 

124 

139 



LIST OF TABLES 

Tab).e 

I. Non-Dimensional Variables •• 

II. Non-Dimensional Parameters. 

III. Basic Computing Steps ... , . . . 
IV. Basic Dimensional Constants . 

V. Basic Non-Dimensional Parameters. 

VI. Parameter Values Used in Computed Results . 

VII. Slab Distribution of Solid6 ...•.•... , 

vii 

Page 

• 25 

26 

. 41 

• 45 

• 46 

47 

88 



LIST OF FIGURES 

Figure 

1. Porous Solid Being Heated .......• 

2. Representation of Unit and Solid Areas 

3. Radiant Heat Flux Deposited at the Surface 

4. Convective Heat Flux at the Surface 

5. Reactions in the Slab . 

6. Temnerature Profiles at Time~ 0 for 
Various N Interpolation Strips 

7. 

8. 

Comparison of Approximate Solutions With 
Exact Solution for Constant Heat Flux Case 

Comparison of Approximate and Exact Solutions 
for Convective Heating, Nu= 2 .... 

9. Effect of Heat of Reaction: Temperature 
History of Front and Back Surfaces -- Constant 
Heat Flux, One Exothermic Reaction, Case 0 

10. EffeGt of Heat of Reaction: 
of Front and Back Surfaces 

Temperature History 
One Endothermic 

Reaction~ Constant Heat Flux, Case 0 

11. Effect of Heat of Reaction: Temperature 
Profiles for One Endothermic Reaction 
Constant Heat Flux, Case O ....•. 

12. Effect of Heat of Reaction: Temperature 
Profile for One Endothermic Reaction, Constant 
Heat Flux, Case O ••••••••••••••• 

13. Effect of Heat of Reaction: Reaction 
Rate in Slab for One Exothermic 
Reaction -- Constant Heat Flux, Case 0 

14. Effect of Heat of Reaction: Temperature 
vs. Reactant Density, Front and Back 
Surfaces -- Constant Heat Flux, One 
Exothermic Reaction, Case O .. 

viii 

Page 

13 

14 

17 

18 

21 

37 

48 

49 

51 

53 

54 

55 

57 

58 



Figure 

15. Effect of Heat of Reaction: Reaction Rate 
in the Slab -- Constant Heat Flux -- One 
Endothermic Reaction, Case O .•... 

16, Effect of Heat of Reaction: Mass Flux From 
Slab for Exothermic and Endothermic Reactions, 
Constant Heat Flux, Case O ..... 

17. Effect of Heat of Reaction: Comparison of 
Solid Density Profiles for Exothermic and 
Endothermic Reactions -- Constant Heat Flux, 
Case O • • • • , • • • • • • • • • , • • , • 

• " 0 e II a, 0 

18. Effect of Heat Flux Parameter: Surface Reaction 
Rate vs. Temperature -- Constant Heat Flux, Case 0 

19. Effect of Heat Flux Parameter: Surface Reactant 
Density 
Case 0 

vs. Temperature -- Constant Heat Flux, 
· a '1 o o " ,. • • • • • e • • • • • • fl ~ o 

20.. Effect of Variable Effective Thermal Conductivity 
and Heat Transfer Coefficient: Temperature 
History of Front Surface Convective Boundary 

Page 

60 

61 

62 

64 

65 

Condition, Cases 1 and 2 .................. 67 

21. Effect of Solid Density on Effective 
Thermal Conductivity: Temperature 
History of Front Surface for Final 
Solid Densities of O. 5 and O, 8 --
Constant Heat Flux, Case 1 

22. Effect of Conductivity Change on Energy 
Equation: Temperature History of 
Front and Back Surfaces for Constant 
Heat Flux Case 2 ....... , . 

23, Effect of Heat of Reaction: Temperature 
History of Front Surface for Constant 
Heat Flux -- Case 1, With and Without 
Heat of Reaction 

~ O tl Ill O e OIi e O Q II! 0 

24. Selected Species Histories for Three 
Reactions -- Convective Heating, Case O . 

Effect of Heat Flux Parameter: Production 
of Gas from x = 1.0 -- Constant Heat 
Flux, Three Reactions, Case O , ..... 

ix 

69 

70 

72 

74 

75 



Figure 

26. Effect of Heat Flux Parameter: Production 
of Solid6 at x = 1.0 -- Convective Heating, 
Three Reactions, Case O ........•. • • 0 • ., .e - t) • 

27. 

28. 

Effect of Change of Activation Energy Parameter 
for Reaction 1: Production of Solid6 at 
x = 1.0 -- Convective Heating, Three Reactions, 
Case O • • • • • • ••••••••• 

Effect of Change of Frequency Factor 
Parameter for Reaction 1: Prodµction 
of Solid6 at x = 1.0 -- Convective 
Heating, Three Reactions, Case 0 

29 .. Effect of Change Activation Energy 

30. 

31. 

32. 

33. 

of Reaction 1: Production of Total 
Solid at x = 1.0 -- Convective Heating, 
Three Reactions, Case O ....... . 

Effect of Heat of Reaction: Temperature 
History at x = 1.0 and x = 0.8 for 
Constant Heat Flux -- Three Reactions 
With Heats of Reaction, Case 1 

Effect of Heat of Reaction: 
of Solid6 and Gas4 at x = 
Constant Heat Flux, Three 

Production 
1. 0 and x = 0 • 8 , 
Reactions, Case 1 

Effect of Heat of Reaction: Temperature 
Histories of Front and Back Surfaces for 
Convective Heating, Three Reactions With 
Heats of Reaction, Case 0, G = 1.5 

Effect of Heat Flux Parameter: Temperature 
Histories of Front and Back Surfaces -
Convective Heating -- Three Reactions With 
Heats of 'Reaction, Case O . , . , •. 

34. Effect of Heat Flux Parameter: Mass Flux 
from Slab -- Convective Heating, Three 
Reactions, Case O ...•. , 

35. Effect of Variable Conductivity and 
Heat Transfer Coefficients: 

" <) 0 "' ••• 

Temperature History of Front and 
Back Surfaces for Convective 
Heating -- Three Reactions With 
Heats of Reaction, Cases O and 2 O Q O 1) tl ti 3 0 ,:, " 0 II I! !l 

Page 

76 

78 

79 

80 

82 

84 

86 

87 

89 

90 



Figure 

36. Effect of Changing Conductivity: Mass 
Flux From Slab for Convective Heatin~ 
Three Reactions With Heats of Reaction~ 
Cases O and 2 . . . . . . . . . . . . . 

xi 

Page 

92 



Symbol 

A. 
1 

a. 
1 

B 

b. 
1 

C 

c1 

E~ 
1 

f 
m 

G 

G. 
1 

H. 
1 

H. 
1,n 

h 

J. 1,n 

Note: 

NOMENCLATURE 

Description 

time-dependent, polyno~ial coefficient i, for the tem
perature approximat~on 

frequency factor for reaction i, sec- 1 

x-temperature derivative at heated surface 

mole fraction for species i in reaction expression, 
moles of species i/mole of reactant 

constant pressure specific heat, cal/gm-°K 

mass fraction of solid converted in reaction 1, 
gm S0lid2/gm Solidi 

mass fraction of solid converted in reaction 3, 
gm S0lid5/gm S0lid2 

activation energy for reaction i, cal/mole 

frequency factor parameter for reaction i (see TableVI) 

weighting function m 

heat flux parameter (see Table VI) 

Gas species i 

non-dimensional heat generation term i 

time-dependent polynomial coefficient n for heat gener
ation approximation term i 

heat transfer coefficient, cal/cm2-sec-°K 

time-dependent polynomial coefficient n for approxi
mation term i 

For symbols having both a dimensional and non-dimensional repre
sentation, an asterisk(*) is used to denote the dimensional 
value. Table IV defines the non-dimensional quantity. 

xii 



Symbol 

K 

K 

k. 
l. 

k. 
l. 

k .. 
l.,J 

L 

M. 
l. ~· i 

• I 
m. , 

l.' J 

N 

Ne 

Nu 

Q. 
l. 

Q'. 
l. 

q 

Ro 

R. 
l. 

s. 
l. 

T* 

T* 
00 

t* 

Description 

effective thermal conductivity based on constant unit 
area 

thermal conductivity of solid based on solid area 

rate con.stant for reaction ·i, sec-1 

exponential part of the rate constant 

exponential part of the rate constant at the ,approxi
mating strip j 

slab thickness, between insulated and heated surfaces, 
cm 

molecular weight of species i 

rate of generation of species i per unit volume from 
all reactions 

rate of generation of species i per unit volume from 
reaction j 

number of approximating strips 

number of ordinary differential equations, 4N + 2 

Nusselt number (see Table VI) 

heat of reaction i, cal/gm of reactant 

rate of generation of heat in reaction i per unit 
volume 

rate of generation of heat from all reactions per unit 
volume 

heat flux, cal/cm2-sec: 

universal gas constant, 1.986 cal/mole-°K 

heat of reaction i parameter (see Table VI) 

Solid species i 

temperature, °K 

convective heat source temperature 

time, sec 

xiii 



Symbol 

w* 

x* 

p* 

p* 

Subscripts 

0 

1,2, ••• ,6 

R 

C 

Description 

mass flux, gm/cm2-sec 

slab distance from insulated surface, cm 

effective density of total solid, mass of solid/constant 
unit·volume 

ac;tual .density of total solid, mass of solid/volume of 
solid 

D'7s c:tiption 

ini.tial value, time ::::: 0 

... species number 

Racjiant heating bound.~ry condition 

Convective heating boundary condition 

xiv 



CHAPTER I 

INTRODUCTION 

When a porous solid such as wood, cellulose or a polymer foam is 

heated, its temperature rises at a rate dependent on the rate of surface 

heating and upon the rate of heat conduction into the solid. The solid 

continues to absorb heat until the temperature is high enough for chem-

ical reactions to be important. These reactions cause changes in local 

temperature and solid composition thus affecting future reactions. If 

it were possible to specify all reactions and their rates, one could, in 

principle, predict the behavior of the solid, given the boundary condi-

tions and physical properties. 

For many years, experimental studies have been made of thermal 

decomposition of porous solids. Industries have been concerned with im-

proving fuels such as coke and charcoal. The Forest Service has under-

taken extensive investigations to understand the spread of forest fires 

and the effectivness of flame retardants. Insurance companies and 

agencies concerned with Building Codes are interested in fire spread in 

buildings, structural damage to s~pporting members and effects of dif-

ferent methods of fireproofing. Problems of self-heating and ignition 

also arise when materials are stored for long periods of time in ships 

and warehouses. Airlines are concerned with fire spread'in the interi
! 

ors of planes when cloth or plastic materials ignite. The Armed Forces 

study effects of flame weapons on combustible targets such as buildings, 
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wooden ships and fuel soaked earth. The study of nuclear weapon 

effects presents problems involving ignition and sustained combustion. 

Recently, the aerospace industry has been interested in heating ef

fects on solids because of the use of char-forming ablative heat 

shields on re-entry spacecraft. Another area of interest is the 

study of effects of in-depth reactions on solid propellant combustion. 

All industries are involved with the use of polymer foams. These 

foams are used for electrical, thermal and acoustical insulation as 

well as lightweight structural applications. Finally, cellulose 

products used in the textile and paper industries are subject to 

pyrolysis reactions. These few examples demonstrate the usefulness 

of improving the mathematical analysis of pyrolysis of porous solids. 

There are two main obstacles in performing an analysis; extreme 

complexity in the physical processes and mathematical difficulties in 

solving the resulting equations. In the present field, more is known 

about the qualitative physical events than has been previously in

corporated in the mathematical solution. However, large digital com

puters have enabled more complex problems to be solved and, therefore, 

more physically realistic models to be studied. Thus, the purpose of 

the present work is to incorporate more of the known physical events 

into the mathematical analysis of porous solid pyrolysis. 

This report is composed of four major sections. The first sec

tion presents background information as to the experimental results 

that indicate the important physical events. Also included is a dis

cussion of previous mathematical analyses. The second section out

lines the development of the mathematical equations and boundary con

ditions, The third section describes the method used in solving the 



equations and the fourth section presents the results and interpre-

tations of the computer solutions. 

Background 

Wood has been in use since the beginning of time and is still 

the widest used porous solid today. As a result, a great deal of 

experimental work has been done on wood and its components. 

The three major components of wood are hemicellulose, cellulose, 

and lignin with approximately half being cellulose. The thermal de-

composition rate of wood closely follows that of cellulose whereas 

hemicellulose decomposes faster, and lignin, slower. Thus, many ex-

periments are done with cellulose to better understand the pyrolysis 

of wood and other materials. Also, cellulose can be made into homo-

geneous samples having a wide choice of closely controlled densities 

and physical constants. 

Browne (5) 1 reviews the theories of the combustion of wood up 

to 1963 while MacKay (13) gives a review of information on the ther-

mal degradation of cellulose up to 1967. Shafizadeh (17) presented, 

in 1968, a co~plete review of the experimental information on the 

pyrolysis and combustion of cellulosic materials and includes effects 

of flame-retarding chemicals. 

In one type of experiment, a slab of cellulose is placed into a 

constant temperature furnace that is being flushed with an inert gas. 

Usually, the temperature at certain points is recorded as well as the 

1Throughout the report, numbers in parenthesis after a proper 
name refer to an entry in the Bibliography. 
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weight of the slab. As heat enters the cellulose, its temperature 

rises and causes pyrolysis reactions which produce a different solid 

and evolve gases. Since some solid has been changed to a gas the 

solid becomes more porous. The reactions proceed into the solid 

while the gases flow through the pores and out the surface. Higher 

temperatures increase the reaction rate, producing more gases and 

increasing the porosity. Thus, at a given instant, the solid is in 

various stages of decomposition ranging from the virgin material deep 

within the solid, through the more porous reacting solid, to the in

ert highly porous hot char next to the surface. Of course, continued 

heating to higher temperatures would eventually decompose the char. 

However, in most practical situations one is concerned with the events 

from the initial heating .to the production of char. 

The gases evolved from the reactions are very important in 

ignition and combustion studies since these gases may ignite and 

burn. The first gases that are formed are primarily non-combustible 

water vapor and carbon dioxide. Next, more combustible carbon mon

oxide, hydrogen and the highly inflammable levoglucosan, sometimes 

called tar, are evolved. Also produced are methane, formaldehyde, 

methanol and acids. Efforts in flame-proofing materials are directed 

toward producing less tar and more non-combustible gases. Thus, be

fore a complete understanding of ignition and combustion stages can 

be obtained, a thorough investigation of the initial pyrolysis events 

must be made. 

The first comprehensive analytical model of initial pyrolysis was 

formulated by Bamford, et al (1), .in conjuction with their experiments 

on wood. Slabs of wood of various thicknesses were heated either on 
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both sides by flames from a burner or on one side by a radiant heater. 

Measurements were made of the central slab temperature, depth of char, 

and time required to achieve sustained burning for the flame heated 

slabs and piloted ignition2 for the radiantly heated slabs. 

In the analysis, the slabs were considered to behave as a one-

dimensional solid heated by a surface-temperature-dependent convective 

heat flux. The unsteady heat conduction equation included a term for 

heat generation within the slab. Heat generation was considered to 

be from a single exothermic reaction and was expressed as a constant 

heat of reaction times a reaction rate. The reaction rate was ex-

pressed as a first-order, Arrhenius-type reaction. 3 In addition to 

the heat of reaction, Bamford assumed constant thermal conductivity, 

specific heat, surface heat transfer coefficient, activation energy 

and pre-exponential factor. The latter two constants were chosen by 

matching the calculated central slab temperature with the experimen-

tally measured one. The temperature was found from the energy equa-

tion by a finite-difference method and the mass loss was determined 

by a finite-difference approximation to the species conservation equa-

tion. The calculations for the central temperature, based on a single 

overall reaction, did not agree with measured values when different 

slab thicknesses were used. This indicates that more than one reac- ', 

tion needs to be considered. 

Weatherford (21) used the same constants and equations as Bamford 

2Piloted ignition occurs when a small flame placed near a heated 
surface acts as an ignition source for the evolving gases. 

3An Arrhenius-type reaction is one that expresses the reaction 
rate constant ask= a exp(-E*/R0 T*). See Nomenclature for the defi
nition of the symbols. 



and calculated the. surface temperature and vapor-generation rate. 

Source temperatures considered for the convective boundary condition 

varied between 667°K and 767°K. Calculations were continued until 

the vapor generation rate reached 10-4gm/cm2-sec, became constant, 

or reached a maximum. He used a finite-difference technique and 

showed that undulations which Bamford found in the gas-generation 

rate curves were caused by too large a step size in the finite-

difference approximations. Weatherford proposed that a criterion 

for wood to sustain stable burning would be the departure of its 

surface temperature or vapor-generation rate from the solution for 

the infinite thickness case. 

Experiments were performed by Weatherford and Sheppard (22) on 

convectively heated slabs to determine piloted ignition times. Vari-

ous slab thicknesses, bulk densities, and heat source temperatures 

were used, The data showed that small changes in density or slab 

thickness exerted significant influence on the ignition time. For 

the range of variables considered, the surface temperature calculated 

with the heat generation term included was within 10% of the solution 

for an inert slab. 

Lawson and Simms (11) considere~ piloted and spontaneous igni-

tion4 of wood slabs heated on one side by radiation. Times to igni-

tion were recorded for various radiation intensities and different 

species of wood. By extrapolating graphs of radiation intensity vs. 

ignition-time out to infinite time, a minimum intensity necessary 

for ignition was determined for slabs thick enough to be considered 

4spontaneous ignition relies on the conditions of the heated 
material for ignition. 

6 
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a semi-infinite solid. For most species, a constant minimum intensity 

was found for each of the two types of ignition. 

Martin (14) heated thin cellulose slabs by radiation and measured 

(not all simultaneously) the spontaneous ignition time, temperatures 

within the slab, weight loss and composition of the gaseous products 

for various radiation intensities. The temperature profiles differed 

considerably from the theoretical ones for a semi-infinite, inert 

solid having constant thermal prop~rties. A maximum in the rate of 

evolution of volatile products occurred near the ignition time but no 

evidence was found for an ignition criterion based on a threshold rate 

of volatile evolution. Evidence of competing reactions was seen by 

observing a different final weight of char for different heating rates. 

Char form'.ed from the levoglucosan reaction was found to be negligible. 

In the preceding ignition work, the two types of boundary condi

tions considered were a constant radiative heat flux and a convective 

heat flux. The combination of radiation heating with Newtonian cool

ing at the surface, considered by Lawson and Simms, can be considered 

as a psuedo-convective case. The factors which seem to be the most 

important in ignition are the gas composition and generation rate and 

surface temperature, all of which depend on the nature of the pyroly

sis reactions. These factors were considered in developing the results 

of this study. 

To obtain more information on the kinetics of reactions, techni

ques were developed by the physical chemists. Some of these techni

ques are Thermogravimetric analysis (TGA) and Differential Thermal 

analysis (DTA), A better understanding of the nature of the reactions 

helps to explain the causes of differing experimental results as well 
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as determining the effects of adding fire retardant chemicals. 

Broida and Kilzer (4) presented a critique on the knowledge of 

the mechanism of cellulose pyrolysis to 1961 and indicated that more 

detail was needed in interpreting the reaction mechanism as well as in 

experimental studies. They pointed out that previous ,considerations 

of the reaction products as only gas, tar, and char failed to explain 

many of the observed experimental results. The important effects of 

trace impurities on the internal reactions caused many earlier experi-

mental results to be questioned. 

Kilzer and Broida (9) present data from a number of cellulose 

pyrolysis observations made by TGA, DTA, mass spectrometric thermal 

analysis (MTA) and gas and paper chromatographic analysis of the prod-

ucts. The results show that as a 

ly endothermic reaction starts at 

cellulose sample is 

about 22't0 c causing 

heated, a slight-

the pure cellu-

lose to lose water and form a "dehydrocellulose." (This is after 

vaporization of any extra-cellulosic moisture). Next, a strongly endo

thermic reaction becomes evident at about 2fo 0 c in which the remaining 

pure cellulose depolymerizes and volatilizes as tar, thus competing 

with the first reaction for the original cellulose. The third major 

reaction is strongly exothermic and res~lts in the "dehydrocellulose" 

decomposing into a number of gaseous products and residual char. Each 

of the three processes actually involve a number 0£ reactions. They 

concluded that the pyrolysis of cellulose must be described by at 

least two competing endothermic reactions and a consecutive exothermic 

reaction. 

Broida (3) presents TGA and DTA results of cellulose containing 

practically no contamination (<.01%) and containing as much as 1.5% 



KHC03, The results showed that as little as 0.15% contamination can 

significantly affect the pyrolysis reac~ions. The addition of 1,5% 

KHC03 lowered by 80°C the temperature at which significant decomposi

tion began but eliminated the flame-producing reactions in favor of 

those leading to glowing combustion. 

9 

Tang and Neill (18), in their experiments on the effects of salts 

on wood and its components, supported the reaction stages described by 

Broido, They showed that the effect of the salts was to lower the 

overall activation energy, stimulating the dehydration reaction, 

Further effects of multiple reactions were seen when Murty and 

Blackshear (15) showed that the overall activation energy decreased 

with radius for heated cylinders of cellulose. The frequency factor 

varied unsystematically while incubation of the interior caused the 

amount of solid that occur+ed at a given temperature to decrease 

toward the center. This also suggests that the reaction rate de

creased toward the center. 

Tinney (20) heated small wooden dowels in a constant temperature 

furnace and measured the center temperature and rate of weight loss. 

During his calculations for temperature and weight loss, he changed 

the overall activation energy, frequency factor and heat of reaction 

to a new value in an attempt to simulate the apparent changes during 

wood pyrolysis. He obtained fair agreement between experimental and 

calculated .values for the surface temperature and weight loss but poor 

agreement for the center temperature. He concluded that more than one 

change in the parameters would be necessary to match the center tem

peratures for exothermic reactions. 

Thus, investigations into the reaction mechanisms of cellulose 
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have shown the existence of and provided information on multiple 

reactions while pyrolysis experiments have shown the need for consid

eration of more than one overall reaction. 

The same pattern of three major reactions in porous cellulose is 

found in the study of the pyrolysis of polymer foams. Hilado (8) des

cribes the combustion process of urethane foams which parallels simi

lar events seen in cellulose and other organic polymers. Tilley, et 

al (19), include DTA and TGA analysis of the pyrolysis of urethane 

foams and find three major regions of weight loss as a function of 

temperature. They associate the weight loss regions with three major 

reactions whose rates were fitted to the Arrhenius equatione Lear

month and Osborn (12) present the results of the pyrolysis of phenolic 

resins and describe three main types of products; gases, tars, and 

carbon residue. As with cellulose, the above references indicate that 

the nature of the products and the rate of decomposition of polymer 

foams vary with temperature, rate of temperature rise, and endother

mic and exothermic reactions, Thus, learning how different factors 

influence the pyrolysis of cellulose will contribute to the under

standing of the pyrolysis of many organic polymers as well as cellu

lose and wood, 

In summary, the mathematical analysis of the pyrolysis of cellu

lose or wood has been limited to consideration of the unsteady heat 

conduction equation with heat generation from one exothermic reaction, 

Experiments have shown that more than one reaction needs to be con

sidered and should include competing and consecutive, endothermic and 

exothermic reactions, The effect of a density-dependent effective 

thermal conductivity also needs to be studied. Also, since previous 
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mathematical studies involved specific ignition events with limited 

parameter values, a general analysis is needed to establish the rele

vant parameters and present results of the influence of parameter 

variations on the pyrolysis events. The development and solution of 

the equations as given in the remaining sections will be pointed 

toward these objectives. 



CHAPTER II 

THE MATHEMATICAL ANALYSIS 

Geometry 

As shown in Figure 1, the porous solid is considered to be an 

infinite slab of finite thickness, L. The slab is heated at the front 

surface and insulated against heat or mass transfer at the back sur-

face. These conditions also apply to one-half of a slab of thickness 

21 that is symmetrically heated. 

Two types of heating conditions will be c,onsidered for depositing 
.. ;r7 

energy at the front surface. 
-~··· 

The first is a time-dependent, radiative 

heat flux and the second is a convective heat flux. 

Energy Equation 

Heat is transferred into the slab from the surface by conduction 

and causes chemical reactions which either absorb or generate heat. 

Gaseous products that are formed from the reactions flow out of the 

solid. It is assumed that any heat transferred between the flowing 

gases and the solid does not significantly change the solid tempera-

ture. This is app:t:oximately true since the increasing porosity and 

cracks allow the gas to flow out with little solid area contact and 

short residence time. 

Specific heat and thermal conductivity of the solid material are 

considered constant for the ranges in temperatures to be encountered. 

12 
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Figure 1, Porous Solid Being Heated 
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Also, the heats of reaction per mass of reactant are constant. Finally, 

the dimensions of the slab are assumed constant and a psuedo~density ,/, 

based on a constant unit volume, will be used. 

With these considerations, the energy equation for the s·olid can 

be written by applying the conservation of ·energy to a differential 

volume and taking the limit as the thickness goes to zero. The result 

is valid at every x-position within the solid and is given by 

~ __ a_0c3T*) + q·, 
fJ"'at* - clx* clx* 

I II III 

Term I = Rate of accumulation of thermal energy per unit volume 

(2.1) 

Term II = Net rate of conduction of thermal energy per unit·volume 

Term III= Rate of heat generation by chemical reaction per unit volume 

Effective Thermal Conductivity 

... The cross section of a porous solid can be divided into two areas; 

the area occupied by solid material, A l"d' and the void area occupied so J. 

by g~s (see Figure 2). 

Figure 2. Representation of Unit 
and Solid Areas 
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Heat conduction in the slab occurs only through the solid area, 

Asolid• Since the solid area changes, it is more convenient to base 

the equations on the total unit area, A . , which is constant because 
unit 

of the assumption that the slab dimensions are constant. Thus, an 

effective conductivity, K, based on the total unit area is defined by 

KA . =KA 1 .d unit soi 

where K is the thermal conductivity of the solid material and is con-

sidered constant. The ratio of the areas can be expressed as a density 

ratio by considering a unit thickness. Then, 

Asolid = .e!:. 
Aunit p* 

where p* is the density of the solid material (i.e., no porosity) and 

is considered constant. 

With the above equations, an expression for the effective thermal 

conductivity becomes 

* K = Ko £; 
PIT 

(2.2) 

where Ko and p~ are the effective conductivity and density at time O. 

Substituting Equation (2.2) into term II of Equation (2.1), ex-

panding and dividing by p*C gives 

aT* Ko a2T Ko an* aT* + K. • 
1 

---:r,:;~+ ..::....r::..., 
at* - p0C ax* p~Cp* ax* ax* p*C 

(2. 3) 

I Ila IIb III 

Previous investigators did not consider that the changing effective 
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thermal conductivity affected the energy equation. They argued in-· 

correctly that since the thermal diffusivity, K/p*C, remained constant, 

then term Ila was the only conduction contribution. This approximation 

can only be true if term Ilb is negligible. From another viewpoint, 

we might consider that previous workers have unintentionally combined 

terms Ilb and III into a new, equivalent, heat generation term. Term 

Ilb will always be negative or zero and thus introduces an equivalent 

endothermic heat generation term that will vary throughout the slab 

as well as time. As a result, heat generation calculations based on 

an energy equation that considers the effective thermal conductivity 

to be a constant may calculate values that largely include a distance 

and time dependency from the conductivity change. This investigation 

will include calculations to determine how a density-dependent thermal· 

conductivity may affect the results. 

Boundary Conditions 

Consideration of a surface with changing porosity introduces sev-

era! possibilities for the surface heating conditions. For the radiant 

heat flux 1 condition, all the energy strikes the solid either at the 

surface or at some small depth due to the pores (see Figure 3). 

It is assumed that the depth at which the energy is deposited is 

small enough to consider it all at the surface. Therefore, the amount 

of radiant energy striking the surface is not dependent on the amount 

of solid present. The rate at which the energy is conducted into the 

solid, however, is dependent on the porosity through the effective 

lHeat flux refers to the total energy per constant unit area per 
unit time. 



q* RADIANT HEAT FWX 

Figure 3. Radiant Heat Flux Deposit.e.:dl at the 
Surface 

17 

thermal conductivity. Thus, the first possibility is a time-dependent 

heat flux at the surface with a density~dependent, effective thermal 

conductivity. This condition will be called Case 1. For comparison 

purposes, Case O will denote problems with the heat flux treated as in 

Case l but with the effective thermal conductivity considered constant. 

Another possibility is when the energy deposited at the surface 

decreases in proportion to the amount of solid at the surface. This 

is difficult to justify physically but might approximate a radiative 

heat flux reduced by opaque gases flowing from the solid or, if energy 

was lost from the surface by re-radiation and conduction to the gases 

at an equivalent rate. The resulting condition is the same as Case 0 

but with term !lb included in the energy equation (2.3). Thus, the 

contribution of the change in the effective thermal conductivity to the 

energy equation can be found. This condition will be called Case 2. 

For the convective heat flux condition, three cases also are de-

veloped. Case O considers no change in the effective thermal conduc-

tivity and a constant convective heat transfer coefficient. Case 1 
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considers a density-dependent, effective thermal cqnductivity and a 

constant convective heat transfer coefficient. This is equivalent to 

saying that the convective fluid at the surface is always in contact 

with the solid as the surface becomes more porous. Case 2 considers 

that the convective heat transfer coefficient and the effective ther-

mal conductivity qecrease as the solid at the surface decreases. This 

would mean that the convective gases were in contact with the solid 

that was present only at the surface (see Figure 4). 

Figure 4. Convective Heat 
Flux at the 
Surface 

Cases 1 and 2 represent an upper and lower bound on the physical 

events for the convective case with the intermediate Case O probably 

being a good assumption. 

At the instant heat is applied, the slab, solidi, is at a constant 

temperature and density. With the insulated boundary at x* = 0 and the 

heated surface at x* = L, the boundary conditions for radiant and con-

vective heating become 



For time= 0 

At x* = 0 

At x* L: Type I 

Case 0 

Case 1 

Case 2 

At x* = L: 'l'ype II 

Case 0 

Case 1 

Case 2 

T*(x*, 0) = T* 0 

p*(x*, 0) pf (x*, 0) 

pf(x*, 0) = O, i = 2, 3, ••. , 6 

aTt, 
0 --= 

ax* 

a@i" = 0 
ax* 

(Radiative) 

aT* 
Koax* = q*(t*) 

p* aT* q*(t*) K ~---0Po ax* -

aT* 
Koax* = q*(t*) 

(Convective) 

aT* 
Koax* = h(T! - T*) 

P* aT* - T*) Ko:T- = h(T* 
Po ex* 00 

aT* 
Koax* = h(T! - T*) 
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(2. 4a) 

(2. 4b) 

(2. 4c) 

(2.4d) 

(2. 4e) 

(2.4f) 

(2.4g) 

( 2. 4h) 2 

(2.4i) 

(2.4j) 

(2,4k)2 

2Equations ( 2. 4h, k) would normally have the t~rm p* Ip~ multi plying 
the terms on both sides of the equal sign but is shown already canceled. 
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Equat~on (2.4) represents the boundary conditions that will be used 

with the energy and species equations for completely specifying the 

problem, Equation (2.4e) can be determined by taking the x-derivative 

of the species equations (see Appendix F). 

Chemical Reactions 

The reactions that will be considered are shown in Figure 5 with 

identification of each species for the case of cellulose. Of course, 

the same reaction scheme or any combination of the reactions may be 

used for many other materials. 

Even though these reactions represent only the overall effects of 

a number of reactions, they include the major pyrolysis events in most 

porous solids. Also, three competitive and consecutive reactions are 

just enough to enable a large number of possible effects to be studied. 

Steps leading to expressions for the heat generated by the reac-

tions and the rate of species production begin with writing the reac-

tions on a mole basis: 

k1 
S1---+ b2S2 + b3G3 

where S = Solid, G = Gas, k = rate of reaction i, b. = moles of Species i, 
i l. mole of reactant 

Let M. ~ Molecular weight of Species i. Then, mass is conserved if 
l. 

for reaction 1 



REACTION 2 l 

REACTIONS 1 and 2 are COM~ETITIVE 

REACTIONS land 3 are CONSECUTIVE 

For Cellulose: 

Solidi~= original cellulose 

Solid2 "dehydrocellulose" 

Gas3 = water vapor 

Gas4 = "tar" (levoglucosan) 

Gas 5 = CO, CO2, H2o, etc, 

Solid5 = char 

Figure 5. Reactions in the Slab 
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M1 = b4M4 for reaction 2 

M2 = b5M5 + b5M5 for reaction 3. 

Letting c1 = b2M2/M1 = gm S2/gm S1 0 .5. c1 .s. 1 

C2 = b5M5h1.2 = gm S6/gm S2 0 .s c2 ;;;. 1 

the reactions may then be written on a gram basis noting that 

k1 
S1 - c1S2 + (1 - c~) G3 (2.5a) 

k2 
S1 - G4 (2,5b) 

k3 
S2 - c2S5 + (1 - c2) G5 (2 .5 c) 

It is assumed that all reactions are first-order 3 homogeneous reac-

tions, i.e., the rate of decrease of reactant is proportional to the 

amount 0£ reactant present. The proportionality constant is given by 

the reaction rate constant, It is expected that basic homogeneous 

reactions will be :l;irst order, However, when several reactions are 

occurring simultaneously, the resulting overall effect may be of zero 

order or some intermediate value, Shafizadeh (17) discusses experi-

mental results that determine the order of cellulose reactions, most 

of which indicate the reactions to be first order with some reports 

of zero order depending on the experiment. Most analyses also con-

sider the reactions to be first order. 

3order refers to the exponent on the mass term in the reaction 
* * rate equation, (dp1)/(dt*) = -p1k1 
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With the reaction order specified, the rate of species production 

can be expressed, 

Q ' of generation of species i per unit volume as Let m. = rate a 
l. 'j 

result of reaction j, Then, 

• I 

-pfk1 
' I * ' I 

(1 - c1) pfk1 m1, 1 = m2,1 = CIP1k1 m3, 1 = 

' I 
-pfk2 

• I 

pfk2 m1, 2' m4,2 

• I * ' I * • I 
(1 - c2) * m2, 3 = -p2k3 m5, 3 = C2P2.k3 ms, 3 P2k3 

Now, the total rate of generation of species i is found by summing 

over all reactions. 

' I l ' I 
m. = m. j l. 

j 
1, 

' I 
-pfk1 - pfk2 (2.6a) m1 = 

' I 
c1pfk1 - P~k3 (2.6b) m2 = 

' I 
(1 - c 1) * (2,6c) m3 P1k1 

' I * (2,6d) m4 = P1k2 

• I 
(1 - c2) * (2,6e) m5 = P2k3 

• I * (2 0 6f) m5 C2P2k3 

For the heat of reaction given as Q. = heat generated in reaction 
1 

• I 
i per unit mass reacted and for Q.1 = rate of generation of heat per 

1 

unit volume in reaction i, then, 

. ' . ' 
Q2 = Q2m1, 2 



Sunnning over all 

of heat per unit 

reactions, l Q!, gives the total rate of generation 
. l 
l 

volume, Q', or also 
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(2.7) 

For the reaction rate constant, k., the usual assumption is made 
1 

that the dependency of the rate of reaction ion the temperature is 

given by the Arrhenius expression, k. = a. exp(-E~/R 0 T*). 
l 1 l 

Species Equations 

The conservation of a solid species within a unit volume requires 

that the rate of accumulation of a species within the volume equals 

the rate of production of the species from chemical reactions. Taking 

the limit as the volume thickness goes to zero gives an equation that 

is valid at any x-position, 

clp* 
1 = 

at*' 
• I 
m .• 

l. 

Since the species production equations are given by Equation (2.6), 

the rate of change of each solid species at any position within the 

slab is 

*k ~';k 
cl t* = -pl 1 - P 1 2 (2.8a) 

(2, Sb) 

(2.8c) 
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Non-Dimensional Equations 

The equations and boundary conditions are non-dimensionalized in 

order to determine relevant parameter groupings and minimize the number 

of parameters which affect the calculations. Reference values used to 

non-dimensionalize the variables are selected as being a characteristic 

dimension of the problem. Usually, the reference value will enable the 

non-dimensional quantity to have an order of magnitude of unity. For 

the slab, the independent variables, x* and t*, are non-dimensionalized 

by the slab_thickness and the characteristic conduction time, the 

Fourier number. The dependent variables p~ are non-dimensionalized by 
1 

* the initial density, Po• The temperature is non-dimensionalized by 

consideration of the boundary conditions. The resultantnon-dimensional 

variables are given in Tabl.e I (see Nomenclature for symbol identification). 

TABLE I 

NON-DIMENSIONAL VARIABLES 

DeEendent Variables IndeE,endent Variables 

T 
T* - Tt 

= q~L/Ko R 

T* - Tt 
TC = T* - TU 

00 

q* 
q = qff 

p~ 
1 

pi = pf 

w*CL 
w=~ 

x* 
X = L 
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When the non-dimensional variables are substituted into the 

energy equation (2,3)i the species equation (2.8), and the boundary 

conditions (2.4), the reference quantities become grouped into non-

dimensional parameters. It is the value of the particular combina-

tion of reference quantities as given in the new parameters that 

determine the character of the solutions rather than the values of 

the reference quantities themselves. The resulting new parameters 

are given in Table II. 

TABLE II 

NON-DIMENSIONAL PARAMETERS 

Definition Description 

E~ 
E. 

1 

1 = ROTE Activation Energy Parameter 

Ko{l/ a O) 
F. J. 

1 puc12 
Frequency Factor Parameter 

R. 
Qi 

1 = CTU 
Heat of Reaction Parameter 

* qoL 
~ 

G 
Ko To 

= 

(Radiative) 

Heat Flux Parameter 

T! - T1t 

T~ 
(Convective) 

Nu hL 
= --

Ko 
Nusselt Number 

The resulting non-dimensional energy equation is 
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The non-dimensional species equations are 

clp1 k1 k2 
-= -P1(- + -) at F1 F2 

(2.10a) 

~= k1 k3 
at C1P lFi - P2~ (2.10b) 

clp5 k3 
-= czpz ~ clt (2,10c) 

where k. = exp[-E./(1 + GT)]. Finally, the non-dimensional boundary 
1 1 

conditions are 

t = 0: 

T(x, O) = 0 (2. lla) 

p(x, O) = 1 = P1(x, 0) (2.llb) 

p.(x, 
1 

0) = 0 i = 2, 3, . ' . ' 6 (2,llc) 

X ::;z 0: 

clT 
0 -= ax 

(2, lld) 

ap. 
1 

0 i 1, 2, 6 -= 
' = . . . ' ax 

(2. lle) 

X = 1: Type I (Radiative) 

Case 0 clT q (t) -= clx (2.llf) 

Case 1 clT q(t) -,- = 
clx p (1, t) (2, llg) 
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Case 2 aT q(t) (2, llh) -= a:x 

X = 1: Type II (Convective) 

Case 0 clT Nu (1 - T) (2 0 lli) -= ax 

Case 1 1"lT Nu (1 - T) 
ax"= p(l, t) (2,llj) 

Case 2 oT Nu (1 - T) (2 0 llk) -= ox 

Therefore, the problem to be solved consists of Equations (2,9), 

(2,10), and (2,11). 



CHAPTER III 

SOLUTION OF TijE EQUATIONS 

Background 

There are basically two approaches available for the computer 

solution of non-linear partial differential equations. The first is 

the finite-difference method where the derivatives are replaced by 

finite differences. At ,ea:ch step, a system of linear algebraic equa

tions must be solved. Computer programs ate usually complex and re

quire large core storage. The second approach is the integral method, 

Basically, it reduces the partial differential equations to a system 

of ordinary differential equations by integrating over one variable. 

The ordinary differential equations can then be solved by any one of 

a number of highly developed techniques. 

There have been a number of different integral approaches used 

to reduce the partial differential equations. The simplest approach 

is to divide the region of integration into strips and replace the 

derivatives across the strips by finite differences. However, a large 

µumber of strips are required to obtain good accuracy, Other simple 

techniques have been discussed by Goodman (7). 

Method of Integral Relations 

Berlotserkovskii and Chushkin (2) present the essential features 

of the method of Integral Relations, as generalized by Dorodnitsyn,and 

29 



discuss a number of sample problems in the field of Gas Dynamics. 

This method offers the best accuracy and the fewest number of neces

sary approximating strips of any of the integral techniques. 
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The basic approach is to multiply the partial differential equa

tion by a "weighting" function, f(x), and then integrate with respect 

to its independent variable. Functions within the integrals are then 

approximated by an interpolation formula. This enables the integrals 

to be evaluated and results in a system of ordinary differential equa

tions in the remaining independent variable. The final system of equa

tions can then be solved by such standard techniques as Runga-Kutta or 

an Adams method. The accurqcy of the method is improved by increasing 

the number of strips in the region. 

In contrast to a finite difference technique, this method approx

imates an integral instead of a derivative. Thus, the approximated 

function is smoother than the integrand and can be represented by a 

smaller number of interpolation strips. Also, the integral can be con

tinuous even when the integrand is discontinuous. Another considera

tion is that computer storage requirements are small. 

The weighting functions used to multiply the partial differential 

equations are arbitrarily chosen except for some general restrictions. 

They must generate as many independent partial differential equations 

as there are interpolating points and thus must be linearly independ

ent. They are also used to insure convergence of an integrand at any 

point within the region, Finally, they should enable the approximat

ing functions to be more accurate in regions of greater importance. 
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Application of the Method of Integral Relations 

The energy equation (2.9) along with the boundary conditions 

(2 .11) wHl be reduced by applying the method of Integral Relations 

to the x-variable. The Integral method will not need to be applied 

to the species equations (2,10) since they do not contain derivatives 

with respect to x. 

The first step is to multiply the energy equation (2,9) by a 

weighting function f (x) and then integrate between the slab boundm 

aries, The result is 

J~ f (x) n dx = f~ f (x) 
cl 2T 

+ r f (x) ..!. ~ ..a.! dx W dx m clt m o m p dX dX 

1 
3· t I f (x) H, dx (3, 1) 

G i=l m l. 

where H1 
R1 (2) k1 (3, 2a) =-
F1 p 

H2 
R2 (£1.) k2 (3. 2b) =-
F2 p 

H3 
R3 (-e.1.) k3 (3, 2c) =-. 
F3 p 

Next, the slab is divided into (N - 1) strips by (N - 2) equally 

spaced planes paraliel to the boundaries x = 0 and x = 1, With the 

boundaries, this gives N points where the equations and boundary con-

ditions will be applied, (N ~ 2). Therefore, there must be N inde-

pendent equations like equation (3.1). This is obtained by choosing 

a system of linearly independent weighting functions, f (x), with 
m 

m = 1, 2, , • ,, N, Since the temperatures increase toward the heated 

surface, x = 1, this region will have a greater importance in the 
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problem than the back surface, x = 0. Therefore, the weighting func-

tions will be selected to give more "weight" to this region and enable 

the approximations to be more accurate. The linearly independent 

functions are chosen as 

i.e., 

( 2 (N-1) f. X) = [l, x, X, , , • , X ] 
m 

(m-1) f (x) = X 
m ' 

(m = 1, 2, • • , , N) 

With this set off 's Equation (3.1) becomesl 
m ' 

d Jal (m-1) T dx = ~1 - (m - 1) TI + { TI x=O 
dt X ax x=l x=l 0 

(3. 3) 

+ (m - l)(~ - 2) Jfl x(m-3) T dx + (£n p • 2-'.!'..) 
. O ax x=l 

J
l (m-1) n a2T 

- X x,n p ' -,-- dx 
0 ax2 

·1 
( 1) J n x(m-2) aT dx - m - 0 x,n p • ax 

1 I J 
1 

x ( m-l) H . dx , ( m = 1, 2 , . , • , N) 
G i=l o · 1 

(3. 4) 

In the next step, the integrands are approximated by polynomials 

in x with time-dependent coefficients, The number of terms will equal 

the mnnber of interpolation points, N, plus any additional terms that 

can be determined from applying the boundary conditions. Thus, the 

1see Appendix A. 
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temperature can be approximated with a polynomial having (N + 2) terms 

since two boundary conditions for the temperature derivative are known. 

The approximations will then be 

N+2 
T(x, t) = l A(n)(t) • x(n-l) 

n=l 
(3. Sa) 

cl 2T N ( 1) 
in P • ~ = l J1 (t) • x n-

ax2 n=l (n) 
(3. Sb) 

clT N (n-1) 
.Q.n P , clx = l J2(n)(t) • x 

n=l 
(3. Sc) 

R. N+l 
H. = Fl I H.( )(t) 

i i n=l in 
(n-1) 

• X (3. 5d) 

The problem now centers around finding the polynomial coefficients, and 

thus, the temperature as given by Equation (3,5a). Substituting the 

approximations (3.5) into Equation (3.4) and integrating2 gives N equa-

tions for the temperature coefficients, A(n)(t): 

l dA(l) f ( 1 dA(n+2) = 
m dt + l m + n + 1) dt 

n::;;l 

2see Appendix B. 

(1 + .Q.n p) Bl 
x=l 

N 

- <m - 1) I 
n=l 

( n+l_)A 
m + n - l (n+2) 

N 

I 
n=l 

( 1 ) J 
m + n - 1 1 (n) 

N-1 l 
l (m + n 

n=l 
- (m -~ 1) 

3 R. N+l 
_l l' -2:. I c i 

G F m + n i=l i n=l 

(m = 1, 2, . , . , N) (3, 6) 
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Another equation must be included with Equation (3.6) in order to solve 

for the (N + 1) unknowns. This equation is formed by using the temper-

ature approximation (3.Sa) in one of the boundary conditions (2,llf-k), 

depending on the Type and Case, and then differentiating with respect 

to time. The results for Case 1 are 

N+2 dA(n) 
l (n - 1) dt (q)( -l ) dp(l, t) + l~, Type I (3.7a) 

p2(1, t) dt p dt n=l 

N+2 
l cB + 

n=l P 
n -

dA 
1) ~) = 

dt 
[-N(l - T) E.e..] , Type II 

P2 dt x=l 
(3.7b) 

Equations (3.6) and (3.7) form a set of (N + 1) equations each contain-

ing (N + 1) ordinary first-order derivatives of the temperature coeffi-

cients on the left side. The derivatives are equated to terms composed 

only of the temperature coefficients and species densities. Thus, this 

system of equations can be solved simultaneously to give an explicit 

equation in canonical form for each of the derivatives of the tempera-

ture coefficients. 

The time-dependent coefficients in Equations (3.Sb, c, d) are 

determined by evaluating the approximations at each of the N strips, 

x = x .. For example, Equation (3,Sb) would become 
J 

(n-1) 
X, 

J 
in p (x., t) • 

J 

N+2 
l (n - 1) A(n)(t) 

n=l 

(n-2) 
• X 

j 

(j = 1, 2, .. , , N) 

A set of algebraic equations are thus formed for each approximation 

and can be solved simultaneously for the coefficients. The additional 

term in Equation (3.5d) is found by taking the x-derivatives of the 
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approximation and the approximated function, Equation (3.2), and apply-

ing the boundary conditions (2.lld and e). 

The remaining unknowns are the solid species 1, 2, and 6. As 

stated previously, the equations defining the time derivatives of the 

species, Equation (2.10), do not contain x-derivatives and thus do not 

need to be integrated with respect to x. By treating x as a parameter, 

the species equations are applied at each x. to obtain a set of N first 
J 

order ordinary differential equations already in canonical form for 

each solid species. 

where 

Thus, at x = x., j = 1, 2, ... , N 
J 

- -
dpl . kl . k2 . 

•J = -pl . ( __:!;_z,J_ + ~) 
dt ,J Fl F2 

dp2 ' kl . k3 . 2J = clp 1, j ~- p2 . _.2J..l 
dt Fl ,J F3 

dp6 . ~ ,J = c2p2 . dt ,J F3 

-E. 
k. exp[ 

l 
] :;:: 

N+2 i,j 
A (n-1) 1 + G l (n)xj 

n=l 

(3. Sa) 

(3.8b) 

(3.8c) 

In summary, there are (4N + 2) first-order differential equations 

of the form 

Ne= 4N + 2 

resulting from (N + 2) equations for the temperature coefficients and 

N equations for each of the three solid species. The system of equa-

tions was then solved by a general integration subroutine which 
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employed an Adams-Moulton technique (10). 

Initial Conditions 

In order to start the solution for the (4N + 2) unknowns, their 

initial values must be given. The temperature approximation (3.5) is 

used in the boundary conditions (2.11) to obtain equations for the 

initial values of the coefficients. 3 

The initial temperature coefficients are 

A(l)(O) = 0 (3, 9a) 

A(Z)(O) = 0 (3,9b) 

N+2 
(n-1) l A(n)(O) x. 0 j=2,3,.,, ,N 

n=3 J 
(3.9c) 

N+2 
l (n - 1) A(n)(O) ;:::: 1 

n=3 
(3. 9d) 

Using the values of x. at each of the interpolation points in Equation 
J 

(3.9c) produces (N - 1) equations which can be solved simultaneously 

with Equation (3.9d) for the N coefficients. The result, shown in 

Figure 6, is an (N + 1)-order polynomial for the initial temperature 

T = 0 that passes through zero at N points and has a slope of 1.0 at 

x = 1 and a slope of 0.0 at x = 0, 

The initial species values are obtained directly by applying the 

boundary conditions (2.llb, c) at 

P 1 (xj ~ 

P 2 (x.' 0) = p 6 (x.' 
J J 

3See Appendix C. 

each 

O) 

O) 

x.: 
J 

1 

0 (j=l,2,,., ,N) 

(3.10a) 

(3.10b) 
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Equations (3.5) through (3.10) constitute the complete problem 

to be solved on a digital computer to obtain temperature and species 

histories within the slab. 

Summary of the Integral Technique 

The purpose of the integral technique is to reduce the second-

order partial differential energy equation to a system of first-order 

ordinary differential equations that are then solved by an Adams-

Moulton technique. The preceding discussion has described in detail 

the steps necessary to accomplish this and is now summarized. 

First, divide the slab by N equally spaced planes parallel to 

the boundaries. Then, multiply the energy equation by a system of 

N linearly independent weighting functions that "weight" the heated 

boundary of the slab. Integrate the weighted equations over the slab 

to obtain N independent integral relations. Approximate the functions 

remaining under the integrals with polynomials in x having time-

dependent coefficients. Complete the integration to obtain a system of 

(N + 2) first-order ordinary differential equations for the time-

dependent temperature coefficients. Apply the solid species equations 

at the N strips to obtain 3N first-order ordinary differential equa-

tions. Use the boundary conditions to evaluate the initial values of 

the temperature coefficients and local solid species. Solve the sys-

tern of (4N + 2) differential equations by an tdams-Moulton technique 

for the temperature coefficients (and thus the slab te1I1pe1;"ature dis-

tribution) and N local densities of each solid species at a given time. 
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Computer Programming 

The computer programs were devel9ped to solve Equations (3.5) 

through (3,10) for the temperature profiles and local solid species 

concentration. From the calculated local solid species concentrations 

and their time derivatives, additional variables were calculated; the 

local amounts of each gas species produced from the N strips, the total 

amount of each gas species produced from the slab, the local rate of 

mass loss, the mass flux from the slab, and the average solid density 

for the slab, 

The total amount of each gas species that was produced from each 

of the N strips was found from the solid species densities by4 

P6 P6 
Gas3 = (1 - 01) (-- + -) 

. c1c2 c1 
(3. lla) 

P6 P2 
Gas 4 = 1 - Pl ---

c1c2 c1 
(3.llb) 

P6 
Gas 5 = (1 - c2) 

c2 
(3. llc) 

An Nth order polynomial in x having (N + 1) time-dependent coeffi-

cients was then used to approximate the average slab production of each 

gas speci~s. The coefficients were evaluated by simultaneously salving 

the (N + 1) equations that are formed from applying Equation (3.11) at 

the N strips and the zero x-derivative of the solid species at x = 0. 

Integrating the approximations over the slab gives the total amount of 

each gas species produced from the slab. Likewise, the local values 

4see Appendix E. 
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of the total solid species were used to obtain the average solid for 

the slab (called the Total Weight in the computer output), 

The local gas generatipn rate was calculated by taking the nega-

tive of the sum of the local solid generation rates 

dp 1 dp2 dp6 
-<-~u- + F + at) · 

In the program, this value is called the Mass Loss Rate and is propor-

tional to the reaction rate. 

Finally, to find the mass flux out of the slab, a polynomial of 

(N + 1) terms was formed based on the local gas generation rates and 

the zero x-derivative of the generation rate at x = 0, Integrating 

the polynomial over the slab then gives the mass flux at the surface, 

The programs that were written for the Integral technique solu-
·, 

tion are the MAIN program and subroutine DERFUN. A variable listing 

is given in Appendix G. Programs already in existence were used for 

the simultaneous solutions of the algebraic equations (subroutine SIMQ 

(16)) and the solution of the ordinary differential equations (subrou-

tines START AND KAMSUB (10)). A description of the use of the latter 

three subroutines is given in App~ndix Has well as a complete program 

listing of all routines in Appendix I. The basic steps followed in 

the computer programs are given in Table III with an expanded descrip-

tion given in Appendix J. 



TABLE III 

BASIC COMPUTING STEPS 

L Read the number of approximation strips, N. 

2. Read the parameter values and the program control constants. 

3. Calculate the initial values of the unknowns (Equations 3.9 
and 3.10). 

4. Calculate the 3N time derivqtives of the local solid species 
(Equation 3. 8), 

5. Calculate the coefficients for the interpolation formulas 
(Equation 3.5). 

6. Calculate the (N + 2) time derivatives of the temperature co
efficients (Equations 3.6 and 3.7). 

7o Integrate the (4N + 2) time derivatives to obtain values of 
the unknowns at the new time step. 

8. Calculate the local values for the gas species, gas generation 
rate, temperature, and total solid. 

9o Calculate the average slab values for the gas species~ mass 
flux, and total solido 
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CHAPTER IV 

COMPUTER RESULTS 

Introduction 

Most of the computer work involved the development of both the 

integral technique and the computer technique as well as checking the 

accuracy of the results. However, this section will consider only 

some of the final results of the computer calculations. 

Since a large number of parameters and possible parameter values 

were involved in addition to the various boundary conditions and reac

tions, a study was first made of the influence of individual parameters 

and events and then of the effects of combinations of events. The 

investigation of the influence of individual events was also necessary 

to the development of the computer technique since the selection of 

the program constants was highly dependent on the values of the prob

lem parameters, 

These results are not able to cover in depth all possible effects 

and combinations of the parameters but will show some of the major 

effects and trends for all the boundary condition cases and reaction 

combinations. 

Parameter Values 

Since the reaction scheme used in the program is based on organic 

solids such as cellulose and wood, the parameter values were chosen 

42 
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from published data on these substances. As discussed earlier, 

Weatherford used the same physical and kinetic constants as Bamford, 

which represent~ values for one overall reaction in wood; their cal-

culations were based on an activation energy of 33 kcal per mole and 

a frequency factor of 5 x 108 per second. Tang gives typical acti-

vation energies and frequency factors for cellulose in two tempera-

ture ranges; 23 and 54 kcal per mole for the activation energy and 

0.3 x 106 and 0.6 x 107 per second for the frequency factor for tern-

peratures from 280°C to 350°C. Murty and Blackshear also present 

kinetic constants which varied throughout cellulose from 13.6 to 

22.6 kcal per mole for the activation energy and from 2 x 104 to 

4 x 106 per second for the frequency factor. Similar values also 

apply to polymer foams as Tilley, et al, mention an activation energy 

of 50 .kcal per mole and a frequency factor of 1013 per second for -one 

of the major reactions in urethane foams. For three reactions, basic 

activation energies and frequency factors were chosen which were in 

the range of the reported values and which gave maximum reaction rates 

in the temperature ranges reported by Broida. 

The overall heats of reaction for wood·and cellulose are of the 

same magnitude with wood being exotJ1ermic and cellulose, endothermic, 
\ - - -. - ... ·-~--- ~-· ---~-\(-· 

.. \ I 

Weatherford used --86 cal p~r ·gm for wood while Tang reported E.~~~J 
\ 

per gm for cellulose:. B'roido describes the three major reactions of 

cellulose as slightly endothermic, highly endothermic and highly exo-

thermic. For the three reaction cases, basic heats of reaction were 

chosen which demonstrated Broido's findings and had an overall heat 

of reaction similar to the published values. 

A basic value for the radiant heat flux was chosen as the maximum 
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initial heat flux in Weatherford's experiments. While experimental 

radiant heat fluxes are normally much higher than Weatherford's ini

tial convective value, the slab thicknesses used are much smaller. 

Therefore, the numerator, qL, of the heat flux parameter, G, would 

be of the same magnitude in either case, 

The dimensional values used in computing the basic parameters 

are given in Table IV, with the resulting non-dimensional parameters 

given in Table V. The particular parameter values used in each com

puter run given in the results are presented in Table VI. 

The Inert Slab 

Inert slab calculations were made and compared with known solu

tions. Carslaw and Jaeger (6) give the exact solution for an inert 

slab heated by a constant heat flux. As shown in Figure 7, increas

ing the number of approximating strips gives a more accurate answer, 

and, a good approximation for the inert case was obtained with only 

three approximating strips. Increasing the number of approximating 

strips results in curves which lie midway between the exact solution 

and the previous approximation. 

For the convective boundary condition, Weatherford (23) graphs 

the solution for the surface temperature of an inert slab. Figure 8 

shows that three approximating points again give the exact solution 

except for the early times. Higher approximations are practically 

indistinguishable from the exact solution for all times and for the 

chosen parameters. 

Thus, the exact solutions show that the integral technique can 

accurately represent the linear portion of the problem. However, 
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TABLE IV 

BASIC DIMENSIONAL CONSTANTS 

a1 . . . . . . . . . 8.2 X 104 sec-1 

a2 . . . . 8.2 X 106 sec-1 

a3 . . 0 . . . . . . 8.2 X 109 sec-1 

c1 (one reaction), 0. 5 gm/gm 

c1 (three reactions) , 0. 9 gm/ gm 

cz . 

C 

E1 

E2 . 
E3 . 
h 

Ko 

L 

Q1 . 
Q2 . . 
Q3 

qo . 
Ro 

To . 
PO 

. . . 

. . . 

. . . 

It II> it c, 0 e • ill 

0.833 gm/gm 

0.55 cal/gm-°K 

23,844 cal/mole 

31,000 cal/mole 

35,748 cal/mole 

4,4 x 10-4 cal/cm2-sec-°K 

2,7 x 10-4 cal-cm/cm2-sec-°K 

LO cm 

+16.5 cal/gm 

+165 cal/gm 

-94.2 cal/gm 

0.081 cal/cm2-sec 

1,986 cal/mole-°K 

300°K 

0. 6 gm/ cm3 
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TA8LE V 

BASIC NO~-DIMENSIONAL PARAMETERS 

Nu 2.0 

E1 40.0 

E2 52.0 

E3 60.0 

F1 0.1 X 10- 7 

F2 0.1 X 10-9 

F3 0.1 X 10-12 

G (Type I) LO 

G (Type II). L535 

R1 +0.1 

R2 +LO 

R3 , -0.571 



TABLE VI 

PARAMETER VALUES USED IN COMPUTED RESULTS 

Run 
E1 Number B.C. Case E2 E3 F1 F2 F3 R1 R2 R3 c1 c2 

Q Nu 

210 40 10-8 0 .s 1.0 

211 0 1 40 10-8 0 .8 1.0 

213 1 2 40 10-B 0 .s 1.535 2.0 

220 1 40 10-8 0 .s 1.535 2.0 

222 0 1 40 lQ-B +.3 .s 1.0 

223 0 40 10-8 +.3 .s 1.0 

226 0 0 40 10-B -.3 .s 1.0 

228 0 0 40 10-B 0 .s 1.0 

229 0 0 40 10-8 0 . s 2.0 

243 0 0 40 10-B +. 3 .s 1.0 

261 0 1 40 52 60 10-9 10-ll 10-13 +.l +1.0 -.571 .9 .833 1.0 

262 1 0 40 52 60 10-B 10-10 10-12 +.l +1.0 -.571 .9 .$33 1.5 2.0 

263 0 40 52 60 10-8 10-l 0 10-12 +.1 +1.0 -.571 .9 .833 1. 75 2.0 

264 0 40 52 60 10-8 10-10 10-12 +.l +1.0 -.571 .9 .833 1.45 2.0 

265 1 2 40 52 60 10-B 10-10 10-12 +.l +1.0 -.571 . 9 .833 1. 75 2.0 

080 1 0 so 55.66 60 10-lO 10-l l 10-12 0 0 0 .9 .833 1.535 2.0 

081 0 so 55.66 60 lQ-10 10-11 10-12 0 0 0 .9 .833 2.0 2.0 

082 1 0 48 55.66 60 10-10 10-ll 10-12 0 0 0 .9 .833 1.535 2.0 

083 1 0 so 55.66 60 Sx10-I o 10-ll 10-12 0 0 0 .9 .833 1.535 2.0 

125 0 0 so 55. 66 10-10 10-ll 0 0 0 .s 1. 0 

131 0 0 so 55.66 10-lO 10-ll 0 0 0 .s LS 

]43 0 55.66 10-lO 0 0 0 . s 1.0 

Note: For the constant heat flux boundary condition, B.C. = 0. For the convective heated boundary condition, B.C. = 1. Exother-
mic reactions denoted by H and endothermic reactions by (+). 
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there are no exact solutions for checking the validity of the techni

que when including the non-linear terms for the generated heat and the 

change in effective thermal conductivity. For this reason, the method 

of computation was made to allow any order of approximation to be used, 

enabling the results to be generally checked by comparing with a higher 

approximation. 

One Reaction--Case 0 

In order to interpret the results with multiple reactions, the 

single reaction cases were studied first. Initially, a constant effec

tive thermal conductivity was asswned, 

In Figure 9 the temperature history of the front and back surfaces 

are shown.for a slab heated by a constant heat flux and an exothermic 

reaction. The front surface temperature follows the inert value until 

the reaction begins to generate heat, causing the temperature to in

crease at a higher rate. As the reaction proceeds into the slab, the 

amount of generated heat increases, thereby increasing the amount of 

conducted heat. This has two major effects: temperatures within the 

slab begin to deviate from the "inert" value even before a reaction 

starts at that particular location, and the temperature rise becomes 

increasingly steeper at greater depths. 

As the reaction ends at the heated surface, the temperature in

creases at a constant rate that is higher than the inert value, showing 

that the rate of heat conduction into the slab is less due to the in

creased internal temperatures. A result of the accumulation of gener

ated and conducted heat is that the temperature at the back surface 

(adiabatic surface) becomes higher than the slab just ahead of it for 
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a short time, up until the reaction reaches its maximum. An abrupt 

drop in the rate of temperature rise then follows as the reaction in 

the slab ends. When the reaction ceases, the rate of temperature rise, 

compared to the inert solution, ranges from higher at the front sur

face to lower at the back surface, Of course, after this transient 

period; the temperatures throughout the slab would become parallel to 

the inert solution with an offset from the inert values. 

Results for an endothermic reaction are shown in Figure 10. 

Effects are similar to the exothermic reaction except with an oppo

site sign, Note that the reaction events are spread over a longer 

time period, and the temperature rise becomes parallel to the inert 

solution very quickly after the slab is through reacting. 

Another basic difference in the character of endothermic and exo

thermic reactions can be seen in Figures 11 and 12 where temperature 

profiles are given as the re~ction proceeds through the slab, This 

time the endothermic reaction is discussed first. The profiles all 

have a slope of 1,0 at the front surface and zero at the back surface. 

The earliest profile shows the temperature distribution when the front 

surface reaction starts. The next profile (t = 1.33) was taken when 

the surface reaction rate is at its maximum. The effect of the energy 

absorbed by the reaction is to depress the temperature rise, i,e., the 

front temperature rise is less than the back surface. Likewise, as 

the reaction proceeds through the slab, the profiles show the same 

effect with the last profile showing that the reaction is at the back 

surface. 

For the exothermic reaction, however, the profiles are warped 

because of the reaction, as seen in Figure 12. The increasing times 
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trace the reaction through the slab with the back part briefly achiev

ing a higher temperature than the middle as described earlier, Because 

of the profiles warping, a larger number of appro~imating strips is 

needed for exothermic reactions than for an equivalent endothermic 

reaction. 

The reaction rate shows another striking difference between endo

thermic and exothermic processes. Figure 13 demonstrates that the 

maximum reaction rate increases for exothermic reactions at distances 

farther into the slab. The curves show the progression of the reaction 

through the slab and show the reaction rate distribution at six times. 

These are the times when the reaction rate reached a maximum at each 

of the six interpolation strips. The maximum reaction rate at the back 

surface is more than two and one-half times the rate at the front sur

face. This is a result of the higher temperature rise from the in

creasing amount of heat conducted ahead of the reaction. Since the 

rate of reaction is dependent on the product of the amount of reactant 

and the temperature-dependent rate constant, the additional conducted 

heat causes the temperature to be slightly higher for a given amount 

of reactant, thus increasing the reaction rate. This is shown in 

Figure 14 where the back surface 1;Llways has a higher temperature than 

the front surface for a given amount of reactant. 

Of course, the increase in the reaction rate through the slab 

also means that the heat generation rate increases. For reactions 

having higher heats of reaction, more heat would be generated causing 

the difference in the reaction rates to be greater. Finally, by com

paring the times at which the maximum rate occurred at each x-position, 

it is seen that the veloc;ity of the "reaction zone" increased as it 
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proceeded into the slab. Two factors contribute to this: the increas-

ingrate of reaction and the longer residence times at greater depths 

resulting in less solid remaining for the reaction. 

For the endothermic reaction, Figure 15 shows that the maximum 

reaction rate decreases from the front to the back surface, This indi-

cates that a result of the energy absorption is a lower temperature 

for a given reactant density. The difference in times at which the 

maximum reaction rate occurred again shows that the "reaction wave'' 

accelerated as it traveled farther into the slab. Thus, the longer 

reacting times for the interior solid contributed more to increasing 

the velocity of the "reaction wave" than the decreasing reaction rate 

did to retard it. 

A difference of major importance in the effects of the endother-

mic and exothermic reactions is shown by the mass flux curves in 

Figure 16. The area under the mass flux curves equals the total mass 

of solid lost from the slab and is the same in both cases. The 

exothermic reaction was completed in half the time of the endothermic 

reaction, and the maximum mass flux was increased by three times. The 

"lump" on the side of the endothermic curve near the end of the reac-

tion is apparently due to the increasing reaction rate near the insu-

lated surface. 

Figure 17 gives the solid.distribution for both reaction cases as 

points in the slab reached a given density. The solid distribution 

profiles were steeper for the exothermic reaction than for the endo-

thermic reaction up until the reaction was nearly completed. This is 

a result of the longer resi~ence times of the solid interior for the 

endothermic reaction. 
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The previous discussion has been concerned with the differences 

in endothermic and exothermic reactions under the same heating condi

tions. The effect of a change in the heat flux parameter alone can be 

seen by making the heat of reaction parameter zero. Figure 18 gives 

the reaction rate vs. surface temperature for two difference values 

of G. Not only does increasing the heat flux cause an increase in the 

reaction rate but it also causes the maximum reaction rate to occur at 

a higher temperature. Since a given temperature fixes the reaction 

rate constant, the increase comes from a larger value for the density 

of reactant (see Equation 2.10a). This is verified by Figure 19 which 

shows the increase in the reactant present at a given temperature. 

This effect is a result of a higher rate of increase in the reaction 

temperature with increasing G, giving the solid less time to react, 

thus making more solid available at a given temperature. 

In summary, the computations have given temperature profiles and 

histories for exothermic and endothermic reactions with constant para

meters. The heat generated or absorbed from the reactions have been 

shown to have a great effect on the solid ahead of and behind the 

reactions, not only with respect to temperatures, but also reaction 

rates and mass flux. Increasing the heat flux parameter was shown to 

increase the maximum reaction rate and also the temperature at which 

it occurs. 

One Reaction--Cases 1 and 2 

Temperature histores were calculated to show the effect of a vari

able effect~.ve thermal conductivity. A density-dependent, effective 

thermal conductivity affects both the front surface boundary condition 
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and the energy equation for Case 1 or just the energy equation for 

Case 2. 
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Figure 20 shows, for the convective heating case; the surface 

temperature history for Cases 1 and 2 and also the constant effective 

thermal conductivity Case O. The heat of reaction parameter is zero 

so the temperature deviations from the constant conductivity case occur 

only from the changes in the effective thermal conductivity and the 

heat transfer coefficient. For Case 1 the heat transfer coefficient 

is constant while the effective thermal conductivity decreases as solid 

is lost. The result is that the rate of heat conducted from the sur

face is less, causing the temperature to increase. 

For Case 2 the heat transfer coefficient and the effective ther

mal conductivity both decrease as solid is lost, with the result that 

the surface boundary condition is the same as the constant effective 

conductivity case while the decreasing effective, conductivity appears as 

an equivalent endothermic contribution in the energy equation. Neither 

case causes the temperature to deviate much from the constant effective 

conductivity solution for the parameters that were used. The primary 

reason is that the temperature dependency in the surface boundary con

dition causes a compensating effect in both cases. For Case 1, as the 

surface temperature tends to rise, the difference in the source and 

surface temperatures becomes less, decreasing the heat flux to the 

surface and partially decreasing the rate of increase of the surface 

temperature. Likewise, for Case 2, as the surface temperature tries 

to rise at a slower rate, the temperature difference is greater causing 

a higher heat flux. As higher source temperatures are used, the trend 

would be for a greater effect of the changing effective thermal 
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conductivity on the temperature since the surface and source tempera

ture difference would increase, thus decreasing the influence of a 

changing surface temperature. 

When the radiation boundary condition is used, the effects are 

more pronounced. For no heat of reaction and a constant heat flux 

input, Figure 21 shows how the decreasing effective thermal conducti

vity affects the surface temperature history (Case 1). Since the ef

fective conductivity depends on the amount of solid present, calcula

tions were made for two final solid densities, 50% and 80% of the orig

inal density. The temperature increases faster as the amount of final 

solid decreases. The slope of the temperature rise after the reaction 

has been completed is the inverse of the final density. As the solid 

drops from its original density to 50%, the surface boundary condition 

shows that the slope of the temperature profile increases from 1 to 2. 

For 80% of the original solid density, the slope increases from 1 to 

1.25. Thus, for Case 1, low final solid densities will greatly affect 

the slab temperatures. 

Case 2 for the constant heat flux condition has essentially the 

same boundary conditions as the constant effective thermal conductivity 

case but includes the effect of the change in the effective conducti

vity in the energy equation. Figure 22 gives the temperature history 

for the front and back. surfaces with no heat of reaction. The result 

shows that the changing effective thermal conductivity appears in the 

energy equation as an endothermic reaction if the heat input decreases 

so as to hold constant the slope of the surface temperature profile. 

This contribution does not occur at exactly the same time as a true 

endothermic reaction because the heat g~nerated from a reaction depends 
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on the time rate-of-change of the solid, while the contribution from 

the variable conductivity depends on the product of the rates of change 

of density and temperature with respect to x (see Equations 2.3, 2.7, 

and 2.8). 

The combination of an endothermic reaction and a changing effec

tive thermal conductivity is given in Figure 23. This figure shows 

the surface temperature history for Cases 1 and O together with Case 1 

having an endothermic reaction. For Case 1 with the reaction, the rate 

of temperature rise first begins to decrease from the constant effec

tive conductivity case, indicating that the endothermic reaction is 

affecting the temperature more than the changing effective conductivity. 

As the reaction proceeds, the high rate of increase of the temperature 

from the changing conductivity eventually causes the temperature to in

crease at a greater rate until the surface reaction ends and the rate 

of temperature rise is parallel to the Case 1 value. The overall ef

fect of the changing effective conductivity cannot be represented by 

a single equivalent reaction. 

The effect of a density-dependent, effective thermal conductivity 

and heat transfer coefficient is negligible for convective heating 

when source temperatures are low. For radiant heating and high source 

temperature convective heating, the change in effective thermal con

ductivity can greatly affect the temperature history of the slab. 

This is especially true as the final densities become smaller. These 

effects must b~ carefully considered wheq interpreting temperature 

histories. 
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Three Reactions--Case 0 

The effects of parameter changes on the competing reactions were 

studied with zero heats of reaction and a constant effective thermal 

conductivity. Figure 24 shows typical density curves for the three 

solid species and Gas4 • Gas3 and Gass are not shown since they are 

similar to Gas4. As Solidi reacts, it gives off Gas3 and forms Solid2. 

At higher temperatures the competing reaction tends to form more Gas4 

from Solidi , As the temperature rises, Solid2 begins to give off Gass 

and form Solid5. When the rate of re~ction of Solid2 equals its rate 

of formation, it species curve reaches a maximum. The final species 

present is Solid5 with Gas4 indicating the total amount produced from 

the slab. 

For cellulose, Gas4 is the flammable species that competes for 

Solidi. Its importance in ignition and combustion occurs in several 

ways; ignition may occur if the surface temperature and the quantity 

of Gas4 evolving is high, while sustained combustion depends on the 

rate as well as the quantity of Gas4 evolving. Figure 25 indicates 

that a change in the heat flux parameter does not have as much effect 

on the total amount of Gas4 produced as it does on the rate of evolu

tion and the ti~e wh~n it is evolved. The maximum rate of production 

of Gasy. (indicated by the slope of the curves) is not much greater for 

the higher heat flux parameter case but the maximum is attained quicker 

and held throughout most of the reaction. 

The amount of Solidi that does not form Gas4 has gone to produce 

the other species. Since a higher heat flux produces more Gas4, less 

Solidi is available for the other species. Figure 26 shows that the 

amount of char formed is less for the higher heat flux but like Gas4, 
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its rate of formation is higher and time of formation is much sooner 

than for the lower heat flux case. 
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One theory for the addition of chemicals to the solid for fire 

retardant purposes is that it tends to lower the activation energy for 

the first reaction thus producing more char and less Gas4. Figure 27 

shows that lowering the activation energy for reaction 1 by 4% increased 

the amount of char by 30%, which also greatly reduced the amount of 

Gas4 produced. The reaction times were about the same with the rate of 

production then depending on the amount of Solid6 produced, 

The largest experimental error in the kinetic constants occurs in 

the determination of the frequency factor since the actual mass of re

actant is difficult to determine for multiple reactions. Figure 28 

shows the effect of a change in the frequency factor for reaction 1 on 

the amount of Solid6 produced. Increasing the frequency factor by a 

factor of 5 increased the amount of char by a factor of 3. 

The amount of solid present may be important to slab strength con

siderations as well as for thermal conductivity effects. Figure 29 

shows the total solid history for changes in the activation energy of 

reaction 1. The early times of the reaction show less solid present 

for the lower activation energy case and the latter times show more 

solid present. The higher activation energy case delays the reaction 

of Solid 1 , causing more total solid to be available in the early times, .. , 

In fact, combinations of the kinetic constants could produce a cross

over point of equal amount of solid for high and low activation ener

gies that was less than some value for strength requirements. This 

would mean that addition of fire retardant chemicals could produce a 

solid that burned slower but failed quicker than an untreated solid, 
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In conclusion, this section showed how the competing reactions 

affected the production of S0lid5 and Gas 4 when changes were made in 

the kinetic constants and heat flux parameter. 

Three Reactions with Heats of ReaGtion 
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After investigating the influence of separate events, the problem 

was calculated with all the reactions and heats of reaction included, 

For the radiantly heated boundary condition, the density-dependent, 

effective thermal conductivity case was used with a constant heat flux 

at the surface and no heat losses (Case 1). Cases O and 2 are not 

presented since Case l is closer to the actual physical situation, and 

similar effects of the two cases are shown by the convective heated 

boundary conditions. 

Figure 30 gives the temperature history for the radiantly heated 

slab with endothermic, competing reactions producing Gas3, S0lid2, and 

Gas4, and an exothermic reaction producing Gas 5 and S0lid5. At the 

surface, the endothermic reactions and the decreasing effective ther

mal conductivity tend to cancel the heat producti9n effects while the 

endothermic reactions and the decreasing conducted heat effects the 

temperatures farther into the slab. Eventually, the exothermic reac

tion at the surface combines with the decreasing effective thermal con

ductivity to increase the temperature from the inert solution, An 

effect due to the approximation technique is seen next as the surface 

temperature tends to level off when the exothermic reaction ends and 

the interior endothermic reactions continue. When the exothermic re

action starts at the next approximation point (x = 0.8), the tempera

tures all increase .at a steep rate as the combined effects of heat 
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generated and the decreasing effective thermal conductivity force the 

temperature up. In reality, the surface temperature would continue 

increasing when its exothermic reaction ended for the reaction would 

be continuing into the slab, decreasing the heat conducted from the 

surface. Figure 31 shows the production of Soli(16 and Gas4 at x = 1,0 

and x = 0.8 (the next approximating strip). The slopes of the species 

curve is proportional to the rate o{ the reaction producing that spe

cies. The rate of reaction 2 (producing Gas4) begins increasing at 

x = 0.8 before it starts decreasing at x = 1.0. Thus, the finite dis

tance between the approximating strips does not visibly affect the 

temperature history. The rate of rea~tion 3 (producing S0lid5) howeve~ 

is almost zero at x = 1.0 before it becomes significant at x = 0.8. 

Therefore, the effect of the finite distance is as though the reaction 

was turned off and then on .. This shows how the width of the reaction 

zone can affect any approximation technique that uses a finite number 

of points to represent the slab. Without changing the parametex's or 

kinetic constants, this error can be reduced by increasing the number 

of approximating strips and thus decreasing the distance between the 

strips. This also illustrates the difficulty in calculating the tem

peratures for this type of boundary condition with exothermic reactions 

because, as the reaction proceeds into the solid, the reaction rate 

increases, the temperatures increase, and the higher temperature reac

tions (here, the exothermic reaction) dominate, causing the tempera

tures to increase more, increasing the mass loss and decreasing the 

effective thermal conductivity. This quickly becomes a runaway situ

ation with the slab probably following different boundary conditions 

after a short period of time due to re-radiation or ignition. Of 
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course, selected values of the reaction constants are possible that 

would enable this case to be calculated accurately but would probably 

not be physically realistic. 

For the convectively heated boundary condition, three reactions 

are used, first with a constant effective thermal conductivity and then 

with the Case 2 conditions. Figure 32 gives the temperature history 

of the front and back surfaces. The initial endothermic reactions 

cause the surface temperature to fall below the inert solution until 

the exothermic reaction increases the temperature above the inert value. 

At the back surface, the decreasing conducted heat and the endothermic 

reactions cause the rate of temperature rise to become less than the 

inert solution, However, as the exothermic reaction begins generating 

heat from the front surface, the heat begins to accumulate and increases 

the reaction rate within the solid and finally causes the back surface 

temperature to exceed the front surface temperature, The initial endo

thermic character of the reactions caused the competing reactions to 

produce more S0lid2, and thus more S0lid5, part of the way into the 

solid, As the exothermic reaction began to dominate, the competing 

reactions began producing more Gas4, and thus, less S0lid5. Table VII 

shows the final slab distribution of S0lid5, 

If the heat flux parameter is decreased slightly from 1,5 to 1.45, 

then the first competing reaction will produce more S0lid2, and thus 

Solid6 , by being held longer at the lower temperatures. Figure 33 

shows the difference in the temperature histories of the front and 

back surfaces for the two heat flux cases. The smaller heat flux de

lays the heating events and, by producing more S0lid5, causes the exo

thermic ~eaction to produce more heat and increase the slab temperatures 
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TABLE VII 

SLAB DISTRIBUTION OF SOLID5 

Density of S0lid5 
X 

G = 1. 45 G = 1.5 G = 1. 75 

1.00 .5248 .5195 .4975 

0.75 .5460 .5209 .5005 

0.50 .5241 .5193 .5008 

0.25 .5209 .5161 .4984 

0.00 .5192 .5143 .4965 

at the later times" 

The mass flux also reflects the change in the heat flux parameter. 

Figure 34 shows that the higher heat flux not only causes the mass flux 

to increase and occur sooner, but also tends to separate the two main 

gas producing events which occur as a result of the overall reaction 

rate increasing in the slab after initially decreasing. 

The higher heat flux was then used with the Case 2 boundary con

dition that considers a density-dependent, effective thermal conductiv

ity and heat transfer coefficient. Figure 35 gives the temperature 

histories for the two surfaces compared with the Case O solution. The 

resulting effect is that of an endothermic reaction that occurs over 

the entire temperature range but occurs slightly "out-of-phase" with 

the other reactions (as described earlier). Also the exothermic reac

tion tends to be dampened since the trend to increase the change in den

si ty and temperature in the x-direction would give a higher endothermic 
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contribution from the conductivity term. Figure 36 shows that the 

mass flux is modified from the resulting ~ower surface heat flux. 
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This section presented the results of three competitive and con

secutive reactions with endothermic and exothermic heats pf reaction. 

It was found that a small change in the heat flux parameter greatly 

affects the temperature history, mass flux, and final char distribu

tions. Higher heat flux values also make heat transfer coefficients 

and effective thermal conductivity effects more important. A major 

effect of the competing reaction is to cause a change in the charac

ter of the reactions throughout the slab. 
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CHAPTER V 

SUMMARY 

The literature pertaining to the pyrolysis of porous solids was 

reviewed for information regarding the extent of previous mathematical 

analyses and experimental determination of the important physical 

events. As a result, the mathematical analysis was extended to include 

competitive and consecutive, homogeneous reactions with reactant deple

tion and consideration of boih a constant and density-dependent, effec

tive thermal conductivity, Two types of surface heating for a finite 

thickness, infinite slab were considered: a constant heat flux,radia

tive type, and a constant source temperature,convective type, A density

dependent, as well as a constant, heat transfer coefficient for convec

tive heating was included in the various cases that were studied. The 

characteristic non-dimensional parameters were also developed for both 

types of boundary conditions. 

In order to solve the resulting unsteady, non-linear, second-order, 

partial differential equation, a numerical technique was developed, 

based on the method of Integral Relations. The technique requires only 

a small amount of computer storage and can obtain accurate results for 

most cases with. three to six approximating strips. The ability to ob

tain better approximations by increasing the number of approximating 

strips is limited only by the longer computer times required. 

rhe computed results presented temperature and species histories 
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and slab profiles as well as mass flux, reaction rates, and weight loss 

information. It was shown that the heat generated or absorbed from 

the reactions has a great effect on the solid ahead of and behind 

the reactions as well as in the reaction zone, not only with respect 

to temperature, but also reaction rates and mass flux. An increas-

ing surface heat flux increases the maximum reaction rate and the 

temperature at which it occurs. 

The effect of a density-dependent, effective thermal conductiv

ity and heat transfer coefficient is negligible for convective heat

ing when source temperatures are low. For radiant heating and high 

source temperature convective heating, the change in effective ther

mal conductivity can greatly affect the temperature history of the 

slab. This is especially true as the final densities become smaller. 

These effects must he carefully considered when interpreting temper

ature histories. 

Small changes in the activation energies, frequency factors, 

and surface heat flux, greatly affect the time and rate of produc

tion of species for competing reactions while only slightly affecting 

the quantity produced. 

The competing reactions cause a change in the character of the 

overall reaction throughout the slab and enable small changes in 

the surface heat flux to greatly affect the temperature history, mass 

flux, and final char distributions. 
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APPENDIX A 

INTEGRATION OF EQUATION (3.1) 

Starting with Equation (3.1), each term can be integrated as shown. 

II III 

1 3 f 01 l f (x) H. dx 
G i=l m 1 

(3.1) 

IV 

Term I: 

Using Leibnitz's rule 

I 

Term II: 

Integrating by parts 

JO
I f ( ) 32T d f 3T 11 - dfm Tl l + Jl d2fm T dx 

m X 3x2 X = m 3x O dx O O . dx2 (A.1) 

II 

Since 

f (x) 
m 

1, x, x 2 , • • , , X 
(N~l) 

X (m-1), (m = 1, 2, . . . , N) 

(A. 2a) 
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then 

and 

df df1 df2 
-2!!. - (m - 1) (m-2) 0 1 
dx - x ' dx = ' ~ = 

d2 f 
~ = (m - 1) (m - 2) dxL X 

(m-3) 

Therefore, Equation (A,l) is 

fol f ~2~ dx - 3T' 
m ox - 3x x=l 

0 (boundary condition) 

- 3:/ - (m - 1) Tl + {:lx=O 
~lx=O x=l 

II 

J
l (m-3) + (m - l)(m - 2) 
0 

x T dx. 

Term III: 

W . 1 3p 3 (£n p) h . T b rite -- as ten, integrate erm III y parts. 
p OX dX 

I~ 3(£n p) 3T 1!/ l -I~ f f - dx = f • £n P . • £n P m dX dX m dX 0 m 

III 

r df 1! dx m 
- O £n P . ·-- . 

dx dX 

Using Equation (A.2) 

J~ 3(£n p) 3T d 3TI - J~ (m-1) f £n P . X Q,n P m ox ax X dX x=l 

III 
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(A.2b) 

(A, 2c) 

32T . a? dx x-

32T . 3x2 dx 

·r (m-2) 3T 
- (m - 1) 

0 
£n p . X • - dx 

dX 

Term IV: 

Substitute for f (x) from Equation (A. 2a) 
m 



99 

l 3 Jl 1 3 f 1 (m-1) 
-G l f H. dx = G l . x H . dx 

i=l o m 1 i=l o i 

Putting the equivalent expression for each term back into Equation 

(3,1) yields Equation (3.4). 



APPENDIX B 

INTEGRATION OF EQUATION (3.4) 

Substituting the approximations (3.5) into Equation (3.4) and 

multiplying the x-polynomials result in 

J
l N+2 (m+n-2) I N+2 

: l A(n)x dx = :T - (m - 1) L A()+ A(l) 'm=
2 t D n=l x x=l n=l n 

J

l N+2 (m+n-4) 
+ (m - l)(m - 2) 

0 
L A(n)x dx 

n=l 

+ Q.n p • aTI 
dX x=l Jo

l N , J (m+n-2) d 
l l(n)x x 

n=l 

- (m - 1) J
1 I J x(m+n- 3) dx 
O n=l 2(n) 

1 3 Ri Jl Ntl H • (m+n-2) dx - - l - l i (n) ,C 
G i=l Fi O n=l , 

Integrate Equation (B.1) and obtain 

N+2 l dA(n) 
l (m+n-1) dt 

n=l 

N+2 
= [(1 + Q.n p) Blx=l - (m - 1) l A(n) + A(l)]m=2 

n=l 

N+2 l N l 
+ (m - l)(m - 2) L (m+n- 3)A(n) - l (m+n-l)J1(n) 

n=l n=l 

N l l 3 Ri N+l l 
l (m+n-2)J2(n)- G .l T l \n+n-/1i(n) 

n=l 1=1 1 n=l 
- (m - 1) 

(B. 2) 
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Where B = :!/ and depends on the type and case of boundary condition 
x=l 

being considered. Terms 2, 3, and 4 to the right of the equal sign in 

Equation (B.2) can be combined in the following way: First, rewrite as 

N+2 I 
- (m - 1) A(l) - (m - 1) n~2 A(n) + A(l) m=2 + (m - 1) A(l) 'm~3 

N+2 
+ (m - l)(m - 2) L (m + ! _ 3) A(n) 

n=2 

then, the A(l) terms will cancel for all values of m and the remaining 

terms will combine to give 

~2 [ J l (m - l)(m - 2) - (m - 1) A(n) = 
n=2 (m + n - 3) 

-(m - 1) 
N+2 (n - 1) 
l (m + n - 3) A(n) 

n=2 

When the temperature approximation (3.5a) is used in the boundary con-

dition (2.lld), the result is that A( 2)(t) = 0. Therefore, the summa

tion index on the above term can be changed to 

~ (n + 1) 
- (m - l) l (m + n - 1) A(n+2) 

n=l 

Likewise, the first term of Equation (B.2) can be written as 

_!_ dA(l) + N l dA(n+2) 
m dt l (m + n + 1) dt 

n=l 

Substituting expressions (B.3) and (B.4) into Equation (B.2) gives 

Equation (3.6). 

(B.3) 



APPENDIX C 

EVALUATION OF INITIAL TEMPERATURE COEFFICIENTS 

The temperature approximation (3.5a) is used in the boundary con-

ditions (2.lla, d) to evaluate the initial v~lues for the coefficients 

in the following way. 

Since 

T(x, O) 0 

then 

N+2 (n-1) l A(n) (O) X = 0 
n=l 

giving 

A(l)(O) = 0 . (Co2) 

Since 

clTI 
dX x::;:0 = 0 

then 

A(Z)(O) = 0 (Co 3) 

At x = 1, t O· 
' 

-= ax 
q (O) 1 

p(l, O) ""1' all cases 

Therefore, 

N+2 
l (n - 1) A(n) (O) = 1 

n=3 
(C, 4) 

Equations (C.l) to (C.4) are also Equations (3.9). 
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APPENDIX D 

CALCULATION OF THE TEMPERATURE IN 

AN INERT ~LAB ~y THE 

INTEGRAL METHOD 

For the inert slab only the first two terms of Equ:;ition (2o9) are 

needed: 

(D, 1) 

The boundary conditions will be Equation (2,lla, d, f): 

T(x, O) 0 

clTI 
clx x=O 

0 (D, 3) 

clTI 
3x x:;:l 

1 (constant heat flux) (D, 4) 

Following the steps outlined in Chapter III, "Summary of the Inte-

gral Technique," the slab is divided by two planes (N = 2), the sur-

faces x = 0 and x = L Equation (D, 1) is multiplied by the weighting 

functions, f (x) = 1, x, and integrated over the slab: 
m 

d J" l - l • T dx 
dt o 

1. 3TI 
clx x=l 

1 • ~, - T(l t) • 0 + T(O t) " 0 clx · ' · ' · 
x=O 

(D,Sa) 
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d fl aTI aTI . ~ x • T dx = (1) • ~. - (O) ~ - T(l t) • 1 + T(O t) • 1 
dt o ax Bx ' · ' x=l x=O 

(D. Sb) 

Using the temperature approximation, Equation (3.Sa), 

T(x, t) 

(D.6) 

Equation (D.3) gives 

= 0 (D, 7) 

while Equation (D.4) gives 

(D, 8) 

Using Equation (D.6) and (D. 7) in (D.5) gives 

(D,9a) 

Integrating 

oA ( l) l dA (3) l dA ( 4) 
dt + 3 dt + 4 dt 1 (D. lOa) 

1 dA(l) 1 dA(3) 1 dA(4) 
2 dt + 4 dt + 5 dt = l - A(3) - A(4) (DolOb) 

Taking the derivative of Equation (D.8) and using Equation (D.10) elim-

inates 
dA( 4) 
dt 
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clA( 4) 1 2 dA(3) 
dt '"'3 - 3 dt 

dA(l) l dA(3) 
1 dt + 6 dt (D, lla) 

3 
dA(l) 7 dA(3) 

4 - 2A(J) + 10 = dt dt (D.llb) 

Solving Equation (D, 11) simultaneously gives explicit equations 

for each coefficient: 

Integrating (D.12b) 

dA(l) l 5 
dt = 6 + ~ A(3) 

dA(J) 
dt 5 - lOA(J) 

A = l + C e-lOt 
(3) 2 1 

Substituting Equation (D.13) into (D.12a) and integrating 

(D.12a) 

(D.12b) 

(D,, 13) 

(D.14) 

Using the initial conditions (D.2) at both N strips together with 

Equations (D.8), (D.13), anc;l (D.14) evaluates the two constants. The 

coefficients then pecome 

A(l) 

A(3) 

A(4) 

A(2) 

= t + l ( e-1 o t _ l) 
4 

= l (1 _ 3e-10t) 
2 

8 -lOt 

0 
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Equation (D.6) then becomes 

T(x, t) ~ t + .! x2 - .! + .! (1 - 6x2 + 4x3) e-lOt 
2 4 4 

Compare with the exact solution from Carslaw and Jaeger (6): 

T (x, t) 
1 ). 2 n 2 Tit+ n 2 

t + - x2 - - + - ( 1 - - x2 + - x4 ) e- t 2 9 n2 2 24 - • ' • 



APPENDIX E 

CALCULATION or GAS SPECIES 

By identifying the fraction of each solid species that is consumed 

or produced in the various reactions, the mass balance equations (2.5) 

can be used to calculate the gas species. 

P 1, 1 mass of solidi converted to product in reaction 1 

P1,2 = mass of solidi converted to product in reaction 2 

P2,1 mass of solid2 produced in reaction 1 

P2,3 mass of sol:i.d2 converted to product in reaction 3 

P1, P2, and P6 are the calculated solid species that are present at a 

given instant. p 3, P4, and p 5 are the gas species that have been pro-

duced up to a given point in time. 

Then, 

1 =Pl+ P1,1 + P1,2 

P2,1 = P2 + P2 3 
' 

(1 - q) P 1 l 
' 

Pl,2 P4 

(1 - cz)P2 3 
' 

P5 

Using these relations, the amount of each gas species can be found 

from the solid species: 
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P2 P6 
-+--
c1 c1c2 P 1, 1 

P2 P6 
(1 - c1)(- + --) Gas3 

c1 cic2 
(E. la) 

P2 P6 

P4 1 - P 1 ,... (- + --) Gas 4 
c1 cic2 

(E" lb) 

Ps Gas 5 (E. le) 

Equations (E.l) then become Equations (3oll). 



APPENDIX F 

DERIVATION OF EQUATION (2.4e) 

Start with the species ~quation for Solid 1 (2.8a) 

* divide by p 1 , 

cl (£n p 1') 

a.nd take the x-derivative 

cl cl £n pf 
clx*( clt* ) 

::;: 

clk1 clk2 

-(clx'i, + clx*) 

Since k. 
l 

ai exp[(-E~)/(R0 T*)], then 

at x O, Equation (2.4d) gives 

thus, at x 0 

elk, 
l 

ax*= 0 

109 

(F o 1) 



Equation (F.l) then becomes 

3 3 £n Pf 
~ ( 3t* ) O 

Reverse the order of differentiation, 

integrating, 

or also, 

3p i< 

3 3 £n Pt 
3 ti< ( ax~'< ) O 

3 £n pf 
clx* 

= f(x) + ci 

110 

. 1 1 
Since 7-;;-.:: is not a function of time, it can be determined by evalu

P l axl, 

-1< ·le ating it at any one value of time. At t = O, p 1 = Po, a constant, 
3pt 

Therefore,~= 0 for all time at x = 0. The same approach is taken 
ox:t< 

for other solid species so that Equation (2.4e) can be shown for the 

total solid by 

at X 0 for all t:ime. 

J. * 3p" 3p 
2 6 +--+--=0 3x* 3x* 



,APPENDIX G 

LISTING OF COMPUTER PROGRAM VARIABLES 

Computer Variable 
with 

Maximum Dimension 

A(N+2) 

B(N*N) 

E(3) 

G 

N 

R(3) 

T 

X(N) 

Y(202) 

AB(N) 

BO 

CS(N+l) 

Cl(N) 

C2(N) 

Main Program 

Mathematical 
Variable 

E. 
l. 

G 

N 

R. 
l. 

t 

x. 
J 

Nu 

pl . ,J 

111 

Description 

Polynomial temperature coeffic.ient 

Matrix coefficients for columnwise 
input to SIMQ--destroyed in compu
tation 

Activation energy parameter for 
reaction i 

Surface heat flux parameter 

Number of interpolation strips 

Heat of reaction parameter 

Time variable 

x-value of jth interpolation strip 

Variables used in START and KAMSUB 
to store unknowns and derivatives 

Vector of or;i.ginal constants for 
input.to SIMQ--Retur-ns solution 
values 

Nusselt nu11J.ber 

Polynomial coefficients for average 
solid (weight) 

Local density of Solidi 

Local density of Solid2 



Computer Variable 
with 

Maximum Dimension 

C3(N) 

C4(N) 

CS(N) 

C6(N) 

DI 

Fl 

F2 

F3 

KS 

LN 

NE 

S3(N+l) 

S4(N+l) 

S5(N+l) 

XJ 

XP 

APl 

AP2 

BCS((N.,.1) 2) 

Mathematic.al 
Variable 

p 3 . ,J 

P4 . ,J 

P5 . ,J 

p6 ,j 

n 

F1 

F2 

F3 

(N-1) 

(4N+2) 

(N+l) 

(n+2) 

112 

Description 

Local total mass of Gas3 produced 
from strip j 

Local total mass of Gasi, produced 
from strip j 

Local total m~ss of Gass produced 
from strip j 

Loc~l density of Solid6 

Summation dummy index 

Frequency factor parameter for 
reaction 1 

Frequency factor parameter for 
reaction 2 

Frequency factor parameter for 
rea,ction 3 

Flag in SIMQ: 0 = normal solution, 
1 = singular solution (see Appen
dix H) 

Program constant 

Number of unknowns--for START and 
KAMSUB 

Polynomial coefficients for total 
mass of Gas3 produced from slab 

Polynomial coefficients for total 
mass of Gas4 produced fr.om slab 

Polynomial coefficients for total 
mass of Gass produced from slab 

Intermediate computational value 

Intermediate computational value 

Program constant 

Summation dummy index+ 2 

Matrix coefficients for total 
solid polynomial--input to SIMQ 



Computer Variable 
with 

Maximum Dimension 

BDC((N-1) 2) 

BS3( (N-1) 2 ) 

BS4((N-1) 2 ) 

BS5((N-1) 2 ) 

CSl 

CS2 

DCT(N+l) 

DEL 

DLP 

DSM(N) 

IBC 

I Ml 

IPl 

IP2 

JMl 

MER 

MOP 

NPl 

Mathematical 
Variable 

(n-1) 

(n+l) 

(n+2) 

(m-1) 

(N+l) 
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Description 

Matrix coefficients for gas gener
ation polynomial--input to SIMQ 

Matrix coefficients for total Gas 3 
polynomial--input to SIMQ 

Matrix co~ffictents for total Gas4 
polynomial--input to SIMQ 

Matrix coefficients for total Gas 5 
polynomial--input to SIMQ 

Mass fraction of Solidi converted 
to Solid2 

Mass fraction of Solid2 converted 
to Solid5 

Polynomial coefficients for gas 
generation rate 

Initial time step-size 

Fraction used to reduce time step
size 

Local solid density time-derivative 

Boundary condition type: 0 ~ Type 
I, 1 ~ Type II (see Chapter 11) 

Summation dummy index - 1 

Summation dummy index+ 1 

Summation dummy index+ 2 

Summation dummy index - 1 

Error calculation option in K.AMSUB~ 
1 = relative error, 2 = absolute 
error 

Integration option for KAMSUB: 
1 = Runga-Kutta, 2 = Adams fixed 
step size, 3 = Adams variable step 
size 

Program constant 



Computer Variable 
with 

Maximum Dimension 

NP2 

NSQ 

RCS(N) 

WGT 

XJI 

ASUM 

BBCS(N-1) 

BBDC(N-1) 

BBS3(N-l) 

BBS4(N-l) 

BBS5(N-l) 

CSUM 

DELT 

DLMN 

DLMX 

ERMN 

ERMX 

FLUX 

FSUM 

SPC3 

Matheil].atical 
Variable 

(N+2) 
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Description 

Program constant 

Program constant 

Local total solid density at strip 
j 

Slab weight--average solid density 

Intermediate computational value 

Intermediate computational value 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Intermediate computational value 

Difference in present and previoua
ly printed time-step 

Minimum allowable time-step in 
KAMSUB 

Maximum allowable time-step in 
KAMSUB 

Minimum allowable error for KAMSUB 

Maximum allowable error for .KAJ.".ISUB 

Mass flux from slab 

Intermediate computational value 

Total mass of Gas3 produced from 
slab 



Computer Variable 
with 

Maximum Dimension 

SPC4 

SPCS 

SSFX(N) 

TEND 

TMIN 

TPRT 

XPTH 

ICOND 

NPRNT 

TMPTR(N) 

!{COUNT 

NCOUNT 

Mathematical 
Variable 
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Description 

Total mass of Gas 4 produced from 
slab 

Total mass of Gas 5 produced from 
slab 

Local gas generation rate 

Time value to end calculation 

Minimum value of DELT for printing 
all values 

Value of time when values are 
printed 

Intermediate computational value 

Effective thermal conductivity 
case: 0 = Case 0, 1 = Case 1, 
2 = Case 2 (see Chapter II) 

Value of i for printing every 1th 
time 9tep 

4ocal temperature 

Punch and/or print option: 0 = 
print only, 1 = print and punch 

Number of time-steps computed since 
the last printed step 

Subrou~ine DERFUN 

Variable$ already de9cribed in the Main Program will not be listed 

as they are either in common or perform the same function, 

Computer Variable 
with 

Maximum Dimension 

M 

Q(3) 

Mathematical 
Variable 

m 

Description 

Summation dummy index 

Intermediate computational value 



Computer Variable 
with 

Maximum Dimension 

AN 

BG((N-1) 2 ) 

BI 

BN 

BT((N-1)2) 

DA(N+2) 

GS(N) 

GT(N) 

HS(3, N+l) 

QS 

BBG(N-1) 

BBT(N-1) 

BHl((N+l) 2) 

BH2 ( (N-1) 2 ) 

BII 

BMN 

BMl 

Mathematical 
Variab:J._e 

N 

(n+l) 

(m+r1.-l) 

dA(n) 
dt 

31(n)(t) 

J2(n)(t) 

H. 1 )(t) 
l ~ \I\ 

q(t;) 

n(n+l) 

(m+n+l) 

m 
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Description 

Number of interpolation strips 

Matrix coefficients for input to 
SIMQ 

Summation dummy index+ 1 

Summation dummy indices - 1 

Matrix coefficients for input to 
SIMQ 

Derivative of polynomial tempera
ture coefficients 

Polynomial coefficients for effec
tive conductivity integral approxi
mation 

Polynomial coefficients for effec
tive conductivity integral approxi
mation 

Polynomial coefficients for heat 
generation from reaction i integral 
approximation 

Time dependent surface heat flux 
function 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Matrix coefficients for input to 
SIMQ 

Matrix coefficients for input to 
SIMQ 

Matrix coefficients for input to 
SIMQ 

Summation dummy index tenn 

Summation dummy indices+ 1 

Summation dunnny index 



Computer Variable 
with 

Maximum Dimension 

BM2 

BM3 

CK! 

CK2 

CK3 

DCl(N) 

DC2(N) 

DC6(N) 

DQS 

DRG 

TPl 

TP2 

TP3 

XX:l 

ANP2 

ASRF 

BBHl(N+l) 

BBH2(N+l) 

l3BH3(N+;L) 

BRCS 

BSUM 

CNDX 

M;athematical 
Variable 

(m-1) 

(p+l) 

dCl(n) 
dt 

dC2(n) 
dt 

dC6(n) 
dt 

~ 
dt 

(m+l) 
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D.escription 

Summation dummy index - 1 

Summation dummy index+ 1 

!ntermediate computational value 

Intermediate computational value 

Intermediate computational value 

Local time deriv~tive of Solid 1 
density 

Local time derivative of Solid2 
density 

Local time der~vative of Solids 
dens:i,.'!:y 

Derivative of time dependent sur
face heat flux function 

Intermediate computational value 

Intermediate computational value 

Interrµediate computational value 

Intermediate computational value 

Summation dummy index 

Intermediate computational value 

Intermediate computational value 

Vector of ori~inal constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Vector of original constants for 
input to SIMQ 

Intermediate computational value 

Intermediate computational value 

Intermediate computational value 



Computer Variable 
with 

Maximum Dimension 

DNDi 

DSUM 

SU:l3l<(3, N) 

TSLP 

XJII 

XJPl 

Mathematical 
Variable 

k 
i, (n) 
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Description 

Intermediate computational value 

Intel;lllediate computational value 

Exponential term of local reaction 
rate; constant for reaction i 

Intermediate computational value 

Intermediate computational value 

Intermediate computational value 



APPENDIX H 

DESCRIPTION OF THE SUBROUTINES SIMQ, START, AND KAMSUB 

Description of the Subroutine SIMQ 

C SIMQ 001 
C o (I ,:, o o " i> e <& • e o, " i; e ~ o 9 g • l!l IQ B o o () .:i. f.l e A o 11 ~ ,e ti o rJ o (I ~ • • o ., Q R o ~ o o G ~ o • (I • • • • 11 • ~ c, a, o ~ S I MQ O O 2 
C SIMO 003 
C SUBROUTINE SIMQ SIMQ 004 
C. . ···-· ... S!MQ 005 
C PURPOSE S!MQ 006 
C OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMO 007 
C AX=B S!MQ 008 
C SIMQ 009 
C USAGE SIMQ 010 

-·C-·----···-··· .... CALL S!MQiAoB•N,K.51. SIMO 011 
C SIMO 012 
C DESCRIPTION OF PARAMETERS SIMO 013 
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISF, THESE ARE SIMO 014 
C DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SlMQ 015 
C N BY N. S!MQ 016 

~C B • VECTOR OF ORIGINAL CONSTANTS ILENGTH NI, THESE ARE S!MQ 017 
C REPLACED BY FINAL SOLUTION VALUES, VECTOR X, SIMO 018 
C N - NUMBER OF EQUATIONS AND VARIABLES, N MUST BE .GT. ONE. SIMO M01 
C KS - OUTPUT DIGIT SIMO 020 
C O FOR A NORMAL SOLUTION SIMO 021 
C l FOR A SINGULAR SET OF EQUATIONS SIMO 02? 
C SIMO 023 
C REMARKS SIMQ 02~ 
C MATR!~ A MUST BE GENERAL. SIMO 025 
C IF MATRIX IS SINGULAR • SOLUTION VALUES ARE MEANINGLESS. SIMQ 026 
C AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX SIMO 027 
C INVERSION IM!NVI AND MATRIX PRODUCT !GMPRDI. SIMO 028 
C SlMQ 029 
C SUBROUTl"ES AND FUNCTION SUBPROGRAMS REQUIRED SIMQ 030 
C NONE SlMO 031 
C SIMO 032 
C METHOD SIMO 033 
C METHOD OF SOLUTION 15 BY EL!MINA•lON USING LARGEST PIVOTAL S!MQ 034 
r~ .. ~DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ 035 
( ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL SIMQ 036 
, ELEMENTS. SIMO 037 
C THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN SIMQ 038 
C N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS SIMO 039 
r CALCULATED BY SUCCESSIVE SUBSTITUTIONS, FINAL SOLUTION S!MQ 040 
C--··--·-·-·····-··-VALUES ARE DEVELOPED !NVECTOR B, WITH VARIABLE 1 IN 8(1), SlMQ 041 
C VARIABLE 2 IN Bt2l,o•••~•••• VAR!ABLE N IN B!NJ. SlMQ 042 
C. IF NO PIVOT CAN BE FOUND EXCEEDING A TOLfRANCE OF o.o, S!MQ 043 
C THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO lo THIS SIMQ 044 
C TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT, SIMQ 045 
C S!MQ 046 

·'--·-----'-' ci·o·Q 0>·1J-c, o,:, • «.i·o<t o o 00-i, o·o • •·•·oo 9 g t'I o .. ,,. o oo • it·•·• o 1;1 o~ o ~ ~ '!> ~ oo e-~ o 0 l'.:l·o o •o fl II•• o tt c, a SIMO 047 ·-· 
C S!MQ 048 
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Description of the Subroutines START and KAMSUB 

Solution of Ordinary Differential Equations 

Purpose. Numerical solution of Ne simultaneous first-order ordi-

nary differential equations. 

Type. FORTRAN IV, 

Mode of Operation. Real, single, and double precision arithmetic, 

General Description. The available subroutine package performs 

numerical integration of Ne (Ne s; 100) simultaneous first-order ordi·

nary differential equations. The integration may be carried forward or 

backward from a specified Ne-set of one-point boundary conditionso The 

user has the option of selecting the Runge-Kutta or the Adams-Moulton 

method of numerical integration. When using the Adams-Moulton techni

que, the user may try a fixed step size or he may let the routine cal

culate its own step size based on minimum and maximum limits on the 

integration errors. 

In addition to the user's main or calling programj three subrou

tines are used. Two of these are SUBROUTINE KAMSUB (NSTART) and SUB

ROUTINE START (Ml, M2 , M3 , Al , A2 , A3 , A4 , AS , A6) . The third j En ti t1ed 

SUBROUTINE DERFUN, is prepared by the user to define the functional 

forms of his differential equations. 

The internal operation of the integration is carried out in double

precision arithmetic in.order to improve the accura.cyo The solutions 

available externally are in single precision numbers. 

Instructions for Usage. 

1) The user provides in his main program the following sequence 

of instructions: 



a) Declare a common block: COMMON Y(202) 

b) Define the boundary conditions~ 

Y(l), Y(2), ... , Y(Ne), Y(Ne + 1) 

where Y(Ne + 1) is the initial value of the independent 

variable. 
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c) Call the subroutine START to begin the integration processo 

The subroutine requires that nine arguments be providedo 

The function of each of these parameters is described below. 

CALL START (Ml, M2, M3, Al, A2, A3, A4, AS, A6) 

where Ml, M2, M3 are fixed ... point numbers and Al, A2, . 

A6 are floating-point numbers. 

Ml - The number of equations (Ml~ 100) 

M2 - Option Parameter 

M2 

M2 

M2 

1 

2 

3 

Integrates by Runge-Kutta Method 

Integrates by Adams-Moulton Method 

with fixed step size 

Integrates by Adams-Moulton Method 

with the step size internally calcu-

•• 0 ' 

lated based on specified error limits" 

M3 - Option parameter for error determination" 

M3 = 1 Error calculated as relative error. 

M3 = 2 Error calculated as absolute erroro 

Al - The step size. (If M2 = 3, this is used as a 

first trial value and then adjusted so that the 

error conforms to the limits.) A negative value 

causes backward integration. 

A2 - Maximum value of integration error at each step, 
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A3 - Minimlllll value of integration error at each stepo 

A4 - Largest permitted step size. 

AS - Smallest permitted step size. 

A6 l'he factor used to reduce the step size when M2"" 3 

and the integration error is too large. 

Notes: (1) M3, AZ through A6 are applicable only 

if M2 = 3. 

(2) If A3=0, the routine sets A3""' A2/55. 

(3) A6 is specified normally as O ,;,A6< 1; 

however, an initial value of zero will 

cause the routine to set A6 = 1/2. 

d) Call the subroutine KAMSUB ( 1) for each step of the independ

ent variable. The call is repeated until the integration 

has been carried to the desired final value of the inde.pend

ent variable. To preserve the solution for later calcula

tions or printing, it is necessary to store the values after 

each call of KAMSUB. The block Y (202) only holds the cur-

rent values of the solution, 

2) The user defines the specific functional forms of the differ

ential equation to be integrated in a subroutine DERFUN. The 

equations must be expressed as first-order equations. The 

common block Y is utilized as follows: 

Y(l), Y(2), .•. , Y(Ne) - The values of the dependent 

variables. 

Y(Ne + 1) 

Y (Ne + 2) 

The corresponding value of the 

independent variable. 

- The current step sizeo 



123 

X(Ne + 3), , .. , Y(2Ne + 2) - The current values of the 

derivatives, 

where Y(Ne + 3) is the derivative of Y(l) and Y(Ne + 4) is the 

derivative of Y(Z), etc. 

Caution to User 

A labeled common block SHARE is used to transfer data internally, 

The user should not use a common area with this name. 
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COMPUTER LISTING OF ALL PROGRAMS 

80/SrJ L!Sf 

-----·oriorJ o Doc1rllllmTiTi22n 2 2 2 2223-j3-3:i'iT313-;;,;;;·,; '~" ,.-;;,, ,, s s s ·i; ,, 5 sss s 6 I, &T,6&&_b6_t/i11Tfr 
1 2 V, 5 t, 7 Q_'/0 ! 2 34 <j t, I Wi () )2 3 4) 0.7_8 L/Q l ;> 14 5 (, 7 tl9 0 123 ,, 56 7 8 YO 12 3 4 56 7 H 90 12 3', 56 71390 I Z 31, 5 

CAR ll 
.. 90QJ C*~~!**'~**~¢**??1.~~~~~~~~~~!~***r~*~*****~*•**************************** 

000? C<":' MAIN program ''* 
____ _l)Jl:.l...L__L~:, ''.l..WS_ ''1<.Ll.GY,'\li......D. r J:!LLNJJJ. Y __ E.U!.Nl__T_ll .. Jli E._J N TE GK AL __ ME H!()D SO_L u r __ l llN Of ** 

lhJ<),, L*<'lill l'\'<l!Al fl!FH,:[NflAL f'WU,\TIUNS. *'' 
()0()', _(':<t. - - .. - ··---- ''* 
0001, L''"'·HI ,\1(1{/\YS 111\E OIMCNSILJNED AND [WU[VALENCl-D ACCOKDIN1; TO THE OKDER ** 
()Qt)/ ___ i;,":,rJf JULlli•PP.IJ~l~111T!CiN_lll~lJ C/\N flE !NSERfEIJ AS A i,;ROUr• BETWEEN HIE ** 
1)00'l Cf.'-:-(.UMIJIIN .Y (202'! ,\NO TIIE' F llbT FflHMAf STATEMENT. *" 

______ .D...W.lq _(__:o!r ::, -------------··--·---~------~- ···------- -----·--. --~-----~----------- :).;* _____ _ 

OOL'l c,,,,/\l.L UiPU! llAl A IS READ IN Ill THE BEGINNING OF THE Pl<DGRIIM. ** 
_. 001 l . .CH'.. ** 

oo u C<·'-' 11-11 · ,;11r-1c--·r 111 1~ or TIil s 1ii:r; I !-JrnNG RCIUT !NE Is rn C/\LCULA 1E Tit[ !NIT I AL ** 
_OIJl l L''''Y~[IJ!'$ __ J1.Jl{_Jtl[ PIJl.,Yl~H1!M ... .HMl:'fll.l\llJRf l;'.ll'Fl'JCIENTS /\Np THt: Ir--!Ill/\L ** 
001'< C*<''.JIL] /J Sf'[( I ES VALll[S, SEND THE NECESSARY INfORMAf ION Hl THE rnrnY ** 

__ Q.!.:U..2_.....i,__'-' ,;,,,, I "J..LLl.LJJ I [ _.!JP:)_! NIIR Y __ D_LE H.L,IN u ~L -~(~IJA l[ON s __ J NTF_GR A T_l(IN - RlJU r IN ft _____ **- --
0011, c,:,,,1qcuvc HIE rffvi INTE1;1,Af[D VI\LUES /\l TH[ NEXl TIME SffP, M/\Kf' ** 
QOI L p,,1,1rLC$SIIRY_ (:,\JCJJLJ\Tl(lNS 111\SED ON fllE NEW VALUES, PUNCH AND/_(1R PR!Nf ** 
OOIH C*HIJ[ DES!I-([/) Ii•f'l;l<MAT!UN AND RETun.N ro THE INTEGRATION FOR ANUTHrn ** 

. _ OQl'L (:••'LlML5_fE!'. 
0020 

____ 0021 
C :¢.1,( 

('-'*Tl-it CALCIILAT_ltJN IIF_ fHt __ (ll•,_LllNAf(Y_O!FFl:f<!::NflAL EQUA!!_Jl_l'J_~ _ll_)'__ _ _!lif __ 

** 
''* 
** 

0022 CH'iNlt1;rc\L MfTHUll JS fJflNl'c IN /{UUfINE •nERFUN• ,iHICH IS CALLED ONLY ** 
oQn __ s:i,,,n' __ n1L_Xl/{J!f/1J..1\1(x p_irF, cw, RtHnINc. ** 
00?4 C** ** 
O()L~ _(,;l.">fli_f_ ILCJILLLN[ '5JM~Q• SU[..111:S t\ SEf OF '.,!MULTIINEUUS IILGl:G[\1\IC FOUAflONS** 
OO?t, C<*l\h!ll WILL l'l·Ul~f 1\N S.S. MESS11GC IF Hi[ MATKIX IS SlNGUUd{. "* 

__ O.Q2._1__ c,, ,., --·------------------------- -------·------·-·----·--··- __________ -·····--·--·---- ____ _______ ___ _ __ ~'-*--------
00? 8 (****~~**~*******~**********************************************~******* 

-9Q?1. COMMON Yl?O?) 
O(fl() -Gi'it1i1LL-l'Rf'CLSiri"N i1i:ii,),4fl(6),X(6),G,B53(25),llS4(2'>),llS5(2~l.1\l1S3(5 
0() J ! . -- _ _l ! 1 i\Ji_ '/d <; ! 1 lHl'> 5 L'>} , llC T ( 7l , BC SI ,.> ',) , d ll CS ( 5 l 11)1)( C 2 51 , tl flll( ( 5 I 
001? ClJM1'1ClN/CUM1\/X,l;,[(.,l,Rl1l,FLlJX,IN,NS'.l,N, NE,F1,F2,F1,CS1,CS2 

__ 00"3 ,, ______ _l...t..."!._P 2, 1,11-'J..1 \,G_T t.I UlNl)_1 _l L\C., ii0 1DSM_l 6l _,APL··-------------------·-------------------·· --------------------
003', D!t~tNSlllN CJ(06l,C2(01,l,C3(6l,C'j((;),C(,( 6l,11(8l,TMPlR( 6l,Ut!6l, 

_ _ OQ3_'> ___ JyJ:S(l-'!r'i3(7l,~4!.7J_,S"i( ll ,SSfX(6) 1 CSUI . 
0 0 31, E 1) lJ I V ,\ l F- NC F ( Y ( l I , C I ( l i l , ( Y ( 7 l , C 2 ( I I l , I Y ( l 1 I , Cr-, ( I I l , I Y I. I CJ l , II ( l I I , 

_ Jl0 F _ U Y I ? 7! ,fl 
003d IOOO ftJRMt\T(l3l 

______ __QQ_3_'! __ l O!] I . f r l R,~ I\ T ( U l 1, .JiL ______________ ---------· ··-------·-- ---·---·------- ··-·-----------------·- --------
0 <JI, O 101() f-1ll(Ml\f(',fl XLJl, 4X, LlliHMl'tRAflJ!(E, 3X,llli101AL SULIO, '•X,'JHSPfCif'.; 
Q(lL,j _l Lr 'iX 1_')HSP[CIFS 2, ">X,'lHSPECIES 6 1 5X,9HSPEC!ES 3,~))(,'!HSrECIES '•• 
O<Jl,? ?'•X, 'JliSPf'C I ES ',, ! 511 MASS LOSS RA rE l - -
0 0 !tJ _ U lJ 1-lJ /-!. ,',{ ~ T ( 'Iii .J" , I 2 , I X , CJ [ l',. 5 ) 
oo,,,, J~1)1)·---~(Ji,11Ar{/:i1iMflSs i0 u·1x AT SURfACf =,f!6.6,:,X,14HHHAL WfIGIH =,1::16.6 

______ QO ,,_•, _____ ] J__--------------------------------··--·-·--------------- . -----------------------------------------
0046 ?000 FORMArtL!6.d) 

..... q9,,x _ ,,1_t1) r1J_rrn,\J _1_,,111 oA r 11 ! __ 
Ofl<1fl ?O?O f-iJ/(111\l(t,H [I =,f,l/,.6,1,H f2 =,U.6.6,611 E.3 =,Ef6;t,,-i,1-1· Rl =, 

__ 00'1\! _ lj:_ll,_.1.,,_1,11 R? =,[16.6,611 R3 =,El6.6l 
00',ll ?030 f:.11,,"1,\TU·,fl f'.I ··;,,El6.6,6H 12 =,El6.6,611 1'3 =,El6.6·, 

·---·- 00', !_ ________ l _____ 6H_ CSL·= 1.1' [ I, .616H __ c_s_2 , F 11, .6_) ____________ ··-----···-----·--------------------·· 
00~! ?Ot,,) IIJRl-11,111,il HNo=·,Et6.(,.6fl Ol =,El6.6,6H [Hl =,El6.6) 
ll O ', :l ? 0 '', (~ _ I r JI( M 1\ T 11,I ? H X , 12_ , 2 H =, D l 6. 6 l 
0 0 ';, '• ? fl', 'J I' I II' H fd ( ', 11 G = , ll l 4 • 6 l 
_0'P5';,_ _?1J70 Fl[l'.'j0f_Ll/1 _N=, 1_3, '>X, lHNE=,13, 5X,4HMOP=,I3_, 5X,4HMf-R= 
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80/80 LIST 

---- CARD 
J? 11,!; Ii I -~'!0 I n4 56 /~'J ll LZ_Vt'i6 7B 'JO t21', 561ll90 t 23',51, 7fl90 12 V,56789012 H5678901234 51 

on•,1, 1,1], 'ix,7HMCOUNT=,!3, 5X,6HNPKNT=,l3,5X,&HICOND=,l3,5X,4H[ElC=,131 
00'>1 nn HJliMAT(6151 -
OO~fl JO'.JO f<lkMH!lltiOFllR TIMc =,E!3,5,5X,UHTfJfAL GAS 3 =,El3.5,',X,l3HTOTAL 

--(IQ'j'j - IC~<; 4 =,Fl'J.'j,,,x,l111rn1AL GAS 5 =,El3.5J -
oo,,n 100_1 f()f<MJ\T(l)H S.S. f-01{ S3)_ 
DOG! ~OU! f0k~Af(l3H S,S, FOK S~l 
001,? ·min FIJRM,\l{l"Jil s.:;. Hll\ S51 
006 3 \ 3 f,;- fi1ii;~J\ f/(;1-1 fl<~IX;, [ l 6, 6, t X, 5/IERMN= 1 Et 6. 6, l X, 'iHDL MX=, f.16-. &;t X i5 HDLMN-=" 
006', l,Fl6,l,,IX,',Hl1Lf' =,fl6,6,lX,5lllMlN=,El1,.6) 
006', ,,noo rtlRMl\f(ll/1 S,S, fl]R II) . -----------·-··-·-----------------· 

001,1, ,,,,,,4, /·/lf\MA f(t,f?n.6) 
001,, ',';',5 iriKMfliir,rjiJ;r,F. 
0069 6666 FORMAT!hE!J.~I 
OOG'-l 7()0l)-f(ll<,"IAT{J3H s.s~-FOR CS-} 
0070 7777 FnRMAT(!S,5~15,61 
007 t (1000 F·IWMAT ( J. Jfl ~. S. f UH -ll!J{I ----· -------------- ····--·-------·--·------------------

00 ll C*************RfAU ALL lNPUf fJA[A~**~f*********•****~~****~********~**** 
··-00'1i ······-··· --,il:AlJ.!5;·10001·N; NE;MoP,MER,MCUUNl,NPRNl,ICOND,rnc -· --

oo-r,, R[AD (',,2000}f·,1<.,FL,f2,f3,CS1,CS2,ff:ND,DFl.,l\D,Ei<MX,fl<MN,DLMX,DLMN, 
00 7'., ---- -l Tii§;[M li'l---- - . - ... .. . . . - . . - . .. ·- - --- -- - . t 

0076 Rf/\ll('i,lOO!HX!!J,1=1,N l,G 
0071 C:*******~*****l'RIN1. ALL lN1i0T !JATA**********~***~i•**********•**t******* 
0070 WH!Tf(6,20!0J 

---ClO/;)- ·,1r(llf(-.S;)riioiN, Isl' ,-MIW, MER, MC llUNl, NP RNT, I COND·, !fie' ---
0080 Wk!TE(~,?020ll,R 
00~1--··------ ,;m1n:T1,;2010JF1,1-2,l'1;-cs1;cs2 . 
OOH? Wf<l TF ((,,:)(.l',O!rl-Nll,lltl ,till i 

. OOH._\ 1-/Rllf. 16, H3:l)le'.M.,,CI-ZHl,,DLMX,OLMN,OLP,1MIN )· 
0 0 tit, w R 11 F I 6, 2 0 '; 0 J( l , X ( I I , l = l , N I t ---·ooll'i··- .... ,i1fl1t1i.,;2r\•;51c. .. . . . - - ...... -· ---· ------- -- ----
OO•JI., !F(MCIJIJNfJU,OJGL) f(l 5 

-- -OOtl I ( < ,,,.i,, 1>*1,, *-,,,,.,;jf f;[S 11,I /1, l'IJNCII 1\L.L lf,PUf IJA fll**' ********"*"********'q'** l 
1JORII WH!Tr-(7,~2!2!N, NI ,MIJP,M[R 1 MCIJUNT,Ni'kfJT I 
OOil'J 1/l(!IF( 1,,,,,,,,dl ,R,f 1,F?,f-3, CSL,CS!, f[ND,ll, L,FRMX,ERMN,OLMX,OLMN, I 

i 0090 _l.Ul.l', lM !_f\J _ 
i 00'-ll WH!!l:(7,',o'>:>IX,C 

009? l.*************lNlTIALIZE TIME TO ZERO******•***••••••*************•***** 
oo•:n ]co(). 

: 00 rhr4 [t,c: ::()~ ': * ** ~,~: :::~ t.~ **·Sf T PRUG HAM CONSTANTS****,,,. ~,c ~~* ** ,:, ~, ·l· ,;,: ~ ** .Tj(* ** *.((* '* ;(,(! :;,.'< * lfi'" *** * ** 
IOIJ·0,;· LN=N-l -·-· -

i OO'l/, NP2=N 1-2 
i 0091 N';rJ;,~i~i-oJ 
! OO'Jl.l Nl'l=N+I 
1 OfJ9'l AFl=NP l 
\ 0100 C<'<'*''*"''"·l""'**l.ALCULAlf !Nlll/\L POLYNOMIAL Tf-;1/•i ''"-fUtiE CClEFFIClfNTS*~*** 
!0101 . A! I I =O. . ---·-----·---- ·-----------------·--------------··-· 

010? A!?.l=O. 
---6Till "iiu Z(i --Ft-;-u,- ----· 

O!O', DU L', l =l 1N 
010•; ·-K;_-.J,i r=-1 fi, ~i------- ---

I 
r 

i ,. 

i 
I o l O i, I.I ( K l = X ! J + l l * * ( I + l ) 

l _~i'.;~ i"~ t~'.~~~~~HJf . -- -----------------··----------i 

0 I O') R ( l. i = .J cl 
0 l 11) ____ Al_l ( _ _.J ) =0. 
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BO/RO LIST 

00000000011111111112222222222]333J33333444444444455555555556666666b66777777 
.. _ .. _Le l'<-".1?1.'l'2Q l 2h~li.!B..2.Ql?1"!?!!IB ·~QJ?:H56J89012345.670.991_2 3456 J89Q!L3ft'.ii, 7.fl9QL~ b? 

CARil 
.. ___ OU L ..... 20 __ Cllt,TJNllE ....... -··---··-·----· ···-· ··-- -···· -· ·····-··---·· 

0112 R{NSQ)=NPJ 
_ ___o.11 ·1 41\ L .. N.L:.L.__ 

0114 CALL SIMW(H,AB, N,KSl 
. ___ 011•, ________ JEJK.S.,NF,Q.H!f{!!Un,'trl<?Ol ____ ---·· 

0111, no Z'S 1~1, N 
..... O.U.l ______ _1i.LU.1J =AJiJLL. _ . .......... .. .. .. .. 

OllH C****'":'**'''-'*l'*SET INil lAL LOCAL SOLID SPEC!t'S VALUES****'"************''** 
011 'I CI I I l .=.L. ______________ ·-----------·-·· 
0120 C2{l)=O. 

- __ QL2.t ···-------J;JuJJ =.() •-----

012~ 2~ CONTINUE 
... __ 01?.l. -- c ''''"'-'''.' . .'c.''c' .. "'c_*_,•>:<JIIIJ rn [Jilll!NAIW_ ll lfFER ENT I AL E [)lJAf !ON s l NTF, .G_RA.!JO/lj ST ART __ 

0124 C ROUTINF*********************~***************************** 
-~()-1-2~''-----~C'-', A=t~. t~ .. ~s~· ·~r A~l~l ~T ~' N=' 1:..t.tillP _,..Mt 1'1,_,..pF L ,.ERM X LE RMN t.D.L Mlt.Q1. M NL D LP I ---------------

0126 TPRT=O, 
______ 0127__ _ __ NCUIJN T=il ... 

0128 C******'***•**INTEGRATE OR!l!NARY DIFFERENTIAL FQUATIONS FOR VALUES OF 
0129 C Tiff VAR!ARLES i\T THE NEXT TIME STEP*********************** -0130---~1·1···--c:ALL i<ii~isu(;(ii ---·-- . - ............. - ·-- ··- - ·- ·--- ·--
OlJ l Del T=T-1 PHT 
013? NCOUNf=NCUUNf+l 
Ol3J c••*H**'·'''*:"*''*lF ]Hf 1.nTAL NLJM~[R OF f!Mf- STCPS OR THE TOTAL LENGTH OF 

--oi-;;;;-· c··-- . ---- -- - ·--· -r ·1 Mf: S HJ C ~ ·1 ifr: LA si j,iu N TED STEP - IS Tiff riE SI RED - VALUE, -

.. _~QJ}S._J; _________ ··· _fl.ifr-.J_HI~ i;~~CUJATJ DNS .WILL P!{UCE~D, .OlHFRi,_!SJ: HI_E PRDGR_A_M_ 
OLJ6 C WILL RFllJRN TO !NfEGRATE FUR THE NFXT TIME STEP.•********* 

_ __QJ;:, [FI NCfJltNh0f:.Nf'RNT .OK.DEL r. GE. TMIN) GO ___ ro __ 32 ---------------
DL>ll GIi HJ JI 

. o 13 CJ___ i? Tr Kr= r 
0140 c,,.~;::;·~-**;~-,;,;,,*~-*USING THE NH, SOLID SPECIES VALUES, CAiCULAr°F THE LOCAL ___ _ 

_ 0[',1 __ C VAUH'S l'UR EAU! GAS SPECIES, MASS FLUX ANIJ f[Jl/\L SOLID AS 
Ol't? C ---wi·11.I\S 1.:,1:· P(JLYN(JM!AL CDEFFIC!l:NfS FOR T1,(ov{iu11:.c·· -- . ' 
014J r i\VER~G[ CAS_SPl'C!ES,__Mi\SS_FLUX __ AND SOLID WEIGHT.********** __ 

1 

0 l't 1, C ~ { l ) = C l { 1l •C? ( l i +Ch ( l I 

. ··-- OJ_"!'; ------·· CS ( 2 I =O '--·-----· _________ . 
Ol<t6 NCOIJNf=O 

I ---·-·· --··-- ·-··---·-·--- ·---··------·-·1 
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01 V, II' l=l • l 
Oll'i !f'2=J•?. 
())II, GSlll'll=l\/lG(II 

__ Ql_l_L _______ i_,_ll.UcJ.l.=.bJ.l.LU_L ________ ---·· ----------··--- ----------·--·---- __ _ ________ ___ _ 
Ol ld ti',! l, 11'!1 =1\11111 Ill 
Oil'! _tJ',P,!1'?J 0 1ll\tli(ll 
0 l '10 II'> (>,I I',!) =111\H l l 11 
.O!'t! ,\\ltl'=A<;·(F•A! IPZ! 
0 I'< 2 'I', CIJI, r.u11J1' 

__ _(lJ 11_! _____ .\ <;I< F=_,\';_l<F t A 1.1. _I +i\_l Nl'!J_ ---·- ___ .. _ ·-----------------·---------------·-
011,'< C~4•>ooH•iH*HCI\LCULAT!' l'IILYN1IMIAL CLICFFICIENT'i fllR IIIE !lMl'l-.1\AflJIU 
011, 1

, C /JI i( IV/\l IV[ ,1lTH CIIU!Cl llf /JtlUNDARY CONIJ!T!UNS A/1/0 fHEHMAl 
0 l 1,r1 C crnmuc l l VI TY f-/·f I.CT 5,, ·***''*** * ****** ** ** ** ,,~,, • *******~·~·· 
0 ! 1, 1 lll,UX =IJSMI N) 
0 I ', ,1 L 1·W X = -, C \ J /11 ) 

.. _ _,__Q_l '1 ', ______ .LFJJ_r~u 'ill Lr. [_.J_,l__u;r 1_. _ _r ,1 __ ,1.t, ______ . __ . ________ .. 
0 I ', r l I( L '.( N I = l ; 
01•,1 DIWX=fl. 
lll',? If t ICrlNll.lcJ.O)UJDX=!. 
D\o\ _'11, IP?=•l'>llJ 
O l '> ,, l 1' ( 1 ,i L ; E •j. I l r P? = ! ! . -- llt.l ~,,SR r l 

____ fl I•,•,-------- I S_l_P = i_ ! . 1 llL,IG (_C NUX _) _)_t l P2_/_f\C S_(('I I_ 
O I ',h 

_ 015 l 
!l ,\ C '-,=ill I/ q CS ( N) 
ut.r l _l r'J 11 = I , ri 

Ol~B ~\UM=fl • 
.. _01 !>li ilSllM=(), 

0 l (di [ '> IJM = '). 
0 _I I, I ______ r l', IJ M = 0 , ---------·----·------- --------------------- ____ -··-------- ________ _ 
o 11>, 
011,:1 
Olt, 1• 

____ Oit.;'1_ 

H :1 ! = 11 
DO l u '> I= l, l~P I 
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l)_l /', 

01 /1, 
01 I I 
Ol /1' 
()j /<J 

0 I 'I? 
01 b ·1 

A',IW.=I\StlMtl,ld I 1/HN 
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O j ljq Ill\! I l = lilll I l I I l ... 
O?rlJ llAU l =<), 
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0012 JJ;J,J+N•I SIi-ie 
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OOIR { SI'! 
_001'1 IJ 0 l"i•l SlM 
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oo,n 
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OOJr\ { 
on II c 

C 

Kr;-::, l 
,, I l lJI{ 1, 
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S ! M( 
\l Mt 
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SIM· 
SIM· 
c;Jt-li 
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SI M1 
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00_1 l l11i }Jo·j+ljO(J··/) C,{M, 

003', 
l IC IM~ X-J . - - -·---·--- - ---- .. ---·-·· ----------- --·- -------·------ --- ---------·---- --- s j H, 

O(ll'; Ill! ',11 t-- 0 J; N 
DO-.lb 11 =II• N 

00·1 "/ I,~ 11 t l I 
OD:\ 'I ·- S/\ VI=/\( I l I 
0 0 ·i 'J · t, I l 1 ) 0 /\ I I 2 I 
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cio,,·1 C 

(" O!Vlllf UJllt<flflN HY U·/\DIN(; CIJLFF!CIF:NI 

"00'1', <,,\Vl"il(li1~Xl 
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001, I IH .J) C ,.;/,VI/!\ j{;/\ 

o C1 11'1 C !"I IMll'/~11- M.:..r V,\l'-f/\tllE 
()Q•j(I ( 

00 1 ,1 i lli(J-~.1.1,,.011.,u ru 70 
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Oil'.,J 11r1 c,'i IXo.JY,l'i 
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__ .Q_Q_QL ________ Sl!ii!UlUJ.LNL.tAl'J.S.J.Hl.L/i.SJ ABJL __ ____ __ _ __ __ _ _ _____________________________________ _ 

000? COMMJN Y(2021 
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000'+ DlM[NS!ON DElY(l1,lOOl,8ET!41,XV(51,FV(4,lOOI 

__ ___Q_Q__Q5_ ____ CJlMM[l_N/ INT[)A_U_I.l_2.,.202L1J.E_RR ____________________________________________ _ 
0001, DOUBLE: Pl{fCISION YU(5, 1001 

_____ o o o 1 _c __________ ______________________________ _____________ _____ _ _ __________________________________ _ 
QOOB C NO INFCJl{MATION IS REQUIRED IN THIS SUBROUTINE 

0010 JFINSTART,LE,O)GO TO 9977 
. __ _Q_QLJ. ________ J.E.L/1WJ...E..__lQ,..1 L(;JLliL lQ Q L _______ .. __ . _________________ ------------------------------

00 l.? GO TCJ 2000 
__ fill..LL_L_. ____ J:Uli'lGJ:::JS.Vl.I.A _________________ _ 

0014 1000 LL=! 
00 l ~ l 001 XT~-~Y~l~N~?~>-------
0016 XlM3=XV(MM) 

'·- 00 l / __________ DO 10 V+ K = 1,4 _______ ---------------------------------
0018 XTMl=ll~l {K) 

__ 0 0 l ') ________ . DO J3 5 0 _ l =J 1 N N _________ . ______ ___ _ __________________________________ -------------------------------
0020 D[LY(K 1 ll=XfM2 <•FV(MM,Il 
0021 O=YU!MM,1) 
00?2 1350 Y(l)=U+XTML *DELY{K,1) 

__ 002 3 __________ Y_{ Nr L_) =X TM l *X TM2_+ X_TM"l _ 
0024 CALL OERFUN 

____ Q.Q25 __ ()lJ ___ l_l_OO-_l=_L,NN _ 
0026 [ P1~2= [ +N? 
Q O l7 J l O O f J/JJ11:LwJ_=..Yl..1.elJ2J_ ________________ _ 
0028 ltJV, cmn INUF -

_____ 00 ?._9 ___ ..... _____ MMP_l = M'1+.l ____ _ 
0 0 "J"O !JO Hl :l'J I= l, N N : 

_____ 00 3 l _____________ l)E_L,; !_OFL. Y_!l ,_l _l + 2 • 0 *D FLY !_2.1_!) + 2_, 0 *DEL Y (), I)+ D_E~ YI 4 tI I) I b. 0 ____________ _ 
Oo:12 YlJIMMPl,ll=YlJ(·1M,l)+litL -
001 l ...'!'..Lil= .Y..\Wil.1tlt..l.l ________________ ---
003', lO"l'J CONflN!Jf: 

_0035 _________ . .!~l:t=i.1.it!'L _ _ __ 
0 0 3 1, XV ( •·1M ) =X V ( I~ M- l ) t-Y ( N 2 ) 

__ OQ3 7 _____ _ .YL!'.Wl J =X.V L'~/:1 I_ 
003il CALL ll[l<f'UN 
O 03'1. . i.!.'1.llJ.LL..l: il, 11 Ul Tll ....'t.2... _____________ _ 
0040 00 l~O l=l,NN 

____ 00<+ l __________ Ji'N/= l_<-N_?___ .. __________ _ 
004<' l'iO FV(MM,l)=Y(!PN2) 

____ 0043 __________ JF(MM,Nl:_._4)GO _rD_lOOl _____________ _ 
004', C AIJAMS-MOUL TDN 
0045 7000 XTM2=Y(~21 
Od4b UO 2048 l=l,NN 

----00 4_7 ____________ DEL= XT MZ _ *. { 5'i .o *F V _(_1,_,_/ _) - 59. O* F V ( 3, l l _ _ 
0048 ltl7,0•FV(2,l)-9.0*FV(l,lll/24,0 

----- 00 1+9 --- ---------- Y( I l = YU (_4_, ! l +DEL 
0050 204'l OELY{l,l)=Y(!l 
OO'il Y(NPLJ=XV{4J+_X~T~M~2~---
0052 CALL liE~FUN 

_______ 00~3 ___________ XV { 5_1 =Y I_NPl ) ___________ _ 
00-'5'+ illl 2051 l=l,NN 

_____ 00', 5 _________ _1 PN2= [ •N.2 ___ ------------------ ______________ _ 
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OOoo Dl:L=XTM2 * ('l,O*Y( ll'N2)+19,0¥FVl4, I I 
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OCF,il YU ('J·, I )=YU( 4, [J+OEL 
00'>9 20.51 Y(ll=YU(5,l) 

--1 

_____ 0060 ___________ C/\L_L _Df RFU N _______ ------------ _________ ·---------- --------------------------- ______________ _ 
, 0061 IF(MDOf,NE,JlGO TO 42 
__ 00 6 2 _ C _____ [I{~[) R ___ AN ALYS _l S ____________ -------------- _____________________ ---------------- _ 

0063 SSE=O,O 
oo b '• no 3 o 1 3 I = :l.L!'LJi__ _________________ · 
OOb'J EPSIL=R*AOS(Y( 11-DELYl 1,1)) 

__ 0066 __________ IF_( KK_A __ , FO, 2 I_G[J__ TD 33D7 __ 
D067 !F(Yl l),EQ,0,)GO TO 3307 
006d EPSIL=l:PS!L//\rlS(Yll)l 
0069 3101 IFl(SSE-EPSJLI.LT.O,ISSE=EPSIL 
0070 1011 CONTINUE 
0071 !F((E!MAX-SSE),Gf.0,)GO TfJ 3035 
00/7 lF((AllS(YIN2) )-l:2M!Nl ,GT.O, IGO TO 4340 ----0013 - - GO TO 42 . - - .. --

____ 00 /4_ l03o lF((SS[-[lMIN),GE,O,)GO TO 4-2 
OOVi . ·1F(IUMI\.X,-AbS(Y(N211).Gl.O,)G[J ro·S-360 

i...- 001/-, GU TO 4 2 ------------------~-----
! 0077 4140 LL=l 

I- -ggi~-------- ~~~~ = 
1 

- -

! , 0080 Y(N21=Y(N?l*FACT 
DORI ~ GU TO 1001 -- . -

008? 53&0 lP(LL,EQ,llGO lU 42 
0033 XV(2)=XV(31 
0084 XV(31=XVlS) 

i 008S . DO ~3o3 J~l,NN . --------------------------------------------------------------

~---00tl6 _____ F V ( 2_,_l_)_=FV ( l __ , l ) _______________ -______________________________________ ----~----------------------------
: OOR7 !PN2=1+N2 

.. ! 0008 FVD,l)=Y(IPN2l __ _ 
OOR9 YU(2,ll=YU(3,1) 
0090 ~361 YUL!,l)=YU(5,ll 
0091 Y(N21=2.0*YIN2) 
_QQ 9 2 f E: HR = 2 
0093 - LL~2 - . 

0094 MM=3 
00'15 GU TO 1001 
00~6 C fXIT ROUTINE 

; 0097 ',? IF(MOill:,EQ,l)GD TO 43 - ·. 
. 0098 no /OTK=l,4 
ii 0099 /(K,NPll; XV(Kl 
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01 0 2 l ( K , l I = Y lJ l K , l I 

' 0103 JPN2 = N? +·1 - . -
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· ·olo'> -~-' 115,;~PII •;;·xv1sl · · ·, · -
0101, DO 70a I= l",NN 
010/ ztr;,1J= YlJl5,I) 
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OLOY . /09 - /.(5
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IPN2l= Y( IPNZ)· . . ---------------------------------------------------
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0 l lO 

IPN2=lt-N? 
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XV(?l=O. 

____ tY.LU=Q, _______ _ 
IU!R = 3 

____ 1\1.1'11>1 =Y !f-JN_>· I l 

____ I) l l I __ M r'I = l ------------·------······-----------·----------------
O l "I? ·11- ('1tlllL-.['IJ,llMM=lt 

_QJH . _flF I ti) =<l, '5_ 
0111, 111:-11?1=0.~ 
0 l l o I.\J" I ( :i I = I , () 
0 I .ll, ll E T I ,, I = 0 , 0 

_____ 'lll l ______ ....:.tJ2.=N'L!..2 .. __________ ··------------------·-··-
0138 Y(N2l=SP~CE 
Q l J') NI' I =t,ll,+J 
0 I 'it' I<= t ,, , r I I? 7 () • 0 

_0141_ XV(~MJ=YJNPll 
ll it, 2 I f I I l. r~ l N , I F , 0 • I I l Ml No cl MAX I 5 ':, • 0 

____ 12_lr, ·1 ----- f 11 F /\( T. I f' ,Q__, I F_AC l =O ._:; _____________ ----··· 
() [I, 1, C /\ I_ I_ I_) r· :, f IJ N 
()l_l,') lilJ_:',_/) [ca!,/\lr~ 
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0.! 11] _ F VI _2 1 I I= 0. 
011,ll rV(l,ll=ll, 

____ fil " 'l_ _______ f..Y.L1,~.LLl."..l'...lL p ruJ. ____ --------------· ····-··-······ .. -
Ol';rl YU(2,!l,O, 

o l':> I Yu I l I l ! = o, 
015? \20 YIJ(,',IM,l)=Y(I) 

_OJ5l_ co IU lOClO 
0 I '> '• n [ = /\ 1,C, ( XV (4 I -Al PH A l 

. ___ O I.•, 'i . ______ _I I·_( _I E-l l','-11 , L f'_, 0, ) Gll_TIJ _2_000 
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Card Numbers 

MAIN 

73-76 

78-85 

86 

88-91 

93 

95-99 

101-117 

119-122 

125 

126-127 

130 

DERFUN 

46-50 

53-142 

APPENDIX J 

COMPUTER PROGRAM STEPS 

Step Description 

(1) Enter MAIN program and read the number of approxi
mation strips, N, and the program control constants. 

(2) Print all the input data. 

(3) Decid~ whether to punch tbe input data. 

(4) If desired, punch the input data. 

(5) Initialize time to zero. 

(6) Set internal program constants. 

(7) Calculate the initial polynomial temperature coeffi
cients (Equation 3.9), 

(8) Set the initial solid species densities (Equation 
3.10). 

(9) Enter the ordinary dif£erential equations integra
tion ST.ART program with its program control constants" 
Return to MAIN. 

(10) Initialize program constants. 

(11) Enter the ordinary differential equations integra
tion program KAMSUB to calculate. the unknowns at the 
next time step. Enter subroutine DERFUN from KAMSUB 
to calculate the ordinary differential equations. 

(12) Calculate program constants. 

(13) Calculate the reaction rate constants, the polyno
mial coefficients for the heat generation integral 
(Equation 3.5d), the polynomi~l coefficients for the 
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Card Numbers 

143-200 

203-210 

201 

MAIN 

137 

144-228 

229 

231-233 

235-239 

242-243 

Step Description 

integrals representing a change in the effective 
therro,al conductivity (Equation 3.5b, c), and the 
local solid species derivatives. 
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(14) Calculate the polynomial coefficients for the tem
perature derivative (Equation 3.6) including the 
surface boundary condition (Equation 3.7a orb) with 
terms depending on the type of boundary condition 
(Radiative or Convective) and case (O, 1, or 2) be
ing considered. 

(15) Give functions for time-dependent radiative heat 
flux and its derivative (constant flux considered). 

(16) Return derivatives of the variables to KAMSUB to be 
integrated for values at the new time step, Return 
values to MAIN. 

(17) If the total number of time steps or the total 
length of time since the last printed step is not 
the desired value, go back to KAMSUB and integrate 
for the next time step; otherwise continue with the 
values of variables at this time step. 

(18) Calculate the local values for each gas species, tan
perature, mass loss rate, and total solid; including 
the polynomial coefficients for the overall average 
values of each gas species, mass flux, and total 
weight. 

(19) Decide whether to punch the output. 

(20) If desired, punch the output. 

(21) Print the output. 

(22) If the desired total length of time has not been 
reached, go back to KAMSUB and integrate for the 
next time step; otherwise stop. 

Note: Card numbers refer to the program listings given in Appendix I. 
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