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PREFACE 

The basic purpose of this dissertation h&s been to shed some light 

on one of the less well researched and understood aspects of the phenom-

enon commonly known as 11 learning 11 and perhaps to stimulate interest in 

understanding the separate processes which are supposed to contribute to 

this phenomenon. It is hoped that with such an understanding the design 

and synth~sis of more useful learning machines and adaptive systems will 

become possible. 

The particular part of the learning process investigated here con .. 

cerns the generation of new ideas and what might be called 11 insight 11 or 

11 crea1:ivity11 • It ha;s sometimes been thought that such capabilities may 

be possessed only by living systems, perhaps only by humans. Without 

bothering to argue the point, the contrary has been assumed in this in-

vestigation. This study is concerned n~t with whether such a process 
i 

can be simulated on a machine but rather with how it can be done in 

general arid in the particular simulated model propos·ed in the study. 

The rl\odel used in 'the invest:i.gatiim is tha't of a communication 

system with a learning receiver. The receiver learns to recognize as 

distinct all of the different symbols sent by the transmitter in the 

presence 6f noise~ without a priori knowledge of the. number of symbols 

or the symbol features required for distinct recogni.tion. 

Attention is centered on the process whereby the receiver proposes 

new symbols for recognition which it supposes are being sent by the 

transmitt:.er. The pehavior of _the learning receiver in this regard is 
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felt to demonstrate the feasibility of machine generation of relevant 

new ideas in a learning environment and gives some understanding of this 

basic part of the learning process. 

I would like to express my sincere appreciation to Dr.1Bennett L. 

Basore, my adviser, for his guidance and assistance throughout the 

study. Al though he let it be a real 11 do-i t-yourself 11 project, he was 

always ready with helpful suggestions and stimulating discussion. 

Thanks are also due to Dr. Arthur M. Breipohl for his interest, sugges­

tions, and encouragement. The assistance of committee members Dr. 

William Hughes, Dr. Kenneth McCollom, and Dr. Leroy Folks is gratefully 

acknowledged. 

A special thanks go to my wife, Sandee, for her encouragement, and 

help in the preparation of the final draft. 

I would also like to thank Dixie Jennings for typing the final 

copy. 
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CHAPTER I 

INTRODUCTION 

Learning and Inductive Inference 

The simulation of human learning processes on computing machines 

generally takes the form of an attempt to perform inductive inference 

on a machine initially designed fol;' deductive inference. The fact th.a,t 

programs have been written which play acceptably good games of chess 

and c~eckers, and which learn from their own experiences is evidence 

that some meaningful progress has been made in this direction (1,2). 

Such game-playing programs generally use a process of testing 

various playing strategies against a backlog of past playing situations 

with known res1,1lts in order to determine the relative merits of each 

strategy. This can be interpreted as showing that the pl;'ograms do 

exhibit some capacity for inductive inference. The assignment of in­

ductive probabilities, or credibilities, to the set of competing 

hypotheses, or strategies, using the store of empirical data and, per­

haps, some a priori credibility for these hypotheses can certainly be 

said to be at least a part of the inductive process (3). 

Up to this time there has been little evidence that machines using 

this principle are capable of 11 q:-eativen work, and it· is presently un­

known whether truly creative machines will ever be feasible. Minsky (4) 

points out that limitations in this area may well not be limitations 

inherent in machines but rather in our present ability to construct and 
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program them. This idea seems to be prevalent at the present time but 

the controversy is by no means settled. 

2 

Present-day lea!ning theory is far from being fully developed and 

there are many directions in which it may be extended. For example, 

the capability for generating completely new hypotheses, or ideas, is 

not _provided in the present theory, although there is 11 roomfl in the 

theor.y~for such a capability and many researchers feel that this is 

possible. At the present state of development most learning systems 

dep~nd on the human system designer for a general formulation of the 

hypotheses. The learning systems can then 11 refine 11 those hypotheses to 

improve their performance. 

The theory of inductive inference, as used in present-day learning 

machines, describes the behavior of the credibilities assigned to a set 

of competing hypotheses based on a growing body of empirical evidence. 

That is, it describes the manner in which a machine assigns credibili­

ties to the set of hypotheses when the machine is presented with evi­

dence which supports or denies the truth of the various hypotheses. 

In order to relate the amount of learning to the credibilities 

associated with a set of hypotheses, let the amount of learning be con­

sidered 11 high11 when unity credibility has been assigned to one hypoth­

esis and zero credibility to all the others, or one hypothesis has been 

found to be the 11 law 11 governing the data. The amount of learning is 

11 low 11 when all the hypotheses have equal credibility and there is great 

uncertainty as to which hypothesis is true. The usual entropy measure 

of the credibilities is often used to provide a qualitative measure of 

the amount of learning associated with the credibilities. 

The R-function of Bakan (5) provided some initial insight into the 
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situations which affect the rate of learning. He showed that learning 

takes place rapidly when the empirical evidence is very closely associ­

ated with only one of the hypotheses, that is, the observed data could 

be the result of the truth of only one of the hypotheses. When the ob­

served data may be the result of the truth of many of the hypotheses, 

learning takes place more slowly. 

Basore (6), interpreting the R-function as a measure of the unique­

ness of the data with respect to the hypotheses, investigated some of 

the theory of inductive inference from an information theoretical point 

of view using the R-function. In particular, he shows how the informa­

tion flow through a learning system is affected by the state of learning 

in the system, and that this, in turn, ~an be expressed in terms of R. 

Watanabe (3) gives a mathematically well-founded and comprehensive 

information theoretical analysis of inductive inference. His an~lysis, 

based on Bayes' theorem, shows that the expected value of the entropy 

of the credibilities must show a net decrease with increase in relevant 

empirical data, thus the system learns as more relevant empirical data 

are accumulated. He also gives a large body of methodological arguments 

justifying the model and discussing some of the more important points 

of inductive inference from an engineering point of view. 

The Generation of Hypotheses and Learning 

Fundamental to the theory at the present state of development is 

that only hypotheses which are actually formulated by the learning sys­

tem may be judged. This seems natural ,enough unti 1 one comes to the 

situation in which none of the proposed hypotheses gives a good explana­

tion of the observed data. What does one do when the conceptual model 
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applicable to an observed physical situation is not included in the set 

of hypotheses? Since the observed data must be 11 possible 11 in view of 

the proposed hypotheses, the data will tend to support those hypotheses 

from which the data could have arisen no matter how inappropriate those 

hypotheses are. 

It would be very convenient if the theory included some method of 

detecting such situations and proposing new hypotheses which would 

better fit the data. Certainly it is not possible to derive hypotheses 

from data in a mathematical fashion since this is equivalent to reducing 

the whole problem of statistical inference to mathematical certainty. 

Then it must be left up to the learning system itself to propose new 

hypotheses by whatever means it has at its disposal. 

One of the most remarkable things about living learning systems is 

that they have a capability for organizing information in a fashion 

almost never matched in machine simulations. It is contended in this 

paper that the reason for this disparity is not so much the problem that 

the machines cannot be made large enough and fast enough to do the 

required computations, but rather that the living learning systems seem 

to possess capabilities which have not been identified in enough detail 

to permit simulation by a machine. 

Gestalt psychology contends that there are various factors which 

organize, for instance, the visual field so that data received by the 

eyes is immediately perceived as having certain properties, without any 

need to consider all the possible properties that the data might 

possess. For example, elements in the visual field that are closest to 

each other tend to be perceived as groups; when more than one kind of 

element is present, those which are similar tend to form groups; and 
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lines which enclose a surface tend to be seen as a unit, or a 11 shape 11 • 

Furthermore, it is contended that these perceived properties are somehow 

nnatural11, although previous experience helps in the fo~mation of these 

concepts. In a general way, Gestalt theory promotes the belief that 

learning systems, or at least human beings, possess a faculty known as 

llinsight 1f whereby new ideas, or hypotheses, are generated in a remark .. 

ably efficient manner. 

This paper does not propose the construction of a machine having 

insight, or that the construction of such a machine is even possible. 

However, it is proposed to show how a learning system can be constructed 

that learns through its own experience in a fashion considerably more 

efficient than by completely random generation and testing of hypoth­

eses, and that such a machine can exhibit some seemingly Gestalt actions. 

There is c:1,t the present time no formal theory explaining the 

hypothesis generating phenomenon observed in living learning systems. 

The approach in this paper is exploratory in nature and, as will be 

explained later, there may be little value in attempting the formulation 

of a rigorous theory with the limited amount of data available to date. 

A Typical Problem 

As indicated, the identification of clusters of points in the 

visual field is a typically Gestalt phenomenon and, indeed, one that is 

difficult to simulate on a computer because the mechanism of identifying 

clusters is not well understood. For example, when a person is shown a 

set of points such as in Figure 1 and asked to identify any patterns in 

the data, one would probably reply that there are 11 obviously11 three 

clusters of points like that indicated in Figure 2. 
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Fig1,1re 1. Example of Clustering Problem 

6 



Figure 2. Possible Solution to First 
Clustering Problem 
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12 Actually, there are about 2.5 x 10 different ways the points can 

be divided into three groups and, according to the theory of inductive 

inference at least, one would have to weigh all these different ways 

(hypotheses) to find the most likely one. It seems quite evident that 

this is not done. The solution is much more 11 natural 11 • 

Perhaps more obscure is the way in which the number of clusters, 

three in this case, is determined. One frequently proposed method of 

determining the best number of groups is to choose that number which 

minimizes some measure of the within-class variance of each group 

averaged over all the groups. Exactly how this measure is determined 

is not obvious since raising the number of groups always decreases the 

within-group variance, although the decrease becomes less and less with 

each increase in the number of groups. Perhaps one should choose the 

most "economical" number of groups in this respect. 

There are, of course, many other acceptable ways of dividing the 

points, for instance, putting each point into its own group might seem 

like the best way to some. Generally, the answer might vary from person 

to person because of the difference in the way the problem is perceived 

by different individuals. 

If the problem is changed only slightly the answers obtained may 

be strikingly different. If the points are arranged as in Figure 3, 

most answers would look something like Figure 4. It is immediately 

evident in this case that the similarity factor for each group is not 

closeness of points to each other but distance of the points from the 

origin. 

In either case, a person's a priori knowledge, or belief, about 

just what is a pattern, how patterns can be expressed as groups of 
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points, and how many different groups there should be plays some role 

in obtaining the answer. In addition, the data itself may suggest re­

markably different approaches to the problem. Finally, it seems certain 

that not all the possible hypotheses are tested, but that the process 

of solving the problem converges on the right answer, or at least an 

answer acceptable to the problem solver, much more rapidly, perhaps by 

a system of learning from a few trials. Probably some knowledge about 

the correct answer is gained from trials that yield unsatisfactory 

answers. 

The Use of Data in Learning 

Another interesting question to which very little attention has 

been devoted in the past is the question of how one knows what informa­

tion is useful and/or necessary to solve a given problem. In the 

clustering problem there is only a small amount of information given to 

begin with, however, even some of that is probably discarded, or not 

noticed by the average person. For instance, the coordinates of the 

points with respect to specific axes seems to have no value in finding 

patterns among the points, and whatever information could be obtained 

from this source is probably disregarded. 

In many situations there is more raw data available than can be 

economically handled and so one resorts to some form of preprocessing 

to strip off data believed to be redundant and irrelevant. Perhaps the 

simplest form of preprocessing is that of throwing away or disregarding 

part of the available data. In the clustering problem, the orientation 

of the points is disregarded because it seems to be irrelevant. 

There is an important distinction to be made here between redundant 
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and irrelevant data. Redundancy as used here is a property of the data 

itself wherein the information is overspecified or repeated in a given 

body of data, On the other hand, irrelevancy is somehow a property of 

the use to which the data is put. Data may be either relevant or 

irrelevant depending on the particular problem it is used to solve. In 

the first clustering problem, the distance from each point to the origin 

is irrelevant; but in the second problem, that distance is the key to 

the particular solution given. 

The point to be made by this discussion is that the way the data 

is handled depends greatly on the concept of the problem to be solved. 

In a situation where the problem is very general, such as the clustering 

problem, the solver's idea of what is expec~ed in the solution affects 

the way the data is processed and, ultimately, the resulting answer. 

In addition, it should be evident that the problem solver's concept 

of the problem may change as the solution is attempted, which leads to 

different handling of the data, The fact that the data itself may 

affect the way in which it is processed leads to the concept of a 

dynamic system with feedback which converges to a stable state when the 

system is nsatisfied 11 with its own performance. 

If a solution to the second clustering problem were attempted on 

the basis of having all the points in each group close together, the 

only possible answer would be to have all the points in one group - not 

a very satisfying result. Perhaps the fact that no good solution of 

this type is found causes the data to be reprocessed, whereupon the 

characteristic feature may be found to permit a satisfying answer to 

the problem. 
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A Model of a Learning System 

In order to investigate some of these aspects of learning, it is 

proposed to study a model of a communication system with a learning 

receiver and to identify in its behavior some of the previously dis­

cussed phenomena. The system consists of a transmitter, i noise­

inducing channel, and a self-evaluating, l~arning receiver synchronized 

with the transmitter. 

The proposed model is one in which all the learning takes place at 

the receiver without benefit of a teacher to inform the receiver of its 

successes and faiiures. l'hus, learning is based on the receiver's own 

evaluation of its performance according to some basic, fixed measure of 

goodness of performance. That is, the receiver attempts to adjust its 

parameters so that its own measure of satisfaction with its performance 

yields at least some minimum value. The criteria by which the receiver 

judges its performance is, unfortunately, fixed and this surely limits 

the ultimate degree of learning by the system. No claim is made that 

the system is creative, but merely that some aspects of learning may be 

observed in the system's behavior. 

The receiver is given the task of recognizing which one of a finite 

set of symbols is sent by the transmitter during each time interval. 

The only information available to the reciver at the outset is statis~ 

tical knowledge of the noise introduced into the received signal by the 

channel. In addition, the receiver is given the criteria by which it 

evaluates its own performance and some general 11 beliefs 11 about the type 

of environment in which it is to operate. 

Since the receiver has no initial knowledge of the set of symbols 

sent by the transmitter, it must first form an estimate of the 
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transmitter symbol set and then nrecognize11 the received signals as 

particular representations of the estimated symbol set. The set of 

estimated symbols, called the receiver symbol set, is obtained by proc­

essing the received data using some simple clustering algorithms. 

It is particularly important to realize that in this corrununication 

system it is not the forms of the transmitted symbols themselves that 

convey information to the receiver, but rather that the receiver derives 

its information from recognizing which one out of all the possible 

symbols was sent during each time interval. In much the same way, the 

form of an individual symbol printed on this page conveys no information 

by itself. Information is conveyed to the reader by his recognition of 

the symbol and whatever meaning he has associated with such recognition. 

Since the receiver is essentially a decision making device, all of 

the possible decisions must be known by the receiver. It is also seen 

that the only decisions ever made will be those known to exist by the 

receiver, or those of which the receiver is 11 aware 11 • For this reason, 

each received signal will be recognized by the receiver as a repre­

sentation of one of the symbols it expects the transmitter to send. 

Each received signal will be recognized as one of the symbols in the 

receiver symbol set no matter how great the disparity between the trans­

mitter and receiver symbol sets. 

It is not particularly important in itself that the receiver and 

transmitter symbol sets match since the exact form of the symbols has 

no information content, but the recognition process required of the 

receiver does require close correspondence between the two sets at 

least in the features used by the receiver for recognition. 

Once the receiver forms a preliminary symbol set and begins to 
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recognize the incoming signals, the self-evaluating part of the receiver 

begins to scrutinize the system operation and to propose new symbols, 

or hypotheses, which lead to more satisfactory recognition of the re­

ceived signals. Satisfactory in this case, of course, means satisfac­

tory to the receiver. 

The communication system receiver proposed uses basic pattern 

recognition and clustering techniques to recognize the incoming signals 

and to analyze syst;em performance. Clustering techniques are of par­

ticular importance in this investigation because they help the receiver 

to discover the structure of the data and develop new hypotheses for 

recognizing as distinct each different symbol in the transmitter symbol 

set. 

Unfortunately, the algorithms used in this part of the study are 

based on heuristic techniques, that is, techniques which give good 

results most of the time when applied but which are too complex to per­

mit straightforward mathematical analysis. Because of the algorithms, 

it is very difficult to show conclusively that the proposed system will 

ever converge to the optimum state, but it is seen that the iearning 

techniques studied do help bring the system closer to the optimum when­

ever possible. In general, the learning techniques increase the infor­

mation flow through the system although it i.s not certain that the 

information flow ever reaches the limit imposed by the channel and 

transmitter. 

The rate of information flow through the communication system is 

used as a measure of the state or amount of learning accomplished by 

the system. Information flow is perhaps a more meaningful measure of 

system performance and system learning than many other criteria that 



15 

might be proposed since the system's µlt;lmate goal is to transfer know­

ledge about the choice of symbols made at the transmitter. It is ex­

pected that the information flow through the system will increase as 

the receiver learns and will gradually approach an upper limit deter­

mined by the transmitter and channel as the receiver approaches its 

optimum. 

The key to the receiver's operation is that it proposes new 

recognition schemes at the receiver when the received data indicates to 

it that those new schemes may aid in improved recognition of the symbols 

sent by the transmitter. It proposes to receive new symbols when it 

detects data that may indicate that, for instance, the transmitter is 

sending two or more different symbols that are not being distinguished 

by the receiver. 

First, the receiver must surmise that two or more of the trans­

mitted symbols· are being recognized as identical by the receiver. It 

does this by examining the past data stored in its memory and detecting 

inconsistencies in what appears to be noise on the received signals. 

Exactly what sort of inconsistencies may be detected is detennined in 

large part by the fundamental beliefs of the receiver concerning the 

transmitter and channel, and its measure of satisfaction wit;h its own 

operation. 

Second, after inconsistencies have been detected, the receiver 

attempts to improve on this unsatisfactory operation by proposing new 

symbols using the suspect data itself to model the new symbols. In 

part, the receiver is automatically endowed with suggestions of how to 

proceed with the formation of the new symbols because they must be 

postulated in such a way that the inconsistencies in the data are 
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resolved. 

It may well be that simple adjustments in the receiver's decision 

scheme will result in satisfactory recognition of the new symbols and, 

in this case, this is all that is done. 

The more interesting situations 1 though, are those where the data 

must be reprocessed in order to extract the proper information to permit 

satisfactory recognition. Generally, this reprocessing results in the 

supplying of new information to the recognition scheme through a change 

in the preprocessing of the data. Information in the data which might 

have been considered irrelevant by the original receiver recognition 

process may once again be examined in a search for discriminants that 

lead to satisfactory recognition of the symbols. If such discriminants 

are found, then they are included permanently in the recognition process 

for those symbols. 

In either case, the way in which the receiver learns the symbols, 

then, indicates that new symbols are "suggested" by the received data, 

and that the receiver's dissatisfaction with its own performance starts 

the learning process. 

It should be evident that the receiver must have some bare minimum 

of knowledge about its own operation and the type of system in which it 

is to function. Just where this initial knowledge is obtained in a 

general learning system is a very interesting question but one that 

this paper does not attempt to answer. It is sufficient to say at this 

point that the overall response of the system is determined by its 

basic structure and its concept of how it is to function. 



CHAPTER II 

THE MODEL 

The Communication System Model 

The basic communication system model to be utilized in this study 

is illustrated in Figure 5. The set [i1 ,pi}' i = 1,2, ••• k, represents 

the k p9ssible symbols sent by the tra,nsmitter, each symbol :x:i' an 

n-dimensifonal vector and its associated probability pi. At each signal 

transmission time, the random vector X takes on the :value x1 with 

probability pi. The selection of each :x:i, iJ'.independent of all pre ... 

ceeding selections. 

CHANNEL 
TRANSMITTER 

(xi, Pj} 
ic1,a .•• K 

RECEIVER , 

fzj, tJl 
j=1,2 ... J 

........ j 

NOISE 

Figure 5. The Basic Model 
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The channel adds an n-dimensional random noise vector to the 

transmitted signal X to produce the received sign~l Y, also an 

n-dimensional vector. The channel is assumed to be memoryless so the 

noise vector added to each transmitted signal is independent of the 

previous signals and noise. The noise vectors are assumed to have a 

known continuous probability density function f_(n). 
N 

For a given transmitted signal xi, the random var,i~ble y will have 

density function f_l_(ylx.) = f_(y~x.) since the signal and noise are 
YX 1. N 1. 

directly additive. Then the unconditional density of Y is a mixture of 

the conditional densities with mixing weights p .• 
l. 

The receiver is a decision-making device which must 

-the of of basis the received signal y, which one the x. 
l. 

the start of the learning process, the receiver may have 

determine, on 

was sent. At 

only a very 

limited knowledge about the various xi and their relative frequencies 

pi. In order for the receiver to be very effective in making decisions 

about the symbols being transmitted, it must obtain information about 

the set [x.,p.} from the received data and then use this information to 
l. l. 

aid in the decision process. 

Considering the receiver as a decision-making device, it is evident 

that the complete set of possible decisions must be known to the re-

ceiver in order that they may be weighed according to some predetermined 

scheme to arrive at the decision. In effect, this means that each re-

ceived signal will be identified, or recognized, as one of the symbols 

which the receiver expects to receive without regard for whether or not 
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the exact form of the symbol sent by the transmitter matches any of the 

symbols expected by the receiver. 

The set [~.,q.}, j = 1,2, ••• t, represents the symbols which the 
J J 

receiver expects and their supposed probabilities of transmission, so 

every signal y is recognized as a representation of one of the zj's 

according to the decision scheme in use at the receiver. In this 

respect then, the receiver actually receives, or recognizes, only z's, 

and not x's, so it is not perhaps technically correct to say that the 

receiver is able to determine which of the x's has been sent. As a 

convention though, it is to be understood that the receiver is able to 

identify all the xis when it recognizes each different x. as a different 
1 

zj' that is, when each different xi transmitted without noise would be 

recognized as distinct by the receiver. 

Ideally, the receiver is able to recognize the x's with the least 

amount of ambiguity when it expects to receive exactly those symbols 

and none other. For the receiver, the set [z.}, j = 1,2, ••• t, serves 
J 

as an estimate of the set (ii}, i = 1,2, ••• k, and the receiver functions 

as though the transmitter were actually sending z's. Thus, the receiver 

will be optimum when it has learned the set(~.} from the received data 
1 

and its (z.} are chosen so that there is ari equivalence bltween the 
J 

two sets. That is, there exists a one-to-one relationship between (~i} 

Therefore the role of the learning part of the receiver is to 

examine the received data and use the information it contains, along 

with any a priori knowledge, to form the set c;j,qj}. If the system 

functions effectively, it is to be expected that the set [z.,q.} will 
J J 

converge to [~.,p.} in some orderly manner as more anrl more data are 
1 1 l 

i 
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received. The [ij,qj}' then, represents the receiver's state of know­

ledge about the transmitted symbols and their probabilities, [i.,p.}. 
1 1 

Pattern Recognition in the Model 

Decision-making in the receiver is implemented by the use of 

pattern recognition techniques. Each received signal y, an 

n-dimensional vector, is represented by a point in an n-dimensional 

Euclidean space at the receiver. The individual y vectors are called 

patterns and the En into which they are projected is called the pattern 

space. The decision scheme is implemented by partitioning the pattern 

space into regions such that the decision as to which symbol the re-

ceived signal represents is made by merely noting into which region of 

the pattern space the pattern y falls. The problem of determining the 

decision process to use is thus seen to be that of finding the proper 

partition of the pattern space. 

Assume for a moment that the receiver has perfect knowledge of the 

transmitted symbols, i.e., that [-z.,q.} = [i.,p.}. It is known that 
J J 1 1 

the decision scheme yielding lowest error rate under these conditions 

is the Bayesian decision rule (7). That is, when the signal y is re­
r 

ceived, decide that the symbol xi was sent for which Pr(iijyr) is maxi~ 

mum. Pr(i. Jy ) means the probability that x. was sent given that yr is 
1 r 1 

the received signal. In practice, Bayes' Theorem may be utilized so 

that the actual decision is to choose the symbol x. for which 
1 

f?jx<Yrlii)pi is a maximum. The conditional density function fv1x<ylii) 

is known from the channel characteristics, anµ pi is assumed known in 

this case. 

From the pattern recognition point of view, this decision scheme 
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is equivalent to constructing a partition of the pattern space dividing 

it up into the k regions where, for each i = 1,2,~ •• k, f_
1

_(yl~.)p. is 
y X 1 1 

greatest. 

The construction of this partition may be simplified considerably 

if certain assumptions are made about the channel-induced noise. In 

the problem considered here, it is assumed that the noise is normal and 

hyper-spherical with zero mean, that is, the noise consists of inde-

pendent samples drawn from an n-variate normal distribution with zero 

mean and covariance matrix cr2I where I is then-dimensional identity n n · 

matrix. Then fyix<Yl~i) will be a spherical distribution arounq the 

point x. since y is the sum of the x. vector and the noise vector with 
1 1 

zero mean. 

Under these assumptions, fYIX(yi~i) may be expressed as a single­

variate function of the square of the Euclidean distance from the point 

y to the point xi without regard for the direction vector between these 

points. 

1 
n 
2 n 

(2TT) cr 

- - I - -
(y-x.) (y-x.) 

exp[ 1 2 1 } 

2cr 

- - I - -
So (y-xi) (y-xi) 

2 distributed as x (n), a chi-square distribution on n degrees of freedom. 

The partitioning surfaces will then be constructed as a set of 

hyperplanes in the pattern space. For example, suppose there are only 

two symbols in the transmitter symbol set, x1 and x2 , with respective 

relative frequencies of transmission p1 and p2 • _The surface partitionp 

ing the pattern space into regions with fY/X(yJ;1)p1 ~ fY/X(yl;2 )p2 in-
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one of the regions and with the inequality reversed in the other region 

is a hyperplane perpendicular to the line segment joining x1 and x2 and 

passing through the point on that line where fYIX(y!i1)p 1 = fYIX(yji2 )p2 • 

A one-dJmensional example of this is shown in Figure 6 where the 

hyperplane is;merely a point on the y-axis. When the signal y is re-

ceived, the decision is made by comparing the value of y with d. If 

y ~ d, decide x2 was sent, otherwise decide x1 was sent. The point 

This 

decision s'cheme will yield the lowest decision error rate for the system 

described. 

fv/x (Y/Xj) Pj 

DECIDE XI 

d 
I 

DECIDE X2 

p = ~ 
I 3 

Figure 6. Bayesian Decision Scheme in one Dimensio~ 
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The Receiver Decision Scheme 

In the actual learning system, of course, the receiver has no such 

perfect knowledge of the transmitted symbols and their probabilities 

upon which to base the decision process, Under these circumstances, it 

appears that the receiver can only utilize the best information avail-

able to it, that being the [z.,q.}, j = 1,2, ••• i, which it uses as its 
J J 

estimate of the transmitted symbols and their probabilities, 

The receiver, as explained previously, must operate as if the 

transmitter were actually sending symbols from [z.}, j = 1,2,, •• i, and 
J 

so the receiver decision scheme operates as though this were the case. 

The receiver is assumed to have complete knowledge of the channel noise 

and so it is able to consider probabilities such as 

Pr(zj received r zi sent), An outside observer, of course, knows that 

the symbol zi is not actually sent by the transmitter (unless it happens 

to coincide with one of the i 1 s), and so such a probability is ficti~ 

tious. However, the receiver 11 thinks 11 that the symbol zi is bein~ sent 

by the transmitter with relative frequency q., so such a probability 
l 

has a definite and logical meaning to the receiver even though, in fact, 

the event may never occur. 

As a notational convention, the letter z will represent symbols 

received, or recognized, by the receiver, and z 1 will be used to indi-

cate symbols which the receiver supposes are present among the set at 

the transmitter. Thus, Pr(z. received I 
J 

z. sent) is written Pr(z.jz'.). 
l J l 

The letter x indicates the symbols actually transmitted, and y the re-; 

sulting signals presented to the receiver. 

In view of this, the decision scheme used by the receiver is: upon 
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receipt of the signal Yr' decide that the symbol zi was sent for which 

Pr(z~jyr) is a maximum. Bayes 1 Theorem is again utilized so that the 

actual decision rule is: upon receipt of a signal Yr' decide that the 

-1-' symbol z. was sent for which f_
1
_(y ·z.)q. :is a maximum. 

i y z r i · i 

It would be a surprising coincidence if the decision r~le based 

upon ~he [z.,q.}, j = 1,2, ••• t, were optimum for recognizing all the 
J J 

transmitted symbols. However, as the receiver in learning the trans-

mitted symbols brings the [z.,q.} closer and closer into correspondence 
J J 

with the [~.,p.}, and the decision rule changes accordingly, the re­
i l 

ceiver 1 s ability to recognize the transmitted symbols should improve 

until it approaches the limit imposed by the channel noise. 

The Model Receiver 

A block diagram of a complete adaptive receiver is shown in 

Figure 7. Briefly, tqe received signals are preprocessed in the Meas-

urement Selector and ~hen presented to the Categorizer which performs 

the decision process, symbol recognition, with the aid of the informa-

tion contained in [zj,qj}' j = 1,2, ••• t. The received signals, along 

with the output of the decision process, are stored in the Memory for 

later reference by the Performance Evaluator and Symbol Generator which 

adjusts the receiver symbol set as learning progresses. 

The Measurement Selector is perhaps the simplest possible type of 

preprocessor. Then-dimensional vector y at the input is reduced to an 

n.-dimensional vector, 0 < n. < n, at the output by simply disregarding 
J J -

the last n-nj components of the vector y. That is, the first n. com­
J 

ponents of y are passed unchanged through the Measurement Selector and 

outputted as an n.-dimensional vector. This vector will be denoted by 
J 
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n-Y J when it is necessary to indicate the dimensionality of the vector. 

Any information contained in the last n-nj components of y does not 

contribute to the decision process. 

The number nj is the number of components of y which are utilized 

at a given stage of the learning process for recognition of y as a 

representation of the iib symbol, zj. The number of components is, in 

general, to be held to the minimum that will produce acceptable results 

in the recognition process. This means in effect that the information 

used in the decision is determined by the decision itself, a seemingly 

circular situation. 

In the model system this difficulty is circumvented by performing 

a series of decisions, each requiring as much or more information than 

all previous decisions until the process terminates when one and only 

one of the zj is left for which Yr may be a representation. The overall 

recognition process may be represented by a tree diagram li~e Figure 8 

where each succeeding decision is made using more and more components 

of the received signal vector y • The ·numb.er. o,Ldil'!iensionsic\to- ,bie ,con- -r_ 

sidered in each decision is determined by the outcome of the immediately 

preceeding decision in the tree. 

The pattern space in which the decision surfaces are constructed 

needs only n. dimensions. As the categorizer performs the sequence of 
J 

decisions at each stage of the decision tree, the dimensionality of the 

pattern space and decision surfaces thus increases just enough to per-

form the perceived task at hand. 

At this point it should be evident that the vector representations 

of the recognized symbols, [;j}, need be vectors each containing only 

nj elements since the decisions made with the use of these vector models 
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of the received symbols are made on the basis of only nj components of 

the received signals. Thus, the receiver stores a description of the 

symbols it expects to receive only to the extent necessary to recqgnize 

those symbols as distinct from each other. 

The function of the Performance Evaluator and Symbol Gf?nerator is 

to periodically examine the Memory, which contains the past data and 

performance, and to propose new symbols with the corresponding recogni­

tion scheme which will cause t~e system operation to become more 

"satisfactory" according to the criteria built into the Performance 

Evaluator section. 

The proposal of new symbols is in the form of modifications to the 

[;j,qj}, j = 1,2, ••• t, through the addition or deletion of z 1 s in the 

set and a change in the number t, or a modification of the z 1 s without 

changing t, perhaps by changing the dimension of some symbol represen­

tations and by adjusting some component values. The exact manner in 

which these adjustments are made can be more easily explained after a 

discussion of some general clustering techniques. 

Clustering Techniques and Decomposing Mixtures of Distributions 

Clustering, or similarity grouping, is closely related to the sta­

tistical problem of the decomposition of mixtures of distribution func­

tions. This study is concerned with the use of clustering techniques 

in a system that learns without a teacher, and particularly the use of 

heuristic clustering methods in the learning process. It may, however, 

be informative to briefly consider the statistical problem of decom­

posing mixtures of distribution functions and the relationship between 

this problem and clustering methods. 



In the general problem of decomposing a mixture of distribution 

functions, it is desired to identify various parameters of the mixing 

distributions and their proportions in the mixture using information 

derived from a sample drawn from the mixture. 

are drawn from the density of the mixture f(x) 

That is, when samples 
k 

= L p.f. <x) and the 
i=l ' 1 1 

individual densities f.(x) are known except for some parameters, the 
1 

problem is to find estimates for the pi and any unknown parameters in 

the fi(x). 

One method of solution involves solving a set of simultaneous 
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equations of the moments of the mixture and of the sample. To be sure, 
i 

this method is quite successful in a number of instanc~s. It is, how-

ever, necessary to k~ow the number of mixing distributions and, when 

this number is large, the moment equations get rather complicated. In 

addition, if any real accuracy is necessary in the estimates, the sample 

size must be quite large (8). 

A more efficient method based on the likelihood f~nction is apt to 

be even more complex except in special cases (8). 

Certainly these solutions to the problem are statistically satis-

fying, but the complexity of the methods severely limits their useful-

ness in practical situations. Clustering techniques, on the other hand, 

are based more on a straightforward heuristic approach to the solutions 

c;ind, in general, cannot be analyzed in simple statistical terms (9). 

The clustering problem is somewhat the same as that just described. 

One is presented with a sample drawn from a mixture of distributions 

and it is desired to group the samples in such a way that the individual 

clusters as nearly as possible have all of their members arising from 

the same single distribution. The mixing proportions can then be 
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estimated from the number of samples in each cluster, and any unknown 

parameters in the mixing distributions may be estimated by considering 

each cluster on an individual basis. 

In the communication system model, the input to the Receiver is 

the random variable Y, a sample drawn from the mixture density 
k 

fy(y) = ; pifYIX(ylxi). The problem is to estimate the [pJ and the 

means of the conditional densities, the [x.}. This may be done by 
1 

identifying the sub-sets arising from each of the conditional densities. 

If the xi are sufficiently separated from each other in terms of 

the standard deviation of the channel noise, they samples will be dis~ 

tributed in well separated clusters of points in the pattern space. 

The shape.of each cluster will be similar to the channel noise distri-

bution. This knowledge may be used to identify the individual clusters 

through the use of some relatively simple algorithms such as that des-

cribed below (9). 

Let the set of N sample patterns be denoted py [yr}, r = 1,2, ••• N, 

and let D(;,b) be a metric defined on all points, or patterns, in the 

pattern space which measures the distance between two such points, i 

and b. Let Z., j = 1, 2, •• • ,i, be the set of points classified as members 
J 

of the jth cluster, with cluster center zj, usually the mean of zj. 

Every sample Yr is then assigned to one and only one of the clusters by 

- - min - -
the rule: y eZ. iff D(y ,z.) = D(y ,z ). The sample pointy is 

r J r J s r s r 

thus assigned to the cluster to the center of which it is closest in 

the sense of the metric o. Ties may be settled by any convenient 

method, either random or deterministic. 

In general, the cluster centers z. are only estimates of the means 
J 

of the mixing distributions since the true means are unknown to the 
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receiver. After all the samples are classified, then, the cluster cen-

ters z. are redefined as the means of the sets Z., j = 1,2, ••• l. Then 
J J 

the classificatiori step is repeated, the cluster centers re~efined, 

etc., until the procedure converges. 

-t t 
If zj and Zj are the jth cluster center and the set of samples 

classified into the jth cluster, respectively, on the tth iteration, 

the clustering algorithm may be stated as: 

1) assign every sample yr to one and only one 

- t - -t min - -t 
cluster so that yrezj iff D(yr,zj) = s D(yr,zs) (la) 

except that ties may be settled arbitrarily; 

2) redefine the cluster centers as 

-t+l L - -t+l z. :, D(y ,z. ) 
J r J 

- t 

(lb) 

yrezj 

It can be shown that the algorithm converges since the su~ of the 

distances from the points in the clusters to their respective cluster 

centers is non=increasing in both steps. Consider the case of a fixed 

set of sample patterns (yr}' r = 1,2, ••• N, and a fixed number of clus~ 

ters, say l. t Then Z., j = 1,2, ••• l, denotes the subset of sample pat-
J 

terns classified into 

algorithm. Note that 

the jth cluster 

t -
U Zj = (yr} and 

on the tth iteration or the 

t t 
zj n zk = f/J j, k = 1,2, ••• ,e,, 

j -::/, k. 
-t 

As befoie, let zj' j = 1,2, ••• l, denote the cluster centers. 

Now define the sum of the distances from the cluster center to all 

points in that cluster on •the tth iteration by 

j = 1,2, ••• l 
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and let 

,l ,l 
t L t L L - -t c = c. = D(yr,zj) J •t 

j=l j=l Yr€Zj 

denote the total of all the distances from the sample patterns to their 

respective cluster centers on the tth iteration. In addition to 
- ,l 

It - -t+l It 
above, define the distances c. = D(y ,z. ) and G = ~ 

J _ t r J j=l 
Yr€Zj 

the 

The clustering algorithm is started using a set of cluster centers 
!· ... -1 

zj picked by any method, perhaps at random. The first step of the 

algorithm assigns each sample pattern to one of the clusters and permits 

1 1 
computation of the distance sums c., j = 1,2, ••• -t, and C 

J 

Application of the second step of the algoritqm defines new cluster 

-2 
centers zj such that 

~ - -2 min L - - ~L - -1 1 
j=l, 2, ••• ,e,. D(yr,zj) = - D(y ,y) D(y ,z.) = c. y r r J J 

y e:Z~ y e:Z~ y e:Z~ 
r J r J r J 

11 
But note that we have defined cj =L - -2 

D(yr,zj) so we have the result 

y e:Z~ 
r J 

11 1 1 1 1 
that cj < cj j = 1,2, ••• -t. It easily follows that C < C • 

At this point the overall sum of distances is equal to 

and because of the mutually exclusive and exhaustive properties of the 
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sets Z. there are exactly N distance terms in the sum, one for each y. 
J r 

Application of the first step of the clustering algorithm redefines 

the categories. The new categories are assigned in such a way that for 

each y 
r 

- -2 min 
D (y , z.) = 

r J s 
- -2 

D(y ,z) 
r s 

and so the individual distances are minimized by the category assign-

ments. Therefore 

t t 

L L --2 L L - -2 
D(y ,z .) < D(y ,z .) 

r J r J 
j=l y ez~ j=l y ez~ 

r J r J 

where the equality holds when no changes take place in the classifica-

tions. 

Note that 

t t 

2 I L - -2 I ~ - -2 '1 1 c = D(yr,z} < D(yr,z} = c < c 

j=l - 2 j=l y ez~ y eZ. 
r J r J 

or 

1 h h h h h . . ct+l < ct Exact y t e same arguments ows tat on t et.!:_ iteration, _ • 

Also note that Ct~ 0 because all the distances are non-negative. Then 

the sequence Ct is a non-increasing sequence which is bounded below and 

therefore is a convergent sequence. 

The function Ct is a measure of the compactness of the clusters so 
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apparently the clusters tend to become more compact in the sense of the 

metric D with each iteration. 

The more interesting question of the limit to which the clustering 

algorithm converges remains unanswered. It would be very convenient if 

convergence to the most compact grouping were assured, but it is easily 

shown by a counter-exi;1mple thi;1t this is not always the case (10). The 

clustering algorithm may converge to a local minimum. The convergence 

properties of the algorithm are dependent upon the distribution of the 

sample patterns, the numqer of clusters used in the algorithm, and the 

starting points for the cluster centers. These same factors determine 

the number of iterations required for convergences. 

One might reasonably expect the algorithm to find the most compact 

grouping with high probability when the distribution of the sample pat­

terns is in well-separated, unimodal clusters and, most important, when 

the supposed number of clusters used in the algorithm coincides with 

the true number of clusters in the sample patterns. If the nuqibers of 

real and supposed clusters are not the same, the algorithm will never­

theless group the samples into the supposed number of clusters whether 

or not the resulting clusters are very compact according to some abso­

lute scale. 

It is obvious that the number of clusters must either be known a 

priori or obtained somehow from the data. In the statistical separating 

methods mentioned earlier, it is necessary to know the number of mixing 

distributions, or clusters, before applying the methods. In the 

algorithmic procedure just discussed, it is equally important to have 

some method of arriving at the correct number of clusters. 
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Clustering Techniques in the Receiver 

In the model receiver, the received signal vectors are projected 

as points into the pattern space and then arranged into similar groups 

using the.clustering algorithm discussed previously. The metric D used 

in the clustering algorithm is taken to be the reciprocal of the like-

lihood function t1sed as the receiver decision scheme. That is, the 

sample Yr is classified into the jth cluster for which f_. 
1

_(y I;: .)q., - yz r J J 

j = 1,2, •• • -l, is a i;naximum. 

Heuristic methods, along with knowledge of the channel noise, are 

used in the model to find the correct number of clusters for use with 

the clustering algorithm. New cluster centers are proposed to accept 

samples that are far away from all the previously assumed clt1sters, and 

two or more clusters are combined into one if their centers closely 

approach each other. By this means it is expected that the system wi.11 

be able to determine the correct number of clusters as it learns from 

the received data. A qualitative idea of the values to assign to 11 far 

away" ancl 11 close 11 can be determined from knowledge of the channel noise 

along with some considerations about the type of environment in which 

the receiver is expected to operate. 

As a preliminary assumption, it is proposed that the symbols sent 

by the transmitter be readily identifiable in spite of the channel 

noise when the proper features are used in the discrimination process. 

By 11 readily identifiable 11 is meant that the optimum decision scheme 

would recognize the symbols with only, say, about 1% or less misclassi-

fication. If the actual error rate is higher, it simply mea,ns either 

that the features selected are not the best, or that the decision scheme 

is not utilizing the information i.n an efficient manner. 
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In view of this, it is evident that the point clusters formed by 

the received signals in the pattern space may be easily separated when 

the proper measurements are made on the signals. Therefore, for a 

given set of features upon which to perform classification, it will 

initially be desirable to identify as distinct only those clusters 

which are reasonably well separated from each other. The problem of 

what to do about clusters which are too close for separate identifica-

tion will be taken up later. 

Consider first the question of how far from ~11 existing clusters 

a new sample point should be in order to cause a new cluster center to 

be generated by the system. In the conte:ict of the cor:mnunication system 

problem, this is equivalent to asking how much different from all 

existing representations of the symbols a received signal should be 

before the signal should be taken to represent a new symbol. 

Suppdse that. there have been m received patterns (y }, 
r 

r = 1,2, •• ~m, classified into the same cluster, Z , and that, in fact, 
.i:1 

all m patterns were gener~ted by the same symbol, xa' at the trans-

mitter. If the channel noise added to the transmitted signal has a 

normal distribution with mean vector(/) and covariance matrix cr 2I , then 
n 

them received signals may be considered to have been drawn from a 

N(i ,cr
2
I) distribution. a n If the cluster center, 

m 
z , is taken to be the a . 

mean of the received signals, then z = l ~ y, and z will also be a a m .L._
1 

r a 
- r= 2 

normal random vector with mean x and covariance matrix£_ I • a m n 

When the m+lth signal, y 
1

, is received, the system is required 
- mt 

to make a decision as to whether ym+l should be classified into Za 

(assuming that ym+l is within the existing decision region for Za)' or 

whether a new cluster should be proposed to accept ym+1 • This question 
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may be rephrased in terms of testing the hypothesis that ymt-l is from 

- 2 the same N(x ,o- I) distribution as the previously received signals. a n 

Consider tt
0

:ym+l is from the same N(ia,0'
2
In) distribution as (yr}, 

r = 1,2, ••• m, and tt1:ymt-l is from a distribution with different mean 

value but same covariance matrix, i.e., that ymt-l resulted from the 

transmitter sending some new symbol other than xa. Under H0 , the dif­

ference ymt-1-za is distributed as N(0, ~l cr2In) and the square of the 

Euclidean distance between ymt-l and z is distributed as mt-l o-\2
(n). 

a m 
2 - - 2 

That is, md (ymt-l'za)/(mt-l)cr 
2 

is distributed as x (n). 

The critical region for this test will be taken to be the tail of 

the distribution so that the significance level of the test is 
00 

2 2 
a= [ X (n)dX 

Ci 

2 - - 2 
If md (ymt-l'za)/(mt-l)cr > t~, then the hypothesis 

that ymt-l is from the same distribution as the samples used to form za 

is rejected and ymt-l is used as the start of another cluster. For 

example, if n, the dimensionality of the vectors, is 5, and m, the 

number of samples, is 10, then a new cluster will be started when the 

eleventh sample is such that 

11 cr 

at the 1% significance level. 

Now consider the power of 1he test when ymt-l is a sample drawn 

from a distribution with mean kcr away from the mean of the distribution 

from which the samples in Za were drawn. Under H1 , 

md2 (y 
1
,i )/(mt-l)cr2 will be distributed as x' 2

(n,A) where 
mt- a 



a, 

The power of the test= J 
tQ' 

12 12 X (n,11.)dX • For example, if k = 5, then 

25(10) 
i\. = 2 (1 l) = 11.35 and the power o~ the test is a:pproximately O. 51 at 

the 1% significance level. 

Next, consider the question of when to combine two clusters into 

one larger cluster. One might test the hypothesis that two clusters 

actually have all their samples arising from the transmission of a 

38 

single symbol, but the basic assumption that all the symbols are ~eadily 

identifiable when the right features are examined, and that decision 

schemes with high error probabilities are not to be considered, suggests 

a more meaningful criterion for combining clt1sters. It may be morE\ 

useful to combine clusters when it appears that there is no decision 

scheme available for distinguishing separate symbols with suitably low 

probability of error, say, on the order of 1% or less. 

Suppose two symbols resulting from the transmission of xa and xb 

are recognized at the receiver on the basis of n features. If these 

symbols are to be recognized with only 1% or less probability of error 

and both symbols are equally likely, it is necessary for the vector 

representatives of then features of xa and xb used in the recognition 

process to be at least 4.66a apart in then-dimensional pattern space, 

It might be noted here that the "recognizability'' of the symbols is 

independent of the dimensionality of the pattern space, If the statis-

tics of the noise in each dimension and the Euclidean distance between 

the features observed are held constant while changing the dimension-

ality, the symbols may be recognized with a constant probability of 

error independent of n. With this in mind, the representations of any 

two symbols at the receiver, za and zb' may be used in a test to decidE\ 
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whether or not za and zb are indeed derived from samples of two trans~ 

mitted symbols that are at least 4.660 apart in then-dimensional. vector 

of features used by the recognition scheme. 

~uppose that the system has formed two clusters, Za and Zb, with 

centers za and zb on the basis of ma and~ samples, respectively, being 

classified into each category. Further suppose that all the samples in 

cluster Za were actually generated by the transmission of symbol xa' and 

likewise for cluster Zb and transmitted symbol xb. Then the cluster 

centers za and zb are n-dimensional vector estimates of then features 

of xa and xb. These estimates, za and zb' 

- a2 
course, with distributions N(xa, ~ In) and 

ma 

are random variables, of 

- a2 
N(xb, -.- In), respectively. 

mb 

Using these estimates with known distributions, it is a simple 

matter to test the hypotheses Ho=xa and xb are ko or more apart in the 

n features represented by za and zb, and H1=xa and xb are less than ka 

apart in those n features. The vector difference za-zb will be distrib~ 

Therefore, similar to the previous test, 

it is seen that under 2 - -
Ho where d (xa,xb) 

2 -mambd (za, Zb) 

(ma+mb)cr2 

'2 
is distributed as X (n,A) 

2 2 
= k a, the test statistic 

2 k mamb 
where A= 2 ( )• 

ma+mb 

The critical region will be taken to be the left-hand end of the 

distribution so Ho will be rejected at significance level~ when 

< tQ' 

where 

and 
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For example, at the 1% significance level with n,= 5, ma= mb = 10, 

and k = 4.66, 

100 d2(za,zb) 

20 ,l 

the clusters Za and Zb will be combined when 

< 29.9. When k = 2.33, half the previoµs value, the power 

of the test is about 0.91. 

In general, things cannot be expected to be .qui, te as simple as is 

assumed in the examples because, for instance, there is no assurance 

that all the samples classified into Za and used.to form the cluster 

center za actually did arise from the transmission of symbol xa. How-

ever, the examples do indicate some general guidelines for finding 

decision points that will give useful results when used in the learning 

system. For the situation cited in the examples it seems evident that 

the learning system will perform its task in a reasonably efficient 

manner if a new cluster is started to accept a received signal more 

than about 4.lcr away from all existing cluster centers or if two clus-

ters are combined when their centers become less thfin about i.4cr apart. 

Of course these decision points change with the number of samples re-

ceived. The learning receiver may calculate the values as they are 

required. 

The growth of a set of reasonably compact and well separated clus-

ters is essential to the initial progress of learning in the model. It 

is expected that the cluster starting and combining tests will produce 

such a set when they are reasonably well 11 balanced 11 , that is, the rate 

of generation of new clusters by the one test equals the rate of extinc-

tion of clusters by the other test. 

It is easy to see tllat the new cluster starting tes~ will, with 

probability one, generate new clusters whether they are valid or not as 

the number of received signals grows. Suppose that there is only one 
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transmitted symbol so all the received signals are drawn from a single 

distribution, Under the assumption that the signals are normally dis­

tributed, the distances between the mean and some of the signals will 

exceed any threshold if the sample is large enough, It would seem that 

there is the possibility that the number of clusters could grow without 

bound, 

The limiting behavior of the symbol combining test is not so easily 

analyzed and it has not been proven that the rate of cluster extinction 

equals the cluster growth rate, Nevertheless, it is intuitively evident 

that the cluster extinction rate must grow with the number of clusters 

generated by the cluster starting test from a single compact distribu­

tion, As more and more samples are drawn from the single distribution, 

the clusters will tend to become grouped near the mode of the distribu­

tion (for the unimodal distribution considered here) and will eventually 

be close enough to be combined by the symbol combining test, This 

should take place at a rate equal to the generation of spurious clusters, 

This supposition is well supported by the experimental results presented 

later. 

Hypothesis Generation in the Model 

By following the previously explained procedures, it is expected 

that the learning receiver will develop a decision scheme which sepa­

rates the received signals into fairly well separated clusters based on 

the minimum number of features selected for classification by the 

system, It is understood that the features selected by the system may 

not contain sufficient information to permit the proper classification, 

or recognition, of each different transmitted symbol as distinct from 
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all the others. Therefore, it is quite possible that the decision 

scheme found by the above procedure will recognize two or more trans­

mitted symbols as identical. On the other hand, it would be rather 

improbable that the system would consistently recognize the same trans~ 

mitted symbol as two or more different symbols at the ~eceiver since 

this is equivalent to dividing up one cluster of points in the pattern 

space into several distinct groups, and such a grouping satisfying the 

symbol combining test is unlikely in samples drawn at random from one 

cluster of points, at least when the number of samples is large. 

Thus, the first objective of the learning receiver at this point 

is to determine which clusters of points represent more than one trans­

mitted symbol and then to find ways of dissecting the multiple-symbol 

clusters so that each individual symbol is recognized distinctly. 

First, it is necessary to detect the clusters of points which 

might represent more than one symbol. One would expect the sample 

points in a cluster arising from a single transmitted symbol to have 

the same distribution as the cha.nnel noise, and it would be possible to 

,test each cluster of points to decide whether or not that cluster is 

composed of samples drawn.from a distribution of the same type as the 

channel noise. Any significant discrepancy would suggest that the 

cluster is composed of samples generatedby the transmission of more 

than one symbol. Since the channel noise distribution is assumed known, 

this approach is entirely feasible; however, a more general approach is 

used in the model receiver with a view toward developing methods not 

dependent upon a complete knowtedge of the channel noise. 

The method of detecting multiple-symbol clusters which is proposed 

for use by the system is based upon the fcl,ct that one would expect all 
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clusters of points arising from the transmission of single symbols to 

have approximately the same shape, or distribution, that shape being 

determined by the channel noise. Also, one would also expect that the 

most compact clusters are, in fact, single-symbol clusters. Thus, the 

system is set up to operate on the premise that compact clusters repre· 

sent single symbols and that large, spread-out clusters are probably 

combinations of single-symbol clusters whose symbols are mistakenly 

being recognized as identical. 

The model system finds the most compact cluster with at least an 

average number of points and takes the distribution of the points in 

that cluster to be typical of the channel noise distribution. Then a 

comparison is made between this most compact cluster and the next most 

compact cluster to decide whether or not the two clusters could have 

been drawn from distributions identical except for the means. The test 

used for this purpose was derived by Bishop (11) and is suggested by 

the fact that for the normal noise distribution case the cluster shape 

is determined by the sample covariance matrix. The hypothesis H0: both 

clusters were drawn from distributions with identical covariance 

matrH:-ies, is tested against H1: the two clusters were drawn from dis­

tributions with different covariance matricies. The test compares the 

determinants of the two sample covariance matricies. The determinant 

of the covariance matrix is a measure of the compactness of the cluster 

and any significant difference in the determinant is taken to indicate 

a difference in the matricies and a corresponding difference in cluster 

shapes. If the test reveals no significant difference in the underlying 

distributions, then it is presumed that both clusters represent single 

symbols sent by the transmitter. On the other hand, if it appears that 
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there is a significant difference in the cluster distributions, the 

larger cluster is suspected of representing more than one transmitter 

symbol and methods must be found to refine the decision scheme creating 

that cluster so the separate symbols may be recognized as distinct. 

For purposes of this discussion, assume that the set of clusters 

(zj}, j = 1,2, ••• t, has been ordered so that the subscript denotes the 

relative compactness of each cluster as measured by the determinant of 

the sample covariance matrix, with z1 being the most compact and Zt the 

least compact. Then z1 is assumed by the model to represent a typical 

single-symbol cluster, and z1 and z2 are tested to decide whether or 

not the covariance matricies of their respective distributions are 

similar, If the test reveals no significant difference, Zl' z2 , and z3 

are all used in the same test to check for significant differences in 

their covariance matricies, As long as the test reveals no significant 

differences in the covariance matricies, more and more of the clusters, 

in order of their compactness, are included in the test until a differ-

ence is detected or else all the clusters have passed the test. 

Suppose that the test indicates a significant difference in clus-

ter, Zj' 1 < j.:::: t. An attempt is first made to distinguish the indi­

vidual clusters in Z. on the basis of the symbol features then in use 
J 

by the systema It is possible that under certain conditions the clus-

tering algorithm may cause two or more readily separable clusters to be 

grouped into one large cluster; in such a situation no new information 

in the form of additional symbol features should be required to perform 

satisfactory separation of the individual clusters. 

If two readily separable clusters are indeed grouped as one, the 

best way to divide the two clusters is by a plane perpendicular to the 
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direction of greatest dispersion of the overall cluster. The direction 

of greatest dispersion is the direction of the largest eigenvector 

associated.with the covariance matrix of the overall cluster. If there 

were an equal number of samples in each of two component clusters, the 

dividing plane should pass through the composite mean. 

In the general situation, things are not quite so straight-forward 

since, in principle at least, there may be any number of component 

clusters with different numbers of samples in each making up the large 

cluster. Nevertheless, it seems that a good way to break up the 

anamolous cluster is to start with one dividing plane perpendicular to 

the largest eigenvector and to search along that vector until an llopen 

space" is found which would seem to be a natural location for the 

dividing plane. This is done in the model system by arbitrarily 

dividing the cluster into 20 11 bins 11 using 19 equally-spaced planes 

perpendicular to the largest eigenvector. The bin with the largest 

number of sample points is found, representing one mode of the cluster. 

Another mode is found some distance away and a dividing plane is passed 

through the bin between the two modes which has the smallest number of 

sample points. 

The clusters formed on each side of the dividing plane may then be 

refined by applying the clustering algorithm with the number of clusters 

fixed at two and starting with the cluster centers as the means of the 

points on each side of the dividing plane. The two cluster centers 

found in the procedure must, of course, be about 4cr apart in the pattern 

space if the two clusters so formed are to be considered readily 

separable in accordance with the previously established criteria. 

This should break the large cluster into two smaller clusters 
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which may then be tested to see if they have the same shape as the 

clusters thought to represent single symbols, If the component clusters 

still exhibit a significant difference in the test, the procedure may 

be repeated on them until additional single-symbol clusters are iso-

lated, 

The isolation of single-symbol clusters is equivalent to proposing 

new symbols for the receiver to recognize, which symbols are suggested 

by the data itself, Thus, each time a new single~symbol cluster is 

isolated, the receiver augments the set [;.,q.}, j = 1,2,,,.t, by adding 
J J 

the symbol z.t-+-l and its relative frequency q.t-+-l, The mean of the clus~ 

ter is used as the symbol estimate, and the sample relative frequency 

is taken as the estimate of q.t-+-l' Thereafter, the decision scheme is 

capable of recognizing received signals as representations of z.t-+-l' 

The estimation of the symbol relative frequencies, [q.}, 
J 

j = 1,2,,,,t, is simplified because of the previous assumptions that 

symbols will not be recognized as distinct unless this can be done with 

a very low percentage of errors, The relative frequency of recognition 

of a symbol will generally not be equal to that symbol 1 s relative fre-

quency of transmission, If Risa vector of the relative frequencies 

of recognition of the various receiver symbols, and Tis the vector of 

true probabilities of transmission of the transmitted symbols, the rela~ 

tionship between these vectors will be a transformation readily identi-

- - ; 

fied as the system transition matrix P. The equation is R =PT, 
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R1 Pu P12 ... plK Tl 

R2 P21 P22 '.;ii.:,1.1':~,.-.' T2 

= P31 where p .. = Pr(z.,~.) . J l. J l. 

R,{, TK 

p,{,l p ,{,K 

Suppose that,{,= k, that is, the receiver has learned to identify 

all the transmitted symbols. Under the previously discussed assump~ 

tions, it is expected that P will be very much like the identity matrix 

except for permutations of rows and columns since P .. will be almost 
J l. 

unity for one pairing of the i 1 s and j 1 s and very small for all other 

combinations. Because of this, the Rand T vectors are seen to contain 

very similar values except for their order in the vectors. That differ-

ence in order, or course, corresponds to the different ordering of the 

symbols at the receiver c'ompared to the ordering at the transmitter. 

Thus, the relative frequency of recognition of a symbol at the receiver 

serves as a reasonably good estimate of the corresponding symbolts true 

probability of transmission. 

The Utilization of Data in the Model 

Only occasionally will one transmitted symbol be erroneously 

recognized as more than one symbol by the receiver as stated earlier: 

usually the converse will occur. Most of the problems encountered in 

recognizing all the individual transmitted symbols will be due to the 

inability of the system to separate in a satisfactory manner clusters 

which are combinations of single-symbol clusters. 
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The solution to such a problem is to develop imaginative deoision 

schemes and/or schemes which utilize more of the available information. 

In the present situation, where the individual point clusters are dis-

- 2 
tributed as N(xi,cr In), the maximum likelihood decision process imple.-

mented by using hyperplanes to partition the pattern space is known to 

be optimum so a search for more complex decision schemes using the same 

information would be pointless. The obvious thing to do in this case 

is to increase the number of symbol fea.tures utilized by the receiver 

and thereby take advantage of more information upon which to make the 

decisions. 

The addition of more symbol features for use in the decision-making 

section of the receiver may be considel;'ed as an increase in the dimen .. 

sionality of the pattern space. There are several reasons for such an 

interpretation. First, it is a natural extension of the concept of 

visualizing the received signals as points in the pattern space and the 

decision scheme as a set of planes which partition that space, Second, 

it is easy to see how augmenting the dimensionality of the pattern 

space permits the use of decision schemes yielding very much improved 

recognition of the transmitted symbols with only a simple extension of 

the decision-making process. Third, the received signals themselves 

may reveal how to perform the recognition prqcess much more l;'eadily 

when the data is presented in the proper number of dimensions. 

Figure 9 is an example of a situation where, using only features 

f 1 and f 2 , the clusters of points generated by two transmitted symbols 

x1 and i 2 overlap to such'an extent that reliable recognition of the 

symbols is impossible. In two dimensions, the means of the clusters 

are only about 2cr apart so, if the symbols are equally likely, it is 



impossible to differentiate between them at the receiver with less than 

about 16% errors. It is evident from the shape of the overall cluster 

that it is composed of at lec1ist two smaller clusters, but the system 

will not separate those clusters unless it can do so in a manner that 

satisfies its ci;-iterion of low recognition error rate'. 
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Figure 9. Samples in two Dimensions 

In Figure 10 where the feature f 3 is considered, the situation 

changes considerably). The clusters mc;ty easily be separated in a three-
-, .. 

dimensional decision scheme thc;tt is conceptually no more complicated 

than that used in two dim~nsions. The two clusters so found are far 

enough separated in the three-dimensional pattern space that the trans-

mitted symbols generating the cluster may be easily recognized with low 

error probability. Thus, the receiver has learned to distinguish the 



two transmitted symbols. 
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Figui;-e 10. Samples in Three Dimensions 

In retrospect, it is evident that the feature f 3 cont.ains a rela.~ 

tively large amount of information about which of the two symbols, x
1 

or x2 , was sent and this feature should surely be used in the recogni-

tion process. However, recall that at the outset of the learning pro"' 

cess the receiver was not even aware of the existence of the two trans .. 

mitted symbols, and so it could hardly be expected that the system 
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would know a priori which features are important for recognition of 

those symbols. 

At this point, there remains one important aspect of the system 

operation which has been considered only briefly. That is the prospect 

that the receiver will attempt to recognize more different symbols than 

the transmitter is sending. In general, the difficulty here will be 

caused by the receiver's attempt to break a single-symbol cluster down 

into two or more component clusters. This can happen if th,e covariance 

matrix comparison test erroneously indicates a significant abnormality 

in the shape of a cluster. If the significance level of this test is 

made rather high, say 10%, in hope of detecting all discrepancies in 
1· 

cluster shape, it is expected that the test will indicate anomalous 

differences with that same frequency. That is, in 10% of t'1-e tests a 

significant difference will be indicated even when all clusters have 

been drawn from distributions with identical covariance matricies. 

Detecting such a shape discrepancy automatically starts the search for 

ways of dissecting the large cluster into its single-symbol components. 

When a cluster is erroneously indicated to be composed of samples 

drawn from more than one transmitted symbol, the search for methods of 

isolating the single-symbol clusters is always due to fail since there 

is, in fact, no way of' using· lineat,,discriminants tcf:;b:reak a true single-

symbol cluster into two or more smaller clusters to have the same size 

and shape as the original cluster except for noise. Even when all the 

other symbol features are examined in an attempt to find si&nificant 

measurements upon which to differentiate between two symbols supposedly 

composing the cluster, no truly significant clusters will ever become 

apparent since all the sample features have, in fact, been drawn from 
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one single normal distribution. 

Because of this, the receiver can be made very "inquisitive", in 

its search for symbols sent by the transmitter without much danger that 

it will consistently recognize more symbols than are actually present. 

It can be seen that some minimum knowledge of the channel-induced 

noise is essential to the search for new symbols if the receiver is to 

be successful. First, the shape of the,noise distribution should be 

known, at least insofar as the number of modes, so one can have some a 

priori knowledge of how the sample points should be grouped into clus­

ters. Second, it is important to have some information about either 

the noise variance or the number of clusters to be found. Without any 

constraints offered by this a priori knowledge, it would be permissible 

to group each sample point into its own individual cluster, or else to 

group all the samples into one large cluster. Since the process of 

isolating previously l)nrecognized single-symbol clusters depends heavily 

on being able to find at least one single-symbol cluster during the 

initial clustering phase, some constraints of this type appear to be 

very useful. In the experimental situations to be considered in this 

study, the noise is always assumed to be distributed as N((.i1,a2In) with 

a known so the necessary information is readily available. It is 

believed that the system could operate almost as effectively if the 

noise distribution were known only approximately. 



CHAPTER III 

ANALYSIS AND SIMULATION OF THE MODEL 

'.I;'he Computer Simulation 

In order to test the model and to observe some of the learning 

phenomena alluded to in the introduction, the communication system model 

was simulated on a digital computer. The basic model of Figure 5 witlr~ 

the receiver of Figure 7 was simulated on an IBM Syst/~OL 

as the programming language. Some features of ~ogram are explained 

in the following section. / 

The only information supplied to the simulated transmitter is the 

set of transmitter symbols and their probabilities of transmission, 

[i. ,p.}. The channel is simulated by the addition of noise vectors, of 
1. 1. 

known statistical form, to the transmitted symbols. The symbol selec-

tion process at the transmitter and the noise vector generating process 

in the channel are controlled by a pseudo-random number generator in 

the program. The receiver starts with only the knowledge of the channel 

noise statistics and the fundamental 11 idea 11 of how it is to operate. 

The symbols selected by the transmitter are represented by vectors 

of real numbers, each transmitter symbol being represented by an 

unique n-dimensional vector where n is the maximum number of measure-

ments, or features, characterizing the symbols. These n-dimensional 

transmitter symbol vectors x. plus n-dimensional noise vectors gen-
1. 

erated by the simulated channel are presented to the receiver as signal 

53 
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vectors yr which the receiv~r attempts to recognize as representations 

of its receiver symbol vectors z .• All the vectors are n-dimensiortal 
J 

except possibly the receiver symbol set c;.} which is of dimensionality 
J 

ns' ns ~ n, the number of signal features deemed necessary by the re­

ceiver for its recognition scheme. The receiver signal classification 

scheme starts as a partition of this n -dimensional signal space. This s 

space may be augmented-~~~s the receiver considers more signal in-

formation in the form of higher dimensional vectors. At the beginning 

of the process the receiver symbol set c;.} is empty. 
J 

As pointed out previously, the receiver is able to recognize only 

the symbols of which it is 11 aware 11 , that is the symbols repres~~ 

the set of vectors in the receiver symbol set c;j}. There~, when 

the first signal vector is presented to the receiv r, it is not recog-

nized as any existing receiver symbols~ there are none. Instead, 

the signal is identified as representing a new symbol and an estimate 

of that symbol is placed in the receiver symbol set. The best estimate 

of that symbol is, of course, the signal that was presented to the re~ 

ceiver. Then the receiver symbol set consists of only one symbol repre-

sentation vector z
1

, that being the first signal vector received. 

When the second signal vector is presented to the receiver the 

situation is somewhat different. The second signal must be recognized 

by the receiver as a representation of the symbol z
1 

since that is the 

only symbol whose recognition is possible. On the other hand, there is 

the possibility that the transmitter selected a symbol different from 

the first symbol for transmission this time. To account for this pos-

sibility, the receiver must test the hypothesis that the second signal 

arose from the transmission of a symbol different from the first 
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transmitted symbol. That is, it tests the "differentness" of the second 

received signal from the symbol z 1 • If the test shows a significant 

difference, a difference not likely caused by the channel noise alone, 

the second received signal is identified as representing a new symbol 

and an estimate of that symbol is added to the receiver symbol set. 

The receiver progresses in this manner, recognizing each received 

signal as one of the symbols [z.} and then testing to see whether or 
J 

not it is likely a new, previously unrecognized symbol by a measure of 

the difference between the actual received signal and the symbol as a 

representation of which it is recognized. This two-step process is the 

most efficient method of identifying new symbols since the recognition 

process picks out the receiver symbol most like the signal in question. 

If the signal is different enough from that receiver symbol to be 

identified as a new symbol, it is also different enough from all the 

other receiver symbols to lead to the same conclusion. 

If it is decided that the signal represents a previously recognized 

symbol, the estimate of the recognized symbol is updated by averaging 

in the newly received signal, thereby improving the symbol estimate. 

The symbol probabilities required by the recognition process are 

estimated by the observed relative frequencies of recognition of each 

symbol in the receiver symbol set. These estimates converge in proba-

bility to the true probabilities as the number of received signals 

grows. 

It is expected that the new-symbol identifying test will generate 

anomalous new symbols with probability equal to the significance level 

of the test. For instance, transmitted symbol x 1 which is properly 

recognized by the receiver as, say, z
5 

may upon one occurrence be 
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identified as a new symbol, say, z
10

• In order to assure that the re­

ceiver symbol set converges to the transmitter symbol set, it will 

eventually be necessary to identify z 10 as a spurious representation of 

symbol z5 and to combine z10 with z5 using a weighted average of the 

two to form a new symbol z
5

• This is accomplished in the simulation by 

a statistical test referred to as the symbol combining test. 
I 

Each time a received signal is recognized as a representation of 

one of the previously existing receiver symbols, and used to update a 

symbol estimate, the symbol-combining test checks the 11 differentness 11 

of the updated symbol estimate from all the other symbols. If two 

symbols are found to be very similar, it is assumed that one of them is 

a spurious representation of the other and the two are combined in a 

weighted average, Thus, each time a receiver symbol is changed by the 

addition of new data in its estimate, it is checked to be sure it is 

still different enough to be considered unique. 

It was a preliminary assumption that the transmitter symbols would 

be different enough to be readily identifiable at the receiver when the 

proper recognition scheme was used. There are two reasons, then, that 

different transmitter symbols may be recognized as identical by the 

receiver, First, the symbol-combining test may erroneously indicate 

that two symbols are similar enough to be combined. This will happen 

with probability equal to the significance level of the test, Second, 

the receiver's recognition scheme may not utilize the proper features 

of the received signals to recognize as distinct all of the different 

symbols represented by those signals, 

There is a third test applied to all the received data periodically 

to detect combinations of symbols caused by the occurrence of both the 
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above events. The dispersion of the signals recognized as a particular 

receiver symbol should be due only to the channel noise since the trans­

mitted symbol should have been the same for each signal. If, in fact, 

the signals were generated by the transmission of more than one symbol, 

the dispersion of the signals will be greater than would be expected 

for the single symbol case. The third test, referred to as the cluster 

shape test, is designed to detect receiver symbol clusters whose .dis­

persion is greater than would be expected if all the component signals 

represent only one transmitter symbol. 

The determinant of the sample covariance matrix of the signals 

recognized as each receiver symbol is used as a measure of the disper­

sion of those signals. Presumably, the receiver symbol whose signals 

have the smallest dispersion represents a single transmitter symbol 

(provided a suf£icient number of these signals have been received to 

justify considering them a cluster). Those receiver symbols whose 

signals have significantly larger dispersions are suspected of being 

the result of recognizing more than one transmitter symbol as one 

symbol at the receiver. 

When such a receiver symbol is detected by the cluster shape test, 

an attempt is made to distinguish two or more transmitter symbols 

comprising the suspect receiver cluster. It may be po~sible to find a 

suitable partition of the signal space inns dimensions. A suitable 

partition is one which separates the received signal vectors according 

to the underlying transmitted symbols with low probability of error. 

If this is possible, the result is merely the generation of one or more 

new symbols to be added to the receiver symbol set. When a suitable 

partition cannot be found in this manner, it is necessary to seek to 
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utilize more information in the received signals by increasing the 

dimensionality of the space used in the receiver decision scheme. This 

is done by adding one dimension at a time until either n dimensions s 

are reached or else a suitable partition is found. If a suitable parti-

tion is not found, it is concluded that the signals must have all been 

generated by the transmission of one symbol and that the cluster shape 

test results were in error. In this way the receiver is somewhat pro-

tected against excessive errors in the cluster shape test. 

As the number of signals presented to the receiver grows, new 

symbols are discovered in the data and added to the receiver symbol set. 

In order to make the process efficient with respect to the number of 

signals required to form good estimates of the transmitter symbols, all 

of the received signals are periodically reviewed by the receiver as if 

each one had just been received for the first time. This i,s done by 

using the clustering algorithm discussed previously to group all the 

signals into compact clusters about each of the symbols in [i.}. In 
J 

effect, the receiver starts the recognition process over at the begin-

ning except that it has some a priori knowledge of the symbols and their 

probabilities to aid it this time. It is believed that this step is 

not necessary for convergence of the receiver symbol set but it in-

creases the efficiency so that fewer signals must be processed by the 

computer program to obtain good estimates of the transmitted symbols. 

If a very large number of signals were processed, the effects on the 

symbol estimates of early misrecognition would become negligable in re-

lation to the effects of correctly recognized data, assuming that the 

recognition scheme is corrected by the learning process. The fact that 

the recognition scheme is based on the symbol estimates resulting f:i:-om 
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the recognition scheme means that misrecognized symbols tend ~o continue 

to be misrecognized until the learning process triggered by its dis­

satisfaction with its evaluation of its performance, rectifies the 

situation. This point is examined in somewhat more detail later. 

Data Available From the Simulation 

Since it is the dynamic behavior of the learning receiver as well 

as its final amount of learning about the transmitter that is of inter~ 

est in this investigation, the computer simulation prints out data indi­

cating the status of the adaptive parts of the receiver frequently 

during the learning process. Messages are printed whenever a new symbol 

is generated, whenever two symbols are combined into one, and whenever 

the cluster shape test finds a symbol suspected of being a combination 

of two or more transmitter symbols. At regular intervals the program 

prints out a complete status report including the set of receiver sym­

bols and their probabilities used by the recognition process and the 

covariance matrix of all clusters recognized as each symbol. Perhaps 

the most easily assimilated and therefore most meaningful indication of 

the system's behavior is the average information flow through the com­

munication system model as a function of the number of symbols processed 

by the receiver. This information is printed in the form of a graph 

referred to as the learning curve. Such a curve is shown in Figure 11. 

Most of the simulation results reported herein were obtained using 

a set of six transmitter symbols, each symbol being described by a 

vector of three real numbers. All symbols have the same number in the 

third element of their vector descriptions so actually only the first 

two elements are of any significant use in the recognition process. 
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Figure 12 shows graphically the first two elements of each transmitter 

symbol along with the probabilities of transmission of each. As can be 

seen, the most similar two symbols are x3 and x4 • If the channel noise 

has standard deviation of unity, these two symbols are about 5.4a apart 

so they should be readily distinguishable by the proper recognition 

scheme in two dimensions at the receiver. 

The receiver always starts by considering only the f 1 element of 

the signal vectors, in which signal space only symbol x
6 

is uniquely 

identifiable. In order to recognize the symbols x
1 

through x
5 

in a 

manner satisfying the criterion for low-error recognizability, it is 

necessary for the receiver to search for more information in the second 

and third elements of the signal vector. 

The Measure of Learning by the Receiver 

Measuring the state of knowledge of a learning system or the amount 

of learning which it has accomplished is a broad and loosely defined 

problem and, consequently, one which is subject to a great deal of in~ 

dividual interpretation. Since the purpose of learning in a goal-

directed system, the type just described, is to permit th~t system to 

accomplish a predetermined task, it seems natural to measure the amount 

of learning by how well the system is able to perform the task. In the 

case of the chess and checker playing systems mentioned earlier where 

the goal is to win the game, measuring the ability of the system to per­

form its assigned task can be a formidable undertaking by itself. In 

general, the problem of measuring learning is neither well defined to 

begin with nor, once defined, easy to deal with because of the com­

piexity of the systems to which the problem applies. 
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ln the communication system studied here, a relatively simple 

learning system, the goal of the receiver is to recognize each of the 

transmitted symbols distinctly and with low error probability. Thi~ 

will be accomplished as completely as possible when the receiver symbol 

set [ij,qj}, j = 1,2, ••• t, has a one-to-one correspondence with the 

transmitter symbol set (i.,p.J, i = 1,2, ••• k, and p. = qJ. for the pair-
1 1 1 

ings achieved. At the other end of the scale, we take as the worst per-

formance of the assigned task that which occurs when the receiver symbol 

set is (i1 ,1J; that is, when every received signal will be recognized 

as the same symbol with unity probability. 

In light of this, it would be convenient to measure learning in 

the communication system by a comparison of the receive:,; and transmitter 

symbol sets. Unfortunately, there are several inherent difficulties in 

this approach. For one thing, the decision scheme implemented at the 

receiver does not depend, in the general case at least, on a unique set 

of z 1 s and q's; identical decision schemes may be generated by more than 

one different receiver symbol set. Second, the receiver decision scheme 

is to be based on only the features of the received signals which are 

important to the recognition of the different symbols and not on all 

available information. Thus, it is not necessary to have zj = xi for 

some particular i and j; it is sufficient merely to have the proper 

features of the zj equal to the corresponding features of the xi. For 

this reason, a knowledge of which features are important to the reco$· 

nition process is necessary when evaluating the difference between 

transmitter and receive:r symbol sets, and a meaningful meqsure of the 

importance of individual features may be difficult to find. Third, when 

comparing the sets [i.,q.J and (i.,p.} one must deal with some relation 
J J 1 1 



64 

between the i's and j•s; that is, it must be known which z. is the re­
J 

ceiver•s concept of the transmitted symbol xi for every i and j. In 

the learning system it is quite possible that the relation between the 

i's and j's may change as learning progresses. For instance, it may be 

that i 2 is recognized as z4 by the learning receiver in the early stages 

of learning, but later the receiver's decision scheme may be changed in 

the learning process so that x
2 

is recognized as, say, z
6

• These 

changes in the relationship between the transmitter and receiver symbol 

sets add a great deal of complexity to any such comparisons. 

Because of these difficulties, it seems best to resort to a more 

classical measure of system performance 1 information flow, as an indi-

cation of learning. The measure of information flow in a corrununication 

system as an indication of system performance as proposed by Shannon 

(12) has usually been applied to non~adaptive systems and some extension 

of the ideas will be necessary if the application is to be meaningful 

in the context of a learning system. 

In the Shannon model, transferred information is equal to the 

amount of resolution of uncertainty at the receiver about the trans-

mitted symbols; that is, information transferred by the system is equal 

on the average to the difference in uncertainty about the transmitted 

symbols before and after reception of the transmitted symbols. The 

amount of information conveyed to the receiver by the reception of a 

particular symbol is a function of the unexpectedness of that symbol. 

The more unexpected a symbol is, i.e., the lower the probability of its 

reception, the greater the information conveyed by its recognition. 

It is assumed in the Shannon model that the receiver possesses 

complete knowledge of the probabilities of transmission of each symbol 
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and the channel characteristics so the receiver's expected reception 

probability for each symbol is eq1,lal to the true probability. This 

corresponds to the situation in the learning receiver when 

[i.,q.} = [i.,p.}, i = 1,2, ••• k. Statistical knowledge of the channel 
l l l l 

then permits the calculation of the transition probabilities, 

P(i.ji.) i,j = 1,2, ••• k, and the average informqtion transferred per 
J l 

symbol may be calculated as: 

where 

k 
H(xlz) = ~ 

i=l 

r = H(x) - H<xlz) 

H(X) is the entropy of the transmitted signal or average measure of un~ 

certainty of a transmitted symbol, and H(XiZ) is the same measure of 

uncertainty when the symbol recognized by the receiver is known. The 

difference of these two functions gives a measure of the average infor-

mation transferred per symbol. 

An alternate formulation for the average information transferred 



per symbol is: 

I= H(z> - H(zlx> 

k k 
=LL P(i.1~.)p. log2 i=l j=l J 1. 1. 

P(ij,~i) 

P(ij) 

where H(Z) is the entropy of the random variable z and H(zlx) is the 

entropy of Z when Xis known. The two formulations are, of course, 

equivalent but the first emphasizes the uncertainty about the trans-
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mitted signal and the second is written in terms of the uncertainty in 

the received signal. 

For the general case of the learning receiver, however, the analy-

sis of information flow is not quite so straightforward because the 

amount of information conveyed to the receiver through its recognition 

of a particular symbol is subject to some degree of personal interpre-

tation. In the first place, the subjective symbol probabilities used 

by the receiver may be considerably at variance with the relative fre-

quencies of the symbols. In addition, the symbols expected by the re-

ceiver may be quite different from those sent by the transmitter. Be-

cause of these factors, the various entropies by which information flow 

is measured can be formulated in several different ways according to 

the particular interpretation used, each yielding different values for 

the information flow. 

In the Shannon model there is a symmetry of information flow be-

tween the transmitter and receiver through the channel. If the f~nc-

tions of the transmitter and receiver are reversed, the information 

flow backward through the channel will be equal to that found for the 

forward case. This is evidently not directly applicable to the situation 
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of a learning receiver such as investigated here and, in fact, there is 

good reason to think that the information flow should be unsymmetrical 

in such a system. Part of the information transmitted to a learning 

receiver is lost in the channel as expected but part is also lost in 

the receiver itself because of its state of knowledge. Some of the re-

ceived information should be used by the receiver to improve its state 

of kn owl edge. 

The method of defining information flow used in this paper seems 

to serve the purpose for which it is utilized but no claim of uniqueness 

is made and there is no assuranc,e that more meaningful methods do not 

exist. 

The system is analyzed from the point of view of an outside ob-

server as a communication system in which the transmitted symbols are 

selected from [i°i}, each with probability pi' and the received signals 

are recognized as members of (ij} according to the decision scheme then 

in use at the receiver. The channel characteristics are assumed known. 

With the knowledge of the x's, p's, z 1s, the channel characteris-

tics, and the receiver decision scheme, one may calculate the transition 

probabilities P(ijlii) i = 1,2, ••• k, j = 1,2, ••• t. The average trans­

ferred information per symbol is then: 

r = H(x) - H<xlz) 

where 

H<x!z) 



So 

p <~) ii)pi 
P(iil ij) = -k~-----

L P(ijlxm)Pm 
m=l 
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The subjective probabilities [qj}, the receiver's estimate of the re­

ceived symbol probabilities, do not enter directly into the info~mation 

flow equation except through the transition probabilities P(ijlxi). 

These probabilities are determined in part by the receiver decision 

scheme which, in turn, is directly affected by the [qj}. 

It is the transition probabilities which change as the system 

learns, and so all the information about changes in the state of 

learning by the receiver is contained in them. As the receiver learns 

to recognize each of the transmitted symbols it is expected that 

p(;) xi) will approach 1 for those i-j pairs which define the relation 

between the transmitted and received symbols; P(i.lx.) will be very 
J ]. 

small for all other i-j pairs. Knowledge of this i-j pairing is not 

necessary for calculation of I, nor is there any need for specific in-

formation about the symbol features used by the receiver. This infor-

mation is manifest in the P(z.1°i.) 1s. 
J ]. 

The calculation of those probabilities is reasonably straightfor-

ward in theory. The pattern space is partitioned into l decision 

regions S,, j = 1,2, ••• l, where 
J 
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i= 1,2, ••• k} 

Then 

In practice, the evaluation of this integral presents a problem 

unless the vector space is of only one or two dimensions. Since it is 

desired here to be able to deal with much higher numbers of di!Ilensions, 

an approximate method of evaluating the probabilities will be employed. 

The probabilities will be approximated by a bell-shaped curve which is 

algebraically manageable. Let q. 

P(i.1x.) 
5 d2(zj,xi) + o.os . 

= 
J l l qm 

L 2 
m=l 5 d ('zm,xi) + o.os 

where d(i.,x.) is the Euclidean distance between the points z. and x. 
J l J l 

in the pattern space. This is, to be sure, a rough approximation but 

for the cases to be considered in this investigation, where x. is close 
l 

to one of the z's and relatively far away from all the other z 1 s, it 

will serve the purpose for calculating an approximation to the infor-

mation flow in the system. 

For a fixed transmitter symbol set, the average information trans-

ferred per symbol is limited by the channel noise. This limit will be 

reached, for the most general case, only when the receiver has complete-

ly learned the transmitt~r symbols and their probabilities. When 

[i.,q.} = [x.,p.} the average information transferred per symbol is: 
J J l l 



k k P<x ·Ix.) 
I= I = L L P(x.1x.)p. log2 -=k~. --=J_l __ max . 

1 
. 

1 
J 1 1 

1
= J= ~ P(x.lx )p 

m=l J m m 

Under all other conditions, the information flow will not exc~ed this 

1 . . 1 
1m1t • 

The average transferred information per symbol as a function of 

the number of symbols processed through the system gives a reasonably 
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useful measure of how rapidly learning takes place in the learning re~ 

ceiver. This measure is plotted in the form of a graph like Figure 11 

from which some inferences about the system's operation can be made. 

The Learning Curves 

As indicated, the behavior of the simulated system may be observed 

in a number of ways. The learning curve presents a view of the overall 

level of receiver performance as a function of the number of signals 

processed from which it is relatively easy to observe the effects of 

changes in syst;em parameters. The curve of Figure 11 shows how the in-

formation flow, the observable measure of learning, increases rapidly 

at first as the receiver forms a rough estimate of the transmitter sym~ 

bols to use in the recognition scheme. The final stages of learning 

take place more slowly as the estimates are refined by the reception of 

a growing body of data. Generally it will be convenient in this study 

to consider the learning to take place in two parts; first, the initial 

generation of the transmitter symbol estimates and, second, the final 

1This assertion is easy to prove if it is also assumed that the 
PCx;lxi) for j ~ i are all equal (13). It has not been proved in 
gen~ral. 
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refinement of those estimates. In the learning curve, the change from 

the first to the second stage is denoted by the knee of the curve. 

The learning processes investigated here are observed to occur 

primarily in the early part of the receiver's experience. Dt,1ring the 

first several hundred samples the receiver learns rapidly but somewhat 

inconsistently. The slope of the curve and its smoothness are generally 

the external features of interest here. Actually, of course, it is the 

way in which the receiver learns the transmitted symbols and their 

probabilities which determines the shape of the curve here and it is 

the effect of this underlying mechanism of learning that is to be ob­

served in the learning curve. 

The refinement of the symbol estimates which takes place during 

the second stage of receiver learning depends heavily upon the initial 

estimates found during the early learning pert. If the initial esti .. 

mates are reasonably good, it is expected that the information flow 

curve will smoothly and steadily approach the limit imposed by the 

transmitter and channel as the symbol estimates are gradually refined. 

When the initial symbol estimates are poor, and particularly when the 

number of transmitted symbols is chosen incorrectly by the receiver, 

the learning curve exhibits much less consistent behavior. Generally, 

it will be convenient to consider the first stage of learning to end 

only when the symbol estimates are sufficiently acc;:urate to enable the 

rece;i.ver to recognize the transmitted symbols with a reasonably low 

probability of error. For the most part, large changes in the receiver 

symbol set and the generation of new receiver symbols will occur only 

during the first learning stage. 

As discussed earlier, there are three variable system parameters 
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which may be externally controlled to adjust the receiver's performance. 

These are: 

(1) the significance level of the test to decide when a 

single received signal represents a previously un­

recognized symbol; 

(2) the significance levei of the test to decide when two 

symbols recognized as distinct by the receiver should 

instead be recognized as only one symbol; 

(3) the significance level of the test to decide when a 

group of signals supposed by the receiver to represent 

only one symbol should actually be recognized as two 

or more distinct symbols. 

From a broad point of view, one would expect that the first 

parameter should have the most noticeable affect on system performance 

during the very early learning stages when the receiver has not been 

11 exposed 11 to all of the transmitted symbols. When this parameter is 

near its optimum value, the receiver should recognize new transmitted 

symbols with little delay. When this threshold is too high or too low, 

the receiver might erroneously indicate new symbols where there are 

none, or else fail to recognize new symbols as new when they are re­

ceived. Similarly, the second parameter controls the ability of the 

receiver to discover that it has incorrectly distinguished two or more 

different symbols where there is, in fact, only one. If this parameter 

is set too high or too low, the receiver may erroneously recognize many 

different received symbols as identical or else fail to identify situa­

tions in which several apparently different symbols should be recognized 

as identical. 
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The third parameter controls the receiver's ability to look at all 

the signals received up to that time and to discover differences in the 

way the noise and the recognition scheme has affected each symbol recog­

nized in the signals. Since the noise is presumed to affect each signal 

in a statistically similar manner, significant differences among the 

recognized symbols are assumed to be caused by improper recognition 

processes. This causes the receiver to re-examine the parts of the 

recognition scheme which led to the identification of the suspect sym­

bols in hope of discovering new recognition criteria. This facet of 

the receiver's operation should affect the learning curve after a suf~ 

ficient number of signals have been received to form a good estimate of 

the effects of noise and the recognition process on each symbol. Fur~ 

ther, it is necessary to be able to separate the effects of the recog­

nition process from those of the noise on the individual symbols. Only 

when a sufficient number of signals have been received to permit this 

can the receiver alter its recognition scheme in a meaningful way, that 

is, in a non-random manner. 

Generally, in the range of reasnably "good" settings of the adjust­

able parameters it should be expected that these paramete:rs have their 

greatest effect on system operation during the early pa.rt of learning. 

After the receiver once forms a good estimate of the transmitted symbols 

it would take a major disturbance to cause a significant change in the 

recognition process. It is in the formation of the initial estimate of 

the transmitted symbols and the subsequent widely varying attempts at 

improvement that the effects of the parameters should be most notice­

able. On the other hand, if the parameters are set so that the initial 

receiver symbol estimates are very much in error, the gra,dual refinement 



74 

process of the second learning stage will be ineffective. In this way 

the parameters can be said to affect the second learning stage although 

it will usually be more convenient to think of this as a secondary 

reaction, 



CHAPTER IV 

RESULTS OF THE SIMULATION 

By far the bulk of the results obtained from the simulation of the 

learning communication system pertains to the set of transmitter symbols 

described graphically in Figure 12. Because of the large amount of 

computer time necessary to simulate a single learning experience, about 

30 minutes to simulate the receiver's processing of 350 signals, it was 

difficult to obtain a large enough body of data to permit a thorough 

analysis of the many different aspeGts of the system's operation, ln 

concentrating on a single set of input data, it was hoped that enough 

about the system's operation for that one set of conditions Gould be 

learned and understood in order to indicate more promising ~reas for 

investigation. 

The general procedure was to start the receiver from a state of 

complete ignorance about the transmitted symbols and to observe the 

progress of learning. The procedure was repeated for as many different 

sets of the three test parameters as possible. It was hoped that the 

data thus obtained could be used to derive some understanding of the 

system's dependence on these parameters and how they work together and 

individually to affect the learning phenomenon. 

About half of the 30.odd computer runs were made with identical 

sequences of data presented to the receiver. Most of the remainder of 

the test data was the result of using the same transmitter symbol set 

75 
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but allowing the transmitter to generate different random sequences of 

those symbols. Some brief experimentation wa:; done with more complex 

transmitter symbol sets utilizing various geometrical configurations 

and higher numbers of dimensions. 

As indicated previously, most of the results of the simulation are 

presented in the form of learning curves detailed with notes about the 

underlying system operation at points of interest. Just exactly how 

much can be inferred about the system's operation, not to mention the 

fundamental learning process, by examination of these curves is 1;,omewhat 

a matter for subjective interpretation. Nevertheless, this appeared to 

be the most meaningful data obtainable under the general limitations 

inherent in this study. Generally, the slope o~ the learning curve and 

its smoothness were the features deemed most important in these obser-

vations. 

Perhaps not too surprising, the performance of the learning system 

was not greatly affected by the parameter values as long as they were 

within a rather broad neighborhood of "good" values. It was soon dis­

covered that the system's performance on a given run was much more 

dependent upon the actual sequence of symbols than upon the parameter 

values. The generation of this sequence was controlled by a pseudo­

random number generator within the program so the actual sequence was 

not directly under external control. However the starting point for 

the sequence was used to control whether the same or different sequences 

of symbols were to be used on different runs. In this way it was possi­

ble to separate to some degree the effects of changes in the receiver 

parameter values from changes in the sequence of data presented to the 

receiver. 
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In regard to the results of the simulation and what is to be in­

ferred from those results, it is certainly worth making note of the fact 

that the simulated system works as expected. In all cases within a very 

broad range of conditions, the simulated receiver generated a symbol set 

and associated probabilities that formed a good approximation to those 

at the transmitter. The learning curve always tended to increase until 

it asmytotically approached the limit set by the transmitter and chan~ 

nel. Evidently the fundamental structure of the system and its simula~ 

tion is sound. 

Detailed Example of Learning Process 

Figure 13 is a plot of the learning curve for a perhaps not too 

typical run but one which is good for showing in some detail the major 

changes and adjustments made in the receiver symbol set during the 

learning period. The transmitter symbols t.1sed are those shown in Figure 

12. During the reception of the first 20 signals, the receiver was able 

to detect five of the six different transmitted symbols at the 0.1% 

significance level. Inspection of the printed output of the program 

reveals that at this point the receiver was recognizing symbols x
3 

and 

x4 as identical. The printed output also shows that symbol x3 had been 

sent only twice thus far by the transmitter so it is understandable that 

the new symbol had not been 11 noticed 11 by the receiver. Interestingly 

enough, this seemingly insignificant error cc::iused the receiver to get 

off to a poor start from which it did not fully recover until consider­

ably more data had been received. After 40 symbols had been received 

and classified, the clustering algorithm was used to regroup the signals 

into five compact clusters. This redefined the receiver symbols 
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slightly and resulted in a slight increase in average information flow. 

After 120 signals had been received, the cluster shape test detected a 

significant difference in the shapes of two of the clusters and caused 

both clusters to be subdivided, resulting in the recognition of two 

additional symbols by the receiver. The receiver was at this point 

recognizing seven distinct symbols but the transmitter was sending only 

six. Almost immediately, the receiver decided that the extra symbol 

was identical to one of the others and combined the two. The clustering 

algorithm, after 140 signals, again improved the average information 

flow slightly by refining the symbol estimate. At this point the re­

ceiver was recognizing the correct number of symbols and inspection of 

the printed output shows that only six of the 140 signals had been 

recognized incorrectly. The gradual improvement of the symbol estimates 

then resulted in a continually increasing information flow until, with 

about 200 signals processed, the receiver suddenly combined two of the 

symbols and then added a new symbol to its set of estimates. The 

clustering algorithm, at 220 signals, regrouped the signals into the 

most compact clusters starting with the existing symbol estimates for 

the cluster centers. This whole process resulted in only a very slight 

improvement in the symbol estimates since they were quite good to begin 

with, but the subsequent reclassification of all the symbols shows that 

only 4 of the 220 signals were then recognized incorrectly. Evidently 

the slight improvement was enough to help in the classification of the 

most questionable signals. After about 260 signals, the receiver 

erroneously recognized a new symbol and then combined one of the others 

with it. This did not have any noticeable effect on the average infor­

mation per symbol because there was always at least six receiver symbols. 
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Before, when the receiver had combined two symbols and then proposed 

one new symbol, the information flow graph showed a lqrge drop in aver~ 

age information flow during the time when there were too few receiver 

symbols. Generally, the addition of only one or two extra symbols to 

the receiver symbol set should not have a great effect on information 

flow because the estimated prpbability of reception of the extraneous 

symbols is ordinarily quite low. This time when the receiver settled 

down to receiving the correct number of symbols the printed output from 

the program shows that all the transmitted signals were recognized 

correctly by the receiver. From this point onward, the receiver recog~ 

nized all of the transmitted symbols with no errors and there occurred 

1 no further disturbance of the recognition scheme. 

Although it is not at all evident from the learning curve itself 

and no notation is made on the graph, all the new symbols proposed by 

the receiver use two dimensions in the recognition scheme. At the 

beginning of the simulation process, only the f 1 variable of the signals 

were considered as a characterization of the transmitted symbol. As 

noted previously, this variable does not contain sufficient information 

for reliable recognition of the different symbols in this symbol set. 

The £2 variable is considered by the receiver when it discovers that 

the classification scheme is unsatisfactory in one dimension but much 

improved in two dimensions. The final result in this example is that 

two dimensions are used to classify all the signals except those recog-

nized as representations of symbol x6 • Inspection of the transmitted 

symbol vectors shows that this is as it should be; symbol x6 is 

1 Extraneous symbols can be expected to be postulated at a r,;l.te 
about equal to the significance level of the first test. 



81 

separated by seven units from its closest neighbor in the f
2 

direction 

and only 4.66 units separation is necessary to meet the receiver's 

criterion for distinguishability. 

The receiver does not make use of the f 3 variable in any part of 

the recognition process. The printed output o~ the program reveals 

that the third dimension is inspected several times in a search for new 

symbols among clusters whose shapes are found questionable by the 

third test but thil:i variable is each time rejected as a discriminant. 

Indeed, the f 3 element of the signal vectors varies only with noise and 

so cannot aid in the recognition process. 

E~fects of Parameter Changes in the Receiver 

In order to obtain some meaningful data for the purpose of inves­

tigating the system's reactions to changes in the three variable param­

eters it was decided to make a number of runs using identical sequences 

of signals and changing only the parameters. It was reasoned that the 

differences in system operation from one run to the next could be ob­

served and some conclusions drawn about the dependence of the learning 

process upon these parameters. 

The limited amount of available data prevents making any but the 

most general types of statements in this regard, Perhaps the most gen­

eral statement that can be made, and quite possibly the most meaningful 

statement also, is that the important part of the receiver's operation 

was essentially unaffected by rather large variations is the parameters. 

As long as the parameters were within a neighborhood of their 11 good" 

values, the simulated receiver would learn the transmitted symbol set 

with reasonable efficiency. 
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This is not to say that the learning system showed no reaction to 

changes in the parameters. To the contrc1-ry, even a slight shift in one 

parameter might have a very great affect; on certain characteristics of 

the learning curve. The way new symbols are postulated and accepted or 

rejected controls the shape of the learning curve, and the precise 

manner in which the new symbols are postulated is controlled by the test 

parameters. Even so, the overall learni,ng abili.ty of the receiver was 

unaffected by these changes. 

Figure 14 shows the learning curves of ten runs using identical 

data with various values for the three parameters. The identical 

sequences of da,ta were generated by using the same starting poi,nt for 

the pseudo~random number generator for e?ch run of the program. The 

transmitter symbol set was that shown in Figure 12. The significance 

levels of the three tests were varied over ranges expected to make evi~ 

dent any dependency of the learning process on these parameters. For 

this particular sequence of data the cluster shape test significance 

level seems to be rather uncriticci.1 in the whole range tried from 1% to 

10%. This is an intuitively pleasing result since it is believed that 

the search for new symbols triggered by this test will only rarely 

result in the generation of spurious receiver symbols. The effects of 

changes in this parameter generally do not show ip. the learning curves 

since the receiver symbol set is not influenced by unproductive searches 

for new symbols. As long as this test is sensitive enough to detect 

abnormalities which may lead to the discovery of a new symbol, th~ 

learning process should be practically independent of this parameter. 

On the other hand, the number of unproductive searches, or ''false 

alarms", should increase directly with this significance level. The 
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printed output of the program shows this to be true. 

The new symbol test and symbol combining test are somewhat c;omple .. 

mentary in that any spurious new symbols gener;:ited through this medium 

should be removed promptly by subsequently combining them with an 

existing symbol. In order for this sequence of events to occur it is 

necessary first for the new symbol recognizing test to be sensitive to 

the noise induced signal disturbances. Yet, when the new symbol test 

signifiqmce level is greater than 1%, the effects of having too many 

receiver symbols begins to be noticeable in the learning curve. Gen­

erally this shows up as an unevenness in the learning curve such as 

appears in Figure 14a and 14b. If the receiver is fortunate enough to 

correctly postulate the new symbols, then real learning can take place 

here. Inspection of the printed output reveals, however, that in most 

cases the new symbols are spurious representations of one of the already 

accepted recei.ver symbols. Soon the symbol combining test eliminates 

the extra symbols. It seems that readiness of the receiver to declare 

new symbols without being too sure of itself tends to create more con­

fusion in the learning process than it is worth. For the sort of data 

used in this e,cample, the receiver le;i:i;ns most smoothly when the new 

symbol test has significance level in the neighborhood of 0.1%. 

The main purpose of the symbol combining test is to eliminate 

spurious symbols generated by the new symbol test. As such, its signif­

icance level should not be critical as long as it is able to do its job 

without eliminating any true representations of the transmitter symbols. 

For the range of values investigated here, from 1% to 10%, the test 

seems to function satisfactorily. It is believed that somewhat larger 

levels would result in the unnecessary combining of symbols, slowing 
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the rate of learning, In this case the receiver ~ight be forced to 

extend its recognition scheme to include a greater amount of data in 

the form of a la:t;'ge number of new symbol features before the different­

ness of the symbols would be great enough to satisfy the symbol com­

bining test. [he recognition and learning processes would then be con­

siderably less efficient. 

Considering all of the trial runs that were made in this investi~ 

gation for the many different sets of data and various receiver param­

eter values, it appears that the optimum level for the new symbol test 

is less than 1%, The test should indicate a received signal to repre­

sent a previously unrecognized symbol only when it is virtually certain 

that is the case. The optimum va.l\le for the symbol combining test sig .. 

nificance level seems to be about 5%, The receiver's learning process 

is somewhat more tolerant to having too few receiver symbols than too 

many during the early learning stage. The significance level of the 

cluster shape test is the least critical of all and the system seems to 

work well with this parameter at about 10%. Increasing the sensitivity 

of the shape test beyond the 10% significance level resulted in little 

change in performance except that the receiver became less efficient as 

it wasted time looking for new symbols in the data where there were 

none to be found, 

Figure 15 shows the learning curve of one of the most efficient 

runs using the transmitter symbol set of Figure 12, The receiver was 

able to extract enough information from the first 120 signals to form 

good estimates of each of the transmitter symbols and to recognize ;ill 

of the signals correctly. In more ordinary situations the receiver re­

quired about 50% more signals to make the same estimates. l'he rapidity 
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of learning on this run seems to be the result of a fortuitous cpmbin?.., 

tion of receiver parameter settings and a 11 good 11 sequence of signals. 

Interactions Between Functions Performed by the Receiver 

Some further comments about the learning ability of the receiver 

may be in order at this point. There seem to be some subtle interac­

tions between the various tests which cause symbols to be added and 

deleted at the receiver. Quite often a seemingly incorrect decision in 

one of the tests ultimately results in an improvement in overall per­

formance when the decision is partially reversed by one of the other 

tests. It appears that the overall learning process is able to progress 

not only by its correct decisions but also by its mistakes. Certainly 

there is no reason to believe that this is impossible in a very general 

learning situation. Whether or not this takes place in the very simple 

model used here is perhaps a matter for personal interpretation. 

For instance, consider the example shown in Figure 13. It is in­

teresting to take note of the system's operation in reference to the 

number of symbols it proposes to receive. When the receiver has pro .. 

cessed about 210 signals it deletes one symbol from its set leaving it 

with only five, one less than the number being transmitted. Almost 

immediately it adds a new symbol. Here attention is called to the per­

formance improvement occurring as a resu.lt; of the symbol deleting and 

adding perturbations in the recognition process. Before the disturb­

ance, the system had settled down to a uniform level of performance. 

The improvement in information flow with corresponding reduction in 

number of errors occurs only because the recognition scheme stabilizes 

at an improved position after the disturbance. It is unlikely that the 
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system could have made a smooth transition between the before and after 

disturbance situations both l;>ecause increasing the number of dimensions 

used in the symbol classifying process causes a complex ch,ange in the 

recognition scheme and because errors in the recognition process ten.d 

·, -:'i·:·,,.i>:-r,,,n,11!;~·:- .,, •. Lc,r:~,--.-·".'"'- ,..,,, .;,;,, 

to perpertuate themselves and cause similar new errors to occur;;,,,,lf"'is 

only by upsetting the recognition scheme enough to mask the short-term 

effects of the past errors that the system is able to illlprove itself. 

Here it is contended that the so-called disturbance to the recog-

nition process is, in fact, a fundamental part of the hypothesis gen-

erating procedure employed by the learning receiver. The generation of 

new symbols for recognition by the receiver is not done randomly, but 

is designed to satisfy the requirements of the receiver based on its 

concept of self~satisfaction with its performance. The new symbols 

themselves are modeled by the data which started the search for new 

symbols through the receiver's handling of that particular data. 

Generally, there is no attempt to alter the recognition of symbols 

with which the receiver is satisfied, although there is no assurance 

that such will be the case. The reprocessing and reorganization of the 

data in light of the new hypotheses generated within the receiver may 

lead to considerably different recognition of some or all the data even 

when the new hypothesis directly affects only a small part of the recog-

nition scheme. In the example just considered, the generation of the 

new symbols for recognition by the receiver results ih a reduction in 

the number of misclassified signals among all the symbols, even those 

not directly affected by the changes in the receiver symbol set. In 

this case the receiver learns to classify all of the signals properly 

when the last new symbol is proposed after about 275 signals have been 
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processed even though not all the previously made errors concerned that 

symbol. 

It is important to realize here that the ability of the receiver 

to perform at this level comes more from the generation of the proper 

receiver symbol set than from the gradual accumulation of data one sig­

nal at a time upon which the estimates of the transmitter symbols are 

based. It is quite true that the information for estimating the trans­

mitter symbols is contained in the body of received data but it takes 

the sudden proposing of new symbols to actually make use of that data. 

The data from the first 250 signals probably contains enough information 

on the six transmitter symbols to form very good estimates, but those 

estimates are not formed correctly by the receiver until it "discovers" 

a better way to process the data. 

No doubt it would be stretching this point considerably to claim 

that the learning receiver has the faculty of "insight11 for the forma­

tion of its new symbols. On the other hand, it certainly does not 

search completely at random either. In one respect the receiver is 

decision-directed in the formation of symbol estimates, yet it possesses 

the capability of broadly reviewing its past performance and attempting 

to improve on it. 

It is during the review of past performance that the receiver may 

search for new discriminants upon which to base its decision rule for 

signals with whose recognition it is not completely satisfied. By con­

sidering additional information in the form of a higher dimensional 

signal vector the receive];' may implement recognition schemes yielding 

considerably different results which, in turn, may motivate further 

searches for additional information on the part of the receiver. 



99 

Generally, there is no reason to believe that there should be any 

way to proceed directly to the final decision scheme without passing 

through the intermediate learning and recognition steps. The decision 

scheme implemented at each step certainly need not have any particular 

relationship to that of the previous step. The extreme non-linearity 

in the system's progress introduced by the addition of new informa~ion 

is perhaps the major source of difficulty in analyzing and predicting 

the system's behavior. This is perhaps the major difference between a 

true learning system and one which merely uses received data to modify 

the parameters of a fixed structure. In a truly ~daptive learning sys-

tern the fundamental structure may be changed to accomodate the data. 

Once again it would be stretching the point to claim that the model 

demonstrates this ability in a completely generc;tl fashion, yet there is 

a hint of this ability in the changing structure of the decision scheme 

which accommodates itself to the structure of the data. 

It is the need for satisfaction with its own performance which is 

the foundation of the receiver's ability to learn. If the receiver is 

completely satisfied by its present performance, then no new decision 

schemes will be investigated and the learning of new symbols will stop. 

Under such circumstances it is still possible for the receiver to uti~ 

lize some information in the data to refine its estimates of the trans-

mitter symbols and so improve the recognition process slightly, but if 

the fundamental decision scheme is not correct at this point, at least 

insofar as the number of symbols to be recognized and their important 

features, the receiver will never be able to improve itself signifi-

cantly. 
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The Effects of the Data on Learning in the Model 

Thus far all attention has been devoted to the receiver in the 

communication system model and how it handles a given set of data. CerF 

tainly another area of importance is the data itself or, more specifi­

cally in the context of the simulation, just what properties of the 

transmitter symbols and the sequence in which they are sent enable and 

aid the learning receiver to perform its task. 

As has already been noted, the short term learning progress of the 

receiver is affected strongly by the sequence in which the symbols are 

selected for transmission. It seems unlikely that this would have any 

significant effect on the long-term or average learning capabilities of 

such a system. This supposition is borne out by the small amount of 

data taken with this in mind. For example, Figure 16 shows two learning 

curves for different sequences of the same transmitter symbols. Evi­

dently the receiver learns the transmitted symbols in a different way 

each time but the overall result is the same. 

Certainly one would expect the "differentness" of the transmitted 

symbols to have an effect on how the receiver discovers new symbols in 

the data. Likewise, the geometrical arrangement and dimensionality of 

the vectors representing the transmitter symbol set could be important. 

Figure 17 shows a typical learning curve for the receiver when it 

was presented with data generated by the transmission of six symbols 

equidistant from each other in a 5-dimensional signal space. The 

Euclidean distance between each pair of symbols was 4.95 times the 

noise standard deviation thus meeting the general requirement for "dif­

ferentness" and permitting recognition with a very low error rate by 

the best decision scheme, The receiver was programmed to begin by 
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considering all five dimensions of the received signal vectors, thereby 

utilizing all of the available information. 

It is immediately noticeable in Figure 17 that the learning process 

as evidenced by the information flow curve seems to progress in a 

smoother and more orderly fashion than for the lower-dimensional cases 

cited previously. The more orderly arrangement of the transmitted sym­

bols may well have something to do with this but experience with other 

higher dimensional data indicates that there are other factors involved. 

In the first place, there is a greater amount of learning necessary to 

achieve a certain information flow in the higher dimensional situations. 

That is, more numbers must be learned by the receiver in order to imple­

ment the recognition scheme at a desired level of "goodness" in higher 

numbers of dimensions. Thus, learning might be thought to occur more 

slowly although there is also more information available to the receiver 

from which to learn in the form of the higher dimensional signal vec­

tors. Secondly, the distribution of errors or inaccuracy in the re­

ceived information fuay be more evenly distributed because of the larger 

number of noise components on the received signal. Certainly the phe­

nomenon of 11 sphere hardening" is taking place. The term sphere harden~ 

ing is applied to the phenomenon where the length of the normali~ed 

noise vector added to the signal vector has less and less proportional 

variance as the dimensionality of the signal space increases. This 

means that the received signal vectors will tend more and more to lie 

on the surfaces of hyperspheres as the number of dimensions increases. 

Each hypersphere would be centered on the true symbol representation. 

It is not clear just how these various factors affect the process of 

learning as model.ed here but it is evident that the dimensionality of 
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the signal space is itself a factor in the learning process. 

If there is any conclusion to be drawn from these observations it 

seems to be that learning takes place more smoothly and predictably 

when information is received in the form of a large number of measure­

ments each containing a small part of the total available information. 

On the other hand, it is more difficult to process thE;l many~dimensional 

data so the computational efficiency of the learning process is reduced, 

at least when simulated on a digital computer and programmed in the 

manner of this investigation. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Suml!lary 

The phenomenon of hypothesis generation (generation of new ideas) 

in a learning system has been investigated, This effort was motivated 

by the general feeling that the generation of hypotheses is an essential 

part of the learning process and a part which is particularly poorly 

understood from a technical standpoint at the present time. Attention 

was focused on efficient ways of generating new hypotheses and how the 

learning process, i.e., the generation of 11 good 11 hypotheses, was inf lu­

enced by data presented to the learning system. It was demonstrated 

that these good new hypotheses could be generated rather efficiently by 

a consideration of the data rather than by a random process of trial 

and elimination. 

There was a distinction made between generating completely new 

hypotheses and modifying old ones. In the context of present-day 

learning systems, attention centered on machines which possessed the 

ability to change their basic structure rather than only certain param­

eters of a fixed structure. 

The general approach taken in this investigation has been to model 

the learning system as a decision-making device where the various alter­

natives considered by the system correspond to hypotheses which have 

been learned in the course of its experiences, Included in the concept 

106 
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of a hypothesis is not only a possible decision but also some rule for 

how that decision is to be reached. Taken collectively, the set of 

hypotheses determine both the set of possible decisions and how those 

decisions are reached from raw data presented to the system. 

In the communication system model proposed here, the hypotheses 

correspond to symbols proposed for reception by the receiver. The rec~ 

ognition scheme based on these proposed symbols determines the decision 

rule. The geometrical interpretation given to the hypothesis generation 

and recognition processes tends to aid the understanding of the re­

ceiver's operation and particularly demonstrates at least one way in 

which new hypotheses may be generated in a very efficient manner by the 

learning receiver. 

The computer simulation of the model demonstrated the feasibility 

of such a model of a learning system and gave some indication of the 

broad range of conditions under which it could function effectively. 

Such a simulation was particularly useful in this study beca~se of the 

difficulty in finding tractable methods for analyzing the behavior of 

this complex system. 

The results obtained from the simulation were much more brief than 

had originally been intended. Because of the large amount o;E computer 

time required by the simulation program, only about 30 usefl,11 sets of 

data were available for analysis. Perhaps this was just as well since 

nothing completely unexpected is evident in the results which were ob~ 

tained in this manner. 

The most obvious results are the demonstration that the model works 

as the theory predicts and that it is not particularly sensitive to its 

own internal operational parameters. The generation of new hypotheses 
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based on data which is not consistent with existing hypotheses seems to 

be a valid mechanism for use in such a learning system. The fact that 

the method is not sensitive to the system parameters indicates that the 

principle may be useful in practical situations. 

Comparison of Results With the Work of Others 

In an attempt to gain some comprehension of thE! significance and 

relevance of the learning system model which has been pt'oposed and in­

vestigated in this paper, one is inevitably drawn to make comparisons 

between this system and those which have been proposed by others. The 

general problem of teacherless learning in pattern recognition and 

classification systems has b~en treated in the literature rather exten­

sively since about 1962 and a number of practical solutions to the prob­

lem have been proposed and investigated (14,15,16,17). Almost invari­

ably these solutions have required knowledge of the number of different 

classes to be learned and recognized. All of the solutions for which 

substantial mathematical treatment has been offered have required this 

knowledge. 

The model proposed and investigated in this study requires a con­

siderably less restrictive kind of information. As indicated in the 

description of the model, the shape (number of modes) and variance of 

the noise distribution can provide enough information to insure success 

of the method. It is believed that the proposed model could function 

almost as effectively with even less a priori information than this 

since the model is directed more by the differences it discovers in its 

observations than by the comparison of those observations with some 

absolute standard. 
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MacQueen (10) describes a system for the classification and 

analysis of multivariate observations which is basically similar to 

part of the proposed model. The number of classes or categories recog­

nized may be varied to suit the data using a set of fixed distance 

thresholds. The model proposed herein goes several steps further by 

allowing the thresholds to vary in a manner intended to give some 

statistical substance to the decisions for creating and exterminating 

categories. 

Perhaps the major difference between the model investigated here 

and all others which have been reported to date is the ability of this 

model to reconsider the data and to search for new criteria for classi­

fication by varying the dimensionality of the signal space. !here ~re 

two different but interrelated aspects to this facet of the model's 

operation. First, by measuring various properties, e.g., generalized 

variance, of large amounts of data, the parts of the data which may re­

quire more careful analysis are pointed out, Broadly stated, the data 

which is not "explained" by the present state of knowledge is marked 

for further investigation. This corresponds to the general scientific 

method in present-day research. The second part of the learning pro­

cess, considering more information in the form of higher dimensional 

data upon which to base a new decision scheme, seems to be a natural 

extension of the pattern recognition problem except that in this partic­

ular application the suspect data itself is used to form the new 

decision scheme. A new hypothesis is proposed which, in fact, does 

explain the observed data. This, too, corresponds to the scientific 

method in research so there is reason to feel that the proposed 

algorithms are not inconsistent with the real world. 
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Concluding Comments 

There are a number of general comments about the model and its 

study which, if not obvious at the outset of the investigation, rapidly 

became apparent as work progressed. First of all, the model is an 

attempt to explain what is probably a very complicated learning phenom­

enon by rather simple means. In the introduction it was stated that 

the reason present-day learning machines are not more successful is be­

cause the underlying phenomena are not understood. That was generally 

found to be the limiting factor in this study. No doubt, a larger and 

faster computer would have been of some help but, even so, the computer 

simulation seems to have been limited more by the theory than by the 

available hardware. A faster computer would have produced such a moqn­

tain of data that its analysis would have been as large a problem as 

the original investigation. If anything could have aided the study, it 

would have been a simpler theory to explain a better-understood learning 

phenomenon. Whether or not this is possible remains to be seen. 

There is an interesting interpretation which may be given to the 

study results in view of the learning theory investigated and the lim­

ited amount of data available to test that theory. The study was 

initiated partly because of some pre-conceived ideas about the aspects 

of learning which were to be investigated and the results which were 

expected to be found. It was axiomatic, according to the theory, that 

preliminary results of the simulation could be and, in fact, would be 

explained by these pre-conceived ideas. The theory states that any 

discrepancy between these ideas and the 11 truth 11 should have become in­

creasingly apparent as more and more data was obtained. Unfortunately 

for the exposition of this aspect of the theory, the amount of da,ta 
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obtained was rather small in comparison to the complexity of the phenom­

enon investigated and so no significant discrepancies were discovered. 

There was very little in the line of unexplainable behavior by the sys­

tem model to lead the investigation. 

There is perhaps at least one exception to the above statement. 

The model's reaction to high-dimensional data has been noted as not 

being adequately explained by the theory. It is possible and, in fact, 

probable that some more detailed theory can be advanced to explain this 

phenomenon. 

The use of heuristic methods in the model deserves some further 

comment at this point. The obvious reason for the use of such tech­

niques is that the theory has not been expressed in strict enough math­

ematical terms to permit analysis and simulation on a more fundamental 

level. Whether this will ever be possible and/or worthwhile cannot be 

determined at this time. Certainly it is more desirable at the present 

time to gain an understanding of the overall learning process than to 

be concerned with the details, thus the justification for the loose 

mathematical framework. 

In the introduction it was stated that because of the exploratory 

nature of the study and the limited amount of relevant data, the effort 

needed to build a rigorous theory may not be justified at the present 

time. The simulation results tell us that we need a reasonably large 

body of relevant data to point the way toward a precise and useful 

formulation of the theory. Certainly many minor variations of the 

theory could be supported by the available data. Clarification of many 

small points may be discovered and tested in the course of future work. 
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Recommendations for Further Study 

At this stage of any investigation of this type it invariably 

appears that there is more work ahead than behind. This study is no 

exception. The theory could be expanded and inve~tigated further in 

almost any direction. There are several areas touched on by this in­

vestigation in which some groundwork has been done to point out the 

limits of present-day knowledge. (1) There is the question of how 

much a priori information is necessary to insure convergence of the 

learning system to the "correct" solution. The work of Teicher (18) 

and Patrick and Hancock (19) on the identifiability of finite mixtures 

gives conditions under which convergence of a particular type system 

is certain but little is known about the sensitivity of more general 

learning systems to this a priori information. In particular, the 

question of interaction between a priori information and information 

available in the data but perhaps unused by the learning system is 

almost completely unanswered. (2) There is a need for a more compre­

hensive measure of the amount of learning or state of knowledge in such 

systems. The information flow measure used in this study can be formu ... 

lated in several different ways because of various interpretations given 

to the empirical (relative frequency) probabilities and the subjective 

probabilities (credibilities). In any event, this particular measure 

is useful probably only in the communica~ion system model. (3) The 

effect of finite memory capacity and time span has been neglected in 

this study. The addition of a finite memory model appears to be a 

straightforward extension but, as has been noted earlier, the effects 

might bring unexpected results. 
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