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CHAPTER I 

INTRODUCTION 

1o1 Statement of the Problem 

During the last few decades 9 problems of dynamic 

stability of shell structures have increasingly attracted 

the attention of both scientist.s an.d engineerso The reason 

for intensifying the studies in this area is probably due to 

the development of missiles and rocketso These vehicles are 

forced to move at high speeds by rocket engines, and 

encounter pressure fluctuations on the vehicle structure 

during transitiqn and supersonic flight (1)o Pressure 

fluctuations in turn may cause tl:>..e vehicle structure to be 

dynamically unst.ableo Thus 9 these .problems, which have long 

been of theoretical interest, have recently turned out to 

be very important from a practical point of viewo 

The structural design of a. typical aerospace vehicle 

·~ requires that the response of the vehicle to various 

excitations (eogo, longitudinally excited pulsating 

pressures) be accurately predicted in order that the sound­

ness and reliability of the vehicle can be assessedo Since 

t~e conical shell is extensively used as a structural 

component in many existing a:n.d p7oposed flight vehicles, 

the stability of the shell. unde.r the action of an external 

1 



2 

unifonn pul~ating hydrostatic pressure is of great importance 

and will therefore be investigated in this thesis. 

The results of this analysis will be depicted in the 

form of principal regions of dynamic instability for dif­

ferent shell theories, various geometrical parameters and 

support conditions. (An instability region can be vis­

ualized as a domain in the load~frequency space which will 

indicate whether or not a certain load applied at a given 

frequency will cause the structure to become dynamically 

unstable.) 

1o2 Historical Sketch 

The phenomenon of parametric resonance in a stretched 

string has long been observed. However, ·Rayleigh. (2) was 

the first to give a theoretical explanation of this. 

phenomenon. A detailed review of the literature on the 

theory of dynamic stability, complete through 1951, can be 

found in an article by E. A. Beilin and G. u. Dzhanelidze 

(3) .. One of the most comprehensive treatises in this field 

was presented by Bolotin (4) in his book D:ynamic Stability 

.2.f Elastic Systems. 

In 1949 Markov (5) investigated the dynamic stability 

of anisotropic cylindrical shells and Oniashvilli (6) 

studied the dynamic stability of shallow shells in 1950. 

Federhofer (7), in 1954, published a paper on the dynamic 

stability of cylindrical shells under axial pressures. 

In 1958 Bolotin (8) published several papers on the 



dynamic stability of spherical shells and Bublik and 

Merkulov (9) studied the dynamic stability of shells filled 

with liquido The question of the influence of damping on 

the boundaries of the regions of instability was discussed 

by Mettler (10) and Naumov (11)a 

3 

The first paper known to the author dealing with the 

dynamic stability of cones appeared in 19550 In their study 

Alfutov and Razumeev (12) restricted the anaJ.ysis to shells 

with smaJ.l cone angles and it was assumed that the shells 

perform inextensionaJ. vibrationso Black (13) in 1968, 

employed the finite element method to study the dynamic 

instability of cylindrical shellso .Although he used the 

same approach as that of the present study, his means of 

obtaining the structural. property matrices cannot be used 

for the more complex geometry of a conical shello The 

dynamic stability of truncated conical shells has been 

studied by Kornecki (14) in 19660 Kornecki assumed in his 

paper that the mode shapes corresponding to the practically 

most important parametric vibrations contain a large number 

of circumferential. wavesa No such limitation is imposed in 

the present studyo 

Most of works on dynamic stability mentioned earlier 

had a common characteristic in that the governing differ= 

ential equations could, either exactly or approximately 9 

be reduced to a second-order differential equation with peri­

odic coefficients known as. the Mathieu-Hill equa,.tiono For 

example 9 Brachkovskii (15) estal:>lished a class of problems 



·that can be reduced exactly to one second-order equation by 

using the Galerkin methodo 

The idea of replacing any structure by a series of 

finite structural elements can be traced back several 

decadeso The development of this concept of structural 

analysis began to show its versatility and ease in the 

application for solving the problems of plates and shells 

only about ten years agoo 

4 

The first application of this technique to shells 

which involved replacing the curved surface by flat tri­

angular or rectangular elements had been done by Adini ( 16), 

Clough and Tocher (17), and Zienkiewicz and Cheung (18)o 

P;n alternative approach for a shell of revolution which 

consists. in replacing the shell by a set of conical segments 

was treated by Grafton and Strome ( 19) o Percy et al o ( 20), 

and Dong (21) extended the method to handle laminated shells 

and orthotropic materialso Dong (21), Clough (17), and 

Navaratna (22) studied the effect of the element size on 

solution accuracy. 

Recently, Jones and Strome (23), and Stricklin et al. 

(24) modified the method for a shell of revolution by using 

curved meridional elements rather than conical segments. 

To analyze a shell of arbitrary shape, Vtku (25) has 

proposed an element stiffness matrix for a shallow tri­

angular curved element. Webster (26) made improvements in 

the ring finite element analysis by extending the poly­

nomials representing the displacements. Connor and Brebbia 



(27) developed the element stiffness and nodal force 

matrices for a shallow shell element taking into account 

the effects of curvature. 

The application of the finite element method to study 

the dynamic stability of beams, platepi, and shells had been 

done for the first time by Brown (28), Hutt (29), and Black 

(13). The finite element approach using the direct stiff­

nes.s method has also been employed to solve classical 

elastic stability problems of simple structures. Geometric 

stiffness matrices for simple bar elements, beam columns, 

and plates have been obtained by Turner et alo (JO), 

Archer ( 31 ) , Gallagher et al. ( 3 2) , Argyri s ( 33) , Martin 

(34), Kapur and Hartz (35) and Oden (36) from purely 

5 

-,geometric consideratioriso A syste~atic procedure to obtain 

. the so-called geometric stiffness, or stability coefficient, 

and stiffness matrices for more complicated structures had 

. been developed by Navaratna ( 37) through the variational 

approacho 

1 a 3 Approach of This Study 

In this thesis the finite element method is used to 

study the dynamic stability of a truncated conical shello 

The original structure is replaced by a series of conical 

frusta as shown in Figure 1o Each conical frustum is 

bounded by two nodeso The displacements of the shell are 

described by the displacements of these nodes. Each node 

is assumed to have four degrees of free.dam for asymmetric 



r 

NODAL Cl RCLES OR NODES 

Figure 1o Discretized Shell of 
Revolution 

6 
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deformation during buckling and three degrees of freedom 

for axisyrrunetric~ torsionless, prebuckling deformatiorto 

7 

The formulation of both stiffness and stability coefficient 

matrices for any discrete element is carried out using the 

variational principleso This yields matrices that are 

positive definite for prebuckling equilibrium and symmetric 

for the perturbation problemo Both Donnell 1 s and Sanders 0 

non=linear theories for thin shells are usedo The mass 

matrix for each finite element is deri.ved from the defi:n.i tion 

of kinetic energyo The displacement and. velocity fields are 

assumed throughout the element for the formulation of 

various matriceso Finally the behavior of the entire 

structure is determined by introducing the compatibility 

condition at the3 node of each elementa 

In this study the shell is assumed to be made up of 

homogeneous and isotropic material that obeys Hooke 0 s lawo 

Further 1 the thickness of the shell i.s small in comparison 

with the radii of curvature~ while the shell is initially 

perfect and all of the perturbation quantities are smallo 

1 a 4 Solution Procedure 

The boundaries of the regions of dynamic instability 

of shells can be obtained in the followingmannerg 

(a) Determine the equations of motion of a typical 

shell element; 

(b) Discretize the origi?,al struc:ture into a series 

of conical frusta; 



(c) Assume a suitable displacement and velocity 

function for the above element; 

(d) Derive the elemental stiffness, stability 

coefficient and mass ma.trices; 

(e) Assemble the elemental matrices to obtain the 

equation of motion for the entire structure; 

(f) Apply the boundary conditions; 

(g) Calculate the natural frequency of transverse 

free vibration; 

(h) Calculate the static buckling load; 

(i) Solve for the regions of dynamic instability 

from the equation of motion of the entire shello 

8 



CH.APTER II 

FORMULATION OF THE CONDITIONS OF 
, I 

DYNAMIC INSTA)3ILITY 

2o 1 Eguatioris of the :shell Dynamics 

If the shell is subjected to dynamic edge and surface 

loads it will 9 in general, experience a state of forced 

vi"bration in a configuration compatible with the nature of 

the driving forces and the boundary conditionso In more 

precise terms 9 except for the time dependence of this 

configuration 9 its form will be the same as that of the 

same shell under static loadingo This state or configur= 

ation will be referred to as the initial state and is 

assumed to be nowhere near resonanceo According to 

Hsmilton°s principle (38) 9 the following relationship holds 

between two instants of time t
0 

and t 1 g 

t1 
S 6(Te + We)dt = 0 

in which 

T9 = kinetic energy of the shell at the initial 

state 9 and 

We= total potential and strain energy at the 

initial. stateo 

9 

( 1) 



As is well knownp equation (1) is a generalization of 

the principle of virtual workp in which case 9 6Te is 

interpreted as the virtual work of the inertial forces, 

while &We is the virtual ~ork of the noninertial driving 

forceso It is n.oted here that Te and We are functions of 

the displacements ue, ve 9 we and their time rate at the 

initial stateo More specifically, Te and We are functions 

of a set of generalized displacements fqeJ a.nd'velocities 

(qeJ o 

Performing the integration in equation (1) and 

expressing the total potential energy We as the sum of the 

strain energy ue and th~ work.ile done by the generalized 

forces (QJ l_eads to the! :well-known Lagrange O s equation for 

the dynamic equilibrium of the initial statei 

d l ~Te ) 0 ( Te = Ue = lle) = O o 
at\a(qe)J = a (qeJ 
By introducing the following expression:s·f'or' -Te, 

U8 
9 and Sl.9 for a typical element of the shell~ 

Te = i£qj 
T [me] £qe} 

ue = i(qejT [ke] (qeJ 

Ile = - lqej T [ Q} 

equation (2) is transformed to~ 

in·which 

[me]= elemental mass matrix of the initial statep 

(2) 

(3) 

(4) 

10 



1 1 

[ ke J = el eme:q. tal stiffness matrix of the initial state, 

[ qej ~ (cieJ, lqej = generalized displacements, 
velocities, and accelerations at 
the initial state respectivelyo 

The equation of motion for the entire shell is obtained by 

requiring compatibility of the generalized coordinates, a 

process which leads to a straight=forward assemblage of' 

total mass and stiffness matrices [Me] and [Ke] from the 

elemental mass and stiffness matrices [me J and [ke] o These 

matrices describe structural properti,es and are time 

.independento Thus~ the initial state of the entire shell 

is governed by the equation 

[Me] t_°cie_,,( + [Ke] [qe} = LQ3 o (5) 

In order to :investigate the dynamic stability of the 

initial state governed by equation (5) it is necessary to 

consider the stability of all neighboring configurations 

that satisfy the geometric edge conditions of the shello 

This is done by perturbing the initial state infi:ni tesimally 

from u 8
i v8

, w8 to (u8 +u)i (ve+v) 1 (we+w)o These new 

deformation states will be referred to as the perturbed 

states (p) a 

The equation of perturbed motion is deri.ved from 

Hamilton°s principle expressed as 

t1 s t,(Tp + wP)dt = 0 

to 

i.n which 

( 6) 

Tp = kinetic energy of the shell at the perturbed state 
r ') 

·- T + 6 T + t 6 c. T + o o a 9 and 



, ..... , 

wP = potential energy of the noninertial forces at 

the perturbed state 

= - (UP +ll.P)o 

In the above: 

12 

uP = strain energy of the shell at the perturbed state 

Jlp 

= ue + 6U + i62
U + 

= potential energy 

perturbed state 

= fl. e + 6..'1. + i 6 
2 .0. + 

0 0 0 p and 

of the applied loads at the 

0 0 0 

w1lere ~;, 

' respectively, of the applied loads at the 

initial state, which is a state of dynamic 

equilibrium.p 

6TP 6U, 611= the first variation of kinetic 9 strain 

and potential energy, respectively, and 

i62TP i62U, i6~L = the second variation of kinetic 9 

strain and potential energy, respectivelyo 

Equation (6) then becomesg 

t1 
6 ~ (TP - uP -Jl.P)dt 

0 

= 0 0 (7) 

Substituting the variational forms of TP 9 uP and Jl.P in 

equation (7), and by retaining infinitesimals up to the 

second order 9 the following is obtained 

t 

& ~ \ ( Te = ue = JLe) + ( &T - 6U - 6Jl) + t ( 6 2T - 6 2u - 6 ~) J d t = o o 

to (8) 



During the variation of the p·state the variables of 

thee state are held constant; th,erefore: 

t1 
6 S ( Te - ue - .n.e) d t = o o (9) 

to 

Since the p state is also a state of dynamic equilibrium, 

the first variation of the p state must satisfy Hamiltonus 

equation: 

t1 
6 s (6T - 6U - 6.0.)dt = 0 o 

to 

From equations (8), (9), and (10), it follows that 

& t1 
!(62T - &2U - &5'J.)dt = 0, 

0 

(10) 

( 1 1 ) 

i~~lic~!~~i .!~~S to the Lagrange's equation of motion in 

terms of the generalized perturbed displacements and 

velocities fq} and £q} respectivelyg 

13 

d ( aT ( 
2 

)) _ _L ( T ( 2) _ U ( 2) _ Ji{ 2) ) = o 
n af&.J a[qJ 

( 12) . 

where 

T( 2 ) = i62T 

U( 2 ) = i62U 

.a. ( 2) ·= i 6 211. 

t_qJ = perturbed generalized displacements P 

and 

(q) = perturbed generalized velocitieso 

It should be kept in.mind that T( 2) is, in generalp a 

function of both generalized displacements_and velocities 



whereas u< 2) and.n< 2) are funci;ions of only g,eneralized 

displacements. Since, in this work, T( 2 ) is a function of 

only generalized velocities, 

0 .. (13) 

The Lagrange's equation (12) then takes the form: 

d faT(n i>U( 2) a.ll.( 2) 
TI ra (q + ~ ~J + a [q~ . = o O ( 14) 

The expressions for T ( 2 ) and u< 2 ) + Jl ( 2 ) can be 

written in the following form: 
T 

T( 2 ) = ifq3 [m][cd , 
and 

The term which has Pas its coefficient in the 

expression for u( 2 )+.n.< 2 ) above is referred to as the 

(15) 
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geometric stiffness or stability coefficient matrix. It 

accounts for the contribution to the elemental s.tiffness ma­

trix resulting from the change in geometry of tll.a shell. ~lemento 

Furthermore, this term depends on the nature of the 

externally applied forces and the. manner in which these 

forces are affected by the change in geometryo If the 
' . aJ2) 

forces are in the form of edge forces, alq) .= 0 , 

the c~] matrix depends only on the equilibrium strains 

prior to instabilityo On the other hand if the.forces are 

in the form of a lateral pressurep ,the contribution of 
(2) :[qj can be added to the [s] matrix.. A detailed exami-. 

nation of the construction and make up of the different 



matrices will be shown in Chapter IIIo 

Therefore 9 equation (14) becomesg 

[m] ( 0qj + [k] [q) - P[ s] fq~ = 0 .( 16) 

in which 

[m] = elemental mass matrix of the perturbed state 9 

15 

[k] = elemental stiffness matrix of the perturbed stat~ 

[ s] = elemental stability coefficient ma tri'x . of . the 

perturbed state 9 and 

P = time=dependent external applied loadso 

Equation (16) is the equation of perturbed motion of a 

typical element in terms of the mass, stiffness, at1d 

stability coefficient matrices of that element~ The 

equation of motion of the entire structure is obtained by 

assembling all the finite elements to form the complete 

structurea Denoting the assembled massp stiffness 9 and 

stability coefficient matr·ices by [M] 9 [K] and [S] and 

performing the mentioned operation results ini 

which is the equation of perturbed motion for the entire 

structure a 

2a 2 Regions o~ .. DYIHS1ic I:nstabili t1 

The time-dependent applied loads P(t) in equati.on (17) 
' will be represented in the following formi 

P(t) = P0 + Pt cos at (18) 

in which P0 and Pt are statical and pulsating components 



of the applied loads whose frequency is &a Su~stituting 

equation (18) into equation (17) yieldsg 
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By introducing the concept of pulsating parametric 

loa,ding 9 the theory of the dynamic stability of elastic 

systems can be reduced to the study of vibratione caused by 

parametric loading with respect to certain forms of 

deformationso Such a loading is characterized·by the fact 
' that it is contained as a parameter in the equation of 

perturbed ~otiona 

Theoretical studies (4) 9 (39) and experimental 

verification(40) have revealed that under some definite 

values of the ratio e/w of the frequency of applied loads e 

and the natural frequency of transverse free vibration w9 

the initial state of the struct.u,.re . 'b.e,c,,o,n,e_s_;u.n.stableo ~he 

trans'i tion from the l.ni tially stable state to the perturbed 

unstable one occurs when it is possible for the system of 

equations (19) to have periodic solutions with periods 

T ~ ' or 2T = ~ a This tra.nsi tion then provides the 

boundary between stable and unstable solutions 9 or as 

commonly termea., reg1ons of' stability and instability.; Two 
.. ;· . 

solutions with th~ same period confine the region of 

instability 9 and two solutions with different periods 

~onfine the regions of stabilityo 

Since the generalized displacements and accelerations 

in equation (19) are functions of position and time 11 the 

solution of equa·tion ( 19) 9 for a period 2T 9 may be written 
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as a series 

[q(t)j = f f [~1 sin~:+ [bJ cos~] (20) 
k=1p3v5pooo 

where f. aJ and [ bkj are independent o,f time., The series ( 20) 

is obviCttsl,Z{ equivalent to n sets of :Fourier Seri.es .. for the 

components of displacements (q( t)j o 

Substituting equation (20) in equation (19) and 

comparing coefficients of sink~~ and cos k~t gives the 

following system of matrix equationsg 

2 
[[K] = Po[S] + iPt[S] - f[M]] [a,~ -iPt[sJ[a~ = 0 

[[K] = P0 [S] m ~l2
[MJ[eJ -i:Pt[S]([91t_~ +f~+J) = 0 

andp 

[[K] = P0[s] = i:Pt[s] = ~[MJ]fb1J -iPt[sJ[b3~ ~ o 

2 2 
[[K] = Po[S] = !...f=[MJ](bJ =iPt[sJ<(11c_1 + l_bk+J) = 0 

( 21) 

(22) 

The: condition for the existence of solutions with a 

period~ has 9 after the two conditions are combined under 

the± sign. 9 the formi 
2 

[K] = (P0±iPt)[S] =T[M] 0 0 

[K] = P o[S] -ie2(M] =!Pt[S] , 0 

0 
• =0 

-iPt[S] l)C]=Po[sJ-¥,e2[M] 0 

0 0 0 0 

(23) 
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If the series 

CD 

(q ( t )J = i [b0J + l . t £ak1 sin ~ + f biJ cos ~ J ( 24) 
k=2,4,6,ooo 

is substituted into equation (19), the following conditions 

for the existence of solutions with a period~ are obtaine~ 

0 0 

0 

= 0 
0 

• " 0 0 (25) 

and 

[K]-P
0
[s] -Pt[S] 0 0 0 

[K]-P 0 [ sJ-e2[M] -iPt[S] 0 0 

-iPt[S] · [K]-P 
0

[ s]-4e2[M] , -i-Pt[S] 0 0 

0 0 

" .. 0 0 0 

(26) 

For an exact calculation of the regions of instability, 

the equations (23), (25) and (26) have to be solvedo 

However, it has been observed both theoretically and 

experimentally (4) that it is suff:i:ciently accurate from an 

engineering standpoint to calculate only the principal 

region of d'ynamic instability which corresponds to k=1 o 

Hence a good approximate expression for the boundaries of 

the pr~ncipal regions of instability is obtained by 

equating to zero the determinant of the first matrix element 



in the principal diagonal of the matrix equation ( 23): 

2 
l[K] - (P0 ±iPt)[S] -\(M] I = 0 o 
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(27) 

This approximation is equivalent to the assumption that the 

periodic solutions on the 'boundaries of the principal 

regions of instability are the harmonic functions; 

(28) 

2o3 Degenerate Cases 

For the purpose of constructing the regions of dynamic 

stability and instabilities from equation (27), consider 

the following limiting casesi 

{a) For free transverse vibrations P0 and Pt vanish 

and equation (19) becomes 

[M] fJf5 + [K] [q§ = 0 o (29) 

For harmonic vibrations of the form 

[qj = £aJ sin wt, (30) 

-where [ akJ are independent of time P the frequency 

determinant becomes 

\[K] = w2[M] I = 0 o 

(o) For the case of static buckling 9 (:q] and Pt 

are zero and equation (19) reduces to 

([K] - P0 [S]) t_qj = 0 o 

(31) 

(32) 

Static instability occurs when the following determinant 

vanishesg 

(33) 
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Referring back to equation (19) for the dynamic stability 

of undamped system, let P0 and Pt be expressed by 

(34) 

* where P is the fundamental static buckling load obtained 

from equation (33) 1 and a. and~ are proportionality factorsa 

Then the governing differential equation (19) becomes 

[M] [°ci]- p*(a.+f3 qoset)[s] fqJ + [K] [qj = o 
(35) 

and the associated characteristic equation becomes 

* 2 
\[K] - (a.±if3)P [SJ -\[M] f = O a (36) 



3.1 General 

CHAPTER III 

DERIVATION OF STIFFNESS, STABILITY 

COEFFICIENT, 1AND MASS MATRICES 

The regions!of dynamic instability can be constructed 

from equation (36) of the previous chapter for the strucural 

system at hando. This can be done once the [K], [SJ, and 

[M] matrices are established for the conical shell shown 

in Figuxe 2, under the action of external uniform pressure 

and edge forces that· change _harmonically in time according 

to! equation ( 18) of the previous chaptero 

Employing the finite element procedure, the original 

shell ·is replaced ·by a series of conical frusta connected 

at nodal circles~ ! The stiffness properties of. a typical 

conical· frustum are developed in the following sections 

from energy considerations~ 

3o2 Basic Assumptions 

In the formulation of stiffness and stability 

coeffi1cieht matrices for any typical element, nonlinear 

theory·of thin shells will be consulted together with the 

following assumptions for linearly elastic thin shells~ 

_21 



P( t) = P0 + Pt cos 6t 

Figure 2o A Truncated Conical Shell 
Under the Action of an 
External Uniform Load 
That Changes Harmonically 
in 'l'ime 

22 
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(1) the shell is made of isotropic and homogeneous material 

that obeys Hooke 0 s 'lawi: ;(2) the shell thickness is uniform 

and is small in comparison wii;h the radii of curvature; 

(3) the Kirchhoff=Love hypothesis for thin shells is 

applicable; (4) both membrane and_bending stresses' are 

present and vary' throughout the shell; (5) all of the 

perturbatidn quantities are infinitesimals; and (6) the 

shell and the loading on it are rotationally symmetrico 

3o3 Second Variation of Strain Energy 

In the variational approach of the theory of buckling 

where the second variation is to be determined 9 it is 

necessary to retain quadratic terms in the strain= 

displacement relationso Donne11us non-linear theory (41) 

of thin shells is used for all derivat:tom.s· in this chapter 

owing toi its simplicity as contrasted with the ·tomplexity of 

the more ,c:omplete _S&.!!.ders O thec\ry {41) which is. presented·• in 

Appendix Ao The final form of the derivations in terms of 

elements of stiffness and stability coefficient matrix for 

both Donnell 0 s and Sanders 0 theory are tabulated i¥ 

various appendiceso The expressions for strain=displacement 

following Donnell 0 s nonlinear .theory are~ 

e 1( e )2 
: U pS + 2 WPS . 

(37) 

1 1 e e e) 1 ( e )2 
&9 := r 11,llU + V 9 S + IDW + ~ W p e 

2r 
1 ( ..... Te e e) 1 e e 'se: 2r 4~ 9 6 + U Pe= nV + 2r W 9 6 W »a I 

e 
Ks = = w Pss 
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Ke = - ~(~ w"•ee + nw",s) 
1 ( e 1 e ) 

KS 0 : = T W 9 S 6 = T nw 9 9 j . (37)(Cont 0 d) 

In ·the foregoing expressions (37)~ _the various terms representg 

u8 
9 v6 ,vl = initial dispi'acements in the meridional 9 

circumferential 9 and normal direction to 

the middle surface of the shell 9 

respectively 9 

n = sin t 9 

t = semi=vertex angle of the cone 9 

r - radius at any distance s 9 

s 9 0 = meridional and circumferential coordinatesg 
e e a11d the s 9 e subscripts following the commas on u 9 v 9 and 

w8 denote partial derivativeso 

Let (ue, v8
9 we) be the displacement vector that 

defines the given initial configuration before instability 

occurso Let (u 9 v~ w) be an incremental virtual displace= 

ment vector.; Then the -total. displacement vector is 

(u9 +u 9 v 9+v 9 we+w)a Substituting the total. displacement 

vector into equations ( 37) ano.~ with ·the· application of 

.ass.umption (6)9 Po 239 ve~Wege=O·i' the:followi:ngisobtainedg 

_ e 1... 1 2 e · ) 
c6 + At 8 - u 9s +Ups+ 2\W v8 + 2w v8 w96 

1 e e) 1( , 1 2 
€:El+ .C,tS = r(nu + mw + r nu+ VpB + mw.,i +==z W 90 

1 1 e r, 
t 80 +A£'se = 2r(rv 98 + U9 6 =nv) +2r W 9 8 W9e+r WpS W9 

xs + A>«.s = = (we 9ss + W9ss) 

11.6 + ~Xe:;;:=~(Wep90 + Wp60) = ¥(we~S + W98) 
and r (J8) 
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Kse + Axse = = ~ (we'se + Wpse> + ?(we,e + w,e~ (38) 

(Cont'd) 
where Ats 9 Ate, .ass e' AKs p ~Ke a.n,d A~s-e :-il!e tlle incremental 

strains and curvature changes due to the virtual, or 

perturbation 9 displacement vector (u, V9 w)o 

Expanding Aes' Ate, AcseP 

At6 = 6t8 + i62cs + ooo 
..l.. 2 Ae

9 
= 6e

0 
+ 26 s:

0 
+ ooo 

1 2 At60 = 6ese + ~6 s: 80 + ooo 
(39) 

where 6t
6

v 6t 09 6cseP 6xsv 6x
9 

and 6x80 are linear forms in 
2 2 2 u 9 v and wand their derivativesp and 6 ts, 6 e09 6 'se9 

2 2 2 o x
6

9 6 x
6 

and 6 x80 are quadratic terms in the same 

variable so Hence, by equations ( 38) and ( 39) we get g 

e 
's = u Ps 

1 ( ) 1 e = 2r rv p s + u, e m nv + 2r w , s w v e 
1 

== r w9s Wpe 
e 

)ts :: = W ~ SS 

= = 

(40) 



2 0 6 KS = 
1 (1 e e J K9 = rw P99 + nw 's r 

6K
0 

1 
( 1 ) (40)(Contod) = I'W9 00 + nw, S r 

2 0 6 KS = 
1 ( e n e ) 

KS0 = W P59-rW,p0 r 

6"'se 
1 

(w~se - ~ w,e) = ~ -
and r 

2 
6 KS0 = 0 

At any instant of time 9 the total strain energy of the 

shell is given by 

where 
Eh 

C =~ 9 

1-:= \I 

Eh D = =~~.,,...,.. 
12(1=,}) v 

E = Young 0 s modulus of elasticity 9 

h = thickness of the shellp and 

\I= Poisson 1 s 'ratioo 

Substitution of 's + Ail:99 'e + Ase!) 's e + 6C99P "'s + OKS p 

Ke+ AKe and Kse + Axse for 'sP Ce9 'seP Ksj Ke and Kse in 

equation (41) yields 

U+ AU=~ SS [(c9 + 6c6 +i6
2

c9 )
2 

+ (c 0 + 6e:
0 

+i&
2

c
0

)
2 

+ 2\1( 's + 6,6 +t62c9 ) ( , 0 + oc 0 +to 2c8) 

2 2] + 2(1-v)(,se+6sse+'t6 'se) rdeds + 

26 
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D SS . 2 2 + ~ [(x8 +6x8 ) +(x0+6x 0) +2(1-v)(x
8
+6x6 )(x0+6xJ 

+ 2(1-v)(x80+6x80 ) 2] rdeds a ( 42,) 

Now 6U 2 = 6U + i6 U + oao, where OU is the integral of a 

linear form in u, v 1 wand their derivatives 9 e2u is the 

integral of a quadratic form in u 9 Vv wand their 

derivatives~ E;Uld so ono Consequentlyg 

where. 

62U = second variation of strain energy for an 

entire shello 

Substituting equations {40) into equation (43) and 

1 t . d t" t · e. e d e d t neg ec ing qua ra 1c erms in u ~ v an w as compare o 

uni ty 9 we get g 
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D rs· 2 ( 1 n ) 2 f _1 n \ + ~ J [w 9 SS+ ~Wp 00 +rW1 S +2v 9Wp SSW1 00 +rW' SWp Ssj 

11 n , 2 
+ 2 ( 1 =\I) ~w p s e = ;!2w p ej J rd eds .0 ( 44) 

The initial displacements u 6
, ve land we in equation (44) 

are obtained through the solving of the equations of static 

equilibrium which in turn can be forntulated by the principle 

of stationary total potential energy~ io eo 9 6 (Ue +.fle) = Oo 

Thus u0 
9 ve 9 w8 may in fact be taken 'a.s the static 

equilibrium displacementso That this is so should be 

clear when one considers that expression (44) is intended 

to yield the stiffness matrix which is a property of the 

structure, ioeo9 it is time independento 

The details of solving for the equilibrium displace.., 

ments for the finite element representation of the shell 

.. , is .4;~~~~:H,l~d .. ~Jn Se
1

0tiO:tf:~.;:'Jc, Q~ 1 .~11d )o 6~ 2 o 

)o 4 Second Variation of Potential Energy of 

External Loads 

For a shell loaded axially or torsionally at its ends 9 

the change in potential energy is a linear function of the 

end displacements anq therefore the second variation of 

potential energy of external loads 62.o_ is equal to zeroo 

But when the same shell is subjected to loads which are 

distributedp the change in potential energy iis a function 

of both linear and second degree displacementso In such a 

case the total potential energy of the entire shell will be 

62U + 62.D.P owing to a significant contribution of 621lo In 



this study the distributed loadings are :re'stri.cte<i to 
I .. .'. . , ' ,-

hydrostatic pressure loadings which vary with the 
., 

deformation in such a manner that the load always remains 
' perpendicular to the surface with constant lllagnitude per 

unit of undeformed areao The work done by hydrostatic 

pressure depends only on the change of'volume 1 of the shell 

material under investigation.. An expression .for 62.ll due · 

to a hydrostatic pressure is deriveda This is done 

without regard for the time dependence of the applied 

pressureo 

Let µV be the perturbation displacement vector at 
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any time between equilibrium state e and perturb~d state Po 

The conditionµ= 0 corresponds to state e and.µ= 1 to 

state Po A small rotation vector, A11 from the initial to 

ip.termediate state defined by µVis given byi 

(45) 

where ?
8

p ,
0 

and l' are rotations along the meridional 
' . 

direCtion · s 9 circumferential direction e 9 and the normal 

n to the middle surface and where t
6

, t 
0 9 nare_ unit vectors 

along the s, e and n directions» respectivelyo 

The force increment AP, due to this rotation, on a 

deformed elemental area (1+µf( cs) 1+( c0)11 ]dA is 

AP = PA;[ 1+1,1,(( 's)L+( 'e)J ]dA 

or AP = Pµ( l's ts+l' et a+'fii) [ 1+1,1,{( 's)1+ ( 'e) J J rd eds (46) 

where 

p = hydrostatic pressure loading, 



µ:=parameter varying from Oto 1, 

µ[(c
6

)L+(c
0

)1)dA = increment of eleI11ental area dA 

after deformation has dccurred, 
' (cs)1 ,(c6)L = strain components which are linear in 

u, v, wand their derivatives, and 

dA = ele.mentaJ. area prior to deformation. 

Two kinds of approximations can be introduced: 

(1) Following Donnell 1 s theory, which is a special 

case of Sanders 1 theory (41), the rotation around the 

normal 'f to the middle surface of the shell can reasonably 

be approximated as zero, io e .. , 'f = Oo 

30 

(2) :using Sanders• no:rilinea.r theori~s for thin shells 

(41) 9 a more realistic and practical assUIJiption 0 1f small 

strains and moder~tely small :rotations is made in order to 

simplify the very complicated,exact theory .. The equivalent 

mathematical representation for this assumption is µ'f ~ 1 .. 

Equation (46) is theTefore reduced to 

(47) 

for t ~ o~ and 

for µt =1 where, for Sanders' theoryJ 

'*'s = - w, s 

'f e 
1 

(w, e - v cos ,*) = r 

( es)L = u,s 
1 

(ce)L = r (nu+ v, S + W CO$ t) 
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The strain-displacement relations for Dormell' s th.eory 

.are obtained from the expressions for Sanders' theory by 

eliminating the terms marked with an asterisk (*)o 

The increment in potential energy't:.It, is given by 
1 

tin.= - S dµ ~~ (iP O V) rdeds (49) 
0 

where 

v = uts + vte· + wn O 

Subs ti tu ting '1'
8

, · 'i' 0, ( ts)L and ( c 0)L into equations ( 47) 

and (48) and also retaining only the linear terms in u, v, 

w'ahd their derivatives 1 we get from equation (49): 

tin= - ~ ~~ l- uw, 8 - ~ vw,'01 rdeds 

for Donnell's theory, and 

for Sanders' theoryo 

where 

As before 

en. = integral containing linear terms in Up v, w 

and their derivatives 9 and 

eji = integral containing quadratic terms for the 

same variableso 

Consequently, 

(50) 

(52) 

(53) 
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for Donnell's theory, and 

(54) 

for Sanders• theory, where 

6~ = second variation of the potential energy of 

external load which in this case is the 

hydrostatic pressure loadingo 

I 

Second·Variation of Kinetic'Energy 

The kinetic energy of an entire shell at the state of 

dynamic equilibrium is.defined by 

where 

p = mass density of the shell material, and 

-o_e ,~e ,we = velocity components at the initial state of 

dynamic equilibriumo 

Let (u, t, w) be the incremental vir,:tual or 

perturbation velocity vectoro Then the total velocity 

vector at the perturbed state is (ue+u, ve+v, we+w)o 

Substituting the total velocity vector into equation (55) 

yields 

Te+tT =' ~s [(ue+-0.)
2
+(ve+v) 2+(Yl+w) 2] rdeds a (56) 

Now as before, 6,T = 6T+io 2T + o o o 9 where 6T is the integral 

of the linear terms in (u' v, w) and their derivatives, 

62T is the integral ,o.f · the 'quad:r,a tic terms in ( u, v, w) and 

their derivativeso Therefore 
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(57) 

where 

62T = second variation qf kinetic energy for an entire 

shello 

306 Discrete Element Representation 

30601 Initial State 

The shell is approximated by a system of conical frusta 

as shown in Figure 1o Each conical frustum is bounded by 

two nodal circles which are referred to hereafter as nodeso 

The displacements of the continuous shell are described by 

the displacements of these nodeso Each node has four 

degrees of freedom~ q 1 , q 29 q3 and q49 for asymmetric 

deformation as shown in Figure 3 9 and three degrees of 

freedom, q19 q3 and q49 for axisymmetric deformation when 

torsion is excludeda 

In accordance .with assumption ( 6) 9 po 23 9 tha .ini ti.al dis= 

placement field within each conical shell element can be 

expressed by 

e e e 
u = ~ 5 + s 69 

(58) 
e e e 2 2 e 3 

W = f3 1 + f3 28 + f3 3S + f3 4 S 

in which the circumferential displacement v 9 is absento 

The six undetermined constants ~ei are related to the 
e six generalized displacements qi shown in Figure 3 9 

excluding q29 P and q2 ,P+1 P by the relationi 



j 
q3 ,P 

j 
ql,p+I 

--+--..,.....- J...---+---'---- z 

Figure Jo Generalized Coordinates 

.34 
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(59) 

The matrix [Me] is given in Figure 4o 

.By expressing the totaJ. .pqte.nti.t:U enerQ of the 

continuous shell in terms of the discretized system and 

then using the princil)le of' stationary total potential 

energy P 6 (Ue + .n. e) :.: 0 P the equations of generalized initial 

forces and displacements are obtained in matrix form as 
N 

l ( [ k e JP ( q eJ P - [ Q ej P) = 0 ( 60) 

p:1 

where the summation extends over the total number of 

discrete elements No The [qe]p are the genera:lized dis­

placements of the p th discrete 'element and [Qejp are the 
th corresponding generalized forces; the p discrete element 

is bounded by nodal stations p and p+1o 

Req~iring that the generalized displacements of any 
i 

two adjacent elements with the same node point be the same 

in order to satisfy the conditions of consistent de:formatio~ 

equation ( 60 )· can be written as 

e e 
q 1 , 1 Q 1 1 p 

e e ( 61) q )p 1 = Q 3p 1 
- -e : e ,, 

q 4 9 N+1 Q 4:N+1 

3(N+1 )x3(N+1) 3(N+ 1 )x1 3(N+ 1)x1 

These equations are solved with appropriate geometric 

boundary conditions to obtain the equilibrium displacements 



..... -
0 !/ 0 0 0 0 

0 0 I 0 0 0 

0 
2 

-3/.tp -2/1p 0 
2 

3/1.p -1/.lp 

3 2 3 2 
0 2/£p 1/.P.p 0 -2/.tp 1/!p 

I 0 0 0 0 0 

-1/.tp 0 o· 1/i.p 0 0 
" ........ -

Figure 4o Matrix [Me] 
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Coefficient Matrices 

The second variation of strain energy for the con­

tinuous shell o2Uv equation (44)P and the second variation 

of potential energy of external loads o2J21 equation (53), 

will be used to formulate both the elemental stiffness and 
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stability coefficient matrices based on Donnell 1 s theoryo 

First we assume that the perturbation displacements u 9. 

v and w can rea.aonably be approximated by the following 

polynomialsi 

u = ( ~5 + s6s) cos j e 

v == (s7 + sgs)sin j e (62) 

w = (s1 + S2S + ~3s
2 

+ ~4s 3)oos j e 
where 

~i(i=1 9 8) = undetermined constantsp 

j = harmonic numberp or number of circum-

ferential waves 9 and 

s == meridional coordinates of a typical 

conical frustumo 

The eight undetermined constants ~i are related to the 

eight generalized displacements qi by the following 

definitionsi 

q 1 P = u( s) I p q2 p=v( s) I v q 3 p=w( s) I , q4 P- o~i s) I 
9 S=O P S:O 9 S=O 9 S=O 



where subscript prefers td nodal station p and subscript 

p+ 1 to nodal station p+ 1 o 'Thus the ~' s are expressed in 

terms of the q's by: 
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[ ~ J = [Mp][q]o (64) 

The matrix [Mp] is given in Figure 5o 

Recalling equations (44) and (53), the summat±on of 

both is: 

t( 62u+6
2
JL) = SS [ if u2

, 8 +;i,(nu+v, 9+mw) 
2 

+ 
2
/(nu+v, 6+mw)u, 8 

\. 2 

+ ·( ~~2) (rv, s+u, e-nv) ~ +~[w2, ss+ (~wg e e + ~w, s) 

+ 2 \) (?w , s s w , e e + ~w , s w , s s) 

+ . 2( 1-v) @w, 89,-?w, 
9
) j] rd eds 

. )· C1- " ) e ( , + v~ 8w,s+mww, 6 + ~w 's rv,. 6 w, 8+u, 8w, 8 r 

aJ p SS · 1 . ~ . - nvw,e0. rdeds,,72 ·c~uw·,srvw,e)rdeds O (65) 

It will be seen that the expression t( 6:2U+6~), or 

equation (65), consists of three types of integrals; the 

integrals which do not contain initial displacements, 

integrals which contain .initial displacements as parameters, 

and integrals which are the contribution of f6 2J2.c If the 

displacement field, equation (62), together with the 

'related equation (64) are substituted in equation (65) 
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- -
" 

0 0 I 0 0 0 0 0 

0 0 0 I 0 0 0 0 , 

2 
-2/Jp 

2 
-1/.!p 0 0 -3/l.p 0 0 3/.tp 

21.ti 
2 3 2 

0 0 1/.lp 0 0 -2/i,p I /.ip 
.· 

I .. 0 0 0 0 0 0 0 

-1/.tp 0 0 0 1/Jlp 0 0 0 

' 
0 I ·o 0 0 .. 0 0 0 

0 -1/1.p 0 0 0 1/lp 0 0 - -
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above 9 the integrals which do not contain initial displace= 
l 

ments will yield the so called elemental stiffness matrix, 

and the integrals which are functions of initial displace­

ments will yield the stability coefficient matrixo For 

edge=loaded shells~ !6 211 is zero since ..n. is a linear 

function of the displacementso However, for pressure= 

loaded shells f the !6 2.0. is nonzero because .a. in this case 

contains quadratic termso The last integrals in equation 

(65) re.present the contribution of 621lo 

The above description is presented in the form of a 

matrix whose elements are functions of both elastic and 

geometrical properties of each frustumg 

t( s2
U+6 

2
.il) = ! fo1 T[ SS[M,,l[Lj J [MP]rdeds] f qj 

+ ~ fq}'I' [SS[MP]T[Lj inc][MP]rded¥ q~ ( 66] 

= tfq) T[k] fqS + ~(q} T[ sJ[q5 o ( 67) 

The terms in the foregoing equations areg 

[k] =· ~~[lVIP] T[Lj] D\J rd eds 

th th = stiffness matrix of the p element in the j 

harmonic~ 

[s],,,, ~~[lVIP]T[Ljinc][MP]rdeds 

= stability coefficie:p.t matrix of the pth element 

in the jth harmonicv 

[Lj] = matrix contributed by the integrals in equation 

(65) which do not contain initial displacements 9 
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[Ljinc] = matrix_ contrib,uted.by the integrals in equation 

I ( 65) which co~tain initial displace'ments, 

[~] = transformation matrix, shown-in Figure 5, 

[M ]T p = transpose of matrix [MP], 

(q] = generalized perturbation displacements, 

[q~T = transpose of matrix [q], 
A= eigenvalue to be determined in the case of 

static buckling, in this· work A will be 

represented by hydrostatic pressure load - p 1 and 

r = rp + ns .. 

Furthermore 

= smaller radii of the pth conical frustum, 

= [~]T (S~ [Lj]rd0d$) [Mp] 

= [IVIP]T[Aj ][IVIP] (68) 

and 

[s] ::: [MP]T (S~ [Lj inc]rdeds) (Mp] 

= [Mp]T[Bj][IVIP] (69) 

where 

[Aj] = SS (Lj]rdeds 

[Bj] = SS [Lj,inc]rdeds 0 

The elements of both [Aj] and [Bj] matrices for 

Donnell O s' theory are tabulated in Appendix B · and the 

additional parts of both [Aj] and [Bj] matrices resulting 

from Sanders' theory are tabulated in Appendix Ca 

Note that for pressure-loaded shells, the contribution 



42 

of !6211 to the stability coefficient matrix [s] in the form 

of matrix [cj] must be taken into account by adding it to 

the [Bj] matrixa The matrix [Cj] for 'both DonnelI 0 s and 

Sanders 0 theory are also tabulated in Appendices B and C9 

respectivelyo 

The computation of the elements of the ijtability 

coefficient matrix requires a systematic procedure, since 

it depends on the initial state prior to the instability 

and on the type of loadingo 

Using equation ( 59) P the undetermined coefficients £~0J 
in ·the assumed displacement field as given in equation (58) 

are given by 

(70) 

where [ qe3 are the generalized initial displacements of the 

pth element for a unit applied loado Thus 9 the £~eJ which 

occur when a load P is applied becomes :P l~ej o 

Thus we introduce 

For unit applied load 9 as an example when Pis 

equal to 1 lb/in2 
9 equation (71) reduces toi 

From equation (58)p the initial displacement field 

becomes~ 

(71) 

(72) 

(73) 



Equation (73) is the initial displacement field within 

which the pre buckling .d·isplacembnts f q~ of the :entire 

structure, due to unit applied load, are conta..inedo The 

substitution of·this equation in the expression for 

}(62U+o~), equation (65), yields the elements of the 

stability coefficient matrix in terms of G1 to G6 as 

tabulated in Appendices Band Co 

Jo 60 3 Elemental Mass Matrix 

The second1 variation of the kinetic energy for an 

entire shell at the perturbed state is 
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(74) 

An approximation to the elemental mass matrix for the 

pth discrete element, consistent with the approximate· 

elemental stiffness a.nJd stability coefficient matrices, 

may be obtained by using the same form of the displacement 

function, · this time with respect to· velocities: 

0 ( ~5 + ~6s) cos j e u = 
.. 

( ~7 + ~88) sin j e v = 
0 

( ~1 + ~28 + ~3:s
2 

+ ~4 s 3) cos j e w - 0 

The expression (74) can be rewritten in matrix form aSg 

where 

t62T = fnphfq5T[Mp]T[P][Mp]fqj 

= i(ci1T[m][q~ 

[m] 

(75) 

(76) 



[m] = elemental mass matrix for the pth discrete 

element, and 
1 

[P] SP r[V]ds' a 

0 
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The matrix [Mp] had been listed in Figure 5, whereas the 

matrices [VJ and [P] are listed in Figure 6a and .Figure 6b, 
) 

respectively .. 

3,. 7 Integral Iy
6 

The elements of 'the matric·es [Aj], [Bj]., [Cj], and 

[m] given earlier contain vari'ables like ry
6 

which are 

definite integrals'of the type 
1 I p 

ry6 = ~ rY.s ~ds 
0 

where 

r = rp + ns for conical frusta, 

y = an integer which ranges from -3 to 1 . 
' 

and 

6 = an integer which ranges from 0 to 9o 

(77) 

The numerical calculation of these integrals can be 

approximately carried out by expanding into series with 

the aid of the Binomial Theorem: 

l ( 6+ 1) 
.p 

= ( 6+ 1) 

l ( 6+ 1 ) l ( 0+ 2 ) 
= r · --.,.,P ___,,_.. + n p 

p (6+1) {6+2) 

I -1 , 6 

1 ( 6+ 1 ) nl ( 6+ 2 ) n 21 ( 6+ 3 ) 
•.. p I _p __ · __ + p 

r P ( 6+ 1 ) - r2 P ( 6+ 2) r3 P ( 6+ 3) 
- Q Q O , 

(78) 

(79) 

(80) 
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- -
I s 52 53 0 0 0 0 

52 53 54 0 0 0 0 

54 55 0 0 0 0 

56 0 0 0 0 

I s 0 0 

SYMMETRICAL 
52 0 0 

I s 

52 

- -
(a) 

- -
11,0 I1,1 11,2 I1,3 0 0 0 0 

I1,2 I1,3 I1,4 0 0 0 0 

11,4 I1,5 0 0 (j' 0 

11,6 0 0 0 0 

11,0 I1,1 0 0 

11,2 0 0 
SYMMETRICAL 

I1,o 111 • 

11,2 
...... -

( b) 

Figure 60 Matrices [VJ and (P] 
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1 ( 6+ 1 ) 2nl ( 6+ 2) Jn 21 ( 6+ 3) 
1

- 2 • 6 = Jp(6+1) - r3P{6+2) • + r\(~+3) 
- 000 , (81) 

1 ( 6+ 1 ) Jnl ( 6+ 2) 6n 21 ( 6+ 3) 

1-3, 6 = r~ ( 6+1) - r 4 ~ 6+2) +-r5---=-~-6+_3_)_ -
0 0 0 

p p p 

Q (82) 



CH.APTER IV 

PRESENTATION OF RESULTS 

A computer program has been written for the IBM 360/50 

electronic computer to solve equations (31) 9 (33) 9 and (36) 

for the natural frequencies, static buckling loads 9 and 

regions of dynamic instability for several truncated 

conical shellso The results are shown in a series of 

figures and tablesg and are expressed non-dimensionally in 

terms of a,g ~ and e/ w for the regions of dynamic instabili tyo 

As· can be seen from Chapter II, the parameter a. is the 

percentage of the static buckling load which is applied 

statically 9 ~ is the percentage of the static buckling load 

resulting from the amplitude of the pulsating load, and e/w 

is the ratio of the frequency of the pulsating load e to the 

natural frequency of transverse free vibration w of the 

shello Throughout the following study 9 hydrostatic 

pulsating pressure is assumed to act on a truncated conical 

shell whose finite element approximation can reasonably 

be limited to eight in numbero 

An extensive study of various effects influencing the 

natural frequencies of free vibration, the static buckling 

loads 9 and finally the regions of dynami.c instability of 

the shell is presented in this chaptero The various effects 
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investigated are~ 

(a) the effects of different shell theories and 

bending during prebuckling state, 

(b) the effect of cone angle, 

(c) the effect of radius to thickness ratio 7 and 

(d) the effect of boundary conditionso 

4o1 Free Vibration and Static Buckling 

4o1o1 Effects of Different Shell Theories 

and Bending During Prebuckling State 
I . . 

Two types of shell theories are used for the purpose 

of comparing the merit of one theo:ry to the other. 

The non=linear theory for thin shells developed by Sanders 

is applied together with DonnellQs theory which is a 

special case of the more general and refined Sanders u 

theoryo 

Calculation is first made for free vibration of a 

truncated coni.cal shell based on Donnell O s theory in order 

48 

to check with the available theoretical results of Seide (42) 

and the experimental results obtained by Weingarten (43) o 

Therefore 9 the following elastic and geometrical properties 

are 9 for the time being, used~ 

E = JO x 10 6 lb/in2 

'V = ·o. 3 

Density = O a .3 lb/in3 

R1 = 2o1J in 



R2 = 40866 in 

L = 8 in 

h = Oa02 in 

w = 20° 

The graphical representation of the above geometrical 

data had already been shown in Figure 2o 
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The calculated frequencies obtained by soiving 

equation (31) and the corresponding experimental results 

(43) are shown graphically in Figure 7o The conical shells 

under. consideration were tested with edge condi t.ions which 

might be expected to approximate clamped edges~ since the 

edges were embedded in heavy steel end plates having 

' circular troughs filled with a low melting point alloy (42) a 

The agreement between theory and experiment 9 especially 

for the first three modes 9 is reasonably good 9 with the 

experimental results falling generally below the theoretical 

results when the circumferential wave number is small and 

above the theoretical results as the wave number increasesa 

In general 9 the experimental results follow the trends of 

the theoretical resultso 

Sanders O theory is next us~d to ca1.culate the f~e= 

quencies of vibration for the same problem, the __ resul ts of 

whic.h are tabulated in Table Ia In Table I comparisons are 

made of theoretical results using Donnell~s and Sandersu 

theo.ry with those of Seide a Good agreement between the 

results of this thesis and tho.se of Seide are observedo 

It is also observed that the frequencies based on Sanders 0 
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TABLE I 

NATURAL FREQUENCIES OF A CONICAL SHELL 
SIMPLY SUPPORTED AT BOTH ENDS 

E = 30 'x 10·6 lb/in2 

Density = O. 3 1 b/in3 

v = o .. 3 

R1 = 2 .. 13 in 

R2 = 40866 in 

~ = 20° 

i = 1 

L = 8 in 

h=Oo02 in 

51 

j Dorinell's Theory Sanders' Theory Paul Seide 

2 15500 15499 16320 
3 8811 8801 9100 
4 5768 5741 5840 

' 

4672 * * * 5 4620 4692 
6 4777 4708 4780 
7 5483 5413 5340 
8 .6382 6318 6090 
9 7383 7322 7540 

10 8503 8445 8350 
1 1 9746 9690 9420 
12 11110 11055 10680 
13 12592 12539 11920 
14 14193 14140 . 13500 

15 ,, 15909 15857 15070 
16 17741 17690 16960 

* Designates the lowest eigenvalue throughout this 
study .. 



theory are always slightly lower than those based on 

Donnell 0 s theoryo 
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The static buckling loads for a shell subjected t.o 

uniform hydrostatic pressure with the same supporting 

condition~ elastic and geometrical properties as before are 

obtained by solving equation (JJ)o Both Donnell 1 s and 

Sanders 0 theories will be applied and at the same time the 

consideration of a diffe~ent prebuckling deformation will be 

carried out 1 ioeo, the prebuckling membrane theory (PMT) 

and the prebuckling complete shell theory (PCT)o The static 

buck1'ing pressure values for the first meridional mode 

according to various conditions mentioned above are recorded 

in Table II for several circwnferential wave numberso 

Theoretical results of Seide (44) are also ta·bulated 9 from 

j = 4 9 8 9 because Seide 0 s method fails to yield reasonable 

buckling pressures when the circumferential wave number is 

small o 

By Donr1ell 0 s theory the lowest buckling pressure occurs 

at i = 1, j = 6, for both PMT and :)?CT and by Sanders O theory 

it occurs at i = 1 ~ ,j = 7 o Also for. both PMT and PCT 9 the 

.theoretical results of Seide ( 44) yield lowest buckling 

pressure at i = 1 1 j = 60 No matter what theories or what 

kind. of prebuckling deformation is used~ the lowest critical 

pressures obtained very closely agree with those of Seideo 

For PMT 9 Donne11°s theory yields a lowest critical pressure 

about one percent lower than Seide'si whereas Sanders 0 

theory yields a Oo2 percent higher critical pressureo It 
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2 
3 
4 
5 
6 

7 
8 

TABLE II 

BUCKLING PRESSURES FOR A SIMPLY SUPPORTED CONICAL 
SHELL SUBJECTED TO HYDROSTATIC PRESSURE 

! -

i = 1 
I 

Donne.11 ! , s Theory Sander-s• 'J1heory 
Paul Seide 

PMT PCT PMT PCT 

-

107049 235007 107050 235009 --
109 .. 31 238029 109033 L 238048 --

98 .. 41 99 .. 70 106089 109060 125 .. 58 
42 .. 21 ' 42 .. 44 44 .. 16 44 .. 40 460 81 
31~37* ' * 31 .. 53 31o 92 32 .. 09 31071* 
31.. 51 J1 .. 68 31o 77* 31.. 94* 32006 
3410 00. 34 .. 26 34.,20 34 .. 45 37.o 63 



can be concluded, for both' PMT and PCT, that Donnell 0 s 

theory yields a critical. stress which is slightly lower 

than that of Seide and a more refined and general Sanders' 

theory yields a slightly higher oneo 

It has been observed that the prebudkling complete· 

shell theory (PCT). type of deformations together ,jyi th more 

general and exact non-linear theory for thin shells 

developed by Sanders can presumably yield more realistic 

buckling loadso The basis fo·r such' a statement.llas. 

already been presented numerically in Table II and else­

where (37), (41)o Consequently, Sanders' theory with 

prebuckling complete shell theory·will, from now on, be 
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· adopted as a reference.~fo.,r fu:rther investigati.on dealing with 

various effects influencing the natural frequency of free 

vibration 9 static buckling load and dynamic instability of 

conid_al shellso 

4o L 2 Effect of Cone Angle 

The effect of semi-vertex cone angle ton free 

vibration and static buckling is covered in. this 

sectiono It is still assumed that the structure is simply 

supported at both ends and the elastic and material 

properties remain unchangedo The only geometrical. param­

eters changed besides cone angle are generator length Land 

larger radius R2o 

The natural frequencies of free vibration for semi­

vertex cone angle t equal to 10, 20, 30, and 45 degrees 
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are shown in Table IIIo The curves of the natural 'fre~ 

quencies of free vibration for the first meridio,nal ,and the 

jth circumferential. mode against vario~s cone angles are 

depicted in Figure 80 It can', be seen from Figure ·8 lthat 

for a small number of circumferential wavesp the'natural 

frequenc.ies for,various cone angles are more or less'close 

to each othero However, with· increasing circumfer~ntial 

wave number,,much difference in the natural frequencies for 

various cone angles i.a:,,"'observedo 

The calculated buckling pressures, as af'fected by the 

change in cone angle, are shown in Table IV and their 

graphical representations are depicted in'. Figure 9o It is 

seen in this figure that a high buclding pressure can be_ 

obtained with a small cone angle., However, as the cone 

angle increasesjl the allowable buckling pr~ssure decreases~ 

In other wordsg the elastic stability of the shell decreases 

as the cone angle of that same shell increaseso 

The effect of the change of cone angle. on the critical 

* I buckling pressure p and the lowest frequency of vibration 

* w is presented graphically in Figure 100 In this partic= 

ular graph one can see that the critical pressure is more 

sensitive ·to angl.e ,change than the lowest natural frequencyo 

A compari.son·between the calculated bucl(ling pressures 

and those obtained through the 'procedure de~cribed by 

.Kornecki ('14) for various cone angles has been made and 

is shown in Table Va Againp good agreement between the 

two methods can be recognizedo 



TABLE III 

THE NATURAL FREQUENClES OF THE SIMPLY SUPPORTED 
SHELL FOR VARIOUS CONE ANGLES 

E = 30 x 106 lb/in2 

Density= Oo3 lb/in3 

v = O.J 

j 

,I = 10° 

I 2 14526.5 
3 8069 .. 64 
4 5489052 
5 5076078* 
6 5953054 
7 7397067 
8 9066.16 
9 

10 
1 1 
12 

: 

R1 = 2o13 in= constant 

L = 8 in 

h = Oo02 in 

wi "j (rad/sec) ,· i::::1 

I= 20 0 I = 30° t = 45° ' 

1549805 15540.8 ! 1381206 
8801.05 9007070 8284081 
5741000 5825040 5372 .. 43 

. 46190 64 * 4423055 3979.11 
4708031 4124043* * ' 351'5 .. 83 
5413037 4449089 3597009 
6317.67 5.004~ 64 3901o 27 
7 32·2o 20 4275005 

4703.86 
' 

51'91a 27 
5737036 

,.· 
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TABLE IV 

THE BUCKLING PRESSURES OF THE SIMPLY SUPPORTED 
SHELL FOR VARIOUS CONE ANGLES 

58 

E 
6 lb/in 2 

R1 2.13 in= constant = 30-x 10 = 

Density = 0.3 lb/in3 L = 8 in t ~ 10°, 20°, 30°, 45 ° 

\/ = 0.3 h = 0.02 in 

p . . (lb/in2), 1,J i=1 
j 

~ = 1 o0 
t = 20 o 

i = 30° t = 45° 

2 407.771 235. 093 153.291 85. 9751 
3 366.390 238.478 154.904 86.5674 
4 88 .. 5569 109._600 116.J10 84.1065 
5 46.9497 44.3954 42.5524 31.8281 
6 44.5998* 32.0945 25. 8938·- 17.5881 
7 51.2835 31.9418* 22.7977* 14.0382 
8 60.0309 34.4539 23.0179 13.2771 
9 37.5940 13.1857* 

10 - 13.4112 
11 ' 13.,9047 
12 14.o 6277 

' 
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TABLE V 

BUCKLING PRESSURES OF THE SIMPLY SUPPORTED SHELL.WITH VARIOUS CONE ANGLES: 
A COlVIPARISON BETWEEN THE· FINITE ELEMENi' METHOD (FEM) AND KORNECKI' S WORK 
. i 

·-- . 

E = .30 x 1 o~ lb/in~ R1 = 2o1J in= constant 

Derisi ty. = Oo 3 Ib/in3 L = 8' in i = 1 o0 , 20°, 30°, 45° 

"= Oo} h = Oo02 in 

P· . 1,J (lb/in~), i=1 

j i .:::;. 10° .i = 20° t = 30° i = 45° ! 

-
FEM** KORNECKI FElVI KORNECKI FEM KORNECKI FEM I KORNECKI 

1880 5569 8800188 1'09a 600 12208671 1160310 ' 1 1.4409583 8401065 12203198 4 1 

5 4609497 4502112 4403954 4507953 42 .. 5524 4805397 3108281 4002497 
6 4405998* 430 5243*. 3200945 3100282* ~508938 2601887 1705881 1902039 
7 5102835- 52 .. 5204- 3109418* 31 .. 3698- 2207977* 21o 9139* 14 .. 0382 1306668 
8 6000309 6509624 34.,4539- ' 360 8181 ' 23 .. 0179- 2304026 13 .. 2771 13.0628* 

9 1301857* 14o3~63 
10 - 13o'4112 16 0 6794 

** Sanders O non-linear; theory for thin shells are use do 



4o1o3 Effect of Radius-Thickness Ratio 

The relationship of-ca.lc;ul_ated frequency to _.radius= 

thickness ratio is shown in Table VI for the ratios of 

62 

100 9 240 9 and 500 o · The graphical rep:resen tation of these 

results are depicted in Figure 110 It is assumed that the 

thickness h of the shell is eonstant and: equal to Oo02 inch 

but the smaller radius R1 varies (see Table VI for 

additional information)e It can be seen from Figure 11 

tha.t 9 for small radius-thickness ratio, the shell natural 

freque'ncies are high and at the same time depend very 

str.ongly on the change of circumferential: wave nuinbero 

However 9 as the radius-thickness ratio increases, the 

!).atural frequencies of the shell decrease and the depen= 

dency of the frequencies on the change of wave number is 

somewhat decreasedo It is al.so observed that for small 

radius=thickness ratios the lowest natural frequency and 

those which lie in its vicinity occur at small circum= 

ferential wave numberso However, as the radius-thickness 

ratio increases 9 this set of natural frequencies occur at 

larger wave nu:tnberso 

·· The calculated buckling. pressures and their graphical 

representations as affected by changes in radius-thickness 

ratio _are shown in Table VII and Figure 12 9 respectivelyo 

Again it is seen9 in'Figure 12,ithat for small ra.dius­

thickness rat~os 1 the shell possesses greater buckling 

resistivity which isp at the same timep very sensitive to 

. the change of wave number" Howevel:'.J} as the,. radi.ua.,..thicknes.s 



E = 

TABLE VI 

THE NATURAL FREQUENCIES OF THE SIMPLY SUPPORTED 
SHELL FOR VARIOUS RADIUS-THICKNESS RATIOS 

30 x 106 lb/in2 L = 8 in 

Density= 0.3 lb/in3 R1 
100, 240, 500 h= 

\I = 0 .. 3 h = 0 .. 02 in= constant 

t, = 20° R1 = 2, 408, 10 in 

w . . ( rad/sec ) , l,J i:1 
j 

R1 
100 

R1 
240 

R1 
500 11= h= h= 

2 15226.6 1701400 13011..2 

3 8577 .. 12 1151207 11033.4 
4 5629.09 7962.80 8946.68 
5 4663073* 5762094 7197.42 
6 5904 .. 13 4426016 5821000 
7 5693 .. 67 3683097 4766.83 
8 6643033 3394.69* 3971.70 
9 7702058 3452094 3381.32 

10 3755 0 80 2958079 
1 1 4215.55 2680049 
12 4768003 2525034 
13 2478.36* 
14 2522.34 
15 2640061 
16 I 2.819 .. 1J 

63 



u 
w 
U) 

a:: 5000 
uJ 
a.. 

0 
<( 

a:: .4000 
>-
U · 
z 
w 
:::> ' 
~ 3000 
a:: 
LL 

_J 
<( 
a:: 
~ 2000 
<( 

z 

~I : IQQ 

~I =240 

~00 

1000---~--~_..~~-------~---'--~--.....------.....-._---o 2 4 6 8 10 12 14 16 
NUMBER OF CIRCUMFERENTIAL WAVES 

Figure 110 Ef:fect of Radius:...Thickness Ratio on 
Natural Frequency of Vibration 

18 

64 



TABLE! VII 

THE BUCKLING PRESSURES OF THE SIMPLY SUPPORTED 
SHELL FOR VARIOUS RADIUS-THICKNESS RATIOS 

E = 30 x 106 lb/in2 

Density= 0<>3 lb/in3 

" = Oo 3 

200 
~ = 

j 

2 

3 
4 
5 
6 

7 
8 

9 
10 
1 1 

12 
13 
14 
15 
16 . 

R1 
h = 100 

2490562 
2530088 
1010496 
43.,6268 
33e7208* 
3404084 
3701422 
8406063 -

L = 8 in 
R1 
h = 100, 240 ,: 500 

h = Oo02 in 

R1 = 2, 408, 10 in 

1060042 
1060914 
1070965 
1090192 
4800203 
2405099 
1 5o 9785 

· • 'lJo l 185 
1206566* 
1Ja3066 
1404812 

4709424 
48o'0850 
4802150 
4803655 
4805206 
4806340 
3605059 
21~5255 
1305816 ' 
9032068 
7001268 
5079524 
5020619 
4099630* 
5002895 
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ratio increases, the allowable buckling pressures decrease 

and the influence of wave number on them also decreaseso 

Comparison between the calculated buckling pressures 

and those obtained by using the procedure described by 

Kornecki (14) are shown in Table VIIIo A reasonably good 

agr~ement between both methods is observedo 

4.1.4 Effect of Boundary Conditions 

67 

By retaining exactly the same geometrical 'and.elastic 

properties of conical shells as in Section 4o 1 a'1, the 

influence of boundary conditions on the natural frequencies 

of free vibration and buckling pressures of this structure 

are studiedo 

Three sets of boundary conditions are examinedo These 

are listed in Table· IXo 

The numerical results of this irivestigatidnhave been 

tabulated in Table X for natural frequencies of free. 

vibration and for buckling pressureso 

Since·both theoretical and experimental data' for the 

natural frequencies·of vibration a.rid buckling pressures 

pertaining to the above mentioned conditions are' not 

available, no comparison can be madeo 

4o 2 Regions of Dynamic Instabili,ty 

The various effects mentioned at the beginning of this 

chapter which influence the dynamic stability of a 1 truncated 

conical shell under the action of hydrostatic pulsating 



E = 

TABLE VIII 

BUCKL~NG PRESSURES OF SIMPLY SUPPORTED SHELL 
WITH VARIOUS RADIUS ~O THICKNESS RATIOS: 

30 x 106 

A COMPARISON BETWEEN FINITE ELEMENT 
METHOD AND KORNECKI'S WORK 

lb/in2 
i = 20° R1 = 100, .240, 

h 

68 

500 

Density= O. 3 lb/in3 L = 8 in R1 = 2, 408, 10 in 

v = 0.3 h = Oo02 in 

pi , / 1 b/ in 2 ) , i::;1 

R1 
100 

R1 
240 

R1 
500 11= 11= h= 

j 
FEM** Kornecki FEM Kornecki! FEM Kornecki 

4 1010496 114oQ051 
5 43.6268 4405762 
6 33., 7208*1 3204133* 
7 3404084 3402271 

.8 1509785 15.o 8998 

9 13 .. 1J85 ·1209194 
10 12.6566* 120 5003*' 
1 1 13 0 3066 ' 1303149 
12 ·7 .. 01268 7 .. 0761 
13 ' 5079524 508035 
14 5.;20619 5.1996 
15 4099630*14~9939* 
16 

' ' . 
5002895 '5.0370 

** ' Sanderg non-linear theory for thin .shells are usedo 



TYJ?E 

( a) 

(b) 

(c) 

TABLE IX 

BOUNDARY CONDITIONS CONSIDERED IN THIS'STUDY 

·BOUNDARY CONDITIONS 
ATS= 0 

FREE: q 1;60, q2;60, 

q3;60,q4;60 

SIMPLY SUPPORTED: 

q2=q3=0 

SIMPLY SUPPORTED: 

q2=ca3=0 

BOUNDARY CONDITIONS 
ATS= L 

SIMPLY SUPPORTED: 

q34=q35=0 

FIXED: q33=q34=q35=q36=0 
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TABLE X 

NATURAL FREQUENCIES AND BUCKLING PRESSURES OF A 
TRUNCATED CONICAL SHELL UNDER VARIOUS 

SUPPORTING CONDITIONS 

E = 30 x 106 lb/in2 

"= Oo3 

Density= 0.3 lb/in3 

L = 8 inches 

t = 20° 

R1 = 2o13 inches 

R2 = 40866 inches 

J · h = 0 o O 2 inch 

pi', j ( 1 b/ in 2) , .w · · ( rad/ s e c ) , 
) l.' J 

i:1 
·: 

-

j TYPE(a) TYPE(b) TYPE(c) 

W· . 
. l.' J _ P· . 

l.' J 
W· . 

;i. ' J 
P· . 
l.' J 

w· . 
l.' J 

P· . 
l.' J 

2 10114070- 2380419 15498050 2350093 18027 0 20 8470129 
3 5561a 69 1480381 8801a05 2380478 11664050 8150731 
4 4257073* 4607466 574 LOO 1090600 8160060 2140790 
5 4771038 3706888* 46190 64+ 4403954 6446065 8302050 
6 5751o47' 42. 1339 4708031 3200945 60440 30~ 5006017 
7 6497076 430 6582 ' 5413037 J.1 o_ 94 18~ Q50Jo32 4309743 
8 ' 7322004 ., 44'o 3258 , '6317067 34'04539 7331.,43 4404852 
9 8290050 4605076 7322020 3705940 8295069 4606607 

10 9382069 8445012 9383041 4906593 
1 1 106010 70 ' 968-90 9.8 

* 
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pressure are investigated in· detail i:ri the f.ollowi.ng, 

sectionso. By solving the characteristic equation (36) 9 the 

regions of dynamic instability can be plotted in a non­

dimensionalized·form in terms of the normalized.applied 

loadsµ (excitation parameter), and normalized frequency 

e/ wa This load-frequency space will indicate' whether or not 

a certain load applied at a given frequency will cause 

dynamic instability of a shell with.assumed boundary 

conditionsp elastic and geometrical propertieso 

4o2o1 Effects of Different 1Shell Theories and 

Bending During Prebuckling State 

The dynamic'stability of a truncated conical shell 

simply supported at both ends 9 whose geometrical and elastic 

properties are the same as those mentioned in Section 4o1a1 1 

. ,.. ist e:J~i.neda Again both Donnell's and Sanders u nonlinear 

theories for thin ab.ells are applieda The effects of pre= 

buckling membrane theory (PMT) and prebuckling complete 

shell theory (PCT) are also studiedo 

The necessary information for constructing the region 

of instability corresponding to various cases is give~ in 

Table XIo The'lowest buckling pressure will be selected 

as a basis for computing the region of insta.bili ty together · · 

with the natural frequency of free·vibration whose meri= 

dional and circumferential wave numbers are the same as 

those for the critical buckling p:ressureo The regions 

correspo11di:ng to a = 0 were calculated for all of the cases 



Thin 
~hell 
Theory 

Donnell 

(PlVIT) 

('I). 

Case 

Donnell 

(PCT) 

(II) 

Case 

Sanders• 

(PlVIT) 

(III) 

Case 

Sanders' 

(PCT) 

(IV) . 

TABLE XI 

INFORMATION FOR CONSTRUCTING THE REGION OF 
INSTABILITY CORRESPONDING TO DIFFERENT 

SHELL THEORIES AND BENDING DURING 
PREBUCKLING STATE 

I:n,stability Boundaries W1 '6 . , 
l,.L a. = 0 a. = Oo 6 rad/sec 

0 2o0 1o 2672 

0.2 201897 1o 7899 1o 2877 101335 

Oo4 203639 105510 104985 009818 4777043 

D ... 6 205257 1.;2672 1o 6016 008020 

Do8 206774 008964 1o 6985 005671 ·! 

Oo2 201900 1 0 7896 

Oo4 203644 1 0 5506 

L 26671 
4777043 

006 205267 

Do8 206788 o .. 8961. 
' 

o .. 2 201896 1 0 7898 

Oo4 2 .. 3638 105508 
4708031 

D~6 2 .. 5256 1 0 2670 

Jo8 206773 Oo 8961 

0 102666 

D .. 2 2 .. 1900 1 0 7896 103870 101330 
,. 

0 .. 4 2 .. 3646 1 .. 5504 104980 009812 
4708$31 

0 .. 6 2 .. 5268 1o 2666 1 .. 6012 o .. 8'011 

Case ' · o· .. 8 2 .. 6791 008957 1 

' 

*Designates lowest eigenvalue,_: µ = 2(~-a.) _ .. 
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P1 6 , 
lb/in2 

3 L 3677* 

3105344* 

3 L 9248 

3200945 
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with the exception of«= Oo6 for the first and the fourth 

caseo It is noted that the numerical variation. of each set 

of results is very slighto Consequently, the resulting 

regions of dynamic instability are almost identical for 

all the four cases and are therefore·depicted in one figure 

as shown in Figure 130 It is observed that the meridional 

mode shape ( i = 1) and the circumferential mode shape ( j = 6) 

of the free vibration and static stability problems for all 

of the cases are almost identicalo The pictorial repre= 

sentation concerning the similarity of the meridional mode 

shapes for free vibration and static stability·i$ shown. 

in Figure 140 

Table XI indicates that the effects of Donnell 0 s and 

Sanders 9 theory for thin shells~ together with PMT and PCTP 

.on the calculated sets of results 9 especially for a. = O !l 

are very slighto 

Comparison of the region of dynamic instability for 

a.= Oa6 using Donnell 0 s theory (PMT) and Sanders 0 theory 

(PCT) with that of Kornecki (14) have been made for i = 1 9 

j = 6 and the' results are shown in Table XIIo It should be 

noted that the supporting conditions!) elastic and geometri= 

cal properties of the shell for both cases are identical.a 

Table XII shows that there is a good agreement between 

the calculated region of thi.s thesis and that of Korneckio 

However 9 it should be noted that Kornecki did his work by 

using Donnel1°s linear theory of thin shells and applied the 

Galerkin°s method to obtain the solutionso Considering 
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Figure 140 Meridional Mode Shapes for a 
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µ. 

0 

0.125 

0.250 

0 0 3'75 

0.500 

TABLE XII 

COMPARISON OF' INSTABILITY REGION BETWEEN 
THIS THESIS AND THAT OF KORNECKI, 

INSTABILITY BOUNDARIES 

roonnell's Theory Sanders' Theory Kornecki 
(PMT) (PCT) ' 

1.27 1. 26 1o 28 

1o 18 1. 33 1. 18 1o 32 1 .. 22 .. 1040 

1. 09 1041 10 09 1o 41 1. 14 1044 

.1.00 1.49 1.00 1.49 10 03 1. 52 

o.89 1. 55 0.90 1. 55 0.92 1. 60 
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the many simplifying assumptions made by Kor:necki in his 

paper (14) 9 and the finite element idealization in this 

thesis 9 it is difficult to assess the error involved in 

either works as compared to the actual regionso 

In a study performed by Hutt (29) 9 and Black (13)~ it 

77 

-was found that if the mode shapes of the structure for free 

vibrat'ion and static buckling are the same for equally 

ranked values 9 then the region of dynamic instability 

corresponding to et= 0 is the same as the solution of the 

Mathieu differential equation of the form~ 

ao ~2 ) 
f + o ( 1-2µ cos e t r == o {83) 

where f(t) are unknown functions of time,, Qis the frequency 

of free vibrations of the structure loaded by the constant 

component of the time=dependent applied loads 9 and dot 

denotes differentiation with respect to timea 

Since~ in each of the preceding cases,, the mode shapes 

of buckling and vibration for a given value of j were 

almost identical (as had been shown in Figure 14),, the 

regions of instability are the same as those for the 

solutions of the Mathieu equationo 

The computation of the regions of dynamic instability 

caused by the other effects will be carried out by using 

the more exact San,dersc theory with PCT 9 and only the 

region corresponding too.::::: 0 is to be calculated for each 

rcaseo 
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4o 2o 2 Effect .of Cone .Angle 

The regions of instability for a simply supported 

conical shell whose semi-vertex angles are 10, JO e.nd 45 

degrees ar~ calculated and the numerical results are 

tabulated in Table XIIIo The elastic proper~y of the shell 

remains unchanged together with the smaller radius R1 and 

the shell thickness ho 

Again it can be seen from this table that the change 

of cone angle t has a very slight effect on the boundary of 

the instability regions .. The corresponding reason for this 

occurrence is that the mode shapes of buckling and free 

vibration for a given value of' j are again almost identicalo 

Their similarity was practically unaffected by the change in 

the semivertex angle of the cone .. Therefore, according to 

Hutt (29L the regions of instability (for a.=0) are the 

same as those for the solutions of the Mathieu equationo · 

Since it is not practical to distinguish graphically the 

slight variation of numerical values between each set of 

results depicted in Table XIII, only one graphical presen= 

t t o o h Fo 1~ ,,a, 1.on :i.s .. ):l own 9 1.gure ,, 

4o2o3 Effect of Radius-Thickness Ratio 

The boundaries of the region of dynamic instability 'for 

simply supported conical shell with smaller radius (R1) to 

thickness (h) ratio of 100, 240 and 500 were calculated and 

are tabulated in Table nv together with other necessary 

information.. Owing to the o.bvious similarity between the. 



, TABLE XIII 

INFORlVIATION FOR CONSTRUCTING THE REGION OF 
INSTABILITY CORRESPONDING TO 

DIFFERENT CONE ANGLES 

Instability Boundaries 
W· . Cone Angle ]. 'J 

(rad/sec) (degree) µ, a. = 0 

0 2o0 

, 1o 7893 ( W1 6) Oo2 2.1903 
' 10 Oo4 203651 105502 '5-9-53054 

0 .. 6 205278 1 o 2661 

Oo2 . 2o 1894 107901 

30 Oo4 2.3633 L 5512 
( W1 , 7) 

4449089 
Oo6 205252 1o 267 3 

Oo2 201896 107897 

45 Oo4 203637 105511 
( w, ,.9) 

4275005 
006 205253 102670 

. ! 
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P· . 
]. 'J 2 

(lb/in ) 

* (P1,6) 

4405998 

* (P1,7) 

2207977 

* (P1,9) 

1301857 

,, 
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R1 
n 

100 

240 

500 

TABLE XIV 

INFORMATION FOR CONSTRUCTING THE REGION OF 
INSTABILITY CORRESPONDING TO VARIOUS 

RADIUS-THICKNESS RATIOS 

: Instability Boundaries w·· . I p ... 
J., J I l., J 2 

µ, a= 0 {rad/sec) , . (lb/in ) 

0 2o0 

0.2 2o 1897 ' 1 .. 7895 
* 

0.4 2 .. 3642 1 0 5506 
( W1 , 6) (p1 6) , 
4904.13 3307208 

0.6 205265 102667 

o .. 8 2.6785 0.8961 

0 .. 2 2.1903 1 0 7894 

2.3656 ( W1 , 10) * Oa4 1o 5500 (p1,10) 

o.6 2.5287 1.2660 3755~80 12. 6566 

008 2 .. 6812 o .. 8957 

0.2 2.1907 107892 
-· 

0 .. 4 2.3660 1o 5497 ( W1 , 1 5) 
* ·. 

(P1,15) 

0 .. 6 2.5293 102654 2640.61 4.·9963 

o .. 8 2. 6821 0 .. 8951 
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meridional mode shapes of free vibration and the static 

stability of the shell for a given value of j in each case P 

a slight variation between each set of results is expectedo 

The graphical.presentation for the three sets of results 

recorded in Table XIV is, therefore, shown in ·Figure 160 

The values are observed to coincideo 

4a2o4 Effect of Boundary Conditions 

Three types of supporting conditions were selected 

to study their ~ffect on the boundary of the :region of 

instability,, The details as to how the shell is supported 

are explained in Table IXo The elastic and geometrical 

properties o:f the shell are the same as those mentioned i.n 

Section 4o ·1 o 1 a The numerical results for these three types 

of supporting conditions are tabulated in Table -XV for a,~· 0 o 

Although some slight variation between each set of results 

corresponding to eac.h type of supporting condition ean 

be :noticed 9 it is 9 nevertheless 9 quite small" Almost 

identical meridional mode shapes of free vibration and sta'tiK) 

buckling for each supporting condition have been observed. 

and the sketches of these are shown in. Figures 17 and ·i 8" 

These are necessary for correct interpretation of the nu.mer= 

ical results 9 in addition to the harmonic number Jo 

Therefore 9 the region of instability corresponding to a.~ 0 

for each type of supporting con.di ti.on was found to be al.most 

the same as that for the solution of the Mathi'E~u equat:.l1..cn1 (29), 

Hence o.nly one region of instability needs to be draw;n ,9J"1d 
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TABLE X:f 

INFORlVIATION FOR CONSTRUCTING THE REGION OF 
INSTABILITY CORRESPONDING TO 'DIFFERENT 

BOUNDARY CONDITIONS 

Instability Boundaries 
Boundary t W· . p .. 

a.= 0 1,J 1,J Conditions 1·-µ 
(rad/sec) (lb/in2) 

0 2o0 

Oo2 201852 107936 

( a) (w1,5) * Type Oo4 203547 105576 (p1 , 5) 

(free- 0~6 205115 
fixed) 

102754 4771o38 3706888 

Oo8 206579 009045 

Oo2 2.1900 1o 7896 

Type (b) Oo4 203646 105504 ( W1 6) . (p1 6) 
' , , 

(simply-· 
simply) 

006 205268 102666 4708031 3200945 

Oo8 2o 6791 008957 

Oo2 201888 1o 7905 

Type ( c) Oo4 203620 105521 ( W1 ~ 7) * (p1 ,7) 

(simpl)- 006 205229 1o2b84 '6503032 4309743 
fixed 

008 206736 008977 

tSee page 69 for more detailed informatiorio 
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FIRST BUCKLING MODE 

FIRST FREE VIBRATION MODE 

Figure 17 o Mer
1

id,i:onal Mode' Shapes for a 
,Cantilevered Shell 
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FIRST BUCKLING MODE 

FIRST FREE VIBRATION MODE 

Figure 180 Meridional Mode, Shapes' for a 
Shell Simply Supported at 
·Small; and Clamped at Large 
End 
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it is shown in Figure 19, since it is not practical to 

distinguish graphically the slight variation of numerical 

.values between each set of results depicted in Table X:Vo 
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CH.APTER V 

SUMMARY' AND CONCLUSIONS 

5o 1 ! Summary and· Conclusions 

A met'hod for determining the principal regions of 

dynamic instability for a truncated conical shell.under the 

action of an external uniform pulsating hydrostatic pressure 
,. I 

has been developed in this thesis using a stiffness formu-

lation of the finite element methodo The ·equations of shell' 

dynamics at equilibrium and the equations 'of perturbed 

motion of the shell were formulated from Hamilton's princi-

pleo The development of second variation expressions 

appearing in the equations of perturbed motion requires the 

consideration of geometric nonlinearityo Such nonlinearity 

has been introduced through the 1 application of Sanders' 

nonlinear theories for thin'shellso The ·equations of the 

boundaries of the ·regions of dynamic instability were 

derived from certain periodic solutions of the equations of 

perturbed motiono The e1·emental stiffness and' stability 

.coefficient matrices for any discrete element were obtained 

by assuming a displacement field'represented by Fourier 

c±rcumferential components of the genera:lized displacements" 

The accuracy of this approach was much improved by using 

more general and exact strain...;.displacement relations such as 
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that developed by Sanderso This approach gave natural 

frequencies of free vibration. and static. bucklirJ.g loads 

which closely agreed with the existing theoretical and 

experimental dat8.p with the use of only a few number of 

finite elementso The effects of different shell, theories, 

bending during prebuckling state, cone angle,: radius­

thickness ratio and boundary conditions on free vibrationp 

static bu,ckling and dynamic instability of the shell were 

analyze do 

From the results presented throughout the previous 

chapter it is seen that 9 although the effects ofi 

(a) different shell theories. and bending during 

prebuckling st~te 9 

(b) cone angle 9 

(c) radius-thickness ratio 9 and 

(d) boundary conditions 

upon the natural frequencies of free vibration wij and 

static buckling loads pij of the truncated conical shell 

under hydrostatic pressure are very p:tonounced 9 none of 

these parameters seem to have a s'ensible influence bn the 

overall shape of the boundaries of the principal regions 

of dynamic instabilityo It should be remembered, however, 

that the above ci te'd parameters do' affect the regi'ons only 

in as much as they affect the scaling.factors w'.ij and: pij 

in Figures 13 9 15, 16 and 190 · The main reaso~ behind this 

observation isl) a.s e~pla,ined by ,Hutt (29) P tha..t whenever 

the mode shapes for free vibration and static buckling are 

90 



91 

identical. 9 or nearly so 9 the shape of the boundaries of the 

instability regions.will be similar to those obtained from 

solutions o:f the Mathieu-Hill equationso 1 However 9· one may 

conceive situations where no similarity between mode shapes 

exist, and consequently 9 no similarity between the resulting 

regions and those of the Mathieu equation should be expected, 

One such case is that in which the truncated cone is acted 

upon by twisting couples at the ends periodically varying 

with timeo This case was not studied in this thesis and all 

cases considered here yielded regions that differed in shape 

only slightlyo This was observed to be true for virtually 

all cases considered,as has already been demon~trated in 

the preceding chaptero 

The· finite element method makes the study of a more 

complicated structures such ~s shell=type structures 

feasibleo The accuracy of tnis method is found to be 

surprisingly improved if more refined nonlinear theories 

for thin shells are appliedo Other approaches to this 

problem are extremely difficult unless it is simplified 

by unnedessary restrictions and too many questionable 

assu.mp,tions from the applied mechanics point of viewa The 

effect of boundary conditions can easily be investigated 

by this technique~ a prim'ary advan:tage· which has .been 

observedo The method is very flexible in that either PMT 

or PCT could be useda .Also 9 either Sanders 0 or Donnell 0 s 

theory could be used with some modifications in the 

computer program employedo The finite element method 9 which 



is based on variational principles 1 yields matrices that 

are positive de;fi.nite for prebuckling equilibrium and 

symmetric for the perturbation problemo 

5o2 Recommendations for Further Studies 
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The numerical examples which were solved in this thesis 

were confined to truncated,conical shells under the action 

of.a'uniform external pulsating hydrostatic .pressureo The 

shell_ is initially assumed. as perfect and is made of 

iso·tropi.c and homogeneous material that obeys Hooke vs lawo 

The thic.kness of the shel.l is small in comparison with the 

radii of curvatureo The method could readily be applied to 

othe'r types of shells of revolution such as ellipsoidal 9 

spherical and so on 9 in which the meridional curvature can 

be taken into account in the strain=displacE:ment relationso 

The-method could al.so be adapted to multilayer orthotropic 

shellso Such an extension involves no new principles 

provided the orthotropy is axisymmetri.c like the shell 

geometryo A logical extension of the present investigation.· 

should also include the effect of large deflections in the 

prebuc:kling equilibrium conditton and the effect of initial 

irnperfectiono The dynamic stability of shells partially 

filled with liquid and of stiffened shells deserves special 

attention owing to its importance in the d.evelopment of 

large rockets and aerospace vehicleso 
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.APPENDIX A 

SANDERS' STRAIN~DISPLACEMENT RELATIONS 

In tne formulation of the elemental stiffness and 

stability coefficient matrices of tnis thesis, Sanders' 

strain-displacement relations. are 'usedo They are 

's = (u, s-wt, s) 1 ( 2 *2) + 2 t s+'.! · 

'e ::;: ( 1/r) (u sin t+v, 
0
+w cos t) 1 ( 2 *2) 

+ 2 '*' a+' 

= tse (1/2r)(rv,s+u,
0
-v sin t) + t'fs'fe 

· (Al) 
><.s = 's,s 

K0 = < 1 Ir) < , 0 , 0 
+ 'i's sin t) 

1[ . 1: . , sint ( · cost) 'f*] KS0 = 2 '*'e,s*'r's~ e-'e ~ + ''s +~ 

where , 

'fs = -(w,s +ut,s) 

t 
0 

= - ( 1/ r) ( w , 
0 

- v. c'o s ~* ) 

'f* = (1/2r)(rv,s+v sin, .... u,
0

) 

. -,-- au ;f,· L. o t · t 
u' s = as. '.t'' s .r cs e co 

t = meridional shape for each element 

= constant for 1 conical shells 

The strain"-displacement relations for Donnell'stheory 
\ 

are obtained from equation (A1) by dropping terms with the 

asterisko The strains and cu~ature changes for· the e state; 
,\ 

denoted by e and e 
1are obtained by taking only -:the I: a.l3 K 

a.13 
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linear parts of equation (A1). Since the meridional shape t 

for any typical conical frustum does not vary with the 

meridional distances, the partial derivative of w with 

respect to sis equal to zero. 



.APPENDI~ B 

THE [Aj],. [Bj], AND [Cj] MATRICES FROM 

DONNELL'S 'THEORY 

Ai, 1 = n(cm
2r_ 1 ,i 0+D[ j 4+2(1-v)n

2
j.

2Jr_ 3 , 0J 
,Ai, 2 = n[cm2I-:- 1, 1-D[ (J-2\1 )nj 2] I~2, o+D[ j4+2 ( 1-\l)n 2j 2]I_ 3, 11 

j (j 2 .2 · ·[( ) .2] A1 , 3 = TTtCm I_ 1 , 2-2D\IJ I~ 1 , 0-2D 3-2\1 nJ I_2 , 1 

·c,,4 ., 1 ) 2.2J ) + D ,J · + 2 - \I n J I_ 3 , 2 ) . 

Ai~ 4 = nfcm
2
!_1 , 3-6D\lj

2
I_1 , 1-3D[(3-2\l)nj

2
]I_2 , 2 

+ D[j4+2(1-\l)n2j2]I_3,3] 

j 
A1 , 5 = nCmnI;.,. 1 , 0 

Ai,· 6 = n[cmnI_1 1+C\l~Io o 5 , ' ' , 
j 

A1 , ? = nCm j I ... 1 , O 

Ai , B = nCmj I_ 1 , 1 

. (, 2 . 2 · .. 2 · ' '.2 
. A~,2 = TTlCm l-1,2+D[n +2(1-\l)J ]I...;.1,o-2D~(J-2\l)nJ ]I-2,1 

+ D[ j 4+ 2 ( 1- \I) n 2 j 2 ] I_ 3 ~, 2 3 
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-- [c 2 [ 2 . (· · · I ) • 2 J TT. Cm I_1 , 3+,2Dvnio,o+2D n + ;2-Jv J I_1 , 1 

- 3D[(3-2v)njtjI_2 , 2+D[j 4+2(1~~)n
2

j
2]r_

3
~
3
1 

Ag, 4 i = TT [cm
2

I.1.. 1 , 4~6DvnI0 , 1+ 3D[n
2 
+ ( a+4 v) j 

2 JI_ 1 , 2 

- 4D[ ( 3-2 v)nj 
2]I_2 , 3~D[ j 4+2 ( 1-v)n

2 
j 4 Jr~ 3 , 4 ~ 

Aj 
, 2, 5 = TTCmnI -1 , 1 

Aj 
2,6 = TT tCmnI_ 1 , 2+C vmio ~ 1] 

Ag,7 = TTCmjI_ 1 , 1 

j 
A2,8 = nCmjI_ 1 , 2 

Ai, J' =· n l9m~I_ 1 , 4+4DI1 , 0+8DvnI0 , 1+4D[n
2 
+ ( 2-3\1) j 

2 Jr_ 1, 2 

- 4D[ ( 3-2v)n
4

2 ]r_ 2 , 
3
+D[ j 4+2( 1-v)n

2 
j
2 

]I_ 3 , 4 j 

j: 
A3, 7 = nCmj I_ 1 , 2 

Ai ,8' =, TTCmjI_ 1 , :3 
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Ai, 4 = TT [om
2r_ 1 , 6+36DI1 , 2-rJ6Dvnlo ,J+3D[ 3n

2
+ ( 6-1 Ov) J2

]I_ 1 , 4 

' - 6D[ ( 3-2v )nj 2 ]I_2 , 5+n[ij 4+2 ( 1-v)n2;j 
2 Jr_ 

3
, 6J 



A z , 7 = . nCm j I_ 1 , 3 

Ai,s ,= nCJJ1jI~f,4 

j 
A5,5 = nc ~2 + ( 12\l) j~ r_1 ~o 

= nfc[ n2 + ¥, ·j2] I..:1, 1+CNnio ,oJ 
nC [( 3~ \I) ' ~ j J I_ 1 ' 0 Aj -

5 '7: -

j 
A6,7 

Aj . 
6,8 

j 
A:f '7 

j 
A:f' 8 

(re T . 2 C I C r: 2 ( 1.;. "') . 2] I 2 
= TT~ .!;j ,o+, "n o, 1+. 1.:1 + 2 J · -1,2·) 

= n[c"jio ,o+C { ~3;"> nj] I_1 '1 J 
= n(c [<3';°1

). j] 10,1+0 [( 32") nj] 1-1,25 

= nC . f.; 2 ( 1- ") 2J .1 .~ +---z- n · -1,0 

= n[-:- c (1·;") nio,o+~ @2 +¥ n2J I~1,1 ~ 

The ~lements of [A0 J are obtained :from the above 
' J 

elements by supstituting j = 0 ~d by replacing TT bj' 2n~ 
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[Bj] Matrix 

B~, 1 = ncb
2

(mG1r_ 2 , 0+mG_2r_2, 1+mG3r_ 2 , 2+mG4r_ 2 , 3+nG5r_ 2 ,0 

+ nG6I-2 1)+vJ2G6I-1 O~ , . , 
i 

B~, 2 = nC[j
2

(mG1r_ 2 , 1+mG2I_ 2 , 2+mG3r_ 2 , 3+mG4r_ 2 ~4+nG5r_ 2 , 1 
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+ nG6I_ 2 , 2 )+vj
2
G6I-l, 1+ vm( G2I 0 , 0+2.G3r0 , vt-3G4 IJ ~ 2 )j 

B~, 3 = nClj2 (~G1 I_2, 2+mG2I-2, 3+mG3f;-2 ,4+~G4 I_2, 5+nG5I_2, 2 

+ nG6I-2,, 3)+vj2G6I-1, 2+2vm(G2Io, 1+2G3Io, 2 

+ 3G4r 0 , 3 )j 

. B~ ,4 = 'l'.fClj2(~G1I-2,3+mG2I-2,4+mG3I_2,5+mG4I_2,6+nG5I_2,3 

+ nG6I-2, 4)+vj2G6I-1, 3+3vm(G2Io, 2+2G3Io, 3 

+ 3G4 Io ,4) ~ 

B~, 5 = nCt( 1~v) j2(G2I-1,0+2G.3I_1, 1+JG4I-1 ,2)] 

B ~ , 6 =·. rrC [ ( 1,2 v) j 2 ( G 2 I;.. 1 , 1 + 2 G 3 I - f, 2+ 3 G4 I_ 1 , 3 ) } 

.Bi, 7 = 

j . 
B1,8 = 

rrG((12v} nj(G2I-1 0+2G3I-1 1+3G4I_'1 2)j , . , , ' 

nc[- ¥ j(G2Io,0+2G3Io,.1+JG4Io,2) ~"¥nj(G2I-1,1 

, + 2 G 3 I_ 1 , 2+ 3 G 4 I -1 , 3 ) J 

B~, 2 = Tfc[G6I1 , o+j 2 (mG1 I_2, 2+lllrG2I-2, 3+mG3I-2, 4+mG 4 I_2, 5 

+ nG5I..::.2, 2+nG6I-2, 3)+ vj 2G6;r-11, 2+ v(mG1 Io ,o+mG2Io, 1 

+ mG3Io, 2+mG4 Io, 3+nG5Io ,o+r+~6IO, 1 )+2vm( G2Io, 1 

+ 2G3Io,2+3G4Io,3)3 
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Et J = nc[2G61 1 , 1+j
2

(mG1I_ 2 ,J+rµG 2I_ 2 , 4+mG3 I.:.. 2 , 5+mG4I_/: 6 
l .1 / 

+ nG5I_ 2 , 3+nG6I_ 2 , 4 )+vj
2

G6I_ 1 , 3+2v(mG1I 0 , 11mG2I 0 , 2 

+. !If-G.3 I 0 , 3+mG4 Io, 4+nG5I 0 , 1+nG6I 0 , 2 )+ 3vm( G2r 0 , 2 

+2G3Io,3+3G4Io,4)3 

j , [ 2 
B2,4' = nC JG6I1,2+j (mG:1I-2,4+mG2iI-2,5+mG3I_2,6+mG4I_2,7 

+nG5I_2 , 4+nG6I;,.; 2 , 5 )+vj 
2

G6I_ 1 , 4+ 3v(mG1 I 0 , 2+mG2I 0 , J 

+mG3I 0 , 4+mG4 Io, 5+nG5I 0 , 2+nG6I 0 , J )+4 vm( G2I 0 , J 

+2G3Io '4+3G4 Io' 5)} 

Bt5 = nC[vn(G2Io,0+2G3Io,1+3G4Io,2) +¥j2(G2I-1,1 

+2G3I_ 1 , 2+JG4I_1,J)j 

·Et 6 = nC[(G2I 1 ,o+2G3 I 1 , 1+JG4I 1 , 2 )+vn('G2I 0 , 1+2G3I 0 , 2 

+~G4Io,3)+¥j2(G2I-1,2+2G3I-1,3+3G4I-1,4)] 

Et 7 = nC[_vj ( G2Io '0+2G3 Io' 1+ JG4 Io' 2) +{1'2 v )nj ·''·:G2I-1 '1 

+ 2 G :3 I_ 1 ' 2~ 3 G 4 I_ 1 ' 3) 5 

B~' 8 = nC(yj ( G2Io' 1+2G3Io', 2+1JG4 Io' 3)' -¥j ( G2Io' 1+2G3Io' 2 

+3G4Io,3) +¥nj(G2I-1,2+2G3I-1,3+3G4I-1,4)J 

, Bi, J = nc[ 4G6I1 , 2+ j 
2 

(mG1 I_2, 4+mG2Ii...2, 5+mG3~-2, ~+m.G 4 I_2 ~? 

+nG5I-2 '4+nG6I-2' 5')+ vj 2G6I ... 1 '4+4 v (mG1 Io' 2+mG2Io' 3 

+mGJIO, 4+mG4 Io, 5+nG5r 0 , 2+nG6I 0 , j)+4vm(.G2I 0 , J 

+2G3Io,4+3G4Io,5)J 
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Bi,4 = nC t6G6r 1, 3+j 
2 

(mG1 I_ 2 , 5+mG2I_ 2 , 6+mG3r_ 2 , 7+mG4 I;.. 2 , B 

. +nG5I_2, 5+nG6I-2, 6)+\lj 2G6I-1', 5+6\l(ID.G1 Io, 3+mG2Io, 4 

+mG3r0 , 5+mG4r0 , 6+nG5~0 , 3+nG6Io, 4 )+5vm(G2I 0 , 4 

+2G3Io,5+3G4Io,6)j 

j 
B3,5 = 

[ ( . · . ) , ( 1-\1) .2( 
nC 2\ln G2,r0 , 11+2G3r0 , 2+JG4Io,J + 2 J G2I_ 1 , 2 

+2G3I-1,3+3G4I-1,4)j 

j 
BJ,6 = nc[2(G2I1, 1+2G3I1,2+3G4I1 ,3)+2\ln(G2Io,2+2G3Io,3 

) ¥-2( )] + 3 G 4 Io , 4 + J G 2 I_ 1 , 3 + 2 G 3 I_ 1 , 4 + 3 G 4 I_ ·1 , 5 

j 
BJ,7 = nc£2\lj(G2Io,1+2G3Io,2+3'G4Io,3) + (12")nj(G2I-1,2 

+ 2 G 3 I_ 1 , 3 + 3 G 4 I:..1 ' 4 ) ] 

j 
BJ,8 = f "( G ) . (1-") "( nC 2 \IJ G210,2+ 2G3Io,3+3 410,4 - 2 · J G210,2 

) ¥ "( +2GJio',J+JG4r0 , 4 . + nJ G2I_ 1 ,J+2GJI~ .. i 1 , 4 

+JG4I .... 1,5)~ 

j 
B4,4 = TT0[9G6r1 , 4+j 

2
(mG1 I_ 2 , 6+mG 2I_ 2 , 7+m03r_ 2 , s+mG4I_ 2 , g 

+n?~i,..2, 6+nG6I;....2, 7')+\lj 2G6l.:..1, 6+9 "(mG1 Io P 4+mG2Io, 5 

+mG3Io,6+mG4Io,7+nG5Io,4+nC,6Io,5)+6\lm(G2Io,5 

+2G3Io,6+JG4Io,7)j 

j 
B4,5 = [ ( ) 9.2, nC 3vn G2r 0 , 2+2G3r0 , 3+3G4Io, 4 + J G2I_1,J 

+2G3I-1,4+3G4I_1,5)$ 



Bj -
4,6 - nc[J(G2I1 ,2+2G3I1 ,3+30-4I1 ,'4')+3"n(G2Io,3+2G3Io,4 

+3G4Io,5) +¥j2(G2I-1,4+2G3I-1,5+3G4I_1,6)j 

Bi,1 = nC[3"j.(G2Io,2+2G3Io,3+3G4Io,4) +¥nj(G2I-1,3 

+2G31-1,4+.JG4I-1, 5)1 

Bi,8 = nC[J"j(G2Io,3+2G3Io,4+3G4Io,5) _ (1';)/)j(G2Io,3 

+2G2Io,4+3G4Io,5) +¥nj(G2I-1,4+2G3I-1,5 

+3G4I-1,6)j 

j 
B5,5 = 0 

j 
B5,6 = 0 

B(7 = 0 

Bj 
5,8 = 0 

Bi 6 = 0 , 
j 

B6,7 = 0 

Bi 8.:: 0 

' 
B~,7 = 0 

j 
B7,8 = 0 

Bj 
8,8 = 0 
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[Cj J Matrix 

j 
C1 1 = 0 , 
c( 2 = o 

C·j = 0 
1, 3 
j 

c1,4 = o 
j 

01,5 = 0 

j 
c1,6 = o 

Cj = .,1. ·1 
1,7 :zTTJ 0,0 

Cj i ·1 
1 , 8 = :zTTJ O, 1 

j 
c2,2 = o 

j 
c2,3 = o 

j 
c2,4 = o 

j .l. I 
C 2 , 5 = - 2 · TT 1. , 0 

j _1_ 

c2,7 = 2njio,1 

j i . I 
02,8 = 2TfJ 0,2 

cj · = o 
3,3 
j O C3,4 = 

ci, 5 = -,.,.I 1 , 1 

j 
:C3, 6 = -TTI1 ,2 

C j i ·1 
3, 7 = 2°TTJ (), 2 
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j 
C3,8 

i .I = 2TTJ. 0, J 

cj 
4,4 = 0 

j 
c4,5 = - ~ TTI1 , 2 

j 
C4,6 = - ~ TTI1 ,J 

j 
C4,7 i ·r = 2TTJ·O,J 

j 
c4,8 

i .. I = 2TfJ 0,4 

j 
C5,5 = 0 

j 
C5,6 = 0 

c;,7 = 0 

j 0 C5,8 ...,. 

cj 
6,6 = 0 

j 
c6,7 = 0 

ci 8 = 0 , 
j 

C7,7 = 0 

j 
C7, 8. = 0 

c~,8 = 0 



[Aj] 

j 
A1 1 , 

j 
A1,2 

j 
A1,3 

j 
A1,4 

j 
A1, 5 

j 
A1,6 

j 
A1,7 

j 
A2,2 

j . 
A2,3 

j 
A2,4 

j 
A2,5 

APPENDIX C 

THE [Cj] MATRIX AND THE ADDITIONAL PART 

OF THE [Aj] AND [Bj] MATRICES FROM 

SANDERS' THEORY 

Matrix 

= nD (1-") 2j2I 
2 n -3,0 

= D ~n2j 2I . 
TT -3,1 

= nD ~n2j2I-3,2 

= nD i12")n2j2I_3,3 

= nD ( 1-\1) .2 
4 mnJ I-J,O 

= nD ( 1-\)) .2I 
4 mnJ -3, 1 

= ~ .3 . ¥ 2.. } nD mJ r ... 3 ,0 - . mn JI_3 , 0 

__ (. .3 3(1-") . (1-v) 2. · ~ nDtmJ I_; 3 , 1 +~mnJI_2, 0 ::-~mn JI_3 , 1.5 

= Aj 
1 ; 3 

= 
. j 
A1,4 

= nD ( 1+ \)) n 2 j 2 I 
2 -3 ,4 

j 
= A1 6 , 
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Aj - nD <1-v)mnJ:. 21 
2,6 - 4 . 3,2 

j 
A2,7 = 

j 
A2,8 = 

j 
A3,3 = 

j 
A3~4 = 

j 
A3,5 = 

Ai 6; = ' . 

j 
A3,7 = 

j 
A3,8 = 

j 
A4,4 = 

Aj . 
4,5 

::: 

j 
A4,6 = 

D( .3I '.
1 

(1-v) 2.
1

· "2 
TT t.mJ -3, 1-mnJ -2,0 ---rmn .J -3, 15 

j 
A2,4 

nD ( 1-v) 2j2I 
2 n -3,5 

j 
A2,6 

¥ 2 nD mnj 1_3 , 3 

nD[mj 31_ 3 , 2-2mnj 1_2 , 1-2 vII;1j I_ 1 , 0 ..:-{( 1-v )mn2 j 1:._
3

, 2} 

nD[mj 31_ 3, 3-2mnj1_ 2 , 2-2vmj1_ 1 , 1 +:i( 1.:_v)mnj1_ 2 , 2 

- :'t ( 1- v) mn 2 j 1 _ 3 ' 3 3 
D ( 1-v) 2j2I 

Tr 2 n -3,6 

j 
A3 ,6. 

¥ .2 nD mnJ 1_3 , 4 

At,·?= nDlmj 31_3 , 3~3mri.jI_ 2 , 2-6\lmj1_ 1 , 1 -{(1-v)mn
2
jI_3 , 33 

At~B = nDfmj 31_3 , 4-3mnj1_ 2 , 3-6vmjI_1 , 2 +,i( 1-v)mnjI_ 213 

- {(1-v)mn
2

j1_3 , 4J 
Aj = nD ( 1-v)m2j21-3,0 

5,5. ~ 
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A;,7 

Aj 
5,~ 

j 
A6 6 

' 
j 

A6,7 

j 
A6,8 

j 
~,7 

j 
~,8 

= ~ 
0

TTD ¥m 
2
p.j I~ J, O 

= 63( )2. 92. 3 ·nD '8' 1- v m JI_ 2, 0 ""."' . m nJ I_ 3 , 1 

= TTD (1-v)m2j2I 
8 · -3,2 

= - :92 .. TTD m nJ~-J~.·~. 
,. 

= [3c ) 2. 9 2 . 1 '"D '8'· 1-" m · J I_· 2 , 1 - m n J r _ 3 , 2 

= f 2.2 ¥ 2 2 3 nD m J I_ 3 , 0 + . m n I_ 3 , 0 

__ ( 2 .2 (1-v)(, 2 2 2 )~ 
TTD{E1 J I_3 , 1 +---g-- m n I_ 3 ,'f'"'3m nI_ 2 ,0) 

The elements of '[A0
] are o~taineci from the above 

J ' 

elements by substituting j '= 0 and by re'placingi n by 2no 
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Bi 1 = 0 , 
j 

B1,2 = 0 

Bi,3 = 0 

Bi,4 = O' 

j 
B1,5 = 0 

, B~ 6 = 0 , 

112 

Bi, 7, = nClm2 j ( I_2 ,0G1+I_2 ,· 1 G2+I_2, 2G3+I_2, 3G4 )+mnj ( 1_2, OG5 

+I_ 2 , 1 G 6) + \lffi j I;_ 1 , 0 G 6 j 

Bi, 8 = nC [m2 j ( I_2, 1 G1+I_2, 2G2+I_2, 3G·3+I_2, 4 G4 )+mnj ( I_2, 1 G5 

Bi,2 = 

B~,3 = 

Bi,4 = 

j 
B2,5 = 

j 
B2,6 = 

Bi,7 = 

+I_2 2G6)+vmjI_1 1 G,6! , , ' 

0 

0 

0 

0 

0 

Bj .. 
1 , 8 . 

,,cfm2 j ( I_2, 2G1+I_2, 3G2+I.;.2, 4 G3+I_2, 5G4 )+mnj ( I_2, 2G5 

+I_2,3G6)+vmjI~1,2G6S 
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Bi,4 = 0 

Bi,5 = 0 

Bj - 0 3 6 -
' ' 

Bi,8 = nC[m2j(I_2,3G1+I_2,4G2+I_2,5G3+I_2,6G4)+mnj(I_2,3G5 

+I_2,4G6)+vmjI_1,3G6j 

j 
B4,4 = 

Bj -
4, 5_ -

Bi,6 = 

Bi,7 = 

Bj -
4,8· -

0 

0 

0 

Bi,8 

TTC[m2 j ( I_2 '4 G1+I_2, 5G2+I':"'2' 6G3+l...:2 '7G4) + mnj{ I_2 '4 G5 

+I_2~5G6)+\IIlljI_:1,4G6j 

B~ ,. 5 = nc[tG6( 1+ v) r_ 1 , 0 j
2 
+t( 1 +v)mj 

2
{ r_ 2 , 0a.1+r_2 , 1 (}2+r_2 , 2G3 

+I~ 2 , 3G 4 )+t( 1 +v)nj 
2 

(I_ 2 ,o'G5+r_2 ,, 1 G6) 5 
B~, 6 ~ nc[tG6( 1+ v)l_ 1 , 1 j 

2 
+t( 1+ v)mJ

2 
( I_ 2 , 1 G1+r_ 2 , 2G'2+r_ 2 ,. 3G3 

+I_2 ,4 G 4 )+t( 1 +v,)nj 2 ( I_2' 1 G5+I_.2 '2G6)1 

B~, 7 = nc[tG6( 1+\i) I_1 ,ojn+t( 1+v')mnj (I_2,0G1+I_2, 1 G2+I_2' 2G3 

+I_2 '3G 4 )+t ( 1 +v)n2 j (I.:_2 '0G5+I_2' 1 G6) 

+ (12v)mj(I_1,0G2+2I_1,1G3+3I_1,2G4)} 



, +I_1,2GJ+I_1,JG4)+t(1+v)nj(I_1,0G5+I_1, 1G5) 

+t( 1+ v)mnj ( I_ 2 , 1 G1+r .... 2 , 2G2+I_ 2 , JGJ+I_ 2 , 4 G4) 

'.l..(1 ) 2 ·( G I G) ( 1-v). '(I G +4 +v n J 1-2,1 5+ -·2,2·6 +. 2 mJ -1,1 2 

+2I_1,2GJ+JI_1,JG4)j 
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Bi,6 = ncftG5(1+v)I_1,2j2+(1+v)mj2(I_2,2G1+I_2,JG2+I_2,4GJ 

+I_2 '5G 4)+t( 1 +v)nj 2 ( I_2' 2G5+I_2' JG6)] 

Bt 7 = nc[tG6 (1+v)I_1 , 1 jn+t(1+v)mnj(I_2 , 1G1+r_ 2 , 2G2+r_2 ,JGJ 

+I_2,4G4)+t(1+v)n2j(I_2,1G5+I_2,2G6) 

+ J¥mj ( I_1 '1 G2+2I_1 '2GJ+JI_1 'JG4)J 

Bt S = TTC[i-G6 ( 1+v) ( jIO, 1+jnI_ 1 , 2 )+t( 1+v)mj ( I_1 , 1 G1+I_1 , 2G2 

+I .... 1,JGJ+I_1,4G4)+t(1+v)nj(I_1, 1G5+I_1,2G6) 

+t( 1 + v)mnj ( I_2' 2G1 +I~2' J G2+I_2 '4 GJ+I_2' 5G 4) 

+t( 1+v)n
2 

j ( r_ 2 , 2G5+r_ 2 , 3G5) +¥mj ( I_ 1 P 2G2 

+2I_1,JG3+3I_1·,4G4)j 

B~,? = TTCti'G6 ( 1+ v) I_ 1 , on
2 
+t ( 1 +v)mn

2 
( I_2, o'G1+I_2, 1 G2+I_2, 2GJ 

' . . .l... ' J . 
+.I_ 2 , JG 4 )+ 4 ( 1 +v) n ( I_ 2 , 0G5+r _ 2 , 1 G5) 

+(1-v)mn(I_1 , 0G2+2I_ 1 , 1GJ+JI_ 1 , 2G4 )+m3 (r_2 , 0 G1 

+I_2, 1 G2+1""."2, 2G3+I_2, JG 4 )+m2:n( 1-2, 0G5+I_2, 1 G5) 

+vm2I-1,0G6j 



B~,8 = 
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nC t t G 6 ( 1 + v) ( l1Io , o+ n 
2 
I_ 1 , 1 ) ;,t ( 1 + v) mn ( I_ 1 , O G 1 + I- l, 1 G 2 

+I_1 ,2G3+I_1,3G4}+m3(I_2~1G1+I-2,2Gz 

2 . 2 · 
+I-2, 3G3+I_2,4G4)+m n(I-2, 1G5+I_2,2G6)+vm I-1, 1G6 

+t( 1+ v)n2 ( I~ 1 , 0 G5+I_ 1 , 1 G6)+i( 1+ v)mn
2 

( I_2 , 1 G1 

+I_2 '2G2+I_2, 3G3+I_2 '4 G 4 )+i( 1 +v)n3 ( I_2' 1 G5 

+I_ 2 , 2G6)+(1-v)mn(I ... 1 , 1G2+2I_ 1 , 2G3+3I_ 1 , 3G4 ) 

_· ~m(Io,0G2+2Io,1G3+3Io,2G4)J 

B~, S = nC tiG6 ( 1+v) ( I 1 , 0+2nI0 , 1 +n
2
I_ 1 , 2 )+t( 1 +v)m( Io, 0 G1 

+Io,1G2+Io,2G3+Io,3G4)+t(1+v)n(Io,0G5+Io,1G6) 

+!( 1+v)mn(I_l, 1'G1+I_1 '2G2+I ... 1 '3G3+I_1 ,4 G4) 

+i(1 +v) n 2 ( I_ 1 , 1 G5+I_1 , 2G6)+t( 1 +v )mn 
2 

( I_ 2 , 2G1 

+I_2,3G2+I_2,4G3+I~2,5G4)+t(1+v)n3(I_2,2G5 

+I_2 , 3G6)+(1-v)mn(I_ 1 , 2G2+2I_ 1 , 3G3+3I_ 1 , 4G4 ) 

3 
-( 1-v)m( Io, 1 G2+2Io, 2G3+3Io, 3G 4 )+m ( I_ 2 , 2G1 

2 
+I_2,3G2+I_2,4G3+I_2,5G4)+m n(I_2,2G5+I_2,3G6) 

+vm2I_1, 2G6 3 
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[Cj] Matrix 

j 
TTIIlio,o C1 1 = , 

j 
C1, 2 = TTIDIO, 1 

j 
C1 , 3 = nmio, 2 

j 
01,4 = TTIDIO, 3 

j 
C1, 5 = tnnio,o 

j 
C1, 6 = TTf~Io, 1 +t1 1 , o} 

j 
01,7 = TTjio,o 

j 
01,8 = nj Io, 1 

j j 
C2 2 = C1, 3 , . 

cj 
2,3 = cj 

1 , 4 

j 
02,4 = TrmI0 , 4 

cj 
2,5 = ,{~Io, 1-iI1 ,O ~ 

cj 
2 , .. 6 tnnio,2 

j j· 
02,7 = C1 8 , 

j 
02,8 = TTjI0,2 

cj 
3,3 = 0

t4 
j 

C3,4 = nmio, 5 

cj, 
3,5 = nf~Io, 2-11, 1} 

j 
C3,6 = nffiio,3-iI1 ,23 

j 
03,7 = j 

0 2,8 
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j 
c3,8 = njI0,3 

cj . 
4,4 = TTII11o, 6 

cj 
. 4,5 = n&10 , J - ~ I 1 , 2 S 
cj -4,6 - n[~1o ,4-11, 3j 

j 
c4,7 = 

j 
c3,8 

cj 
4., 8 = TTjI0,4 

j 
c5,5 = 0 

j 
c516 = 0 

j 
c5,7 = 0 

j 
c5,8 = 0 

j 0 c6 6 = , 
j 

c6,7 = 0 

j 
c6,8 = 0 

j 
c7,7 - cj _, 1 , 1 

j 
C7,8 = 

j 
c1,2 

cg,8 = j 
C1,3 
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