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CHAPTER I
INTRODUCTION

1.1 Statement’of the Problem

During the last few decades; problems of dynamic
stability of shell structures have increasingly attracted
the attention of both scientists»and engineers. The: reason
for intensifying the studies in this area is probably due to
the development of missiles anq_rockets° These vehicles are
forced to move at high speeds by rocket engines, and
encounter pressure fluctuations‘gn the vehicle structure

during transition and supersonic flight (1). Pressure

fluctuations in turn may cause the vehicle structure to be

dynamically unstable, Thus,ﬁtheseﬁproblems,.which‘have long

been of theoretical interest, have recently turned out to
be very important from a practical point of viewé

The structural design of a‘typ%cal aerospace vehicle
requires that the response of‘the vehicle to various
excitations (e.g., longitudinally excited pulsating

pressures) be accurately pred;cted in order that the sound-

ness and reliability of the vehicle can be assessed. Since

the conical shell is extensively used as a structural

component in many existing and proposed flight vehicles,

- the stability of the shell under the action of an external

1



uniform pulsating hydrostatic pressure isof great importance
and will therefore be investigated in this thesis.

The results ofvthisvana;ysié will be depicted in the
form of principal regi§ns'of dynamic instability for dif-
ferent shell theories, various geometrical parameters'and
support conditions, (An instability region can be vis-
ualized as a domain in the load-frequency space which will
indicate whether or not a certain load applied at a given
frequency will cause Fhe structure to become dynaiically

unstable. )

1.2 Historical Sketch

The phenomenon of parametric resonance in a stretched
string has long been observed,,~prever¢nﬂayleighw(2) ﬁas
the first}to give a}theoretical explanation of this.
phenomenon. A detailed review of the literature on the
theory of dynamic stability, complete through 1951, can be
found in an article by E. A. Beilin and G. U. Dzhanéiidze

(3). One of the most comprehensive treatises in this field

was presented by Bolotin (4) in his book Dynamic Stability
of Elastic Systems. | ‘

In 1949 Markov (5) investigated the dynamic stability
of enisotropic cylindrical shells and Oniashvilli (6)
studied the dynamic stability of shallow shells in 1950.
Federhofer (7), in 1954, published a paper on the dynamic
stability of cylindrical shells under axial pressures.

In 1958 Bolotin (8) published several papers on the



dynamic stability of spherical shells and Bublik and
Merkulov (9) studied the dynamic stability of shells filled
with liquid. The question of the influence of damping on
the boundaries of the regions of instability was discussed
by Mettler (10) and Naumov (11).

The first paper known to the author dealing with the
dynamic stability of cones appeared in 1955. In their study
Alfutov end Razumeev (12) restricted the analysis to shells
.with small cone angles and it was assumed that the shells
perform inextensional vibrations. Black (13) in 1968,
employed the finite element methéd to study the dynamic
instability of cylindrical shellso Al though he used the
same approach as that of the present study, his means of
obtaining the structural property matrices cannot be used
for the more complex geometry of a conical shell. The
dynamic stability of truncéted conical shells has been
studied by Kormecki (14) in 1966, kornecki assumed in his
paper that the mode shapes corresponding to the practically
most important parametric vibrations contain a large number
of circumferential waves. No such limitation is imposed in
the present study.

Most of works on dynamic stability mentioned earlier
had & common characteristic in‘that the governing differ-
ential equations could, either exactly or approximately,
be reduced to a second-order differential equation with peri-
odic coefficients known as the Mathieu-Hill equation. For

example, Brachkovskii (15) established a class of problems



‘that can be reduced exactly to one second-order equation by
using the Galerkin method.

The idea of replacing any strﬁcture’by a series of
finite structural elements can be traced back several
decades. The development of this concept of structural
analysis began to show its versatility and ease in the
application for solving the problems of plates and shells
only about ten years ago.

The first application of this technigue to shells
which involved replacing the curved surface by flat tri-=
angular or rectangular elements had been done by Adini (16),
Clough and Tocher (17), and Zienkiewicz and Cheung (18).

An alternative approach for a shell of revolution which
consists in replacing the shell by a set of conical segments
was treated by Grafton and Strome (19). Percy et al. (20),
and Dong (21) extended the method to handie laminated shells
and orthotropic materials. Dong (21), Clough (17), and
Navaratnai(22) studied the effect of the element size on
gsolution accuracy.

Recently, Jones and Strome (23), and Stricklin et al.
(24) modified the method for g shell of révolution by using
curved meridional elements rather than conical segments.

To analyze a shell of arbitrary shape, Utku (2%) has
propoéed an element stiffness matrix for a shallow tri-
angular curved element. Webster (26) ﬁade improvements in
the ring finite element analysis by extending the poly-

nomials representing the displacements. Connor and Brebbia



(27) developed the element stiffness and nodal force
matrices for a shallow shell element taking into account
the effectsjof curvature.

The application of the finite element method to study
the dynemic stability of beams, plates, and shells had been
done for the first time by Brown (28), Hutt (29), and Black
(13). The finite element approach using the direct stiff-
ness method has also been employed to solve classical
elastic stability problems of simple structures. Geometric
stiffness matrices for simple bar elements, beam columns,
and plates have been obtained by Turner et al. (30),

Archer (31), Gallagher et _al. (32), Argyris (33), Martin
(34),wKapur and Hartz (35) and Oden (36) from purely

- geometric considerations. . A systematic procedure to obtain
. the so-called geometric stiffnesé, or stability coefficient,
and stiffness matrices for more complicated structures had
_been developed by Navaratna (37) through the variational

approach.

T3 Approach of This Study

In this thesis the finite element method is used to
study the dynamic stability of a truncated conical shell.
The original structure is replaced by a series of conical
frusta as shown in Figure 1. Each conical frustum is
bounded by two nodes.  The displaceménts of the shell are
v described_by'the displacements ¢f these nodes. Each node

is assumed to have four degrees of freedom for asymmetric
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Figure 1. Discretized Shell of
Revolution



deformation during buckling and three degrees of freedom

for axisymmetric, torsionless, prebuékling deformation.

The formﬁlation of both stiffness and stability coefficient
matrices for any discrefe element is carried out using the
variational pringipleso This yields matrices that are
positive definite for prebuckling equilibrium and symmetric
for the perturbation problem. Both Donnell's and Sanders’
ﬁon=linear theories for thin shells are used. The mass
matrix for each finite element is derived from.fhedefinition
of kinetic energy. The displacement and velocity fields are
assumed(throughout the element for the formulation of
various matrices. Finally the behavior of the entire
structure is determined by introducing the compatibility
condition at the node of each element.

In this study the shell is assumed to be made up of
homogeneous and isotropic material that obeys Hooke's law.
Further, the thickness of the shell is small in comparison
with the radii of curvature, while.the shell is initially

perfect and all of the perturbation gquantities are small.

1.4 Solution Procedure

The boundaries of the regions of dynamic instability
of shells canAbe obtained in the followingvmannerz
(a) Determine the equations of motion of & typical
shell element;
(b) Discretize the original structure into a series

of conical frusta;



(e¢)

(a)

(e)

(f)
(g)

(h)
(1)

Assume g suitable displacement and velocity
function for the above element:

Derive the elemental stiffness, stability
coefficient and mass matrices;

Assemble the elemental matrices to obtain the
equation of motion for the entire structure;
Apply the boundary conditions;

Calculate the natural frequency of transverse
free vibratioﬁ;

Calculate the static buckling load;

Sclve for the regions of dynamic instability

from the equation of motion of the entire shell.



CHAPTER II

FORMULATION OF THE CONDITIONS OF
DYNAMIC INSTABILITY

2.1 Equations of the ‘Thell Dynamics

If the shell is subjected to dynamic edge and surface
loads it will, in general, experience a state of forced
vibration in a configuration compatible with the nature of
the driving forces and the boundary conditions. In more
precise terms, except for the time dependence of this
configuration, its form will be the same és that of the
same shell upder static loading. This state or configur-
ation will be referred té as the initial state and is
assumed tc be nowhere near reéonanceo According to
Hemilton's principle (38), the following relationship holds
between two instants of time 1, and 1,

T
S (T + W%)dt = 0 (1)
to'
in which

?® = kinetic energy of the shell at the initial

state, and

e

W° = total potential and strain energy at the

initial state.



As is well known, equation (1) is a generalization of
the principle of virtual work, in which case, §T° is
interpreted as the virtual work of the inertial forces,
while sW° is the virtual ﬁork of the noninertial driving
forces. It is noted here that T° and W° are functions of
the displacementéﬂue, ve, w® and theif time rate at the
initial state. More specifically, T° and W° are functions
of a set of generalized displacements {§e3 and velocities
gl

Performing the integration in equation (1) and
expressing the total potential energy W° as the sum’of the
strain energy U® and the workN°® done by the generalized
forces {Q} léads to theLwelluknown“Lagrange"s equation for

the dynamic equilibrium of the initial state:

e

(1 - u® -0 =0. (2)

a2 L2
, e
TEa{8%] 2f°)
By introducing the following expressi@ﬁg“for>Te,

Ue9 and N¥ for a typical element of the shell:
1° = %iﬁe}T =" {a%

0 - 36 ) (o)
0°-- {9 {o)

equation (2) is transformed tos

(n°1 £4% + (6] £o°) = o} (4)

(3)

W

i

“in'which

(°] = elemental mass matrix of the initial state,

10
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[ke] = elemental stiffness matrix of the initial state,
{qe;? gﬁ 3, gﬁeg = generalized displacements,
- -yvelocities, and accelerations at
the initial state respectivelys
The equation of motion for the entire shell is obtained by
requiring compatibility of the generalized coordinates, a
process which leads to é sfraight=forward assemblage of
total mass and stiffness matrices [M°] and [K°] from the
elemental maés and stiffness matrices [m®] and [ke]° These
matrices describe structural properties and are time
independent. Thus, the initial state of the entire shell
is governed by the equation
] €5%9 + [K°] £a®) = %o} - (5)
In order to investigate the dynamic stability of the
initial statelgoverned by.equation (5) it is necessary to
consider the stability of all neighboring configurations
that satisfy the geometric edge conditions of the shell.
This is done by perturbing the initial state infinitesimally
from w°, v, w° to (u¥+1), (vC4v), (w®4w). These new
deformation states will be referred to as the perturbed
states (p).
The equation of perturbed motion is derived from

Hamilton's principle expressed as
by
g 5(TF + WF)at = 0 (6)
to

in which
TF = kinetic energy ¢f the shell at the perturbed state

o
Tr -+ éT + %‘6LT 4+ ocaoy and

i
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7
(1

potential energy of the noninertial forces at
the perturbed state
e (Up +.().p) a

In the above:

0P = strain energy of the shell at the perturbed state

Ue + 6U +%62U+ caoy and

nP - potential energy of the applied loads at the‘
perturbed state
=0% 4 80+ 3620+ ooo
%Where %

7%, 0%, 0° = kinetic, strain and potential energy,
| respectively, of the applied loads at the

initial state, which is a state of dynamic
equilibrium,

8T, 8U, 8 = the first variation of kinetic, strain
and potential energy, respectively, and

%52T9 %62U,-%6%1 = the second variation of kinetic,
strain and potential energy, respecfively°

Equation (6) then becomes:
t1 :
N § (P - vP -0P)at =0 . (7)

0
Substituting the variational forms of TP, UP ana NP in
equation (7), and by retaining infinitesimals up to the
second order, the following is obtained
t .
1 e € e 2 2 2
8 S [(P°-U" =) + (8T -8U-8N) +3(86°T~8“U~sN)Jat=0.



During the variation of the p. state the variables of

the e state are held constant; therefore:

%
1

5 S (r® - v® -n%)at =0 . (9)
tO

Since the p state is also a state of dynamic equilibrium,
the first variation of thé p state must satisfy Hamilton's

equations
t, |
GS(GT—GU- sn)dt = 0 . (10)
:

o

Prom equations (8), (9), and (10), it follows that

a§ 3(8%1 - 8%U - s7)dt = 0. N (11)

fllggg léﬁgsvto the Lagrange's equation of motion in
terms of the generalized perturbed displacements and

velocities gq} and {ﬁg respectively:

13

(2)
a [ 2 (2(2) _y(2) _(2)y _ |
Gt (?{?;T) Sy (T U AT =0 (2)

where
T(z) - %GZT
U(2) - %52U
af2) _ %6%0-

§a3
{83

It should be kept in mind that T(z) is, in general; a

and

perturbed generalized velocities.

function of both genefalized displaceménts~and velocities

perturbed generalized -displacements,



14

whereas U(2) andjl(z) are functions of only generalized
displacements. Since, in this work, 2(2) 55 & function of
only generalized velocities,

(2)
T
o (13

The Lagrange's equation (12) then takes the form:

(2) 52 (2)
d [aT U -14)
'&'-E(aga Y R Y Ct | ()

The expressions for T(2) and U(2) +_Qﬂ2).can be

writtén in the following form:

T .
T(2) = %ga; [mjéag
T T ‘
0,0 - 33" 1x16a} - B 3 Ca163 - (15)

The term which has P as its coeffieient in the

and

expression for U(2)+ﬂﬁz) above is referred to as the
geometric stiffness or stability coefficient matrix. It
accounts for the contribution to the elemental stiffness pg-
trix resulting from the change in geometry of the shell gl ement.
Furthermore, this term depends on the nature of the
externally applied forces and the manner in which these

forces are affected by the chénge in geomt(atzs‘y° If the
' 2

° 2‘13

the [s] matrix depends only on the equilibrium strains

forces are in the form of edgé fofces, =0,

prior to instability. On the othér hand if the.forces are

in the form of a lateral pressure, .the contribution of
(2)
afL
a§q§ _ }
' nation of the construction and make up of the different

can be added to the [s] matrix. A detailed exami-
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matrices will be shown in Chapter‘IIIo

Therefore, equation (14) becomes:

[m] §'¢3 + [k] §a3 - P[s] §ad = O (16)
in which
[m] = elemental mass matrix of the perturbéd State9
[k] = elemental stiffness matrix of the perturbed statg
[s] = elemental stabilify coefficient mafrix‘bf'the“ |
perturbed‘state, and
P = time=dependeht'external‘applied loads.

Equation (16) is the equation of perturbed motion of a
‘typical element in terms of the mass, stiffness;‘and'
stability coefficient matrices of that element. The
equation of motion of the enfire structure is obtained by
assembling all the finite elements to form the complete
structure. Denotihg the assembled mass, stiffness;, and
stability coefficient matrices by [M], [K] and [S] and

performing the mentioned operation results in:

(] §63 + (K] §a3 - P[] $ad = © (17)
which is the equation of perturbed motion for the entire

structure.

2.2 Regions of Dynamic Instability

The time-dependent applied loads P(t) in equation (17)
will be représented in the followihg form
P(t) = P, + Py cos g t | (18)

in which P, and Pt are statlcal and pulsatlng components
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of the applied loads whose frequency is @. Substituting
‘equation (18) into equation (17) yieldss

(m] {3, ~ (B +P, cos o t)[S] fa3 + [K] $ad = 0. (19)

By introducing the concept of puléating"paramefric
loading, the theory of the dynamic stability of elastic
" ‘systems can be reduced to the study of vibrations caused by
parametric loading with respect to certain forms of
- deformations. Such a loading i$ characterized by the fact
that it is contained as a paraméter in the equation of
perturbed motion.

Theoretical studies (4), (39) and experiﬁental
verification (40) have revealed that under some definite
values of the ratio 6/w of the frequency of applied‘ioads 6
and the natural frequency of transverse free vibration g,
the initial state of the structure‘beﬂpmas;unstabig@ The
transition from the initially stable state to the perturbed
unstable one occurs when it is possible for the system of

equations (19) to have pericdic solutions with periods

T = %g or 2T = %go This transition then provides the

boundary between stable and unstable solutions, or as
commonly'tenmedﬁrégionsof stability and instability. Two
golutions with the same periocd confine the region of
instability, and two solutions with different periods
confine the regions of stability.

Since the generalized displacements and accelerations
in equation‘(19) are functions of position and time, the

solution of equation (19), for a period 2T, may be written
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as '‘a series

Z(.q“)}' = i {gak% sin £8% + b3 cos -5%33 (20)

k=153955000
where gakgband gbkg are independent of time. The series (20)
g OBViQust;equiVQleﬁfnﬁd n sets of Fourier series. for the
components of displacements {é(ti}o
Substituting équation (20) in equation (19) and

kgt
2

‘comparing coefficients of sin end cos Egﬁ gives the

following system of matrix equationss
2 ' ‘
[[K] = 2o[5] + #24[5] - &-(u]lfad -#Py[s]fagd= 0

2.2
[(k] - p[s] - %EMJ{% - 4Py [s](fa, R +fa,, 3) = 0
(k = 39 59 7)7 oo‘o) ‘ (2‘])

and,

2 - |
[[X] = Bo[5] - #8,(s] ~ L[] 1fo3 -4, [s1{b3 = O

‘ 2.2
[(&] - o8] - E2-(m11{bd -4P,[s1({b,_} +¥b,3) = O
(k = 3y 5y Ty °°°) o (22}

The condition for the existence of solutions with a

period %g has, after the two conditions are combined‘under
the + sign, the form:
_ ” | |
[X]- (Poa#P) (5] -&(M]  —4py[s] 0 .
4P, (5] [K]-P,[s]~-Fe°(M] -dp,[s] . .

0 - -dp.0s] [KI-PIs]-Z2e%Mu] .

[« a o

(23)
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If the series
{q(t)} = %gbo} + Z ggak% sin I—C-%E + {bkg cos %—t ‘(24)
k=2,4,6,000 _

is substituted into equation (19), the following conditions

for the existence of solutions with a period %f are obtained:

[K]-P,[S]-¢°[M] -4P[s] 0 -

o

-3p.[s]  [K}-B,[s]-46°(M] -3P,[s]

0 sl (KR (s)-iseltu] .|
. : : (e
and
[xK]-P,[s] -p,[s] 0 0 .
~3p, (5] [KI-P [S]-e°[M] -32[s] 0 :
0 -4p[s]  [K]-P [5]-40°[M]  -3P.[S] 0
0 0 -4p,[s]  (KI-p [s]-166°[M].
: : : : o

For an exact calculation of the regions of instability,
the equations (23), (25) and (26) have to be solved.
However, it has béen observed both theoretically and
experimentally (4) fhat it is sufficientiy accurate from an
engineering standpoint to calculate only the principal
region of dynamicvinstability which corresponds to k=1.
Hence a good approximate expreésion for the bounéarieé of
the principal regions of instabiiity is obtained by

equating to zero the detérminant of the first matrix element.
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in the principal diagonal of the matrix equation (23):

| , _
K] - (RoedRy)[S] - (ul| = 0 . (27)

This approximation is equivalent to the assumption that the
periodic solutions on the boundaries of the principal

regions of instability are the harmqnic‘funcfions:

{F(t)} = £a3 sin %g + Zp% cos %; o (28)<

2.3 Degenerate Cases

For the purpose'oflconstructing the regions of dynamic
gstebility and instabilities from equation (27), consider
' the'f0110wing limiting cases:
{a) For free transverse vibrations P, and Py vanish
and equation (19) becomes
(] £43 + [K] a3 = 0. (29)
For harmonic vibrations of the form
tad = fad sinwt (30)
where {ak% are independent of time, the frequency
determinant becomes
(k] - o*(Ml| =0. (31)
(b) Tor the case of static buckling, ‘ﬁg and Py
are zero and équation (19) reduces to
([k] - P[s]) €a3 =0 . (32)
Static instability occurs when the following determinant

vanishess

\[x] - p[s]| =0 . (33)



Referring back to equation (19) for the dynamic stability

of undamped system, let Po and Pt be expressed by
* .

P = P )
° * . (34)

where P’ is the fundamental static buckling load obtained
from equation (33), and o and g are proportionality factors.

Then the governing differential equation (19) becomes

(] £43 ~ 2" (a+p cos 6t)[S] £a} + [K] a3 = O -

and the associated characteristic equation becomes

* 2 .
(k] - (et p)? (8] -E-[ml[ =0 (36)



CHAPTER III

DERIVATION OF STIFFNESS, STABILITY
COEFFICIENT, .AND MASS MATRICES

3.1 General

WThe‘regionstf‘dynamic instability can be constructed
from equation (36) of the previous chapter for the strucural
system at hand. This can be ‘done once the [K], [s], and
[M] matrices are established for the conical shell shown
in Figuré 2, under the action of external uniform pressure
and edge forces that change harmOnically'inftime according
to’equation‘(18) of the previous chapter.

Employing the finite element ﬁrbcedure, the original
shell 'is replaced by a series of conical frusta connected
at nodal circless ' The stiffness properties of a typical
coniéal‘frustum‘are developed in the‘folloﬁing sections

- from energy considerations. -

3.2 Basic ‘Assumptions

' In the formulation of stiffness and stability -
coefficient matrices for any typical element, nonlinear
théory of thin shells will be consulted together with the

following assumptions for linearly elastic thin Shells:

21
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[P
]7\11111 - |
' P(t)= P, +P, cosOt
_— S | 2R, .
/7 B
FTTT I
L

Figure 2. A Truncated Conical Shell
Under the Action of an
External Uniform Load
That Changes Harmonically
in l'ime
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(1) the shell is made of isotropie and homogenebus material
that obeys Hooke's law: '(2) the shell thickness is uniform
and isvsmall in comparison with the radii of curvature;'
'(3) the Kirchhoff-Love hypothESis‘for thin éheils is
applicable; (4) botﬁ membrane‘andwbending stresses'are
présent and vary throughout the shell; (5) all of the
perturbation quantities are infinitesimals; and (6) the

shell and the loading on it dare rotationally symmeitric..

3.3 Second Variatidn of Strain Energy

In the variational approach of the theqry of buckling
where the second variation is to be determined, it is
necessary tc retain quadratic terms in the strain-
displacement relations. Donnell's non-=linear theory (41)
of thiﬁ‘shells is used for all derivations in this chapter
owing to its simpiicity as ¢ontrasted with‘theléompiexity ck
" the more complete Sanders' theory (43)-which'isfpresentedﬂin
Appendix A. The final form of the derivations in terms of
elements of stiffness and stability coefficient matrix for
both Domnell's and Sanders' theory are tabulated in
various appendices. The expressions for stréin=displgcement

following Donnell's nonlinear‘theory are:

2
SS = ue,,s + %(Wegs) ' ]
69 :% ((nue} vepe + mwe) + '?2% (Weve)z P
2r PG,

= o= (rv® g = 1) 4z wS, W S

€sg = Tr ‘Y 0g T U ooy Tor Ve Vv
e

g T T Woogg
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|
i

n

1
= = = W
6 TiT ’ 68 (37)(Cont'd)
1 T 3

“sg T 7T 8 o

In'the.foregoinguéxpressions(37%mthevarioustermsIepresent:
u®,v®,w® = initial displacements in the meridional,
circumferential, and normal direction to

the middle surface of the shell,

respectively,
m = COS ¢,
n = sin §,
§ = semi-vertex angle of the cone,
r = radius at any distance s,
8,8 = meridional and circumferential cocordinates,

and the s,6 subscripts following the commas on ue, vey and
w® denote partial derivatives,

Let (u®, v&, w®) be the displacement vector that
defines the given initial configuration before instability
occurs. Let (u, v, w) be an incremental virtual displace-
ment vectors Then the total displacement vector is

e

(ue+u9 VvV +V, we+w)c Substituting the total displacement

vector into equations (27) end, with -the application of

assumption (6), po 23, v°=w’, o =0 the following s obtaineds

-~

€, + deg = ue,s + Uyg + %(wzgs + 2weys Wy )
2
G + Ase = (nu + mw") + (nu + v,,e + mw)-¢=? LA
: e
Bgq + B85 im(rvgs + u,,e-=nv)+§-== Wieg Wig+F Wog Wi
1/.8 n, e
ng + An a===§(w o9 * wgee) = zlw, g + w,s)

and ¢ r | (38)
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__ 1 ..e n, e
"sp * Brgg T T T (Wsgg + w’se) * ;ﬁ(w o * w,ed (38)
‘ (contrd)

g “8TE the incremental

strains and curvature changes due to the virtual, or

where begs Ace; Asse, bng s Aue &nd_Au

perturbation, displacement vector (u, v, w).

Expanding beg» Aee, Acsep Brg s Axn and A“se givess

0

2 N
Aes = BGS + %6 ss 4+ o000
2
= % co0o
Aee bee + 56 ;e +
— 3
Aese = Bese + 56 Cse 4+ o000 (39)
an = §n +?1a'62u 4 occo ?
s s > %g
- 2
Aue = 6“6 + %6 ;e +_ coo
Ause =6nse + %6 M-Se 4+ ocooe y
where 6659 6999 65399 Ongs 6"6 and buée are linear forms in
u, v and w and their derivatives, and 52‘3’ ézee, 62;36’
6%ugs 6%n, and 52“39 are quadratic terms in the same
variables. Hence, by equations (38) and (39),wé get ¢
ve .
Cs = 1u ’g ~N
e
655 = u))s + W QS w?s
6 _ss = W g
g '= %(nﬁ? + mw®)
bey = %(nu * Vgt mw)
5 €, = 4% w2
6 ’ ,
- 0 > (40)
€sg =
e, = 1(rv 4+ Uy, = n.v)--a-m-;l= we,_ w
sgp. - 2r t’s 99 ° 2r " 'g "¢
2 1 |
) @se = ? WQS W9e
e
hg = = Worgg
bug = = Wygg
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6 ng = 0
- l 1 e e
ne—-“’r -1—,;W 9ee+nw 95
1 [1
bne = = T (?Wgee + nw,s) (40)(001’1130(3.)
62”9 = 0 1
' e n _e
*gp =~ T (Wigg = T W vg)
5 = - (W -Zw,.)
and Rgg = T T \Wogg 7T "oy
6%x,, = 0
Kse = S

At any instant of time, the total strain energy of the

shell is givén by

U =’% SS (czs + cze + 2vesce + 2(1-v)e289)rdeds

+ 30 85 By x 2ungug + 201-9)u?, )raeds , (41)
where
C = Eh .
1-.*\)
D = mﬂ? .
12(1=v )
E = Young's modulus of elasticity9
n = thickness of the shell, and

v = Poisson's 'ratio.
Substitution of €5 + A6y ce + Aseg sse + Assep ng + Ans,

w, and » in

¢ 8 89

®n. + An, and x + Anse for ¢ "

) 6 S0
equation (41) yields

5§ [leg+oeg+26%6,)% + (5 + 60y +38% )"

S’ e9 ese9 S?

]

U+ AU

+

2v(ss-+bcs-+%bzcs)(ee-+6ce-+%6269)

+ 2(1=w)(csa+5sse+%62sse)2] rdeds +
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* 3 SS [("S+6£s)2+(”e+6”e)2+2(1““)(*s+6”s)(ne+6n&

+ 2(1-v) (nggrong )21 rdeds . (42)

2

Now AU = 8U + 36U + ..., where 6U is the integral of a

linear form in u, v, w and their derivatives, 52U is the
integral of a quadratic form in u, v, w and their

derivatives, and so on. Consequently:

5 ' 2 2 2 2. 52
35U = gg [(8eg) “+e s cs+(6ee) +e,8 ce+v(esé se+26s$6ce

+ € 6265)+2(1=v)(6ese)2] rdgds

6
+N% SS [(6n8)2+(6ue)2+2v6nséne+2(1~v)(6nSe)2] r?zg:

where

62U = gecond variation of strain energy for an

entire shell.
Substituting equations (40) into equation (43) and
neglecting guadratic terms in ue; v® and w® as compared to

unity, we getgs

2 e 2,1 2
%8°U = % &S[{u gs+;§(nu+vge+mw) +%§(nuu,s+ugsvbe+mugsw)

1=v 2 e e 2
+ iZ=§)=(rv,,s+ugé=nv)_}+€2w pgUs gWs gt s gW s g
r

1 e e, 2 y_ .8 2 ) e ey 2
+=§hm+mw)wpe+?y %wge+?mu4mw)wgs

r

e
Z\JW 9
S 1-y) e
+ ===?r=(nuwgs+v,ewgs+mwwgs)-+L=?§lw ,s(rvgsw,e

+ U,

ewgaenvw,,e)%] rdeds +
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_— 9 2 1
/
+ 2(1=v) (\%w,seme%w, ) ] rdeds o (44)
r

The initial displacements u®, ve and w® in equation (44)
are obtained through the solving of-ﬁhe equations of static
equilibrium which in turn can be forﬁulated by the principle
of stationary total potential energy; ices, 8(U%+0°%) =0.
Thus u°, v°, w° may in fact bé‘takenhas the static
equilibrium displacements. That this is so should be
¢lear when one considers that expression (44) is intended
t0 yield the stiffness matrix which is a property of the
structure, i.e., it is time independent.

The details of solving for the equilibrium displace-
ments for the finite element representation of the shell

. is disopsged.in Sections;3.6.1 and 3o6.2.

1.4 Second Variation of Potential Enerzy of

External Loads

For a shell loaﬁed axially or torsionally at its ends,
the change in potential energy is a linear function of the
end displacements and therefore the second variation‘of
potential energy of external loads 820 is equal to zero.

But when the same shell is subjected to loads which are
distributed, the change in potential energy is a function

of both linear and second degree displacementsow In such a
case the total potential energy of the entire shell will be
62U +* e?ag owing to a significant contribution of a%ﬂo In
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this study the distributed loadings are r§sﬁ;icte6 to0
hydrostatic preSSure loadings which vary with the :
deformation in such a maﬁnér that the load aiways remains
perpendicular to the surface with constanf’magnitude per
unit of undeformed area. The work done by hydrostatic
pressure depends only on the change of 'volume ' of the shell
material under investigation. An expression‘for-égg_ due
to a hydrostatic pressure is derived. This is done
without régard for the time dependence of the apﬁlied
pressure.

Let uV be the perturbation displacement vector at
any time between equilibrium state e and perturbed state p.
The condition y = O corresponds to state e and y = 1 to
state p. A small rotation vector At from the initial to
intermediate state defined by uV is given by;

87 = ulygds + ¥ 3, + ) - (45)

where ¥ , Y, and Y are rotations along the meridional

e
direction s, circumferential direction g, and the normal
n to the middle surface and where ?Gs’ ‘Ee,ﬁare__,ﬁnit vectors
along the s, ¢ and n directions, respectively.

The force increment aP, due to this rotation, on a

deformed elemental area [1+u£(cs)L+(ce)IBJdA_is

AP PA?[1+u{(eS)L+(ce)L}]dA

or 0P = Pp(?s¥s+we¥e+wﬁ)[1+pfxss)L+(ce)£%] rdpds (46)
where |

P = hydrostatic pressure loading,
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W = parameter vérying from 0 to 1,

“{(ss)L+(‘e)ﬁ3dA'= increment of.elemental area dA

after deformation hasvdccurfed,

(eS)L,(ee)L =_strain‘components'which are linear in

u, v, w and their’derivatives, and
dA = elemenfal area prior o deformation.

Two kinds of aPPfOXimations‘can be introduced:

(1) Following Donnell's theory, which is a‘special
case of Sanders' theory (41), the rotation around‘the
normal ¥ to the middle surface of the shell can reasonably
be approximated as zero, i.e., ¥ = O, |

' (2) ‘Using Sanders' nonlinear theories for thin shells
(41), a more realistic and practical assumptidh of small
strains and moderately small rotations is made iﬁ-order to
_simplify the very complicated exact theory. The equivalent
mathemafical representation for this aésumption is uy®1.

EQuation (46) is therefore reduced to

=3

8B = Pulv Ty B ) [1+ufleg)p+(s5) 3] rdods (47)
for v =0, and

= . - 1 - '
AP = P“(Ysts‘”eie* ﬁn)[1+“£(°S)L+(°e)13] rdeds (48)
for yy&1 where, for Sanders' theory,

Yg

(GS)L = u’S

*
- % ('w,e - v cos & )

1
(se)L = = (nu + Vyg + W COS $)
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The strain—displacement relations for Domnell's theory
are obtained from the expressions for Sanders' theory by
eliminating the terms marked with an asterisk (*).

The 1ncrement in potentlal energy AQ, is given by

AQ= - S du SS (aP - V) rdeds (49)

where
V= uts + vte.+ Wn .
Substituting Yoo Yoo (es)L and (se)L into equations (47)

and (48) and alsbzretaining only the linear terms in u, v,

'”wfand’theirbderivatives,'We get:from‘équation (49):
for Donnell's theory, and

AQ- -3 Sg[nuw,sw-rm (W,e mv +g2+u,S T (nu+v,e+mv§ wlrdeds

(51)
fér Sanders! theory.
As before
8O = 800+ 36 + 00w (52)
where
8N = integral containing linear terms in Uy, V, W

and their derivatives, and
87 = integral containing quadratic terms for the
same variables.

Consequently,

2 P :
B8 = - 2 SS gfﬁw,s-% Vw,e} rdgds (53)
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for bqhnell's theory, and

1 = - 20— -3 -mv) e : '
26%2-— ,zgg[ uw, o r(w,e mv,+wu,s-fr(nu+v,e+mw)]rdeds o)
| 54

for Sanders' theory, where
5%& = gecond variation of the potential energy of
external load which in this case is the

hydrostatic pressure loading.

3.5 - Second Variation of Kinetic‘Energy‘

The kinetic energy of an entire shell at the state of

~dynamic equilibrium is defined by

° - &8 (S (%)% + (¥%)2 + (3°)°] ragds - (55)
where
p = mass density of thelshell material, and
ﬁe,ﬁe,we = velocity components at the initial state of

dynamic equilibrium.

Let (&, ¥, W) be the incremental virtual or
perturbation vélocity_vector. Then the total velocity
vector at the perturbed state is (0%+a, ﬁe+§, We+® 0
Substituting the total velocity vector into equation (55)
yiélds

T4 AT = %; Sg[(ﬁe+ﬁ)2+(%e+6)2+(we+w)2] rdeds . (56)

2

Now as before, AT = 8T+:46°T + «o., where 8T is the integral

of the linear terms in (&, ¥, W) and their derivatives,
52T is the integral .of the guadratic terms in (&, ¥, %) and

their derivatives. Therefore
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3o%r = & ( (%% + 9% + %] raeds (57)

where
62T_= second variation of kinetic energy for an entire

shell.

3.6 Discrete Element Representation

36601 Initial State

The shell is approximated by a system of conical frusta
as shown in Figure 1. Each conical frustum is bounded by
two nodal circles which are referred to hereafter as nodes.
The displacements of the continuous shell are described by
the displacements of these nodes. Each node has four
degrees of freedom, dq» Aps Gy and CYY for asymmetric
deformation as shown in Figure 3, and three degrees of
freedonm, Q45 q3 and q4; for axisymmetric deformation when
torsion is excluded.

In accordance with assumption (6}, p. 23, the initial dis=
placement field within each conical shell element can be

expressed‘by

e
1

ﬁes + Be6s
(58)

e
w

381-+ae2s-+s2332-y364s3

in which the circumferential displacement v® is absent.
The six undetermined constants sei are related to the

six generalized displacements qei shown in Figure 3,

excluding 42 p and'q2 p+1? by the relations
9 ?



g\\\y/NODEp+l

Figure 3. Generalized Coordinates
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£6% = (u,15a% . (59)

The matrix [Me]vis giveniin Figure 4. |

By -eXpre.ésing the 'tdx,al ‘potential energy of the
continuous shell in terms of ‘the discfetized system and
then using the principle of stationary total potential
energy, 5(Ue‘+11e) = 0, the equations of generalized initial

forces and displacements are obtained in matrix form as
N
, e ey _ e .
| z1<[k 16a%, - £e%,) = o (60)
p:

where the summation extends ovef the total number of
discrete elements N. The Eq??p are the genera&iZed dis-

th

placements of the p '~ discrete 'element and EQ?§p are the

corresponding generalized forces; the pt'h discrete element
ig bounded by nodal;stations'p and p+1.

Reqqiring that the generalized displacements of &any
two adjacent elements with the same node point be the same

in order to satisfy the conditions of consistent deformation,

equation (60) can be written as

IR ( Q1,1
e ] e _ e
X L | 391 = / Q 321 (61)
e o e
44, N1 Qg N4
3(N+1)x3(N+1) 3(N+1)x1 3(N+1)x1

These equations are solved with apprdpriate“gebmetric

boundary conditions to obtain the equilibrium displacements

fa°3
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o | of| 1+ ] o] oo

o |-3/8%|-2780| O |[378p |-1/2p
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Figure 4, MNatrix [M_]
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36,2 Elemental Stiffness and Stabil}tx

Coefficient Matrices

The second variation of strain energy for the con-
tinuous shell 62U9 equation (44), and the second variation
of potential energy'of external loads-agﬂ, equation (53),
will be used to formulate both the elemental stiffness and
stability coefficient matrices based on Donnell's theoryol

- First we assume that the perturbation displacements u,
v and w. can reasonably be approximated by the folldwing
polynomials: o
u = (gg+pgs)cos je

v

]

(g; +Bgs)sinje (62)

w

2 .
where
B;(i=1,8) = undetermined constants,

harmonic number, or number of circum-

Jd =
ferential waves, and
s = meridional coordinates of a typical

conical frustum.
The eight undetermined constants g; are related to the
eight generalized displacements q; by the following

definitions:

a,p=u(s)| 12y, p=v(s)| _say gewle)| ,qy =BREh)

q19p+1éu(s)észl 9q29P+1=V(S)ls=l 9q3?P+1gW(S)!S=1 »
P p P

- awg S)
q4sP+1F 0s ls:lp v (63)
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where subscript p refers to nqdal.stétiOn p and subscript
p+1 to nodal stétion p+1. 'Thus the g's are éxpressed in
terms of the g's bys
§83 = Dy Il (64)
The matrix‘[Mp]»isvgiven in Figure 5.
Recalling equétions (44) and (53), the summation of

both is:

2(5 U+6_ﬂj = SS [ u ,s-+—?(nu+v,e+mw 2.,.2v(nu+v,e+mw)u,s
2

AY

i_ﬁfl(rv,s+u,e—nv)_g-+§g% ,SS+(;QW,GG-+%W,S)

2r

: 1
+ 2v(—?w’ssw’ee'f%w’sw’s§)
2
+ 2(1- v)( w,Se —?w,e)‘g rdgds

Vol e . e 2 1 , & 2
¥ SS[% gzw 1 gl gWy gy W ’S+?3(nu%+mwe)w ’g
; , e
5 2vW ’

: e e ey 2 .
+ ~%u » W ,e-+¥(nu +mw )W + (nuw,
r ,

r

o NG vg
+ Vgew,s+mWW,s) + W"s(rvfswae*uyewse
: r

- nvw, e)}] r'dedslg;?% SS géuw',éf %vw‘, 93 rdgds . (65)

It will be seen that the expression %(6?U+6%l), or
equation (65), consists of three types of integrals; the
integrals which do not contain initial displacements,
integrals which contain initial disﬁlaCemehts as ‘parameters,
and integrals which are the contribution of 48%2. If the
displacement field, equation (62), together with the

‘related equation (64) are substituted in equation (65)
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1-ip| o | © o | 1/p

. Figure 5. Matrix [,
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above, the integrals qhich do not contain initial displace=~
ments will yield the so called elemental stiffness matrix,
and the integrals which are functions of initial displace-
ments will yield the stability coefficient matrix. For
edge-loaded shells, %a?n_is zero gince O is a linear
function of the displacements. However, for pressure-
loaded shellsy the %5gﬂ.is nonzero because L in this case
containg quadratic terms. The last integrals in equation
(65) represent the contribution of 5%Q°

.The above description is presented in the form of a
‘matrix whose elements are functions of both elastic and

geometrical properties of each frustums

3(6204520) - %{qu[SS[Mp]T[Lj][Mp]rdeds] (o)
- % %%T[SS[MPJT[LJinC][Mp]rded%kjq% (66)
= a3 lk1fa} + 30y Is1fad (67)
The terms in the foregoing equations are:
(k] = ((rwp 11210 Jracas

h

]

stiffness matrix of the pth element in the jt
harmonic,

. Uir T J o
(a1 = ((ou,17rnd; 0 J00, Jrads

th

= stability coefficient matrix of the p element

in the'gth harmonic,
(L] = matrix contributed by the integrals in equation

(65) which do not contain initial displacements,



J
[L inc

(1,
(1"
£ a3
fa3’
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matrix_contributéd.by the integrals in equation
(65) Which=éoﬁtain»initial'displacéments,
transformation matrix, shown.in Figure 5,
transpose of matrix [Mp],

generalized perturbation displacements,

transpose of matrix gq%,

A = eigenvalue to be determined in the case of
static buckling, in this work A will be
represented by hydrostatic pressure load - p, and

J Ir = I‘p + nNs.
Furthermore
rp = smaller radii of the pth conical frustum,
= T 1.3 ;
k] = 00" (G [230raens) ) |
[, 170 A% I ] - (68)
and
T [C J
[s] = ] (SS [L]inc]rdeds) [, ]
= Trgd
= (178900 ] o (69)
where
(4] = §§ [(29raeas
31 = J
[B?] = SS [19;, Irdeds .
The elements of both [Ad] and [BI] matrices for

Donnell's theory are tabulated in Appendix B and the

additional parts of both [AY] and [BY] matrices resulting

from Sanders' theory are tabulated in Appendix C.

Note that for pressure-loaded shells, the contribution
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of 4820 to the stability coefficient matrix [s] in the form
of matrix [Cj] must be taken into account by adding it to
the‘[BJ] matrix. The matrix‘[cj] for both Donnell's and
Sanders' theory are also tabulated in Appendices B and C;
respectively.

The computation of the elemenﬁs of the stability
coefficient matrix requires a systematic procedure, since
it depends on the initial state prior to the instability
and on the type of loading.

Using equation (59), the undetermined coefficients {afg

in the assumed displacement field as given in equation (58)

£6°) = n°1 §o°) (70)

where Eqég are the generalized initial displacements of the

pth element for a unit applied load. Thus, the’{Q?} which

- are given by

occur when a load P is applied becomes P gB?}c
Thus we introduce
P{p°3 = £63 (i=1,6). (71)
For unit applied load, as‘aﬁ example when P is

equal to 1 1b/in®, equation (71) reduces toz
$0°3 = §6,3 (1=1,6). (72)

From equation (58), the initial displacement field
becomes:

u = G5 + G6s
(73)
w =G +GS+G82+GS3
= 2 3 4= . °
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Equation (73) is the initial displacement field within
which the prebucklingvdisplaceménts g@?% of the;entire
structure, due to unit applied load, are contained. The
substitution of this equation in the expression for
%(62U+6%1), equation (65), yields the elements of the
stability coefficient matrix in terms of G1 to G6 as

tabulated in Appendices B and C.

3.6.3 Elemental Mass Matrix

The second variation of the kinetic energy for an

entire shell at the perturbed state is

wje

62T = %; Sg (ﬁ?+%2+ﬁ2)rdeds . (74)

An approximation to the elemental mass matrix for the

o discrete élement, consistent with the approximate

elemental stiffness and stability coefficient matrices,
may be obtained by using the same form of the‘displacemeht

function, this time with respéct to'VeIOCitiéég

a = (354-é6s)cos je
v :‘(§7-+§8s)sin ie (75)
W= (§1-FE25?+§3§2-+§4S3)005 ig

The expression (74) can be rewritten in matrix form ass

Il

$6°T = Fmpnfsd Trm IT(PI0M, 1563

I

13" mlfa3 | (76)
where

(m] = mph{, ] [PI0M,]



[m] = elemental mass matrix for the pth

element, and
1

[?] Spr[V]as‘;

o

discrete

The matrix [M ] had been listed in Figure 5, whereas the

matrices {V] and [P] are listed in Figure 6a and Figure 6b,

respectively.

3.7 Int_egral‘IVa

The.elementSZof‘thé‘matrices [Aj], [BJ], [Cj], and

[m] given earlier contain variables like I

yé
definite integrals of the type
lp_” .
1 “=.S r¥s¥ds
v$
0

" where

r = rp + ns for conicdl frusta,

|

Y

'§ = an integer which ranges from © ‘to 9.

an integer‘whiCh“rangés”from-~3Vto 1,

which are

7y

and

The riumerical calculation of these integrals can be

approximately carried out by expanding into series with

the aid of the Binomial Theorem:

lp(6+1)
10,5=W ’
1 (8+1) lp(6+2)
11,8 = p"("TT"“n Te+2) !

Coq (e+1) gy (8+2) 29 (8+3)
-1,8 I‘p(5+1)

2 U
r p(6+2) LT p(6+3)

(78)

(79)

ees 5 (80)
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Matrices [V] and [P]
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1, E IS )

r = - +
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CHAPTER IV
PRESENTATION OF RESULTS

A computer program has been written for the IBM 360/50
electronic computer to solve equations (31), (33), and (36)
for thé natﬁfal frequencies, static buckling loads; and
regions of dynamic instability for several truncated
conical shells. The results are shown in a series of
figures and tables, and are expressed non-dimensionally in
terms of ¢, g and 8/w for the regions of dynamic instability.
As can be seen from Chapter II, the parameter g is the
~percentage of the static buckling locad which is applied
| statically, g is the percentage of the static buckling locad
resul ting from the amplitude of the pulsating load,.and o/ w
is the ratioc of the frequency of the pulsating load g to the
natural frequency.of transverse free vibration g of the
shell. Throughout the following study, hydrostatic
pulsating pressure is assumed to act on a truncated conical
shell whose finite element approximation can reasonably
be limited to eight in number.

An extensive study of various effects influencing the
natural frequencies of free vibration, the static buckling
loads, and finally the regions of dynamic instability of

the shell is presented in this chapter. The various effects

47
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investigated ares

(a) +the effects of different shell theories and
bending during“prebuckling state,

(b) the effect of cone angle,

(¢) the effect of radius to thickness ratio, and

(d) the effect of boundary conditions.

4.1 PFree Vibration and Static Buckling

4.1.1 Effects of Different Shell Theories

and Bending During Prebuckling State

Two types of shell theories are used for the purpose
of comparing the merit of one theory to the other.
The non-linear theory for thin shells developed by Sanders
is applied‘togeﬁher~with Donneli"s theery which is a
special case of the more general and refined Sanders!
theoryo | |

Caleulation is first made for free vibration of a
truncated conical shell based on Domnell's theory in order
to check with the available theoretical results of Seide {42)
1  and the experimental results obtained by Weingarten (43).
Therefqreplthe following elastic and geometrical properties

are, for #the time being, used:

E =30 x 10° 1b/in®
v = 0.3
Density = 0.3 - 1b/in3
Rq = 2,13 ©oin
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R, = 4.866 in
L =38 in
h = 0.02 in
§ = 20°

The graphical representation of the above geometrical
data had already been shown in Figure 2.
.The calculated frequencies obtained by solving

- equation (31) and the corresponding experimental results

(43) are shown graphically in Figure 7. The conical shells
under. consideration were tested with edge conditions which
might be expected to approxima%e.clamped edges, since the

edges were embedded in heavy steel end plates having

ecireular troughs filled with a low melting point alloy (42).

The agreement between theory and experiment, especially
for the first three modes, is reasonably good, with the
experimental resultsffalling generally bvelow the theorstical
results when the circumferential wave number is small and
above the theoretical results as the wave number increaées°
In general, the experimental results follow the trends of
the theoretical results.

Sanders' theory is next used to calculéte'the fre-
quencies of vibration for the same problem, the results of
which are tabulated in Table I. .In Table I comparisons are

made of theoretical results using Donneli’s and Sanders'

theory with those of Seide. Good agreement between the

results of this thesis and those of Seide are observed.

It is alsoc observed that the frequencies based on Sanders’
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TABLE T

NATURAL FREQUENCIES OF A CONICAL SHELL
SIMPLY SUPPORTED AT BOTH ENDS

E =‘3o§c106'~1b/in2 Ry = 2.13 1in L=28 in
Density = 0.3 1b/in> R, = 4.866 in h=0,02 in
v = .00 3 . & : 200 ‘
i =1
j | Donnell's Theory Sanders' Theory Paul Seide
2 15500 15499 16320
3 8811 8801 9100
4 5768 5741 5840
. »* . *
5 4672 4620 . 4692
6 4777 - 4708 4780
7 5483 - 5413 . - 5340
8 6382 6318 | 6090
9 - 7383 7322 7540
10 8503 8445 8350
11 9746 9690 9420
12 11110 11055 10680
13 12592 | 12539 ‘ 11920
14 14193 14140 13500
15 ~ 15909 15857 15070
16 17741 | 17690 o 16960

*Designates the lowest eigenvalue throughout this
study.



52

théory are always slightly lower than those based on
Donnell's theorys

The static buckling loads for a shell subjected to
uniform hydrostatic pfessure with the same supporting
condition, elastic and geometrical proberties as before are
obtained by solving equation (33). Both Donnell's and
Sanders' theories will be applied and at the same time the
- consideration of a different prebuckling q§formation will be
. carried out, i.e., the prebuckling membrane theory (PMT)
‘and the 'prébuc}:ling complete ‘shell theory (PCU.:)o The static
buckling préssure values for the:first meridional mode
according to various conditions mentioned above are recorded
in Table II for several circumférential wagve numbers.
The@rétical results of Seide (44) are also tabulated, from
3»2 4, 8, because Seide's method fails to yield reasonable
buckling pressures when the circumferential wave number is
small. |

By Donnell's theory the lowest buckling pressure occurs
at i = 1, j = 6 for both PMT and PCT and by Sanders' theory
it occurs at i =1, j = T. Als‘o for both PMT and PCT, the
.theoretical results of Seide (44) yield‘iowest buckling
pressure at 1 = 1, J = 6. No matter what théories_or what
kind of prebuckling deformatioh is used;vthe lowest critical
pressures obtained very closely agree with those of Seide.
For PMT, Donnell's theory yields a lowest critical pressure
about one percent lower than Seide's, whereas Sanders’

theory yields a 0.2 percent higher critical pressure. It



TABLE II

BUCKLING PRESSURES FOR A SIMPLY SUPPORTED CONICAL
' SHELL SUBJECTED TO HYDROSTATIC PRESSURE

|-

i=1

Donnell's Theory

Sanders' Theory

J _ Paul Seide
PMT PCT PMT PCT

2 107.49 235,07 107.50 | 235.09 -

3 109,31 238,29 109.33 | 238.48 —

4 | 98.41 99.70 106.89 | 109.60 125,58

5 | 42.21 42.44 44.16 .| 44.40 46,81

6 |31.37% 31.53% 31.92 32,09 31.71%
7 | 31.51 31.68 31.77% 31.94% 32.06
8 | 34.00 34,26 34420 34045 37.63
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can be concluded, for both EMT and PCT, that Donnell's
theory yields a eritical stress which is slightly lower
than that of Seide and a more refined and general Sanders'
‘theory yields a slightly higher one. |

‘It has been observed that the prebﬁdkling complete -
- shell theory (PCT) type of deformations together with more
general and exact non-linear theory for thin shells
developed by Sanders can présﬁmably yield more realistic
buckling loads. The basis for such a statement. has.
already been presented numerically in‘Table II and else-
where (37), (41). Cdnsequently,tSanders'”theory'with
'pfebuckling“complete shell theorY=Will,*from'ndw on, be
‘adopted as a reference for further investigation dealingwith
various effects influencing the natural frequency of free
vibration, static buckling load and dynamic instability of

‘conical shells.

4.1.2 Effect of Cone Angle

The effect of semi-vertex cone angle ¢ on free
vibration and static buckling is covered in this
‘section. It is still assumed that the structure is simply
suppgrted at both ends and the.elastic and material
properties remain unchanged. The only geometrical param-
efers changed besides cone angle are generator length L and
" larger radius Rye |
The natural frequencies of free vibration for semi-

 vertex cone angle § equal to 10, 20, 30, and 45 degrees
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are shown in Table III. The curves of the natural fre-
quencies of free vibration for the first meridional and the
Jth circumferential mode against various cone angles are
depicted in Figure 8. It can be seen from Figufe“Bdthat
J for”afsmali number of circumferential waves, the natural
frequencies for various cone angles are more or less'close
to each other. However, with increasing circumferential
wave number, much difference in the natﬁral frequencies for
“various cone angles is@observedo“

The calculated buckling pressures, as affected by the
change in cone angle, are shown in Table IV and their |
graphical representations are“dépicted in Figure 9. It is
seen in this figure that a high buckling pressure.can be
obtained with a small cone angle. However, as the cone
angle increases, the allowable buCkling pressure decreases.
In other words; the elastic stability of the shell decreases
as the cone angle of that same shell increases.

The effect of the change of cone angle on the critical
buckling pressure p* and the lowest frequency of vibration
w* is presented graphically in Figure 10. 1In this partic-
ular graph one can see that the critical pressure is more
" gensitive 'to angle.qhange»than the lowest natural frequency.

A comparison between the calculated buckling pressures
and those obtained through the procedure described by
Kornecki (14) for various. cone angles has been made and
is shown in Table Vo'-Again, good agreement between the

two methods can be recognized.
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TABLE III

THE NATURAL FREQUENCIES OF THE SIMPLY SUPPORTED
SHELL FOR VARIOUS CONE ANGLES

6

E=30x10 lb/in2 Ry = 2,13 in = constant
Density = 0.3 1b/ind L =8 in  &=10°,20°,30°,45°
v = 0.3 | h = 0,02 in
| wikj(rad/sec); i=1
’
i :
8=10° | §=2"° | g=30° § = 45°
2 14526.5, | 15498.5 | 15540.8 13812.6
3 8069. 64 8801.05 9007 .70 8284.81
4 5489, 52 5741.00 5825. 40 5372.43
5 5076.78%] . 4619.64% 4423,55 3979. 31
6 59534 54 4708.31 | 4124.43% | 3515.83%
7 7397.67 5413037 4449.89 3597.09
8 9066. 16 6317.67 5004 64 3901,27
9 7322, 20 " 4275.05
10 4703.86
11 5191, 27
12 - 5737.36
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TABLE IV

THE BUCKLING PRESSURES OF THE SIMPLY SUPPORTED
SHELL FOR VARIOUS CONE ANGLES

58

E =»301(1O6 1b/in2 Ry = 2.13 in = constant
Density = 0.3 1b/in> L =28 in 8 = 10% 20°, 30°, 45°
v = 0.3 h = 0.02 in
p; j(10/in), i=t
J
§ = 100 & = 200 & = 300 @ = 450
2 407.771 235.093 153.291 85.9751
3 366,390 238.478 154.904 86.5674
4 88.5569 | = 109.600 1164310 84.1065
5 46.9497 4403954 42.5524 31.8281
6 44.5998%| 32,0945 25.8938- 17.5881
7 51,2835 31.9418% 22.7977* 14,0382
8 60.0309 34.4539 23.0179 13,2771
9 ‘ 37.5940 13.1857%
10 13,4112
11 - 13.9047
12 . 14,6277




BUCKLING PRESSURE p, PSI

120

00

80

60

20

40|

NUMBER OF CIRCUMFERENTIAL WAVES, j

Figure 9. Comparison of the Static Buckling

Pressures for Various Semi-Vertex
Cone Angles '



LOWEST NATURAL FREQUENCY ¥, RAD. PER SEC.

7000 T T T

6000

I

5000

4000

3000

bl

0 NATURAL FREQUENCY
O CRITICAL BUCKLING PRESSURE

60

H40

30

20

2000 e . L
0 10 20 30 |
CONE ANGLE ¢, DEGREE

40

Figure 10. Effect of Cone Angle % on o’ and p*

for Shell 'Simply Supported at

Both Ends

CRITICAL BUCKLING PRESSURE p* PSI

60



TABLE V

BUCKLING PRESSURES OF THE SIMPLY SUPPORTED SHELL WITH VARIOUS CONE’ANGLES:

ot

A’ COMPARISCN BETWEEN THE - FINITE ELEMENT METHOD (FEM) AND KORNECKI'S WORK

CE = 30x10% 1b/in”

Ry = 2.13 in = constant
Derisity = 0.3 1b/in® L = 8 in | 5 = 10°, 20°, 30°, 45°
v = 0.3 h = 0.02 in
D, ; (1b/in®), i=1
J & = 10° § .= 20° § = 30° g = 45°
FEM** | KORNECKI FEM KORNECK I FEM - |KORNECKI FEM ' | KORNECKI
4 |'88.5569 | 88.0188 | 109.600 |[122.8671 | 116.310 "|'144.9583 | 84.1065 | 122.3198
5 | 46,9497 | 45.2112 | 44.3954 | 45.7953 | 42.5524 | 48.5397 | '31.8281 | 40.2497
6 | 44.5998% 43.5243%| 32.0945 | 31.0282%( 25.8938 | 26.1887 | 17.5881 19,2039
7 | 51.28357| 52.52047|  31.9418%| 31.3698 22.7977% 21.9139%| 14.0382 13.6668
8 |60.0309 | 65.9624 | 34.45397| 36.8181°] 23.01797| 23.4026 | 13.2771 13.0628%
9 ' ‘ | 13.1857% | 14.3963
0 - 134112 | 16.6794
f%Sanders"»hon—linearttheory for thin_shells are used.
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4.1.3 Effect of Redius~Thickness Ratio

The relationship Qfgcalculated frequency to.radius-
thickness ratic is shown in Table VI for the ratios of
100, 240, and 500, 'The graphical representation of these
results are depicted in Figure 11. It is assumed that the
thickness h of the shell is constant and equal to 0.02 inch
but the smaller radius Ry vaiieé (see Table VI for
additional information). It can be seen from Figure 11
that, for small radius-thickness ratio, the shell naturg1"
frequencies are high and at the same time depend very
strongly on the change of circumferential wave number.
However, as the radius-thickness ratio increases, the
natural frequencies of the shell decrease and the depen-
dency of the frequencies on the change of wave number is
somewhat decreased. It is also observed that for small
radius-thickness ratios the lowest natural frequency and
those which lie in its Qicinity occur at small circum-
ferential wave numbers. However, as the radius~thickness
ratio increases, this set of natural frequencies occur at
larger wave numbers.

"The calculated buckling pressures and their graphical
'repngsentationé as affected by changes in radius-thickness
ratic are shown in Table VII’and}Figure‘12, respectively.
"Again it is seen, in Pigure 12, that for small radius-
thickness ratios, the she11>possesse= greater buckling
resistivity.which is, at the same time, very sensitive to

-the change of wave number. However, as the radius-thickness



TABLE VI

THE NATURAL FREQUENCIES OF THE SIMPLY SUPPORTED

SHELL FOR VARIOUS RADIUS-THICKNESS RATIOS

63

E = 30x10

6 1b/in2

Density = 0.3 1b/in>

\Y

5

Oa3
20

L =8 in
B

T =

h =

R1 l= 2, 408,

0.02 in

100, 240, 500

= constant

10 in

wi’j(rad/sec), i=1

Bt 100 g 240 i 500
_ n - n = n =
2 15226.6 17014.0 13011.2
3 857712 115127 11033.4
4 5629,09 7962,80 8946.68
5 4663,73*% 5762.94 7197.42
6 5904.13 4426,16 5821.00
7 5693. 67 3683.97 4766.83
8 6643.33 3394,69% 3971.70
9 770258 3452.94 3381.32
10 3755.80 2958.79
11 4215.55 2680.49
12 4768.03 2525.34
13 2478.36%
14 2522. 34
15 2640.61
16

2819.13
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TABLE VII

THE BUCKLiNG PRESSURES OF THE - SIMPLY SUPPORTED
SHELL FOR VARIOUS RADIUS-THICKNESS RATIOS

E = 30x10%  1b/in® L =8 in
Density = 0.3 1b/in> -%% = 100, 240, 500
v = 0.3 h = 0,02 in
§ = 20° Ry = 2, 4.8, 10 in
p; ;(10/in®), 1=
j -
R, R, R,
=100 g =240 1 5 =500
2 249,562 106,042 47.9424
3 253.088 106,914 48.0850
4 101.496 107.965 48.2150
5 43,6268 109,192 48,3655
6 33.7208% 48,0203 48.5206
7 34,4084 24,5099 48,6340
8 3701422 15,9785 36,5059
9 84,6063 |  vii13.1185 21,5255
10 12, 6566% 13,5816
11 13,3066 9.32068
12 14.4812 7.01268 -
13 5.79524
14 5.20619
15 4.99630%
16 5.02895
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ratio increases, the allowable buckling pressures decrease
"and the influence of wave number on them also decreases.
Coﬁparison between the calculated buckling pressures
and those obtained by using the procedure described by
Kornecki (14) are shown in Table VIII. A reasonably good

agreement between both methods is observed.

4de1.4 Effect of Boundary Conditions

By retaining exactly the same geometrical ‘and elastic
vproﬁerties4of conical shells as in Section 4:1.1; the'.
influence of boundary conditions on the ndtural frequencies -
of free vibration and buckling pressures of this structure
are studied.
| Three sets of boundary conditions are examined. These
are listed in Table IX.

The numerical results of this investigation-have been

- tabulated in Table X for natural freguencies of free

vibration and for buckling pressures.

‘Since both theoretical and experimental data for the
natural frequencies of vibration ard buckling pressures
pertaihing to the abdvé mentioned conditions are' not

available, no comparison can be made.

4.2 Regions of Dynamic Instability

The various effects mentioned at the beginning of this
chapter which influence the dynamic stébility of a' truncated

conical shell under the action of hydrostatic ‘pulsating
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BUCKLING PRESSURES OF SIMPLY SUPPORTED SHELL
WITH VARIOUS RADIUS TO THICKNESS RATIOS:
A COMPARISON BETWEEN FINITE ELEMENT
METHOD AND KORNECKI'S WORK

E = 30x10° 1b/in° & = 20° ]1 2 100, 240, 500
. - :
Density =0.3 1b/in® L = 8 in Ry = 2, 4.8, 10 in
v = 0.3 h = 0,02 in
‘ ., 2 \
pi’j(lb/ln ), i=1
& = 100 o = 240 = 500
J
FENM ** Kornecki FEM | Kornecki FEM Kornecki

4 [101.496 |114.0051

5 | 43.6268 | 44.5762

6 | 33.7208%! 32,4133%

7 | 34.4084 34.2271

8 15.9785 |15.8998

9 13,1185 '[12.9194

10 12.6566% | 12.5003%

11 13,3066 | 1343149

12 17.01268 | 7.0761
13 15.79524 | 5.8035
14 15420619 | 5.1996

15 4.99630% 4.9939%

16 5.02895 | 5.0370

»**Sander§ non-linear theory for thin shells are used.
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TABLE IX
- BOUNDARY CONDITIONS CONSIDERED IN THIS' STUDY

‘BOUNDARY CONDITIONS BOUNDARY CONDITIONS
TRE AT S =0 AT S = L
(a) FREE: q1£o’q2£o’ FIXED: q33=q34=q35=Q36=0
q3;éO,q4;éO '

(b) ; - SIMPLY SUPPORTED: SIMPLY SUPPORTED:
ap=a3=0 | 934=93570

(C) SIMPLY SUPPCORTED: FIXED: q33=q34=q35=q36=0
q2=q3=0
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TABLE X

NATURAL FREQUENCIES AND BUCKLING PRESSURES OF A
TRUNCATED CONICAL SHELL UNDER VARIOUS
’ SUPPORTING CONDITIONS

E = 30x10% 1b/in? § = 20°

v = 0.3 Ry = 2.13 inches

Density = 0.3 lb/in3 | R, = 4,866 inches

L = 8 inches 3 ! ~h = 0.02 inch

piﬂj(lb/inz),  @1 j(rad/sec), i=1
f —
j TYPE(a) - TYPE(D) TYPE(c)
Wi i | Pi,i0 | i, Pi,i ol %i,5 | Pi,3

2 [10114.70.|238.419 |15498.50 [235.093 {18027.20 {847,129
3 | 5561.69 | 148,381 8801.05 §238.478 {11664.50 {815,731
4 | 425T7.73%| 46,7466 | 5741.00 [109.600 | 8160.60 {214,790
5 | 4771.38 | 37.6888% 4619.64% 44.3954 | 6446.65 | 83,2050
6. | 5751.47'| 42.1339 | 4708.31| 32.0945 | 6044.30¥% 50,6017
T | 6497.76 | 43.6582 | 5413.37| 31.9418% 6503.32 | 43.9743%
8 | 7322.04 | 44,3258 | 631767 | 3444539 | 7331.43 | 44,4852
9 |8290.50 | 46.5076 | 7322.20| 37.5940 | 8295.69 | 46,6607
10 | 9382.69 8445.12 | 9383.41 | 49.6593
,1‘ 1 10601 ° 70 . E‘ 968’90 98
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pressure are investigatéd'iﬁ'detgil'iﬁithe following.
sections. By solving the charécteristic'equation,(36)9 the
regions of dynamic instability can be plotted in a non-
dimensionalized form in terms of the normalized applied
loads u (excitation parameter), and normalized frequency
8/w.  This load-frequency space will indicate whether or not
a certain load applied at a given frequency will cause
dynamic instability of a shell with assumed boundary

conditions, elastic and geometrical pfoperties.

4,2.,1 Bffects of Different 'Shell Theories and

Bending During Prebuckling State

The dynamic stability of a truncated conical shell
simply supported at both ends, whose’geometrical and elastic

properties are the same as those mentioned in Section 4.1.1,

s egemined. Again both Donnell's and Sanders' nonlinear '

theories for thin shells are applieds The effects of pre-
buckling membrane theory (PMT) and prebuckling complete
shell theory (PCT) are also studied.

The necessary information for cdnstructing.the region
of instabilitiy corresponding to various cases is givgg:in_
‘Table XI. The lowest buckling pressure will be selected
aséa basis for computing the region bf:instabilityvtbgether7f
with the ﬁatural frequency of free vibration whose meri-
dional and circumferential wave numbers are the same as
those for the critical buckling pressure. The regions

corresponding to g = O were calculated for all of the cases
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INFORMATION FOR CONSTRUCTING THE REGION OF

INSTABILITY CORRESPONDING TO DIFFERENT

SHELL THEORIES AND BENDING DURING

PREBUCKLING STATE

Instability‘Boundafies“

Thin | W16 Pq1,6
meory |#] @=0 | w=0.6 | rad/sec | 1v/in’
o 2.0 1,2672
" Donnell 0.2] 2.1897]1.7899}1.287711.1335
(PMT) 0.4] 2.3639[{1.5510{1.4985{0.9818| 4777.43 31.3677*
(I)  [0.6]2.5257{1:2672/1.6016{0.8020
Case 0.8 2.677410.8964]1.6985[0.5671
Donnell P.2| 2.1900|1.7896
(PCT)  [0.4] 2.3644|1.5506
4777.43 31.5344%
(11) 0.6| 2.5267]|1.2667
- Case 0.8] 2.6788|0,8961
Sanders'0.2| 2.1896| 1.7898
(PMT) 0.4} 2.3638|1.5508
4708, 31 31,9248
(II1) 0.6]2.5256(1.2670
_Case 0.8] 2.6773] 0.8961
0 1,2666
Sanders'D.2| 2.1900| 1.7896]1.387011. 1330
(PcT)  D.4|2.3646|1.5504]1.4980]0.9812
. 4708, 31 32.0945
(IV):  0.6|2.5268|1.266611.6012(0,8011 -
Case » ' [.8]2.6791]0.8957

*Designates lowest eigenvalue, | u = 2’1~a ’
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with the'exceptioﬁ of a = 0.6 for the first and the fourth
case. Tt is noted that the numerical variation of each set
of résults is ﬁery slight. Consequently, the resulting
regions of dynamic instability are almost identical for
all the four cases and are fﬁereforendepicted in one‘figure
as shown in Pigure 13. It is observed that the meridional
mode shape (i=1) and the circumferential mode shape (j=6)
of the free vibration and static stability problems for all
of the cases are almost identical. - The pictorial repre-
sentation concerning fhe similarity of the meridional mode
shapes for free vibration and static stability=is shown .
in Pigure 14. |

Table XI indicates that the effects of Donnell's and
Senders' theory for thin shells, together with PMT and PCT,
on the calculated sets of results, especially for a =0,
are very slight° |

Comparison of the region of dynamic instability for
a= 0.6 ﬁsing Donnell's theory (PMT) and Sanders" theory
(PCT) with that of Kornecki (14) have been made for i = 1,
j = 6 and the results are shown in Table XII. It should be
noted that the supporting conditions,'eiqstic and geometfia
cal properties of the shell for both cases are identical,

- Table XII shows that there is a good agreement between
the calculated region of this thesis and that of Kormecki,
However, it should be noted that Kormecki did his work by
using Donnell's linear theory of thin shells and applied the

Galerkin's method to obtain the solutions. Considering
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FIRST BUCKLING MODE

FIRST FREE VIBRATION MODE

Fig’ure 14. Meridional Mode \Shape's for a
: Shell Simply Supported at
Both Ends '
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TABLE XII

COMPARISON OF INSTABILITY REGION BETWEEN
THIS THESIS AND THAT OF KORNECKI:

76

INSTABILITY BOUNDARIES

M
Donnell's Theory Sanders' Theory Kornecki
(PMT) (PCT)

0 1.27 1.26 1.28
0.125 [1.18 1.33 | 1.18 1.32 | 1.22- 1.40
0.250|1.09 1.41 | 1.09 1.41 1.14 | 1.44
0.375 [1.00 1.49 | 1.00 1.49 | 1.03 1.52
0.500 0.89 1.55 ' 0.90 1.55 | 0.92 | 1.60
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the many simplifying assumptions made by Kornecki in his
paper (14), and the finite element idealization in this
thesis, it is difficult to assess the error involved in
either works as compared to theﬂéctual regions.

In a study performed by Hutt (29), and Black (13), it
-was found that if the mode shapes of the gtructure for free
vibration and static buckling are the same for équally.
ranked values, then the region of dynamic ingtability
corresponding to a = O is the same as the solution of the

Mathieu differential equation of the form:

oQ

¥ 4+ §%(1-2ucosgt)f = O (83)

“where f(t) are unknown functions of time, Q is the freguency
of free vibrations of the structure loaded by the constant
component of the time~dependent applied loads, and dot
denotes differentiation with regpect to time.

Since, in'each of the preceding cases, the mode shapes
of buckling and vibration for a given value of j were
almost identical (as had been shown in Figure 14), the
regions of instability are the same as those for the
solutions of the Mathieu equaticn.

The computation of the regions of dynamic instability
caused by the other effects will be carried out by using
the more exact Sanders' theéry with PCT, and only the
region corresponding %o d = 0 1s to be calculated for each

Caseo
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4,202 Effect“of Cone Angle

The regions of instability for a simply supported
conical shell whose semi-vertex angles are 10, 30 and 45
degrees are calculated and the numerical results are
tabulated in Table XIII. The elastic property of the shell
remains unchanged together with the smaller radius Ry and
the shell thickness h. |

Again it can be seen from this table that the change
of cone angle § has a very slight effect on the boundary of
the insﬁability regiopse» The: corresponding reason for this
occurrence is that the mode shapes of buckling and free
vibration for a given value of j are again almost identical.
Their similarity was practically unaffected by the change in
the semivertex angle of the cone. Therefore, according to
Hutt (29), the regions of instability (for a=0) are the
same as those for the solutions of the Mathieu equation.
Since it is not practical to distinguish graphically the
glight variation of numerical velues between each set of
results depicted in Table XIII, only one graphical presen-

tation is shown, Figure 15.

4.2.3 Effect of Radius—-Thickness Ratio

-The boundaries of the region of dynamic instability for
simply supported conical shell with smaller radius (R1) to
thickness (h) ratio of 100, 240 and 500 were calculated and
'are'tabulatedvin“Table'XIV-tdgetheerith'other necessary

information. Owing to the obvious similarity between the .
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TABLE XIIT

INFORMATION FOR CONSTRUCTING THE REGION OF
INSTABILITY CORRESPONDING TO
DIFFERENT CONE ANGLES

Instability Boundaries
Cone Angle ®i,J
(degree) " o =0 (rad/sec) (lb/ln )
0 2.0
- *
0.2 2.1903 1.7893 (wy,6) | (q,6)
10 0.4 | 2.3651 1.5502 . 5953.54144.5998
0.6 2.5278 1.2661
0.2 2.1894 1.7901" ( ) ( * )
w 1Y
30 0.4 2.3633 1,5512 1,7 1,7
. 4449.89(22.7977
0.6 2.5252 1.2673
0.2 2.1896 1.7897 *
45 0.4 2.3637 1.5511 RS A ’
, - 4275.05]13.1857
0.6 2.5253 1.2670
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TABLE XIV

INFORMATION FOR CONSTRUCTING THE REGION OF

INSTABILITY CORRESPONDING TO VARIOUS

RADIUS-THICKNESS RATIOS

81

. Instability Boundaries
1 ‘ — Wi,5 Pi,i
T " a=0 (rad/sec): j. (1b/in®)
0 2.0
0.2]2.1897 | 1.7895 ° %
N ‘ . (w1 6) S (P1 6)
100 0.4 | 2.3642 1.5506 A y
. 4904.13 33.7208
0.6 | 2.5265 1.2667 |
0.8 12,6785 | 0.8961
‘Oo 2 20 1 903 1vo 7894
X *
240 Oo4 203656 105500 (UJ1’1O) : (p1’10)
0.6 | 2.5287 | 1.2660 | 3755.80 12,6566
0.8 |2.6812 | 0.8957 °
0.2 | 2.1907 1.7892
500 0.4 {2.3660 1.5497 (w1’15) (p1’15)
0.6 12.5293 1.2654 2640.61 4.9963
0.8 |2.6821 0.8951
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meridional mode shapes of free vibration and the static
stability of the shell for a given value of j in each case,
a slight variation between each set of results is expected.
The graphical presentation for the three sets of results
recorded in Table XIV is, therefore, shown in Figure 16.

The values are observed 10 coincideo

do2.4 Effect of Boundary Conditions

Three types of supporting conditions were selected
to study their effect on the boundary of the region of
instabilityo The details as to.how fhe shell is supported
are explained in Table IXo “The_elastic-and geometrical
properties of the shell are the same as those mentioned in
Section 4.1,1. The numerical results for these threse types
of supporting conditions are tabulated in Table XV'for a=0,
Although some slight variation between each set of results
corresponding to each type of supporting condition can
be noticed, it is, nevertheless,; gquite small. Almost
identical meridional mode shapes of free vibration and static
buckling for each supporting cénditidn have been Observed
and the sketches of these are shown in Figureé 17 and 18,
These afe necegsary for correct interpretation of the numer-
ical results, in addition to the harmonic number j.
Therefore, the region of instability corresponding to a = O
for each type of suppoerting condition was found to be aslmost
.the same as that for the gsolution of the Mathisu equation (29%

Hence only one region of instability needs to be drawn and
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INFORMATION FOR CONSTRUCTING THE REGION OF

INSTABILITY CORRESPONDING TO DIFFERENT

BOUNDARY CONDITIONS

Instability Boundaries

‘Boundary H— Wi pi,j
Condltlons . a=20 (rad/sec) (1b/in2)
0 2.0
0.2 | 2.1852 1.7936
Type (a) | 0.4|2.3547 | 1.5576 | (wy o) (p7,5)
(fl"ee- 006 205115 102754 ) 4771038 3706888
fixed) :
0.8 | 2.6579 0.9045
0.2 | 2.1900 1.7896
Type (b) 0.4 |2.3646 | 1.5504 | (wy g) (pq )
(simply- 0.6 | 2.5268 1.2666 4708. 31 32,0945
simply)
0.8 | 2.6791 | 0.8957
0.2 [ 2.1888 1.7905
Type (c) = | 0.4 |2.3620 | 1.5521 (wy,7) : (p§’7)
(simply- 0.6 | 2.5229 1.2684 6503.32 | 43,9743
fixed
00.8 2‘0 6736 : Oo 8977

See. page 69 for more detailed information.
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FIRST BUCKLING MODE

FIRST FREE VIBRATION MODE

Figure 17. Meridional Mode Shapes for a
' Cantilevered Shell



T~

FIRST BUCKLING MODE

T~

FIRST FREE VIBRATION MODE

‘Pigure 18. Meridional Mode Shapes for a
shell Simply Supported at
‘Small and Clamped at Large
End
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it is shown in Figure 19, since it is not practical to
distinguish graphically the slight variation of numerical

.values between each set of results depicted in Table XV.
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CHAPTER V
SUMMARY' AND CONCLUSIONS

5.1 ' Summary and' Conclusions

A'ﬁethod"for determining the principal regionsvof
dynamic instability'for’a truncated conical shell under the
action’of'an‘eiternal“unifbrmfpulsating hydrostatic pressure
nas been developed in this;tﬁesis:dsing a stiffness formu-
lation of the finite element method. * The ‘equations of shell’
. dynemics at equilibrium and the equations 'of ‘perturbed
motion of the shell were formulated from Hamilton's princi-
ple. The'development‘of second variation expressions
appearing‘in the equations of perturbed motipnffequires the
consideration of geometric nonlinearity. Such nonlinearity
has been introduced through the ‘application of Sanders'

- nonlinear theories for thin shells. ' The ‘equations of the’
boundaries of the ‘regions of dynamic instability were
derived from‘certain periodic‘soiutions of ﬁhe equations of
perturbed'motion° The elemental stiffness and stability
r.coefficient matrices’for‘any-discfete eleﬁentfwére obtained
by‘éésuming a diéplaeement fielq”represented by Fourier
circumferential components of the géneraliZeq displacements.
The accuracy of this approach was much imbroved by using

more general and exact strain-displacement relations such as

89
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that develcped by Sanders. This approach gave natural
~ frequencies of free vibration and static buckling loads
which closely agreed with the existing theoretical and
‘experimental data,with the usé of only a few number of
finite elements. The effects of differentvshell,thedxies;'
bending during prebuékiing state, cone angle, radius-
thickness ratio and boundary'GOnditions on free vibration,
statie buckling and”dynamic‘instabiiity of the shell were
- analyzed.

From the results presented throughout the previous
chapter it is seen that, although the effects of:

(a) different shell theories and bending during
prebu@kling state,

{(b) cone angle,

{¢) radius-thickness ratio, and

(d) boundary conditions
upon the natural frequencies of free vibration wj 5 and
static buckling loads P 5 of the truncated conical shell
under hydrostatic pressure are very pfonouncedy none of
these parameters seem t0 have a sensible influence on the
‘overall shape of the boundaries of the principal regions
of dynamic'inStability; It shduld be remembered, however,
that the above cited parameters do affect the regions only
in as much as they affect the scaling~factors_wi5 and. p; 4
in Pigures 13, 15, 16 and 19. 'The main reason behind this
observation is, ‘a5 explained. by Hutt (29), that whenever

the mode shapes for free vibration and static buckling are



91

identical, or nearly so, the shape of the boundaries of the
instability regions:will be similar to those obtained from
gsolutions of the Mathieu-Hill equations. However, one may
conceive situations where no similarity between mode shapes
exist, and consequently, no similarity between the resulting
regions and those of fhe Mathieu equation should be expecteds
One such case is that in which the truncated cone is acted
upon by twisting couples at the ends periodically vérying
with time. This case was not studied in this thesis and all
caseg considered here yielded regions that differed in shape
only slightly. This was observed to be true for virtually
all cases congidered, as has already been demongtréted in

the preceding chapter.

The'finite_element method makes the study of a more
complicated structures such as shell-type structures
feagible., The accuracy of this method is found 1o be
surprisingly improved if more refined nonlinear theories
for thin shells are applied. Other approaches to this
problem are extremely difficult unless it is simplified
by unnecessary restrictions and toovmany gquestionable
assumptions from the applied mechanics point of view. The
effect of boundary conditions can easily be investigated
by this technique, a2 primary advantage'whi@h,hasubeén
obgerved, The method is very flexible in that either PMT
or PCT could be used. .Also‘vb'either'Sanclersu or Donnell's
theory could be used with someé modifications in the

computer program employed, The finite element method, which
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is based on variational principles, yields matrices that
are positive definite for prebuckling equilibrium and

symmetric for the perturbation broblemo;

5.2 Recommendations for Fﬁrthef.studies'

 The numerical examples which were solved in this thesis
were confined to truncated'cqnical shells under the action
of‘a*uniform external pulsating hydrostaticApressureo_'The
shell is initially assumed.as perfect and is méde of
isotropic and homogeneoﬁs material that obeys Hooke's law.
The thickness of the sheil is small in comparison-with the
radii of curvature. The method could readily be applied to
other types of shells of re&olution such as ellipsoidal,
spherical and so0 on, in which the meridional curvature can
be taken into account in the strain-displacement relations.
The method could also be adapted to multilayer orthatr@pic
sheliso Such an extension involves no newlprinciples
provided the orthotropy is axisymmetric like the shell
geometry. A logical extension of thg present investigation
should also include the effect of large deflections in the
prebﬁckling equilibrium condition and the effect of initial
imperfection. The dynamic stability of shells partially
filled with liquid and of stiffened shells deserves special
attention owing to its importance in the development of

large rockets and aérospace vehicleso
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APPENDIX A
SANDERS' STRAIN-DISPLACEMENT RELATIONS

In the formulation of the elemental stiffness and
stability coefficient matrices of this'thesis, Sanders'

strain-displacement relations;a',re"i/xsed° They are

& = (uss WQ’S) + "E(Y +Y 2) |
€y = (1/r)(u sin §+V, +W COS §) +%—(Y29+'¥*2)
= A 1
€gp = (1/22) (xv, s+u, ~v sin ) + AT P Cat)
rs = Y5 g
ng = (1/1‘)(\1'% gt ¥gsine)
_ 1 ' sing ., cosd
Y “.2[Ye s+~ws oYy (Q’S-+ r,) ¥
where
YS = “(Wys +‘u§"‘7s)
¥, = -(1/1)(w, - v.cos §)
v* = (1/2r)(rv,s+v‘sin“§»-<u.‘9)
- R
Uy g F gs §yg F gg .- etc.
% = meridional shape for each element

constant for' conical shellsi

i

The strain-displacement relations”for*Donneli's~theory"=
are obtained from equation (A1) by dropping terms with the

asterisk. The strains and curvature changes for the e state
e

denoted by ogg and uiB are obtained by taking only the
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linear parts of equation (Al1). Since the meridional shape &
for any typical conical frustum does not vary with the
meridional distance‘s, the partial derivative of § with

respect to s is equal to zero.



APPENDIX B

THE [AY], [B9], AND [¢?] MATRICES FROM
DONNELL'S ‘THEORY

[A?] Watrix
J . = pfom®1 D[ ite2( 1= 0252 I |
= vﬁ{bm —1,0*PLi"+2(1=4)n"] J1_3,03
Al 2 Bl (1mou)r2 : 4 3 a2:2 :
A, = néCm 1,1,1 D[(3 2v)n3“dI_, o+DL5 " +2(1-v)n"J 11_3’{}
i 2 - T w2
Af 5= nf Cm Iy, p=2Dvi“Ly g=20[(3-2v)nj®]L_, |
F”:4 ‘ 2.29-
DA 1-' ]
+ [J +2( V)n J ]I_3’23
a2 _enasilr. PR
R 2.2 v
+ D j"+2(1=-v)n%] ]I_3’3}
Ad . = nCmnI
1,5 =1,0
I C o SomnT . . aCumIn
A16 ”g?mn——1,1+¢”m o,og
Ad . = nCmiI
1,7 ~1,0
A, = nCmjI
‘1y8 -1’1
i 2 e 0l 1o Y1277 oA e 127
A, = n§cm I_y, #Plnf+2(1-9)3°11.; o=2D[(3-2v)n3?]1_, |

+ D[j442(1_V)n232]I_3;2%
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nfom1_, ’ 3+}2Dyn10’O+2D[n2+(_§2'_3‘b)32]1_1 ]

- 300 (3-2v)ni®I1_, el 2(1-0)n®3%11_5 3

~nng2I_;_1 ’4f6DvnIo’1+3D[n2+(2ﬁ-4v),] .':II_1 ,2

- 290 e ad ora 242

- 4D0(3=2v)n3"JI_, 3+D[§"+2(1-v)n"] n]I_3’4%
'rrCII-mI__‘.I’1

nftmnI_; ,+Cwmly 43

nCmjI_, .1

ﬁCm,]I__‘1 2

e 2o | . 2 2
némI_, ’4+4DI1 ’O+8DvnIo,1+4D[n +(2-3v)i° ]I_1--’2

- 40[(3-2v)ng2IL_, y#pli*ea(1-v)n?iPIL_, |3

| | , ‘ 2 ) _10
n§om®I_, ,5+12DI; 1+18Dwnly ,+6D[n+ 2-—37v 3211 1,3

- 5D[(3-2v)nj? 1 ~2,4*0L3 4e2(1-v)n" 3 I3, 5%

”nCmnI_1’2

'ﬂ{CmnI_1 ’3+CvaO,2}

nCmJI_1’3,

nfom?I_, | 6+36D1, "2+'3snvn10  y+3DL 3n2+(6-‘1ov)-312]:;1 4

- 60[ (3—2v)n3211_:2’ 5+D[f,j4+'.2‘( 1=y)n?32]1_ 3, 6?

; nCmnI_.] )3



i
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nECmi'lI_1 , 4-E—C vnlo,'3%

'Y.‘ﬂcij_-] ,3

mCmiI_q 4

me @2+L%§Q'Jﬂ I1,0

nfofn? + U530 52] 1 sowmty o3

nC Iiéiilﬁﬁjj 11,0 |

nfo[U5 ni] 1, -5z o3

nC1; g+2CwI,y 1+¢ [0 +-(—1;§—"—)- )14 3

n§GviTg ,ofc [1‘3‘5'21 03] 14,43

oo (L5151 o [ n] 1,3

nC.lﬁz-éﬁiiﬁl n2]'I_1,O
ni- Cﬁiy‘l nIo',O““CE2 5 7] L3

. (1=v) 2 (F=y) 2 -
TTZC ——T-l I,1 ,O+C[J +$—-é-,—z—n ] 1_1’2-’(;(1'”\))1'110,1%

The elements of {AOJ are obtained from the above

elements by supstitutiﬁg j = 0 and by replacing n by 2q.7
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(8] Matrix
Jj _ .2 . ‘
B1’1 = nCé;(mG1I_2’o+mG2I_2’1+mG3I_2’2+mG4I_2,3+nG5I_2,O
| <2 |
+ nG6I;2’1)+vJ G6I-1,O%
1,2 = nc{ﬁ (mG4T 2, 1+mG21 2, 2+mG3 _5 3+mG4I 2:4+nG5I 2,1
I o ofi2 ‘ P
B1’3 = nC{J (9G1I_2’2+mG2 2, 3+mG3I 2, 4+mG4 -3, 5+nG5I 2,2
o+ nG6I_233)+vj G6I;1;2+2“m<GéIO,1+2G3Id,2
+ 36,Tg,3)8
5d _ .2 . '
B1,4 —_qCéﬁ(QG1I_2,3+mG21_2’4+mG3I_2’5+mGAI_2’6+nG51_2,3
+ nG6I_254)+vJ (}6:[__1,_.3+_'3\m(.(}210’2+2(}3on3
+ 36,5 )3
o ial{d=v) 20k 0BT
i nf O=V) iia - an (=)
* 23Ty 36,1y 3)3
BJ = 'C{C I +jz(mG I, 5+mG,T 4 4+mGLT +mG, I
2,2 = MCT671,0%d TS0, 27200 3310 4T 2, 5

. : 1v -2 . |

+ 2G3IO,2+3G4;0’3)}
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anéG6I .1+32(mG1I 2, 3+mG2 4+mC—3 2, 5+mG4 2f
+ nGgI_ 5 3+nG6I 2, 4)+vJ GgI_, +2“(mG1IO,1?mGZIO,2
+ gG3Io,3+mG4IO,4+nG5Io,1+nG6IO;2)+3vm(G2;O’2

+2G310,3+3G4IO’4)3

.2 ’
‘anéG6I1,2+J (mG1I_2,4+mG2J;2’5+mG3I~2,6+mG4I_2,7
1 .2 _—
+nG5I~2’4+nG6I;2’5)+vJ G6I-1,4+3“(mG1IO,2+mG210,3
+m(}310,4+m(}410’5+n(3';5IO,2+nC-6'IO1’3)+4\:m((}210,3

120,50 11357 )

refan(G,To, gr2G3Tg #3610 o) +Hpa2 (e T,
+2631_4 536,14 )3
nc{k6211’o+2G3I1,1+3G4I1,2)+anG210’1+2G3IO,2
 +§G4Io,3)”*$%52132<G21-1,2+2G3I-1,3+3G4I—1,42}
nC{)j(GéIo,o+2G3Io,1+3G4Io’2).;ﬁigﬁlpjggzl_1,1
+263T_1 #3641 4 3)3 |
ncgvj(G210’1+2G3IO;2+3G410,3)}4315313(G21091+2G31092
+3G4IO,3)-kilgﬁan(G21_1’2+2G3I_1’3+3G4I_i’4)}’
‘nC£4G611 ot (mG1 —0,4+mGoT 5 sHmG3Il_o 6+mG4 _2.7
+nG5I;2,4fnG6I‘2’5)+vj G6I*1,4+4v(mG1IO’2+mG210’3

+2G310 4+3G4Io 5)3



105

“CE6G611 3+,] (mG1 2, 5+mG2 6+mG3 2 ’7+mG4I._2 8
‘-+nG5I_2)5+nG61_2’6)+vJ G61_1’5+6v(mG1Io’3+qulo;4
+mG310’5+mG4IO’6+nG510’3+nG6Ioi4)+5ym(G2io’4
426314 5+36,Tg, g)3
nC{évn(G2IO T+2G3IO 2+36 T4 3)-+$-——l 2(6,I- 1,2
+2G3I—1’3+3G4I_1’4)}
ncgé(GZI1’1+2G3IT»é+3G4I1’3)+2vn(G21092+2G3IO’3
#3640 ) +X5¥052(6,1 42651 1 4436,1 ;)3
nC£2vj(G21071+2G3IO’2+3G4IO’3)-+£lgxlnj(G21_1’2
+263T_4 3+3G,1_ 4 ,)3
ncg?va(G Iy, o*+203Tg #3644 2) -3—-—-13(G210 2
+20310, 3+364T0,4) L53dnj (s, , 3728311 4
+36,T 4 5)3
n0f96eT, ,+iZ(m6iI_p gmGyI p +mB3I , gemlyI )
+nGgI_, e L »7.)4\:.]' 2G6I-‘- 1,6+9v(mG Iy +mGyIy o
+mG310 ’ 6+mG4109 7+nG5IO ,4+nG6IO , 5)+6\;rn(G21O )5 |
+263T5 6+364T0 7)3 |

v (1=y) 2/ m «
nC {3vn(G210’2+2G3IO" 3+3G4IO’4) +S—2-‘-’l,] (GoI_q 5

+2G’31_1 ’4+3G4I_1 , 5)3
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APPENDIX C

. THE [C9] MATRIX AND THE ADDITIONAL PART
OF THE [AY] AND [BY] MATRICES FROM
SANDERS' THEORY

[A9] Matrix
A2,1 = mD nglin2321—390
Ag,z = mD 11521n2321—3,1 
1,3 = ™ 'gl%ﬁnzjzl-j,.?
A',?,4 = mD - 1"")r,1‘2:1‘21_3’3
A%’S = nD LlElenj21“3’o
8] 5= i1y o - Hpma®T_y 3
AQ,B = anbj3I;3,1'+3 e il p,0° 1-vvmn231-3,1§ 3
Ag,2 = ‘A%js.’)
23,3= 4,
Ag,s = A?,G_
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3,2

¢ s 3 o _5_1_%'-_1)_ 2.
nDémJ 1_3,1 anI—Z,O : mn.JI_3,1%

D I - I, = SR [
nDém _3,p"BB] _2,1-+%(‘ v)anjI_y 4 =7(1=v)mn 31_3,5
2,4

51-\)2 2.2
T(D 2 n J 1_3,5

J
A2,6

mp =¥l 521

3,3
nDéhJ I_3,2-»2mn,]I_2,1 2vm31_1,0 41(1-y)mn 31_3,23
nDﬁmj3I -2mnjI -2wmjI ‘-{3(1;v)mnjl ‘
Y T=3,3 -2,2 -1,1%7% -2,2
- qU=Vmn’iTy 53

(1=y) 2.2
m Ay

] o oad
= A5

it

1=y .2
nD iiely 1_3,4

. N _ Cq 2.
monidLy 3Ty pm6vniL g g -7(1=VmnTy 33

anhj3I‘3,4-3mnd_2,3-6vmj1_1iz-f%(1-v)mnd_2’3

1 2.
1(1 v)mn 31_3’4}
l=y) 2.2
nD ifB_lva‘I_3’o
l=y) 2.2-



i son =) 2 Lo

A5’7 = - gD S_lem \nJI—_}‘ 0 |

J - -y) 2

A5’§ _'v"Dég(‘l v)m JI 2,07 LF_lm nji_ -3, 1%

J _ (1= ) 2.2
A6,6 - TTD J 1,3’2
I 2
8l 5= - no Lpely 231y

A‘g’a = ﬂD{-S'(‘I-\))m' JI_‘2’1 -

(1 -V
m" nJI -3, é%

A7 = mén’] I—3,0**'(“_’8‘21,111 213,03
A%,B = nD£§232I~3’1-+ 1%L (°n®T_ -3, 1'3m2n1~290)3

i 2.2 (=y 2 CEm2 2,2 %
A8,8 = ﬂDéﬂ J 1“3’2'!- (9m ‘I—‘I,'O 6m nI_2,1+m n I_,3’2)

The elements of [A ] are obtalned from the above

elements by Substltutlnng; 0 &nd by repla01ng ﬂ by 21
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[BY] Métrj,xL
ad L A
‘ 31’1 = 0
j _ .
B1’2 =0
. -0
J A
B1’4.~ 0
i .
B1’5.- 0
Rl
B1’6 — O
B .= ﬂcgm‘?j(l Ga+I 5 Go+I Go+I Gy )4+mnj (I G
1,7 "'2’0 1 "2’1 2 "‘2’2 3 "’2,3 4 '“2,0 5
BY = C{mza‘(l 5 4G+ 5 LG+ o LG+, G, )+mnj(I G
1,8 -2,1%1%02, 2824 12, 3534 12, 4% =2,175
; _ .
32’2 =0
J
32’3 =0
I
32’4 =0
J
52,5 =9
I
32,6 = 0
b _ gl .
By, 7= Bi,8"
B‘-’j = ncgmzj(l S ¢ SO Go+I Gy+1I G, )+mnj(I G
2,8 "'*2’2 1 _’2’3’2 ""294 3 ""2’5 4 ' "'2’2 5
+I_5 , 3(}.6)+ v JI_ , éC’S?)
3
B3,3=0
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nCim (I_p, 36+ T g, 400+ T, sG3+I_p oGp)4mni(I_, 56y

+T_, ,G6)+wmiT_; 363

2./ _ _ - \ .
nc{h J(1_2’4G1+I_2’5G2fI?2’6G3+I;2’7G4,-+mn3(I_2’4G5
C536, (14v) T, 324t (lewmiZ(I_, (Gr+I, (GpbI, G
nleatg v ,_1’021 Zy v)mJ -2,071t .o ¥l o3
. .2 '
. ‘ a y, .
+I_, 46,)+E(14v)n] (11_2’0G5+'I__2’,1G6)3

ﬂCS%Gg(1+v)i;1,1j2+%(1+v)m52(1_2,1G1+I¢2’26é+1_2;3G3
+1_2,4G4)+;1=(1+v')n;12(1_2’1G5+I_,,2,2G6)}

ﬂCZ%Gé( 1+v:') I, v,o-jn+%:( 1+v")1ﬁnj (Iwz"OG1+I_2 )1 Go+I 5 ’ 2_G3
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Bg,S =‘nC{%G6(1+v)(on’O+JnI_1,1)+%(1+v)mj(l*1’OG1+I_1,1G2
J+I_1’2G3+I_1,3G4)+%(1+v)nj(l_1’OG5+I_1’1G6)
+%(1+v)mnj(1_2,1G1+I_2,2G2+I_2 363+, 254)
4%(1+v)nzj(1_2,1G5+I;2;2G6)-ﬁilﬁllmJ(I 1,1%2
+21_1,2G3+3I_1,3G4)}

A | 2 4y 2
"C{4G6(1+V)l_1,23 +(10dm3=(I, SGq+I_, 3Go+I , Gy

o
ove.
-
(o)
i

2
+1_p G+ (1+v)n3 (15 04T, 3G6)3

J
B6,7 ﬂCE—G6(1+v)I 1, 1Jn+4(1+v)an(I 2, 1G1+I 2, 2G2+I 2,3 3

1-y) .
+ i—5—1m3(1_1,1G2+21_1,2G3+3I_1,3G4)_§

j _ ‘ 1 . ’ . . R .
BS .8 ﬂcg;G6(1+v)(JIO,1+Jn;_1!2)+4(1+V)m3(1¢1,1G1+I-1,2G2

41;1,3G3+I_i,4G4)¥%(1+v)nj(I_1’1G5+I_1,2G6)
+%.(1+v)mnj(l_2 P8Iy GptI_y 4GyrI, 56y)
(1+v)n J(I_ 2, 2 s5+I_o 3% 6) i-1-5-"11113(1_172‘1-2
+2I_, 3 3+3I { 4 4)3
B o = nCf3Gg(1+v) Ty nfed(1ev)ma®(I_, oG1+I 2, s 2,2%3

itIg2,3G4)+%(1+v)n (1_2,0G5+I_2,1G6)
+(1-v)mn(I_1,oG2+2I_1,1G3+3I_1,2G4)+m3(1_2,oG1

: -*1—2,1G2+I-2,2G3+I-2,3G4)+m2ﬁ(1-2,oG5fI—2,1GG)

| 21
+ vt I_1 ,OG63
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B%,B = "C{%G6(1+“)(n10,o+n21-1,1)*%(1+V)mn(1-1,oG1+I-1;1G2
HIg RByIy 3G ) (I, G+, 0y |
*I~2,3G3+I-2,4G4)+m2n(1-2,1G54I~2,2G6)+?m21-{,1G6
4 (an)n®(I1y (GorT_y 4Gg)+E(Tev)an®(I_, 46,
’+I_2’2G2+I_.2’3G3+I_2’4G4)'+%(1+v)n3(I_2’1G5
+I_2’2G6)+(1—v)mn(l_1’TG2+2I_1’2G3+3I_193G4)
"Llizlm(lo,oG2+2Io,1G3+3IO,2G4)}

Bg,B = nC{%GG(Hv)(I1"O+2n10’1+n21_1’2)+%—('1-Fv)m(IO’OG1
+IO’1G2+Io’2G3+Io’3G4)+%(1+v)n(Io’OG5+IO’1G6)
+E(ev)mn(I_y (Gq+I_y SGo+T 4 3G3+I_ 4 ,Gy)
+%(‘1+V)n2(1,-1 ’1G5+I_1 ’2G6)+%(1+v)mn2(1_2’2(}1 |
+I-z,v3G2*i.—2,4G3+I;z;5G4>+%(‘+V)n3(1'-z,2‘}5
*I—,2,3G6)+( 1-\;)mn(I__1‘ ’2G2+2I_1 ’3G3+3I_1 ’4(}4)
-(1;v)m(1071G2+210,2G3+3Io’3G4)+m3(I_2’2G1
+I_2’3G2+I_2’4G3+I_2’5G4)+m2n(I_2’2G5+I_2’3G6)

2 -
+vm I 4 ,2G6 }
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[c?] Matrix
Cj = mml
1,1 0,0
Cj = mnl
1,2 0,1
Cj = mmIl
J — :
°1,4 = ™lo,3
J _ 1 _
C1,5 - 2ﬂnIO’O
J _
Cy,6 = "{2%,1*511,0%
i .
C3,7 = Mg o
Cj =njl
1,8 0,1
J _ (d
2,2 = C1,3
- _ Al
C5,3 = C9 4
J _
J _ {h-
i i
C2,6 =Ml o
il
Co,7 = C1.8
C'j = njl
2,8 115,20
|
3,3 = %% 4
J _
3,4 = Mg 5
i - _
3,5 = ”{?Io,z 11,13‘
J _ ¢ -1
3,6 = "5210,3 21‘1,23
J _ nd
C3,7 = C2,8
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