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CHAPTER I
INTRODUCTION
1.1 Motivation

As society has become more complex, it has become more difficult
to fulfill its needs and desires with simple, unsophisticated machines
and devices, Engineering systems have become so complex that in many
cases engineers are unable to predict their performance by !pencil and
paper'" methods. Indeed, in these cases the progess of converting a
physical system description to a mathematical model for analysis can
easily occupy the total available time and capability of the practicing
engineer, This mqdeling process usually consists of:

(a) selecting the major functions to be modeied;

(b) isolating individual constituent parts or comporents if

possible;

(¢) constructing a mathematical model for each cqmponent which
adequatély describes it in terms of its system performance;
and

(d) formulating the system of equations comprising the mathe-:
matical model for the complete physical system from the
component models and their interconnections.

After the model has been formulated, much of the remaining analysis

and design effort is delegated to automatic computing machinery. At

present the potentia] of analog and digital computers for freeing the



creative talents of scientists and engineers from tedious analysis pro-
cedures appears to be virtually uglimited. The advent of computers and
their widespread availability has already provided engineers with more
time for conceiving and developing new systems of interconnected com-
ponents, However, more efficient, accurate algorithms are needed to
accomplish a ”totaltsystem analysis!" including the formulation of the
system mathematical model, its solution and direct evaluation of per-
formance data for use in design,

The celebrated Heisenberg "uncertainty principle' suggests a
theoretical 1limit on the accuracies with which measurements may be
made. Even though unlimited resources and time are made available for
construction of physical systems, it is impossible to'realize and
verify exact parameter values. It thus becomes important for engineers
to consider the effects which imprecise parameter values manifest on
the performance of physical systems. Large amounts of engineering
effort are expended in predicting these effects from mathematical
models of the systems under consideration with the object of selecting
systems which exhibit acceptably low levels of dependency on the actual
parameter values.

Quite often the designer muyst set tolerances during design pro-
cedures and he is thus placed in the untenable position of specifying
tolerance limits without the required skills or time to analyze the
system for parameter variation. Often he resaorts to the extreme of
over-specifying parameter tolerances, i.e, he requires a one percent
value where a ten percent value would have been quite acceptable. This
may be disastrous since the cost of components tends to increase ex-

ponentially with the decrease in tolerance limits.



Extensive literature exists on the problems of analyzing parameter
variation effects and synthesizing systems less sensitive to parameter
variations. The common theme throughout this literature is the notion
of partial derivatives or derivatives of system variables with respect
to the parameters that vary. In spite of the extensive literature
available, sensitivity analysis remains a difficult, time consuming
task for the practicing engineer. Algebraic difficulties are encount-
ered in all but the simplest problems, and in order to save time the
engineer normally must choose a single criteria of sensitivity ignoring
the multitude of other suggested criteria. Thus, it seems highly
desirable to attempt to provide new methodology in sensitivity analysis
to improve the designer's capability in tolerance specification. This
dissertation reports on research undertaken to‘provide this new method-

ology in the form of ‘a computer-aided design tool.
1.2 Scope of Study

The primary objectives of this study are:

(a) to survey the important concepts and techniques of sensi-
tivity theory and to identify those common characteristics
of significance in the development of a truly general design
tool

(b) to investigate the application of some well known numerical
techniques tp sensitivity studies; and

(c) to develop a design tool, capable of supplying most sensi-
tivity measures with a minimum of engineering effort.

Chapter II introduces the most widely used definitions of sensi-

tivity and interrelates them. Sensitivity models useful in the



classical transform domain and the time domain are presented., Prob-
abilistic and:deterministic sensitivities are considered as are single
parameter and multi-parameter sensitivities. Important relations ’
between certain of these sensitivities are cited which provide a basis
for the computational algorithms to be implemented in the design tool.

The state-space model was selected as the basic system description

for the following reasons:

{(a) the state variable method is extremely general and is capable
of dealing effectively with time varying systems and non-
linear systems;

(b) the problem of formulating the system of first order differ-
ential equations in vector form is mainly topological in
nature and may be easily accomplished on the computer. The
formulation rules may be stated very concisely and method-
ically by use of linear graph theory and are applicable to a
broad class of electrical and non-~electrical lumped-parameter
systems;

{c) solution technigques for both lihear and nonlinear modelsvmay
be implemented efficiently on the computer; and

(d) as will be shown, the state sensitivity model may be formu--
lated directly from the state-space model and its solutions
provide the derivatives with respect to parameters which are
so crucial to sensitivity analysis.

In order to accomplish the objective of providing a useful day-to-

day design tool, it is necessary to generate a computer program capable
of providing the desired information for decision-making in the design

process. Kuo (1) states that general analysis programs should be



capable of steady-state dc and ac analysis as well as transient - -

analysis.,

(a)

(b)

(c)

(d)

(e)

(f)

Such praograms should possess the following desired features:
The program should have a convenient, simple input language
to describe the system element types, their associated
parameters and their interconnected pattern in the system.
The ideal program should be able to handle a wide class of
models of physical devices with a capability of changing
not only parameters of a device but also its topolegical
model .

It is desirable to be able to deal with nonlinearities in
either piecewise linear form or by means of a specified
mathematical function.

There shpould be a large number of output options in a compact
format.

There should be some feature of automatic parameter modifi-
cation for sensitivity, tolerance and worst-case studies.

The program should contain error checks on the reliability

of the output.

The research and development activity presented in this disser-

tation has produced two programs capable of handling linear and non-

linear systems which inglude the above features. These programs are

implemenied in FORTRAN to facilitate their implementation on different

computers with "batch!" processing mode of execution allowed, The ... .

linear program, described in Chapter III, will evaluate single and

multi-parameter sensitivities as well as a probabiligtic measure in

the time domain. Pole-zero sensitivities are also readily available

as outputs. Chapter IV describes the nonlinear program and the various



types of nonlinearities that can be implemented. Chapter V presents
several practical examples of both linear and nqnlinear systems to
illustrate the broad capabilities of the design tool. A summary of
the dissertation is given in Chapter VI together with some conclusions
and suggestions for further study.

The appendices provide developments of a detailed nature not
suitable for inclusion in the main body of the dissertation. Appendix
A describes a new technique for obtaining the simultaneous impulse
solutions of the linear time-invariant state model and its sensitivity
model. A program for furnishing pole-zero sensitivity information for
a mylti-variable system described by a linear time~invariant state
model is presented in Appendix B. Appendix C states and provides
proof for a theorem that is used in the development of the design tool
programs in order to decrease the required computer storage. These
programs are docgmented by Appendites D and E for the linear program

and the nonlinear program, respectively,



CHAPTER 1I1I
SENSITIVITY MEASURES AND THEIR EVALUATION
‘2,1 Introduction

The purposes of this chapter are twofold:

(a) to present the fundamental concepts of sensitivity theory
and to identify those characteristics common to the many
sensitivity measures; and

(b) to introduce the notion of the sensitivity operator and to
demonstrate its usefulness in the evaluation of a wide
variety of sensitivity measures in both the time domain
and the frequency domain.

This chapter provides the analytical foundation for the development of
the computer programs discussed in Chapter III and Chapter 1V,

In the process of performing a éensitivity analysis, the first
problem to 5e resolved is the choice of a sensitivity measure or
definition. This chapter describes many of the measures that have been
suggested in the literature. The author's intent is not to advocate
any particular sensitivity measure or definition as being superior to
the others. Instead a useful design tool has been developed thét is
capable of providing many of the definitions discussed. Thus, the
practicing engineer can use the definition best suiting his particular

problem.



Section 2,2 presents definitions of sensitivity'that are based on
transform models. Classical deterministic frequency doﬁain definitions
are presented as well as some probabilistic measures. In Section 2.3
the sensitivity operators are introduced, their form derived, and
methods of obtaining time solutions for general and impulse drivers
are discussed. An example is included to illustrate the meaning of
these operators. The general form of useful sensitivity measures that
make use of these operators is presented in Section 2.4. Deterministic
measures and a measure based an the mean square error due to component
variation are presented. This measure may be applied in either the
frequency or time domain. In Section 2,5, the fundamental rélation—
ships between the time domain and frequency domain linear models are
discussed. A method of finding the pole-zero sensitivities is pre- . =
sented and extensions afe made which are useful in obtéining other

standard sensitivities.
2.2 Frequency Domain Sensitivity Analysis

In the past many measures of sensitivity have been suggested.
A large number of these measures are defined by the manner in which a
system transfer function changes as one or more parameters vary.

The basic idea of single element sensitivity was first formulated

by Bode (2). He defined the complex number

T(jw) a(tn (i) T 1
Sp(Bode) = [ “—'d(@rl—,.p)‘ ] | (2.2.1)

to be the sensitivity of the transfer function T(jw) with respect to

the varying parameter p where W is the radian frequency. Mason (3)



took the reciprocal of Equation (2.2.1) to define sensitivity in the

study of feedback theory as

JTGw _ alln 1(jw))

b = '_-ET%TET—q“ . (2.2.2a)

This definition of sengitivity is by far the most commonly used one
for linear systems. By noting that for differential changes in p the

sensitivity of Equation (2.2.2a) may be given as

ST(w) ped [on T(jw)]

11

p dp
then
T(jw) dA (w) . d Ph(w)
S - p AW L2 2.2.2b
- P % I =55 ( v )
where
Alw) =0n |T(5w) |
Ph(w) = Arg T(jw) .
The Mason sensitivity of thé attenuation characteristic is
Alw) a AW Re[sg(w)]
_p- P = ) 2.2.2
S T k). A(w) ( 2

Similarly the Mason sensitivity of the phase characteristic is
v o T(jm)]
Fhw) "%
p - Pa(w)
A large class of system functions are bilinear functions of the

parameter p. These system functions can be expressed as

Ni(S) + p Nz(s) N(s)
Dl(s) +p Dz(S) ~ D(s)

T(s) = (2.2.3)

where Ni(s), NZ(S)’ Di(s), and Dz(s) are functions of the complex
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variable s and are independent of the parameter p. For these functions
Equation (2.2.2a) can be written as

Dl(jw) Nl(jw)

GTCaw) o1
p D (jw) N (jw)

and

aa(w) e [Nz(j‘”) Dz(jw)]
do N (Gw) T D (jw)

d Ph(w) Im ['Nz(jw) _ Dz(jw)]
dp N Gjw) D (Gw)d *°

These formulas can be used to facilitate calculation of the
sensitivities,

As an‘alternate means of cpnducting frequency domain sensitivity
analysis, the notion of pole-zero sensitivity has been developed. This
sensitivity is very useful when dealing with poles and zefos'near the
Jjw axis. Work in this area has been performed by Papoulis, Truxal,
Howowitz, Ur, Calahan, and Huelsman, tomention only a few (4, 5, 6, 7,
8, 9).

Consider the zero sensitivity first and let the system transfer

function have the form
n
K TT (s - z.)
°© i q i
T(S) = - —
m
T (s - Xj)

J::l

where Ko is a term depending only on p. Then by definition, the zero
sensitivity with respect to p is

Z. dz. dz,
i

1 1 :
sp = q0ey “P B - (2.2.4)
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The pole sensitivity is similarly defined. These definitions of pole
and zero sensitivities are used rather than a percentage change in the
location of the pole or zero as implied by Equation (2.2.2a) because the
poles and zeros may occur at the qrigin. For bilinear system functions
Equation (2.2.4) takes the well-known form

zZ, =P NZ(S)

p N(s)/(s—zi)

S=Z. .
1

The relation between the classical sensitivity of Equation (2.2.2) and

that of Equation (2.2.4) was shown by Ur (7) to be 7
n Ay no 7 K
T gO®
S (S) = ] ..—_.l.)____ - Z 1Y + _1_ S o (2.2.5)
p 5 - X& 5 -~ Z. K P
L=1 j=1 J °
where
Ko dKo
S = - —_— .
p dp

The results, cited above are applicable only when single parameter
variation is assumed. However, the sensitivity analysis of practical
systems must allow congideration of multiparameter variation. For
example, it is important for the designer to know whether the separate
influences of several parameter changes on the gystem function tend to
pdd or cancel. To take this phenomenom into account several mﬁlti—
parameter sensitivity measures have been introduced.

Goldstein and Kuo (10) extended Mason's definition of single
element parameter sensitivity to the multiparameter case. Let

oo, xn) be a function of n parameters Xir Xy eeey X

T(s, X0 X h

21

where s, the complex frequency, is considered as a fixed variable.

. s s T . .
Then the multiparameter sensitivity S is given by
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n
1

= Yy o R T(syx 5%

—

5 e xn)

1

[d(?an) a( ontT) d(@nT)]
dln x) dfafn.x‘z) )

For this definition of multiparameter sensitivity, the norm of the ST

vector is given by

- %
JESIERCHRES (2.2.6)
T . T T .
where S5 means the complex conjugate transpose of S . l[é “ defines

the maximum rate of change of (#n T) with respect to the ( &1xi). This
measure of sensitivity combines the phase and attenuation information
into one number for the designer's consideration. If Equation (2.2.6)

. is evaluated for s = jW, Goldstein and Kuo's definition of multi-
parameter sensitivity reduces to that suggested by Calahan (11).
However, Calahan points out that by applying Equation (2.2.2b) the
measure of the sensitivity of the magnitude characteristic is the

vector norm

(2.2.7a)

HRe(_S_T(jw))H _ Z

and a measure of the sensitivity of the phase characteristic is

HIm(ET(jw))H - ZCBPh(w) f ) (2.2.7b)
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The measures of Equations (2.2.6), (2.2.7a), and (2.2.7b) are useful
only when the parameter variations are small. This definition also
assumes the n parameters of T vary independently.

In order tp study dependent parameter variation, the concept of
the "sehsitivity group' has been developed by Lee (12). The basic
idea is to study the system first in order to identify any parameters
that vary dependently with respect to the system function. If any
parameters are found that satisfy this and certain other criteria,
thesevparameters aré members of a sensitivity group. Lee's method is
restricted to passive RLC networks and requires differentially small
parameter variation. The notation of this method is rather cumbersom
and for this reason is not included here. The interested reader should
refer to the original thesis.,

Hakimi and Cruz (13) allow non-differential parameter variations
and circumvent the independent variation problem by defining the multi-

parameter sensitivity to be given by

AH(s)
GH(s) _ max _5__;9_(_5_)_6__
o<le. <8, 27T m
1<i<€n

where
8. is the per unit tolerance on the parameter xi,

i
Ei is the per unit variation of X, from its nominal value,
H (s) is the system function evaluated at the nominal values
n

of the parameters X i=1, 2, «osy n, and

AH(s) = max [H(s)] - min[jH(s)] for all possible values aof

Xi, i = 1, 2, eeeqy DN
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H(s) may be either the magnitude or phase characteristic of T(s). Note
that for a given frequency wo’ Hn and the tolerances are fixed so that
the only variable as the §i's vary is AH; However, the determination
of this maximum may not be easy since,..in general, this maximum does
not occur at the exﬁremes of the §i's. As an alternate to this
determination Hakimi and Cruz point out that it is possible to find
upper and lower bounds on the system function for each frequency wo.
This is a highly conservative type of worst case analysis.

An interesting approximation to the pole-zero sensitivity for
multiparameter variation has been proposed by Huelsman (14). Huelsman's
method essentially consists of three steps:

(1) developing an approx}mate relation between the cﬁanges in the
pole~zero locations Bf the system function and the corres-
ponding changes in the coefficients of the denominator and
humerator polynomials;

(2) developing a relation between the changes in the values of
the‘coefficients of the polynomials.and the changes in the
values of the system parameters; and

(3) writing a matrix expression for these sensitivity relations
and normalizing it.

This method yields good agreement with the actual changes in the poles
and zeros. and seems to require less effort than straightforward
evaluation of Equation (2.2.4).

Each of the preceding methods implies a deterministic apbroach to
component variation analysis. Sensitivities of a probabilistic nature
are less numerous in the literature but three methods have been shown

to be useful when computer aided methods are of primary interest.
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Hakimi and Cruz (13) suggest that for a transfer function

T(s, x veny xn), the parameters x. should be considered to be

1’ *2°

random variables. Hence, the transfer function itself is a random

variable and the following sensitivify_measure can be defined

(1A l2]32)

nominal

I, 0. eus O
01 2 n

S =

where
SR

is the root-mean-square value of A‘Tl and 01, o)

PURREEE On are the

standard deviations of the variables Xy X ceey X . This measure may

2?
be evaluated for simple systems by-:classical probabilistic means.
A more reasonable approach for complex systems ig toutilize Monteée-Carlo
techniques and the computer.

A second approach has been suggested by Clunies-Ross and Husson
(15). With topology and the variances on the components held fixed,
the designer strives to choose the mean value for the component in such
a way that the maximum probability of failure is minimized. Initially
a Monte~Carlo routine is carried out to obtain data pgints. The heart
.0of the procedure is to use these data points to fofm linear approxi-
mations by least-mean-squares methods for each circuit output. By
assuming the outputs to be gaussian the designer can solve for the
required means with the aid of linear programming. This method also
allows circuit constraints to be included in the minimization process.
The major difficulty in this type analysis is simply the complexity
of the approach.

A third probabilistic method, due to Breipohl and Campbell (16),
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is described in Sections 2.4 and 2.5. This method makes use of a
sengitivity measure based on the mean square error in the frequency
domain between a desired transfer function GO and the actual transfer
function G. Computation of the mean square error may be accomplished
through the use of an approximation introduced in Section 2.4. This
approach seems very reasonable, but algebraic difficulties are en-
countered in large networks with many varying parameters. Although
the frequency domain sensitivities of Breipohl and Campbell are not
completely implemented in the program of Chapter III, a computational
algorithm is suggested. An extension of this method té the time
domain has been made by the auther through the use of the "sensitivity

operator'" concept discussed in the next section.
2.3 Time Domain Sensitivity QOperators

In this section sensitivity operators for time domain models are
defined and methods for their derivation and solution are presented.
An example is also included to illustrate the properties of these
operators. The notion of a sensitivity operator is similar to sensi-
tivity '"coefficients" introduced by Tomovic (17).

The deterministic performance characteristics of a large class of
engineering systems can be described by the state model composed of a

set of n first order differential equations

—d fi(z, u, p, t) i=1, 2, eeey n (2.3.1a)
plus a set of 4 algebraic equations

yj = gj(_)ﬁ, u, p, t) J=1, 2, «ca L (2.3.1b)
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where

denotes an n dimensional column vector with components

[+

X,, d =1, 2, «..y n, which are the state variables;
u denotes an m dimensional column vector with components
u.,, j = 1, 2, ..., m, which are input forcing functions
of time; and
¥y . denotes the j~th component of a column vector Y which is the
vector of output functions.

The linear form of Equations (2.3.1a) and (2.3.1b) is

X =A X+ Bu (2.3.2a)
y=Cx+Du . (2.3.2b)

The matrices A, B, C, and D may be time-varying, in general, but will
be considered constant throughout this thesis. They depend, of course,

on the system parameters.

-

Definition 2.3.1
H ' A

The state sensitivity operator with respect to the parameter p for

the system state equation, Equation (2.3.1a), is the n dimensional
vector time function 2?(t) with components

dx, (t)
1
dp

F(t) =
1

i=1, 2, «eay n (2.3.3)

where xi is the i-th state variable,

Definition 2.3.2

The output sensitivity operator with respect to the parameter p

for the system output equation, Eguation (2.3.1b), is the { dimensional

vector time function EP(t) with components



dyi(t)
(1) = ——— i=1, 2,
i

= )

where Y; is the i-th output variable.

2.3.1 Linear Anaplysis
. e

Consider the linear model of Equation (2.3.2).

calculate the

the parameter p. Consider the matrix function

M(p) = N(p) L(p)

then
M'(p) = N(p) L'(p) + N'(p) L(p)
where
' aM(p)
M_(p) = _EE—- .

This notation will be used throughout this thesis. Hence, from

Equation (2.3.2a)

4
&g

=AG rAX+Bu +Blu

&=

It is assumed that all derivatives exist over the domain of the

parameter p.
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(2.3.4)

It is desired to

state and output sensitivity operators with respect to

Then
d [QEJ A QE At B u!’ B!
at lapd "= T2EX 22 22X
or
_._ :é-l_p + 2 (2.3.5a)
where

Z=A"x+B'"u+Bu . (2.3.5b)
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Note Z depends upon x(t), the solution of the original state equatién,
Equation (2.3.2a). The output sensitivity operator may be similarly

written as

_w_'pzzg_\_z_P+_(;_'§-FE_t_.1_’+2'E . (2.3.5¢c)

Equations (Z.B.Sa), (2.3.5b), and (2.3.5c) then are the relations whose
solutions yield the state and output sensitivity operators.

The state and output sensitivity operators may be used to approxi-
mate the solution to the state model when a parameter is perturbed from
its nomigal value. Let x (t, po) be the true solution when parameter p

takes on value 1258 andlz(t) be the solution when the parameter takes on

its nominal value p_ . Then
nom

x(t,p ) & x(t) + V() bp

where

This type of approximation is more nearly accurate for differentially
small variation in the value of the paraméter and little may be said,in
general, about the accuracy of this approximation for large parameter
variations. An example of this type of approximation is presented in
Section 2.3.3.

Let us now consider two means of obtaining the solution to the
linear state model and its aséociated sensitivity model. The sen;i—
tivity operator equations contain terms dependent on the nominal solu-
tion Eﬂt)o Thus, the solution to the state model must be available
before the soiution to the sensitivity operator differential equation

can be found.
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One method is to write Equations (2.3.2a) and (2.3.5a) in the

form
[ 4
x A O lx B O u
o= + (2-306)
v A oA NP B' B || uw

and Equations (2.3.2b) and (2.3.5c¢) as

<
Te)
lo
|

o
e
e

(2.3.7)

It
+
-]

2l e

A pr D ||u

o

This allows the two models to be solved simultaneously. The solution

of the matrix system, Equation (2.3.6), may be then symbolized as
t

x(t) x(a) B u(d)
= '_e_(t-a) + E(t"x) dA. (2-308)

VP (t) v (a) . B! u' (A)

o

lo

|

where x(a) and XP(a) are the initial values of the state and sensi-
tivity operator vectors at t = a and 8(t) is the state transition
matrix. For the linear fixed system considered here, B(t) is the

matrix exponential

k
8(t) = et = ) L (2.3.9)
k=0
where
A O
F = o

>
T

The augmentation process of Equations (2.3.6) and (2.3.7) is illustrated
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in Figure 1. Equation (2.3.7) can be used to find the output sensi-
tivity operator after Equation (2.3.8) has been evaluated.

Another method for obtaining the time splution to the state sensi-
tivity operator is a sequential one. In thig method the state
equation, Equation (2.3.2a), is solved over the time intérval of
interest to yield'§(t). This term may be used in Equation (2.3.5) for
calculation of the state sensitivity operator and, hence, the output
sensitivity operator. This method has the advantage of fewer equations
in the integration process. However, a corresponding disadvantage is
the necessity of storing the solution forlg(t).

The general solutipn of the augmented linear state model system,
Equation (2.3.6), is given in Equation (2.3.8), This solution may be
simplified for the case of an impulse function input at driver u_ to
yield the algebraic vector y and its change EP(t) for zero initial

conditions, This sglution is

y(t) 'cC o B b Yq
- a(t) A (8@ ]y, (2.3.10)
w (1) (oA B |2 :
d -
Y
where L. i
0 if 1 £ d
Yi - 1l = 1’ 2, o 00y m
1 if i = d

and B(t) is given in Equation (2.3.9). The equation follows from the

development presented in Appendix A,

2.3.2 Nonlinear Analysis

Consider ngw the nonlinear state model given by Equation (2.3.1).



¢

Figure 1.

Diagram of Operations for Calculation of Semsitivity
Operators

22
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!

It is desired to calculate the state sensitivity operator and the out-
put sensitivity operator with respect to the parameter p. Several
approaches to this problem may be taken,

In many nonlinear situations, the nonlinear equations can be
linearized by limiting attention to small variations or perturbations
about a nominal state solution, Although the system aifferential
eqﬁations may be highly nonlinear, the differential equations des-:. =
scribing these variations around the nominal can be considered to be
linear to a first order approximation. This approach to linearizing
the state model is to expand the functions fi(z,‘g, t), i=1, 2, .e.,
n, and gj(z,.g, t), j=1, 2, «.., 4, in a Taylor's series and delete

the second and higher order terms. This yields

X=AX+BU (2.3.11a)
Y=¢cX+0U (2.3.11b)
where - - _ ;. -
Bfi ' Bgi f
A:{a..]: 1 _C_=[c..:]-—r -y
] i ij x ij axj x 0
B i L | J
bfi Bgi
B = = -~ D = d . =
- [13] du - [i-j] du
i I Yy, i Fn'=n

ic
U

-
1
f oy

<

X:l—

and x , u , ¥y are the state, driver, and output vectors evaluated
—n’' =’ " :

along the nominal solution. Since Equation (2.3.11) has linear form



the results of the previous discussion can be applied aﬁd the sensi—\
tivity operators for the linearized model can be evaluated from.
Equation (2.3.3).

A second method for finding the derivatives of interest entails
no approximation as does the previous method (18). The state model of
Equation (2.3.1) may be manipulated with the classical methods of
differential calculus. By differentiating Equation (2.3.1a) with -
respect to the parameter p and assuming the vectorlg is independent of

p, the following result is obtained.

™ -1 B “r - r -
ap axl sz an ap ap
) _ | & X ox % |, | o (2.3.12a)
% df of of ox of
- -3 _n n n n
I o ] I Bxl sz an 11 dp | .-Bp 1 -

This equation may be symbolized as
Pt) = JP) + 2

where the gradient of f_with respect to x is the Jacobian matrix_i,

XP(t) is the state sensitivity operator, and

E:

¥l

This method is easily seen to reduce to that of Equations (2.3.5a) and
(2.3.5b) when the functions fi(z,lg, t), i=1,2, «a., n, and gj(z,lb 1,

j=1, 2, ..., 4, of Equation (2.3.1) are linear in the components of



the x vector and.E vector.
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The development of the algebraic output

" sensitivity operator 1s an exact parallel of the procedure shown above.

The outpﬁt sensitivity operator model is

oy

op

Byz

p

or

where J 1is the gradient of g with respect to x and Z
-0 = - -0

Fagl

Bxl

-
-
.

BgL

Bxl

e

%,
ax1

—

ng— _Bxl-1 Bgl
an op 3p
7 agz sz a92
|| e %
BgL axn BgL
cee a a
L ®

(2.3.12b)
. %g
1s "'a;; .

Attention is now turned to the solution of Equations (2.3.11) and

(2.3.12). The sensitivity operator solutions to the linearized non-

L]

linear problem of‘Equation (2.3.11) may be found by the linear tech-

niques of Section 2.3.1.

However, in trying to find the solution to

Equation (213.12) it should be noted that this is a nonlinear system of

equations.

simultaneously.

Equation (2.3.12) and Equation (2.3.1a) may be solved

If it is desirable to know the variation of the state

vector for each parameter pk, k=1, 2, ..., q, parallel programs may

be utilized to solve the g + 1 sets of equations or the problem may be

repeated g times.

2.3.3 Example

In order to clarify the concept of the sentitivity operator, an
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example problem is considered next. It is instructive to compare the
predicted response with the actual response for a parameter variation
of five percent. Consider the system of Figure 2. The differential

equation is

X +ax+bx=m(t) (2.3.13)
and
y' = X -
By letting
X1 = X
Xz = J-(
then
- -
X, 0 1 X, 0 m(t)
= +
; : xl_
y-i=T1 01| *|+[o] m)
x2 '

and the transition matrix B(t) is given for a2 > 4b by

-At -A t At ~ALt
Ay -ae ' - (-ade 2 e Pt
B(t) = == At \
2 -\t 2 At . -At
at - B e P e ) Ae Lohe 2
| 1 2 §
where
Xj = a/2 + % Jaz )
)\2=a/2—}é\‘a2-4b .
For
xl(O) c,
m(t) = O and = :_5(0)



m(t)

-a

Figure 2.

-b

Example System

27
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the solution for_z(t) becomes‘
x(t) = g(t) x(0) .

From Equation (2.3.5a) the state sensitivity operator model is
VP o= é_x? + A' x and, hence, the state sensitivity operator solution

may be written as

t
P) = Bt P(0) + | Bt-1) A7 B0 x(0) an .

o
For the values
a:Lj: and b:3
then
Be*t— -3t e—t_ -3t
B(t) = % .
— -3t__-t
BeFBt_Be t 36 -

Consider now that the parameter of interest is the value of the element

b where
b= 3(1 + )
and
g - 0.05 ;
For
P
C1 = 1 vy (0) =0
D
C2 = 0 v, (0) =0
then'. _ —
r-b(t) (8,208 o at |
Y - 12°° " 11
o]
= t
b
o |- (8,506 -00 8,00 an
. Y )
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or

v, (t) = -% {e—t(Bt—-2) v e (g 2)} |

~% {emt(-3t+5) e 33t -5)) .

<
~~
l-"
N’
i

The state sensitivity operator components are shown in Figure 3. As
pointed out earlier in this section, the sensitivity aperator may be
used to predict the output when there exists a small variation in the

parameter b, This predicted output is

x(t) ~ x(t) h Xb(t) : gbnominal

. (2.3.14)

nominal nominal

For € equal to 0.05 and b equal to 3.00, the response x(t) is

nominal
calculated fraom Equation (2.3.13) and from Equation (2.3.14) and
presented in Figure 4. It is apparent that the agreement between the
predicted and actual response is very good for this five percent var-
iation in the value of the parameter b, Figure 5 presents the actuai
Axl(t) and the Ax1(t) predicted by the sensitivity operator and

Figure 6 presents the actual sz(t) and the predicted sz(t). It is
seen that the agreement is very good for the five percent variation.

In the example above, the method of solving for the sensitivity
operator by first finding the solution to the systém and then inte-
grating the sensitivity operator is presented. As pointed out earlier,
it is also possible to augment the system state mddel by the sensi-
tivity model as in Equation (2.3.6) and solve both systems simultan-

eously. The augmented system is
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5:1(1:) Fo 1 0 0 xl(t) 0.
&z(t) ~b =k 0 0 x (t) 1

o 1=l 3b + m(t)  (2.3.15a)
'1 (t) 0 0 0 1 vy (t) 0
62b(t) -1 0 b -k vzb(t) 0

and

y 1 0 0 0 x,(t) 0

b = xz(t) ¥ m(t) (2.3.15b)
w (t) Qo 0 1 0 b o

: vy (t)
vzb(t)t

Equation (2.3.15) may be solved to yield the same functions as in the

previous method by calculation of the transition matrix.

2.4 Time Domain Measures Based on

Sensitivity Operators

Useful deterministic and statistical sensitivity measures that
directly utilize sensitivity operators in their evaluation are pre- '
sented in‘this sectién. Generally the purpose of sensitivity analysis
is to aid in system design selection. Two or more designs may be
found to satisfy the given performance c¢riteria but have different
'sensitivity characteristics. The system designer is then faced with
the task of selecting the best design on the basis of a sensitivity
measure. He must evaluate this measure for each design in order to
make meaningful comparisons. The automatic formulation and calculation
of the sensitivity operators allows the designer to examine the sensi-
tivity of many systems with a minimum of effort through the use of the

time domain measures discussed in this section.
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Suppose that the solutions to both the system state model and the
sensitivity model have been found for k variable parameters. The vari-

ation in the state vector is evaluated at the parameter vector

P = [p1 Py cen 'pk] (2.4.1)

and the change in the state vector x, due to a small change in p, is

given by the n x k matrix

Py Py
A"

Y
S0y M) v 2 e v N8

——

e

P.
where X'l(t) is defined in Definition 2.3.1. The general form of a

useful deterministic sensitivity measure has been given by Siljak and

Dorf (19)

t
T

-

A speclfic example of this type of index might be

D, p P
K(v 1(6), v 2(£), reey v S(£)) at .

b

I = S
(o]

p, 2 b, 2 P, 2
(v 1)) ¢ (v 2(6)) o eee + (v S(e))T

where

p. 2 P. T P.
(v (1)) =[y_ 1(1;)] ‘v L(t) .

It should be noted that the state model approach has found wide
application in optimal control problems. The optimal control problem
is generally taken as that of minimizing a given performance index

where
tf
J = g g(x, u, tlat

o]
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subject to constraints on the control, u. The function g(x, u, t) is
defined tg produce desired behavior on the trajectory of the state
(e.g., minimum error) and desired characteristics on the control u.
The system may, however, also be designed to take into account the -
sensitivity information (19). The approach is to define a new index
such as

I=J+ W (2.4.2)

where

J 1is the classical optimization index,

M is the weighting factor, and

JS Jis a speéified sensitivity index.
The combined index may be solved by the standard methods of optimi-
-zation. A particular example of a desirable index is that of quadratic
functions of the variables. Since the sensitivities of certain state

ox,

variables may be critical, a measure may be used which weights §El
: —d
individually, An example of such a measure is

p p :
S[_ Mx+ T_lg_1:1_+(_\i1T_\:1) R ]dt’

whefe w.T = jw, W eee W ] is the weighting vector for parameter
=, 1 2 n
pj‘and M and N are positive definite weighting matrices for the state
N -— -
vector and the control vector. The optimal control law that minimizes
this index results in an optimum system that is optimum with respect
to both performance and sensitivity on a quadratic basis.
Kokotovic, Bingulac, and Medanic (20) present an example of a

fifth order linear system that has been optimized using an.index of

the form given by Equation (2.4.2). The criterion I was minimized for
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distinct values of U varying between O and ® by using an analog
computer to obtain a "W trajectory" in parameter space linking the
minimum of J and the minimum of Js. Depending on the relative impor-
tance of the indices J and JS the optimum fell nearer the minimum of J
or the minimum of JS. The investigation of the system performance
along this trajectory fully answers the question concerning what can be
achieved by parametric optimization with a fixed structure in regard

to the minimization of sensitivity.

The measures presented above are based on deterministic sensi-
tivity operators. The rest of this section deals with a statistical
method of comparing various designs based on the mean square error.

The measure is implemented by making use of a simple linear approxi-
mation of the mean and variance. The approximation calls for only the
means and covariances of the circuit components and, hence, complete
knowledge of the distribution function is not required.

.The approach taken here most closely resembles the work of
Broome and Young (Zl)f'and Breipohl and Campbell (16). Their basic
idea uses the mgan squé}e error between a desired output and the actual
output of the systew. This is a good criterion for comparing different
design approaches ﬂ% the system. The approximation used here is
simpler than Broome and Young's approximation. This approximation is
the same as that used by Breipohl and Campbell in their study of trans-
fer function sensitivity in the frequency domain, and it is also used
by Breipohl and Grigsby (22) in their discussion on dependent vari=
ations of systems components.

Consider the system function, G (transfer function, impulse

response, other response), which is a real function of k continuous
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parameters and whose first partial derivatives are continuous,

G(p) = 9(pys Pyy +ey PL)e

Suppose the designer has arrived at a system design which ideally
realizes the function G for an input E, This ideal function is
denoted Go' Let GN be the function evaluated at the nominal value of
the parameter vector 2- The parameters ére considered to be random
variables. Then the mean square error between the desired function

and the actual function G is

MSE = E [(G - Go)z]
2 2
= E [(G~uG)]+(uG-Go)
=0 2, (uG -G )2 (2.4.3)

where

E[-] means ''the expected valuye of ",

Mg - E[G], and | |
OGZ = E [(G - HG)Z] . |

A linear approximation (16, 22) to the terms UG and 062 that is both

practical and in some cases easy to achieve is

h. ™G - (2.k4.4)

G N
and
< 3G(p) | 9G(p)
5 X ~ G (p G(p [ ]
% ¥ Z Z PE)T— . Blpi by Moy iy )
L J 1 J
where
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Llpi = E‘E)i_] = Nominal value of P;
EEpi-u J(p.-M ):J=c2 if i j
Py J Pj p,

1

CDV[pipJ.] it if3,

and COV[;ipj] is read "the covariance of the random variables p, and

pj."’ If the random vpriables p; and pj are palirwise independent then

COV—\'E’i pj] =0 for all i# j.

\

In this case Equation (2.4.5) becomes

k 2
2. \ aG(p) 2

(2.4.6)

It may happen that the parameters are not independent due to
environmental dependence or component or manufacturing dependence.
Environmental dependence is the dependence or correlation noted between
parameter values due to epviyrommental changes, e.g., changes nofed in
the values of resistors due to change in the ambient temperature.
Component or manufacturing dependence is that correlétion noted between
parameter values when the parameters afe\gf the same component, e.g.,
changes noted in parameters when transistors are interchanged. This
case may be handled satisfactorily by the appréximation in Equation
(2.4.5) by evaluating the CQV term for the dependent parameters by
classical statistical techniques.l T?ese fechniques will not be .
discussed here, The reader may refer to page twelve of the '"Final Report
on Probabilistic Systems Analysis'" (22) for a dispussibn éf the

appropriate techniques to be used for this type of analysis.
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The expected value terms of Equation (2.4.5) may be evaluated
either by standard statistical means or perhaps obtained from the
manufacturer's data. However, the partial derivative terms

AG(p)
—

>, :
“le-u

i=1,2, cuu, k

still remain to be found, These partials lend themqelves well to
computer analysis since straight forward analytical techniques soon
founder on the algebraic difficulties of this type analysis. These
partial derivatives have the appearance of the sensitivity operator if
the G function is identified as one éf fhe system state variables or
output variables. Previous efforts of Broome and Young (21), and
Breipohl and Campbell (16) have been directed at consideration of G(W),
where W) is the radian frequency. By making use of sensitivityiéper—‘
ators it becomes possible to use the appreximation of Equétion‘(2.4.5)
in the time domajin. Both types of terms needed for the variance
approximation in Equétion (2.4.5) and Equation (2.4.6) may be found
and the mean square error of Equation (2.4.3) may be calculated.

It should be noted here that the fqrmulation above in terms 6f
sensitivity operators results in a MSE that is a function of time.
Such a function does nof serve well as a measure of goodness.
Generally,=a single number is more desirable as a measure. In this
case it éeems reasonable that an appropriate’ﬁeasure’for each choice
of component nominal wvalues and tolerances may be given as

tp

I= S w(t) - MSE dt ~(2.k.7)
o

where W(t) is a general weighting functipn that the designer may -
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specify to emphasize the region or regions in which the time response
is of the most critical nature for his design, The best design based
on this megsure then corresponds to the component nominal values and
tolerances which minimize I.

This section has presented specific deterministic sensitivity
measures which make direct use of the sensitivity operators. A new
time domain statistical measure has also been discussed. This-meésufé
is based on the mean square error between a desired system function
and its actual value, The automatic calculation of this measure is an
important feature of fhe general purpose sensitivity analysis programs

developed in this research activity.

2.5 Fregquency Domain Measures Based on

Sensitivity Operators

This section is concerned with the relation between the complex
frequency domain and the sensitivity operators as defined earlier. If
the sensitivity operator quations are formulated, then the matrices
found in the formulation technique may be utilized to provide sensi-
tivity information in the é—domain in terms of the measures defined in
Section 2.2. The approach taken is similar to that of Morgan (23) for
developing the pole-zero sensitivities.of the transfer function matrix.

Consider the multivariable linear state model of Equation (2.3.2).

3:(_:&54'?-2' (2.5.161)
y=Cx+ Du (2.5.1b)
I=zX+24

where A, B, C, and D are constant matrices for any particular choice of

the parameter that are varying. The transfer function matrix, P(s),
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may be found by taking the Laplace transform of Equation (2.5.1),
assuming zero initial conditions, and expressing the transformed output

_Y:(s) in terms of the transformed input y_(s). Thus

X(s)

1}

P(s) U(s)
' (2.5.2)

H

P(s) =cfs1-AT""B+D
where

I = the identify matrix.

The development presented here differs from Morgén (23) in that the
D term is not assumed to be zero.

The calculation of the transfer function matrix P(s) can be
carried out directly on the computer by a method attributed to Faddeev

(24), Gantmacher (25), and Frame (26), independently. Let

5(s) = Adjoint (sl - _.t_\_)
n+1 n-2
=EOS +-R_15 + eee +R_1 (205.3)
and
9(s) = |sL - Al
a(s) = ! - n sn—l - «oe = h ‘ (2.5.4)

so that (sI - A)!‘l‘: R(s)/g(s). The hi's and R, 's may be found by the

following process

Al = -_é- h1 = tr Al 31 ERE ;A_]- ~h1 l (2.595)
= =z ‘ R it == — o Je

A, AR h, =%trA, R, A,-h, 1 (2.5.6)
= A h = -1 tr A R = A = h I (2.5.7)

—_rm 1 s 1 2] n-1 n=1 -1 —n~-1 -n-1 n-1 —

A = AR h = 3 tr A R =A-h I=0 (2.5.8)

-1 - -n~1 n n - -1 - n— =
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where
n
tr A = }E a.. .
- ; ii
i=1

It has been shown by Gantmacher (25, page 84) that

n-1
ZM- n-1-i
-]
P(s) = =22 + D
- g(S) -
where
_ingiE i=0, 1, ceoey n-1
R =1
-0 —
and, hence,
n-1
P(s) =i {Ds"+ ) M -n D) S L (2500
- g(s - —-i I
i=0

Equation (2.5.8) provides a check on the computation of the hi's and
the.B(s) matrix of Equation (2.5.3). Equation (2.3.9) may be used to
find the transfer function matrix P(s).

Morgan has presented formulas for the differential change dhi in
the coefficients of the characteristic polynomial, g(s), for a dif-
ferential change dA in the parameters of the matrix A. These formulas
are true only for the case in which all the ropts of g(s), s

s

eney

1’ "2

sn, are distinct, An unsolved problem is the nan-rdistinct roots case.

These formulas are

dh, = I * dA (2.5.10)
dh, = Ry x dA (2.5.11)
dh =R ., dA (2.5.12)
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where the asterisk indicates the inner product of two matrices, that is

T T T
+ a

B = b b
Ax2 21~ —2~2 TN

where 3& is the i~th row oflé and_l?_li is the i-th column of E, These
changes given in Equations (2.5.10), (2.5.11), ang‘(2.5.12) may be used
in Newton's formula for the approximation to the roots of a polynomial
to provide the differential change in the zeros of the characteristic
equation, g(s). Applying Newton's formula to Equation (2.5.4) one

obtains

(2.5.13)

where g'(si) is the derivative of g(s) with respect to s, evaluated at

s - Morgan has shown that Equation (2.5.13) may be rewritten as

ds; = [t'r _B___(si)]-1 [B_(si):l * [dﬁ] .

This formula allows evaluation of the differential‘change in the
location of the Zefo of the characteristic equation due to the differ-
ential change of the matrix A.

In order to find the differential changes in the zeros . of the
numerator functions of the P(s) matrix, it is necessary to evaluate

the differential changes in the numerator matrices of Equation (2.5.9).

Let the coefficient of sn-i_l be given by Fi' Then

F, =M -h D i=0,1, oy n-1

and
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The differential change of F is dD and the differential change of Fi
=_1 i -

is
dF, = d(M, - h D)
-1 - +1 -
dF; = dM;-dh, , D -h ,dD . (2.5.14)

Expressions for dh, have been given in Eg@iations (2.5.10), (2.5.11),

and (2.5.12). Note that

and, hence,

dM, = dC R, B+CdR. B+ CR, dB .
—i ——l = = == =i -

For i = O, Bb = E_and, hence, qBo £ 0. From Equations (2.5.7) and

(2.5.8)
dR, = dA; - dh, I i=1, 2, «v., n-1 (2,5;15)
and
A, = dA R _, +AdR . (2.5.16)

Now, successive applications of Equations (2.5.15) and (2.5.16)‘allow
determination of each qﬂi and, hence, each-qﬂi. Equation (2.5.14) £hen
allows determination of each qu. Once these qu are found it is
possible to apply Newton's formula for non-multiple zeros :of. the
numerator functions. The result then is the differential change in the
location of the zero due to the dA, dB, dC, and dD variations.

Thus far this section has considered the linear time—invafiant
state m§de1 and shown how the transfer function matrix can be calcu-~
lated. Formulas are given for the changes in the numerator and |

denominator coefficients of the transfer function matrix, Also .
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indicated is a method for finding the differential changes in the poles
and zeraos of the transfer functions due to differential changes in
the A, B, C, and D, matrices of Equaticn (2,5.1). The relationship
betﬁeen the analysis above and that of Section 2,3 is that the pre-
ceding method of this section provides a link between the classical
sensitivity methods and those making use of sensitivity operators. Let

the differential changes dA, dB, qg, and dD become the matrices

A @ a 4D
' w e My

- Then the calculatiens leading to the differential changes of the poles

and zeros.:of the transfer functipns of P(s) may be executed to yield

the terms
dz, da .
--—:!; and -—}-—
dp dp

that are needed in the definition of the pale-zero sensitivity of
Section 2.2. By multiplying these terms by the nominal value of the
parameter p, these terms become the pole-zero sensitivities of the
transfer function. After noting that the multiplying'factor of the
transfer function, Ko’ is either some element of‘E or of Md’
O-f.i,f n-1, it becomes possible to evaluate the tgrm

KO dKO
o P Ta

Ur's formula, given in Equation (2.2.5), provides a method of evalu-
ation of the standard Bode-Mason type sensitivity defined in Equation

(2.2.2), Thus, the twa standard definitions of sensitivity for the

single element variation case in the frequency demain may be found from

the sensitivity operator equations.
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It should be obvious that this approach is definitely not the best
approach if the transfer function is known explicitly as a function of
the parameter of interest. In this case the direct differentiation of
the transfer function should be performed or Newton's formula in .-
Equation (2.5,13) may be applied to obtain pole-zero sensitivities.

If time domain information is desired, the transfer function may be
converted to a time-domain model in state variable form. Many recent
books on state-variable methods such as Tou (27) and DeRusso, Roy, and
Close (28) present standard techniques fqr this conversion.

If a system is described explicitly by a set of differential
equations and the A', B', C', and D' matrices are given, the approach
under consideratipn becomes attractive for computer implementation.
Appendix B presents a program designhed to provide the pole—zerovsensi-
tivities from the state model and A', E}, ¢, and D' matrices.

The method of finding standard sensitivities becomes even more
attractive if the differential equations and A', 2}, €' and D' matrices
are automatically formulated for the user from simple graphical or
tabular data. By restricting the research investigation to a class of
electric networks the author has successfully automated a comprehensive
model formulation and pole-zereo sensitivity analysis program., This
program is discussed in Chapter III.

As pointed out in Section 2.2 and Section 2.4, Bréipbh1~and>
Campbell (16) make use of a sensitivity measure based on meah square
error evaluated in the frequency domain. It is the purpose heré to
point out how the calculations discussed above may be used to provide
the partial derivatives required for this measure in the frequency

domain.
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Letting Fl(jw) and Fz(juﬂ be the input and output, respectively,

of the transfer function H(jW), the following notations are

established:
L
‘1
F1 5 ‘Fl‘ e
b
H = |u]e H
L (8, +8 )
2] 2 1 H
R R N[
38, |
F20 = lFZo! e <9< target value of output,
it »
Ho = ‘Hol e Mo target value of transfer function,
and

E['] = the expected value of the' quantity in’brackets.

Then the mean square error can be expressed as in Section 2.4 for the

magnitude of the output as

2 2 9’ .
MSE‘FB‘ = lF1| [0' 'Hl + (‘HO‘ - H'Hl) ] , (2.5.17)

where

Pl = & (0] - “lﬂl’z] ,

and for the phase of F2 as

2
Qq + (8 - M
5 @H | Ho QH

MSE (2.5.18)

&

where
02§ = E [(@H - Uz@ )2] .
H H
The mean and the variance of the magnitude and phase of the output

function may be approximated by the procedure of Equation (2.4.4) and

Equation (2.4.5) where the G function is now G(w, M). Inspection of
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the approximation to the variance reveals that interest should now be

centered on the terms

dlHGw | ; 38,
p=4 =Y
where _
b= [Plv PZ’ sy Pk] ’
_L’_l = [u! ’ 3 meeq M ] ]
Py sz Py
and

These terms may be related to the sensitivity operators by means of

the standard pole-zero sensitivity and the Bode-Mason sensitivity.

The procedure for obtaining the standard pole-zero sensitivities has
already been described in this section as has that for obtaining the
Bode-Mason sensitivity. All that remains, then, is to relate the terms

to the Bode-Mason sepnsitivity. This may be accomplished by remembering

that
SpH(Jw) - géé%l . ip 25%%@1
where
A(w) = 0n |H(Gw) |
and 1
Ph(w) = arg H(j&) ’

as shown in Section 2,2. It is then easily seen that

algl()?‘w)l 3 .IES.;_WJ Re[SpH(jw)] (2.5.19)

1 1

B:E . p:u
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and
3 ‘ )
H J 1 H(jw)
o —— - — I S - [ ] .
api D, »m[p ] (2.5.20)
p=4 p=H

Thus the desired terms for Breipohl and Campbell's mean square error
measure may be found by the relations given above, First, the standard
pole~-zero sensitivities are found; then the standard Bode-Mason sensi-
tivity is evaluated for each frequency of interest. This information
is then used in Eguations (2.5.19) and (2.5.20) to provide the terms
required to evaluate Equations (2.5.17) and (2.5.18).

This section has presented a method of obtaining the pole-zero
sensitivities of the transfer function matrixig(s). Extensions.have
been made to provide the standard Bode~Mason sensitivity. From this
point of view the process for automating;the mean square errér as .a
function of frequency has been diséussed.. Appendix B is devoted to
a description of a FORTRAN IV language computer program for the
IBM 7040 which calculates the pole~zero sensitivities by the process
described above. An example problem illustrating the use of this

program is also presented in Appendix B.
2.6 Bummary

One of the major objectives of this chapter is to give a brief
introduction to sensitivity theory and present many of the different
measyres of sensitivity cited in the literature, Most of these
measures ére based on first order derivativés or parfial derivatives of
the system function under consideration. These derivatives sérve as a
means for predicting'the,function,variation'due,to changes in the .

parameters.
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The frequency domain measures of sensitivity discussed in Section
2.2 generally fall into two classes, those based on single parameter
variation and those in which many parameters are allowed to vary,
Deterministic and probabilistic methods have been applied to this
problem by various authors. Table I summarizes the importént refer-
ences within the chapter.in terms of the characteristics of the various
'definitiogf of sensitivity.

The second major objective of this chapter is to intraduce the
sensitivity operators and illuystrate their usefulness in the computer
evaluafion of many sensitivity measures. These operators are defined
in Sectipn 2.3 together with methods of solution and an example,
Section 2.4 presents deterministic and probabilistic measures that make
direct use of these time domain operators. The unifying link between
the sensitivity operator equations and the classical freguency domain
sensitivities is discussed in Section 2.5.

This chapter provides an analytical foundation and justification
for the development of the computer programs discussed in Chapter III
and Chapter IV, Even though the sensitivity oberator concept is not :
new with this author, the automatic formulation and solution of these
sensitivity models for a large class of systems represents a sighifi-
cant new applic;tion of the concept. Appendix A details a new tech=-'
nique for obtaining the simultaneous impulse response solutions for the
linear time-invariant state and sensitivity models. An original
probabilistic measure, the mean square error in the time domain, may
be evaluated through the use of the sensitivity operators. A procedure
for finding the pole-zero sensitivities af the transfer function matrix

is illustrated in Appendix B along with documentation for a program
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implementing this procedure, Extensions of this method have been
suggested to provide the standard Bode-Mason sensitivity and a new
process for automating the mean square error in the freguency domain

has been presented,
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CHAPTER III

COMPUTER-AIDED SENSITIVITY ANALYSIS

OF LINEAR NETWORKS
3.1 Introduction

The previous chapter introduced the general theory of sensitivity
analysis and discussed various definitions of sensitivity. Each of the
different definitions have been found to be appropriate for certain
cases., In all but the most trivial problems the tedious nature of hand
calculation precludes evaluation of several such definitions in order
to assure the designer the proper decisions ha&e{been reached. A
computer-implemented approach is clearly indicated, but an investigas’
tion of the existing system analysis prograﬁs revealed none which
provided direct evaluation of a wide selection of the more commonly
used sensitivity definitions. Thus, the development of a design tool
in the form of a general purpose sensitivity analysis program was
selected to be the primary objective of this research activity.

The techniques selected for usge in this study were based on the
state-space model as the basic system description. This model was
selected after extensive study of the previously existing énalysis
programs and their inherent capabilities for extension to provide
sensitivity information. Extensive research has been performed in the
development of algorithmic processes for network state-space model

formulation and transient solution. However, no techniques had been
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implemented for generating the sensitivity operator models and their
associated solutions.

This chapter pfesents an application of the general theory of sen-
sitivity analysis to a class of linear electrical networks,. A program
has been developed which automatically formulates both the state model
and the sensitivity model for the class of networks under consideration
and then provides sengitivity information in the form of either a
general transient solution, a transient solution for an impulse input,
or the pole~zero sensitivities for the network transfer function matrix.

Existing linéar network analysis computer programs and their
applicability to network sensitivity studies are discussed in Section
3.2, Section 3.3 defines the class of linear networks to be considered
and Section 3.4 develops the formulation techniques used. The actual
computer implementation of these techniques is discussed in Section 3.5,
together with the solution techniques and the time-domain and frequency

domain measures which the program provides.

3.2 Extant Linear Analysis Programs

with Sensitivity Capabilities

Dertouzous (29) has suggested that:

Techniques used in the several hundreds of 'programs'
currently existing and surveyed in thie literature, may be
classified in several ‘'orthogonal! ways. They may be
classified for example according to the type of networks
that they treat, such as (1) linear resistive, (2) linear
ladder~like, (3) linear (or 'slightly' nonlinear) RIC
with (or without) dependent sources, (4) quasilinear re-
sistive, or (5) nonlinear R, L, and C with constraints on
topolegy and characteristic. Analysis techniques may also
be classified according to their dynamics, i.e, (1) time
domain (transient), (2) frequency domain, (3) static (dc)
or according to special features such as sensitivity and
optimization capabilities. The diversity (of approaches)
is further aggravated since for a given network class and
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dynamics, there remains the formulation task. Formu-
lations may be classified according to topology, i.e.,
as (1) nodal or mesh and (2) tree link, and according
to dynamics, i.e., (1) state-variables and (2) system
(transfer) functions. ‘
Since there exist such a multitude of ways of classifying programs, it
becomes highly unlikely that any two programs wiil make use of identi~
cal techniques even though developed for the same purposes. Indeed
computer programs for electrical network analysis are still being
developed and alternate techniques explored to determine their effi-
ciency and accuracy. Many programs are not publicized and made avail-
able due to the present ineligibility of software for patent protection.
Kuo (1), Dawson; Kup, and Magnuson (3), and Meissner (31) provide
extensive surveys of existing programs.
Network analysis programs that have been developed with sensi-
tivity capabilities include:
(a) ARINC, a mesh equation package written in FORTRAN for the
IBM 7040 that handles both ac and dc analysis. This program
provides a parameter modification scheme for use with a
Monte Carlo tolerance evaluafion of sensitiviity (1).
(b) ECAP, a nodal analysis package written in FORTRAN for the
., - IBM 1620, 7040, and 7090/G% computérs providing dcy dc, and
transient analysis. In the dc case this program provides
partial derivatives of the network voltages with respect to
the input ﬁhrameters, and standardbdeviation and worst-case
studies may be carried out through an automatic parameter
variation facility. Allowable elements are R, L, C, switches,

and linearly dependent sources (1,30).

(c) HYBRID, an’ IBM 7094 program which can handle linear networks
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with R, L, and C elements, dependent or independent sources
and any linear element described by immitance or hybrid
matrices. This program is particularly well suited for
parameter variation studies by repeated analysis due to its
unique method of extracting wvariable parameters. In general,
it has been found that this program is considerably more
efficient than any general nodal analysis program if the
number of nodes is large and the number of ports is few
(1,30).
(d) RAPID1, a linear analysis program which can handle R, L, and
C elements, linearly dependent and time dependent voltage and
current sources for ac, dc, and transient analysis. Sensi-
tivity information is provided for the transient and steady
state solutions., This program is restricted to the class of
networks defined in Section 3.3 and al so makes use of the
state d%del technique (32).
(e) LISA, a linear analysis program available on the IBM 7094
(33) and 360/65 {(34). This program is based on nodal formu-
lation techniques and can provide variations of thefpoles
and zeros of the circuit to component variations.
Specialized programs have been written for many sensitivity o
studies of specific networks but these remain generally unpublished
since they are too narrowly restricted to be of general inferest.
Examples of such programs may be found in'ihe.papers on probabilistic
sensitivity (15,16).
The programs above illustrate four different approaches to the

sensitivity analysis of linear networks: mesh, node, hybrid and state
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model approach. These programs provide some sensitivity infermation,
but they generally fall far short of providing an automated means of
dirvect evaluation of a wide selection of the more commonly used sensi-
tivity definitions. It was this situation then that prompted the
development of the program VARYIT, one of the pragrams developed iﬁ
this study.

Of the programs considered above, the RAPID1 program most closely
duplicates VARYIT. Points of similarity are that the class of networks
considered is the same as is the dynamic approach of developing the
state model. The algorithms for formulating the sensitivity model are
different and VARYIT provides an automated link with the fréquency
domain which RAPID1 does not consider. It should be noted that RAPID1
and VARYIT were developed at approximately the same time (35).

NASAP is a linear analysis program in the process of developmenf
since 1967 by twenty universities and ten industrial laboratories (36,
37, 38). This program is based on signal flow graphs, provides trans-
fer functions, and has very good frequency domain sensitivity analysis
capabilities. However, at present it is limited to very large

computing facilities.

3.3 Terminology and Formulation of

Network Equations

In this section attention is focused on the formulation of state
models of linear time=~invariant networks of two-terminal elements.
The state model of a system of two-terminal elements is determined by
the element values, their interconnection, and the choice of the state

variables. It is usually desirable to choose state variables which
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represent physically measurable quantities. Linear graph theory has
been extensively applied to the problem of formulation of systems of
equations by such authors as Koenig and Blackwell (39), Koenig, Tokad
and Kesavan (40), and Seshu and Reed (41)., These formulation tech-"
niques are not restricted to electrical systems or to any particular
energy concept. It has long been recognized that analogues may be
drawn between electrical components and mechanical, hydraulic, and
mixed systems of components. Thus, a study of linear electrical net-
works implies cohsiderable'generality in the theory of linear systems.
However, for ease of presentation, the remainder of this dissertation
will deal only with electrical quantities and components,

It is assumed that the reader understands the basic notions of -
linear graph theory. If not, the reader should consult Seshu and Reed
(41) which provides a comprehensive and highly readable introduction
to the topic. However, since the noiion of relative polarity of the
variables can be based on a number of schemes, the convention adopted
in this study will be cited. The arrowhead of the directed graph edge
will be assumed to coincide with the direction of positive polarity of
the current. This same arrowhead will indicate polarity of the voltage
by the assumpti-n that the tail of the arrow will indicate the positive
terminal of the device for the voltage variable. It is then apparent
that the simultaneous occurrence of positive or negative voltage and
current variables for a given element will imply that the element is
absorbing energy from the system. This notion is illustrated in
Figure 7.

The method of formulation followed here is similar to that of

Brown (42) in which inductors may be located in the network tree and
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Figure 7. Polarity Convention

capacitors in the cotree. However, in order to simplify the form of
the state model, it will be assumed here that a tree and cotree exist
such that all capacitors and voitage drivers can be included in a tfee
and all inductors and current drivers can be included in the corres-
ponding cotree. For this case it has been shown (42) that the state-
space model will exist in the form of Equations (2.3.2a) and (2.3.2b).

For this class, the network equations may be formulated as

E Bi1 B | |5
N (3.3.32)
. Bo1 Bon ||
and
Dy Ryp
(3.3.1b)
Dor By o

where the symbols are defined in Figure 8. These equations may be

more efficiently written as

€L x=Ax+Bu
r=Lx+Du

where
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Figure '8._ . Definition of Terms for Equation (3.3.1)
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is a diagonal matrix with all diagonal entries positive. The solution
of this set of equations may be used in the cutset, circuit, and
component equations of Figure 8 to provide the complete solution for
all network voltages and currents.

If the network has both circuits of capacitors only and cutsets
of inductors only, then the model has the form of Equation (2.3.2).
However, in general, the state models of networks violating the simpli-
fying assumption do not have the simple form of Equationg(%.B.Z).

Topological means are readily available to handle these cases.
3.4 Formulation of the Sensitivity Operators

In the preceding section the general form of the state model is
given for the network class under censideration. It is now desired to
develop the general form of the sensitivity operator equations for this

class of networks. The techniques of Section 2.3 lead immediately'to

P) = [erThavPe) « 2 (3.401a)
where s
. alc]
Z = [cL] ™ {a" x + B uyj’ + < {A x + B u} (3.4.1b)
Z=LCL B 5 Ax+Bu
and
wW(t) = € vP(t) + C'x + D'u . (3.4.1c)

The cutset and circuit equations may be used together with the solus’
-tions to Equations (3.4.1a) and (3.4.1c) to yield complete knowledge of

the first order partials of every voltage and current in the network.
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Consgider now formulation of the system state model and its asso-
ciated sensitivity model for the parameter p. Inspection of Equation

(3.4.1) indicates the only terms, unavailable by direct numerical calcu-

afer]™
dp

lation are A', B', C', D', and . Several methods may be used
to obtain these terms.

The first method for finding the A', B', C', and D' matrices is to
consider the individual submatricesléli, é&Z’ ...,'222 in terms of
their defining expressions given in Figure 8. Matrix differentiation
may be used directly on these expressions but a difficulty is encoun-

tered in finding R'. This difficulty may be surpassed by differen-

tiating the product

RIR=I
yielding
-1 dR qgfi R -0
= @ "Tap -7 =
so that
_ dR ar™?
El = E; = HB—E:I-)_-E . (3.4.2)

Once the R' matrix is found the A', B', C' and D' matrices of Equation
(3.4.1) may be evaluated. Although this method is direct and can be
implemented on the computer it is not.efficient when several nominal
parametér values are given since the slate and sensitivity models must
be reformulated for each nominal parameter value.

A second method exists which does not necessitate reformulation of
the models, In this approach the matrices are formulated as polynomial

functions of the parameter p where the p is maintained in symbolic

form, i.e.; as a literal. Each submatrix may be formulated and then
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combined to prodiuce A(p), B(p), C(p), and D(p) in polynomial form.
The elements of these matrices may then be differentiated to yield
A'(p), B'(p), C'(p), and D'(p). At each value of p for which the

models are desired the numerical value of p is inserted into A(p),
B(p), C(p), D(p), A'(p), B'(p), C'(p), and D'(p).

The symbolic formulation procedure suggested above posed two ﬁajor
problems when computer aided analysis was envisioned. First, the
symbolip formulation appeared to require large amgunts of storage.
Secondly, new techniques and algorithms were needed when dealing with
the parameter in symbolic form.

The storage requirements will be discussed first. Consider the

matrix polynomial representation scheme

3 n n
E(p) =z -Iih p + PEU-»]_ P + eso -+ EO ° (3-4.4)

The storage requirement for the k x k polynomial matrix of degree n
F(p) is (n+1)k2. During the formulation of the state model in tefms
of the variable p, it is necessary to find A, B, C, and D as matrix
polynomials., These matrices are seen from Figure 8 to depend strongly

on the matrix

. . T |=1 ' .
E = E(p) == [‘SZ’T(p) + _S_33 EC(P)E33] - (3-4-5)

The parameter p may belong to either the tree or the cotree, but not to
both. In general, the maximum degree of this matrix polynomial in the
cotree conductance parameter is m-1 when there exists m resistances in

the tree (see Appendix C). Thus, the storage required is

(m=1 + ‘1)m2 = m3
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for the general case. Many problems of a reasonable size would exceed
the 32,000 word memory of the 7040 computer, thus necessitating a very
large amount of scratch pad manipulation using external storage.
However, the initial concern over the appearance of high order poly-
nomials was unfounded as the following result indicates. Pro;f of this

theorem may be found in Appendix C,

3.4.1 Theorem

Cénsider an RLC electric network containing voltage and current
sources. Let there exist a tree containing all capacitors and voltage
sources and excluding all inductors and current sources. Then the net-
work state model given by Equation (3.3.1) is such that no entry of the
A, B, C, or D matrices has numerator degree higher than three in any R,
L, or C parameter or has denominator degree higher than one in any parameter.

This theorem guarantees thatvfor every network in the clasé under
consideration the maximum storage for each matrix polynomial need never
exceed that required for numerator degree three. It is also shown in
Appendix C that the maximum degree for R is in reality oneﬂi Thus, the
true storage required becomes

(1 + 1)m2 ES 2.m2
instead of m3. For example, let m be 20. Then an order of magnitude
improvement in storage requirements is effected by using the results of
Theorem 3.4.1, A similar reduction in storage requirements is appli-
cabie to A, B, C, and D.

The second problem ﬁentionéd abéve is the development and imple-
mentation of computational techniques for wuse with symbolic parameters.

Basic operations, such as addition, subtraction, multiplication, and
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division, with polynomial elements must be developed before more ad-
vanced techniques such as differentiation and matrix inversion can be
applied.,

The most difficult algorithm implemented in this study was that of
finding the inverse of the matrix Eﬁl of polynomial functions. Several‘
approaches are possible., One approach is suggested by the topological
relationsofSeshuzwuiReed(hl), It is possible to develop tree listing
programs and thus form all needed terms by means of the formulae.
Experience with tree-listing programs indicates this is not an attrac-
tive approach since even querately large networks contain numerous
trees. A second approach to the problem is to consider every parameter
except the‘varying one in numerical form. Walden (43) bas shown the R
matrix is a positive definite, nonsingular matrix. This fact may be
utilized to assure that the inversion by the bordering method of
Faddevva (44) maj be carried out. This process consists of finding
the inverse of k x k submatrix in the upper left. This inverse is then

used to generate the inverse of the (k+1) x (k+1) principal submatrix.
3.5 Computer Program VARYIT

Section 3.3 and Section 3.4 have considered a certain class of
linear networks and presented the network state model and its associ-
ated sensitivity model. This section describes the program VARYIT
which has been written to automatically formulate the state model and
sensitivity model for this class of networks and then perform a
solution in either the frequency or the time domain.

It is unnecessary to check to make sure a suitable tree exists

before execution on the computer. If no tree exists which contains all
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capacitors and voltage sources and excludes all inductors and current
sources, the program will detect this condition and terminate pro-
cessing. The user may circumvent this condition by one of two methods.
When an improper cutset is detected a resistor of large magnitude may
be paralleled with a current source or inductor leading to the isolated
node or supernode., This resistor should be much larger than any
existing resistor value so that it has a.negligible influence on the
network veltage and current solution. Similarly small resistances may
be incorporated in series with capacitors and voltage sources without
seriously degrading the soclution. Normally a suitable tree will exist
unless the elements are completely idealized. If losses in the storage
elements are accounted for with resistors, the need for ektra resistors
will not arise.

The program is implemented in the FORTRAN IV language in the hope
of providing the widest possible digtribution and application. None
of the techniques are restricted to any machine eveﬁ though the program
itself was developed on the Oklahoma State University Computer Center
IBM 7040 (32K words, 5 tape devives). An attempt was made to always use
symbolic names for each system unit in the hope that other centers with
differing unit designations could easily make this program operational
by modifying a minimum of statements. Additional versions of this
program are available for the IBM 360 and the UNIVAC 1108,

The program is written in seven phases (hot all of which are
executed on any one proﬁlem)n Phase 1 reads the input data, finds a
suitable formulation tree, and calculates the cutset matrix. Phase 2

A D

formulates the system state model submatrices A Ags ooes Byy of

—=11°

Figure 8 and stores these on tape. Phase 3 reads the submatrices, :
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arranges them into A, B, C, and Q‘matrices of Equation (3u3.1), evalu;
ates them at the nominal value of the parameter p and stores the evalu-
ated matrices on tape. Phase 3 also differentiates these matrices and
stores the result on tape. Phase 4 is executed when a general time
solution is desired by integratiocn of the system state model and the
sensitivity model. Phase 5 is executed when an impulse driver is
specified at one of the driver positions. Phase 6 calculates the
transfer function matrix and the pole and zero sensitivities of each
element of the matrix. Phase 7 applies one measure of goodness if
desired and prints, punches, or plots the output data. Figure 9 shows
a schematic representation of the operations which VARYIT may be
called on to perform.

In order to solve veasonably large networks VARYIT is dimensioned
for a maximum of 80 elements. A total of 20 inductors and capacitors,
20 véltage and current drivers, 20 resistors in the cotree and 20
resistors in the tree (thus, 40 resistors itotal) may 5e included.

A maximum of 40 nodes may exist in the network to be analyzed. No more
than ten elements can be incident at a node in the network., Although
these restrictions can be relaxed by modification of the program, the
ultimate size of the network that may be solved is limited by the
available storage in the compuﬁerf The number of elements may be
increased by altering the appropriate DIMENSION statements.

This program may be used as a general analysis program by setting
the number of varying parameters to zero. Time solutions, impulse
solutions, and the transfer function matrix are then available outputs,

The input to this program is user oriented. In order to execute

a problem the user must perform the following '"desk" steps:



67

PROGRAM VARYIT

READ INPUT
DATA
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ELEMENTS
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FIND CUTSET |
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PARAMETER |APPLY gf__'TER"‘ ) PARAMETER
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Figure 9. Operations Pertormed by VARYIT
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(1) humbér the elements by type, resistors first, inductors
second, current drivers third, capacitors fourth, and voltage
drivers fifth;

(2) number tﬁe nodes of the network; and

(3) assign orientations to each element.

Then, in general, the input data counsists of:

(1) an interconnection array listing elements incident to each
node;

(2) an orientation list which lists nodes from which elements
are oriented;

(3) nominal parameter values for R, I, and C elements;

(&) driving function types and parameters;

(5) a list of parametersz which are to vary; and

(6) the type of solution desired.

More explicit information on the program, its parameters, and»its input
data is given in Appendix D, Chapter V presents examples of the

various types of problems handled by VARYIT.

3.5.1 Tree Selection Algorithm

In order to formulate the submatrices é&l’ A&Z’ 000y 222 from the
equations of Figure 8, it is necessary to find a suitable formulation
tree, The tree selection algorithm used in this program has evolved
from an algorithm deveioped by Cummins and Thomason (45) and modified
by Falk (46). The algorithm given by Falk produces a tree which
contains certain specified elements of the network and excludes other

specified elements, Initially all voltage drivers and capacitors are

placed in the branch list of elements and all current drivers and
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inductors are assigned to the chord list. The algorithm presented here

differs from Falk in that it contains a test (Step 6) to insure the

requirements for the existence of a tree are not violated as each

element is added to tha list of tree elements. Falk's algorithm -

assumed the existence of a suitable tree,

The steps of the algorithm are:

(1)

(2)
(3)

(4)

(5)

(6)

Remove the elements from the network which are contained in
the chord list.

Select an element of the network branch list,

Locate the no&es i and j to which the selected branch element
is incident in the network. Remove the branch from the
network and join together or identify the two nodes as one
single node; label the combined node with the smaller of

i and i,

- Remove from the network any self loop elements -- elements

with both ends incident at the same node ~- which are
generated.by the identificatioﬁ of two nodes in Step 3.

Add these elements to the network chord list,

Return to Step 2 until all elements of the branch 1list have
been selected and removed from the network,

If elements remain in the network, choose an element attached
{to the reduc>d node numberzd 1 ( if no element is now
attached to this node exit to "No Tree Exists!") and add the
element to the network branch lisgt. Go to Step 3. If no
elements remain in the reduced neiwork and the number of
nodes bhasg been reduced to one, the tree and cotree are de-

fined by the branch and chord lists, respectively,
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3.5.2 Cutset Matrix Formulation Algorithm

Having found the branch list and the chord list of elements, the
program next must calculate the fundamental cutset matrix or the funda-

mental circuit matrix of Figure 8., The algorithm used in this program
is identical to that proposed and automated by Falk (46). The algo=:"
rithm itself is presented here only in the interest of compieteness.
(1) Create a matrix of zeros with. as many rowsvas the number of
entries in the network branch list and as many columns as the
number of entries iun the network chord list. Select the

first entry in the branch iigt as the first cutset branch.

(2) Determine one of the rnodes to which the cutset branch is
incident in the network and dé@ermine if the branch is
oriented away from the node.

(3) List the node in the pnode list. List all the elements
incident to the node, except the branch, in the cutset list.

(k) 1f anv «lements of the cutset lisgt are branch elements,
select one and remove it from the cutset lisgt. Determine
the other node to which it iz inmecident and go to Step 3.

{5) When there are no branch elements in or remaining in the
ciitzet ligt, remove both entries of all those elements which
appear twice in the cutset 1list,

(6) The cutset list formed is the list of cutset chords corres-

ponding to the initially selected cutset brasch. Select the
first chord in this list,

(7} Determine if the seiected chord iz oriented away from any of
the podes in the node list,

(8) 1If the owrientation of the cutset branch (Step 2) and the
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orientation of the chord (Step 7) are both away from or both
toward any of the nodes in the node list, the cutset matrix
entry corresponding to the branch and chord is +1; if either
the branch or chord orientation is away from and the other is
toward any of the wnodes in the node list, the entry is ~1.
(g) Place the entry determined in Step 8 in the matrix row
corresponding to the cutset branch‘posiﬁion in the network
branch list and in the matrix column corresponding to the
position in which the chord is located in the network chord

1i

Te

0

(10) Select the next chord in the cutset list and go to Stgp 7.
When all chords have been selected, go to Step 11,

{(11) Remove all eutries from the node and cutset iists. Select
the next branch in the branch list for the next cutset branch
and go to Step 2,  When all branches have been selected, the
cutset matrix submairix £ is completed.

The complete cutset matrix rvepresentation is [iké], where I is the unit

matrix.

3.5.3 Formulation Algorithm

Program VARYIT generates the state model via the formulation algo-
rithms presented in Section 3.3. The submairices of Equation (3.3.1)
are formed by implementing the relatioushipg given in Figure 8. 1In
order to formulate the sensitivity operators the A, B, C, and Dmatrices
are formulated zs polynomial funcitions of the parameter p as suggested

in Section 3.k Theorem 3.4.%1 ig used to advantage in this process to

decrease the storage requirements. The formulation procedure requires
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the presence of only four matrix polynomials at any one time in the

D are calculated and

computer memory. The submatrices A41’ 3129 seoy Doy

stored on tape. They are retrieved and combined into the four matrices
A, B, C, and D. The matrices A', B', C', and D' are found by differ-
entiation of the respective matrices. At this time the nominal value
of the parameter p is inserted and numericai values for the A, B, C, D,
A, B', C', and D' matrices are calculated. These matrices are stored
on tape as inputs for the following time or frequency solution phases.
One additional task is performed in the formulation phases.

Walden (43) contends, and the author concurs, that in the majority of
cases the cuiszet matrix §Tis sparsely populated with non-zero elements.
Thus, a saving in storage may be effected by storing only the non-zero
elements of the S matrix along with the indices of their location in
the matrix. This method also leads to a substantial reduction in exe-

cution time since only the operations associated with non-zerpo elements

of the S matrix are performed.,

3.5.4 Time Solution Techunique

Program VARYIT provides the general time solution to the network
state model and its aésociated sensitivity model as one of three solu-
tion options. The solution of the system state model requires the
initial conditions be known for EC and iLQ In general, however, it is
not convenient, or in some cases possible, to specify the capacitor
voltages and indﬁctor currents. In most electronic circuits it is
usually possible to specify oniy the value of all power supplies and

signal sources at t=0. The assumption usually made for such cases is

that the circuii has achieved steady-state with the constant drivers
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applied. This assumption impliesg that the derivatives of all variables
‘must be equal to zero. The only derivatives of interest are those

given by Equation (3.3.la), since all others are linear combinations of
these. By equating the left hand side of Equation (3.3.1a) to zero, it

is possible to solve for the initial values of EL and ECO This results

in
I -1
E‘CO ﬂ11 A12 Eil 212 EDO
. (3.5.1)
1o 201 Ao Bo1 Bos 1 oo
or
= e ﬁmi E u

=) )
where the '"O" subscript is used to denote that these are the steady-
state t=0 values. The inverse of the A matrix exists if the system has
a finite steady-state solution to a step input, i.e., no zero eigen-
value. Equation (3.5.1) is used to provide the initial conditions for
the solution when the steady-state assumption is desired; otherwise,
initial conditions must be furnished,

In order to obtain the solution to the sensitivity model, Equation
(3.4.1), the initial conditions for XP(t) must be found or supplied as

input data. If no initial conditions are supplied, program VARYIT

computes the initial conditions for the sensitiviity model from

- d(CL) -
o)« - AT @ A A g
(3.5.2)
a(CcL) ) ]
w —=Z—- (CL) T B .
dp (;(_.'L_') .B_. + E ‘EO
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Equation (3.5.2) is found by letting'é(o) and q&/’dp be zero. Thus,
the sensitivity model itself may be said to have achieved a steady-
state value XP(O).. If these requirements do not fit the case under
consideration initial conditions may be computed and read in as input
data.

The solution procedure used ig the sequential method of Section
2.3.1 in which the x(t) andlz(t) vectors of Equation (3.3.1) are
obtained at each integration increment. These vector solutions are
used in the cutset and cirpuit equations to yield the complete solution
at each integration increment for all network currents and voltages.
The complete network solution is stored on tape for use in the sensi-
tivity model integration. The integration process used in this program
makes use of the matrix exponential method given by Liou (47). This
method provides a desired numerical'accuracy when integrating from
time t to time (t + At)., If the desired number of decimal places of
accuracy is "LD'", the PREC variable of Appendix D should be set at
1O_LD° Note that this method still allows round-off errors to accumu-
late during the integration process.

The stafe sensitivity operator solution integration procedure is
to retrieve the complete network solution from tape storage to form/the
Z vector of Equation (3.4.1b). This Z vector is used as a driver
vector in the integration process along with the transition matrix of
the state model integration. By making use of Equation (3.%.1c) the
output sensitivity operator may be found. Differentiation of the cut-
set and circuit equations of Figure 8 allows the complete solution to
the network sensitivity model to be found by simple linear combinations

of the output and state sensitivityv operators. This complete solution
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for all network variables and their sensitivity operators is calculated

and stored on tape at each integration increment,

3.5.5 Impulse Response Solution Techniques

Program VARYIT provides the solution to the network state model
and its associated sensitivity model when unit impulses are introduced
at the driver inputs., This solution is found by the technique of aug-
mentation given in Equations (2.3.6) and (2.3.7). Equation (2.3.10)
yields the output state vector and the output sensitivity operator for
an impulse function input at driver uye The reader should note that
when an impulse function solution is desired the only non-zero driver
is the impulse driver and the initial conditions on hoth the sensitiv-
ity operator eguations and the state model equations are set equal to
zero. Liou's method is also used in this type solution to insure the
desired numerical accuracy. The user specifies those drivers which are
to be impuise drivers and the program assumes one driver at a time is
an input impulse and form ithe derivatives with respect to parameter p
of each voltage and current in the network. By using the augmentation
technique of Appendix A the integration is actually performed only once
regardless of the number of impulse drivers. The complete solution to
the network and the sensitivity model at each integration increment is

stored on tape,

3.5.6 Pole-Zero Sensitivity

The third solution option provided by VARYIT is the calculation of
the pole~zero sensitivities. Section 2.5 has discussed the techniques

for calculation of the transfer function matrixlg(s) and also the pole
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and zero sensitivities of the individual elements of this matrix.
Adaptation of the program of Appendix B into VARYIT was accomplished by
inclusion of the steps necessary to convert the A, B, C, D, and CL
matrices of Equation (3.3.1) to the A, B, C, and D matrices of Equation
(2.3.2). Similar steps are taken in order to obtain the corresponding
A', B', C', and D' matrices for Equation (2.3.5). A decision was made
to restrict the size of the maximum network which may be handled by 7
this program to networks containing a total of 17 capacitors and in-
ductors, 17 resistors and 17 voltage and current drivers, If this
restriction is too stringent, the program may be split into phases to

accomodate larger networks by utilizing the auxiliary storage capabils

ity of tape or disc machines.

3.5.7 Statistical Sensitivity Measure

Program VARYIT includes one statistical sensitivity measure as an
output option. This measure is the variance approximation of Equation
(2.4.6). If it is desired to apply this measure, the variance of each
varying parameter 02 s i=1,2, ..., k, must be included as input data.
As pointed out in Seition 2.4, these variances may be evaluated either
by standard statistical means or obtained from the manufacturer.
Different sets of parameter variances may be included so that multiple
variance approximations may.be studied as the individual parameter
variances are allowed to change. I[n this manner a family of variance
approximation curves may be formed and the effect of the individual
parameter variances may be examined. This feature of the progrém may

be used by the designer as an aid in the setting of tolerances on the

parameters. If this portion of the program is executed, the program
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will automatically plot the variance terms if desired.

3.5.8 Time Domain Output of the Program VARYIT

If either the time solution or the impulse solution is carried out,
a tape is produced containing the complete nétwork solution at each
integration increment and the complete network sensitivity solution.
This tape is available for removal and storage for processing at a
later time. In this way multiple use of thé sensitivity operators is
possible without re~execution of the formulation and integration
processes, The format of the output tape is given in Appendix D.

The output phase of the program has provision for several types of
output. If a complete solution is to be printed at each integration
instant, the word LIST should be entered in the appropriate position as
given by the input sequence shown in Appendix D. Other options are
more selective. For example, the user may specify the current through
element number 11 by I11 and similarly the voltage across element 11
by Vi1, Then these variables may be either printed or punched as

desired. Examples of the output are presented in Chapter V.
3.6 Summary

The primary objective of the research activity discussed in this
chapter was to develop and implement a design tocl that is capable of
supplyiné sensitivity information for a variety of the mosf commonly
used‘sensitivity definitions. This chapter has described the computer
methodology and algorithmic processes used in the general purpose
sensitivity analysis program VARYIT developed in this study. For a

large class of linear networks or analogous non-electrical systems,
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program VARYIT automatically formulates the state.and sensitivity
models from element values and interconnection data, and executes one
or more solution options. These options provide sensitivity informa=’
tion either in the time or frequency domains and of either a determi-
nistic or probabilistic nature. It is felt that this program and its
outputs will be of value to the practicing engineer conducting optimal
design selecticn or tolerancing studies.

Even though much study has previously been devoted to the state-
space model, its formulation, and its solution, little consideration
had been given to the automatic formulation and solution of the sensi~
tivity model for impulse and transient analysis. A new theorem has
been presented which is of great importance in decreasing the storage
requirements for the formulation procedures. VARYIT implements a
method of solving the sensitivity operator model far linear systems
with impulse inputs. This new method assures desired number of places
of numerical accuracy between time steps in the integration process.
Also implemented is an extension of Breipohl's frequency domain measure
of sensitivity to the time domain and a computational algorithm for
obtaining the transfer function matrix and its associated pole-zero
sensitivity information.

The algorithms of Sections 3.3 and 3.4 have been programmed and
Section 3.5 is devoted to a discussion of the resulting program VARYIT.
Examples of the use of VARYIT are presented in Chapter V and AppendixD.
This program is user oriented and requires a minimum of input data.
Even though this program was developed primarily as a sensitivity
analysis aid, it may be used as a general analysis program either‘with

or without sensitivity calculations.



CHAPTER 1V
EXTENSION TO NONLINEAR NETWORKS
L.,1 Introduction

The preceding chapter described the general purpose sensitivity
analysis program VA&YIT developed to automatically formulate and solve
sensitivity models for a class of linear systems, The purpose of this
chapter is to describe the methodology and algorithms developed for a
program applicable to a large class of nonlinear systems, Utilization
of these techniques in the new program VARNOL permits automatic problem
formulation and solution for the state model and also the implementa=’
tion of the sensitivity operators.

The.extension of the sensitivity operator concept to computer-
aided nonlinear analysis posed éeveral problems. First, a suitable
programming technique or program was needed to accomplish the formu-
lation and solution of the nonlinear differential equation model of
the system. Secondly, the development of a computational algoriﬁhm for
generating and solving the nonlineér sensitivity operator equations was
needed. Finally, the nonlinear analysis program and sensitivity
algorithm had to be combined together to provide an operational general
purpose program.

One of the major tasks that must be performed in obtaining sensi-
tivity operators is the formulation and solution of the nonlinear net-

work model. This is no easy task in itself but many programs have been
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developed which achieve this to a more or-less successful degree,
Section 4.2 discusses these programs, their applicability to sensitiv-
ity analysis and their availability for this study. The particular
nonlinear analysis programming technique selected for further develop-
ment is described in Section 4,3.

The second problem area méntioned above is that of develaping a
computational algorithm for the generation and solution of the non=
linear sensitivity operators. Section 4.4 discusses the algorithms
selected for implementation in program VARNOL.

The third problem area, that of combining the nonlinear analysis
techniques and the sensitivity algorithm, has been successfully solved
as demonstrated in Section 4.5. The program VARNOL developed during
this study is described together with the nonlinear models included in

the program. Further details of the program may be found in AppendixE.
4,2 Nonlinear Analysis Programs

Many programs have been developed to treat nonlinear elements in
the general network analysis problem. However, at the initiation of
this study, no programs were found that provided sensitivity informa=:
tion when nonlinear elements were included. Programs that include
nonlinear analysis capabilities include:

(a) ECAP. This program may be used if the nonlinearity can

be modeled by a piecewise linear, single-valued function

of a network current or voltage. After breaking the non-
linearity into piecewise linear segments, the user must
model each segment with a switch and source, This procedure

is not desirable since an extremely large network may result
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(¢)

(d)

(e)

(£)
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when a high degree of accuracy in representing the non-
linearity is desired.

DCAP, PETAP. This is a series of programs developed by IBM
which make use of highly developed transistor and diode
models., Major difficulties were encountered when attempts
were made to extend these programs to include additional
nonlinear models (48).

NET. This highly refined program developed by Malmberg (49)
makes use of topological and matrix methods to solve‘networks
including transistors, diodes, and linear elements, Since
this program is not available in simple FORTRAN-like language,
no possibility existed for modifying it for use at Oklahoma
State University.

PREDICT, SCEPTRE. These IBM programs are based on the state-~
space model and ban handle a large class of linear, nonlinear,
and time varying networks. Since PREDICT is written in a
machine assembly language for the IBM 709094 machines, it
was discarded from further consideration. SCEPTRE, the
second generation of PREDICT, did not become available until
the completion of the programming efforts in this study.
AEDNET, This program, developed by Katzenelson (50), is
capable of analyzing networks containing nonlinear RIC
elements, dependent sources, and independent sources. It is
written in AED-O for the MAC computer at Massachusetts
Institute of Technology.

WALDEN. At Oklahoma State University a program has been

developed by Walden (43) to analyze nonlinear networks. This
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program handles a large class of nonlinearities, is written
in FORTRAN? and is well documented.

Walden's .techniques (43) for representing nonlinear elements were
chosen as a suitable basis for the extension of the sensitivity opera-
tors into the nonlinear network domain. These techniques wepre selected
for the following reasons:

(a) The state space model is the basic system description and

the more widely publicized programs PREDICT, SCEPTRE, and
AEDNET also use this basic approach, Thé technique evolved
in this study may possibly be incorporated into these
programs with modifications.

(b) A large class of nonlinear models has been successfully
analyzed with Walden's techniques,

{c) The formulation of the network model and the sensitiQity
model may be carried out by the same algorithms developéd
for the linear program VARYIT discussed in Chapter III, |

Because the original program developed by Walden was no longer opera-
tional at Oklahoma State University, it was necessary to re-implement
the coding for the solution phases of this program.

Since the initjiation of this study, Leeds, Grueneich, and Moore
(32) have disclosed the development of RAPID2, é modification of RAPID1
to supply sensitivity information for circuits which include nonlinear
energy sto}age elements. RAPID2 is restricted to the same class of
nefwork topologies discussed in Section 3.3 and nonlinear resistances

are not allowed.
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4,3 Inclusion of Nonlinear Elements in the

State~Space Model

Many practical devices used in electronic networks have nonlinear
terminal characteristics. If these devices are included in the network
to be analyzed, the state-space model takes the form of Equatioﬁ(Z.B,I%
Two methods of finding the time solution for such nonlinear systems aré
discussed in this section. Walden's approach, which is a combination
of these two methods, is also described.

One method for finding the time solution is to represent the non-
linear system as a sequence of stepwise linear systems at each inte-
gration increment. The coefficients of the differential equations are‘
reevaluated at each time step in the integration process and are:assumed
to be constant between integration steps. The integration increment
must be smaller than the minimum time constant in the linearized systém
of equations before this assumption can be justified.

A secénd method utilizes dependent drivers. The nonlinear elements
are represented as voltage or cﬁrrent drivers which are in turn
functions of voltages and currents in the network. However, it does
not suffice to simply evaluate this dependent driver step by step;
Changes.in the values of dependent drivers are propagated throughou?
the network and, hence, influence the value of all variables upon which
the driver is dependent. Inconsistencies are then possible unless an
iteration process is carried out at each integration step. A con=::
vergent iteration procedure that works for all nonlinearities is'still
unknown but certain classes of nonlinearities have been investigétéd

\
\

L (43).
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Walden's approach for representing nonlinear dévices considers a
combination of the two methods above. The state mqdel for the non-

linear network is written in the form

(4.3.1a)

CLx=Ax+Bu
y=Lx+Du (4.3.1b)
where
u= f(x,y,p,t) (4.3.2)
€L = F(x,y,p,t) (4.3.3)

with p a network parameter. Equation (4.3.1) has the same form as
Equation (3.3.1) for the class of networks defined in Section 3.3.

Nonlinear energy storage elements, such as the inductors and
capacitors in an electrical network, are represented by stepwise linear
equivalent values in the integration process. 1t should be noted in
Equation (3.3.1a) that all storage elements appear in the CL matrix and
the A, .B, C, and D matrices are independent of the values of these
storage elements. In general, it is necessary to invert the EE matrix
at each step in the integration process. However, when there.are no
" nonlinear storage elements the inverse may be computed only once since
it remains constant. If no mutual inductances appear in the network
the Ek matrix is diagonal and, hence, can be easily inverted.

Nonlineaf resistances abpear in the matrices on the right of
Equations (3.3.1a) and (3.3.1b). Thus, the stepwise linear method .
above would require reformulation of the syétem equations at each inte—
gration step. To avoid this costly process nonlinear resistors are
represented as either a dependent‘voltage or current source, The

evaluation of the source variable is carried out by a nonlinear side
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equation which takes the form of a polynomial equation of up to fourth
degree.

The inclusion of active nonlinear devices is accomplished in the
same manner as nonlinear resistances., Side equations of a more general
form have been incorpo;ated to handle vacuum tubes and other devices.
Space does not permit a thorough discussion of the iteration processes
which are associated with the dependent driver approach, The inter-

ested reader should refer to Walden (43) for a detailed treatment.

4.4 Formulation and Solution Techniques for
Sensitivity Operators for

Nonlinear Networks

Section %4.3 presented the method Walden (43) used in obtaining the
steady state and transient solution for a large class of nonlinear
networks. This section considers a new problem, the formulation énd
solution of a sensitivity operator model for the network parameter p
based on the model of Section 4.3. An approximati6;1€b the exact
solution of the sensitivity model is shown.

The state sensitivity operator equation for the model of Section

4.3 may be seen to be

i? - ELgél:i [A x + B u] +

dp —— -
(k.4,1)

(] ' farx+a® s u+ ]

from Equation (2.3.5). The main distinguishing characteristic of this
equation is that, in general, u' # 0 if any dependent drivers are

included in the network. From Equation (4,3,2)
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U! = == = == V + = a':f'
- dp Qﬁ" ox )
or
u' = hiv", “_’pv p) (4. 4,1a)
where ’
o M i
ai Bx1 sz axn
of of af
axi aXZ an

and Qg)’Qx is similarly defined. Note that u' depends on the state and
outpu;'operators XP and.g? which in turn depend on the value of u',
Thus, if an exact solution to Equation (4.4.1) is desired; an iteration
process must be implemented to obtain the consistent u'. However, in
the nonlinear case under consideration, the first derivatives of the
variables with respect to the parameter p can serve only as an approxi-
mation to the true changes induced by the varying parameter. Thus,
rather than investigate iteration criteria for another iteration, the
solution to Equation (4.4.1) will be approximated. This approxiﬁatioh

is developed as follows. Consider the term (B' u + Bu')

B'u+Bu' = (B+B) (u+u')-Bu-B'u

If u >> u', then

BY u + B u!'! ~B!' u
_ T oA == 5
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and hence Equation (4.4.1) may be written

@) = d[_CL] [ x+ B uj [:CL] {A'x + A vP(t) +Bru}
(kok.2)

The algebraic equation may be similarly shown to be
W(t) = C v (t) + C'x + D'u . (k.h.3)

No iteration process is needed for the nonlinear storage elements since
a stepwise linear approximation has been adopted for this type element.

Thus, Equations (4.4.2) and (4.4.3) may be integrated without neces-
du(t)
d

sitating an iterative process under the assumption gﬂt) >>
Exampie 5.3.1 of Chapter V contains plots of predictediand actual
changes in the output voltage of a nonlinear network. The predicted
changes were computed using the approximation above. Although the
agreement is very good for this example, this will not always be the
case. The program described in the next section computes the u'
directly from Equation (4.4.1a) and compares it with the driver value.
If the approximation used is not satisfied, a warning message is

printed to alert the user.
k.5 Computer Program VARNOL

Section 4.3 and Section 4.4 have suggested a representation.scheme
for nonlinear elements and considered the sensitivity operator equations
for this case. This section describes a program which automatiéally
formulates the state model and the sensitivity model using these

techniques and performs a time solution for both model s.
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The program is implemented in the FORTRAN IV language in the
interest of the widest‘possible distribution and appiication. None of
the techniques are restricted to any machine. Figure 10 is a functional
block diagram of the five phase program VARNOL(VARy NOnLinear). Phase
1 reads the input data, processes it for later phases, selects a tree
set of elements, and computes the cutset matrix for the network.

Phase 2 and Phase 3 are identical to those used in VARYIT and perform
the functions of formulation of the state and sensitivity models.
Phase 4 performs the time solution for the nonlinear network state
model and sensitivity models. Phase 5 serves dual purposes in that it
applies the variance approximation as one possible criteria of sensi-
tiyity when desired and also prints, punches, or plots the outpﬁt data.
The output tape of Phase 4 is compatible with the output tape of
VARYIT's Phase 4 and, hence, the same output phase may be used with
both programs.

| The restrictions placed on networks which may be solved by the
present program are as follows. Allowable element types are linear .
and nonlinear inductors and capacitors, resistors, independent énd :
dependent voltage and current drivers. Mutual inductances are not
allowed. No more than eighty elements may be included in the network.
A total of twenty inductors and capacitors, twenty voltage and current
drivers (including the dependent drivers) and twenty resistors in the
cotree and twenty resistors in the tree:{thus, forty resistors total)
may be included. A maximum of forty nodes may exist in the network to
be analyzed and each node may have no more than ten elements incident
to it. The ultimate size of the network to be solved is limited only

by the available storage in the computer; the number of elements may be
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increased by altering the appropriate DIMENSION statements.

This program may be used as a general analysis program, i.e., when
no sensiti&ity information is desired, by setting the number of varying
parameters to zero. In this manner the program may be used in modeling
studies such as that conducted by Walden (43). When only general
analysis is considered, the program bypasses all sensitivity model
formulation and integration procedures.

The program VARNOL implements the following types of nonlinear
models along with the required iteration techniques:

(a) Honlinear, dependent I and C values described by a polynomial

equation of fourth degree;

(b) mnonlinear L values described by a two-term power series in

the arctangent for saturating iron core inductors;

(¢) nonlinear R values to be described by a polynomial equation

of fourth degree as a dependent voltage or current source;

(d) nonlinear dependent sources to be described by a two-variable

power serieg of nine terms for simulation of a vacuum~tube
triode plate circuit as a dependent source;

(e) nonlinear dependent sources to be described by a polynomial

equation of fourth degree with any variable in the system
the controlling variablej;

(f) nonlinear dependent sources to be described by the semi~

conductor diode equation of the form

. bV
1l == IS(G = 1)

where IS and b are constants peculiar to each model or-dévice;

and
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(g) nonlinear dependent sources to be described by a pair of

piecewise linear equations,

= & -1 ) f >
v a,x bi or X X,
= a_ %X + b2 for x < XO
and
'alxoﬂ-bl = azxo + b2 o

Appendix E presents in detail the parameters which characterize these
nonlinearities. The models implemented in this program are those
investigated by Walden (43) in his nonlinear analysis study. Inasmuch
as the primary objective of this study has been the implementation of
sensitivity operators, extensionsg of Walden's techniques have not been
attempted.

The iteration processes implemented in VARNOL were originally
developed in three distinct programs. VARNOL incorporates all of the
above models into one program, but no iteration scheme has been
developed o handle the general case in which arbitrary combinations
of the models occur simultaneously in any one network. Instead non-
linear storage elements of type (a) and (b) may simultaneously occur
in three particular classes of networks:

(1) the polynomial dependent drivers of model (c) and model (e);

(2) +the *riode model (d) and the piecewise linear equations (g);

and

(3) the diode model (f).

The input data for VARNOL is approximately the same as that for
VARYIT., Some effort hag been expended in trying to user orient this

program, but as is common with most nonlinear programs, the input data
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remains relatively complex compared to that required for the linear

The "desk' work that is necessary is

so

program,

{a)

represent the nonlinearities b

[N
]
T
&
=

dependent drivers and/or nonl

>

He

nunber the elements by type, resistors fir

+

current drivers, capacitors,

P

number the nodes of the network; and

assign orientations to each element.

B

The input data to be entered then is eszentially the same as that of

VARYIT. More explicit information on the program and its input data

ig given in Appendix E,.

Program VARNOL computes the time solution of the nonlinear network.

An iteration procedure iz implemented to compute imitial conditions

from the steady state assumption of S on 3.5.%, If de

ired, however,

initial conditions for the state and sei model may be specified.

The initial conditions on the sensitivity model may alzo be calculated

ty model is assumed to have

reached steady state and the chan vers due to a parameter

change is much lessg than the
and (4.4.3) are used to calculate the
gration procedure chosen for VARNOL i
given bv Ralston and Wilff (51). It
specifly an integration increment and
his particulsr problem. In order to

tion the integration increment must b

shortest time congtant of the system

driver value

Equations (&.4.2) .

sengltivity operators. The inte-

(SN

3 the Runge-Kutta-Gill method
ig neceszary for the user to

criteria suitable for
assre of the integra~._
e get to a value less than the

of eguations.



93

The output of this program is the ssme as that provided by VARYIT
for the general time solution. The vaviance approximation may be
applied to any network variable when statisticai independence of the
components is assumed. Alternatively the complete network solution and
the sensitivity partials may be printed or punched. As suggested in
Section 3.4.8, any number of current or veltage meters may be incor-
porated in order to obtain selective print out or punch of the network
variables, Multipass processing may be performed on the program output
tape., This tape containg the complete network solution for every
voltage and current at each integration increment and the complete{
sensitivity voltages and current for each varving parameter.

Evgn though no problems which were solved during the development,
validation and subsequent use at Texas Instruments and Oklahoma State

University have taken more than ten minuteg to execute on the IBM 7040,

-t

it is felt that the technigues used in this program will achieve their
full potentials only if the program is recoded with particular emphasis
on decreasing solution time. Alternatively, the program storage
requirements may be relaxed to take full advantage of the increased
computer memory sizes available a®t mogt facilities, With larger
computer memory banks much of the program linking end external input/
output is unnecessary., However, even at facilitiez with extremely
large memory bankg, a tradeoff between memory alliocated for use and
execution time exists., The vesult of such a tradeoff is heavily
dependent on the accounting procedures in use at the payrticular faciliy.
Hence, no suggestions are included here as to the proper machine size

and cost characteristics of this program,
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4.6 Summary

This chapter has described the formal development of a design tool
capable of efficiently supplying sensitivity information for a large
class of nonlinear networks. A cqmprehensive study of general non-
linear analysis programs, such as those discussed in Section 4.2, led to
the conclusion that Walden's state-space approach for the representa-
tion of nonlinear elements would provide a sound basis for such a
design tool., Walden's program was limited to standard time-domain
analysis with no capability for treating parameter variation or
tolerance problems. The author has updated Walden's basic program
and extended its capabilities to provide automatic formuliation and
solution of sensitivity operator models., Automatic tree selection and
state-space model formulation provide deszsirable additional capability
that was lacking in the original WALDEN program. The resulting program

- VARNOIL, provides an efficient, user-oriented, sensitivity analysis
program applicable to a broad class of noniinear networks and analogous
nonwelectricél svestems. Examples of the use of VARNOL are presented

in Chapter V. Appendix E also discusses the input data requirements.



CHAPTER V

EXAMPLES OF SENSITIVITY ANALYSIS

WITH VARYIT AND VARNOL
5.1 Introduction

This chapter demonstrates the use of VARYIT and VARNOL in sensi-
tivity analysis. Three examples of linear network analysis are dis-
cussed in Sec@ion 5.2 illustrating, respectively, a general time
‘ solution, an impulse solution and a pole~zero analysis. Examples of
nonlinear network analysis are presented in Section 5.3. These
examples were chosen to illustrate the wide variety of problems for
which VARNOL may be used and they represent a limited sample of the

problems studied during this research activity.
5.2 ITllustrations of the Use of VARYIT

Program VARYIT was used to compute the sensitivity measures for a
number of networks. An example of each type of solution is presented

below.

5.2.1 Example

In this example time solutions of the state model and sensitivity
model are performed. It is assumed that all parameters are + b percent
of the nominal value and the distributions are such that the mean is

equal to the nominal value, with the standard deviation M percent of

95
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the mean. Consider constructing

(s + 2)(s + 5)

Z2s) = T DG D

as the input impedance to a linear network. Many alternative networks
may be found by the classical synthesis techniques of network theory
(52). Eight such networks are shown in Figure 11. Six of these net-
works are canonic forms, i.e., they contain the minimum number of

elements required to realize Z(s). Since
V(s) = Z(s) I(s)

if a step current driver is used, the variation in the input impedance
is reflected in the voltage across that driver. The ideal desired
output GO is the V(t) which results when all the parameters take on
their mean values. Equation (2.4.3) for thé mean square error reduces
to

MSE A cV("t)

for this case. Program VARYIT may be utilized to directly compute MSE
for these networks if the parameters are assumed to be statistically
independent. If this assumption is not adequate VARYIT may still be
used to provide the partial derivative terms of Equation (2.4.5).
Once the mean square error has been obtained it becomes a fairly simple
task to compute the measures of goodness of Equation (2.4.7) for each
network.

The eight networks are easily encoded for analysis by VARYIT.
Figure 12 shows Network A of Figﬁre 11 with node numbers, element

numbers, and orientation of elements assigned according to the rules
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of Section 3.5. This information is translated to cards by reference
to Table VIII. The input data is shown in Table X where the sequence
numbers correspond to those in Table IX. This input data is typical
of that required when performing a transient time solution by inte-
gration of the state and sensitivity models. An abbreviated printed
output is shown in Table II where all elements in the network have been
allowed to vary. The standard deviation of each parameter has been
assumed to be 0.1 of the mean value. Only the portion of the printed
output referring to parameter 1 has been included. Figure 13 is a
comparison of the mean square error of the six canonic networks, A, B,
C, D, E, and F. Integration of the MSE for each of these networks
with a uniform weighting yields the following ranking of networks on a
multiparameter sensitivity basis: C (most desirable), A, E, F, B, and
D (least desirable). Figure 14 compares the best canonic network with

Networks G and H of Figure 11,

13

5.2.2 Example

In this example an impulse current driver is assumed to be present
at the input to the networks of Figure 11. The calculations of
Example 5.2.1 are repeated for this case. Table XI is the necessary
input data for Network A, Figure 15 and Figure 16 are the plots of
the output MSE for this case where the assumptions are the same as

those of Example 5.2.1.

5.2.3 Example

In this example a pole-zero analysis is made for the networks of

Figure 11, Table XII is the necessary input data for Network A. An
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SAMPLE COMPUTER OUTPUT FOR TIME SQLUTION

100

NETHWORK A

TOTAL NUMBER OF NETWORK ELEMENTS 6

NUMBER OF VOLTAGE ODRIVERS
NUMBER OF CYRRENT DRIVERS

NUMBER 0OF CAPACITANCE ELEMENT
NUMBFER QF INDUCTANCE FLEMENTS

S

NUMBER OF CONDUCTANCE ELEMENT
NUMBER QOF MODES 4

wloN—-O

S

NETWORK TWO-TERMINAL ELEMENT C
1 4 - -0~

ONNECTION ARRAY

1 2 5 -0
2 3 5 6
3 4 6 -0

ORTENTATION LIST

i 2 3 4 2 3

NUMBER OF TREE BRANCHES 3

NUMBER GF COTREE CHORDS 3
TREE BRANCHES ARE 5 6

COTREE CHORDS ARE 4 2

CUTSFT MATRIX

-1 0

1
-1 0 1
-1 0 0

NOMINAL RESISTANCE VALUE FOR E

LEMENT 1 IS 0.10000000E O1

NOMINAL RESISTANCE VALUE FOR E
_NOMINAL RESISTANCE VALUE FOR E

LEMENT 2 IS 0.20000000E O1
LEMENT 3 IS 0.33333333€E 00

CAPACITOR OR [NDUCTOR NUMBER
CAPACITOR OR _INDUCTOR NUMBER

5 VALUE IS 0.50000000F 00
6 VALUE IS 0.10000000€ Ol

LIS1 OF VARYING PARAMETERS
1 2 3 5 6

TIME SOLUTION REQUESTED

CAPACITOR OR INDUCTOR NUMBER
CAPACITUR QR INDUCTOR NUMBER

5 HAS AN INITIAL CONDITION OF 0.
6 HAS AN INITIAL CONDITION OF O,

. INTEGRATE TO T = ' 0.60000000€

01 IN STEPS OF 0,10000000E-01

WITH PREC

ISION OF 0.10000000E-06

0 SINE TYPE DRIVER
KIND POSITION ~ P

S 1 WAVE TYPE DRIV
ARAMETERS FOR DRIVER

ERS

0 1 0,00300

0.00000 7.50000

0.00000

7.50000

1.00000

SENSITIVITY INITIAL
SENSITIVITY INITIAL
‘o,

CONDITIONS ARE SUPPLIED
CONDITIONS FOR PARAMETER
0.

SENSITIVITY INITIAL
SENSITIVITY INITIAL

CONDITIONS ARE SUPPLIED
CONDITIONS FOR PARAMETER

: . 0.
SENSITIVITY INITIAL

0.
CONDITIONS ARE SUPPLIED

SENSITIVITY INITIAL
: Q.

CONDITIONS FOR PARAMETER
0'

CSENSITIVITY [INITIAL
SENSITIVITY INITIAL

CONDITIONS ARE SUPPLIED
CONDITIONS FOR PARAMETER

0.
SENSITIVITY IMITIAL

0.

CONDITIONS ARFE_SUPPLIED

SENSITIVITY INITIAL
0.

CONDITIONS FOR PARAMETER
0.




TABLE IT (Continued)
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NETWORK A

THE NUMBER OF THE VARYING PARAMETER 1S 1

MATRIX INVERSION

NUMBER OF DIMENSIONS = 1
MATRIX OF DEGREES = 1
R( 1, 1) = 0.06060° 1.0000

THE 'INVERSE OF R FOLLODWS

NUMBER OF DIMENSIONS = 1
RL 1, 13 = 1.0000
DETERMINANT 0.0000  1.0000
THE ORDER OF DETERMINANT IS = 1
MATRIX OF DEGREES = 0
n_ 22
POSITION
1 0.10000000F 01
c_21
POSTTTION
1, 1 0.
1o 2 -0.
D12
POSITION
1, 1 0.
2, 1 0.
B 12
POSITION .
1, 1 0. 0.10000000€ 01 X~
2,1 0. 0.10000000E 01 X
C 11
POSTTION
o s L -0. 0.50000000€ 00 X o
1. 2 ~0.
I AT =0. IO e
2 2 -0, 0.30000003E 01 X
— A 11 ; .
POSITION B .
le 1 . ~0.50000000F 00 X
by 2 . _ Q. e et e st et e _
2,1 0.

2s_2 .0,

=0.30000000f 01 X
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TABLE IT (Continued)

NETWORK A

NUMBER OF VARYING PARAMETER 1

THE FOLLOWING COMPOSITE MATRICES HAVE A

COMMUN DENOMINATOR = 0.

0.10000000F 01 X

COMPOSITE A MATRIX

POSITION
1,1 0. -0.50000000E 00 X
1, 2 0.
2, 1 0.
2y 2 0. -0.,30000000F 01 X
COMPDSITE B MATRIX
POSITION
le 1 0. 0.10000000E 01 X
2, 1 0. 0.10000000E 01 X
COMPOSITE C MATRIX
POSITION
ls 1 -0. 0.50000000E 00 X
1, 2 -0.
2, 1 -0,
2y 2 -0. 0.30000000€E 01 X
3, 1 -0,
3, 2 -0,

COMPOSITE D MATRIX

POSITION
1y 1 0.
2y 1 0.
3,1 0.10000000FE 01}

THE FOLLOWING COMPOSITE MATRICES HAVE A

COMMON DENOMINATOR = 0.10000000€ 01

COMPUSITE A MATRIX EVALUATED AT PARAMETER

0.10000200E 01

ROW
1 -0.50000000€ 00 0.
2 0. ~0+30000000€ 01

COMPOSITE 8 MATRIX EVALUATED AT PARAMETER

ROW

0.10000000€ O . . .

1 0.10000000£& 01
2__0,10000000E 0l

COMPOSITE C MATRIX EVALUATED AT PARAMETER

0.10000000€ 01

ROW
1_.0.50000000E 00 -0,
2 -0. 0.30000000€ 01
3 -0, =




TTUCOMPOSITE D MATRIX EVALUATED AT PARAMETER =

TABLE IT (Continued)

0.10000000E 0L
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o THE FOLLOWING DIFFERENTIATED MATRIXES HAVE A T
COMMON DENUMINATOR = O, 0.10000000E 01 X QUANTITY SQUARED
DIFFERENTIATED COMPOSTITE A MATRIX
POSITIUN
1, 1 IR L
1, 2 0.
2, 1 0.
2, 2 -0,
- DIFFERENTIATED CUMPOSITE B MATRIX

POSITION
1, 1 0.
- T 1 [

[ X T 0.
1., 2 0.
2, 1 0.
2, 2 0.
3. 1 O.
3, 2 0.
DIFFERENTIATED COMPOSITE D MATRIX
T Teosivion T
1, 1 0. o
2, 1 0.
3, 1 ~0.10000000€ 01
o THE FOLLOWING COMPOSETE MATRICES HAVE: A
COMMON DENUMINATOR = 0.10000000F 01
- __DIFFERERENTIATED COMPOSITE A MATRIX EVALUATED AT PARAMETER = 0,10000000FE 01 -
DIFFERERENTLAVED COMPOSITI AT PARAMETER = "0.10000000¢ ot
s [ et
1__0.
2 0.
____DIFFEKERENTIATED COMPOSITE C MATRIX EVALUATED AT PARAMETER = 0,10000000F QI
R{W
I o. 0.
- e B 00 e D e . o -
3" 0. 0.
DIFFERFRENTIATED COMPOSITE D MATRIX EVALUATED AT PARAMETER = 0. 10000000t 01
ROW - e
1 o,
2 o. e } .

3

0.10000000E 01
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TABLE II (Continued)

“THE FOLLOWING QUANTITIES ARE 10 BE METERED

i1
vV 2
T 2
vV 3 -
T 3
v 4
T«
v 5
T 5
vV 6
T o
TINE = 0.0003000
Vi 11 = 0.10090000F 0l _ I{ 1} = 0.10000000F 61  Vv{ 2) = 0. {27 = 0.
vi_ 3} = 0, 1 3) = 0. Vi _4) = -0,10000000E 01 Il _4) = 0.10000000E 0l
Vi 5) = 0. 1¢ 5} = 0.10000000E D1 V& &1 = 0O, TC G} = 0.10000000F 01
TIME = 0.0500009
Vi 17 = 0.106030000F O1 17 17 = 0.10000000F 01  V{ 21 = 0.973411R3F-01 1 21 = 0.48770592%-01
VO 3} .= 0.66430473E-01  1{_ 3) = 0.13929142E 00 V{ 4) = =0.114397176 01 1( 4} = 0.,10000030E 01
VI B) = 0.97641183E-01 11 B) = 0.95122941€ 00 VI ) = 0.464304736-01 I{ 61 = 0,86070858E 00
TINF = 0. 1000000
V( iV = 0.1000000BE o1 1( 17 = 0.10000000F 01 Vi 2V = 0.19032522€ 00 1( 2} = 0.95162612E-01
VO 33 = 0.86393574E=01 1 3) = 0.25913074E 00 VI 4) = —-0.127571886 01 I(_4) = 0,10000000E 01
VI 51 = 0.180326/20 00 1{ 51 5 0.90483718E 00 V{ 61 = 0.86393578E-01 1( &) = 0.74081926F 00
TIME = G L 500000
VO 1T = 0.10000000F A1 TT Ty = 0.10000000F 01 VI 21 = 0.27858414F 00 11 21 = ~0:13929207¢ 00
VI 3} = 0.1207SOL7¢ 00 I{ 3} = 0.36237051C 00 V( _4) = =0.13993743E 01  I( _4) = 0.10000000f 01
Vi 57 = 0.2785H414F 00 11 51 = 0.86070793F 00 VI 6) = 0412079017 00 ~[{ &) = 0.63762949¢ 00
TInE = 0.7000000
VE 1) = 0.10000000F 01 ~ T{ 1} = 0.10000000F 01 V{.<27 = 0.36253861F 00. 1( 2) = 0.18125930E 00
Vi 3) = 0.15039550F 20 10 3} = 0.451186H2E 00 VI 4) = =0,151293426 01 1{ 4} = 0,10000000E 01
Vi 51 = 0.36253861F 00 T{ 5) = 0.91873070E 00 VI &) = 0,150395606 00 I1({ 61 = 0.94881319F 00
TINE = 0,2500000 ™
Vi 17 = 0.1G000000F 9T T{ 11 = 0.T0000000F 01 VI 21 = 0.44239857¢ 00  1{ 21 .= 0.22119923E 00
Vi 3} = 0.17587726F D0 14 3) =  0.52763)776 00 V{ -4} = =-0.16182758E Q1  I( 4} = 0.10000000E 01
Vi 51 = 0.44239857F A0 I( 51 = 0.77T480DT2E 00 VI &7 5 0.17587726E 00 1( 61 = 0.47236823¢ 00
TIHE = 5.3000060
Vi 7S T0. 100066008 BT Tf 11 = 0.100030006E 01 Vi 3T = 0.51836370f 00 1{ 21 = 0.2591R185E 00
Ve 3) = 0.19780954F 30 14 31 =  0.59342H6LE 00 V( 4} = =0,17161732E 01 I{_4) = 0,10000000E 01
Vi ST = D.31B363708 D0 T{ 51 = 0.750818158 00 VI 5Y = 0.19780954F 00  T1( 61 = 0.40637139F 00
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TABLE II (Continued)

TME FULLONING QUARTETIES SHOULD FAVE THEIR VARERRCES CAIEILATES ™ "= 1= o o o e e

L

TVARTANCE LIST FON VARYING PARANETERS ' -
. Q4 OUOYJQDE~0) . 0p SUOVN0VNE-O) 0. R1ILEINNE-02
YARJANCE FOR Y1 &)
VINE

. LUES
0.u0UL3300 0, 10I00I30L~01 ~ 0. 10110593~ on STITIERI06R08 0. 101769 IE-01
8, 30000000° 0, 42254944€-0L__0, 12 Jel62e 1 1. 0.138507386~01 _ 0
0259999949 0, 45375841€-01 0, 1585091 4E- on 04463293296-00 0. 1678790E-01 0. 172D6143E
89999999 0, 16107209E~00__0, 49533554€=00 _ _0,093704376-01 0. 1919¢201€+00 _ 0,20200790
119999999 0.206)9460E-01 0.21065327€~01  0,214952796-01 ™ 0,2193006 16017 0,223702296-01 ~ 0.4281 61 ¥5¢
1.69999989 _ 0.43268130€-0) 0O 01 76€-01 . 261992T1E-01 O, 26600238F-0) _0,251350066-01 _0.25616603¢ -08

3
1. 79999990 0, 261021 79E-00 0, 26592030E-00 0. 27085584€-01 0, 2758223SE-00 0. 2BUNI 38060
__»_A_Ag,uwwv% _0,29084266€+01 _ 0 nsaune-ulngj 32058956€-01 _ 0,30590279E-04  0.31090045E-0)
2.39999995 0. 320823 15E-01 170, 335440388007 0. 340219406 ~01
L _2.69%99993  0,34960944€-01 _0,35621194€~ o| 0. 3SHTOTISE-01  0.36320352E-00  0,)8 1606256 -0) _

2.99999991 0, 37616200601 0. 38032056E-G) G.30439707¢- S0} "0, 38839003E-0} U,

3"
3, 20999989 0, JUyN5624E=00 0.40350490E-01 0,4070661¢€-08 0.41053985¢-0) 0.4 1392610t -0} o.tnnslu-ol
3, 5909WeT 0, 42043735€-01  0.42356332E-G1 o.ezuo;i): ou 0,42955930E-01  0.4326302F =00 YL HY R &
_3.89999980 _0.43792770L-01 _0.4605% 4957266801 0,441966020 201 0,45328464§ ~0)
T4 199999d] T0.45252978E-01  0.454703 S0839846-01 0. 440606666 -01 i
4 49999906 0,466545126-01  0.44632000E-00  0,46803612£6~01  0.469609)1(-0
©. 79949971 0.47431500E-01 TT13250E-00 0.4 T8e65706-01
5.09999967 0.4#218197€-0 0.4844374)E-0L  0,48550275€-0 S UBS2826600 0,4t 1%in/ 1 -0}
5.3999992 0.42U80698E-01) 0.&09"0“5 01 0.63225772E-0)  0.49110311t-00 0,4919)406t 0 l) 49209874 -4
L 169999957 0, 49344910E-0L 0.49617139E-00  0.49¢865536=01 _0.49553253€-00 _0,49017342¢+01 ¢ s909f~Qb

T8.99999952 T 0.49738056¢-0) 0. [ 0. 0.

Q47128655800 bt S
B.4TITSOBOE-0L  Ouwnirie -0l
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Figure 13. Mean Square Error for:Canonic Networks
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Figure 14, Mean Square Error for Non-~Canonic Networks
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abbreviated output for Network A formed by deleting the formulation
output, as well as the seénsitivities to all parameters except 1 and 2,

is given in Table IIX., The symbolg used are those of Section 2.5 and

The matrix polynomial P(s) is denoted in the output as the "transfer
function matrix." The program provides the changes in the coefficients
of the characteristic equation for this network as well as the changes
in the numerator polynomial coefficients. After the roots of the
characteristic equation are computed the real and imaginéry parts of
dsi/dp are found, The sensitivity output is that computed by Equation
(2.2.4), 1In this particular example only one driver is present and

three resistors. Thus, Eﬁs) is of dimension 3 x 1 and relates

_ - _ .
12(5) . p“(S)
IS(S) o= Eﬁs) 14(5) 22 pél(S) Ié(s) .
_V'l(S) | ] p31(5) ]

The characteristic equation zeros provide the pole sensitivities of
the input impedance, These pole sensitivities are lisgted in Table IV

for each varving parameter for the networks of Figure 11.
5.3 Illustratigns of the Use of VARNQOL

The program VARNOL has been used in the analysis of many circuits.

A few examples of the types of problems considered are discussed in
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SAMPLE COMPUTER QUTPUT FOR POLE~ZERO SOLUTION

“NETWORK A

TOTAL NUMBER OF NETWORK ELEMENTS 6

NUMBER OF VOLTAGE DRIVERS
NUMBER OF CURRENT DRIVERS

NUMBER OF CAPACITANCE ELEMENTS
NUMBER OF INDUCTANCE ELEMENTS

NUMBER DF CONDUCTANCE ELEMENTS

NUMBER OF NODES __ 4

WO N O

NETWORK TWO-TERMINAL ELEMENT CONNECTION ARRAY

14 -0 -0
1 2 5 -0 i
2 3 5 6
3 4 6 -0

_ORIENTATION LIST

1 2 3 4 2

NUMBER OF TREE BRANCHES

NUMBER OF COTREE CHORDS

TREE BRANCHES ARE 5 1
COUTREE CHORDS ARE 4 3
CUTSET MATRIX

-1 1 0

-1 0 1

=1 0 0
NOMINAL RESTSTANCE VALUE FUR ELEMENT 1 IS 0.10000000E 01
NGMINAL RESISTANCE VALUE FOR ELEMENT 2 IS 0.20000000€ Ol
NUMINAL RESISTANCE VALUE FOR ELEMENT 3 IS 0.33333333E 00
CAPACITOR OR INDUCTOR NUMBER 5 VALUE IS 0.50000000€ 00

1S 0.10000000€ 01

CARPACITUR UR INDUCTOR NUMBER

6_VALUE

LiST OF VARYING PARAMETERS

L 2 3 5 6

POLE-ZERD SENSITIVITY REQUESTED




TABLE III (Continued)
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NETWORK A THE NO OF THE VARYING PARAMETER 1§ 1
H{ 1)= ~-~0.40000000€ Ol
T W( 2)=  -0.30000000E 01
R MATRIXES FOLLOW
NO.
1
0.30000000€ 01 0.
0. 0.99999997€ 00
2
~0.59604645E-07 0.
-0. 0.29802322E-07
: TRANSFER FUNCTION MATRIX COEFFICTENT OF S TO POWER 2
O.
0.
0.10000000€ 01
TRANSFER FUNCTTON MATRTX COEFFICIENT OF S TO POWER 1~
0.10000000E 01
0.30000000F 01
0.40000000E 0Ol
L1 — —
TRANSFER FUNCTION MATRIX COEFFICTIENT OF S TO POWER 0O
0.30000000E 01
0.29999999¢ 01
0,30000000€ 01

CHANGES IN COEFFJCIENTS OF CHARACTERISTIC EQUATTON.
. \

DH( "1)=~0.
DH{ 2)=-0.

CHANGES IN NUMERATOR POLYNOMIAL COEFFICIENTS IN DESCENDING ORDER

$TT0 POWER

2
0.

o L] .
0.10000000€

ol

0.

0.

0l

Q.

0.,40000000E

0.
0.30000000E

ol




TABLE III (Continued)
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ROOT "~ 13-0.93999997€ 00+,4% 0. - "
R EVALUATED AT.Si
0.39999999E 01-0. 0. 0. T
0. - 0. 0.19999999E 01-0,
RS/TRACE OF RS o
0.66666667€ 00-0. 0. ~0.
0. ~0. 0. 33333333 00-0,
RODT — 2-~0.30000000E 01¢J% 0. T T "
R EVALUATED AT I
0.120000p0F 03-0. 0. i o,
D. _0. 0.99999999E 01-0.
RS/TRACE OF RS
0.54545455E 0004 . 0. -0,
0. =0, 0.45454546E 00-0,
7
NO. ‘ROQT REAL ROOT IMAG. REAL AND IMAGINARY PARTS OF D§¥ SENSITIVITY
1 ~0.9999999TE 00 3+ 0. ' 0. 0. [
2 -0.30000000E 0! O, 0. 0. 0. 0.
T
NUMERATOR ELEMENT 1 1
T 7 NUMERATOR IN DESCENDING ORDER T
0,10000000E 01 0,30000000E 01
CONSTANT MULTIPLIER IS 0,100000008 01
SENSITIVITY OF CONSTANT MULTIPLIER 1S 0.
NO. ROOT REAL RODT 1MAG. REAL AND IMAGINARY PARTS OF DSI SENSTTIVITY
1 ~0.30000000E 01 0. j -0, 0. =0, -7,
NUMERATOR ELEMENT 21
NUMERATOR IN DESCENDING ORDER
0.10000000E Ol 0.99999996€ 00
CONSTANY WULTIPLTER TS 0. 300G000DE 0T y
SENSITIVITY OF CONSTANT MULTIPLIER IS 0. .
NO. RUGT REAL RGOV THAG. REAL AND IMAGINARY PARTS OF DS SERSTTIVITY
1 +0.99999996k 00 J. ~0q O -0, . ~0. -
NUMERATOR ELEMENT. 3 1
NUMERATOR TN DESCENDING ORDER
.. .0.10000000E 01 0.40000000E 01 0s30000000€ O . e et e e o s e
CONSTANT MULTIPLIER 1S_ 0,10000000E 01
SENSITIVITY OF CONSTANT MULTIPLIER IS 0.1000000QE 01
. NGO, _ROUT_REAL ROQY_IMAG. REAL AND JMAGINARY PARTS OF DSI SENSITIVITY
ol -0,99999997€ 00 0. -0. -0, ] ~0. ' -0.
0. 0.

2 ~0.30000000€ 0L Q. . 0. 0.
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TABLE III (Continued)

NETRORK A THE NGO OF THE VARYIMG PARANETER 1S 2

CHANGES IN COEFFICIENTS OF CHARACTERISTIC EQUATEON,

DHY )= 0.50000000€ 00
OHt  21= 0.315000000€ O1

CHANGES IN NUMERATOR POLYNOMIAL COEFFICTENTS IN DESCENDING ORDER
S TO POWER

2

0o

0.
0.10000000& O T T

L}
~0.50000000E Q0

-0

~0.50000000E 00

-0,15000000E 01
-0.15000000E 01
~-0,849000000E 01

ROOT 1=-0.999999%7¢ 00+J* 0. ; R "

R EVALUATED AT st

0,39999999£ 01-0. 0.
0. 0. 0.[9999999E 01-0.

RS/TRACE DOF RS

0.6666666TE QU~-Q. Q. -0,
[} =0 0.33333333E 00-0.
007 2=-0,30000000E Ql+J* 0. = y
R EVALUATED AT S%
0.[20000005 02-0. 0. (B
0. 0- 0, 99999998 01-0,

RS/TRACE OF RS

0,54545455€ 00~0. . 0, =0e
De -0. 0,45454546E 00-0,
N, ROOT REAL HOOT IMAG, REAL AND IMAGINARY PARTS OF Dsl SENSITIVITY
i ~0.99999997TE a0 0. 0.3333333%€ 00 0. 0. 1666666TE 00 0,

2 -0.30000000€ Q1 0. 0,27272728€E 00 0. 0.,13636364E 00 Q.

NUMERATOR ELEMENT 1 1

NUMERATOR TN DESCENDING ORDER
Q. 1Y00000ODE 01 0.30000000F 01

CONSTANT MULTIPLIER IS 0,10000Q00E 01
N v

¥ OF CO AU =0, 00 T
NO. ROOT REAL ROOT 1MAG. REAL AND 1MAGINARY PARTS OF DS} SENSITIVITY
I ~0.30000000E 01 O 0. -0, =0, ~0.

NUNERATOR ELEMENT 2l :

NUMFRATOR N DESCENDING ORDER
G 1U00000dE 01 0.99999996E 00

CONSTANT HULilPLlEﬁ T3 0.30000000€ Q1 ’ : ™
SENSITIVIJY OF CONSTANT MULTIPL{ER IS -0,

NO. ROOT REAL ROOY THAG. REAL A ARYS OF DST SENSTYT
1 -0,99999996E 00 0. . N Q.50000000E 00-0. 0.25000000E 00 O,
—— T 7 7

NUMERATOR ELEMENT 3 1

NUMERATOR TN OESCENDING ORDER
0, 10000000E 0} 0.40000000F 01 O,30000000¢ O1

CONSTANT MULTIPLIER IS 0,10000000€ 01
SENSTTJVITY OFf CONSTANT MUYLTIPLIER IS 0,50000000E Of

NO, ROOT _REAL K001 [ﬂA&, REAL ﬂg ]HQE]?AR! PAHTS OF DS{ SENSTULVITY
1 ~0.99999997E 00 0. o 0.37252901E-07-0. 0,18626451€~-07 O,

2 ~0,30000000€ QY O. § 0,45000000€ 01-0, 0,22500000E 0% Q.
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TABLE IV

POLE SENSITIVITIES FOR CANONIC NETWQRKS

Network Parameter Number Root  Sensitivity
A 1 -1 0.00
' -3 0.00
2 -1 0.166
-3 - 0,136
3 C - =1 9.00
. : . -3 - 12.3
5 -1 ) 0.66
=3 0.545
6 =1 S '1.00
-3 1.36
B 1 -1 0.045
. : -3 0,042
2 S 0.020
-3 : 0.024
3 -1 0,126
-3 0.165
5 -1 ‘ - 0,777
‘ | -3 0.818
6 a1 0.888
: -3 . 1.09
c 1 % ) 0,00
: =3 © 0,00
2 el . 0.267
-3 R 0.319
_ =3 3.06
5 -1 0.777
| -3 . 0,818
6 el 0.888
-3 | 1.09
D | 1 el 0.045
=3 ’ - 0,042
2 -1 0.098
-3 - . - 0.088
3 -1 T 0,014
-3 o 0.019
5 -1 8 0.684
=3 - 0.588
6 -1 - 0,982
~3 1.320

"3 00 136
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'TABLE IV (Continued)

Network Parameter Numbexr Root; Sensitivity
-3 0.192
3 -1 0.047
: : =3 : - 0,064
5 S -1 0.666
' -3 0.545
6 -1 ' ‘ 1.00
. =3 1.36
F 1 . -1 .. 0,020
-3 : 0,024
2 -1 - : 0.100
=3 T 0,119
3 -1 , 0.175
=3 i 0,192
5 L 0.777
-3 . . 0,818
6 K B 0.888
-3 .. 1.09

e T g T T T g , AN 20 RS S aoru e T an g
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this section.

5.3.1 Example

A half wave rectifier and pi filter circuit shown in Figure 17 is
to be analyzed for the effects that individual parameter variations
induce in the output voltage. The diode is modeled hy use of a depen-
dent current seource in which the current is given by the ideal semi-
conductor diode equation (model f of Section 4.5), For an input
voltage of 120sin(2m(60)t) the ac steady state output voltage across
the load resistor exhibits a 0.46 percent ripple component as shown
in Figure 18,

The sensitivity models werg integrated with the initial conditions
for the nominal network set equal to the steady state ac values (e.g.,
at t = O the voltage across C2 is 17,39 volts) and initial conditions
on the sensitivity models were set equal to zero. Figures 19 and 20
present a comparison between actual changes in the output voltage with
respect to five percent changes in the inductor and load resistor from
their nominal values and changes predicted from the sensitiyity
operator (see Equation 2.3.15);N

The monotonic increase shown in Figure 20 indicates that the
sensitivity model solution has not reached its steady state value since
the filter requires approximately 0.15 seconds for transients to pass
from its solution, When the sensitivity model is integrated over such
a long period in this example, the predicted output bears little resem-
blance to the agtual output. This is due to the build up of error in
the gppfoximation method of solving the sensitivity model. Errors in

prediction of the qutput voltage for the increment in RL in this
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example did not exceed 3.5 percent of the true change over two time
cycles of the input voltage.

This example illustrates several points. First, the sensitivity
operators are very accurate prediétion tools only in the vicinity of
the time origin and it is in general, difficult tpo predict in advance
the interval over which they describe the system reasonably well,
Secondly, it was found that by decreasing the step integration size the
divérgence tendencies of the sensitivity operator solutions could be
lessened. This effect was not explored thoroughly in this study and

no further discussion will be presented.

5.3.2 Example

A third order, low pass active filter is realized when the para-

meters in Figure 21 take on the values

Rg + R1 = 0,5 (31 = 1.4’—.&
R2 = 1.0 c2 = 1,743

= '.]_‘. s pard -
Rq 0 C, = 0.kOk

with the transfer function for this circuit becoming

v (s)
0) out B . : 2
Te) = F (57 = 3 3
in

—5 ‘
s7 + 1,75w s + 2,15w 25 + W
o o o

where

W= 1,25 radians/sec.

The network may be modeled as in Figure 21(b) where the dependent
voltage driver is a linearly dependent driver with a gain of unity

(model g of Section 4.5). It is desired to evaluate the step response
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of this filter and evaluate the éffects of multiparameter element
variation. The step response is shown in Figure 22 and the variance of
this output voltage is presented in Figure 23 for four different
chaices of component tolerances, The parameter values are assumed to
be equally likely to be anywhere between the lower limit L and the
upper limit U. The standard deviation for each parameter is easily

seen to be

U =W+ MJ
L=WM-Ml

and
0= .578 M .

Four different sets of variances for the six varying parameters were
supplied as input data in obtaining Figure 23; The desigﬁer may now
directly apply his economic weighting factors (e.g., the relative
costs of capacitor and resistor tolerances) when choosing the Best set

of tolerances for his application.

5.3.3 E}ample

An analog computer compensation network shewn in Figure 24 was
analyzed for the effects of imprecise resistors and capacitors, The
high gain negative feedback in this circuit presented no prablems in
the analysis but the computer model contained a circuit of capacitors

and voltage sources when no internal resistance for the input voltage
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source was included. This problem was easily solved by including this
source resistance. The smallest time constant for the network, and
hence, the largest possible time increment for the integration, then

became highly dependent on this choice of source resistance.

5.3.4 Example

A fyll wave rectifier and half wave rectifier were used‘with the
same L-section filter circuit shown in Figure 25. It was necessary to
modify Walden's iteration procedure for the diode honlinearity to
achieve convergence in the nonlinear solution process. Instead of
using Equation (E.1.16) on page 100 of Walden's dissertation (43) for

the iterated current values in it was found to be desirable to

+1°

substitute

n+l = n n+1 n

thus avoiding the possibility of diverging from the desired solution.
The significance of this change is easily apparent by reference to

Walden's appendix.

5.3.5 Example

The transformer equivalent circuit with shunt capacity from a
transmission line shown in Figure 26 was analyzed. A saturating iron
core inductor of the type given in model b of Section 4,5 was included
and very close agreement of predicted and actual output changes were

observed.
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5.3.6 Example

A mechanical system shown in Figure 27 was analyzed by utilizing
the analogues of current and voltage. A third order nonlinear spring
was included by making use of model a of Section 4.5, Close agreement

between predicted and actual states occurred.
5.4 Conclusions

This chapter has demonstrated the application of the programs
developed during this study to sensitivity analysis of both linear and
nonlinear networks. The ease with with which a designer'can achieve
meaningful sensitivity measures for large classes of networks has been
illustrated. These measures include classical pole-zero sensitivities
and those based on the time domaipn models. The examples of Section 5.2
present sensitivity information in the form of the time domain mean
square error criteria. This measure of sensitivity may be easily
interpreted in terms of cost. Additional documentation and examples
of input data describing the examples of this chapter are included in

Appendices D and E.
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CHAPTER VI
SUMMARY AND CONCLUSIONS
6.1 Summary

This dissertation describes the research and development effort
leading to new computer methodology for system sensitivity analysis.
The motivation and primary objectives of this study are discussed in
Chapter I. The general theory of system sensitivity performance an-
alysis presented in Chapter II is applied to linear networks in
Chapter III and nonlinear networks in Chapter IV, Examplies of both
linear and nonlinear network analysis by means of the design aid
developed in this study are presented in Chapter V.

Chapter II suggests many different measures of sensitivity and
ﬁethodé of obtaining them. Deterministic and probabilistic measures
based on ¢lassical transform methods and time domain methods are
discussed. Multiple parameter variations are considered in a deter-
ministic framework, but it seems much better to treat these variations
in a probabilistic model.

One such probabilistic médel discussed in Chapter II is a measure
‘based on the expected mean square error from some desirable system
function, If a simple approximation is made, the calculation of this
measure requires statistical moments no higher than the second, This
measure had previously been. applied in the freguency domain but no

consideration was given to the implementation of the required tedious
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caleculations. By introducing the sensitivity operator model the author
has been successful in applying this mean square error measure toitime
domaiﬁ system functions.

The elements of the sensitivity operator model provide all the
information necessary for calculation of most of the frequency domain
measures discussed in Chapter II. The unifying links between these
time domain models and the frequency domain measures have been devel-
oped fully by the author.

Chapter III applies the theory of sensitivity presented in Chapter
II to a large class of networks. A program, VARYIT, has been developed
to illustrate the formulation procedure for the system state model and
its sensitivity models for varying parameters, which are allowed to
include varying resistors, capacitors, inductors, and current and
voltage drivers. The problem of formulation of these models is dis-
cussed and a new theorem is given which allows a much more efficient
aliocation of storage in the computer. VARYIT has three options to
provide either transient, impulse, oriirequency domain sensitivity
infgormation. h

As pointed out in Chapter II, the Role—zero sensitivities supplied
by this pregram may be manipulated to provide most of the standard.
sensitivity measures. A new measure implemented in this program is
the mean square error approximééion in the time domain,

Chapter IV discusses the extension and-application of the theory
of Chapter II to certain classes of nonlinear networks. A nonlinear
representation scheme based on dependent drivers and stepwise con=’
tinuous storage elements is presented. Nine different types of non-

linearities are included in the program, VARNOL, developed in this
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study to extend the capabilities of VARYIT to networks containing non-
linear elements.

Examples of the use of the new computer methodology for system
sensitivity analysis are given in Chapter V. Output curves of the
mean square error approximation are included in Section 5.2 for eight
example networks all realizing the samé input impedance. These curves
were generated by the impulse and transient solutions options of VARYIT.
Pole sensitivities are also presented for each of the example linear
networks. Several examples of the use of the nonlinear network program
.VARNOL are included in Section 5.3 along with the solutions to their

sensitivity operator models.
6.2 Conclusions

This study has aécohplished the objectives set forth in Chapter I.
A "yser-oriented" computer design tool has been developed and imple-
mented in FORTRAN language to supply accurate multiparameter sensitiv-
ity information. Many of the measures suggésted in the past may be
obtained from the program outputs by use of the links suggested in
Chapter Il. A very useful probabilistic measure, the mean square error
is calculated directly from an approximation making use of telerancing
data and the partial derivatives of the system variables.
Specific new contributions made during the development of this
design tool are:
(a) development and implementation of an automatic formulation
routine for obtaining the state and sensitivity operator
models;

(b) development of a method of solving the sensitivity operator
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model for linéar systems with impulse inputs that insures a
desired number of places of numerical accuracy between time
steps in the integration process (Apﬁendix A);

(c) statement and proof of a theorem regarding the order 6f the
system parameters in the state-space model which allows a
much more efficient utilization of computer mémory
(Appendix C);

(d) extension of Breipohl's frequency domain measure 6f“s§nsi_
tivity to the time domain with a partially”autdﬁéiéé_E;£hod
for obtaining Breipohl's measure in the frequen;y agﬂﬁih;
and

(c) implementation in a design tool of a computational algorithm
for obtaining the transfer function matrix anq i£§ ééé&;iated
pole-zero sensitivity informafion.

It should be emphasized that the primary objective in the research
efﬁpr£ was to provide the practicing engineer with a design téoi which
’he may use without acquiring a detailed knowledge of all aspects of
sensitiyity theory. He then is able to devote more of his time‘to the

creative aspects of engineering problems,
6.3 Suggestions for Further Study

There are a number of areas in which further research would be
‘fruitful and desirable. Several areaé also exist in which the capa-
bilities pof thié-design tdbgimay béwcgﬁéled with previqgusly reported
work to providé“a_ﬁbre éompgéhensi;e cépability for network analysis

4

‘and design,
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It wauld be desirable to include networks belonging to a class
larger than that implied by the model of Equation (3,2.1). The re-
striction on the existence of a tree containing all capacitors and
valtage squfces can be dropped if an individual is willing to build
additional complexity into the formulation algorithms. Additignal
capability could also be achieved if models of multi~terminal com- i:. .
ponents such as transformers and transducers were treated directly.

The mean square error in the time domain is a useful and meaning-
ful concept but many designers are more accustomed to thinking in
terms of the frequency domain. VARYIT presently provides the infor-
matipn necessary for computation of the mean square error in the fre-
queney dgmain but does not include this measure as one of its output
options, The technique for obtaining this measure is illustrated in
Section 2.5 and could easily be incorporated inta this program,
Similarly the Bode~Mason sensitivity of Equation (2.2.2) may be com--:"
puted by Ur's formula, Equation (2.2.5).

The models cepntained in the nonlinear program certainly do not
exhgust the possibilities for modeling studies. The formulation phases

may 5e used in studies to extend the types of allowable models. New
Jﬂjiﬁe#étion processes will need to be developed if the restriction on
allowable types of models is dropped. No effort has heen directed to
this goal, but the difficulties do not appear to be insurmoﬁntable.

The optimization of sensitivity measures with respect to parameter
variation should prove to be a fertile field of endeavor. This study
has concentrated on the analysis problem almost exclusively. However,
the researcher should be warned that the development of large scale

network analysis tools such as those developed in this study, is a task
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that will involve not man-months but man-years and shpuld not be

attempted unless sufficient economic resources are available,
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APPENDIX A

IMPULSE RESPONSE SOLUTION OF THE

SYSTEM AND SENSITIVITY MODEL

The purpose of this appendix is to detail a new technique for
obtaining the simultaneous impulse response solutions gf the linear
time-ipvariant state model and its sensitivity model, Consider the

linear state model

x=Ax+Bu (A.1)
y=Cx+ Du . (a.2)
bl -_—— —_——

The solution to Eguation (A,1) may be written as

t
x(t) = At x(0) + S A1) B u(d) ax . (A.3)
o .

Let x(0) = 0 and éi(t) be an m x 1 vector each of whose elements is
zero except for element i which is a unit impulse function, 8(t).

For Eﬂt) = éd(t)’ x(t) becomes

—

Ea(t) = i-th column of matrix eéﬁB (A.L)
or
x. (t) = W.(t) .
-1 —i
The solution to Equation (A.2) is then

L (t) .

Yy (t) =¢cw.(t) + D8
=i - =i - =i
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Consider now that this process is repeated for i = 1, 2, ..., m and

that the resulting solutions are arranged as follows:

(20 2,0 e 3, 0)=[e ¥, 4D 8,0 cH, 4R 8,0) 1oy, +08 (1)

- el By ]+ 28,0 800 8 1)

=Ce B +DA&t) . (A.5)

By defining'ﬂ(t) = [ii_zz ese ¥ Equation (A,3) then yields

—m

FENN|

H($) = ¢ =" B + D 8(E) . (A.6)

Thus the i-th column of ﬂjt) is the output vector of the state model
solution for a unit impulse at the i-th input. |

Discussjon will now be centered upon evaluating the changes,
_ﬂ'(t), in the impulse response matrix H(t) for a differential éhange

in the value of the parameter p. These changes can be found by

t

_,i'(t)=—-v-dp e~ B +C ™ *B + € &7 ?§_+T§?Nt) . (A.7)

Consider the augmented system of Equations (A,6) and (A.7)

H(t) c 0 oAt 0 B D
= + 6(t)
At
dC de— At dB dbD
(e ® - T U, ap
=P B(t) R+ M8(t) . (A.8)

Note that the impulse response matrix and its derivative, with respect
to p, may be calculated if the gﬁt) matrix can be found., The solution

far the matrix_g(t) may be galculated by noting that the trapsition
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. At . o
matrix e— satisfies

d At At
and, hence,
At At
d de— de— dA At

Equations (A.9) and (A.10) may be written as .-

d At A 0 At
dt -
= (A,11)
A
d_e—t dA A et
dp dap - dp
The solution of Equation (A.11) is
. [ 1r y
A -
At A a At
J . t=0
=:exp t >
deét dA deé-vt
dp ' E; A dp
i o L - = J = 'trzo_‘
where
At -1
t=0 w
and
el
e = 0 .
dp -
t=Q
Expansion of the term
A 0
t
q£ A
d =
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by the series definition of

> k
At z (At)”
e = gy
k!
k=0
reveals that
eéﬁ 0 A 0
= = -
dent At dA T
dp dp -

Thus Equation (A.12) may be inserted in Equation (A,8) to yield

HO| e o ] [o
- aw)| |- B(t) (A.13)

v | = ¢ o an

4 a -, dp ap

where.g(t) is defined by Equation (A.12). The i~th column of the

matriceslﬂ(t) andlﬂ'(t) of Equation (A,13) then provides a means of

d y(t)
finding the output Vector'l(t) and %; when an impulse function is

applied to the i~th input.

A computer program in FORTRAN IV language has been written which
accepts the linear state model and its sensitivity operator equations
as input. The output of this program is then the calculatian of the
ﬂﬁt) and|ﬂ'(t) matrices of Equation (A.13). The program does not yield
the true values at t = O due to the absence of the impulse terms.
However, at any time greater than zero the solution is corrgct. This
program is written as a subroutine for incerporation inte larger
programs of the type discussed elsewhere in this dissertation. A
flow chart of this process is given in Figure 28.

The arguments to be supplied the subroutine are as follows. A, B,



ENTER

"SET UP AAUG =

[A o]
dA
3 B

"FIND EAADT =

7

i wwrwl

SET UP CAUG:

¢ 0
[%% 9.]

—rr-

'SET UP BAUG=

YES

exp [AAUG] t a8 |
@
l _ AN '
T = 00
SET EAAUGT=Y
» . l | ‘ A T LA R ’\. 'T‘\_‘ "'V'U"
MATRIX = CAUG A M o | »
*EAAUGT EAQUGT * MATRIX
HIMP(T) = MATRIX MATRIX = EAADT
%*BAUG #EAAUGT
'CWRlTE HlMP(T)) T=T+DELT
1S T>TMAX . ‘

Figure 28, Flow Chart for Computation of Impulse Response

Solution
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and C are the matrices of the state model.qf Equations (A.1) and (A.2),
APRIME, BPRIME, and CPRIME are the differential changes in the A, B,
and C matrices. TMAX is the maxiﬁum time for which the solutions will
be evaluated. PREC is the number of significant places for which the
matrix gxponential splution.g(t) will be calculated, The other argu-

ments are explained by COMMENT cards in the pragram listing,
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DO 120 1

TABLE V-

PROGRAM LISTING FOR THE IMPULSE RESPONSE SOLUTION

- TH1S SUBROUTINE CALCULATES THE IMPULSE RESPONSE OF THE STATE MQOD-

EL AND FINDS THE SENSITIVITY MODEL RESPONSE ALSOe THIS IS DONE

BY AUGMENTING. LIOU'S METHOD 1S USED TO ASSURE ACCURACY,

A HAS DIMENSIONS II%Il, B HAS DIMENSIQNS II¥#KKs C HAS DIMENSIONS

JJ*IT.

SUBROUTINE IMPULS (AsBsCyAPRIME »BPRIME yCPRIME 3119 ddsKK 9 TMAX 4DELT
PREC)

FORMAT (10X»>5E1548/(15Xs5E1548)) , .

FORMAT (/20X%+24HIMPULSE RESPONSE MATRIX /20Xe4HT = yE1548)

REAL MATRIX

DIMENSION A(IOQIO)QB(IOleloC(IODIOJ-APRIMh(IO.lQ)abPRlMt(lO-lOlo

CPRIME‘IO’IO)oAAUG(ZO’ZUI’BAUG(20010)oMATRIX(ZQvZO).
HlMP(ZUoZU)’EAADT(ZU'ZO)qkAAUGT(ZQ.ZO)qCAUG(ZOvZO)

TIA = I1 + 1
I8 = 2 % [1
IC = 2 % JJ
T 7 0a0

SET UP AAUG MATRIX BY AUGMENTING A MATRIX NITH ARRIME MAIRqu
DO 50 I = 1911

DO 50 J = 111

IG = Il + 1

IH = 11 + J
AAUG(TeJ) s AllsJ)
AAUGLIGsIH) = All»J}

AAUG(TsIH) = 0.0

AAUG([GsJ) = APRIME(][+J)

CALCULATE THE MATRIX EXPONENTIAL FOR AUGMENTED MATRIX,
CALL MEXPON (AAUGWDELT +PRECIEAADTHIB)

- MEXPON IS A MATRIX EXPO«.NTJAL RQUTINE USING L{OU'$ TEST,

SFT UP THE CAUG MATRIX.

DO 70 1 5 1eJJ

PO 70 J = 14KK
16 = JJd + I

IH = KK + J
CAUG(TsJ) = C(1sJ)

CAUGL{TsIH) = 0.0 v
CAUG(1GsJ) = CPRIME (Isy)

CAUG (IGsIH) = CilsJ)

SET UP THE BAUG MATRIX,

DO B0 I = 111

DO 80 J = 1sKK

16 = I1 + 1

BAUG(TsJ) = B(1sd)

BAUGIIG»J) . = BPRIME(D,J}

SET EAAUGT = U,

DO 90,1 = 1s1B

DO 90 J = 118

EAAUGT{IsJ) = 040

1F (14EQed) EAAUGI(IsJ) = 140

CONT [ NUE '

SET MATRIX = CAUG * EAAUGT.

DO 110 I = 1sIC

PO 110 J = 1+18

MATRIX(1sJ) = 040

DO 110 K = 1s18

MATRIX(IsJ) = MATRIX(I.J) + CAUG(IeK) ® EAAUGTIKeJ) | 70 -7
FIND THLE IMPULSE RESPONSE WMATRIX HIMP(T) = MATRIX # BAUGe . 7 : .-
1,1C o

DO 120 J = 1sKK

HIMP({11J) = 0D

DO 120 K = LslB :

HIMP(15J) = HIMP({I+d) + HMATRIX(Is&} % BAUG(Ked)
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150

160

TABLE V (Continued)

WRITE OUT THE IMPULSE RESPONSE MATRIX AND THE CHANGES IN THE IMP=
ULSE MATRIX WITH RESPECT TO THE PARAMETERe

WRITE (652) T : :

DO 140 1 = 1»IC

"WRITE (691) (HIMP(19Jd)sJ=1sKK)

IF (T.GE.TMAX) RETURN

T = T + DELT

FORM MATRIX = EAADT # EAAUGT

PO 150 1 = lslB

DO 150 J = 1418

MATRIX(1sJ) = 0o0

DO 150 K = 1518

MATRIX(IsJ) = MATRIX{1sJ} + EAADT(IsK) # EAAUGT(K,d)
SET EAAUGT = MATRIX :
DO 160 I = 1s1B

DO 160 4 = 1,18

EAAUGT(15J) = MATRIX{]sJ)

GO TO 100

END ‘
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APPENDIX B

PROGRAM FOR FINDING THE POLE-ZERO

SENSITIVITIES

The purpose of this appendix is to describe a program which has
been written to furnish pole-zero sensitivity information for the
multivariable system desqribed by a linear time~ipvariant state model.
The relations used in this calculation are described in Section 2.5
and will not be described further here.

In the flow-~chart for this program, Figure 29, the oval shaped
symbgls signify input or output steps and are explained by COMMENT
or FORMAT statements in the listing, Gontained within the ovals for
data inputs are numbers which correspond te the "lacation in seguence"
shown in Table VI which describes the sequencing of the input data.

In an effort to make the program self-explanatory, COMMENT statements
are ingserted in the listing following Figure 29 in locations which
correspond roughly to the inputs to blocks in the flow-chart, Addi-
tional comments have been included to aid the reader ip interpreting
the‘prog#am.

The program listing is incomplete in that the subroputine that
extracts the roots of the polynomial equations in s is not included.
This subrputine, EXTRAC, is a library program for the extraction of
roots of polynomials (53). The polynomial must be of degree greater

than one and less than 100. Miller's method is used to iterate the
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(' READ DATA )
‘ T .
FIND R AND

COEFFICIENTS OF g(s)
BY FRAME'S METHOD

)

" CALCULATE P(s) =
C R(s)B + D % qls)

( STORE P(s)ON TAPE )
dh, = R, *APRIME
YIELDS THE CHANGE IN

CHARACTERISTIC EQUATION
COEFFICIENTS

"dFj s d(Mi ~hi,y D)

YIELDS THE CHANGE IN
NUMERATOR COEFFICIENTS
OF Pls) MATRIX

I

~ |EXTRACT ROOTS FOR gls) | -

< DISTINCT ROOTS
—_ EXIST

| nO

a

~ (READ BI9) FROM TAPE )

| d'. s ”F—'!—j-——F : -g-é
@ re{R(s;)) Blsid*ap

PROVIDES THE CHANGE IN

ZERO OF CHARACTERISTIC

EQUATION WITH RESPECT

TO THE VARYING PARAMETER
. -

s e e -

151

EXTRACT ROOTS FOR PUK]

Bheliian Shas

CTRACEs gL- P,

‘ o

‘ dsj

dP(OKNs.g;

dp ° TCTRACE

g 0 —

FITA N
Tfi“'! SF‘ )

' CWRITE

y

E AL

Figure 29, Flow Chart for Pole~Zero Sensitivity Program



DESCRIPTION OF INPUT

TABLE VI

DATA FOR THE POLE--ZERO SENSITIVITY

Location in

Number of

Sequence Cards Description of Contents Fortran Variables Format
1 1 Dimension of A is IQ*IQ; IQ, NOCOND, NDRIVE 1015
Dimension of B is IQ*NDRIVE;
Dimension of C is NOCOND*IQ
2 IQ Elements of A by row (one row A(T, d) 5E15.8
per card)
3 b (° Elements of B by row (one row B(I, ) 5E15.8
per card)
y KOCOND ~Elements of C by row (one row c(1,4) 5E15,8
per card)
s . NOCOND - Elements of D by row (one row X1, 4) 5K15.8
o per .card)
6 Q0 Elemonts otditfomid A by APRIME (T, 4) SE15.8
.. o roufene mporm)
. 1@ -+ ' Zlements of differsntial Bby - BPRDME (I,4) sE15.8
' ) * - powt {one row per card) ~ v
NOCOND Elements of differential C by CPRD(E (I, ) SE15.8
- ' - row (one row per card) =
NOCOND g Elcneutl of differential b by IPRIME (I,4) SE15.8
- - row {ome row per card) - : '
10 1 The nomial value of the PARAM SE15.8

parameter
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roots to an accuracy of 10”5. In order to increase the convergence
rate Newton's method is used to refine the roots to amn accuracy of

2 x 10"8, These accuracies are made possible by the use of double

precision calculation at all critiecal states (53)? The computation
for extraction of roots with this program is extremely fast and is

output limited in nature.

Whi;e EXTRAC performs its purpose admirably, the ceore storage
requirement of 10,000 words consumes almost half of the memory avail-
able for computation on the IBM 704Q and limits the maximum number of
state variables to 18, of drivers to 18, and of qutput variables to
18, These maximums may not be increased unless the pole~zero program
is broken into several phases. This problem may be somewhat alleviated
by inc¢luding a root extractor program that is more economical from the
standpeint of memory requirements.

In prder to illustrate the use of this pragram an example problem

is now considered. Let

A=]0 -1 0 B=|1 1 € =13 -1 2
- - -
1 =2 =2 2 1 2 1 1
1 0O O 3 -t
.
D=0 0 A' = |0 -0.1 0 B' = |0 0.1
0 0 0O 0.2 O o} 0
0 0 0.1 0 0 0.3 0
C' =jC =-0.1 O D' = 0
- hay
0.2 0 0 0




Then
R = 1 0 0 = 2 -1
-0 -1
0 1 0 -1 0
0 (6] 1 1 0
and
h1 = =2 h2 = 1
Note
7(52+3s
1
P(s) =
- 3 2
S + 25 - s - 2 2
7(s7+1)
and
S1 = 1 Sz =
tr_B(si) = 6 tr_g(sz) =
yields
ds ds
1 2
— . 1 —— =l
D 0.1167 s 0.25
dh
1 2
—EB- = 0,20 -E;— = 0.10
dR_1
-d—_‘g;- = -0.2 -0.1 (0]
' ) 0 o)
0.1 o0 0,2
daM am
—0 1
P - 0.4 0.2 HEB- =
0.5 0.4

= 0 (8]
%
-2 -2 0
2. 2 -1
h3 5 2 o
n
+2) 0
2(52+Sm2)
-1 S3 = v2
-2 _tr R(s.) = 3
- 3
dS.3
& = OB
dh3
"’a"‘t“l—? = Q*l#o
dﬂg = (4] 0o 0.2
A T | )
r0e2 O o
0 ‘70?2 "001
My
003 0’5 d + 2.0
‘173 003 2.4
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and for numerator element 1,1

o) -1 , 2 .
s ” =40 S 7 = 3.0 S ™ = 4,28
b b o 2
for numerator element 2,1
Ko i ’ i
s © = 5.0 S = .928 + j*135 87 = ,928 - j-135 ;
b P p
for numerator element 2,2
K 1
s ® = b0 ST = .666 s7% - L L166
p b P
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TABLE VII

PROGRAM LISTING FOR THE POLE~ZERO
SENSITIVITY PROGRAM

THIS PROGRAM COMPUTES THE TRANSFER FUNCTION MATRIX FOR A LINEAR
STATE MODELs IT ALSO CALCULATES THE DIFFERENTJAL CHANGES IN THE
LOCATION OF THE ROLES AND ZERQES DUE To QlFFERENTlAL CHANGE S lN
THE MATRICES AsBsCs AND D,

FORMAT (1H1s9HA MATRIX )

FORMAT (5Xs5E1548/(10Xs5E1548))

FORMAT {5E15.8)

FORMAT (1015)

FORMAT (1HO914X92HH(9I3e2H)593XsE1581}

FORMAT (/20X»18HR MATRIXES FOLLOW /3Xe3HNQs)

1ER  »13)

FORMAT (//20Xs51HTRANSFER FUNCTION MATRIX FQEFFICIENT OF S TO POW

FORMAT (/10X518HR EVALUATED AT SI /)

FORMAT (1HO95HROOT »13s1H=9E15e893H+J¥4E15e8)

FORMAT (//10Xs31HFIRST COEFFICIENT TOQ SMALL FOR tl}nLH’cl3)
FORMAT (//ZOX,SIHCHANGES IN COEFFICIENRTS OF CNARACTERISTIC EQUATI

10Nes /)

FORMAT (30Xs3HDH(sI1392H)=4E1548)

FORMAT ( 1495X92E156895X92E154 5-5!.251508’

FORMAT (/1HOs3HNO«s8X»9HRQOT REAL!6X.10HHOO' lMAG,Q?Xu32HREAL AND
IMAGINARY PARTS OF DSI +10X»slaH SENSITIVITY )
FORMAT (1HOs18HNUMERATOR ELEMENT +21377) 7
FORMAT (10X »29HNUMERATQR IN DESCENDING ORDER /5‘5"551508’)
FORMAT (1H1»5X)

FORMAT (5X98E1548/(10X98E1548}))

FORMAT (/10X»16HRS/TRACE OF RS /)

FORMAT (//1H »9HB MATRIX ) '

FORMAT (/10Xs30HTHE SYSTEM HAS MULT!PLE RQQTS )

FORMAT (//1H +9HC MATRIX ) '

FORMAT (//1H »9HD MATRIX )

FORMAT (1HO»65HCHANGES IN NUMERATOR PQLYNQMIAL COEFF;CIENT$ lN DE

i

1SCENDING ORDER /1X»11HS TO POWER /)

—

FORMAT (//1H s14HAPRIME MATRIX }

FORMAT t//1H »s14HBPRIME MATRIX )

FORMAT (/7/1H »14HCPRIME MATRIX )

FORMAT (//1H »14HDPRIME MATRIX ) : ,

FORMAT. (/1H »23HCONSTANT MULTIPLIER IS »E}5.8)

FORMAT. { 1H »38HSENSITIVITY QF CONSTANT MuLIlPL!ER xﬁ .Exs.a)

REAL MWK .

REAL MDCRB ,

DIMENSION POLYNM(ZO)-H(ZO)-DH(ZO) :

DIMENSION A(17.17).8(17.17).C(17,17),o(;7.11).APR1M5(17.17!.
BPRIME{17917)sCPRIME(17517)sDPRIME(1T417)0MWKE1 79170
R(17¢17:17)oDRI(17'17)’CRB(18-17-17).MDCRBIIqu79111 N

EQUIVALENCE (CRB(1s151}1sMDCRBILs1s11) :

READ THE INPUT MATRICES AS DATAa

READ (534) I1QsNOCONDsNDRIVE

REWIND & :

WRITE (651) ‘

DO 31 I = 1s1Q ‘ » . . ,

READ (553) (A(lsJ)sJ=141Q) e

WRITE (6+2) (A(T3J)sJ=141Q)

Iav = 1

DO 32 1 = 1s1Q
DO 32 J = 110
MWK (IsJ) = A(IsJ)

WRITE (6+20)

DO 33 1 = 1ls1Q

READ (5+3) (B(lsJ)sJ=1»NDRIVE}
WRITE (652) (B(I1»J)sJ=1sNDRIVE)
WRITE (6+22)

DO 34 | = 1sNOCOND



34
35
36

37

38

39

B _Xa¥al

41

60

N
N W

157

TABLE VII (Continued)

READ (593) (C(IsJ)ed=191Q)

WRITE (692) (CllsJd)esd=1lr1Q)

WRITE (6+23) )

DO 35 I = 1sNOCOND

READ (543) (D(I’J)'J=19NDRIVE)
WRITE (692) {(D(IsJ)yJ=1sNDRIVE)
WRITE (6+25) :

DO 36 I = 1»sIQ

READ (593) (APRIME(IsJ)9sJdz1l91Q)
WRITE (692) (APRIME (I9J)sJmls1Q)
WRITE (6+26)

DO 37 I = 1s1Q ' b
READ (543) (BPRIME{(I3J)sJ=19sNDRIVE)
WRITE (6492) (BPRIME(14J)9sJs1+sNDRIVE)
WRITE (6+27)

DO 38 I = 1»sNOCOND

READ (533) (CPRIME(IsJ)sJd=141Q)
WRITE (692) (CPRIME(IsJd)»d=1+1Q)

"WRITE (6928 )

DO 39 I = 1sNOCOND

READ (5353) (DPRIME(IsJ)sJ=1,NDRIVE)

WRITE (632) (DPRIME(IsJ)9sJ=1sNDRIVE)

READ (5+3) PARAM

CALCULATE THE COEFFICIENTS OF THE cnnnnc!ERlSTlC EQUATION AND
THE R MATRICES BY FRAME'S METHOD.

TRACE = 0,0

Qv = Qv

DO 41 1 =.1,1Q

TRACE = TRACE + MWK(I,I)

- HUIQV) = TRACE/QV

DO 42 1 = 151Q

MWK (Is1) = MWK(Isl) - HIIGV)

SET R(IQVsIsJ) = MWK(IsJ)
DO 43 1 = 1s1Q v ,
DO 43 J = 1s1Q :

TRUIQVsIsd) = MWKLTsJ)

F (IQVGE«IQ) GO.TQ 50

SFT MWK = A 3 MR(IOVoloJ)

DO 44 1 = 141Q B R
DO 44J = 1910 AR ST
MWK{TsJ) = 060 BT
DO 44 K = -1+1Q .
MWK(Tsd) = MUK(Tsd) + AQIsK) # Rtlov.n.41

INCREMENT 1QV

1oV = lav + 1
GO TO 40
WRITE OUT COEFFICIENTS OF THE cHARAcrealst;c EQUATION.
DO 55 1 = 1+1Q

~ WRITE (695) IsH(I)

WRITE OUT THE R MATRICES.
WRITFE (646)

DO 60 IQV = 1s10Q

WRITE (6s4) IQV

DO 60 1 = 1s1Q

WRITE (692) (RUIQVslsdVsd=m1laIQ)
DO 65 1 = 1s1Q.

H(I) = =H(I) : o
CALCULATE THE TRANSFER FUNCTION MATRIX QRB 0 D->Q
FIND CRB FOR HIGHEST ORDER S» IQ,
PO 71 I = 1sNOCOND

DO 71 J = 1sNDRIVE

(PB(lolyJ = D(lsd)
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TABLE VII (Continued)

CRB(2+10J) = 0.0

DO 70 K = 1s1Q
CRB(291sJ) = CRB(2s1sJ) + C(IsK} # B(KeJ)

CRB(2s19J) = CRBI2919J) + D(19J) * HeY)
FORM R * B » STORE IN MWK,

IA = 1Q - 1~

DO 81 IQV = 1l-IA

IB = IQVv + 2

IC = IQV + 1

DO 75 1 =.151Q :

DO 75 J = 1sNDRIVE

MWK(IsJ) = 0.0

DO 75 K = 1s1Q

MWK (T sJ) MWK(TsJ) + RIIQVeIsK) & BiKeJd)

FORM CRB = C * MWK FOR § TO ]Q=1QV+] POWER:

DO 81 I = 1sNOCOND

DO 81 J = 1sNDRIVE

CRB(IBsIsJ) = 00

DO B0 K = 1sIQ ,

CRB(IBsIsJ) = CRBUIBsaIsd) + CLIHK) % MWKIKed)

CRB(IBsIsJ) = CRBUIBsIs»J) + HUIC) * Dt]eJY

NOTE THAT CRB HAS FIRST ELEMENTS CORRESPONDING TO s RAISED 10 1Q.
NOTE THAT R(1s51sJ) CORRESPONDS TO & TO -}1Q~2 Ppwca.

WRITE QUT TRANSFER FUNCTION MATRIX,

WRITE (4) (((CRB(IsJoK)slwmlys la».J—l.noconoi.ﬁ—loﬂonlvE)

REWIND 4

DO 85 I = 15IB ; o

IA = 10 + 1 - 1 ‘

WRITE (&97) IA

DO 85 J = 1»NOCOND

WRITE (69+18) (CRB(IsJsK)oK=1oNDRIVE) = = oo it o ‘
FIND THE CHANGES IN COEFFICIENTS OF cuaaacrsn:qy;c EQUAY!ON 8y
DH(I) = R(1-1) #* APRIME. ,

DO 90 I = 1sIQ

DO 90 J = 1s1Q

MWK(TsJ) = 040 -

IF (1.EQeJd) MWK(IsI) = 1,0

CONT INUE

DO 91 I = 1,1Q

DHII) = 0.0 :
DO 92 1 = 1,1Q

DO 92 J = 1+1Q

DH(1) = DH(1) + MWK(sJ) * APRIME(JQ!!
IA = IQ - 1

DO 93 IQV = 1sIlA

IB = 1QV + 1

DO 93 I = 1s1Q

DO 93 J = 1,10

DH(IB) = DHUIB) + RUIQVsIyJ) # APRIME!J.!)
WRITE (6911)

DO 941 = 1s1Q

WRITE (6912) 1sDH(])

DH(I) = - DH(I) . C
FIND CHANGES IN NUMERATQR COEFFlClENTs.
SET MDCRB(1) = DPRIMEs S TO POWER 1Q°

DO 300 I = 1v1Q

DO 300.J = 1yNDRIVE

MNCRB(1s14J) = DPRIMF{1,J)

SET UP TERM FOR S TO POWER 1QG-1

DO 302 1 = 1sNOCOND

DO 302 J = 1,NDRIVE

MDCRB(291sJ) = 00



301

302

305

310
311
312
315
32Q
c

325
330

335

340
350

TABLE VII (Continued)

DG 301 K = 1+1Q
MDCRB(2s1sJ) = MDCRBI(Z2a19y) + CPRIME{1eK) * BiIKsJ)+ C(
BPRIME(K»J)

1K) ®
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MDCRB(2s1sJ)} = MDCRB(2s1sJ) + DH(1) * D(lv#l + Hil) * DPRIME([I+J}

SET MWK = APRIME
DO 305 I = 1+1Q
DO 305 J = 1s1Q
MWK(TsJ) = APRIME(I.J)
IA = 1Q -1
DO 350 IQvVv IoTA

IC = IQV + . .

SEFT UP DRI = DAI - DHI(I) # U
DO 310 1
DO 310 J
DRI(IsJ) MWK (TsJ)

IF (1.EQeJ) DRI(I»I) = DORILIs}) =~ DHIIQV)
CONTINUE o .

ftoun
—
-
-
[»)

SET MWK = R(I) * B.

DO 311 I = 1,1Q

DO 311 J = 1sNDRIVE

MWK(IsJ) = 040

DO 311 K = 1,1Q

MWK(IsJ) = MWK(TsJ) + RUIQVeIosK) # BiKedi

SET MDCRBI(IB) = CPRIME * MWK

DO 312 I = 1»NOCOND . -
DO 312 J = 1sNDRIVE : ‘
MDCRB{IBsIsJ) = 0.0

DO 312 K = 1»1Q

MDCRB(1IBs1»J) = MDCRB(]B, IcJ) + CPRIME(!QK}'HNK(K.J!
SET MWK = DRI # B

DO 315 1 = 1,1Q

DO 315 J = 1sNDRIVE X
MWK(TsJ) = 040

DO 315 K = 1s1Q . '

MWK(T»J) = MWK(IsJ) + DRI(IsK) * 6(&-4)

SET MDCRB(IB) = C #* MWK + MDCRB!!BI :

DO 320 I = 1sNOCOND

DO 320 J = 14NDRIVE P i

DO 320 K = 1,1Q ' ‘

MDCRB(IBy1sJ) = MDCRBUIBylsJd) + Ct;,K) . M K(K-J)
SET MWK = C * R(I) i

DO 325 1 = 1sNOCOND

DO 325 J = 1s10Q

MWK(TIsJ) = Qa0

DO 325 K = 1s1Q

MWK(TsJ) = MWK(TsJ) + CL{]eK) #* R(lOVoKQJI

SET MDCRB(IB) = MWK * BPRIME + MD(RBflUl
DO 335 I = 1+NOCOND

DO 335 J = 1sNDRIVE

DO 330 K = 1,IQ

MDCRB(IBsIsJ) = MDCRB(IBs1sJ) + MWK(IeK) % BPRIME(K,J) =
MDCRB(IB»T1sJ) = MDCRB(IBoelsd) + outxcxoptx,Ju + WLIC) *OPRIME(14J)

SET UP NEW DAI MATRIX AND STORE IN MWK

DO 340 I = 1510
DO 340 J = 1,10

MWK(TsJ) = 040

DO 340 K = 1,10

MWK(Tsd) = MWK(IsJ) + APRIMEII.K)'R(IQV.I.

CONT INUE ‘

WRITE (6924)
DO 360 IQV = 1.18B

*DR1(K +J)
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TABLE VII (Continued)

IA = 1@ - IQV + 1
WRITE (6+04) IA

DO 360 I = 1sNOCOND
WRITE(§518) (MDCRB(

THIS PART OF PROGRAM FINDS THE DSI

COMPLEX RSsSNsSR»SI

DIMENSION RS(17917)sROOTI(20)sROOTRI20)eDSI(20)

WRITE (6+017)

CALL EXTRAC (Hs1QsR
WRITE “(6917)

TEST FOR MULTIPLE R
16 = 1Q - 1

DO 95 IQV = 151G

IC = 1QV + 1

DO 95 I = ICelQ

IQVeleJ)sd = 19NRRIVE)
sROOTS+CTRACE +DS] » SENS

COTRsROOTI)

00TSe

ALONG WITH THE ROOTS

160

IF (ROOTR(IQV)oEQeROOTR(I)oANDoROOTl(!QV) EQeROOTI(I)) GO TO 96

CONTINUE

GO TO 99

WRITE (6921}

CALL EXIT

EVALUATE R MATRIX A
DO 200 IQv = 1,51Q
SR = (1e0+000) * RO
SI = (UeQy1a0)#*ROOT
ROOTS = SR + 51

WRITE (6+9) IQVsROO
SN = ROOTS
IA = 1Q -1

T ROOT IQVe

oTR(IQV) .
1t1av)

TS

SET UP CONSTANT TERM OF RS MATRIX-

DO 100 I = 1s1Q
DO 100 J = 1s1IQ

RS({IsJ) = (160406 O)
K = IA

K=K-=-1

DO 120 I = 1»IQ

DO 120 J = 1s1Q.

RS(IsJ) = R(KsIsJ)
SN = SN * ROOTS

IF (KeGTel} :GO TO 1
DO 140 I s 1+1Q
RS(IsI) = RS(Is1) +
WRITE (658)

DO 145 I = 1.1Q
WRITE (6918)(RS(]sJ
FORM TRACE.

*R(IA-IiJ)

* SN + RS(I.J!
10

SN‘

)9J=1le)

CTRACE = (0409060)

DO 150 I = 1»IQ C
CTRACE = RS(Is1) + CTRACE
DO 160 I = lelIQ

DO 160 J = 1»1IQ

RS{IsJ) = RSUI+JI/CTRACE

WRITE (6+19)

DO 165 I = 1s1Q"
WRITE {6+18) (RS(Is
FORM CROSS PRODUCT

DSI(IQV) = (0.0+060
DO 170 I = 1+1Q

DO 170 J = 141Q
DSICIQV) = RS(IsJ}
CONT INUE

WRITE (6s14)

DO 220 1@V = 1s1Q

J)’J ls IO)

)

* APRIME(Jsl) & DSINIGV) .
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TABLE VII (Continued)

SENS = PARAM * DSI(lQV)
220 WRITE (6+13) IQV-ROOTR(IQV)oROOTI(lQVl,DSI(lQV)vSENS

C MAKE USE OF R TO STORE THE TRANSFER FUNCTION MATRIX ITSELF
C SINCE R IS NO LONGER NEEDED HERE. '
16 = 10 + 1
READ (4) (((R(IoJsK)eI=131G)sJ=1sNOCOND) K71 gNDRIVE)
C FIND THE NUMERATOR ZEROES AND THEIR CHANGES WITH RESPECT TO X,

DO 600 J = 1sNOCOND
DO 600 K = 1sNDRIVE

: WRITE (6315 ) JaK ‘

c SET UP COEFFICIENT ARRAY POLYNM FOR THE JoK ELEMENT.
DO 500 1 = 1,16

500 POLYNM(I) = R(IsJsK)

" IC = 1Q
501 3 IF (POLYNM(1)eNEaOs V) GO TO 503
J1C = 1C -1
IF (IC.EQ,0) GO TO 600
IA = IC + 1
: DO 502 I = 1y1A
502 POLYNMII) = POLYNM(I+1) _ ‘
: GO TQ 501 S
c AT THIS TIME IC IS DEGREEE OF NUMERATOR TERM.

503 IF (ABS(POLYNM(1)).LT, 0.00000002) URITE 16110 ) JeK
i DO 510 1 = 2s1A . .
510 POLYNM(IY = POLYNM(I)/POLYNM(I)
POLSAV = POLYNM(1) -
POLYNM(1) = 1.0
IH = IC + 1
WRITE (6416 ) (POLYNM(!)sI 1y IH)
IF(IC-1) 600+520+530

C. . EXTRACT THE NUMERATOR RQOTS.
520 ROOTR(1) = =-POLYNM(2) R N
ROOTI(1) -= 040 3 S .
GO TO 540
C MAKE THIS POLYNM.CORRESPOND TO THE H ARRAY PREVIQUSLY.

530 DO 535 1 = 1sIC
535 POLYNM(I) = PQLYNM(1+1)
CALL EXTRAC (POLYNM.IC.ROOTR RQOII)
C RESTORE POLYNM ARRAY,
DO 536 I = 141IC
1A = IC + 2 -1
536 POLYNM({IA) = POLYNM(!A*I)
POLYNM(1) = 1.0 -
C TEST FOR MULTIPLE ROOTS
IMP = IC =~ 1
DO 537 IQV = 1sIMP
IMP1 = Qv + 1
DO 537 I = IMPlsIC -
IF (ROOTR(IQV).EQ-ROOTR(l)oANDaROOT!(lQV,.EQoROOfI(I)) GO TO 538
537 CONTINUE v

GO TO 540
538 - WRITE (6s21)

GO TO 600 . LT
C CALCULMTE THE SENSITIVITY OF CONSTANT K MULTIPLIER.
540 IANY = IQ = I1C + ] A

SENCON = PARAM % MDCRB(1ANYsJeK)
WRITE (6+29) POLSAV
WRITE (6+30) SENCON
C "CALCULATE DERIVATIVE WITH RESPECT TO $2AND SIQRE IN o
C CTRACE= JCH#MI*S*¥#(]C=1) + (JC-1)*M2%S5#8{[C-2) + aee *MIC -~
- WRITE (6+14) o
DO 6021 = 191C
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" TABLE VII (Continued)

CTRACE = (04040,0)

ROQTS = (1.000.0)*R00TR(I) + (Qe0e1«0)I*ROOTIL])

SN = (140+040)

DO 550 IA s lslC

18 = 1C = 1A 41

Qv = IA

CTRACE = POLYNM(IB) # SN % QV + CTRACE

SN = SN # ROOTS .

FORM NUMERATOR FOR NEWTON'S FORMULA. *
N = M] #S#%(1C) + M2xS5#%([JC=1} + M3INSH*(IC=2) + ooe + MIC+1l,
DN = DM1I*S##]1C + DM2#S*¥*¥(JC=1) + age + DMIC*).

SN = (140,040

18 = 1Q + 1

PSItl) = (De0s0.0)

DO 570 IA = 1,18

Iqv = IQ - 1A + 2

DSItI) = DSI(I) + MDCRB(IOV-J.K)*SN

SN = SN * ROOTS

APPLY NEWTON'S FORMULA.

DSI(I) ==DSI(I}/(CTRACE*PQOLSAV)

SENS = RARAM * DSI(1])

WRITE (6+13) I o ROOTR(I).ROOTI(I)oDSl(l)oSENS

CONTINUE v , ,

$TOP ' e T : "
END : : L i



APPENDIX C

A THEQREM ON THE DEGREE OF PARAMETERS IN

THE STATE MODEL MATRICES

This appendix develops a theorem of particulan %mportance in this-
study for decreasing computer storage requirements, One of the major
- objectives of this study was to develop a design tool with automatic
formulation and solution capabilities for beth the state and sensitivs
ity operator models. The state model formulation procedure of Section
3.3 was selected for implementation. A polynomial representation of
each state model matrix was desired to allow parameter values to be
changed witheut reformula£ion of the basic models, When polynomial
representations are used the maximum degree of the pelynomials to be
encountered becomes very important since it determines the storage

required, The following theorem is developed in this appendix.

Theorem: Consider an electric network of resistors, inductors, capaci-
Yy —r—

tors and voltage and current source elements, If there exists a tree
containing all capacitors and voltage sources and excluding all in-
ductors and current sources, then the state model of Equation (3.3.1)
is such that no element of the A, QJ QJ °r.2 matrices has numerator
degree higher than three in any parameter or has denominator degree

higher than one in any parameter.

163



164

Proof: Let an electric network N consist of resistons? inductors,

capacitors, voltage sources, and current sources such that some tree

T exists which contains all vbltage drivers and capagitors and excludes

all current drivers and inductors. The tree T is a eonnected subgraph

of the connected network graph which contains all vertices of the

graph but does not contain

or

where
S _ is the set of
SE is the set of

i h
STG is the set of
The elements not helonging

symbolized

where
S. is the set of
S_is the set of
and
S is the set of

G

conductances,

any circuits. The tree T will be symbolized

T = (el’ ea, *qey en.)

T = (8 )

c’ SE’ sTG
elements corresponding %o capacitors,

elements corresponding to voltage drivers,-and
elements corresponding to tree conductances.

to the tree T bglpng to the cotree CT

CT = (8., S )

L’ g SCG

elements corresponding to inductors,

elements corresponding to Furrent drivers,

elements corresponding to cofree

The matrix state model formulation procedure given in Figure 8 may

be developed by manipulation of the cutset, circpit and component

equations written using the tree T. Additional notation employed in

this appendix is given in Fjigure 8, If it can be shown that the
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elements of the matrix

T ~1
B [—G—T_ 233 & 533]

can he expressed as
a1p + az
b~}

rij m (C.1)
P A

where a1, az, a and a4 are independent of any singlq conductance

3’
parameter p, then the theorem will follow directly from the formulation

rules.

Consider the matrix

-1 T
G =R =-G-T+§339c§33 Y (c.2)

It will be shown first that lﬁl is a function of ne more than degree
one in the conductance variables of the network, Sepondly, the
cofactors Aij of the i, j elements of G will be shown to be likewise
functions of no more than degree one in the conductance variables.
Since

R=g‘1=

g
o,
.
| 5>

)

these two statements will imply

ap + a

= 1 2
i) a3p +oa,

is a true representation of each element.

Consider now the network N' formed from network N by removing the
current soufces and inductors and shorting the terminals of the voltage
sources and capacitors before removing them. Removing the chords

consisting of jnductors and current sources does not change the tree
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of the resulting network in any manner (44, page 16), However, the
process of shorting and removing capacitors and voltage sources does
modify the tree since the number of vertices is decreased by one for
each element shorted and removed.

The reduction process for capacitors and volpaqe spurces cannot
introduce a circuit of tree resistors belonging toe T in the reduced
network N' as shown by the following reasoning, If a eircuit of tree
resistors beloﬁging to T occurred in the network N', then in N a
circuit consisted of capacitors and/or voltage spurces ahd tree
resistors., However, since the capacitors and valtage sources belong
to T, there must have been a circuit of tree elements in N. This
contradicts the definition of the tree T. Therefare, all tree resis-
tors in N remain in the tree of N'.

In the process of shorting and removing capacitors and voltage
sources, self-loop conductance elements may bg introduceg in network
N', Resistorg contained in g‘circuit made up of one resistor and
capacitors and/or valtage sources appear in the reduced network as
self-logp elements. 8ince the capacitors and veltage sources belong
to the tree T, these self-loop elements in the redugced network must
belong to the cotree of the original network N. Alse, these elements
form circuits in N' and, hence, they belong to any cotree of N'.

Assume first that no self-lpop conductances escecur in N'. The
subgraph of N' corresponding to the tree conductance elements of N is
a valid tree of N'Tsiﬁte»iiﬁfé;cbnnectéd; contains all the vertices,
and does not centain any circuits, This tree T'! contains every tree
conductance of N and the cotree CI' contains every cotree conductance

of N, The fundamental cutset equations formulated in terms of the



tree T' are

i | -

Ly
Lea

A=z

where

23 3]

and the fundamental circuit equatiens are

T
-S
E

T
Th tri S S
e ma ces 533 and 233

1] [ g

Yea
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=0

- .

are identical to the corresponding sub-

matrices found, respectively, in the cutset and cireuit equations of

Figure 8.
B &p
yielding N',

EC for the reduced network N!

This can be seen by setting to zerp the variables J_, J

L' =D’

E_ in these equations which is equivalent to the reduction process
It should be clear that the conductance matrices ET and

are identical to those for N.

The node-admittance matrix of N!' can be written as

53]

-

S 8

e &
3

O
|
L]
[ )

L

I (c.3)
=33

But upon comparing this matrix with Equation (D.2) it follows that

g =Y.

Thus, E_is the noede~admittance matrix of the network N'.

Seshu and Reed (41, page 157) state that for a passive network

containing no mutyal inductances and no self-loop elements the node
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admittance determinant is a linear function of any parameter admittance.
Thus, for the case where no self-loops exist in N!', it has been shown
that ng is a function of no more than degree one in any conductance
variable of the network.

Consider now the cofactors Aij of the i,j-th element of the node-
admittance matrix G. Seshu and Reed (41, page 161) also show the
linear~in~any-one-parameter property of Aij' Thus, the cofactors of
the node-admittance matrix G can have degree na greater than one in
any parameter when no self-loops exist.

Return now to the .case in which self—loops‘exist in the reduced
network N'. These self-loops were generated by circuits consisting of
one cotree resistor and capacitors and/or voltage sources in the
original network N. Note that each row of the fundamental circuit
equations of Figure 8 corresponds to a circuit ineluding only one‘
cotree element and tree elements. No tree resistors exist in the
circuits corresponding to self-loop elements. Thus, in the fundamental

. . L. . T . .
circuit equation submatrix 1§, there exists a row of zeros corres-—

33

ponding to the location of each self-loop element in the reduced net-

. . T .
work. Since a row of zeros exists in -8 and a column of zeros in

33
§33 the product

T
533 &¢ 533

is independent of the self-loop conductance parameters, Also, since
the self-lopp elements belong to CT"the matrix ET is independent of
these self-loop parameters. Thus, the matrix G of Equation (€.2) is
independent of the self-loop parameters and its determinant and cofactors

are in fact of degree zero in the self-loop conductance parameters.
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Consider now deleting all self-loop elements from N' to produce
network N". Since these elements belong to the cotree CT', they may
be removed without affecting the existence of the tree T' and T' is
also a tree of network N'". 'Removai of these self-loop elements may be

performed by deleting the self-loop zero rows of E? and the corres-

33
to form §33. It is then apparent that the

B [H} §§3]

is a fundamental cutset matrix of the resistive network with no self-

ponding columns of §33

matrix A",

loops. The matrix G of Equation (C.3) including self-iaops may also

E—[A_] S O [A"JT (C.k4)

be expressed as

where EE is the cotree parameter matrix from which all self-loop con-
ductances have been deleted. The theorems of Seshu and Reed invoked
earlier may be applied to Equation (Co&). Thus, when self-loops occur
the determinant of G and its cofactors are functions of no more than
degree one in any conductance parameter in the network.

Thus, each element of the R matrix of Figure 8 may be expressed
as shown in Equation (C.1). Examination of the submatrix foymulation
rules of Figure 8 indicates that tree conductances will occur in the
numerator of the state model matrices A, B, G, and‘g with a maximum
degree of one since the incidence submatrigces and EC are independent

of tree conductances. However, cotree conductances may occur with a

maximum degree of three in the numerator. The denominator is unchanged
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by the formulation rules and, hence, the maximum denominator degree in
any parameter is one.
An alternate proof of this theorem has been suggested by

Dr. C. M, Bacon and Dr. Rao Yarlagadda. This proof uses

G = [GT §.33 EC] I =PQ .
T
S
—-33

Since ET and EC are diagonal, the matrix P is such that any one
resistor value is found in only one column. By the Binet-Cauchy
Theorem for finding the determinant of the square prodpuct of non-~square
matrices (L1, page 156) it follows directly that !QJ is a degree one

in any conductance parémeter. The Binet-Cauchy Theprem may also be
"applied to the evaluation of the minor Mij of the i,j-th element of G
by noting that this matrix corresponds to deleting row i of P and

column j of Q. The remaining statements in the proof are identical to

those above.



APPENDIX D
DETAILS OF PROGRAM VARYIT

This appendix presents in greater detail the operations described
in Section 3.5. The presentation is tabular for ease of reference.
A brief summary éf the following figures and tables follows:
(1) TFortran Variable Names and Definitions
(2) Input Data Preparation Chart
(3) 1Input Data for Time Solution
(4) Input Data for Impulse Solution
(5) 1Input Data for Pole-Zero
" (6) Time Dependent Source Parameter Definitions
(7) Output Tape Formats
A few comments should be made toc clarify the following tables and
figures. The FORTRAN variables definmed in item (1) above are only a
partial 1list of those used in the program itself. Dimensioned vari-
ables—-program lists, arrays, vectors, matyrices, and polynomial
matrices~-are indicated by NAME(I), NAME(I,J), and NAME(I,J,K). The
sequence numbers of the Input Data Preparation Chart refer to the first
column of item (3) asbove. Program decks are available from the
Engineering Computing Laboratory at Oklahoma State University upon
request. A separate addendum document containing flow charts and

listings will be furnished with these decks,
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TABLE VIII
FORTRAN VARIABLE NAMES AND DEFINTTIONq FOR VARYIT

A(I;J) -= The matrix A defined by Equation 3.2.la.

APRIME (I, J) == The derivative of the matrix with respect to the
parameter p.

A61(1), A62(1), A63(1), A64(1) -- Parameters descriting the sinusoidal

drivers (Type 6) of current or voltage.

A71(1), A72(1), A73(1), A74(1), A75(I), A76(1) ==-Parameters describing
pulse drivers (Type 7) of cerrent or‘voltage,

. B(1,J) == The matrix B of Equation 3.2, la. | ;

BOTNOD =- The second node located to which a tree element 1s incident.‘5:f, ¥

BRANCH -~ The tree element of the cutset. '  . '

BERIME (1,J) -« The derivative of the matrix with respect to the
parameter p. ’

. C(1,J) == The matrix C of Equation 3, 2 1b.

CLVALY (1) =- Vector containing the diagonal elements of the matrix OL
of Equation 3,2,
COND (1) == Vector containing the neminel_cenductance velﬁee‘fot'resieteece
elements,

1

CERIME (I,J) -- The derivative of the matrix with respect to the parameter
Po

CRDSET (1) -~ The list of elements belonging to the cotree,

CURVAR =<- Program flag to indicate that an inductor or curreht»driyetyeefieo.

D(1,J) -- The matrix D of Equation 3.2.1b, o |

DELTAT -~ The integration increment for state model‘solutiqn.



TABLE VIII (Continued)
DET (1) =-- The denominator polynomial for A, B, C, and D, ﬁatrices.
DERIME (1,J) =-- The derivative of the matrix D with respect to the
| parameter p,
ﬁ(l) == Driver vector evaluated at time T,
FLAG == Program flag generated by Phase 1 to direct MAIN 1ink of VARYIT
to proper solution phase.
FLAG10 - Program flag indicating Phase 4 of VARYIT i§ in the sensitivity
integration mode when FLAGLO = 1, |
FLAG20 ~- Input data flag to terminate "batch" problem mode of operation

and return control to system monitor,
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CL(I,3,K), G2(1,3,K), G3(1,d,K), G4(1,J,K) -- Matrices used for storing

polynomial matrices in the formulatioﬁ processes,
GNVARY ~- Variable used to store the nominal Qaiue of‘the varying conduc-
tance during formulation, '
IFLAG -~ Program flag generated by Phase 3 and utilized in the evaluation
. of matrices éc nominal values.,
INDEX1(1) ~- Row index number for a non-zero element of the cutset_Qa£fi§
5. |
INDEX2(1) <= Column index ﬁumber for é.nﬁn;éero eiement 6f £ﬁe cutset‘
matrix S, S S
INITL -~ If INITL = 1, initial conditions are supplied for the étate
model integration, |
INITL2 ~- If INITL2 = 1, initial conditions are supblied for the sensi-
tivity operator integration. ‘ ": . /
INSEN(L) -~ Alphabetic array used as flag to indicate thafriﬁitial condi-
tions.aré to bé read in for the sensitivity Operaﬁo?wgp;egrae

tion.



LABLE VIII (Continued)
INSIGN(I) -- Variable indicating the sign of the non-zero element of the
cutset matrix S which lies in row INDEX1(I) and column
INDEXZ(i)°
INTREE ~- Logical variable which indicates the varying parameter belongs
to the tree set when true. |

IPUNCH -~ Variable used as program flag to indicate the network solutions
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should be outputted on punch medium and also vwhich phases were. -

executed.,
LAST «- Program flag whose value gives information to indicate when the

final varying parameter analysis is'complete.

LCVALU(I) =- Vector obtained from CLVALU by 1ntérchahging 1nductor‘.;l‘55*

parameter values with the capacitor values.
- LCX1(1) =~ Vector containing the initial condiﬁions for the state model
integration.

* LETTIM ==~ Program flag which when equal to one indicates a state model

integration is to be performed.

LIST -~ Alphabetic variable which is used to set program flags to indicate.-

whether complete time solution is to be printed;"
LISTDC == Program flag which forces complete time solutioﬁ'fé'be printed
when its value is one.v |
LISTDR(1) =- List of element huﬁbgrs corfeséonding to d:iveis‘wﬁich are
impulse drivers, |

LTCAPT =~ The element number of the capacitor with the largest number,

o

LTCTSR == The element number of the current driver with thé_largest number,

LTINDT ~- The element number of the inductor with the largéSt number,

MAXDEG -~ The maximum number of two-terminél elements incident to anyvnpde

of the network,
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TABLE VIII (Continued)

MDET ~- The degree of the DET polynomial,

MM6(I) -- Number of position in the driver vector for type 6 drivers.

MM7(1) -- Number of position in the driver vector for type 7 drivers,

N6 -~ Number of type 6 voltage or current drivers. |

N7 ~« Number of type 7 voltage or current drivers,

NCARD =~ Symbolic naﬁe of the card reader unit.

NDRIVE «« Number of drivers present in the network.

NMETER == Number of voltage and current meters to be‘uSed in printing the
output solution, | "

NN6¢I), NN7(I) -- Number indicating which type dfiver corresponds to the

' parameters stored‘in tﬁe accompanying parametei a:tay;’

NOCAIN -« Number of capacitors and'inductors of the network. B

NOCAPS == Number of capacifors of the netﬁork. |

NOCDST == Number of elemenﬁs belﬁnging to thevselectéd cotree;

NOCLLT =~ Vafiable indicating position in the CL matrix where varying
parameter p occurs, |

NOCOND «= Number of conductance elementé of the-network; f¥}.7' N

NOCTSR =~ The number of current drivers in the network.: v‘ ' v

NODRLT «~ Number indicating position in the driver list whéré'the vdrying
parameter occurs, o ) a

NOGCOT =« Number of conductances appearingbin the catree.

NOGTRE ~= Number of conductances appearing in the tree,

NOIMP =+ Number of impulse drivefs to be analyzed,

NOINDSvp- Nﬁmber of inductors of the network.

NONODE =~ Nuﬁber of nodes of the network,

NONWEL == Number of two-terminal elements of the network.

NOPAR -~ Number of the varying parameter p.
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TABLE VIII (Continued)

NOTRST «~ Number of elements bélonging to the selected tree.

NOVISR == Number‘of voltage drivers of the netwotk.

NPLOT.P- Progren flag indicating no plot of the variance is desired if

NPLOT =

NPRINT -- Symbolic name of the printer unit,

NPUNCH == Symbolic name of the punch unitt

NS == Nnmber of‘non-zero entries in the cutset matrix S.

NTH -- The number of increments between piintouts of the metered network
variables, | |

NTIMES -- Variable indicating the total number of'sots of Vafinncés fof.‘

the varying parameters to be used in forming the variances

NTWKCN (I,J) -- Network connection array with one row for each node‘numbertfj
and element number list of all two-terminal elements
connected to each node.

NUMVAR =~ Number of parameters for which sensitivity calculations are

to be made.

NVAR -- Number of parameters allowed to vary to be uéed‘infoeiculaﬁiéh,:‘t

of the variance.

NVARY =-- Number indicating the potition in the Gy or G ﬁgﬁriées'ohgh'
the varying parameter is a rQSlotor. _'. S

ORIENT (I) -- The network elemént orientation Liot nhich lists nodes
from which elements are oriented,

PARTDR (1) =~- Array which contains the derivative of the driver vec:or )
with respect to the varying parameter p.‘: ot

PARTLC (1) -~ Array which contains ihe derivative of tho_inductor-
| capacitor vector with respect to the varying parameter p;ﬂ\
fREC == The precision limit to be used in calculation of the matrix

exponential,
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TARLE VIIT (Continued)

PROBNO (I) -~ Block of storage for user specified problem title up tov
24 characters,
$(1,J) == The cutset equation coefficient matrix S.
SAV(1,J) =~ Matrix containing one row for each varying parameter and
each column is solution at time tj to sensitivity model
multiplied by appropriate parameter variance,
T ~~ Value of timg variable during state model integration, A
TMAX -~ The maximum value of time for which the sqlutions will be found.
TRESET(1) -~ The list of element numbers corresponding t§ elements placed
in ﬁhe tree, | |
TOPNOD -- The first node located to which the tree element is incidéhﬁ;_vﬁ
VARIAN(I) == Array formed by summing columns of SAV to yield the ﬁériﬁﬁéé |
‘  of the system function for fhé multipie parameter variation -
case, o | |
VAR(1) =-- Array conﬁaining variances of each vafying parameter in sﬁme
order as VARY(I). R
VARY(1) -~ Array containing list of elemenﬁ numbers whichvgté to be uééﬁ;“
in computing sensitivity informatipn. » R
VOLVAR -- Program flag to indicate that a capﬁciﬁor or vblﬁagé driver
vary. o ‘ )
WHICH == Alphabetic variable used to store information as to whiéh of the
many options are desired, o
Y(I) =- Array which contains the complete network solytion at time T for
all voltages and currents as well as the sensitiviﬁyvoperator

solutions (see Output Tape Format),
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SEQUENCE NUMBERS

| —= 8

SEQUENCE NUMBER 9

—re o ——

DOMAIN SOLUTION

L

SEQUENCE NUMBER 10

DC AND
DC TRANSIENT | 1antiSiENT
SEQUENCE :
NUMBER 11 | = : g
SEQUENCE o , " SEQUENCE
NUMBERS : ‘ - NUMBERS
13,14 s 12,14, 17,18
SEQUENCE -
NUMBERS
12-14

| SEQUENCE NUMBER 15

NO
SENSITIVITY } SENSITIVITY

INITIAL INITIAL
CONDITIONS | CONDITIONS

SUPPLIED SUPPLIED

SEQUENCE
NUMBER 16

e
I=1,NUMVA

I

I

I

l

| o

| ARE ~ARE oy
| |

|

|

I

L R T

SEQUENCE NUMBERS
I9—~24
H‘l

Figure 30. Znput Data Preparation Chart



TABLE IX

DESCRIPTION OF TINPUT DATA FOR PROGRAM VARYIT

'QDéécfiitionrof Contents

Location in Number of Fortran Variables Format
Sequence Cards
1 1 99999 only if last problem to be done,’ FLAG20 15
otherwise blank
2 1 Identification label for problem PROBNO 4A6
3 1 Number of nodes, network elements, NONODE, NONWEL, NOVTSR 1615
voltage sources, current sources, NOCTSR, NOCAPS, NOINDS
capacitors, and inductors
4 NONODE List of elements incident at node 1 (NTWKCN(I,J),J=1,10) 1615
5 1 Liet of node numbers from which each ORIENT(I) - 1615
' element i is oriented :
6 NOCOND - N=5, Reslstance of element NO =wu.uz-: N, NO, VALUE 215, E15.8
7 NOCAIN N=6, Capacitance or inductance of N, NO, VALUE 215, E15.8
el.oment NO 1: VALUE _
8 1 N=7, Number of varying parameters N, NUMVAR 1615
1'f N=7,~Llst of varying parameter numbers N, (VARY(I),I=1,NUMVAR) 1615
9 1 Specify type solution desired: TIME WHICH A6

SOLUTLON, IMPULSE SOLUTION, FREQUENCY S

DCHMAIN SOLUTION

rag rl



TABLE IX {Continued)

Location in Dﬁumber of

Description of Contents

Fortran Variables Format
Seduence _ Cards ,., )
10 1 Specify type time solution: DC, DC WHICH A6
AND TRANSIENT, TRANSIENT
211 NOCAIN N=10, Initial condition on capacitor N, NO, VALUE 215, E15.8
or inductor NO = VALUE
12 1 N=11, Maximum solution time value, N, TMAX, DELTAT, PREC 15, SE15.8
integration increment, desired
precision
13- NDRIVE N=12, Driver NO is NTYPE driver and N, NO, NTYPE, NKIND, I2, 13, 13, 12,
: NKIND, driver parameters (see Table) (VALU(IK),IK=1,6) 7F10.5
14 1 LIST printé_éll values during;inte- IWHICH A6
gration; NOLIST suppresses printing
15 i SENSITIVITY INITIAL CONDITIONS ARE INSEN 8A6
SUPPLIED or else NO- SENSITIVITY '
INITIAL‘CONDITIGNS
16 . "NOCAIN =17, Initial condition on sensit::.vity N, NO, VALUE 215, E15.8
: - model _element NO = VALUE
17 1 ‘Number of driver posztions havlng u NOIMP 1615
impulse input
18 1 List of driver numbers with impulse LISTDR(I) 1615

inputs

NENT



TABLE IX (Continued)

Location in Number of Deécfiption of Contents Fortran Variables Format
Sequence Cards )
19 1 Prints answers at times NTH steps NTH, IPUNCH 1615
-apart; IPUNCH=1 punches out answers
20 1 Number of meters for which it is NMETER 1615
desired to punch or print answers
21 NMETER AIB=V means voltage meter on element AIB, NO Al, 14
NO and AIB=I means current meter on
element NO
22 1 Number of variance computations NVAR, NPLOT, NTIMES 1615
required, NPLOT=1 means plot variance
-at steps of NTH, NTIMES is number of -
different variance sets for NUMVAR
parameters
23 NVAR AlIB=V means variance of woltage of ‘AIB, NO Al, 14
element NO and AIB=I means variance -
of current of element NO is to be
found :
24 NTIMES Variances of elements in VARY list (VAR(I),I=1,NUMVAR) 5F15.8
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TABLE X
INPUT DATA FOR TIME SOLUTION

Sequence Number

EXECUTE THE FOLLOWING PROBLEM (1)

NETWORK A : (2)

4 6 0 1 2 0 (3)

1 4

1 2 5

2 3 5 6 A

3 4 6 _ L

1 2 3 4 2 3 ‘ (5)

5 11,0 +0 SR \

5 22,0 _ +0 S 6)

5 3 .33333333 +0 S

6 50.5 +0

6 61.0 +0 -

7 5 R TR

7 1 2 3 5 6 EERETT 1 - ‘ ﬁy~:_.(8)¢
TIME SOLUTION AR Uh S L ()
TRANSIENT . SR AR S 1)

10 50.0 +0 RS I R

10 6 0.0 +0 RS I o an

11 6.0 +0- 0,01 : +o 0. 0000001 +0 (12)
12 4 700.0 0,0 7.5 , 7,5 1.0 (13)
NOLIST (14)

SENSITIVITY INITIAL CONDITIONS ARE SUEPLIED
17 5 0.0

17 6 0.0 :
SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED
17 50,0 o
17 60,0 (15)
SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED" S P
17 50.0 | R - (16)
17 6 0.0 o
SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED
17 50,0
17 6 0.0 ERNT
SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED
17 50,0
17 6 0.0 R
5 0 9y
12 (20)
vV 1
I 1
v 2
I 2 ~(21)
vV 3
1 3
vV 4
I 4
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TABLE X (Continued)

(21)

(22)
(23)

0.04 0.,0011111111  0,0025 0.01 (24)

T T
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“TABLE XI
INPUT DATA FOR IMPULSE SOLUTION
Sequence Number
“EXECUTE THE FOLLOWING PROBLEﬁ . (1)

NETWORK A (2)
: ' (3)

(=
[
N
(=

(4)

wounun
[+

b3 - )
K | K
vo s (6)
333333 40 S

0 o i, E - ‘
+0 E t‘::bgil.g: (7)

We o
O oo

NN LI W N - N
=L OUMTWP =N PWN S
O e
[ ]

2 3 5 6 o -8
IMPULSE SOLUTION e : R C R
11 3.0 - 40 0,05 +0 0.0000001 =~ . o S (12)
NOLIST , ‘ L RE P : (14
(17)
. f: _‘ j_, o ;l‘ , :»(18)
0 A R R R R (19)
: | BESERE . (20)
1 1 , ' (22)
: , i (23)
- 0.04 ' 0,0011111 - 0.0025 .01 - (28

e O

S ——— - g g u g ™Y T i
. e



NETWORK A

o

1

Wt

N -

333333

= XK]
o e o
owtnwoo

MOV WN P D
=nounwo=pNpaLDODMAN

2 3

INPUT DATA FOR POLE-ZERO

EXECUTE THE FOLLOVING PROBLEM

+0
+0
+0
+0
+0

5

TABLE XIX
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Sequence Number

(L)
(2)
(3)

(4)

(s)
(6)

7)

(8)
9

FREQUENCY DQHMAIN SOLUTION
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TABLE XIIT
TIME -DEPENDENT SOURCE PARAMETER. DEFINITIONS
NTYPE = 6

A sinf2nf(t - T,) + §] ' t2Ty
0 ' _ : ” t<rT

Driver(t)

o

(]

1

0 => Clear previous value, then add new value,

1

-and  NKIND
| =1 => Multiply 'previous vé.lue by new value,
= 2 => Add to previous _v‘v,ablue the ‘new value,
where VALU(1) = A oVALY(3) =Ty
VALU(2) = £ - VALB(H) = ¢

o

e =0 osgtgm

_,=f§‘ o (Tifrz)g.tg_(wl¢r ’+T)

=A6[1___,1_‘.£__2]' (T+T+T)<t<(T1~T+T*T)

[}
- ©

(Ty +T, +7T +T,) St <t

3 5.

and NKIND = 0 => Clear previous value, then add new value.
=1 => Add to previous value the new-va.lué, .

=2 => Multiply previou; value by neﬁ v;ii\ie, »

where ‘VALU(l) = Tl : . VALU(Y) = T,
VALU(2) =T, VALU(S) =T,
VALU(3) =T VALU(6) = A

3
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TABLE XIV

OUTPUT TAPE FORMAT

Time Solution Impulse Solution
Each record consists of Each record consists of
T,(Y(I), I=1,2%NONWEL) T, J,(Yg(1), I=1,4%NONWEL)
where : where '
N 7 ‘ K o
Y = JL NOINDS » J = Number of driver in
Cotree . impulse list
Ic NOGCOT -
¢ . Currents : Yé'= Y
I NOCTSR ' N B \
, Y
EC NOCAPS .
" Tree
A NOGTRE o
G Voltages
v NOVTSR ‘
Ep, NOINDS B
; Cotree
Vee NOGCOT
1 Voltages
vl NOCTSR '
Ic NOCAPS .
Tree
1, NOGTRE
%6 Currents
Iv NOVTSR




APPENDIX E
DETAILS OF PROGRAM VARNOL

This appendix presents in greater detail the operations described
in Section 4.5, Since VARNOL uses phases 2, 3, and 7 of VARYIT and
much of phase 1, most of the FORTRAN variables are common to both
programs. The main differences in input data are due to the presence
of nonlipear elements which must be described. The types of dependent
drivers and nonlinear storage elementé which are allowed are shown in
Table XV where the parameters for each source are related to the input
data of Table XVI,

Program decks for VARNOL are available from the Engineering
Cémputing Laboratory at Oklahoma State‘University upon request. A
separate addendum document containing flow charts and listings will

be furnished with these decks.
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TABLE XV
NONLINEARITY REPRESENTATIONS INCLUDED IN VARNOL
Type 1 e
, 2 3 4
. Dyiver (t) =A0*A1 Yk*Az Yk+A3 Y.k+A4Yk
vhere Yy = Voltage or current through»element number k.

NO = Element number of dependent source being described
as dependent on Y .

NTYPE = O Test value for convergence criteria 1s formed
: by using Y. : . :

i
b

Test value for convergence criteria is formed
by using |9t - - ,

NKIND = 0 Test value for eonvergépee eriteria iS-ﬁhéhbnéed_
: in sign, o o S R O

=1 Test value for convergence criteria”ie‘ehaﬁgédeg‘
in sign. LT o R A

\'s Yk is the voltage across element k

L

‘AMPS

1]

1 Yy is the current across element k.
NTEST = Element number k. -
VALU(1) = A

VALU(2) = A

VALU(3) = A,
VALU(4) = A,
VALU(5) = A,

DELTAQ = Startlng 1ncrement for parameter changes during
convergence testing. . v

~Type 2

This driver option is currently not used.
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TABLE XV {(Continued)

Type 3

= 2 3 2 2
Dxiver (t) [} Yot AN Y AT #YA4Yn AT Y ¢ AT Y+ AYo
2 3 m ‘
T AgY Y T AgYy Y, +B
where Y = Vbitage or current through element number k

NO = Element number of dependent source being described
as dependent on Y, and Yo

for card-1
AMPS =V Y is the voltage across element n,
=1 Y is the current through element n,

NTEST = Element number of‘elementfp;”

VALU(1) = Ay
(VALU(2) = A,
VALU(3) = Aq
VALU(4) = A,
VALU(5) = Ag

for card 2
AMPS = V Y, is the voltageeacioss elémenﬁﬂm.
=1 Y is the current through element m.

NTEST = Element number of element m.

VALU(1) = Ag
VALU(2) = A,
VALU(3) = Ag
VALU(4) = Aq

L}
o o)

VALU(5)
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TABLE XV (Continued)

bYk
Driver (t) = Is(e - 1)

- where Yk = Voltage or curfeht through eiement number k.,
NO = Element number for source being described by
exponentially dependent driver.
AMPS = V Y, is the voltage across element k,
=1 Yy is the current through eiement k;
NTEST = Element number k - -

VALUGD) = I,

‘ VALU(2) = Incremént to_be used’gﬁ'iﬁeratién for'convgrgence.

"b" is held constant at 38.5,
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TARLE XV {Continued)

Type 5
Driver (t) = A\Y, + A, | W x
= AgY) * A, Y < X
with
ME) Ay = AKy A,
NO = Element number of source being described by the
piecewise continuous model. ,
AMES = V Yy 1s the voltage across element k,
=1 | ¥y is the current acroés element k,
NTEST = Element ﬁumbgr k. |
VALU(L) = A;
VALU(2) = A,
VALU(3) = A3
VALU(4) = Ay
VALU(5) = Xl

Type 6

This driver is the same as that of Figure E,2,

‘Type 7

This driver is the same as that of Figure E,3.
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TABLE XV (Continued)
Nonlinear Storage Elements
Two types of nonlinear storage elements are present. They are distin=

guished by the variable TYPELC.

TYPELC =

Iron Core Inductor Model

c2 ’Ij wl Y-}
= ome——=s | A+ 2B tan
Yl"-:+c2 o

where L is the value of the storage element.

NO = Element number of storage element being described
by this model. .

AMES =V Y, is voltagejeerbss:eiement k,ﬁ
=1 Y, is curreﬁt aefeee element k;-'"
NTEST = Element‘number k,‘.‘ e
VALU(I) = A
VALU(Z) = 2B
VALU(3) = C
VALU(6) = 1.0



vhere
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TABLE XV (Continued)”
TYPELC = 0,0

Polynomial Dependency Model

Lor C = Ay + Ay + Ag¥2 + A,¥D + ,A5Yf;

Lor C is

NO =

AMPS =

NTEST

u

VALU(1)

VALU(2)

VALU(3)

VALU(4)

VALU(5)

il

VALU(6)

the value of the storage element,

Element number of storage element being described
by this model. ' R

VY, is the voltage across element k.

I Y is the qurrehtvthrgugh.elemeht k.

Element number lk,




FOR PROGRAM VARNOL.

FORTRAN Variables

Location in Number of Description of Contents Format
Sequence Cards
1 1 Identification label for problem PROBNO 446
2 1 Number of nodes; network elements, vol- NONODE ,NONWEL ,NOVTSR 1615
tage sources, current sources, capaci- NOCTSR ,NOCAPS ,NOINDS
tors, and inductors . . :
3 NONODE ~ List of elements incident at node I (NTWKCN(I,J),J=1,10) - 1615
4 1 List of node numbers from which each =~ (ORIENT(I),I=1,NONWEL) 1615
"element L is oriented. - R
5 NOCOND  Resistance of element NO is VALUE - NO,VALUE 15,E15.8
6 NCCAIN Capacitance or inductance of element *ii;?'“'*L?ﬂN05VALUE' 15,E15.8
NO is VALUE ' L :
7 1 Number of varying parameters -  NUMVAR 15
-1 List of varying parameter numbers (VARY(I),I=1,NUMVAR) 1615
8 N1,N2,N3,N4,N5

Number of type 1 through 7 drivers and
number of dependent lnductors and >

capacitors

- N6,N7,NODEEL

1615



TABuE XVI {Continued)

Location in

Description of Contents FORTRAN Variables

vNumber of Format
Sequence Cards
' N=1, Element number, class, and kind = - N,NO,NTYPE,NKIND 1615
of source - . ‘ o
"AMPS=1 means this source is depen- AMES,NTEST,(VALU(IK),JK=1;5)‘ Al,14,5E15.8
. dent on current through element NTEST; : - ' :
9 . N1 - AMPS=V means this source is depen= -
dent on voltage through element NTEST;
VALU is parameters for this type of
driver - -
N= =1, startxng increment for convergence N,DELTAO 15,2F15,8
test : o
N=3, Element’qumber.for'type 3 source . N,NO 215
Same as sequence number 9 and conta.ins AMPS ,NTEST, (VALU(IK),IK=1,5)  Al,I4,5E15.8
10 - N3 parameters A; through As : :
Same as sequence number 9 and contalns AHPS,NTEST,(VALU(IK),IK=1,5) Al,I14,5E15,8
parameters A1 through Ag o ' :
_ . - N=4, Element number for type & source . “N,NO 215
11 N4 RN ' " _
: Same as sequence ‘number 9 AMES NIEST, (VALU(IL) IK=1,2) Al,14,2E15,8
L . i '.N=5,‘Element'number'for tfpeeS’source. E ' N NO ' '215>
12 N5 v : ' . : )
‘ Same as sequence number 9 _,AMPS NTEST, (VALU(IK) IX=1,5) 'A1,14,8E15.8

e T



TABLE XVI (Continued)

Location in Number of DescfiptionkbthdnEents FORTRAN Variables Format
Sequence ~_Cards e esen e , .

13 N6 N=6, Element nunber for type 6 driver, N, NO,NTYPE, (VALU(IK), 315,6E10.4
kind, parameters for this type driver -IK=1,4) :

14 N7 N=7, Element number for type 7 driver, NyNONTYEE, (VALU(IK}, 315,6E10.4
kind, parameters for this type driver IK=1,6)

15 NODEPL  N=8, Element number for dependent capac-N,NO,AMPS,NTEST,(VALU(IK),  2I5,1X,A1,13,
itor or inductor, remainder similar to IK=1,6) ‘ 6E10.4
sequence number 9 '

16 Variable Element number NO has initial value DV ~NO,DV 15,F15.8

17 1 Blank card signifying end of initial NO,DV 15,F15.8
driver values (Insert only if sources
exist).

18 1 N=12, Numerical convergence criteria EPS N,EPS 15,F15.8
for dependent sources (Omit if no
dependent sources exist).

19 1 N=13; LETTIM=1 implies only transient N,LETTIM,LISTDC,LISTT 415

solution desired; LISTDC=1 implies
printing complete solution at each
instant of time; LISTT=1 implies a
listing of convergence criteria as
iteration proceeds.

JET



TABLE XVI (Continued)

value DV (Omit if INITL#1)

. Location in Number of Description of Contents FORTRAN Variables Format
Sequence Cards
20 1 N=14, maximum time and increment for N,TMAX,DELTAT I5,2F15.8
integration (Omit if LETTIM#1)
21 1 N=15, INITL=1 implies initial condi- N, INITL 215
tions are supplied for capacitors and
inductors (If NOCAIN=0 skip to sequence
number NOTE).
22 NOCAIN N=16, Element number MO has initial N,NO,DV 215,E15.8
' value DV '
1 _N=17, INITL=1 implies initial condi- N, INITL 215
tions are supplied for capacitors and
23 NUMVAR inductors for sensitivity integration
NOCAIN N=17, Element number NO has initial N,NO,DV

215,E15.8

'NOTE: The date for the output phase should be prepared as Sequence Numbers 19 to 24 in Table E,2.

Q6T
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