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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

As society has become more complex, it has become more difficult 

to fulfill its needs and desires with simple, unsophisticated machines 

and devices. Engineering systems have become so complex that in many 

cases engineers are unable to predict thei;r perf.ormcj.nce by "pencil and 

paper" methods. Indeed, in these cases the pro9ess of converting a 

physical system description to a mathematical model for analysis can 

easily occupy the total available time and capability of the practicing 

engineer. This mqdeling process usµally consists of: 

(a) selecting the major functions to be modeled; 

(b) isolating individual copstituent parts or components if 

possible; 

(c) constructing a mathematical model for each component which 

adequately describes it in terms of its system performance; 

anq 

( d) fonnulating the system of equations comprising the ma the-, ·· 

matical model for the complete physical system from the 

component models and their interconnections. 

After the model l;las been formulated, much of the remaining analysis 

and design effort is delegated to automatic computing machinery. At 

present. the potential of analog and digital computers for freeing the 

1 
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creative talents of scientists and engineers from tedious analysis pro­

cedures appears to be virtually unlimited. The advent of computers and 

their widespread availability has already provided engineers with more 

time for conceiving and developing new systems of interconnected com­

ponents. However, more efficient, accurate algorithms are needed to 

accomplish a "total system analysis" including the formulation of the 

system mathematical model, its solution and direct evaluation of per­

formance data for use in design, 

The celebrated Heisenberg "uncertainty principle" suggests a 

theoretical limit on the accuracies with which measl)rements may be 

made. Even though unlimited resources and time are made available for 

construction of physical systems, it is impossible to·realize and 

verify exact parameter values. It thus becomes important for engineers 

to consider the effects which imprecise parameter values manifest on 

the performance of physical systems. Large amounts of engineering 

effort are expended in predicting these effects from mathematical 

models of the systems under consideration with the object of selecting 

systems which exhibit acceptably low levels of dependency on the lictual 

parameter values. 

Quit!:! often the designer must set tolerances during design pro­

cedures and he is thus placed in the untenable position of specifying 

tolerance limits without the required skills or time to analyze the 

system for parameter variatipn. Often he resorts to the extreme of 

over-specifying parameter tolerq.11.ces, i. e, he requires a o:ne percent 

value where a ten p~rcent value would have been quite acceptable. This 

may be disastrous since the cost of components tends to increase ex­

ponentially with the decrease in tolerance limits. 
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Extensive literature exists on the problems of analyzing parameter 

variation effects and synthesizing systems less sensitive to parameter 

variations. The common theme throughout this literature is the notion 

of partial derivatives or derivatives of system variables with respect 

to the parameters that vary. In spite of the extensive literature 

available, sensitivity analysis remains a difficult, time consuming 

task for the practicing engineer. Algebraic difficulties are encount­

ered in all but the simplest problems, and in order to save time the 

engineer normally must choose a single criteria of sensitivity ignoring 

the multitude of other suggested criteria. Thus, it seems highly 

desirable to attempt to provide new methodology in sensitivity analysis 

to improve the designer's capability in tolerance specification. This 

dissertation reports on research undertaken to provide this new method­

ology in the form of a computer-aided design tool. 

1.2 Scope of Study 

The primary objectives of this study are: 

(a) to survey the impovtant concepts and techniques of sensi­

tivity theory and to identify those common characteristics 

of significance in the development of a truly general design 

tool; 

(b) to investigate the application of some well ~nown numerical 

tec,hniqµes to sensitivity studies; and 

(c) to develop a design tool, capable of supplying most sensi­

tivity measures with a minimum of engineering effort~ 

Chapter II introduces the most widely used definitions of sens:t­

tivity and interrelates them. Sensitivity models useful in the 



classical trans;fonn domain and the time domain are presented. l'rob­

abilistic and,dete:i;-ministic sensitivities are considered as are single 

parameter and µml ti-parameter sensitivities. Important relations 

between c~rtain o;f these sensitivities are cited which provide a basis 

for the ~omputational algorithms to be implemented in the design tool. 

The state-space model was selected as the basic system description 

for the following reasons: 

(a) the state variable method is extremely general anq is capable 

of dealing effectively with time varying systems and non­

linear systems; 

(b) the problem of formulating the system of first order differ­

ential equations in vector form is mainly topological in 

nature anq may be easily accomplished on the computer. The 

formulation rules may be stated very concisely and method­

ically by use of linear graph theory and are applicable to a 

broad class of electrical and non-electrical lumped-parameter 

systems; 

(c) solution techniques for both linear and nonlinear models may 

be implemented efficiently on the computer; and 

(d) as will be shown, the state sensitivity model may be formu­

lated directly from the state-space model and its solutions 

p;rqvide th!=! derivatives with respect to parameters which are 

SQ crucial to sensitivity analysis. 

In order to ~ccomplish the objective of providing a useful day-to­

day design tool, it is necessary to generate a computer program capable 

of providing the desired information for decision-making in the design 

process. Kuo (1) st~tes that general analysis programs should be 
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capable of steady-state de and ac anFl-lysis as well as transient 

analysis. Such programs should possess the following desired features: 

(a) the program should hav~ a convenient, simple input language 

to pescribe the system element types, their associated 

parameters and their interconnected pattern in the system. 

(b) The ideal program should be able to handle a wide class of 

models ot physical devices with a capability of changing 

not only parameters of a device but also its topological 

model. 

(c) It is desirable to be able to deal with nonlinearities in 

either piecewise line~r form or by means of a specified 

mathematical function. 

(d) There should be a large number of output options in a compact 

format. 

(e) There should be some feature of automatic parameter modifi­

cation for sensitivity, tolerance and worst-case studies. 

(f) The program shQuld contain error checks an the reliability 

of the output. 

The research and development activity presented in this disser­

tation has produced two programs capable of handling linear and non­

linear s:ystems which include the above features. These programs are 

~mplemented .in FORTRAN to facilitate their implementation on different 

computers with 0 batch11 processing mode of execution allowed. The ~ .. 

l:inear program, descril;>e,d in Chapter III, will evaluate single and 

multi-parameter sensitivities as well as a probabilistic measure in 

the time do~ain. Pole-zero sensitivities are also readily available 

as outputs. Chapter IV Qescribes the nonlinear program and the v1;trious 



types of nonlinearities that can be implemented. Chapter V presents 

several practical examples of both linear and nonlinear systems to 

illustrate the broad capabilities of the design tool. A summary of 

the disser~~tion is given in Chapter VI together with some conclusions 

and sugges~ions for further stud~. 

The appendices provide developments of a detailed nature not 

suitable for inclusion in the main body of the dissertation. Appendix 

A describ~s a new technique for obtaining the simultaneous impulse 

solutions of the linear time-invariant state model and its sensitivity 

model. A program for furnish~ng pole-zero sensitivity information for 

a m4lti-variable system described by a linear time-invariant state 

model is presenteq in Appendix B. Appendix C states and provides 

proof for a theorem that is used in the development of the design tool 

programs in order to decrease the required computer storage. These 

programs are documented by Appendices D an,d E for the linear program 

and the nonlinear program, respectively. 

6 



CHAPTER II 

SENSITIVITY ME~SURES AND THEIR EVALUATION 

2.1 Introduction 

The purposes of this chapter are twofold: 

(a) to present the fundamental concepts of sensitivity theory 

and to identify those characteristics common to the many 

sensitivity measures; and 

(b) to introduce the notion of the sensitivity operator and to 

demonstrate its usefulness in the evaluation of a wide 

variety of sensitivity measures in both the time domain 

and the frequency domain. 

This chapter pr,ovides the analytical foundation for the development of 

the computer progrj:Ulls discussed in Chapter I II and Chapter IV. 

In the process of performing a sensitivity analysis, the first 

problem to be resolved is the choice of a sensitivity measure or 

qefinition. This chapter desc;:ribes many of the measures th~t have been 

suggested in the literature. The author's intent is not to a~vocate 

any particular sensitivity measure or definition as being superior to 

the others. Instead a useful design tool has been developed that is 

capable of providing many of the definitions discussed. Thus, the 

practicing engineer can use the definition best suitin1:1 his particular 

problem. 

7 
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Section 2,2 presents definitions of sensitivity that are based on 

transform models. Classical deterministic frequency domain definitions 

are presented c;ts well as some probabilistic measures. In Section 2.J 

the sensitivity operators are introduced, their form derived, and 

methods pf obtaining time solutions for general and impulse drivers 

are discussed. An example is included to illustrate the meaning of 

these operators~ The general form of useful sensitivity measures that 

make use of these operators is presented in Section 2.4. Deterministic 

measures and a measure based on the mean square error due to component 

variation are presented. This measure m~y be applied in either the 

frequency or time domain. In Section 2.5, the fundamental relation-

ships between the time domain c;tnd frequency domain linear models are 

discussed. A method of finding the pole-zero sensitivities is pre-

sented and extensions are made which are useful in obtaining other 

standard sensitivities. 

2.2 Frequency Domain Sensitivity Analysis 

In the past many measures of sensitivity have been suggested. 

A large number of these measures are defined by the manner in which a 

system transfer function changes as one or more parameters vary. 

The b~sic idea of single element sensitivity was first fprm~lated 

by Bode (2). He defined the complex number 

8
T(jw) 
p (Bode) -· [

d('.~ T( jW) )J-i 
d( dnp )' (2.2.1) 

to pe the sensitivity of the transfer function T(jw) with respect to 

the varying parameter p where Wis the radian frequency. Mason (J) 
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took the reciprocal of Equation (2.2.1) to define sensitivity in the 

study of feedback theory as 

d(Qm T(jw)) 
d(Qmp) (2.2.2a) 

This definition of sensitivity is by far the most commonly used one 

for ;linear system$. By noting that for differential changes in p the 

sensitivity of Equation (2.2.2a) may be given as 

8
T(jw) p•d;'[Qm T(jw)] 

::: 
q.p p 

then 

8
T(jW) dA(W) 

+ jp 
d Ph (w) 

= p 
dp p dp 

where 

A(w) = Qm IT(jw) I 

Ph(W) = Arg T(jw) 

The Mason sensitiv:i,ty of the attenuation characteristic is 

8A(w) = 
p 

p • d A(w) 
A(w) • dp 

Re [s;(jw)J 
A(w) 

Similarly the Mason sensitivity of the phase ~haracteristic is 

Im [s;(jlu)J 
Ph(UJ) 

(2.2.2b) 

(2.2.2c) 

A large class of system functions are bilinear functions of the 

parameter p. These system functions can be expressed as 

T(s) 
N1(s) + p N2(s) N(s) 

= D
1
(s) + p D

2
(s) = D(s) (2.2.3) 

where N
1
(s), N

2
(s), D

1
(s), and D

2
(s) are funcU,ons of the ce>mplex 
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variables and are independent of the parameter p. For these functions 

Equation (2.2.2a) can ~e written as 

and 

s'l'( jw) 
p 

dA(w) 
dp 

d Ph(W) 
dp 

D
1

(jw) 

;:: I) (jw) 

N
1 
(jw) 

N (Jw) 

[
N2 ( jW) D2 ( jW)J 

Re N (jw) ,... D (jw) 

[
N 2(jw) n2(jw)J 

Im -N ( jw) - D (jw) . • · 

These formulas can be used to facilitate calculation of the 

sensitivities, 

As an alternate means of cpnducting frequency domain sensitivity 

analysis, the notion of pole-zero sensitivity has been developed. This 

sensitivity is very useful when dealing with poles and zeros-near the 

jw axis. Work in this area has been performed by Papoulis, Truxal, 

Howowitz, Ur, Calahan, and Huelsman, to mention only a ;few (4, 5, 6, 7, 

8, 9). 

Consider the zero sensitivity first and let the system transfer 

function have the form 
n 

K rr (s - z.) 
0 

i=1 
1 

T(s) 
m 

1T (s - A.) 
j:::1 J 

where K is a term depending only on p. Then by qefinition, the zero 
. 0 

sensitivity with respect top is 

z. 
s 1 

p 

dz. dz. 
1 1 

= -d ..... (fm_p..,..) ::: P ¢IP (2.2.4) 
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The pole sensitivity is similarly defined. These definitions of pole 

and ~ero sensitivities are usec:l rather than a percentage change in the 

location of the pole or zero as implied by Equation (2 •. 2,2a) because the 

poles and ze:ro~ may· occur at the qrigin. For bilinear system func±'ions 

Equation (2.2.4) takes tbe well-known form 

z. 
s l 

p 

··-'-P. N (s) 2 . 

N(s)/{s-z.) 
J. 

S=Z. 
l 

The relation between the classical sensitivity of Equation (2.2.2) and 

that 

where 

of Equation (2.2.4) was shown 

m ""-i 

8
T(s) !~~!' s 

_.p 
c L p s -

.{,c1 
"-.e, 

K 
s O = ,P 

p 

by Ur 

n 

- I 
j=1 

dK 
0 

dp 

(7) to be I 

z. 
J s 

1 
K 

p 0 
+- s 

s - z. K p 
J 0 

(2.2.5) 

The resul ts . .,ci ted above are applicable only when single parameter 

variation is assumec;l. liowever, the sensitivity analysis of practical 

systems must allqw consideration of multiparamet~r variation. For 

example, it is important for the designer to know whether the separate 

influences of several parameter changes on the system function tend to 

1=1,dd or cancel. To take this phenomenom into account several multi-

parameter sensitivity measures bave been introquc.ed. 

Goldstein and Kuo (10) extended Mason's definition of single 

element parameter sensitivity to the multiparameter case. Let 

T(s, x
1

, x
2

, ••• , xn) be a function of n parameters x
1

, x
2

, ••• , xn, 

wheres, the complex frequency, is considered as a fixed variable. 

Then the multipar;:uneter sensitivity ~Tis given by 
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ST =. ~0n x PmT(s,x11 x 2 , ... , x ) 
n 

[d(0n.T) d( 0nT) d(0n. T) J - d(~m x
1

) q. ( 0n :i~) d(0n. x ) . 
n 

[sT ST s:] 
x1 x2 n 

For this definition of multiparameter sensitivity, the nonn of the ST 

vector is given by 

(2.2.6) 

where ST means the complex conjugate transpose of ST. I lsT 11 defines 

the maximum rate of change of (~ T) with respect to the ( 0n x.). This 
]. 

measure of sensitivity combines the phase apd attenuation information 

into one number for the desig~er's consideration. If Equation (2.2.6) 

is evaluated for s = jw, ~oldstein and Kuo's definition of multi-

parameter sensitivity reduces to that suggested by Calahan (11). 

However, Calahan points out that by applying Equation (2.2.2b) the 

measure of the sensitivity of the magnitude characteristic is the 

vector norm 

I !Re (~T( jw)) 11 2 
x. 

l 

and a measure of the sensitivity of the pha~e characteristic is 

(2.2.7a) 

(2.2.7b) 
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The measures of Equations (2.2.6), (2.2.?a), and (2.2.?b) are useful 

only when the parameter variations are small. This definition also 

assumes then parameters of T vary independently. 

In order tp study dependent parameter variation, the concept of 

the "sensitivity group" has beep developed by Lee (12). The basic 

idea is to study the system first in order to identify any parameters 

that vary dependently with respect to the system function. If any 

parameters are found that satisfy this and certain other criteria, 

these parameters are members of a sensitivity group. Lee's method is 

restrictei:I to passive RLC networks and requires differentially small 

parameter variation. The notation of this method is rather cumbersom 

and for this reason is not included here. The interested reader should 

refer to the original thesis. 

Hakimi and Cruz (13) allow non-differential parameter variations 

and circumvent th1:1 independent variation problem by defining the multi-

parµrneter sensitivity tp be given by 

8
H(s) 

max 

1<i<n 

where 

8. is the per un;i.t tolerance on the parameter x., 
l l 

I;. is the per unit varic1-tion of x. from its nominal value, 
l l 

H (s) is the system function evaluated at the nominal values 
n 

of the parameters xi, i -·· 1, 2, • e • ' n, and 

6H(s) ::: max [H( s )] ... min[H(s)] for all l)OSSible values of 

xi, i"' 1, 2, ••• , n. 
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H(s) may be either the magnitude or phase characteristic of T(s). Note 

that for a given frequency W, H and the tolerances are fixed so that 
o n 

the only variable as the;. 1 s vary is 6H. However, the determination 
1 

of this maximum may not be easy since, in general, this maximum does 

not occur at the extremes of the~- 's. As an alternate to this 
' ··1 

determinatioq Hakimi and Cvuz point out that it is possible to find 

upper and lower bounds on the system function for each frequency W. 
0 

This is a highlr conservative type of worst case analysis. 

An interesting approximation to the pole-zero sensitivity for 

multiparameter variation has been proposed by Huelsman (1~). Huelsman's 

method essentially consists of three steps: 

(1) developing an approximate relation between the changes in the 

pole-zero locations of the system function and the corres-

ponding changes in the coefficients of the denominator and 

numerator Rolynomials; 

(2) developin~ a re~ation between the changes in the values of 

the coefficients of the polynomia:ls'.iuid the changes in the 

values of the system parameters; and 

(J) writing a matrix expression for these sensitivity relations 

and normalizing it. 

This method yields good agreement with the actual changes in the poles 

and zeros and seems to require less effort than straightforward 

evaluation of Equation (2.2.4). 

Each of the preceding methods implies a deterministic approach to 

CO!llponent variation analysis. Sensitivities of a probabilistic nature 

are less numerous in the literature but three methods have been shown 

to be useful when computer aided methods are of primary interest. 



Hakimi and Cruz (13) suggest that for a transfer function 

T( s, x
1

, x
2

, ••• , x ), the para.meters x. should be considered to be 
n 1 

random variables. Hence, the transfer function itself is a :random 

Vjiriable c1-nd the following sensitivity measure can be defined 

s 

where 

is the roo~-mean-square value of 6ITI and cr
1

, cr
2

, ••. , cr are the 
n 
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standard deviations of the variables x
1

, x
2

, .. " ' X, • 
n 

This measure may 

be evaluated for simple systems br·classical probabilistic means. 

A more reasonable approach for complex systems is to utilize Monte-Carlo 

techniques and the com:i;>µter. 

A s~cond approach has been suggested by Clunies-Ross and Husson 

(15). With topology and t~e variances on the components held fixed, 

the designer strives to choose the mean value for the component in such 

a way that the maximum probability of failure is minimized. Initially 

a Monte-Carlo routine is carried out to obtain data points. 'l'he heart 

,of the procedure is to use these data points to form linear approxi-

mations by least-mean-squares methods for each circuit output. By 

assuming the outputs to be gaussian the designer can solve for the 

required means with the aid of linear programming. This method also 

allows circuit constraints to be included in the minimization process. 

The major difficulty in this type analysis is simply the complexity 

of the approach. 

A third probabilistic method, due to Breipohl and Campbell ( 16), 



is described in Sections 2.4 and 2._5. This method makes use of a 

sensitivity measure based on the mean square error in the frequency 

domain between a desired transfer function G and the actual transfer 
0 

function G. Cpmputation of the mean square error may be accomplished 

through the use of an approximation introduced in Section 2.4. This 

approach seems very reasonaqle, but algebraic difficulties are en-

cou,ntered in 1 arge networ~s with many varying parameters. Al though 

the frequency domain sensitivities of Breipohl and Campbell are not 

completely implemented in the program of Chapter III, a computational 

algorithm is suggested. An extension of this method to the time 

;16 

domain has been made by the author through the use of the "sensitivity 

operator" concept discussed in the next section. 

2.J Time Domain Sensitivity Operators 

In this section sensitivity operat9rs for time domain models are 

defined and methods for their derivation and solution are presented. 

An example is also included to illustrate the properties of these 

operators. The notion of a sensitivity operator is similar to sensi-

tivity "coefficients" introduced by Tomovic (17). 

The detenninistic performance characteristics of a large Qlass of 

engineering systems can be described by the state model composed of a 

set of n first order differential equations 

dx. __ J 

dt f.(x, ~' p, t) 
l -

plus a set oft algebraic equations 

y. 
,J 

i"' J, 2, ••• , n (2.J.1a) 

j::::·1, ~, ••• t ( 2. J .1b) 



where 

x denotes an n dimensional column vector with components 

x., j = 1, 2, ••• , n, which are the state variables; 
J 

u denotes an m dimensional column vector with components 

u., j = 1, 2, ••• , m, which are input forcing functions 
J 

of time; and 

yj denotes thr j-th component o{ a column vector x_ which is the 

vector of output functions. 

The linear fonn of Eqµi3-tions (2.J.1a) and (2,.J.1b) is 

17 

. 
x Ax+ Bu (2.J.2a) 

C x + Du (2.J.2b) 

'l'he matrices !, a, .£, and D may be time-va;rying, in general, but will 

be considered constant throughout this thesis. They depend, of course, 

on the system parameters. 

Definition 2.J.1 

The state sensitivity ope;rator with respect to the parameter p for 

the system state equation, Equation (2.J.1.a), is the n dimensional 

vector time function ~(t) with components 

v1:1(t) 
1 

dx. (t) 
1 

dp 

where x. is the i-th state variable. 
1 

Definition 2.J.2 

i == 1, 2, ••• , n (2.J.J) 

The output sensitivity operator with respect to the parameter p 
I 

for the system output equation, Eq,.1ation (2.J.1b), is the t dimensional 

vector time function ~(t) with components 



dy. ( t) 
~(t);;: _i __ 

i dp 

where y. is the i-th output variable. 
l 
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i;:: 1, 2, ••• , t (2.J.4) 

Consider the linear model of Equation (2.J.2). It is desired to 

calculate the state and output sensitivity operators with respect to 

the parameter p. Consider the matrix function 

then 

M' (p) 

where 

,t! (p ) ~(p) ~(:p) 

!(p) L' (p) + !!_' (p) L(p) 

!!' (p) -
dM(p) 

dp 

This notation will be used throughout this thesis. Hencei from 

Equation (2.J.2a) 

d -dp 

dx 
x =A-=+ A'x + B u 1 + B'u 

- dp 

It is assumed that all derivatives exist over the domain of the 

parameter p. 

Then 

d [dx] dx 

dt d; 
A.....= + A'x + B u' + B'u 
- dp 

or 

~ ;:: A~ + z 

where 

z = A' x + B' u +Bu.' 

(2.J.5a) 

(2.J.5b) 
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Note Z depends upon x(t), the solution of the original state equation, 

E~uation (2.J.~a). The output sensitivity operator may be similarly 

written as 

~ - C ~ + C' x +Du' + D' u (2.J.5c) 

Equations (2.J.5a), (2.J.5b), and (2.J.5c) then are the relations whose 

solutions yield the state an~ output sensitivity operators. 

The state and output sensitivity operators may be used to approxi-

mate the solution to tne state model when a parameter is perturbed from 

its nominal value. 

takes on value p 
0 

Let.! (t, p ) be the true solution when parameter p 
0 

and _!(t) be the solution when the parameter takes on 

its nominal value n Then ~-nom" 

x(t,p ) J::J _!(t) + ~(t) 6p 
- 0 

wpere 

'.l,'his type of approximation is more near.:j.y accurate for differentially 

small variat;i.on in the value of the parameter and little may be said,in 

general, about the accuracy of this approximation for large parameter 

variations. An example of this type of approximation is presented in 

Section 2.J.J. 

Let us now consider two me~ns of obtaining the solution to the 

linear state model a.nd its associated sensitivity model. The sensi-

tivity operator equations contain terms dependent on the nominal solu-

tion x(t). '.fhus, the solution to the state model must be available 

before the solution to the sensitivity operator differential equation 

can be found. 
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One method is to write Equatipns (2.J.2a) and (2.J.5a) in the 

form 
r 

~ 
A 0 x B 0 u .... -

-- + 

At A J> B' B u' 

(2.J.6) 

flnd Equations (2.J.2b) and (2.J.5c) as 

[~ l c 

c 0 x D : 1 [ ~.] -
+ 

C' c J> D' 

(2.J.7) 

This allows the two models to be solved simultaneously. The solution 

of the matrix system, Equation (2.J.6), may be then symbolized as 

x( t) x(a) 

+ f t§_(t-l.) 

B 0 uO .. ) 

::;:: f(t-a) dA (2.J.8) 

J>(t) ~(a) B' B u 1 0d 
a 

where x(a) and J>(a) are the initial values of the state and sensi-- -
tivity operator vectors at t::: a and ..§.(t) is the state transition 

matrix. Fpr the linear fixed system considered here, _§_(t) i.s the 

matrix exponential 

!(t) 
Ft 

::: e-- (2.J.9) 

where 

[
A OJ - -

F = 
~· A 

The augmentation process of Equations (2.3.6) and (2.3.7) is illustrated 
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in Figure 1. Equation (2.3.7) can be used to find the output sensi-

tivity operator a{ter Equation (2.3.8) has been evaluated. 

Another method for obtaining the ti.me solution to the state sensi-

tivity operator is a sequential one. In this method the state 

equation, Equation (2.3.2a), is solved over the time interval of 

interest to yield ~(t). This term may be used in Eq1,1ation (2.3.5) for 

calculation of the state sensitivity operator and, hence, the oµtput 

sensitivity operator. This method l).as the advantage of fewer equations 

in the integration process. However, a corresponding disadvantage is 

the necessity of storing the solution for x(t). 

The general solution of the aug!llented linear state model syi,tem, 

Equation (2.3.6), is given in Equation (2.3.8). This solution may be 

simplified for the case of an imp1,1lse function input at driver ud to 

yield the algebraic vector z anp its change ~(t) for zero initial 

conditions. This sqlution is 

[

y ( t) ] [C O l [B l [D l "'T'-' - -- - -

= 9(t) + 6(t) 

~(t) .£' .£ ~' D 1 

d 

(2.3.10) 

where 

-- {01 Yi 

if i I- d 

i == 1, 2, ••• , m 

ifi==d 

and 9(t) is given in Equation (2.3.9). The equation follows from the 

development present~d in Appendix A, 

2.3.2 Nonlinear Analysis 

Consider now the nonlinear state model given by Equation (2.3.1). 



Figure 1. Diagram of Operations for Calculation of Sensitivity 
Operators 
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It is desired to calculate the state sensitivity operator and the out-

put sensitivity operator with respect to the paraltleter p. Several 

approaches to this problem may be taken, 

In m.any nonlinear situations, the nonlinear equations can be 

linearized by. limiting attention to small variations or perturbations 

about a nominal state solution, Although the system differential 

equations may be highly nonlinear, the differential equations der- ~•• 

scribing these variations around the nominal can be considered to be 

linear to a first order approximation. This approach to linearizing 

the state model is to expand the functions f.(x, u, t), i== 1, 2, ••• , 
1 - -

n, and g.(x, u, t), j=1, 2, ••• , t, in a Taylor's series and delete 
J - -

the second and higher order terms. This yields 

x A: X + B U (2.J.11a) 

y :;: c x + D U ( 2.J .1:t.b) 

where 

== [ aij J [a,. . ] 
== [ cij J [ agi 

A 
1 

== ~· c 
ox. 

J ~'~ J x ,u] 
-n-n 

C'i = [ \j J lag. ] 
[bij J D 

1 
B = oiij 

:::; 

ouj x- u x ,uJ -n-n -n '--n 

x == x - x 
--n 

u u - u --n 

y x... - y -n 

and x, u, y are the state, driver, and output vectors evaluated 
-n --n "'-11 

along the nominal solution. Since Equation (2.J.11) has linear form 



the results of the :previous discussion can be applied and the sensi-

tivity operators for the liqearized model can be evaluated from 

Equation (2.J.5). 

A second method for finding the qerivatives of interest entails 

no approximation as does the previous method (18). The state model of 

Equation (2.J.1) may be manipulated with the classical methods of 

differential calculus. By differentiating Equation (2.J.1a) with 

respect to the parameter p and assuming the vector u is independent of 

p, the follow~ng result is obtained. 

o:ic
1 

of
1 

of
1 

of
1 

op ox1 OX2 ox 
n 

oi:2 of
2 

of
2 

of
2 

op ox1 ox2 
... ox n 

ox of 
n n 

op ax"""" n 

This equation may be symbolized as 

ox1 

~ 

ox2 

op 

ox 
n 

op 

y(t) ! ~(t) + z 

of
1 

op 

of
2 

+ 
op 

(2.J.12a) 

of 
n 

op 

where the gradient of,! with respect to~ is the Jacobian matrix!, 

~(t) is the state sensitivity operator, and 

of 
z -= 

OP 

This method is easily seen to reduce to that of E~uations (2.J.5a) and 

(2.J.5b) when tpe func;tions f. (x, u, t), i = 1,2, ••• , n, and g .(x, u, t), 
1 - - J - -

j::: 1, 2, ... ' t, of Equation (2.J.1) are linear in the components of 
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the x vector and 4 vector. The development of the algebraic output 

sensitivity operator is an exact parallel of the procedure shown above. 

Tne output sensitivity operator model is 

og1 og1 og1 ox1 og1 

0'.1{1 ox2 ox ap op 
n 

092 092 ag2 ox~ og2 

~x1 ox2 
... 

ox 
n 

op op 
+ . 

ogt ogt ogt ox ogt n 

OX1, OX~ 
... 

ox op ap 
n 

or 

~(t) = J ~(t) + z 
~ --0 

where J is the gradient of..[ with respect to~ and Z 
--0 --0 

. o11 
1S ·~ 

( 2.J.12b) 

Attention is now turned to the solution of Equations (2.J.11) and 

(2.J~12). The sensitivity operator solutions to the linearized non-

linear problem of Equation (2.J.11) may be found by the linear tech-

niques of Section 2.J.1. However, in trying to find the solution to 

Equation (2.,J.12) it should b~ noted that this is a nonlinear system of 

equations. ~quation (2.J.12) aqq Equation (2.J.1a) may be solved 

simultaneously. If it is desirable to know the variation of the state 

vector for each parameter pk, k = 1, 2, ••• , q, parallel programs may 

be utilized to solve the q + 1 sets of equations or the problem may be 

repeated q times. 

2.J.J Example 

In order to clfirify the concept of the sentitivi:ty operator, an 
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example problem is consider~d next. It is instructive to compare the 

predicted response with the actual response fo.r a parameter variation 

of five percent. Consider the system of Figure 2. The di.fferential 

equation is 

~+ax +bx - m(t) ( 2. J. 13) 

and 

y x 

By letting 

x 

x 

then 

[::l [: _:J [ ::l [:] m(t) 

y o] G:J + [o] m(t) 

and the tran~ition m~trix S(t) is given for 
2 > 4b by a 

_,._ t _,._ t -·a<· -,, • I 
()._ T" 

1 2 
a)e - {)._ - a)e e -e 

t 
1 2 

~(t) == -\ t 
-A 1t . -"-/j ~2 - 4b 

-At 2 
( t -e ) ; a b e "-1e -11.2e 

where 

"-1 a/2 + )f {a2 - 4b 

"-2 a/2 - Y.i~a2 - 4b 

For 

[::] 
x1(o] 

m(t) == 0 and _?5,( 0) 

x
2

(o) 
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f i f "X.. 1 
m{ t) 

y 

-a. 

-b 

Figure 2. Example System 



the solution for x(t) becomes 

x(t) = .§_(t) .!;(o) 

From Equatipn (2.J.5a) tne state sensitivity operator model is 

v» ··- ! '!1 + !' .!; and, hence, the state sensitivity operator solution 

may be written as 

t 

vp(t) = ..@_(t) -!1(0) + ~ .§.(t - )._) A' .§.(>..) .!;(O) d )._ 

For the valuE:s 

then 

_§_(t) ::;: % 

0 

a 

J 
... t -Jt 

e -e 

J 
,-Jt J -t 

e - e 

and b 

-t -Jt 
e -e 

J 
-Jt -t 

e -e 

J 
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Consider now that the parameter of interest is the value of the element 

b where 

b - J ( 1. + ~) 

and 

~ = 0.05 

For 

Ci 1 v p(O) 
1 

0 

c;a 0 v p (0) 
2 

0 

then 
t 

b v 
1 

( t) - ~ a12
Ct - A) ~\1 0.) d >.. 

0 

= t 

v/(t) -~a <t->..> 22 1:3 1 /).) ct "-· 

Q 
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or 

The state sensitivity operator components are shown in Figure J. As 

pointed out ea:J;"lier in this section, the sensitivity operator may be 

used to prediat the output when there exists a small variation in the 

parameter b. This predicted output is 

~(t) ~_!(t)I 
b . 

nqm1.nal 

-!, .;'.:.b < t) I . l;b . ·1 • 
b 

nomina 
. 1 nom1.na 

(2.J.14) 

For I; equal to 0.05 and b . 
1 

equal to 3.00, the response x(t) is 
nom1.na 

calculated from Equation (2.3.13) and from Equation (2.J.14) and 

presented in Figure 4. It is apparent that the agreement between the 

pvedicted and actual response is ve;ry goqd for this five percent var-

iation :in the value of the parameter b. Figure 5 presents the actual 

6x
1 

( t) and the 6x
1 

( t) predicted by the .sensitivity operator and 

Figure 6 presents the actual 6x
2
(t) and the predicted 6x

2
(t). It is 

seen that the agreement is very good for the five percent variation. 

In the example above, the method of solving for the sensitivity 

operator by first finding the solution to the system and then inte-

grating the sensi ti vi ty operator is presented. As pointed c;mt earlier, 

it is also possible to augment the system state model by the sensi-

tivity model as in Equation (2.J.6) and solve !;>0th systems simultan-

eously. The augmented system i~ 
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x-,i<t> 0 1 0 0 ~1(t) 0 

• ( t) ..-b -4: 0 0 x~(t) 1 x~ 
ni ( t) (2.3.15a) 

~/<t) 
= b + 

0 0 0 1 v 
1 

( t) 0 

v/<t> -1 0 -b -4: v/(t) 0 

and 

y t 0 0 0 :x;1 ( t) 0 

wb(t) 
x

2
(t) + m(t) (2.3.15b) 

0 0 1 0 
b 

0 

v1 (i;) 

b v
2 

(t) 

Equation (2.3.15) may be solved to yield the same functions as in the 

previous method by calculation of the transition matrix. 

~.4: Time Domain Measures Based on 

Sensitivity Operators 

Useful deterministic ancl statistical sensi t.ivi ty mei'lsures that 

directly utilize sensitivity operators in their evaluation are pre~ 

sented in this section. Generally the purpose of sensitivity analysis 

is to aid in system ~esign selection. Two or more designs may be 

I found to satisfy the given performance i;:ri.teria but have different 

sensitivity chjiracteristics. The system designer is tnen faced with 

the task of selecting the best design on the basis of a sensitivity 

measure. He must evaluate this measure for e1:tch design i.:n order to 

make meaningful comparisons. The automatic !ormulation and calculation 

of the seni;;itivity pperators allows the designer to examine the sensi-

tivity of many systems with a minimum of effort through the use of the 

ti.me domjiin measu,res discussed in this section. 
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Suppose that the solutions to both the system state model and the 

se11sitivity model have been found fork variable parameters. The vari-

ation in the state vector is evaluated at th,e pf1raml:)ter vector 

(2.'-!.1) 

and the change in the state vector .!, due to a small change in .E_, ~s 

given by then x k matrix 

p 
[ v 

1
(t) 

...... 

p. 
where v 

1
(t) is defined tn Definition 2.3.1. The general form of a 

useful detenninistic sensitivity measure has been given by Siljak and 

Dorf (19) 

I ,. .. ' pk 
v ( t)) dt 

0 

A specific exafflple of this type of index might be 

0 

where 

p 2 
(~ 1<t)) 

P 2 2 
+ (~ ( t)) + • • • --!-:-

pk 2 
(v (t)) ..... 

p. 2 [ p. JT p. 
(v 

1
(t)) ~ v 

1
(t) • v 

1
(t) .,_ 

dt 

It spould be noted that the state model ~pproach has found wide 

application in optimal control problems. The optimal control problem 

is generally taken as that. of minimizing a gi..ven performance index 

where 
tf 

J s g(_!, ~, t)dt 

0 



J4 

subject to constraints on the control,~· The function g(~, ~, t) is 

defined to produce desired behavior on the trajectory of the state 

(e.g., minimum error) and desired characteristics on, the control~· 

The system may, however, also be designed to take into account the 

sensitivity information (19). The api:iroach is to define a new index 

such as 

I J + IJJ 
s 

(2.4.2) 

where 

J is the classical optimization index, 

1J is the weighting fqctor, and 

J ·is a specified sensitivity index. 
s 

The combined index may be solved by the standard methods of optimi-

·zation. A particular example of a desirable index is that of quadratic 

functions of the variables. Since the sensitivities of certain state 
ox. 

1 
variables mi:,.y be critical, a measure may be used which weights -oP. 

J 
individually, An example of such a measure is 

T T p 1 2 T pk 2 ] ·. 
M x + ~ ! ,!:!. + (~1 v ) + ••• + ( wk - .! ) dt 

wn] ~s the weighting vector for paramete~ 

p. and Mand N are positive definite weighting matrices for the state 
]_ - ....,.. 

vector and the control vector. The optimc1-l control law that minimizes 

this index resu;L ts in an optim1,1m syi:;;tem that is optimum with respect 

to both per:f;ormance and sensitivity on a quadratic basis. 

Kok,otovic, Bingulac, and Medanic (20) present &n example of a 

fifth order linear system that has been optimized using an.index of 

the form given by Equation (2.4.2). The cr;iterion I was m:inim;ized for 



distinct values of IJ. varying between O and m by using an analog 

computer to obtain a "U trajectory" in parameter space 1 inking the 

minimum of J and the minimum of J. I)epending on the relative :i.mpor­
s 
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tance of the indices J and J the optimwn fell nearer the minimwn of J 
s 

or the minimwn of J. The investigation of the system performance 
s 

along this trajectory fully answers the question concerning what can be 

achieved by parametric optimization with a fixed structure in regard 

to the minimization of sensitivity. 

The measµres ~resented above are based on deterministic sensi-

tivity operators. The rest of this section deals with a statistical 

method of compar,ing various designs based on the m~an square error. 

The measure is implemented by making use of a simple linear approxi-

mat.ion of the mean and variance. The approximatiqn calls for only the 

means and covariancei;; of the circuit components and, hence, complete 

knowledge of the distribution function is not required. 

The approach taken here most closely resembles the work of 

,, . 
Broome and Young (21), ~nd Breipohl and Campbell (16). Their basic 

idea uses the m~an squa~e error between a desired output and the actual 

output of the system. This is a good criterioq for comparing different 
\ 

design apprqaches tt> the system. The approximation used here is 

simpler than Broome and Young's approximation. This approximation is 

the same as that used by Breipqhl and Campbell in their study of trans-

fer function sensitiyity in the frequency domain, and it is also used 

by Breipohl and Grigsby (22) in their discussion on dependent vari-

ations of systems components. 

Consio.er the system function, G (transfer function, :impulse 

response, other response), which is a real function of k continuous 



parameters and whose first partial derivatives are continuous, 

Suppose the designer has arrived at a system design which ideally 

realizes the :function G for an :j.nput Ji'. Tpis ideal function is 

denoted G
0

• Let GN be the function evaluated at the nominal value of 

the parameter vector p. The parameters are considered to be r~dom ..,. 

variables. Then the mean square error between the desired function 

and the actu~l function G is 

MSi = E [(G Go>2] 

E [(G IJ >2] + (U,G - G )2 ,... G 
(1) 

J6 

cr 2 + (U ... G 
G )2 (2.4.J) 

where 

G 0 

E [·] means "the e:x:pecte<;l val 4e of •", 

UG = ELG], and 

O'G2 ~ E [(G - b!.G)2J 

2 
A linear appro~iJ'llation ( 1,6, 22) to the tevms U.G and O'G that is both 

practical and in some cases easy to achieve is 

and 

k k 

2 1'111 ·1 2 (~(!?.) 
O'G op. 

. b1 j:1 1 

when:! 

PJ .... -
( 

oG(p) 

op. 
J 

... ' 

(2.4.4) 

) E rcp. ,... bl. ) (p . ~ IJ >] ~ 1 p, J p. 
II 1 J p-,,,. _-..,.. (2.4.5) 



bi = E J; iJ = Nominal value qf p. , 
Pi t ~ 

E Ep. - 14 > (p. - 14 )1 
1 p. J p.J 

1 J 

(j2 
p. 

1 

if i ::c, j 

i,f i/,j, 

and COV~i p j] is read "the covariance of the random variables pi and 

p j"" If the random vrria,b;I.es pi and p j .;1-re pairwise independent then 

cov .. ~- p .J = o 't'.1 . J 

In this case Equation (2.4.5) becomes 

for all i I j. 
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QG(p) 

op. (j 
P· 1 

(2.4.6) 
1 

p .... 

It may happen that the parameters a;i;-e not independent due to 

environmental dependence or component or manufacturing dependence. 

Environment.al dependence is the dependence or corre:J_at.ion noted between 

parameter values due to environmental changes, e.g., changes noted in 

the values of resistors due to change in the pJI1bient tempe:ratu;re. 

Component or man1.1fa,ctµring dependen._ce is that correlation note~ between 

parameter valu(;)S when the parameters are of the same component, e.g., 

changes noted in parameters when transistors ~e interchanged. This 

case may be han.dled Sfl.tisfactorily by the approximation in Equation 

(2.4.5) by evaluating the CQV tenn for the dependent parame~ers by 

classici;il statistical tec:;hniques. These techniques will not be 

discussed here, The reader may refer to page twelve of the "Final ~eport 

on Probabilistic Systems Analysis" (22) for a dis~ussion of the 

appropriate te~hniques to be used for this typ~ of analysis. 



The expected value terms of E~uation (2.4.5) may be evaluated 

either by standard statistica~ mean~ or pe:rhaps obtained from the 

manufactuver's data. However, the partial derivative terms 

i:::1,2, ••• ,k 

still remain to be found. These partial:;; lend theml;jelves well to 

computer analysis since straig~t forward analyticc,1.l techniques soon 

founder on the algebraic difficulties of this tri>e analysis. These 

partial derivatives have the appearapce of the sensitivity operator if 

the G funct;i.cm is ider:itified as one of the system state variables or 

output variables. :previous efforts of Broome and 1;'oung (21), and 

Breipohl and Campbell (16) have been directed at con~ideration of G{W), 

where UJ ;is th~ radian frequency. By making use of sensitivity oper-

at.ors it b~comes possible to use the approximation pf Equation (2.4.5) 

in the time qoma~n. Both types of tenns needed for the varian~e 

approximation in Equation (2.4 • .5) and Equation (2.4.6) may be found 

and the mean i;;quare error of Equation (~.4.J) may be cal(!ulated. 

It should be noted here that the fqrmulat;i.on above in terms of 

sensitivity operators results in a MSE that is a function qf time. 

Such a function doef not serve well ~s a measure of goodness. 

General1y,,,a si,ngle number is more desirable fl.S a measure. In this 

case it seems reasonable that an appropriate measure for each choice 

of component nominal values and tolerances may be_ given as 

tf 

I ~ W ( t ) • MSE dt - (2.4. 7) 

0 

where W(t) is a g~neral weighting function thfl,t the designer may 
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specify to empn,asize the region or regions in which the time response 

is of the mo.st critical nature fc:>r his design~ The best design based 

on this meqsure then corresponds to the component qominal values and 

tolerances which minimize I. 

'.fhis section nas presented specific detennin;i.stic sensitivity 

measures which make di~ect use of the sensitivity o~erators. A new 

t:ime domain staiiistical measure has also been discussed. This me~sur~ 

is based on the mean square error between a desireq system function 

and its actual value. The automatic calculation of this measure is an 

important feature of the general purpose sensitivity analysis programs 

developed in this research activity. 

2.? Fre~uency Domain ~easures Based on 

Sensitivity Operators 

This section is concerned with the re~ation between the complex 

frequency domain and the sens;i.tivity operators ~s ~efined earlier. If 

the sensitivity operator equations are formulated, then the matrices 

found in the !ormulation technique may be utilized to provide sensi-

tivity infonnation in the s-domain in terms of the ~easures defined in 

Section 2.2. The approach taken is similar to th~t of Morgan (23) for 

d,eveloping the pole-zero sensitivities.of the transfer function matrix. 

Consider the mu~tivariable linear state model of Equation (2.3.~). 

_e.!. +Bu (2.5.1.a) 

C x + D u ( 2. 5. 1,b) 
r--

where A,~' c, and Dare constant matrices for any particular cnoice of - - ....., -
the parameter that; are varying. The transfer fun ct ion matrix, P ( s) , 
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may be found by taking the La,place transform of Equation (2.5.1), 

assuming zero initial conditions, and ~xpressing the transformed output 

Y(s) in tenns of the transformed inpu,t U(s). Thus ...,. 

Y(s) = f.(s) U(s) 
(2.5.2) 

where 

I= the identify matrix. 

The development pre~ented here differs from Mor9an (23) tn that the 

D term is not assumed to be zero. 

The calcul~tion of the t~ansfer function matrix P(s) can be ....,.. 

carried out directly on the computer by a method attributed to Faddeev 

(24), Gantmacher (25), and Frame (26), independently. Let 

~(s) = Adjoint (~I - A) 
,.,... - -

__ R 
8

n~1 n-2 
-0 + !1 s + • • • t l!n-1 (2.5.3) 

and 

g(s) = ls.1 - !.I 

so that (sl. - ~.,~1.= !(s)/g(s). The h. 's and R,. IS may be found by the 
l. O:-l. 

following process 

!1 - A h1 tr ! 1 R1 ""i1 - h1 l (2.5,5) 

!.2 = A R h2 }2 tr A
2 

R = A - h2 .! (2.5.6) 
--1 -~ ~ 

A A a. h 
1 

Jl A h, I (2.5.7) -· = -tr A = --n-1 - -n-2 n-1 n .. 1 -n-1 '""'11-1 -t1..,.1 n-1 .... 

A A. R h 1 
R A.- h I 0 (2.5.8) - = - tr A ::; = -n ,... -n ... 1 n n """'11 ~ .. n-



where 
n 

tr A = \ a .. l, 11 

i=1 

It has been shpwn by Gantmacher (25, page 84) th~t 

P(s) 

where 

and, hence, 

P(s) :t. 
:;;: 

g(s) 

n-1 

l n-1-i M. s 
-1 

i::::O 
,,__ __ ....,.g_(_s-)------ + D 

M. = C R. B 
-1 --1 

R I 
-0 .... 

[~ n-1 
n l (M .... s + -:e. 

i:::O 

i=O, 1, ••• , n-1 

) n-1-i} h. 1, D s 
1+ -

Equation (~.5.8) provides a ~heck on the computation 9f the h.'s and 
1 

the _!!(s) matrix of Equation (2.5.J). Equation (2.5.9) may be used to 

find the tran~fer function matrix f_(s). 
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Morgan has presented formulas for the differential change dh. in 
1 

the coefficients of the ch~racteristic polynomial, g(s), for a dif-

ferential c~ange dA in the parameter~ of the matrix!· These formulas 

are true only for the case in whic~ all the ropts of g(s), s 1 , s
2

, ••• , 

sn, are distinctr An u~solved problem is th~ nonTdistinct roots case. 

These formulas are 

dh2 = ~1 * ~ 

dh - R 1 * dA 
n -n-+ 

(2.5.10) 

(2.5.11) 



where the asterisk indicates the inner product of two matrices, that is 

A * B + ••• + ab T 
i-n-n 

when:~ a, is tqe i-th row of A and b. is th,e i-th column of _B. These 
-1 - -1 

changes given in Equations (2.5.10), (2.5.11), anp (2.5.12) may be used 

in Newton's formula for the approximation to the roots of a polynomial 

to provide the differential change in the 21erps of the characteristic 

equation, g(s). Applying Newton's formula to Equation (2.5.4) one 

obtaiqs 

ds. :::; 
1 

1 [ dh1 
g'(s.) 

1 

n-1 
Si + dh2 

n-2 
s. 

1 
+ •• " + 

( 2.5.13) 

where g'(s.) is the derivative of g(s) with respect to s, evaluated at 
1 

s .• Morgan bas shown that .Equation (2.5.13) may be rewritten as 
1 

This formula allows evaluat:j.on of the differential change in the 

location of the :z;ero of the characteristic equation due to the differ-

ential change of the matrix A.' 

In order to find the differential changes in the zeros of the 

numerator funct~oni;; of the .E_(s) mat:rix, it is necessary to evaluate 

the differential changes in the numerator matrices of Equation (2.5.9). 

n-1-i Let the coefficient of s be given by F .• Then 
--1 

F. 
-1 

M. - h. 1 D 
,...]. '"'1"1+ -

i o, 1, ••• , n-1 

and 

F D 
--1 



The differential change of F is dD and the differential change of F. 
--1 -1 

is 

dF. d(M. - h. 1 D) 
-1 -1 1+ ,_ 

dF. = dM. - dh. 1 D - h. 1 dD 
-1 ,.....1 1+ - 1+ .,.... 

(2.5.14) 

E~ressions for dh. have been given in Equations (2.5.10), (2.5.11), 
1 

and (2.5.12). Note tpat 

M. 
-1 

CR. B 
--1 -

;i. = o, 1, ... ' n-1 

and, hence, 

dM. dC R. B + C dR. B +CR. dB 
-1 --;i.- - -1- --1 

For i = o, R = I and, hence, dR - O. From Equations (2.5.7) and 
-0 ...... -0 

(2.5.8) 

dR. = dA. - dh. I 
...... 1 ..-1 1 _. 

i = 1 1 2, ••• , n-1 (2.5.15) 

and 

(2.5.16) 

Now, successive applications of Equations (2.5.15) and (2.5.16) allow 

determination pf each dR. and, hence, each dM .• Equation (2.5.14) then 
-,1 -1 

allows detennination of each dF .• Once these dF. are found it is 
-1 -1 

possible to apply Newton's formula for non-multiple zeros ,of. the 

numerator functions. The result then is the differential change in the 

location of the zero due to the dA, dB 1 dC, and dP variations. - ....,. ~ -
Thus far this section has considered the linear time-invariant 

state model and shown how the transfer fun~tion matr~x can be calcu-

lated. Fonnulas are given for the changes in the numerator and 

denominator coefficients of the transfer function. matrix. Also .. · 



indicated is a method for finding the differepti~l changes in the poles 

and zeros · of the trcµisfer functions dt,1e to diffe,rential changes in 

the A, B, C, and D~ matrices of Equation (2,5.1). The relationship 
- "'"""' - "'r'!I" 

between the analysis above and tha~ of Section 2,J is that the pre-

ceding method of this section provides a link betweep the classical 

sensitivity methods and those makinq use of sensitivity operators. Let 

tqe differential changes~' dB, d.;., ~nd dD become the matrices 

dB dC 

dp ' dp ' dp ' 

dD 
and ...::;: 

dp 

Then the calculations leading to the differential changes of the poles 

and zeros.:of the transfer functions of P(s) may be e~ecuted to yield 

the terms 

dz. 
1 

---,, 
dp 

and 

~ 

dA. 
],. 

dp 

that are needed in ~he definition of the pole-zero sensitivity of 

Section ~.2. 6y multiplying these terms by the nominal value of the 

parameter p, these terms become the pole-zero sensitivities of the 

transfer function. After noting that the multiplying factor of the 

transfer function, K, is either some element of Dor of M., 
0 ..,.. -:1 

0 < i < n - 1, i. t becomes possible to evaluate the trrm 

s 
p 

K 
0 

clK 
0 -dp 

Vr's formula, given in Equatton (2.2.5), provides a method of evalu-

ation of the standard Bode-Mason type sensitivity defined in Equation 

(2.2.2), Thus, the two standa:vd definitions of sen~itivity for the 

:3ingle element variation case in tpe frequency- domain may be found from 

the sensitivity operator equations. 



It ~hould be obvious that this approach is definitely not the best 

approach it the transf~r function is known explicitly as a function of 

the parameter of interest. In this case the direct differentiation of 

the transfer function should pe p!;!:i;-formed or Newton's formula in .. 

Equation (2.5,13) may be applied to obtain pole-zero sensitivities. 

If time domain info;rmation is desired, the tran~fer function may be 

converted to a time-~omain model in state variable form. Many recent 

books on state~variable methods such as Tou (27) and DeRusso, Roy, and 

Close (28) pre.sent standard techniques for this conversion. 

If a system is described explici~ly by a set of differential 

equations and the A1 B1 C1 _,_,_, and .£' matr~ces a:i;-r given, the approach 

under consideration becomes attractive for computer implementation. 

Appendix B presents a program designed to provipe tne pole-zero sensi-

ti vi ties from the state model and~,, B', S.', anp /!' matrices. 

The method of finding standard sensitivities becqmes even more 

attractive if the differential equations and A', B1 , C1 and 0 1 matrices - ,.... - -
are automatically formulated for the user from simple graphical or 

tabular data. By restricting the research investigation to a class of 

electric networks the author has successfully automated a comprehensive 

model,formulation and pole-zero sensitivity analysis program. This 

program is discussed in Chapter IIi. 

As po:i,nted out in Section 2.2 and Section A•4, l3reipohl and 

Campbell (16) make use of a sensitivity measure basep on mean square 

error evaluated in the frequency domain. It is the purpose here to 

point out how the cFlculations discussed above may be used to provide 

the partial derivatives req~ired for this mea~ure in the frequency 

domain. 



Letting F1(JW) and F
2

(jW) be the input and Qutput, respectively, 

of the transfer function H(jw), tqe followi~g notations are 

established: 

jF2o I 

H ;:: IH I 
0 0 

and 

H 

Jf 
e 2q 

e 
jfu , pO 

target vatue of oµtput, 

target valu~ of transfer function, 
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E [· J the e:xpecte~ vc1,lue of the' quantity Jn · brackets. 

Then the meilll square error can be expressed as in Section 2.4 for the 

~agnitude of the output as 

(2.5.17) 

where 

and for tne phase ~f F
2 

as 

(2.5.18) 

where 

Th~ mean and t.tie vari;mce of the magnitude and phase of the Qutput 

function may be approximated by the procepure of Equation (2.4.4) and 

J!:q4ation (2.4-.5) where the G function is now G(W, I.L). Inspection of 



the approximati~n to the variance reveals that intevest should now be 

centered on the terms 

and 

olH<Jw) I 
op; 

1 

and 

!l = [ p 1' p 2' 0 0 

• ' Ilk J ' 
M=[u ,u , ... ,u], 

P1 . P2 p~ 

These tenn~ may be relate~ to the sensitivity o~erators by means of 

the standard pole-zero sensitivity and the Bode-Mason sensitivity. 

The procedure for obtaining the standard pole-..zero sensitivities has 

already been described in this section as has that for obtaining the 

47 

Bode-Mason sensitivity. All that remains, then, is to relate the terms 

to the Bode-Mason sensitivity. This may be accomplishep by remembering 

that 

where 

and 

as shown in Section ~.2. 

o IH(jw) I 
0.().1 I 

1 

s Ii(jw) 
p 

dA(w) + J.P dPh(~) 
=P dp Qp' 

A(w) = 0n. IH( jw) I 

Ph(w) - arg H(jw) 

It is then easily seen that 

" t'H(jw) I 
Re [ SPH(jW~ p. 

1 

£.=!! 

(2.5.19) 

p = bl ,- - :·:;-;;:,. 
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and 

(2.5.20) 

p = IJ. p :;:: IJ. .......... ~ -
Thus the desired tenns for :Sreipohl and Campbell 1 ip mean square error 

m~asure may be found by the relations given above. First, the standard 

pole-zero sensitivities are found; then the standard aode-Mason sensi-

tivity is evaluated for each frequency of interest. This information 

is then used in Equations (2.5.19) and (2.5.40) to provi,de the terms 

required to evaluate Equations (2.5.17) and (2.5.18). 

This section has presented a method of obtaining the pole-zero 

sensitivities of the transfer function matrix P(s). Extensions have .... 
been made tp p:rpvide the standard Bode-Mason sensitivity. From this 

point of view the process for l'l.Ut.omating, the mean square error as a 

function of frequency has been discussed. Appendix Bis devoted to 

a description of a FORT~N IV language computer program for the 

IBM 7040 which calcul~tes the pole-zero sensitivities by the process 

de~cribed above. An example problem illustrating the use of this 

program is also presented in Appendix B. 

2.6 Sununary 

One of the major objectives of this chapter is to give a brief 

introduction to sensitivtty theory and present many of the different 

meas~res of sensitivity cited in the liter(:l.ture. ;Most of these 

measures are based on first order derivatives or partial derivatives of 

the system function under consideration. These derivatives serve as a 

means for predictir).g the func;tion variation due· to ch~nges in .the 

pa:r1:1,111eters. 
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The frequency domain measures of sensitivity discussed in Section 

2.2 generally fall into two classes, those based on single parameter 

variation and those in which many parameters a:t;'E;! allowed to vaJ;"y. 

Deterministic and probabilistic methods have been applied to this 

prpblem by various authors. Table I summarizes the important refer­

ences within the chapter in terms pf the chani.cteristi<;:s of the various 

definitions o:( sensitivity. 

The second major objective of this chapte~ is to introduce the 

sensitivity operators and illustrate their usefulness in the comp~ter 

evaluation of many sensitivity measures. These operators are defined 

in Section 2-3 together with methods of sol,ution an<l an example, 

Section 2.4: presents deterministic and probabilistic measures that make 

direct use of these time domain operators. The unifying link bf:ltween 

t.tie sensitivity operator equations and the classical frequency domain 

sensitivities is discussed in Section 2.5. 

This chapter provides an analytical foupdation and justification 

for the development of the computer programs discussed in Chapter III 

l;Uld Chapter IV, Even though the sensi ti. vi ty opercitor concept is not 

new with this author, the automatic formulation and solution of these 

sensitivity models for a large class of systems represents a signifi­

cant new application of the concept. Appendix A qetails a new tech-· 

ni.que for obtaining the simultaneous impulse response solutions for the 

linear time-,.invariant state and sensitivity models. An original 

prol;>abilistic measure, the mean square error in the time domain, may 

be evaluated through the use of the senl'!itivity operators. A procedure 

fpr finding the pole-zero sensitivities of the transfer function matrix 

is i;t.lustrated in Appendix B along with documentation fo:r. a program 
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TA;BLE I 

IMPORTANT REFERENCES IN C:HAPTER II 

Frequency Page Time P1t.ge 
Domain Number Domain Number 

Bode 8 Tomovic 16 

Mason 9 

1-4 Pole-zero 10 
$ (Pep0ulis, 

e Truxal, 
Horowitz, Ur, 

t. Calah(:l.n) 

.!I Morgan 39 
~ 
..-4 
Cl) 

ti 
..-4 
+> ,. 
IIJ 

..-4 a Goldstein and 11 SilJ$k and 33 ..-4 e Kuo Dorf' 
Ill 

+> 13 34 a Lee Kokotovic, 

I 
Bingu].ac, 

1-4 Hakimi and 

I 
Medanic : 

411 Cruz i 13 +> 

i i 
I 

1-4 Huelsman I 14 
8. I 

•.-1 

~ 
:i 

I , 
38 Hakimi and Author \ 

' Cruz ·15 

Cluniess, Ross, 
(.) Husson '.J.5 ..-4 
+) i IIJ 

~ Bre ipohl and 
..-4 Campbell 16 .D 

~ Broome an(l 
~ Young 35 

Breipohl and i 
; 

Grigsby 35 



implementing this procedure, Extensions of this method have been 

s1..i.ggested to provide the standard Bode-Mason sensi tivi.ty and a new 

process for automating the mean square error in the fre.quenc:y domain 

has been presented, 
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CHAPTER III 

COMPUTER-AIDED SENSITIVITY ANALYSIS 

OF LINEAR NETWORKS 

J.1 Introduction 

The previous chapter introduced the general theory of sensitivity 

analysis and discussed van.ous definitions of sensitivity. Each of the 

di;fferent definitions have been found to be appropriate for certain 

cases" In all but the most trivial problems the tedious nature of hand 

calcula.t;ion precludes evaluation of several such definitions in order 

to assure the designer the proper decisions have been reached. A 

computer-implemented approach is clearly indicated, but an investiga.;; ·. 

tion of the existing system analysis programs revealed none which 

provided direct evaluation of a wide selection of the more commonly 

used sensitivity definitions. Thus 9 the development of a design tool 

~n the form of a general purpose sensitivi.ty analysis program was 

selected to be the prim!=lrY objective of this research activity. 

The techniques selected for use in this study were based on the 

state-space model as the basic system description. This model was 

se],ected after extensive study of the previously existing analysis 

programs and their inherent capabilities for extension to provide 

sensi ti vi ty information. Extensive resea,rch has been perf'onned in the 

development of algorithmic processes for network state-space model 

formulation and transient solution. However, nq techniques had been 
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implemented for generating the sensi t.i v:ity operator models and their 

associated solutions. 

This chapter presents an application of the general theory of sen-

si ti vi ty analysis to a class of linear electrical networks. A program 

has been developed which automatically formulates both the state model 

and the sensitivity model for the class of networks under consideration 

and then provides sensitivity infonna.tion in the form of either a 

general transient solution, a transient solution for an impulse input, 

or the pole-zero sensitivities for the network transfer function matrix. 

Existing linear network analysis computer programs and their 

applicability to network sensitivity studies are discussed in Section 

J.2, Section J.J defines the class of linear networks to be considered 

and Section J.4 develops the formulation techniques used. The actual 

computer implementation of these techniques is discussed in Section J.5, 

together with the solution techniques and the time-domain and frequency 

domain measures which the program provides. 

J.~ Extant Linear Ana.lys:i.s Programs 

with Sensitivity Capabilities 

Dertouzous (29) has suggested that: 

Techniques used in the several hundreds of 'programs' 
currently existing and survE-~ye.d iri the. fiterature;~ may be 
classified in several 'orthogonal' wa.ys. They may be 
classified for example according to the type of networks 
that they treat, such as (:i) linear resistive, (2) linear 
ladder-like, (3) linear (or 'slightly' nonlinear) RLC 
with (or without) dependent sources, (4) quasilinear re .. 
sistive, or (5) nonlinear R, L, and C with constraints on 
topology and characteristic.. Analysis techniques may also 
be classified according to their d,ynamics, i.e 1 (:l) time 
domain (transient), (2) frequency domain, (J) static (de) 
or according to special features such as sensi ti v:i.t.y and 
optimization capabilities. The diversity (of approaches) 
is further agg:J;"avated since for a given network class and 



dynamics, there remains the formulation task. Formu­
lations may be classified according to topology, i.e., 
as (1) nodal or mesh and (2) tree link, and according 
to dynamics, i.e., (J) state-variables and (2) system 
(transfer) functions. 

Since there exist such a multitude of ways of classifying programs, it 

becomes highly unlikely that any two programs will make use of identi .. 

cal techniques even though developed for the same purposes. Indeed 

computer programs for electrical network analysis are still being 

developed and alternate techniques e:x.--plored to detennine their effi .. 

ciency and accuracy. Many programs are not publicized and made avail-

able due to the present ineligibility of software for patent protection. 

Kuo (1), Dawson, Kup, and Magnuson (3), and Meissner (31) provide 

ext~nsive surveys of existing programs. 

Network analysis programs that have been developed with sensi-

tivity capabilities include: 

(a) ARINC, a mesh eqm:c1.tion package written in FORTRAN for the 

IBM 7040 that handles both ac and de analysiso This program 

provides a parameter modification scheme for use with a 

Monte Carlo tolerance evaluation of sensitivity (1). 

(b) ECAP, a nodal analysis package written in FORTRAN :(or the 

!Bf.I i620; 7040,' and 7090/9h: computers prqviding ac; de,· and 

transient analysis. In the de case this program provides 

partial derivatives of the network voltages with respect to 

the input p'arameters, and standard deviation and worst-case 

studies may be carried ou·t through an automatic parameter 

variation facility. Allowable elements are R, L, C, switches, 

and linearly depende,nt sources ( t,30)" 

( c) HYBRID, :a.n. IBM 7091± program which can handle 1 inear networks 
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with R, L, and C elements, dependent or independent sources 

and any linear element described by immitance or hybrid 

matrices. This program is particularly well suited for 

parameter variation studies by repeated analysis due to its 

unique method of extracting variable parameters" In general, 

it has bef:;!n found that this program is considerably more 

efficient than any general nodal analysis program if the 

number of nodes is large and the number of ports is few 

( 1, JO). 

(ct) RAPII;,1, a linear analysis program which C$1 handle R, L, and 

C elements, linearly dependent and time dependent voltage and 

current sources for ac, de, and transient analysis. Sensi­

tivity information is provided for the transient and steady 

state solutions. '.!;'his prog.r(:UII is restricted to the class of 

networks de;fined in Section 3 .3 and al so makes use of the 

state rriodel technique (32). 

(e) LISA, a linear analysis program available on the Il;3M 7094 

(33) and 360/6.5 (34). This program is based on nodal formu-

lation techniques and can provide variations of the poles 

and zeros of the circuit to component variations. 

Specialized programs have been written for many sensitivity 

studies of specific networks but these remain generally unpublished 

since they a.re too narrowly :restri ctecl to be of general interest. 

Examples of such programs may be found in ·,'the. papers on probabilistic 

sensitivity (15,16). 

The programs above illustrate :four different approaches to the 

sensitivity analysis of linear networks: mesh, node, hybrid and state 
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model approach. These programs provide some sensitivity in;formation, 

out they generally fall far short of providing an automated means of 

direct evaluation of a wide selection o:f the more commonly used sensi­

tivity definitions" It was this situation then that prompted the 

development of the program VARYIT, one of the programs developed in 

this study. 

Of the programs considered above, the RAPID1 program most closely 

duplicates VARYIT. Points of similarity are that the class of networks 

considered is the same as is the dynamic approach of developing the 

state model. The algorithms for formulating the sensitivity model are 

different and VARYIT provides an automated link with the frequency 

domain which RAPI:01 does not consider" It should be noted that RAPID1 

and VARYIT were developed at approximately the same time (35). 

NASAP is a J,inear analysis program in the process of development 

since :1.967 by twenty uni.versities and ten industrial laboratories (J6, 

37, 38)0 This program is based on signal flow graphs, provides trans­

fer functions, and has very good frequency domain sensitivity analysis 

capabilities. However, at present .it is limited to very large 

computing facilities. 

J.J Terminology and Formulation of 

Network Equations 

In this section attention is focu.sed on the formulation of state 

models of linear time=invariant networks of two~tenninal elements. 

The state model of a. system of two-te.rmina.l elements is determined by 

the element values, their interconnection? and the choice of the state 

variables. It is usually desirable to choose state variables which 
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represent physically measurable quantities. Linear graph theory has 

been extensively applied to the problem of formulation of systems of 

equations by such authors as Koenig and Black.we! 1 (39), Koenig, Tokad 

and Kesavan (40), and Seshu and Reed (4l)o These formulat.:ion tech'-. 

niques are not restricted to electrical systems or to any pa;rticular 

energy concept. It has long been recognized that analogues may be 

drawn between electrical components and mechanical, hydraulic, artd 

mixed systems of components. Thus, a study of linear electrical net­

works implies considerable generality in the theory of linear systems. 

However, for ease of presentation, the r~mainder of this dissertation 

will deal only with electrical quantities and componentso 

It is assumed that the reader understands the basic notions of 

linear graph theory. If not, the reader should consult Seshu and Reed 

(41) which provides a comprehensive and highly readable introduction 

to the topic. However, since the notion of relative polarity of the 

variables can be based on a number of schemes, the convention adopted 

in this study will be cited. The arrowhead of the directed graph edge 

will be assumed to coincide with the direction of positive polarity of 

the current. This same arrowhead will indicate polarity of the voltage 

by the a.ssumpU. ·-:,n that the tail of the arrow will indicate the positive 

terminal of the device for the voltage variable. It is then apparent 

that the simultaneous occurrence of posi:t;i ve or negat.i ve voltage and 

cqrrent variables for a g:iven element will imply that the element is 

absorbing energy from the system. This not:i.on is illustrated in 

Ji'igure 7. 

The method of formulation followed here is similar to that of 

Brown (42) in which inductors may be located in the network tree and 



Figure 7. Polarity Convention 
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capacitors in the cotree. However, in order to simplify the :fonn of 

tµe state model, it will be assumed here that a tree and cotree exist 
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such that all capacitors and voltage drivers can be included in a tree 

and all inductors and current drivers can be included in the corres-

ponding cotree. For this case it has been shown (l~2) that the state-

space model will exist in the form of Equations (2.J.2a) and (2.J.2b). 

For this class, the network equations may be formulated as 

c 0 E !11 A:1.2 ~ Bi:1. B12 ED -a -c 

+ 
(:J. J. :J.~) 

0 L J 
-L 

A 
-2:1. A22 J B21 -1, 

B 
-22 JD 

and 

.!cG c :1.1 .£12 ~ D11 £12 ED 

= + (J. J .1b) 

~G c21 .S22 
J 
-L D21 D2. -~ Jn 

where the symbols are defined in Figure 8. These equations may be 

more efficiently written as 

CL x - Ax+ Bu 

y ... Cx+Du. 

where 
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Figure 8. Definition of Terms for Equation (Jft.3.1) 
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is a diagonal, matrix with all diagonal entries positive. The solution 

of this set of equations may be used in the cutset, circuit, and 

component equations of Figure 8 to provide the q:,mplete solution for 

all network voltages and currents. 

If the network has both circuits of capacitors only and cutsets 

of inductors only, then the model has the fonn of Equation (2.J.2). 

However, in general, the state models of networks violating the simpli-

fying assumption do not have the simple form of Equation ,{~.J.2). 

Topological means are readily available to hanqle these eases. 

J.4 Formulation of the Sensitivity Operators 

In the preceding section the general form of the state model is 

given for the network class under consideration. It is now desired to 

develop the general form of the sensitivity operator equation:;; for this 

class of networks. The techniques of Section 2.J lead immecliately'to 

)>(t) ·- [£!.'.T1 
A :!(t) + Z 

where 

(J.4.1b) 

and 

~(t) - £~(t) + C 1 x + D 1 u (J.4.1c) 

The cutset anc;l circuit equations may be used together with the solu;,,· 

tions to Equations (3.4.1.a) and (J.4.1.c) to yield i::omplete knowledge of 

the first order partials of every voltage and Cl,l.rrent in the network. 
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Consider now formulation of the system state model and its asso-

ciated sensitivity model for the parameter p. Inspection of Equation 

(J.4.1) indicates the only terms .. unavailable by direct numerical calcu-

a~i-·1 
lation are A', B', .£', E.', and dp Several methods may be used 

to obtain these terms. 

The first method for finding the !', ~', .£', and E.' matrices is to 

consider the individual submatri ce s !
1 
:l' !

12
, ••• , E,

22 
in terms of 

their defining expressions given in Figure 8. Matrix differentiation 

may be used directly on these expressions but a difficulty is encoun-

tered in finding _gr. This difficulty may be surpassed by differen-

tiating the product 

yielding 

so that 

-1 dR 
R -= + 

dp 

(J.4.2) 

Once the R 1 matrix is found the A 1 , ~,, £' and .Q' matrices of Equation 

(J.4. '.I.) may be ev&lua.ted. Altl;lough this method is direct and can be 

impJ.emented on the computer it is not efficient when several nominal 

parameter values are given since the state and sensitivity mouels must 

be reformulated for each nominal parameter value. 

A second method exists which does not necessitate refonnulation of 

the models. In this approach the matrices are formulated as polynomial 

functions of the parameter p wl;lere the pis maintained in symbolic 

form, i.e.:,: as a literal. Each submatrix may be formulated and then 
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combined to produce A(p), B(p), C(p)? and D(p) in l)olynomial fonn. 
' - - - -

The elements of these matrices may then be differentiated to yield 

!' (p), ~ 1 (p), .£' (p)? and Q' (p). At each value of p for which th.e 

models are desired the numerical value of pis inserted into A(p), 

~(p), C(p), E,(p), !_ 1 (p), ~ 1 (p), .£' (p), and £ 1 (p). 

The symbolic formulation procedure suggested above posed two major 

problems when computer aided analysis was envisioned. First, the 

symbolic formulation appeared to require large amQunts of storage. 

Secondly, new techniques and algorithms were needed when dealing with 

the parameter in symbolic form. 

The storage requirements will be.discussed first. Consider the 

matrix polynomial representation scheme 

f(p) 
n n-1 

F p + F .. 1 p + ••• + F 
--n. """'.tl-. --0 

(J.4.4) 

The storage requirement for the k x k polynomial matrix of deQree n 

!_(p) is (n+1)k:;:l. During the formulation of the state model in tenns 

of the variable p, it is neces;,;ary to find !, B, .£, and. £ as matrix 

polynomials, These matrices are seen from Figure 8 to depend strongly 

on the matrix 

R ::: ~(p) (J.4.5) 

The parameter p may belong to either the tree or the cot:ree, but not to 

both. In general, the ma,ximum degree of this matrix polynomial in the 

cotree conductance parameter is m- 1 when there exists m resistances in 

the tree (see Appendix C). Thus? the storage required is 

2 3 
(m-1 + l)m "'m 
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for the general case. Many problems of a reasonable size w,ould excl:led 

the 32,000 word memory of the 7040 computer, thus necessitating a very 

large amount of sc;r-a.tch pad manipulation using external storage. 

However, the initial concern over the appearance of high order poly ... 

nomials was unfounded as the following result indicates. Proof of this 

theorem may be found in Appendix Ca 

J.4.t Theorem 

Consider an RLC electric network containing voltage and Cl,lrrent 

sources. Let there exist a tree containing all capacitors and voltage 

sources and excluding all inductors and current sources. Then th,e net-

work state model given by Equation (.3o3.1.) is such that no entry of the 

~, ~, .£, or D ma.trices has munerator degree higher than three in any R, 

L, or C parameter or has denominator degree higher than one in any parameter. 

This theorem guarantees that for every network in the class under 

consideration the maximum storage for each matrix polynomial need never 

exceed that required for numerator degree three. It is also shown in 

Appendix C that the maximum degree for R is in reality oneo Thus, the 

true storage required becomes 

2 2 (1. + 1)m ,.., 2m 

instead of .3 m • For example, let m be 20. Then an order of magnitude 

improvement in storage requirements is effected by using the results of 

Theorem J.4.1. A similar reduction in storage requirements is appli-

cable to!.,~,£, and D. 

The second problem mentioned above is t):le development and imple-

menta.tion of computational techniques for .use with symbolic p&rameters. 

Basic oper<'l,tions, such as additioni subtraction, multiplication, and 



division, with polynomial elements must be developed before more ad­

vanced techniques such as differentiation and matrix inversion can be 

applied. 

The most difficult algorithm implemented in this study was that of 

finding the inverse of the matrix R·-:1 of polynomial functions. Several 

approaches are possible. One approach is suggested by the topological 

relations of Seshu ab.d Reed (41) o It is possible to develop tree listing 

programs anci thus form all needed terms by means of the formulae. 

Experience with tree-listin!J programs indicates this is not an attrac­

tive approach since even moderately large networks contain numerous 

trees. A second approach to the problem is to consider every parameter 

except the varying one in numerical. :form. Walden (4,J) has shown the R 

matrix is a positive defin:i te, nonsingu.1 ar matrix. This f'act may be 

utilized to assure that the inversion by the bordering method of 

Faddevva (44,) may be carried out. Thi,s process consists of finding 

the inverse of k. x k submatrix in the upper left. This inverse is then 

used to generate the inverse of the (k+1) x (k+1) principal submatrix. 

J.5 Computer Program VARYIT 

Section J.J and Section J.lic have considered a certain class of 

linear networks and presented the network. sta:t.8 model and i ti,; associ­

ated .sensitivity model. This section describes the program VARYlT 

which has been written to automatica .. lly formulate the state model and 

sensi ti vi ty model for th.is class of networks and the:n per.form a 

solution in either the frequency or the t:i.me domain. 

It is unnecessary to check to make sure a su:i.table tree exists 

before execution on the computer.. I:f no tree exists which contains all 
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capacitors and voltage sources and excludes all inductors and current 

sources? the program will detect this condition and terminate pro­

cessingo The user may circumvent 'this condition by one of two methods. 

When an improper cutset is detected a resistor of large magnitude may 

be paralleled with a. current source or inductor leading to the isolated 

node or supernode. This resistor should be much larger than any 

existing resistor value so that it has a negligible influence on the 

network voltage and current solution. Similarly small resist~nces may 

be incorporated in series with capacitors and voltage sources without 

seriously degrading the solution. Normally a suitable ti~ee will exist 

unless the elements are completely idealized. If losses in the storage 

elements are accounted for with resistors, the need for extra :resistors 

will not a.rise. 

The program is implemented in the FORTRAN IV language in the hope 

of providing the widest possible distribution and application. None 

of the techniques are restricted to a.:ny machine even though th,e program 

itself was developed on the Oklahoma State University Computer Center 

IBM 7040 (J~K words, 5 tape drives). An attempt was made to always use 

symbolic names for ea.ch system unit in the nope that other centers with 

differing unit designations could ea.s:ily make this program operational 

by modifying a minimum of sta.t.ementso Additional versions of this 

program are available for the IBM 360 and the UNIVAC 1.108. 

The program is written :i.n seven phases (not all of w'h.ich ara 

executed on any one problem). Phase t :r.'E~ad.s the input data, f;i.nds a 

su,i.table formulation t:ree, and ca.lcu:J.a.t(~S the cutset matrix. Phase 2 

formulates the system state model subma.trices !.lt, ! 12 , " •• , 0
22 

of 

Figure 8 and stores these on tape. Phase .3 reads the su.bmatrices, 
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arranges theJll into !::_, ~., .£, and _Q matriu~s of Equation (J"J.1), evalu­

ates them at the nominal value of the pa:>:>amet.er p and stores the evalu­

ated matrices on tape. Phase 3 also differentiates these matrices and 

stores the result on tape. Phase l+ is executed when a, general time 

solution is desired by integration of the system state model and the 

sensitivity model. Phase 5 irs executed when an impulse driver is 

specified at one of the driver positions. Phase 6 calculates the 

transfer function matrix and the pole and zero sensitivities of each 

element of the matrix. Phase '7 applies one measure of goodness if 

desired and prints 1 punches, or plots the output data. Figure 9 shows 

a schematic representation o:f the operations which VARYIT may be 

called on to perfonn. 

In ol·der to solve rea.sonahly large networks VARYIT is dimensioned 

for a maximum of Bo elements. A total of 20 inductors and capacitors, 

20 voltage and current drivers 1 20 resistors in the cotree and 20 

resistors in the tree (thus, 4:o resistors total) may be incl~ded. 

A maximum of 4:0 nodes may exL~.t in the network to be analyzec;I. No more 

than ten elements can be :incident at a node in the network. Although 

these restri.ctions can be relaxed by modification of the program, the 

ultimate size of the network that mB.y be solved is .limited by the 

availc;1.ble storage in the computer. The number of elements may be 

increased py a.l te:dng the appropria.te DIMEN,SION statements. 

This program may be used as a general analysis program oy setting 

the number o:f varyh1g paramet.f-!rs to :,:ero. Time sol u.tions 9 ;impulse 

solutions, and the trans:fer function matrix are then available outputs. 

The input to this program i.<S user oriented. In order to execute 

a problem the user must per±'orm the :fol.I.owing 11 desk 11 step,s: 
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Figure 9o Operations P,c:rf'ormed by VARYIT 
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(l) ilumber the elements by type? resistors first, inductors 

second, current drivers t:hirdj capacitors fourth, and voltage 

drivers fifth; 

(2) number the nodes of the network; and 

(J) assign orientations to each element. 

Thert, in general, the input data consists of: 

(1) an interconnection array listing elements incident to each 

node; 

(2) an orientation .list which lists nodes from which elements 

are oriented; 

(J) nominal parameter values for R 1 L, and C elements; 

( 4) driving function types and parameters; 

(5) a list of pj:l.rameterr..:: which are to vary; and 

(6) the type of solution desired. 

More explicit information on the program? its parameters? and its input 

data is given in Appendix Do Chapter V presents examples of the 

various types of problems handled by VAHYIT. 

3.5.:1. Tree Selection Algorithm 

In order to formulate the submatrices A
11

, A
1 

, ••• , D fi;-om the 
- - 2 -22 

equations of Figure 8 1 it is necessary to :find a suitable fonnulation 

tree. The tree selection al.gor.i thm usc.:,d in th.is program has evo.l ved 

from an algorithm deveioped by Cummins and Thomason (4.5) and modified 

by Falk (46) a The a.J.gori thm oiven by Falk produces a tree which 

contains certain specified elements of the network and excludes other 

specified elements" Initially all volt.age drivers and capacitors ~e 

placed in the branch list o:f elements and all. current drivers and 
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inductors a.re a.s<'!igned to the chord list" The algorithm presented here 

differs from Falk in that it contains a test (Step 6) to insure the 

requirements fo1r· the existence o.f a tree are not violated as eaGh 

element is added to th9 list of tree elements" Falk's algorithm 

assumed the existence of a suitable treeo 

The steps of the c1.lgorithm are: 

(1) Remove the elements from the network which are contained in 

the chord list.. 

(2) Select an element of the net1work branch lisL 

(J) Locate the nodes i and j to which the selected branch element 

is incident in ·t.he network" Remove the branch from the 

netwo:ck and join together or identify the two nodes as one 

single node; label the combimo.d :node with the smaller of 

i and .i o 

( 4.) Remove from the nF,"i:work any sel:f loop elements -- elements 

with bo-t.h e:n.ds incident at the same node ~- which are 

generated by the identification of two nodes in Step J. 

Add these elements to the network chord list. 

(.5) Return to Step 2 until all 1c;Jements of the branch list have 

been sele(:ted and removed :from the network. 

(6) If el.Hments remain .i..n the network, choose an element fittached 

to the reduc~d node numbe,:r2d l ( if no element is now 

attached to this node ex:it to "No Tree Exists") and add the 

element to t 11e net.work branch list. Go to Step J. If no 

elements remain in the reduced network and the number of 

nodes has been :i:·educE,d to one 9 the tree and cotree ~re de­

fined by th.e branch and chord Lists, respectively. 
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J.5.2 Cut.set Matrix Formulection Algorithm 

Having :found the branch list and the chord list of elements, the 

program nex.t must cal c11J5t,2 the fundwrmr,tal cut.set matrix or the funda-

mental circuit matrix of Figure 80 The algorithm used in this program 

is identical. to that propose,d an.d automa.ted by Falk ( 46) o The algo-:· 

rithm itself is presented here only in the interest of completeness. 

( t) Create a matrix o:f zeros with. as many rows as the number of 

entries in the network branch list and a.,;; many columns as the 

number of entries in the network chord list.a Select the 

first entry in the branch list as the first cutset branch. 

(2) Detennine one of the nodes to which the cut.set branch is 

incident in the network and determine if the branch is 

orieni:,~d away from t.he node. 

(J) Li.st the node in the node list"' List all the elements 

incident to the node, except the branch, in the cut.set list. 

(4) 1:f any blements of the cu:b,et list a,:"e branch elements, 

select one and remove it from the cut.set listo l)etennine 

the oicher :node to which it is :i.nci dent and go to Step 3. 

(5) When there are no branch elements in or remaining in the 

cuh~E·t list, remove hath entries of all those elements which 

c,.ppear "twice in the cut.set Ji:">to 

(6) The cut.set list formed is the Ji.st of c.utset chords corres-

ponding to the irdtially selected cut.set brancho Select the 

:fi:r.st. chord in this 1 isL 

(7) DPtermine if the se},Jcted chord 1.s oriented away from ~ of 

the nodes in the node list." 

(8) If th,c-' o:d.entation of the cut.set b:n.u1ch (Step 2) and the 
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orientation of the chord (Step 7) are both away from or both 

toward any of the nodes in the node list, the cutset matrix 

entry corresponding to the b:canch and chord is +1; if either 

the branch or chord orientation is away from and the other is 

toward any of ·the :n.ode.s in the node 1ist 9 the entry is -1. 

(9) Place the entry determined in Step 8 in the matrix row 

corl'Ec' ,;po:nding to the cut set branch position in the network 

branch list ,cJ.nd in the matrix: column corresponding to the 

position in which the chord is located in the network chord 

list. 

(10) Select the next chord in the cutset list and go to Step 7. 

When all chords have been selected 7 go to Step 11. 

(Ji) Remove all ecHtries from the node and cutset lists. Select 

the next branch in ·i:he b,:·anch list for the next cut set branch 

and go to St.::·p 2. whi-m ail b:ca:nches have been selected, the 

cut,-;et matrix submatrix S is completedo 

The complete cut set matrix representation is [.! -~ 9 where I is the unit 

matrixo 

J.5.J Formulation Alg:Jrithm 

Program VARYII' generates the sta.te model via the :formulation algo­

rithms presented in St,ction 3a3. The subma:trices of Equation (3.J.1) 

are formed by implementing the reJat:i.onships given in Figure 8. In 

order to formulate the ''len:-:::itiv:.l..ty operators the A 9 .£,i ,.£, and Dmatrices 

are formulated ss polynomial functions of the parameter p as suggested 

in Sect:ton 3. 4it, Theoreni 3 •. 4a 1 i;_c, used to advantage in this process to 

decrease the flt.orage requirements. The formulation procedure requires 
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the presence of only .four matrix polynomials at any one time in the 

computer memory" The submatrices A 111 A
12

, "''" 1 D 
2 

are calculated and 
-- ' -. -,2 

stored on tape. They e1.re .retrieved and combined :into the :four matrices 

~, ~ 9 .£., and D, The matrices ~' 1 ~' 1 £', and D' are :found by differ-

entiation of the respective matrices. At this time the nominal value 

of the parameter p is inserted and numerical values .for the ~, ~, £, _£, 

~,, ~,, .£' 9 and £' matrices are calculated. These matrices are stored 

on tape as inputs for the following time or frequency solution phases. 

One addi t:i.onal task is performed in the fo:nnulation phases. 

Walden (43) contends 1 and the author concurs, that in the majority of 

cases the cut.set matrix S is sparsely populated wi tfr non-zero elements. 

Thus, a saving in stora.ge may be e:ff'ected by storing only the non-zero 

elements of the S matrix along with the indices of their location in 

the matrix. This method also leads to a substantial reduction in exe-

cution time since only the operations a,ssociated with non·-·zero elements 

of the S matrix are performed. 

3.5.4 Ti.me Solution Technique 

Program VARYIT pr)vides the general time solution to the network 

state model and its associated sensitivity model. as one of three solu-

tion options. The solution of' the systiem state model requires the 

initial cm,.ditions be known for~ and ~L· In general 9 however, it is 

not convenient 9 or in r,;;ome ca:::,es possible 9 to specify the capacitor 

voltages and inductor currents. In most electronic circuits :i,.t is 

usually poRsible to specify only the value of all power supplies and 

signal sources at t~,o. The assumption usually ma.de for such cases is 

that the circuit has achieved steady~·state with the constant <;J.ri vers 
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applied. This &ssumption implies that the derivatives of all variables 

must be equal to zero. The only derivatives of interest are those 

given by Equation (J.J.1a), since all others are linear combinations of 

these. By equating the left hand side of Equation (J.J.1a) to zero, it 

is possible to solve for the initial values of ~L and~ a This results 

in 

or 

~o 

J 
-LO 

[4.11 

A21 A 
-22 

.... 1 
B'.1:1 

B 
-2:1 

B 
-:12 

~22 

(3.5.1) 

where the non subscript is used to denote that these are the steady-

state t,.::O values. The inverse of the A matrix exists if the system has 

a finite steady-,:;tate solution to a step input, i.e., no zero eigen-

value. Equation (3"5.1) is used to provide the initial conditions for 

the solution when the steady·-stat.e assumption 1.s desired; otherwise, 

initial conditions must be furnished. 

In order to obtain the solution to the sensitivity model, Equation 

(J.4.1), the initial conditions for vp(t) must be found or supplied as 

input data. If no :i.ni ti.al condi ti.ans a.re supplied, program VARYIT 

computes the ini ti.al conditions for the sens:i. ti vi t.y model from 

A··l [- d(CL) -1 
vP(o) -· (CL) . A + A"} + 

dp - - - -0 

(J.5.2) 

~ 
d(CL) 

(CL)-·l +~J~ --- B . 
dp 



Equation (J.,5.2) is found by letting ;(O) and di/ dp be zero. Thus, 

the sensitivity model itself may be said to have achieved a steady­

state value :!Co). If these requirements do not fit the case under 

consideration :initial conditions may be computed and read in as input 

data. 

The solution procedure used is the sequential method of Section 

2.J.1 in which the x(t) and ,r,Ct) vectors of Equation (3.J.1) are 

obtained at ea.ch integration increment. These vector solutions are 

used in the cutset and circuit equations to yield the complete solution 

at each integration increment for all network currents and voltages. 

The complete network solution is stored on tape for use :in the sensi­

tivity model :integration. The integration process used in this program 

makes use of the matrix exponential method given by Liou (4,7). This 

method provides a desired numerical accuracy when integrating from 

time t to time ( t + 6t) o If the desired number of decimal places of 

accuracy is "LD11
9 the PREC variable of Appendix D should be set at 

10-LDo Note that this method still allows round-off errors to accumu­

late during the integration processo 

The state sensitivity operator solution integration procedure is 

to ret.r:ieve the complete network solution :from tape storage to form the 

Z vector of Equation (3. 4o lb). Th.is Z vector is used as a driver 

vector in the integration process along with the transition matrix of 

the state model integration. By making use of Equation (3.4c.1c) the 

output sensitivity operator may be found. Differentiation of the cut­

set and circuit equations of Figure 8 allows the complete solution to 

the network sensitivity model to be found by simple linear combinations 

of the output and st.ate sensitivity operato:r.so This complete solution 
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for all network variables and their sensitivity operators is calculated 

and stored on tape at each integration increment. 

J.5.5 Impulse Response Solution Techniques 

Program VARYIT provides the solution to the network state model 

and its associated sensitivity model when unit impulses are introduced 

at the driver inputs" This solution is found by the technique of aug­

mentation given in Equations (2.J.6) and (20J.7). Equation (2.J.10) 

yields the output state vector and the output sensitivity operator for 

an impulse function input at driver Udo The reader should note that 

when an impulse function so.lu.tion is des.ired the only non-zero driver 

is the impulse driver and the initial conditions on both the sensitiv­

ity operator equations and the state model equations are set equal to 

zero. Liou's method is also used in this type solution to insure the 

desired numerical accuracy. The user specifies those drivers which are 

to be impulse drivers and the program assumes one driver at a time is 

an input impulse and form the derivatives with respect to parameter p 

of each voltage and current in the network. By using the augmentation 

technique of Appendix A the integration is actually performed only once 

regardless of the number of impulse drivers. The complete solution to 

the network and the sensitivity model at each integration incremE;int is 

stored on tape" 

J.5.6 Pole-Zero Sensitivity 

The third solution option provided by VARYIT is the calculation of 

the pole-zero sensitivities. Section 2o.5 has discussed the techniques 

for calculation of the transfer function matrix P(s) and also the pole 
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and zero sensitivities of the, individual elements of this matrix. 

Adaptation of the program of Appendix B into VARYIT was accomplished by 

incl us ion of the steps necessary to convert the _!, !!_, ,£, £, and CL 

matrices of Equation (J.J.1) to the A,!!_,.£, and D matrices of Equation 

(2.J.2)a Similar steps are taken in order to obtain the correspondin~ 

!', !!_', .£', and D1 matrices for Equation (2.Jo.5). A decision was made 

to restrict the size of the maximum network which may be handled by 

this program to networks containing a total of 17 capa.citors and in-

ductors, 17 resi.stors and 17 voltage and current drivers. If this 

restriction is too stringent, the program may be split into phases to 

accomodate larger networks by utilizing the auxiliary storage capabil;:, 

ity of tape or disc machines. 

J.5.7 Statistical Sensitivity Measure 

Program VARYIT includes one statistical sensitivity measure as an 

output option. This measure is the variance approximation of. Equation 

(2.4..6). If it is desired to apply this measure, the va:c:i.ance of each 

varying parameter 
2 cr , i,c.:1. 1 2, ••• , k 1 must be included as input data. 
pi 

As pointed out in Section 2.4, these va:d.ance.s may be evaluated either 

by standard statistical means or obtained :from the manufacturer. 

Different sets of parameter variances may be included so that multiple 

vc1,riance approximations may be studied as the :individual parameter 

variances are allowed to change. In this manner a family of variance 

approximation curves may be formed and the effect of the individual 

parameter variances may be examined. This featu.J~e of the program may 

be used by the des:i.gner as ctn aid in the setting of tolerances on the 

parameters. If this portion of tho program is executed, the program 
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will automatically plot the variance terms if desired. 

3.5.8 Ti!lle Domain Output of the Program VARYIT 

If either the time solution or the impulse solution is carried out, 

a tape is produced containing the complete network solution at each 

integration increment and the complete network sensitivity solution. 

This tape is available for removal and storage for processing at a 

later time. In this way multiple use of the sensitivity operators is 

possible without re.,-execution of the formulation and integration 

processes. The format of the output tape is given in Appendix D. 

The output phase of the program has provision for several types of 

output. If a complete solution is to be printed at each integration 

instant, the word LIST should be entered in the appropriate position as 

given by the input sequence shown in Appendix D. Other options are 

more selective. For example, the user may specify the current through 

element number 11 by 111 and similarly the voltage across element 11 

by V11. Then these variables may be either printed or punched as 

desired. Examples of the output are presented in Chapter V. 

J.6 Summary 

The primary objective of the research activity discussed in this 

chapter was to develop and implement a design tool that is capable of 

supplying sensitivity information for a variety of the most commonly 

used sensitivity definitions. This chapter has described the computer 

methodolc;,gy and algorithmic processes used in the general purpose 

sensitivity analysis program VARYIT developed in this study. For a 

large class of linear networks or analogous :non-electrical. systems, 
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program VARYIT automatically formulates the state and sensitivity 

models from element values and interconnection data, and executes one 

or more solution options. These options provide sensitivity informaa:. 

tion either in the time or frequency domains and of either a determi­

nistic or probabilistic nature. It is felt that this program and its 

outputs will be of value to the practicing engineer conducting optimal 

design selection or tolerancing studies. 

Even though much study has previously been devoted to the state­

space model, its formulation, and its solution, little consideration 

had been given to the automatic formulation and solution of the sensi­

tivity model for impulse and transient analysis. A new theorem has 

been presented which is of great importance in decreasing the storage 

requirements for the formulation procedures. VARYIT implements a 

method of solving the sensitivity operator model for linear systems 

with impulse inputs. This new method assures desired number of places 

of numerical accuracy between time steps in the integration process. 

Also implemented is an extension of Brei.pohl's frequency domain measure 

of sensitivity to the time domain and a computational algorithm for 

obtaining the transfer function matrix and its associated pole-zero 

sensitivity information. 

The algorithms of Sections J.J and J.4 have been programmed and 

Section J.5 is devoted to a discussion of the resulting pro~ram VARYIT. 

Exapiples of the use of VARYIT are presented in Chapter V and Appendix D. 

This program is user oriented and requires a minimum of input data. 

Even though this program was developed primarily as a sensitivity 

analysis aid, it may be used as a general analysis program either with 

or without sensitivity calcuJ.ations. 



CHAPTER IV 

EXTENSION TO NONLINEAR NETWORKS 

~.i Introduction 

The preceding chapter described the general purpose sensitivity 

analysis program VARYIT developed to automatically formulate and solve 

sensitivity models for a class of linear systems~ The purpose of this 

chapter is to describe the methodology and algorithms developed for a 

program applicable to a large class of nonlinear systems. Utilization 

of these techniques in the new p:i;-ogram VARNOL permits automatic proplem 

formulation and solution for the state model and also the implementa.;.·_ 

tion of the sensitivity operators. 

The extension of the sensitivity operator concept to computer­

aided nonlinear analysis posed several problems. fi:rst, a suitable 

programming technique or program was needed to accomplish the formu­

lation and solution of the nonlinear differential ~quation model of 

the system. Secondly, the development of a computational algorithm for 

generating and solving the nonlinear sensitivity operator equations was 

needed. Finally, the nonlinear analysis program and sensitivity 

algo:rithm had to be combined together to provide an operational general 

purpose program. 

One of the major tasks that must be performed in obtaining sensi­

tivity operators is the formulation and solution of the nonlinear net­

work model. This is no easy task in itself but m~y programs have been 
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developed which achieve this to a more or,less successful degree. 

Section 4.2 discusses these programs, their applicability to sensitiv­

ity analysis and their availability for this study. The particular 

nonlinear analysis programming technique selected for :further develop­

ment is described in Section 4.J. 

The second problem area mentioned above is that of developing a 

compµtationaJ,. algorithm for the g0neration and solution of the non;.­

linear sensitivity operators. Section 4.4 discusses the algorithms 

selected for implementation in program VARNOL. 

The third problem area, that of combining the nonlinear analysis 

techniques and the sensitivity algorithm, has been successfully solved 

as demonstrated in Section 4.5. The program VARNOL developed during 

this study is described together with the nonlinear moqels included in 

the program. Further details of the program may be found in AppendixE. 

4,2 Nonlinear Analysis Programs 

Many programs have been developed to treat nonlinear elements in 

the general network analysis problem. However, at the initiation of 

this study, no programs were found that provided sensitivity informa;;.;:'. 

tion when nonlinear elements were included. Progr~ms that include 

nonline~r analysis capabilities include: 

(a) ECAP. This program may be used if the nonlinearity can 

be modeled by a piecewise linear, single-valued function 

of a network current or voltage. After bre~ing the non­

linearity into piecewise linear segments, the user must 

model each segment with a switch and sourc;:e, This procedure 

is not desirable since an extremely large network may result 



when a high degree of accur~cy in repres~nting the non­

linearity is desired. 

(b) DCAP, PETAP. This is a series of programs developed by IBM 

which make use of highly developed transistor and diode 

models. Major difficulties were enc9untered when attempts 

were made to exteµd these programs to include additional 

nonlinear models (48). 
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(c) NET. This highly refined program developed by Malmberg (49) 

makes use of topological and matrix methods to solve networks 

including transistors, diodes, and linear elements~ Since 

this program is not available in simple FORT:JlAN-like languag~ 

no possibility existed for modifying it for 1,1se at Oklahoma 

State University. 

(d) PREDICT, SCEPTRE. These IBM programl:l are based on the state­

space model and can handle a large class of linear, nonlinear, 

and time varying networks. Since PREDICT is written in a 

machine assembly lan~uage for the IBM 7090-94 machines 1 it 

was discarded from further consideration. SCEPTRE, the 

second generation of PREDICT, did npt, beGome available until 

the completion of the programming efforts in this study. 

(e) AEDNET. This program, developed by ~atzenelson (50) 1 is 

capable of analypin~ networks containing nonlinear RLC 

elements, dependent sources, and independent sources. It is 

written in AEP-0 for the MAC computer at Massachusetts 

Institute of Technology. 

(f) WALDEN. At Oklahoma State University a program has been 

developed by Walden (4J) to analyze nonlinear networks. This 
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program handles a large class of nonlinearities, is writtert 

in FORTRAN, and is well clocumented. 

Walden's techniques (4J) for representing nonlinear elements were 

chosen as a suitable basis for the extension of the sensitivtty opera­

tors into the nonlinear network domain. These techniq~es weTe selected 

for the following reasons: 

(a) The state space model is the basic system description and 

the more widely publicized programs PREDICT, SCEPTRE, and 

AEDNET also use this Qasic approacp, The technique evolved 

in this study may possib~y be incorporated into these 

programs with modifications. 

(~) A large class of nonlinear models has been ~uccessfully 

analyzed with Walden's techniques. 

(c) The fonnulation of the network model and the sensitivity 

mo~el may be carried out by the same algorithms developed 

for the linear program VARYIT discussed in Chapter III. 

Because the original program developed by Walden was no longer opera­

tional at Oklahoma State University, it was necessary to re-implement 

the coding for the solution phases of this program. 

Since the initiation of this study, Leeds, Grueneich, and Moore 

(J~) have disclosed the development of RAPID2, a modifiqation of RAP[D1 

to supply sensitivity information for circuits which in~lude nonlinear 

energy storage elements. R,APID2 is restricted to the same cla~s of 

network topoloQies discussed in Section J.J and nonlinear resistances 

are not allowed. 



4.J Inclusion of Nonlinear Elements in the 

State~Space Model 
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Many practical devices used in electronic networks have nonlinear 

terminal characteristics. If these qevices are included in the network 

to be analyzed, the state-space model takes the fprm of Equation (2.J •. t). 

Two methods of finding the time solution for such nonlinear systems are 

discussed in this section. Walden's approach, which is a combination 

of these two methods, is also described. 

One method for finding the time ,solution is to represent the non­

linear system as a sequence of stepwise linear sy~tems at each inte~ 

gration increment. The coefficients of the differential equations are 

reevaluated at each time step in the integration proces3 and are,assumed 

to be constant between integration steps. The integration increment 

must be smaller than the minimum time constant in the linearized system 

of equations before this assumption can be justified. 

A second method utilizes dependent drivers. Ttie nonlinear elements 

are represented as vqltage or current drivers which are in turn 

functions of voltages and currents in the network. However, it does 

not suffice to simply evaluate this dependent driver step by step. 

Changes in the values of dependent drivers are propagated throughout 

the network and, hence, influence the value of all variables upon which 

the driver is dependent. Inconsistencies are then possible unless an 

iteration process is carried out at each integrat:i,on step. A con.;; 

vergent iterat~on procedure that works for all nonlinearities is still 

1,1nknown but certain classes of nonlinearities have been investigated 

· (43). 
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Walden's approach for representing nonlinear devices considers a 

combination of the two methods above. The state mqdel for the non-

linear network is written in the form 

. 
CL x::;: A x + B u 

x_ C x + D u 

where 

u = f(x,y,p,t) -~-
CL F(~,x_,p, t) 

(4.J.1a) 

(4.J.1b) 

(4.J.2) 

(4.J.J) 

with pa networlc parameter. Equation (4.J.1) has the same :form ai;; 

Equation (J.J.1) for the class of networks defined in Section J.J. 

Nonlinear energy storage eiements, such as the inductors and 

capacitors in an electric~! network, are represented by stepwise linear 

equivalent values in the integration process. It should be noted in 

Equation (J.J.1a) that all storage elements appear in the CL matrix and 

the !_, '.~, £, and _!! matrices are independent of the values of these 

storage elements. In general, it is necessary to invert the£!! matrix 

at each step in the integration process. However, when there are no 

nonlinear storage elements the inverse may bf computed only once since 

it remains constant. If no mutual inductances appear in the network 

the CL matrix is diagonal and, hence, can be easily i~verted. -
Nonlinear resistances appear in the matrices on the right of 

Equations (J.J.1a) and (J.J.1b). Thus, the stepwise linear method 

above would require reformulation of tne system equat;ions at each inte-

gration step. ').'o avoid this costly proi;::ess nonlinear resistors are 

represented as either a dependent voltage or current source. The 

evaluation of the source variable is carried out by a nonlinear side 



equation which takes the form of a polynomi'3,l equatiqn of up to fourth 

deg:ree. 

the inclusion of active nonlinear devices is ac~mplished in the 

same manner as nonlinear resistances. Side equations of~ more general 

fonn have been incorporated to handle vacuum tubes and other devices. 

Space does not permit a thorough discussion of the ite:i;ation processes 

which are associated with the dependent driver approach, The inter-

estecl reader should refer to Walden (4J) for a deta;ileq treatment. 

4.4 Formulation and Solution Techniques for 

Sensitivity Operators for 

Nonlinear Networks 

Section 4.J presented the method Walden (4J) used in obtaining the 

steady state and transient solut;ion for a large class of nonlinear 

networks. This section considers a new problem 1 the fonnulation and 

solution of a sensitivity operator model for the network parameter p 

based on the model of Section 4. J. An approximation ,to the exact 

solution of the sensitivity model is shown. 

The state sensitivity operator equation for the model of Section 

4.J may be seen to be 

(4.4.1) 

from Equation (2.J.5). The main distinguishing char~cteristic of this 

equation is that, in general,~· f. Q if any dependent drivers are 

included in the network. From Equation (4.J.2) 
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df of P a_! Jl Qf 
u' - --= ::."": -= v + + ap dp ox - ox -

or 

u' = h(:!' w11, p) (4.4.1a) 
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and ai.t/cx is similarly defined. Note that ~I depends on the state and 

output operators :! a1,1d ~ which in turn depend on the value of !:!.'. 

Thu.s, if an exa~t solution to Equation (4.4.1) is desired, an iteration 

process must qe implemented to obtain the consistent~'· However, i1,1 

the nonlinear case under consideration, the first derivatives of the 

variables with respect to the parameter p can serve only as an approxi-

mation to the true changes induced by the varying parameter. Thus, 

rather than investigate iteration criteria for another iteration, the 

solution to Equation Clt.4:o 1) will be approximated. This approximation 

is developed as follows. Consider the term (B' u +Bu') 

B' u +Bu' = (B + B1 ) (u+u 1 )-B u-B' u• - ~ - -... -- ~ ~ 

If u >> ~·, then 

B1 u + B u' ""' B' u ...... 
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and hence Equation (4:.4.1) may be written 

(4.4.2) 

The algebraic equation may be similarly shown to be 

~ (t.) C ~(t) + C'x + D1 u (4.4.J) ...... -

No iteration process is needed for the nonlinear storage elements since 

a stepwise linear approximation has been adopted for this type element. 

Thus, Equations (4.4.2) and (4.4.J) may be integrated without neces­

du(t) 
assumption u(t) >> • 

- dp 
sitating an iterative process under the 

Example 5.J.1 of Chapter V contains plots of predicted and, actual 

changes in the output voltage of a nonlinear network. The predicted 

changes were computed using the approximation above. Although the 

agreement is very good for this example, this will not always be the 

case. Thi=! program described in the next section computes the u• 

dire~tly from Eq,.1ation (4.4.1a) and compares it with the driver value. 

If the approximation used is qot satisfied, a warning message is 

pr:j.nted to alert the user. 

4 . .5 Computer Program VARNOL 

Section 4.J and Section 4.4 have suggested a representation scheme 

for non! inear elements and considered the sensi ti vi ty operator equat'ions 

tor this case. This section describes a program which automat;ically 

fonnulates the state model and the sen~d ti vity mo<iel using these 

techniques and performs a time solution for both models. 
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The program is implemented in the FORTRAN IV language in the 

interest of the widest possible distribution and application. None of 

the techniques are restricted to any machine. Figure 10 is a ft,mctional 

block diagram of the five phase program VARNOL(VARy NOnLinear). Phase 

1 reads the input data, processes it :for later phases, selects a tree 

set of elements? and computes the cutset matrix for the network. 

Phase 2 and Phase 3 are identical to those usep in VARYIT and perform 

the functions of formulation o:f the state and sensitivity models. 

~hase 4 performs the time solution for the nonlinear network state 

model and sensitivity models. Phase .5 serves dual purposes in that it 

applies the variance approximation as one possible criteria of sensi­

tiyity when desired and also prints 1 punches, or plots the output data. 

The output tape of Phase 4 is compatible with the output tape of 

VARYIT'sPhase 4 and, hence, the same output phase may be used with 

both pro gr.ams. 

The restrictions placE;;\d on net.works which may be solved by the 

present program are as follows. Allowable element types are linear 

and nonlinear inductors and capacitors? resistors, independent and 

dependent voltage and current drivers. Mutual inductances are not 

allowed. No more than eighty elements may be included in the network. 

A i;otal of twenty inductors and capacitors, twenty voltl:lge and current 

drivers (including the dependent drivers) and twenty :t'E;!sistors in the 

cotree and twenty resistors in the tree.(thus, forty resistors total) 

may be included. A maximum of forty nodes may exist in the network to 

be a,nalyzed and each node may have no more than ten elements incident 

to it. The ultimate size of the network to be solved is limited only 

by the available storage in the computer; tl;le number of elements may be 
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increased by altering the appropriate DIMENSION statements. 

This program may be used as a general analysis program, i.e., when 

no sensitivity information is desired? by setting the number of varying 

parameters to zero. In this manner the program may be used in modeling 

studies such as that conducted by Wal den ( 4J). When only general 

analysis is considered? the program bypasses all sensitivity model 

formulation and integration procedures. 

The program VARNOL implements the following types of nonlinear 

models along with the required iteration techniques: 

(a) rionlinear 9 dependent L and C values described by a polynomial 

equation of fourth degree; 

(b) nonlinear L values described by a two-term power series in 

the arctangent for saturating iron core inductors; 

(c) nonlinear R values to be described by a polynomial equation 

of fourth degree as a dependent voltage or current source; 

(d) nonlinear dependent sources to be described by a two-va,riable 

power series o.f nine te:rms :for simulation of a vacuwn-tube 

triode plate circuit as a dependent source; 

(e) nonlinear dependent sources to be described by a polynomial 

equation of fourth degree-with any variable in the system 

the controlling variable; 

(f) nonlinear dependent sources to be described by the semi-

conductor diode equation of' the form 

where IS and b are constants peculiar to each model or·device; 

and 



(g) non.linear dependent sources to be described by a pair of 

piecewise linear equations? 

and 

y a:1_:x: 

a2:x: 

a :x: + b 
1 0 1 

+ 

+ 

b 
1 

for 

b2 for 

a :x: + b 
2 0 2 

x > XO 

x < :x: 
0 

Appendix E; presents in detail the parameters which characterize these 

nonlinearities. The models implemented in this program a.re those 
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investigated by Walden (43) in his nonlinear analysis study. Inasmuch 

as the primary objective of this study has been the implementation of 

sensi ti.vi ty oper:1.tor,:; 9 extensions of Walden° s techniques have not been 

attempted. 

'The iteration processes implemented in VARNOL were originally 

develop,~d in three distinct programs. VAR"IOL incorporates all of the 

above models into one p:r·ogram~ but no iteration s.cheme has been 

developed to handle the general case l.r.1 ''1hich ar,.b:l.t:<.\1rs combinations 

of th.-.;, models occur .sim.ul taneously :i.n 2;.ny o:ne network" Instead non-

linear. storage elements of type (a) a.nd ('b) may simultaneously occur 

in three parti.cular classes o.f networks: 

( J) the poiynomi.al dependent drivers of model (c) and model (e); 

(2) the triode model (ct) and the piecewise line,ar equations (g); 

and 

(3) the diode model (f). 

The input data for VARl\JOL i.s approximatel:y- the same as that for 

VARYIT. Some e.f:fo:ct has been e:x:pendF.:d in ·i:.I·yi.nfJ to user orient this 

program~ but as i:;; common with most nonlinear progrwns~ the input data 



remains relatively complex compared to that requi.:red for the 1 inear 

program" The 11 de.skn work that i.s :neces.sax·y i:s: 

(a) represent the nonlineari.tie.s by the appropriate method; 

dependent drivers a.nd/ornon.1:i.near storage elements; 
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(b) nWTiber the elemccmts by type? resistor;-:; fi:r'st 9 then inductors, 

currPnt drivers 9 ca.pa.cl to:>:"s 9 and vol t."-ce sources; 

(c) number the nodes of the network; and 

(d) assign orientations to each el>?.mento 

The input data to be entered then is e;,;-ser:rtia11y -t.he sam.e as that of 

VARYIT. More explicit information on the program and its input data 

is given in Appendix Eo 

Program VARNOL computes the time solution of the nonlinear network. 

An i t8ra:tion pro,:.edure is implemE,nted to comput.~:, initLal conditions 

from the steady state assumption of Section 3a5.,4a If deRired, however, 

ini tia.J conditions fo:r the state and sen;-;;it.i vity model ma.y be specified. 

The initial conditions on the. sens.itivh:;y model ma.y also be calculated 

from Equation (.3a5a2) if the sensitivity model is assun1ed to have 

reached steady state and the change in the drivers d·1J.e to a parameter 

change is much less than the driver value itself'., Equ,:.i,tions (4:.4:.2) 

and (4-,o4o.3) a.:ce used to caJ.culate the ,,-se:n.1c,:l.tiv:J.t:y ope:Y.'ators. The inte­

gration. procedure chosen for VARNOL :i.s the Runge,a,Kutta·-Gi11 method 

given by Ralston and W:iJ:ff (51) o It :i.s nece.,;:sa:(":Y- fo:r the user to 

specif·y an integration in,~rement a,nd conver9ence c:triter:La suitable for 

his par.ticu.la.r problem" In order to a.:ssure ,1tab:U.ity of' the integra~·­

tion the integration im:.:rem1cmt must be set ·to a va..l.ue J,c;ss than the 

shortest time constant of the syst{~m of equ.atim1so 
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The output of this program :ts the same as that provided by VARYIT 

for the genera.I time solutiono The va:ria:nc:e approximation may be 

applied to any network variable when stati;-,;tical independence of the 

components is a,•,rnumedo Alternatively thEi complete network solution and 

the sensi tiv:i.ty partials may be printed m.A punchedo As suggested in 

Section 3" '-±a 8, any number of current or voltage meters ma:y be incor­

porated in order to obtain selective print out or punch. of the network 

variables. Multi.pass processing may be performed on the program output 

tapeo This tape contains the complete network solution for every 

voltage and current at each integration increment and the complete 

sensitivity voltages and current for each varying parameter. 

Even though no problems which were solved during the development, 

val i dat.ion and subsequent use at Texas Irn,trumH:rri:.:::s a:n.d Okl ahom& State 

University have taken more than ten mi:nute,s to execute on the IBM 7040, 

it is fe1 t that thf.! techniq,:1es used in this program wi.lJ achieve their 

full potentials only if the program. is recoded wi.th particular emphasis 

on decreasing solution time. A.lterna-t.ive.1.y, tl:,e program storage 

requirements may be relaxed to take :fu.JI a.dvan.t.age of th.E, increased 

compute.r memory SJ.zes available at most facili"t..i.eso With larger 

compute:r· m.=.,mory banks much of the prog:t·am I.inking and external input/ 

output is unnecessary" However, even at fa.cilit::l.es with E:,xtremely 

large memory banks, a tra.deoff between. memoJ:-y alJ.ocl';l;i;ed for use and 

execution timE'! exists. 'I'he :t'E';sult o:f such ii-:l. tradeoff is heavily 

depende,nt on th1.c, a.c.c.01.mt.i.ng procedu.rE,s :1.:n usE, a.t the particular faciliy. 

Hence 1 no suggest:i.ons a.rE• :ind.u.ded hE',:r'e as to thE< prope:t' ma.chine size 

and cost chara.ct,cirist.i.cs of this prog:r.am,, 
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406 Summary 

This chapter has described the f'ormal development of a design tool 

capable of efficiently supplying sensitivity information f'or a large 

class of nonlinear networks. A comprehensive study of general non­

linear analysis programs!, .such as those discussed in Section 4.2, led to 

the conclusion that Walden's state-space approa,;h for the representa­

tion of nonlinear elements would provide a sound basis for such a 

design tool o Walden vs program was limited to ;.,ta;ndarp time-domain 

analysis with no capability for treating parameter variation or 

tolerance prob.lemso The author has updated Walden° :s basic program 

and extended its capabiJ. i ties to provide automatic f'ormula.tion and 

solution oi' sensitivity operator model.so Automat:i.c tree selection and 

state-spac.e modE-)1 :formulation provide desirable additLona.1 capability 

that was lacking in the original WALDEN program. The resulting program 

VARNOL provides an efficient, user-oriented 1 sensitivity analysis 

program applicable to a broad class of nonl.inea.r networks and analogous 

non-·electrical systems. Examples of the use o.f VARJ.\!OL are presented 

in Chapter Va Appendix E a.lso discusses the input data requirements. 



CHAPTER V 

EXAMPLES OF SENSITIVITY ANALYSIS 

WITH VARYIT AND VARNOL 

5.1 Introduction 

This chapter demonstrates the use of V.A.RYIT and VARNOL in sensi­

tivity analysis. Three examples of linear network analysis are dis­

cussed in Section 5.2 illustrating, respectively, a general time 

solution, an impulse solution and a pole-zero analysis. Examples of 

nonlinear network analysis are presented in Section 5.J. These 

examples were chosen to illustrate the wide variety of problems for 

which VARNOL may be used and they represent a limited sample of the 

problems studied during this research activity" 

5.2 Ill.ustra,tions of the Use of VARYIT 

Program VARYIT was used to compute the sensitivity measures for a 

number of networks. An example of each type of solution is presented 

below. 

5.2.1 Example 

In this example time solutions of the state model and sensitivity 

model are performed. It is assumed that all parameters are.:!:. b percent 

of the nominal value aqd the distributions are such that the mean is 

equal to the nominal value 1 with the standard deviation M percent of 
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the mean. Consider constructing 

Z(s) 
(s + 2)(s + 5) 
(s + 1)(s + 3) 
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as the input impedance to a linear network. Many alternative networks 

may be found by the classical synthesis techniques of network theory 

(52). Eight such networks are shown in Figure 11. Six of these net-

works are canonic forms, i.e., they contain the minimum number of 

elements required to realize Z(s). Since 

V(s) - Z(s) I(s) 

if a step current driver is used, the variation in the input impedance 

is reflected in the voltage across that driver. The ideal desired 

output G is the V(t) which results when all the parameters take on 
0 

their mean values. Equation (2.4.J) for the mean square error reduces 

to 

MSE 
,..,, 2 
,..,, O'V(t) 

for this case. Program VARYIT may be utilized to directly compute MSE 

for these networks if the parameters are assumed to be statistically 

independent. If this assumption is not adequate VARYIT may still be 

used to provide the partial derivative terms of Equation (2.~.5). 

Once the mean square error has been obtained it becomes a fairly simple 

task to compute the measures of goodness of Equation (2.4.7) for each 

network. 

The eight networks are easily encoded for analysis by VARYIT. 

Figure 12 shows Network A of Figure 11 with node numbers, element 

numbers, and orientation of elements assigned according to the rules 
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Figure 11-o Alternative Networks Realizing Same Jmpedance 
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Figure 12e Network A With Assigned Conventions 



of Section 3.5. This information is translated to cards by reference 

to Table VIII. The input data is shown in Table X where the sequence 

numbers correspond to those in Table IX. This input data is typical 
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of that required when performing a transient time so],ution by inte­

gration of the state and sensitivity models. An abbreviated printed 

oµtput is shown in Table II where all elements in the network have been 

allowed to vary. The standard deviation of each parameter has been 

assumed to be 0.1 of the mean value. Only the portion of the printed 

output referring to parameter 1 has been included. Figure 1J is a 

comparison of the mean square error of the six canonic networks, A, B, 

C, D, E, and F. Integration of the MSE for each of these networks 

with a uniform weighting yields the following ranking of networks on a 

multiparameter sensitivity basis: C (most desirable), A, E, F, B, and 

D (least desirable,. Figure 14 compares the best canonic network with 

Networks G and Hof Figure 110 

5.2.2 Example 

In this example an impulse current driver is assumed to be present 

at the input to the networks of Figure 11. The calculations of 

Example 5.2.1. are repeated for this caseo Table XI is the necessary 

input data for Network A. Figure 15 and Figure 16 are the plots of 

the output MSE for this case where the assumptions are the same as 

those of Example 5.2. L 

5.2.J Example 

In this example a pole-zero analysis is made for the networks of 

Figure 11. Table XII is the necessary input data for Network A. An 
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TABLE II 

SAMPLE COMPUTER OUTPUT FOH TIME SOLUTION 

NEhlORK A 

·---~T=U~TAL NUM8ER Of NETWORK ELEMENTS ·-=6-c-------------~----------
NUMHtR OF VOLTAGE DRIVERS O 
NUMBER Of CURRENT DRIVERS l 
NUMBER Of' CAPACITANCE ELEMENTS 2----
NUMBFR OF INDUCTANCE F.LF.MENTS O 
NUMBER Of CONDUCTANCE ELEMENTS 3 
NUMBER OF NCDES,_--'4'----------------------

NfTWDRK TWO-TERMINAL ELEMENT CONNECTION ARRAY 
l 4 -0 -o 
l 2 5 -o 

-----=2 __ =3 __ ~5 b 
3 4 b -D 

ORlfNTATION LIST 
l 2 3 4 2 

NUMBER OF TREE BRANCHES 
-----NUMBER OF COTREE CHORDS 

TREE BRANCHES ARE 5 
COTREE CHORDS ARE 4 

CUTSFT MATRIX 
~ l l O 
-1 0 l 
-1 0 0 

3 

b 
2 

3 
3 

3 

NOMINAL RESISTANCE VALUE FOR ELEMENT l IS O.lOOOOOOOE 01 
-----N-OMINAL RESISfANClc VALUE FOR ELEMENT 2 IS 0.20000000E 01·-----------­

NOMINAL R(SISTANCE VALUE FOR ELEHE~T J IS 0.33333333E 00 

---~PACITOR OR INDUCTOR NUMilER ___ 5 VALUE (S~OOOOOOOE 00---------------
CAPAC I TO_~__QR INDUCTOR NUMtlER b VALUE_ IS O._lOOOOOOOE 01 ---------------

L!Sl OF VA~YING PARAMETERS 
1 2 3 5 b 

TIME SOLUTION REQUESTED 

CAPACITOR OR INDUCTOR NUMilER 5 HAS AN INITIAL CONDITION OF O. 
_____ CAPACITOR OR _I NOUC TOR NU~B(:R b HAS AN I NIT I AL CONDIT ION OF O, 

----~-~INTEGRATE TOT= O.bOOOOOOOE 01 IN STEPS OF O,lOODODOOE-01 
WITH PRECISION OF O.lOOOOOOOE-06 

O SINE TYPE DRIVERS 1 WAVE TYPE ORI VERS 
KIND POSITION PARAMETERS FOR DRIVER'----------

-----~ o · 0.00000 o:cfoa·o-o--t~-soooo 0.00000 1.sooao -1.00000 -----

SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED 
SENSITIVITY INITIAL CONDITIO~S FOR PARAMETER 

0' ___Q_.__ 
SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED 

_____ SENS..!.I.lY ITV _JfilT IAL CONDjTIOfil/'OR PARAMETER 2 -----------------------
0. 0, 

SENSITfVITY INITIAL CONDITIONS ARE SUPPLIED 
SENSITIVITY INITIAL CONDITIONS FOR PARAMETER 3 

------ ·-·---·-···-··-0. ____________ Q.. _____________________________________ _ 
SENSITIVITY INITIAL CONO!TIONS ARE SUPPLIED 

___ SENSITIVITY INITIAL CONDITIONS.FOR PAHAMETEH _ 5 --------------------------
0. o. 

SENSITIVITY INITIAL CONDITIONS ARF. SUPPLIED 
SENSITIVITY INITIAL CONDITIONS FOR PARAMETER b 

o. o. 
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TABLE II (Continued) 

---------------------~-~---·----------------·---

THE NUMBER OF THE VARYING PARAMETER IS 
-----------------· MATRIX INVERSl!lN 

. NUMBER OF DIMENSIONS 

MATRIX OF DEGREES= 

R( 1, 11 = 0.0000 1.0000 

THE INVEMSE OF R FOLLOWS 

RI 1, 11 = 1.0000 

DE TE RM IN AN ~T --~o-. ~o·a-0-0--1-.-0-000 

THE ORDER OF DETERMINANTIS 

MATRIX OF DEGREES= 0 
---------------------~--------- ----

--------- 1)_22 ---------- ---------------------

POSIT ION 

I, l O.lOOOOOOOE OJ 

C 21 

PO~ITIUN 

1, -o. 
1, 2 -o. 

IJ 12 

POSITION 

l, l o. 
2, l o. 

B 12 

POSIT !UN 

---------1, -·- - O. -- - ---o.10000000E 01 X 

2, l O. O.lOOOOOOOE 01 X 

c 11 

PO~ f U 

-·- --·---.-1., .. L-------·-··- -o. __________ 0.50000000E 00 _X ______________ _ 
l, 2 -o. 

·---- .. 2 ..__ 1 -·--· -----·--- ---o. ------------
~. 2 -o. 0.30~0000)E 01 X 

-----·------ _____ A_ . _ 11 __ ---·---- --------------------·----------- ----------------·----·----··--. __ _ 

POSIT IO"l 

1, o. -0.50000000E 00 X 

. ·----- ___ l, _l. ·-----· 0. ------ -- --···--·--·- -----·------··-· _ ·-·----
2, l o. 
l.,_l. ------------· O, -·---·----------- -0. 30000000f .. Ol __ X_ 



TABLE II (Continued) 

NETWORK A NUMBER OF VARYING PARAMETER 

THE FOLLOWING COMPOSITE MATRICES HAVE A"--------~-
COMMON DENOMINATOR O. O.lOOOOOOOf 01 X 

COMPOSITE A MATRIX 

POSIT JON 

1, 1 o. 
1 2 o. 
2, l o. 
2, 2 o. 

COMPOS I TF 8 MATRIX 

POSITION 

1, o. 
2, 1 o. 

COMPOS I TE c MATRIX 

POSIT JON 

1, 1 -o. 
1, 2 -o. 
2, l -o. 
2, 2 -o. 
3, 1 -o. 
3, 2 -o. 

COMPOSIT~ D MATRIX 

POSITION 

1, 
2, 
3, 

o. 
o. 
O.lOOOOOOOE 01 

-0.50000000E 00 X 

-0.30000000E 01 X 

O.lOOOOOOOE 01 X 
o.1ooooooo~E~--o=-=--1~x"----------~--

0.50000000E 00 X 

0.30000000E 01 X 

THE FOLLOWING COMPOSITE MATRICES HAVE A 
COMMON DENOMl~ATOR O.JOOOOOOOE 01 

102 

·-----COMPOSITE A MATRIX EVALUATED AT PARAM.ETER 0.10000:)00E 01 --------

ROW 
l -0.50000000E 00 O. 
2 O. -0.3QOOOOOOE 01 

----~------------------ -·--------------------

COMPOSITE 6 MATRIX EVALUATED AT PARAMETER o. 10000000_1; _ _().L _ 

___ _RQ\1 

1 O.lOOOOOOOE 01 
·-------- ,. __ OLti)ll_OO_()J)Of __ OL__ _____________________________ --------------- -------

COMPOSITE C MATRIX EVALUATED AT PARAMETER= o.1oooooooe 01 

ROW 
I 0.50000000E 00 -0. 
2 -0. 0.30000000E 01 
1 -o . -o 
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TABLE II (Continueo) 

11011 
0 

2 o. 
___ l_____l). I 000 OOOOE 01 ________________ ---------------------- ____________________ _ 

- --------THfFOLL-lllllNG-OIFfEHtl~T IATEU- HATR-IXES HAVE A ------------------------- -------------------

COMMON OENllMINATO~ = o. o.1oooooooe 01 X OUANTITY SQUARED 

-·---------- --- _. ____ ·----------01 FF EREN TI ATE U COMPOSITE A MATRU --------------------------

PUS IT ION 

I, I ____ -o. __________________ _ 
- - 1-, 2 0. -------------~------------

2, I O. 
2, 2 -o. 

__________ DIFFEHENHAT_ED _CUHPDSITE 8 MATRIX _________ _ 

-----------------
POSITION 

o. 1, I 
2, _1 --- - 0. ------------------------------------------ --

-------l)i-fF-ERENT1ATEn·--c0MPJSITE C MATRIX - ------------------------·----·· 

____________ POS I T_I ON 

I, L 
I; 2 
2 I 

o. 
o. 
o. 

2, 2 

J, -' - - - 3, l 

o. 
o. 
o. --------------------------------------------

UIFfEKENTIATED COHP~SITE D MATRIX 

1, 
2, I 
3, I 

- --·-· -------·---·-·---·-----··-- ------------o. 
o. 

-0.IOOOOOOOE 01 

THF FllLLOWING CllMPDSITE MATRICES HAVE.A -- - --~OMML)N- OENUMINATJR ~ O.lOlJOOOOOf 01 -----------------------

D I_F FtRER( NT I A HD_ COMPOS I TE _ A MATRIX EVALU4TED _AT __ PhRAME TE I\_=_ (), IOOO_O_OOOE __ O_! 

---~QW - -
I -0. 
2 o. 

KOW 
I o. 
2 o. 

o. 
-o. 

DI~ _t-f:K EK FNTIA TED COMPl~S LU ___ ~ __ _P4,\JR _ _I_X _E_',IALU~ T __ EO .!'J PAIIAME_TE<t __ = _ 0 ,_lOClOOOOOF _9_1 

11.(1,I 

I o. 
2 o. 

-3 o: 
o. 
o. 
o. 

OlffEKfRENTIATEO CDHP3SITE O MATRIX EVALUATED AT PARAMETER 

~ow 
- I --- O, 

2 o. 
-3 0.100000001: 01·· 

o.100000001c 01 
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TABLE II (Continued) 

THE FOLLOWING QUANTITIES ARE TO BE METERED 

v 

v 

I 

v 

v 4 

4 

v 5 

5 

v 6 

6 

TIME = O. OQO,JOOtJ 

VI II 0. I00')00tHJF OJ I( I) 0.10000,JOOE 01 VI 2) o. II 21 O, 
VI 31 o. I( 3) o •. Vt 'ti -0.IOOOOOOOE 01 It ,,1 0.10000000( 01 
VI 51 o. I( 51 O.lOOOOOOOE 01 Vt 6) 0, II 61 0.1 OOOOOOOF 01 

TIME - U.t)'iOOO{)') 

VI II 0. I OUJOOOUF ill II I) o.10000000E !JI VI 2) O. g75',I IA3E-OI I( 21 0,48770592(-01 
VI 31 o.4rAJl)l• rH:-01 !( l) 0.139l9l4lE 00 VI 4) -o .1143971 7E 01 II 41 0,100000:JOE 01 
VI 51 0,97S41 l83F-Ul IC 5) o.~5l22941E 00 VI 61 0, 46430'• BE-01 II 6) o,a1,01os,RE 00 

... ~-----· 

Tl Mf = 0.1000000 

\I( I) 0, I tl<JOOOUOF <)l I< I) o. 1 o 06ooiY01°0T VI 21 0. l 9032~22( 00 I( 21 - 0,95lb2612E-Ol 

VI 31 O.Atd9.3~)7'3t-1ll I( 3) (), 2'iS ld07'tf 00 V( 41 -O. l27i>718AE 01 II 
,., 0,lOOOOOOOE 01 

VI ~it O.l9l)3?rlr~ll tlO 11 ol o.<Jo,,a·11 isie,so· v I 61 o.an39J57BE-OJ J( 6) o. 74081921,E 00 

·---··----··----· 
TIM[ = 0.1 ~)V\J0{)1) 

VI II o.100ouou0c di 11 II O. I 00000·10F 01 VI 21 0.27H58414f 00 II 21 0.13'l29207E 00 
VI 31 0.12079017[; I)() !( )) O. lh2J lil5 I [ 00 v ( 41 -ll. l 3993743E 01 II 4) 0,lOOOOOOOE 01 
VI 5) 0.27~}5fV+l 1-t[ ()() !( ',) o.HnO'I0793F 00 V( 61 0.12079017E 00 I( 1,I 0.1,3 762'l49c 00 

------
TIM~ . 0.,000000 

VI II 0,IOOOOIJOOF 01 11 II O.IOOOOflOOE 01 VI :::;iT'" o. J625.386lf 00 I( 21 O. I Bl26930E 00 

VI 31 o.1 •;0J9'5&<Jf 10 It l l 0.451!8&HlE 00 V( 41 •0.15129342E 01 Ii 41 = O.IOOCOOOOE 01 

VI ~ I 0.3625386 IF. ()() I( 'j) O.Hl8H070E 00 VI I,) = o. t 50395&0r 00 IC 61 0,5488\3l9F 00 

TIM~ = 0, 2 500000 

VI II O. !OOOOOOOF JI II II o. lOOOflOOOE 01 V( 21 0, 442398 5 7f. 00 II 21 o. 2211'1928€ 00 

VI 31 0,175H77h,E ,')l) !I 31 0.5276.ll 77E 00 v ( 4) . -O. lt,l82758E 01 IC 41 O. lOOOOOOOE Ol 

VI 51 0,4t,2J9H'>7E 00 I( 51 0, 77UH0072E 00 v ( 61 O.l 7587726E 00 ii 61 0.4 7236H23E 00 

TIME = o. 3001)0(){) 

VI II o.1oooooutJT:: 1)1 !( I) o.1oooaoooc 01 v ( 21 . O. 51836HOE 00 II 21 0,25'11Rl85E 00 

VI 31 0.1'17H095t+F )rJ It 31 0.59l42H61E 00 v ( '• I -0.17lnl732E 01 II 41 O,l0000()0(1E 01 

VI 5) O. 5lll'163 70E 1)0 !{ 51 o.740ul!ll5~ 00 vi 6) o. l 97R0954F 00 Ii 61 o,40&57l39E 00 
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TABLE II (Continued) 

w • 
V't.61.UhCl: Llil Fi111 vaiJJ,., PAAAMEUaS -----------~ ---·-----·-·-· -- - --... - . - .. 

. o-1ouov~oot-1!.L J!,~U!!~OO~l!f-.l!l __ !!..UIIIJ.!UcOZ _ _il.1.5-!!!!I~~OE~I.IL !!, !OO!!Cl~l!.!l.!c!IL_ ... ·- ·-···· ·-· --··-·. _ .. -·· ··-··· 

· · ~~~iuaJlUU o. tuJOOJOQl-01 o.1011osnE·OI J.13U9UOt!:tutt IOU0911l•OI 0.1 uuooot•OI o,111u10"•;.t-::·o:.1r--------­
o.Juot>uooo.- .. Q.! J??".,~~~t:-: c;tJ __ J~:, ,~ r111!!'~•~:C.,t o. u111,o,E-01 o.a 11so1 Hf·?l o. lo\)J091tSE ·OI o. •""•1.,,uF-01 
o: \Cf"l'Jl)'#•,9. o. l!t.11~11tlf •01 o. IJISIH .. l·OI --u;-i6'i2iiJl!tl;~O.--G: •• ,,,.w1:.:.Qj --·a; l Jz.1-,;1,11,;:~.-. -ll. tro,~JI lf•lll -.---··----

---·l:t:i:::: -g:,:1;i~:::~st---1!t::::;}1:::1-1;tt:i:i::::i; -::1r::~::a~:1--- ::1::::::~:::t-:!~~i:::;~1:g1--~--------------------­
t: ;::::::: ::~!fri:~ :2:::1 ::1:::;i:~:::: t~;1:~~:!1:~: ::~:::~~!;:::: ::=~:~~:::::1 &:1::!~;~~;::: 

·-·--· -------------------------...... ----
·------------------------------------------------- ·-··r- --·------·· 

. - ---·-------- --·--·------ VAAIANCf-.-- OF w·C <ft t AS & fU..Ctl0ft Of IINf - -
t ,Y It ... pz t .......................... • - ....................... •--............. ·-t ............... • .... , .......... • ........................................ , ............... .,. ..... • ........................ •·-·· ............ ·• • • •• ........... • ........ ·•4 •• • •- • • • •• •• • 

• • •••••••• 
-··--· --- ·.t. ___ --------------·---------------- -- - •••••• ·····-·-·-·----

-· --- ~-:~it:oz·-:--- ----- ·-----------------~------------..... ·------------- ___________ ._ •••• '!!.!..... ___ · - .----·-

••• •••• 
,.. .... ··-------: ------- ------- .-------------------·---~---------~--·--·-· ..... -,-..~--. 

__ .\.1.1t~o, .. ..!....._ ......... ____ ---·---·----- -·--·-- _ -·--·-------------.·-----·-···· ••• !! -·------- ·--· __ --------·------------------

•• .. 
- ·-i-~·,.-{.;..;;· :-- - ----·--· ---------·------------~----------------------•• !! .. ______________________________ -------..---------

" 
·---~: ---------- -----··- ··--·----·-- ----------·---------·- ---•• '!-----·-------·--·------------------

G •• 
__ ,J_.J_t. ... Ol ·}· -------·-----------------------·---- ... ,!.!'--------------------------- ---- ___ ------ .. 

. .. 3·------·-------:----·----·--------·--·--------------•••• -----------~-··-----· --- ---- ·----------------·····-
0 • • 
E 111·4''1t•U2 t •• 

--·-· ·-· ·--- -·--1·- ---·---------·--------------•• !_- - . -

--·---;-. ------.-----·-----·------------- .. •.,...- ·--·---· --------------- . --··-·-······---·--··------------------·· 
•• • 

. !". ·------·--------------··--------------------------------------------------------------------. .. 
--z~·i.,{-Oz ·!-· ·····---- --··- ---·- -·-------·---- • !.!. __________ . - -- -----·------·-----------·---··-----·--------~-------------. 

. , __ -­
• 

... 1, ru-uz .r .. _ . 
•• .. 

---·· - - -· ----- .. ! .. • ----------------·--·-----------·--·------··--·-----------------··---.. 
----- . ··-----------------·-·- ·------ ----------- ·-·----·--- ·---------------------------------- ----· .. .. 

i.40L--u·z !·-· ···-- ·· ••!. ____________ . -----·----·--·-·---··-···----------··---- --···---------------·---· .--·--·-··-· .. - ····-. ~· -· ---·------··-··-···-·-····-··---------- ·------·-···· ----·-· -- . ---- -· --------····-·· ···--·------------------·-----~----·---. . . . 
· ··· 1 • i!~U -~! !~!'~-~:-:.:-..:.= ... !... ~-=.::. ·i· ;o~·-·uo- --.!·-----,-;o:,-ou ---~-!----- ~. 1; obi·· otf · -- __ !.. ______ -·,·;oOf · oo ···· ··- !.·---·-·-.;;o-;·1· a·o---!..,;1v,-·,i 

· ····-· · ·- ····-·-····-··· ·· ·- -····-· ····· ·--·vaLui· · a• ··u•t ···--·-·-··· ··· · ····-- · · · · - -·-·--·--··--·-·------------ --··· 
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.16ri----.----,-.------,.-----.-....---..,....-------

STEP CURRENT INPUT 

.12 

D --~.,..-, --/ . '--,_,_ ___ ___ 
I 
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~ .oai I 
~ ~ I 
~ I 
~ .o6f'f I > : I 

I 
I I 

.041 I 
. I 
I I 

I 
.021 I 

I 
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abbreviated output for Network A fanned by deleting the formulation 

output, as wel 1 as the simsi tivi ties to al 1 parameters E,xcept 1 and 2, 

is given in Table III. The symbols m.,ed are tho~:,e of Section 2.5 and 

-· P(s) 

The matr;i.x polynomial f(~;) is denoted in the out.put as the "transfer 

;function matrix." The p;rogram provides the changes in the coefficients 

of the characteristic equation for this network as well as the changes 

in the numerator polynomial coefficients. After the roots of the 

characteristic equation are computed the real ancl imaginary parts of 

ds./dp are found. The sensitivity output is that comp4ted 1:>y Equation 
l 

(2.2.1±). In this particular example only one driver is present and 

three resistors. Thus, P(s) is of dimension 3 x 1 ano. relates 

I,.,(s) 
~ 

p11(s) 

I/s) --· _!:_(s) I l1 ( s) P21 ( s) 11± ( s) 

v
1

(s) P31 ( s) 

The characteristic equation zeros provide the pole sensitivities of 

the input impedance 0 Th<.:ise pole sensitivities are listed in Table IV 

for each varying pqrameter 1'or the networks of Figure 11. 

5.3 Illustrations of the Use of VARNOL 

The program VARNOL has been used in the analysis of many circuits. 

A few examples of the types of problems considered ~re discussed in 



TABLE Ip 

SAMPLE COMPUTER OUTPUT FOR POLE-ZERO SO~UTION 

NETWORK A 

TOTA~ NUMBER OF NETWORK ELEMENTS 6 
NUMBER OF VOLTAGE DRIVERS O 
NUMBER OF CURRENT DRIVERS l 
NUMBER OF CAPACITANCE ELEMENTS i 
NUMBER OF INDUCTANCE ELEMENTS O 
NUMBER OF CONOU(TA~CE ELEMENTS 3 
NUMBER OF NODES 4 

NETWORK 
l 4 

TWO-TERMINAL 
-o -o 

ELEMENT CQNNECTJON ARRAY 

l 2 5 -o 
2 3 5 6 
3 4 6 ... Q. 

ORIENTATION LIST 
1 2 3 4 3 

NUMBER OF TREE BRANCHES 3 
NUMBER OF COTREf CHORDS 3· 
TREE BRANCHES ARE 5 6 1 
COTREE CHORDS ARE 4 2 3 

CUTSET MATRIX 
-1 l O 
-1 0 l 
--1 0 0 

NOMINAL RESISTANCE VALUE FOR ELEMENT 
NOMINAL RESISTANCE VALUE FOR eLEMENT 
NOMINAL RESISTANCE VALUE FOR ELEMENT 

l IS 
2 IS 
3 IS 

Q.lOOOOOOOE 01 
o.ioooooooe 01 
0.33333333E 00 

CAPACITOR QR INDUCTOR NUMB~R 5 VALUE IS 0.500000QOE 00 
CAPACITOR UR INDUCTOR NUMBE~ 6 VALUE JS O.lOOOOOOOE 01 

LIST OF VARYING PARAMETERS 
l 2 3 5 6 

POLf-ZERO SENSITIVITY REQUESTED 

.'111 
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TABLE III (Continued) 

NETWORKA THE NO OF THE VARYING PARAMETER IS l 

H( t)b -0.400QOOOOE 01 

Hl 2)F -0.30000000E 01 

R MATRIXES FOLLOW 
N • 

1 

2 

0.30000000E 01 o. 
O. 0.99999997E 00 

-0.596046~5E-07 Q. 
-o. 0.29802322E-07 

TkANSFEK FUNGTION MATRIX COEFFICIENT OF S TO POWER 2 

o. 
O. lOOOOOOOE Ol 

TRANSFER FUNCTION MATRIX COEFFICIENT OF S TO POWER l. 
O.lOOOOOOOE 01 
0 • 30 00 00 00 E:----=0-=-l --
0.40000000 E 01 

TRANSFER FUNCTION MATRIX COEFFICIENT OF S TO POWER O 
0.30000000.~E-'-O~l--------------------------
0.29999999E 01 
0.300000QOE 01 

CHANGES IN COEFFICIENTS OF CHARACTERISTIC EQUATION. 

DHl 1 >=-0. 
OH( 2)=-0. 

' 

CHANGES IN NUMERATOR POLYNOMIAL COEFFICIENTS IN DESCENDING ORDER 
s-nr POWER 

-z-· 
o • . 
O.lOOOOOOOE 01 

---~ ---------· 
o. o. . --~--~ 
0.40000000E Ol 

;..o 
o. 
o. 

__ 0.3000000PE_ OJ ____ ----· 



TABLE III (Continued) 

R EVALUATED AT_SI 

0.39999999E 01-0. 
o. o. 

RS/TRACE OF RS 

Q.66666667E 00-0. 

o. o. 
Ool9999999E 01-0. 

o. -o. 
0,33333333E 00-0, 

R EV~LUATfO AT SI 

o.12oooopoE 02-0. 
o. o. 

o. o. 
o.999999g9e 01-0. 

RSITIIACE OF RS 

0.54545455E 00-0o o. -o. 
o. -o. 0,45454546E 00-0. 

NO. ROUT REAi. ROOT IHAG. REAL ANO 
l -0.999999976 00 3. o. 
2 -0.30000000E 01 o, o. 

NUMfRATOR ELEMENT 

NUMfilA-fOR IN OE~CENOING ORDER 
o! 1eooooooE 01 0!30000000E 01 

CONSTANT MULTIPLIER is D, IOOOOOOOE 01 
SEMSITIVITY OF CONST-NT MUL l i PLIER is o. 

NO. ROOT REAL ROOT !MAG. REAi- Ai'jO 
l -0, 30000000E 01 o. -o. 

NUMERATOR E[EHfNT 2 

NUMEt<ATOI! IN OESCENOING ORDER 
O,IOOOOOOOE Ol 0~99999996~ op 

CQNSTANT MUL TiPLJER Is \l,3i)ooooooe ol 
SENSITIVITY OF CONS TANT 11U~ Tl PLIER IS o. 

NO, ROOT !<EAL ROOJ 11\AG, REAL ANO 
l -0.99999996f 00 :). -o. 

NUMEkATOll ELEMENT 

NUMERATOR IN DESCENDING OROER 

IMAl;IN"RY PARTS 
o. 
o. 

IMAGINARY PARTS 
o. 

IMAGINAl{VPJiRTS 
o. 

Of 0$1 

OF OSI 

OF osJ 

_ 0.10000.oooE 01 U.4000Cl000E 01_ Q,39QQQQllQ_E_ C)L _______ ~. ···~,, .. ·--·····-···· 
CONST Ati.L1'UL T IPlif_JL1L-Q.._10000001lE -01 
SENS IT I VI rv Of CONSTANT MULTIPLIER IS (l.lOOOOOOQE Ill 
-----------
!:lO, ROUT Rf AL ROOT jMAij, REAL A!:jO jHAGltjABV PART~ OF 0~! 

l -0 0 99999997E oO o. -o. -o. 
_ _1__ -0,}0000000E 01 o. o. o. 
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SENSITIVITY 
0, o. 
o. o. 

SUSITIVITY 
-o. -p. 

SENSITIVITY 
-~· -o. 

-o. 
SE~Sl,flJtiJV 

-o. 
o. __ o_. __ 



1'ABLE IU (Continued) 

CHANGES IN COEFFUCIENTS OF CHARACTERIS_T_I_C_E~Q~U_A_i_R_O_N~·--------------

-------------7.~~~7:---;!~:~: ~=:~gg~~g: g~ 
CHANGES IN NUMERATOR POLYNOHl4L COEFFICIENTS IN DESCENDING ORDER 
S TO POWE~ 

2 
o. 
o. 
o. !OOOOOOOE or 

! 

-o 

-0.50QOOOOOE (10 
-o. 
-o.soooooooe oo 

'-0, !!>OOOOOOE 01 
-o.1sooooooE 01 
-o. ! 5000000E 01 

ROOT !=-0.9999~99TE OO+J• 

R EVALUATED U SI 

0.39999999E 01-0: 
o: o. 

RS/TRACE OF RS 

0.6~666667E Q0-0, 
o. -o. 

ROOT 2=-0,JOOOOOOOE Pl~J• 

---~YALI.IATED .U 

o.12ooooooe 02-0. 
0, o. 

RS/JRACE Of RS 

o, 54545455E 00-0. 
o. -o. 

SI 

o. 

o. 

o. o. 
0, 199~9!199E 01-0. 

o. -o. 
O. 3HH]3]E 00-0. 

o. o. 
o. 99991JIJ9ijf O!-i·O & 

NO. ROOT REAL •DOT IHAG, REAL ANO IMAGINARY PARTS OF OSI SENSITIVlfY 
o.H3lH3.1tEoin1,----~-=-'---~or.~l76767~ 767676l'"'E--"oiior-ior.'-'--'-'--1 -0.9999999TE 00 0, 

2 -o.3oooooooe Ol __ o_, _____ _ o.2121212aE oo· o. ________ ~o~·~'J~6~3~6~3~6~4~E~o~o~o~·-~ 

NUMERATOR ELEMENT 

-- toUMERAfUll 11'1 DfSµNO~ 
o.1yooooooE 01 0.3QOOOOOOE 01 

CONSTANT MULTIPLIER IS O,IOOOOQOOE 01 
SENSifivih OF CONSTANT 140LfiPCIER Is -o.;!s(loooooe 00 

NO. ROOT RE~L ROOT IMAG, 
-0.3000QOOOE 01 0, 

NUMERATOR ELEMENT Z 

NUMFRATOR IN DESCENDING ORDER 
---o.1uoodoo~e·o1 o.99999996E oo 

CDNSfANT HULJIPLiER Is o.1oooooooE QI 
SENSITIVlfY OF CONSTANT MULTIPLIEll IS -o. 

NI), 
l 

ROOT RE~l Qoot !MAG. 
-o.qg9q9996E ao o. 

NUMEKAJQH ELEMENT 

NUMERAT()lt IN O~SCENOING ORDER 

RfAL ANO IMAGINARY PARTS OF OSI 

REA( ANO IMA~INARY PARTS Of OSI 
0,50000000E _00-0, 

o, 1oooopooE 01 o.1tooooooo~ 01 o, 101>oooooe 01 

CONSUl'IT MULTIPLIER IS O,lOOOOOOOE 01 
SENSITIVITY Of CD~STAr<T M~LIIPLIEk IS 0,50000000E 00 

SENSITIVITY 
-o. -Q. 

SENSITIVflY-
0,2500000UE 00 0 0 

------------------ -··------
NO. ROOT REAL ROOT JHAy,, 

1 -0,9999~997E 00 O. 
___1_ ___ -~0~··~3~o~o~o~o~o~o~oe~o~1~0=.C-c---~--~-

REAL AN~ jMA&j~ARy PA•TS OF D5l 
0,ll25 901E-O -Q. 
0,45000000€ 01-0. 

SENSIJIYIIY 
0, 18626451E-07 Oo 
o.22soooouE 01 o. 
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TABLE IV 

POLE SENSIT+YITlES FOR CANONIC NETWQR!\S 

Network Par,ameter NwnQer. Root Sensitivity 

A 1 -1 o.oo 
-3 o.oo 

2 -1 0.166 
-3 0.136 

3 -1 9.00 
-3 12.3 

s -1 o.66 
-3 0.545 

6 .. 1 1.00 
-3 1.36 

B 1 -1 0.045 
-3 0.042 

2 -1 0.020 
-3 9.024 

3 -1 0.126 
-3 0.165 

s ... 1 0.777 
-3 0.818 

6 -1 0.888 
-3 1.09 

c i -1 o.oo 
m3 o.oo 

2 -1 0.267 
-3 0.319 

3 -1 2.81 
.. 3 3.06 

s -1 0.777 
-3 0.818 

6 -1 0.888 
-3 1.09 

D 1 -1 0.045 
-3 0.042 

z -1 0.098 
-3 0.088 

3 -1 0.014 
-3 0.019 

s -1 o.684 
,.3 0.588 

9 -1 0.982 
-3 1.320 

E l -1 0.166 
-3 0.136 
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TABLE IV (Cqntinued) 

~-----nr----r.--i-----,-~----~~--
NetWQrk P~raiq~t•r NU111ber Root Sensitivity 

E 2 -1 0.141 
-3 0.192 

~ -1 0.047 
.. 3 0.064 

s -1 0.666 
-3 O.S45 

6 -1 1.00 
-3 1.36 

F 1 -1 0.020 
-3 0.024 

2 -1 0.100 
-3 0.119 

3 ·l 0.175 
-3 0.192 

s -1 0.777 
-3 0.818 

6 -1 0.888 
-3 1.09 
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this section. 

5.J.1 Example 

A half wave rectifier and pi filter circuit shown in Figure 17 is 

to be analyzed for the effects that individual par1:µ11eter variations 

induce in the output vo~tage. The diode is modeled ~y use of a depen­

dent current source in which the current is given by t~e ideal semi­

conductor diode equation (model f of Section 4.5). For an input 

voltage of 120sin(2n(60)t) the ac steady state output voltage across 

the load resistor exhibits a 0.46 percent ripple component as shown 

in Figure 16, 

The sensitivity models werr integrated with the initial conditions 

for the nominal network set equal to the steady state ac values (e.g., 

at t = O the voltage across c
2 

is 17,J9 volts) and initial conditions 

on the sensitivity models were set equal to zero. Figures 19 and 20 

present a comparison between actual changes in the output voltage with 

respect to five percent changes in tqe inductor and load res'istor from 

their nominal valu~s and changes predicted from the sensitivity 

operator (see Equation ~.J.15)~ 

The monotonic increase sho'Vfl in Figure 20 indicates that the 

sensitivity model solution has not reached its steady state value since 

the filter reqµires approximately 0.15 seconds for tran~ients to pass 

from its so~ution, When the sensitivity model is integrated over such 

a long period in this example, the predicted output bears little resem­

blance to the a~tual output. This is due to the build up of error in 

the approxiwation method of solving the sensitivity model. Errors in 

prediction pf the output voltage for ~he increment in RL in this 
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Figure 17. C~rcuit for Example 5.3~1 
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example did not exceed J.5 percent of the true change over two time 

cycl e:s of the input voltage. 

This example illustrates several points. First, the sensitivity 

operators are very 1:1-c;curate prediction tools only in the vicinity of 

the time origin and it i5i in general, d.ifficul t tp predict in ~dvanoe 

the interval ove1, which they describe the system reasonably well. 

Secqndly, it was found that by Q.ecreasing the step integration size the 

divergence tendencies of th~ sensitivity operator solutions could be 

lessened. This effect was not explored thoroughly in this study and 

no further discussion will be presented. 

5.J.2 ~~ample 

A third order, low pass active filter is realized when the para-

meters in Figure 21 take on the values 

R + R1 "' Or5 Ci g 

R2 1.0 c2 ·-

~J LO CJ ·-· 

with the transfer ±'unction for this circuit. becoming 

T(s) 

\vhere 

V t(s) 
OU 

- V. (s) 
111 

2 
J 2 2 

s + 1.7.5w s + 2.15w s 
0 . 0 

w ~. 1,25 radians/sec. 
0 

1.1t4:. 

1. 71±3 

o.4:.o4:. 

J + w .. 
0 

The network may be modeled as in Figure 21(b) where the dependent 

voltage clriver is a linearly depenqent d:riiver with a gain of unity 

(model g of Section 4.5). It :is desi,red to evaluate the step response 
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( b) 

Figure 21. Filter Network(~) and Computer Model (b) 
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of this filter and evaluate the effects of mul tiparameter element 

variation. The step response is shown in Figure 22 and the variance of 

this output voltage is presented in Figure 23 for four different 

choices of component tolerances. The parameter values are assumed to 

be equc1,lly likely to be c1.nywh,ere between the lower limit Land the 

µpper limit U. The standard deviation for each parameter is easily 

seen to pe 

or if Mis the tolerance and Uthe mean 

L \.J, - MU 

and 

cr •. 578 MU. 

Four different sets of variances for the six varying parameters were 

supplied as input data in obtaining Figure 2J. The designer may now 

directly apply his economic weighting factors (e.g., th,e relative 

costs of capacitor and resistor tolerances) when choosing- the best set 

of tolerances for his application. 

5.J.J Example 

An analog c;ompµter compensation network shown in Figure~'* was 

analyzed for the effects of imprecise resistors and capacitors, The 

high gain negative feedback in th:i.s circuit presented no problems in 

the analyr1;1is but the computer model contained a circuit of capi;tcitors 

and voltage sources when no internal resistance for the input voltage 
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source was included. This problem was easily solved by including this 

source resistance. The smallest time constant for the network, and 

hence, the largest possible time increment for the integration, then 

became highly dependent on this choice of source rtesistance. 

5.3.'-t Example 

A f4ll wave rectifier and half wave rectifier were used with the 

same L-section filter circuit shown in Figure 25. It was necessary to 

modify Walden's iteration procedure for the diode nonlinearity to 

achieve convergence in the nonlinear solution process. Instead of 

using Equation (E.1.16) on page 100 of Walden's dissertation (43) for 

the iterated current values i 11 it was found to be desirable to 
n+ 

substitute 

i 
n+1 

thus avoiding the possibility of diverging from the desired solution. 

The significance of this change is easily apparent by refere~~e to 

Walden's appendix. 

5.3.5 Examp:).e 

The trapsformer equivalent circuit with shunt capacity from a 

transmission line shown in Figure 26 was analyzed. A saturating iron 

core inductor of the type ~iven in mode:). b of Section '-1.5 was included 

and very close agreement of predicted and actual output changes were 

observed. 
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5.J.6 Example 

A ~echanical system shown in Figure 27 was analyzed by utilizing 

the analogues of current and voltage. A third order nonlinear spring 

was included by making use of model a of Section 4.5, Close agreement 

between p~edicted and aetual states occurred. 

5.4 Conclusions 

This chapter has demonstrated the application of the programs 

developed during this study to sensitivity analysis of both linear and 

nonlinear networks. The ease with with which a qesigner can achieve 

meaningtul se:nsitivity measures for large classes of networks has been 

illustrated. These measures include classical pole,..zero sensitivities 

and those based on the time domaip. models. The examples of Section 5.2 

prese:nt sensitivity information in the form of the i;ime domain mean 

square error criteria. This measure of sensitivity may be easily 

interpreted .in te;nns of cost. Additional documentat:i,.on and examples 

of inpui;. datc1- describing the examples of t):lis cj.'lapter are included in 

Appendices D and E. 
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Figu:re ~7. Circuit for Example 5.3.6 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Su,rnmary 

This dissertation describes the research and development effort 

leading to new computer methodology for system sensitivity analysis. 

The motivation a11d primary objectives of this study are discussed in 

Chapter I. The general theory of system sensitivity performance an­

alysis presented in Chapter II is applied to linear networks in 

Chapter III and nonlinear networks in Chapter IV. Examples of bQth 

linea:r clnd nonlinear network analysis by means of tl)e design a+d 

developed in this stl,l<;ly are presented in Chapter V. 

Chapte+ II suggests mcITTY different measures of sensitivity and 

methQds of obtaining them. Deterministic and probab:i.list,ic measl,lres 

based qn c:;lassical transform methods and ti.me domain method$ are 

discussed. Multiple parameter variations are considered in a deter­

ministic framework, but it seems much better to treat these variations 

in a probabilistic model. 

One such pFobabilistic model discussed in ChFpter II is a measure 

based o~ the expected mean squFre error from some desirable system 

function~ lf a simple approximation is ma.de, the calcul~tion Qf this 

rneaeure requires statistical moments no h.i.gher than the second. This 

me~sure had previously been apptied in the frequE1ncy domain but no 

c::onsiderat~on was given to the imp.lement~t.ion of the req1,1ired tedious 

132 



1JJ 

ca;t.culatiQns. By int:roducing the sensitivity operator model the author 

has been successful in applying this mean square error measure to time 

domain system functions. 

The elements of the sensitivity operator model provide all the 

information necessffry for calculation of most of the frequency domain 

measures ctiscussed in Chapter II. The unifying links between these 

time dom~in models and the frequency domain mea1Sures have been devel.­

oped futly by the author. 

Chapter III applies the theory of sensitivity presented in Chapter 

II to a large class of networks. A program, VARYIT, has been developed 

to ;illustrate the formulation procedure for the system state model and 

its sensitivity models for varying parameters, which are allowed to 

include varying resistors, capacitors, inductors, anp current and 

voltage drivers. Tne problem of formulation of these models is dis­

cussed and a new theorem is given which allows a much more efficient 

alloc,ation of storage in the computer. VARYIT has thrf!)e options to 

provide either transient, impulse, or:.;f;'requency doml;l.;i.n i;;ensitivity 

infqnnat;i.on. 

As pointec;l out in Chapter II, the pole-zero sensitivities supplied 

by this :program may be mapipulated to provide most of the stapdard 

sensitivity measm:res. A new measure implemented in this program is 

the mean square error approximation in the time domain, 

Chapter IV discusses the extension and .application of the theory 

of Chapter ll to certain classes of nonlinear networks. A nonlinear 

re:preser:itation scbeme based on dependent drivers and stepwise con;;.·_ · 

tinuous storage elements is presented. Nine different types of non­

linearities are iqcluded in the program, VARNOL, developed in this 
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study to ~xtend the capabilities of VARYIT to networks containing non­

linear elements. 

ixamples of the use of the new computer methodology for system 

sensitivity analysis are given in Chapt~r V. Output curves of the 

mean square error approximation are included in Section 5.2 for eight 

example petworks all realizing the same input impedance. These curves 

were genera~ed by the impulse and transient solutions options of VARYI~. 

Pole sensitivities are also presented for each of the example linear 

networks. Several examples of the use of the nonlinear network program 

VARNO~ are included in Section 5.J along with the solutions to ~heir 

sensit~vity oper~tor models. 

6.2 Conclusions 

rhi~ study has accomplished the objectives set forth in Chapter I. 

A "use:r-oriented11 computer design tool has been developed and imple­

men~ed in FOR'fRAN language to supply accurate multiparameter sensitiva:. 

ity infcrrmc;ttion. Many of the measures suggested in the past may be 

obtained from the program outputs by use of the l;i.nks suggested in 

Chapter IL A very useful probabilistic mea.sure, the mean square error, 

is calculated directly from an approximation making use of tQlerancing 

data anA tpe p1:1,rt:i,al d~rivati:ves of the system variables. 

Specific new contributions made during the development of this 

design tool are: 

(a) development and implementation of an automatic fonnulation 

routine for obtaining the state f:lnd sensitivity operfltor 

models; 

(b) development of a method of solving the sensitivity oper~tor 



model for linear systems witn impulse ;i,nputs that ·insures a 

desired number of places of numericql accuracy between t:i,me 

steps in the integration process (Appendix A); 

(~) statement and proof of a theorem regarding the order of the 

system parameters in the state-space model which allows a 

much more effic;i,ent utilization of computer memory 

(Appendix C); 

( (p extension of Breipohl' s frequency domain measure Qf sensi­

tivity to the time domain with a partially ·autom~ted ~ethod 

for obtaining Breipohl's measure in the frequency ~()m~fn; 

and 

(c) implementation in a design tool of a computational algorithm 

for o~taining the transfer function matrix and its associated 

pole-zero sensitivity information. 

Jt should, be emphasized that the i:irima;ry o~j~ct;i.ve in the research 

effprt wai,; to provide the practicing engineer with a design tool which 

he may use without acquiring a detailed knowledQe of all asp~cts 'of 

sensitivity theory. He then is able to devote more of his time to the 

creative aspects of engineering problems. 

6.3 Suggestions for Further Study 

There are a number of areas in which further vesearch w9uld be 

fruitful and desirable. Several areas also exist in which the capa­

bilities pf this pes:i,gn too( .. may be coupled with prev:i.ously reported 

wo~~ t,p provide a more compi;:e.hensive c;:apability for l'.\etwork analysis 

and d~,H~i9n, 



Jt wquld pe desirable to include networks belon~ing to a class 

larger than that implied 1:;ry the inodel of Equation p.2.1). Tile re­

striction on the existence of a tree containing all capacitors and 

voltage sQurces can be dropped if an indivipual is willing to build 

additiqnal complexity into the formulation algo+ithms. Additiqnal 

capabiljty could also be achieved if inodels of multi ... terminal com­

ponents such as transformers and transducers were treated directly. 
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The mean square error in the time domain is a useful and meaning­

ful oq,icept but many designers are more accustomed to thinking in 

terms of the frequency domain. VARYI'r presently provides the in:for­

mat~pn necessary for c;omputation of the mean square error in the fre­

quency dpmain bu,t does not include this measure as one of its output 

opttqns~ The technique for obtaining this measure is illustrated in 

Section ~~5 and could easily be incorporated into this program. 

Simila:rl>7" the Bode,-Mason sensitivity of Equation (2.2.2) may be com-~: .. : 

puted br Ur's formula, Equation (2.2.5). 

The model$ cpntained in the nonlinear program certainly do not 

e:imt1ust the possibilities for inodeling i;;tudies. The formulation phases 

may be uised in studies to extend the types of allowable models. New 

_iter~tion processes w;i.U need to be developed if the rl;)striction on 

~qowf1ble types <;>f models is dropped. No effort has been directed to 

this 90~~, but the difficulties do not appear tp be ;insurmountable. 

fhe optimization of sensitivity measures with respect to parameter 

Viiriation sho4ld prove to be a fertile field of endeavor. This study 

has concentrated on the analysis problem almost exclusively. ~owever, 

the resear,c;her should be wc1-rned thc1.t tn.e development of laqJe scale 

networ~ ~nalysis tool~ such as those developed in thi~ study, is a task 



th"'f will involve not man-.months but man-yea.rs and should not be 

attempt~d un~ess sµfficient economic resources a.re ava.ila.ble. 
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APPENDIX A 

IMPULSE RESPONSE SOLUTIQN OFT~ 

SYSTEM AND SENSITIVITY MOPEL 

The purpose qf this appendix is to detail a new technique for 

obtaining ~p.e simul tane;i~us imp4l se :response sol ut.ions qf the 1 inear 

time-ipv~riant state model and its sensitivity model, Consider the 

linear state model 

x ::.: A x + B u 

y == C ;x: + D u 
-,- - -

The solution to Equation (A,1) may be written a,s 

t 

x(t) -·· ~t x(o) + s ~(t-A) !!, EO.) d:\ 

0 

(A.1) 

(A.2) 

(A.J) 

Let x(O) ::: 0 j:j.nd & . ( t) be an m x 1 vector each of ,whose elements is 
..... - -1 

zero except for element i which is a unit impuls~ function, &(t). 

For u(t) - &.(t), x(t) becomes 
""T" -J. 

x.(t) - i~th ~olumn of matrix ~t .... B 
-l. 

(A.4) 

or 

x. (t) :::: w. (t) 
-]. -1. 

The solution to Equation (A.2) is then 

Y.(t) = C W.(t) + D &.(t) 
-J_ --1 --i 



Consider ryow that this process is repeated for i ~ 1, ~ •••• , m and 

th~t tne resulting solutions are arranged as follpw~: 

[-
Y1 ( t ) ..... Y2 ( t ) . . . y ( t ~ = [c w1 t D ti 1 (rt;) C w2 + Q ~ °-. ( t) p ·• C W + D ! ( t ~ 

'""111 J ,.... ...,. - .,.,.. - - ,.. r., . ....,.~ ..,."""111 ~ 

At ~Ce- ~ + D 6(t) ..,,.. ,... ..,,.. (A.5) 

By defining !!,(t) ~ [y142 ••• x;J ~quation (A,5) thfn yielQs 

.(A.6) 

Thus the i-th column of H(t) is the output vector qf the state model ,_. 

solution for a unit :i.mpulse at the i-.th in:i,:>ut. 

Discussion will now be centered upon evaluating the changes, 

.,!!'(t), in the i~pulse response matri~ .,!!(t) for a di(ferential change 

in the value pf the pi:trameter p. These chq11~es c~n J:>e found by 

d c d At 
At dB d J) At e,-

Q(t) H' (t) ::: c;lp e-- !1 + c dl) 
.B + c e"' ,...::;i + .,....,;is • ..... .... dp . dp 

(A.7) 

Consider the augmenteQ system pf Equations (A,~) an~ (A,7) 

H( t) c p At 
0 tl D e-,,. .,..,. ,- - ..,. 

= + ~(t) 

dC d~t At dB dD 
.!!' ( t) - c - ~ 

·~ 

...... 
dp ,..,,. f'.lp dp 

= P 0(t) R + M t>(t) • (A.8) - ,.... - ,... 

Note that the impulse respons~ matrix and its ~erivative, with respect 

top, may be calculated if the 9(t) matrix can be fpund. The solution .... 
for the matrix 9(t) may be qal~ulated by noting that the tr~sition ...,. . 



At 
matrix e- satisfi~s 

and, hence, 

At At dA At 
d de--, A de-,- + _...., ~ 

dt tip = .... '"'ap"" dp 

EqucJ.tions U.9) and (A.10) may bf) written as 

d At 
dt e-

:;= 

d~t 
......---

dp 

The solution of Equation 

Ai; 
e- A 

=,exp 

de!t dA 
-.....- --= dp dp 

where 

and 

E;x:pansion of i;.he term 

A ,... 

dA 
-a; 

(A.11) 

e 

0 

i; 

A 

At 
e-

A 
-,-

dA 

dp° 

is 

0 ~t 
~ 

d~t 
A -.,,.. dp 

At I t.o 
~ 

d~t 

"'"'ctp" 
bO 

"' 0 

0 

t 

A 

(A.9) 

(A.10) 

(A, 11) 
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by the series def;i.11:i. tion of 

CQ 

(At)k At l ~ :::; ;,i,:: 

~! 
k=O 

reveals tl:ui.t 

At 
0 A 0 e- ...... 

d~t 
.,::,, eJq> .t 9(t) (A. 12) 

At dA 1" 

..-----,. e- .,..,:;::; A dp dp ..... 

',l'hus Equation (A.12) may be inserte~ .in Eqµation (A,8) to yield 

H(t) c p B D 

e<·O + e(t) (A.lJ) ..,. 
dC dB dD 

H' ( t) ....:;:::: c -:;=, ,;; dp dp 

where @(t) is defined by Equation (A.l~). The i~th column of the 

matricea H(t) and !!'(t) of Equation (A.13) th~n provides a means of 

d y(t) 
finding the output vector y(t) and when an imnulse function is ...,.. dp ~-

applied to the i~th input. 

A computer pro~rf'llll in ~O~TRAN ~V language ~a~ been written which 

accepts the linear state model and its sensitivity operator equations 

as input. The output of this program is then the ~alculatiQn of the 

H(t) and H1 (t) matric~s of Equation (A.tJ). The pro~ram does not yield ...... ...... . 

the true vaiues at t ~ 0 due to the absence of the impulse terms. 

However, at any time greater tha11 zero the solution is correct. This 

p:rogram is written as a subroutine for incp:rporl'ltion into larger 

programs of the type discusse~ elsewher~ in this qissertation. ~ 

flow chart of this process is given in Figure 28. 

The arguments to be supplied the subroµtine ~re as follows. A, B, 



S~T UP AAUG = 

[ ! : ] 
ai" -

FIND EAADT = 

e~p [AAUG] t 

MATRIX= CAUG 
1tEAAUGT 

HiMP(T) = MATRIX 
*BAUG 

WRITE HIMP(T} 

NO 

StT llP CAUG J 

ri :J 

[ 
B ] 
~B 

. ap . 

rr =- o.o 

SET EAAUGT!iY 

EA~'-'GT : MATRIX 

T• T+ DELT 

FiQure 28. Flow Chart for Cornputatipn qf I~pulsf Response 
Solution · 
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and Cara the matri~es of the state mopel qf Equ~tiq~s (A.1) and (A.2). 

APRIME;. BPRIME, and CPRIME are the differential chan~as in the A, B, 

and C m~trices. TMAX is the maximum time for which the soluttons will 

be evaluated. PREC is the number of signifipant places for which the 

matrix e:i1ppnential splution l(t) will be calculat~d, The other argu­

ments are explained by COMM~~T ca~ds in th~ p~o~ram lisiing, 



TABLE V· 

PROGRAM LISTING FOR THE IMPULSE RESPoNS~ SQLNTION 

t. THIS SUBROUTINE CAL,<;Ut,ATES THE IMP\.ILSE RESPONSE PF THE STATE 1100-
C EL AND FIND~ THE Sf:NSITIVITY MODl;L RESPONSE AL.SO• THIS IS DqNt:; 
C BY AUGMENTING. LIOU•S METHOD IS USED TO ASSURE 4CCURACYo 
~ A HAS DIMENSIONS 11*11, B HAS DIME~Slq~S lltKKt C ~AS DIMENSIO~S 
C ,JJ* I I• 

SUBROUTINE IMPULS IA,B,C,APRIME,BPRIMf,CPRIMEtl!,J~,KK,TMAX,DELT, 
PREC:1 

1 FORMAT 110X,5El5.8/ll5Xt5El5o81l 
2 FORMAT l/20X,24HIMPUL,SE RESPONSE MATRIX /2QX,4HT F t[l5o8) 

REAL MATH IX 

c 

5u 
c 

c 
c 

70 
c 

8.J 
c 

9J 
( 

lvO 

I)O 

120 

DIMENSION Allo,10,,u,10,101,c110,101,APRIMEll0,191,pPRIMEll0,1or, 
1 CPRIME(lO,lQJ,AAUGl20,2Ul•BAUGlf0,101oMATR!X120•20), . 
2 HIMPl20,2U),EAADTl20,20l~EAAUGTt20,2Pl,CAUijl20t201 

IA=ll+l 
18 = 2 * 11 
IC= 2 * JJ 
T ;= o.o 
SET UP AAUG MATRIX BY AUGMENTING A MATRIX WITH A~RIME MATRIX, 
DO 50 I 1, I I 
DO 50 J = l t 11 
IG = 11 + I 
IH = 11 + J 
AAUGIJ,JJ = 1\11,J) 
AAUGIJG,JHI = A(J,J) 
AAUGll,IH) ;: O.O 
AAUGIJG,J) = APRIMEI l,J) 
CALCULATE THE MATRIX EXPONENTIAL FOR AUGMENTED MATRIX, 
CALL MEXPON IAAUG,DELT,PRF(,EAADT,18) . 
MEXPON IS A MATRIX EXPO,~NTIAL RPUTINI; USJNG LjQU•S TEST, 
SFT UP THE (AUG MATRIX. . 
DO 70 I = J,JJ 
(X) 70 J = l,KK 
IG = JJ + I 
IH = KK +.) 
CAUGll,J) = Cll,J) 
(AUGII,IH) "O.O 
(AUG(IG,J) = (PRIME 11,.,Jl 
CAUG IIG,IH) = Cll,J) 
SET UP THf. BAUG MATRIX! 
DO 8 0 I = l, I I 
DO 80 J = ltKK 
IG = 11 + I 
BAUGq,J) = FllI,J) 
AALJGI !G,J) = RPRl).IEI I ,JI 
SET EAAUGT = U. 
DO 90 I = l, I B 
DO 9o'J = l,IB 
EAAUGTll,J) ~ U,O 
IF 11.EO.J> EAAUGfll,,Jl ;, loO 
CONTINUE 
SET MAT~IX = CAUG * EAAUGT. 
DO 11 U I = l, IC 
DO 110 J = l,IB 
MATRIXll,J) = 0,0 
DO I l 0 K = l , I H 
MATRIXll,Jl = MATRIXll,Jl + CAUGll,K) * EAAUGTIKeJI 
FIND TH[ IMPULSE RESPONSE MATRIX HJMPIT) : MATRIX* LIAGGo 
DO 120 I = l,IC 
QP 120 J = l,KK 
HIMP( I ,Jl = OoO 
DO 120 K = l,IB 
HIMPll,J> = HIMPll,J) + MATRIXll,Kl * BAUGIK,J) 
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TABLE V ((ontinued) 

C \\1RITE OUT THE IMPULSE RESPONSE MATRIX AND THE CHANGES IN THE !~!P-
C ULSE MATRIX WITH RESPECT TO THE PARAMETER. 

1.JRITE 16,21 T 
DO 140 I = l,IC 

140 "WRITE 16,ll (HIMPII,J),J=l,KKI 
IF (T.GE,TMAX) RETURN 
T;:: T + DELT 

C FORM MATRIX= EAADT * EAAUGT 
DO 150 I= ltlt:I 
DO 150 J = l ti B 
MATRIXll,Jl = P•O 
DO 150 K = l,IB 

150 MATRIXll,J) = MATRIX<I,Jl + EAADTll,KI * EAAUGTIK,Jl 
C SET EAAUGT = MATRIX 

DO 160 I = 1,18 
DO 160 J = 1,ifl 

160 EAAUGTII,Jl = MATR!XlltJl 
GO TO 100 

\ 
; 

END 

:t.49 



APPENDIX B 

PROGRAM FOR FINPING THE PQLE~ZERQ 

SENSITIVI'fIES 

The purpose of this appendix is to drscribe a ~rogr~m which has 

been written to furnish pole-zero sensitivity infovmati~n for the 

multivariable system described by a linear time ..... ip.v;:iriant state model. 

The rel~tions used in this calculation are described in Sectipn 2.5 

and will not be described further here. 

In the flow-chart for this program, Figure ?9, tpe oval sh~ped 

symbqls signify input or output steps ~nd are expl~ined hr COMM.ENT 

or fORMA.T statements in the +isting~ Containe4 ~ithin the ovals for 

data inputs are numbers which correspond to the "location in sequence" 

shown in Table VI which describe~ the sequencing of the input dat~. 

In an effort to make the program self-explanatory, COMMENT stat~m~nts 

are inserted in the listing following Figure ~9 in locations wµi~h 

correspond roughly to the inputs to bloc~s in the flqw-chart. Addi­

tional comments have been included to aid the reader ir ~nterpreting 

the prog]7am. 

The program listing is incomplete in that the subroutine that 

extracts the roots of the polynomial equations ins is not included. 

This subroutine, EXTRAC, is a library program for the ex~raction of 

roots of polynomials (53). The polynomial must be of depree greater 

than one and less than 100. Miller's me~qod is use~ to iterate the 
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READ DATA 

FIND B AND 
COEFFICIENTS OF g( s) 
BY FRAME'S METHOP 

CALCULATE e,(s) = 
(; B(sH~ + Q * g(s) 

STQRE E,(s) ON TAPE 

dtil;: Bi-1*APRIME 
YIEl..OS THE CHANGE IN 
CHARACTERISTIC EQUATION 

COEFFICIENTS 

df~ ~ d(r~h -hL+I Q) 
YIELDS THE CHANGE IN 
NUME~ATOR COEFFICIENTS 

OF f?(s)MATRIX 

EXTRACT ROOTS FOR g(s) 

YES 

YES 

'ds· I ~ - R(~·ht.!l! 
dp - o<,<slH - l dp 

PRQ.VIP~S THE CHANGE IN 
Z~~ QF CH4RACTERISTIC 
EQU~TION WITH RESPECT 
10 THI;: VARYING PARAMETER 

. ., 

NO 

WRITE ds,. 511 

dp ' p 
J = 1,NOCOND 
K = 1,NORIVE 

Figure 29. Flow Chart for Pole ... zero Sensitivity Program 
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TABLE VI 

DESCRIPTION OF INPUT DATA FOR THE POLE-ZERO :SENSITIVITY 

Location in Number of Descri.ption of Contents Fortran Variables Format Sequence Cards 

1 l Dimension or A is IQ*IQ: IQ, HOCOHD, HDRJ:VE lOI.S 
Dimension or! is IQ*NDRIVE: 
Dimension of.£ is NOCOND*IQ 

2 IQ Elements ot ! by· row ( one row A(I, J) SEl.S.8 
per card) 

3 "IQ Elements or B by row ( one row 
per .card) -

B(I, J) SEl.S.8 

4 NOCOND -Element.a ot £ by row ( one row C(I, J) SEl.S.8 
pel' oard) 

s BOCOllD 11•.nt• ot i l,y rov (one Niii D(I, J) 5115.e 
per-eard) 

6 IQ Elment• ot -dlt1'ereB1.&1. j by .1PJlJJII (.I, .J ) SE15.:S 
.J'Wi ...... ,,. ...... ) 

IQ ·- ..a1eent• ot differential B -1,y 
- _ rr111 {one T'OV .pr ~} -

-BPRDI 11, .J) .5115.e 

8 NOCOND Elements or differential £. by CPRIME (I, J ) SElS.8 
- rov ( one row JMI" card) 

9 NOCOHD El•enta ot d1trerent1al J! by JPRIME (I, .J) SElS.8 
rr111 (one l'GV per card) 

10 l The naaial Y&lue or the PARAH sns.e ~ 

parameter \ 
[ 
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roots to an accuracy of 10~5. In order tp incFeas~ the convergence 

r~te Newton's method is used to refine the roots to an accuracy of 

-8 2 x 10 , These accuracies are made possibl~ hr ~he use of double 

precision calculation at all critical sta~es (53), The computation 

for extraction of roots with this program ~ij e~treme\y fast and is 

output limited in nature. 

WhHe EXTRAC perfqrms its ptJrpose adrl)irably, th';! Cf).re storage 

requirement of 10,000 words consumes almost half of the memory avail-

able fov computation on the IBM 7040 and !imits ~h~ ~a~imum number of 

state variables to 18, of drivers to 18, and of q4tpµf vari~bles to 

18. Th~se maximums may not be increased unless ttie nol!:!-zero progra(II 

is broken into several phases. This p~oQlem may b~ sprnewhat alleviated 

by inc;:luqing a root extractor program that \s 1110:re econom;ical from the 

standpoint of memory requirements. 

In prder to illustrate tne use of this pro9rarri ~p example problem 

is now considered. Let 

A:;: 0 .... 1 0 B:::: :t :t (i :;: 

~ 
-1 :] ..,. 

.,;1 -2 -2 2 1 1 

1 0 0 J -1 

D = 0 0 A' = 0 -0. '1 Q a• = 0 0.1 
""" 

0 0 0 o.~ 0 0 0 

Q 0 0.1 0 0 o • .3 0 

C' ::;: 

[:.2 
-0.1 :] ,I)' "i 0 0 

'"i 

0 0 0 

0 0 
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Then 

n = 1 0 0 ~1 2 ... 1 Q R~ = 0 0 2 
-Q "'11, 

0 1 0 -1 0 -2 -2 0 0 

Q 0 1 1 0 ~ 2 -1 -1 

a11d 

hi - .,.2 h2 :;: 1 hJ = 2 • 

Note 

2 
7(s +Js+2) 0 

p(s) 1 
:;: 

3 
2s

2 ..,.. 
..., s - 2 s + 

2 
~(s~+s"'2) 7(s +1) 

an.q 

Si ::: 1 s = -1 SJ ;:;:: '!";2 
2 

i;r _!!(s
1

) 6 tr .!3,(s
2

) ~ .. 2 _ tr !<~3 ) :;, J 

yields 

ds
1 

0.1167 
ds

2 d~J 
Or~~J -= dp :;=-.0.25 ~= dp qp 

dh1 
0.20 

dh2 
0.10 

dtiJ 
o,~o ap"' dp - ijft I =i 

d~1 
-0.2 -0.1 0 ~~ 

0 0 0.2 dp = ~= 

0 a 0 ... Q.2 Q 0 

0.1 0 -Or? 0 ,,0,2 ~0.1 

~ a lo,4 0.2] ctt!1, 
[ o.J 0,5 J ~2 [~-0 o.2J ~ == v= dp dp 

o .. 5 o.4 -1,J Q.J 2.4: -1.1 



and fqr numerator element 1,1 

K 
s O 

p 
4.o 

for Qumerator element 2,1 

K 
s O 

p 
5.0 

for numer~tor element 2,2 

K 
s O 

p 
4.o 

-1 s 
p 

:=-J.O 

.92~ + j•135 

s 1 
== • 666 

p 
-~ s 
p 
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c 

~ 
c 
1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 

i2 
13 
14 

15 
16 
17 
18 
19 
2 (J 

21 
22 
n 
24 

25 
26 
27 
za 
29 
'3Q 

c 

31 

32 

TABLE VII 

PROGRA.M LISTI~G FOR TH~ fPLE..i~RO 
SENSITIVITY PRPG~M 

THIS PROGRAM COMPUTES THE TRANSFER FUNCTIQN ~ATRli FOR A LJNEAR 
STATE MODEL• IT ALSO CALCULATES THE. DIFFERENTIAL, c;:HANGES IN THE 
LOCATION OF THE POLES AND ZERQE& DUE TQ QlffERENTIAL CHANGES IN 
THE MATRICES AiB,C, AND Do 
FORMAT 11Hl•9HA MATRIX I 
FORMAT 15X,5El5o8/(lOX,5El5o8ll 
FORMAT (5El5.Sl 
FORMAT ( 1015 l 
FORMAT (1H0,14X,2HH( ,I3,2Hl=r,3X,El5o8l 
FORMAT (/20X,18HR MATRIXES FOLLOW /3X•l~Na., 
FORMAT (//20X,51HTRANSFER FµNCTION MATRIX F~EfFICIENT OF S TO POW 

lER ,131 
FO~MAT (/10X,18HR EVALUATED AT SI /I 
FORMAT (1H0,5HROOT ,I3,lH=,El5o8,3H+J~eE15•81 
FORMAT (//lOX,3lHFIRST COEFFICIENT T~Q SM~LL FPR tl~ilH,,131 
FORMAT (//20X,51HCHANGES IN COEFFICIENTS OF CH~~ACTEijlSTIC EOUATI 

ION. /l 
FORMAT (30X,3HDH(,13,2Hl:,El5o8) 
FORMAT ( I4,5X,2El5o8,5X,2El5o8,5X,~ElS•81 
FORMAT l/1H0,3HNO.,SX,9HRQOT REA1,.',6X1lOHR~OT IMMhe7X,32HREAL AND 
IMAGINARY PARTS OF OSI tlOX,l4H SEN~ITIV!T¥ 
FORMAT (lHO•lBHNUMERATOR ELEMENT ,2Jl//) 
FORMAT (lOX,29HNUMERATQR IN DESCENDING OR~ER /~l~X,SE15o811 
FORMAT (1Hl,5X) 
FORMAT (5X,8El5o8/(lOX,8El5oBII 
FORMAT (/10X,16HRS/TRACE OF RS /l 
FORMAT (//lH ,9HB MATRIX I 
FORMAT (/10X,30HTHE SYSTEM HAS MULTIP~E RPQTS 
FORMAT (//lH ,9HC MATRIX ) ' 
FORMAT (//lH ,9HD M~TRIX ) 
FORMAT (lH0,65HCHANGf;:S IN ~UMERAT(,)R P~LYNOMIAf., i;:01;;FF,CIENT$ IN DE 

lSCENDING ORDER /lX,llHS TO PO~ER /J 
FORMAT (//lH ,14HAPRIME MATRIX I 
FORMAT 1//lH ,14HBPRIME MATRIX I 
FORMAT (//lH ,14HCPRIME MATRIX ) 
FORMAT (//lH ,14HDPRIME MATRIX ) 
FORMAT (/lH ,23HCONSTANT MULTIPLIER JS ,~15.8) 
FORMAT ( lH ,38HSENSITIVITY QF CO~STANT Mij~llPLIER ,. ,Els.a, 
REAL MWK 
REAL MDCRB 
DIMENSION POLYNM(20l,H(201,DH(20) . 
DIMENSION A(l7tl71,B(l7,171,Cll7,171,D(pel7hAPRIME1'17,17!, 

1 BPRIME(l7,17l,CPRIME(17,171,0PRIMECll,l71eMWKt17T~71! . 
2 R(l7,17,17l,DRI(l7,l71,CRBl18,17,171,~DCRbtl~,J7elll 

EQUIVALENCE ICRB(l,l,11,MDCRBll,l,lll 
READ THE INPUT MATRICES AS DATA~ 
READ 15,4) JQ,NOCOND,NDRIVE 
REWIND 4 
WRIT F. ( 6, l ) 
DO 31 I = l, IQ 
READ (5,3) (A( l,Jl,J=l,101 
WRJTF. (6,2) (A(T,J),J=l,IQ) 
IOV = 1 
DO 32 I = 1, IQ 
DO 3 2 J = l , IO 
MW K ( I , J > = A ( I , J l 
~IR I TE ( 6, 2 0 I 
DO 33 I = l >IQ 
READ (5,3) IBC I ,JI ,J=l,NORIVEI 
WRITE (6,21 (B(l,Jl,J=l,NDRIVEI 
WRITE 16,22) 
DO 34 I = l,NOCOND 



34 

35 

38 

39 

c 
c 
40 

42 
c 

4~ 

c 

44 
c 

c 
50 
55 
(!: 

60 

65 
c: 
c 

TABLE VJI (Coµtinued) 

READ 15,31 !CII,Jl,J=l,IQI 
WRITE I 6, 2 I IC I I , JI , .J= l, IQ l 
WRITE 16,231 
DO 35 I= l,NOCOND 
READ 15,31 IDII,Jl,Jzl,NDR[VEI 
WRITE 16121 IDII,JJ,Jo;l,NQRIIIE) 
WRITE 16,251 
DO 36 I = 1, IQ 
REA.D 15,31 IAPRIMEll,Jl,J;:l,~01 
WRITE 16,21 CAPRIME 1[,.Jl,J•l,JQ) 
WRITE 16,261 
DO 37 I= 1,IQ 
READ 15,31 IBPRIMECl,Jl,J=l,NDRIV,> 
WRITE 16,21 (BPRIMEI I,Jl,J:al,NORJVE;> 
WRITE 16,271 
DO 38 I= 1,NOCOND 
READ 15,3) ICPRIME!ltJl,J=l,IOJ 
WRITE 16,21 (CPRIMEII,Jl,J=l,10) 
WRITE 16,28 I 
DO 39 I= l,NOCOND 
READ 15,31 (DPRIMEII,JJ,J=l,NDRIV~J 
WRITE (6,21 (DPRIMEII,Jl,J=I.NORIVE. 
READ 15,31 PARAM 
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CALCULATE THE COEFFJCIENTS qf THE CHARAqEIH:;HC ~.QUAT(ON AND. 
THE R MATRICES BY FRAME•S METHOD. 
TRACE = o.o 
QV = !QV 
DO 41 I = 1, l Q 
TRACE= TRACE+ MWKll,11 
H ( I av I' = TRACE/OV 
DO 42 I = 1, IQ 
MWK(l,1) = MWKll,11 - Hqav1 
SET RIIOV,I,Jl = MWKII,JJ 
DO 43 I :: 1, IQ 
DO 43 J = 1, l Q 

R ( I av' I 'J) :; MWK ( I ',JI 
IF IIQV.GE.10> GO.TO 50 
SFT MWK =A* MRIIOV,(,Jl 
DO 44 I = 1, IQ 
DO 44 · J = 1, ro 
MWK!l,Jl = OoO 
DO Lf4 K = 1 , IQ 
MWKll,J) = M~JK(l,JI + ACl,KI lt RIJQV,Kt~· 
INCREMENT I av 
IOV = IOV + i 
GO TO 40 
WRITE OUT COEFFICIENTS OF THE CHARACTERl&rn:: E;qUUION. 
DO 55 I = l I IQ 
WRITE (6,51 !,Hill 
WRITE OUT THE R MATRICES. 
WR I TF ( 6, 6 l 
DO 60 I av = l, IQ 
WRITE 16,41 IQV 
DO 60 I = 1, IQ 
WRITE (6,21 (RIIOV,l,Jl,J;:1.IQI 
DO 65 I = 1 ti Q 
HI I l = -HI I l 
CALCULATE THE TRANSFER FUNCTION MAJRIX ~R~.t O. 
FIND CRB FOR HIGHEST ORDERS, IO~ 
DO 71 I= I,NOCOND 
DO 71 J = l,NDRIVE 
CRB(l,1,Jl = D(l,JI 



CRBl2,loJJ = OeO 
DO 70 K = 1, IQ 

TABLE VII (Continued) 

79 CRBl2ol,JJ = CRB12,l,JI + ClltKI • l:H~eJJ 
71 CR612,1,JJ = CRBl2,l,JI + Pll,JJ * Hfll 
C FORM R * B , STORE IN MWK, 

IA= IQ - l 
DO 81 I av = l , I A 
I B = IQV + 2 
I c = 1 av + 1 
DO 75 I = 1, IQ 
DO 75 J = l,NDRIVE 
MWKI I ,Jl = O.O 
DO 75 K = l,IQ 

75 MWKll,Jl = MWKll,Jl + RIIQV,l,KJ • B4KeJt 
C FORM CRB = C * MWK FOR 5 TO 1a-1ov~i PO~ER. 

DO 81 I = l,NOCOND 
DO 81 J = l,NDRIVE 
CRBIIB,I,Jl = o.o 
DO 80 K = 1,10 

80 CRBIIB,1,Jl = CR611B,I,Jl + c:CJ,Kt • M~Kl~•Jt 
Bl CRB(IB,I,Jl = CRBIIB,l,JI + HIICJ * DCleJJ 
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C NOTE THAT CRB HAS FIRST ELEMENTS COR~ESPONOJNG TO S RAl$E0 TO IQ. 
C NOTE THAT Rll,l,Jl CORRESPONDS TOSTO JQ~1 PQWER. 
C WRITE OUT TRANSFER FUNCTION MATRIX, 

WRITE 141 <<<CRBII,J,li;l1Ii'l~tlBl,J=l,N9CONDl.•~=l,NDRIVEI 
REWIND 4 · 
DO 85 I = 1, I B 
IA = IQ + 1 - I 
WRITE 16,71 IA 
DO 85 J = l,NOCOND 

85 WRITE 16,181 ICRBlf,J,Kl,K=l,NDRIVEI . 
C FIND THE CHANGE~ IN. CO~FFICJEtHS OF CH~~"ClERl~nc EQUATION BY 
C DHIIJ = Rll-1! • APRIME. . 

DO 90 I = 1, IQ 
DO 90 J :; l, IQ 
MWKI I ,JI = o.o 
IF 11.EQ.Jl MWKll,(1 = 1.0 

90 ·· CONT I NUE 
DO 91 I = 1, IQ 

9 1 DH I I ) = 0 • 0 
DO 92 I = 1,IQ 
DO 92 J = l,IQ 

92 DHlll = DH(lJ + MW~IJ,~I * APRJMECJtll 
IA = IQ - 1 
DO 93 lQV = 1 dA 
I B = IOV + 1 
DO 93 I = l,IQ 
DO 9"l J = 1 t lO 

93 DHIIBJ = DHIIBl + RIIQV,1,JI * AP~JMEIJeq. 
WRITE 16,111 
DO 94 I = l, IQ 
WRITE 16,121 I,DHlll 

94 DH ( I l = - DH ( I l 
C FIND CHANGES IN NUMERATOR COEFFl~•enrs• 
C SET MDCRB!ll = DPRIME~ S TO POWER 1q 

DO 300 I = l,IQ . 
DO 300 J = l,NDRIVE 

100 MnCRR!l,I,Jl = DPRIMFll,JJ 
C SET UP TERM FORS TO POWER IQ-1 

DO 302 I = l,NOCOND 
DO 302 J = 1,NDRIVE 
MDCRB(2tl,Jl = O.O 
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TABLE VII (Contiqqed) 

DO 301 K = lt!Q 
3(,) ~ MDCRB12tl ,JI = MOCRl;3q,J.,r'! + ~PRlMt.jl•i(.J * BIK,JJ+ Cl I ,Kl • 

1 BPRIME(K,Jl 
302 
c 

MDCRBl2tl,Jl = MDCRBl2,I,JI + DHlll • Dll,~JI + HIU * DPRJMElltJI 
SET MWK = APRIME 

305 

c 

310 
c 

311 
c 

312 
c 

DO 305 I = l,IQ 
DO 305 J = l,IQ 
MWKII,JI : APRIMEII,JI 
IA = IQ - 1 
DO 350 IQV = loIA 
IB = IOV + 2 
IC = IQV + 1 
SFT UP ORI= DAI - DHIJI • U 
DO 310 I = l,IQ 
DO 310 J = 1, IQ 
DR I I I , J I = MWK I I , J I 
IF IIoEQ.JI DRIII,II.= DRIII,11 - 0,-tlJQ~· 
CONTINUE ,' 
SET MWK = Riii * B. 
DO 311 I= l,IQ 
DO 311 J = 1,NDRIVE 
MWKII,JI = OeO 
DO 3 11 K = 1 , I Q 
MWKII,JI = MWK(I,JI + fUJQV,It~I * ecK.JI 
SET MDCRBIIBI = CPRIME * MWK 
DO 312 I= l,NOCOND 
DO 312 J = 1,NDRIVE 
MDCRBIIB,I,JI = O,O 
DO 312 K = 1,IQ 
MDCRB(IBtI,JI = MDCRBqB,I,JI + <!P~IMECf,~J~MW!q.Cl'•JI 
SET MWK = ORI * B 
DO 315 I = lt IQ 
DO 315 J = l,NDRIVE 
MWKII,JI =O.O 
DO 315 K = l,IQ 

315 MWKII,JI = MWKII,JI + ORIII,~I * ~·~·~· 
C SET MDCRBIIBI = C * MWK + MDCRBIS81 

DO 320 I = l,NOCOND 
DO 320 J = l,NDRIVE 
DO 320 K = lt!Q 

320 MDCRBIIB,ItJI = MDCRBCIB,J,JI + <::q,Ji:.> • M~,,~,J) 
C SETMWK=c;:*RIII :., ' 

DO 325 I = 1,NOCOND 
DO 325 J = l,IQ 
MWKII,JI = O.O 
DO 325 K = l,IQ 

325 MWKII,JI = MWKIItJl + CLltKI * RCIQV,Kt,.11 
C SET MDCRBIIBI = MWK * BPRIM~ + MQCRBflS. 

DO 335 I= l,NOCOND 
DO 335 J = 1,NDR1VE 
DO 330 K = l,IO 

330 MDCRBIIl::ltI,JI = MDCRBllthl,JI + M~K(ltllil • BPRIMECK,JJ 
335 MDCRBIIB,I,JI = MDCRBIIB,I,JI + OHCIC1,pc1,~t + HIICl*OPRIMECl,JI 
C SET UP NEW DAI MATRIX AND STORE IN ~WK 

DO 340 I = l,IQ 
DO 340 J = 1,IQ 
MWK( I ,JI = 0,0 
DO 340 K = 1,IO 

340 MWKI I ,JI = MWKI I ,JI + APRIMEI I ,Kl*AIIQV~ll.:.p J'.+ :~(f,r>•DRllK,JI 
350 CONTINUE. 

WRITE 16,241 
DO 360 IQV = l,IB 



~ABLE VII (Continu~~) 

IA= IQ - IQV + 1 
WR IT E I 6, 4 I I A 
DO 360 I = loNOCOND 

360 WRITEl~ol81 IMDCRBIIQV,1,Jl,J = l•NQRIVEI 
C. THIS PART OF PROGRAM FINDS THE OSI ALOP;G WITH THE ROOTS 

COMPLEX RS,SN,SR,SI,ROOTS,CTRACE,OSl,SENS 
DIMENSION RSl17,17),ROOTJl20),ROOTRCl0ttDS[C2Ql 
WRITE 16,17) 
CALL EXTRAC IH•IO,ROOTR,ROOTJI 
WR 1 TE 116, l 7) 

C TEST FOR MULTIPLE ROOTS. 
IG = IQ - l 
DO 95 IQV = loIG 
IC = JQV + l 
DO 95 I = IC,IQ 

160 

IF IROOTRIIOVloEOoROOTRll)e~NOoROOTlllqVJeEQ.ROOTICIII GO TO 96 
95 CONTINUE .. . 

GO TO 99 
96 WRITE 16,211 

CALL EXIT 
C EVALUATE R MATRIX AT ROOT IQVe 
99 DO 200 IQV = l,IQ 

SR= lleO,OeOI * ROOTRIIQV) 
SI = 10.0,1.0)*ROOTIIIQV) 
ROOTS= SR+ SI 
WRITE 16,91 IQV,ROOTS 
SN= ROOTS 
IA= ra - 1 

C SET UP CONSTANT TERM OF fiS MAl~IXe. 
DO 100 I= l,IO 
DO 100 J = 1,10 

100 RSII,J) = lleO,OoQ)*RIIA.I,J) 
K = IA . 

110 K = K - l 
DO 120 I = l,IQ 
DO 120 J = 1,IO 

120 RSIItJ) = RIK,I,j) *SN+ RS<l,J) 
SN= SN* ROOTS 
IF CK.GT.ll GO TO llO 
DO 140 I ::; ltIQ 

140 RSII,Il = RSIIoII + SN 
WR I TE I 6 ,8 I 
DO 145 I= l,IQ . 

145 WRITE 16,lB)IRSIJ,Jl,J•l•IOI 
C FORM TRACE. 

CTRACE = 10.0,0eO) 
DO 150 I= l,IQ 

150 CTRACE = RSII,I) + (TRACE 
DO 160 I = l , IQ 
DO 160 J = l,IQ 

160 RS<I,JI = RSII,Jl/CTRACE 
WRITE I 6, 19 I 
DO 16 5 I = l , IO 

165 WRITE 16,181 lRSII,JltJ=l,IO) 
C FORM CROSS PRODUCT 

DSIIIOVI = 10,0,0eOI 
DO 170 I = 1,10 
DO 170 J = 1,10 

170 DSIIIQVI = RSll,JI * APRIMECJ,I) • DSICICWI. 
2:JO CONTINUE 

WRITE I 6, 14 l 
DO 220 IQV = l,IQ 



TABLE.VII (Continua\J) 

SENS= PARAM * DSl(IOVI 
220 WRITE 16,131 IOV,ROOTRIIQVl,ROOTJ(IOVt,DSIIIQVl,SENS 
C MAKE USE OF R TO STORE THE TRANSFER F.UNCTION MATRIX IT~El,.F 
C SINCE R IS NO LONGER NEEDEO H~RE. 

IG =JO+ 1 
READ 141 ICIRII,J,Kl•l=l•IGl,J=l,~OCONDl•K~l,NDRIVEI 

c FIND THE NUM~RATOR ZEROES AND THElR ~H~NGE~ ~ITH RESPECT To.x. 
DO 600 J = l,NOCOND 
DO 600 K = l,NDRIVE 
WRITE 16,15 I J,K 

C SET UP COEFFICIENT ARRAY pOLYNM FOR THE J,t ~LEM~~T. 
DO 500 I= l,IG 

500 POLYNMCII = RII,J,KI 
, . 1 C = JO 

501 '·,; IF IPOLYNMllleNE.O.UI GO TO 503 
ilC=IC-1 

IF 11c.Eo.01 GO TO 600 
IA = IC + 1 
00 502 I = l,IA 

502 POLYNM(II = POLYNMCl+ll 
GO TO 501 

C AT THIS TIME IC IS DEGREEE OF NU~~RATOR TERM, 
503 'F IABSCPOLYNMlllloLToU•U00000021 WRIT.E (6110 I J,K 

00 5 1 0 I = 2 • I A 
510 POLYNMIII = POLYNMIII/POLYN~lll 

POLSAV = POLYNMCll . 
POLYNMlll = 1.0 
IH = IC + l 
WRITE 16,16 l IPOLYNMIIltI=l,IHl 
IFIIC-11 600,520,530 

C. EXTRACT THE NUMERATOR Rpors. 
520 ROOTRlll = -POLYNMl21 

ROOTilll = o.o 
GO TO 540 

C MAKE THIS POLYNM-CORRE$POND TO TH~ H ARRAY P~E~IOUSLYo 
530 DO 535 I= ltIC 
535 POLYNMIII = POLYNMCJ+ll 

CALL EXTRAC IPOLYNM,IC,ROOT!f,ROOfJI 
C RESTORE POLYNM ARRAY. 

DO 536 I = 1,IC 
IA = IC + 2 ,.. I . 

536 POLYNMIIAl = POLYNMIIA•ll 
fOLYNMlll = loO 

C TEST FOR MULTIPLE ROOTS 
I MP = 1 C - 1 
DO 537 IOV = l,IMP 
I MPl = IOV + 1 
DO 537 I= IMPl,IC 
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IF IROOTR<IOVloEO.ROQTRllloANOoROOTJ(IQV,.Ea.ijOOTIIIll GO TO 538 
537 CONTINUE 

GO TO 540 
538 WRITE 16,211 

GO TO 600 
C CALCUL~TE;: THt. Sl:.NSITIVITY OF CONSTANT K Ml,JLlIPLlt:Re 
540 IANY = IQ - IC+ i 

SENCON = PARAM * MDCRBllANY,JtKl 
WRITE 16,291 POLSAV 
WRITE 16,301 SENCON 

C CALCULATE DERIVATIVl WITH RESPECT TO S,ANO SfQRf .N 
C (TRACE= .IC*Ml*S**IIC-11.., IJC-ll*M2*5*11(IC-<) + ~•._• __ -:".,MtC,: 

WRITE 16,141 
DO 60), I = 1 • 1 C 



TABLE VII ( Cont inu~d) 

CTRACE = 10.0,0.0> 
ROOTS= 11.o,o.01•ROOTRIII + {Q.O•l·OJ•ijQOTIIJJ 
SN= IJ.O,Q.01 
DO 550 IA= 1,IC 
18 = IC - IA + 1 
av• IA 
CTRACE = POLYNMIIBI *SN* UV + CTRA~f 

550 SN• SN* ROOTS 
C FORM NUMERATOR FOR NEWTON•S FORMULA• 
C N = Ml •s••IIC) + MZ*S**IIC-11 + M3•S••11c-21 + ••• + MlC+l. 
C DN = OMl*S**lC + DMZ*S**IIC-11 + •,• + PMl~+~, 

SN= 11.0,0.01 
18 = IO + 1 
PSI 111 = 1p.o,o.01 
DO 570 I~= 1,IB 
IQV • IQ - IA+ 2 
DSIIII = DSIII> + MDCRBllQV,JtKl*~N 

570 SN =·SN* ROOTS '. 
C APPLY NEWTON'S FORMULA, 

DSIIIl =-DSIIIIIICTRACE*POLSA~l 
SENS s PARAM * DSIIIJ 
WRITE 16,lJl I , ROOTRIIl,ROOTlltl,bSlllltSE~S 

600 CONTINUE . .. ' 
STOP 
END 
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APBENDIX C 

A THEOREM ON THE D~GREE OF PARA}fETiij$ IN 

THE ST~TE MODEL MATijICE~ 

!his appendix deve~ops a theorem of particula~ importance in this 
' 

study for decreasing computer storage require@ents, One of the major 

objectives of this study was to develop a de~ign tool with automatic 

formulation and solution capabilities for both the state and sensitiv~ 

ity operator models. The state model formulation ppocedure of Section 

J.J was selected for implementation. A polyno~ial nepresentation of 

each state model matrix was desired to allow par;imeter values to be 

changed without reformulation of the basic ~odels, W)len polynomial 

representations are used tbe maximum degree of the polynomials to be 

encountered becomes very important since it dete~ines the storage 

required, The following theorem is develop~q jn this appendix. 

Theorem: Consider an electric network of resis~9rs, ,nductors, capaci-

tors and voltage and current source elements 1 ~f the~e exists a tree 

containing all capacitors and voltage sources and ex~luding ~11 in-

ductors and current sources, thfn the state model of E~uation (J.J.1) 

is such that ~o element of tµe ~' ,!!, £1 or~ matrices has nwnerator 

degree higher tpan three in any parameter or has denominator degree 

higher than one in any parameter. 



Proof: ~tan electric network N con~ist of res;istQ~s 1 inductors, 

capacitors, volta9e sources, ~nd current sources su~h that some tree 
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T exists w~ich contains all voltage drivers and cap~citors and excludes 

all cu~r~nt drivers and inductors. The tree Tis a cpnnected subgraph 

of the connected networ~ graph whitji conta~ns all vertices of the 

graph but does not contain any circuits. The tre~ T w!ll be symbolized 

or 

where 

s c is the set of elemeni;s correspondinQ ~Q papaci tors, 

SE h the set of elements corresponding t·o vqltage driv'ers,',1#1,d 

6
TG 

is the set of elements co:rre sponqipg to tree conductances. 

The elements qot Qelon9ing to the tree T b~J.onfJ to t}le cotree CT 

symboJ.ized 

where 

SL is the set of elements correspond:i.n!:} to inpuctors, 

SJ is the set of !;:!lements corre spqnd;in~ tq fUrrent drivers, 

anq 

SCG is the set of elementi correspondin9 to cotree 

conduct~ces. 

The matrix state model formulation procedure g~ven in Figure 8 may 

be developed by manipulation of the cutset~ cir~µ~t and component 

eguations written using the tree T. AdditionaJ. notation employed in 

this appendi~ is given in Figu~e 8, If it CIU1 be sho¥n that the 



elements of the matrix 

can be e:q,ressed as 

r .. "' 
]. J 

(C.1) 

where al, a 2 , a
3

, and i'l'* a,re ind,ependent of i'lP:Y s;in,il(1 ~onductance 

parametev p, then the theorem will follow directly frQm the formulation 

rules. 

Consider the matrix 

G ::;: R.-1 = (C.2) ...,. 

It will be shqwn first that 11!1 is a functiqn of no more than degree 

one in the conductance variables of the networ~. Se~ondlr, the 

cofactors A •. of the i, j elements of G will be shown to be likew;i..se 
]. J 

functions of no more than degree one in the con4uc~~nce variables. 

Since 

Adj G 

1.9.\ 

these two statements will imply 

r .. = 
]. J 

is a true representation of each element. 

Consi4er now the network N' fonned from networ~ N by removing the 

current sources and inductors and shorting th~ te~~ina~s of the voltage 

sources a,nd capacitors before removin~ them. ~emovinQ the chords 

consistipg of ipductors cU1d current sources does not change th~ tree 



of the rE;!sulting netwc;,;rk in any manner (44, page 16). HoweveF, the 

process of shorting and removing capacitors and volt~Qe sources does 

modify the tree since the number of vertice~ is ~ecreased by one for 

each element shorted and removed. 
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The :reduction process for capacitors and volfaqe spµrces cannot 

introduce a circuit of tree resistors belongin9 to Tin the reduced 

network N' as shpwn by the following reasoning, u· a circuit of tree 

resistors pelonging to T occurred in the networ~ N1 , then in Na 

circuit consisted of capacitors and/or voltage spµrpes and tree 

resistors. However, since the capacitors and VQ}tage sources belong 

to T, there must have been a circuit of tree eiempnts ~n N. This 

contradicts the definition of the tree T. Tperefore, all tree ~esis­

tors in N remain in the tree of N'. 

In tpe process o! snorting and removing ca~~cito~s and voltage 

sources, self-loop conductance elements may be i~troduced in network 

N'. Resi~tors contained in a circuit maqe up pt one resistor and 

capacitors ?nd/or voltage sources appear in t~e re~uced ~etwork as 

self-loop elements. Since the capacitors and voltage sources belong 

to the tree T, these self-loop elements in tQe ~e~uped network must 

belong t~ tpe cotre~ of the or~~inal netwo:r~ N. Ali:.;o, these elements 

form circuits in N' and, hence, they belong to ~y cotree of N'. 

Assume first that no self~loop conductances occur in N'. The 

subgraph of N' co~responding to the tree conductance elements of N is 

a valid tree of N' ·: si::fn;:e it·']s: .conne.ct~d; contc1,ins all the vertices, 

and does not contain any c~rcµits, This tree Tl c9ntains every tree 

conductance pf N and the cot;ree CT' contains every cotree conquctance 

of N. The fundamental cutset equations formu~ateq in tenns ot the 



tree T' are 

0 

and the fupdamental circuit equations are 

~ [~TG] = Q 

!cG 
T 

The matrices §.
33 

and s
33 

are identical to the corresponding sub-

matrices found, respectively, in the cutset and cir~uit equations of 

Figure 8. This can be seen by setting to zerp ttie vavi.ables .:!.L' .:!,0 , 

~' !n in these equations which is eqµivalent to the red\lction J?rocess 

yielding N'• It should be clear that the cond4ct~nc~ matrices ~T and 

.9c for the reduced network N' are identical to those for N. 

The node-admittance matrix of N' can be written ~s 

.GT 0 

0 

;r ..... 

T 
.§.33 

(C.J) 

But upon comparing this matrix with Equation (D.~) it follows that 

G =-= Y. Thus, G is the node-admittance matrix o! the 11etwork N' • .,,.. 

Seshu and Reed (~1, page 157) state that for a Pfssive network 

containing no mut~al inductances and no self~loop elements the node 
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admitt~nce de1;erminant is q linear function of any par~eter admft't'ance. 

Thus, fop the case where no self-loops exist in N', it has been shown 

~hat 1.§.1 is a function of no more than degree Qne i~ any conductance 

variable of the network. 

Consider now the cofactors 6 .. of the i,j-th ~lement of the node-
1J 

admittan~e matrix G. Sesh~ and Reed (4t, page ~6~) also show the 

linear-in-any-one-parameter property of 6 ... Thus, ~he cofac~ors of 
1J 

the node~admittance matrix G can have degree no greater than one in 

any parameter when no self-loops exist. 

Return: now to the .cqse in which self-loops exist in the reduced 

network N'. These self-loops were generated by circµits consisting of 

one cotree resistor and capacitors and/op volt~ge sources in the 

original network N. Note that each row of the fun~amenta~ circuit 

equations of Figure 8 corresponds to a circuit in~lu~ing only one 

cotree element and tree elements. No tree resistors exist in the 

circuits corresponding to self-loop elements. Thus, in the fundamental 

T. 
circuit equation submatrix -!

33 
there exists a row of zeros corres-

ponding to the location of each self.,.loop element in the reduced net-

work. 
T 

Sin.ce a row of zeros exists in -!
33 

and a cqlµrnn pf zeros in 

!
33 

the product 

is independent of the self-loop conduct~nce parameters. Also, since 

the self-loop elements belong to CT' the matrix~ is independent of 

these self~loop p~rameters. Thus, the matrix G pf Equation (C.2) is 
,r-

independep.t of the self-loop parameters and its detepminant and cofactors 

are in fact of degree zero in the self~l9op conduc~apce parameters. 



Consider now deleting all self-loop elements frqm N' to produce 

netwol'k N". S;i.nce these elements belon1;1 to the coi;vee CT', they may 

be removed without affecting the existence of the tree T' and T• is 

also a t:ree ofl network N". Removal of these setf-1,oop elements may be 

T 
performed by deleting the self-loop zero rows of ~J~ and the corres-

ponding columns of ~
33 

to form ~ 33 . It is then apparent that the 

matrix A'', 

A" S" J -JJ 

is a fundamental cutset matrix of the resistive network with no self-

loops. The matrix,§_ of Equation (C.J) including self-lopps may also 

be expressed as 

9- ~ [ ~_'J [ ~ Q ] [~") T 

O G" - ..;;:c 

where ~ is the cotree parameter matrix from wh:i.cti all self-loop con­

ductances have been deleted. The theorems of Sesqu wid Reed invoked 

earlier ma;r be applied to Equation (C.4:). 'l'hus, wnen se\f-loops occur 

the qeterminant of _S!, and its cofactors are functions of no more than 

degree one in any conductance parameter in the netwovk. 

Thus, each element of the R matrix of figure 8 may be expressed 

as shown in Equation (C.1). Examination of the subm~trix fo;,;,mulation 

rules of Figure 8 indicates that tree conductances will occur :i.n the 

numerator of the state model matripes A, B, C, and D with a maximum - - ...,.... ~ 

degree ,of; <me since the incidence submat:ri,:::es and .§c are independent 

of tree conductances. However, cotree conductances may occur with a 

maximum degree of three in the numerator. The denominator is unchanged 
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by the formulation rules and, hence, the maximum d~nominator degree in 

any parameter is one. 

An alternate proof of this theorem has been sug9ested by 

Dr. c. M, Bacon and Dr. Rao Yarlagadda. This proof u~es 

G s3J == p Q - _... 

Since .9,T and .§.care diagonal, the matrix~ is such that any one 

resistor value is ;t:'ound in only one column. By the Binet-Cauchy 

Theorem for finding the determinant of the square p+odµct of non-square 

matricel', (4,1, page 156) it follows directly that !GI ti'> a degree one 

in any ~onductance parameter. The Binet-Cauchy Theorem may also be 

applied to the evalua.tion of the minor M .. of the i~j ... th element of G 
1J 

by noting that this matrix corresp9nds to deleting row i of~ and 

column j of Q. The remaining statements in the proof are identical to 

those above. 



APPENDIX D 

IJE·rAILS OF PROGRA.!\1 VARYIT 

Th:i,s appendix presents in greater detail the operations described 

in Section 3.5. The presentation is tabular for ~,ase of reference. 

A brief summary of the following figures and tables fo).lows: 

(1) fortran Variable Names and Definitions 

(2) Input Data Preparation Chart 

(3) Input Data for Time Solu'tion 

( 1±) Input Data for lmpul .se Solution 

(5) Input Data for Pole-Zero 

(6) Time Dependent Source Parameter Definitipns 

( 7) Output Tape Formats 

A few comments should be made to clarify the fol;I.owing tables and 

figures. The FORTR4.N variables defined in item (t) appve are only a 

partial 1 ist of thor.;e used in the program i tse;I.f. Dimensioned vari­

ables··-program lists 9 arrays, vectors, mat;r·ices, and polynomial 

matrices--are :i.ndicat8d by N.A.ME(I), NAME(I,J), and NAM}::(I,J,K). The 

sequence numbers of the Input Data Preparation ChArt refer to the f:i,rst 

column pf item (J) above. Program decks are available from i;he 

Engi;neer:i,ng Computing Laboratory at Oklahomf,l State U11iversity upon 

request. A separate addendum document containing flow charts and 

listings will be fnrnished with these decks. 
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TABLE VIII 

FORTH.AN VARIABLE NAMES AND DEFINITIONS FOR VARYIT 

A(I,J) The matrix A defined by Equation 3.2.la. 

APRIME (I,J) The derivative of the matrix A with respect to the 

parameter p. 

A6l(I), A62CI>» A63(1) 9 A64(I) Parameters describing the sinusoidal 

drivers (Type 6) of current or voltage. 

A7l(l)p A72(I), A73(I), A74(I), A75(l) 9 A76(I) •• Parameters descr~bing 

pulse drivers (Type 7) of current or voltage • 

. BCI,J) •• The matrix~ of Equation 3.2.la. 

BOTNOD •• The second node located to .which a tree element is incid~t. 

BRANCH•• The tree element of the cutset. 

Bl'R.lME (l,J) •• The derivative of the matrix~ with respect to the 

parameter p. 

C(I,J) •• The matrix£ of Equation 3.2.lb. 

CLVAlJJ (I) •• Vector containing the diagonal elemente of the, JD4trix £L: ..... 
of Equation 3.2. 
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COND (I) -- Vector containing the nominal conductance values for resistance 

elements. 

CPRIME CI,J) -- The derivative of the mat't'ix £ with respect to the par'81eter 

p. 

CRDSET (I) -- The list of elements belonging to the cotree. 

CURVAR 

D(I,J) 

Program flag to indicate that an inductor or current driver varies. 

The matrix Q of Equation 3.2.lb. 

DELTAT •• The integration increment for state model solutiqn. 



'.!'ABLE VIII (Continued) 

DET (I) -- The denominator polynomial for A, Ji,£., and~. matrices. 

DPRIME (1,J) -- The derivative of the matrix Q with respect to the 

parameter p. 

E(I) -· Driver vector evaluated at time T. 

FlAG frogram flag generated by Phase l to direct MAIN link of VARYIT 

to proper solution phase. 

FlAGlO Program flag indicating Phase 4 of VARYIT is in the sensitivity 

integration mode when FLAGlO = 1. 

FlAG2Q -- Input data f1a.g to tenninate 11batch11 problem mode of operation 

and return control to system monitor. 

Gl(I,J,K), G2(I,J,K), GJ(I,J,K), G4(I,J,K) -- Matrices used for StQrtng 

polynomial matrices in the fonnulatioq processes. 

GNVARY -- Variable used to store the nominal value of the varying conduc• 

tance during fonnulation. 

IFIAG -- Program flag generated by Phase 3 and utilized in the evaluation 

of matrices at nominal values. 

INDEXl(I) -- Row index number for a non-zero element of the cutset matrix 

INDEX2(1) Column index number for a non-zero element of the cutset 

matrix.§., 

INITL -- If INITL = 1, initial conditions are supplied for the state 

model integration, 

INITL2 -- If INITL2 = 1, initial conditions.are supplied fqr the sensi­

tivity operator integration. 

INSENCI) Alphabetic array used as flag to indicate that initial condi­

tions are to be read in for the sensitivity operator ~~tegra• 

tion, 
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'i'ABLE VIII (.Continued) 

INSIGN(l) -- Variable indicating the sign of the non-~ero element of the 

cutset matrix.§. which lies in row lNDEXl(l) and column 

INDEX2(1). 

INTREE •· Logical variable which indicates the varying parameter belongs 

to the tree set when true. 

!PUNCH -- Variable used as program flag to indicate ~he network solutions 

should be outputted on punch medium and also which phases were. 

executed. 

LAST -- Program flag whose value gives information to indicate when the 

final varying parameter analysis is complete. 

LCVALU(l) -- Vector obtained from CLVALU by interchanging inductor 

parameter values with the capacitor .values. 

LCXl(l~ -- Vector containing the initial conditions for the state model 

integration. 

· LETTIM -· Program flag which when equal to one indicates a state model 

integration is to be performed. 

LIST·· Alphabetic variable which is used to set progr~ flags to indicate 

whether complete time solution is to be printed. 

LlSTDC Program flag which forces complete time solution to be printed 

when its value is one. 

LlSTDR(I) List of element numbers corresponding to drivers which are 

impulse drivers. 

LTCAPT ... The element number of the capacitor with the la-.rgest number. 

LTCTSR •• The element number of the current driver with the largest number • 

• LTIND't •• The element number of the inductor with the largest n1.MQber .• 

MAXDEG The maximum number of two-terminal elements inctdent to 8"Yfl~e 

of the network. 



TABLE VIII (Continued) 

MDET •• The degree of the DET po~ynomial. 

MM6(I) Number of position in the driver vector for tYPe 6 drivers. 

MM7CI) Number of position in the driver vector forty~ 7 driver•· 

N6 Number of type 6 voltage or current drivers. 

N7 Number of type 7 voltage or current drivers, 

NCARD •• Symbolic name of the card reader unit. 

ND RIVE 

NMETER 

Number of drivers present in the network. 

Number of voltage and current meters to be used in printing the 

output solution, 

NN6(I), NN7CI) -- Number indicating which type drive-r corre~ponds to the 

NOCAIN 

NOCAPS 

parameters stored in the accompanying l'8-rameter array. 

Number of capacitors and inductors of the network. 

Number of capacitors of the network. 

NOCDST Number of elements belonging to the. selected cotree. 

NOCLLT ·• Variable indicating position in the £1 matrix where varyi~g 

parameter p occurs. 

NOCOND 

NOCTSR, 

Number of conductance elements of the network. 

The number of current drivers in the network. 

NODRLT ·• Number indicating position in the driver list w~e-re the varying 

parameter occurs. 

NOGCOT Number of conductances appearing in the cotree. 

NOGTRE Number of conductances appearing in the tree. 

NOIMP •• Number of impulse drivers to be analyzed. 

NOINDS •• Number of inductors of the network. 

NON ODE Number of nodes of the network. 

NONWEL .,. Number of two-terminal elements of the network. 

NOPAR -- Number of the varying parameter p. 
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TABLE VIII (Continued) 

NOTRST Number of elements belonging to the selected tree. 

NOVTSR Number of voltage drivers of the network. 

NPLOT •- Program flag indicating no plot of the varia,nce is desired if 

NPLOT = O~ 

NPR.INT ~- Symbolic name of the printer unit. 

NPUNCH Symbolic name of the punch unit. 

NS- ... Nwnber of non-zero entries in the cutset matrix~· 

NTH -- '.fhe number of increments between printouts of the metered network 

yariables. 

NTil1ES Variable indicating the total number of sets of variances for 
' . . . 

the varying parameters to be used in fonning the variances~ ' · 

NTWJ<CN (I,J) -- Network connection array with one row for each node n~ber 

and.element number list of .all two-termin41 elements 

connected to each node. 

NUMVAR -- Number of parameters for which sensitivity cal~ulations are 

to be ma.de. 

NVAR ·- Number of parameters allowed to vary to be used in calculation· · 

of the variance. 

NVARY ·- Number indicating the position in the QT or Qc ma.trices when 

the varying para.meter is a resistor. 

ORI~Nf (I)--. The network element orientation list which lists nodes 

from which elements are oriented. 

PAllTD~ (1) -- Array which contains the derivative of the driver vec~or 

with respect to the varying parameter p. 

PARTLC Cl) -- Array which contains the derivative of the inductor• 

capacitor vector with respect to the VIJ.rying J>8:r8mf:!~~r P•' · 

me -- The precision limit to be used in calculati9n of the matrix 

exponential. 



TABLE VIII ( Continu!:!d) 

PROBNO (I) -- Block of storage for user specified problem title up to 

24 characters. 

S(l,J) -· The cutset equation coefficient matrix g. 

SAV(l,J) ·- Matrix containing one row for each varying 1>4re.meter and 

each column is solution at time tj to. sensitivitt)' model 

multiplied by appropriate parameter varicin~e, 

T -- Value of time variable during state model integration. 

TMAX •• The maximum value of time for which the sQlutions w1,.ll be found. 

TRESET(I) -- The list of element numbers corresponding to elements placed 

in the tree. 

'l'Ol?NOD -- The first node located to which the tree elernen~ is incident. 

VARIAN(l) Array formed by summing columns of SAV to yield the variance 

of the system function for the multiple 1>4rapieter variation 

case. 

VAR(l) -- Array containing variances of each varying par431Deter in same 

order as VARY(I). 

VARY(l) Array containing list of element numbers w~ich ,re to be used 

in computing sensitivity information. 

VOLVAR -- Program flag to indicate that a capacitor or voltage driver 

vary. 

WHICH-~ Alphabetic variable used to store information as to which of the 

many options are desired. 

Y(l) -· Array which contains the complete netwo,:k, sol~Hoq at time T for 

all voltages and currents as well as the sensitivity operator 

,-olutions (see Output Tape Format). 
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I SEQUENCE NUMSERS I 
I --- 8 

SEQUENCE NUMBER 9 

FREQUENCY I TIME SOLUTION I IMPULSE 
DOMAIN SOLUTION 

' ' 

SEQUENCE NUMB ER 10 

DC TRANSIENT DC ANO 
TRANSIENT 

' 

SEQUENCE 
NUMBER 11 

SEQUENCE SEQUENCE 
NUMBERS NUMBERS 

13,14 12,14, 17, 18 
SEQUENCE 
NUMBERS 

12-14 

,--------
I SEQUENCE NUMBER 15 I 
I NO 

I SENSITIVITY SENSITIVITY 
INITIAL INITIAL 

I CONDITIONS CONDITIONS 

I ARE ARE I 

I SUPPLIED SUPPLIED 

I l 
I SEQUENCE ' 
I 

NUMBER 16 

L _____ l 
I= 1, NUMVAR 

' I SEQUENCE NUMBERS I 
19-24 

I 

8 ... 

Figure .30. Input Data Prepar~tion Cllart 



Location in Number of 
Sequence Cards 

l l 

2 l 

3 l 

4 NONO DE 

s l 

6 NOCOND 

7 NOCAIN 

1 

l 

9 l 

TABLE IX 

DESCRIPTION OF INPUT DATA FOR PROGR~~ VARYIT 

···Description of Contents 

99999 only if last problem to be done, 
otherwise blank 

Identification label for problem 

Number of nodes, network elements, 
voltage sources, current sources, 
capacitors, and inductors 

List of elements incident at node I 

LiBt of node numbers from which each 
element -1 is oriented 

N=S, Resistance of element NO = VALUE 

N=6, eapaciblnce or inductance of 
element NO ts VALUE 

N=7, Number of vaeying parameters 

N=7, List of varying parameter numbers 

Specify type solution desiTed: TIME 
SOLUTION, IMPULSE SOLUTION• FREQUENCY -
DQ-1AIN SOLUn-ON . 

Fortran Variables 

FLAG20 

PROBNO 

NONODE, NONWEL, NOVTSR 
NOCTSR, NOCAPS, NOINDS 

CNTWKCN(I,J) ,J=l, 10) 

ORIENT Cl) 

N, NO, VALUE 

N, NO~ VALUE 

N, NUMVAR 

N, (VARY(l), l=l ,NUHVAR) 

WHICH 

Format 

IS 

4A6 

1615 

1615 

1615 

2IS, BlS.8 

2IS .. EU.8 

1615 

1615 

A6 



Location in Number of 
SeQuence C~rds 

10 1 

11 NOCAIN 

12 1 

13 ND RIVE 

14 1 

15 l 

1.6 NOCAIN 

17 l 

18 1 

TABLE IX {Continued) 

Description of Contents 

Specify type time solution: DC, DC 
AND TRANSIENT, TRANSIENT 

N=lO, Initial condition on capacitor 
or inductor NO= VALUE 

N=ll, Maximum solution time value, 
integ~ation increment, desired 
precision 

N=l2, Driver NO is NTYPE driver and 
NKIND, driver parameters (see Table) 

LIST prints all values during inte• 
-gration; NOLIST suppresses printing 

SENSITIVITY INITIAL CONDITIONS ARE 
SUPPLIED --0r els__e -NO .SENSITIVITY 
INlTIAL-CONDITt~S 

~=17, Initi-al condition on sensitivity 
model __ element NO = VALUE 

Number of driver positions having 
impulse input 

List of driver numbers with impulse 
inputs 

Fortran Variables 

WHICH 

N, NO, VALUE 

N, 'll-1AX, DELTAT, PREC 

N, NO, NTYPE, NKIND, 
(VALU(IK),IK=l,6) 

I WHICH 

-N ~ NO, VALUE 

NOIMP 

LISTDR(I) 

Fonnat 

A6 

215, El5.B 

15, 5El5.B 

12, 13, 13, 12, 
7Fl0.5 

A6 

8A6 

215, E-15.8 

1615 

1615 
.. c c 



Location in 
Sequence 

19 

20 

21 

22 

23 

24 

Number of 
Cards 

1 

1 

NMETER 

1 

NVAR 

NTil1ES 

TABLE IX (Con-tinued) 

Description of Contents 

Prints answers at times NTH steps 
·apart; lPUNCH=l punches out answers 

Number of meters for which it is 
desired to punch or print answers 

AIB=V means voltage meter on element 
NO and AIB=l means current meter on 
element NO 

Number of variance computations 
required, NI'LOT=l means plot variance 

.at steps of NTH, NTIMES is number of 
different variance sets for NUMVAR 
parameters 

AIB•V means variance .of voltage of 
-element ~O and Atn•.l means variance 
,0f current of -element NG is to be 
found 

Variances of elements in V/JlY list 

Fortran Variables Fonnat 

NTH, lPUNCH 1615 

NMETER 1615 

AIB, NO Al, 14 

NVAR, NPLOT, NTIMES 1615 

AIB, NO Ai, 14 

CVAR(l),l=l,NUMVAR) 5Fl5.8 



TABLE X 

INPUT DATA FOR TIME SOLUT~pN 

NETWORK A 
4 6 
1 4 

0 

1 2 S 
2 3 S 
3 4 6 
1 2 3 
S 1 1.0 
S 2 2.0 

EXECtJTE THE FOLLOWING PROBU)J 

1 2 0 

6 

4 2 3 

S 3 .33333333 

+o 
+o 
+o 
+o 
+o 

6 S o.s 
6 6 1.0 
7 S 
7 1 2 

TIME SOLUTION 
TRANSIEN1 

10 -' o.o 
10 6 o.o 
11 6.0 

12 4 7 0 o.o 
NOLI ST 

3 s 

+o 
+o 

+00.01 
o~o 

6 

+o 0.0000001 
7.5 

SEllSinvtTY !NIT~ CONDITIONS ARE SUFPLIED 
17 S o.o 
17 6 o.o 

SENSITIVIT~ INITIAL CONDlTictlS ARE SUPPLISD 
17 S o.o 
17 6 o.o 

SENSITIVITY INITIAL CONDITIONS ARE. SUPPLIED 
17 .$ o.o 
17 6 o.o 

SENSITIVITY INITIAL CONDITIONS ARE SUPPLIED 
17 S o.o 
17 6 o.o 

SENSITIVITY INITIAL CONDITIONS AR.E SUPPLIED 
17 5 o.o 

v 
1 
v 
I 
v 
I 
v 
I 

17 6 o.o 
5 0 

12 
1 
1 
2 
2 
3 
3 
4 
4 

+o 
7 S 1 
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Sequence Number 

1.0 

(1) 

<2> 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

••. (9) .· 

uo> 
(11) 

(12) 
(13) 
(14) 

US> 
6c 

(16) 

. (19) 

(20) 

(21) 



v ' l. s 
V 6 
I 6 

l 1 
V 4 

0.01 

l 

TABLE X (Continu~p) 

0.04 0.0011111111 0,0()25 0.01 

:18J 

(21) 

(22) 
(23) 
(24) 



,TABLE XI 

INPUT DATA FOR IMPULSE SOLUTION 

·· EXECUTE THE FOLLOWING PRO~LEH 
1-JETWORK A 

4 6 0 l 2 
l 4 
1 2 5 
2 3 5 6 
3 4 6 
l 2 3 4 2 
5 i 1.0 +o 
S 2 2.0 +O 
s 3 .33333333 +o 
6 s o.s +o 
6 6 1.0 +o 
7 5 
7 l 2 3 5 

Dll?ULSJ;': SO~UTION 
11 3.0 +o o.os 

NOLI ST 
l 
4 
l Q 
0 
l l l 

V 4 
e.01 o.o4 

0 

3 

6 

+o 0.0000001 · 

o.001uu 

184 

$equence N~ber 

0.01. 

(1) 
(2) 
(3) 

(4) 

.(5) 

(6) 

(7) 

(8) 

(9) ; 
.·. (12) 

(14) 
(17) 

. (18) 

(19) 
(20) 

<2z> 
(23) 
(24) 



185 

TABLE XII 

INPUT DA.TA F'OR POLF..-ztmo 

Sequf;!nce Nwnber 

EXECUTE THE FOLLOWlNG FROBJJ:}1 (1) 
NETWORK A (2) 

4 6 0 1 2 0 (3) 
~ 4 
l 2 5 (4) 
2 3 5 6 
3 4 6 
l 2 3 4 2 3 (5) 
5 1 1.0 +o 
s 2 2.0 +o (6) 
s 3 .33333333 +O 
6 S 0.5 +o 

(7) 6 6 1.0 +o 
7 5 

(8) 
7 1 2 3 5 6 

FREQUEUCY D(l·!AIN SOLUTIOH (9) 



TABLE .XIII 

TIME ·DEPEl")DEN'I' SOURCE 'PARAME.TER D;E:FINITIONS 

NTYPE = 6 

Priv~r(t) = A sin[2nf(t - T1 ) + ~] 

= 0 

and NKIND = 0 => Clear previous va;l,ue, toen add new valu,. 

= 1 => Multiply previous vilue by new value. 

= 2 => Add to previous _valui:, the new valueo 

where VALU(l) = A 

VALU(2) = f 

VALU()) ::; Tl 

VALU(4) = -

NTYPE = 7 

~T1 
i.i.------T5 

lb':\ v«u;·( t.) = o 

_ · (t -T))· 
- A6 T2 . 

= >.6 (T1 + T2) $ t $ (T1 + T2 + T,} 

. . . t-T -T -T . 1 

= A6[1. -~lJ. 2 3] _(Tl,-t-T2-t-TJ) $ t $ (T1+'l'
2

+T
3

+T
4

) 

= O (T1 + T2 + T'.3 + T4 ) $ t ~ TS 

and NKIND = 0 => Clear previous value, then add new value. 

where 

= 1 => Add to previous value the new v4lue. 

= 2 => Multiply previous value by new value, 

VALU(l) = T
1 VAJP{4) = 'f4 

VALU(2) = T 
2 VALU(5) = 'l' S 

VALU(J) = T J VAW(6) =.t A
6 
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TABLE XIV 

OUTPUT TAPE FO~A'T 

Time Solution 

Each re~ord consists of 
T, (Y(I), l=l, 2ifNONWEL) 

where 

y ~ JL NOINDS 
Co tree 

1cG NOGCOT 
Currents 

I NOCTSR 

NOCAPS Ee 
· Tree 

VTG NOGTR.E 
Voltages 

v NOVTSR 

EL NOINDS 
Co tree 

VcG NOGCOT 
Voltages 

V11 

lo 
Tree 

l'l'G NOGTRE 
Currents 

iv NOVTSR 

!~pulse Solution 

E~~h record consists of 
T, ~.<YaCI), l=l,4MNONWEL) 

where 

J = N~be~ of driver in 
:l,mpu~se list 

ya= [ :J 



APPENDIX E 

DETAILS OF PROGRAM VARNOL 

Tl}is appendix presents in greater detai~ the operations described 

in Seci;ion 4.5. Since VARNOL uses phases 2, 3, and 7 of VARYIT and 

mucf1 of phase 1, most of the FORTRAN va.ria;bles are common to boi;h 

progrcµ11s. The main differences in inpu,t data are due to the presence 

of nonliµear elements which must be described. Tq.e types of dependent 

drivers and nonlinear storage elements which are all,ow~d are sh.own in 

Table XV whe;r.e the parameters for each source arE1 related to the input 

d~ta of Table XVI. 

Program decks for VARNOL are a.vailabJe f;rom the Engineering 

Comput~ng Laboratory at Oklahoma State University upon request. A 

separa"1<E1 addendum document containing flow cha,rts and listings will 

be f'urn:i, shed wi tb these decks • 

188 
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TABLE XV 

NONLINEARITY REPRESENTA'I'IONS INCLU:QED IN VAR.NOL 

Type 1 
2 3 4 

l);tver (t) = Ao + A1 yk + A2 yk + A3 yk + A4 yk 

Yk = Voltage or current through el~~t number k. 

NO= Element number of dependent sou~ce being described 
as dependent on Yk. 

NTY'PE = 0 

= l 

NKIND = 0 

= 1 

AMFS = V 

= I 

Test value for convergence criteria is f9rmed 
by using Yk• 

Test value for convergence c:;r;lteria is formed 
by using !Yk I. 

Test value for convergepce criteria ;Ls unchanged 
in sign. 

Test value for convergence criteria is changed 
in sign. 

Yk is the voltage acro,s element k. 

Yk is the current across element k. 

NTEST = Element number k. 

VALU(l) = Ao 

VALU(2) = A1 

VALU(3) = A2 

VALU(4) = A3 

VALU(5) = A4 

DELTAO = Starting increment for parameter changes during 
convergence testing. 

Type 2 

'l'tiis ~~iver option is currently not used. 



TABLE XV (Continued) 

Type 3 

D~~ver (t) = [A1Ym + A2Y; + A3Y! * A4Y0 + AsYnYm + A6YPY; + ~y~ 

+ AaY~Ym + A9Y~ 1 [ ymy: B 1 
where Yk = Voltage or current through element number k 

190 

NO= Element number of dependent sour~e being described 
as dependent on Y0 and Ym• 

~or card·l 

AMPS= V 

= I 

Yn is the voltage a~ross element n. 

yn is the current through element n. 

NTEST = Element number of element·p. 

VALU(l) = A1 

VALU(2) = A2 

VALU(3) = A3 

VALU(4) = A4 

VALU(5) = A5 

for caJ,"d 2 

= I 
Ym is the voltl;l.ge across elem~ntm. 

Ym is the current through element m. 

NTEST = Element number of element m. 

VALU(l) = A6 

VALU(2) = A7 

VALU(3) = A8 

VALU(4) = Ag 

VALU(5) = B 



where 

'I'ABLJ:i"'; XV (Continued) 

Yk = Voltage or current through ~leme~t number k. 

NO= Element number for source being 9escribed by 
exponentially dependent driver. 

AMPS = V Yk is the voltage acrqss element k. 

= I Yk is the curreqt thro~gh el~ent k. 

NTEST = Element number k 

VALU(l) = Is 

191 

VALU(2) = Increment to be used ~n iteration for convergence. 

"b" is held constant at 38.5. 



TABLli; J(V (Continued) 

Type 5 

Driver (t) = A1Yk + A2 

= A3Yk + A4 

with 

A1X1 + A2 = A3X1 + A4 

NO= Element number of source being described by the 
piecewise continuous model. 

AMPS= V 

= l 
Yk is the voltage across element k. 

Yi~ is the curr~nt across elemen1= k. 

NT~ST = Element number k. 

VALU(l) = A1 

VALU(2) = A2 

VALU(3) = A3 

VALU(4) = A4 

VALU(5) = x1 

Type 6 

This drive-r is the same as that of Figure E.2. 

Type 7 

This driver is the same as that of Figure E.3. 

:!l.92 
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TABLE XV {Continued) 

Nonlinear Storage Elements 

Twp types of nonlinear storage elements are present. They ai-e distin-

guished by the variable TYPELC. 

where 

TYPELC = 1.0 

Iron Core Inductor Model 

c 2 r ·1 y 1 
L = 2 · 2 LA +, 2n tan ~ J 

yk + c . . . 

Lis the value of the. sto~ag, ~l~ent. 

NO a Element number of stor~ge e~ement being described 
by this model. 

AMPS = V 

= I 

Yk is voltage across element k. 

Yk is current across element k. 

NTEST = Element number k, 

VALU(l) = A 

VALU(2) = 2B 

VALU(3) = C 

VALU(6) = 1.0 



'I'ABLE XV ( Continuoq) · 

TYPELC = o.o 

Polynomial Dependency Hodel 

where Lor C ;ls the value of the storage el~ent. 

NO= Element number of storage element being described 
by this model. 

.AMPS= V 

= I 
Yk is ~he voltage across element k • 

Yk is the cun-ent thrqugh element k. 

NTEST = Element number k. 

VALU(l) = A 
1 

VALU(2) = A2 

VALU(3) = A3 

VALU(4) = A4 

VALU(S) = A5 

VALU(6) = 0.0 



Location in 
Seguence 

1 

2 

3 

4 

5 

6 

7 

8 

T.A.BLE XVI 

DESCRIPTION OF INP'!..;T DATA FDR PROGRA:.'1 VAR\TOL 

Number of Description of Contents 
Cards 

1 Identification label for problem 

1 Number of nodes, network elements, vol~ 
tage sources, current sources, capaci­
tors, and inductors 

NONODE List of elements incident at node l 

1 List of node numbers from which each 
element I is oriented. 

NOCOND Resistance of element NO is VALUE 

NOCAlN Capacitance or inductance of element 
NO is VALUE 

1 Number of varying parameters 

.1 List of varying parameter numbers 

Number of type 1 through 7 drivers and 
number of dependent inductors and 
capacitors 

FORTRAN Variables 

PR.OBNO 

NONODE,NONWEL,NOVTSR 
NOCTSR,NOCAPS,NOlNDS 

(NTWKCN(l,J).,J=l,10) 

(ORlENT(l) ,l=l,NONWEL) 

NO,VALUE 

· Nb,VALlJE 

NUMVAR 

(VAR.Y(I) ,I=l,NUMVAR) 

Nl,N2,N3,N4,N5 
N6,N7,NODEPL 

Format 

4A6 

1615 

1615 

1615 

I5,El5.8 

15,El5.8 

15 

1615 

1615 



Location in 
Sequence 

9 

10 

11 

Number of 
Cards 

Nl 

N3 

N4 

N5 

·l'ABLE XVI (Continuetl) 

Description of Contents 

N=l, Element number, class~ and kind 
of source 

FORTRAN Variables 

N,NO,NTYPE,NKIND 

AMPS=I means this source is depenm AMPS,NTEST, (VALU(IK) ,JK=l~5) 
dent on current through element NTEST; 
AMPS=V means this source is depen-
dent on voltage through element NTEST; 
VALU is parameters for this type of 
driver 

N=l, starting increment for convergence 
test 

N=3, Element number for type 3 source 

N,DELTAQ 

N,NO 

Same as sequence number 9 and contains AHPS,NTEST,(VALU(IK),IK=l,5) 
parameters A1 through A5 

Same as sequence number 9 and contains AMPS,NTEST,(VALU(IK)~IK=l,5) 
parameters A1 through A9 

N=4, Element number for type 4 source N,NO 

Same as sequence nwnber 9 

N=5, Element number for type 5 source 

Same as sequence number 9 

AM~ ,NTEST ,(VALU(IK), IK=l ,2) 

N,NO 

AMPS,NTEST, (VALUCIK) ,P<==l,5) 

Format 

1615 

Al,I4,5El5.8 

15,2Fl5.8 

215 

Al,I4,5E15,8 

Al,I4,5El5.8 

215 

Al,I4,2E15.8 
-

215 

Al,14,.SElS.8 .. 
-..! c 



TABLE XVI {Continued) 

----------------------------- --~--,-=-
Location in Nurn.ber of Description of Contents FORTRAN Variables Format 
.....:.S.:eg;;:i.u=-e=-nc=.C:,e.ce:,:;. ___ __:c:.=a::;;r,_,,d,_,,s"----~~-~~----~-------------~--- -~-~--~------·--·-'---=-,·-~-==-=--~------~~---~----------

13 

14 

15 

16 

17 

18 

19 

N6 

N7 

NODEl?L 

N=6i Element number for type 6 driverj 
kind, para.meters for this type driver 

N=7, Element nu..ro.ber for type 7 driver, 
kind, parameters for this type driver 

N5NO,NTYl'Ei (VALU(!K) ~ 
IK=l,4) 

N»NO,NTYPE,(VALU(IK)i 
IK=l,6) 

N=8, Element ntunber for dependent capa.c-N,NO,AMPS,NTEST,(VALU(IK), 
itor or inductor, remainder similar to IK=l,6) 
sequence number 9 

Variable Element number NO has initial value DV . NO,DV 

1 Blank card signifying end of initial NO,DV 
driver values (Insert only if sources 
exist). 

1 N=l2, Numerical convergence criteria EPS N,EPS 
for dependent sources (Qnit if no 
dependent sources exist). -

l N=13; LETI'Il-1=1 implies only transient N,LETrIM,LISTDC,LIS'lT 
solution desired; LISTDC=l implies 
printing complete solution at each 
instant of time; LIS'lT=l implies a 
listing of convergence criteria as 
iteration proceeds. 

3I5,6El0.4 

215,lX,Al,13, 
6-El0.4 

15,FlS.8 

I5,F15.8 

IS,Fl5.a 

415 



Location in 
Seguence 

20 

21 

22 

23 NUHVAR 

Number of 
Cards 

, ,. 

1 

NOCAIN 

1 

NOCAIN 

TABLE XVI (ContinuedJ 

Description of Contents 

N=14, maxitr,i.lm time and increment for 
integration (Omit if LETTIM;tl) 

N=lS, INITL=l implies initial condi· 
tions are supplied for capacitors and 
induct~rs (If NOCAIN=O skip to sequence 
number NO'l'E) • 

N=l6, Element number NO has initial 
value DV 

. N=l 7, INITL=l implies initial condi· 
tions are supplied for capacitors and 
inductors for sensitivity integration 

N=17, Element number NO has initial 
value DV (Omit if INITL,el) 

FORTRAN Variables Format 

N,TMAX,DELTAT I5,2Fl5.8 

N,INITL 215 

N,NO,DV 2I5,El5.8 

N,INITL 215 

N,NO,DV 215,ElS.8 

NOTE: The data for the output phase should be prepared as Sequence Numbers 19 to 24 in Table E.2. 
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