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CHAPTER I
INTRODUCTION

One of the most interesting and important areas of research in the

1 Thig in-

science of mechanisms is the mobility of space mechanisms.
volves the examination of the conditions under which a spatial kinematic
chain with a specified number and type of links and joints can have. con-
strained motion. Such a study is essential in order to fully utilize
the capabilities of space mechanisms.

The mobility of mechanisms has been the subject of numerous inves-
tigations in the,past.many‘yéars. These studies have resulted in.a
number of mobility criteria. An excellent account of such criteria has
been given by.Harrisberger.and Soni [23]?

An examination of the various mobility criteria reveals certain im-
porﬁéht,féatures. For instance, some of the criteria, like those of
Grﬁbler;‘Maiytcﬁeff and Kutzbach, are concerrnied only with the number
and . the type of kinematic links and joints in a mechanism. Such an
approach is quite satisfactory in.the case of plane and spherical
mechanisms because of the special orientation of the axes, but fails to
explain the existence of many well—known'Space‘meéhanisms.- These cri-

teria thus give rise to the so-called paradoxical mechanisms, the term

paradoxical only emphasizing lack of complete knowledge of the nature.

lsee items 1 and 2 in Appendix A.

2Numbers in brackets denote references given in the Bibliography.



of the motion of mechanisms.. It would appear that, in general, any mo-
bility criterion for space mechanisms must take into account not onl§
the number and the type of. kinematic links and joints in a mechanism,
but alse its constant kinematig parameters.3 This 1is perhaps best
illustrated by the well-known Bennett [4] and Goldberg [20] mechanisms
in which there are -definite conditions imposed on the -constant kinematic
parameters. This is also borne out by certain recent studies on space
mechanisms [40,44,45].

Some -of .the mobility criteria explain the existence of paradoxical
mechanisms by téking into account the presence of additional constraints
in a mechanism. Thus, Artobolevskii and.Dobrovol'ski have introduced
the concept of ''general constraints." According to Kolchin, mechanisms
can also have '"passive constraints' in addition to general constraints.
The exact nature of these constraints is, however, not known nor is
there any definite procedure given to identify their existence.

The conventional mobility criteria predict the existence of hund-
reds of mechanisms with mobilitybone'[22,23,l7]. They do not, however,
give any information as to how to go about .building these mechanisms.
Further, the criteria also predict many mechanisms. that are not valid
either because they have toc many degrees of .freedom or because. they de
not have "true mobility;"“ that is, they result in certain joints that
remain locked. An example for the former case is the space P-P-P-P-P-P
(P: Prismatic Pair) mechanism which has three degrees of freedom. An
example for the latter case is the space R-P-P-P-P (R: Revolute Pair)

mechanism in which the revolute pair remains permanently locked. The

35ee item 3 in AbpgndixiA.

“See item 4 in Appendix.A.



conventional mobility criteria are thus quite inadequate and unsuitable
for obtaining the existence criteria of space mechanisms. This has
prompted investigators in recent years to adopt alternate approaches to
the study of mechanism mobility.

The approach of Moreshkin [29] is based on the number of closed
loops in a mechanism. In this method, transformation equations. are
used to describe the basic geometry of a mechanism. The number of in-
dependent transformation equations, which is also the rank of the sysfem
of equations, is determined by the configuration of the mechanism. The
mobility of the mechanism is related to the number of degrees of freedom
in. all the joints. and the rank of the system of transformation
equations.

Another important approach to the problem is based on the classi-
cal theory of screws. This theory was developed during the last century
and is based on two fundamental theorems proposed by Chasles [10] and
Poinsot [35]. A detailed account of the theory has been given by Ball
in his monumental work published in 1900 [2]. An excellent review of
the theory has also been given by Henrici [24]. In recent years,
Sharikov [39], Voinea and Atanasiu [49], Waldron.[50,51,52,53,54] and
Hunt [25,26,27] have employed this theory to examine the mobility of
mechanisms. In -this approach, a mechanism is regarded as a group or a
collection of screws in space. The screws define a screw system whose.
order is determined by the configuration of the mechanism and.the pitch
values of .the screws., The mobility of the mechanism is related to the
total number of screws in the mechanism and thé_order of the screw sys-
" tem formed by them.

The existence conditions of mechanisms can also be examined by.



using a mathematical theory recently developed by Soni [40] and by Soni.
and Harrisberger [42]. In this method, the total geometry of a mecha-
nism is described by a matrix called the residual coefficient matrix
(RCM) by using (3x3) matrices with dual-number elements. The rank of
this matrix is related to the mobility of the mechanism. The procedure
for obtaining this matrix is iterative in nature. The existence.cri-
teria of mechanisms can be obtained by a systematic investigation of
the properties of this matrix. The procedure has been employed in an
.investigation of the existence criteria of a sikflink, six-revolute
ﬁechanism [44]. The properties of the RCM also permit it to be used as
a basis for the classification of mechanisms [43].

Yet-another approach to the study of mechanism mobility is based.
on the use of vector.algebra. A general method for obtaining the com-
patibility conditions of mechanisms by using this method has recently
been proposed by Pelecudi and Soni [33,46].

» ‘The'variﬁus methods,describéd above for examining the mobility of .
mechanisms are importanf contributiens to,the study of mebility and
represent significant improvement over,the,conventioﬁal:mobility cri-
terié. These methods have contributed considerably toe a better under-
standing of the nature of space mechanisms. Nevertheless , all these
approaches suffer-from one serious.shortcoming, and this is that they
afe,all'essentially concerned only with instantaneous‘or'tfansitory,
mobility and not with finite mobility.> - Thié feature makes them gene-
rally unsuitable,particﬁlarly.for examining the .existence criteria
of mechanisms.in which there .are conditions imposed not only on the

twist angles, but also on the other constant kinematic parameters. This

See item 4 Appendix A.



drawback is; however, overcome by the passive coupling method developed -
by Dimentberg and first introduced by him in 1948 [13,14,15]. 1In this
method, the existence criteria of .an overconstrained mechanism® are ob-
tained from the displacement relationships of an appropriate zero family
mechanism’[22]6by imposing suitable passive coupling conditions® on the
latter; that is, by making some of the joints passive. The method not
only assures finite_mobility,’but is also capable of yielding the ne-
cessary conditions for the existence of the derived mechanisms.

The purpose of the present study is to obtain the existence cri-
teria’ of overcohstrained mechanisms ‘with two passive couplings and con-
sisting of revolute and prismatic pairs. A systematic investigation ofh”
these mechanisms has been greatly hindered so far by the non-availability
of closed-form displacement .relationships of spatial five—link mecha-
nisms. However, the results reeently obtained by Yang [56,41] make it
possible to obtain the existence criteria ef_these mechanisms by using
Dimentberg's passive coupling technique.

Specifically, the objectives of the present investigatiop are:

2.  To obtain .the existence.criteria of‘ege‘five—link, five-
revolute (R-R-R-R-R) space mechanism."This-is the primary
objective of the‘present study. The-deriﬁed criee;ia should
not only justify eﬂe existence .of known five;revolute‘mechar»
nisms [20,30], b;£LShould also make it possible to;investigate

the existence of other five-revolute mechanisms.

6See item 5 in Appendix A.

’See item 6 in Appendix A.



2. To obtéin‘the existence criteria of the five-link R-R-R-P-R
space mechanism. The derived criteria should facilitate the
investigation of the existence of such mechanisms.

3. To obtain.the existence criteria of the five-link 3R+2P and
2R+3P space .mechanisms, Besides explaining the existence of
known mechanisms [25, 52, 16], the derived criteria should
also reveal the existence. of other mechanisms.

In the next chapter, the Dimentberg passive coupling method em-
ployed for the above purpose is discussed in great detail. Chapter III
is devoted to 'a general discussion of mechanisms with two passive
couplings. In the remaining chapters, the results of the objectives.

mentioned above 'are presented.



CHAPTER II
DIMENTBERG'S PASSIVE COUPLING METHOD

The Dimentberg passive coupling method can beused to obtain the ex-
istence criteria of overconstrained mechanisms. Dimentberg first intro-
duced this method in 1948 and has used it to obtain the existence cri-

teria of a number of overconstrained four-link mechanisms [13, 14, 15].1
Nature of Dimentberg's Method

In Dimeﬁtberg's method, an overconstrained mechanism is obtained
by imposing suitable passive coupling conditions.on an appropriate zero
family mechanism. The zero family mechanism so chosen is referred to
here as the parent mechanism.
The use of Dimentberg's method for obtaining the existence criteria of .
an overconstrained mechanism iﬁvolvesthefollowing three distinét.steps:
1. The first step is to select the parent mechanism. It is, in
#
general, possible to derive an overconstrained mechanism from
more than one‘parent,mechanism. Thus, for instance, the-

R-C-R-C% mechanism canbe derived from either the R-C~C-C

1Qgino and Watanabe [31] have recently used dual-number quaternion
algebra to study the mobility of a spatial four-link chain with four
cylinder pairs and have come up with certain overconstrained four-link
mechanisms. They are, however, apparently unaware of the work of Diment-
berg [13,14] in which similar results were obtained many years . ago.

2Throughout this study, R, P; H and C are used to denote.the revo--
lute, prismatic, helical and cylinder pairs respectively.



mechanism or the R~C~R-C~R mechanism. -

2. The next ste§ is to obtain the displacement .relationships of
the parent .mechanism.3 If the parent mechanism has no helical-
pairs, the displacement relationships are algebraic .in nature.
If, however, the parent mechanism has helical pairs, the rela-
tionships invelving only the rotations at the ‘helical pairs
still remain algebraic in nature, but the relationships in-
volving the transiations at the helical pairs become non-
algebraic in nature.

3. The third,an@ final. step in Dimentbe;g's method is to impose-
the requireq passive couplipg conditions -on.the parent mecha-
nism,s0'as,to-obtain,thebdesired overconstrained mechanism.
When the displacement relationships involved are algebraic in
nature, this step very .often involves examination of the con-
ditions.for common roots between two algebraie polynomials.or-
between successive sets of two polynomials. The results ob-
tained lead to conditions on.the constant kinematic parameters
of the parent mechanism and provide the necessary conditions

for the existence of .the desired overconstrained mechanism.
Example

The Dimentberg method described above can be best illustrated by
an example.
Let it be required to obtain the existence criteria of an R-C-C-R

mechanism. This can be done by considering an R-C-C-C mechanism as the

3As a rule, the complexity of the displacement relationships in-
creases as the number of links in the parent mechanism increases. See,
for instance, references [55] and [561;



parent mechanism.

Consider the R-C-C-C space mechanism shown schematically in Fig. 1.
This mechanism reduces to an R-C-C-R mechanism if the translation y . at.
the output cylinder pair remains constant at.all positions of the
mechanism (Fig. 2).

The rel#tionships between the input variable ¢ and.the output

variables ¢y and y of the mechanism in Fig. 1 are given by [55]

A (DY A (D)Y+AN() = O (2-1)
and y[By(8)¥2+By(2)¥+By(2)]+Cy(2)¥2+C1(2)¥+C(2) = 0 (2-2)
where & = tan(¢/2)
¥ = tan(y/2)
and A;(®) = A3,0% + A;,0 + A
Bi(®) = Bj,92 + By;® + By, (2-3)
ci(¢j = Cq,02+ C4,;0+Cqg ,1=0,1, 2

The constants in Eqs. (2-3) involve only the constant kinematic parame-
ters of the mechanism in Fig. 1.

Let the translation y at the output cylinder pair .be now held con-
stant'at all positions of the mechanism. Denoting this constant value

by yi» Eq. (2-2) becomes.
yk[Bz(‘I’)""2 + By (@)Y + Bg(e)] + C5()¥2 + C(2)¥Y + Cy(8) = 0 (2-4)
Since y; is a constant, the above equation can be rewritten as

D, (8)¥2 + D; (@)Y + Dy(8) = 0 (2-5)

where Dj(8) = Dj,0% + Dj;¢ + D3¢ , i =0, 1; 2 (2-6)

If an R-C-C-R mechanism is to.exist, it is necessary for the
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quadratic equations (2-1) and (2-5) to have at least.one common root.

This gives the condition (Appendix B)

Ay (®) A1(9) Ag(e) - O

0 Az(‘b) Al(‘I)) Ao(@)
= 0 (2-7)
Dy(2) Dy1(¢) Dy(e) 0

0 Dy (®) Dj(®) Dg(d)
Expanding and simplifying Eq. (2-7), we get

Ege® + E.07 +. . . . +Eo+E;= 0
or, in short,

J Eget = 0 | (2-8)

The‘constants in the above equation involve only the constant kinematic
parameters of the mechanism in Fig. 2,

Eq. (2~8) consists of .only the variablg,@IAescribinggthe*positibn
of the mechanism in Fig. 2 and must be satisfied at all positions
of that mechanism. It must, therefore, hold good at. all values of the

variable 9. Its coefficients must, therefore vanish [5]. This gilves
E,.= 0,1i=0,1,2, . . . , 8 (2-9)

Condition (2-9) represents nine equations among the ten constant
kinematic parameters of the mechanism in Fig. 2 (namely, the four link
lengths a, b, ¢ and d, the four twist angles a, B, Yy and § and the two.

~constant . offset ‘distances xy and.yy at the input and output revolute
pairs). These nine eduations provide the necessary conditions for the

existence of an R-C-C-R mechanism.
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Scope ., of Dimentberg's Method-

In his investigations, Dimentberg has employed his method in those
cases in.which the translational freedom of a cylinder pair is made
passive [13, 14, 15]. The'method-is; however, .equally applicable to thé
case in which the rotational freedom of a .cylinder pair is made passive.
This is illustrated by the example in Appendix C in which the existence-
criteria of R-P-C-P and R-C-P-P mechanisms have been obtained by im-
posing passive coupling condition on the rotational.freedom of the out--
put cylinder pair of an R-C-C-C mechanism. This approach appears to be
more convenient and efficient than the one adopted by Dimentberg and
Yoslovich [16].

The Dimentberg method is alse valid for the case in which the en-
tire freedom at a joint is made passive. The joint thus -becomes locked
and'no'motion is possible at that joint. This is -illustrated by the ex—
ample in Appendix D in which the existence criteria of an R-C-R-C mecha-
nism have been obtained by imposing passive coupling condiﬁion‘on-the
rotational freedom of . the output revolute pair of an R-C-R-C~-R mecha-
nism. The results obtained agree with those obtained by Dimentberg who.
derived them by impesing passive coupling conditions on a parent R-C-C-C
mechanism-[13, 14]., This example also shows that it is possible to .de-
rive an overconstrained mechanism from more than one.parent mechanism.

The extensions to Dimentberg's method as illustrated by the ex-
amples in Appendices C and D demonstrate the immense scope of the method
and show that the method can be employed to Handle a vériety of passive

coupling conditions.
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Passive Coupling Conditions Considered in This Study

The passive coupling conditions considered in the present study are

confined to those cases in which the required displacement relationships

are algebraic in nature. The cases considered are summarized in Table I

and fall into the following five categories:

1.

Passive couplings in- two cylinder pairs to obtain two revolute
pairs (see Case 1l in Table I).
Passive couplings in two cylinder pairs to obtain one revolute

pair and one prismatic pair. (see .Case 2 in Table I).

- Passive couplings in two cylinder pairs to obtain. two prismatic

pairs (see Case 3 in Table I).

Pagsive coupling in a cylinder pair to obtain.a prismatic pair:
(see Case 4 in Table I).

Passive coupling in a revolute pair to prevent it from exe-

cuting rotational motion (see Case 5 in Table I).



TABLE 1

PASSIVE COUPLING CONDITIONS CONSIDERED IN THE PRESENT STUDY
(R: Revolute Pair, P: Prismatic Pair, C: Cylinder Pair)

Kinematic Pair(s) ‘Kinematic Pair(s) = Parent Mechanism Overconstrained

Case Selected for Inducing Obtained Because Examined for Inducing Mechanism Obtained Considered
as Pasgsive Coupling of Passive Coupling Passive Coupling Because of Passive in
Condition(s) Condition(s) Condition(s) Coupling Condition(s)
1 Cc-C R-R R-C-R~-C-R R-R-R~-R-R Chapter IV
or
R-R~C~C-R
2 C~C R-P or P-R R-C~-R-C-R R-R-R-P-R Chapter V
or
R-R-C-C-R
3 C-C P-P R-C-R-C-R R-P-R-P-R Chapter VI
R-R-C-C-R R-R-P-P-R
" R-C~P-C-R R-P-P-P-R
R-C-R-C-P R-P-R-P-P
4 C P R-C-C-C R-P-C-P Appendix C
R-C-P-P
5 R Passive coupling R-C-R-C-R R~C-R-C Appendix D

is introduced to
prevent the revolute
pair from executing
rotatidénal motion.

4= T



CHAPTER III
MECHANISMS WITH TWO PASSIVE COUPLINGS

Mechanisms with two passive couplings are overconstrained mecha-
nisms in which the sum of the degrees of freedom in all the joints is
equal tofive. The number of links may be equal. to or less than five.

Several examples . of mechanisms with two passive couplings and mo-
bility one have been recorded by investigators in the past many years.
A five-link R-R-H-R-R mechanism proposed by Reuleaux [36] is shown in
Fig. 3. In this mechanism, the axis of the helical pair and the axis of
bone of the revolute pairs are coaxial; the axes of the remaining revo-
lute.pairs are parallel to one another and normal to the common direc-
tion of the coaxial axes. A five-link R-R-R-H-P mechanism and.a five-
link H-R-R-P-P mechanism proposed by Artobolevskii [1] are shown in
Figs. 4 and .5, The mechanism in.Fig. 4 can.be obtained by,replacing
the output revolute pair in a Hooke's .coupling by.a helical pair and a-
prismatic pair with coincident axes. In the mechanism in Fig. 5, the
axes of the helical paif and the two revolute pairs are parallel to one
another.

A five~link H-H-H-H-H mechanism proposed by Voinea and Atanasiu.
[49] is shown in Fig. 6. In this mechanism, the.pitéh values of the
helical pairs are randomly selected and the pair axes are all parallel
to one another. The mobility of this mechanism is unaffected even if a

maximum of three .of the helical pairs have the same . pitch values [25].
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Mechanism [1]

Figure 4, R-R-R-H-P Space

17



Figure 5. H~R-R-P-P Spéce Mechanism [1]-
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H-H-H-H Space Mechanism [49]

H-

Figure.e_
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Four-link mechanisms with two passive couplings consisting of one
revolute pair, one éylinder-pair and two prismatic pairs have been de-
rived by Dimentberg and Yoslovich [16] by means of screw calculus and
dual numbers., These are shown.in Fig. 7. In these mechanisms, the
axes of the revolﬁte pair and the cylinder pair are parallel to each
other. Using the H-H-H-H-H mechanism (Fig. 6) proposed by Voinea and
Atanasiu as a basis, Hunt [25] and Waldron [52] have reﬁently obtained
a whole class of mechanisms with prismatic pairs. Two examples are-
shown in Fig. 8. The Dimentberg-Yoslovich mechanisms shown in Fig. 7
and -the Artobolevskii mechanism shown in Fig. 5 are special cases of
these mechanisms. A five-link H-H-P-H-H mechanisp with plane symmetry
| has recently been isolated by Waldron. [54]. In this mechanism, the
prismatic pair is normal to the plane of symmetry and the axes of the
two helical pairs on each side of the plane of symmetry are parallel to
each other. However, the axes of the symmetrical’ﬁélical,pairs them-
selves . need .not be parallel.

There are not many five-link, five—revolute mechanisms. Myard [30]
has proposed a five-revolute mechanism by considering a rectangular
Bennett mechanism (that is, a mechanism with one twist angle equal to
90°). The most interesting five-revolute mechanisms known, however, are
those proposed by Goldberg [20]. These are shown in Fig. 9 and are-
obtained by the combination (addition or subtraction) of two Bennett
mechanisms.- The'mechanism proposed by Myard is symmetrical about a
plane and is.a special case of the Goldberg‘mechanisms-[54].

The'mechanisms described above have been obtained as a result of
useful, but essentially isolated, attempts.  In the present study, a

systematic -investigation of mechanisms with two passive couplings and-
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(b))

Figure 7. R~P-C-P and R—P—P—¥CvSpéce'Mechanisms [16]



Figure 8.

H-H-P-H-H -and H-H-P-P-H Space Mechanisms
[25, 52]
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consisting of revolute and prismatic pairs has been conducted by using

Dimentberg's passive coupling method.
Displacement Relationships for Obtaining Existence Criteria

The ugse of Dimentberg's method fof obtaining the existence criteria
of overconstrainéd mechanisms requires the displacement relationships
of the appropriate parent mechanisms. The required relationships can
always be obtained by suitably arranging the loop-closure condition of
the parent mechanism.

Consider a general five-link mechanism consisting of helical, revo-
lute, prismatic and cylinder pairs combined in such a way that the sum
of the degrees .of freedom in all the joints is equal to seven (Fig. 10).
Such a mechanism would necessarily have . to have two cylinder pairs.

If the type of the remaining three pairsvand the location of all the
five pairs in the mechaniém are properly chosen, this mechanism will
serve as a parent mechanism for any overconstrained mechanism with two
passive couplings.

The mechanism in Fig. 10 ‘is completely defined by the following
two sets of dual angles:

i) Between adjacent pair axes

Q>
I

QR
+

€a
B = B+ eb
Y = y + ec. (3-1)
§ = &+ ed
A o= A+ e

where o, B, Y, § and X are the twist angles and a, b, ¢, d and.e are the



Figure 10.
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General Five-Link Space Mechanism with Helical, = ‘

Revolute, Prismatic and Cylinder Pairs -’
[Jfg = 71
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“link lengths. These ten quantities are constant for any given mecha-
nism. Note also that, by definition, €2 = O.

ii) Between adjacent common perpendiculars

§ = ¢+ ex

ﬂ = n+ gu )

X = X+ ew | (3-2)
E = £+ ev

Vo= y+ey

wheré ¢, N, X, £ and ¥ are the angular displacements at the kinematic-
pairs and x, u, w, v and.y are the translations along, the kinematic
axes. These quantitiés may be variable or remain constant depending
upon the type of kinematic pairs used in the mechanism.1

" The loop-closure condition of the mechanism in Fig. 10 is given by

el (81,181 4081, 191,081, (81,5091, [X1,08] ,[A), = I[1] (3-3)
where | R
1 0 0] cd s 0]
[6]; = |0 C& sa [613 = |-s§ ¢ O
| 0 -S& c& | . 0 0 1|
"1 0 0] [ chi si 0 ]
[B], = | 0 cB sB [Aly = |-sh ¢h O
0 -sp cB 0 0 1|

11n a prismatic pair, the angular displacement remains constant
while, in .a revolute pair, the translation along the axis is constant.
In a helical pair, the translation along the axis and the angular dis-
placement both vary in such a way that their ratio is always constant and.
equal to the pitch. In a cylinder pair, the translation along the axis and
the angular displacement both vary and are independent of each other.
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"1 0 0] [ cy Sx 0] (3-4)?
[;]1 = 0 ¢y ¢y | [)2]3 = |-8x Cx O
0 -8y Cy 0 0 1|
[1- 0 0] [cE st 0]
(81, = | o0 c& s8 [El; = |-s& c& ©
| 0 -8§ C8 ] 0 0 1 ]
1 0 0] "¢y SP 0]
[A1, = |0 ci sk and [$]13 = [|-S) c§ O
L 0 -s% ¢ | 0 0 1 |

Two arrangements of Eq. (3-3) are useful in the study'of existence
criteria.

1) Relationship-involving two adjacent dual displacement angles
and the dual displacement angle opposite to both of them.

In this arranéement of Eq. (3-3), five matrices are used on either

side of the equality sign. Thus, we have, for instance,
(51 13 2118 = [&1=lrar=lio=1poy-1157-1
[0, [81, 081, 191,081, = [nI3MIBITHIXIG IVIT IED, (3-5)
Simplifying the above equation by using relations (3-4) and equa-
ting the "33" elements of the resultant matrix equation, we get
F(5,0,%) = (saS8s))s$ - sa(cési+sdcici)csd
+ ca(cdch-s8sicy) - (CBCy-SBsycyx) = O (3-6)

Note ﬁhat Eq. (3-6) involves the adjacent displacement angles ¢ and ¥

and the displacement angle X opposité to both of them.

2In this equation and in all the subsequent equations and tables,
C and S denote the cosine and sine of.the respective angles.
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Cyclic permutation permits Eq. (3-5) to be written in five dif-
ferent ways. It is, therefore, possible to get five equations of the
form (3-6) involving different combinations of two adjacent angles and
the angle opposite to both of them.

2) Relationship involving three adjacent dual displacement angles.

In this arrangement of Eq. f3—3), seven matrices are used on one
side of the equality sign and three matrices on the other. The impor-

- tant point to note is that the central matrix on the side containihgl
three matricés involves only the constant kinematic parameters of the

mechanism. Thus, we have, for instance,
(B1, (A1, 181, (81,180, 091,081, = (013HITH D! (3-7)

‘Note that the central matrix [?]Il on the right hand side involves only
the constant kinematic parameters of the mechanism.
Simplifying Eq. (3-7) by using relations (3-4) and equating the

"33" elements of the resultant.matrix equation, we get

£(1,8,0) = [(SacB+CaSBCA)S + SBSNCH](SESY)

+ [SBSNS$ - (SaCR+CasBCn)ce](cdsi+sdcicy)

+ (CacB-sasBen) (C8Ci-sdsicy) - ¢y = 0 (3-8)

Note that Eq. (3-8) involves the three adjacent displacement angles N,
$ and J.

Cyclic permutation allows Eq. (3-7) to be written in five different
ways. It is, therefore, possible to obtain five equations.of the form
(3-8) involving different .combinations.of three adjacent angles.

Observe that Eqs.(3—6) and (3-8) are both dual equations. Each of

them, therefore, represents two scalar equations. Since five equations
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of the form (3-6) and five equations of the form (3-8) are possible, a

total of twenty scalar equations are-available. These twenty equations.
make it possible to .obtain the existence criteria of all mechanisms

with two passive couplings (and also many mechanisms with one passive

coupling with number of links equal. to or. less than five);



CHAPTER IV

EXISTENCE CRITERIA OF THE FIVE-LINK,
FIVE-REVOLUTE MECHANISM

‘The five-link, five-revolute mechanism can be derived from either
the R-C-R-C-R mechanism or the R-R-C-C-R mechanism. 1In this chapter,
the Dimentberg method -has been used to obtain the -existence criteria of
a five-revolute mechanism with zero offset distances along its pair
axes from the.displacement relationships of.an R-C-R-C-R mechanism. An
attempt'to_dérive these criteria has also been qade‘by.Dimentberg [14].
His results, though incomplete, indicate that they lead to two sixty-
fourth degree polynomials. The results obtained in this chapter, how- °

ever, lead to two polynomials of only the twenty-fourth degree.
Derivation of the Existence Criteria

Consider thevR—C—R—C—R space mechanism shown schematically in Fig.
11. Note that the constant . offset distances at the three revolute pairs
are taken to be zero. If the translations u and .v at the two cylinder
pairs are reduced to zero at.,all positions of this mechanism, it .re-
duces to a five-revolute mechanism with zero offset distances at its
pairs -(Fig. 12).

By considering the loop-closure condition of the mechanism in-Fig.
11 in three different ways, the following displacement relationships

can be obtained:.

30
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Figure 12, R-R-R-R-R Space Mechanism Obtained ffom the
IR Mechanism in.Fig. 11l by Making u = 0 and
v =20 , . '
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F(d,P,x) = (Sas8sy)sé - sa(cédsi+sdcicy)cd
+ Ca(C3CA-S8SACY) - (CRCY-SBSYCY) = O (4-1)
£(h,3,0) = [(sacB+casBcn)ss + sBSnca](sdsd)

+ [SBSASH - (SGCR+CASACH)CH] (Cosi+sECicd)

+ (CaCB-SaSBCn) (C8CA-S8SACY) - Cy = O (4-2)
F(n,,8) = (SBSAsd)sn - SB(Saci+casics)cn
+ CB(CaCA-SasiCh) - (CyCE-syS8CE) = O (4-3)

Opserve that Eqs. (4-1) and (4-3) are similar in form to Eq. (3-6) and
Eq. (4-2) is similar to Eq. (3-8).
Eliminating the angle x from the primary and dual parts of Eq.

(4-1), we get.

A, (8)Y¥2 + A (O)¥ + Ay(2) = 0 (4-4)
where ¢ =. tan(¢/2)
¥ = tan(y/2)
and A2(®) = A22®2 + Ay
Aj(e) = Ay0 (4-5)

The constants in Eqs. (4-5) depend only on . the constant kinematic
parameters of the mechanism in Fig. 1l ‘and are defined in Table II. It
may also be noted here that Eq. (4-4) above corresponds to Eq. (16) in
reference [56].

The primary part of Eq. (4-2) can be written as



CONSTANTS FOR

where

and

Byoyp

Byog

"Boyg

Bro2

Broo

“Byg

112
Byiyg

101

Booo
Bo2g
Bo11
Bgo2

Booo
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TABLE II .
USE IN EQS. (4-5) AND (4-7) AND TABLE III

= U, - U,C(8-r+a) - (d-eta)SBSyS(§-r+a)

= U, ~ U,C(6-A~-a) - (d-e-a)SBSyS(§-A-a)

= 4(aCoSRSyS8-bSaCRSYSS-cSaSRCYSS

+ dSaSBRSYCS)

= U} = U,C(8+r-a) - (d+e-a)SBSyS(s+Ar-a)

= U} - U,C(8+A+a) - (dt+et+a)SBSyS(S+A+a)

= bSyCy + cSRCR

= bCBSy + cSRCy

= C(8-A+u-B) - Cy
= C(8-A-a+B) - Cy
= -4SBS(6-1)

= C(8-A+a+B) - Cy

= C(8-A-a-B) - Cy

= 4S§S(a—8)
= ~48RSS
= 4SBRSS

= 4S8S(o+B)

= C(8+r-o+B) - Cy
= C(8+r+0-8) - Cy

= 4SBS(S+))

C(8+r-a-B) - Cy

= C(8+ +o+B) - Cy



where

and

BZ(¢5H)
BI(Q,H)

B, (2,H)

By (2, H) ¥2
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+ BI(Q,H)W + Bo(@,H) = 0 (4-6)

H = tan(n/2)

2 2 2
(Bppp®°4By ) HS + Byp0H + (B,9“+B;q)

2 2 -
B,,,%H" + (B112¢ +B110)H + By, ® (4-7)

2 2 2
(Bpp®“+Bgyo)H® + Byy 0H + (Bj(,2+Bq0)

The  constants in Eqs. (4-7) are defined in Table II.

The quadratic equations (4-4) and (4-6) represent two different.

forms of displacement relationships for the same mechanism. They

should, therefore, have at least one root in common between them. This

gives the condition (Appendix B)

A, (2) Ay (2) Ag(e) 0
0 A, (2) Ay (9) Ay (0)
= 0 (4-8)
B,(¢,H) B;(2,H) Bj(2,H) 0
0 B,(9,H) B;(2,H) B,(¢,H)

Expanding and simplifying the above equation, we get

Cy (2)H" + C5(2)H3 + C,(2)H? + C;(D)H + Cy(2) = O (4-9)

The coefficients in.Eq. (4-9)

as follows:

; Cy (0)
C3(2)
C2(2)
C,(2)
Co(2)

Cqé@a +
C37®7 +
ng@a +

Cy,07 +

Cggd® +

are polynomials in the variable ¢ and are

Cup®® + Cuy®" + Cupd? + Gy

'éssbs + C33®3 + C319

2608 + Cpud" +7Cp202 + C20 (4-10)
Cy150° + C 403 + ¢ ;0

6 L 2
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The constants in Eqs. (4-10) are defined in Table III.

Note that no conditions have so far been imposed on the R-C-R-C-R
mechanism under consideration.. Eq. (4-10) is, therefore, valid for any
R-C-R-C-R mechanism with zero offset distances at .its revolute pairs.

- Let the translations u and v at the two cylinder‘pairs be now re-
duced to zero at all positions of the meéﬁanism. {

Eliminating the angle £ from the primary and dual parts of Eq.
(4-3), we get

D, (0)H2 + Dy (@)H + Dg(d) = O (4-11)

where Dj (3) D,,82 + Dy

D; (2) Dy 0 (4-12)

Dy (2) D(,%2 + Dyq

The constants in Eqs. (4-12) are defined in Table IV. Observe also
that Eq. (4-11) is similar in form to Eq. (4-4).

If a five-revolute mechanism of the ﬁype under consideration is to
exist, the polynomial equations (4-9) and (4-11) must have at least one

common root. This gives the condition (Appendix B)

Cy(®) C4(8) C(8) Cy(2) Co(d) 0
0 C(8) Cy(8) C, (&) C(8) Cu(®)
D,(4) D,($) Dye) 0O 0 0
| _ = 0 (4-13)
0 Dy(®) D(®) De(® 0 0
0 0 D,(8) D;(8) Dy(d) 0
0 0 0 D,(2) D;(8) Dy(e)

Eq; (4-13) is .a function of only the variable ¢. Expanding and

simplifying it, we get



TABLE III

CONSTANTS FOR USE IN EQS. (4-10) AND TABLE V

Cug = —(Ag,B0557A0,B5,)
Cug = AgohAs[2(Bgy0B,5,MB022B220) ~ BYp!
= 2A95B00p(Ap9Bo20A20B0227A00B222)
= 28028755 (Ag2B220+A00B2227A20B022)
+ A [Byo ) (AyoBooothgsBagg) = Ap1BogpBoysl
Cuy = =(Ag2Bgp0mA02Bo00)° = (AzgBgaa=AggBags)?
+ Ap;Boy (AypBoogthyBoanthgaBaggthgoBaas)
+ (AgohyptAgahy ) [2(Bgp0Ba05HBoasB220) — BEp ]
= A%1(Bop0B22+Bo22B220)
= 4(Ay0hg2B020Boa2 A00R02B220B222)
Chp = Ao0A20[2(BgaoBa22¥Bo22B220) ~ Biz]
= 2A50Bg2q(AypBo20tAy0Bo227A02B220)
= 2800B220(B02B220M00B2227422B020)
+ A11[B1p) (AygBoagthgoBaz0) ~ A11Bo20B220]

- 2
Cuo = ~(AxgBgag=AegB220)
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TABLE III (CONTINUED)

2A A 5,(Bo11BoootBo2oB117B 1108 21)
T A2oB0p2(A11B11572455B01 1)
+ AgBopp(A11By5m240,5B517)

2A0282(Bg11BoogtBgogBr117B110B121)

4

A11A(Bg11B121Bo20B112MB022B11¢)

AgpA11(By1oBaastB112BoogtBy21By11)

4

+ 2(AgohoatAg2A,0) (Bg11BoastBg22Bo11-B112B121)

4

Ap1[Byyo(Ay0BoootAgBoo) —A11(Bg11BopstBpa2Boi1)]
= 28558411 (AyBgo0t2450Bg,,)
+ 28098511 (Ag5B,5912809B555)

2A00850(Bg11Bo22+By22B0117B112B151)

4

A11850(Bg11B121+Bg20B1121Bo22B1 1)

4

AooA11(B110B2oo?B112B220+B1218211)

4

2(A00A22+502A20)(3011Bzzo+30203211‘31103121)

4

Ay [By1g(Ay,BoygtAg,Bosg) = A1 (ByyaByngtBgogBarg)]

2850Bg11(Ap0Bg2a+2A95B)50)
= 28g0B311 (AgBp2272405B520)
2A00A20(Bdleézo+302ole1'31103121)
+ A0Bg20(A11B11072420B017)

+ AgoB2go(A11By1g-240¢By )
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TABLE III (CONTINUED)

28578002 (Ag2B202R25B022) ~ AgzAz2Bi,
+ 28058505 (A35Bg25=AgB555)
2802475 (BogoB222tBo02B2207B011B2111B0208202
+ B22B200"B10181217B110B112)
+ (AggAgp+hg8,0) [2(BogaB)s,+BosBr0,) = Byl

2
AT1(BggpBaootBo2Bago)

{

2 2
A5,[2(BggoBgootBgo2Bo20) *+ Bf11l

2 2
AGp[2(BygBooptBy2Bagg) + B3yl

+

Ap1[Ayy (BpgB1o1Bg11B1121Bg22B101)

+B B B

+ App(B1g1BppntB) 1By %81 51Bog0) ]

= 4(Ay0A,,B002Bg221400A02B202B222)

38
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TABLE III (CONTINUED) -

2
AgpAy,[2(BogoBa2otBg20B200) — BT1o!
2
+ AgghAyg[2(BggyBygp+Bos0Brgs) = BY;,]
+ 2(AgoAg01Ag04A,0) (BogoBaootBgo2Bo20B11B211

+ B20B2027B022B200"B101B1217B110B112)

2
AT1(BoooB222tB002B2207B011B2111B020B2027B022B200)

+

Ay [A11 (ByggBr21tBg11Bu19Bo208101) = 245,B(00B020]

+

ApolA1) (BogoB1o1tBo11B11o1Bo22B101) = 2A50Bog2Bo22l
+ AgplAr11 (Bro1BopgBrioBo11+B1218200) — 240282008220

+ AgolA) 1 (Byg1BonptBr12Br11¥B121B002) = 2A00Bog2By5,]

2
28,087, 12(BoBoa2tBoo2Bo2g) + BGi11!

2
2800802 [2(BygBypatBrgaBssg) + BS1 ]



TABLE III (CONTINUED)

2800850 (BoooBr22tB002B220%Bg1182111B020B202

+ By22B2007B101B1217B110B112)

+

2
(AgoAgo+AgaAs0) [2(BggoBypgtBoo0B200) — Bliol

2 .
AT1(BgooBa20?Bo20B200)

2 s 5
A7ql2(BggoBgaa+Bgg2Bo20) + Bg11!

2 2
Ajol2(Byg0BgoptByg2Brag) + B3]

i

+ A)10A0(BgooB1217Bo11B110%Bo208101)
+ Agg(B1g1Bro0tB110B2111B121B200)]

= 4(A50A5,B000Bo20MA00802B200B220)

2A50Bg00 (Ag0B220"A20B020) = AgoA20BT10

+ 2800800 (A50Bg20"A00B220)

40
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. TABLE~-ITII:(CONTINUED)

-B

280,85, (BgpBy117Bo11B2027B101B112)

+ A, B 24,

22 002(A11 11274 011)

+ AgBygp(A)1B)15724,857,)

B -B

280545, (BogoB117B011B2007B101B110)

+ A11A 5, (BogBy12tBo02B1101Bo11B101)

+

+B B +B

AgoA 1 (B1g1By11*B110BogotB112B200)

+

2(AggAyotAg,A,0) (BygoBy 1 HBg11B2027B101B112)

+

Ap1[By1p(AygBgotAgeBag2) = A1 (BgopByi1+Bg11B202) ]

2A,,B011(A5,Bgg0T24,0Bgg2)

2A02By 11 (Ag,By0oH2400B, ;)

2A00A50(BggBr117Bo11B2027B101B112)
+ A11A,0(BggoB1121Bg02B110"B0118101)

+ AggAy 1 (Byg1By1+B11 0820218 1128200)

+ 2(AggAy,+HAG54A,0) (BogoBa11+Bg11B2007B101B110)

+ A1 [Byy0(Ay2BggotAg2Bag0) ~ A11(BpooBa11tBg11B200)]
= 2A50B11 (Ap0Bg2+2A25Bq0)

= 2A009B, 11 (AggByoo+2A0,B50)

2800820 (Bo00B2111B01182007B101B110)

+ Ay 0Bogo(A11By19=2A50Bg11)

+ AgB2oo(A11B11972400B211)
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. TABLE III - (CONTINUED)

22B0027A02B502)°

~(A
A02A22[Z(BoooBzoz+Booszoo) - BYg1 1
= 24558002 (A22B001A20B002A00B202)
= 2A02B202(B028200M00B2027A20B002)
+ A1 [B1o1(AzpB002+A02B202) ~ A11Bo02B202]
~(Ag,Bg00~A02B200)° = (AzgBoga—AgoB2g2)?
+ A1 1B191(Ag,Bog0tA20Bg02TA02B2001A00B202)
+ (AgoAyptAg A,0) [2(BogoBygo+Bo02B200) ~ Bio1l
- A%1(BgqoB202*B002B200)
= 4(Ay0A2,B000Bo02MA00402B200B202)
Agohr0l2(BgggBaoatBogaBaoo) — Bfg:]
— 28508000 (A22B0001A20B002A028200)
= 2A00B500(Ag2B200MA00B2027A22B000)

+ Ay [Byg) (A 0BooothgoBaoo) — A11BgooB2oo!

2
-(A4Bgg0™A00B200)

42



TABLE IV

CONSTANTS  FOR USE IN EQS. (4-12)

where vy

and Vo

AND TABLE VI

V, - V,C(\-o+B) ~ (e-a+b)SySS(A-a+B)

V, - V,C(:+a-B) - (eta-b)SySsS(Ato-B)

. 4(bCBSYSSSA-cSBCYSESA-ASBSYCESA

+ eSBSYSSC)

Vi = V,€(A-0-B) - (e-a-b)SySES(A-0-B)

V1 - Vzc(x+a+8) - (etat+b)SySSS (Ata+B)

cS8CS + dSyCy

cCySs + dSyCs

43
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Ry, 02" + Rpp022 + . . . + Ry92 + Ry = 0
or, in short,

12
y R(zi)¢(2i> = 0 (4-14)
1=0

The constants in Eq. (4-14) are defined in Table VII. The terms used in
Table VII are.defined in Tables V and VI.

Now, by considering the relationship f($,@,é) = 0 instead of Eq.
(4-2) and the relationship F(J,E,n) = O instead of Eq. (4-3), and by
following a procedure éimilar to that described above, we can get the
equation

12
I Sy = o (4-15)
120

Eq. (4-15) is exactly similar in form to Eq. (4-14). Its coeffi-
cients can be obtained from the coefficients of Eq. (4-14) by replacing
the parameters a, b, ¢, d, o, B, y and 8 by the parameters.d, ¢, b, a,
-6, Y, 8 and o respectively. In other words, the coefficients of Eq.
(4-15) can be regarded as "mirror images" of the coefficients of Eq.
(4-14) and can be obtained from the latter by the transformations
a<>d, b<>rc, o < 8§ and B ~> y.

Observe that each of the equations (4-14) and (4-15) consists .of
only one variable. These two equations must hold good at all values of
the variables involved. Their coefficients must, therefore, vanish [5].

This gives
R(zi) = 0, 1i=0,1, 2, .., , 12 (4-16)

it
o
-
=
-
N
-
-

S(pi) = 0, 1 12 (4-17)

Conditions. (4-16) and (4-17) together represent 26 equations among.
the ten constant 'kinematic parameters of the five-revolute mechanism in

Fig. lZi(namely,'the five link lengths a, b, ¢, d and e and the five
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Piio
P10
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Pioe
Pioy
Pio2

Pioo0

Piis
Piy
Pi12
Pito
Pios
Pios
Pioy
Pio2

Pioo
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]

il

S8

2C45C56
2C58C44
2C48C42
2€58C50
2C46C40
2C454C40

2C42C40

C58Cks
Ci8Cks
Cy8Cky
Cj 8C_k2
C48Cko
C36Cko
C5uCro
C42Cko

C50Cko

TABLE V

CONSTANTS FOR USE IN TABLE VII
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when =1, 2, 3,
=0, 2, 4
2
+ 2Cj6cj4
2
+ 2Cj6Cj2 + Cjl+
+ 2CjL+Cj2
2
+ Cj2
H
when =4, 5, 6,
+ C46Cks
=0, 0, 2
+ C36Cke + CjuCike
' and =2, 4, 4
+ C36Cky + CyuCke + C32Ckg
+ CjGCkZ +’Cj’+Ck.‘+ + Cjoke + Cj 0Cks
+ quCkz + Cjokq + CjOCk.G
+ C52Ck2 + C40Cku
* C30Ck2
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i12
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Prsiy
Pis12
Pis10
1508
P1s0e
1504

1502
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TABLE V (CONTINUED)

Ci8Cks * C36Ck7

Ci8Ck3 + Cy6Cks + Cy4Cxk7

Ci8Ck1 * Gy6Cks + CjuCks + Cy2Ck7

Cj Gcklv + qu_Ck3 + Cj 2‘Ck5 + Cj oCk7

C32Ck1 + C40Cx3

- Cy0Cxy
c§7
2€57C4s
2cj7cj3_+ c§5
264Gy, + 2C4Cy,
2cj5;j1 + c§3
2€44C4,
c§1
C17C37

C17C35 + C15C35

C17C33 + Cy5C35 + Cy3C3y

C17C3; * C15C33 + Cy3C35 + C1Cyy

C15C3; + Cy3C33 + C1C35
C13C3; + Cy1C35

C11€3;
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when i

and k

L]

7, 8, 9,10411,12,
0, 2, 0, 2, 4, 4

1, 1, 3, 3, 1, 3

when 1 = 13, 14,
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TABLE VI

CONSTANTS FOR USE IN TABLE VII

Qg
Q06
Q) 04
Q g,

QlOO

Q208
Q206
QZOH
Q202

Q200

Q308
Q306
Q304
Q302

Q300

1

H

n
D22

3
4D22D20

2 p2
6D22D20

3
4D22D20

n
D20

2 p2
D02D22

ZDozpzz(pozDzo+D22Doo)

2 p2 : 2 p2
D02D20 + 4D02D00D22D20 + D22D00

ZDOQDzo(D02D20+DooD22)

2 p2
DOODZO

4
D02

3
4Dg2Dqg
2 n2
605, 00

3
“Dg2P00

n
DOO



Quog, =

Quos
Quoy
Q02

Quo0

Qs08
Qs06
Qsou
Q502

Qs00

Qg08
Qs06
Qsoy
Q02

Q600

TABLE VI (CONTINUED)

~2D,D3,

= D35(D¥; — 2(3D,Dy0¥DgD,) ]
Lo '

= 2D,,Dy([D};- 3(DgoDyg+DgDs) ]

= D3,[Df; = 2(Dg,Dyq*+3DggDy,) ]

_ 3
= =2D4oD3y

- 2Q20§ |

= 2(Qp0g~2D{;Dg,Dy))

= D%,[D]; - 4(DgDys+DosDp0) ] + 2Qpqy
= 2(Qqp=2DF1DygDyy)

= 2Qy90

= 'Zbgzpzz

= D§,[DF; = 2(DgyDy+3DgoDy,) ]

= 2Dg,Dgq[D%; = 3(DgyDygHtDgoDy,) ]

= D§y[D; = 2(3D(yD,+DgoDy,) ]

= 3
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- Q707
Q705

Q703

Q701

Qgq7
Qgos
Qgo3

Qs01

Qoq7
Qags
Q903

Qqgq1

"TABLE- VI~ (CONTINUED)

]

3
-D11D3,
_ 2
3Dy 1D5,D5
2
=3D;1Dy,D5g

3
-Dy1D39

2
=D11Dg2D22

~Dy1Dy5 (2DgDy4+Dg D5 2)
D110 (Pg2D,¢+2DgoD25)

2
=D11DgeD3g

~3Qgq7
3
~D71D5,-3Qg¢5
3
~Di1D50=3Qg03

-3Qg01
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Q007
Qq0s
Q003

Q1001

Q197
Q1105
Q1103

Q1101

Q1207
Q1205
Q1203

Q1201

TABLE VI (CONTINUED)

B

2
=D11D,,D72

=D} 1D2(2D,,D+P5 oDy 5)
=Dy 1D (D2Dgg+2D;gDg5)

2
~Dy1D,0DP00

=3Q1007
3
~D71Dp2 = 3Qq0s
3 .
=D71Dg0 = 3Q1003

=3Q1001

3
~D11Dp2
2
—3D;1D92D90
=3D1Dg2Dfg

- 3
D;1Dh0
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Q1308

1306

Q1304
Q1302

Q390

Qo8
Q406
Qyan
Quo2

Qiuqo

Q508
Q506
Q504
Q502

Q500

1

]

. TABLE VI (CONTINUED)

3
Dozpzz

2

D32 (3Dg,0, gDy Dy5)

3D,,D,0(Dg2D,g+Dg oDy 5)
2

D5 (Dg2D;o+3D D2 2)

3
DgoD30

3
Dp2D2;

2
D2 (DgaDyt3DgDy5)

3Dg2DPgq (Pg2D20*DgD22)

n2
DG (3Dg,Dy¢+Dg gD, 5)

3
DyoD2g

-2Q,03

2 -
D71Dg2D25 = 2Qa06

2 (m.
- DT (DgDpa*DgoDs0g) — 2Qu04

2
DT1DgD20 - 2Q202

~2Q,¢¢
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TABLE VII
) CONSTANTS FOR USE IN EQS.'(4-14).AND (4-16)
) IP416Q40g]

i=1
6

) [P116Q06 * P114Q108]
i=1

12
+ 1:[P115Q307]
i=7

15
+ ) [P31,Qi¢]
i=13

6

021[P116Q104.+ P114Q06 T P112Q 08!
i=

12

+ 1 [P410505 + Pi13Q407]
i=7

.15

+ ) [P3,4,0106 + P115Q1¢s]
j_=13 .

)
.2£P116Q102 + Pi14Qi04 T P112Qios + P110Q08]
i=
- 12
+ '27[P115Qio3 + P113Q105 + P111Q107]
1=
15 '
+ 1 [P514Q50u + P112Q106 * P110%%08]
i=13
6
.Zi[PiisQioo + Pi14Qi02 + P112Qi04 * P110Qo06 t Pi0sQios!
i=]
12
+ _27[P115Q101 + P113Q03 + Pi11Qi0s + P109Q07]
l=
15

+ ‘ZlgPiquioz + Pi12Qi04 * Pi10Qi06 T PiosQos]
l=
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TABLE VII. (CONTINUED)

6
_Zl[PithiOO + P112Q102 * Pi1oQiou + P108Qi06 + P106Qi0s!
i= :

12

+ ,27[P113Q101 + P111Qi03 * Pig9Qios + P107Q407]
1:

5 :
+ .ZlgPiluQioo + P112Q102 *+ Pi10Qiou + P1ogQ106 * Pi06Qios!
l=

6
°Zl{Pilefioo + P310Q102 * PigsQioy + PioeQioe * PiouQios!
1= .
12

+ ,Z7IP111Q101 + P109Qi03 + Pi07Qi0s + PiosQio7!
1=

15

+ °215P112Q100 + P110Qi02 +Pi08Qtos + PioeQios + PiouQiosl
i=

6

azl[PiloQioo + Pi0sQo2 t PiosQtou * PiouQioe * P102% o8l
1=

12

+ 627[P109Q101 + Pi97Q103 + PiosQos * Pi03Qo7]
i=

15

+ ozlgpiloQioo + PiogQioz + PigsQios * P1ouQioe + Pi02Qi0s!
l=

6

.Zl[Pierioo + P106Qi02 + P1ouQios * P102Q106 * PiooQios!

1= .
12

+ .27{Pi07Q101 + Pi0sQi03 + P103Qios + Pi01Qio7]
l=

15

+ .Zl[PiosQioo + P106Q02 + PiouQion * P102Q 06!
l=



TABLE VII (CONTINUED)

6 i
Re = | [PigeQioo + PiouQio2 + Pi02Qios + P100Qios]
i=1

12

+ ) [P10sQio1 + P103Qi03 + Pi01Qios5]
1=7

15

+ 'zlgPierioo + Pi04Qi02 + P102Qi0u]
i= o ‘ .

6

} [P104Qi00 + P102Qi02 + P100Qiou]
i=1

Ry

12

+ ) [P103Qi01 + P101Qi03]
i=7

15

+ ) [P104Qi00 + Pi02Qio2]
1=13

6

Rp = ) [P102Qi00 + Pi00Qio2]
i=1

12

+ } [P101Qi01]
i=7

15

+ } [P102Qi00]
i=13

6

Ro =} [Pi00Qiool-
i=1
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twist angles a, B, ¥, 8 and A). These 26 equations provide the néces—
sary conditions for the existence of a five-link, five-revolute

(R-R-R-R~R) mechanism with zero offset distances along its pair axes.
The Goldberg Five-Revolute Mechanisms

The Goldberg five-revolute mechanisms [20] (Fig. 9) are obtained
by the combination (addition or subtraction) of two Bennett mechanisms
[4]. Referring to the five-revolute mechanism in Fig. 12, the Goldberg

mechanisms satisfy the following relationships:

a = d
a = §
e = btec (4-18)
A = Bty
a2 = £+ b - 4 c
Sa S8 Sy

When the relationships (4-18) are used, the 26 equations given by
the conditions (4-16) and (4-17) are identically satisfied., This con-
firms thé correctness . and validity of the derived existence criteria.

On Obtaining Five-Revolute Mechanisms
from the Derived Criteria

The-existence criteria derived above can be used to obtain the con-
stant kinematic_parameters of a five-revolute mechanism with zero‘off—
Set'distances.

If the constant kinematic parameters are regarded as unknowns, it
is possible to Write-each:of’the 26 equations given by conditions (4-16)

and (4-17) as a polynomial equation in several variables. The entire
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i
set of 26 equations can, therefore, be regarded as a system of non-

linear, simultaneous algebraic equations and can be represented as
F;(a,b,c,d,e,a,8,y,8,A) = 0, i=1,2, 3, ..., 26 (4-19)

Eqs. (4-19) represent a system of 26 equations in the ten unknown
constant kinematic parameters. They are of eighth degree in each of the
link lengths and of twenty-fourth degree in eagh_of the twist angles.

It is important to note. that theuequationé given by (4-19) repre-
sent .only necessary conditions for the existence of a five-revolute
mechanism. The conditions are not sufficient because satisfaction of
the criteria does not by itself guarantee a five-revolute mechanism with
a true mobility1 of one. This is because Eqs. (4-19) also have solu-
tions that correspond to five-revolute mechanisms without a true mobili-
ty.of one. Such solutions are called here trivial solutionms,

‘There are . two types of trivial solutions to be considered. The
first type gives an o&erconstrained mechanism with mobility greater than
one. Thus, for instance, Eqs..(4-19) are satisfied identically when
a=b=c=d=e=0 and a, B, Y, § and A have arbitrary values. This,
however, represenﬁs a spherical five-revolute mechanism with mobility
two.

The second type of trivial solution gives an overconstrained mecha-
nism without.true mobility. Thus, for example, Eqs. (4-19) are satis-
fied identically when any three adjacent twist angles are zero and the
other constant kinematic parametérs have arbitrary values. This gives
a configuration in which the axes of four of the revolute pairs are.

parallel to one another. However, with this arrangement, no motion is

lSee item 4 in Apperdix A. ‘
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possibie at .the remaining revolute pair which, therefore, remains per-
manently locked. The mechanism behaves, in effect, like a plane four-
link mechanism. The solution thus represents a five-revolute mechanism
without true mobility.

A non-trivial solution of Eqs. (4-19) yields a five-revolute mecha-
nism with a true mobility of one. The Goldberg five-revolute mechanisms
are examples of such non-trivial solutions.

The triviality or non—triviality of the solutions of Eq. (4-19) can
be checked by substituting the values of the constant kinematic para-
meters in the original_diSplacement,relationships of the parent R-C-R-C-R’
mechanism [56]. A non-trivial solution will give zero offset distances
at .the two cylinder pairs at all.positions of the parent mechanism
without, at the same time, affecting its true mobility. A trivial solu-
tion will not meet .these requirements.

Since Egqs. (4-19) have trivial solutions and are also satisfied by
the Goldberg mechanisﬁs, it is clear that they represent a set of con-
sistent equations. The'complexity of .the equations, however, makes it
verf,difficult to examine their rqlétionship analytically. Since the
equations involve ten‘unknowns, a maximum.of only ten of the 26 equa-
tions can be expected to be independent. However, since Eqs. . (4-18)
satisfy Eqs. (4-19) identically and since four of the parameters in
Eqs. (4-18) can be chosen arbitrarily,? it is clear that there is an.
infinite-number of non-trivial golutions to the system (4-19). This

indicates that the actual number of -independent equations in .the system

. 2Eqs. (4-18) show that it is not possible to chopse any four of the
parameters arbitrarily, but only certain.combinations of four parameters.
Thus,; for example, a,n, B and.y can all be chosen-arbitrarily, but a, d,
o and 6 cannot all be chosen arbitrarily.
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is less than ten. Eqs. (4~18) suggest that this number may be six.

The -solytion of the independent equations in (4-19) can be
attempted by numerical means. (Appendix E). The extremely high non-
linearity of the equations, however, indicates that the potential num-
ber of solutions to such a system is, as is evident from Bezout's
theorem [38],3% in the millions. The solution of the system, therefore,
poses many problems [28, 37, 34].

The points discussed above clearly show that the investigation of
the exlstence of new five-revolute mechanisms bf‘using the derived cri-
teria is,a‘problem in its own,right. It is, therefore, considered

beyond the scope of the present work.

3According to Bezout's theorem, the number of roots of a system of
polynomial equations is equal to the product of the degrees of the
individual polynomial "equations.



CHAPTER V

EXISTENCE CRITERIA OF THE FIVE-LINK
R-R-R-P-R MECHANISM
The five-link R-R-R-P-R mechanism can be derived, like the five-
link, fiverrevolute mechanism, from either the R-C-R-C-R mechanism or.
the R-R-C-C-R mechanism. In this chapter, the Dimentberg passive
coupling method has been used to obtain the existence criteria of an
R-R-R-P-R mechanism with zeroloffset distances at its revolute pairs

from the displacement relationships of an R-C-R-C-R mechanism.
Derivation of the Existence Criteria

Consider the five-link R-C-R-C-R space mechanism shownr schemati-
cally in Fig. 13.1 Note that the constant offset distances at the
three fevolute pairs are taken to be zero. If the translation u at
the cylinder pair at B reduces to zero and the angular displacement .£
at the cylinder pair at D remains constant at all positions of this
mechanism, then it reduces to .an R-R-R-P-R mechanism with zero offsef
distances .at its revolute pairs (Fig. 14).

By considering the loop-closure condition of the mechanism in.Fig.

13 in two different ways, the following relationships can be obtained:

A A A AA A

F(X,N,¥) = (SaSySn)Sx - Svy(CasB+sachcn)cy

+ CY(CaCB-SasBCn) - (c8CX sdsicy) = 0 (5-1)

'Fig. 13 is the same as Fig. 11.
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‘Figure 1l4. R-R-R-P-R ‘Space :Mechanism Obtained from the
Mechanism in Fig. 13 by Making u = O and.
,«%}= £, = a Constant
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£CE,%,7) = [(sycd+cysScE)sy + sésEcy1(sasn)
+ [S8sEsy - (Sycd+cysdcE)cy] (CasB+sachen)

+ (cyC8-sysdcé) (cacB-sasBtn) - CA- = O (5-2)

Note that Eq. (5-1) is similar in form to Eq. (3-6) and Eq. (5-2) is
similar to Eq. (3-8).

Now, let the translation u become zero and the angle £ a constant:
at all positions of the mechanism.

Eliminating the angle ¢ from the primary and dual parts of Eq.

(5-1), we get

L,(X)H2 + L (X)H + Ly(X) = O (5-3)
where X = tan(y/2)
H = tan(n/2)
and L,(X) = L,,X2 + L,
LX) = L;;X (5-4)

- 2
Lo(X) = Lg,X* + Ly,

The constants in Eqs. (5-4) involve only . the constant kinematic para-
meters of the mechanism and are defined in Table VIII.
Denoting the constant value of the angle £ by Exs the primary part

of Eq. (5-2) becomes

Mp ()H? + M (X)H + Mo(X) = D (5-5)

2 .
where MZ(X) M,,X% + M, (X f M,

M, (X) M;,X2 + M) X + M (5-6)

My (X)

2.
MOZX +.M01X + MOO
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TABLE VIII
CONSTANTS FOR USE IN EQS. (5-4)
AND (5-6) AND TABLE IX
L, = W, - W,Ca=B+y) - (a-b+c)SSSAS (ampy)

Lyg = W, - W,C(a-B-y) - (a-b-c)S8SAS(a=B~y)

H |
L, = 4(cCyS851Sa-dSyCsSASa-eSySSCASa

+ aSyS$SACa)

Ly, = W, - WZC(a+B—y) —- (at+b-c)SS§SAS (atB-y)
Lyg = W, = W,C(at+B+y) - (atb+c)SESAS (atBt+y)

where W, = dSACA + eS38CS

and W, = dC&Sx + eSSCh

My, = E2[Cla—B+y~8)~-CA] + [C(a=BH+y+8)-CA]
My, = -4Z;885(a-B)
Myo = ER?[C(a~B-y+8)-CA] + [C(a-B~y=8)-CA]
M, = -4E;SaS$
Mj; = 4Sa[Z2S(y-8) + S(y+3)]
Mg, = E2[C(a+B=y+8)=CA] + [C(o+B-y-8)~CA]

Mgg = Er2[CatB+y=8)=CA] + [C(o+B+y+8)-CA]
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The constants in Eqs. (5-6) are defined in Table ‘VIII.?
If an R-R-R-P-R mechanism of the type under consideration is to
exist, the quadratic equations (5-3) and (5~5) must have at least one

common,root. This gives the condition (Appendix B)

L,(X) Li(X) LyX) 0

0 Ly®) L (X) Ly(X)
= 0 (5-7)
My(X) M;(X) Mp(x) O

0 MZ(X) M (X)) M, (X)

Eq. (5-7) is a function of only the variable X. Expanding and

simplifying it, we get

NgX® + N,X7 4+ . . . + NX+ N, = 0
or, in short,
8 .
INXT = 0, i=0,1,2,..:, 8 (5-8)
i=0 v

The constants in the above equation are defined in Table IX.
Eq. (5-8) must hold good at all values.of the variable X. Its

‘coefficients must, therefore, wvanish. Thus, we have:
N, = 0, i=0,1, 2, ,-. ., 8 (5-9)

Condition (5-9) represents nine equations among.the 11 constant
kinematic parameters of ‘the R-R-R-P-R mechanism in Fig. 14 (namely, the
five link lengths a, b, ¢, d and e, the five twist angles a, B, v, §
and A and the constant displacement angle £, at the prismatic pair at
joint D). These nine equations provide the necessary conditions for the

existence of a five-link R-R-R-P-R mechanism with zero offset distances

2In Table VIII, the constant tan(&k/Z) is ‘denoted by Ege
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TABLE IX

CONSTANTS FOR USE IN EQS. (5-8) AND (5-9)
i - 2 2
= =(LyoMop=LgMpy)© = Lyl M7,
= 2L L, (Mg My p+My My =My My 5)
+ LpoMoo (L My 5=2L,,Mp1)

+ LMy, (L My p=2L4 oM, )

- 2
= LgoLpo [2(Mg oMy p 42y My #M g My =My oMy ) = MY, ]

-

2 2
(LoglpotLlgoLlag) (2Mg My ,-MT,) — LT My, Mo,

N

= LMo [2(Ly Moty gMg,) - LygMy]

1

LooMpo[2(Lg My g+l oMy,) = Ly My, ]

+4-

LooMyp (Ly M) 5-Ly5Mp1)

+4-

LooMpq (L My 5-LyoMy )

= 2LgoLy, (Mg oMy +My My =My M )

+ 2(Lg oLy tLgoLly o) (Mg My My My ) ~My (M) )

I

2
LTy (Mg My, +My M5 1)

LMo [2(L, Mo g+2L, oMy,) = Ly My, ]

LooMyp [2(LgoMy g+2Lg oMy 5) = Ly Myl

+4-

Lyp My (Ly Mg ptLy oMo gtLg My oL oMy )

+ My o (L My p+Llg,My5)



TABLE IX (CONTINUED)

= (¥ B P 2 _ - 2
(LaMag=Lagton) ™ = (LoaMagLogMs)

00"22

+ (Lgglagtloglag) [2(MggMy 5o My g M,

MM N - M2
M) M) - M

~ 12
L1 1 (MOOM22+MO 1M21+M02M2 O)

+

Loy [, oMy (#Mg My o) + Ly o (Mg My MM, )

+ LOZ(M M, +M

10721 l_lMZO) + IfOO(MllM?_Z-'-MlZMZI)]

_ 2 Lo : 2
Lo [LggMig + 2L, (MM 45D ]

- . 2 . oM M M2 YT
Loo[LzoM.lz * ZLOZS'ZMzoMzz*Mu)'-]

= 2L, L, . (M .M_ M M. M,.)

00720M 01" 22 02 217 1112
+ 2(L00L22+L02L20) (M00M21+M01M20'M10M11)
12

L11(M00M21+M01M20)

[2(L, My, +2L, M ) - Ly M), ]

~ LooMos 20702

- Loole[Z(LooM22+2L02Mzo) - LMy,

+L11[M10(L’ M +L M +L M +LOOM

22700 ©20702° ©02°20 2ﬂ2>

M Ly MogtLooa o) ]

= Lgglyol2Qy g, 4o My #M M, =M, M) = ME ]
+ (L00L22+L02L20)(ZMooMzo'leo) - L%lMooMzo
= LMool (b Mgt Mo, = LMyl
- LooMzo[z(L02M20+L00M22) = LMl

+ L20M01(L1’1M10'L20M01)

+ LOOMZI(LIIMIO_LOOMZI)



TABLE IX (CONTINUED)

2L Ly o (Mg Mg+ 1 My oMy oMy )
+ LMoo (L1192 0Mp1)

+ LgoMpo (Ly My g=2Lg oMy )

2 2
-(LpoMgg-LgoMa0)“ = LgoLaoMip

66
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at its revolute pairs.
On Obtaining R-R-R~P-R Mechanisms from the Derived Criteria

The existence criteria obtained above can be utilized to obtain.
the constant kinematic.parameters of an R-R-R-P-R mechanism with zero
offset distances at its revolute pairs.,

Considering the constant kinematic parameters as unknowns, the

nine equations given by condition (5-9) can be represented as
Gi(a,b,c,,d,e,a,e,y,d,)\,Ek) = 0, 1=1,2, .. .,9 (5-10)

Egs. (5-10) represent‘a system of nine nonlinear equations in the
11 unknown conétant kinematic parameters. They are of second deéree
in each of the link lengths, of eighfh degree in each of the twist
angles and of fourth»degree in.the constant displacement angle. gy.

Like Egs. (4-19),vKs. (5-10) also have trivial solutions. Thus,
for instance, Eqs. (5-10) are satisfied identically when the axes of .
the four revolute pairs are parallel to one another and the axis. of
the prismatic pair is normal to the other axes. This; ﬁowever, yields
a configuration with mobility two, Similarly, Egs. (5-10) are also
satisfied identically when the axes of;tﬂé four revolute palrs are-
parallel to one.another and the axis of the prismatic pair is obliquely
oriented with respect to the other axes. With this arrangement, no
motion is possible at .the prismatic pair which, therefore, remaiﬁs
permanently locked. The configuration behaves, in effect, like a élane
four-link mechanism. Tﬁe solution thus gives a mechanism without true
mobility. '

A non-trivial solution of Eqs. (5-10) yields an R-R-R-P-R mecha-
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nism with a true mobility of one. As ‘in the case of the five-revolute
mechanism in Chapter IV, the triviality or non-triviality of é solution
of Egs. (5~10) can be checked by substituting the values of the con-
stant kinematic parameters in the original displacement relationships
of the parent R-C-R-C-R mechanism [56].

Since Eqs. (5-10) represent asystem'of nine equations among the
11 unknown.constant kinematic parameters, two of .the parameters can be
assigned arbitrary values and the solution of the system can be.
attempted by numerical means” (Appendix E) for the remaining nine para-
meters. The high nonlinearity of the equations once again emphasizes
the complexity of the problem {28, 37, 34]. As in the case of the
five~revolute mechanisﬁ, the investigation of the existence of R-R-R-P-R
mechanisms by using the criteria derived-in this chapter is thus a
problem in its eown.right and is considered beyond the scope of the

present Investigation.



CHAPTER VI

EXISTENCE CRITERIA OF THE FIVE-LINK
3R+2P AND 2R+3P MECHANISMS

In this chapter, the Dimentberg passive coupling technique hasbeen
employed to.obtain*thevexistenqe criteria of the five-link 3R+2P and.
2R+3P mechanismé. These criteria are obtained by considering only the
primary parts of the displacement relationships of the appropriate par-
ent mechanisms. They, therefore, lead to conditions on only the twist
angles and.constant displacement angles of .the mechanisms considered
and are independent of their link lengths and constant offset distances.

In a 3R+2P mechanism, the two prismatic pairs may either be separated
by a revolute pair or be adjacent to each other. Similarly, in a 2R+3P
mechanism, the two revolute pairs may be either adjacent to each other
or be separated by a prisméticzpair. All possible types of 3R+2P and
2R+3P mechanisms are, therefore, represented by the following mechanisms:

i) = R-P-R-P-R Mechanism

i1) R-R-P-P-R Mechanism

iii) R-P-P-P-R Mechanism

iv) R-P-R-P-P Mechanism
Existence Criteria of the Five-Link R-~P-R-P-R-Mechanism

The existence critéria'éf an R~P-R-P-R mechanism can be obtained.
from the displacement relationships of an R-C-R-C~R mechanism.

Consider the R-C-R~-C-R space mechanism shown schematically in. Fig.
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Figure 16. R-P-R-P-R Space Mechanism Obtained from the
: "Mechanism in Fig. 15 by Making n =m = a
Constant and £ = Ex = a Constant:
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15, This mechanism reduces to an R-P-R~P-R mechanism if the displace-
ment .angles n and £ at the two cylinder pairs remain constant at all

positions of the mechanism (Fig. 16).

By considering the loop~closure condition of the mechanism in Fig.

15 in three different ways, the following relationships can be obtained:

F(h,$,8) = (SBSAsd)sn - sB(saci+casicy)ch

+ CB(CaCA-SASACH) - (CyCS-sYSSCE) = 0O (6-1)
F(P,E,n) = (sysAs€)sy ~ si(cysé+sycicE)cy

+ CA(Cycd-sys8cE) - (cocBR-sasfen) = O (6-2)
£(E,x,n) = [(syc8+cysdcE)sy + sésécy](sasn)

+ [s8sEsy - (syc&+cysdcE)Cx] (Casp+Sachen)

+ (CyC8-SySSCE) (CacR-sasfCn) - CA = 0 (6-3)

Observe that Eqs. (6-1) and (6-2) are similar in form.to Eq. (3-6) and
Eq. (6-3) is similar to Eq. (3-8). Note also that each of the above
equations relates the dual displacement angles n and § at the two cylin-
der pairs to a third dual displacement angle.

Let the displacement angles n and & at the two cylinder pairs be:
now made constant at all positions of the mechanism. Denoting these
constant values by n, and gy respectivély, the primary parts of Egs.

(6-1), (6-2) and.(6-3) give

AgS¢ + ACo + Ay = O (6-4)
BsSY + B.Cy + B, = O (6-5)
CgSx + CeCx +C, = O (6-6)

The constants in the gbove equations involve the constant kinematic

parameters and are defined in Table X.



TABLE X

CONSTANTS FOR USE IN EQS. (6-4) THROUGH (6-7)

= SBSASNnK
= -SA(SaCp+CaSBCny)

= CA(CaCB-SaSBCny) - (CyCS-SYSSCEL)

= SySASEK
= -SA(CyS&+SyCSCEK)

= CA(CyCS-SySSCEK) - (CaCB-SaSBCnk)

= S0 (SyCS+CySSECELK)Snk + S6(CaSA+SaCBCnK)SEK
= S0S885nSEE — (CaSp+SaCRCny) (SYC6+CySSCEy)

= (CaCB-SaSBCny) (CYC6-SYyS8CEL) —- CA
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Observe that each of the equations (6-4), (6-5) and (6-6) consists

of only one variable and must be .valid at varying values of that -

variable. " This is possible only if their

gives
Ag = A, =
Bg = Be =
Cs = Cc =

Examination of Eqs. (6-7) shows

possible:

that

coefficients vanish. This

.= 0 (6-7)

the following cases are

1. cﬁk < J1f, cg, < || (That is, My + mr, £y $mr, m = 0,1,2,...

The only real solution possible in this case is given by

A =0 _ , (6-8)

Eq. (6-8) shows that the kinematic axes are all parallel to one

anothér., An R-P-R-P-R mechanism satisfying this condition, however,

represents only a trivial solution since it yields a configuration in

which the three revolute pairs remain locked and in which the only

motion possible is a "trombone-like" translation [25] at the two pris-

matic pairs.

2. Cny <'llf, Cey = |1| (That is, ny + mr, & = mm, m

This gives.

0,1,2,...

a =. B = 2 0
(6-9)
and y * &6 = mm, m=0,1,2,
3. Cny = |1}, cg, < [1]| (That is,n, = mm, & $'mm, m = 0,1,2,...
This gives
y =.8 = A 0
. (6-10)
and - o * B8 =. mm, mn = 0,1,2,
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b, Cny = 1], Cey = 1| (That is, ng = mrm, & =mr, m = 0,1,2,...)
This gives

(6-11)
and o %28 = mr, vy 46§ = mm, m= 0,1,2,.

Eqs. (6-9), (6-10) and (6-11) give the necessary conditions for
the existence of .an R-P~R-P-R mechanism. All these conditions show that

the axes of the three revolute pairs are parallel to one another.
Existence Criteria of the Five-Link R-R-P-P-R Mechanism

The existence criteria of an R-R-P-P-R mechanism can be obtained

from the displacement relatiomships of an R-R~C-C-R mechanism.

Consider the R-R-C-C~R space mechanism shown schematically in Fig.
17. This mechanism reduces to an R-R-P-P-R mechanism if the displace~
ment angles X and £ at the two cylinder~paifs remain constant at all-
positions of the mechanism (Fig. 18).

By considering the loop-closure condition of the mechanism in Fig.

17 in three different ways, the following relationships can be.obtained:

F(E;X,9) = (SBsdsx)sE - S8 (CRSy+SACYCX)CE

+ C3(CRCY-SBSYCY) - (CaCA-SaSAC$) = O (6-12)
FP,E,%x) = [(SSCA+CSACY)SE + SASYCE] (SRSY)

+ [SASUSE - (S3CA+C3SACY)CE] (CBSY+SBCYCY)

+ (C8cA-sdsicy) (CBCY-SBSYCY) - Ca = O (6-13)
£(€,x,n) = [(SYCS+CYSSCE)SY + S85ECK](Sasn)

+ [S8SESY - (SyCS+CySSCE)Cx](CasE+8acan)

+ (CYC8-SyS8CE) (CaCB-SasBCn) - CA = O (6-14)

Note that Eq. (6-12) is of the same form as Eq. (3-6) and Egqs. (6-13) and
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A | e,x E

Figure 18. R-R-P-P-R Space Mechanism Obtained from the
Mechanism in-Fig. 17 by Making x = Xy = a
Constant and § = g, = a Constant
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(6-14) are similar to. Eq. (3-8). Observe also that each of the above:
equations relates the dual displacement angles X and £ at the two cylin-
der pairs to a third dual displacement angle,

Let the displacement angles x and £ at the two cylinder pairs be
now held constant at all positions of the mechanism., Denoting these
constant values by-xk and_gk respectively, the primary parts of Egs.

(6-12), (6-13) and (6-14) give

and Fssn + Fch + Fn

I}
o

(6-17)

The constants used in the above equations are defined in Table XI.
Note -that each of - the equations (6-15), (6-16) and.(6~17) contains
only one variable and must hold .good at varying values of that variable.

Their coefficients must, therefore, vanish. This gives

Do = D, = O
ES = Ec ) = En = 0 (6"'18)
and FS = Fc = Fnl = 0

Examination of Eqs; (6-18) yields the following relationships:
a = A = 0 (6-19)

Sy(SBCGka+CBSGC§k) - Cy(CBCG—SBSSkaCEk)

- SBS&SY, SE, + 1 = 0 (6-20)

The above equations provide the necessary conditions for the exis-
tence of an R-R-P-P-R mechanism. Condition (6-19) shows that the axes

of the three revolute pairs are parallel to one another. Eq. (6-20) is
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TABLE XI
CONSTANTS FOR USE IN EQS. (6-15)
THROUGH (6-18)
SaSx
SB[S(S(SkaEk—Cyckagk)—SycGka]

+ CB(CYCE-SYSSCE, ) -CaCA

SA [SB(Sx CEHCYCxy SE,IHCBSYSE]
SA{C8 [SB(Sx; S} ~CyCx; CEy ) ~CBSYCE;]
-86(CBCY-SBSYCx; ) }
CX{és[ss(sxksgk—cycxkcgk)—CBSYCEk]

+ C8(CBCY-SBSYCxy )} - Ca

Sa S8 (CxySEHCYE X CE )FSYCSS X ] -

 Sa{CBISS (Sx;SE4-CyCxyCEL) ~SYCSCX;]
- SB(CYCS-8yS8CEY) }
Cu{ss[ss(sxksgk-cycxkctk)-sycscxk]

+ CB(CYCS-SySsCE) T - CA
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a closure condition relating the twist angles B, Y and 6 of the mechan-
ism with the constant displacement angles X; and Ek at the two prismatic

pairs (Fig. 18).
Existence Criteria of the Five-Link R-P-P-P-R Mechanism

The existence criteria of an R~-P-P~P-R mechanism can be obtained
from the displacement relationships of an R-C-P-C-R mechanism.

Consider the R~C-P-C-R space mechanism shown.schematically in Fig.
19. Note that the displacement angle X at the prismatic pair is con-
stant, This mechanism reduces to an R-P-P-P-R mechanism if the displace-
ment angles N and € at. the two cylinder pairs remain constant at all-
positions of the mechanism (Fig. 20).

By considering the loop-closure condition of the mechanism in Fig.

19 in seven different ways, the following relationships can be obtained.

F(R,8,6) = (SBSAS$)SN - SB(SaCA+CasSACe)Cn

+ CB(CaCA-SaSACe) - (CyCs-SySSCE) = O (6-21)
F(U,€,n) = (SYSASE)SY - SA(CyS8+SyC3CE)CY

+ CA(CYC8-SySSCE) - (CaCB-SasSBCn) = O (6-22)
F(x,n,9) = (SasySn)Sx — Sy(CaSB+SacBCn)Cy

+ Cy(CaCB-SaSBCn) - (C3CA-S8SACY). = O (6-23)
F(E,%,0) = (SBS8SY)SE — S8 (CRSY+SBCYCY)CE .

+ C8(CBCY-SBSYCX) - (CaCA-Sasisg) = O (6-24)
£(x,n,6) = [(SBCY+CBSYCX)Sn + SySxCnl(SASé)

+ [SYSxSn - (SBCY+CBSYCx)Cnl(SACA+CASACS)

+ (CBCyY-SBSYCx) (CaCA-SaSACs) - C& = O (6-25)
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Figure 19. R-C-P-C-R Space Mechanism

Figure 20... R-P-P-P-R Space Mechanism Obtained from the
Mechanism in Fig. 19 by Making n = np = a
Constant and £ = &k = g Constant
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£(,8,x) = [(sécr+cdsicy)sEe + SASYCE] (SBSx)
 + [SASYSE - (SECA+CESACY)CE] (SYCR+CYSRCY)
+ (C3CA-88SACY) (CBCY-SASYCY) - Ca = O (6-26)
£(E,x,n) = [(Sycé+cysdcE)sy + sésécx](sasn)

+ [S8SESy - (SYCS+CyS3CE)Cx](Casp+sachcn)

+ (CyC8-5ySSCE) (CaCB-SasRCN) - CA = 0 (6-27)

Note that Egqs. (6-21) fhrough (6-24) are similar in form to.Eq. (3-6)
and Eqs. (6-25), (6-26) and (6-27) are similar to Eq. (3-8). HObserve
aléo that each of the above equations. contains the dual displacement
angle at at least one of the two cylinder pairs.

Let the displacement angles n and £ at. the two cylinder pairs be
now held constant at all positions of the mechanism. Denoting these
constant ‘values by ny and £y respectively, the primary parts of Egs.

(6-21) through (6~27) give

GgS¢ + GuCd + Gy = O (6-28)
HgSy + HCy + Hy = 0 (6-29)
ICy+ I, = O (6-30)

JCo+J, = 0 (6-31)

KgS¢ + KeCo + Ky = 0 (6-32)
LgSY + LeCy + Ly, = O (6-33)

and M, = 0 (6-34)

n

The constants.used in the above equations are defined in Table XII.
Observe that each of the equations (6-28) through. (6-33) contains
only one variable -and must hold good at varying values of that variable.

This is  possible only if.their coefficients vanish. This gives



TABLE XII

CONSTANTS FOR USE IN EQS. (6-28) THROUGH (6-35)

Gg = SBSASN,

Ge = -SA(SaCB+CaSBCny)

G, = Cx{CaCB-SaSBCny) - (CyCS-SySSCEY)
Hg = SySASEy

Ho = -SA(CYySS+SyC8CEL)

Hy, = Cx(CyC8~SyS8CEL) - (CaCB-SaSBCny)
I, = S8SA

I, = Sy[Sa(SnkSxy~CBCnyKCxy) - CaSBCxk]

+ Cy{CaCB-SaSACny) — CSECA

J. = SaSi
Jq = SBI[SS(SxkSER-CYCXxKCEK) — SYCSCxyl

+ CB(CYCS-SySSCEL) ~ CaCA

Kg = SA[Sy(CnySx;+CBSnCxy) + SBCYSny]

Ke = SA{Cal[Sy(SnySxy-CBCniCxk) ~ SBCYCny]
~ Sa(CBCY-SBSYCxy) }

Ky = CA{Sa[Sy(SnygSxx-CBCniCxk) - SBCYCnkl

+ Ca(CBCY-SBSYCx)k)} — C$
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TABLE XII (CONTINUED)

SA[SB (8%, CE+CYCx, BE, ) + CBSYSE, |
SA{C8[SB(Sx, 5€,~CyCx, CE,) ~ CBSYCE, ]
~ S6(CBCY-SBSYCxy ) }

CA{SS[SB(Sx, SE,~CYCX, CEL) = CBSYCE,]

+-C6(CBCy—SBSYCXk)} - Ca

Sa[ss(cxksgk+0ysxkcgk) + SYC8Sx, 180,

+ Sa{CB[SG(SkaEk—CnykCEk) - SYC&Cx, ]

$8(CyCs-8yS8CE,) Jen,
+ Ca{SB{86(Ska€k—CchkC£k) - SycGka]

+ cs(cYc5—5ysscak)} - CA
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(6-35)

Examination of Eqs. (6-35) along with Eq. (6-34) gives the follow-

ing relationships:

(CaCB~SaSBCny) ~ (CyC6-SyS8CEy)

- Cy(CaCB-SaSBCny) + Sy (CuSB-SaCBCM; ) Cxy

+ SaSySmSxy - C§

CB(CYCS-SYyS8CEL) + SB(SYCE~CySECEY ) Cxye

+ 585685y Sx - Ca

-0

0

(6-36)

(6~37)

(6-38)

(6-39)

CaC6 (2-CBCY+SBSYCxy) + SasSs[SnyCxy Sy + (CYSnCELHFCBCNSEL)Sx,

- (SBSY—CBCnyk)anCER] -1

(6-40)

The above relationships provide the necessary conditions for the

existence of an R-P-P-P-R mechanism.

the two revolute pairsg are parallel to each other.

Eq. (6-36) shows that the axes of

(6-37) through

(6-40) are closure conditions .relating the twist angles o, B, Yy and §

of the mechanism with the constant angles Nks Xk and & at the three

prismatic pairs (Fig. 20).
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Existence Criteria of the Five-Link R-P-R-P-P Mechanism

The existence criteria éf an R-P-R~-P-P mechanism can be obtained
from the displacement relatiomships of an R-C~R-C-P mechanism.

Consider the R~C~R-C-P space mechanism shown schematically in Fig.
21. Note that the displacement angle Y, at the prismatic pair is con-
stant., This mechanism reduces to an R-P-R-P-P mechanism if the dis-
placement angles n and £ at the two cylinder pairs remain constant at
all positions . .of the mechanism (Fig. 22).

By considering the loop-closure condition of the mechanism in Fig.

21 in seven different ways, the following relationships can be obtained:

F(n,,E) = (SBSAS$)Sn — SB(SaCA+Casicé)Cn

+ CR(CaCA-SasiCé) - (CyCé-SyS3CE) = O (6-41)
£(E,%,m) = [(sycé+cysscE)sy + sésicx](sasn)

+ [S8SESy - (SYCE+CYSACE)Cy](Casp+Sachen)

+ (CyC8-SySSCE) (CaCB~SasSACN) - CA = O (6-42)
£(n,6,0) = [(SaCR+CaSBCN)Sé + SASNCH1(S8SYP)

+ [SBSNS® - (SaCA+CasBACn)Cl(CESA+SCACY)

+ (CaCB~SasSBCn) (CSCA-S8SACY) - Cy = O (6-43)
F(x,n,¥) = (SasySn)Sy - Sy(CaSA+SacBCn)Cy

+ Cv(CaCBR+SasSACn) - (C8CA-S8SACY) = O (6-44)
£(6,9,8) = [(CaSA+SaCAC)SY + SaSeCyl (SYSE)

AAAAAA

+ (CaCA-SaSACS) (CyCS-SYSSCE) - CR = O (6-45)
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Figure 21. ' R~-C~R-C-~P Space Mechanism .

- Figure 22, R-P-R-P-P Space Mechanism Obtained from the
Mechanism in Fig. 21 by Making n = n, = a
Constant and £ = £y = a Constant:

85



86

A A A

£W,E,x) = [(SSCA+CESACY)SE + SASYCE] (SBSY)

+ [SisisE - (sfch+csicd)cE] (cRsy+sBLyCy)

+ (C8CA-S8SACY) (CRCY-SRSYCY) -Ca = O (6-46)
F($,E,n) = (SySASE)Sy - SA(CYSE+SYCECE)CY

+ CA(CyC8-SYSSCE) - (CaCB-SaSpCn) = O (6-47)

Note that Eqs. (6-41), (6-44) and (6-47). are similar in form to Eq.
(3—6) and Eqs. (6-42), (6-43), (6-45) and (6-46) are of the same form as
Eq. (3-8). Note also that each of the above equations contains the dual
displacement angle at at least one of the two cylinder pairs.

Let the displacement angles n and ¢ at the two cylinder pairs be
now made constant at all positions of the mechanism. Denoting these
constant values by ng and & respectively, the primary parts of Egs..

(6-41) through (6-47) give

NgS¢ + N.Co + N = 0 (6-48)
PgSX ¥ PLx +Pyp = O (6-49)
QS + QCd +Qy = O (6-50)
RgSX + RCX + By = O (6-51)
SgS¢ + S5,C¢ + 85, = O (6-52)
TgSX + TeCx + Ip = 0 (6-53)
and - U, = 0 (6-54)

The constants used in the above equations are defined in Table XIII. .
Observe that each of the equations (6-48) through (6-53) consists
of only one variable and must hold»good at varying values of that vari-~

able. Their coefficients .should, therefore, vanish. This gives
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TABLE XIII

CONSTANTS FOR USE IN EQS. (6-48)

THROUGH (6~55)

SBSASNy
~SA (SaCR+CaSRCny)

CA(CaCB~SaSBCNy) ~ (CYCE-SYSSCEY)

Sa(SYCE+CYSECE,) Sy,
+ S8 (CaSp+SaCBCny)SEy
SaS65NnSE~(CaSB+SaCBCny ) (SYCS+CySECE)

(CaCB-8aSBCN;) (CYCE~SYSSCEL) ~ CX

SB(CﬁSA‘*‘SGC}\CIbk)Snk
+ $8(SaCB+CaSBCNy ) Sy
SBS 65N, SYy~ (SaCB+CaSACn; ) (CESA+SECACY,)

(CaCB-SaSBCN;) (CECA=SESACY) — Cy

SaSySny
—Sy(CaSB+SaCBan)

Cy (CaCB~SaSBCny) —‘(CGCA—SGSAcwk)

Sa Sy (SELCYHFCECELSYL) + CYSESY]
Sa{CA[Sy (8£SY-CCELCY) - CYSSCU]
- SA(CYCS-SYSECE) }
Co{SA[Sy (SEL S -CECELCU) - CYSSCY,]

+ CA(CyCo~-SyS8CEL) } ~ CB
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TABLE XIII (CONTINUED)

© SBISA(CELSYLHCSSELCY) + SSCASEY]
SB{Cy[SA(SESP~COCELCY;) - SSCACE]
- Sy(C8CA-S8SACYy) }
CBISY[SA(SELSYE~CECELCY,) - SSCACE]

+ Cy(C8CA~S8SACY,) } - Ca

SYSASE Sy, — SA(CYSS+8YCSCEL) Ciy

+ CA(CyCs-SySsCEy) - (CaCB~SaSBan)‘
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Ng = N, = N; = 0
P, = P, = P, = 0
% 7% =0 (6-55)
Rgy; = R = Ry = O
S¢ = Se = 85 = 0
and Tg = Ty = Ty = 0

Examination of Eqs. (6-53) along with Eq. (6-54) shows that the
following cases are possible:
1. Snk + 0 (That is, Ny +‘mn, m=20,1, 2, . . .)

This gives

o = B = O (6-56)
CYCS - SYS6CE, - €A = 0
C6CA - S8SACY, - Cy = O

(6-57)

and Sy {SE, S, ~CCE, Cl, )

- CySﬁka -Sx =0

2. sn, =0 (That is, n, = mm, m=0; 1, 2, . ..)

This gives.

at B = pr (6-58)

CYCS ~ SySéCE, - -1)Pcx = 0

coCA - s8sacy, - (-L)Pcy = 0 (6-59)
and SASY, —_(—I)Psysgk = 0, p=0, 1, 2,

Condifions (6-56) through (6-59) provide the necessary conditions
for the existence of an R-P-R-P-P mechanism. Egs. (6-56) and (6-58)
show that the axes of the two revolute pairs are parallel to each other.
Eqs. (6-57) and (6-59) are closure conditions relating the twist angles

Y, § and A of the mechanism with the constant displacement angles £y



90

and Y, at two of the three prismatic pairs (Fig. 22).
Extension of the Results to Other Mechanisms

The existence criteria derived in the above sections clearly show
that the five-link 3R+2P and 2R+3P mechanisms can exist only when the
axes of the revolute pairs are parallel to one another. Note that- the
results have been obtained by cdnsidering only the primary parts of the
displacement relationships of the respective parent mechanisms. Hence,
the results will remain unaffected even.if one or more.of the revélute
pairs are replaced by helical pairs of finite pitch values. The results
are, therefore, equally valid for the five-link 3H+2P, 2H+1R+2P,
1H+2R+2P, 2H+3P and 1H+1R+3P mechanisms.

Note further that the results obtained are independent of the link
lengths involved. Hence, if one of .the link lengths is taken to be
zero, the results will apply with equal validity to .four-link mechanisms .
derivable from the above. five-link mechanisms.! -

The results obtained in this chapter also confirm the results ob-
tained by Hunt [25] and Waldron [52] by using the theory of screws. It
is, however, important .to note one significant point. The results of
Hunt and Waldron were obtained.by considering the H-H-H-H-H mechanism
of Voinea and Atanasiu [49] which is-itself an overconstrained mecha-
nism. The results in this chapter havé, on the other:hand, been ob-.
taine&'by considering the‘more’general zero familj mechanisms. The
present results, thereforé, go beyond those of Hunt and Waldron and
show tﬁat there are no mechanisms with two passive,couplings consisting

of two or three prisﬁatic‘pairs other than those derived by them and

lgee, for insténce, reference [16].
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confirmed in this study. Further, in addition to the parallelism of the
axes, the present results also give the definite closure conditionms.to

be satisfied by the constant kinematic parameters of the respective

mechanisms.



CHAPTER VII
SUMMARY AND CONCLUSIONS

The present study is another step in the continuous search at un-
raveling thé mysteries of space mechanisms. In this study, the exis-
tence criteria of overconstrained mechanisms with two passive couplings
and consisting of revolute and prismatic pairs have been obtained by -
using Dimentberg's passive coupling method. This represents the first
attempt in using this method after its usefulness in the case of four-
link mechanisms was first demonstrated by Dimentberg.

The mechanisms considered in this study are.the five-link, five-
revolute (R-R-R-R-R) mechanism, the five-link R-R-R-P-R mechanism and.
the five-link 3R+2P and 2R+3P mechanisms. The existence criteria of the
five-revolute mechanism and the R-R-R-P-R mechanism obtained in the
study are new. The results obtained in the case of 3R+2P and 2R+3P
mechanisms .confirm the findings of other investigators.

The' principal results of the investigatien are as follows:

1. The existence criteria of the five-link, five—revélute mecha-—

nism with zero offset distances are obtained as two sets of 13
nonlinear algebraic.equations in the ten constant kinematic

parameters of the méchanism. The number of independent equa-
tions, however, appears to be less than ten. The derived cri-
teria are satisfied identically by the Goldberg fivefrevolute,

mechanisms. This acts as a check on the correctness and.
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validity of ;he-results, The derived criteria also make it
possible to investigate the existence of additional five-
revolute mechanisms. However, the extremely high nonlinearity
and complexity of the criteria indicate that this aspect of
the investigation is a problem in its own right. It -is, there-
fore, considered beyond the scope of the present study.

The existence criteria of the five-link R-R-R~P-R mechanism
with zero offset distances at its revolute pairs are obtained
as a set of nine nonlinear algebraic equations in the 11 con-
stant kinematic parameters of the mechanism. These equations
make it possible to investigate the existence of R-R-R-P-R
mechanisms by assigning arbitrary values to two of the 11 con-
stant kinematic parameters. However, the high nonlinearity of
the équations once again. emphasizes the complex nature of the
investigation and shows that it is a problem by itself. Hence,
it is considered beyond.the scbpe of the present.study.

The existence criteria of the five-link 3R+2P and 2R+3P mecha-
nisms obtained in the study show that these mechanisms (and
othéers obtained by extending the results) exist if and only if
the axes of the revolute (and/or helical) pairs are parallel
to one another. This confirms the results that were obtained
by Hunt and Waldron by considering the H-H-H-H-H mechanism of
Voinea and Atanasiu. The results of the present study have,
however, been obtained by considering the more general zero
family mechanisms and give, besides the parallelism of the
axes, the definite closure conditions to be satisfied by the

constant kinematic parameters of the mechanisms concerned.
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The present study clearly shows that the derived criteria represent
only necessary conditions for existence. This is a direct consequence
of the nature of Dimentberg's method. The conditions are not sufficient.
because satisfaction of the criteria does not by itself guarantee an
overconstrained mechanism of. the desired type. This is because the
criteria also have trivial solutions that give mechanisms without a true
mobility of one.

As indicated in Chapters IV and V, trivial solutions can be one of
two types:

1. A solution becomes trivial if the constant kinematic parameters
yield an overconstrained mechanism with mobility greater than
one.

2, " A solution becomes trivial if the constant kinematic parameters
yield an. overconstrained mechanism of a higher family, that is,
an overconstrained mechanism having moré than the required
number of passive couplings. In such cases, one or more of
the joints. remain permanently locked, thus resulting in a
mechanism without.true mobility.

The triviality or non~triviality of a solution can be examined by
substituting the values of the constant kinematic parameters in the
original displacement relationships of the parent mecharism. If the
mobility is two or more, the variable kinematic parameters in the parent
mechanism become indeterminate unless two or more variables are speci-
fiéd. A locked joint is indicated by the fact that the variable_kine{
matic parameter corresponding to that joint becomes constant. If
neither of the above conditions is present, the solution represents a

non-trivial solution and yields an overconstrained mechanism of the
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desired type with a true mobility of one.

Since trivial solutions always exist, the existence criteria eb-
tained by Dimentberg's method always represent a set of consistent
equations. However, all the equations in the system may not, in gen-
eral, be independent. This is particularly so when the number of un-
knowns in .the equations is less than the number of equations. It may,
however, not be possible to.examine the relationship between the equa-
tions analytically in all cases. When the existence criteria involve
only twist angles and constant displacement angles, they can generally
be expected to be comparatively simple. It may then be possible to in-
vestigate the relationship between.the equations analytically. This is
illustrated in the present .study by the existence criteria of the 3R+2P
and . 2R+3P mechanisms obtained in Chapter VI where they have been ex-
amined fairly thoroughly. When, however, the existence criteria involve
link lengths and constant offset distances in addition to twist angles
and constant displacement angles, they can generally be expected to be
complicated. It may then become very difficult to examine the relation-
ship between the equations analytically. This is illustrated in the
present study by the existence criteria of the five-revolute and
R-R-R~P-R mechanismsbobtained in Chapters IV and V respectively.

The present study has also shown that, while using Dimentberg's.
method,vit'is possible to get.useful results and often avoid. unnecessary
analytical work if certain important points are borne in mind. These
are .discussed below:

1.  When the displacément relationships involved are algebraic in.

nature, the Dimentberg method ultimately leads to one or more.

polynomial equations. The complexity and the order of these
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polynomials can be appreciably reduced by considering the en-
tire spectrum of equations available by arranging the loop-
closure condition in various ways rather than by considering
just.-a few of the available equations. This is well illustra-
ted by the existence criteria of the five-revolute mechanisﬁ.
Thus, since only some of the available equations have been con-
sidered, the results of Dimentberg lead.to two sixty-fourth
degree polynomials. On the other hand, since all of the avail-
able equations have been considered, the results of the present
study lead to two polynomials of only the twenty-fourth degree.
The primary part of a dual equation contains only the primary
parts of its component terms. The dual part of a dual equa-
tion, however, involves both the primary and the dual parts of.
its compenent .terms. The dual ﬁart of any dual equation is,
therefore, always more complicated than its primary part: Now,
when passive coupling is.imposed on a cylinder pair to reduce
it to a prismatic pair, restrictions are put on only the rota-
tion at the cylinder pair and thus one has to deal with the
primary parts of the concerned displacement relationships.
However, when passive coupling is imposed on a cylinder pair

to reduce'it to a revolute pair, restrictions are put on only
the translation at the cylinder pair and thus one has to deal
with the dual parts of the concerned displacement relation-
ships. - It, therefore, follows that the analytical work invel-
ved in.reducing a cylinder pair to a prismatic pair is always
much less complicated than in reducing that cylinder pair to a

revolute pair. This is well illustrated in the present study.
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in which it can.be seen that the existence criteria of . the
R-R-R~P-R mechanism obtained in Chapter V are much less com-
plicated than those of the five-revolute mechanism obtained in
Chapter IV.

When the displacement relationships involved are algebraic.in
nature, the Dimentberg method often involves examination of the
common roots between two polynomials or successive sets of two
polynomials. 1In all cases, it is necessary to.consider. only
one common root between the equations.involved. This leads to-
the most general results. It is, however, theoretically pos-—
sible to consider more than one common, root . between the equa-
tions involved. This results in more severe conditions on .the
coefficients of the equations involved. The resultant condi-
tidns, however, represent only special cases of the more. gene- .
ral case obtained by considering only one common.root. This,
of course, is to be expected because when two equations have
more than one common root, it certainly implies that they have
one common root.

If the parent mechanism has no helical pairs, the existence
criteria of the derived overconstrained mechanisms are alge-
braic in nature. TIf the parent mechanism contains helical
pairs, the derived existence criteria remain,algebraic iﬁ na-
ture if only the rotations.at the helical pairs are involved.
The results, however, become non-algebraic if both the rota-
tions '‘and the translations at the helical pairs are involved;
Thus, in the present study, the existence criteria obtained are

all algebraic in nature because the parent mechanisms consid-
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ered do not have any helical pairs. Further, it is possible
to extend the results obtained in Chapter VI to the indicated
mechanisms with helical pairs because only the rotations.at=

the appropriate pairs are considered. On the other hand, the

existence criteria of .a mechanism like the general H-H-H-H-H

mechanism are expected to be non-algebraic.in nature since
they are.expected to involve both the rotations and the trans-

lations at the helical.pairs.

The present study has also demonstrated the general usefulness,

applicability and scope of Dimentberg's method for obtaining the exis-

tence criteria of overconstrained mechanisms. Even though a high level

of algebra is often required, the method has the following distinct

points in.its favor:

l ..

The most important feature of .the method is the assurance of
the finite mobility of the derived overcomstrained mechanisms.
Since one.starts with a parent mechanism of assured finite mo-
bilipy; the finite mobility of the derived mechanisms is

assured. .

- The method is capable of yielding the necessary conditiéns for

the existence of an overconstrained mechanism. These include
all possible solutions. The method thus has the feature of

uniqueness and completeness.

The method -clearly shows that, in general, the mobility of an.

overconstrained mechanism is a function of all.of its constant.
kinematic parameters. The so-called paradoxical mechanisms,
therefore, no longer remain.paradoxical since it can be shown

that they exist only because their constant kinematic parame-
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ters:satisfy certain definite mathematical relationships.
The derived criteria permit the computation of the constant

kinematic parameters . of an overconstrained mechanism.

The results of the present study have clearly demonstrated that the

investigation of the conditions for the existence of an overconstrained

mechanism consists of two distinct steps:

1.

The first step is to obtain or derive the_existence criteria.
These criteria are in .reality a set (or sets) of equations re-
lating the constant kinematic parameters of the overconstrained
mechanism. The derived criteria provide necessary, but not
sufficient, conditions for existence. Further, the criteria

represent a.consistent system of equations.

- The second step is to obtain a compatible set of constant

kinematic parameters of the overconstrained mechanism satisfy-
ing the derived criteria. When the derived criteria are com-
parativeiy simple, it may be possible to examine them ana-
lytically and obtain.simple functional.relationships between.
the constant kinematic parameters. However, when the derived
criteria are . very complicated, it may not be possible to ex—
amine them analytically. In such cases, numerical methods
have to be resorted to in order to -obtain a compatible set of

constant kinematic parameters satisfying the derived criteria.

Except.in very simple cases, each of the above two steps can be

regarded as a problem by itself. Thus, for instance, the existence

criteria of a five-link, five-revolute mechanism with non-zero offset-

distances  are ‘expected to lead to two sixty-fourth degree polynomials

-which, in .turn, lead .to 130 conditions on its comstant kinematic
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parameters. It can be seen that errors are apt to be introduced if such

high order polynomials and such a large number of equations are not

carefully handled. Again, the examination of the resultant conditioms.

in order to obtain a compatible set of constant kinematic parameters

presents a task of formidable proportions.

The present study shows that the mobility of space mechanisms is a

field of continued interest and challenge. In the coming years, the

following important areas of research appear to offer great promise:

1.

The derivation of the existence criteria of the H-H-H-H-H-H,
H-H-H-H~H and H-H~H-H space mechanisms. These mechanismss
represent the most general overconstrained mechanisms with
one, two and three passive couplings respectively. The exis-
tence criteria of all other overconstrained mechanisms within
these families can be obtained as special cases of the exis-
tence criteria of .these mechanisms by proper selection of

pitch values and constant kinematic parameters.

- Development of suitable mathematical methods to obtain the

constant kinematic parameters of overconstrained mechanisms
from their existence criteria. It should be possible to uti-
lize the derived criteria to generate new mechanisms.
Investigation of the type of motion provided by overconstrained
mechanisms. This is required in order to fully utilize the

capabilities of space mechanisms,

The present study. represents another attempt. in understanding the

nature . of space mechanisms. Similar studies in future can be expected

to lead to a greater insight .into their nature and thus make it possible

to unravel the mysteries of space mechanisms.
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APPENDIX A
DEFINITIONS ‘AND EXPLANATION OF TERMS USED

Mechanism. A closed kinematic chain in which one of the links is
fixed is called a mechanism.

Mobility of a Mechanism. The mobility of a mechanism is the number

of independent quantities required to specify its motion completely.
A mechanism with mobility one is said to have constrained motion.

Constant and Variable Kinematic Parameters of a.Mechanism. The

constant ‘kinematic parameters of a mechanism are the link lengths,
the twist angles, the constant offset distances (or kink links, as
they are sometimes called)/and the constant displacement angles.
These parameters are constant for a given mechanism and remain un-
changed during its motion.

The variable kinematic parameters of a mechanism are the vari--
able offset distances (or translations) along its pair axes and the
variable displacement angles. These parameters are.not constant
for a given.mechanism, but vary during its motion.

In the present study, the link lengths are denoted by a, b, ¢,
d and e, the twist angles by o, 8, y, § and A, the variagzzﬁaffset-
distances by x, u, w, v and y, the constant offset distancés by Xy

Uy, Wy, Vi and yy, the variable displacement angles by ¢, n, x, &

and ¥ and .the constant displacement angles by ¢, Mes Xpo & and Up .
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Finite Mobility, Transitory Mobility and True Mobility of .a Mecha-
nism. A mechanism is said to have finite mobility when it is capa-
ble of executing motion over a finite range. A mechanism is said
to have transitory or .instantaneous mobility when it is capable of
executing motion over only an infinitesimal range. Thus, for ex-
ample, a spherical'four—link, four-revolute mechanism has -a finite
mobility of ome., However, if the revolute pairs are.replaced by
helical pairs of equal pitch values, the resulting configuration
will not have finite mobility, but only a transitory mobility of
one [26]. It may also be noted that instantaneous mobility at all
instants may often lead to finite mobility [25, 52].

A mechanism is-said to.have true mobility when it has finite
mobility with all the freedoms in all of its joints active. A
mechanism does not have true mobility when it has-finite mobility
with some of the freedoms in some of its joints not active. If
this effect occurs only at certain discrete positions, then  those
configurations of the mechanism rep;eéent its locking positions
(limit positions or dead center positions) [25, 52]. Thus, for
instance, a plane four-link four-revelute mechanism has, except ét,
its lockihg positions, a true mobility of one, but a five-link

H-P-P-P-P space mechanism does not have true mobility since its

helical pair remains permanently locked.

In the context of the present study, a mechanism is . said to
"exist" when it has a true mobility of . one.

Zero family Mechanisms, Overconstrained Mechanisms and Passive

Couplings.  Consider a single-loop space mechanism. Let f; denote

the number of degrees of freedom permitted at the ith joint. Zfi
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then denotes the total number of degrees of freedom permitted at all
the joints.

When Zfi = 7, any random combination of conétant.kinematic
parameters will, in general, yield a mechanism with mobility one.!
Such mechanisms in which there are, therefore, no conditions imposed
on the constant kinematic parameters are called zero family mecha-
nisms [22].2 The R-C-C-C mechanism, the R-C-R-C-R mechanism and the.
R-R-R-R-C-R mechanism are some examples of zero family mechanisms.

When-Zfi < 7, a random combination of constant kinematic pa-
rameters will, in general, yield a configuration which is a struc-
ture.’ Mechanisms with Zfi < 7 can exist with mobility one only
when their constant kinematic parameters satisfy certain definite
mathematical relationships. Such mechanisms in . which there are,
therefore, conditions imposed on the constant kinematic parameters
are called overconstrained mechanisms. The plane and spherical.
four-link mechanisms,.the Bennett mechanism [4] and the Goldberg
mechanisms. [20] are some examples of overconstrained mechanisms.
Note that in all of these mechanisms, the constant kinematic parame-
ters satisfy certain definite relationships.

A zero family mechanism will function as an overconstrained

mechanism if its constant kinematic parameters are so chosen.as to .

IThis is not always true. Thus, for instance, a seven-link
P-P-P-P-P-P-P space mechanism (Zfi = 7) with a random combination of con-
" stant kinematic parameters yields a configuration with mobility four.

°The mechanism "series' mentioned in reference [22] is referred to
here as the mechanism "family." See also reference [40].

3This is not always true. Thus,; for example, a four-link P-P-P-P
space mechanism (Zf:.L = 4 < 7) with a random combination of constant
kinematic parameters .yields a configuration with mobility one.
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make the freedoms in some of its joints passive. Thus, for example,
1f the kinematic axes in an R-C-C-C mechanism are taken to be
parallel to one another, the translational freedoms.in -all the
cylinder pairs will become passive and the mechanism will, in
effect, function as a plane four-link mechanism. Overconstrained
mechanisms can, therefore, be considered to have "passive couplings"
and all overconstrained mechanisms can be regarded as special cases
of appropriate zero family mechanisms on which suitable ''passive
coupling' conditions. have been imposed. The passive couplings are,
in effect, conditions imposed on the constant kinematic parameters.

The number of passive couplings Cp in an overconstrained

mechanism is given by the simple relationship
Cp = 7 - Jf1i (A-1)

where Zfi denotes the total number of degrees of freedom permitted
at all.the joints of the overconstrained mechanism. Observe that
the value of Cp given by the above relationship also gives the
family number of the overconstrained mechanism [22]. Zero family

mechanisms thus do not.have any passive couplings.

- Existence criteria of an Overconstrained Mechanism. In the context.

of the present study, . the existence criteria of an overeénstrained
mechanism denote a set (or sets) of conditions that are necessary
for‘its;existencel These conditions are equations relating the.
constant kinematic parameters of the mechanism. An overconstrained
mechanism of the prescribed type satisfies éll'of the conditions

forming the existence criteria simultaneously.



APPENDIX B
CONDITION FOR COMMON ROOTS

The number of common roots of two polynemials is decided entirely.
by their coefficients. In particular, certain matrices.formed from the
coefficients play an important role in the examination of the number of
common roots.

Consider the following two equations:

]

0 (B-1)

Fp (x) amx™ + ap— ¥ + . L .+ a,x? +.a;x + ag

0 (B-2)

£ (x) bpx™ + by x%7L 4+ . . L 4+ byx? + bix + by

By using the coefficients of the two polynomials, we first form
the matrix A, shown  on the next page. This is a square matrix with
(m+n) rows and (m+n) columns. It consists of two groups of rows. The
first group consists of n rows and is formed from the coefficients of -
F,{x); the second group coensists of m.rows.and is formed from the coef-
ficients of fa(x).

Matrices A,, Agy, ¢« o . 5 Dy, . . . are obtained from the matrix Ay
by the deletion of suitable rows and columns. Thus, matrix A, is ob-
tained by deleting the first column of A, and the first row from each-
of the two groups of rows in Ay. Matrix A, is obtained by deleting the-
first two columns of A, and the first two rows from each of the two
groups of rows in A;. In general, the matrix Ay is obtained by deleting

the first (k-1) columns.of A, and the first (k-1) rows from each of the
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two groups of rows in.Aj.

The following two important theorems deal with the number of com-

mon roots [6].

Theorem 1., If Fp(x%) and fn(x) have.p or more common roots, then

rank of A, is less than or equal.to (m+n-2p+l).

Theorem .2. If ap or bn is non-zere and the rank of Ap is less than
or equal to (mt+n-2p+l), then Fy(x) and fp(x) have at least p common roots.
For the particular case of one common root, the following corollary

follows directly from Theorem.l:

Corollary. If Fp(x) and fn(x) have one common root, the determin-
ant of A; vanishes.
The above.theorems can be best illustrated by examples.

Example 1. Find the value of q if the two equations

]
o

F3(X)

]

%3 = 7x + q

]
o

and f,(x) %2+ x -2

have ‘at least one,common: root.

Solution., Here we have m=3,n=2and p=1. From Theorem 1,
it follows that the rank of A; must be less than or equal to (3+2-2+1),

that is, 4. We have.
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The rank of the above matrix should not exceed 4. Its determinant.
must, therefore, vanish. This gives the condition q = 6.
If q = 6, the polynomial FB(X) is x3 - 7x + 6 = Q. Fs(x) and'fz(x)

then have 1 as their common.root.

If q = -6, the polynomial F,(x) is x3 - 7x - 6 = 0. F,(x) and

fz(x) then have -2 as their common root.

Example 2. Examine the number of common roots between the follow-

ing two equations:

Fo(x) = x3 -2x2 -x+2 = 0
fa(x) = x3+3x?-x-3 = 0
Solution. Here we have m = 3 and n.= 3. We also have

1 -2 -1 2 0 0]
0 1 -2 -1 2 0
0 0- 1 =2 =1 2
Al =
1 3.-1 -3 0 ©
0O L 3 -1 -3 0
0 0 1 3 -1 -3
1 -2 -1 2 0]
0 1 -2 -1 2
A2 =
1 3 -1 =3 0
0 1 3 -1 -3
1 -2 -1 2
and A3 =
|1 3 -1 -3
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The rank of A; is less than 6. Hence, from Theorem 2, there is at
least one common.root.

The rank of A, is less than 4. Hence, there are at least two
common. roots.

The rank of A3 is 2. Hence, there cannot be three common roots.

It, therefore, follows that the two given equations have two common.

roots. It can be seen that these two common roots.are 1 and -1.



APPENDIX C

DERIVATION OF THE R-P-C-P. AND
R-C-P-P MECHANISMS FROM
THE ' R-C-C-C MECHANISM

The existence criteria of the R-P-C-P and R-C-P-P space mechanisms
can be obtained from the displacement relationships of an R-C-C-C space
mechanism.

Consider the R-C-C-C space mechanism shown schematically in Fig.
23. By suppressing the rotational freedom of the cylinder pair at the
output joint D, it .is possible to examine the conditions for the exis-
tence of .a prismatic pair in this mechanism.

The relationship between the input angle ¢ and the output angle ¥

of the mechanism in Fig. 23 is given by [55]

(Fp,@24F,0)¥2 + F 0¥ + (F(,0%4F;)) = O (c-1)
where ¢ = tan{¢/2)
¥ = tan(y/2)
and. Fy,, = C(6-a-y) - CB
Fog = C{é+a-y) - CB
Fi, = 4SoSy (C-2)

Let the angle .} be now made constant for varying values of the
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Figure 24, R-P-C-P and R~C-P-P Space Mechanisms Obtained. from the
Mechanism in Fig. 23 by Making y = ¥, = a Constant.
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angle ¢. The cylinder pair at joint D (Fig. 23) then reduces to a
prismatic pair. Denoting the constant value of ¢ by y; and the corres-

ponding value of ¥ by ¥, Eq. (C-1) becomes
2 2 2 =
(WkF22+F02)¢v + WkF11® + (WkF20+FOO) = 0 (C-3)

The above equation must hold good at varying values of .the variable

¢, Its coefficients must, therefore, vanish. This gives

2 =
¥2F,, + Fg, = O
2 ‘ =

Examination of the above equations shows that the following cases

are possible:

(a) Wk = 0 (That is, wk = 2nm, n =0, 1, 2, )
This gives
Fgo = O
(C-5)
and FOO = 0
(b) Wk = (That is, wk = (2n+l)7, n =0, 1, 2, . . .)
This gives
Fao = 0
_ (C-6)
and Fog = 0
(e) Wk + 0 and Wk +. o (That is Yy +‘nﬂ, n=0,1, 2, . . .)
This gives
2 -
2 =
and . WkFZO + Fpgg = O

Substitution of relations (C-2) in Eqs. (C-5), (C-6) and (C-7) and
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examination .of the resultant equatioms show that the above cases to-

gether give the following three independent sets of solutions:

Solution 1

o *pf = nar (C-8)
and Y = 2nm
form = 0, 1, 2, . .
Solution 2
§ -~y = qrm
o B = nm (Cc-9)
and lpk = (2n+l)w
form = 0,1, 2, . . .
Solution 3
o = QOormw
(C-10)
and SSSycwk - CéCy £ CB = O

Substitution of the above ‘conditions.in the displacement relation-
ships of the parent R-C-C-C mechanism [55] show that Solutions 1 and 2
give a prismatic pair at . joint B in addition to a prismatic pair at
joint D. These solutions, therefore, give an R-P-C-P mechanism
[Fig. 24(a)]. They also show that the axes of the revolute pair at
joint A and the cylinder pair at joint C are parallel to each other.

Solution 3 .gives a prismatic pair at joint C in addition to a
prismatic pair at joint D. It, thereforé, gives an R-C~P~P mechanism
[Fig. 24(b)]. It also shows that the axes of the revolute pair at
joint A andithe cylinder pair at joimt B are parallel to each other.

The above results thus lead to.the conclusion that, in an R-C-C-C
mechanism, when one cylinder pair is reduced to a prismatic pair,

another cylinder pair is also reduced to a prismatic pair. Further,
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- the axes of the revolute pair and the remaining cylinder pair are then
parallel to each other. These results agree with those obtained by

Dimentberg and Yoslovich [16],!

1See;also reference  {19].



APPENDIX D

DERIVATION OF THE R~C~R-C MECHANISM
FROM THE R-C-R~C-R MECHANISM

The existence criteria of an R~C-R-C space mechanism can be ob-.
tained from the displacement relationships of an R-C-R-C-R space
mechanism.

Consider the R-C~R~C-R space mechanism shown schematically in Fig.
25. Note that the constant offset distances at,the three revclute
pairs are taken to be zero. This mechanism reduces to an -R-C-R-C
mechanism if . the output angl; Vv is forced to be constant at all posi-
tions of the mechanism. If, in addition, we take e = 0 and » = O, the
resulting R-C-R-C mechanism reduces to the conventional form shown in
Fig. 26.

With e = 0 and X = Oy the input-output relationship of the mechan-

ism in .Fig. 25 is given.by [56]

(G+6,92)¥2 + .G oY + (G,1G,%2) = O (D-1)
where ¢ = tan(¢/2)
¥ = tan(y/2)
and Gg = bSyCy + cSBCB - (bCBSy+cSRCY)C(8—a)

- (d-2)5(8-0)SB8Sy
G2 = bSyCy + cSBCR - (bCBSy+cSRCY)C(S+n) (0-2)

+ (d+a)S(8+a)SRSy -
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Figure 25. R~C-R-C-R Space Mechanism

7//////////////////[)
A d,8 ©

Figure 26. R-C-R-C Space Mechanism Obtained from the
Mechanism in Fig. 25 by Taking e = 0
and A = 0 and by Making ¢ = a Constant
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and G, = 4(aCoSB5ySS - bSaCBSYSS - cSaSBCYSS

+ dSaSRSYCS)

Let the angle y be now held constant for varying values of the
angle ¢. Denoting the constant value of y by Y, and the corresponding

value of ¥ by ¥, Eq. (D~1) becomes
(¥§621G() 9% + %610 + (¥§GotG,) = O (D-3)

The above equation must be valid for varying values of the varia-

ble ¢. Its coefficients must, therefore, vanish. This gives:

2 -
¥, + Gy = 0
and ¥{G; + G, = O

Examination of the above equations shows that the following cases

are possible:

() ¥y = Oor e~ (That is, Yy =nm, n =20, 1, 2, . . .)
This gives
Gy, = 0
' (D-5)
and G2 = 0
(b) V¥x + 0 and ¥ ¥+ = (That is, yi +.nn, n=0,1, 2, ... .)
This gives either
' Gg = O
G, = 0 (D-6)
and G, = 0
or
GO’ + G2 = 0
(D-7)
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Substitution of relations (D-2) in Eqs. (D-5), (D-6) and (D-7) and
examination of the resultant equations show that they all lead to the

same results which, after simplification, can be written as.follows:

SaS§ (bCBSy+cSRCY) - SBSy(aCaS8+dSacCs) (D-8)

SaS8 (bSyCy+cSBCR) SBSy(aSsCs+dSaCa) (D-9)

The above equations represent the necessary conditions for the ex-
‘istence ‘of .an R-C-R-C space mechanism with zero offset distances at.its
revolute pairs and are identical with the results thét were obtained by
Dimentberg from the displacement relationships of an R-C-C-C space

mechanism [13, 14].



APPENDIX E

NUMERICAL SOLUTION OF NONLINEAR
SIMULTANEOUS EQUATIONS 

Except in very simple cases, the solution of systems.of nonlinear
equations can be attempted only by numerical means. Of the various.
methods that are availabie, Newton's method, which is a second-order
iterative process [47], is generally preferable [48]. This method, like
.other functional iterative methods, requires‘the‘selection of an initial
approximation  to the solution of the problem. The approximation is then
continuously improved until there.is convergence or it is clear that
there is no convergence.

Let

(x5 X, « v v, %) = 0, i=1,2,...,n (E-1)

represent .a system of n nonlineaf equations .in n unknowns . Using the
initial approximation to the solution, the functions fj and their par-

tidl derivatives are first evaluated. The 'corrections' Ax; are then

J
calculated by solving the set of 1linear equations
n
Xif_lmxj = ~f;, 1=1,2,...,n (E-2)
§=19%]

The corrections are then added to original solution and the procedure_
repeated until there is convergence or it is obvious that there is no
convergence.

The Newton method described above is characterized by two important

features. One is the need for a good initial approximation to the final
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gsolution. The other is the necessity of evaluating and inverting the
Jacobian [211 (Thé coefficient matrix in Eq. (E-2)) at every.stage of
the iteration.

The need to choose a good initial approximation to the solution
may . not be a severe,;estriction in many cases, but it becomes quite
important when one,is dealing with a large number of highly nonlinear
equations [32]. It may then become very difficult to choose initial
approximations that eventually lead to comnvergence, This restriction
can be rémoved<by employing methods that involve "parameter perturba--
ﬁion" [37, 18] or "parameter variation" [12]. These methods are based
essentially on an idea . originally proposed by .Davidenko [11] and consist,
in effect, in reducing the main problem into a number of subsidary.
problems that are more readily solvable.

When the equations in the system (E~1) are very complicated, ex-
plicit evaluation and subsequent inversion of the Jacobian may.become
very difficult or even impossibie.' invsuch cases,; the difficulty can
be overcome by using the so-called quasi-Newton methods.[3, 7, 8].
These methods involve the use of some form of approximation to the in-
verse Jacobian and modification of this approximate matrix at every
stage of the iteration.

The methods proposed so far for the solution of complicated non-
linear simultaneous equations have employed either the Davidenko
-approach or the approach of the quasi-Newton methods. A new method com~
bining the,featureS»of both ‘these approaches has recently been proposed
by Broyden [9] who has shown it to be extremely useful in the solution

of many difficult problems.
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