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CHAPTER I 

INTRODUCTION 

One of the most interesting and important areas of research in the 

science of mechanisms is the mobility of space mechanisms. 1 This in­

volves the examination of the ,conditions under which a spatial kinematic 

chain with a specified number and type of links and joints. can have. con­

strained motion. Such a study ts essential ,in order to fully utilize 

the capabilities of space mechanisms. 

The mobility of mechanisms has been the subject of numerous inves­

tig~tions in the past many years. These studies have resulted in a 

number of mobility criteria. An excellent account of such criteria has 

been given by Harrisberger and Soni [23]~ 

An examination of the various mobility criteria reveals certain im­

portaht features. For insta11ce, some of the criteria, like those of 

Grtibler, :M:alytclieff and Kutzbach, are concerned only with the number 

and the type of. kinematic links and joints in a mechanism. Such an 

approach is quite satisfactory in the case of plane and spherical 

mechanisms because of the special orientation of the axes, but fails to 

explain the exist:,eµce of many well-known space mechanisms. These cri­

.teria thus give rise .to the so-called paradoxical mechanisms, the term 

pa;adoxical only emphasizing lack of complete knowledge of the nature 

1see items 1 and 2 in Appendix A. 

2Numbers in brackets denote references given in the Bibliography. 

1 
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of the motion of mechanisms,, It would appear that, in general, any mo­

bility criterion for space mechanisms must take into account not only 

the number and the type of kinematic links and·joints in a mechanism, 

but also its constant.kinematic parameters. 3 This is perhaps best 

illustrated by the well-known,Bennett [4] and Goldberg [20) mechanisms 

in which there are·definite conditions imposed on the constant kinematic 

parameters. This is also born~ out·by certain recent studies on space 

mechanisms [40,44,45), 

Some of the mobility criteria explain the existence of paradoxical 

mechanisms by taking intq account the presence of additional cqnstraint:s 

in a mechanism. Thus, Artobolevskii and Dobrovol'ski.have introduced 

the concept of "general constraints." According to Kolchin, mechaRi,sms 

can also have. "passive constraints" in addition to general,constraints. 

The exact nature of .these constraints is, however, not known nor is 

there any definite procedure given to ident:ify their existence. 

The conventional mobility criteria predict: the existence of hund­

reds of mechanisms with mobility one [22,23,17). They do not, however, 

give any inform1;1.tion as to how to go·about builq.ing these mechanisms. 

Further, the criteria also predict many mechanisms that are nqt valid 

either because they have too many degrees of freedom or because they do 

not have "true mobility;"4 that is, they result in certain joints that 

remain locked. An example for the former case is the space P-P-P-P-P-P 

(P: Prismatic Pair) mechanism which has three degrees of freedom. An 

example .for th.e latter case is the space R-P--P-P-P (R: Revolute Pair) 

mechanism in which the revolute pair remains permanently locked. The 

3see item 3 in A~pendix,A. 

4see item 4 in Appendix.A. 
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conventional mobility criteria are thus quite inadequate ancl unsuitable 

for obtaining the existence criteria of space mechanisms .. This has 

prompted investigators in recent years to adopt alternate approaches to 

the study of mechanism mobility. 

The approach of Moroshkin [29] is based on the number of closed 

loops in a mechanism. In this method, transformation equations are 

used to describe the.basic geometry of a.mechanism. The number of in­

dependent tra~sformation equations, which is also the rank of the system 

of equations, is determined by the configuration of the mechanism. The 

mobility of the mechanism is related to the number of degrees of freedom 

in all the joints.and the rank of the system of transformation 

equations. 

Another important approach to the problem is based on the classi­

cal theory of screws. This theory.was developed during the last century 

and is based on two fundame.ntal theorems proposed by Chasles [10] and 

Poinsot (35]. A detailed account of the theory has been given by Ball 

in his monumental work published in 1900 [2]. An excellent review of 

the theory has also been given by Henrici [24]. In recent years, 

Sharikov [39], Voinea and Atanasiu (49], Waldron- [50,51,52,53,54] and 

Hunt [25,26,27] have employed this theory to examine the mobility of 

mechanisms, In this approach, a mechanism is regarded as a group or a 

collection of screws in space. The screws define a screw system whose 

order is determined by the configuration of the mechanism and the pitch 

values of the screws. The mobility of the mechanism is related _to the 

total number of screws in the mechanism and the order of the screw sys­

tem formed by them. 

The existence conditions. of mechanisms can also be examined by. 
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using a m~thematical.theory recently developed by Soni [40] and by.Soni 

and Harrisberger [42]. In.this method, the total geometry of a mecha­

nism is described by a matrix .called the residual coefficient matrix 

(RCM) by using (3x3) matrices with dual-number elements. The·rank of 

this matrix is related to the mobility of the mechanism. The procedure 

for obtaining this matrix is iterative in natu.re. The existence cri­

teria of mechanisms. can. be obtained by a systematic investigation of 

the properties of this matrix. The procedure has been employed in an 

investigation of the existence criteria of a six-link, six-revolute 

mechanism [44]. The properties of the .RCM also permit it to be used as 

a basis fqr the classification of mechanisms [43]. 

Yet another approach to the study of mechanism mobility is based 

on·the use of vector.algebra. A general method for obtaining the com-,, 

patibility conditions of mechanisms by using this method has recently 

been proposed by Pelecudi and Soni [33,46]. 

The various methods described above for examining the mobility of. 

mechanisms are important contributions to the study of mobility and 

represent significant·improvement over the conventional mobility cri­

teria. Th~se methods hav~·contributed considerably to a better under­

standing of the nature of space mechanisms. Nevertheless ., all these 

approaches suffer from one ser:i,ous. shortcoming, and th.is is that they 

are all essentially concerned only with instantaneous or transitory. 

mobility and not with finite mobility. 5 This feature makes them gene­

rally unsuitable. particularly for examining the existence criteria 

of mechanisms in which there are conditions imposed not only on the 

twist angles, but also on the other constant kinematic parameters. This 

5See item 4 Appendix A. 
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drawback.is; however, overcome by the passive coupling method developed 

by.Dimentberg and first introduced by him in 1948 [13,14,15]. In this 

method, the existence criteria of an ov.erconstrained mechanism 6 a.re ob-

tained from the displacement relationships of an appropriate zero family 

mechanism [22]6 by imposing suitable passive coupling conditions 6 on the 

latter; that is, by making some of the joints passive. The method not. 

only assures finite mobility, but is also capable of yielding the ne-

cessary conditions .. for the existence of the derived mechanisms. 

The purpose of the present study is to obtain the existence cri-

teria7 of overconstrained mechanisms with two passive couplings and con-

sisting of revolute and prismatic pairs. A systematic investigation of 

these mechanisms has been greatly hindered so far by the non-availability 

of closed-form.displacement relationships of spatial five-link mecha-

nisms. However, the results recently obtained by Ya~g [56,41] make it 

possible to obtain the existence criteria of these mechanisms by using 

D:i.mentberg 's passive coupling technique. 

Specifically, the objectives of the present investigation are: 
' 

To obtain .the existence criteria of the five-link, five-

revolute (R-R-R-R-R) space mechanism. ·This is the primary 
. . 

objective of the, present study. The derived criteria should 

not only justify the existence of known five'-revolute mecha:-
1 ! . . 

nisms [20, 30], but ··should also make it possible to investigate 

the existence of other five-revolute mechanisms, 

6see item 5 in Appendix A. 

7see item 6 in Appendix A. 



2. To obtain the existence criteria of the five-link R-R-R-l?-R 

space mechanism. The derived criteria should facilitate the 

investigation of the existence of such mechanisms. 

3. To ·obtain the existence criteria of the five-link 3R+2P and 

2R+3l? space mechanisms. Besides explaining the existence of 

known mechanisms (25, 52, 16], the derived criteria should 

also reveal the existence of other mechanismf;!. 

6 

In.the next chapter, the Dimentberg passive coupling method em­

ployed for the above pt.lrpose is.discussed in great detail. Chapter III 

is devoted to a general discussion of mechanisms with two passive 

couplings. In the remaining chapters, the results of the objectives 

mentioned above·are presented. 



CHAPTER II 

DIMENTBERG'S PASSIVE COUPLING METHOD 

The Dimentberg passive coupling method can .be used to obtain the ex-

istence criteria of overconstrained mechanisms. Dimentberg first intro-

duced this method in 1948 and has used it to obtain the existence cri-

teria of a nu~ber of overconstrained four-link mechanisms [13, 14, 15].1 

Nature of Dimentberg's Method 

In Dimentberg Is method, an overconst:rained mechani.sm is obtained 

by imposing suitable passive coupling conditions.on an appropriate zero 

family mechanism. The zero family mechanism so chosen is referred to 

here as the parent mechanism. 

The use of Dimentberg's method for obtaining the existence criteria of. 

an overconstrained.mechanism involves the following three distinct steps: 

1. The first step is to select th~ parent mechanism. It is, in ,. 

general, possible to derive an overconstrained mechanism from 

more than one parent mechanism. Thus, for instance, the 

R-C-R-c2 mechanism can be derived from either. the R-C-C-C 

10gino and Watanabe [31] have recently.used dual-number quaternion 
algebra to study th.e mobility of a spl:l.tia.1 four-link chain with four 
cylinder pairs and have come up with certain overconstrained four-link 
mechanisms. They are., however, apparently unaware of the work of Diment­
berg [13,14] in which similar .results were obtained many years.ago. 

2Throughout this study, R, .p, H and C are used to denote the revo­
lute, prismatic, helical and cylinder pairs respectively. 

7 



mechanism or the R-C'7R-C-R mechanism. 

2. The next step is to obtain the displacement relationships of 

the parent mechanism. 3 If the parent mechanism has no helical 

pairs, the displacement relationships are algebraic.in nature. 

If, however, the parent mechanism has helical pairs, the rela-

tionships involving only the rotations at the helical pairs 

still rema:f_n algebraic in nature, but the relationships in-

volving the translations at th,e helical pairs become non-

algebraic in nature. 

3. The third and final step in Dimentberg's method is to_impose 

the requireq passive couplipg conditions on.the parent mecha-

nism so as.to obtain the desired overconstrained mechanism. 

When the displacement relationships involved are algebraic in 

nature, this step very.often involves examination of the con'7 

ditions.for conunon roots between two algebraic polynomials or 

between successive sets of two polynomials. The results ob-

tained lead to conditions on the constant kinematic parameters 

of the pare~t mechanism and provide the necessary conditions 

for the exist~nce of the desired overconstrained mechanism. 

Example 

The Dimentberg method described above can be best illustrated by 

an example. 

Let it be requireq, to obtain·the existence criteria of.an R-C-C-R 

mechanism. This can 'pe don·e. by consiq~ring an R-C-C-C mechanism as the 

3As -a rule, the complexity of the displacement relationships in­
creases as the number of links in the parent mechanism i,ncreases. See, 
for inE!tanc;e, references [55] and [SqJ, 

8 
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parent mechanism. 

Consider the R-C-C-C space mechanism shown schematically in Fig. 1. 

This mechanism reduces to an R-C-C-R mechanism if the .translation y.at 

the output cylinder pair remains consta1;1t at all positions of the 

mechanism (Fig. 2). 

The relationships between. the input variable ¢ and. the output 

variables 1j; and y of the mechanism in Fig. 1 are given by [ 55] 

- A2 (qi) '¥2 + Al (qi)'¥ + Ao (qi) 0 

and y[B2 (qi)'!' 2 +~ 1 (qi)'f'+B 0 (qi)]+c2(qi)'f'2 +c 1 (qi)'±'+C 0 (qi) = o 

where qi = tan(¢/2) 

'¥ = tan(ij;/2) 

and Ai(qi) = Ai2qi2 + Ailqi + Aio 

Bi (qi) Bi2qi2 + Bil qi + Bio 

Ci(qi) = ci2qi2 + cil qi + Cio i = o, 1, 2 

(2-1) 

(2-2) 

(2-3) 

The constants in Eqs. (2-3) involve only the constant kinematic parame­

ters of the mechanism in Fig. 1. 

Let the translation y at the output cylinder pair.be now held con­

stant at .all positions of the mecbani~m. Denoting this constant value 

by Yk, Eq. (2-2) becomes 

Since yk is a constant, the abov.e equati<;m can be rewritten as 

0 

If an R-C-C~R mechanism is to exist, it is necessary for the 

(2-5) 

(2-6) 



© 
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© 
B 

A 

® 
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© 

Figure·1. R-C-C-C Space Mechanism 

© 

© 

A 

® 
d,8 D 

® 

Figure 2. R-C-C-R Space Mechanism Obtained from the 
Mechanism in Fig. 1 by Making y = yk= a 
Constant. 
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quadratic equations (2-1) and (2-5) to have at least.one common root. 

This gives the condition (Appendix B) 

A2(~) A1(~) Ao(~) 0 

O A2(~) A1(~) Ao(~) 

D2(~) D1(~) Do(~) 0 

O D2(~) D1(~) Do(~) 

Expanding and simplifying Eq. (2-7), we get 

or, .in short, 
8 
l Ei~i 

i=O 
0 

= 0 (2-7) 

(2-8) 

The constants in the above equation involve only the constant kinematic 

parameters of the mechanism in Fig. 2. 

Eq. (2-8) consists of only the variable/~ describing 0 the-position 

of the mechanism in Fig. 2 and must be satisfied at all positions 

of that mechanism. It must, therefore, hold good at all values of the 

variable ~. Its coefficients must, therefore vanish [5]. This gives 

Ei = 0, i = 0, 1, 2, • • • , 8 (2-9) 

Condition (2-9) represents nine equations,among the .ten constant 

kinematic parameters of the mechanism in Fig. 2 (namely, the four link 

lengths a, b, c and d, the four twist angles a, S, y and o and the two. 

constant.offset distances Xk and Yk at the input and output revolute 

pairs). These nine equations provide the necessary conditions for the 

existence of an R-C-C-R mechanism. 
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Scope,of Dimen:tberg's Method· 

In his investigations, Dimentberg has employed his method in those 

cases in:which the translational freedom.of a cylinder pair is made 

passive _[13, 14, 15). The method is, however, equally applicable to the 

case in which the rotational freedom of a cylinder pair is made passive. 

This is illustrated by the example in Apperidix C in which the existence 

criteria of R-P-C-P and R-C-P-P mechanisms have·been obtained by im~ ,, 

posing passive coupling condition ori the rotational.freedom of the out-

put cylinder pair of an R-C-C-C mechanism. This approach appears to be 

more convenient and.· efficient than the one adopted by Dimentberg and 

Yoslovich [16). 

The·Dimentberg method is also valid for the case in which the en-

tire freedom at a joint is made passive. The joint thus becomes locked 

and no tnotion is possible at that joint. This is illustrated by the ex-

ample in Appendix Din which the existence criteria of an R-C-R-C mecha-

nism have been obtained by imposing passive coupling condition ,on the 

rotational freedom of the output revolute pair of an R-C-R-C-R mecha-

nism. The results obtained agree with those obtained by Dimentberg who 

derived them by imposing passive coupling conditions on a parent R-C-C-C 

mechanism (13, 14). This example also shows th~t it is possible to de-

rive an overconstrained mechanism from more than one.parent mechanism. 

The extensions to Dimentberg's method as illustrated by the ex-

amples in Appendices C and D demonstrate the immense sco.pe of the method 

and show that, the method can be employed to handle a variety of passive 

coupling conditions. 
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Passive Coupling Conditions Considered in This Study 

The passive coupling conditions considered in the present study are 

confined to those cases in which the required displacement relationships 

are algebraic in nature. The cases considered are sununarized in Table I 

and fall into the following five categories: 

l. Pass;i.ve couplings in· two cylinder pairs to obtain two revolute. 

pairs (see Case·! in Table I). 

2. Pass:i.ve couplings in two cylinder pairs to obtain one revolute 

pair and one prismatic pair (see Case 2 in Table I). 

3. Passive couplings in two cylinder pairs to obtain two prismatic 

pairs (see Case 3 in Table I). 

4. Passive coupling in a cylinder pair to obtain a prismatic pair 

(see Case 4 in Table I). 

5. Passive coupling in a revolute pair to prevent it from exe­

cuting rotat:i,onal motion (see Case 5 in Table I). 



Case 

1 

2 

3 

4 

5 

TABLE I 

PASSIVE COUPLING CONDITIONS CONSIDERED IN THE PRESENT STUDY 
(R: Revolute Pair, P: Prismatic Pair, C: Cylinder Pair) 

Kinematic Pair(s) 
Selected for Inducing 

Passive Coupling 
Condition(s) 

c-c 

c-c 

c-c 

c 

R 

Kinematic Eair{s) 
Obtained Because 

of Passive Coupling 
Conditi-on(s) 

R-R 

R-P -er P-R 

P-P 

p 

Passive coupling 
is introduced to 
prevent the revolute 
pair from executing 
rotational motion. 

Parent Mechanism 
Examined for Inducing 

Passive Coupling 
Condition(s) 

R-C-R-C-R 
or 

R-R-C-G-R 

R-C-R-C-R 
or 

R-R-C-C-R 

R-C-R-C-R 
R-R-C-C-R 

·. R-G-P-C-R 
R-C-R-C-P 

R-C-C-C 

R-C-R-C-R 

Overconstrained 
Mechanism Obtained 
Because of Passive 

Coupling Condition(s) 

R-R-R-R-R 

R-R-R-P-R 

R-P-R-P-R 
R-R-P-P-R 
R-P-P-P-R 
R-P-R-P-P 

R-P-C-P 
R-C-P-P 

R-C-R-C 

Considered 

in 

Chapter IV 

Chapter V 

Chapter VI 

Appendix C 

Appendix D 

.... 
+ 



CHAPTER III 

MECHANISMS WITH TWO PASSIVE COUPLINGS 

Mechanisms with two passive couplings are overconstrained mecha­

nisms in which the sum of the degrees of freedom in all the joints.is 

equal to five. The number of links may be equal. to or. less than five. 

Several examples of mechanisms with two passive couplings and mo­

bility one have been recorded by investigators in the past many years. 

A five-link R-R-H-R-R mechanism proposed by Reuleaux [36] is shown in 

Fig~ 3. In this mechanism, the axis of the helical pair and the axis of 

one of the revolute pairs are coa:x;ial; the axes of the remaining revo­

lute pairs are parallel to one another and no.rmal to the common direc­

tion of the coaxial axes. A five'"".link. R-R.:-R-,-H-P mechanism and a five­

link H-R-R-P-P mechanism proposed by Artobolevskii [l] are shown.in 

Figs. 4 and.5, The mechanism in.Fig. 4 can.be obtained by.replacing 

the output revolute pair in a Hookers.coupling by a helical pair and a 

prismatic pair with coincident axes. In the mechanism in Fig. 5, the 

axes of the helical pair and the two revolute pairs are parallel to one 

another. 

A five-link H-H-H-H-H mechanism proposed by Voinea and Atanasiu 

[49] is.shown in Fig. 6. In this mechanism, the pitch values of the 

helical pairs are randomly selected and the pair axes are all parallel 

to one another. The mobility of this mechanism is unaffected even if a 

ma~imum of three.of the helical pairs have the same pitch values [25]. 

15 



16 

® 

Figure 3. 
R-R-H-R-R Space Mechanism [36] 



Figure 4. R-R-R-H-P Space Mechanism [1] 
to-' 
-...J 
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Figure 5. H-R-R-P . -P Space M . . echanism [ L] 
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Figure 6. H-H-H-H-H Space Mechanism [49] 
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Four-link mechanisms with two passive couplings consisting of one 

revolute pair, one cylinde.r pair and two prismatic pairs have been de­

rived by Dimentberg and Yoslovich [16] by means of screw calculus and 

dual ~umbers. These are shown in Fig. 7. In these mechanisms, the 

axes of the revolute pair and the cylinder pair are parallel to each 

other, Using the H-H-H-H-H.mechanism (Fig. 6) proposed by Voinea and 

Atanasiu as a basis, Hunt [25] and. Waldron. [52] have recently obtained 

a whole class of mechanisms with prismatic pairs. Two examples are 

shown in Fig. 8. The Dimentberg-Yoslovich mechanisms shown in Fig. 7 

and the Artobolevskii mechanism shown in.Fig. 5 are special cases of 

these mechanisms. A five-link H-H-P-H-H mechanism with plane synunetry 

has recently been isolated by Waldron [54]. In this mechanism, the 

prismatic pair is normal to the plane of symmetry and the axes of the 

two helical.pairs on each side of the plane of symmetry are parallel to 

each othei::. However, the axes of the symmetrical helical.pairs them­

selves need not be parallel. 

There are not many five-link, five-revolute mechanisms. Myard [30] 

has proposed a five-revolute mechanism by considering a rectangular 

Bennett mechanism (that is, a mechanism with one twist angle equal to 

90°). The most interesting five-revolute mechanisms known, however, are 

those proposed by Goldberg [20]. These are shown in Fig. 9 and are 

obtained by.the combiTI,ation (addition or subtraction) of two Bennett 

mechanisms. The mechanism proposed by Myard is symmetrical about a 

plane and is a special case of the Goldberg mechanisms [54]. 

The mechanisms described above have been obtained as a result of 

useful, but essentially isolated, attempts. In the present study, a 

systematic invest_igation of mechanisms with two passive couplings and 
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(a) (b) 

Figure 7~ R-P-C-P and R-P-P~C Space Mechanisms [16] 



(8) 
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( a) 
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(8) 

( b) 

Figure 8. H-H-P-H-H and H~H-P-P-H Space Mechanisms 
(25, 52] 
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Figure 9. Goldberg Five-Revolute Space Mechanisms 
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consisting of revolute and prismatic pairs has been conducted by using 

Dimentberg's passive coupling method. 

Displacement Relationships for Obtaining Existence Criteria 

The use of Dimentberg's method for obtaining the existence criteria 

of overc9nstrained mechanisms requires the displacement relationships 

of the appropriate parent mechanisms. The required relationships can 

aiways be obtained by suitably arranging the loop-closure condition of 

the parent mechanism. 

Consider a general five-link mechanism consisting of helical, revo-

lute, prismatic and cylinder pairs combined in such a way that the sum 

of the degrees of freedom in all the joints is equal to seven (Fig. 10). 

Such a mechanism would necessarily have to have two cylinder pairs. 

If the type of the remaining three pairs and the location of all the 

five pairs in the mechanism are properly chosen, this mechanism will 

serve as a parent mechanism for any overconstrained mechanism with two 

passive couplings. 

The mechanism in Fig. 10 is completely defined by the following 

two sets of dual angles: 

i) Between adjacent pair axes 

a. a. + Ea 

~ :::;:: s + Eb 

y y + EC, (3-1) 

6 :::;:: 0 + Ed 

A 

" " + Ee 

where a., S, y, o and II are the twist angles and a, b, c, d and e are the 
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Figure 10. General Five-Link Space Mechanism wi~h Helical, 
Revolute, Prismatic and Cylinder Pairs' 
[Lfi = 71 
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·-

- link lengths. These ten quantities are constant for any given mecha:-

nism. Note also that, by definition, E2 = 0. 

ii) Between adj ace,nt common perpendiculars 

cji = ¢ + EX 

n = 11 + EU 

x = x + EW (3-2) 
A 

E; = E; + EV 

A 

1jJ = 1jJ + EY 

where¢, n, X, E; and 1jJ are the angular displacements at the kinematic 

pairs and x, u, w, v and y are the translations along the kinematic 

axes. These quantities may be variable or remain constant depending 

upon the type of kinematic pairs used in tQe mechanism. 1 

The loop-closure conq.ition of the mechanism in Fig. 10 is given by 

[56] 
[&] 1. [$] 3[A] 1 [$] 3[~] 1 [~] 3[Y] l[x] 3[S] 1 [n] 3 [I] (3-3) 

where 

1 0 0 C¢ S¢ 0 

l [ & ] 1 0 Ca s& [ ~] 3 -s$ C$ 0 

0 -s& c& 0 0 1 

1 0 0 

l 
Cn Sn 0 

l rn 1 i = 0 cs SS [ n 13 = -Sn en 0 

0 -SS cs 0 0 1 

1In a prisma,t;i.c;:. pair, the angular displacement remains constant 
while, in a revolute pair, the translation along the axis is constant. 
In a helical pair, the translation along the axis and the angular dis­
placement b:oth vary in such a way that their ra.tio is always constant and. 
equal to the pitch. In a cylinder pair, the translation along the axis and 
the angular displacement both vary and are independent of each otµer. 
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1 0 0 cx sx o 

[x]3 = -sx cx o 

0 0 1 

(3-4) 2 

= 

O Cy Cy 

0 -Sy Cy 

1 0 0 

O C8 S8 

0 -S8 C8 

1 0 

O d 

0 -SA 

= 

A 

-s~ 

0 

c~ 

0 

s~ 

ci 

0 

: l 
0 

0 

1 

Two arrangements of Eq. (3-3) are useful in the study of existence 

criteria. 

1) Relationsq.ip involving tw.o adjacent dual displacement angles 

and the dual displacement angle opposite to both of them. 

In this arrangement of Eq. (3-3), five matrices are used on either 

side of the equality sign. Thus, we have, for instance, 

(3-5) 

Simplifying the above equation by using relations (3-4) and equa-

ting the "33" elements of the resultant matrix equation, we get 

(s&s;ssi)s~ - s~(c8s~+s8c~ci)c~ 

+ c&(c8c~-s8s~c~) - <cscr-sssrcx) 0 (3-6) 

A A 

Not~ that Eq. (3-6) involves the adjacent displacement angles~ and w 
A 

and the displacement .angle x opposite to both of them. 

2 In this equation and in all the subsequent equations and tables, 
C and S denote the cosine and sine of the respective angles. 
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Cyclic permutation permits Eq. (3-5) to be written in five dif-

ferent ways. It is, therefore, possible to get five equations of the 

form (3-6) involving different combinations of two adjacent angles and 

the angle opposite to both of them. 

2) Relationship involving three adjacent dual displacement angles. 

In this arrangement of Eq. (3-3), seven matrices are used on one 

side of the equality sign and three matrices on the other. The impor-

tant potnt to note is that the central matrix on the side containing 

three matrices involves only the constant kinematic parameters of the 

mechanism. Thus, we have, for instance, 

= (3-7) 

Note that the central matrix [y]11 on the right hand side involves only 

the constant kinematic parameters of the mechanism. 

Simplifying Eq. (3-7) by using relations (3-4) and equating the 

"33" elements of the resultant,matrix equation, we get 

f(n,¢,$) = [(s&cs+c&sscn)S¢ + SSSnC$](S6S$) 

+ [SSSnS¢ - (SaCS+CaSSCn)C¢](C6S~+S6C~C$) 

+ (CaC$-SaSSCn)(C6C~-S6S~C~) - Cy 0 (3-8) 

A 

Note that Eq. (3~8) involves the three adjacent displacement angles n, 

cp and~-

Cyclic permutation allows Eq. (3-7) to be written in five different 

ways. It is, therefore, possible to obtain five equations of the form 

(3-8) involving different combinations,of three adjacent angles. 

Observe that Eqs.(3-6) and (3-8) 1:lre both.dual equations. Each of 

them, therefore, represent;s two scalar equations. Since five equations 
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of the form (3-6) and five equations of the form (3-8) are possible, a 

total of twenty scalar equations are·available. These twenty equations. 

make it possible to obtain the existence criteria of all mechanisms 

with. two passive couplings (and also piany mec,hanisms with one passive 

coupling with number of links equal to or.less than five):' 



CHAPTER IV 

EXISTENCE CRITERIA OF THE FIVE-LINK, 
FIVE-REVOLUTE MECHANISM 

The five-link, five-revol~te mechanism can be derived from either 

the R-C-R-C-R mechanism or the R-R-C-C-R mechanism. In tli.is chapter, 

the Dimentberg method has been used to obtain the existence criteria of 

a five-revolute mechanism with zero offset distances along its pair 

axes from the displacement reiationships of an R-C-R-C-R mechanism. An 

attempt to derive these criteria has also been ~ade by Dill)entberg [14]. 

His results, though incomplete, indicate that they lead to two sixty-

fourth degree polynomials. The results obtained in ~his chapter, how-

ever, lead to two polynomials of only the twenty-fourth degree. 

Derivation of the Existence Criteria 

Consider the R-C-R-C-R space mechanism shown schematic~lly in Fig. 

11. Note that the constant.offset distances at the three revolute pairs 

are taken to be zero. If the translations . u and v at the tw.o cylinder 

pairs are reduced to zero at.all positions of this mechanism, it re-

duces to.a ;five-revolute mechanism with zero offset distances at .its 

pairs (Fig; 12) . 

By considering the loop-closure condition of the mechanism in Fig. 

11 in three different ways, the following displacement relationships 

can be obtained; 

30 
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Figure 11. R-C-R-C-R Space Mechanism 

® 

A E 

® ® 
Figure 12. R-R-R-R-R Space Mechanism Obtained from the 

Mechanism in Fig. 11 by Makin~ u = 0 and 
v = 0 
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F(¢,i,i> = cs&s3si)si - s&(c6si+s6cici)c¢ 

+ c&(c6ci-s6sic~) - (CSCy-SSSyCx) = 0 (4-1) 

f(n,¢,~) = [(s&cs+c&sscn)S¢ + SSSnC¢](S6S~) 

+ [SSSnS¢ - (SaCS+C&SSCn)C¢](C6SA+S6C~C$) 

+ cc&cs-s&sscn)(C6CA-S6SAC~) - Cy = 0 (4-2) 

F(n,¢,€) = (SSSAS¢)Sn - sscs&ci+c&siC¢)Cn 

+ CS(C&ci-s&siC¢) - (CyC6-SyS6Cf) = 0 (4-3) 

Observe that Eqs. (4-1) and (4-3) are similar in form to Eq. (3-6) and 

Eq. (4-2) is similar to Eq. (3-8). 

Eliminating the angle x from the primary and dual parts of Eq. 

(4-1), we get .. 

where 4> = tan(cp/2) 

ljl tan(ijJ/2) 

and Az ( 4>) = Azz4> 
2 + Azo 

A1 ( 4>) = A114> 

Ao ( 4>) c Aaz4>
2 + Aao 

(4-4) 

(4-5) 

The constants in Eqs. (4-5) depend only on the constant kinematic 

parameters of the mechanism in.Fig. 11 and are defined in Table II. It 

may also be noted here that Eq. (4-4) above corresponds to Eq. (16) in 

reference [56]. 

The primary part of Eq. (4-2) can be written as 
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TABLE II 

CONSTANTS FOR USE IN EQS. (4-5) AND (4-7) AND TABLE III 

A22 u1 - U2C(o-A+a.) (d-e+a)SSSyS(o-A+a.) 

A20 = U1 - U2C(o-A-a.) (d-e-a)SSSyS(o-A-a.) 

All = 4(aCa.SSSySo-bSa.CSSySo-cSa.SSCySo 

+ dSa.SSSyCo) 

Ao2 = U1 - U2C(o+A-a.) (d+e-a)SSSyS(o+A-a.) 

Aoo = U1 - U2C(o+A+a.) (d+e+a)SSSyS(o+A+a.) 

where U1 = bSyCy + cSSCS 

and U2 = bCSSy + cSSCy 

B222 = C(o-A+a.-S) Cy 

B220 = C(o-A-a.+S) - Cy 

. B2ll = -4SSS(o-A) 

B202 = C(o-A+a.+S) Cy 

B200 C(o-A-a.-S) Cy 

-, 

.. B121 4So.S (a.-S) 

Bl 12 = -4SSSo 

Bllo = 4SSSo 

B101 4SoS(a.+S) 

Bo22 = C(o+A-a.+S) Cy 

Bo20 = C(o+A+a.-S) Cy 

Boll = 4SSS(o+A) 

Boo2 = C(o+A-a.-S) Cy 

Booo = C(o+A+a.+S) Cy 



0 

where a = tan(n/2) 

and 

B2 (4>,a) = (B222<I> 2+B22o)a2 + B211 <I>a + (B202<I> 2+B200) 

B1(<I>,a) = B121<I>a2 + (B112<I> 2+B11o)a + B101<I> 

Ba(<I>,a) • (Bo22<I> 2+Ba2o)H2 + Ba11<I>H + (Boa2<I>2+Baoo) 

The consta~ts in Eqs. (4-7) are defined in Table II. 
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(4-6) 

(4-7) 

The quadratic equations (4-4) and (4-6) represent two different 

forms of displacement relationships for the same mechanism. They 

should, therefore, have at least one root in common between them. This 

gives.the condition (Appendix B) 

A2 (<I>) A1 (<I>) Ao (<I>) 0 

0 A2 (<I>) A1 (<I>) Aa(<I>) .. 0 (4-8) 
B2 (<I>,H) B1(<I>,H) Bo (<I>,H) 0 

0 B2 (<I>, H) B1(<I>,H) Bo (<I>,H) 

Expanding and simplifying the above equation, we get 

(4-9) 

The coefficients in Eq. (4-9) are polynomia!s in the variable <p and are 

as follows: 

C4 (<I>) = C4s<I>8 + C45<I>6 + C44<I>4 + C42<I>2 + C40 
.~-

C3 (<I>) = C37<I> 7 + c,35'f!>5 + C33<I>3 + C31<I> 

C2 (<I>) = C2s<I> 8 + c:25<I> 6 + C24<I> 4 +:C22<I>2 + C20 (4-10) 

C1 (<I>) = C17<I>7 + C1 5<I>5 + C13<I>3 + C11 <I> 

Ca (<I>) = Cos<I>s + Co5<I>6 + Ca4<I>4 + Ca2<I>2 + Coo 
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The constants in Eqs. (4-10) are defined in Table III. 

Note that no conditions have so far been imposed on.the R-C-R-C-R 

mechanism under consideration. Eq. (4-10) is, therefore, valid for any 

R-C-R-C-R mech,imism with zero offset distances at its revolute pairs. 

Let the translations u and vat the two cylinderi.pairs be now re­

duced to zero at all positions, of the mechanism. 

Eliminating the angles from the primary and dual parts of Eq. 

(4"".3), we get 

0 (4-11) 

where D2 (qi) • D22qi 2 + D20 

D1 ( qi ) = D l 1 qi (4-12) 

Do(qi) = Do2qi2 + Dao 

The constants in Eqs. (4-12) are defined in Table IV. Observe also 

that Eq. (4-11) is similar in form to Eq. (4-4). 

If a five-revolute mechanism of the type under consideration is to 

exist, the polynomial equations (4-9) and (4-11) must have at least one 

common root. This gives the condition (Appendix B) 

C4('P) C 3(qi) C2(qi) 

O C4 (~) C
3

(qi) 

D 2(4i) b/~) D 0(<I>) 

c o<<t>) 

c /qi) 

0 

0 

c o<<t>) 

0 

O Dz(<li) D1(<l>) Do(<l>) 0 0 

0 0 Dz(qi) Di(<I>) Do(qi) 0 

0 0 0 D 2(qi) Di(qi) Da(<I>) 

= 0 (4-13) 

Eq, (4-13) is a function of only the variable qi, Expanding and 

simplifying it, we get 



TABLE III 

CONSTANTS FOR USE IN EQS. (4-10) AND TABLE V 

C49 = -(A22Bo22-Ao2B222)
2 

c46 = Ao2A22[Z(Bo20B222+Bo22B220) - B1211 

- 2A22Bo22CA22Bo2o+A20Bo22-AooB222) 

- 2Ao2B222CA02B22o+AaoB222-A20Bo22) 

+ A11[B121<A22Bo22+Aa2B222) - A11Bo22B2221 

c44 = -CA22Bo20-Ao2B220)
2 

- CA20Bo22-AooB222) 2 

+ Al 1 B121 CA22Bo2o+A20Bo22+Aa2B22o+AaoB222) 

+ CA00A22+Aa2A20)[2CB020B222+Bo22B220) - B121l 

- Ay1CB020B222+Bo22B220) 

- 4CA20A22Bo20Bo22+AaoA02B220B222) 

c42 AooA20[ 2 CB020B222+Bo22B220) - B1211 

- 2A20Bo20CA22Bo2o+A20Bo22-Ao2B220) 

- 2AaoB220CA02B22o+AaoB222-A22Bo20) 

+ A11[B121CA20Bo2o+AooB220) - A11Bo20B220] 

c4o = -CA20Bo20-AaoB220> 2 
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TABLE III (CONTINUED) 

C 3 7 = 2Ao2A22 CB O 11B222+B 022B 21 cB 112B 121) 

+ ~22B 022 (A11B 112-2A22B O 11) 

+ Ao2B222CA11B112-2Ao2B211) 

C 3 5 2A O 2A 22 ( B O l 1 B 22 a+ B O 2 oB 2 1 1 - B 1 1 oB 1 2 1) 

+ A11A22 (B 01 lB 121+B 020B 112+B 022B 11 o) 

+ Ao2A11CB110B222+B112B22o+B12lB2'11) 

+ 2 (Ao 0A22+Ao 2A2 o) (BO 11 B222+B 022B 211-B 112B 121) 

37 

+ A11[B112 CA20Bo22+AooB222) -Ai 1 (Bo 11B222+Bo22B211)] 

- 2A22Bo11 CA22Bo20+2A20Bo22) 

+ 2Ao2B211 CA02B220+2AoilB222) 

C33 = 2AooA20CB011B222+Bo22g211-B112B121) 

+ A11A20CB011B121+Bo20B112+Bo22B110) 

+ AooA11 (BuoB222+E1l2B22o+B121B211) 

+ 2 (Ao 0A22+Ao2A2 0 HBo 11 B22 o+Bo2 0B211-Bl10B121) 

+ A11 [B 11 0 CA22 BO 2 o+Ao 2B22 0) - All (BO 1-1B22 o+Bo 2 0B211)] 

- 2A20Bo11CA20Bo22+2A22Bo20) 

- 2AooB211CAooB222+2Ao2B220) 

C 31 2Ao·oA2 0 (Bo-1-1 B22 o+Bo2 0B211-B110B121) 

+ A20Bo20CA11B110- 2A20Bo11) 

+ AooB220CA11B110-2AooB211) 



TABLE III (CONTINUED) 

2 
2A22Boo2CA02B222-A22Bo22) - Ao2A22B112 

+ 2Ao2B202CA22Bo22-Ao2B222) 

c26 ~ 2Ao2A22CB000B222+Boo2B22o+Bo11B211+Bo20B202 

+ Bo22B200-B101B121-B110B112) 

+ CA00A22+Ao2A20)[2(Boo2B222+Bo22B202) - Bf12l 

- Af1CB002B222+Bo22B202) 

- A~z[2CB000Bo22+Boo2Bo20) + B611l 

- A~z[2(B200~222+B202B220) + B~1~] 

+ A11[A22CB002B121+Bo11B112+Bo22B101) 

+ Ao2CB101B222+B112B211+B121B202)] 

4CA20A22Boo2Bo22~AooA02B202B222) 

38 
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TABLE III (CONTINUED)· 

Bf10] 

+ AaaA20[ 2 CB002B222+Bo22B202) - Bf12] 

+ 2 CAaaA22+Aa2A2a)CBaooB222+Baa2B22o+Ba11B211 

+ Ba20B202+Ba22B200-B[o1B121-B110B112) 

- Af1CBaaoB222+Boo2B22o+Bo11B211+Bo20B202+Bo22B200) 

+ A22[A11 CBaaoB121+Bo11Bu·a+Ba2ol3101) - 2A22Boao:So20] 

+ A2a[A11CB002B121+Ba11B112+Ba22B101) - 2A20Boa2Bo22l 

+ Aa2[A11CB101B22o~B110B211+B121B200) - 2Aa2B200B22ol 

+ Aaa[A11CB101B222+B112B211+B121B202) - 2AaaB202B222] 

- 2A20Ai2[ 2 CBoaoB022+Boo2Bo20) + B~11] 

- 2AaaA02[2CB200B222+B202B220) + B~11] 
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TABLE II;[ (CONTINUED) 

C22 = 2AooA20CBoooB222+Boo2B22o+Bo11B211+Bo20B202 

+ Bo22B200-B101B121-B110B112) 

+ (AooA22+Aa2A20)[2CBoooB22o+Bo20B200) - Bf10J 

- Af1CB000B22o+Bo20B200) 

- A~o[2CB000Bo22+Boo2Bo20) + B~ 11] 

- A~o[2(B200B222+B202B220) + B~ 11] 

+ A11[A20CB000B121+Bo11B11o+Bo20B101) 

+ AoaCB101B22o+B11ol3211+B121B2oo)l 

- 4CA20A22BoooB02o+AaoA02B200B220) 

Czo = 2AzoBoooCAooB220-A20Bo20) - AooA20Bf10 

+ 2AooB200CA20Bo20-AooB220) 



TABLE' I'iI : (CONTINUED) 

C17 = 2Ao2A22CB002B211+Bo11B202-B101B112> 

+ A22Boo2<A11B112-2A22Bo11> 

+ Ao2B202CA11B112-2Ao2B211> 

C15 = 2Ao2A22CB000B211+Bo11B200-B101B110) 

+ A11A22CB000B112+Boo2B11o+Bo11B101> 

+ Ao2A11 (B101B211+B110B202+B112B200) 

+ 2(AooA22+Ao2A2o>CB002B211+Bo11B202-B101B112> 

41 

+ A11lB112CA20Boo2+AooB202> - A11CB002B211+Bo11B202>l 

- 2A22Bo11CA22Booo+2A20Boo2> 

= 

- 2Ao2B211<Ao2B200+2AooB202> 

2AooA20CB002B211+Bo11B202-B101B112> 

+ A11A20CB000B112+Boo2B11o+Bo11B101> 

+ AooA11CB101B211+B110B202+B112B200> 

+ 2 CA00A22+Ao2A2o>CB000B211+Bo11B200-B101B110> 

+ A11lB110CA22Booo+Ao2B200> - A11CB000B211+Bo11B2oo>l 

- 2A20Bo11CA20Boo2+2A22Booo> 

- 2AooB211CAooB202+2Ao2B200> 

2AooA20CBoooB211+Bo11B200-B101B110> 

+ A20BoooCA11B110-2A20Bo11> 

+ AooB200CA11B110-2AooB211> 



42 

TABLE rn (CONTINUED) 

Caa = -(A22Bo 02-Aa2B2 02) 2 

, C06 = Aa2A22[2CBaaoB202+Boa2B200) - BI01l 

- 2A22Boa2CA22Booa+A20Boo2-AooB202) 

- 2Aa2B202 CAa2B2aa+AaaB202-A20Boo2) 

+ A11[B101CA22Boo2+Aa2B202) - A11Boo2B202l 

Ca4 = -CA22Booo-Ao2B200) 2 - CA20Boo2-AoaB202) 2 

+ A11a101 CA22Booa+A20Boo2+Aa2B2oo+AooB202) 

+ CAaoA22+Aa2A20)[2CBaooB202+Boo2B200) - BI01l 

- A11CB000B202+Baa2B200) 

- 4(A20A22BoaoB002+AaoA02B200B202) 

Caz AaaA20[ 2CBaooB202+Baa2B200) - B101l 

- 2A20BoaaCA22Boao+A20Boo2-Aa2B200) 

- 2AaaB200CAa2B2ao+AaaB202-A22Booo) 

+ A11[B101CA20Booa+AooB200) - A11BoooB2ool 

Cao = -CA20Booo-AaaB200) 2 



where 

and 

! .. 

TABLE IV 

CONSTANTS FOR USE IN EQS. (4-12) 
AND TABLE VI 

D22 = V1 - V 2c 0,.-a+S) (e-a+b)SySoS(A-a+S) 

D20 = v1 - V2C(A+a.-S) (e+a-b)SySoS(A+a-S) 

Dll = 4(bCSSySoSA-cSSCySoSA-dSSSyCoSA 

+ eSSSySoCA) 

Doz V1 - V2C(A-a.-S) - (e-a-b)SySoS(A-a.-S) 

0 00 = V1 - V2C(A+a.+S) - (e+a+b)SySoS(A+a.+S) 

V1 cSoCo + dSyCy 

V2 = cCySo + dSyCo 
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or, in short, 

(4-14) 

The constants in Eq. (4-14) are defined in Table VII. The terms used in 

Table VII are defined in Tables V and VI. 

Now, by co~sidering the relationship f(~,~,t) = 0 instead of Eq. 

(4-2) and the relationship F(~,€,n) = 0 instead of Eq. (4-3), and by 

following a procedure similar to that described above, we can get the 

equation. 
12 
I S(zi)~(Zi) = O 

i=O 
(4-15) 

Eq. (4-15) is exactly similar in form to Eq. (4-14). Its coeffi-

cients can.be obtained from the coefficients of Eq. (4-14) by replacing 

th.e parameters a, b, c, d, a., S, y and o by the parameters d, c, b, a, 

o, y, S anq a. respectively. In .other words, the coefficients of Eq. 

(4-15) can be re~arded as "mirror images" of the coefficients of Eq. 

(4-14) and can.be obtained from the latter by the transformations 

a +-+ d , b +-+ c , a. +-+ o and S +-+ y • 

Observe that each of the equations (4-14) and (4~15) consists of 

only one variable. These two equations must hold good at all values of 

the variables involved. Their coefficients must, therefore, vanish [5]. 

This gives 
R(zi) = O, i = O, 1, 2, . , , , 12 (4-16) 

S(zi) = 0, i = 0, 1, 2, ... , 12 (4-17) 

Conditions (4-16) and (4-17) together represent 26 equations among 

the tet1 constant·kinematic parameters of the five-revolute mechanism in 

Fig; 12 (namely, the five link l~ngths a, b, c, d and.e and the five 
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TABLE V 

CONSTANTS FOR USE IN TABLE VII 

pil6 2 = Cj 8 
when i = 1, 2, 3, 

pil4 = 2Cj 8cj 6 
j = 0, 2, 4 

Puz = 2CjsCj 4 + Cj6 

pilO = 2Cj8Cj2 + 2Cj 6cj 4 

pi08 = 2Cj 8cj a + 2Cj 6cj 2 + cJ4 

pi06 = 2Cj 6Cj o + 2Cj 4Cj 2 

pi04 = 2Cj 4 Cj o + Cjz 

Pi02 = 2Cj 2Cj a 

PiOo = 2 
CJ O 

pil6 cj sCks 
when i = 4, 5, 6, 

pil4 ::;:: Cjack6 + Cj 5Ck8 
j = 0, O, 2 

pil2 = CjsCk4 + Cj 5Ck6 + cj4cks 
and k = 2, 4, 4 

pil O = cj sCk2 + Cj5Ck4 + Cj4Ck6 + CjzCks 

Pios = cj sCko + Cj6Ck2 + Cj4Ck4 + Cj 2Ck6 + Cj oCks 

pi06 = cj 5Cko + Cj 4Cl<2 + Cj2Ck4 + Cj oCk6 

pi04 = cj 4Cko + Cj2Ck2 + Cj 0Ck4 

Pio2 = Cj2Cko + Cj0Ck2 

Piao = cj oCko 
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TABiE V (CONTINUED) 

Pus = cj eck7 
when i = 7, 8, 9, 10 ,1 ll, 12 , 

Pu3 ;:: CjaCks + cj6ck7 
j = O, 2, O, 2, 4, 4 

Pu 1 :;: cj aCk3 + · cj 6Cks + Cj 4Ck7 . and k:;: 1, 1, 3, 3, 1, 3 
Pio9 = cj aCkl + C:i 6ck3 + cj4Cks + Cj 2Ck7 

pi07 = Cj 6Ckl + cj4ck3 + Cj2Ck5 + CjqCk7 

Pios = cj4c:k-1 + Cj2Ck3 + cj oCks 

= Cj 2Ck1 + Cj 0Ck3 

pil4 = cJ 7 
when i = 13, 14, 

pil2 = 2c. 7c. 5 J. J j = 1, 3 

pil O = 2Cj 7cj 3, + cj s 

p i08 = 2Cj 7cj 1 + 2Cj 5cj 3 

p i06 = 2Cj 5cj 1 + cJ 3 

p i04 = 2Cj 3cj 1 

P io2 c.11 

P1514 = C1 7C37 

p 1512 = C17C35 + C15C37 

P1s10 = C17C33 + C15C35 + C13C37 

pl508 = C17C31 + C15C33 + C13C35 + C11C37 

P1so6 = C15C31 + C13C33 + G11C35 

pl 504 = C13C31 + C11C33 

p 1502 = C11C31 
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TABLE VI 

CONSTANTS FOR USE IN TABLE VII 

Ql08 = Di2 
Ql06 :;:; 4D~2D20 

Ql 04 = 6D~ 2D~ 0 

Ql 02 = 4D22D~O 

QlOO = Dia 

Q208 D~2D~2 

Q206 = 2no2D22<Do2D2o+D22Doo) 

Q204 = Dii2D~O + 4Do2Doo022D20 + D~2Diio 

Q202 = 2nooD2o<Do2D2o+DooD22) 

Q200 DiioD~o 

Q3 08 = Dri2 

Q306 = 4n62Dno 

Q304 = 6D~2Diio 

Q302 = 4Do2D60 

Q3 00 = Dci O 



Q406 

Q404 

Q402 

Q400 

Q508 

Q506 

Q504 

Q502 

Qsoo 

Q608 

Q606 

Q604 

Q502 

Q600 

TABLE VI (CONTINUED) 

= D~zlPh - 2PDa2D201DaaD22) l 
·-~..,._.,,.,,~,h,.. ' 

2 -.-.-
= 2D22D2a[D11- 3(Da2D2a+DaaD22)l 

= D~a[Df1 - Z(Da2D2a+3DaaD22)l 

- 2DaaDlo 

= 2Q2 o"a 

= . 2 2(Q2os~2D11Da2D22) 

= D'y1[Dy1 - 4(DaaD22+Da2D20)] 

= 2(Q202-2Dr1DaaD20) 

= 2Q200 

= ·3 
-ZD02D22 

= D5z[Dy1 - 2(DazDza+3DaaD22)l 

+ 2Q204 

= 2Da2Doo[Dy1 - J(Da2D2a+DaaD22)] 

= D5a[Dy+ - 2(3Da2D2a+D'aaD22)l 

-2D50D~o 
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TABLE VI (CONTINUED) 

Q707 = 3 -D11 D22 

Q705 = -3D11 D~2D20 

Q703 = -3D 1 ~ D22D~ 0 

Q701 = 3 -D11D20 

Gao? = 2 -Di 1 Da2D22 

Gaos = -D11D22(2Do2D2a+DaoD22) 

Q803 = -D11D2a<Da2D20+2DooD22) 

Qao1 = -D11DoaD~o 

Q907 -3Qao7 

Q905 = -Df1D22-3Qaos 

Q903 ::; -Df 1D2a-3Q803 

Q901 = -3Qao1 



so 

TABLE VI (CONTINUED) 

Ql007 = -Di 1 D22D32 

Ql005 = -D11Do2C2D22Doa+P20Do2) 

Ql003 = -D11PooCD22Doo+2DzoD02) 

QlOOl = -D11P20D3o 

Qll07 = -3Ql007 

Qll05 = -Df 1Do2 3Q1oos 

Qll03 = -Df1Doo 3Q1003 

QllOl = - 3Q1001 

Ql207 -Du D52 

Ql205 = -3D11D32Do o 

Ql203 == 2 -3D11 Do2Doo 

Ql201 = -Dll D5 O 
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TABLE VI (CONTINUED) 

Ql308 
:;:: D02Dh 

Ql306 ~ D~2(3D02D20+DOOD22) 

Ql304 = 3D22D2 0 (Do2D2 o+Do 0D22) 

Ql302 = D~o<Do2D20+3DooD22) 

Ql300 = DooD~o 

Qi408 = D52D22 

Ql406 = Dt2<Do2Dfo+3DooD22) 

Ql404 = 3Do2Doo<Do2D2o+DooD22) 

Ql402 = Dto(3Do2D2o+DooD22) 

Ql4QO = D50D20 

Ql508 = -2Q208 

Ql506 = Df1Do2D22·- 2Q206 

Ql504 -- Dfi (DooD22+Do2D20) - 2Q204 

Ql502 = Df1DooD20 - 2Q202 

Ql 500 = - 2Q200 



TABLE VII 

CONSTANTS FOR USE IN EQS. (4-14) AND (4-16) 
6 
I [Pi 1 6 QiO a 1 

i=l 

6 
L [Pi1GQiOG + Pi14Qiosl 

i=l 

15 
+ L [Pil4Qios1 

i=l3 

6 ~ 
R20 l [Pil6Qi04 + Pil4Qi06 + Pi12Qios1 

i=l 

12 
+ L [Pil5Qi05 + pil3Qi07] 

i=7 

. 15 

+ L [P114Qio6 + Pi12Qios1 
i=l3 

6 

R1s = I[Pi16Qio2 + Pil4Qi04 + Pi12Qi06 + Pi10Qios1 
i.=l . 

12 
+ L [Pi15Qi03 + Pi13Qios + Pi11Qio11 

i=7 

15 
+ L [Pi14Qio4 + Pi12Qio6 + Pi10Qiosl 

i=l3 

6 
R15 = L [Pi16Qioo + Pi14Qio2 + Pi12Qio4 + PiJoQioG + PioBQios1 

i=l 

12 
+ L [Pi1sQio1 + Pi13Qio3 + Pi11Qios + Pio9Q1011 

i=7 

15 
+ L [Pi14Qio4 + Pi12Qio4 + P110Qio6 + PiosQios1 

i=l3 
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TABLE VII (CONTINUED) 

6 

R14 = l [Pi14Qioo + Pi12Qio2 + Pi10Q104 + PiosQio6 + Pio6Qiosl 
i=l 

12 
+ l [Pil3Qi01 + Pi11Qi03 + Pio9Qi05 + Pio7Qi07] 

i=7 

J5 
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+ l [P114Qioo + P112Qio2 + P110Qio4 + P1osQ1u6 + Pio6Qios1 
i=l3 

6 
l [Pi12Q~oo + P110Qio2 + P1osQio4 + P105Qio6 + P104Qiosl 

1=1 . I 
12 

+ l [Pi11Q101 + Pio9Qio3 + Pio1Q1os + PiosQio1l 
i=7 

15 
+ l [Pi12Qioo + Pi10Qio2 +;PiosQio4 + P105Qio6 + Pio4Qi0sl 

i=l3 

6 
Rio = l [PiloQiOO + P1osQio2 + Pio6Qio4 + Pio4Qio6 + Pio2Qiosl 

i=l 

12 
+ l [P109Qio1 + P101Qio3 + PiosQios + Pio3Qio1l 

i=7 

15 
+ l [Pf10Q100 + P1osQio2 + Pio6Qi04 + Pio4Qio6 + Pio2Qi0sl 

i=13 

6 
Rs = l [P1osQ100 + PiooQ102 + Pio4Qio4 + Pio2Qio6 + PiooQiosl 

i=l 

12 
+ l [P101Qio1 + PiosQio3 + Pio3Qios + Pio1Qio7l 

i=7 

15 
+ l [PiosQioo + Pio6Qio2 + Pio4Qi04 + Pio2Qio6l 

i=l3 
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TABl..E VII (CONTINUED) 

6 ' 

R6 = L [PioGQioo + Pio4Qio2 + Pio2Qio4 + PiooQioGl 
i=l 

12 
+ I [PiosQio1 + Pio3Qio3 + Pio1Qiosl 

i=7 

15 
+ I [PiosQioo + Pio4Qio2 + Pio2Qio4] 

i=l3 

6 
R4 = I [Pio4Q100 + Pio2Qio2 + PiooQio4l 

i=l 

12 
+ L. [Pio 3Qio 1 + Pi01Qio3] 

i=7 

15 
+ I [Pi04QioO + Pio2Qi02] 

i=l3 

6 
Rz = I [Pio2Qioo + Pio0Qio2l 

i=l 

12 
+ I [Pio1Qio1l 

i=7 

15 
+ I [PiQ2Qiool 

i=l3 

6 
Ro = I [Pi00Qi00] 

i=l 
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twist angles a, S, y, o and A), These 26 equations provide the neces-

sary conditions for .the existence of a five-link, five-revolute 

(R-R-R-R-R) mechanism with zero offset 4istances along its pair axes. 

The Goldberg Five-Revolute Mechanisms 

The Goldberg five-revolute mechanisms [20] (Fig. 9) are obtained 

by the combination (addition or sub~raction) of two Bennett mechanisms 

[ 4]. Referring to. the five-revolute mechanism in Fig. 12, the Goldberg 

mechanisms satisfy the following relationships: 

a = d 

a = 0 

e = b ±· c (4-18) 

A = s ± y 

a = ± ___£_ ± ..E_ 
Sa SS Sy 

When the relationships (4-18) are used, the 26 equations given by 

the conditions (4-16) and (4-17) are identically satisfied, This con-

firms the correctness ~nd validity of the derived existence criteria. 

On Obtaining Five-Reyolute Mechanisms 
from the Derived Criteria 

rhe·existence criteria derived above can be used to obtain the con-

stant kinematic parameters of a five-revolute mechanism with zero off-

set distances. 

If the constant kinematic parameters are regarded as unknowns, it 

is possible to write each of the 26 equations given by conditions (4-16) 

and (4~17) as a polynomial equation in several variables, The entire 
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' set of 26 equat,ions can, therefore, be regarded as a system of non-

linear, simultaneous,algebraic equations and can be represented as 

Fi(a,b,c,d,e,a,S,y,o,A) = O, i = 1, 2, 3, •.. , 26 (4-19) 

Eqs. (4-19) represent a system of 26 equations in the ten unknorm 

constant kinematic parameters. They are of eighth degree in each of the 

link lengths and of twenty-fourth degree in each of the twist angles. 

It is important to note that the, equations given by (4-19) repre-

sent.only necessary conditions for the existence of a five-revolute 

mechani.sm. The conditions are not sufficient because satisfaction of 

the criteria does not by itself guarantee a five-revolute mechanism with 

a true mobilityl of one. This is because Eqs. (4-19) also have solu-

tions that correspond to five-revolute mechanisms without a true mobili-

ty of one, Such solutions are called here trivial. solutions, 

Ther~ are two types of trivial solutions to be considered. The 

first type gives an overconstrained mechanism with mobility greater than 

one. Thus, for instance, Eqs. (4-19) are satisfied identically when 

a= b = c = d = e = 0 and a, S, y, o and A have arbitrary values. This, 

however, represents a spherical five-revolute mechanism with mobility 

two. 

The second type of trivial solution gives an overconstrained mecha-

nism without true mobility. Thus, for example, Eqs. (4-19) are satis-

fied identically when any three adjacent twist angles are zero and the 

other constant kinematic parameters have arbitrary values. This gives 

a configuration in which the axes of four of the revolute pairs are 

parallel to one another. However, with this arrangement, no motion is 

1see item 4 in Appendix A. 
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possible at the remaining revolute pair which, therefore, remains per-

manently lo.eked. The mechanism behaves, in effect, like a plane four-

link mechanism. The solution thus represents a five-revolute mechanism 

without trµe mobility. 

A non-trivial .solution of Eqs. (4-19) yiel4s a five-revolute mecha-

nism with a true mobility of one. The Goldberg five-revolute mechanisms 

are examples of such non-trivial solutions. 

The triviality or non-triviality of the solutions of Eq. (4-19) can 

be checked by substituting the values of the constant kinematic para-

meters in the original displacement relationships of the parent R-C-R-C-R 

mechanism [56]. A non-trivial solution will give zero offset distances 

at the two cylinder pairs at all positions. of the parent mechanism 

without, at the same time, aff~cting its true mobility. A trivial solu-

tion will not meet these requirements. 

Since Eqs. (4-19) have trivial solutions and are also satisfied by 

the Goldberg mechanisms, it is clear that they represent a set of con-

sistent equations, The complexity of .the equations, however, makes it 

very difficult to examine their relationship analytically. Since the 

equations involve ten unknowns, a maximum of only ten of the 26 equa~ 

tions can be expected to be independent. However, since Eqs. (4-18) 

satisfy Eqs. (4-19) identically and since four of the parameters in 

Eqs. (4-J,8) can be chosen arbitrarily, 2 it is clear that there is an 

infinite number of non-trivial solutions to the system (4-19). This 

indicates that the actual number of independent equations in the system 

2Eqs. (4-18) s~ow that it is. not possible to chopse any four of the 
parameters arbitrarily, but only certain. combinations of four parameters. 
Thus; for ex~mple, a,a, Sandy can all be chosen arbitrarily, but a, d, 
a and o ~annot all be chosen arbitrarily. 
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is less than ten. Eqs; (4-18) suggest that this number may be six. 

The solt,ition of the independent equations in (4-19) can be 

attempted by numerical meanij (Appendix E). The extremely high non-

linearity of the equations, however, indicates that the potential num-

ber of solutions to such a system is, as is evident from Bezout's 

theorem (38], 3 in the millions. The solution of the system, therefore, 

poses many problems (28, 37, 34]. 

The points disc;:,ussed above clearly show that the investigation of 
r 

the existence of new five-revolute mechanisms by using the derived cri-:-

teria is a problem ip. its own,right. It .is, therefore, considered 

beyond the scope of the present work. 

3According to Bezout's theorem, the number of roots of a system of 
polynomial equations is equal to the product of the degrees of the 
;!..ndividual polynomial equations. 



CHAPTER V 

EXISTENCE CRITERIA OF THE FIVE-LINK 
R-R-R-P-R MECHANISM 

The five-link ~-R-R-P-R mechanism can be derived, like the five-

link, five .... revolute mechanism, from either the R-C-R-C-R mechanism or. 

the R-R-C-C-R mechanism. In this chapter, the Dimentberg passive 

coupling method has been used. to obtain the existence criteria of an 

R-R-R-P-R mechanism with zero offset distances at its revolute pairs 

from the displacement relationships of an R-C-R-C-R mechanism. 

Derivation of the Existence Criteria 

Consider the five-link R-C-R-C-R space mechanism shown schemati-

cally in Fig. 13. 1 Note that the constant offset distances at the 

three revolute pairs are taken to be zero. If the translation u at 

the cylinder pair at B reduces to zero and the angular displacement ~ 

at the cylinder pair at D remains constant at all positions of this 

mechanism, then it reduces to an R-R-R-P-R mechanism with zero offset 

distances at it~ revolute pairs (Fig. 14). 

By considering the loop-closure condition of the mechanism in.Fig. 

13 in two different_ways, the ;following relationships can be obtained: 

F(x,n,~) = (SaSySn)Sx - Sy(CaSS+SaCSCn)Cx 

+ Cy(C&c§-s&s§Cn) - (C8C~ S8S~C$) = 0 (5-1) 

1Fig. 13 is the same as Fig. 11. 
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Mechanismin Fig. 13 by Making u = 0 and 
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f(t,x,n) = [(SyC8+CyS6Ct)sx + S6StCx](SaSn) 

+ [S6stsx - (SyC8+CyS6Ct)Cx] (CaSS+SaCSCn) 

+ (CyC6-SyS6Ct)(CaCS-SaSSCn) - C~ 0 (5-2) 

Note that Eq. (5-1) is simiiar in form to Eq. (3-6) and Eq. (5-2) is 

similar to Eq. (3-8). 

Now, let the translation u become zero and the angle~ a constant 

at all posittons of the mechanism. 

Eliminating the angle 1jJ from the primary and dual parts of Eq. 

(5-1), we get. 

L2 (X)H2 + L1 (X)H + L0 (X) = 0 

where x = tan(x/2) 

H tan(n/2) 

and L2 (X) = L22X2 + 1 20 

1 1 (X) = L11 X 

1 0 (X) - La2X2 + 1 00 

The constants in Eq~. (5-4) involve only the constant kinematic para­

meters of the mechanism and are defined in Table VIII. 

Denoting the constant value of the angle~ by ~k' the primary part 

of Eq. (5-2) becomes 

M2 (X)H2 + M1 (X)H + M0 (X) = 0 (5-5) 

where M2 (X) = M22X2 + M21X + M20 

M1 (X) = M12X2 + M11X + M10 (5-6) 

M0 (X) = Mo2X2 + Mo1X + Moo 



TABLE VIII 

CONSTANTS FOR USE IN EQS. (5-4) 
AND (5-6) ANP TABLE IX 

(a-b+c)SoSXS(a-S+y) 

120 = W1 - W2 C(a-S-y) - (a-b-c)SoSXS(a-S-y) 

I 

1 11 = 4(cGySiSSXSa-dSyCoSXSa-eSy~oC\Sa 

+ aSySoSXCa) 

102 = W1 - w2 c(a+S-y) 

1 00 = w1 -·w2 c(a+S+y) 

where w1 dSXCX + eSoCo 

dCoSX + eSoCX 

M22 2k2 [C(a-S+y=-o)-CX] 

M21 :::; -4:::ksos(a-S) 

M20 :::; :::k2 [c(a-S-y+o)-CX] 

M12 = -4:::ksaso 

(a+b-c)SoSXS(a+S-y) 

(a+b+c)SoSXS(a+S+y) 

+ [C(a-S+y+o)-CX] 

+ [C(a-S-y-o)-CX] 

M11 4Sa[2k2s(y-o) + S(y+o)] 

M1 O :::; 4EkSaSo 

Mo2 :::; :::k2 [c(a+S-y+o)-CX] + [C(a+S-y-o)-CX] 

Mo1 :::; 4:::ksos <a+s) 

Moo :::; :::k2 [c(a+S+y-o)-CX] + [ c <a+s+y+o )-ex J 
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The constants in Eqs. (5-6) are defined in Table VIII. 2 

If an R-R-R-P-R mechanism of the type under consideration is to 

exist, the quadrat~c equations (5-3) and (5-5) must have at least one 

common.root., This gives the condition (Appendix B) 

L2 (X) L1 (X) L0(X) 0 

0 L2 (X) 1 1 (X) L0 (X) 
= 0 (5-7) 

M2(X) M1 (X) M0(X) 0 

0 M2 (X) M1 (X) M0(X) 

Eq. (5-7) is a function of only the variable X. Expanding and 

simplifying it, we get 

N aX 8 + ,N 7x 7 + . . . + .N 1 X + No = 0 

or, in short, 

0, i = 0, 1, 2, ... , 8 (5-8) 

The constants in the above equation are defined in Table IX. 

Eq. (5-8) must hold good at all values of the variable X. Its 

coefficients must, therefore, vanish. Thus, we have· 

0, i = O, 1, 2, , •. , 8 (5-9) 

Condition (5-9) represents nine equations among the 11 constant 

kinematic parameters of the R-R-R-P-R mechanism in Fig. 14 (namely, the 

five link lengths a, b, c, d.and e, the five twist angles a, S, y, o 

and).. and the constant displacement angle. l;k at the prismatic pair at 

joint D). These nine equations provide the necessary conditions for the 

existence of a five-link R-R-R-P-R mechanism with zero offset distances 

2In Table VIII, the constant tan(l;k/2) is denoted by 3k• 



TABLE IX 

CONSTANTS FOR USE IN EQS. (5-8) AND (5 . ...;.9) 

N 7 = 2102122 (Mo 1M22+Mo2M21-M11M12) 

+ 1 22Mo2 (L 11M12-21 22Mo 1) 

+ 1 02M22<1 11M12-21 02M21) 

N6 = 1 021 22[Z(MooM22+Mo1M21+Mo2M20-M10M12) - Mf1J 

+ <1 001 22+1 021 20) (ZM02M22-M12) - ,1I1Mo2M22 

- L 22M O 2 [ 2 (L 22M O a+ L 2 oM O 2) - L 1 1 M 1 1 ] 

- 1 02M22[Z(Lo2M20+1 00M22) - 1 11M11J 

+ 1 22Mo 1 (L 11 Ml 2-L22Mo 1) 

+ 1 02M21<L11M12-1 02M21) 

N5 = 2Lo21 22<MooM21+Mo1M20-M10M11) 

+ 2 <1 001 22+1 021 2o)<Mo1M22+Mo2M21-M11M12) 

- 111<Mo1M22+Mo2M21) 

- L22Mo1[2(122Moo+2L20Mo2) - L11M11J 

- 1 02M21[ 2 <1 02M20+21 00M22) - 1 11M11J 

+ 1 11[M12<1 20Mo2+1 22Moo+1 00M22+1 02M20) 

+ M10<1 22Mo2+1 02M22)J 
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TABLE IX (CONTINUED) 

N 4 = -<1 22Moo""°1 20Mo2) 
2 

- <1 02M20-1 00M22) 
2 

+ (LO 0122+1 021 2 0), [2 (Mo 0M22+Mo 1M21+Mo2M2 0 

-I:11 0M'12') - M f 1 ] 

- L f 1 (M O OM 2 2 +MO l M 2 1 +MO 2M 2 0) 

+ L 1 l [L 2 2 (MO OM 1 1 +MO l M 1 0) + L 2 0 (MO 1 M 1 2 +M O 2M 11) 

+ L O 2 (M 1 OM 2 1 +M 1 1 M 2 0) + L O O (M 1 1M22 +M 1 2M 2 1) ] 

- 1 22 [1 02Mf O + 21,20< 2Mo0Mo2+M51)] 

,.. 1 00 [1 20Mf 2 + 21o/2M20M22+ML)J 

N 3 = 21 0 01 20 (Mo 1M22+Mo2M21-M l lM 12) 

+ z (LO 01 2/1 021 20) (Mo OM2 l+Mo 1M20-Ml OMll) 

- 1 i 1 (Mo OM2 l+Mo 1M20) 

- 1 20Mo1[Z(L20M02+ZL22MOO) - 1 11M11] 

- LO OM 2 1 [ z (LO OM 2 2 + ZL O 2M 2 0) - L 11 M 11 ] 

+ L 11 [Ml O <1 22Mo 0+1 2 0Mo2+1 02M2 0+1 0 OM22) 

N2 = 1 oo1 2o[Z(MooM22+Mo1M21+Mo2M20-M10M12) - MLJ 

+ <1 001 22+1 oz120) (ZMOOM20-Mio) - Lf 1MQOM20 

- 1 20MOO[Z(L22MOO+L20M02) - 1 1 !Ml 1] 

- 1 00M2o[Z(Lo2M2o+LOOM22) .... 1 11M11] 

+ 1 20Mo1 (LnM10-L20Mo1) 

+ L O OM 2 1 (L 11 M 1 0-L O OM 2 1) 
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TABLE IX (CONT!NUED) 

N1 = 2Loo120CM00M21+Mo1M20-M10Mn) 

+ L2o~oo<L11M10-2L20Mo1> 

+ LooM2o<L11M10-2LooM21> 
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at its .revolute pairs. 

On Obtaining R-R-R-P-R Mechanisms from the Derived Criteria 

The existence criteria obtained above can be utilized to obtain 

the constant kinematic parameters of an R-R-R-P-R mechanism with zero 

offset distances at its r~volute pairs. 

Considering the constant kinematic parameters as unknowns, the 

nine equations given by condition (5-9) can be represented as 

G1(a,b,c,ft,e,a,8,y,a,A,tk) = O, i = 1, 2, .•• , 9 (5-10) 

Eqs. (5-10) represent a system of nine nonlinear equations in the 

11 unknown constant kinematic parameters. They are of second degree 

in each of the link lengths, of eighth degree in each of the twist 

angles and of fourth degree in.the constant displacement angle ~k· 

L~ke Eqs. (4-19), Eqs. (5-10) also have trivial solutions. Thus, 

for instance, Eqs. (5-10) are satisfied identically when the axes of. 

the four revolute pairs are parallel to one another and the axis of 

the prismatic pair is normal to the other axes. This; however, yields 

a configuration .with mobility two, Similarly, Eqs. (5-10) are also 

satisfied identically when the axes of the four revolute pairs are 

parallel to one another and the axis of the prismatic pair is obliquely 

oriented with respect to the other axes. With this arrangement, no 

motion is possible at .the prismatic pair which, therefore, remains 

permanently locked. The configuration behaves, in effect, like a plane 

four-link mechanism. The solution thl\s gives a mechanism without true 

mobility. 

A nqn-t~ivial solution of Eqs. (5-10) yields an R-R-R-P-R mecha-
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nism with a true mobility of one. As in the case of the five-revolute 

mechanism in Chapter IV, the triviality or non-triviality of a solution 

of Eqs, (5~10) can be c4ecked by substituting the values of the con­

stant kinematic parSt11eters in .. the priginal displacement relationships 

of the parent .R-C-R-C-R mechanism [ 56] . 

Since Eq:s. (5-.10) represent a system of nine equations among the 

11 unknown.constant kinematic parameters, two of.the parameters can be 

assigned arbitrary values and the solution of the system can be 

attempted by nµme:rical means·(Appendix E) for the remaining nine para­

meters. The high nonlinearity of the equations once again emphasizes 

the complexity of the problem [28, 37, 34]. As in the case .of the 

five-revolute mechanism, the investigation of the existence of R-R-R-P-R 

mechanisms by using the criteria derived-in this chapter is thus a 

problem in its own.right and is considered beyond the scope of the 

present investigation. 



CHAPTER VI 

EXISTENCE CRITERIA OF THE FIVE-LINK 
3R+2P AND 2R+3P MECHANISMS 

In this chapter, the Dimentberg passive coupling technique has been 

employed to obtain the existence criteria of the five-link 3R.+2P and 

2R+3P mechanisms. These criteria are obtained by considering only the 

primary parts of the displacement relationships of the appropriate par-

ent mechanisms. They, therefore, lead to conditions on only the twist 

angles and constant displacement angles of the mechanisms considered 

and are independent of their link lengths and constant offset distances. 

In a 3R+2P mechanism, the two prismatic pairs may either be separated 

by a revolute pair or be adjacent to each other. Similarly, in a 2R+3P 

mechanism, the two revolute pairs may be either adjacent to each other 

or be separated by a prismatic ,pair, All possible types of 3R+2P and 

2R+3P mechanisms are, therefore, represented by the following mechanisms: 

i) R-P-R-P-R Mechanism 

ii) R-R-P-P-R Mechanism 

iii) R-P-P-P-R Mechanism 

iv) R-P-R-P-P Mechanism 

E:dstence Criteria of t;:he Five-Link R-P-R-P-R Mechanism 

The existence criteria of an R-P-R-P-R mechanism can be obtained 

from the displacement relationships of an .R-C-R-C-R mechanism. 

Consider the R-C-.R-C-R space mechanism shown· schematically in Fig·, 
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15. This mechanism reduces to an R-P-R-P-R mechanism if the displace­

ment angles n and s at tb.e two cylinder pairs remain constant; at all 

positions of the .mechanism (Fig. 16). 

By considering the loop-closure condition of the mechanism in Fig. 

15 in three different ways, the following relationships can be obtained: 

F(n,~,t) = (SSS~S~)Sn - ss(s&e~+e&s~e~)en 

+ es(c&e~-s&s~e~) - (eyecS-SyScSet) = 0 

F(~,t,n) = (SyS~st)s~ - S~(eyscS+SyecSet)e~ 

+ C~(CyC6-SyS6et) - (CaeS-SaS ~Cn) = 0 

f(t,i~n) ~ [(SyC6+CyS6et)si + sJstei](SaSn) 

+ [S6Stsi - (Sye6+eyS6et)ei](eaSS+Saesen) 

+ (CyC8-SyScSe€)(eaeS-SaSSen) - e~ = 0 

(6-1) 

(6-2) 

(6-3) 

Observe that Eqs. (6-1) and (6-2) are similar in form.to Eq. (3-6) and 

Eq. (6-3) is simil~r to Eq. (3-8). Note also that each of the above 

equations relates the dual displacement angles~ and tat the two cylin­

der pairs to a.third dual displacement angle. 

Let the displacement angles n ands at the two cylinder pairs be 

now made constant at all positions of the mechanism. Denoting these 

constant values by nk and Sk respectively, the.primary parts of Eqs. 

(6-1), (6-2) and. (6-3) give 

Ass~+ Ace~+ Au = o 

BSS~ +Bee~+ Bn O 

essx + ecCX + en = 0 

(6-4) 

(6-5) 

(6-6) 

The constants in the above equations involve the constant kinematic 

parameters and are defined in Table X. 



TABLE X 

CONSTANTS FOR USE IN EQS . (6-4) THROUGH (6-7) 

A5 = S8SASnk 

Ac -SA(SaC8+CaS8Cnk) 

An = CA(CaC8-SaS8Cnk) - (CyC6-SyS6Csk) 

B5 = SySASsk 

Be -SA(CyS6+SyC6Csk) 

Bn CA(CyC6-SyS6Csk) - (CaC8-SaS8Cnk) 

C5 = Sa(SyC6+CyS6Csk)Snk + S6(CaS8+SaC8Cnk)Ssk 

cc = SaS6SnkSSk - (CaS8+SaC8Cnk)(SyCo+CyS6Csk) 

Cn (CaC8-SaS8Cnk)(CyC6-SyS6Csk) - CA 
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Observe that each of the equations (6-4), (6-5) and (6-6) consists 

of .only one variable and must be valid at varying values of that 

variable. Th;i.s is possible only if their coefficients vanish. This 

gives 

As = Ac = An 0 

Bs = Be = Bn = 0 (6-7) 

Cs = Cc = Cn 0 

Examination of Eqs. (6-7) shows that the following cases are 

possible: 

1. Cnk < I 11, ci:;k < 11 I (That is, nk + m1r, i:;k f m1r, m = O, 1, 2, ... ) 

The only real solution possible in this case is given by 

a = S = y = o = A = 0 . (6-8) 

Eq. (6-8) shows that the kinematic axes are all parallel to one 

another. An R-P-R-P-R mechanism satisfying this condition, however, 

represents only a trivial solution since it yields a configuration in 

which the three revolute pairs remain locked and in which the only 

motion possible is a "trombone-like" translation [25] at the two pris-

matic pairs. 

2. Cnk < .Ill, ci:;k = Ill (That is, nk + m1r, Sk = m1r, m = 0,1,2, ... ) 

This gives 

a = S = A = 0 
(6-9) 

and y ± = m1T' m = 0,1,2, •.• 

3. Cn = 111, ci:;k < 111 (That is,nk = m1T' i:;k f m1r, m = 0,1,2, ... ) k 

This gives 

y = 0 = A = 0 
(6-10) 

and a ± s = m1T' m = 0,1,2,. . . 
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4. Cnk = 111, cc;;k = 111 (That is, nk = mTI, c;;k = ffi'TT, m = 0,1,2, •.. ) 

This gives 
>.. = 0 

(6-11) 
and a. ± s = mTI, y ± 0 = m'TT, m = 0,1,2,. . . 

Eqs. (6-9), (6-10) and (6-11) give the necessary conditions for 

the existence of an R-P-R-P-R mechanism. All these conditions show that 

the axes of the three revolute pairs are parallel to one another. 

Existence Criteria of the Five-Link R-R-P-P-R Mechanism 

The existence criteria of an R-R-P-P-R mechanism can be obtained 

from the displacement relationships of an R-R-C-C-R mechanism. 

Consider the R-R-C-C-R space mechanism shown schematically in Fig. 

17. This mechanism reduces to an R-R-P-P-R mechanism if the displace-

ment angles X and E;; at the two cylinder pairs remain constant at all 

positions of the mechanism (Fig. 18). 

By considering the loop-closure condition of the mechanism in Fig. 

17 in three different ways, the following relationships can be.obtained: 

F(t;x,~) = (sss3sx)st - S8(CSSy+SSCyCx)ct 

+ CS(CSCy-SSSyCx) - (C~ci-s~s~C~) 0 

f(~,~,x) = [(S6Ci+c8sic~)S~ + sis~c~](SSSx) 

+ [sis~st - cs3ci+cssic~)ct](CSSy+SSCyCx) 
(' A "' A -" A A "' r. I'\ A 

+ (CoC>..-~oS>..C~)(CSCy-SSSyCx) - Ca. = 0 

f(~iX,;) a [(SyC6+CyS8C~)Sx + S8S~Cx](s&s;) 

+ [S6S~Sx - (SyC6+CyS6C~)Cx](c&ss+s~c§c;) 

+ (CyC6-SySSct)(c&cs-s&sscn) - ci = 0 

(6-12) 

(6-13) 

(6-14) 

Note that Eq. (6-12) is of the same form as Eq. (3-6) and Eqs. (6-13) and 
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(6-14) are similar to.Eq. (~-8). Observe also that each of the above 

equations relat~s the dual displacement angles x and tat the two cylin­

der pairs to a third dual displacement angle, 

Let the displacement angles x and~ at the two cylinder pairs be 

now held constant at all positions of the mechanism. Denoting these 

constant values by xk and ,k respectively, the primary parts of Eqs. 

(6~12), (6-13) and (6-14) give 

DcC¢ + Dn 

EsS1P + EcCtµ + En 

0 

0 

and FsSn + FcCn + Fn = 0 

(6-15) 

(6-16) 

(6-17) 

The constants used in the above equations are defined in Table XI. 

Note that each of the equations (6-15), (6-16) and (6-17) contains 

only one variable and must hold good at varying values of that variable. 

Their coefficients must, therefore, vanish. This gives 

Ee. 0 (6-18) 

and Fs = Fe = Fn. = 0 

Examination of Eqs. (6-18) yields the following relationships: 

;\ = 0 (6-19) 

= 0 (6-20) 

The above equations provide the necessary conditions for the exis­

tence of an R-R-P-P-R mechani$m. Condition (6-19) shows that the axes 

of the three revolute pairs are parallel to one another. Eq. (6-20) is 



TABLE XI 

CONSTANTS FOR USE IN EQS. (6-15) 
THROUGH (6-18) 

Pn = SS [So (SxkSE;k-CyCxkCE;k)-SyCoCxk] 

+ CS(CyCo-SySoCE;k)-CaCA 

Es = SA[SS(SxkCE;k+CyCxkSE;k)+CSSySE;k] 

Ee = SA {Co [SS (SxkSE;k-CyCxkCE;k)-CSSyCE;k] 

-So(CSCy-SSSyCxk)} 

En = CA {So [SS(SxkSE;k.-CyCxkCE;k)-CSSy_CE;k] 

+ Co(CS~~-sssicxk)} - ca 

F s Set [So (Cxks1k+CySxkCE;k),+SyC0Sxk] ' 

F c = Sa{ CS [S<S (SxkSE;k-CyCxkCE;k)-SyCoCx1J 
- SS(CyCo-SySoCE;k)} 

Fn = Ca{SS[So(SxkSE;k-CyCxkCE;k)-SyCoCxk] 

+ CS(CyCo-SySoCE;k)} - CA 
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a closure condition relating the twist angles B, Y and o of the mechan~ 

ism with the constant displacement angles Xk and ~k at the two prismatic 

pairs (Fig. 18). 

Existence Criteria of the Five-Link R-P-P-P-R Mechanism 

The existence criteria of an R-P-P-P-R ~echanism can be obtained 

from the displacement relationships of an R-C-P-C-R mechanism. 

Consider the R-C-P-C-R space mechanism shown schematically in Fig. 

19. Note that the displacement angle Xk at the prismatic pair is con­

stant. This mechanism reduces to an R-P-P-P-R mechanism if the displace­

ment angles n and~ at the two cylinder pairs remain constant at all 

positions of the mechanism (Fig. 20). 

By considering the loop-closure condition of the mechanism in Fig. 

19 in seven different ways, the following relationships can be obtained. 

(6-21) 

F(~,€,n) = (SyS~S€)?~ S~(CyS6+SyC6C€)c~ 

+ C~ (CyC8-SyS6C€) - cc~cs-s~sscn) 0 (6-22) 

F(x,n,~) = (S~SySn)Sx sy(c~ss+s~cscn)cx 

+ cy(c~cs-s~sscn) - (C86-S6S~C~). 0 (6-23) 

F(Lx,i) = (SSS6Sx)st S6(CSSy+SSCyCx)c€ 

+ c6(cscy-sssycx) (c~c~-s~s~si) 0 (6-24) 

f(x,n,i) = [csscy+cssycx)sn + SySxCn](S~S¢) 

+ [SySxSn - (SSCy+CSSyCx)Cn](s;c~+c;s~C¢) 

+ ccscy-sssycx)cc~c~-s~s~c¢) - Co 0 (6-25) 
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f (~, tx) = [ (S8C~+C8S~C~) s€ + S~S~C€ ](SSSx) 

+ [S~S~S~ - (S8C~+C8S~C~)ct](SyC$+CySSCx) 

+ (C8C~-S8S~C~)(CSCy-SSSyCx) - c~ = 0 

f(f,x,;) = [(SyC8+CyS8C€)sx + S8s€cx](s;s;) 

+ [Sgsfsx - (SyCg+CySgC~)Cx](C;s§+s~c§c;) 

+ (CyC8-SyS8C€)(c;c§-s~s§c;) - CA = 0 
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(6-26) 

(6-27) 

Note t4at Eqs. (6-21) through (6-24) are similar in form to Eq. (3-6) 

and Eqs. (6-25), (6-26) and (6-27) are similar to Eq. (3-8). Observe 

also that: each of the above equations contains the dual displacement 

angle at at least one of the two cylinder pairs. 

Let the displacement angles n and E;, at the two cylinder pairs be 

now held constant.at all positions of the mechanism. Denoting these 

constant values by nk and E;,k respectively, the primary.parts of Eqs. 

(6-21) through (6-27) give 

GsS~ + GcC~ + Gn 0 (6-28) 

HsS~ +Hee~+ Hn 0 (6-29) 

IcC~ + In = 0 (6-30) 

JcC~ + Jn 0 (6-31) 

KsS~ + KcC~ + Kn = 0 (6-32) 

LsS~ + LcC~ + Ln = 0 (6-33) 

and Mn = 0 (6-34) 

The constants.used in the above equations are defined in Table XII. 

Observe that each of the equations (6-28) through (6-33) contains 

only one variable and must hold good at varying values of that variable. 

This is possible only if .. their coefficients vanish, This gives 



TABLE XII 

CONSTANTS FOR USE IN EQS. (6-28) THROUGH (6-35) 

G9 = SSS;>..Snk 

Ge = -S;>..(SaCS+CaSSCnk) 

Gn = C;>..(CaCS-SaSSCnk) - (CyCo-SySoC~k) 

H8 SyS;>..S~k 

He -S;>..(CySo+SyCoC~k) 

Hn = CA(CyCo-SySoC~k) - (CaCS-SaSSCnk) 

le = SoS;>.. 

In = Sy(Sa(SnkSXk-CSCnkCXk) - CaSSCXk] 

+ Cy(CaCS-SaSSCnk) - CoC).. 

Jc = SaS;>.. 

Jn = SS [So (Sxks~k-CyCxkC~k) - SyCoCxk] 

+ CS(CyCo-SySoC~k) - CaC;>.. 

Ks, :::;: S;>..[Sy(Cnksxk+CSSnkCxk) + SSCySnk] 

Kc S;>..{Ca[Sy(SnkSXk-CSCnkCXk) - SSCyCnk] 

- Sa(CSCy-SSSYCXk)} 

Kn = C~{Sa[Sy(SnkSXk-CSCnkCXk) - SSCyCnk] 

+ Ca(CSCy-SSSyCxk)} - Co 
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TABLE XII (CONTINUED) 

L
8 

S\[SS(SxkCsk+CyCxkSsk) + CSSyS;k] 

LC ~ S\{Co[SS(SxkSsk-CyCxkC;k) - CSSyC;k] 

- So(CSCy-SSSyCxk)} 

Ln C\{So[SS(SxkS;k-CyCxkC;k) - CSSyC;k] 

+ Co(CSCy-SSSyCxk)} - Ca 

Mn Sa[So(CxkSsk+CySxkCsk) + SyCoSxk]Snk 

+ Sa{CS[So(SxkSsk-CyCxkC(k) - SyCoCxk] 

- SS(CyCo-SySoCsk).}Cnk 
,,,.,..· •• !, . 

+ Ca{SS[S6(SxkSt;k-CyCxkC;k) - SyCoCxk] 

, + CS(CyCo-SyS6Csk)} - C\ 
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ing 

Gs = Ge = Gn = 0 

Hs = He = Hn = 0 

Ic = In = 0 

Jc = Jn == 0 

Ks = Kc = Kn = 0 

and Ls = Le = Ln 0 

Examination of Eqs. (6-35) along with Eq. 

relationships: 

A. = 0 

0 

CS(CyC6-SyS8Ctk) + SS(SyC8-CyS8Ctk)Cxk 

+ SSS8StkSXk - Ca = 0 

(6-34) gives the 
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(6-35) 

follow-

(6-36) 

(6-37) 

(6-38) 

(6-39) 

(6-40) 

The above relationships provide the necessary conditions for the 

existence of an R-P-P-P-R mechanism. Eq. (6-36) shows that the axes of 

the two revolute pair~ are parallel to each other. Eqs. (6-37) through 

(6-40) are Glosure conditions relating the twist angles a, S, y and 8 

of the.mechanism with the constant angles nk, Xk and tk at the three 

prismatic pairs (Fig. 20). 
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Existence Criteria of the Five-Link R-P-R-P-P Mechanism 

The existence criteria of an R-P-R-P-P mechanism can.be obtained 

from the displacement rel~tionships of an R=C-R-C-P mechanism. 

Consider the .R-C-R-C-P space mechanism shown,schematically in Fig. 

21. Note that the displacement angle ~k at the prismatic pair is con-

stant. This mechanism red~ces to an R-P-R-P-P mechanism if the dis-

placement angles n and~ at the.two cylinder pairs remain constant at 

all positions.of the mech~nism (Fig. 22). 

By considering the loop-closure condition of the mechanism in Fig. 

21 in .seven different ways, the following relationships can be obtained: 

F(n,i,t) = 

f<Lx,n) = 

f(n~~,~) = 

F<x,n,~) = 

(SSSiS~)Sn SS(s&ci+c&sic~)Cn 

+ cs(c&ci-s&sic~) - (CyC6-SyS6C€) = 0 

[(SyC8+CyS6C€)sx + S6S€Cx](s&sn) 

+ [s:Ss€sx - (SyC6+CyS6C€)Cx](c&ss+s&cscn) 

(CyC6-SyS6C~)(c&cs-s&sscn) 
A 

+ - C>.. = 0 

[(S~CS+C&SSCn)si + SSSnci](S6S~) 

+ [SSSnsi - (s&cs+c&sscn)C~] (C8si+S6CiC~) 

+ (c&cs-s&SSCn)(C6Ci-s8sic~) - Cy = 0 

(s&sySn) Sx - Sy(C~SS+S&CSCn)Cx 

+ Cy(C&c§+s&sscn) - (c:Sci-s6sfo~) = 0 

[(c&si+s&cici)s~ + s&sic~](sys€) 

+ [s&sis~ - (c&si+s&cici)c~](CyS8+syc6c€) 

+ (c&ci-s&sici)(CyC8-sys6c~) - cs = o 

(6-41) 

(6-42) 

(6-43) 

(6-44) 

(6-45) 
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f (~ ,€ ,x) = r (S8C~+C8S~C~) st + s~s~cg] (SSSx) 

+ [S~s~st - (S8C~+C8S~C~)ct] (CSSy+SSCyCx) 

+ (C8C~-~8S~C~)(CSCy-SSSyCx) -c~ 

F(~,t,n) = (SyS~Sg)S~ - S~(CyS8+SyC8Cg)c~ 

0 

+ C~(CyC8-SyS8Cg) - (C~CS-S~SSCn) = 0 
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(6-46) 

(6-47) 

Note that Eqs. (6-41), (6-44) and (6-47) are.similar in form to Eq. 

(3-6) and Eqs. (6-42), (6-43),, (6-45) and (6-46)areof the same form as 

Eq. (3-8). Note also that each of the above equations contains the dual 

displacement angle at at least one of the two cylinder pairs. 

Let the displacement angles n and[;. at the two cylinder pairs be 

now made constant at all positions of the mechanism. Denoting these 

constant values by nk and l;.k respectively, the primary parts of Eqs. 

(6-41) through (6-47) give 

NsS qi + NcC(j> + Nn = 0 (6-48) 

PsSX_+ PcCX + Pn = 0 (6-49) 

QsS(j> + QcC(j> + Qn = 0 (6-50) 

R5 Sx + RcCX + Rn = 0 (6-51) 

S8 Sqi + ScC(j> + Sn = 0 (6-52) 

T8 Sx + Tccx + T0 0 (6-53) 

and Un = 0 (6-54) 

The constants used in the above equations are defined in Table XIII. 

Observe that each of the equations (6-48) through (6-53) consists 

of only one variable and must hold good at varying values of that vari~ 

able. Their coefficients should, therefore, vanish. This gives 



TABLE X:UI 

CONSTANTS FOR USE IN EQS. (6-48) 
THROUGH (6-55) 

Ns SBS>-Snk 

Ne = -S>-(SaCB+CaSBCnk) 

Nn = C>-(CaCB-SciSBCnk) - (CyCcS-SyScSC~k) 

PS = Sa(SyCcS+CyScSC~k)Snk 

+ ScS(CaSB+SaCBCnk)S~k 

Pc = SaScSSnkS~k-(CaSB+SaCBCnk)(SyCcS+CyScSC~k) 

Pn (CaCB-SaSBCnk)(CyCcS-SyScSC~k) - C>-

Qs = SB(CcSS>-+ScSC>-C~k)Snk 

+ ScS(SaCB+CaSBCnk)S~k 

QC = SBScSSnks~k-(SaCB+CaSBCnk)(CcSS>-+ScSC>-C~k) 

Qn (CaCB-SaSBCnk)(CcSC>--ScSS>-C~k) - Cy 

RC -Sy(CaSB+SaCBCnk) 

Ru = Cy(CaCB-SaSBCnk) - 1(CcSC>--ScSS>-C~k) 

SS Sa[Sy(S~kc~k+CcSC~ks~k) + CyScSS~k] 

Sc Sa{C>-[Sy(S~kS~k-CcSC~kC~k) - CyScSC~k] 

- S>-(CyCcS-SyScSC~k)} 

Sn = Ca{S>-[Sy(SskS~k-CcSC~kC~k) - CyScSC~k] 

+ C>-(CyCcS-SyScSC~k)} - CB 
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TABLE XIII (CONTINUED) 

T8 = SS[SA(CskS~k+CoSskC~k) + SoCASsk] 

Tc ~ SS{Cy[SA(SskS~k-CoCskC~k) - SoCACsk] 

- Sy(CoCA-SoSAC~k)} 

Tn CS{Sy[SA(SskS~k-CoCskC~k) - SoCACsk] 

+ Cy(CoCA-SoSAC~k)} --Ca 

Un = SySASskS~k - SA(CySo+SyCoCsk)C~k 

+ CA(CyCo-SySoCsk) - (CaCS-SaSSCnk) 
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= 0 

= 0 
(6-55) 

Rs = Re = Rn = 0 

Ss = Sc = Sn = 0 

and Ts = Tc = Tn = 0 

Examination of Eqs. (6-55) along with Eq. (6-54) shows that the 

following cases are possible: 

1. Snk + 0 (That is, nk + mn, m = O, 1, 2, ... ) 

This gives 

a. ""' B = 0 

CyCo - SySoCE;k - C>.. = 0 

CoC>.. - SoS>..C\jJk - Cy = 0 

and Sy (SE;kS\jJk-CoC~kC1i,1k) 

- CySoC\jJk - s>.. = 0 

Sn = 0 k (That is, nk = mn, m = 0; 1 , 2, . • . ) 

This gives 

a. ± B = PTI 

CyCo - SySoCE;k - (-l)Pc>.. 0 

CoC>.. - SoSAC\jJk - (-l)Pcy = 0 

and S>..Slj!k - (-l)PSySE;k = O, p = O, 1, 2, 

(6-56) 

(6-57) 

(6-58) 

(6-59) 

Conditions (6-56) through (6-59) provide the necessary conditfons 

for the existence of an R-P-R-P-P mechanism. Eqs. (6-56) and (6-58) 

show that th.e axes of the two revolute pairs are parallel to each other. 

Eqs. (6-57) and (6-59) are closure conditions relating the twist angles 

y, o and >.. of the mechanism with. the constant displacement. angles E;k 
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anq. iµk at .two of the three prismatic pairs (Fig. 22). 

Extension of the Results to Other Mechanisms 

The existence criteria d~rived in the above sections .clearly show 

that tbe five-link 3R+2P and 2R+3P mechanisms can exist only when the 

axes of the revolute pairs are parallel to one another. Note that the 

results have been obtained by considering only the primary parts of the 

displacemer+t relationships of the respective parent mechanisms. Hence, 

the results will remain unaffected even.if one or more of the revolute 

pairs are replaced by helical pairs of finite pitch values. The results 

are, therefore, equally valid for the five-link 3H+2P, 2H+lR+2P, 

1H+2R+2P, 2H+3P and lH+lR+3P mechanisms. 

Note further that the results obtained are independent of the link 

lengtl).s involved. Hence, if one of .the link lengths is taken to be 

zero, the results will apply with equal validity to four-:-link mecl).anisms 

derivable from the above five-link mechanisms. 1 

The results obtained in this chapter also confirm the results ob-

tained by Hunt [25] and.Waldron [52] by using the theory of screws. It 

is, however, important .to note one significant point. The results of 

Hunt and Walq.ron.were obtained by considering the H-H-H-H-H mechanism 

of Voinea and Atanasiu [49] which is itself an overconstrained mecha-

nism. The results in·this chapter have, on the other.hand, been ob-

tained by considering the more general zero familf mechanisms. The 
i 

present results, therefore, go beyond those of Hurtt and Waldron and 

show that there are no mechanisms with two passive couplings consisting 

of two or three prismatic pairs other than those derived by them.and 

1see, for instance, reference [16]. 
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confirmed in ~his study. Further; in addition to the parallelism of the 

axes, the present results also give the definite closure conditions.to 

be satisfied by the constant kinematic parameters of the respective 

mechanisms. 



CHAP'I'ER VII 

SUMMARY AND CONCLUSIONS 

'I'he present study is another step in the continuous search at un­

raveling the mysteries of space mechanisms. In this study, the exis­

tence criteria of overconstrained mechanisms with two passive couplings 

and consisting of revolute and prismatic pairs have been obtained by 

using Dimentberg's passive coupling method. This represents the first 

&ttempt in using this method after its usefulness in the case of four­

link mechanisms was first demonstrated by Dimentberg. 

The mechanisms considered in this study are the five-link, five­

revolute (R-R-R-R-R) mechanism, the five-link R-R-R-P-R mechanism and 

the five-link 3R+2P and 2R+3P mechanisms. The existence criteria of the 

five-revolute mechanism and the R-R-R-P-R mechanism obtained in the 

study are new. The results obtained in the case of 3R+2P and 2R+3P 

mechanisms confirm the findings of other investigators. 

The·principal results of the investigation are as follows: 

1. The existence criteria of the five-link, five-revolute mecha­

nism with zero offset distances are obtained as two sets of 13 

nonlinear algebraic equations in the ten constant kinematic 

parameters of the mechanism. The number of independent equa­

tions, however, appears to be less than ten. The derived cri­

teria are satisfied identically by the Goldberg five-revolute 

mechanisms. This acts as a check on the correctness and. 
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validity of the results. The derived criteria also make it 

possible to investigate the existence of additional five­

revolute mechanisms. However, the extremely high nonlinearity 

and complexity of the criteria indicate that this aspect of 

the investigation is a problem in its own right. It is, there­

fore, considered beyond the scope of the present study. 

2. The existe.nce criteria of the five-link R-R-R-P-R mechanism 

with zero offset distances at its revolute pairs are obtained 

as a set of nine nonlinear algebraic equations in the 11 con­

stant kinematic parameters of the mechanism. These equations 

make it possible to investigate the existence of R-R-R-P-R 

mechanisms by assigning arbitrary values to two of the 11 con­

stant kinematic parameters. However, the high nonlinearity of 

the equations once again emphasizes the complex nature of the 

investigation .and shows that it is a problem by itself. Hence, 

it is considered beyond the scope of the present.study. 

3. The existence criteria of the five-link 3R+2P and 2R+3P mecha-:­

nisms obtained in the study show that these mechanisms (and 

others obtained by extending the results) exist .if and only if 

the axes of the revolute (and/or helical) pairs are parallel 

to one another. This confirms the results that were obtained 

by Hunt and Waldron by considering the H-H-H-H-H mechanism of 

Voinea and Atanasiu. The results of the present study have, 

however, been obtained by considering the more general zero 

family mechanisms and give, besides the parallelism of the 

axes, the definite closure conditions to be satisfied by the 

constant kinematic parameters of the mechanisms concerned. 
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The present study clearly shows that the derived criteria represent 

only necessary conditions for existence. This is a direct consequence 

of the nature of Dimentberg's method. The conditions.are not sufficient 

because satisfaction of the criteria does not by itself guarantee an 

overconstrained mechanism of the desired type. This is because the 

criteria also have trivial solutions that give mechanisms without a true 

mobility of one. 

As indicated in Chapters IV and V, trivial solutions can be one of 

two types: 

1. A solution becomes trivial if the constant kinematic parameters 

yield an overconstrained mechanism with mobility greater than 

one. 

2. A solution becomes trivial if the constant kinematic parameters 

yield an overconstrained mechanism of a higher family, that is, 

an overconstrained mechanism having more than the required 

number of passive couplings. In such cases, one or more of 

the joints remain permanently locked, thus resulting in a 

mechanism without.true mobility. 

The triviality or non-triviality of a solution can.be examined by 

substituting the values of the constant kinematic parameters in the 

original displacement relationships of the parent mechanism. If the 

mobility is two or more, the variable kinematic parameters in the parent 

mechanism.become indeterminate unless two or more variables are speci­

fied. A locked joint is indicated by the fact that the variable kine~ 

matic parameter ~orresponding to that joint becomes constant. If 

neither of the above conditions is present, the solution represents a 

non-trivial solution and yields an overconstrained mechanism of the 
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desired type with a true mobility of one. 

Since trivial solutions always exist, the existence criteria ob­

tained by Dimentberg's method always represent a set of consistent 

equations. However, all the equations in the system may not, in gen­

eral, be independent. This is particularly so when the number of un­

knowns in the equations is less than the number of equations. It may, 

however, not be possible to examine the relationship between the equa­

tions analytically in all cases. When the existence criteria involve 

only twist angles and constant displacement angles, they can generally 

be expected to be comparatively simple. It may then be possible to in­

vestigate the relationship between.the equations analytically. This is 

illustrated in the present study by the existence criteria of the 3R+2P 

and 2R+3P mechanisms obtained in Chapter VI where they have been ex­

amined fairly thoroughly. When, however, the existence criteria involve 

link lengths and constant offset distances in addition .to twist angles 

and constant displacement angles, they can generally be expected to be 

complicated. It may then become very difficult to examine the relation­

ship between the.equations analytically. This is illustrated in the 

present study by the existence criteria of the five-revolute and 

R-R-R-P-R mechanisms obtained in Chapters IV and V respectively. 

The present study has also shown that, while using Dimentberg's 

method, it is possible to get-useful results and often avoid.unnecessary 

analytical work if c~rtain important points are borne in mind. These 

are discqssed below: 

1. When the displacemen~ relationships inyolved are algebraic in. 

natu~e, the Dimentberg method ultimately leads to one or more. 

polynomial equations. The complexity and the order of these 
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polynomial$ can.be appreciably reduced by considering the en­

tire spectrum of equations available by arranging the loop­

closure condition in various ways rather than by considering 

just a few of the available equations. This is well illustr.a­

ted Qy the existence criteria of the five-revolute mechanism. 

Thus, since only some of the available equations have been con­

sidered, the results of Dimentberg lead.to two sixty-fourth 

degree polynomials. On the other hand, since all of the avail"'." 

able equations have been considered, the results of the present 

study lead to two polynomials of only the twenty-fourth degree. 

2. The primary part of a dual.equation .contains only the primary 

parts of its component terms. The dual part of a dual equa­

tion, however, involves both the primary and the dual parts of 

its component .terms. The dual part of any dual equation is, 

therefore, always more complicated than its primary part. Now, 

when passive coupling is imposed on a cylinder pair to reduce 

it .. to a prismatic pair, restrictions are put on only the rota-:­

tion at the cylinder pair ancj. thus one has to deal with. the 

primary parts of the concerned displacement relationships. 

However, when passive coupling i$ imposed on a cylinder pair 

to. reduce it to a revolute pair, restrictions are put on only 

t:he translat:l,on at the cylinder,pair and thus one has to deal 

with the dual parts of the concerned displacement relation­

ships .. It, therefore, follows that the analytical work invol­

ved in reducing a cylinder pair to a prismatic pair is always 

much less complicated than ,in reducing that cylinder pair to a 

revolute pair. This is well illustrated in the present study 
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in which it can be seen that the existence criteria of the 

R-R-R-P-R mechanism obtained in Chapter V are much less com­

plicated than those of the five-revolute mechanism obtained in 

Chapter IV. 

3, When the displacement relationships involved are algebraic in 

nature, the Dimentberg method often involves examination of the 

common roots between two polynomials or successive sets of two 

polynomials. In all cases, it is necessary to consider.only 

one common root between.the equations involved. This leads to 

the most general results. It is, however, theoretically pos­

sible to consider more than one common.root between the equa­

tions involved. This results in more severe conditions on the 

coefficients of the equations involved. The resultant condi­

tions., however, represent only special cases of the more. gene­

ral case obtained by considering only one common root. This, 

of course, is to be expected because when two equations have 

more than one common root, it certainly implies that they have 

one common root. 

4. If the parent mechanism has no helical pairs, t~e existence 

criteria of the derived overconstrained mechanisms are alge­

braic in nature. If .the parent mechanism contains helical 

pairs, the derived existence criteria remain.algebraic in na­

ture if only the rotations.at the helical pairs are involved. 

The results, however, beco~e non-algebraic if both the rota7 

tions anc;l the tran~lations at the hel:i.-cal pairs are involved. 

Thus, in the present study, the existence criteria obtained are 

all•algebraic in nature because the parent mechanisms consid-
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ered do not have any helical pairs. Further, it is possible 

to extend the results obtained in Chapter VI to the indicated 

mechanisms wit~ helical pairs because only the rotations.at 

the appropriate pairs are considered. On the other hand, the 

existence criteria of a mechanism like the general H-H-H-H-H 

mechanism are expected to be non-algebraic in nature since 

they are expected to involve both the rotations and the trans­

lations at the helical.pairs. 

The present study has also demonstrated the general usefulness, 

applicability and scope of Dimentberg's method for obtaining the exis­

tence criteria of overconstrained mechanisms. Even though a high level 

of algebra is often required, the method has the following distinct 

points in its favor: 

L The most important feature of the method is the assurance of 

the finite mobility of the derived overconstrained mechanisms. 

Since one starts with a parent mechanism of assured finite mo­

bility, the finite mobility of the derived mechanisms is 

assured. 

2, The method is capable of yielding the necessary conditions for 

the existence of an overconstrained mechanism. These include 

all possible solutions. The method thus has the feature of 

uniqueness and completeness. 

3. The method clearly shows that, in general, the mobility of an 

overconstrained mechaI).ism is a function of all.of its constant 

kinematic parameters. The so-called paradoxical mechanisms, 

therefore, no lo1J.ger.rema;i.n paradoxical since it can be shown 

that they exist only because their constant kinematic parame-



ters satisfy certain definite mathematical relationships. 

4. The derived criteria permit the computation of the constant 

kinematic parameters of an overconstrained mechanism. 
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The results of the present study have clearly demonstrated that the 

investigation of the conditions for the existence of an overconstrained 

mechanism consists of two distinct steps: 

1. The first step is to obtain or derive the existence criteria. 

These criteria are in reality a set (or sets) of equations re­

lating the constant kinematic parameters of the overconstrained 

mechanism. The derived criteria provide necessary, but not 

sufficient, conditions for existence. Further, the criteria 

represent a consistent system of equations. 

2. The second step is to obtain a compatible set of constant 

kinematic parameter~ of the overconstrained mechanism satisfy­

ing the derived criteria. When the derived criteria are com­

paratively simple, it may be possible to examine them ana­

lytically and obtain simple functional relationships between 

the consta.nt kinematic parameters. However, when the derived 

criteria are very complicated, it may not be possible to ex­

amine them analytically. In such cases, numerical methods 

have to be resorted to in order to obtain a compatible set of 

constant kinematic parameters satisfying the derived criteria. 

Except in very simple cases, each of the above two steps can be 

regarded as a problem by itself. Thus, for instance, the existence 

criteria of a five-link, five-revolute mechanism with non-zero offset 

distances are expected to lead to two sixty-fourth degree polynomials 

which, in turn, lead .to 130 conditions on its constant kinematic 
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parameters. It can be seen that errors are apt to be introduced if such 

high order polynomials and such a large number of equations are not 

carefully handled. Again, the examination of the resultant conditions. 

in order to obtain a compatible set of constant kinematic parameters 

presents a task of formidable proportions. 

The present study shows that the mobility of space mechanisms is a 

field of ~ontinued interest and challenge. In the coming years, the 

following important areas of research appear to offer great promise: 

1. The derivation of the existence criteria of the H-H-H-H-H-H, 

H-H-H-H-H and H-H-H-H space mechanisms. These mechanismss 

represent the most general overconstrained mechanisms with 

one, two and three passive couplings respectively. The exis­

tence criteria of all other overconstrained mechanisms within 

these families can be obtained as special cases of the exis­

tence criteria of these mechanisms by proper selection of 

pitch values and.constant kinematic parameters. 

2. Development of suitable mathematical methods to obtain the 

constant kinematic parameters of overconstrained mechanisms 

from their existence criteria. It .should be possible to uti­

lize the derived criteria to generate new mechanisms. 

3. Investigation of the type of motion provided by overconstrained 

mechanisms. This is required in order to fully utilize the 

capabilities of space mechanisms, 

The present study represents another attempt in understanding the 

nature of space mechanisms. Similar studies in future can be expected 

to lead to a greater insight into their nature and thus make it possible 

to um;-avel the mysteries of space mechanisms. 
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APPENDIX A 

DEFINITIONS AND EXPLANATION OF TERMS USED 

1. Mechanism. A closed kinematic chain in which one of the links is 

fixed is called a mechanism. 

2. Mobility of a Mechanism. The mobility of a mechanism is the number 

of independent quantities required to specify its motion completely. 

A mechanism with mobility one is said to have constrained motion. 

3. Constant and Variable Kinematic Parameters of a.Mechanism. The 

constant kinematic parameters of a mechanism are the link lengths, 

the twist angles, the constant offset distances (or kink links, as 

they are sometimes called) and the constant displacement angles. 

These parameters are constant for a given mechanism and remain un­

changed during its .motion. 

The variable kinematic parameters of a.mechanism are the vari­

able offset distances (or translations) along its pair axes and the 

variable displacement angles. These p·arameters are not constant 

for a given.mechanism, but vary during its motion. 

In the present study, the link lengths are·denoted by a, b, c, 

d and e, the tw.ist angles by a, B, y, 8 and\, the variable offset 

distances by x, u, w, v and y, the constant offset distances by xk, 

uk, wk, vk and Yk, the variable displacement angles by ¢, n, x, .E;. 

and$ and the constant displacement angles by ¢k, nk, Xk, E;.k and ~k· 
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4. Finite Mobility, Transitory Mobility and True Mobility of a Mecha­

nism. A mechanism is said to have finite mobility when it is capa­

ble of executing motion over a finite range. A mechanism is said 

to have transitory or instantaneous mobility when it is capable of 

executing motion over only an infinitesimal range. Thus, for ex-

ample, a spherical four-link, four-revolute mechanism has a finite 

mobility of one. However, if the revolute pairs are replaced by 

helical pairs of equal pitch values, the resulting configuration 

will not have finite mobility, but only a transitory mobility of 

one [26]. It may also be noted that instantaneous mobility at all 

instants may often lead to finite mobility [25, 52]. 

A mechanism is said to have true mobility when it has finite 

mobil:i,.ty with all the freedoms in all of its joints. active. A 

mechanism does not have true mobility when it has finite mobility 

with _some of the freedoms in some of its joints not active. If 

this effect occurs only at certain discrete position~, then those 

configurations of the mechanism represent its locking positions 

(limit positions or dead center positions) [25, 52]. Thus, for 

instance, a plane four-link four-revolute mechanism has, except at 

its locking positions, a true mobility of one, but a five-link. 

H-P-P-P-P space mechanism does not have true mobility since its 

helical pair remains permanently locked. 

In _the context of the present study, a mechanism is said to 

"exist" when it has a true mobility of one. 

5. Zero family Mechani$ms, Overconstrained Mechanisms and Passive 

Couplings. Consider a single-loop space mechanism. Let fi denote 

the number of degrees of freedom permitted at the ith joint. Lfi 
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then denotes the total number of degrees of freedom permitted at all 

the joints. 

When lfi = 7, any random combination of constant kinematic 

parameters will, in general, yield a mechanism with mobility one.1 

Such mechanisms in which there are; therefore, no conditions imposed 

on the constant kinematic parameters are called zero family mecha-

nisms [22] .2 The R-C-C-C mechanism, the R-C-R-C-R mechanism and the 

R-R-R-R-C-R mechanism are some examples of zero family mechanisms. 

When lfi < 7, a random combination of constant kinematic pa-

rameters will, in general, yield a configuration which is a struc-

ture. 3 Mechanisms with lfi < 7 can exist with mobility one only 

when their.constant kinematic parameters satisfy certain definite 

mathematical relationships. Such mechanisms in which there are, 

therefore, conditions imposed on the constant kinematic parameters 

are called overconstrained mechanisms. The plane and spherical 

four-,link mechanisms, the Bennett mechanism [ 4] and th.e Goldberg 

mechanisms [20] are some examples of overconstrained mechanisms. 

Note that in all of these mechanisms, the constant kinematic parame-

ters satisfy certain definite relationships. 

A zero family mechanism.will function as an overconstrained 

mechanism if it:s constant kinematic parameters are so chosen.as to 

1This is not always true. Thus, for instance, a seven-link 
P-P-P-P-P-P-P space mechanism (lfi = 7). with a random combination of con­
stant kinematic parameters yields a configuration with mobility four. 

2The mechanism "series" mentioned in reference [22] is referred to 
here as the mechanism "family." See also reference [40]. 

3This is not always true. 
space mecoanism (lfi = 4 < 7) 
kinematic parameters.yields a 

Thus, for example, a four~link P-P-P-P 
with a random combination of constant 
configt1ration with mobility one. 
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make the freedoms in some of its joints. passive. Thus, for example, 

if the kinematic axes in an R-C-C-C mechanism are taken to be 

parallel to one ~nother, the translational freedoms.in all the 

cylinder pairs will become passive and the mechanism will, in 

effect, function as a plane four-link mechanism. Overconstrained 

mechanisms can, therefore, be consider.ed to have "passive couplings" 

and all overconstrained mechanisms can be regarded as special cases 

of appropriate zero family mechanisms on which suitable "passive 

coupling" conditions.have been imposed. The passive couplings are, 

in effect, conditions imposed on the constant kinematic parameters. 

The number of passive couplings Cp in an overconstrained 

mechanism is given by the simple relationship 

(A-1) 

where Lfi denotes the total number of degrees of freedom permitted 

at all,the joints of the overconstrained mechanism. Observe that 

the value of Cp given by the above relationship also gives the 

family number of the overconstrained mechanism [ 2'.2] o Zero family 

mechanisms thus do not have any passive couplings. 

6. Existence criteria of an Overconstrained Mechanism. In the context. 

of the present study, the existence criteria of an overconstrained 

mechanism denote a set (or sets) of conditions that are necessary 

for its .existence. These conditions are equations relating the 

constant kinematic parameters of the mechanism. An overconstrained 

mecl:ianism of the prescribed type satisfies all·of the conditions 

forming the existence criteria simultaneously. 



APPENDIX B 

CONDITION FOR COMMON ROOTS 

The number of common roots of two polynomials is decided entirely 

by their coefficients. In particular, certain matrices formed from the 

coefficients play an important role in the examination of the number of 

conunon roots. 

Consider the following two equations: 

0 (B-J.) 

(B-2) 

By using the coefficients of the two polynomials, we first form 

the matrix 6 1 shown,on the next page. This is a square matrix with 

(m+n) rows and (m+n) columns. It consists of two groups of rows. The 

first group consists of n rows and is formed from the coefficients of 

Fm(x); the second,group consists of m.rows and is formed from tl).e coef­

ficients of fu(x). 

Matri~es 62 , 63, , 6k, . , . are obtained from the matrix 61 

by the deletion of suitable rows and columns. Thus, matrix 62 is ob­

tained by deleting the first column of 6 1 and the first row from each 

of the tw~ groups of rows in 6r· Matrix 6 3 is obtc;tined by deleting the· 

first two columns of 6 1 and the first two rows from each of the two 

groups of rows in 61 • In general, the matrix 6k is obtc;tined by deleting 

the first . (k-1) columns, of 61 and the first (k-1) rows from each of the 
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am am'.'il B.m .... 2 - - ~ - - - - - - - - - - a2 al ao 0 0 0 l 0 am 2m-l - - - - - - - - - - - - - a3 a2 a1 0 0 0 

n rows 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. . 

0 0 0 - - - - am 2m--l am-2 - - - - - - - - - - - - - a1 ao 0 

0 0 0 - - - -.0 am am-1 - - - - - - - - - - - - - a2 a1 ao 

111 = (B - 3) 
bn bn-1 bn"."'2 - - - b2 b1 bo - - - - - - - - - - - - - 0 0 0 

0 bn bri-1 - - - b3 b2 b1 - - - - - - - - - - -- - --0 0 0 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- . -

m rows 

0 0 . ' 0 - - - - - - - - - - - - - - bn bn-1 bn-2- - - b1 bo 0 

0 0 0 - - - - - - - - - - - - - - 0 bn hu-1- - - b2 b1 bo J 



111 

two groups of rows in 61. 

The following two important theorems deal with the number of com­

mon roots [6]. 

Theorem 1. If Fm(~) and fn(x) have p or more common roots, then 

rank of AP is less than or equal.to (mtn-2p+l). 

Theor~m.2. If am or bn is non-zero and the rank of Ap is less than 

or equai to (m+n"".2p+l), then Fm(x) and fn(x) have at least p common roqts. 

For the particular case of one common root, the following corollary 

follows directly from Theorem 1: 

Corollary. If Fm(x) and fn(x) have one common root, the determin­

ant of 6 1 vanishes. 

The above theorems can be best illustrated by examples. 

Example 1, Find th~ value of q if the two equations 

F3 (x) = x 3 - 7x + q = 0 

and f 2 (x) = x2 + x - 2 = O 

have at ieast one,common root. 

Solution,. Here we have m = · 3, n = 2 and p = 1. From Theorem 1, 

it follows that the rank of A1 must be less than or equal to (3+2-2+1), 

that is, 4. We have 

1 

0 

1 

0 

0 

0 -7 q 

1 O -7 

1 -2 0 

0 

q 

0 

1 

0 

1 -2 0 

1 1 -2 
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The rank of the above matrix should not exceed 4. Its determinant 

must, therefore, vanish. This gives the condition q = ±6. 

If q = 6, the polynomial ~6 (x) is x 3 - 7x + 6 = o. F 3 (x) and f 2 (x) 

then have 1 as their common root, 

If q = -6, the polynomial F 3(x) is x3 - 7x - 6 = o. F 3 (x) and 

f 2 (x) then have -2 as their common root. 

Example 2. Examine the number of common roots between the follow­

ing two equations: 

F 3 (x) = x3 2x2 x + 2 

x - 3 

= 0 

0 

Solution. Here we have m = 3 and n = 3. We also have 

l -2 -1 2 0 

0 1 -2 -1 2 
1::,2 = 

1 3 -1 -3 0 

0 1 3 -1 -3 

[ : -2 -1 2 ] and /::,3 

3 -1 -3 
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The rank of ~1 is less than 6. Hence, from Theorem 2, there is at 

least one common root. 

The rank of ~2 is less than 4. Hence, there are at least two 

common rooti;. 

The rank of ~3 is 2. Hence, there cannot be three common roots. 

It, therefore, follows that the two given equations have two common 

roots. It can be seen that these two common roots.are 1 and -1. 



APPENDIX C 

DERIVATION Of THE R-P-C-P AND 
R-C-P-P MECBANISMS FROM 

THE R-C-C-C MECHANISM 

The existence criteria of the R-P-C-P and R-C-P-P space mechanisms 

can be obtaine\i from the displacement relationships of an R-C-C-C space 

mechanism. 

Consider the R-C-C-C space mechanism shown schematically in Fig. 

23. By suppressing the rotational freedom. of the cylinder pair at .the 

output joint D, it is possible to examine the conditions for the exis-

tence of a prismatic pair in this mechanism. 

The relationship between the input angle¢ and the output angle w 

of the .lllechanism in Fig. 23 is given by [55] 

(F22<Ii2+F20)1J12 + F11<IilJI + (Fo2<Ii2+Foo) = 0 (C-1) 

where qi = tan(¢/2) 

'¥ tan(w/2) 

and F22 = C(o-a.-y) - cs 

F20 = C(o+a.-y) - cs 

F11 = 4Sa.Sy (C-2) 

~02 = C(o-a.+y) - cs 

FOO = C(o+a.+y) - cs 

Let the angle w be now made constant for varying values of the 
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Figure 24. R-P-C-P and R-C~P-P Space Mechanisms Obtained from the 
Mechanism in Fig; 23 by Making~= ~k = a Constant 
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angle¢. The cylinder pair at joint D (Fig. 23) then reduces to a 

prismatic pair. Denoting the constant value of 1jJ by iµk and the corres-

ponding value of~ by ~k' Eq. (C-1) becomes 

0 (C-3) 

The above equation must hold good at varying values of the variable 

~. Its coefficients must, therefore, vanish. This gives 

~tF22 + Fo2 = 0 

~kFl 1 = 0 (c...:4) 

and ~{F20 + Foo 0 

E~amination of the above equations shows that the following cases 

are possible: 

(a) = 0 (That is, lµk = 2mr, n O, 1, 2, ... ) 

This gives 

(C-5) 
and Foo O 

(b) ~ = 00 

k (That is, iµk = (2n+l)7T, n O, 1, 2, ... ) 

This gives 

(C-6) 
and = 0 

(c) ~k + O and ~k + 00 (That is iµk + n7T' n = O, 1, 2, . . . ) 
This gives 

~~F22 + Fo2 = 0 

F11 = 0 (C-7) 

and ~{F20 + Foo 0 

Substitution of relations (C-2) in Eqs. (C-5), (C-6) and (C-7) and 
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examination of the resultant equations show that the above cases to-

gether give the following three independent sets of solutions: 

Solution 1 
0 + y = mr 

a ± s = nrr (C-8) 

and 1/Jk 2nrr 

for n o, 1, 2, . . . 
Solution 2 

0 - y nrr 

a ± s = nrr (C-9) 

and 1jJ = 
k 

(2n+l)rr 

for n = 0, 1, 2, 

Solution 3 
a = O or rr 

( C-10) 
and SoSyCijJk - Co Cy ± cs 0 

Subs ti tut.ion of the above 'conditions. in the displacement relation-

ships of the parent R-C-C-C mechanism [55] show that Solutions 1 and 2 

give .a prismatic pair at joint Bin addition to a prismatic pair at 

joint D. These solutions, therefore, give an R-P-C-P mechanism 

[Fig. 24(a)]. They also show that the axes of the revolute pair at 

joint A and the cylinder pair at joint C are parallel to. each other. 

Solution 3 gives a prismatic pair at joint C in addition to a 

prismatic pair at joint .D. It,. therefore, gives an R-C-P-P mechanism 

[Fig. 24(b)]. It a:l,.so shows that the axes of the revolute pair at 

joint A a!).d the cylinder pair at joint.Bare parallel .to each other. 

The above results thus lead to the conclusion that, in an R-C-C-C 

mechanism, when one cylinder pair is reduced to a prismatic pair, 

anoth.er cylinder pair is also reduced to a prismatic pair. Further, 
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the axes of the revolute pair and the remaining cylinder pair are then 

parallel to each other. These results agree with those obtained by 

Dimentberg and Yoslovich [16].1 

1See also reference [19]. 



APPENDIX D 

DERIVATION OF THE R-C-R-C MECHANISM 
FROM THE R-C-R-C-R MECHANISM 

The existence criteria of an R-C-R-C space mechanism can be ob-

tained from the displacement relationships of an R-C-R-C-R space 

mechanism. 

Consider the R-C-R~C-R space mechanism shown schematically in Fig. 

250 Note that the constant offset distances at.the three revclute 

pairs are taken to be zero, This mechanism reduces to an R-C-R-C 

mechanism if.the output angle~ is forced to be constant at all posi-

tions of the mechanism. If, in addition, we take e = 0 and A= O, the 

resulting R-C-R-C mechanism reduces to the conventional form shown in 

Fig. 26. 

Withe= 0 and A= O, the input-output relationship of the mechan-

ism in Fig. 25 is given by [56] 

where 4> = tan(¢/2) 

'¥ = tan(~/2) 

and G.o = bSyCy + cSSCB - (bCSSy+cSSCy)C(o-a) 

- (d~a)S(o-a)SSSy 

G2 = bSyCy + cSSCS - (bCSSy+cSSCy)C(o+a) 

~ (d+a)S(o+a)SSSy 
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and G1 = 4(aC_aS(3SySo - bSaC(3SySo - cSaSl3CySo 

+ dSaS(3SyCo) 
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Let the angle~ be now held constant.for varying values of the 

angle~- Denoting the constant value of.~ by ~k and the corresponding 

value of~ by ~k' Eq. (D-1) becomes 

(D-3) 

The above equation must be valid for varying values of the varia­

ble 4>. It~ coefficients must, therefore, vanish. This gives 

~{G2 + Go = 0 

~kGl = 0 (D-4) 

and ~~Go + G2 0 

Examination of the above equations shows that the following cases 

are possible: 

(a) ~k = 0 or co (That is, ~k = n'rr' n = O, 1, 2, . . . ) 
This gives 

Go = 0 
(D-5) 

and G2 = 0 

(b) ~k + O and ~k + co (That is, ~k + nn, n = 0, 1, 2, ... . ) 
This gives either 

Go = 0 

Gz = 0 (D-6) 

and G 1 = 0 

or 
Go + G2 = 0 

(D-7) 
and Gr = 0 
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Substitution of relations (D~2) in Eqs. (D-5), (D-6) and (D-7) and 

examination of the resultant equations show that; they all.lead to the 

same results which, after simplification, can be writte.n as .follows: 

SaSo(bCBSy+cSBCy) = SBSy(aCaSo+dSaCo) 

SaSo(bSyCy+cSBCS) = SSSy(aSoCo+dSaCa) 

(D-8) 

(D-9) 

The above equations represent the necessary conditions for the ex­

istenc:e of an R-C-R-C space mechanism with zero offset distances at.its 

revolute pairs and are identical with the,.results that were obtained by 

Dimentberg from the displacement relationships of an R-C-C-C space 

mechanism [13, 14]. 



APPENDIX E 

NUMERICAL SOLUTION OF NONLINEAR 
SIMULTANEOUS EQUATIONS 

Except in very simple cases, the soluti.on of systems of nonlinear 

equations can be attempted only by numerical means. Of the various 

methods that are available, Newton's method, which is a second-order 

iterative process [47], is generally preferable [48]. This method, like 

other functional iterative methods, requires the selection of an initial 

approximation to the solution of the problem. The approximation is then 

continuously improved until there is convergence or it is clear that 

there is no convergence. 

Let 
(E-1) 

represent a system of n nonlinear equations inn unknowns. Using'the 

initial approximation to the solution, the functions fi and their par-

tial derivatives are first evaluated. The "corrections'.' tsxj, are then 

calculateci by solving the set of linear equations 

n 
l af i (tsx.) 

'-ldXj J J-
= i l, 2, ... , n (E-2) 

'l'he corrections are· then added to original solt,ition and the procedur_e_ 

repeated until tQere is convergence or it is obvious that there is no 

convergence. 

The Newton method described above is characterized by two important 

features. On~ is the need for a good initial approximation to the final 
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solution. The other is the necessity of evaluating and inverting the 

Jacobian (21] (The coefficient matrix in Eq. (E-2)) at every stage of 

the iteration. 

The need to choose a good initial approximation to the solution 

may.not be a severe restriction in many cases, but it becomes quite 

important when one is dealing with a large number o~ highly nonlinear 

equations [32], It may then become very difficult to choose initial 

approximations that eventually lead to convergence, This restriction 

can be removed by employing methods that involve "parameter perturba­

tion" (37, 18] or "parameter varia~ion" (12]. These methods are based 

essentially on an .idea originally proposed by Davidenko [11] and consist, 

in effect, in reducing the main problem into a number of subsidary 

problems that are more readily solvable. 

When the equations in the system (E.-1) are very complicated, ex­

plicit evaluation and subsequent inversion of the Jacobian may .. become 

very difficult or even impossible, In suc;:h cases, the difficulty can 

be overcome by using the so-called quasi-Newton methods. (3, 7, 8]. 

These methods involve the use of some form of approximation to the in­

verse Jacobian and modification of this approximate matrix at every 

stage of the iteration. 

The methods proposed so far for the solution of complicated non­

linear simultaneous equations have employed either the Davidenko 

~pproach or the approach of the quasi-Newton methods. A new method com­

b:i,.ning the features of both the.se approaches has recently been proposed 

by Broyden [9] who has shown it to be extremely useful in the solution 

of many difficult problems. 
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