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PREFACE' 

The purpose of this thesis is to pr0ve tht+t no closed convex curve 

has two equichordal points. A point Sin the i,terior of a Jordan curve 

C is an equichordal point of C if and only if each line L through S meets 
' 

the curve C in exactly two points A
1

. and Bt eiuch that th• length of the .. 

segment A1~ is a constant. Helfenstein [7] (numbers in. square brackets 

refer to the bibliography at the end of the paper) and Kelly [8] have 

shown the existence of infinitely many curves with one equichordal point. 

In 1916, Fujiwara [6] proved the nonexistence of a closed convex curve 

with three equichordal points, and first proposed the question of the 

existence of a closed convex curve with two equichordal points. During 

the past fifty years, several authors have cpnjectured. that no closed 

convex curve has two equic;hordal points. However, accotJding to Klee [9], 

no one has proved this conjecture and the question remains open. This· 

thesis does provide an answer to Fujiwara 0s question. 

I wish to express my appreciation to all those who assisted me in 

pursuing my graduate studies and in the preparation of this thesis. In 

particular, I would like to thank Professor E .• K. McLachllila who gave so 

generously of his time and whose suggeli!tions and directions were of great 

value. My thanks go to Professors John Jewett, John Hoffman, and John 

Shelton for their interest and encouragement. Finally, my deepest thanks 

go to my husband, David 9 without whose confidence, encouragement, and 

assistance I could never have completed my graduate studies. 
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THE NONEXISTENC~ OF A CONVEX CURVE 

WITH TW0··· EQUICHORDAL POINTS 

Let C be a closed Jordan curve in the Euclidean plane and let S be 

an interior point of Co Then Sis an equichordal point of C if and only 

if each line L through the point S meets the ciirve C in exactly two 

points AL and BL such that the length of the segment ~BL is a constant. 

If Sis an equichordal point of C then Sis called an e-point, each of 

the segments ALBL is called an e-chord, and the constant length of the 
·\ 

. . \~ 
segments ALBL is called thee-length of the curve C. If Chas n, n 2 1, 

distinct equichordal points and C is the boundary of a convex bo~y in the 

plane, then C is an n-e-curveo 

Helfenstein [7] and Kelly [8] have shown that t~ere are infinitely 

many 1-e-curveso However, the nonexistence of n-e~curves for n~ 3 was 

proved by Fujiwara [6] and later by Dirac [2]0 This result lead to the 

question of the existence of a 2-e-curve. According to Klee [9 ], this 

question was first asked by Fujiwara [6] in 1916 and independently by 

Blaschke, Rothe 9 and Weitzenbock [1] in 1917. 

During the past fifty years, several authors have assumed the 

existence of a plane convex curve C with two equich<;>rdal points Rand S 1 

and have established a number of necessary conditions for such curves. 

Suss [11] proved that C is symmetric with respect to the line RS and with 

respect to the midpoint of the segment RS. Dirac [2 J and Ehrhart [5] 

obtained quantitative results on the chord containing both Rands. 

Dirac [¢] proved that C i~ differentiable and Dulmage [ 4] studied the. 
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tangents of C. Wirsing ~2] provedi without assuming the curve to be 

convex, that C is analytic at every point. Previous to Wirsing's result, 

Linis [lo] had claimed to prove that C is not twice differentiable and 

Helfenstein [7] that C is not six times differentiable. Either of these 

would, with Wirsing«s result 9 answer the question by showing that a 

2-e-curve C does not exist. However, Dirac [3 J and Wirsing [12] have 

indicated mistakes in the work of Linis and Helfenstein. The question 

was revived in 1969 by Klee [9 J who remarked that it remains an open 

question. 

The purpose of this thesis is to answer Fujiwara 9 s question by 

showing that there does not exist a closed convex curve with two equi-

chordal points. This will be done by using a construction process to 

obtain a set of points {Pn} which must be points of a 2-e-curve if such 

a curve exists, and then showing by some of the results of Dirac [2] 

and Wirsing [12 J that it is impossible for all of the points { P nJ to be 

points of a 2-e-curve. The following notation will be used in the 

proof. 

If Pis a point of the 2-e-curve C9 with equichordal points Rand S, 

denote the angle RSP by 9 and the distance PS by r(9) as illustrated in 

Figure 1. Let 2a denote the length of the segment RS and suppose the 

e-length of C is 2 units. Then a 9 the ratio of the length of the segment 

RS to thee-length of the curve, is called the eccentricity of the curve 

C. In accordance with the following proposition which Ehrhart [5] and 

Dirac [2] have shown, let O <a< Y2. 

Proposition 1 (Ehrhart [5])g There does not exist a 2-e-curve C 

with eccentricity greater than or equal to*· 
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c 

Figure 1. 

The following are pertinent resulte of Dirac [2] and,Wirsing (12]: 

Proposition 2 (Dirac [2]): A 2-e-curve with a-points R and S is 

symmetric with. respect to the line RS and with respect to the midpoint 

of the segment RS. Also, r(9) is strictly decreasing if O ~ 9 ~ 'IT. 

Proposition 3 (Wirsing [12]): If a closed cU?tve has two e-points, 

then· it is analytic at every. :paint:. 

The following is a preliminary result that w.ill prove useful later 

13- the· discuesion-. 

PI:oposition 4: If a cloeed curve Chas an equichor~ point Rand 

a center of symmetry o, distinct from R, then the symmetric image point 



4 

of R with respect to O is also an equichordal point of C and therefore, 

Chas two equichordal points. 

Proofi Let the point R be an s~point of the curve C, and suppose 

all a-chords through R have length 2. Let S be the symmetric image of R 

with respect to O, as ill~strated in Figure 2. Suppose the line L passes 

through 8 9 then L0 , the symmetric image of L with respect to 0, passes 

through R. Since R is an e-point of C, it follows that L0 intersects C 

in exactly two pointsj po and Q0 • Moreover, the length of the segment 

P0 Qv is 2 units. The curve C is symmetric with respect to O; therefore, 

the line L intersects the curve C in exactly two points P and Q which 

are the symmetric images of po and Q0 ~ respectively. Therefore, PQ = 
puQ 0 = 2, and it follows that Sis an equichordal point of c. Clearly, 

the points Rand Sare distinct. Therefore~ the curve Chas two equi-

chordal points. 
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In order to determine an infinite sequence of points, fix a<*· 

Let R(2a 9 0) and S(O, 0) be points in the Euclidean plane and suppose 

the point P1 has the rectangular coordinates(~, y1 ), with respect to 

the origin S, such that x1 '::: 0 9 y1 > O. Let E1 and E2 denote the open 

half-pla11es, upper and lower 9 respectively 9 determined by the line RS. 

Then the point P1 is in the half-plane E1 • Let P2 be the point of the 

line P1S such that P1P2 = 2 and P2 is a point in E2a Let P2 denote the 

symmetric image of P2 with respect to 0 9 the midpoint of the segment RS. 

Then P2 is a point in the half-plane E1 • Let P3 denote the point of the 

line P2S such that P2P3 = 2 and P3 is a point of the half-plane E2• Let 

P
3 

denote the symmetric image of P3 with respect too. Now, if the 

points P1 , • • • 9 Pk have been determined in this manner, let Pk+l be the 

point of the line PkS such that PkPk+l = 2 and Pk+l is a point in the 

half-plane E2• Let Pk+l denote the symmetric image of Pk+l with respect 

to O. Then Pk+l is a point in the half-plane E1 • Hence, the points 

P1 ~ • • • 9 Pk, Pk+l are in the half=plane E1 and the points P2, • • • 9 Pk 9 

Pk+l are in the half-plane. E2• In this manner, the infinite sequences 

{Pk} and { Pk} are obtained as illu~trated in Figure 3. 

If the point P is written in complex notation 
n 

z ""x + iy n n n 
i9 = r e n 

n 

with respect to the origin S, then the point P~+l becomes 

as illustrated in Figure 4. 
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Figure 3o 
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It follows that the point P.n+l may be writtefl in cqpiplex notation 

2 
=2a+x ~-~~==l 

n~ 

~ 2a + (=r + 2)eiG:n, 
n 

Therefore, 

and 

2 
r n+l 

x n+l ~ 2a + x 
n 

~ (2 ~ r )2 + 4a2 + 4a(2 = r )©os 9 o n.' · ··· · n ····n:·· 

Thi~ c:oIJ!Pu.tatio~ lead:s di:re~tly 'to the- following: property. 
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Consequently 9 2a4'. rn+lo 

If 2a < rn <:. 2, as~tµDE!. rn+l ~. 2:. . Then; 

so that 2 - r + 2a ~ 2 and 2a ~ r ~ which contradicts the hypothesis. · n n• 

· Therefore·· r· · · < 2·and the proof is.· ·.c·.C?DIP ... leteo··· 
···· 9 n+l · ·· · · 

In particular, let~= 2a and yl = lo Throu~hout the remainder of 

this paper, let {Pk} and {Pk} denote the sequences deteFmined by the 

preceding construction with this pc:trticular initial Pfint P1 (~ 9 y1 )o 

It follows from Pr9position 2 th~t if there is a 2-e-curve C with equi-

chordal points R and S, then C must pass through the point P
1 

(2a 9 l)a 

Moreover 9 as a result of the construction, each of the points P 9 n = 1, 
ll 

2, • • • 9 must be a point of C. However, the foll9wing lemmas will be 

used to prove that not all of the poi11ts Pn 9 n = l, 2, • • • , can be 

points of a 2-e-curveo The proof of Lemma 2 follows exactly the work of 

Wirsing · [12J 

Lemma 2g If yn is the ordinate of the point Pn 9 as ingicated above, 

· then· lim O y· = Oo · n~co n 

x ... a a ·- xo xff - a XO a ~·,, m n n 
y ' 

,., . J;y = = yo - yff ·yo 
n n ~ n n 

xn-l a 
~ ~ + a:::= 

· ·1n.;,,l 1n 

xn-l - a a a 
= + ~ + 

1n=l Yn-1 



Therefore, 

cmd 

x - a n 
lim ---- = lim n--,co yn n-.oo 

= 

= 

x n-2 -
Yn=2 

x -Q 
a 

Yo 

a a a a 
+ -.+ - + 

Yn-2 ·· Yn.;.l ·y~ 

a a a 
+ + - + • • •+ -0 

Yo y 
1 

y 
n 

:ri 1 

aL = 
k=O 

But yk ~ rk < 2, and consequently 9 L > ! for every ko 
yk 29 

Therefore 9 

,, 

x - a n 
lim --- = 
n~- Yn 

x - a 
_o_. -- + a(~ + ~ + • • ·) = oo o 

Yo 

Consequently· lim ·-·y- =· Oo 
' n'-)oo n 

··The' followi:~g ·l:emma- i·s- a: airect result ·of· ·th:e · construction;; 

Lemma· 3g The· sequence {en} is strictly monotone,,de-creasingo · 

Thi·s result may be used to prove··th:e f·ollowtng··lemma-. ··· 

Lemma 4g For every n = lo 2. O O • A x "'- x 2 "'- 20 • .. • • :n n+ 

10 

0 



Proof: For every n, x < 2 since x <: r .. < 2o n n- n 

x + x l n n+ 

and it follows.· that x < x 2 , .. ·. for ever."' n:o n n+ · "' 

11 

Also, 

Therefore, the sequences {x2k} and {x2k+l} are monotonic increasing 

and bounded above, and hence convergent. Suppose x2k~ T2 and x2k~ T1 a 

Since 

2 
x2k+l = 2a + x2k ------ - l , , __ vx~ + y~ 

it follows that 

....,1, 

2 = 2a + T2 ---- - l 

:vT~ '+ 0 

= 2a + 2 - T2 a 

Therefore, ·· · 

Finally, the following lemma shows that the points P 9 n = 1, 2 9 n , 

3 9 • ·• • ~ cannot all be poir+ts of· a 2-e-curve. · 

Lemma 5: There exi~ts at least one N such that ,rN ~ rN+lo 
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Proof: Suppose rn < rn+l' for every n. Then 
L .. 

and xn < xn+l' for every n. Therefore, T1 = T2 = 1 + a. Let A denote 

the point (l+a, 0) and let B denote the point (-l+a, O)o Then Pk~ A 

and Pk---"? B. Let P0 (x09 y0 ) denote the point (O, 1), Q denote the point 

2* (a, (l+a) ), and A01 be the union of the line segments P0Q and P
1

Q. 

Note that the arc A01 is symmetric with respect to the perpendicular 

bisector of the segment RS and that the arc A
01 

fails to have a tangent 

at the point Q. In order to complete the proof of this lemma, it will be 

shown that the assumption r < r 19 for every n, permits the construc-
n n+ . 

tion of a closed curve C with two equichordal points such that the arc 

A01 is a subset of the curve C. Therefore, C is not analytic at the 

point Q and this contradicts Wirsing's Proposition 3o Now 9 suppose MM' 

is a segment of length 2 pivoted at s. As the segment MM' moves such 

that M traverses A01 from P0 to P1 , the point M' determines the arc A12 

connecting the points P1 and P2o Let A12 denote the symmetric image of 

A12 with respect to 0 9 then A01 l) A12 connects P0 to P2 via P
1 

as 

illustrated in Figure 5. As the segment MM' pivoted at S moves such that 

M traverses the arc A129 the point Mu determines the arc A
23 

connecting 

the points P2 and P3o Let A
23 

denote the ·symmetric image of A
23 

with 

respect to the point o. Then A
01 

U A
12 

VA
23 

connects P0 to P
3 

via P1 

and P2 • Now, suppose the arcs A019 A129 • • •, ~-l
9
k have been 

determined such that A01 U A12 V • • • UJ\c_
1 

k is an arc containing all 
9 . . 

of the points P0 g P1 , • • • 9 Pk. Then, as the segment MM' continues to 

move such that the point M traverses the arc J\c-l,k 9 the point M9 

determines the arc Ai!:,k+l connecting the points Pk and Pk+lo If ~,k+l 
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is the symmetric image of ~,k+l with respect to O, the~ A01lJ 'J_2 lJ· · • 
UAic-l,k U Aic,k+l is an arc containing all of the points P0 , P1 , • • •, Pk, 

Pk+l" The fact th~t P
11 
~ • :i.:q.dicates that 

is an arc connecting all of th~ points Pn. Also, 

c• = 1 

00 

u 
k=O ~,k+l 

is the symmetric image of c1 with respect to the point o, and Ci connects 

the points P~, h = O, 1, • • •. Let c2 denote the syaunetric image of c1 

with respect to the line RS and let C denote the symmetric image of c• 
~ ~ 

with respe·ct to 0. · 0'Phen cons~der·· t:tie set of,.,oin1,-~' · 

C =· C ·U C'U. C ·UC' o · l 1 . · 2 2 

Let v1 be a point of A01 and let f vk} denote the sequence of points 

obtained, as illustrated in FiguI"e 3, if v
1 

is the initial point in the 

construction. Si~ce a <. ~. it follows that 2a <: gv
1 

< 2. Then, by 

Proposition 1 and induction on k, 2a < ~Vk < 2, f()r eve:ryk. Therefore, 

C is a closed curve with equichordal. point Sand.center of symmetry o, 

distinct from s. It follows from Preposition 4 that C h~s two e-points, 

namely'R and S'. · Howe\rer, the f~ct that C is not analytic at the point Q 

contradicts>Wirsing•s Proposition 3. Therefore, there exists at lea.st 

one N such that r > ·r o N - · N+l 

Tl:le~e . re1:;1:u,l ts may. now .\'>e . µ!!ed to prove tb,e fol,lc:>~;i.p,g prop.<.>~itioa 

which provides an answer to Fujiwara's questiono 
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Proposition· '5r · Ne· closed"' convex ·curve ha:s tw·o e·qu±chordal 'poin~s:o' ·· 

Proof.: Suppose there exists a clesed convex curve C with two equi-

chordal points Rand Sande-length ,2. The~, accordi~g ta Propositien 2, 

the point P1(2a, 1), and consequently, each of the point~ Pn' n = 1 9 2, 

3, •••,must be points of c. Furt~ermore, it follows from Proposition 

2 that rn <. rn+l, for every no ~t t:hlis clearly contradicts Lemma 5. 

Hence, there does not exist a closed convex c;urve with two equichordal 

points a 

Therefore, the question asked by Fujiwara [6] in 1916 is answered: 

There is no 2-e-curveo Consequently, a closed convex c:tµ"ve h~s at most 

one equichordal point. 

The result of this thesis leads quite naturally to a questio~ which 

seems to have been avoided in the literature: 

Is there a closed·, curve ·wit·l'r two· e·cr1:iicherdd. points? · 

··Mor-e generally,· 

Note that if C is a Jordan curve, then an interior poi~t P of C is 

arl equichordal point if !llld onl;r if t~e ~um !Ix • ~II + jjy - Pjj is const,ant 

fo~ all chor~s XY through Po. AnalogouE!il~, Pie an equireciprocal point 

of c 'if and only ~f the sum llx - p""'.'i ~· IIY .. p11-1 ie c~stant for all 

chords XY through P. According to Klee [9], the following question is 

op-en: 

Is there a closed convex curve with two equireciprocal points? 
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