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' PREFACE"
The purpose of this the51s is to prove that no closed convex curve
has two equichordal p01nts, A pOint S in the interior of a Jordan curve
C is an equichordal pOint of C if and only if each line L through S meets

the curve C in exactly two p01nts A and B, such that the length of the

L L .
segment A BL is a constant. Helfenstein [7] (numbers in square brackets
refer to the bibliography at the end of the paper) and Kelly [8] have
shown the eXistence of 1nfinitely many curves with one equichordal point.-
In 1916, Fuaiwara [5] proved the.nonexistence of a closed convex curve «
with three equichordal points, and first proposed the question of the -
existence of a closed convex curve w1th two equichordal points. Durinéhk .
the past fifty years, several authors have conjectured that no olosed
convex curve has two equichordal p01nts. However, acoording to Klee [9]
no one has proved this conjecture and the question remains open. This
the51s does provide an answer to Fujiwara s questiono o o

I W1sh to express my appreciation to all those whoba551sted me.ini
pursuing my graduate studies and in the preparation of this the51s. In
particular, I would like to thank Professor Ea K, McLachlan who gave 80 o
generously of hlS time and whose suggestions and directions were of great.w
value, My thanks go to Professors John Jewett John Hoffman, and John |
‘ Shelton for their interest and encouragement. Finally, my deepest thanks"

go to my husband, DaV1d9 without whose confidence, encouragement , and

assistance I could never have completed my graduate studieso
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THE NONEXISTENCE OF A CONVEX CURVE

: WITH WO~ EQUICHORDAL POINTS

Let C be a closed Jordan curve in the Euclidean plane and let S be

an interior point of C. Then S is an equiehordal pqint ef C if and only
if each line Lﬁthrough the point S meets the curve C in exactly two
p01nts A and B such that the length of the segment ALB is a constant.
If S is an equichordal point of C then S is called an e-201nt, each of
the segments‘ALBL is called an e-chord, and the constant length\of the
segmezits AL.BL ia called thev e-length of the curve C. If C has rf, nz1l,
distinct equichordal points and‘C is the boundary of a convex body in the
plane, thea C is‘an n-e-curve.

Helfenstein [7] and Kelly [8] have shown that there are infinitely
many l-e-curves. However, the nonexistence of n-e-curves for nZ 3 was
proved by Fujiwara [6] and later by Dirac [2]0 This result lead to the
question of the'existeﬁce:of a 2-e=curve, According to_Klee [9], this
question was first asked by Fujiwara {6] in 1916 and independently by
Blaschke,.Rethe, and Wei tzenbbok [1] in 1917,

During the past fifty years, several authors have assumed the
existence of a plane contex curve C Qith twe equichofdal points R and Sy
and have established a number of necessary condltlons for such curves.
Suss [11] proved that C is symmetrlc with respect to the llne RS and Wlth.
respect to the mldp01nt of the segment RSo Dlrac [2] and Ehrhart [5]
obtained quantitative results on the chord contalnlng both R and S,

Dirac [2] proved that € is differentiable and Dulmage [4] sthdied the
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tangents of C,‘ Wirsing‘[}ZJ proved, without assuming the curve to be
convex, that Clis analytic at every point. Prévious to Wirsing's result,
Linis [iO] had claimed to prove that C is not twice differentiable and
Helfenstein [7] that C is nof six times diffe_rentiabl;° Either of these
would, with Wirsing's result, answer the question by showing that a
2~e=curve C does not exist. However, Dirac EB] and Wirsing [12] have
indicated mistakes in the work of Iinis and Helfenstein. The question
was revived in 1969 by Klee [9]9 who remarked that it remains an open
question.

The purpose of this thesis is to answer Fujiwara's question by
showing that there does not exist a closed convex curve with two equin’
chordal points. This will be done by using a construction process to
obtain a set of points {Pn} which must be points of a 2-e-curve if such
a curve exists, and then showing by some of the results of Dirac [2]
and Wirsing [12] that it is impossible for all of the points { Pn} to be
points of a 2-e-curve. The following notation will be used in the
proof.

If P is a point of the 2-e-curve C, with equichordal points R and S,
denote the angle RSP by & and the distance PS bj r(@) as illustrated in

Figure 1. Let 2a denote the length of the segment RS and suppose the

e~length of C is 2 units, Then a, the ratio of the length of the segment

RS to the e-length of the curve, is called the eccentricity of the curve
C. In accordance with the following proposition which Ehrhart [5] and

Dirac [2] have shown, let 0 < a < %,

Proposition 1 (Ehrhart [5])3 There does not exist a 2-e~curve C

with eccentricity greater than or equal to %.



Figure 1.

The following are pertinent results of Dirac [2] andﬁwirsing'tlajz

Proposition 2 (Dirac [2]): A 2-e~curve with e-points R and § is
symmetric with respect to the line RS and with respéqt tobthe midpoint

- of the'segmeht_RS, Also, r(@) is-strictly decreasing if 0 £0 & 7.

~ Proposition 3 (Wirsing [;2]): If a closed curve has two e~points,

then it is anélytic:at«every:pnint;

The following is a preliminary result that will prove useful later

iy the discussion.

Proposition 4: If a closed curve C has an equichordal point R and

a center of symmetry O, distinct from R, then the symmetric image point



of R with respect to O is also an equichordal point of C and therefore,

c haS’tW6 equichordal points.

Prbof; Let the point R be an ewpqint of the curve C, and suppose
all ecchords through R have length 2; Let S be the symmetric image of R
with respect to O, as iilugtrated in Figure 2. Suppose the line L passes
through S@ then L“, the‘sy@metric image of L with respect to O, passes
through R. Since R is an e-point of C, it follows that L' intersects C
in exactly two points, P“ and Q'. Moreover, the length of the segment
P'Q' is 2 units. The curve C is symmetric with respect to 0O; therefore,
the line.L interse¢ts the curve € in exactly two pointst and Q which
are the'symmetfic images of P’ and Q', respectively. Therefore, PQ =
P'QY = 2,‘and it follows.that 3 is an equichordal point of C; Clearly,
the poigts R ané S are diétinctam Therefore, the curve C has two equi~-

chordal pointss

YL
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Figure 2.
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In order to determine an infinite sequence of points, fix a < J
Let R(2a, 0) and S(O, O) be points in the Euclidean plane and suppose

the point P, has the rectangular coordinates (x,, y.), with respect to
- 1N

1

‘the origin §, such that xlEf Oy y; » O Let E; and E, denote the open

half-planes, upper and lower, respectively, determined by the line RS.

Then the point P. is in the half-plane E,. Let PJ

1 1 2
line P.S such that P.P! = 2 and Pé is a point in Eza Let P, denote the

be the point of the

1 12 2
symmetric image of Pé with respect to O, the midpoint of the segment RS,

Then P2 is a point in the half-plane Elo Let P% denote the point of the
line PZS such that PZP% = 2 and P%vis a point of the half-plane E20 Let

P3 denote the symmetric image of P% with respect to 0. Now, if the

points Plg t oy, Pk have been determined in this manner, let Pﬁ+l be the

point of the line P, S such that P P = 2 and pe is a point in the

k k' k+l k+1
half-plane an Let P denote the symmetric image of P with respect

k 1

to O, Then P is a point in the halfmplane E. . Hence, the points

k+l 1°

- - [ ] - 8
Plg » Pk’ Pk+l are in the half plane El and the points P St

9
Pk

oo-,P39
, are in the halfmplane E2 In thls manner, the infinite sequences
} {P“} are obtalned as illustrated in Figure 3,

If the point Pn is written 1n‘complex notation

with respect to the origin S, then the point P&+1 becomes

_ _ i(TT+8,) _ _ ie,
Z£+l = (2 rn)e = (rn 2e

as illustrated in Figure k4.



Figure 3,
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It follows that the point Pn+

1 may be writteg in cqmplex notaticn

- - - - - iey
2.1 = xn+l + iyn+l = 2a + ( z$+l) » 2a + (.Ih + 2)e
= 28 + % [t - 1 +iyn-====m§=m=1 .
‘ : XZ 4"2 x2 + 2
nt In Y'n Yn
Therefore,
2
b'4 = 2a + X v =11,
n+l n xa >
n "t I
2
Vpo = ¥ —==== = 1|,
n+l n xa o >
SRS
e ] 2
Ty = (B )T+ ka4 bal2 - r Jeos @ .

Thig computation leads direetly to the following property.

Lemma 1l:  If 2a< r < 2, then 2a < 1 < 2.
—_— o) ' n+l

Proof: If T, < 2, then

2 P 2 2
Tnal (2 rn) +.4§ + ka(2 rn)cos o, La®,



< o
Congsequently, 2a Tl

If2a<r < 2, assume r . Z 2, ,,Then:'
n : n+l :

(@-r)2 +ha® 4+ ba(2 =1 ) Z (2 -1 + ba® 4 ba(2 - r )cos 6 Z b
: n’ o o R _ n’ T n’ n
so that 2 - ro+ 2a 2 and 2a z L which contradlcts the hypothesis.

*Therefore, r ‘< 2 and the proof is ‘complete,

+1
In particular, let xl = 2a and yl 5.1; Throughout the remainder of>
thls paper, let { } and {P"} denote the sequences determlned by the
precedlng constructlon with this partlcular inltlal polnt P (x1, yl)o‘
It follows from Prop051tlon 2 that if there is a 2-e-curve G with equlo
chordal points R and S, then C must pass through the point P (2a9 1) |
Moreover, as a result of the construction, each of the points P sy B = 1,
2y 7 % must be a p01nt of Co However, the following lemmas will be ”
used to prove that not all of the p01nts.P s A= 1 2 . °, can be
points of a_2-e~curvea The proof of Lemma 2 follows exactly the work of

‘Wirsingj[}éjo:

Lemma 2: If Yo is the ordinate of the point Pn’ as indicated above,

“then lim-+y. = 0g
N Y ]
‘fﬂyf&oofe*“IQgFigure 3, it,is'easyttO“see”fromfthe#conetrqotiontthat“' o

X =a a-=x' X' =a x! a J

i o n_'n n
Y 0 n
- n-=1 i=
. Sl
X 4,2 a a
= . + cwo oo
Jp=1 ynul yn



Therefore,

and

k

L
+
iy
+

#
o]
i
»
»
»
®

T Yo k=0 i’

But yké r, < 2, and consequently, %—- > %‘-, for every k.

Therefore,-

Conse quent'ly-p- %é.,rg; ¥
~The-following
~Lemma- 3¢ - The -

Thi:s -resulbt may be

Lemma 4: For

sequence- {gn} is ‘Bt:ric»tl'yul‘IIOn'Ot‘omev)-de»creasingov,. e

‘used to" prove"the following lemma. -

everym =1, 2, * "y x <% <2

n+l

lemma- is-a direct result of ‘the comstructions = - - o



Proof: For every n, xn< 2 since xns rn_< 2. Also,

X + X

+ x
n n+l

= 2a + Zcoe_'en < 2a + 2cos © = X n+l®

n+l n+2
and-it follows ‘that x‘n < xn+2, ‘for every m., =

Therefore, the sequences {x }and { okt l} are monotcnic incr'easing

‘ —> -
and bounded above, and: hence convergent. Suppose x2k ’I'.2 and x2k+l Tlo

Since

x'2k+1

it follows that

Ty = B Xopa *

=28 +2 - T.o

T, +T, = 2 + 2a.

Finally, the following lemma shows that the points Pn, n=1, 2,

34 °+ v, cannot all be-points of a 2-e-curve,

Lemma 5: There exists at 1east one: N such that r N P TNel®
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Proof: Suppose rn<< rh+l, for every n. Then

Le.

X =r cos e <£r cos © r cos © = X
n n. . n n+l o m <"n’+l"“" n+l Ta+l

and X < X1t for every n, Therefore, T, = T2 =1 +a, Let A denote

1
the point (1+a, 0) and let B denote the point (~1+a, O). Then P ——QAA

and Pﬁ——e'B. Let Po(x ’ yo) denote the point (0, 1), Q denote the p01nt

1
(a, (l+a2)k), and A be the union of the line segments POQ and PlQ.

01
Note that the arc A is symmetric with respect to the perpendicular

bisector of the segment RS and that the arc A fails to have a tangent
at the point @. In order to oomplete the proof of this 1emma, it will be
shown that the assumption r, < r i; for ever& n;‘permits the oonstruo;‘v
tion of a closed curve C with two equichordal points such that the arc

01 is a subset of the curve C. Therefore, C is not analytic at the

point Q and this contradicts Wir51ng s Propositlon 3. Now, suppose MM'
is a segment of length 2 pivoted at S. As the segment MM' moves such

that M traverses A01 from P, to P,, the point M' determines the arc A} 12

0 1°

[}
connecting the points Pi end Pao Let A12

iZ with respect to O, then AOltj‘Ala connects Po'to P2 ria Pl as

illustrated in Figure 5. As the segment MM' pivoted at S moves such that

denote the symmetric image of

M traverses the arc A12, the point Mv determines the arc Aé3 connecting

the points Pé and P%. Let A23 denote the - symmetric image of 23 with

respect to the point O, Then AOlkj A12 UA23 connects Po to P:5 via Pl

and P2 Now, suppose the arcs A ‘Y Ak-l K have been

o1t A0t |
determined such that AOl\j Ala\} G L}Ak 1.k is an arc containlng all
of the points PO” Pl’ .y Pk Then9 as the segment MM' continues to
move such that the point M traverses the arc Ak 1,k’ the point M?

determines the arec A} connecting the points P! and P! ; If
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Figure 5.
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is the symmetric image of Ak K+l with respect to 0, then AOl\J Alakj .

L)Ak-llsL,Ak k 1 is an arc containing all of the points P

O,P P

l’.‘.’ k’

P,

k+l® The fact that P — A indicates that

Akok'f'l .

k=0

is an:arc'connecting all of'the points P . Also,

A ka1

is the symmetric 1mage of C with respect to the point 0, and c) connects

1l Pt |
the points P', n= 0, 1, ‘e, Let Cé denote the symmetric image of C1
with respect to the Iine RS and let C2 denote the symmetric image of Cé»
C = clU c! U C, U o
Let V1 be a point of Aoi and 1et { } denote the sequence of p01nts
obtained as 111ustrated in Figure 3, if V1 is the initial point in the
construction. Since a< k, it follows that 2a < SVi < 2. Then, by
Proposition l and induction on k, 2a < SVk < 2, for every k. Therefore,

C is a closed curve with equichordal point S and center of symmetry 0,
'distinct from So It follows from Proposition 4 that C has two e-points; |
lnamely%R“and-Sa“’However, ‘the fact that C is not analytic at the point Q
contradicts Wir51ng's Proposition 3. Therefore, there exists at least

one stnch that%rN'_;eria

_These results may now be used to prove the following proposition

which provides an answer to Fujiwara's question,



Proposition“E:W”No"closed“convex“curve haS“two*equichor&al<points;%“'"ﬂ

Proof: .supoose there eaietsba closed‘ccnvechurve.é.uith tuo‘equie.
chordal points R and S and e-length ‘ Then, according to Propositlen 2
the p01nt P (Za, l), and consequently, each of the p01nts P , n = l, 2,
3,' s+, must be points of C. Fnrthermore, it follows from Proposltion

2 that T, < r for every N, But this clearly contradicts Lemma 5.

l!
'Hence, there does not exist a closed convex curve w1th two equichordal

points. -

Therefore, the question asked by Fujiwara [6] in 1916 is answeredvi
There_is no_2-e-curve° Consequently, a closed convex curve has at most
”one equichordal point. |

The result of this the31s leads quite naturally to a question Wthh |

seems to have been av01ded in -the literature:

' Is-there"avclosedncurvefwith~twomeouichordal”points?~
'wﬁore“generallx;‘
“ﬂIsmtherewa'closedwcurvefwithrn;fn”>Wl;*eguichcrialf?oints?"

Note that if C is a Jordan curve, then an interior point P of C is .
an equichordal point if and only if the sum “X - P” +|lY - Pllis eonstant
for all chorde XY through P, Analogously, P is an equireciprocal point
of C if and only if the sum "X - P” ”Y - P” is constant for all ;
chords XY through P. Accordins to Klee [9] the following question isv‘

open:

Is there a closed convex curve with two equireciprocal points?
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