By
JOANNA MAY MARTIN
Bachelor of Science Central Missouri State College
Warrensburg, Missouri 1960
Master of Science Central Missouri State College
Warrensburg, Missouri 1967

[^0]THE EFFECTS OF ROTE AND DISCOVERY TEACHING METHODS ON FIFTH, SEVENTH, AND NINTH GRADE STUDENTS OF A LOW AND MIDDLE SOCIO-ECONOMIC BACKGROUND

Thesis Approved:

Sue dace Thesis Adviser

'763814

ACKNOWLEDGMENTS

The writer wishes to express her indebtedness and appreciation to Dr. Ide11a Lohmann, who served as chairman of her advisory committee, for her encouragement and assistance during the writing of this study. To Dr. Sue Hawkins, Associate Professor of Education; Dr. Russell Dobson, Associate Professor of Education; Dr. Robert Brown, Associate Professor of Education; and Dr. Arnola Bose, Associate Professor of Business Education appreciation is also expressed for their help and guidance.

Appreciation is also expressed to the following people, who helped make the entire study possible: Dr. Gene Pingleton, Superintendent of Stillwater Schools, Stillwater, Oklahoma; Dr. R. Fount Holland, Principal of C. E. Donart High Schoo1, Sti11water, Ok1ahoma; Mrs. Angela McNei11 and Mrs. Pamela Keys, teachers at the C. E. Donart High Schoo1, Stillwater, Oklahoma; Mr. Bill Salwaechter, Principal of Stil1water Junior High School, Stil1water, Oklahoma; Mrs. Wilma Bouldin, Mrs. Ann McKee, and Mr. Leroy Coke, teachers at the Stillwater Junior High Schoo1, Stil1water, Oklahoma; Mr. Arthur P. Bieri, Principal of Lincoln Elementary School, Stillwater, Oklahoma; Mr. Louis Castleman, teacher at Lincoln Elementary School, Stillwater, Oklahoma; Mr. James McLauchlin, Principal of Westwood Elementary School, Stillwater, Oklahoma; Mrs. Thelma Troth and Mr. Harry Gootas, teachers at Westwood Elementary School, Stil1water, Oklahoma.

To the 120 boys and girls of the fifth, seventh, and ninth grades of the Stillwater Schools, without whom the study would have been impossible, my sincere and grateful appreciation is extended,

Special thanks are extended to Dr. Paul Jones who served as the other Method teacher.

A note of appreciation is expressed to Dr. Robert Means, Mr. Larry Thomas, and Mr. Don Ely for their time, assistance, and advice during the length of the study.

To the writer's mother and brother, Frances and Bill Martin, a special word of appreciation is given for their encouragement, patience, and understanding during the entire project.

This study is dedicated to Dr. Arthur J. TerKeurst and Mr. and Mrs. W. E. Lohmann who helped me realize the importance of living "while you've got life to live."

TABLE OF CONTENTS

Chapter Page
I. . INTRODUCT:ION 1
The Problem 4
Assumptions 4
Hypotheses 5
Definitions 5
Limitations 7
Significance 8
Summary 9
II. REVIEW OF SELECTED LITERATURE 11
Comparison of Teaching Method 11
Achievement and Grade Level 16
Socio-Economic Background Status 18
Teacher Sex Influence 21
Summary 22
III. METHOD AND DESIGN 24
Subjects 24
Procedure 25
Instruments 32
Statistical Treatment 36
Summary 37
IV . RESULTS OF THE STATISTICAL ANALYSIS 39
Summary 44
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 46
Overview 46
Findings 47
Conclusions 48
Method Teachers' Observations 51
Implications for Classroom Instruction 52
Recommendations for Further Research 53
A.SELECTED BIBLIOGRAPHY 55
Chapter Page
APPENDIX A - The Home Index 60
APPENDIX B - Letter from Harrison Gough 62
APPENDIX C - The Two Factor Index of Social Position 64
APPENDIX D - Lomarke Concept Test 76
APPENDIX E - Data for Spearman-Brown Reliability Coefficient 85
APPENDIX F - Raw Data 88

LIST OF TABLES

Table Page
I. Number of Students in Each Grade Level Receiving the
Same Rating on the Two Standardized Socio-Economic Evaluation and the Teacher Estimation 27
II. Distribution According to Schools of the Population
With Respect to Socio-Economic Background Status 28
III. Mean Intelligence Scores for the Three Grade Leve1s According to Socio-Economic Level 29
IV. Mean Lomarke Concept Test Scores for the Three Grade Levels According to Socio-Economic Levels 40
V. Analysis of Covariance of Lomarke Concept Test Scores on Subjects of Two Socio-Economic Levels Taught by Two Methods of Presentation 41
VI. Analysis of Covariance of Lomarke Concept Test Scores on Subjects of Three Grade Levels Taught by Two Methods of Presentation 43
VII. Ranked Group Means and Areas of Nonsignificance for the Lomarke Concept Test Based on Duncan Multiple Range Test 44
LIST OF FIGURES
Figure Page

1. Effect of Method of Presentation and Socio-Economic Status on the Lomarke Concept Test Scores 42

CHAPTER I

INTRODUCTION

The alternatives of teaching by rote or teaching by discovery may be regarded as extensions or applications of two current theories of learning: the association theory and the phenomenological or "field" theory. The former theory emphasizes the learning of elicited and emitted responses by the processes of instrumental conditioning. In its simplified form instrumental conditioning may be illustrated by the pairing of two responses in time to two stimuli with the effect that the "new" stimulus, the conditioned stimulus, has the ability to elicit some of the responses that were the result of the application of the "old" stimulus, the unconditioned stimulus.

In its elemental form, under instrumental conditioning, the experimental animal learns the "tricks" of a problem, such as pushing a convenient button as a means to escape from a cage. The animal does not perceive the rationale of the mechanism that responds to the "trick." His main concern is to escape from the cage. Consequently, the principles of conditioning are illustrated by the rote learning of a child or an unsophisticated adult.

On the other hand, the phenomenological theory emphasizes that the learner himself is the most important factor in the perception of the learning-field. An application of this theory is illustrated by the learning-by-discovery method. The act of discovery is the result of
problem solving and can be an illustration of creative activity. It is a personal experience to the learner and is accomplished by the learner himself. Essentially it consists of the perception of certain relationships among data. (27)

The frequent vociferous arguments between the adherents of the two theories have left the impression that the two viewpoints are irreconcilable. The perceptual background of a person consists of a vast accumulation of data acquired by the conditioning processes plus what happens to these data by the continuous activity of the neural structure of the person. This activity is constantly organizing and reorganizing these data in terms of internal and external stimuli that affect the person.

At this juncture, the concept of meaning should be briefly mentioned. The person constructs his meanings from his experiences, however derived. To a non-German the sounds expressed by die Schnee mean nothing besides the sounds of long e and long a accompanied by sch and en sounds. The German has been conditioned to associate die Schnee with snow. Also, meaning can be "internally" developed by the process of generalization, discrimination, insight, cue-reduction, and many other mechanisms.

The term discovery may be defined in many ways. In some circles it has become a shibboleth for educational modernity. The term has even supplanted learning as illustrated by the expression of a yokel at a county fair who became involved in the shell game, "I discovered that the pea was never under the shell I picked out." Some teachers may regard discovery as stressing the "tricks" in learning, such as how to divide fractions, how to divide words into syllables, and so on.

According to Bruner (8), discovery is a matter of rearranging or transforming evidence in such a way that one is enabled to go beyond the evidence gained to new insights. This method assists the learner (a) to understand related material, (b) to be motivated by intrinsic rather than extrinsic reinforcements, (c) to learn a more efficient approach to the solution of problems, and (d) to improve the ability to reconstruct his past experiences in keeping with the requirements of the present situation. On the other hand, experimental findings do not unanimously support the efficacy of learning by discovery. Ausube1 (3) concludes that "most of the reasonably well-controlled studies report negative findings." The lack of unanimity on the part of the researchers is due to the many uncontrolled factors, such as pupil-motivation, teacher bias, lack of clear differentiation between learning by rote or by discovery and the ambiguity of training situations, such as intermediate guidance as reported by Kitte11. (34)

The achievement background and socio-economic status of the pupil appear to be important variables in determining whether or not rote or discovery learning should be employed. Achievement background could be a corollary of age, as it takes a certain amount of time to arrive at the criterion level of achievement. According to studies by Piaget (40), students in the concrete stage of development need the experience of manipulating the data in order to arrive at the generalizations that are necessary to perform the operations. When most students reach the stage of abstract thought it is no longer necessary for most of them to have actual contact with the material. It is often a waste of the students' time in this stage to use the discovery method.

Studies by Erickson (20), Almy (1), Carlson (15), Rose (44), and Stephenson (46) indicate that progress from one level of understanding to the next is considerably slower for children who come from a lower class background.

It becomes necessary for educators to be more aware of the many variables that both aid and retard the learning process. What effect, then, does the method of presentation have on varying grade level students with differing socio-economic backgrounds?

The Problem

The purpose of this study is to compare the effects of rote and discovery teaching methods for fifth, seventh, and ninth grade students of a low and middle socio-economic background status as measured by students' scores on the Lomarke Concept Test* designed to determine the competency in the transfer of learning.

Assumptions

The investigator made the following assumptions; (a) the responses of students to the Two-Factor Index of Social Position and The Home Index accurately reflect their socio-economic background status, (b) interaction between the groups involved in the study will have little or no effect on their reactions to the method of presentation, (c) randomization of subjects within each grade level and within each socioeconomic background level to the method of presentation will control the influential variables of sex, motivation, anxiety, and achievement

[^1]leve1, (d) The Lomarke Concept Test, an experimental instrument, will measure the concept development of one particular mathematic concept, and (e) the sex of the Method teachers will not influence scores on the Lomarke Concept Test.

Hypotheses

The hypotheses developed for investigation in this study are:
Hypothesis 1: There will be no significant difference between groups taught by the Rote method and those taught by the Discovery method as measured by scores on the Lomarke Concept Test.

Hypothesis 2: There will be no significant difference between students of a middle and low socio-economic background status as measured by scores on the Lomarke Concept Test.

Hypothesis 3: There will be no significant interaction effect between groups taught by the Rote and Discovery methods of presentation and students of a low and middle socioeconomic background as measured by scores on the Lomarke Concept Test.

Hypothesis 4: There will be no significant difference among students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test.

Hypothesis 5: There will be no significant interaction effect between groups taught by the Rote and Discovery methods of presentation and students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test.

Definitions

Rote Method - Subject matter is presented to the students in detail. Teacher poses situation without allowing opportunity for the students to question the rationale behind the problem: Telling as a means of teaching. As applied in this study, each student is given a sheet of detailed directions explaining how to solve the problems. The student is given time to read over the list of directions and then the

Method teacher puts a problem on the board that can be solved using this list. No explanation is given and no questions answered concerning the reasoning behind the solution of the problems. Pupils were actually drilled in the memorization of the list of directions.

Discovery Method - Teacher presents a problem, children are given the opportunity to rearrange, explore, and present ideas in such a way that they are able to go beyond the evidence assembled to form solu* tions to the problems. As applied in this study, the Method teacher puts a problem on the board without any explanation other than it can be solved without the use of addition. Children are given the opportunity to ask questions, give opinions and suggestions as to the solution of the problem.

Home Index Scale - An index developed by Harrison G, Gough, Institute of Personality Assessment and Research, and Department of Psychology, University of California, Berkeley, California, for use in determining socio-economic status in grades 4-12.

Two-Factor Index of Social Position - An index developed by August B. Hollingshead for the purpose of measuring social position through the use of occupational and educational scales.

Lomarke Concept Test - An experimental instrument used to measure concept development. The concept involved finding the sum of a series of equally-spaced, consecutive numbers by the technique of multiplying the middle number in the series by the number of members in the series.

Low Socio-Economic Status - Those students who fell two points or more below the mean on The Home Index, received a Partial Score between forty-eight and seventy-seven (Classes IV and V) on the Two-Factor Index of Social Position and were rated by the regular classroom
teacher as having a low socio-economic background status. The students who met only part of the three criteria were excluded from the study.

Middle Socio-Economic Status - Those students who fell two points or more above the mean on The Home Index, received a Partial Score between eleven and thirty-one (Classes I and II) on the Two-Factor Index of Social Position and were rated by the regular classroom teacher as having a Middle Socio-Economic background status. The students who met only part of the three criteria were excluded from the study. (In this study no distinction is made between middle and high socio-economic background levels.)

Cooperating Teachers - The teachers at the junior high and the high school who assumed the responsibility for the students' mathematic instruction and the teachers at the two elementary schools who served as regular classroom instructors for all areas of the curriculum.

Method Teachers - The two teachers used in the presentation of the concept.

Limitations

Certain limitations are inherent in the study. These include: (a) the findings of this study were limited to the public schools of a community in central Oklahoma. More specifically, the findings were limited to the fifth, seventh, and ninth grade students of two elementary schools, a junior high and a high school in this community, (b) the study made use of only a single discovery technique in mathematic concept formation, (c) the Lomarke Concept Test is an experimental instrument designed for use in this study, (d) two different teachers worked with the groups as opposed to one teacher, and (e) the time
devoted to actual concept development involved only a five day period.

Significance

In recent years there have been numerous arguments concerning the effectiveness of the Rote and Discovery methods of presentation. Many research studies have been conducted in an effort to determine the more effective method, but the results have been inconclusive.

Piaget (40), through his work with both children and adults, has given evidence which indicates that there are certain levels of development through which individuals progress; and at each stage in this development, thinking patterns are altered enabling the individual to handle information in a more efficient and effective manner. For example, a child of seven or eight is usually unable to mentally manipulate material he cannot see or feel, whereas the child of twelve or more, in most cases, has reached a stage of development where it is possible to make abstractions. This individual no longer needs the actual experience with the material as he can mentally generalize from one situation to another. Children do not all make this developmental change at the same time. Evidence indicates that some never reach the abstract stage of thought. With the above evidence it becomes necessary for teachers to be aware of this developmental change in children and present material in a manner that is consistent with these developmental stages. Thus, grades five and nine were chosen, as they represent two different stages in the development of the child, while grade seven represents a transition stage from the concrete to the abstract.

Numerous evidence ($15,18,35$) support the theory that the socioeconomic level of the family is an influential determinate in the total
development of the student. If this socio-economic background level is a determinant as the evidence indicates and children from a lower socioeconomic background progress through the developmental stages at a slower rate than the middle socio-economic background individuals, the classroom teacher will need to adjust the method of instruction to meet individual learning styles.

It is hoped that through this study, which presents a concept by two different methods with students at different age and developmental levels and different socio-economic background status leve1s, it will be possible to determine a more effective method of presentation for a particular child at a particular age and socio-economic background leve1.

Summary

The need for further study in determining the more effective method of presentation (Rote or Discovery) for different socio-economic background levels and at different grade levels has been pointed out in Chapter I. It has been suggested that there are many variables in determining whether or not rote or discovery learning should be employed. Piaget states that the student in the concrete stage of development needs more experience with manipulation, whereas the student in the abstract stage no longer needs this actual contact. Achievement background and socio-economic status have been shown to have an effect on the level of understanding. Therefore, this study will deal with the following problem:

The purpose of this study is to compare the effects of Rote and Discovery teaching methods for fifth, seventh, and ninth grade students of a Low and Middle Socio-economic background status as measured by students' scores on the

Lomarke Concept Test designed to determine the competency in the transfer of learning.

The reader will find in Chapter II the review of the literature. Chapter III includes the methodology of the study. The results of the statistical analysis are found in Chapter IV. Chapter V contains the conclusions, observations, and suggestions.

REVIEW OF SELECTED LITERATURE

The purpose of this chapter is to review the important literature associated with the concepts that guided the study.

During the past few years the discussion of the role of discovery in teaching has intensified. Some authors (17, 37) have stressed the educational benefits derived from this method in aiding students in the discovery of concepts for themselves. Kersh (32) stated that the benefit of learning by discovery comes from the fact that sometimes the learner may engage in greater amounts of practice in employing problemm solving strategies and in making applications than he would by some other teaching-learning process. Other authors (3) have stressed the fact that the discovery learning is often time consuming, wasteful, inefficient, and should not replace rote learming, Bruner (9) conceded, "One cannot wait forever for discovery. One cannot leave the curriculum and let discovery flourish willy-nilly wherever it may occur "

This review is presented under four subheadings entitled: Compar ison of Teaching Method, Achievement and Grade Level, Socioweonomic Background Status, and Teacher Sex Influence.

Comparison of Teaching Method

This section of the review will discuss the studies conducted in the areas of "discovery" and "rote" in two segments. The first segment
will review studies done with students in high school and college situations, while the second will deal with those studies conducted with elementary level students.

On the secondary level, studies by Cummins (17) and Hendrix (26) seem to support Bruner's (8) arguments that learning by discovery is more effective than the mere presentation of fundamental facts and ideas. Bruner argues that one of the most important ingredients is the sense of excitement that is involved in the act of discovery. This discovery involves seeing relations between ideas that did not previously present themselves for the individual and as a result the person gains a sense of self-confidence. Cummins worked under the hypothesis that a student experience-discovery approach to calculus will yield better results than those taught by the deductive system. One group in the study was taught in an atmosphere rich in encouraging discovery, whereas the control group was taught more or less traditionally by men of long teaching experience. The subjects in Cummins' study that were in the experience-discovery approach group appeared to gain a deeper understanding of the calculus and this gain in understanding was not at the sacrifice of proficiency in manipulations and applications. Cummins concluded that on the basis of his experiment the students taught by the "discovery" approach had these advantages:

1. They do as well on problems and manipulative skills as those with traditional instruction but, in addition, they have increased understanding.
2. They possess a superior knowledge of the fundamental theory and logical relations among parts of the calculus.
3. They experience the thrill of discovery and the satisfaction of producing results through creative effort--all of which lead to greater enjoyment of mathematics and a deeper understanding of its nature and use.
4. They express ideas of the calculus in their own language and they undergo the stimulating and disciplinary experience of having their expressions and ideas sharpened through examination by other students as well as by the teacher. (17)

Hendrix.(26) did a study in which she presented a mathematic generalization to three groups of high school students using three different methods. In Method I the generalization was stated first, then illustrated, and then applied to new problems. The Method II students were taught by the unverbalized awareness procedure. In the unverbalized awareness procedure the learning situation was set in such a way that as soon as the generalization dawned the learner began to apply it. The learner displayed in some unverbal way that understanding had been achieved. The students in Method III were asked to state the rule they discovered. Hendrix concluded from this study that the unverbalized awareness method in learning a generalization is more effective than a method in which an authoritative statement of the generalization came first. She also concluded that the kind of learning periods in which the desired generalizations emerged required a high degree of linguistic skil1--skill to formulate good questions and to give clear directions.

Ray (42) concluded that the type of presentation showed no difference in mathematic achievement. Ray used 117 ninth grade boys in his randomly selected sampling. He found in his study on the relative effect of directed discovery in situations providing numerous problem solving opportunities that the directed and detailed, which was synonymous with the "tell and do" method, and directed discovery methods of teaching were equally effective with regard to initial learning of micrometer principles and skills. In this study "directed discovery"
called upon the students to be active in the pursuit of the generalizations. Ray also found no interaction of teaching method and intellectual level.

At the elementary level, Rogus (43) used eighth grade civics students from twenty-two elementary schools for his study. The two methods in this study involved an interrogative method which was an attempt to actively involve students by providing experiences in acquiring concepts and an expository method where the teacher played the role of an expositor of knowledge and students acted as recipients. At the end of the ten-week period he concluded that one method was as effective as another in fostering student achievement in civics.

In a study using sixth-grade students working in the area of arithmetic, Miller (37) found that significantly higher gains were made by subjects using a "discovery" approach over the control teaching approach. It also appeared from Miller's study that the lack of interactions between teaching approach and gain indicated that the "discovery' teaching approach was superior for pupils of high, average, and low ability-- rather than being a selective factor.

Wittrock (51), in his review and analysis of the literature, reported that the current state of research on discovery is very disappointing and precludes any important conclusions about teaching or learning.

The following studies will deal primarily with Rote Learning.
Studies on the secondary level that appear contradictory to those conducted by Cummins (17) and Hendrix (26) include those of Graig (16), Haselrud (24), Kersh (32), and Moss (38). In each of these instances students receiving more direction seemed to perform consistently better
than those of the groups using the "discovery" method.
The studies by Craig (16) and Haselrud (24) used college students in their research. In both cases two dichotomous methods of instruction were compared. Working under the hypothesis that principles derived by the learner solely from concrete instances will be more readily used in a new situation than those given to him in the form of a statement of principle and an instance were tested. In both studies, however, the subjects did significantly better on those problems with the rule given. Craig concluded that teachers should be liberal with information designed to assist learners in the discovery of concepts.

In Kersh's study (32) high school geometry students were used to compare the directed learning method and the guided discovery method. The data from this study suggested that under certain conditions of learning, highly formalized "lecture-drill" techniques produced better results than techniques which attempted to develop "understanding."

Moss's study investigated the relative effectiveness of two methods of verbal instruction on high school students. He used the direct. detailed method which stressed solving problems in a step-by-step fashion and the directed discovery approach which presented a minimum of information to the student. The results of the tests showed that the direct-detailed method group did perform consistently bettex than the directed discovery method group. He also concluded that there was no advantage in using either method for teaching particular intellectual leve1s.

At the elementary level, Kittell (34) worked with three groups of sixth-grade pupils who were supplied with different amounts of direction during the process of determining the solution of multiple-choice
verbal items. In this study intermediate direction meant that the students were given a verbal statement of the principle involved. The author concluded that furnishing the learner with information in the form of underlying principles will promote transfer and retention of learned principles and may provide a background enabling future discovery of new principles.

Another study with similar results was that conducted by TerKeurst (49) using fourth grade students. The hypothesis used by this author stated that school children in the middle elementary grades achieved better results in learning when the instruction emphasized rote learning rather than learning by discovery. The results of this study confirmed the hypothesis.

The investigator selected the reported studies as they all dealt with material presented using different methods of presentation and were representative of both the elementary and secondary levels. According to Piaget (40) students in the stage of abstract thought no longer need actual contact with material, for most students at this stage discovery learning is a waste of time. The reviewed studies at the secondary level tend to confirm this hypothesis. On the other hand, Piaget suggests that children in the concrete stage of development would benefit from the discovery method. From the studies reviewed, this need for discovery learning is evident but for the most part, the findings reported concerning rote and discovery learning are ambiguous and inconclusive.

Achievement and Grade Level

Many variables enter into the act of learning. One of the
variables considered in this study included that of achievement and grade level.

Piaget (40) has done much research with children in the area of cognitive development and these findings have two implications that are of importance in the area of Rote and Discovery learning:

1. The age of attainment indicates when a child may have an understanding of a concept.
2. The analysis of the development process indicates what material and procedures might be appropriate in aiding the child in concept formation.

Piaget's theory suggests that the development of knowledge passes through four main stages whose order is constant, but whose time of appearance may vary with the individual and the culture. Each of these stages represents a new coherence and a new structuring of elements which until that time had not been systematically related to each other. This theory also suggests that differences between age groups is chiefly a matter of the way they organize and systematize the experience they have.

Szabo (47) agreed with Piaget and also stated that there is evidence to support the fact that too-early verbalization of discovered generalizations with mathematically immature children can be damaging due mainly to lack of verbal facility.

Eaton (19) concluded from his study of high school students that students of more ability learn far more from lecture than from a discussion type approach. He continued to state that the effect of classroom discussions and activities on this above average ability student may tend to cause a retarding of progress and lead to negative attitudes toward learning. Eaton also stated that this type of student. needs the freedom to move ahead unrestrained by the intellectual needs
of others, He concluded by stating that the most important factor would seem to be the mental age of the student. The students with average and low mental ages achieve much higher scores when taught through individual activities where the above average ability student learns more from the lecture method. These conclusions concurred with Ausubel's statement (3) that discovery learning is often time consuming and inefficient.

Erickson (20) did a study involving 269 sixth grade pupils concerning the relationship of socio-economic status background and arithmetic achievement. He concluded that although pupils of higher intelligence are more numerous in the higher socio-economic levels, children of like intelligence can be expected to achieve equally in arithmetic regardless of their socio-economic status.

A study by Almy (1) showed that progress from one level of understanding to the next was considerably slower for the children who came from the lower class background. This study also showed that differences between the middle and lower class groups may also be matters of cognitive style. The findings also indicate that increasing chronological age is associated with increased success in the conservation tasks which highlights the importance of the maturational factors and this also suggests that within whatever limits may be set by maturational factors, experience also contributes importantly.

Socio-Economic Background Status

Many studies have been done that indicate that there is a direct correlation between placement of the family in the socio-economic strata and the educational attainment of the child.

Baker (5) attempted to determine whether the academic achievement of pupils with "average" and "high" mental ability would differ significantly when socio-economic status was controlled. He concluded that the academic achievement of pupils with "average" and "high" mental ability did differ significantly on all achievement criteria even after adjustments through the analysis of covariance were made for individual differences in socio-economic status.

Carlson (15), in his review of the literature concerning the relationship of the child's achievement and his environment, attempted to point out these important aspects:

1. Home environment of the young child is particularly powerful and important.
2. Environment can act as a very powerful force in determining individual development.
3. The total environment can be broken down into specific dimensions.
4. These dimensions have relationships to certain behaviors that a child may exhibit.

Passy (39) observed in his study, using third grade children, that elementary mathematics instruction seemed to provide a bias against the child from a lower socio-economic environment. Passy used two approaches in the mathematics instruction. One group worked mainly with the textbook, while the other was based on the use of manipulative devices having structurally developed mathematical implications. He concluded that there were significant differences among the various levels of socio-economic status regardless of the program of instruction. He suggested that methods of instruction should be reappraised so that it will be possible to provide a mode of instruction for each child that will foster learning without a cultural bias.

In each of the studies by Davis (18), Rose (44), and Stephenson (46), the importance of the family in the development of the child was stressed.

Davis observed that the most powerful systems of status in our society are the family, age-groups, and sex-groups. The child learns from his own family the basic social and emotional pattern of response to status position and that this family life imprints deeply within the child.

Rose hypothesized that the social and cultural background of children is directly related to their success in arithmetic. Using third grade children from a high socio-economic suburban area and children from a middle-class area he concluded that there was a greater significance between children of a higher socio-economic status background and arithmetic performance.

Stephenson made the following observations:

1. There is a direct correlation between the economic placement of the family and the educational attainment of the child.
2. Each social stratum tends to develop a sub-culture characterized by relatively similar sets of attitudes, values, and behavior patterns which may be distinguished from those of other strata.
3. Child rearing practices differ significantly with socioeconomic position as do the concepts of parenthood.
4. The child tends to associate informally with children in his own socio-economic level and membership in many groups also depend upon economic resources.
5. The type of adjustment the student makes profoundly affects the work he will do, the grades he receives and the length of time he will spend in school.

It was reported in James Coleman's study, Equal Educational Opportunity (36), that our schools can teach only children who come
from homes that provide certain prerequisites for learning. The school curriculum and instructional procedures seem to work when the children of the middle class come to school and when their attitudes and behavioral dispositions are in harmony with the school's patterns.

From the studies reviewed it can be concluded that the socioeconomic background status of the students does have an effect on their achievement in school. $I f_{\text {, }}$ as Carlson and Almy state, environment is an important determinant of intelligence and school achievement and progress from one level of understanding to the next is considerably slower for children of a lower class background, it becomes necessary to concern ourselves with providing methods of instruction that keep in mind the implications involved with different socio-economic levels.

Teacher Sex Influence

The teacher appears to be a significant variable that cannot be overlooked in any study. In this study it was necessary to use two teachers to present the material, thus causing a concern as to their effect on the achievement of the students.

A study by Veldman and Peck (50) investigated a possible sex bias in students ${ }^{\text { }}$ reactions, such as girls favoring men teachers over women teachers or vice versa. It was found in the over-all results that student evaluations of teaching behavior and teaching effectiveness were not severely biased by a preference of one sex over the other. In this same study there did seem to be a significant tendency for boys to want to be like male teachers and girls to want to be like female teachers, but according to the authors this was a bealthy, sex gepropriate reaction and did not appeax to bias the students ${ }^{8}$ perceptions of
the teaching qualities of their instructors.
Callender (14) conducted an exploratory study to determine whether any relationship existed between the preference of boy or girl students for men or women teachers at a junior and senior high school level. He concluded that girls displayed a preference for men instructors while boys, rather reluctantly in some cases, acknowledged favoring women in the classroom; however, many of the students, both boys and girls, stated that they liked their teachers "mixed" (both men and women).

In a study using ninth grade boys and girls from the Nokomis Junior High of Minneapolis, Leipold (35) found that the preference expressed for teachers related to characteristics or traits of teachers rather than to sex alone.

Summary

The literature appears to be ambiguous as to what method (Rote or Discovery) is more effective for students. These ambiguous results could be due to several factors including the age of the students, the socio-economic level of the groups involved, the size of the sample, and the type of concept being presented.

There is evidence to show that the age of attainment indicates when a child may have an understanding of a concept and by what method and materials this concept can be developed but that differences between socio-economic classes may influence this concept development.

The literature concerning socio-economic status and grade level is far more conclusive. It can be inferred that according to the studies reviewed, there is a direct correlation between the economic placement of the family and the educational attainment of the child.

The literature regarding Teacher Sex Influence appears to indicate that students do not prefer one sex over the other in the classroom situation. Callender (14) did find a relationship existing between the preference of boy or girl students for men or women teachers but that many stated they liked their teachers "mixed."

CHAPTER III

METHOD AND DESIGN

The purpose of this study is to compare the effects of Rote and Discovery teaching methods for fifth, seventh, and ninth grade students of a low and middle socio-economic background status as measured by students' scores on the Lomarke Concept Test designed to determine the competency in the transfer of learning. A solution to the problem is proposed in this chapter.

Subjects

The population for this study included students of the fifth, seventh, and ninth grade classes enrolled in the public schools of a middle-sized community of about 34,000 population in central Oklahoma. The fifth grade population was determined by randomly selecting three classes from the five fifth grade classes at two elementary schools (schools \underline{A} and \underline{B}). These schools were selected because they represented a cross section of the population with respect to socio-economic background. The results of this selection produced one fifth grade class at school $\underset{A}{\text { A }}$ and two fifth grade classes from school \underline{B},

The seventh grade population was determined by randomly selecting three classes from the thirteen seventh grade mathematics classes at the junior high school (school C). Two of the three randomly selected classes were scheduled during the first hour period and the remaining
class was scheduled during the third hour period.
The ninth grade population was determined by randomly selecting three classes from the seven ninth grade mathematics classes at the high school (school D). The three classes selected were scheduled during first, third, and fifth hours of the school schedule.

The randomization was accomplished by placing the total number of mathematics classes at each grade level in separate containers and drawing out the number of desired classes from the total at each grade level. This drawing resulted in the above distribution of classes with the principals at the respective institutions present during the selection process.

Procedure

Selection of Socio-Economic Groups

The investigator administered the Home Index Scale and the Two-Factor Index of Social Position to the 241 students in the nine randomly selected fifth, seventh, and ninth grade classes. The cooperating teachers for these classes were asked to designate by writing next to each student's name, whether the students in their classes were, in their estimation, of a low or middle socio-economic background status.

After scoring the Home Index Scale, the total number of "Yes" responses were calculated and a local mean of 14.838 was determined. The number of "Yes" responses was determined by counting the boxes marked "Yes" on the first twenty items and adding extra points for Item 21 according to the scheme designed by the author that is described under Instruments, pages 32-33. ...Those students who fell two
points or more below the mean on the Home Index Scale were classified on this scale as having a low socio-economic background status, and those students who fell two points or more above the mean on the Home Index Scale were classified on this scale as having a middle socioeconomic background status.

The Two-Factor Index of Social Position was then evaluated. Those students receiving a score between 48-77 (Classes IV and V) were designated for this study as having a low socio-economic background status, and those students receiving a score between 11-31 (Classes I and II) on the Two-Factor Index of Social Position Scale were classified for this study as being of a middle socio-economic background status.

Selection of subjects to be included in the low socio-economic background status group included those students who scored two points or more below the mean on the Home Index Scale, received a score between 48-77 (Classes IV and V) on the Two-Factor Index of Social Position and received a rating of "low" by the cooperating teacher.

Selection of subjects to be included in the middle socio-economic background status group included those students who scored two points or more above the mean on the Home Index Scale, received a score between 11-31 (Classes I and II) on the Two-Factor Index of Social Position and received a rating of "middle" by the cooperating teacher. (See Table I.) Any student who failed to meet all three criteria for inclusion in either sociomeconomic:group was excluded from the study.

From the students in each grade level receiving the "low" rating, ten were randomly assigned to the Rote method and ten were randomly assigned to the Discovery method. From the students in each grade level receiving the "middle" rating, ten were randomly assigned to the

Rote method and ten were randomly assigned to the Discovery Method. (See Table II.) A11 241 students in the nine classes were placed in either the Rote method or the Discovery method group and were taught by one of these methods for the duration of the study. The 120 students who actually participated in the study were not identified, thus controlling for the Hawthorne effect,

TABLE I

NUMBER OF STUDENTS IN EACH GRADE LEVEL RECEIVING THE SAME RATING ON THE TWO STANDARDIZED

SOCIO-ECONOMIC EVALUATION AND THE
TEACHER ESTIMATION

	Grades		
	5	7	9
Total Population	84	79	78
Same Standardized Instrument ${ }^{\text {\%/ }}$ Rating	45	50	43
Same Standardized Instrument Rating and Teacher Estimation	45	47	40
*Standardized Instruments - Home Position	Two	Inde	

TABLE II

DISTRIBUTION ACCORDING TO SCHOOLS OF THE POPULATION WITH RESPECT TO SOCIO-ECONOMIC BACKGROUND STATUS

Schools
Low Socio-Economic
Middle Socio-Economic

Grade 5
A (Elementary)
11
0
B (Elementary)
9
20

Grade 7
C^{1} (First Hour) $2 \quad 11$
C^{2} (Second First Hour)
3
9
C^{3} (Third Hour) $\quad 15$
0

Grade 9

D^{1} (First Hour)	6	5
D^{2} (Third Hour)	9	10
D^{3} (Fifth Hour)	5	5

Inteliigence Score Variable

For each one of the one hundred twenty students in the study an intelligence quotient was obtained from the permanent record files. (See Table III.) A California Test of Mental Maturity score was obtained for the 40 fifth grade students, 35 of the seventh grade students, and 31 of the ninth grade students. For the 14 students without a California Test of Mental Maturity score, the scores from the SRA, Lorge-Thorndike, and Otis were obtained and through conversion to standard scores were used as the covariables. The intercorrelations among these tests ranged from . 60 to . 79 . It was assumed that the inclusion of these alien scores would not alter the covariable. It is reported in Buros (13) that the SRA (Science Research Associates) Intelligence tests have correlations with the California Test of Mental Maturity ranging from . 66 to . 79 . Buros (12) reports that the LorgeThorndike Intelligence Tests were correlated with other tests of intelligence and with few exceptions the coefficients were .60 or higher.

TABLE III
MEAN INTELLIGENCE SCORES FOR THE THREE GRADE LEVELS ACCORDING TO SOGIO-ECONOMIC LEVEL

Grade Leve1	Low Socio-Economic Level	Middle Socio-Economic Level
5	95.950	120.800
7	95.200	120.300
9	106.450	117.550

Instructional Content

During the initial presentation period the students were questioned regarding their knowledge concerning the mathematic concept to be used in the study. All students who were familiar with the concept were excluded from the study.

The instructional content for the Rote method and Discovery method groups was identical, but the method of presentation differed. The differences in the two approaches were in the materials used and the method of building understanding.

The problem for all twelve groups in the nine classes was to learn the concept of finding the sum of a series of equally-spaced, consecutive numbers by the technique of multiplying the middle number in the series by the number of members in the series. For example, the sum of 19, 23, 27, 31, and 35 is 135 . It can be calculated by multiplying 27 by 5. The initial presentation period for all groups was twenty minutes. During this initial twenty-minute period all students were assigned to either the Rote group or the Discovery group, and the Method teacher proceeded with the development of the concept according to the approach under which that Method teacher was working at the time. A ten-minute practice period was held each day for the four consecutive days directly following the initial presentation period. The Method teachers administered the Lomarke Concept Test during the final period. Since the two Method teachers would be presenting material in both the Rote and Discovery approaches, it was necessary to establish guidelines for the teaching of each method so they would be comparable.

The Rote method groups were taught to calculate the sum of the numbers with the use of a list of directions. The students were asked to memorize the five steps on the Direction Sheet:

1. Look to see if the numerals are consecutive and equally spaced
2. Find the middle numeral
3. Multiply the middle numeral by the number of numerals in the series
4. Add up all the numerals in the series
5. The two answers should be the same

No rationale was taught as to why the problem was effective. The mathematic concept examples used in the practice sessions included those the students made up to try on other classmates.

The Discovery method groups were given an example of a problem and asked to suggest possible reasons for its solution. Questions were elicited from the groups concerning its possible solution. All questions and suggestions were accepted and evaluated for their worth toward the solution of the problem. For example, the Method teacher would place the following series of numbers on the chalkboard: 88,90 , 92, 94, and 96, and explain to the students that one way of finding the sum of this series of numbers would be to simply add them up, but this often becomes a tiresome task. Tell the students that there is another way to find the answer to the problem and with the new way no addition is involved. After this short presentation, the students are invited to ask questions concerning the solution of the problem. Through these questions a generalization concerning its solution is arrived at and the students continue to work problems presented by their classmates.

Examples used in the practice sessions for both the Rote method groups and the Discovery method groups included those the students devised themselves. None of the examples used in the practice sessions
were included on the Lomarke Concept Test.
The two groups remained in the same room, with the Rote group working with a Method teacher in one area of the room and the Discovery group working in another area of the room with the other Method teacher. The same procedure was used in all nine rooms.

The two Method teachers involved in the study were both doctoral candidates in the College of Education at Oklahoma State University, Stillwater, Oklahoma. Both Method teachers had approximately the same number of hours of college work, years of teaching experience, and age. The two did, however, differ in sex.

To avoid bias as to a particular method of presentation, the two Method teachers were randomly assigned to method of presentation (Rote or Discovery) to be used for each group in the study. This randomization resulted in one Method teacher having six Discovery presentations and three Rote presentations and the other having six Rote presentations and three Discovery presentations. The probability of this occurrence is . 2539 or approximately a one in four chance of such a selection. The formula was according to Seige1 (45).

Instruments

Three instruments were used in this study. The instruments were the Home Index Scale, the Two-Factor Index of Social Position, and the Lomarke Concept Test.

The Home Index Scale

The Home Index Scale (Appendix A) was developed by Harrison Gough. This scale is used in determining socio-economic status in grades 4-12.

The form used has twenty-one items. The score on the Home Index was obtained by counting the number of "Yes" responses on the first twenty items and then adding extra points according to the following scheme for Item 21 which asks the following question: How many, books does your family have? Zero through ninety-nine books received no points; one hundred through four hundred ninety-nine books received one point; and five-hundred or more books received two points. The total range of possible scores was from zero through twenty-two. The reliability of these twenty-one items was suggested by a test-retest correlation on a sample of fifty-five college students and was reported at .989. The coefficient calculated by the Kuder-Richardson method on a sample of two hundred fifty-two high school.students was .74. The Home Index correlates with other socio-economic scales of a similar nature. (22) Written permission to use the Home Index Scale was obtained from Harrison Gough (Appendix B).

The Two-Factor Index of Social Position

August B. Hollingshead (28) has developed the Two-Factor Index of
Social Position. He describes the index in the following manner:
The Two-Factor Index of Social Position was developed to meet the need for an objective, easily applicable procedure to estimate the positions individuals occupy in the status structure of our society. Its development was dependent both upon detailed knowledge of the social structure, and procedures social scientists have used to delineate class position. . . .

Occupation and Education are the two factors utilized to determine social position. Occupation is presumed to reflect the skill and power individuals possess as they perform the many maintenance functions in the society. Education is believed to reflect not only knowledge but also cultural taste. The proper combination of these factors by the use of statistical techniques enables a researcher to determine
within approximate limits the social position an individual occupies in the status structure of our society. (28)

Both education and occupation are scaled. Education is scaled from 1 to 7 and weighted by 4. Occupation is scaled from 1 to 7 and weighted by 7 .

The students were requested to list the occupation of the "head of the household" and to the best of their knowledge the number of years of education that that particular person had obtained. This information was not available in the permanent files of the selected students, so it was necessary to ask the students for the information. The above information was secured at the same time the Home Index was administered. The requested data were written on the Home Index Scale form. The Two-Factor Index of Social Position was scored by first referring to the Occupation and assigning the corresponding scale score. The scale score was then multiplied by the factor weight which was 7 for Occupation. This resulted in a partial score, The same procedure was used for the Educational Scale with the exception of the factor weight being 4. The partial scores for the Occupation and Education were summed and a total score was obtained. The total score was referred to the Range for the Iwo-Factor Index and a social class number was determined. Social class is delineated in the following manner:

Social Class	
I	Range of Compiled Scores
II	$11-17$
III	$18-31$
IV	$32-47$
V	$48-63$
	$64-77$

In his book, Social Class and Mental Illness, Hollingshead reported the intercorrelations between judged class position ecological area of residence, education, and occupation of sample families in New Haven,

Connecticut in 1948:

A. Intercorrelations of Scale Variables

Correlation
Education with residence
.451
Occupation with residence
.505
Occupation with education .721
B. Criterion Predicted from One Variable

Judged class with residence . 692
Judged class with education .782
Judged class with occupation . 881
C. Criterion Predicted from Two Variables

Multiple
Correlation
Judged class with residence and education . 870
Judged class with residence and occupation .926 Judged class with education and occupation .906

For a complete description on the Two-Factor Index of Social Position, see Appendix C.

The Lomarke Concept Test

The Lomarke Concept Test (Appendix D) is an experimental instrument used to measure concept development for one particular concept in the area of mathematics. The instrument consists of fifty problems similar to the ones used in the presentation period and the practice sessions. Fifteen of the problems are not "workable" as they represent series that are not consecutive and/or not equally spaced. Ten of the fifty problems are presented in a descending order of magnitude, although this characteristic was not presented in the prior sessions. This was done in an attempt to determine if an effective transfer of learning took place. The students were requested to read each problem and circle the correct response, and if the problem was not "workable" the letter "d" was circled. The score of the Lomarke Concept Test was obtained by counting the number of correct responses and assigning one
point to each of the correct answers. The total range of possible scores was from zero to fifty. Using the Spearman-Brown reliability coefficient technique, a coefficient of .974 was obtained between the odd and even numbered items on the Lomarke Concept Test (23). (See Appendix E.) Mathematics textbooks from the fifth, seventh, and ninth grades were reviewed to determine if the Lomarke Goncept Test contained any material unfamiliar to the students. It was determined through this review that the Lomarke did not contain new material. The investigator also asked the cooperating teachers to look at the Lomarke Concept Test to check for new materia1. On this basis it was the judgement of the investigator that content validity was present.

Statistical Treatment

In order to test the hypotheses stated (Chapter I, page 5), two analyses of covariance designs were utilized, In both cases the intelligence quotient scores as obtained from the California Test of Mental Maturity, SRA, Otis, and Lorge-Thorndike tests were used as covariables. When statistically significant differences among groups were reported the Duncan Multiple-Range test was employed.

The analysis of covariance was selected as it statistically matches the students, affording the investigator the opportunity to study the performance of several groups which are unequal with regard to an important variable as though they were equal in this respect. One of the main advantages of analysis of covariance is that it reduces the size of the error term which is used as the denominator of the F ratio, thus increasing the size and the significance of the F values (31).

A 2×2 analysis of covariance design was employed to test the separate and interactive effects of methods of presentation and socioeconomic status on the Lomarke Concept Test scores.

A 2×3 analysis of covariance design was employed to test the separate and interactive effects of method of presentation and grade level on the Lomarke Concept Test scores.

Since method of presentation was analyzed in both models, the more conservative estimate was utilized in the determination of the statistical decision, The more conservative estimate was used in order to prevent a Type II error, which in essence is accepting the null hypothesis when in fact it is false.

Summary

The purpose of this study was to compare the effects of Rote and Discovery teaching methods on fifth, seventh, and ninth grade students of a low and middle socio-economic background status.

The two hundred forty-one students in the three grade levels were administered the Home Index Scale, the Two-Factor Index of Social Position, and were rated by their cooperating teacher as being of either a low or middle socio-economic background status.

Of the students in each grade level who met all three criteria for "low class," ten were randomly assigned to the Rote group and ten were randomly assigned to the Discovery method group. of the students in each grade level who met all three criteria for "middle" class, ten were randomly assigned to the Rote group and ten were randomly assigned to the Discovery method group. An intelligence quotient was obtained for the one hundred twenty students remaining in the study.

A mathematic concept was taught to the two groups by two methods of presentation (Rote and Discovery) for a period of one week. The initial presentation period was twenty minutes with a ten minute practice session each day for 4 consecutive days. On the final day the Lomarke Concept Test was given to measure the level of concept development for one particular concept in mathematics.

Two analysis of covariance designs were employed to test the separate and interactive effects of method of presentation and socioeconomic status on the Lomarke Concept Test scores and the separate and interactive effects of method of presentation and grade level on the Lomarke Concept Test scores. The Duncan Multiple-Range was employed when statistical differences among groups were determined.

CHAPTER IV

RESULTS OF THE STATISTICAL ANALYSIS

A concept involving the use of mathematics was presented by two methods of teaching (Rote and Discovery) to students in three grade levels (fifth, seventh, and ninth) and at two socio-economic background levels (low and middle) for a period of one week. Twenty students at each grade level receiving the low socio-economic background level rating and twenty students at each grade level receiving the middle socio-economic background level rating were used according to the criteria established. Of the students at each grade level receiving the low socio-economic background level rating, ten were randomly assigned to the Rote method and ten were randomly assigned to the Discovery method. Of the students at each grade level receiving the middle socio-economic background level rating, ten were randomly assigned to the Rote method and ten were randomly assigned to the Discovery method. The Lomarke Concept Test was administered during the final period. The mean scores for each group were determined (Table IV). The results of the statistical analysis are presented in this chapter. Each hypothesis is repeated and the result of the analysis of covariance follows it. The . 05 level of confidence was used for each hypothesis.

TABLE IV
MEAN LOMARKE CONCEPT TEST SCORES FOR THE
THREE GRADE LEVELS ACCORDING TO SOCIO-ECONOMIC LEVELS

Grade Leve1	Low Socio-Economic Level	Middle Socio-Economic Leve1
5	31.10	38.45
7	35.60	40.50
9	42.25	44.20

Hypothesis 1: There will be no significant difference between groups taught by the Rote Method and those taught by the Discovery Method as measured by scores on the Lomarke Concept Test.

The computed F ratio for Methods* was 0.34 , a nonsignificant statistic (Table V). Therefore, the null hypothesis is accepted and it is concluded that in this study the method of presentation did not significantly affect the Lomarke Concept Test scores.

Hypothesis 2: There will be no significant difference between students of a middle and low socio-economic background status as measured by scores on the Lomarke Concept Test.

The computed F ratio for socio-economic background status groups was 0.68 , a nonsignificant statistic (Table V). Therefore, the null hypothesis is accepted and it is concluded that in this study the socio-economic background status did not significantly affect the Lomarke Concept Test scores.

[^2]
TABLE V

```
ANALYSIS OF COVARIANCE OF LOMARKE CONCEPT TEST
    SCORES ON SUBJECTS OF TWO SOCIO-ECONOMIC
            LEVELS TAUGHT BY TWO METHODS
                OF PRESENTATION
```

Source	SS	DF	MS	FRatio	P
Total	3724.25	118			
Methods	10.89	1	10.89	0.34	NS
Socio-Economic Status	21.59	1	21.59	0.68	NS
Methods x Socio- Economic Status	53.89	1	53.89	1.70	NS
Error	3637.86	115	31.63		

Hypothesis 3: There will be no significant interaction effect between groups taught by the Rote and Discovery methods of presentation and students of a low and middle socio-economic background as measured by scores on the Lomarke Concept Test.

The computed F ratio for interaction between method of presentation and socio-economic background was 1.70 , a nonsignificant statistic (Table V). Therefore, it is concluded that in this study the interactive effect of socio-economic background status and method of presentation has no effect on the Lomarke Concept Test scores.

In Table V it was reported that neither of the main effects (methods and socio-economic status) was significant. That is, the means did not differ significantly from chance. Figure 1.is presented here as there does appear to be a tendency for the low socio-economic
groups to do better under the Discovery method and the middle socioeconomic groups to perform better with the Rote method. This tendency is further supported by an F value of 1.70 which is significant between .10 and .05.

Figure 1. Effect of Method of Presentation and SocioEconomic Status on the Lomarke Concept Test Scores

Hypothesis 4: There will be no significant difference among students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test.

For grade level, an Fratio of 25.32 was obtained ($p<.001$) (Table VI). Therefore, the null hypothesis is rejected and it is concluded that in this study there is a significant difference among grades five, seven, and nine as measured by Lomarke Concept Test scores.

TABLE VI

ANALYSIS OF COVARIANCE OF LOMARKE CONCEPT TEST
SCORES ON SUBJECTS OF THREE GRADE LEVELS TAUGHT BY TWO METHODS OF PRESENTATION

Source	SS	DF	MS	FRatio	P
Total	3686.51	118			
Methods	9.03	1	9.03	0.40	NS
Grade Level	1132.33	2	566.16	25.32	S
Methods x Grade Level	18.70	2	9.35	0.41	NS
Error	2526.44	113	22.35		

The test of Hypothesis Four indicated that a statistically significant difference among grades five, seven, and nine as measured by the Lomarke Concept Test was obtained. The Duncan Multiple Range test for nearly equal numbers was computed and it was determined through this statistical analysis that a significant difference existed between grades seven and nine and between grades five and nine but a nonsignificant difference existed between grades five and seven (Table VII).

Hypothesis 5: There will be no significant interaction effect between groups taught by the Rote and Discovery methods of presentation and students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test.

The computed F ratio for interaction between method of presentation and grade level was 0.41 , a nonsignificant statistic (Table VI). Therefore, it is concluded that in this study, the interactive effect
of grade level and method of presentation had no effect on the Lomarke Concept Test scores.

TABLE VII

RANKED GROUP MEANS AND AREAS OF NONSIGNIFICANCE
FOR THE LOMARKE CONCEPT TEST BASED ON DUNCAN MULTIPLE RANGE TEST

Group	II	I	III
Mean	107.75	108.37	112.00
	$*<$		

*Lines indicate areas of nonsignificance.

Summary

Two analysis of covariance designs were utilized for analysis of the five hypotheses. In both analysis of covariance designs the intelligence quotient scores from the California Test of Mental Maturity, SRA, Otis, and Lorge-Thorndike tests were used as covariables.

The 2×2 analysis of covariance tested the separate and interactive effects of methods of presentation and socio-economic status on the Lomarke Concept Test scores. The results indicated nonsignificant statistics for both methods of presentation and socio-economic status and the interactive effects of both methods of presentation and socioeconomic status.
A. 2×3 analysis of covariance tested the separate and interactive effects of methods of presentation and grade level on the Lomarke Concept Test scores. The results indicated a nonsignificant statistic for methods of presentation and interactive effects of both method of presentation and grade level, but a significant statistic was found among grades five, seven, and nine. The Duncan Multiple-Range Test was employed to determine the areas of difference. Statistical analysis revealed a significant difference between grades five and nine and between grades seven and nine, but no significant difference between grades five and seven.

Methods of presentation were analyzed in both designs, and the more conservative estimate was utilized in an effort to prevent a Type II error.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATITONS

Overview

The intent of this study was to compare the effects of two different teaching methods (Rote and Discovery) on fifth, seventh, and ninth grade students of a low and middle socio-economic background status for a period of one week. The effectiveness of one method over the other was measured by the tomarke Concept Test, which was designed to determine the competency in the mastery and transfer of learning. The two teaching methods were designated as Rote and Discovery. The two meth ods were chosen as they appear to represent the polar extremes of two current teaching approaches.

The Rote method is similar in this study with learning through conditioning. Under this approach the student is given the problem material without the necessary rationale concerning its solution.

The Discovery method emphasizes that the learner himself is the important factor in the "perception field." The "discovery" is the xesult of problem solving. The learner becomes personally involved with the experience and through this personal involvement with the problem, certain relationships are perceived and "discovery" is made on the behalf of the learner.

The students involved in this study included 120 fifth, seventh, and ninth graders in a community in central Oklahoma. The students
in each grade level were classified, by the use of three devices, as being of either a low or middle socio-economic background status. The twenty students in each grade level that were designated as "low" class were randomly assigned to either the Rote or the Discovery group. Twenty students in each grade level that were designated as "middle" class were randomly assigned to either the Rote or the Discovery group. The basic question in the study was, Is there a relationship between the age level of students, method of presentation and socioeconomic background?

The 120 fifth, seventh, and ninth grade students were presented a mathematic concept by either the Rote or Discovery method for a period of one week. During the final day of the study the Lomarke Concept Test was administered.

Findings

Utilizing the .05 level of confidence, the results of testing the hypotheses yielded the following:

1. The difference between groups taught by the Rote method and those taught by the Discovery method as measured by scores on the Lomarke Concept Test was nonsignificant.
2. The difference between students of a middle and low socioeconomic background status as measured by scores on the Lomarke Concept Test was nonsignificant.
3. The interaction effect between groups taught by the Rote and Discovery methods of presentation and students of a low and middle socio-economic background as measured by student scores on the Lomarke Concept Test was nonsignificant.
4. The difference among students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test was significant. The Duncan Multiple Range Test was employed to determine the areas of difference among the grade levels. Statistical analysis revealed that a statistical difference existed between grades five and nine and between seven and nine but not between five and seven.
5. The interaction effect between groups taught by the Rote and Discovery methods of presentation and students of grades five, seven, and nine as measured by scores on the Lomarke Concept Test was nonsignificant.

Conclusions

The conclusions which can be drawn from this study should be considered in light of several factors. Included among these factors to be considered are: (a) The findings of this study were limited to the public schools of a community in central Ok1ahoma. More specifica11y, the findings were limited to the fifth, seventh, and ninth grade students of two elementary schools, a junior high and a high school in this community; (b) The study made use of only a single. "discovery" technique in mathematic concept formation; (c) The Lomarke Concept Test is an experimental instrument designed for use in this study; (d) Two different teachers worked with the groups as opposed to one teacher; and (e) The time devoted to actual concept development involved on1y a five-day period.

The following conclusions may be drawn based on the findings:
The lack of a statistically significant difference between the Rote and Discovery methods of presentation appears to support the
belief of many educators, including Ausubel and Bruner who stress the importance of the above two teaching methods being concomitant learning rather than alternatives.

The statistically nonsignificant difference between middle and low socio-economic background status groups appeared when the covariable of intelligence adjusted the scores of the Lomarke Concept Test. There would appear, from this study, to be a correlation between the intelligence quotient and the socio-economic background status of the students.

From this study there did not appear to be any statistically significant interaction effect between method of presentation (Rote and Discovery) and socio-economic background (low and middle) as measured by scores on the Lomarke Concept Test. There did appear (Figure 1) to be a tendency for the low socio-economic groups to have a higher mean score on the Lomarke Concept Test when presented with the concept using the Discovery method, whereas the middle socio-economic group produced higher mean scores when the concept was presented by the Rote method. This tendency on the part of the two groups supports the hypothesis reported in the literature that students of a low socio-economic background need more direct and actual experiences with situations in order to develop concepts whereas middle socio-economic background students have the necessary experience and can develop the concepts without the direct contact. (14, 15)

The statistically significant results between grades five, seven, and nine as measured by student scores on the Lomarke Concept Test appear to indicate that due to age, the achievement level of students becomes greater as they progress from one grade level to the next. It could also be due to the students ${ }^{\text {D }}$ experience with a concept similar to
the one presented although the students who professed knowledge of the concept were excluded from the study. Although this finding is not new, it does tend to reflect the construct validity of the instrument. After the Duncan Multiple-Range Test was employed, it was determined that a statistically nonsignificant difference existed between grades five and seven, while significant differences appeared between grades five and nine and seven and nine. . The significant differences between grades five and nine and seven and nine tend to confirm the observation in the preceding paragraph which states that the achievement level of students becomes greater as they progress from one grade level to the next. The nonsignificant difference between grades five and seven could be due to a lack of a significant degree of achievement gain between these two grade levels and/or the lack of a significant change in learning styles. According to Piaget, seventh grade or 12 and 13 -year-old students are in a transition period as they progress from the concrete to the abstract stage in their development.

The interaction effect between method of presentation (Rote and Discovery) and grade level (five, seven, and nine) as measured by scores on the Lomarke Goncept Test did not produce any statistically significant results. It would appear from these results that since there is no significant interaction between these certain grade levels and methods of presentation that it then becomes necessary for teachers to be aware of the fact that there is no one best method of presenting material to all children at any one particular grade level.

Method Teachers' Observations

The following observations were made by the two Method teachers during the time of the study. It was felt these observations were worthy of mention and consideration because they indicate areas of concern; namely, ways in which teachers can enrich the curriculum and make learning more profitable for all children.

Seventh grade boys and girls, compared with fifth and ninth graders, appeared to do a large amount of reading during the times they were waiting for planned shifts in activity. This seems to further verify the findings in several research studies that indicate more reading is done in intermediate grades than at any other time in an individual's life.

The ninth graders, for the most part, appeared bored and docile during the experiment. The time required to learn the concept at grade nine may have been less than at the other grade levels, thus resulting in the docile, bored attitude. The same or better results may have been accomplished by maintaining the same time but doing it in one or two sessions.

The responses to the Lomarke Concept Test required the same time at a.ll grade and socio-economic leve1s.

The lower socio-economic background groups appeared more enthusi= astic about the project in general than the middle socio-economic students. This observation was made when many of the children involved in the study arrived at school early to share problems worked at home. They also talked more freely about sharing their work wi.th friends and family.

Teacher's estimation of a child's socio-economic level appeared to correlate highly with the standardized test used in the study.

Less stress should be placed on grades and more emphasis on providing experiences for the student in which he will be able to succeed. This recommendation is a result of the students' continuous questioning about what grades they would receive from the Lomarke Concept. Test.

Implications for Classroom Instruction

The following recommendations are made as a result of the study.
Teachers should become aware of the differences among children and teach for those differences. The need for individualization of instruction becomes a primary concern for all teachers. Results from the hypothesis concerning the best method of presentation indicates that, according to this study, there is no best method for instructing an entire group of students. It then becomes necessary for teachers to look at each student and find a best method for that particular individua1.

On the basis of observations made by both Method teachers, it is suggested that teachers should be more aware of differences in age level groups with respect to the relationship between social environ* ment and learning. For example, the low socio-economic group in the fifth grade displayed more enthusiastic responses to the small group activity because of the individual attention they received. It should also be pointed out that the groups least interested in any of the activities but more concerned about grades were the ninth graders. Thus, it seems logical to suggest that teachers should become more aware of the influence of social and physical environment on learning
activities.

Teacher training institutions should be more successful in training teachers to understand that despite the differences, such as socioeconomic levels and intelligence in human beings, there is also a degree of commonality shared by a11.

Recommendations for Further Research

Further research is needed which will produce statistically significant evidence as to effective methods of instruction individual students.

The writer makes the following suggestions for studies to stimulate further research studies:

A study to determine the logical thinking of different age groups and socio-economic levels.

Studies should be made using the same teacher to teach both methods of presentation in order to control the teacher variable.

A study conducted for an entire academic year involving the two methods of presentation used in the present investigation or variations of each method.

A study to determine the correlation between the California Test of Mental Maturity and the Home Index.

Studies to determine the correlation between teacher estimation of a student's socio-economic level and scores from standardized tests measuring socio-economic status.

A study to determine whether significance would be obtained if the concept presentations were lengthened.

A study to determine whether variables such as age of teacher, education of teacher, and number of years of experience relate to the method of presentation.

A study to determine the relationship between the achievement level of the student and the frequency with which his name is discussed in the teacher's 1ounge.

A SELECTED BIBLIOGRAPHY

(1) Almy, Millie, Edward Chittenden, and Paula Miller. Young Children's Thinking. New York: Teachers College Press, Columbia University, 1966.
(2) Atkin, J. Myron and Robert Karplus. "Discovery or Invention?" Science Teacher, XXIX (September, 1962), 45-51.
(3) Ausubel, David. "Some Psychological and Educational Limitations of Learning by Discovery." The Arithmetic Teacher, XI (May, 1964), 290-302.
(4) Ausubel, David. "Limitations of Learning by Discovery." The Education Digest, XXX (October, 1964), 14-17.
(5) Baker, Robert, Richard E. Schultz, and Richard H. Hinze. "The Influence of Mental Ability on Achievement When SocioEconomic Status Is Controlled." Journal of Experimental Education, XXX (December, 1961), 255-258.
(6) Bittinger, Marvin. "A Review of Discovery." The Mathematics Teacher, LXI (February, 1968), 140-146.
(7) Bonjean, Charles, Richard J. Hill, and S. Dale McLemore. Sociological Measurement. San Francisco: Chandler Publishing Company, 1967.
(8) Bruner, J. S. The Process of Education. Cambridge, Massachusetts: Harvard University Press, 1960.
(9) Bruner, J. S. "On Learning Mathematics." The Mathematics Teacher, LIII (December, 1960), 610-619.
(10) Bruner, J. S. "The Act of Discovery." Harvard Educational Review, XXXI (1961), 21-32.
(11) Bruning, James L. and B. L. Kintz, Computational Handbook of Statistics. Glenview, Illinois: Scott Foresman and Company, 1968.
(12) Buros, Oscar Krisen. The Fifth Mental Measurements Yearbook. Highland Park, New Jersey: Gryphon Press, 1959.
(13) Buros, Oscar Krisen. The Sixth Mental Measurements Yearbook. Highland Park, New Jersey: Gryphon Press, 1965.
(14) Callender, Wesley P. "Who Likes Whom? Study of Pupil and Teacher Preferences." Clearing House, XXIX (April, 1955), 490-492.
(15) Carlson, Jerry S. "The Environment of the Child and Its Relationship To His Achievement in Science: A Theoretical Overview." Science Education, LII (February, 1968), 23-34.
(16) Craig, R. C. "Directed Versus Independent Discovery of Established Relations." Journal of Educational Psychology, XLVII (April, 1956), 223-234.
(17) Cummins, Kenneth. "A Student Experience - Discovery Approach to the Teaching of Calculus." The Mathematics Teacher, LIII (March, 1960), 162-170.
(18) Davis, Allison. Psychology of the Child in the Middle Class. Pittsburgh: University of Pittsburgh Press, 1960.
(19) Eaton, Edward J. "Toward the Development of a Methodological Model." Journal of Teacher Education, XVII (Spring, 1966), 7-13.
(20) Erickson, Leland H. "Certain Ability Factors and Their Effect on Arithmetic Achievement." The Arithmetic Teacher, V (December, 1958), 287-293.
(21) Fürth, Hans G. Piaget and Knowledge. Englewood Cliffs, New Jersey: Prentice-Ha11, 1969.
(22) Gough, Harrison G. "A. Short Social Status Inventory." Journal of Educational Psychology, XL (January, 1949), 52-56.
(23) Guilford, J. P. Fundamental Statistics in Psychology and Education. New York: McGraw-Hill Book Company, 1956.
(24) Haselrud, G. M. and S. Meyers. "The Transfer Value of Given and Individually Derived Principles." Journal of Educational Psychology, XLIX (December, 1958), 293-298.
(25) Hajeh, Roy. "New Learning and Subverbal Knowledge." Mathematics Teacher, L (May, 1967), 444-447.
(26) Hendrix, Gertrude. "A New Clue to Transfer of Training." Elementary School Journal, XL (December, 1947), 197-208.
(27) Hilgard, Ernest R. Theories of Learning. New York: Appleton-Century-Crofts, Inc., 1948.
(28) Hollingshead, August B. and Frederick C. Redlich. Social Class and Mental Illness. New York: John Wiley and Sons, 1958.
(29) Johnson, Harry. "What Do We Mean By Discovery?" The Arithmetic Teacher, LVII (December, 1964), 538-539.
(30) Katona, George. Organizing and Memorizing. New York: Columbia University Press, 1940.
(31) Kerlinger, Fred N. Foundations of Behavioral Research. New York: Holt, Rinehart and Winston, Inc., 1967.
(32) Kersh, Bert. "The Motivating Effect of Learning By Directed Discovery." Journal of Educational Psychology, LIII (April, 1962), 65-71.
(33) Kersh, Bert. "Learning by Discovery: What Is Learned?" The Arithmetic Teacher, LVII (Apri1, 1964), 226-232.
(34) Kittell, J. E. "An Experimental Study of the External Direction During Learning on Transfer and Retention of Principles." Journal of Educational Psychology, XLVIII (November, 1957), 391-405.
(35) Leipold, L. Edmond. "Students Do Have Favorite Teachers." Clearing House, XXXIV (December, 1959), 240-241.
(36) Martin, John Henry. "Kaleidoscope For Learning." Saturday Review, LXXXVI (June 21, 1969), 76-77.
(37) Miller, Jack. "An Experimental Comparison of Two Approaches to Teaching Multiplication of Fractions." Journal of Educational Research, LVII (May-June, 1964), 468-471.
(38) Moss, Jerome. "The Relative Effectiveness of the Direct-Detailed and the Directed Discovery Methods of Teaching Letterpress Imposition." Journal of Educational Research, LVIII (October, 1964), 51-55.
(39) Passy, Robert A. "Socio-Economic Status and Mathematics Achievement." The Arithmetic Teacher, II (November, 1964), 469-470.
(40) Piaget, Jean. "Cognitive Development in Children; Development and Learning." Journal of Research in Science Teaching, II (September, 1964), 176-186.
(41) Popham, James. Educational Statistics Use and Interpretation. New York: Harper and Row, 1967.
(42) Ray, Willis. "Pupil Discovery Versus Direct Instruction." Journal of Experimental Education, XXIX (March, 1961), 271-280.
(43) Rogus, Joseph Francis. "An Experimental Study of the Effects of Two Methods of Instruction Upon Student Achievement. Unpublished Doctoral Dissertation Order No. 68-14899.
(44) Rose, Alvin and Helen C. Rose. "Intelligence, Sibling Position and Sociocultural Background as Factors in Arithmetic Performance." Arithmetic Teacher, VIII (February, 1961), 50~56.
(45) Siege1, Sidney. Nonparametric Statistics for the Behavioral Sciences, New York: McGraw-Hill Book Company, 1956,
(46) Stephenson, R. "Education and Stratification." Journal of Educational Sociology, XXV (September, 1951), 34-41.
(47) Szabo, Steven. "Some Remarks on Discovery." Mathematics Teacher, LX (December, 1967), 839-842.
(48) Taba, Hilda. "Learning by Discovery: Psychological and Educational Rationale." Elementary School Journal, LXIII (March, 1963), 308-315.
(49) TerKeurst, Arthur J. and Joanna Martin. "Rote Learning Versus Discovery." "School and Community, L (November, 1968), 42, 44.
(50) Veldman, Donald and Robert F. Peck. "The Influence of Teacher and Pupil Sex on Pupil Evaluations of Student Teachers." Journal of Teacher Education, XV (December, 1964), 393-396.
(51) Wittrock, M. C. "The Learning by Discovery Hypothesis." Learning by Discovery: A Critical Appraisal. (Edited by L. S. Shulman and E. R. Keislar.) Chicago: Rand McNally, 1966.

APPENDIX A

Name \qquad Date \qquad
Age \qquad Sex \qquad Education (year in school) \qquad
School \qquad
Name of school
City
What is your father's occupation? \qquad

Directions: Mark your answer by putting an X in the proper box. For example, in the question, "Does your family have a car?" put an X in the box under YES if your family does have a car, and under NO if it does not. Be sure to answer all of the questions.

YES NO

1. Is there an electric or gas refrigerator in your home?

\square
2. Is there a telephone in your house?

3. Do you have a bathtub in your home?

4. Is your home heated with a central system, such as by a furnace in the basement?

5. Does your family have a car?
6. Did your mother go to high school?

7. Did your mother go to a college or university?

8. Did your father go to high school?

9. Did your father go to a college or university? \square

10. Do you have a fireplace in your home?

11. Do you have a piano in your home?

12. Does your family have any servants, such as a cook or maid?

13. Does your family leave town every year for a vacation?

14. Does your mother belong to any clubs, or organization, such as study, art, or civic clubs?

15. Does your father belong to any civic, study, service, or political clubs, such as the Lions Club, Chamber of Commerce, etc.?
16. Have you ever had private lessons in music, dancing, art, etc., outside of school?
17. Do you have your own room at home?
18. Does your family take a daily newspaper?
19. Do you belong to any clubs where you have to pay dues?
20. Does your family have a radio-phonograph combination?
21. How many books does your family have?

UNIVERSITY OF CALIFORNIA, BERKELEY

INSTITUTE OF PERSONALITY ASSESSMENT AND RESEARCH

2240 Piedmont Avenue Berkeley, California 94720

March 21, 1969

Miss Joanna Martin
Graduate Assistant
Department of Education
Oklahoma State University
Stillwater, Oklahoma 74074

Dear Miss Martin:

A copy of the Home Index is enclosed, along with a sheet of illustrative norms. If you want to use the Index, you may have my permission to reproduce copies. The easiest way would probably be to have a photocopy of the form made and printings extracted from the photo; the process we use is called Bruning Process, with the plate costing about $\$ 1.00$ and then a cost per 100 reproductions of about $\$ 3.00$. An attractive reproduction can thus be obtained at a cost not much more than mimeographing.

The Index has been used in some racent studies, including a doctoral dissertation at Connecticut by Stanley C. Speer, a study in Troy, New York, by Joseph Reppen, and papers in Educational and Psychological Measurement (1959, 19, 351-362) and the Journal of Applied Psychology (1960, 44, 172-174).

Sincerely,
/s/ Harrison Gough

Harrison Gough
HG: fc

Enclosures

APPENDIX C

THE TWO FACTOR INDEX OF SOCIAL POSITION

I. Introduction.

The Two Factor Index of Social Position was developed to meet the need for an objective, easily applicable procedure to estimate the positions individuals occupy in the status structure of our society. Its development was dependent both upon detailed knowledge of the social structure, and procedures social scientists have used to delineate class position. It is premised upon three assumptions: (1) the existence of a status structure in the society; (2) positions in this structure are determined mainly by a few commonly accepted symbolic characteristics, and (3) the characteristics symbolic of status may be scaled and combined by the use of statistical procedures so that a researcher can quick1y, reliability, and meaningfully stratify the population under study.

Occupation and education are the two factors utilized to determine social position. Occupation is presumed to reflect the skill and power individuals possess as they perform the many mainm tenance functions in the society. Education is believed to reflect not only knowledge, but also cultural tastes. The proper combination of these factors by the use of statistical techniques enable a researcher to determine within approximate limits the social position an individual occupies in the status structure of our society.

II. The Scale Scores.

To determine the social position of an individual or of an household two items are essential: (1) the precise occupational role the head of the household performs in the economy; and (2) the amount of formal schooling he has received. Each of these factors are then scaled according to the following system of scores.
A. The Occupational Scale.
B. Higher Executives, Proprietors of Large Concerns, and Major Professionals.
a. Higher Executives

Bank Presidents; Vice Presidents Judges (Superior Courts)
Large Business, e.g., Directors, Presidents, Vice-Presidents, Assistant Vice-Presidents, Executive Secretary, Treasurer

Military, Commissioned Officers, Major and above, Officials of the Executive Branch of Government, Federal, State, Local, e.g., Mayor, City Manager, City Plan Director, Internal Revenue Directors, Research Directors, Large Firms
b. Large Proprietors (Value over $\$ 100,000^{1}$)

Brokers Dairy Owners
Contractors Lumber Dealers

c. Major Professionals

Accountants (C.P.A.) Economists
Actuaries
Agronomists
Architects
Artists, Portrait
Astronomers
Auditors
Bacteriologists
Chemical Engineers
Chemists
Clergyman (Professionally Trained)
Dentists

Engineers (College Grad.)
Foresters
Geologists
Lawyers
Metallurgists
Physicians
Physicists, Research
Psychologists, Practicing
Symphony Conductor
Teachers, University, College
Veterinarians (Veterinary Surgeons)
2. Business Managers, Proprietors of Medium Sized Businesses, and Lesser Professionals.
a. Business Managers in Large Concerns

Advertising Directors
Branch Managers
Brokerage Salesmen
District Managers
Executive Assistants
Executive Managers, Govt. Officials minor, e.g., Internal Revenue Agents
Farm Managers

Office Managers
Personnel Managers
Police Chief, Sheriff
Postmaster
Production Managers
Sales Engineers
Sales Managers, National
Concerns
Sales Managers (Over $\$ 100,000)$
b. Proprietors of Medium Businesses (Value $\$ 35,000-\$ 100,000)$

Advertising Owners ($-\$ 100,000$) Manufacturer's Represent-

Clothing Store Owners ($-\$ 100,000$)
Contractors ($\$ \mathbf{\$ 1 0 0 , 0 0 0)}$
Express Company Owners ($-\$ 100,000$)
Fruits, Wholesale $(-\$ 100,000)$
Furniture Business ($-\$ 100,000$)
Jewelers ($-\$ 100,000$)
Labor Relations Consultants
c. Lesser Professionals

Accountants (Not C.P.A.)
Chiropodists
Chiropractors
Correction Officers
Director of Community House
Engineers (Not College Grad.)
Finance Writers
Health Educators
Librarians

Military, Commissioned Officers, Lts., Captains
Musicians (Symphony
Orchestra)
Nurses
Opticians
Pharmacists
Public Health Officers (M.P.H.)

Research Assistants, University (Full-time)
Social Workers
Teachers (Elementary and High)
3. Administrative Personnel, Small Independent Businesses, and Minor Professionals.
a. Administrative Personne1

Adjusters, Insurance
Advertising Agents
Chief Clerks
Section Heads, Federal, State, and
Local Government Offices

Credit Managers
Insurance Agents
Managers, Department Stores
Passenger Agents--R.R.
Private Secretaries
Purchasing Agents
Sales Representatives

Section Heads, Large Busi nesses and Industries
Service Managers
Shop Managers
Store Managers (Chain)
Traffic Managers
b. Small Business Owners $(\$ 6,000-\$ 35,000)$

Art Gallery
Auto Accessories
Awnings
Bakery
Beauty Shop
Boatyard
Brokerage, Insurance
Gar Dealers
Cattle Dealers
Gigarette Machines
Cleaning Shops
Clothing
Coal Businesses
Convalescent Homes
Decorating
Dog Supplies
Dry: Goods
Electrical Contractors
Engraving Business
Feed
Finance Co., Local
Fire Extinguishers
5 \& 10
Florist
Food Equipment
Food Products
Foundry
Funeral Directors
Furniture
Garage
c. Semi-Professionals

Actors and Showmen
Army M/Sgt; Navy C.P.O.
Artists, Commercial
Appraisers (Estimators)
Clergymen (Not professionally trained)
Concern Managers
Deputy Sheriffs
Dispatchers, R. R. Train
I. B. M. Programmers

Gas Station
Glassware
Grocery-General
Hotel Proprietors
Inst. of Music
Jewelry
Machinery Brokers
Manufacturing
Monuments
Package Store (Liquor)
Painting Contracting Plumbing
Poultry Producers
Publicity \& Public
Relations
Real Estate
Records and Radios
Restaurant
Roofing Contractor
Shoe
Shoe Repairs
Signs
Tavern
Taxi Company
Tire Shop
Trucking
Trucks and Tractors
Upholstery
Wholesale Outlets
Window Shades

Morticians
Oral Hygienists
Photographers
Physio-therapists
Piano Teachers
Radio, T. V. Announcers
Reporters, Court
Reporters, Newspapers
Surveyors
Title Searchers

Interior Decorators
Interpreters, Court
Laboratory Assistants
Landscape Planners

Too1: Designers
Travel Agents
Yard Masters, R.R.
d. Farmers

Farm Owners $(\$ 25,000-\$ 35,000)$
4. Clerical and Sales Workers, Technicians, and Owners of Little Businesses (Value under \$6,000)
a. Clerical and Sales Workers

Bank Clerks and Tellers Factory Storekeeper
Bill Collectors
Bookkeepers
Factory Supervisor

Business Machine Operators
Post Office Clerks

Offices
Claims Examiners
Clerical or Stenographic
Conductors, R. R.
Employment Interviewers
Route Managers (Salesmen)
Sales Clerks
Shipping Clerks
Supervisors, Utilities, Factories
Toll Station Supervisors
Warehouse Clerks
b. Technicians

Camp Counselors
Dental Technicians
Draftsmen
Driving Teachers
Expeditor, Factory
Experimental Tester
Instructors, Telephone Co., Factory
Inspectors, Weights, Sanitary
Inspectors, R. R., Factory
Investigators
Laboratory Technicians
Locomotive Engineers
Operators, P. B. X.
Proofreaders
Safety Supervisors
Supervisors of Maintenance
Technical Assistants
Telephone Co. Supervisors
Timekeepers
Tower Operators, R.R.
Truck Dispatchers
Window Trimmers (Store)
c. Owners of Iittle Businesses

Flower Shop ($\$ 3,000-\$ 6,000$)
Newsstand ($\$ 3,000-\$ 6,000$)
Tailor Shop ($\$ 3,000-\$ 6,000$)
d. Farmers

Owners ($\$ 10,000-\$ 20,000)$
5. Skilled Manual Employees.

Adjusters, Typewriter
Auto Body Repairers
Bakers
Barbers
Blacksmiths
Bookbinders
Boilermakers
Brakemen, R. R.
Brewers
Bulldozer Operators
Butchers
Cabinet Makers
Carpenters
Casters (Founders)
Cement Finishers
Cheese Makers
Chefs
Compositors
Diemakers
Diesel Engine Repair \& Maintenance (Trained)
Diesel Shove1 Operators
Electricians
Electrotypists
Engravers
Exterminators
Fitters, Gas, Steam
Firemen, City
Firemen, R. R.
Foremen, Construction, Dairy
Gardeners, Landscape (Trained)
Glassblowers
Glaziers
Gunsmiths
Gauge Makers
Hair Stylists
Heat Treaters
Horticulturists
Lineman, Utility
Linoleum Layers (Trained)
Linotype Operators
Lithographers
Locksmiths
Loom Fixers
Lumberjacks
Machinists (Trained)
Maintenance Foremen
Installers, Electrical
Appliances
Masons
Masseurs
Mechanics (Trained)
Millwrights
Moulders (Trained)
Painters
Paperhangers
Patrolmen, R. R.
Pattern and Mode1 Makers
Piano Builders
Piano Tuners
Plumbers
Policemen, City
Postmen
Printers
Radio, T. V., Maintenance
Repairmen, Home Appliances
Riggers
Rope Splicers
Sheetmetal Workers (Trained)
Shipsmiths
Shoe Repairmen (Trained)
Stationary Engineers
(Licensed)
Stewards, C1ub
Switchmen, R. R.
Tailors (Trained)
Teletype Operators
Toolmakers
Track Supervisors, R. R.
Tractor-Trailer Trans.
Typographers
Upholsterers (Trained)
Watchmakers
Weavers
We1ders
Yard Supervisors, R. R.

Sma11 Farmers

Owners (under $\$ 10,000$)
Tenants who own farm equipment

Aides, Hospital Photostat Machine Operators

Apprentices, Electricians, Printers
Steamfitters, Toolmakers
Assembly Line Workers
Bartenders
Bingo Tenders
Building Superintendents (Cust.)
Bus Drivers
Checkers
Clay Cutters
Coin Machine Fillers
Cooks, Short Order
Delivery Men
Dressmakers, Machine
Drill Press Operators
Duplicator Machine: Operators
Elevator Operators
Enlisted Men, Military Services
Filers, Benders, Buffers
Foundry Workers
Garage and Gas. Station Assistants
Greenhouse Workers
Guards, Doorkeepers, Watchmen
Hairdressers
Housekeepers
Meat Cutters and Packers
Meter Readers
Operators, Factory Machines
Oiler R. R.
Paper Rolling Machine Operators

Practical Nurses
Pressers, Clothing
Pump Operators
Receivers and Checkers
Roofers
Set-up Men, Factories
Shapers
Signalmen, R. R. Solderers, Factory Sprayers, Paint Steelworkers (Not Skilled) Stranders, Wire Machines Strippers, Rubber Factory Taxi Drivers
Testers
Timers
Tire Moulders
Trainmen, R. R.
Truck Drivers, General
Waiters, Waitresses
("Better Places")
Weighers
Welders, Spot
Winders, Machine
Wiredrawers, Machine
Wine Bottlers
Wood Workers, Machine
Wrappers, Stores and Factories

Farmers

Smaller Tenants who own little equipment
7. Unskilled Employees.

Amusement Park Workers (Bowling
Alleys, Pool Rooms)
Ash Removers
Attendants, Parking Lots
Cafeteria Workers
Car Cleaners, R. R.
Car Helpers, R. R.
Carriers, Coal
Countermen
Dairy Workers
Deck Hands
Domestics
Farm Helpers

Janitors, Sweepers
Laborers, Construction
Laborers, Unspecified
Laundry Workers
Messengers
Platform Men, R. R.
Peddlers
Porters
Roofer's Helpers
Shirt Folders
Shoe Shiners
Sorters, Rag and Salvage
Stagehands

Fishermen (Clam Diggers)
Freight Handlers
Garbage Collectors
Grave Diggers
Hod Carriers
Hog Killers
Hospital Workers, Unspecified Hostlers, R. R.

Stevedores
Stock Handlers
Street Cleaners
Unskilled Factory Workers
Truckmen, R. R.
Waitresses--"Hash Houses"
Washers, Cars
Window Cleaners
Woodchoppers
Relief, Public, Private
Unemployed (No Occupation)

Farmers

Share Croppers

This scale is premised upon the assumption that occupations have different values attached to them by the members of our society. The hierarchy ranges from the low evaluation of unskilled physical labor toward the more prestigeful use of skill, through the creative talents of ideas, and the manipulation of men. The ranking of occupational functions implies that some men exercise control over the occupational pursuits of other men. Normally, a person who possesses highly trained skills has control over several people. This is exemplified in a highly developed form by an executive in a large business enterprise who may be responsible for decisions affecting thousands of employees. B. The Educational Scale

The educational scale is premised upon the assumption that men and women who possess similar educations will tend to have similar tastes and similar attitudes, and they will also tend to exhibit similar behavior patterns. The educational scale is divided into seven positions: (1) Graduate Professional Training.
(Persons who complete a recognized professional course leading to a graduate degree are given scores of 1). (2) Standard College or University Graduation. (All individuals who complete a fouryear college or university course leading to a recognized college degree are assigned the same scores. No differentiation is made between state universities, or private colleges.) (3) Partial College Training. (Individuals who complete at least one year but not a full college course are assigned this position. Most individuals in this category complete from one to three years of college.) (4) High School Graduates. (All secondary school graduates whether from a private preparatory school, a public high school, a trade schoo1, or a parochial high school, are assigned the same scale value.) (5) Partial High School. (Individuals who complete the tenth or the eleventh grades, but do not complete high school are given this score.) (6) Junior High School. (Individuals who complete the seventh grade through the ninth grade are given this position.) (7) Less Than Seven Years of School. (Individuals who do not complete the seventh grade are given the same scores irrespective of the amount of education they receive.)
III. Integration of Two Factors

The factors of Occupation and Education are combined by weighing the individual scores obtained from the scale positions. The weights for each factor were determined by multiple correlation techniques.

The weight for each factor is:

Factor
Occupation
Education

Factor Weight
7
4

To calculate the Index of Social Position score for an individual the scale value for Occupation is multiplied by the factor weight for Occupation, and the scale value for Education is multiplied by the factor weight for Education. For example, John Smith is the manager of a chain supermarket. He completed high school and one year of business college. His Index of Social Position score is computed as follows:

| Factor
 Occupation $\frac{\text { Scale Score }}{3}$ $\frac{\text { Factor Weight }}{7}$ $\frac{\text { Score X Weight }}{21}$
 Education 3 4 $\frac{12}{33}$ | | |
| :--- | :---: | :---: | :---: |
| | Index of Social Position Score | $\frac{12}{33}$ |

IV. Index of Social Position Scores.

The Two Factor Index of Social Position Scores may be arranged on a continuum, or divided into groups of scores. The range of scores on a continum is from a low of 11 to a high of 77. For some purposes a researcher may desire to work with a continuum of scores. For other purposes he may desire to break the continuum into a hierarchy of score groups.

I have found the most meaningful breaks for the purpose of predicting the social class position of an individual or of a nuc lear family is as follows:
Social Class
II
III
IV
V

Range of Computed Scores
11-17
18-27
28-43
44-60
61-77

When the Two Factor Index of Social Position is relied upon to determine class status, differences in individual scores within a specified range are ignored, and the scores within the range are treated as a unit. This procedure assumes there are meaningful differences between the score groups. Individuals and nuclear families with scores that fall into a given segment of the range of scores assigned to a particular class are presumed to belong to the class the Two Factor Index of Social Position score predicts for it.

The assumption of a meaningful correspondence between an estimated class position of individuals and their social behavior has been validated by the use of factor analysis. ${ }^{2}$ The validation study demonstrated the existence of classes when mass communication data are used as criteria of social behavior.

[^3]APPENDIX D

LOMARKE CONCEPT TEST

Directions

Below are fifty problems. Look them over carefully. If the problem can be solved, find the answer and circle the correct letter. If the problem cannot be solved circle letter "d".

1. $25 \quad 30 \quad 34 \quad 41 \quad 45 \quad 49 \quad 57$
a. 463
b. 287
c. 601
d. cannot be solved
2. $989864 \begin{array}{llll}98 & 96 & 90\end{array}$
a. 470
b. 520
c. 601
d. cannot be solved
3. $15 \quad 18 \quad 21$
a. 36
b. 45
c. 54
d. cannot be solved
$\begin{array}{llllll}4 . & 98 & 99 & 101 & 102 & 103\end{array}$
a. 550
b. 505
c. 496
d. cannot be solved
4. $49 \quad 56 \quad 63$
a. 168
b. 96
c. 172
d. cannot be solved
$\begin{array}{llllll}6 . & 81 & 72 & 63 & 54 & 45\end{array}$
a. 305
b. 295
c. 315
d. cannot be solved
5. $\begin{array}{llllllll}50 & 48 & 46 & 44 & 42 & 40 & 36\end{array}$
a. 298
b. 308
c. 263
d. cannot be solved
6. 5-13
a. 72
b. 81
c. 63
d. cannot be solved
$\begin{array}{llllll}9 . & 12 & 14 & 16 & 18 & 20\end{array}$
a. 80
b. 100
c. 75
d. cannot be solved
7. $88 \quad \begin{array}{lllll}77 & 65 & 57 & 44\end{array}$
a. 320
b. 325
c. 405
d. cannot be solved
8. $143180 \quad 217 \quad 254 \quad 295$
a. 1085
b. 1000
c. 985
d. cannot be solved
9. 149815011504
a. 3935
b. 4303
c. 4503
d. cannot be solved
10. $\begin{array}{lllll}567 & 576 & 585 & 594 & 603\end{array}$
a. 2925
b. 3250
c. 2875
d. cannot be solved
11. 103113120
a. 400
b. 350
c. 452
d. cannot be solved
12. $1111 \quad 1114: 1117 \quad 1120 \quad 1123$
a. 5450
b. 5585
c. 4985
d. cannot be solved
$\begin{array}{llllllll}16 . & 89 & 138 & 187 & 236 & 285 & 334 & 383\end{array}$
a. 1552
b. 1675
c. 1652
d. cannot be solved
13. 1001 - 1029
a. 29,435
b. 28,945
c. 30,540
d. cannot be solved
14. $\quad 54 \quad 59 \quad 62 \quad 66 \quad 69$
a. 295
b. 325
c. 310
d. cannot be solved
15. $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
a. 12
b. 15
c. 18
d. cannot be solved
16. $4 \begin{array}{llllll}456 & 459 & 461 & 463 & 465\end{array}$
a. 2305
b. 1560
c. 2195
d. cannot be solved
17. 99.97 .95
a. 193
b. 271
c. 291
d. cannot be solved
18. $2565 \quad 2580 \quad 2595 \quad 2610 \quad 2625$
a. 12,975
b. 13,725
c. 11,295
d. cannot be solved
19. $23-30$
a. 200
b. 208
c. 136
d. cannot be solved
20. $45 \quad 60 \quad 75$
a. 170
b. 180
c. 190
d. cannot be solved
21. $\begin{array}{llllll}1000 & 1090 & 1180 & 1270 & 1360\end{array}$
a. 6730
b. 5450
c. 5900
d. cannot be solved
22. $100 \quad 90 \quad 80 \quad 79 \quad 78$
a. 400
b. 300
c. 285
d. cannot be solved
23. $10,126 \quad 10,132 \quad 10,138 \quad 10,144 \quad 10,150$
a. 49,665
b. 48,680
c. 50,690
d. cannot be solved
24. $\begin{array}{llllll}89 & 76 & 63 & 50 & 37\end{array}$
a. 315
b. 335
c. 295
d. cannot be solved
25. 100-120
a. 2130
b. 2230
c. 2310
d. cannot be solved
26. $29 \quad 35 \quad 36 \quad 37$
a. 140
b. 230
c. 125
d. cannot be solved
27. $48 \quad 46 \quad 44 \quad 41 \quad 40$
a. 220
b. 305
c. 140
d. cannot be solved
28. $\quad 30 \quad 24 \quad 18 \quad 12 \quad 6$
a. 85
b. 70
c. 90
d. cannot be solved
29. $\begin{array}{llllll}121 & 113 & 105 & 98 & 91\end{array}$
a. 525
b. 500
c. 475
d. cannot be solved
30. $525 \quad 539 \quad 553 \quad 567 \quad 581$
a. 2565
b. 2765
c. 2665
d. cannot be solved
31. $\begin{array}{llllllll}10 & 8 & 6 & 5 & 4 & 3 & 2\end{array}$
a. 16
b. 35
c. 30
d. cannot be solved
$\begin{array}{llllllll}36 . & 10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$
a. 145
b. 370
c. 280
d. cannot be solved
32. $637 \quad 630 \quad 623$
a. 1890
b. 1560
c. 1670
d. cannot be solved
33. $\begin{array}{llllll}104 & 100 & 97 & 90 & 86\end{array}$
a. 450
b. 485
c. 390
d. cannot be solved
34. $39 \quad 44 \quad 49 \quad 54 \quad 59 \quad 64 \quad 69$
a. 378
b. 350
c. 434
d. cannot be solved
35. $963.966 \quad 967968$
a. 2834
b. 3569
c. 3840
d. cannot be solved
36. $\begin{array}{llllll}36 & 40 & 43 & 33 & 23\end{array}$
a. 200
b. 230
c. 215
d. cannot be solved
37. $89 \quad 101 \quad 113$
a. 341
b. 303
c. 293
d. cannot be solved
38. $986 \quad 993 \quad 1000.1007 \quad 1014$
a. 5000
b. 4950
c. 5010
d. cannot be solved
39. $433: 448$
a. 931
b. 741
c. 881
d. cannot be solved
40. $35-41$
a. 270
b. 560
c. 266
d. cannot be solved
41. $403 \quad 411 \cdot 419 \quad 427 \cdot 435$
a. 1939
b. 2095
c. 6340
d. cannot be solved
42. $\quad \begin{array}{llllll}500 & 601 & 702 & 803 & 904\end{array}$
a. 3510
b. 2560
c. 3270
d. cannot be solved
43. 3-6
a. 15
b. 40
c. 12
d. cannot be solved
44. $\quad 34 \quad 49 \quad 64 \quad 79 \quad 94$
a. 240
b. 320
c. 190
d. cannot be solved
45. $49 \quad 59 \quad 69$
a. 149
b. 165
c. 177
d. cannot be solved

APPENDIX E

DATA FOR SPEARMAN-BROWN RELIABILITY COEFFICIENT

	Number	0	E	0^{2}	E^{2}	OE
Grade 5						
	001	15	21	225	441	315
	002	17	20	289	400	340
	003	17	17	289	289	289
	004	16	9	256	81	144
	005	16	19	256	361	304
	006	6	6	36	36	36
	007	17	18	289	- 324	306
	008	15	18	225	32,4	270
	009	13	26	169	6.76	338
	010	11	13	121	169	143
	011	22	22	484	484	484
	012	21	21	441	441	441
	013	15	19	225	361	285
	014	17	17	289	289	289
	015	21	18	441	324	378
	016	17	20	289	400	340
	017	20	20	400	400	400
	018	15	17	225	289	255
	019	21	23	441	529	483
	020	16	19	256	361	304
	021	10	12	100	144	220
	022	15	16	225	256	240
	023	18	21	324	441	378
	024	9	12	81	144	108
	025	10	14	100	196	1.40
	026	19	19	361	361	361
	027	17	15	289	225	255
	028	15	18	225	324	270
	029	17.	19	289	361	323
	030	17	19	289	361	323
	031	16	22	256	484	352
	032	16	21	256	441	336
	033	19	19	361	361	361
	034	23	23	529	529	529
	035	20	21	400	441	420
	036	15	21	225	441	315
	037	20	22	400	484	440
	038	20	24	400	576	480
	039	19	21	361	441	499
	040	13	13	169	169	169

	Number	0	E	0^{2}	E^{2}	OE
Grade 7						
	041	18	20	324	400	360
	042	23	25	529	625	575
	043	20	24	400	576	480
	044	16	19	256	361	306
	045	18	16	324	256	288
	046	17	21	289	441	357
	047	15	15	225	225	225
	048	17	24	289	576	408
	049	8	4	64	16	32
	050	17	16	289	324	272
	051	24	24	576	576	576
	052	23	22	484	529	506
	053	20	23	400	529	460
	054	22	23	484	529	506
	055	17	19	289	361	323
	056	21	24	441	576	504
	057	19	20	361	400	380
	058	16	21	256	441	336
	059	21	21	441	441	441
	060	19	23	361	529	437
	061	17	18	289	324	306
	062	15	16	225	256	240
	063	20	23	400	529	460
	064	17	23	289	529	391
	065	15	16	225	256	240
	066	9	15	81	225	135
	067	17	19	289	361	323
	068	20	23	400	529	460
	0.69	19	18	361	324	342
	070	19	20	361	400	380
	071	21	23	441	529	483
	072	17	19	289	361	323
	073	16	18	256	324	288
	074	19	18	361	324	342
	075	22	22	484	484	484
	076	17	20	289	400	340
	077	18	20	324	400	360
	078	16	19	256	361	304
	079	19	21	361	441	499
	080	22	21	484	441	462

Number	0	E	O^{2}	E^{2}	OE

Grade 9

081	22	25	484	625	550
082	21	22	441	484	462
083	20	23	400	529	460
084	24	23	576	529	552
085	16	18	256	324	288
086	16	23	256	529	368
087	22	20	484	400	440
088	21	21	441	441	441
089	22	24	484	576	528
090	17	20	289	400	340
091	19	21	361	441	399
092	24	24	576	576	576
093	23	25	529	625	575
094	24	23	576	529	552
095	24	23	576	529	552
096	21	25	441	625	5.25
097	19	21	361	441	399
098	21	23	441	529	483
099	17	18	289	324	306
100	22	24	484	576	528
101	21	21	441	441	441
102	24	22	576	484	528
103	19	19	361	361	361
104	21	25	441	625	525
105	20	20	400	400	400
106	20	24	400	576	480
107	21	23	441	529	483
108	20	24	400	576	480
109	20	19	400	361	380
110	21	21	441	441	441
111	20	25	400	625	500
112	19	20	361	400	380
113	22	25	484	625	550
114	23	24	529	576	552
115	24	25	576	625	600
116	24	24	576	576	576
117	20	20	400	400	400
118	18	20	324	400	360
119	21	23	441	529	483
120	21	24	441	576	504

APPENDIX F

RAW DATA

GRADE 5

RAW DATA
GRADE 7

GRADE 9

[^4]VITA 2
Joanna May Martin
Candidate for the Degree of
Doctor of Education

Abstract

Thesis: THE EFFECTS OF ROTE AND DISCOVERY TEACHING METHODS ON FIFTH, SEVENTH, AND NINTH GRADE STUDENTS OF A LOW AND MIDDLE SOCIOECONOMIC BACKGROUND

Major Field: Elementary Education

Biographical:

Personal Data: Born in Kansas City, Missouri, August 8, 1938, the daughter of Frances L. and Paul H. Martin.

Education: Attended public school in Kansas City, Missouri; graduated from Central High School, Kansas City, Missouri in 1956; received the Bachelor of Science degree from Central Missouri State College, Warrensburg, Missouri, in 1960, with a major in elementary education; attended University of Kansas City, Kansas City, Missouri, University of Missouri at Kansas City, Kansas City, Missouri, University of California at Riverside, Riverside, California, Central Missouri State College, Warrensburg, Missouri; received the Master of Science degree from Central Missouri State College, Warrensburg, Missouri, in 1967, with a major in classroom teaching; completed the requirements for the Doctor of Education degree at Oklahoma State University, Stillwater, Oklahoma, in July, 1970.

Professional Experience: Elementary teacher at Englewood School, North Kansas City, Missouri, 1960-1962; elementary teacher at Central School, Banning, California, 1962-1963; elementary teacher at Maplewood School, North Kansas City, Missouri, 1963-1966; instructor at Central School, Central Missouri State College, Warrensburg, Missouri, 1966-1968; graduate teaching assistant, College of Education, Oklahoma State University, Stillwater, Oklahoma, 1968-1970.

[^0]: Submitted to the Faculty of the Graduate College of the Oklahoma State University
 in partial fulfil1ment of the requirements
 for the Degree of
 DOCTOR OF EDUCATION
 July, 1970

[^1]: *Lomarke, a term devised by the author, is a composition of syllabies taken from names which are personally meaningful to her.

[^2]: *It will be noted for statistical reasons Methods were computed twice (Chapter III, pages 36 and 37) with the more conservative F ratio being utilized.

[^3]: ${ }^{1}$ The value of businesses is based upon the rating of financial strengh in Dun and Bradstreet's Manual.
 ${ }^{2}$ See August B. Hollingshead and Frederick C. Redlich, Social Class and Mental Illness, John Wiley and Sons, New York, 1958, pp. 398-407.

[^4]: *The California Test of Mental Maturity score was used at all grade levels unless otherwise designated.

