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CHAPTER I 

INT ROD UC TION 

Detecting a shift in distribution of a sequence of observations 

is important in such applications as medical diagnosis, quality control, 

and "tracking 11 problems. In analyzing a sequence of observations, 

we often encounter a shift or change in the parameters of the distribu

tion. If the point or time at which the shift takes place is known, the 

magnitude of the shift is easily estimated by classical statistical 

methods. However, if the point at which the shift occurs is not 

known, two problems arise: (1) that of detecting the shift and estima

ting the point at which the shift occurs and (2) that of estimating the 

magnitude of the shift. 

Two general approaches, namely a Bayes procedure and a 

n9n-parametric technique have been applied to these problems. 

Page [ 1 ], working in the area of quality control, developed a non

parametric procedure to detect a change in the location parameter of 

a sequence of observations having arbitrary distribution functions. 

Chernoff and Zachs [2] used a Bayes procedure to detect a change in 

the mean of a normal distribution, The latter authors constructed an 

11 ad hoc 11 procedure to estimate the time of shift. They also compareq 

the power function of Page 1s test procedure with the power function of 

a Bayes test procedure for different alternatives involving a binomial 

population. In a Later work, Kander and Zachs [3] generalized the 



2 

distribution to a one -parameter exponential family by deriving the 

Bayes proced-q.re for detecting a shift at an unknown time point. 

Mustafi [4] extended the work of Kander and Zachs under the assump-

tion that the probabilities of change remain constant over time. He 

derived a sequence of estimators of the current mean. 

Page 1 s procedure does not give any estimate of the magnitude 

of the shift nor of the time at which the shift takes place. The form 

of Ba.yes estimator is very complex. and only an 11 ad hoc" procedure 

was developed to e$timate the point of shift. Thus there is a need to 

develop simple estimation procedures for estimating the magnitude 

of the shift and the point of shift to be of practical use, which are 

among the objectives of this research. 

Statement of Problem 

Let x
1

, x
2

, ... , xn be a sequence of n independent random 

variables, where we are iq.teres ted in detecting a change or shift m 

the mean of these observations. Suppose we know one of these two 

i:,ituations is true, either there J_s no change or there is only one 

change in this distribution. Then we must distinguish between thE; 

following hypotheses: 

H
0

: x. 
J 

1,2, ... ,n, 

and 

(1 '.::. m ~n -- l) 

where m and e
1 

a.re assumed unknown,. 



If H
0 

holds, there has been no change, while if H
1 

is true, 

there has been exactly one change in the mean, and it is located 

between the mth and (m+l)th observations. We refer tom as the 

shift point or time of shift. 

In this res ear ch a likelihood-ratio test (LR T) is developed to 

detect a shift, and the maximum likelihood principle is used to esti

mate the time where the shift occurs and the magnitude of the shift. 

This study tests H
0 

against B
1 

for the following four cases: 

( 1) Initial mean and variance known. 

(a) One-tailed test. 

(b) Two-tailed test. 

(2) Initial mean unknown but variance known. 

(a) One-tailed test. 

(b) Two-tailed test. 

3 

(3) Initial mean known but variance unknown. Two-tailed test. 

(4) Initial mean and variance unknown. Two-tailed test. 

Cases (3) and (4) involve the nuisance parameter problem, 

which was not considered by previous authors using the parametric 

approach. 

For each of the four cases, the likelihood-ratio test statistic 

is derived, the critical region of the test is defined for a given type I 

error, and the power function is derived for various alternative hypo

theses. The one-tailed tests for cases (l) and (2) are compared to the 

corresponding Bayes procedure derived by Chernoff and Zacks [2]. 

Modified likelihood-ratio tests (MLRT) which are independent of the 

distribution of the estimated shift point are also constructed for cases 

(1) and (2). A multivariate extension is also discussed in this disser

tation. 
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Bayes Test Procedure 

Chernoff and Zacks [2] used the same testing problem as is 

given in the previous section. As signing equal probabilities to the 

shift points m and using the Bayesian approach, they derived the test 

statistic and power for the following cases where the variance is one: 

When the initial mean 8
0 

= 0, reject H
0 

iff (if and only if) 

n 
-- ~ (i-1) x. > k(a) 

1 l -

where k(a) is a constant depending on a, the type I error. 

Under H
0

, Tis distributed N[O, n(n-1)(2n-l)/6], and the 

power function is 

1 

13 (8
1
)=Pr[z>z - 8

1
{3n(n-l)/4n--2}

2
{1-m(m-l)/n(n-l)}] 

m - a 

for O .:::_ 8
1 

< oo, where z is distributed N[O, l] and za is its upper 

1 OOa% point. 

When the initial mean 8
0 

is unknown, reject H
0 

iff 

n 
~ (i-l)(x.-x)>k'(a) 

1 n -
1 

where 
n 

x = :?.: x. /n 
n 

1 
1 

( 1. 1) 

( 1. 2) 

( 1. 3) 

and k'(a) is a constant depending on c.1:, Under H
0

, T;~ is distributed 

N[O, n(n - l)(n+ 1)/12] , and the power function is 

( l. 4) 

for O < 13i - 80 < oo, where z and za are defined above. 



CHAPTER II 

SHIFT PROBLEMS WHEN THE VARIANCE IS KNOWN 

In this chapter we will develop, as was done by Chernoff and 

Zacks using a Bayesian approach, tests to detect a change or shift 

in the mean of a sequence of observations from a normal distribution 

with a known variance. We will use a likelihood-ratio statistic in 

order to detect at most one change in the mean of the distribution; 

while the principle of maximum likelihood is used to estimate the 

shift point and magnitude of the shift. This estimator because of its 

simplicity, is more desirable than the 11 ad hoc" estimator proposed 

by Chernoff and Zacks. As we will see, using the likelihood-ratio 

test (LRT) involves a complicated distribution for the power function. 

This was avoided by using the Bayes procedure. 

Case l: Initial Mean and Variance Known 

Consider 

against the 

Hl 
2) i 1, 2, ... , m :x. "'N(e

0
, o- = 1 

2 
i m+l, .. ,,n x. "-'N(G

1
,o- ) = 

1 

where m and e
1 

are unknown, l < m < n - 1. 

2 
Under H l' the likelihood function for e 1 ( o- = l) is 

5 

(2. l) 
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(2. 2) 

Suppose mis some particular value, says, the conditional 

likelihood function is 

-n/2 [ s 2 n 2] 
fls(el,s) = (2rr) exp - 1/2 ~ (x.- 90) + ~ (x.- el) . (2.3) 

i=l 
1 

i=s+l 
1 

Differentiating ln fls with respect to e
1 

gives the conditional 

maximum likelihood estimate (MLE) of e
1 

as 

denoted as x + 1 s ,n 

n 
~ x./(n-s), 

s+ 1 
1 

Now consider the maxima of the estimated likelihood functions 

m n - t -n/2 r 2 - 2 max r
1 

= max (2rr) exp - 1 /2 ~ (x. - e 
0

) + ~ (x. - x +l ) ]} 
m m m i= I i i=m+l i m 'n 

-n/2 s 2 n - 2 
= (2ir) exp - l /2[ ~ (x. - e 0 ) + ~ (x. - x +I ) ] 

i=l 1 i=s+l 1 s ,n 

(2. 4) 

It can be shown that one can compute the MLE of m, :m., by finding 

[ - 2] max (n -m) (x +l - eo) . m m ,n 

Thus, 

Pr[m.=s] = Pr[max (n-m)(x -9 )
2 

m m+l, n O 
2 = (n - s )(x - 00) ] . s+l, n 

(2. 5) 

If for a given sequence of observations the estimate, m, of the shift 



point is s, then the estimate of the change in the mean is x - 9
0

. 
s+l,n 

Under H
0

, the likelihood function (o-
2 = 1) is 

Now .consider the likelihood ratio 

= exp - 1 /2 

- - 2 = exp - l/2[(n-m)(xm+l,n- e0 ) ]. 

Thus, 

n 
~ 

i=rn+ 1 

- 2 
(x. - x - +l ) ] 

1 m , n 

7 

(2. 6) 

The test statistic is given by Equation (2. 6). 

Therefore, reject H
0 

if the test statistic, denoted as Tn, 

2 
T = (n-m.) (x-+l - 9 0 ) ~k(a), n m ,n 

where k(a) is a constant depending on a, the type I error. 

Two-Tailed Test of Case l for H
1

: e
1 

;/. 9
0 

To find the test statistic for this case we need to find the 

conditional distribution of T ; Le., the distribution of 
n 

denoted as T . 
s 

[ T /m=s] = [(n-s)(x +l - eo/L n s , n 

(2. 7) 



In matrix notation T may be written as s 

8 

(2. 8) 

where 

and 

A = 
nxn 

1 
n-s 

and i is an n Xt matrix of ones. 
n 

( tf;t:) 

In order to get the distribution of T we shall use the following 
s 

corollary by Graybill [5 ]: 

Corollary I: If x
1 

is distributed N(µ, o-2!), then x
1

1
Ax

1 
is 

distributed as noncentral chi.-square, x' 2 
(K, A), where A= µ 'Aµ/2o- 2 , 

if and only if A is idempotent of rank K. 

Let µ 1 be a 1 X n vector where the first m elements are zeros 

and the last (n-m) elements are e 
1 

- e
0

. 

is 

2 For each s, where 1 < s ~ m, it can be shown that µ 'Aµ/2o-

2 2 2 
A= (n-m) (e

1 
- e0 ) /2(n-s)o- ( 2. 9) 

For each s, where m + 1 < s ~ n - l, it can also be shown that 

µ 1Aµ/2o-
2 

is 

,,~ 2/ 2 
1\ = (n-s)(9 1 - 90 ) 2o- . (2. 10) 

Under H
0

, 9 l = e 
0

, thus A= A,:, = 0. Since A 2 = A and trac;e 

A = 1, A is idempotent of rank 1. It foLlows from Corollary I, that 



X 1AX
1
is distributed as a central chi-square variate, i(l), with one 

degree of freedom. 

The null hypothesis will be rejected if and only if 

9 

2 
T = (n - rn)(x- - 9

0
) _> k(a), 

n :rn+l,n (2.11) 

2 
where k(a) is the upper 1 OOao/o point, Xa (1), of the chi-square distribu-

tion with one degree of freedo:rn. 

I t2 
Under H

1
, x

1
Ax

1 
is distributed X ( 1, \) for 1 < s ~ :rn and 

,2 >:< ,,, 
X ( 1, \ ) form+ 1 ~ s ~ n - 1, where "A and 11.''' are given by (2. 9) and 

(2. 10), respectively. 

Using the above result, the power of the test13n/9
1

) for given 

el and :rn is 

[ ~ 2 2 ] 
13 (9 1) = Pr (n-m)(x -+l -6 0) 2: X (1) m , :rn ,n a 

:tn 

= z:; Pr[(n-s)(x+l -9 0 )
2 >x 2

(l)]·Pr[rfl=s] s , n - a 
s=l 

+ 
n-1 

- 2 2 ] [ ] z:; Pr[(n-s)(x +l - 9 0 ) > X (1) · Pr fh= s 
s=:rn+l s , n - a 

(2. 12) 

where Pr[rn=s] is given by (2. 5). To obtain the power, one must 

know the distribution of m.. This will be discussed later in th~ chapter. 

One-Tailed Test of Case l for H
1

: e
1 

> e
0 

From Equation (2. 11) we know that T is distributed x2(1) 
n 

under H
0

. 

Thus, (T ) 1 / 2 is distributed N(O, 1), and we have 
n 

- 1 /2 - • 1 [ ] a = Pr[(n-m) (xrn+l, n - e0 ) ~ k (a)]= Pr z > za (2. 13) 
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where z is distributed N(O, 1) and k
1 (a) is the upper lOOa% point, za, 

of the standard normal distribution. 

The power of the test for given m and e 
1 

is 

[ 1/2 - ] Pr (n-m} (x -+l - e0 ) > z rn ,n - a 

= 
m 1/2 
~ Pr [(n-s) (x +l -9 0 ) > z ] · Pr[rn=s] 

s=l s , n . a 

n-1 1/2 
+ !: Pr[(n-s) (x +l - e0 ) > z ] · Pr[:fu=s] 

+l 
s , n - a 

s=m (2. 14} 

where Pr[m=s] is given by Equation (2. 5). Let us proceed to simplify 

Equation (2. 14). 

Consider 1 < s < m, x. ""'N(Eb, 1), i:;:: l, 2, ... , m, c1,nd 
- - 1 

xi"' N(9
1

, 1), i=m+l,.,. ,l'l. It can be shown that 

and 

Pr[(n-s)l/Z(x +l -9
0

) > z] = Pr[z > z -(n-m)(9
1
-e

0
)/(n-s)

1
/

2
]. 

s ,n - a - a 

(2. 16) 

When m+l .:s_ s .:s_ n-1, it can be shown that 

(2. 17) 

and 

Pr[(n-s) 1 / 2
(x +l -9

0
) > z] = Pr[z > z - (n-s)

112 (9 1 - 9 0)]. 
s ,n - a - a 

(2. 18) 

Using results from Equations (2. 16) and (2. 18) in Equation (2. 14), we 

have 
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m 
Z Fr[z > z - (n-m)(9

1
_..,e

0
)/(n-s)l/Z] · Pr[m=s] 

s=l - a 

n-1 
+ z Pr[z ~ zq - (n-s)

112 (e
1

- e
0

)] · Pr[m=sJ. 
s=m+l (2. 19) 

The distribution of m and the evaluation of power will be discussed 

later. 

Case 2: Initial Mean Unknown but Variance Known 

If we consider t}J.e null hypothesis against th~ alternative hypo

thesis as given in (2. 1), the likelihood fu1;1ct~on for e
0

, assuming 

2 I . 
<T = , 18 

and the MLE of e 
O 

is x, the sa,.mple mean. 

Und~ r H 
1 

the conditional likelihood :function for e 
O 

and e 
1

, 

given m=s, is 

The conditional MLE of e
0 

is x1, 
8 

and the condition MLE of 9 l is 

x 
1 

. The MLE of m, is given by m=s if and only if 
s+ ,n 

-
£ 1 s (x 1 , s' x: s + l, n > .s) = m~x + 1 m 

= max 
m 

/2 m - 2 
[(2rr)-n · exp - 1/2{ Z(x.-x

1 
) 

I 1 , m 

n - 2 
+ Z (x. - x + 1 ) } ]. 

m+l 1 m , n 



One can obtq.in the maximum of the above by finding 

[ - 2 -2 ] 
max m x 1 . + (n-m)x +l . m ,m m ,n 

Thus, 

Pr[m=s] = Pr[max{inx
2
1 + (n-m) x 

2 
+l } 

m ,m m ,n 
-2 = SX l 

's 

12 

-2 ] 
+ (n,-s )xs+l n 

' 
(2. 20) 

The likelihood ratio is 

-
n 2 

L: exp·;. 1/2[ ~ (x . .,. x) 
m 2 
~ (x. - x

1 
., ) 

n - 2 
~ (x. - x - +l ) ], 

1 1 1 
1 ,m rn+l 1 m , n 

whel;'e 

x ·= [rnxl - + (n-rn) x - +l ] + n. ,m m ,n 

If one takes the log of the likelihood ratio and substitutes .the value 

for x in ln L, he can obtain by algebraiG simplification 

(n-rn) 
-2 ln L = m 

n 
- - 2 

(x - - x - ) m+l, n m (2. 21) 

The right hand side of Equation (2. 21) gives the test statistic T . 
n 

Thus reject H 0 if 

T > k(a ). n-

Two-Tailed TestqfCase 2 forH
1
:e

1 
I- 9

0 

(2.22) 

To find the distrih1,1tion of T we n~ed to find the conditional . . n 

distribution of T , given m=s. This can be written in matrix notation 
n 

as 

T s 
s(n-s) 

n 

4 I 
(x. - x

1 
) : =X,,AX. 

s+l,n ,s ·: 
(2. 23) 



where 

and 

A = 
nXn 

n-s Js 
sn. s 

1 s; 
--J 

n n-s 

l n-s 
- - J n s 

s Jn-s 
(n-s)n n-s 

13 

A 
2 = A and trace A-;;; 1. By letting µ 1 be a 1 Xn vector where the first m 

elements are 9 
0

, and the last (n-m) elements are 9
1

, an,d using 

corollary I we have 

X 1AX 12 (1 1 
) '"X '/\1' 

I 2 
where "l = µ Aµ/2<:r 

For each s, when l ~ s .:::_ m, it can be shown that 

and when m+l < s < n-1 

(2.24) 

(2.25) 

(2. 26) 

Under H
0

, 

by Corollary 2. 1. 

9 1 = e0, and "I = li.t = 0, X
1
AX is distributed i(l) 

K(a)::; x2
(I) is the upper 100a% point of a chi-

a 

square with one degree of freedom. 

Given a set (9 
0

, e 
1
, m), the power of the test is 

m [s(11--s) - - 2 2 ] [ ] f3m(9 0 ,e
1

) = ~ Pr · (x - X- ) > X (l) · Pr :rn;::s 
s=l n s+l,n 1,s - a 

n-1 
[ s ( n -s) - - 2 2 ] + ~ Pr . (x ·· x. ) > X ( l) 

+l 
n s+l,n J,s - a 

s=m 
Pr[m;::sJ. 

(2.27) 
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Using (2. 24), (2. 25), (2. 26) in (2. 27) we have 

m 
~ Pr[x'

2
(1,\) ~ x! (l)] · Pr[rn=s] 

s=l 

n-1 
+ ~ Pr[ x' 2 (1, ;x..

1
>:<) > x 2 (l)] · Pr[m=s], 

- a 
s=m+l (2. 28) 

where Pr[rn=s] is given by Equation (2. 20). The distribution of ni and 

the evaluation of the above power function, as in the previous cases, 

will be discussed later. 

One-Tailed Test of Case 2 for H
1

: e
1 

> e
0 

From Equations (2. 24), (2. 25), and (2. 26) we know that T is 
n 

2 1/2 
distributed x (1) under H

0
. Thus (Tn) is distributed N(0, 1), and 

we have 

[ - - ] 1 / 2 [- - ] , } a =Pr{ m(n-m)/n x -+l - x 1 - ~ k (a) m ,n ,m 

= Pr [ z > z ] ( 2. 2 9) 
- a 

where z is distributed N(O, 1) and k 1(a) = z is its upper lOOa% point. 
a 

is given by 

[ 

A 1 /2 - - ] 
Pr{mn-rn)/n} (x-+l -x1 -)~z m ,n ,m a 

= 
m 
~ Pr[{s(n-s)/s}l/Z (x tl - x

1 
) > z ] · Pr[m.=s] 

s=l s · , n , s - a 

n-1 . 1/2- -
+ :;E Pr[ {s(n-s)/s} (x +l -x 1 ) ~ z ] '. J='.r[m=s] 

l 
s ,n ,s. a 

s=m+ 
(2.30) 
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Let us proceed to simplify Equation (2,. 30). Consider the case when 

1 < s < m. It can be shown that 

(x +l - x1 ) "'N[(n-m)(0 1-9 0 )/(n-s), n/s(n-s)], 
S 1 n 1 S · 

(2.31) 

For the case m+l < s ~ n - 11 it can be verified that 

(2. 32) 

Using the information in (2. 31) and (2. 32), Equation (2. 30) can 

be simplified to 

m 
~ Pr[z > za - (n-m){s/n(n-s)}

1
/

2 
(9

1
- 9

0
)] · Pr[m=s] 

s=l 

n-1 
+ ·~ Pr[z > z 

- a 
s=m+l 

1/2 ] - m {(n-s)/ns} (9
1 

- 9
0

) · Pr[m=s] 

(2. 33) 

where Pr[m=s] is given by Equation (2. 20). 

Simulating the Distribution of m and Evaluation 

of the Power Function 

From the results of Equations (2. 5) and (2. 20) one can estimate 

the distribution of m. by simulation on a computer. 

For a given pair (m, 9
1

) generate m NID(O, 1) deviates 

x 1,x2 , ... ,xm and n-m NID(9 1, 1) deviates xm+l1 xm+2,, .. ,xn. Find 

-2 
(a) max (n-m) x +l 

m m ,n 

and 

[ -2 -2 ] 
(b) max ( n -m) x + 1 + m x 1 m m ,n ,m 

and record the values as m and m*, respectively. 



Repeat the above procedure 250 times. We get a frequency 

count of the possible values of :rn and rn*. 
Repeat the above procedures for different values of (m, 0

1 
). 

This procedure gives an estimate of the distribution of m in 

16 

(2. 5 ), for which the initial mean e 
O 

is known. At the same time we 

obtain an estimate of the distribution of rn in Equation (2. 20) in which 

the initial mean e 
O 

is unknown. 

Using the above simulation for the distribution of rn, the power 

function of each test in this chapter is evaluated for the following set 

of parameter values: n = 12; m = 1, 3, 5, 7, 9, 11; eo =. 3,. 6,. 9, 1. 2; 

2 
O" = l; and type I error a = . 05. 

Table I gives the powers for the one-tailed LRT, and the 

Bayes test for the case where the initial mean and variance are 

known. Table II gives these powers when the initial mean is unknown 

and variance is known to be l. Table III shows the power of the two·· 

tailed LRTs when the initial mean and variance are known and when 

the initial mean is unknown but variance is known. The power function 

for the two-tailed Bayes test procedure is not available. 

The exact dis tribu.tion of :rn for a sample of size three is 

derived in the Appendix. 



el 

. 3 

. 6 

.9 

.··\c 

1. 2 

TABLE I 

THE POWERS OF THE ONE-TAILED (6 I> 9o) LRT 
AND THE BA YES TEST WHEN THE INITIAL 
MEAN (9o= 0) AND VARIANCE (cr2: 1) ARE 

KNOWN FOR n = 12 AND a = . 05 

~ 

m LRT* BAYES** 

I . 1766 . 2222 
3 . 1602 .2105 
5 . 1476 . 1846 
7 . 1265 . 1480 
9 . 1017 . 1066 

11 . 0705 . 0670 

1 . 5082 . 5459 
3 . 4327 . 5141 
5 . 3646 . 4399 
7 . 2814 . 3283 
9 . 1932 . 1991 

11 . 1009 . 0882 

1 . 8303 . 8403 
3 . 7635 . 8094 
5 . 6563 . 7243 
7 . 5156 . 5618 
9 . 3410 . 3283 

11 . 1439 . 1141 

1 . 9674 . 9697 
3 . 9442 . 9569 
5 . 8779 . 9103 
7 . 7510 . 7750 
9 . 5269 . 4822 

11 . 2072 . 1450 

* Obtained from Equation (2. 19) 
,:o:< Obtained from Equation ( 1. 2) 

17 



TABLE II 

THE POWERS OF THE ONE-TAILED (91 > 9o) LRT AND 
THE BAYES TEST WHEN THE INITIAL MEAN 

IS UNKNOWN BUT VARIANCE (a-2 = 1) IS 
KNOWN FOR n = 12 AND a = . 05 

e 1'"' e o m 

1 
3 

. 3 5 
7 
9 

11 

l 
3 

.6 5 
7 
9 

11 

1 
3 

. 9 5 
7 
9 

11 

l 
3 

1. 2 5 
7 
9 

11 

* Obtained from Equation (2. 33) 
** Obtained from Equation ( 1. 4) 

,,.. 
LRT'" 

. 0752 

. 0896 

. 0946 

. 0925 

. 0798 

. 0645 

. 1105 

. 1614 

. 1761 

. 1774 

. 1431 

. 1841 

. 1610 

. 2709 

.3190 

. 3119 

. 2440 

. 1203 

. 2257 

. 4250 

. 5088 

. 4878 

.3869 

. 1666 

BAYES** 

. 0659 

. 0957 

. 1139 

. 1139 

. 0957 

. 0659 

.0855 

. 1666 

. 2216 

. 2216 

. 1666 

. 0855 

. 1092 

. 2647 

. 3715 

. 3715 

.2647 

. 1092 

. 1372 

. 3858 

. 5442 

. 5442 

. 3858 

. 1372 
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TABLE III 

THE POWERS OF THE TWO-TAILED LRT WHEN INITIAL MEAN 
(0 0 = 0) AND VARIANCE (a- 2 = 1) ARE KNOWN; AND WHEN 

INITIAL MEAN IS UNKNOWN AND VARIANCE 
(a-2 = 1) IS KNOWN FOR n = 12 AND a = . 05 

\ 

e 1 - eo m 

1 
3 

,3 5 
7 
9 

11 

1 
3 

. 6 5 
7 
9 

11 

1 
3 

. 9 5 
7 
9 

11 

1 
3 

1. 2 5 
7 
9 

11 

* Obtained from Equation (2. 12) 
** Obtained from Eqt+ation (2. 28) 

Initial Mean Initial Meatit:~ 
e

0 
Known,.~ e

0 
Unknown 

. 1136 . 0525 

. 1021 . 0574 

. 0932 . 0610 

. 0801 . 0616 

. 0665 . 0572 

. 0594 . 0526 

. 3940 . 0611 

. 3211 . 0885 

. 2590 . 1044 

. 1894 . 1088 

. 1233 . 0910 

. 0673 . 0607 

. 7515 . 0802 

. 6661 . 1564 

. 5427 . 2021 

. 3971 . 2071 

. 2386 . 1604 

. 0928 . 0812 

. 9455 . 1093 

. 9050 .2700 

. 8094 .3684 

.6487 . 3586 

. 4094 • 2795 

. 1368 . 1119 
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CHAPTER III 

SHIFT PROBLEMS WHEN THE VARIANCE IS UNKNOWN 

The sequence of observations in which we are interested in 

detecting a change in the mean is drawn very often from a normal 

population with an unknown variance. In this chapter we will develop 

tests to detect this change. We will enco1,1.nter here a more complica-

ted distribution which is the ratio of two independent noncentral chi-

squares. This distribution will reduce to a mixture of Beta distribu-

tions in which the mixing distributions are the products of two 

Poissons having means equal to the noncentralities of the two chi-

squares, The distribution of the two-tailed LRT is again a mixture 

of the distribution just described with another mixing distribution for 

m. Two cases will be considered. Case 3 considers the problem 

when the initial mean is known but variance is unknown, and Case 4 

consiq.ers the situc;1.tion when the initial mean and variance are 

unknown, 

Case 3: Initial Mean Known but Variance Unknown 

Under H
1 

the likelihood function for e
1

,o-
2 

and mis similar to 

2 that in (2. 2) except o- appears in the function as seen in the following 

equation. 

2 m 2 n 2 
1 /2o- [ ~ (x, - e 

0
) + ~ (x. - e 1) ]. 

i= 1 l. i=m+l 1 

(3. l) 

20 



21 

In order to find the MLE of e 1, o-
2

, and m, we find the conditional 

maximum likelihood estimators of e 1, and o-
2 given m=s, 

s=l, 2, ... , n-1. Form= s, let 

2 
max {fl ( e l ' O" ' s ) } 

2 
e I' o-

where 9 ls and cr'is are the conditional MLE of 9 l and o-
2 

respectively. 

Thus to find the MLE of m, we find 

(3. 2) 

- -2 
The index m, which maximizes the conditional maxima, f1 (f\m• o- lm' m), 

is the MLE of m, denoted m, and the corresponding estimates 9 lm 

and <Tim are the MLE of e 1 and o-
2

, denoted as ~ i and ii, respectively. 

It can be shown that 

-
e1=xm+l,n (3. 3) 

and 

-2 m 2 n - 2 
o- 1 = 1/n [~ (x

1
.- 9 0 ) + ~ (x.- x -+l ) J 

l m+l 1 m 'n 
(3. 4) 

It can be shown that the :m found 1n (3. 2) can also be obtained by 

finding 

max[(n-m)(i' +l -90 )
2

]. 
m m ,n 

Thus, 

Pr[rn.=s] = Pr[max (n-m) (i' - e )2 = 
m+l, n O 

(n-s) (x - e /] 
s+l,n O 

(3. 5) 

The same result was obtained in Equation (2. 5). 
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Under H0 the Hkelihood function is 

2 -n/2 2 n 2 = (21TI, ) exp - 1 /2rr [ ~ (x. - 9
0

) ]. 
1 1 

When 

is substituted in the above expression, the maximum of the likelihood 

function becomes 

f (-2) (2 _ 2)-n/2 -n/2 
O rr2 = 1TfJ" 2 e 

The likelihood ratio L is 

Thus, 

L-2/n = 

The test statistic is 

T = n 

m 2 n - 2 
~(x.-9 0 ) + ~ (x.-x-+l ) 
1 1 :rn+l 1 m In 

= 1 + 
- - 2 (n-m) (x - - e ) 

m+l, n O 

~ (x.-e 0 / + ; (x.- x- +l / 
l 1 rn+l 1 m 1 n 

(n-rn) (x-+l - e / m ,n O 

m 2 n - 2 
~ (x.- e0 ) + ~ (x.- x -+l ) 
l 1 m+l 1 m 1 n 

(3. 6) 



Now let us find the distribution of T = [T I rn=s ]. First s n 

consider the numerator of T • From Equation (2. 8) it is seen that 
s 

X~AX 1 is distributed x2
(1, t..)J where 

A 
nXn 

= 
1 

(n-s) (!-#:)· 
and ,._ is the noncentrality as shown in (2. 9) and (2. 10). 

Now consider the denominator of T , whose terms can be 
s 

written in matrix notation as 

where 

and 

where 

s 2 
~ (x. - e ) 
1 1 0 

B 
nXn 

n 
~ (x. - ~ +· 1 )2 = 

s+l 1 s ,n 
x'cx 

' 

cj> 
c = 

nXn ( : I l Jn -s 
n-s - (n-s) n-s 

) . 

23 

B and C are both idempotent with trace of B equal to s and trace of C 
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I 12 
equal to n-s -1. By Corollary I x

1 
BX

1 
is distributed X (s, 11.

2
). and 

X 1CX is distributed x12(n-s -1, 11.
3

), where 11.
2 

and 11.
3 

are given below. 

For 1 < s < .m, it can be shown that 

11. 2 = 0 

and (3. 7) 

For m+l < s < n-1, it is seen that 

X'~ = (s -m) (9 1 - e0//2(n-s )o-
2 

and (3. 8) 

11.
3 

= O. 

To show that (X}'.BX
1

+ X'CX) is distributed x' 2 (n-l, 11.
2

+ 11.
3

). 

we only have to show that x\ BX
1 

and X'CX are independent. Since 

x'
1 

BX
1 

and X 1CX involve different components of the vector X, they 

are independent. 

We have to show that the numerator and denominator of T are s 

independent. The numerator X\Ax 1 is a function of xs+l, n· The 

components of the denominator, x\ BX
1 

are functions of x
1 

- e
0

, 

Xz- eo, ... ,xs- eo, and X'CX is a function of xi- xs+l,n' s+l <i < n. 

Let us prove that x +l is independent of s ,n 

- - .-. - - - - - - - - .. - - = 
x ' "'x ,\-s!·fl : ~ + 1, n 

x -x 
n stl,n 

s X 1 

x(2) 

(n-s)xl 



Since X(l) and x +l involve different components of the vector X, 
s , n 

they are independent. To prove that x +l and x. - x +l , for s ,n 1 s ,n 

s+l .:::_ i .:::_ n, are independent, we only have to prove that 

cov[x +l ·• (x.- x +l )] equals zero. s ,n 1 s ,n 

2 2 
cov[x +l , (x.- x +l .).] s ,n 1 s ,n 

er er 
= (n-s) - (n-s) = O 

25 

for s + 1 < i < n. This completes the proof that the numerat,or (?f Ts 

is independent of its denominator. 

The next problem is to find the distribution of T , the ratio of s 

two independent noncentral chi-square distributions. The solution to 

this problem is given by Luka~s an.tj. La~~ [6]. They showed that if x
1 

and x
2 

are two independent random variables, where xi is distributed 

x12 
(ni, 7\), the quotient of w = x

1 
/x2 has the density function 

= O oth,e:rwise, 

where. 

for x > 0 

r[(n
1
+2r)/2] r [(n

2
+2t)/2] 

r [(n l +nz+2r+2t) /2] 

(3. 9) 

f (x) is a mixture of random variables having Beta distributions of 
w 

the second kind. Letting x=y/(1-y), in (3. 9) we get 



26 

f(y) 
oo oo e-(11.l+/\2)/Z(11.

1
/2{(11.

2
/2)t 

= ~ ~ 
r=O t=O r? t? 

y(nl+2r-2)/2(1-y)(n2+2t-2)/2 

B[(n 
1 
+2r) /2, (n

2 
+2t) /2] 

(3. 10) 

for O < y < 1 

' = , 0 ,otherwise. 

Since f(y) is continuous and uniformly convergent, we can 

interchange integral and summation signs. For any real number u, 

0 < u < 1 , we have 

Pr(y ::::_ u) = 
r=O t=O r! t? 

(3. 11) 

The quantity inside the bracket can be evaluated by using the ihcom-

plete Beta function. 

Under H
0

, Tn can be written 

2 x1 ( 1) 

2 'Xz (n-1) 

F( 1, n-1) 
= n-1 

(3. 12) 

since the noncentralities are zero. Thus k(a) = [ F (1, n-1)/(n-l)], 
a 

where F (1, n-1) is the upper 100a% point of the central F distribution 
a 

with 1 and n-1 degrees of freedom in the numerator and denominator, 

respectively. The critical value in the transformed variable, y, is 

k 1(a) = k(a)/[1 +k(a)] = [F (1, n-1)/{(n-l) + F (1, n-1)}] 
a a 

The power function for m, 9
1

, <T
2 

is 



m 
~ {Pr[F"(l,n-1; "ri., "ri. 2+A3 ) > Fa(l,n-1)] · Pr[m=s]} 

s=l 

n-1 

27 

+ ~ {Pr[F"(l, n-l;"ri.,:\ A,;+ "ri.;<) > F (1, n-1)] · Pr[m.=s]} 
s=m+l - a 

m n-1 
= ~ {Pr[y>k 1(a)]. Pr[m=s]} + ~ {Pr[y>k'(a)] · Pr[m.=s]} 

s=l - s=m+l -
, (3~·13) 

where F'' is a noncentral F with two noncentralities defined in Equa-

tions (2. 9), (2. 10), (3. 7), and (3. 8). Pr(y :::._ k 1 (a) is defined in Equa

tion (3. 11). Pr(:m.=s) is defined in Equation (3. 5) and was estimated 

by simulation. The power is tabulated in Table IV at the end of the 

chapter. 

Case 4: Initial Mean and Variance Unknown 

Under H
0

, the likelihood function is 

2 
The MLE of e

0 
and o- , respectively; are 

e = x 
0 

n -2 
l /n ~ (x. - x) . 

i= 1 
1 

Under H
1

, assuming the shift occurs at m=s, the conditional 

likelihood function is 

2 2 -n/2 . 2 
f 1 (00s' e1, o- , s) = (21ro- ) exp - 1/20-

s . 2 n 2 
~ (x.- e 0) + ~ (x.- el) 

i=l 
1 

i=s+l 
1 

The conditional MLE of 9 
0

, e 
1

, and o-
2 

respectively, are 



and 

-2 
c,2s 

els = x s+ l, n' 

s -· 2 n - 2 = 1 / n [ ~ (x. - x 1 ) + ~ (x. - x + 1 ) ] . 
i=l i ,s i=s+l l s ,n 

To find the MLE of m we find 

28 

[ (2 - 2 )-n/2 -n/2] = max 1rc,
2 

e 
m m 

(3. 14) 

It can be shown that the rn found in (3. 14) can also be obtained by 

finding 

[ -2 -2 ] 
max m x 1 + (n-m) x +l m ,m m ,n 

Thus, 

[ ] [ -2 -2 
Pr rn=s = Pr max {mx l + (n-m) x +I } 

m ,m m ,n 
-2 -2 ] 

= sx 1 + (n-s)x +l , s s , n 

and 

The likelihood ratio is 

-2/n 
L = 

L = 

n -2 
~ (x. - x) 

i= l l 

m - .2 n - 2 
~ (x. - x 1 in} + ~ (x. - x - 1 ) 

i=l l ' i=rn+l l m+ ,n 

(3. 15) 

(3. 16) 

From the derivation of Equation (2. 21) it can be deduced that the 
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numerator of (3. 16) is 

n -2 
~ (x. - x) 

n 2 n - 2 rn(n-rn) - 2 
= ~(x.-x1 _) + ~ (x.-x-+l ) + (xrntl -x1 -) . 

i= 1 
1 i=l 1 , m i=m+l 1 m , n n ,n , m 

After making the above substitution and simplifyi~g,(3. 16) may be 

written as 

m(n-rn) - - 2 

L -2/n = l + 
(x - 1 - x 1 - ) n m+ , n , m -

m 2 n - 2 
~ (x. - xl - ) + ~ (x.-xrn+l n) 

i::: 1 1 'm i=rn+ 1 1 
; , 

The test statistic is 

T = n 

rn(n-:m) - - 2 
(x-+l -xl .~) n m ,n ,m 

m 2 n 2 
~(x.-x

1 
_) + ~ (x.-x_ 

1 
) 

i:= 1 1 I m i:::rn+ l 1 m+ > n 

(3. 17) 

Let us proceed to find the distribution of T = [T I rn = s] m 
s n 

order to determine the critical region and power function of the test. 

Consider in matrix notation the denominator of Ts. 

s - 2 n 2 
~ (x. - x

1 
) + ~ (x. - x ) 

i=l 1 ,s i=s+l 1 s+l,n 
(3. 18) 

where I I \ ( I - l J
8

1 cj> s s g I 
Al :::: 

~ I 1n-s 

,. 
1 

I 

nXn Jn-s ) n-s n-s 
\ I I 

and 



It can be shown that A
1
A

1 
= A

1 
and trace A

1 
= n-2, thus A

1 

is idempotent of rank n-2. By Gollorary I,:X1A
1 

X is distributed 

,2 
X (n-2, A.

4
), where A.

4 
is the noncentrality. 

Now look at the noncentrality, A.
4 

= µ 1A
1 

µ/2cr 2 , of X 1A 
1 
X. 

Let µ 1 be a 1 x n vector whose first m elements are e 
O 

and the last 

n-m are e 
1

. It can be shown that 
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2 
(m-s )(n-m)(9

1 
- e 

0
) 

2 
2(n-s)cr 

for 1 < s <m (3.19) 

and 

\ * -~4 -

2 
m(s-m)(el -90) 

Zs cr2 
for m+l < s < n-1. 

From (2. 24) the numerator of T is X 1AX and 
s 

where ;...
1 

is defined in Equations (2. 25) and (2. 26). 

(3.20) 

X 1AX and X 1A
1

X are independent because A
1 

and A are idempo-

tent and A
1
A = cp. 

Therefore, the distribution of Ts= (X'AX/X 1A
1
X) is similar 

to Equation (3. 9) except for the noncentralities which are defined by 

Equations (2. 25), (2. 26), (3. 19) and (3. 20). 

Under H
0

, from (3. 17) we have 

T = n 

2 
XI ( l) 

2 x2 (n-2) 

= F( 1, n-2) 
n-2 

since the noncentralities are all zero. Thus 

k(a) = [ F ( 1, n-2)/(n-2)] . 
a 



The critical point in the transformed variable y is 

k 1(a) = [F (l,n-2)/{(n-2) + F (l,n-2)}]. 
a a 

The power of the test for m, 9 
0

, 9
1

, and <T 
2 is 

m 
~ {Pr[F"(l,n-2; "l' A.4 ) > Fa(l,n-2)] · Pr[m=s]} 

s=l 

n-1 
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+ ~ {Pr[F11 (l, n-2; A.t, A.~')> Fa(l, n-2)] · Pr[m=s]} 
s=m+l 

m 
= ~ { Pr [ y ~ k 1 (a)] · Pr [m= s ] } 

s=l 

n-1 
+ ~ { Pr[ y > k 1 (a)] · Pr[m.=s]} 

s=m+l -
(3.21) 

where Pr[m=s] is given by (3. 15). "I' A.4 , 11.t and A.z are defined in 

Equations (2. 25), (2. 26), (3. 19) and (3. 20). Pr[y ~ k 1(a)] is given 

by Equation (3. 11) using the appropriate noncentralitie s. 

The powers for Cases 3 and 4 are given in Table IV. 



TABLE IV 
THE POWERS OF TWO-TAILED LRT WHEN INITIAL (~ 0= 0) IS 

KNOWN AND VARIANCE IS UNKNOWN; AND WHEN 
THE INITIAL MEAN AND VARIANCE ARE 

UNKNOWN FOR n = 12 AND a = . 05 

e 1 - eo m 

1 
3 

. 3 5 
7 
9 

11 

1 
3 

. 6 5 
7 
9 

11 

1 
3 

. 9 5 
7 
9 

11 

1 
3 

1. 2 5 
7 
9 

11 

* Obtained from Equation (3. 13) 
** Obtained from Equation (3. 21) 

Initial Mean 
,1, 

Known''' 

. 0978 

. 0893 

. 0831 

. 0731 

. 0626 

. 0528 

. 3203 

. 2582 

. 2098 

. 1555 

. 1051 

. 0625 

. 6251 

. 5465 

. 4369 

. 3159 

. 1917 

. 0812 

. 7460 

. 6999 

. 6541 

. 5219 

.3244 

. 1142 

Initial Mean 
Unknown** 

. 0515 

. 0547 

. 0574 

. 0579 

. 0546 

. 0515 

. 0569 

. 0761 

. 0874 

. 0913 

. 0784 

. 0565 

. 0700 

. 1246 

. 1576 

. 1622 

. 1277 

. 0709 

. 0903 

. 2075 

. 2842 

. 2730 

.2169 

. 0923 
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CHAPTER IV 

OTHER TEST PROCEDURES AND EXTENSIONS 

Up to this point, as in Chapters II and III, the distributions of 

the LR T is a function of rn and hence the power functions were 

evaluated by estimating the distribution of m. We will consider in 

this chapter test statistics with distributions that do not depend on 

~ 

m. For sample size of n we will encounter n-1 correlated noncentral 

chi-squares distribution. This is the distribution of the two-tailed 

modified likelihood-ratio test (MLRT) for Case J and 2. A multi-

variate extension of Case 1 is discussed. 

A MLRT When the Initial Mean and Variance are 

Known for H l : el =/: e O 

If the shift point is known, say at m= s, a significant differ-

ence in the change of the mean may be detected by a likelihood ratio 

s ta tis tic, 

T :: 
s 

(n-s)(x - e / 
s+l,n O 

2 
(j 

s=l,2, ... ,n-1. 

A procedure to detect a shift at an unknown time point can be 

devised by averaging the test statistic, Ts' over all possible shifts. 

If the arithmetic average is used, this implies that the shift can occur 

with equal probability at any one of the n-1 possible time points. To 

33 
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2 
this end, for er = 1, we define 

T = 
n-1 
~ (n-s)(x - 9 )

2 
s+l, n O (4. 1) 

s=l 

as a modified likelihood-ratio statistic, which is the sum. of n-1 chi-

squares, each with one degree of freedom. 

The di.st;ribution of Tis approximated by equating the first two 

moments of T to that of a scaled chi-square distribution having the 

form a x
2

(b) and then solving the two equations for a and b. The first 

and second moments are 

and 

where 

and 

n-1 2 
E(~X'AX)=E[ax (b)]=ab 

s= 1 s 

n-1 2 2 
Var [ ~ X 1A X] = Var [ax (b)] = 2a b. 

s 
s=l 

Writing Equation (4. 1) in matrix notation we get 

n-1 
~ (n-s)(x -· e )2 = 

s=l s+l,n O 

A s 
1 = (n-s) 

nXn 

Koch [7] has shown that if X is distributed N(µ, I) then 

E(X 1AX) = trA + µ'Aµ 

and 

(4. 2) 

(4. 3) 

(4. 4) 

(4. 5) 
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(4. 6) 

where A and B are real symmetric matrices. 

From (4. 5) we have 

n-1 n-1 n-1 
ab= ~ E(X 1A X) = 

s=l s 
~ trA + ~ µ'A µ 

s=l s s=l s 
(4. 7) 

n-1 
ab = n - 1 + ~ µ 1A µ 

s= 1 s 
(4. 8) 

since trace A = 1 for alls. Let µ 1 be a 1 X n vector whose first m 
s 

elements are zeros and last (n-m) are el - eo. It can be shown that 

and 

2 = ( n -s ) ( e I ·- e O) if m + 1 < s < n -1. 

Thus 

n-1 m 
~ µ'Asµ= ~ 

s=l s=l 

(n-m? 2 n-l 2 
(0

1
- e ) + ~ (n-s)(0

1
- e ) 

n-s O s=m+l O 
(4. 9) 

Using (4. 8) and (4. 9) we have 

ab = (n-1) + ~ (n-m? 
n-s 

s=l 
(4. 10) 

In order to evaluate (4. 3) we need the identity 

n-1 n·-1 n-2 n-1 
Var ( ~ X 1A X) = 

s::; 1 s 
~ Var (X'A X) + 2 ~ ~ Cov (X 1A X, X'AtX) 

s=l s s=l t=s+l s 

(4. 11) 

and 
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1 = (n-s) ( : I 
Let us proceed by evaluating the second te:rm of the right-hand side of 

(4. 11). From (4. 6) we get 

n-2 n-1 Q.-2 n-1 n-2 n-1 
2 ~ ~ Cov(X'AsX' X'AtX) = 4 ~ ~ trAsAt + 8 ~ ~ µ'AsAtf.L· 

s=l t=s+l s=l t=s+l s=l t=s+l 

(4.12) 

In order to simplify the second term of (4. 12) we consider 

2 
11'A A ii = (n-m). (8 - 8 )2 for 1 < s < m 
r s t• ( n - s ) I O 

and 

= (n-t) (81 - 90? for m+l < s < n-1. 

Equation (4. 12) then simplifies to 

+8 
n-2 n-1 

2 
~ ~ (n.,t)(9

1 
-9

0
) 

s=m+l t=s+l 
(4. 13) 

Now consider the first term of (4. 11). If we lets= t, then the 

first term becomes a special case of the second term. Thus we have 

n-1 n-1 2 n-1 
~ Var(X 1A X) = 2 ~ tr A + 4 ~ µ 1A µ (4. 14) 

s=l s s=l s s=l 8 

n-1 m (n-m) 2 2 
= 2 ~ (~-) +4 ~ (91 - 90) 

s=l 
n-s 

s=l 
(n··S) 

n-1 
2 

+4 ~ (n-s)(9
1 

- 9
0

) (4. 15) 
s=m+l 
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By substituting the information given in (4. 13) and (4. 15), 

(4. 11) becomes 

n-1 
Var( 1: X 1A X) = s 

m 2 2 n-1 
2 2(n-1)+4 1: (n-m) (9

1
- 9

0
) + 4 1: (n-s)(9

1
- 9

0
) 

s=l s=l (n-s) s=m+l 

n - 2 n -1 ( ) m n-.1 ( ) 2 
+ 4 1: 1: ~ + 8 1: ~ n-m (91- 90)2 

s=l t=s+l n-s s=l t=s+l (n-s) 

+8 
n-2 n-1 2 

1: 1: (n-t) (9 1- 90 ) 
s=m+l t=s+l 

(4. 16) 

Therefore using (4. 10) and (4. 16) we can solve for a and b. 

Under H
0 

the solution is 

and 

b _ 2(n-l) 
0 - n 

Thus reject H 0 iff 

n-1[ - 2 2 
T = s~l (n-s)(xs+l,n- 90)] :::_ aoX (bO), (4. 17) 

where x! (b
0

) is the upper 100a% point of the chi- square distribution 

with b
0 

degrees of freedom. 

The approximate power function for 0 1 and m is 

(4. 18) 
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where a and b are functions of 9
1

, m and n. The approximate power 

is tabulated in Table V at the end of the chapter. 

A MLRT Wheno!hitial Me'an·an.d,Var'iance 

Are Known for H 1 : 9 l > 90 

If the shift occurs at m=s (s=l, 2, .. ,, n-1), the test statistic, 

Ts= ...fn::s (x - 90 ) 1 <s <n-1 s+l, n 

may be used to detect a difference in the means, then averaging over 

the n-1 possible values of s, 

n-1 
T = ~ [ .Jn-s (x - e o)] 

s;::l s+l, n 

n 
= ~ 1 n-1 [ 

~ (x -
i=s + 1 i 0 0 ~ s= 1 ..fn-s 

n [(! ) (Xi- eo~ = ~ 
j~l .Jn~j i =2 

may be used to detect a shift at an unknown time point. 

Under H
0 

we have 

E(T) = 0 

since E(xi - e 
0

) = 0 for all i, and 

Var(T) = Var ~~Z ( ;~: -ln~j ) (xi- 00 ~ 

2 

-lnl-j ) 

since variance x. equals one for all i. 
1 

(4.19) 
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If we let 

T 
T' = (4. 20) 

H
0 

is rejected iff T' > z , where z is the upper lOOa% point of N{O, 1). 
- a a 

To investigate the power of the test statistic, Tis written as 

Consider the mean and variance of T. We have 

n [(i-1 E{T) = ~ ~ 
i=m+l j=l 

denoted byµ . 

Var T = ; ( \/ 
1 

) 
2 

i= 2 j = 1 .Jn::f 

denoted as v. 

Therefore, 

T-µ 
z =-- "'N(O, 1) 

\jv 

and the power for m and e 
1 

is 

where z is the upper 100a% point of N{O, l). 
a 

Refer to Table V for power calculations. 

(4.21) 

(4. 22) 
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A MLRT When the Initial Mean is Unknown but 

Variance is Known for H
1 

: e 
1 

:/- e 
O 

In a similar manner to the case when the initial mean is known, 

T::; s(n-s) (x -x )2 
s n s+l,n l,s 

is the LR T for detecting a change in the mean of the shift point 

m= s ( s = 1, 2, . . . , n - 1 ) . 

Letting T = X'A X, where Xis the 1 X n vector with components s s 

and A is defined in Equation (2. 23 ), 
s 

.ti .. 1 
T = ~ X'A X 

s= l s 

is used to detect a shift in the mean at an unknown time point. 

(4. 23) 

To approximate the power of the test, we equate the first two 

2 
moments of T to those of ax (b), where a and bare constants to be 

determined. Equating the moments gives (4. 7) and (4. 11). Let us 

proceed to simplify (4. 7) and (4. 11). 

First consider the second term of (4. 11) which is (4. 12). To 

simplify (4. 12) we need the identity 

and 

l =z 
n ( 

n(n .... t) l 
-sn(~-t) J: 

t(n-s) n-s 

-n J;-t ) 

ns Jn-t 
n-s n-s 

(4. 24) 

(4.25) 

Letµ' be a 1 Xn vector whose first m elements are e
0 

and the 

last n-m elements are e 
1

. It can be shown that tqe second term of 



(4. 12) simplifies to 

n -2 n-1 
8 ~ ~ µ 1A Aµ= 

s :: 1 t:: s + 1 s t 

m n-1 
8 ~ ~ 

s= 1 t=s+l 

2 
s(n-m) (9 e )2 
n(n-s) 1- 0 

Similarly one can show that the first term of (4. 12) is 

n-2 n-1 n-2 n-1 
(n-t)s 

4 ~ ~ tr As At = 4 ~ ~ t ( ) 
s = 1 t= s + 1 s = I t= s + 1 n - s 
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( 4. 26) 

(4.27) 

Before combining the terms let us first consider the first 

term of (4. 11) which is (4. 14). The second term. of (4. 14) simplifies 

to 

and its second term 

2 
s(n-m) 
n(n-s) 

n-1 
+ ~ 

s=m+l 

n-1 
~ trA

2
=2(n-l). 

s 
s=l 

(n··S)m] 
ns 

(4.28) 

(4. 29) 

Combining the results of (4. 26), (4. 27) 1 (4. 28), and (4, 29), 

( 4. 11) can be written as 

2 
2a b = 2(n-l) + 4[~ 2 

s (n-m) 
n(n-s) + ~ (n··S)m (S _ e )2 n-1 J 

ns 1 0 
s=l s=m+l 

n-2 n-1 m n·-1 
+ 4 ~ ~ (n-t)s + 8 ~ ~ 

s=l t=s+l t(n·-s) s=l t=s+l 

2 
s(n-m) 2 
n(n-s) (S l - e 0) 

+ 8 
n-2 n-i 
~ ~ 

s=m+l t=s+l 

2 
m (n-t) 

nt 
(4. 30) 



42 

. Now we proceed to simplify (4. 7). The first term can be 

shown to be 

n-1 
~ 

s:::l 
trA =n-1 s (4.31) 

and its second term 

2 
(n-m) s 
n(n-s) 

+ ~ (n-s)m (8 _ e )? n-1 2 J 
s=m+l ns 1 0 

(4. 32) 

Using the results of (4. 31) and (4. 32), Equation (4. 7) simplifies 

to 

ab::: (n-1) + [~ 
s:::l 

2 
(n-m) s 
n(n~s) + 

n-1 
~ 

s:::m+l 

(n-s)m
2 J(e _9 )z. 

ns 1 0 

(4. 33) 

Let a
0 

and b
0 

be the solution to (4. 30) and (4. 33) under H
0

. 

Therefore reject H
0 

iff 

where x; (b
0

) is the upper l OOao/o point of the x2 
(b

0
) distribution. 

The approximate power function for e 
0

, e 
1

, and m is 

(4. 34) 

where a and bare functions of e
0

, e
1

, m and n and are solved from 

(4. 30) and (4. 33 ). It should be noted that the accuracy of this moment 

approximation to the true power function was not investigated. The 

approximate power was tabulated for n::: 12 for various values of 

e 
0

, e 
1 

and mas can be seen in Table V at the end of the chapter. 
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A MLRT When Initial Mean is Unknown but 

Variance is Known for H
1

: e
1 

> e
0 

From (2. 29) under H
0 

we have 

(x +l - x
1 

~ is distributed N(O, 1) for s=l, 2, ... , n-1. 
s , n , s 1J 

Now consider the sum of T over all values of s, namely 
s 

T = :E s (n-s) (x - x ) n-1 [f1¥l J 
s s=l n s+l,n l,s 

= :E :E J. 
n-1c·-1J : 

i=2 ·=l n(n-J) 

n-1 --] 
- :E \/~J.' xi 

j = 1 

[
n-1 j . J [n-1 ~--,-] + :E J . x - :E n -.J x l . 
j=l n(n-J) n j=l \ nJ 

Without loss of generality let 8 
0 

= 0, then 

n-1 [ i-lj . 
E(T) = :E :E -~-

i=m+l j=l n(n-j) 
:E n -.J e + :E . n-1;·-. J Ln-1 j . J 

j=l nJ l ·=l n(n-J) 

denoted as µ and 

(4. 35) 

(4.36) 

(4.37) 

n-1 
Var (T) = :E 

i=2 [
i-1 J~· 
j~l n(n-j) 

n~l j'012+ rn~l ;-· .12 + fn;l j~l ~ 
j=l nJJ LJ=l n(n-J)J LJ=l nJ J 

(4.38) 

denoted as v. 



44 

Since the x. s are independent and each have variance 1, T is distribu-
1 

ted N(µ, v). 

Therefore the power function of the test for e
0

, 9
1 

and mis 

13 (9
0

, 9 1, m) ;;: Pr [z > z - -:t-] (4. 3.9) 
m - a '\JV 

whereµ and v are defined in Equations (4. 37) and (4. 38), and z is the 
a 

upper lOOao/o of N(O, 1). 

Refer to Table VII for some power calculations. 
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TABLE. \f 

THE POWERS OF THE TWO-TAILED MODIFIED LR T WHEN 
THE INITIAL MEAN (~o_~ 0) AND VARIANCE (o-2 = 1) 

ARE KNOWN; AND WHEN THE INITIAL MEAN 
IS UNKNOWN BUT VARIANCE (o-2 = 1) 

IS KNOWN FOR n = 12 AND a = . 05 

MLRT When MLRT When 
m Initial Mean Initial Mean 
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a 1 - eo ,,, 
is Known''' Is *''' Unknown ,,, 

1 . 1453 . 0572 
3 . 1420 . 0765 

. 3 5 . 1274 . 0866 
7 . 1045 . 0838 
9 . 0769 . 0698 

11 . 0545 . 0534 

' 

l . 3897 . 0764 
3 . 3556 . 1354 

. 6 5 . 3029 . 1651 
7 .2317 . 1617 
9 . 1458 . 1226 

11 . 0658 . 0666 

1 . 7135 

I 
. 1033 

3 . 6471 . 2074 
.9 5 . 5545 I . 2652 

7 .4219 . 2661 
9 , 2518 I . 2001 

11 . 0848 I . 0865 

l . 9299 . 1338 
3 . 8810 . 2929 

1. 2 5 . 7980 I .3886 
7 .6445 f1 . 3969 
9 . 3940 I .3004 

11 . 1119 I . 1137 

,,, Obtained from Equation (4. 18) 
,:o:<Obtained from Equation (4. 34) 



TABLE VI 

THE POWERS OF THE ONE-TAILED (0 1 > _en] MLRT AND 
THE BAYES TEST WHEN THE INITIAL ~AN (9o= 0) 

AND VARIANCE (CT2 = 1) ARE KNOWN 
FOR n = 12 AND a = . 0 5 

el m 

l 
3 

. 3 5 
7 
9 

11 

l 
3 

. 6 5 
7 
9 

11 

1 
3 

.9 5 
7 
9 

11 

1 
3 

1. 2 5 
7 
9 

11 

* Obtained from Equation (4 .. 22) 
>:<>:'Obtained from Equation ( 1. 2) 

Modified ,,, 
LRT''' 

. 2087 

. 2002 
, 1804 
. 1502 
. 1120 
. 0704 

. 5091 

. 4854 

. 4276 

. 3348 

. 2156 

. 0967 

. 0842 

. 7786 

. 7084 

. 5725 

. 3600 

. 1295 

. 9546 

. 9420 
• 8997 
. 7858 
. 5281 
. 1694 

Bayes>:,,:, 

. 2222 

. 2105 

. 1846 

. 1480 

. 1066 

. 0670 

. 5459 

. 5141 

. 4399 

. 3283 

. 1991 

. 0882 
I 

0 8403 
. 8094 
. 7243 
. 5618 

! . 3283 

I . 1141 
i 

I . 9697 
! . 9569 

I . 9103 
I . 7750 
! 

. 4822 

. 1450 
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TABLE VII' 

THE POWERS OF THE ONE-TAILED (9_1 > 9
0

) MLRT AND 
THE BA YES TEST WHEN THE INITIAL MEAN rs 

tTNKNOWN AND THE VARIANCE (a-2= 1) 
IS KNOWN FOR n = 12 AND a = . 0 5 

Modified 
91 - 90 m LRT* ... , .. * Bayes"' 

1 
3 

. 3 5 
7 
9 

11 

1 
3 

. 6 5 
7 
9 

11 

1 
3 

. 9 5 
7 
9 

11 

1 
3 

1. 2 5 
7 
9 

11 

,:<Obtained from Equation (4. 39). 
*"::: 

Obtained from Equation ( 1. 4 ). 

. 0730 . 0659 

. 1011 . 0957 

. 1106 . 1139 

. 1049 . l l39 
, . 0878 . 0957 

. 0636 . 0659 

. 1035 . 0855 

. 1826 . 1666 

. 2114 . 2Z 16 

. 1940 . 2216 

. 1436 . 1666 

. 0798 . 0855 

. 1422 . 1092 · 

. 2961 . 2647 

. 3520 I .3715 

.3182 .3715 

.2195 I . 2647 

. 0991 . 1092 

. 1898 I . 1372 

. 4341 , 3858 

. 5167 . 5442 

. 4674 . 5442 

.3143 . 3858 

. 1216 . 1372 

47 
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Some Extensions 

Estimating the Shift Point 

As seen from previous considerations, the LRT first estimates 

the shift point then uses the relevant observations as a test statistic. 

Thus the properties of the estimator of the shift point should be in-

ves tiga ted. 

One-Tailed Test When the Variance is Unknown 

The one -tailed test when the variance is unknown can be 

derived to be a doubly noncentral t-distribution and the result of 

Krishnan [8] can be used to evaluate the power of this test. 

A Multivariate Extension 

Consider a set of N independent random vectors X 
1

, x
2

, ..• , ~· 

Suppose we are interested in detecting a change in the mean vector of 

these observations, assuming a common known covariance matrix V. 

Thus we consider the following hypotheses: 

Ho: xi,,_, NID (µO' V) i:::l, 2, ... , N 

against 

i::: l, 2, ... , M 
. ( 1 ~ M ~ N·· 1) 

i:::M+l, ... , N 

where M and µ are unknown, the latter is a P-component vector. 

Consider the·multivariate extension of Case 1. We can prove 

that H
0 

is rejected if 
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(4.32) 

where 

x - = M 

N 
:E X. /N -M) 

i=M+l 
1 

is the sample mean vector based on the last N-:Nl vector observations, 

Mis the MLE of M, and x
2

(P) is the upper 100a% point of the chi-
a 

square distribution with Pdegrees of freedom. 

The distribution of Mis given as, M=s if and only if 

~x({N~M)(xM- µO)iV-l(xM- µO)] = (N-~;)(xs- µ0)1V-l(xs~ µ.O). 

(4.33) 

The power function for shift point Mand mean vector µ
1 

is 

M ,z 2 
:E Pr[x (P, "l) > x (P)] · Pr[1v:1=s] 

s=l - a 

where 

(4.34) 

As seen from Case 1, extension to the multivariate case is 

straight forward. The power function in the multivariate situation is 

a mixture of non-central chi-square distributions with P degrees of 

freedom and the above formulas reduce to the univariate case by 

letting P= 1. The other multivariate extensions of Cases 2, 3, and 4 

' will not be discussed in this investigation. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This research developed test procedures for detecting a shift 

tn the mean of a normal distribution when the time the shift occurs is 

unknown. It also developed a simple estimation procedure for estima-

t:in.g the location or time of the shift and the magnitude of the shift. 

Since the likelihood-ratio test first estimates the time where the shift 

takes place, it uses only the relevant observation$. Thus the estimate 

of the magnitude of shift is x.-.. 
1 

- a0 if e0 is known, where m is the 
m+ ,n 

estimate of the location or time of shift. This is the index m which is 

found by evaluating 

max[(n-m)(x 1 - 00)
21. 

m m+ , n J 
When the initial mean, 00 , of the population is not known x1, m be

comes its estimate, where m is given by maximizing the likelihood 

function which can also be found by evaluating 

max frnif + (n-m)x
2 

l J . m [ , m m+ , n 

When the variance of a normal distribution is known, in 

Chapter II, the one-tailed test has a test statistic which is normally 

distributed either when the initial mean is known or when it is unknown. 

However, the two-tailed test statistic is distributed as a noncentral 

chi-square either when the, initial mean is known or when it is not 

known. The Bayes test procedure has better power compared to the 

50 
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LRT for Case 1 if the shift does not occur late in the sequence as shown 

in Table I. From Table II, Case 2, the LR T has better power than the 
.f•·«·:.: 

:Bayes test procedure when the magnitude of shift is quite large and 

when the shift occurs late or early. The Bayes test procedure has 

more power than the LRT when the magnitude of shift is small and 

when the shift does not occur early. 

In Cases 3 and 4 where the variance is unknown, it is seen 

from Table IV that for each value of el' as m increases the power de

creases strictly when the initial mean is known. But when the initial 

mean is unknown, the power increases then decreases symmetrically 

about m equal to n/2. The power fuµ.ction of the test of Case 3 is a 

finite mixture of ratios of noncentral chi-square distributions, where 

the mixing distributioni is that of m, the MLE of m. The power func-

tion of Case 4 has a similar distribution. 

In Chapter IV, a modified LR T was constructed which does not 

depend on the distribution of rn. However, this procedure as with the 

· Bayes and non-parametric does not giv~ an estimate of the shift point. 

The test statistic in this case was approximated by a scaled chi-square 

distribution. The one--tailed test of the modified LRT has a test statis-

tic which is normally distributed. The one-tailed test compared very 

well with the Bayes test since it is more powerful than the Bayes test 

at half of the shift points. When the initial mean is known, the Bayes 

test is better if the shift does not occur later than n/2. The situation 

is reversed for Case 2; the MLRT is better if the shift occurs earlier 
,. 

than n/2. 
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APPENDIX 

THE EXACT DISTRIBUTION OF m FOR 

SAMPLE SIZE n EQUALS THREE 

We consider Case 1, when the initial mean and variance a:re 

known. 
2 

Let e O = 0 and <T = 1. The MLE of m is rn = s if f 

[ - 2 ] -2 
max (n-m)x +l = (n-s) x +r· m m ,n s ,n 

Under H
0 

we have if In= 1 then 

max[(n"m) ;z 2 ] = 2- 2 
m+l.n X2 3 

m , ' 

-2 2 
and 2 x 2 , 3 > x

3
. This inequality is equivalent to the four sets of 

inequalities as follow: 

or 

(2) 

or 

or 

(4) ~'\[2 

Frorn set l we get 

(x + x ) 2 5 ____ , 
2 

53 
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where A
1 

in Figure 1 is the area between x
2 

> 0 and the line 

From set 2 we get 

where A 2 is the area between x 2 < 0 and the line x 2 + ( 1 - ,.J2) x
3 

= 0. 

From set 3 we get 

where A
3 

is the area between x 2 > 0 and the line x
2 

+ (1 -,.P.)x
3

:: 0. 

From set 4 we get 

Si.nee tan 4'1 equals tan cp
3 

and tan cp 2 equals tan cp
4

, as shown in 

Figure 1, then Pr(A
1

) equals Pr(A
3

) and Pr(A2 ) equals Pr(A
4

). We 

alsoknowthattancp
1 

equals -cotcp
2

, andtancp
3 

equals -cotcp
4

. Thus 

(cp
1 

+ cp
2

) equals 90° and (cp
3 

+ cp
4

) equals 90°. 

Therefore, 

and 

Since the four sets are mutually exclusive therefore 

4 
Z: Pr(A.) = 1/2, 

i= 1 1 

Pr(fu.= 1) = 1/2, 

and 
I\ 

Pr(m=2) = l /2. 
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This result shows that :fu under H
0 

has a unifo:rm distributiop 

for n = 3. The extension of the proof for n :::_ 4 is very tedious and 

will not be attempted in this research. 

Figure 1. 
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Professional Experience: Student assistant, College of Engineer
ing, University of the Philippines, March to October 1954; 
passed the Philippine Civil Service examination for Junior 
Mechanical Engineers in February 1955; appointed assistant 
instructor in mathematics June 1955 and promoted to 
instructor in mathematics October 19 57 at the College of 
Agriculture, University of the Philippines; on 11 special 
detai1 11 at Oklahoma State University from September 1964 
ta January 1970; employed as a test engineer by Stewart 
Warner Corporation, Chicago,Illinois from June to Septem
ber 1965; worked as graduate assistant at Oklahoma State 
University from September 196 5 to Janua,.ry 1970. 


