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CHAPTER 1
HISTORY OF WARING'S PROBLEM |

In 1770, Edward.Wéring [51] stated the famous conjecture which
has become known aé“Waring's“prOblem; >In_his book,'ygditatioﬁes~
Algebraicée, under "Theorema XLVII', he states eleven propositions. -
The fifth.and ninth of these propositions imply Waring'Sfconjectufe;
They read as follows:

5. Omnis integer numerus est quadratus; vel ‘e duobus,
tribus vel quatuor quadratis compositus,

. . . . . . . . )

9, Omnlsllnteger numerus ve1 ‘est ‘cubus, vel e duobus,
tribus, 4,5,6,7,8, vel novem cubis compositus: est etiam

quadrato- quadratus vel e duobus, tribus, etc. usque ad -

novedecim comp051tus, et sic delnceps,

The translation of proposition 5 is: Every integer is a square;
or the sum of two, three, of four squares. Proposition 9 states that
every integér'is‘either g cube or the sum of fwo, three,‘4;5,6,7,8, or
nine cubes; every integer is also a fourth-péwer or the sum of two, -
three, eté.,'up'to nineteen fourth-powers, and so on.

" Proposition 5 and 9 are special cases of what has,comé to be known
as Waring's ‘conjecture. This conjecture states that for every positive
integer k there exists a smallest pqsitive intégeﬁ, g(k) . such that-
any positive integer n ‘can he expressed as the sum of at most g(k)

>positivelkthvpowers. Waring‘never'actually made the general statement

that today bears his name, and he never gave any proof or arguments



for his assértibns.' It;segms likely that Waring's'ériginal statement'.
was made from the examination of a number of particular cases.

Research relating to Waring's problem has been extensive. Basically
it can be classified into the attempt to prove the existence bf g(k)
and the attempt:to establish bounds and-éventually‘an“exactrformula for
g(k). This thesis will give a brief discussion of the work dealing
with existence for g(k) and will concentrate on the»determination of
a value of g(k) for k'=2; 3, 4, 5,-and 6 . This work primarily
involves algebraic identities and inequalities and should give the
undergraduate or advanced high school student some feeling for the -
elementary research methods which characterize the approach to this
problem from 1772 to the present.

Although Waring made his'cbnjecture in‘i770;,it was not until
1909, 139 years later, that Hiibert R2] wésnable to prove the exis-’
tence of g(k) for k  in general. Hilbert's proof was based on
considerations drawn from integral calculus and was quite complicated
(using a 25 - fold integral in his first paper). This proof was .
reconsideféd and simplified by Hausdorff [21], Stridsberg [48], and
Remak [41]. Remak actually succeeded in eliminating all referenée'to
the integral calculus, and his proof, although not easy, is purely
algebraic. Hilbert's proof was a tréemendous breakthrough, for at
that time it was only known that - g(2) =4 and g(3) = 9, and there
‘were no other proofs to indicate that Waring's conjecture was ‘true.
Unfortunately, the methods used by Hilbert were too spécialized for
general appliéatidnS"and,did not contribute to any other notabie
resulté, |

Teén years after Hilbert's famous proof, G. H. Hardy [19] and
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J. E. Littlewood developéd a new method for the solution of the Waring
conjecture which has proven to be a standard technique in analytic
number theory. This new method'is‘compietely independent of Hilbert's |
solution and is based on Cauchy's Theorem and the theory of analytic:
functioné.-‘It»reduces the ‘problem to a new question, namely; is a
certain coefficient in the expansion of an infinite*éeries positive and
under what conditions? The Hardy and Littlewood method not only yields
a proof of the existence of g(k) but also gives asymptotic formulae
for the number of representations of any integer n ‘as the«sum of

g(k) kth powers.

~ A third method of proof of Waring's conjecture was provided by
I. M. Vinogradov [49]. His method resembles that of Hardy and Little-
wood, but leads more.rapidly to some of their results- and provides a
simpler solution of Waring's problem. Vinogradov also uses Cauchy's "
Theorem for the determination of the number of repreéentations of n
as the sum of g(k) kth powers (rk’s(n)),'but‘he»shows'that'it is
simpler to work with finite exponentjal sums instead of with power
series.

' The methods of Hardy and Littléewood and Vinogradov are both
analytic in nature, ‘and in 1942, Y. V. Linnik [17] was the first to
present a prédf of Waring's ‘conjecture without using such techniques.
This new method is based on Schnirelmann's density and reduces Waring's -
problem to the .proof that the:sﬁm of a sufficiently large number of
sequences is a sequence of positive density. Linnik's method is
strictly an existence proof and does not proVide“asymptotic,formulae
for fk,s(n) or an upper bound for G(k) as the Hardy-Littlewood

and Vinogradov methods do.



In order to illustrate the meaning of  g(k) , Table I lists the
values of g(k) fof k =.2,‘3,,4, 5, 6, and Tables II, III, IV, V,
VI list all the integers from 1 to 100 with a decomposition of these
integers into the minimum number of squares5 cubes, biquadrates, fifth- .
powers, and'sixth—powers. The examination of the following tables will

tend to give some insight into the possible size of g(k) .

TABLE 1

VALUES OF g(k) FOR SMALL POWERS

k g(k)
2 4
3 9
4 19
5 37



TABLE II

DECOMPOSITION INTO SQUARES
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TABLE II (CONTINUED)

Number _ Squares ~ Number Squares
‘ Required S Required
22 = 4% 4 2% 3 47 = 6%+ 3%+ 2212 4
23=2:3%2 + 22+ 12 4 48 = 3.4° 3
24 = 4% + 2422 3 49 = 72 1
25 = 52 1 50 = 72 + 1% 2.
51 =72 + 2.1% 3 76 = 2:6% + 2% 3
52'= 6° + 4° 2 77 = 8% + 32 4 2° 3
53 = 72 4+ 2° 2 78 = 72 + 5% 4 22 3
54 = 7% 4+ 22 4 12 3 79 =72 + 5%+ 22 412 4
55 = 72 + 22 4+ 2.1 4 80 = 8% + 42 2
56 = 6% + 4% + 22 3 81 = 9° 1
57 = 72 4 2.2° 3 82 = 9% + 12 2
58 = 72 + 3° 2 83 = 9% + 2.1 3
59 = 72 + 32 4 12 3 84 = 82 + 42 4+ 22 3
60 =72 + 32 +21° 4 85 = 7% + 6° 2
6l = 6%+ 52 2 86 = 7% + 6% + 1% 3
62 = 6% + 5% + 1° 3 87 = 77 + 6% + 2.1° 4
63 =62 + 52 4+ 2.12 4 88 = 2.6% + 4° 3
64 = 82 1 89 = 8% + 52 2
65 = 8% + 1% 2 90 = 9% + 32 | 2
66 = 82 + 2.12 3 91 = 9% + 3% 4+ 1% 3
67 = 7% + 2.3° 3 92 =92 + 3%+ 212 4
68 = 8% + 22 2 93 = 82 4 5% 4 22 3
69 = 8% + 22 + 1° 3 o4 = 9% + 3% 4+ 2° 3
70 =62 +5%2+3 3 95 = 92+ 32 4+ 22+ 1% 4
71=6% + 52432 +1% 4 96 = 82 + 42 2
72 = 2.6° 2 97 =92 + 2.42 3
73 = 8% + 3% 2 98 = 2.7 2
74 = 7% + 5° 2 99 = 2.7% + 1° 3
75 = 7% 4 5% + 12 3 1100 = 10° 1



TABLE III

DECOMPOSITION INTO CUBES

Number Cubes Number Cubes
Required ' : Required
1= 1° 1 26 = 3:2° & 21° 5
2 = 2.1° 2 27 = 3° 1
3= 3.1 3 28 =33+ 13 2
4 =413 4 20 = 3% 4+ 2:18 3
5=51° 5 30 = 3° + 3°1° 4
6 = 6.1 6 31 = 3% 4 4.1° 5
7 =713 7 32 = 425 4
g = 23 1 33 = 4.2+ 1° 5
9o=3 4+ 15 2 34 = 4.2° + 2:1° 6
10 = 25+ 213 3 35 = 35 4+ 2° 2
11 = 2% + 313 4 36 = 35 + 25 4 1° 3
12 = 25 + 413 5 37= 35 + 25 4 241 4
13 = 2% « 5.1° 6 38 = 35 4« 25 4 5
14 =2° +6.1° 7 39 = 35 4+ 2% 4 41 6
15 = 23 4 713 8 40 = 5.2° 5
16 = 2.2° 2 41 =522+ 1° 6
17 =222+ 18 3. 42 =525+ 2413 7
18 = 2.2° 4 2-1° 4 43 = 3° + 2.25 3
19 = 2.2% 4 315 5 =334 225% 13 4
20 = 2:2% + 41% 6 45 =35 4 2.25 4 2% 5
21 = 2.2% + 513 7 46 = 35 +2:2° + 317 6
22 = 2.2% + 6:1% 8 47 = 32+ 2225 4 41% 7
23 = 2:2° 4 7.1° 9 48 = 6.2° 6
24 = 3.2° 3 49 = 6.25 + 13 7.
25 = 3.2° + 13 4 50 = 6.2° + 2215 8
51 =30+ 3.2 4 76 = 45+ 25 4 41° 6
52=33 4325+ 1% 5 77'= 4% + 2% + 527 7
53 =35+32°+21° 6 78 = 2.3 + 3:2° 5



TABLE IIT (CONTINUED)

Number , ' Cubes Number Cubes
Required L Required
54 = 2.3° 2 79 = 2.3%3.2% + 13 6
55 = 2.3° 4+ 13 3 80 = 45 + 2.3° 3
56 = 2.3° 4 2.1° 4 81 = 3.3° 3
57 = 2-3° + 3.1 5 82 = 3.3+ 1° 4
58 = 230+ 4.1° 6 83 = 3.3° + 2.1° 5
59 = 35 & 4.2° 5 84 = 3.3% + 3.1° 6
60 = 35 + 4.22+ 13 6 85 = 3.3° + 4-1° 7
61 = 35 + 4.2 + 2,13 7 86 = 2.35 + 4-2° 6
62 = 2:3° + 2° 3 87 = 2235 4 4:2° 4+ 13 7
63 = 2.3° + 25 + 1% 4 88 = 45 & 3.3° 4
64 = 4° 1 80 = 3.3° + 25 4
65 = 45+ 13 2 90 = 3.3° & 29 + 13 5
66 = 45 + 2:1° 3 o1 = 43 + 33 2
67 = 45 & 3:1° 4 92 = 43 + 3%+ 13 3
68 = 45 + 4.1° 5 93 =.45 « 35 4 2.13 4
69 = 4° + 5.1° 6 94 = 4% 4 35 4 315 5
70 = 2.3° + 2:23 4 95 = 45 + 35 4 4.3 6
71 = 2-3° +2.2% + 13 5 96 = 4° + 4-3° 5
72 = 45 4+ 283 2 97 = 3:3% 4+ 2.2° 5
73 = 4%+ 2%+ 13 3 98 = 3.35 + 2.25 4 15 ¢
74 = 4% 4+ 2%+ 241 4 99 =.4° & 3% 4 2 3
75 = 45 & 25 + 3.1° 5 100 = 45+ 33+ 2354+ 1% 4



TABLE 1V

DECOMPOSITION INTO BIQUADRATES

Number Biquadrates Number Biquadrates -
Required Requried
1= 14 1 26 = 2% + 10.1% 11
2 = 2.1% 2 27 = 2% + 1114 12
3 = 3.1% 3 28 = 2% + 12.1% 13
4 4 4
4 =41 4 29 = 2% 4 13.1 14
4 4 4
5 = 5.1 5 30 = 2% & 1401 15
4 4 4
6= 6-1 6 31 = 2% & 151 16
7= 7.1% 7 32 = 2.2% 2
8 = 8.1 8 332 2228+ 14 3
9 =914 9 34 = 2.2% + 2.14 4
4 4 4
10 = 10-1 10 35 = 2.2% 4 3.1 5
11 = 11~14’ 11 36 =;2-24 + 4-14~ 6
12 = 1214 12 37 = 2.2% + 5.14 7
13 = 13-14 13 38 = 2:2% + 614 8
14 = 14-1% 14 39 = 2.2% &+ 7.14 9
15 = 15.1° 15 40 = 2-2% + 8.1% 10
16 = 2° 1 41 = 2:2% + 9.1% 11
17 = 2%+ 14 2 42 = 2:2% + 1014 12
18 = 2% + 214 3 43 = 2:2% v 111% 13
19 = 2% 4 31t 4 44 = 2.2% & 1214 14
4 4 P 4
20 = 2% + 41 5 45 = 2-2% + 131 15
o1 = 2% & 5.1% 6 46 = 2.2% + 14-1% 16
22 = 2% + 614 7 47 = 2°2% + 1314 17
23 = 2% + 7.14 8 48 = 324
24 = 2% + g.1% 9 49 = 324+ 1% 4
25 = 24 + 9-14 10 50 = 3.2% + 2.1%
51 = 3.2% + 3.1% 6 76 = 4-2% + 12.1% 16



TABLE IV (CONTINUED)

Number Biquadrates Number Biquadrates
Required Required
52 = 3-2% + 4.1° 7 77 = 4-2% + 1314 17
53 = 3-2% + 5.1% 78 = 4.2% + 141% 18
54 = 3.2% 4 6.1° 9 79 = 4.2% + 1514 19
55 = 3-2% + 71% 10 80 = 5.2 5
56 = 3.2% + g.1° 11 g1 = 3 1
57 = 3.2% + g1* 12 g2 = 34+ 1* 2
58 = 3.2% + 10.1 13 83 = 3% 4+ 2.1% 3
59 = 3.2% & 11.1% 14 g4 = 3% 4 31° 4
60 = 3.2% + 12.1% 15 85 = 3% + 4.1% 5
61 = 3.2% + 13.1° 16 86 = 3% + 5.1% 6
62 = 3.2% + 14.1° 17 87 = 3% + 6.1° 7
63 = 32 + 15.1% 18 88 = 3% 4+ 7.1° 8
64 = 4.2 4 89 = 3% + g.1% 9
65 = 4 2% + 11° 5 90 = 3% + 914 10
66 = 4-2% 4 2.1% 6 o1 = 3% + 10-1% 11
67 = 4-2% + 3.1° 7 92 = 3% + 11.1* 12
68 = 4.2% + 4.1 8 93 = 3% 4 12.1% 13
69 = 4-2% + 5.1° 9 94 = 3% & 13.1° 14
70 = 4.2 + 6.1° 10 95 = 3% & 14.1% 15
71 = 4-2% + 714 11 96 = 6-2% 6
72 = 4.2% + g-1% 12 97 = 6.2% + 1% 7
73 = 4:2% + 9.1% 13 98 = 6.2% + 2.1% 8
74 = 4-2% + 1014 14 99 = 6.2% & 3-1° 9
75 = 4.2% + 11-1% 15 100 = 3% + 2% 4 31 5



TABLE V

DECOMPOSITION INTO FIFTH-POWERS

11

Number Fifth-Powers . Number Fifth-Powers
Required Required

1= 1° 1 26 = 26.1° 26
2= 2:1%° 2 27 = 27-1° 27
3= 3.1° 3 28 = 28°1° 28
4=41° 4 29 = 29-1° 29
5 =51 5 30 = 30°1° 30
6 = 617 6 31 = 31°1° 31
7=7.1° 7 32 = 2° 1
8 = 8-1° 8 3322+ 1° 2
9=9.1° 9 34 = 2° + 2.1° 3
10 = 10-1° 10 35 = 2° + 3.1° 4
11 = 11-1° 11 36 = 2° + 4-1° 5
12 = 12°1° 12 37 = 2° + 501° 6
13 = 13:1° 13 38 = 2° & 6.1° 7.
14 = 14-1° 14 39 = 2° 4 7:1° 8
15 = 15-1° 15 40 = 2° + 8°1° 9
16 = 16-1° 16 41 = 2° + 91° 10
17 = 17-1° 17 42 = 2° + 10°1° 11
18 = 18.1° 18 43 = 2° + 11°1° 12
19 = 19.1° 19 44 = 2° + 12:1° 13
20 = 20-1° 20 45 = 2° + 13715 14
21 = 21.1° 21 46 = 25 + 14°1° 15
22 = 22.1° 22 47 = 2° + 15°1° 16
23 = 23-1° 23 48 = 2° + 16+1° 17
24 = 24.1° 24 49 = 2° + 17.1° 18,
25 = 25-1° 25 50 = 25 & 17-1° 19
5y = 2° + 19°1° 20 76 = 2:2° + 12°1° 14
52 = 2° + 20-1° 21 77 = 2:2° + 13°1 15



TABLE V (CONTINUED)

Number Fifth-Powers Number Fifth Powers

Required . . Required
53 = 2° + 21.1° 22 78 = 2°2° + 14:1° 16
54 = 2° + 22.1° 23 79 = 2:.2° +15:1° . 17
55 = 2° + 23:1° 24 80 = 2.2° + 16-1° 18
56 = 2° + 24°1° 25 81 = 2:2° + 17.1° 19
57 = 2° + 25.1° 2 82 = 2.2° + 181> 20
58 = 2° + 26.1° 27 83 = 2.2° + 19.1° 21
59 = 2° + 27.1° 28 84 =2:2° + 201> 22
60 = 2° + 28-1° 29 85 = 2.2° + 21.1° 23
61 = 2° + 29-1° 30 86 = 2.2° + 22:1° 24
62 = 2° + 30-1° 31 87 = 2:2° + 23.1° 25
63 = 2° + 31°1° 32 88 = 2:2° + 24:1° 26
64 = 2.2° 2 89 = 2:2° + 25-1° 27
65 = 2°2° + 1.1° 3 90 = 2:2° + 26:1° 28
66 = 2°2° + 2:1° 4 o1 = 2:2° + 27.1° 29
67 = 2:2° + 3°1° 5 92 = 2:2° + 28°1° 30
68 = 2:2° + 4°1° 6 93 = 2:2° + 29-1° 31
69 = 2:2° + 5-1° 7 94 =.2:2° + 30°1° 32
70 = 2:2° + 6 1° 8 95 = 2:2° + 31-1° 33
71 =227+ 701° 9 96 = 3°2° 3
72 = 2.2° + 8°1° 10 97 = 3.25 + 1° 4
73 = 2:2° + 9:1° 11 98 = 3-2° + 2:1° 5
74 = 2.2° + 10°1° 12 99 = 3°2° + 3.1° 6
75 = 2:2° > 32° + 2.1° 7

+ 11°1 13 100 =



TABLE VI

DECOMPOSITION INTO SIXTH-POWERS:

Number . Sixth-Powers Number Sixth-Powers
Required Required

1= 1° 1 26 = 26+1° 26
2= 2.18 2 27 = 27-1% 27
3= 3.1° 3 28 = 28.1° 28
4= 42° 4 29 = 29.1% 29
5=15.1° 5 30 = 30+1° 30
6 = 6.1° 6 31 = 31.1% 31
7=7.1° 7 32 = 32.1° 32
g = 8-1° 8 33 = 33.1° 33
9 =9-1° 9 34 = 34.1° 34
10 = 10-1° 10 35 = 35.1° 35
11 = 11-1° 11 36 = 36-1° 36
12 = 1218 12 37 = 37-1° 37
12 = 13.1° 13 38 = 38°1° 38
14 = 14-1% 14 39 = 39.1% 39
15 = 15.1° 15 40-= 40-1° 40
16 = 16-1° 16 41 = 41-1° 41
17 = 17.1° 17 42 = 42-1° 42
18 = 18-1° 18 43 = 4319 43
19 = 19-1° 19 44 = 4418 44
20 = 20-1° 20 45 = 45-1° s
21 = 21-1° 21 46 = 46-1° 46
22 = 22+1° 22 47 = 47.1° 47
23 = 23.1° 23 48 = 48-1° 48
24 = 24-1° 24 49 = 29°1° 49
25 = 25-1° 25 50 = 50°1° 50



TABLE VI (CONTINUED)

Number Sixth-Powers - Number Sixth-Powers
Required Required
51 = 51.1° 51 76 = 2% + 12-1° 13
52 = 52-1° 52 77 = 2% + 1318 14
53 = 53.1° 53 78 = 2% + 1418 15
54 = 54-1° 54 79 = 2% 4+ 15.1% 16
55 = 55-1° 55 80 = 2% + 16°1% 17
56 = 56-1° 56 81 = 2% & 17-1° 18
57 = 57.15 57 82 = 2° + 18-1° 19
58 = 58-1° 58 83 = 2 + 1918 20
59 = 59715 59 84 = 25 4+ 20.1° 21
60 = 60°1° 60 85 = 2% + 2118 22
61 = 61.1° 61 86 = 2% + 22-1° 23
62 = 62.2° 62 87 = 2% + 23.1° 24
63 = 63-2° 63 88 = 2% + 24-1° 25
64 = 2° 1 89 = 2% + 25.1° 26
6 = 22+ 1° 2 90 = 2% & 26-1° 27
66 = 25 + 2:18 3 o1 = 2% + 27.1° 28
67 = 2% + 318 4 92 = 2% + 28.1° 29
68 = 2% + 4-1° 5 93 = 2% + 2071 30
69 = 2% + 5.1° 6 94 = 2% 4 30-1° 31
70 =2% + 6.1° 7 95 = 2% + 31-1° 32
71 = 2% 4+ 7.1° 8 96 = 2% + 32-1% 33
72 = 20 4 8.1° 9 97 = 2% + 33-1° 34
73 = 2% 4+ 9-1° 10 08 = 2% + 34-1° 35
74 = 2% + 10°1 11 99 = 2% & 35-1° 36
75 = 20 12 100 = 2% + 36.1° 37
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In Table II, it can. be seen that many of the integers from 1 to
100 require at least four squares for their decomposition, and it
should also be noted that'no,integer‘in'the”table‘requires more than
four squares. The integer

/7 = 22 + 12 + 12 + 12

for example, cannot be expressed-as the sum of less than four squares.
Thus Table II implies that g(2) > 4 and indicates that there is a
strong possibility that g(2) = 4 . A proof that g(2) =4 will

be contained in Chapter II.

The integers that require four squares can be proved to be
exclusively those of ‘the form 4k(8n + 7) E A proof of this theorem
will also be included in Chapter II.

Thegiﬁ%egers from 1 to 100 can be expressed as the sum of at
most nine cubes, as seen in Table III. The integer

23 = 2:25 &+ 7:1°

cannot .be expressed as the sum of less than nine cubes, thus Table III
implies that g(3) 2 9 . It is important to note that 23 is the only
integer in the-table that requires nine cubes and that there are only
three integers, (15, 22, 50), that require eight cubes. "Dickson [13}‘
proved that every integer except 23 and.239 can be expressed as the
sum of eight or less cubes, and it seems-thatJthere"are<on1y 15 Jintegers
(15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, and.
454), that require eight cubes.

Table IV illustrates- that part of Waring‘S‘problem which is
considered by many number theorists to be the most interesting as Well

as the most-difficult. It can be seen that
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- 79 = 4.2% 4 1514
cannot be'expressed by less than nineteen fourth powers.  Thus  g(4) > 19
It should be noticed that '79' is.the only value in the table that re-
quires 19 fourth powers, and 63 and 78 "are the only integers
requiring 18 fourth powers.
In Table V one can see that no integer from 1 to 100 requires .37
fifth powers: However, if we examine the table closely, we can see a

pattern that will give us a number requiring 37 fifth powers.,

31 = 25 - 1= 31-15 reduires 31 fifth powers
3= 2.2° ~ 1= 204 31-1° S

05 = 32 - 1=2.254 31,15 v 3z w. om
127 = 4.2° - 1 = 3.2° 4 31-1° wooozg oo
159 = 5°2° - 1 = 4:2° + 31°1° Wz uom
191 =625 -1=525431°5 v 3 n ow
223 = 7:2° - 1 = 6:2° + 31-1° I A
255 =825 -1 3541215 v 13w ow

Now,’ 35 = 243 , and 7°25 =224 ,.so it is-apparent thét'these
integers cannot ‘be used in the decomposition of ’323 into.a minimum
number of fifth powers.: Thus, 223 requires 37 fifth powers, and
this implies that - g(5) 2 37 . The next'nﬁmber“in the pattern-esta-
blished above, is 255 , and this integer can be represented by
3° + 12:1° . Hence, 225 is the sum of 13 rather than 38 fifth
powers, as one might suspect.

No integer in Table VI requires 73 sixth powers, but it can be

seen that 63 = 26 - 1 does require 63 sixth powers. Following a
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pattern similar to that used for fifth powers; we may locate an integer

that requires 73 'sixth powers.

63 = - 26 -1-= 63'16 'requires 63 Sixth powers
127=222 1= 2846315 v s v m

191 =3.2% 21222046315 v 5 v
255 = 4:2° -1 =32% 46315 v g v w
310 = 5:2° - 1= 4:2% 4 6315 " 67 " "

383 = 6:2° - 1 = 5.2% 4 63-1° wo g moowm
447 = 72° - 1262246325 0 g v

511 =820 -1=72%4+631% v 90 w
575 = 9:2° 1282246315 v g1 v
639 = 10:2° - 1=.9.2% + 63.1° 72 n "
703 = 11.2° - 1 = 10°2% + 63-1° v 73w
767 = 1222° 1230 4385 vz v
Since " 36 = 729 aﬁd 11"26 = 704 , these infegers can not be

used to represent 703 as a sum of-sixth powers. Hence, 1O°26 +

63‘16'.15 the decomposition'of 703 intO’the minimum number of sixth
powers, since. 63-16 cannot be replaced by 36 . Therefore an
integer, which requires 73 sixth powers, has been found, and this
implies that g(6) > 73 . It might be expected that the next integer,
767, in the pattern established above; is the sum of 74 sixth
powers, but 767 = 367+.38°16 , and is the sum of iny 39 sixth
powers.

From Tables II, III, IV, V, VI, we proved that g(2) 2 4,
g(3) 29, g(4) = 19, g(5) =z 37, g(6) > 73, but the method that we

used to get these values becomes more difficult as k increases
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so that other methods must be used to obtain more‘informainn“coﬁcerning
gk).

A rather simple. lower bound for the value of" g(k) “was determined
early in the study of this problem.  This result and some of the work
preceding "it is presenfed"below°

J. A. Euler, 'stated in 1772 that in order to express every integer

k"

as a sum of kth powers, at least I(k) =.2" + [(%Jk] - 2 terms are

necessary. In other words

g0 > 2+ [P - 2.

Theorem 1.1, g) 2 10 = 2+ [N - 2, k=1, 2, ...
Proof: Let

k 3.k
(1.1) n =2 [(-5) ] -1

n  is a natural number, and since [x] < x ; we have

n< 2t @ -1=3 1
Thus
(1.2) . n < 35,
By definition of g(k)

. k k k

(1.3) n=Xp X, . fvxg(k)
where Xy [i=1, 2, ..., g(k)] are non-negative integers. From
(1.2) and (1.3)

k k k k

x1 + x2 + . * xg(k) < 3

Therefore each xi[i =1, 2, ..., g(k)] must be less than 3 . Then

each x; can take only the values 0, 1, and 2 , " Suppose that there
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are a different integers among the- xi‘S'"equal"tO" 2, b diffierent
integers equal to "1, and" ¢ -different integers-equal"to 0 . Clearly,

a, b, and ¢ "are non-negative integers, and

(1.4) g(k) = a"+“b.f‘c >a+b .
Since
2k # Zk N +»2k = Zka and 1k + lk + + lk =b
—— S —
a “times b times

from (1.3)

(1.5) n=2%+5b,

“Then = n z.2ka

and from (1.1)

k.. 3.k
n < 2°[(3)7]
This gives
2% 20 < 21N
and

a< [ .

This imples

(1.6) Castdf-t.
From (1.5)
b= h - Zka
and
(1.7) a+b=a+n- Zka =n - (Zk‘- Da .

. . k . '
Since Xk 1is a natural number, 2° - 1 is also a natural number..

Multiply (1.6) by 25 - 1 and obtain
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@ -na @ - na@ -

Then by (1.4), (L7), (1.6), and (1.1)

g(k) >a +b

n- (2 -Dazn- @ - DUGND

n- @AY -1 K1Y -2

e [N -2
Therefore-
glk) 2 2+ (D" -2 .

In this formula, .

1(2) = 2% + [%q -2=44+2-2=14

103 = 25+ [%-7-] - 2-=fs-+-’3 - 2209

1(4) = 2% « [%%q - 2_=V16-+ 5-2=19

1(5) = 2° ;‘[égéq S 2=324+7-2=37
; 1(6) = 2% + [%%93 - 2=64+11-2=73

\'4

' Thus g(2) 2 4, g(3) 29, g(4) > 19, g(5) 2 37 , and g(6) > 73,
These lowers bounds for g(k) are ‘exactly those we derived previously.
waever,'a lower -bound for g(k) may'noW‘befdetermined for any value
of k . This finding of a lower bound for g(k) was relatively easy,
but it is much more complicated to find the exact value of g(k)

Waring was.not the first to state that every integer is the sum
of four squares.. This was known as Bachet'S'theorem;”called after
C. J. Bachet, who remarked in 1ééiﬁthat ?hyvnumber is ‘either a square
~or the sum of 2, 3, or 4 %quares.‘ Girard and Fermat also stated this-

theorem rema@king that Diaphantus seemed to have known it. As usual,
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Fermat stated that“héfposseSSed'a"proof"of this theorem, but he never
published it. ~Leonard Euler made many unsuccessful attempts to prove.
this result,; and the first published pfoof was given in 1770 by Lagrange
who ‘acknowledged his great dependence on results obtained by Euler.

In"1770; Lagrange was able to prove that  g(2) =4, but it was’
a more formidable task to prove.that g(3) =9 . The first attempts
at this proof'WQre in the-form of tables of the smallest number of
positive'cubes intO‘which whole numbers can be decomposed (similar to
Table III). At the suggestion of Jacobi, Zornow-constructed such a
table in 1835 for each integer < 3,000, Déshe extended this table to
12,000 in 1851, and in 1903, Von Sterneck [50] continued this table
té 40,000.  These tables verified that all integers up to 40,000 can
be represented by at most 8 cubes (except 23and 239, which require
9 cubes). All‘numberSfbetween 454 and 46,000’require at most 7 cubes,
and all numbers between 8042 and 40,000 require “at most 6 cubes.

From these“tables'it'was;presumed-that'eVery“integer greater than
8042 is the sum of at most 6 cubes.

Maillet [317] was the first to find an upper bound for g(3) ,
when he showed in 1895 that g(3) < 21 . By a variation of Maillet's
proof; Fleck [15] was able to prove that g(3) <'13" 'in'1906. The
big breakthrough came in 1909 when Wieferich [54] finally proved
g(3) =9, However, due to an oversight, there was a gap in the.
proof that was finally filled by Kempner [24] in 1912. In referring
tovWieferich'S'proof; Landau said that it was one of “the most:satisfy-
ing advances “in number theory.

Proofs of g(3) < 21 , g(3) <17 and g(3) <13 will be included

in Chapter III, and a proof that g(3) = 9 will also be given.
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It was exceedingly:difficult"tO‘establish that g(4) = 19. The
ablest mathematicians of the nineteénth’and'twentieth“centuries have
attempted to-determine . g(4) , but without success. When Liouville
proved that g(4) < 53 1in'1859, this was the first actual proof
associdted with g(k) except for Lagrange's famous proof.  This upper
bound was reduced to 47, 45, 41, 39, 38 and finally to 37 by Wieferich

,[55]'in’1909."In his doctoral dissertation, Baer [ 3] gave a simpler
probf that g(4) < 37, and it was ‘not until 1933 that this value could
* be improved upon.. Emily Chandler [S ] succeeded ih proving g(4) < 35
in her dissertation in21933,'and'this*re§u1t is-still the best dvail-
able ‘today. -Thare has never been'a‘counterexampletto'disprové that
- g(4) = 19, and it is surprising that in the 36 years since Chandler's
proof, her upper bound has not been improved upon.

‘Liouville's importantfresult,of'vg(4) < 53 will be proved in
Chapter IV, and by very interesting methods it will also be shown
that g(4) is less than 45, 41, 39, 38, and finally 37. These proofs
are elegent'in‘their simplicity and lead one to the illusion that
still lower bounds may be easily found. It 'would be worthwhile for
anyone who has taken, or is taking‘number‘theory,"tO'golphrough these
proofs. ‘ |

'The va1ue of g(5) has also not been determined. "Maillett [32]
was the first to find an upper bound for g(5) when he proved that
g(5) < 192 in 1895. Fleck reduced this ‘bound by about 36, Wieferich
[53] proved g(5) < 59, Baer [3 ] proved g(5) <58, and Dicksen
[9 1 finally proved g(5) < 54 in 1933. This was the best upper
bound for g(5) for 26 years until Chen [6 ] supposedly proved

g(5) < 40 in 1959. Thus: 37 < g(5) < 40 , and g(5) is almost
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determined. ~There “is ‘no -obvious "reason why fourth ~and "fifth powers .
 should present so much more "difficulty than-all of the other powers,
but they are still the only powers for which- g(k) -is not determined.
Sixth powers seem to have a special significance-in Waring's.
problem, for in 1936, Pillai [39] and Dickson [11] independently
determined g(n) for n >'6 , subject to certain'restrictions. However,
the proof that g(6) =73 was more difficult. In 1907 Fleck [i6]
established the first upper bound for g(6) when he proved g(6) < 184,
¢(3) + 59. Since g(3) was only known to be < 13 , this bound was
2451, which'is a long way from the ideal of ‘73, but using Wieferich's
proof that g(3) = 9 the bound would be 1715. By an interesting method,
Kempner [25] was able to prove thatb g(6) < 970 in 1912, and this upper
bound was. lowered to 478, 183, 160, 115, 110, and 104 wuntil in 1940,
- Pillai [40] finally proved that g(6) = 73 .
The proofs of theorems relating to the determination of g(5) and
g(6) tend to be quite lengthy and analytic in nature. For this reason
the proof that g(5) < 59 1is not given in detail. On the basis of
this result, it is proven that g(6) < 184 - g(3) + 59 , and g(6) <
970, thus establishing a upper bounds for g(5) and g(6) .

It has been proven in Theorem 1.1 that
k 3.k
gk) 2z I(k) = 27+ [(37] - 2.

The conjecture that g(k) = I(k) 1is referred to as the Ideal Waring
Theorem. The history of the attempts to prove this theorem and their
success is outlined in Chapter VI,

It is apparent that only the smaller integers of
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m = X, +X

HER SRR _x};(k)

require g(k) terms. For example, for k =.3, n = 23 and n = 239 are
the;oniy.integers.which require 9 cubes [13].  This has lead to the
definition of G(k) , where G(k) is the number of kth powers required
to represent every sﬁfficiently large number. Theorems‘COncerning

G (k) are-more.difficuit and -analytic than those dealt with in this
thesis. Thé determination of G(k) will not be discussed in this

report.



CHAPTER II
SQUARES

Lagrange's»probf in.1770,,that»every integerﬂis-the sum of four
squares, was rather involved. Three‘years-later; L. Euler gave a much-
simpler proof. A modification of ‘Euler's proof has become a standard
thebrem‘in most textbooks.on number theory,; and this proof will now be
given. 0

An integral part of the following proof is the identity

2 202 20,2 22 2
(x] *+ X5+ Xg + X)) (y] +y, ¥ Yzt Yy)

, 2 . o 2

= (XY ¥ XY, H XY ¥ Xy )T o+ XYy o XoYy b Xgy, = XYl

+ (XyY, - XYy * XY, - X y')z + Xy, - Xy, + X'& - Xy )2
173 = XYyt XYy - XYy X1Ygq = Xg¥p * XYz = X3¥y

This identity is known.as Euler's identity ‘and can be verified by
multiplying out both sides of the equation. From this-identity it is.
apparent that the product of two numbers that are the -sum of four |
squares -is'also the sum of four squéres. If it could be shown that
every odd prime -is-the sum of at most.fpur,squares, then 'all primes
would be the sum of at mostlfourfsquares,Sinc¢5‘2 =1% + 1% . Then
Lagrange's theorem would folloW'by'the Fundamental :Theorem of Arith-

metic. It will now be proved that every odd prime ‘is the-sum of at

most four squares.

Lemma 2.1. Let p be an odd prime. There exists an integer m where

25
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1 <m<p such that mp ='xi + x§'+ x§ +’xz “for some irntegers: Xy

Xy s Xg oy X,

Proof: Let xi » where i =0,1, 2, ,:;; ”E%l‘;'represent the integers

that lie in the interval 0 svkiAs‘E%lf.' There are ‘B%1r+A1t= B%i such

~integers. No two integers xi' are congruent modulo p -, for if.

2 _ 2 . . s ' -1
x; = xj (mod p) i £3,3=0,1, 2, .ao,vgﬁn

then

il

(xi‘— xj)(xi +~xj)v 0 (mod P)

This would imply - X5 - xj or x; + xj is "divisible by p , but this-
is impossible since each is less than p..

2

in the same interval and form the numbers =1 - yf . These integers

Similarly, let {yi,‘i = 0, ;;;, E%EJ ‘represent the Pl integers

are-also incongruent modulo p , for if
2 2 . .
Loy E-l-yg (mod p) i #j

then

2 2
Yi 255 (mod - p) .

This congruence has been shown to be impossible. -

Since there are p+l. integers in the-sets ‘xg_ and® -1 - yi
taken together, two of them must be congruent modulo p . Let xz'

and -1 - yz' be these integers, then

xz z -1 - y2 (mod p )
and

x2 +;y2 + 12 + 02 20 (mod p)
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hence .
2 2 2 2 . o .
x"+y +17 + 0" = mp, where m is a positive integer. :
Now, -
2 2
2 2
2B, el

and since.

which implies

Therefore

2 2
2 2. 2 2
O<mp=x"+y +1 <%+%+1 %f1<P.

This shows that m < p , and as a result 1 <m<p.

Lemma 2.2. If p is an’ odd prime and m is the least positive integer
: , .2 2 2 2 .
such that mp =Xy 5t Xg Xy then m is odd.

. . . 2
Proof: There is at least one such m . If Xi is -even, so 1is Xi »

+ X

and if Xs is odd, then. xi is also odd. Suppose that m is even,

2, x2 . x2
2 3 4

(2) all odd, or (3) two are even and two are .odd. ' In any of these cases,

then so-is mp =-x§ + X Then- the X are (1) all. even,

the . x. can be numbered and grouped in-pairs in so that x z O{mod 2} -

172
= 0 (mod 2). Then, (xl +~x2)/2 and (x3 +vx4)/2 are -

Fa

+
»
n

integers, and so are (x1 - x23/2v and (x3 - x4)/2 . Therefore,

(xl + x2>2 . (xl f,xz 2. . (XS + x4)2 . <x3 —-xﬁ 2 i
2 2 2 2
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Thus there is an integer smaller than m  such that %E' is the-

a2
2 .
sum of four squares. This contradicts the minimality of m , therefore:

m must be odd.

Lenma-2.3. Let p be an. odd prime and m the least positive integer
2 2 2 2 .
1t Xyt Xg v Xy If m ismnot 1,
2

thgre exists a positive integer n where n <m and mm =~y§ Y, ®

less than p such that mp = x

2., .2
Yo ¥V, -
Proof: By lemma 2.2, m 1is odd, and if it isnot- 1 , then 3 < m < p.

Let Y3 be chosen, for i'= 1, 2, 3, and 4, in such a way that

- m
yl = xi (mo_d m) . |yll < 7.

. This can be done, since _TE%L_< y < E%L is a complete set of residues.
Then since.

2. .2
y; =X (mod m)} ,

y§ + y§‘+ y§'+ yi‘s xi + xg + xg + xi (mod m) .
Hence
yi ¥ y§.+ y§ * yﬁ_z mp =-0 (mod m)
and

2'+ 2 + z + z = mn
YLt Yy t Yzt Yy -

The integer n. is not 0, for if it were, Yy =2'0 and it follows
that X, =0 (mod m), Then m divides X5 m2 divides ng s m2
divides. mp and this implies that m divides. p . But, this is a

contradiction since l1.<m < p .

Furthermore,; since-
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m 2w 2 - 2
Iyi}.< ¥ <7 and Zy; =mn < 4,

o
"
=]

- Therefore,, n<m and 1 <n<m.

Theorem 2.4. Every odd prime is a sum of at most four positive squares.

Proof:. From Lemma 2.3 and Euler's identity

2 2 2 2y .2 2 2 2
(X7 * x5 * Xg + %) (¥] + ¥y + Vg ¥ ¥y)

2.
m°np

. 2, v
(xyyy +Xg¥p * Xg¥g + Xpy,)7 + (XY, - Xp¥y ¥ Xgyy - Xy¥y)

+

b

2 2
(Xy¥qg = Xg¥y * Xyy = Xy, 07+ Xy, = XYy * XYy = XgY,)

2 2 2 2
Ay Ay T Az A,

fil

But since Yy F ¥y (mod m)

L. + X + X

1y1 +. X

2 2 2 2 . -
=X} ¥ X, + Xy + X Zmp =0 (med m)

oYy T XYzt XYy 4=

and

XYy = XYy ¥ Xg¥y = Xp¥g EXy Xy - XyXp + XgXy - XXy = 0 (mod m]

4

Similarly, A3 = 0 (mod m) and A4-E 0 (mod m), implying that m

divides Ai' and m2 divides Ag . Therefore,

B (- (-

np === + == & |== + |~

m m m m/

with 0 <.n <m . But this conclusion contradicts the fact that m
was chosen as the .least positive integer stch that mp~ is the sum of

four squares. Therefore m = 1. and every odd prime is a sum of at

most four positive squares. -
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Theorem 2.5. Every integer is .a sum of at most. four positivesquares.
Proof: By Theorem 2.4, every odd'prime‘iS'tHe'sum'of“at most four
positive squares and since. 2 = 12 + 12 , every prime is the sum of at
most four positive squares. The theorem follows immediately from
Euler's -identity and the fact that any integer can be expressed as-a
Product ‘of primes.

In Chapter IV, which deals with fourth powers, it is essential
to know what integers require four squares and what integers can be.
expressed as a sum of three or fewer squares. An important theorem
will now be proved that integers~bf7theform‘4r(8n + 7) require four
squares. Of this theorem, Dickson [14] has said; "the following result
is used more often than any other in researches in the theory of
numbers."

It shoﬁld~be~noted'that part of this theorem will be proved using
Fermat's '"method of infinite descent." Hollingshead [23] has suggested
that this method should be bne-of.the important topics treated in any"
high school number theory.course, and there is an entire chapter
dealing with Fermat's method in the SMSG ‘publication, "Essays on Number
Theory II", written for high school students;‘ Thus, Theorem 2.6 would
be an iIlustration'of'the*usefulnéss‘of Fermat's "method of infinite

descent."

Theorem 2,6. Positive integers of “the form ‘4r(8n“+“7); with r and
n integers greater than zero, are not the sum of three squares.

Probf: If an integer x 1is even (x'= 2m), then

x* = 2m)? = 0 (mod 4),

and if x is odd (x'= 2m + 1),
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x2 = (2m + 1)2 = 1 (mod 4),and x2'=-(2m"+v1)2'£ 1.(mod: 8).

For any integer x , it follows that

»
i

0, 1, or 4 (mod 8) ,

and from this.

2:0,1,2,3,4,5; or6 (mod 8),

1

2 2
xX“ vy o+ oz

where y and 2z - are arbitrary integers. Therefore. x2 + yz +.zz'¢ 7
(mod 8), and integers of the form 8n + 7 cannot be represented as
the sum of three squares.

Suppose that 4?(8n +'7).=,x2 + y2 +Azz , for > 1 . Then

0 (mod 4).

XZ +y2 + 22

But, from above, this-.is ‘true only if: x, y, and z. are-all even. Let

X =12al,,y = 2b1, z =‘201 , -hence

2. 2. 2 2 2 2 .2 2 2
XT+y + 2z 0= (2a1), + (2b1) + (201) = 4(a1.+ b1 + cl)
Therefore,
1.2 2 2, _ .2 2 2
Z(x +y +z)_al+b1+c1
or
-1, 2.2 2
4 (8n +.7) = aj + b1 *clo-
In a similar manner, .
2.2 . 2
a; * b1 e = 0 (mod 4) ,
and - ai,-bl, c; are-even. Then
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- N

L2 2 2. oo 200,02 2
+b + ¢ =-(2a2)g + (2b2) + (2c2) = 4(a2 ¥ b2 + c2)

and

4r-2(8n +.7) = a§1+ bg +C

NN

Repeating this-argument will show that

43 n + 7) = a? + b? +C

wL o

For j =71,

[ 384

8n + 7 = a2 +~b2 +C
T T

But this is a contradiction. Thus no positive integer of the form
4?(8n + 7) 1is a sum of three squares.

For several theorems in Chapter IV, it is essential to know that
all integers not of the form. 4r(8n + 7) can be expressed as the sum
of three squares. However, the proof of this theorem involves 'the use
of the theory of ternary forms and is-much more difficult than the proof
of Theorem 2.6. For these'reasons,.Theorems~2f11 and 2,12 will be
stated without proof. Proofs of these theorems may be found in
Landau [27]. - At first reading, it might be suggested that the proof

of Theorem 2.13 could be omitted.

Definition 2;7 If. Xy5 Xy, Xg are integral values, and if the numbers.

3

for 1 s k < g < 3, -are integral coefficients, then

=4l 2
F -,F(xl, xz,,xs) =ap4X) ¥ 2a12xlx2 + 2a13x1x3 + 25,%,

+ 2a,.,X.X, + : x2
237273 33,3

is called a-ternary form.
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Definition 2.8. The determinant dﬂ:')akgl'is‘called“the'discriminant.

of the ternary form F , where

11 12 13

= a . a

d = 'akgl 21 %22 %23

31 %32 %33

Defipnition 2.9. 1If

kag

F (x,, X,, X,) = & XX ., G(X;, X5, X,) = I b
10 X220 %3 kg™t P Yo X3 k

kg “& "8 k,g 8

are ternary forms, then F  is equivalent to G if there are 9 inte-

gers Ckg of determinant

€11 G2 Gy
ICgl = |Ca1 C2p Cos| =1
C.. C.. C

31 32 33

for which the 3 equations’
Xk =3 Ckgyg

formally tran;form‘ F(xl, Xy x3) into G(yi,.yz, y3) .

Definition 2.10. F is called definite, if F > 0 for all integral

values of Xys Xps X that do not all vanish simultaneously.

3

Xy xg is definite 'if -and only if -all of

3
Theorem.z.ll. F = i akg

, k,g=1
the following hold:



Theorem 2.12. Every definite ternary form with discriminant. 1 is

2, 2
2" X3

equivalent to the form x% + X

Theorem 2.13. If - n > 0 1is not of .the form 4r(8kf+'7),'r > 0,

k >0, then 'n can be written as a sum of three squares. .

Proof: If n=1, 2,3, 5, or 6 (mod 8), then n is not of the form
4r(8k + 7) . To prove the theorem, it will be sufficient to show that

.n is the sum of three squares for one of the above forms. Iif

n = xz + y2'+.zz’, then

m
. 2. e .
4n -= (2x)2'+ (2y)” «+ (2z)2 , and 4 n= (2mx)2 * (Zmy)3 + (zmz)z .
o m 2 2 2 |

In a similar way, if 4 n= x" +.y" + z° , then
m-1 = x 2, .y.2 z 2 _ 2 2 2 .
4 n = (EJ + 639 + (§J = X] ty]tz), and finally

X2, Y N2, N2 2, .2, 2
n —;ng) + (Zm) + Cih) = X + Y + zo .

Therefore, let n =1, 2, 3, 5, or 6 (mod 8). By Theorem 2.12, -
the theorem will be proved if a definite ternary form of discriminant
1; which represents n , can be found. By Theorem-2.11, nine members,

351> 21 3130 593 Byzs Bzzs Xps Xp3 Xgoy must be found that satisfy.

the following conditions:

2
toagX, .

2 2 t
n=a,, X; + 2a,.X,X, + 2a,,X,X, * 8,,X, X + 23,,X.X 33%z

11 71 127172 137173 © “2272 237273

37> 0,
a a - a 2‘> 0
11.722 12 ’
a a a

11 12 13

3y 8y Bzt =1.

431 232

33
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Assume

a 1, 0, =n, X, =0, x; =0, X 1.

13.7 4 823 = Ys 837 1 2 3=

It will be shown that suitable values of a ., and a may be

11° %12, 22

determined such that the above four '‘conditions are-still satisfied.

From the-above'assumptiOns,t-all, aj, "andiazzj must satisfy the

following conditions:

35170
b=a., a,., -a 2‘> 0

11 %227 %12 ’

ay,.= bn - 1,
811 %2 1

since |a 8,,. 0 = (a,, a,, - a 2) n-a,,=bn-a,, =1
12 22 - ~711. 722 12 22 22 '

1 0 n

The problem can then be-reduced to showing >0 , ‘and since

aiz = -b + a1 (bn - 1) , - b must be shown to be 'a quadratic residue
mod (bn - 1).

Let n = 2 or 6 (mod 8). Then (4n, n - 1) =1, and by Dirichlet's.

Theorem on Arithmetic Progressions, there is a‘prime

n-1- (mod 4n) .

i~
Hl

Let b=4v +1 , then b>0 and p=bn-1.,
Since p =1 (mod 4) and (b, p) =.1, it follows by properties

of quadratic residues that™
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-b, _ _obn - 107 -1
3 - == =1.

1.

Hence, -b is a quadratic residue mod (bn -~ 1) , as was 'to be proved.

Let. n =1, 3, or 5 (mod 8) . If n =3 (mod'8), let c =.1",

and if n=1lor 5 (mod 8), set c=3 . In both;caééé..cn‘" 1 is
odd, thus- (4n,ﬁcn ; 1) =1, Again, by Dirichlet's Theorem on
Arithmetic Progressibns there is-a prime
. ¢cn -1
p = ———7?——.(mod 4n) .
Let
p = = 5 L 4hv_=-%-[(8v‘+”c) n-1}] .

If b=8 +c., then b>0 and 2p #=bn -1 .
Then |

b =3 (mod 8) and p =1 (mod 4) for n =1 (mod 8) ,

b =1 (mod 8) and p = 1 (mod 4) for n = 3 (mod 8) , .

b = 3 .(mod 8) and p-= 3 (mod 4) for n = 5 (mod 8) .

For b =1 or 3 (mod 8) ,

-2
() =1
and by properties of quadratic residues,

~by _ T PN =2y =2py ./l -bn ¢ 10 _
PP FP-FH-CF=r=@ 1.

Thus; -b 1is a quadratic residue mod p. Since ' -=b = l2 (mod-2) , it
follows that - -b is a quadratic residue mod 2p .
For n=1, 2, 3, 5, or 6 (mod 8) , it has now been.proven ‘that:

b >0 and -b 1is a quadratic residue mod (bn-1). The theorem then
follows by Theorem 2.12.



CHAPTER III
CUBES

The technique used by Maillet in his search for an upper bound for
g(3) 1is quite different from thé‘approaches'used in:any of the follow-
ing chapters. Maillet's method is to determine an interval with the-
property that every integer contained in it can.be represented as the
sum of 21 or fewer cubes. The bounds of this interval are manipulated
and it is determined that from a éertain'point onward, successive
intervals always overlap. Then every integer can be 'represented by
at most 21 cubes.

In his proofs. that g(3) 5 21 and g(3) < 17, Maillet makes"
use of several identities. The use of identities is a common element
in many of the theorems of Chapters II, III, IV, and V, and in most
cases ‘it is the basis for the proof of these theorems.

‘Maillet [31] begins his proof of g(3) < 21 with the identity
(3.1) (o #+ x)3'+ (o - x)3 = 2a(a2 +‘3x2)
where o and x are integers. If

(3.2) 0 <x<a

the -two cubes-on the left hand side of (3.1) wilijbe‘positive. Let -

4
If these values are substituted in (3:1) and the equations. added to--

X1y Xg5 Xy and x, be four values of x , each satisfying (3.2).

gether, the following equation is-obtained

37
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(3.3)

™M

: 33 3 2 2 2 2.2

Z [(a + xl) + (o0 - xi) ] = 2a[4a” + ,3(x1¢x2+x3+x4)]

It is apparent that the left hand side of (3.3) is the.sum of eight
positive cubes. .

Let m be‘a number such that

(3.4) 0<m<a’
, . 2 2 2 2 , } P
By Theorem 2.5 m = X) o+ Xy o+ X X, and each Xy satisfies (3.2).

Then by (3.3}, the following lemma has been established.
Lemma 3.1 Any integer of the form

(3.5) "Zdif4a2’+ 3m]
is ‘the sum of eight or fewer cubes provided 0.< m g az .

‘Consider an integer of the form

(3.6) 2A = 20(40% + 3m) + 20" (4’2 + 3m")
where.

(3.7) - 0 m<g az and 0 < m' < a'z

From (3.6)

(3.8) “2A - 8(0> + a'D) = 6(am + a'm') = 6A'.

The following lemma will now be proved.
Lemma 3.2. Any integer of the form:
(3.9) 28 = 8(a> + a'd) + 6A"

is the sum of 16 or fewer cubes of positive integers provided
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(3.10) o' <A < a's

2

La.sa' <a and (o, a®) =1 .

A

Proof: Congider the integer

(3.11) A" = gm + a'm’
According'to (3.7), S0 < A s‘as + a's

Suppose that A' is given, and that when o and o' are determined
it will be demanded that (o, a') =1 and that o < o' . Equation
(3.11) will now be solved in . such a way that m and m' are integers
and (3%.7) holds.

~ Consider

(3.12) A - om ;,"‘m = !

Let 0 g A' < a'z ‘and let m in (3.12)take on the values

(3.13) 0, 1, 2, vooy 0 = 1
where it is presumed-

(3.14) a' < az’,

Consider the following numbers
(3.15) A', A' -0, A" - 20, ..., At - afet - 1) L

There are o'’ numbers in (3.15) and they are ‘non congruent modulo of

To see this, suppose that any two numbers- A' - La and A' - L'a of
(3,15) are congruent modulo o' . Then, A' - La 2 A' - L'a (mod a')
and o(L' - L) 20 (mod a'*). Since (a, a') =1, then L' = L .

Thus, one of the integers in (3.15) is congruent to zero modulo o'
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and the corresponding value of m' in (3.12) "is integral-and COﬁld be

written as

o AY - L'a
s

Since, A" < a‘3 and 0.g L' < a', then: m* sfa*z , and m*': will .
be ;positive if  A' 2 aa'

Therefore if

(3.16) an' £ A s_a'sf;

a < a' f‘az and (o, a') =1 .

Integral values of m and m' can be found that satisfies (3.7)
and (3.11).  Thus, by (3.8), (3.6); (3.5) and (3.3) the lemma is

established.

Lemma 3.3. Any integer B such that:

(3.17) 8(@3 ¥ a‘s)'+ 6oa' -< B ﬁ 8(oc3 + a'3) + 6a'3

is the sum of 21 or fewer cubes provided a < o' <’a2 and; fu, al) = 1,

Proof: From equations (3.9) and (3.16)

8(&3 + u's) + 6aa' < 24 < 8((13 + a?s)%6 a'3

and  2A differs from 8(oc3 + a's) by a multiple of six. Unity is the
cube of an integer and if at most five unitdes are added to each of
’ these'numbers, then the. lemma’ is ‘established.

At this point in his proof, Maillet has proved that every integer
in a certain interval is the sum of at most 21 cubes. It now remains
to’be shown that by~manipu1ating a and. a' , the intervals obtained

will overlap, and this will .imply that all integers from a certain
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point onward are the sums of 21 or fewer cubes.

Theorem 3.4. Any integer greater than 14,372 can be represented as

the sum of 21 or fewer cﬁbes.

Proof: In equation (3.17) let o and o' be y -1 and y . The
conditions of (3.17), vy-1 <y < (yfl)2 and “(y-1, vy) =1 will be

satisfied if vy > 3 . Equation (3.17) will then hold for any number

- B such that

(3.18)  "8[(y=1)® + v°] +6y(y-1) < B < 8[(y-1)° + y°] + 6y° .

If y and y+1 ‘are substituted into (3.17) for 'a and o' , the
conditions of (3.17) are satisfied for <y .z 2 . Equation (3.18) will

then become.
(3.19)  8[y> + (v+1)31 + 6y(y+1) < B' < 8[v° + (y+1)°] + 6(y+1)°

It is now important to find out if the intervals defined in (3.18) and

(3.19) overlap. It is obvious that
3 3 -3 ' 3
8[y” + (v-1)71 + 6y (y-1) < 8[y~ + (y+1)°] + 6y (y+1)
when vy 1s a positive integer. The intervals would overlap if

‘8[(Y-1)3 + YS] +«6v3 > 8[Y3 +(Y*1)3] + 6y (y+1)

V4

It is not readily apparent that this inequality holds, so reducing

the inequality
3v> - 27v% -3y -850

is obtained, This inequality holds for vy 2 10 .
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For y = 10 , the greatest lower bound of the intervals defined in

(3.18) and (3:19) is
B[ (y-1)> « v+ 6y(y-1) = 8[7%+8%] +'6.10.9 = 14,372.

It has thus been determined that from~14,372 onward ‘successive intervals
as defined in (3.18) and (3.19),;will always overlap. Therefore, every
integer greater than 14,372 is in some interval and thuS'caﬁ be
represented as the sum of 21 or fewer cubes.

To complete Maillet's proof it must ‘be shown that all integers

up to 14,372 are the sum of 21 or fewer cubes.

Theorem 3.5. Any positive integer is the sum of 21 or fewer cubes.
Proof: By Dickson's tables [13] all integers less than 560,000 are
‘the sum of at most eight cubes except for 23 and 239 which are rep-
resented as the sum of ninécubes. Thﬁ#, by these tables and Theorems
3,4, any positive integer is the sum of 21 or'fewer‘cubes.

Maillet was able to lower the upper bound of g(3) to 17 from
21 using the same general pattern but with arguments that are a little
more complicated.

~In equation (3.12) assume that a and o' are-odd and relatively

prime -and that

2
(3q20) o < oof <‘98- R 8 aat < A _<_‘0L'

3

Let  m 'in equation {(3.12) take'on the values

(3.21) 0, 1,2, ..., 8 - 1.

Among the .corresponding numbers .
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(3.22) A', A'-a, A'-20, ...; A'<(8a'-1)a

exactly 8 of them are divisible by a'. The eight corresponding values
of m and m' given by equation (3.12) will be integral. ‘These values
will be positive because of (3.20). It will be useful to write m and

m' in the form

(3.23) m=m, ¥ ja' , m' = mi - jo

Since  a' is odd, the numbers 0, a', 23', ..., 7a' are non-congruent
to one another modulo 8. This is also true for the numbers 0, a ,

20, ..., 70 . ‘Among the integers m, + jo' ‘there are only three

1
numbers at most of the form '4h(8n +7) for h and n non-
‘negative integers."IThis is also true for- mi - jo . Then from the
© 8 systems of values of m and m' , there will be at least two for
which neither m nor m' will be of the form '4h(8n+7)'. Choose
one of these systems. Then by Theorem 2,13 , m and"m' ~will each
be the sum of three squares. |

Let Xp5 X5 X be three values of = x 'satisfying (3.2.). If

3
these values are substituted in (3.1) and if the resulting equations

are added together, the following equation is obtained

3
(3.24) % [(@ + x)° + (@ = x.)°] = 6a[a® + (XPexPexD)].
i=1 1 i 1 72 73
2 2 2 .
If m= Xy + X, + x3 with the conditions
2 h,.
(3.25) . 0.cm<o” and m# 4 (8 + 7) ,

then the following lemma is established.
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Lemma 3.6“Every integer "of the form - 6a(d2 +m) -is ‘the sum of 6' or

fewer cubes "if 0-<.m s'az

and»Im;#‘4h(8n+7) .
'Following'a'pattern‘similargto that'used'for‘Lemma“S.Z,'cohsider'

(3.26) 6A = 6&(@2:+ m) +-6d'(a’2 +m')

where m- satisfies (3.25) and m'  its analog. Then

(3:27) ©BA - 60 +a') = 6(am +a'm') = 6A" ,
where

(3.28) A' =.am + a'm’

By . (3.25) C0<A cadeal’

If o and o' are odd and relatively prime, by the previous.
method ‘it follows that two positiVe*integers“m and m' can be found
that will 'satisfy (3.25) "and (3.28) and they will each be the sum of
tﬁese*squares.

~ Then since (3.25) "is ‘the sum ‘0of 12 cubes and since-

8 a.al S A‘ < a's

the folléwing lemma is established.

Lemma 3.7 ‘Every integer " 6A such that

3

(3.29)  6(a° +a'>) + 48 aa' < 6A < 6(a° + a') + 6a'°

2
where o < a' < %- and o, a' are odd and (a, a') =1, is the sum

of 12 or fewer cubes: of positive integers.

To ‘@Qbtain a general theorem from Lemma 3.7, the same method that

was-used in Theorem 3.4 will be successful. Let vy 'be odd, oa=y-2,
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a' =y and y-2 13, By the same reasoning as Lemma 3.7, if vy is
above a finite limit, then the intexvals (3.29) obtained by letting

y vary will overlap and the theorem below follows.

Theorem 3.8. Every integral multiple of six above a certain finite
limit is the sum of 12 or fewer cubes of positive integers.

For vy = 13, the lower limit of the interval defined by (3.29)
has a value of 28,032, It is this apparent that Dickson's tables [13],
showing that all integers less ‘than 560 ;000 are the sum of 9 or fewer.
cubes, -are sufficient to fill the gap left in Theorem 3.8 and prove

the following theorem.

Theorem 3.9. Every integral multiple of six is the sum of 12 or
fewer cubes of positive integers.
Fleck [15] was able £§.improve on Maillet's upper bound for g(3)
It is well known. that u3 = a‘Onod Q) for any integer. Consider
the integers 6ém + o (a = 1, 2,;3,>4,-5)a
Now-

6m + o = as + 6u .

By Theorem 3,9, 6u is the sum of at most 12-cubes. Thus, every.
integer of the form 6m + a is the sum of 13 cubes.  This proves the

following‘theorem.f

Theorem 3.10. Every positive integer can be expressed as the sum of
13 or fewer cubes:
It will now be proved that g(3) = 9 . In Chapter I, it was

proven-that g(3) = 9 , and it was shown'that'23.reQuires.9 cubes.
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Dickson flS]'has proven that 23 and 239 are the only integers which
require nine cubes, and all other ‘positive "integers -can be expressed.
~ as the sum of eight or fewer “cubes. It will be shown below that every‘
integer greatexr than 533  can be expressed as.a sum of at most eight
cubes.,. Actually, the proof given below is.due to Watson [52] and
shows that G(3) < 8 . The integers less than 533 are known to be
the sum of 9 or fewer cﬁbes'by Dickson's tables for cubes. Thus,
it will follbw that g(3) = 9 ;

'Fbrﬁﬁatatiénalapurposes, C will be used to denote the sum of
k- orufewér cubes of positive integers.

‘The proof begins with two theorems which are usually found in

‘elementary number theory texts and are stated here without proof.

Theorem 3.11. The congruence

(3.30) X'z n (mod 5)

is solvable (unigquely) for every n .

Theorem 3.12. The congruence

(3.31) x3 = n (modksi)

a) ‘always has a unique solution if n # 0 (mod 5),
b) 1is solvable for v(n) > 0 provided that v(n) either divides by

three or is not less than r ,
Lemma 3.13. If there exists an m satisfying the three conditions"

(3.32) (m, 6) =1
3 N .3 3
(333) : -Zm < N < i m

(3.34) ’ N = 3m (mod 6m) ,-



then ‘N is C6 .

Proof:. From (3.33) and (3.34)

8N = 6 m + 6mk , 0 <k <m

Hence .

6mk = 8N - 6m3

1

‘24m - 6m = 18m (mod 48m)

Then, because (m, 6) =1 , k = 3 (mod 8) .

By Lemma 4.13, k is:the‘sum of three odd squares.

2 2 2 :
Let k = X3 + X, * Xz Then,
3 2 2 2
. 8N =.-6m” + 6m(x1 X, + x3)
3

= I {(m+x.)3 + (m-xi)s}

i=1 4

1/2

identically, Since each-wxi.s k and m and X; are odd,

is the sum of six positive even cubes. Thus,

6 6
8N = I (2y.)3 =8 I y?
. i . i
i=1 i=1
6
N= I yg
i=1
and the lemma is proved.
Lemma 3.14. If there exists an m such that
(3.35) 3/4m> <n - x> -y <3/2m
(3.36) x>+ ys‘E n (mod m)
and
(3.37) X+y =n+ 3 (mod 6)

then n is C

8N

47
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Proof:  Assume there exists an m such that 63935),'(3u36), and (3.37),

are satisfies., Let N =n - x3 = y3 . If (m, 6) = i , then (3.34)
may be broken up into
3 3 ..
(3.38) X" +y 2n - 3m (mod m)
and
: 3 3. _ <
(3.39) x"+y " =n-3m (mod 6) .
From (3.38) it obviously follows that:
x3 + y3 = n (mod m) .
. 3 : 3 _
Since x” = x (mod 6) and y~ = y (mod 6)
3 3 _ .
(3.40) x" +.y" = x + y (mod 6)
By (3.32) m =1 (mod 6) or m =5 (mod 6)
thus
(3.41) ' . 3m =3 (mod 6)

Therefore, by (3.40) and (3.41), (3.39) becomes
X+y Zn.+ 3 (mod 6) .
Let. N satisfy (3.33), then
3/4 m3'< n - x3 - y3 < 3/2‘m3

Then, if there exists an m satisfying (3.35), (3.36) and (3.37),

m also satisfies (3.32), (3.33) and (3.34), thus by Lemma 3.13, N

is C, .. But n =N * x3 + ys', therefore' n is C

6 8 "
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Let m = Sr‘; with 1r ‘defined by

(3.42) 53T ¢ < 530+l

then r > 10 if n 2 50 . If

(3.43) - 0¢x<1/2nm

and

(3.44) n - 7/8-m3'> y3 > max (n - %-mz » 0)

then (3.35) will hold, The inequality (3.44) defines an interval whose

length . is greater than m/120 . The interval will be smallest when

31"_+_3

n=.J5 -1=125m3-1

and even ‘then;, it is much karger than m/120 .

" Watson [52] now proceeds to prove that G(3) < 8 by using Lemma

3.14.

“Theorem 3,15, If n is an integer and nz‘S33 , then n 1is C8 .

Proof: Let m= 5 , with r defined by (3.42). If it can be shown

that this value of m satisfies (3.35), (3,36);‘and (3.37), then

n is. C8 by Lemma3.14, However, it is pointed out above, that

(3.43) and (3.44) imply (3.35). Watson's method of proof is to show

that if m = 5° then an 'x and y may be found that satisfies

L

(3.36), (3.37), (3.43), and (3.44), thus implying that subject to

certain restrictions; n 1is: CS .

"~ Consider any n >'S33 . If n/125 is integral and® C then

8 3
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and

n=
i

B ™M oo

. (Sxi)3
Thus, if n/125 1is integral and’ C8 , it follows that n 1is C8 .
Then for v(n) =3, 4, or 5, v(n/53)'= 0, 1 or 2, and these’cases
will be dealt with below. .

Watson shows that for v(n) =0, 1, 2,.and > 6 , (3.36) (3.37),
(3.43) and (3.44) will be 'satisfied.

For v(n) > 6 . Let x = 25X and y = 25Y . It will be shown

that (3.36), (3.37), (3.43) and (3.44) are satisfied.

6 n < %-5_2m , (3.43) will be satisfied if a suitable

X can be found such that

Since 6:5

0<X<65%m.

 From (3.44) y = 52Y must belong to an interval of length

greater than Tgﬁ . That is, Y must belong to an interval of length
grecater than zm = T - Now

57.120 24'5

A}

' Thérefore, if Y 1is in an interval of length 5-6 m , there exists an
equivalent y in the required interval. Let Y0 be any value of Y
in the required interval.

From (3.36)
x>+ y =5 X" +5 Y =n (mod m) .

Then
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X e y3 = gv(n)-6 ng (mod 57 m)
and
X3z oy 4 5V(M-6 (mod 576 m)
0 0
= a (mod 576 m)

for some. a . This congruence is ‘solvable by Theorem 3.12.: Let XO

be a solution.

From (3.37)
X +y = 52 X + 5% Y= ns3 (mod 6) ,

that is

X+ Y=n+3 (mod 6)
and

X =-Y +n+ 3 (mod 6) -
Now solve

X = X, (mod 5r-6)
and

X = -Yy+n-3 (mod 6) -

by the Chinese Remainder Theorem, and the result-is X E“Xi (mo& éosﬁé)g
This will provide the desired result.

The case v(n) =0 will be dealt with here. The cases for
/v(n) = 1 and 2 are handled in a similar manner.

Let v(n)'= 0 . This implies n # 0 (mod 5) . Now for any A
(1423) = (141) (=242 2)
and

V(I+AD) = v(14A) * v(1-2622) .



But since 1-A+A2 = 0 (mod 5) has'no solution,

v(1-a+22) = 0 .

Therefore -

(3.45) v(1+x3)'='v(1+X)
Consider

(3.46) (1+2%) X° = n (mod 557%)
with | X # 0 (mod 5)

If X # -1 (mod 5) then v(1+)) = v(1+k3) = 0 , Hence for some a ,

(1+x%) 2 = 1 (mod 5577 .

The congruence (3.46) can be written

3

X7 = n' (mod 5T=5

)

This congruence is solvable, by Theorem 3.12.
Now, X must be chosen so that v(1+\) =0 , and it may also

be chosen such that

(3.47) A% = 1201 (mod 5°) .

Let n# 0 (mod‘SS) , then v(n) # 3 .

From (3.46)
(3.48) X3+ X% = n (mod 577

If

(3.49) Y = 3X (mod 5°°°)
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then

(3.50) x>+ ¥ = n (mod 577,

Since X #-0 (mod 5) and Az = 1201 (mod 55) , then

AZ0 (mod 5) , thus Y £ 0 (mod 5) ,

Therefore,
(3.51) Xy ¥\O>(mod 5)
Since the modulus in (3.49) is sr—S , X and Y can be chosen so
that-
(3.52) 0<X<57 , and 0cY<5>,
Let
(3.53) X =X + 5570 4 and y =Y + 550y,
Then (3036)‘becomes-a
(X + Sr-Su)3.+ (Y +.5r—sv)3 = n (mod 5%)
and
(3.54) (X L P53 R R S G R sy2s7-5, (mod 5%)

= x% + ¥3 4 3.5 X%+ YH) (mod 5T)
= n (mod Sr)
if 2(r-5) » r , that is, if r » 10 .
But from (3.49)
3 3

YW = n + k 5r-5 .

£

(3.55) o X

Substitute (3.55) in (3.54), then
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35570 (X% u s YA) =k 570 (mod 5%) .

11

Cancel 5%°° , hence
S(qu + Y2v) =k (mod 55)

Substitute Y = AX ‘in the ‘above congruence.
Then,

3X2(u + Az v) =k Cmod'Ss) .

Since, X £ 0 (mod 5) ,

(3.56) u + AZV = M1 {mod 55)
for sOme M1 . ' Now use the Chinese.Remainder Theorem to find an M
such that
- 5
M:Ml (modS)
and

M

14§

n + 3 (mod 6)

Then by (3.47), (3.36) and .(3.37) together become

(3.57) U+ pv = M (moed 6°55)

where u ﬁ*iz = 1201.

Now?'(3.57} is to be solved. : By (3.52) and (3.53), 0.< u < 1561

and ensures (3.43) and (3.44) hold. By (3.52) and (3.53), the interval
defined by (3.44) permits at least [55/120] = 26 conseéutive’integrél
values. of v . By a transformation these values may be considered

the values 0,1, 2, ..., 25 . If. v = [M/u] < 15 , then this pro-

vides.a solution of (3.57).
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Thus, for T > 10, n > 5°° , (3.36); (3.37); (3.43) and (3.44)

hold. Hence n 1is C8 by Lemma 3.14,

Theorem 3.16. g(3) =9 .,

Proof: If n is.an integer then mn ‘is. C8 if n 5”553 s by Theorem
3.15. By Dickson's tables [13] all integers less than 533 are ng

Thus, all positive integers n are Cg"or g(3) = 9 .



" CHAPTER IV
BIQUADRATES

In Chapter I, it was. mentioned that the value of g({4) has not
been precisely'determined. From Theorem 1.1, g(4) 2.19.,‘and,if an
upper bound could be found for g(4) , then one might suppose that it
would not be too difficult to reduce this upper bound towards the goal
of 19.

‘In this chapter, :Liouville's classical proof that g(4) < 53 will
be given; as well as succeeding proofs that g(4) <45, 41, 39, 38, and
37, basically due to Lucas, Lucas,; Fleck, Landau, .and Baer respectively. -
The improvement of -the upper bound of g(4) by a few integers is not:
too importantszespepially when one realizes that the ideal is 19:
However, these proofs are-an excellent illustration of how progress
is made in number theory in proving or attempting to prove a conjecture.
A person studying these theorems should realize that fhé proof of
g(4) < 53 1is not a very significant result in-itself, but the fact:
thét Liouville's proof was the first to establish én‘upper bound for
g(4) 1is important.  The method of proof used by'Liouvi11¢3is\also impor-"
tant in that all succeeding improvements of his result used his basic
method to obtain their proofs.

Many - of the identititésnand theorems proved in this chapter were.
oﬁce well known in number theory, but few of them are found in the

standard ‘number.theory text books today. Most undergraduate students:

56
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of number -theory would probably not be familiar with “them, "and could
broaden their knowledge.of number theory by :studying them.  Since many
of the proofs are simple, the undergraduate student might enjoy obtain;
ing the proofs for himself or trying to improve on the results:

Theorem 4.4 is Liouville's proof that  g(4) < 53.° In this:
proof, a simpler identity established by Lucas will :be used; instead

of .the original identity used by Liouville.

Lemma 4.1, Every integer of the form 6a2 is the sum of 12 bigquad-
rates; if a 1is a positive integer.

Proof: Let: a be'a positive integer. . Then by Theorem 2.2

aext+ 2wt x®,
1 2 3 4
Now,; -
0 e ey it e G ¢
‘,+'(x1'—’x354;+’(x1"; x4)4"+f(x1“- x4)4
Oyt g e x® e g e
+ (x2 -»x4>)4 + (x3 + x4)4 +“(x3 - x4)4 .

This identity was first established by Lucas [29] in 1876. Since

2 2 2 2 2,2
6a” = 6(x1 X, f X+ x4) .

it follows that - 6a2 is the sum of 12 biquadrates.

Theorem-4.2. Every positive integer of -the form 6m 'is the sum of
not more than 48 fourth powers.
Proof: Every positive integer m. is the sum of four squares, by

Theorem 2.5. Thus,
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m= a, + a2 + a2 + a2
2 3 4
and-
_ 2 2 2 2
ém = 6(a1 + a, + as + a4)
2 2 2 2
= 6a1 + 6a2 + 633,+ 6a4 .

By Lemma 4.1, 6a§' is the sum of 12 biquadrates. Therefore, 6m is
the sum of 12 + .12 + 12 +:12 = 48 biquadrates.

For convenience, .the notation n:=rBi will ‘be used to mean that
n can be expressed as the sum of at most i positive biquadrates.

For example, Theorem 4.2 states that  6m.= B48"

Corollary 4.3. 'If m is the sum of 3 squares, then 6m = Boe -

Theorem 4.4. Every positive integer can be expressed as the sum of
not more than 53 fourth powers.

Proof: Any positive integer n is-of the form 6m + r , where
mz0 and r =0, 1, 2, 3, 4, or 5. By Theorem 4.2, 6ém 1is the sum
of 48 biquadrates. Since: r 1is expressible by at most, 5»14 , then
n  is .the sum of 58 + 5.= 53 biquadrates.

The proof of the above theorem is dependent on expressing a
posiﬁive integer as the sum of four squares, but by Theorem 2.13, it
is known that certain integers can be expressed as the sum of three
squares. This infofmation will now be used to eétablish the following

theorem, ‘due to Lucas [ 28],

Theorem 4.5. Every positive integer can be expressed-as the sum of-

not more than 45 fourth powers. -



Proof: By Theorem 2.13, if m = 8h'+ j (j ='1,°2,°3, 5, or 6)
m>0, then m is the-sum of thrgevsquares; Let
mead el al,
then
n=~6nmt+r
. 6a§‘+ 6a§:+ 6a§'+ r
=By v Byt Byt By
=By o
by Lemma 4.1.
If m= 8 or 8h'+ 4, since 8r - 27 = 5 (mod 8) and.

and

8h + 4 - 27 =1 (mod 8), it follows that m - 27 =5 or 1 (mod 8).

Now, if m-27 >0

it 'is the sum of three squares, since m - 27

not of the form 4r(8n + 7). Hence,

A

If m=8h + 7

6m + r

6(m - 27) +6 .

.6(a§'+ a. +

6a§ + b6a

B

‘B

12

27 + T

2 ag) + 2=34 + T

2
2 2 4
9 633 + 23 4+ 7T

+

+ B

+

B + B, + B

12 12 72 75

43"

and m > 14 ,

then-

m- 14 = 8h +7 - 14 = 1 (mod 8)

and mn-14

is a sum of three squares.:

Therefore,

is

59
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n=~6m-+r

= 6(m - 14) + 6:14 + r

ag) + 34 + 3 +7T

-+

6a§ + 34 + 3+

+

=B,,+ B, + B, +B =+ B3 + B

12 12 12 1 5

Since m was . chosen > 27 and » 14, it remains to establish how
many fourth powers are required to represent n = 6m + r for vm < 27.
Now, 6:27 + 5 = 167 and all positive integers.less than 167 are
the sum of not more than 19 fourth powers, as can be seen in
Bretschneider's [4 ] tables which give the -decomposition of numbers’
5 4100 into a sum of biquadrates.

Therefore, any positive integer can be expressed as the sum of
not more than 45 fourth powers.

In order to improve his upper bound for. g(4) , Lucas divided
the integers into classes modulo 48 instead of ‘modulo 8. Modulo 48
was not-an. arbitrary choice, as may be seen in the following lemma,

which is also essential in the remaining theorems in this chapter.

Lemma 4,§ﬁ Every positive integer of the form 48h '+ j , for

j =6, 12, 18, 30, or 36, is the sum of not more than 36 fourth

powers.,

Proof: If m = 8h + 3 (j=1,2,3,5, or6) and m>:0", then m
is the sum of three squares, by Theorem 2.13.  Hence; - 6m = 836

by Corollary 4.3. Therefore, every integer having one of the following
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forms is the:sum of not more than 36 fourth powers:

6(8h + 1) = 48h + 6 ~ 6(8h + 5) = 48h + 30
6(8h +:2) = 48h + 12 6(8h + 6) =48h + 36°
6(8h + 3) = 48h + 18.

Thus, the lemma is proved.

So far, ‘it has been shown that. g(4) < 45, but by the above lemma,
certain numbers require'on1y~36 biquadrates. Thus, Lemma 4.6 would
appear to be a significant result, for if every integer could be
expressed in.the form of 48h + j (j = 6, 12, 18, 30, or 36) plus
a certain number of biquadrates; it seems  that the upper bound for g4}
could be reduced, A tablevwill now be given to see if every integer
can be expressed in the form 48h +-j (j =,6, 12,18, 30, or 36) plus
at most five biquadrates.- If this can be dome, it will prove. that

g(4) =36 +5 = 41 ,

By Lemma,4.6,_48h + 36 = 336" Hence,
48h + 57 = (48h + 36) + 1% = B,
48h +:38 = (48h + 36) + 2°1% = B
48h + 30 = (48h + 36) + 317 = B
48h + 40 = (48h + 36) + 41" = B,
48h + 41 = (48h + 36) + 5-1% = B,
48h + 42 = (48h + 36) + 610 = B, .

However, 48h + 42 = B is unsatisfactory, since each number is-to be.

42

expressed as.a sum.of not more than 41 biquadrates. But,
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48h + 42 = 48(h - 1) + 6 + 37 + 3.1% = By,
4gh + 43 = 48(h - 1) + 6+ 3° v 41t =B,
48h + 44 = 48h + 12 + 2.2° = B,
48h + 45 = 48h + 12 + 2:2% + 1% = By
48h + 46 = 4gh + 12 + 2°2% + 2.1 = B,
4sh + 47 = ash + 12 + 222% + 3% o p

It has now been shown‘that 48h + j (j‘= 36, 37, ..., 47} is the.
sum of notimore,than 41 biquadrates. In a similar manner, it can be:
shown that 48h + j (j = 0, 1, ..., 35) can be expressed in the form
48h + v (r = 6, 12, 18, 30, or 36) plus at most five biquadrates.

This is shown in Appendix A. -

Although

48h + 46 = (48h + 12) + 2.2% + 2.1% =By,

this result can be improved upon by writing

48h +.4 = (48h + 30) + 2% = By .

Whenever more than one representation is available for an integer, the

one requiring the smallest number of biquadrates is ‘used.

Theorem 4.7. g(4) < 41
Proof: Let n be a positive integer, then n ='48h + j for

j 1, 2, ...; 47, If j =6, 12, 18, 30, or 36, then by Lemma 4.2,

)
o

n = If j is not 6, 12, 18, 30, or 36, then 48n + j can

be expressed in the form: 48k -+ r (r = 6, 12, 18, 30, or 36) plus
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(1)

at most five biquadrates.

Fbr 48(h - 4) + 30 to be positive,. h must be four or greater.
Thus, it has been proved.that every integer > 48,4 = 192 is the sum
of 36 + 5 = 41 biquadrates.f-Bretschneider [ 4] proved that all

integers < 4,100 are - B., . Therefore, all integers are the sum of

19
not more than 41 biquadrates.

The method of proof used in Theorem 4.7 will be used in the follow-
ing theorems.to reduce. the uppér bound for g(4) . This method consists
of refinements of the upper bound which can be established from some.
integer on. For the numbers up to that poiﬁt, the result is established
by direct calculation. Baer's [3 ] proof that all integers < 934 - 456
are- 838‘ will be necessary to complete the proof of the remaining
theorems of this chapter, and will be assumed.

In his proof of g(4) < 41 , Lucas [29] states how many biquad-.
rates each residue class modulo 48 requires, but he does not show this.
Appendix A was made up by this writer to complete the proof of Lucas:

It should be noted that Lucas states 48h + 45 = B g when he - could

3
have proved that 48h + 45 = B37 , -as is shown in Appendix A.

In Theorem 4.7, integers of the form 48h + 11, 48h '+ 27, and.
48h + 43 require 41 biquadrates, and those of the form 48h + 10,
48h + 26 , and 48h + 42 require 40 biquadrates. For the upper
bound .of  g(4) - to be‘reduced‘to 39, these integers would have to be

expressed as.a sum of fewer biquadrates. This will now be proved using

- the method. due to Fleck [15].

1Sée;.A.ppendix,A
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Theorem 4.8, g(4) <39
Proof: From Theorem 4.7, it will be sufficient to prove that 48h + r
(r = 10, 11, 26, 27, 43, and 42) = Bzg -

Now, .

48h + 10 = 48(h - 2) + 24 + 82

48m + 24 + 34 + 14

6°4(2m + 1) +_34 + 14 ,

where m=h -2 ., If 2m + 1 is not of the form 8n +:7 , then

6:4(2m + 1) = B by Corollary 4.3. Hence, 6-°4(2m + 1) + 34 + 14 =

36’

Bzg * B, = Byo . Suppose’ 2m + 1 =8n + 7. Since 14 - 54 - 13.48,
48h + 10 = 48m + 24 + 3% + 1
= 48(m - 13) + 24 + 5% + 1%
= 6:4[8(n - 3) + 5] + 5%+ 1%,
By Corollary 4.3., 6°4[8(n -:.3) + 5] =\B36_,'and
6:4{8(n ~ 3) +.5] + 54 + 14 =B36v+ B2,=-'»B38 .
Therefore, * 48h + 10 = B38 .
Similarly,
48h + 26 = 48h +-24 + 2°14

6:4(2h + 1) + 2.1% .,

If 2h-+ 1 #8n +.7, then 6°4(2h + 1) ='B36 . .. Hence, '

6°4(2h + 1) + 2°14-= B38-°
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Also,
4 4
48h + 42 = 6:4(2h + 1) + 2" + 2.1 = B39 .
if 2h+1=8n+ 7., Let 2h + 1= 8n+ 7, then
4 4
48h + 42 = 6:4(2h + 1) + 2" + 2.1
= 6:4[8(n - 3) + 5] +.S4 + 24 + 14
= B39f’

Then, 48h + 42 = Bsg,'

Finally,

48h + 43

*

2:3 +1

6-4[2(h - 3) + 1]

= Bgg >

if 2(h-3) +1#8+7 . If 2¢h-3)+1=28n+7,

48h + 43 = 6.4[8(n - 3) + 5] + 5% + 2.3%
=<B39 .
Therefore, 48h + 43 = By .
Now,
, 4 _
48h + 11 = 48h + 10 + 1" =B, ,
39
and
48h + 27 = 48h + 26 + 1% = B, .
39
Consequently,

g(4) < 39 .

Therefore, the theorem is proven,
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In Theorem 4.8, the integers requiring 39 biquadrates, are of the
form 48h +.r (¢ =:1, 11, 17,25, 27, 33, 41, 42; 43). In order to
prove g(4) < 38 , the above integers would have to be shown.to be.

B38 . - Several lemmas, necessary for Landau's [ 4] proof of g(4) < 38,

will now be established. :

Lemma 4.9. Any odd integer is .of the form X§'+ x§'+ 2x§ .

Proof:. Let n- be an arbitrary integer. Then any number of the form
4n + 2 1is not of the form 4r(8£ +7) . Hence;, : 4n + 2. is the sum
of three squares, by Theorem 2.13. Let. 4n + 2 = a2 +.b2'+ c2 o

Since: 4n + 2 'is not.divisible by 4 , this implies that a; b, and c.
cannot all be even. - However, 4n + 2 is even, therefore the number |

of odd integers among a, b, and ¢ must be even. Let a and b

be .odd, then ¢ must be even.. The integers a +b and a - b are

even. Hence, a + b »2x1 and a - b = 2x2 ;".Now;\'a'=.x1*x2,»

b =x =X, s.and if ¢ = 2x, ,

1

]
foi
5
o
N
+
(¢}

4n +°2

]
~
>

+
>

"
N
bl

Therefore,

2n + 1= xz + x2

2
1t Xt 2xg

and the lemma:is proven.

2
2 1

Proof:. In~Lucas' identity in Lemma 4.1, let" xz=x4‘.' Then - (XS-X4)4=09

_ 2 2,2
Lemma 4,10, 6(x1 + X +“2x3) = B1

and one of the biquadrates in the identity is .zero. Therefore,
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2 2.2 22 ,.2. 2. .22
6(x1 * Xy b Xp o+ x4) = 6(x1 X, E 2x3)_.,--,_B11 .
Corollary 4.11. If u is an odd integer, 6u° =B, .
Proof: Let u be an odd integer.‘ By Lemma 4.9., u = xi + xg + 2x§ .
Hence, by Lemma 4.10, 6u2 =-B11 .
Lemma 4.12. If u is an odd integer, - 24-4u2'= By -
Proof: If u is an odd integer, u =-x§ + x§i+ 2x§"by Lemma 4.9,

Now,

24.4u° = 16°6u’

2

2, .2 2
= 4 6(x1:+ X,

2

< olxp? + (227 + 20x°T

2

76(a2 +b +.2c2)2'

]

Byy o

by Lemma 4.10. -

Lémma‘4.13f- Let  8n.+ j = xi + xg + xg‘.‘ Then, ‘one of the-‘xi\ is:

odd if j =1 ‘or 5, two of the X areodd if 'j =2 or 6 , and

all the Xy are-odd if j = 3 .

Proof:” If 8n + j = xi + x§_+ xg , then j =1, 2,°3,4, 5, or 6, by
Theorem 2.13. If X is an odd integer, xi £ 1 (mod 8), and if Xy
is even, . xg £ 0 or 4(mod 8). If exactly one of the: X; is odd,  then
x§'+;x§f+ x§ = 1 or 5(mod:8). If exactly two of the- x; are odd,

2. .2 2 _
X] + X, + Xy = 3 (mod 8) .

48h + v (r.='12, 36) =/B_., , and

Lemma 4.14. 48h + 18 = B 54

33 °

48h + r (v = 6, 30) = By .
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Proof: By Lemma 4.13, 8h +'1 is the sum of three squares of which one

is odd. Hence,

48h + 6

]

6(8h + 1)
= 6(x2 + y2’+.z2

)
= 6x° + 6y2'+ 62°

= Byy * Byy + By,

= By >

by Lemma 4.1 and Corollary 4.11. : Every integer:of the form 8h + 2 is
the sum of three .squares, two of which are odd.

Therefore,

48h + 12

6(8h + 2)

= 6(x2 + y2'+ zz)

=Byt Byt By

= B34 .

Since: 8h + 3 is the sum of three odd squares,

48h + 18 = 6(8h + 3),=‘B1j1 +¢B11'+-Bil’= B33 .
Similarly, -

48h + 30 = 6(8h + 5) = B, + By + By = Byg s
and .

48h + .36 = 6{8h + 6) = Bll * Bil + B12 = B34 .

Corollary 4.15, 48h +'1 = B37 , and 48h + r (r'="11, 17, 33) = B38 .

Proof: By Lemma 4,14,



69

48h + 1 = 48(h - 4) + 30 + 2.3% = B

37 7
agh + 11 = 48(h - 2) + 25 + 30 + 1Y =B,
48h + 17 = 48(h - 2) + 30 + 3% 4 21t a
48h + 33 = 48h + 30 + 3-1% = B,

38 °
Lemma 4.16. Every integer of the form 8h +'5 or 8h +6 ‘is the .sum

‘of three squares, of which one is twice an odd integer.

Proof: If n =5 (mod 8 , then n = x% + xg + xi,
2

2.2 0 (mod 8), and x§ = 4 (mod 8); by Lemma 4.14. Now, xg=2t,
Suppose. t is even (t = 2r), ‘then xg" z

which is a contradiction. Thus t is odd. By the 'same lemma, if

where X; is

odd, x

HE)

= 4t% = 1622 = 0 (mod 8),
_ ‘ ‘ 2 2 .2 _ : ‘

n =6 (mod 8), ‘then. n =Y vV, * Yz where Yy » ¥, are odd; and

y§ Z 4 {mod 8). Since: Y3 = 2k , suppose. k is even (k = 2s) .-

2 2

Then y§'= 4k™ = 16s” = 0 (mod 8) , which is a contradiction. Thus

the ‘lemma follows.

Lemma 4.17. ‘48h + 25 = B

36 °
Proof: Let u-= 48h + 25 where 'uv>v134 .~ Then.
u - 14 = 48h + 24 =24(2h + 1) ,
u- 5% =48h - 600 = 24(2h - 25) ,.
u - 74 =-48h = 2376 = 24(2h ~99) ,-
u -~ 134 = 48h -28536 = 24(2h ~ 1189)

The integers. 2h + 1, 2h - 25, 2h - 99, 2h - 1189 are-all positive,
and one of them is congruent to five modulo 8.. Suppose h = 4n , then

8n - 1187 =

2h'- 99 = 8h - 99

5 (mod 8).. If h=4n+1-, 2h -~ 1189

5 (mod 8). If hs=4n+.2, 2h + 1

HH

8n + 5 (mod 8). Finally, for

h'=4n + 3, 2h - 25 =-8n - 19 =5 (mod 8). By Lemma 4.16, one of the
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integers 2h + 1, 2h - 25, 2h - 99, or 2h - 1189 : can be expressed as’

the sum of three squares ‘of :which one is twice an odd number. Therefore,

2

24(8t + 5)- 24(x2 ¥y + zz)
24((2w)% + y* + 2

24 4u®

+ 28y% 4 247°

24-40% +6(2y)% + 6(22)°%

= Byy *Bip * By
= Bgg s
by Lemmas 4.1 and 4.12, Hence, u = 48h + 25,='B36 .
Corollary 4.18. 48h + 27 = B38 , 48h + 41 ='837 , and 48h + r
(x = 42, 43) = Bgg .
Proof: By Lemma 4.17,
; . w4
48h + 27 ='48h + 25 + 2.17 ='B.o ,
ash + 41°= 48h + 25+ 27 =B,
48h + 42 = 48h + 25 + 2% + 1% = Byg
48h + 43 = 48(h - 3) + 25 + 2.3% = B .

Theqrem 4119.

- g(4) < 38

Proof: The integers which require 39 biquadrates “in Theorem 4.8,

are of the form 48h + 1, 48h'+ 11, 48h +:17, 48h"+ 25, 48h + 27,

48h + 33, 48h + 41, 48h + 42,'and 48h + 43, By ‘Lemmas 4.14 and 4.17, -

and Corollaries 4.15 and 4.18, all of the above "integers ‘are the sum

of not more than 38 biquadrates.

Lemma.4.20;

Proof: Let u

~48h +:1 where u > 13

48h +1 =B
4

36
.. Then
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u - 1% = a8n = 24.2h
u- 5*eash s 624'= 20(2n < 26)
u- 7%=48h - 2400 = 24(2h - 100)
' 4

“uw - 13" =48h - 28560 = 24(2h - 1190) .

The integers 2h, 2h - 26, 2h - 100, and 2h - 1190 are all positive.

Since:
2h - 26 =8n- 262 6(mod 8) if h=4n ,
2h - 100 =8n - 98 = 6(mod 8) if h = 4n + 1 ,
2h - 1900 = 8n - 1186 = 6(mod 8) if h = 4n + 2,
2h =-8n + 6 = 6(mod 8) if h = 4n + 3,

one of the integers 2h, 2h - 26, 2h - 100, or 2h - 1190 is congruent

to 6(mod 8) .. Hence, one of these integers is equal to x2:+ y2 +‘zz

where x is twice an odd integer (x = 2k) , by Lemma 4.8. Therefore,

24(x% + y% +'2%) = 24-41% + 6(29)° + 6(22)°

B,, + B + B

11 12 12
= B35 >
by Lemmas 4.1 and 4.12.  Thus u = 48h +°1 = B36 .
Lemma 4.21. | 24m + 9 = 836
Proof: Let u = 24m + 9 where u > 21* . Then
4 :

u- 3 =24m -. 72 = 24(m - 3,

u- 9% = 24m - 6552 = 24(m - 273)

u - 15% = 24m - 50616 = 24(m - 2109) ,

u - 214 = 24m -194472 = 24(m ~ 8103) .
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Since -

m - 3 =8k - 3.=5(mod 8) if m = 8k

m- 3=8k=- 2=6(md8) ifm= 8k +.1
m - 2109 - 8k - 2107‘=-5(mod 8) ifm=8k + 2
m - 2109 = 8k - 2106 = 6(mod'8) ifm= 8k + 3
m - 8103 = 8k - 8099 = 5(mod 8) if m = 8k + 4
m - 8103 = 8k - 8098 = 6(mod 8) if m = 8 + 5.
m-. 273 =8k - 267 = 5(mod 8) if m = 8k + 6
m- 273 =8k - 266 = 6(mod 8) if m = 8k + 7 ,

one of the .integers. m - 3, m - 273, m - 2109, or m - 8103 is congruent.
to 5 modulo 8 if m is even, or if m is odd, one of these integers is
congruent to six modulc 8 :. Hence; one:of the numbers m -3, m - 273,
m - 2109, or m - 8103 is the .sum of three squares ’(x2:+'y2 +222) s

where x is.twice an odd integer (x = 2t) , by Lemma 4.16. Thus,

2 2

282 +y% 4 2% = 24042 4 60202 + 6(22)°

)

Bip *Bia * By

= Bgg

by Lemma 4.1 and 4.12. Therefore, u = 24m + 9_="B3~6 .

Lemmai4.22, Ail integers of the .form 48h +:1or 48h + 33 can be-
represented by at most 34 biquadrates.

Proof: For every integer of the form 48k + 1-or-48k * 33, one can’

find ‘16 integers ai(i =1, 2, ..., 16) such that "1 - ag

and.
33 - a?» is ‘of the form 480ci , wWhere oy takes on every value in the
least positive residue class modulo-16. This is shown in the following

table:



a; 15 7111317 19 23 25 29 3137 43 49°55 61

»l-ag ‘

75 =3[0 3 14 1513 4 510 6 1 811 712 2 9 (mod 16)
a, ~ |39°15 21 27 33 39 45 51 57 6369 75 81 87 93

35-a

1

=515 8 213 1141211 3 4 6 9 5 10. 0 7 (mod 16)

48

For convenience, the symbol

1 ¥ will be used to mean 1

. 33

or 33
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For each o, in the table, there exists an ai , ‘Where 0 <ay g 93 .,

S o
{33} - a; = 480, (mod 48:16) .

and
Let.

1 4
then . {33} - a;

where k 1is.some integer. -

48h + 33 ,ithen

by Lemma 4.13 and Corollary

o, =2 6 - h (mod 16)

48-16k +.48(6 - h) ,.

If s is of the form 48h + 1 or

4.

. 1
48h + {33} - a,

4

‘48.16k + 48:6

2%.6(8k + 3)

4 2 2 25
2_-6(u1 *u, + u3)
4 .

2 (B11 +.B11 + Bll)
24-B

33

11. Since. 24;x4'=.(2x)4 s 2

also the sum of 33 biquadrates. Hence;

4g

33

is
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4
$=2; =Bgg ¥ By .
It was ‘assumed above that' h > -1 . Then, s - ag > »480 and
s > 934 - 480 , since 0 < ai,s 93 -. It has been proven that-all
integers of the form - 48h + 1 or 48h + 33‘,fwhich‘ére >‘934‘-'480 ,
are‘B34 .
Coroliary 4.23. 48h -+ 17’=lB35
Proof:
- 4 _
48h + 17 = 48h + 1 + 27 = By, .
2 2 2 2.2 .
Lemma 4.24¢‘ 24(x1 X, + Xz + x4)__- 31&,
Proof:
2 22 x2 e x5? , 4 | a4
24(x1k+ §Z?+ Xz + x4) = ( 1Y Xy r X H x4) A+ (x1 X, + Xg _x4)
+ (%, + X, ¥ X, - X )4 + (%, =~ X +~£ +.X )4'
1 2 T3 T4 1 2 3 4°
+ (X, + X, - X, +°X )4 + (X, =X, =X, - X )4
1 2 3 4 ! 2 3 4°
+ (Xq - X, -~ X, + X )4 4‘(x‘ - X, - X, - X 34'
1. 2 3 47 7M1 72 3 4
4 4 4 4
+ (2xl) + (2x2) + (2x3) + (2x4)
= B12 .
= 2 2 2.2
»Corollary.4.25. 24(x1 + x2v+ x3) = B‘11 .
Lemma 4.26 agh + {0} = B ’
— 257 T P35 *

Proof: [3] Let s. be an.integer of the form 48h +.9 or 48h + 25.
Then, s.- 24 1is of the form 48h + 33. or 48h + 1 , By Lemma 4,22,

there exists an integer a; > 0 such that
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s - 24 - ag = 2%.6(8k + 3)

where k 1is a positive integer. Now
s - ag_= 2. 6(8k + 3) + 24 = 24(32k + 12 + 1) = 24(16L -+ 13)

where L = 2k -is an integer 2 0 . Since 16L + 13 =5 (mod 8) ,

16L + 13 =_v§ + v§‘+ vg‘. If v is én odd integer, v =1 or 9.
(mod 16), and if v is even, then v = 0 or 4 (mod 16). Therefore,
Vi,+ vg + vgvs 13 (mod 16) implies that one of the squares, say vi s
is £ 9 (mod 16), a second square, say vg; is = 4 (mod 16}, and
vg z 0 (mod 16) . Hen_ce,.v1 = 30r 5 (mod 8), 2 22 or 6 (mod 8},
and.‘v3 =0 of 4 (mod 8)‘. By Theorem 2,13, vy and v, are the -
sum of three squares, and by Theorem Z.S,av3 is the 'sum of four squareg;'
Therefore,

s = ag + 24(16L + 13) = ag + 24(v§‘+ vg + vi)

=By +Byy ¥ Byt By,

B

35

by Lemma 4,24 and Corollary 4.25.
Since k > -1, s >’934 - 456, It has now been proven that
every integer of the form 48h + 9°or 48h + 25°, ‘which is > 934 - 456,

is Bag - Thus, the lemma is proven

Theorem 4.27. g(4) < 37 .

Proof: 1In Theorem 4.19, the- integers which require 38 ‘biquadrates
are of the form 48h +r (r = 1, 9, 11, 27, 33, 42, 43). By Lemma.

4.22, 48h + 1 =B and 48h + 33 =B Since 48h + 9 and 48h + 25

34 34 °
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are- B

35‘,'by Lemma 4.25, then
4 4
48h + 11 = 48(h - 2) + 25 + 3" + 1’ = By
48h + 27 = 48h + 25 + 2-14 = 837
48h + 42 = 48(h - 1) + 9 + 37 = B,
. o . <4 4
48h + 43 = 48h(h - 1) + 9 + .3 + 1 = B37 .

Therefore, every integer can be expressed as the sum of 37 or less
biquadrates.

The upper bound of 37 fpr g(4) 1is still distant from Waring's
conjectured value of 19. Chandler [5 ] proved that g(4) < 35 by
extensive analytic work which involved proving tﬁat’all integers
< 1026 are B19 . This result has not been improved on in 36 years,
indicating why - g(4) = 19 'is regarded -as the.most difficult portion
of Waring's conjecture. |

From the theorems and lemmas of Chapter IV, it appears that 35
is the best result. that can be obtained using present information.
There appear to be several possible approaches to take‘in reducing
35 towards 19. One method would be to find new -identities which would
yield better results than those used in Lemmas’4:1'and'4.?4; Mény‘@f
the theorems of Chépter IV are dependent 'on the representation of an
integer'as;the:sum of "a minimum number of squares. "If more was known
aboutvthe_representations’of integers as ‘sums 'of ‘squares; it -appears

quite likely that the upper bound of g(4) could be reduced.



CHAPTER V
FIFTH AND SIXTH POWERS

The techniques involved in estimating g(k) for k =.5 and 6 are
similar to and more complicated than those used for k = 3 . In both
cases an algebraic identity plays an important role, Some of these
results and arguments are outlined here. A more detailed discussion
of these cases can be found in [53], [16], [25] and [ 3].

In his article "Zur Darstellung der Zahlen als Summen von sten
und 7%°" Potenzen positiver ganzer Zahlen", Wieferich [53] proves that
g(5) < 59 . This proof is not algebraic, as were ‘the pfoofs for squares
and fourth powers, and is thus more difficult to follow. Wieferich's

545

proof consists of showing that if z > 2 , then subject to certain
1

restrictions, integers e, A, B,, and z©. ‘can be found such that

1
(5.1) Z =g + A5 + Bi + z1 .

It will be pointed out later that the number e 1is 0 or 1 , and that
zl is the sum of at most 56 ‘fifth powers. It will then follow from f
:(5}1)that g(5) £ 59 . The integers < 2545 are shown to bé the sum of
vat most 59 fifth powers by construéting suitable tables to cover

this range. Wieferich does not give the reasoning behind his proof,

he merely states that he can always find over forty numbers, subject

to certain conditions, by which he can define A, Bl’ and z1 in (5.1).

If 2z 1is a positive integer, Wieferich ingeneously develops

77
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various equations with restrittions on their 'variables until he obtains

5 1

zZ =g + AS + B1 +°Z

where € 1is chosen as. 0 if =z is odd, but e¢. is 1 if z is even.

The number . B, has been arrived at by a complex process

1

5 5. V+8+n 5
B1 '

= 157 . 2 - B

where v is.determined by

P+Q<z-c¢c«< 2° (P + Q)

for

v+ 7 2v- 6,

p=15-2""%"7 (2 v+ 6

1377 +°1)° = 1579+ 2"

5.25V + 50

Q=15

and n- is.determined by

n=2,34,5,6

0 (mod 5) .

i

v+ 3+ n

The term. B 1is chosen in such a.way that

0 < Ml <j24v - 18

where

M, = M- 15%.2".B

5
1 .

The number M- is of the form 4N + 3 ‘and is dependent on the choice
of A,

A =z -e-P-15.2" ¥ 8 .y
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where A 1is determined such that

0<A<i1s2V* 8,

The restrictions on these integers imply that v is.greater than

95 . If z > 2545', v  is greater than 95 , thus the theorem will

be proven for z'> 2545 .

The only remaining letter in (5.1) to be explained is. 21 » Which
is probably the most important term in the expression. Wieferich

defines- zl' to be

v +°3 2v

152 . 5[432%V 4 yfi . ygi v y2.1° (gPV * 6

331 - 1579
3 : ' v.— 2
where y . are numbers such that Yyi <2 .

If a, u;,, Vi, W, are any numbers, the following is an identity.

_ 5. 5 5. o 5
A, = (8 + ui) + (80 - ui) + (8o '+ vi) + (8 - Vi)

1.
5 5 , RS-
_+ (8a + wi) + (8a.- wi) + (o *u, + vy + wi) ;
. _ 5. ... N
+ (o - u, v, - wi) *- (o - u v, wi)'
+ (o0 ¥ u, - v, --w )5 + (o Fu, =v + w.)51
i i i i i i
+ (6 -u, ¥v, -Ww )5 + (0 *u, + v, -w )5
s T | ' R S
.2 5
*(a- 3 Vi +W.)
= 20(60 [43° + u] + v + wi1? - 8:15790)
Then
4 4 o
5OA, =1520 « o 1 [43-0% + ul + vZ o+ wi)? 2 20 . 157840° .
o 1 1 1. 1 )
i=1 i1=1 .
If

@ =20, Uy =Ypgs Vi oS Yoqe Wy B Vg o
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Then
N (4322 4 y2. a4 4yl 12 2°-1579-2°Y
DR I - RMRAT RMRA TRMRS TE oo
i=] i=1 ,
xThU.S;
4
I Ai‘= z1
i=1
: 1 4
Ay is the sum of 14  fifth powers, .and 2z~ = Ai is the sum
i=l
of at most 4:14 = 56 fifth powers. Since :
z'= g + A5 + B§:+ 21 s
Wieferich thus concludes: that any z'> 2545 can be ‘represented by the .

sum of at most 59 fifth powers.

Wieferich then constructed a table that showed that the numbers
from 1 -to 500 can be ‘represented as ‘the sum of "at most. 37 fifth'powérs~
and the numbers from'SOO“to'S,OOO“can:be’fepresented“by the sum of at
most 28 fifth powers. To establish that g(5) < 59 , it remains to
show that all integers between 3,000 and 25'45 ‘¢an ‘be expressed as.the
sum of 59 or less fifth powers.

545

Wieferich established that-all integers 'z < 2°%° “can be written

as ‘
(5.2) z= A

where z,,.< 50,000. This equation plays an important role in Wiefe-

22

rich's proof. If 2z can be represented by equation (5.2); then z-

is the sum of 22 fifth powers and.vzzé R Z3p. could be shown to

be the sum of fewer “than 37 f£ifth powers, then it 'would follow that

z  would be the sum of at most 59 fifth powers.
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Therefore; to complete Wieferich's proof that g(5) < 59 , it must

be proved .that all integers 7 < 254Scan’béafépresented‘"by (5.2), and

that - Z5y be proven to be the sum of fewer than 37 fifth powers.
- 545 S
Lemma 5.1. All integers 1z < 2 can.be represented by
45 . 45 5 5
z=Apr Ay Ay Aty
where 222 < 50,000 .
, -
Proof. Let 2=z A1
By a suitable choice of Ai it can be arranged "so that
2 < S°z4/5
) S
If 2y =29 - A2

by choice of" A2 , it can be arranged that
4 4 42 - 4

T v 1.5 &

z, < S'Zi <5 5S . zs‘ = 51'+‘5 . z-5

For =z, = 2z, - Ai Wieferich found that he could make:

3 2 .
4 4 a2 @
‘ZS < 5 . Zg < 5 ]- + 5 + 5 A °

By continuing this process he found that

“ 4 4. y~2 4.v-1
1+F% ..+ B 2
.z <5 : .z
v-1 :
5 R . s o
; = - : . e
Let 2y T Zyq AV .. By-a suitable choice of Av ; it can be arranped
that
, 1 v
4. 4 e
= =+ .., +(z) 5
z. <5z <5t *tO > z
v v-1

or
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v A ) A

‘ 4, 4 4

@ ® : ()
z < gd = 55T L s5 L=z 5
v o 5

5
If the upper bound of. 2545 is used for z and if =z = 22 , then
g 545 (%422'
Z, <57 o (Se) < '50,000
22 55

Now that it has been shown that Zon < 50,000 , it remains to be proven
that z,, is the sum of at most 37 fifth powers. This was established

by Wieferich [53] in the following way.

Lemma 5.2, If z,,.<°50,000 , then z,,. is the sum of 37 "or fewer

22 22

fifth powers.

Proof:. Let z < 50,000 Iz

2 22 22 ¢

3,000 , then from the previously mentioned tables, 'z22fi5'the‘sum of

2 be an integer such that =z

at most 37 fifth powers.

Let "3,000:< 222j<*50,000 .
If 33,500 < Zyy < SO;OOQ’,

5 o ae L
let , Zyy = 8 A 32,768 + Zyg -
if 17,500 < 222“<'33;500 s

- 77 e
let 222.—,7 Y 16,807 + Zyz
Then © 500 < z23'<'17;500 .
If 85500 .5 2,5 '< 17,500 ,
oo ed - - :
let 2,3 = 6" + Zo4 = 7,776 + Zog -
This implies that 550 < z,, < 10,000
If 4,000 < Zoy < 10,000 ,:
» 5
set 224 = g.° 57 +‘226
= ¢ * 3125 =+ 296

where .= 1 or 2 .
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500 < z,. < 4,000,
If- 3,000 < Zog < 4,000 ,
set Zy6 = 4+ Zy7
= 1,024 + 'z, ,
then 500 < Zyy < 3,000 .
Thus 227 is the sum of 28 or fewer fifth powers. Therefore, zéz

is ‘the sum of at most 37 fifth powers.
By using Lemmas. 5.1 and 5.2 a final result dealing with fifth

powers can be- obtained.

545

Theorem 5.3. All integers 2z < 27 can be ‘represented as the sum
of 59 or fewer fifth powers.
Proof: Since 2z:.< 2545 , by Lemma 5.1
5 5. 5 5
R T IR R ? B P
where Zoo < 50,000 . By Lemma 5.2,-Zé2 ‘is "the sum of 37 ‘or fewer

fifth powers. ‘Therefore, 'z 'is the sum of at most™ 22 + 37 = 59
fifth powers.

Sixth pwers seem.to have a‘special'significance*in'Waring‘s
conjecture. .. The first general determination of g(n) 'was accomplished
independently by Dickson [11] and Pillai [39]. Dickson determined a
formula for g{n) 5Esubject"to'certain‘restrictions; for n> 6 . The:
following chapter outlines the results in this case: "Thus, g(6) 1is
the -one remaining value of g(n) to be‘'discussed.

Fleck [16] made the first important contribution concerning sixth
powers when he proved that g(6) < 184=g(3) + 59°.° This was.a notable.

stép because it proved that g(6) was finite, and it also gave a
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method by which the problem might be attacked. "An integral part of

this method was the construction of the following-idéntity:

60'(a2'+‘b2 s cte d2)3 =

(a+b +'c)6"‘+‘(-‘-a"+‘bv+‘c)6 * Ca‘—"bh+"c)6 ¥ {a+b - c)6
ta+b+d+ carb+rd® s (a-b+d s ar-D°
+ (a'+ c ¥ d)6 + (-a + ¢+ d)6,+ (a - ¢ +;d)6 +:(a+c - d)6
+ (b +1ci+’d)6i+»(-b + ¢A+ d)6 + (b - c,+"d)6 + (b+c ~ d)é
+ 2{a + b)§ +*2Ca - b)6 + 2(a + c)6 +“2(a'—:c)6

: 6 6 . o 6 .., 6
+2(a+d) +2(a-d) +2(b+c) +2( -~c)
220+ 0% w20 - 0% s 20+ 0% v 26e - 0°

6

+ 36a° + 36b6 +-36c6

+ 36d6 .

where the»riéht hand side is the sum of 1:16 + 2.12 + 364 = 184
sixth ‘powers. By Theorem 2.2, any positive integer may be expressed
as the sum of- a2 + b2 + 62 ¥ dz;. Thus'thé{following lemma ‘has been

proven. .

~Lemma 5.4. If-m iSfany.positive.integqr,vthen' 6On3'

cah be expre-
Ssed"as”theasum“of“184{sixth powers, -

* This lemma was.not discovered by accident:: Fleck specifically

attempted to express (a® + b2+ o 4 d2)3,

or-amultiple of it as
the sum of'sixth»powerS“of'the*form"(aa + Bb +‘yc1¥ 6d)'6 . The:
coefficients o, B, y, & must.be so determined that in the expanded

2 ,.g2y3

sum- of - (a2 +,b2 +C , all'the terms which contain odd
powers of a; b, ¢, d. will disappear. With these ideas in mind,
Fleck derived a ‘method which determined the"a;“B,'y? and . § , as

illustrated in Lemma 5.4. With this lemma, an upper bound for g(6)
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can be found, 'as is proven in the following theorenm.

Theorem .5.5. §(6) < 184°g(3) + 59

Proof: Let: m be any positive integer:. Then.

3 5 3
60m = 60(n1 *n, ot +;ng(3))
3 3 3
= 60n1 + 60n2.+ ..,:+,60ng(3) .

By -Lemma 5.4, each ﬁOni "is the sum of 184 sixth powers. Hence,
60m is-the sum of 184-g(3) 'sixth powers. Since-any integer is of
the form 60m + », for ».=0,1, ..., 59 , it follows that

| g(6) < 184-g(3) +.59 .

Corollary.5.6. g(6) < 1715

Proof: Since g(3) =9, g(6) < 1849 + 59 = 1715,

| The proof that'>g(6) < 1715 is far-from a proof of g(6) = 73 ,-
but ‘it -did inspire*Kempner'to'approach'thefprobiem in a manner similar
to that used by Fleck.

* Kempner- [ 25] derived the following identity:

(5.5)120(a2+b2+c2+d2)3'=(a+b+c+d)6+(a-b+c+d)6‘.%(a+b;c+d)6+(a+b+c—d)6

+(a-b-c+d)®s (a-brc-d) O+ (arblcad)® (ab-c-d)®

6 6 6.0r. . 6 6 6
+8(a+b) +8(a-b) +8(a+c) +8(a+c) +8(a+d) +8(a-d)
+8 (b+e) 48 (b-c) 048 (o) ®+8 (b-a) Ov8 (c+a) S48 (c-a)®

+2a)% s 2%+ 20% ¢ 28 .

There are: 8 + 8°12 + 4 =108 sixth powers on the right hand side of

this‘identity. = This proves the following Iemma.

'Lemma-5,7; For any positive integer n , 120n3* is .the sum of 108

Lo
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'féiXth powbrs.
With -this lemma; it was easy for Kempner [25] to improve on Fleck's
results, as is shown in the following theorem.

‘Theorem 5.8. - g(6) <108 g(3) "+ 119

Proof: If m is any positive integer ,

. 3.3 3
120m =-120 (n1 0, ot T-ng(S))
 1oan 3, 3
-‘120nl + 120n2 L +;120ng(3) .

Each . 120n§ is .the sum of 108 sixth powers by the previous lemma.
Thus, 120m is the sum of 108-g(3) sixth powers: Any integer is of

the form 120m +r , where 1 =‘O; 1, ...,119 .

Therefore , = - g(6) < 108-g(3) + 119 .
* Corollary 5.9. © - g(6) < 1091
Proof::. Since g(3) =9, g(6)“s"108f9’+‘119“= 1091 .

" An integral part of Theorem'5.8 is the representation of n, as
‘the .sum of four squares. "If ‘ni"GOuld be“exﬁressed”aS“the-sum of
fewer than fourtsquares; it ‘would follow that'j120n§5.could be repre-
sented»by fewer“thaﬁ‘ 148 'sixth}pOWers;’and‘the'upper’bound for g(6)
could ‘be reduced. "As in Chapter IV ; Theorem 2.13 and Lémma 4.9
appear to play a significant role in the ‘reduction of " the upper bound
for‘ g(k) . Once again, the iﬁportance"of knowledge "concerning the
representdtion of a number as the sum of squares is emphasized.
Kempner.[ZS] used Theorem 2,6 and Lemma 4.9 to prove.the following

theoren.

Theorem 5.10. g(6) < 107-g(3) +:0- (0-<a g 119)
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Pfoof:«jBy=Th¢orem 2:137and "Lemma 4.3 every integer "is-of "the form
azt+.b2 +”02”10r“of“the,fofmT a2 +‘b2ﬁ+?2c2*-v“1f “h =-"::12 * b2 +-c2

is used in the identity of Lemma 5.7; this implies that d = 0 and
_120n3 will be the sum of . 107 sixth powers. If n = a2,+ b2+ 262 R
then ¢ ='d in’(S;S)“and'since-“8(c -'d)61%’0.,‘the?right hand side

of the identity will be .composed of 100 sixth powers. - ThuS“all,iﬁt@gers~

can be represented by at most. 107-g(3) + o (0-< o < 119) sixth powers.

Corollary 5.11. g(6) < 1026

o can.be expressed in the form. B - 26'+ v , where B is O or 1 .

Then the maximum number of “sixth powers occurs when B8 = 0 and

v = 63-1° . Hence, 107-g(3) +.a = 107-9 +-s--26h+1y < 963 +63

1026.
In.mostfelementary«teXtfbooks*on"number”theory'cqngruences'play
a very important ‘role, 'and the Chinese Remainder Theorem is:also
regarded as an essential topic. ‘The proof of “the following lemma is’
an egcellent;illustration“of“theLapplicationiof'several'of.the proper-
ties of congruences and also includes’a‘ﬁfgctical'application"of the
Chinese'Remainder“Theorem;~ This "lemma could thus-serve as a useful
supplement to any first“course-in'number'theoryb

If A is any positive integer, the congruence.
(5.4) A= z? + 2z

6 -6, _
g et 2y (mod- 120)

is sdlvable, since the congruence A = y? + ygf+‘.:; +-yg "is solvable
. !
modulo 3, 5, 8 by Yys eres y7,'yi, saos y;:, yg, eioy y; and the-

solution of the congruences:

zi:E Y3 {mod 3)
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[
A

=y} (mod5)

N
i

iyg (mod 8)

satisfy (5.4). For example, let A = 1607 .' Then

1607 = 2 (mod 3)

1607

2 (mod 5)

1607 = 7 (mod 8)

Thus, "y, =y, =1, y;= .. =y, =0,y; =y, =1 ,y;=...2y;=.
0, and ‘yY = 5.= - y9‘= 1. By the Chinese Remainder Theorem,

the values of zy may-be found by solving the simultaneous congruences '

zy 2 1 (mod 3) zj = 0 (mod 3)
2,21 (mod 5) 2,2 0 (mod 5)
zs = 1 (mod 8) Zj z 1 (mod 8)

b
=

(o]
P

.
-
I

=1, 2, and j =-3,°4,5, 6, 7 . Hence; zy = z,'= 1,
e o | _ a6, 46 a6 o6
Zy =, =02, 0= 105 , ‘and 1607 = 17 + 17 + (105)" '+ ... + (105)" (mod

120) . The next lemma follows easily from above..
Lemma. 5.12, The congruence

- .6 6 ' 6 .
A= 2y ot et 2y (med 120)

+ Z

is solvable if: A "is any positive integer.

~ This lemma is'the core of Kempner's proof [25] of g(6) < 970 .

Theorem 5.13, g(6) < 970
Proof: 1In Lemma 5.12 , it may be assumed that- zs < 119 for

i=1, ..., 7. Let A= 7.1_196 . Then; by the above lemma , there
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exist seven sixth pbwers“whichfmay“be*subtracted;ffom:“Al,1and the
resulting positive’integer,will“be"divisible“ﬁy“ 120. - However, by
Lemma 5.7 and Theorem 5.10, ‘it is ‘known that“eveiyfpositive‘multipie.
of 120 can.be: expressed as the sum of 107:9 = 963" 'sixth powerso
Theréfore;ievery integer 3" 7-119 ‘can«be*represéhfed by means of
963 + 7 = 970 sixth poweréi “Thevintegers 05'7'1196 are the sum of
not more than 186 sixth powers as calculated by Baer [ 3]. Thus the

theorem is proven.



CHAPTER VI
THE IDEAL WARING THEOREM

In Theorem 1.1 it was proven that -

gk) > I(k)

where I(k) = zk * [(-g-)k]'- 2.,

If the values of I(k) are examined for k'=.2, 3, 4,5, and 6, it is
found thatJ I(2) =4, I(3) =9, I(4) =19, I(5) = 37, and I(7) = 73 ,
These values are not only lower bounds to g(k) , but it appears that
g(k) = I(k) in these cases. It has been conjecturéd that  g(k) = I(k)
for ‘every positive integer k , and this prediction has been called

the Ideal Waring'Theorem.

Let

kK k

3 [P T wr, 0crs2,

3.k 4.k
q=[G"] and £=[(].
Dickson [10, 11] and Pillai [39] independently proved that for k > 6
and k.» 7 respectively ,
X k- ,
(6.1) gk) = I(k) if r <2 -q- 3.
Dickson [11] was also able to prove that for k > 6 , if

r > 2k - q

then

90
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k

[

6.2) I(k) + f if 2

cgk) = K
I(k) + £ -1 if 27 < fq+ £+ q

fq + £ +q

It can be shown that for. r > Zk -q

then Y

Zk'< fq + £ + q .

Since Dickson's first proof was. for r.s.2k‘~ q - 3 and his second
one was for T > Zk.- q , it can be seen that there is -a gap to be
filled. ’

Niven [35] was able to prove

g(k) = I(k) if r=2""-q - 2.
Dickson [11] was able to show that with
Sk = 2k +q+1r 0 <rc«< Zk

it is impossible for r to be equal to 2k q - 1 . Rubugunday [43]
showed that r = Zk -'q 1is also impossible.

Thus,;, g(k) =-I(k) for r'flzk'- q-3 and for r = Zk -q- 2
and since r ='-2k -q-1 and r.= 2k - q are impossible, then it

has been proven. that

gk) = I(k) for r < Zk - q .

Since Dickson proved. (6.2) if r > Zk'— q, the conjectﬁied result
would need to be modified in this case. However, the Ideal Waring
Theorem would be proved (except for k=4 and k=5), if it could
be shown that there are no r such that r > Zk - q . This appears

very likely. Dickson [12] has shown that r s_zk'- q.- 3+ for
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4 < k < 400 , and Mahler [30] has proved that r > Zk - q 1is possible
for only a finite number of positive iﬂtegerS"k' if at all.

By using an IBM 7090 computer, Stemmler [47] was able to extend
Dickson's results. She was able to prove that up to k = 200,000 , it
is true that 2k.3 q *+ r and the Ideal Waring Theorem thus holds for
these values,

Mahler's proof is based on a theorem by Ridout [42] on rational
approximations of algebraic numbers. This theorem [30: 123] states:

Let [ be any'algebraic number other than 0 ; let

P ,';Qa,‘Ps, Ql’ .., Q. be finite set§ of.distinct primes;

and let aj B, v, ¢ be real numbers satisfying

0sasl,0<Bsl, y>a+B, c>0

Let p, q Dbe restricted to be integers of the form

h h k k.
1 s - L t
p = p* P1 ...PS s 04 = q* Q1 ...Qt s
where h., ...; h., k., ..., k. are non-negative integers

and p* ; q* are intégers satIsfying

0 < |p*] < % 0<q* <
There exists a positive number C depending on g, a, B, vy, ¢
and the primes P., o Qs ..., such that, for all p and q

of ‘the above form, -we have.

: i; -.§1> %y provided - E‘#‘O .

The cohstant: C used by Ridout can not be determined by his-method.
If € could be evaluated, it would be known whether Stemmler has
completed the proof of the Ideal Waring Theorem, or at least the value
of k to which her work .would have to be extended in order to complete
the proof.

Thus, the determination of  g(k) 1is now complete except for k=4

and 5, and the uncertainty whether or not r >,2k - q for any 1t ..
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