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CHAPTER I 

HISTORY OF WARlNG'S PROBLEM 

In 1770, Edward Waring [51] stated the famous conjecture which 

has become known as·waring's problem. In his book, Meditationes 

Algebraicae, under "Theorema XLVII", he states eleven propositions. 

The fifth and ninth of these propositions imply Waring's conjecture. 

They read as.follows: 

S. Omnis integer numerus est qmidratus; vel e duobus, 
tribus vel quatuor quadratis compositus, 

9. Omnis integer numerus vel est cubus, vel e duobus, 
tribus, 4,5,6,7,8, vel novem cubis compositus: est etiam 
quadrato-quadratus, vel e duobus, tribus, etc. usque ad 
novedecim compositus, et sic deinceps; 

The translation of proposition 5 is: Every integer is a square; 

or the s~m of two, three, or four squares. Proposition 9 states that 

every integer is either~ cube or the sum of two, three, 4,5,6,7,8, or 

nine cubes; every integer is also a fourth-power or the sum of two, 

three, etc., up·to nineteen fourth-powers, and so on; 

Proposition 5 and 9 are special cases.of what has come to be known 

as Waring's conjecture. This conjecture sta,tes that for·every positive 

integer k theJ:'e exists a smallest positive integer g(k), such that 

any positive integer n· can qe expressed as the sum of at most g(k) 

positive kth powers. Waring never actually made the general statement 

that today bears his name, and he 11ever-gave any proof or arguments 
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for his assertions.· It seems likely that Waring's original statement 

was made from the examination of a number of particularca$es. 
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Research relating to Waring's problem has been extensive. Basically 

it can be classified into the attempt to prove·tne existence bf g(k) 

and· the attempt to establish bounds and eventually an·· exact formula for 

g(k) ~ This thesis will give a brief discussion of the work dealing 

with existence for g(k) and will concentrate on the determination of 

a value of g(k) for k = 2, 3, 4, S, and·6. This work primarily 

involves algebraic identities and inequalities and should give the 

undergraduate qr·advanced high school·student some feeling for the 

elementary research methods which characterize the approach to this 

problem from 1772 to the present. 

Although Waring made his conjecture in 1770t it was not until 

1909, 139 years later, that Hilbert l22 ] was .able to prove the exis­

tence of g(k) for k in general, Hilbert's proof was based on 

considerations drawn from integral calculus and·. was quite complicated 

(using a 25 - fold integrai in his first paper)~ This proof was 

reconsidered and simplified by Hausdorff [21], Stridsberg [48], and 

Remak [41]. Remak actually succeeded in eliminating all reference to 

the integl'al calculus, and his proof, l;l.lthough not easy, is pureiy 

algebraic. Hilbert's proof was a tl'emendous breakthrough, for at 

that time it was only known that g(2) = 4 and g(3) ::;i 9, and there 

were no other proofs to indicate that Waring's conjecture was true. 

Unfortunately, the methods used by Hilbert were too specialized for 

general applications and did not contribute to any other notable 

results. 

Ten years after Hilbert's famous proof, G. H. Hardy [19] and 
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J. E; Littlewood developed a new method for·the'solution of the Waring 

conjecture which has proven to be a standard·technique·in·analytic 

number theory. This new method is. completely independent of Hilbert's 

solution and is based on Cauchy's Theorem and the theory of analytic· 

functions. It reduces the problem to a new question, namely; is a 

certain coefficient in the expansion of an infinite ser;i.es positive and 

under what conditions? The Hardy and Littlewood method not only yields 

a proof of the existence of g(k) but also gives asymptotic formulae 

for the number of representations of any integer n as the sum of 

g(k) kth powers. 

A third method of proof of Waring's conjecture was provided by 

L M. Vinogradov [49], His method resembles that of Hardy and Little-

wood, but leads more ri'J.pidly to some of their resultsand provides a 

simpler solution of Waring's problem. Vinogra.dov also uses Cauchy's·. 

Theorem for the de1;:ermination of the numberof representations of n 

as the sum of g(k) kth powers (rk (n)) , but he show$ that it is ,s 

simpler to work with finite exponential sums instead of with power 

series. 

The methods of Hardy and Littlewood and Vinograd,ov are both 

analytic in nature, and in 1942, Y. V. Linnik-[17] was the first to 

present a proof of Waring's conjecture without using such techniques~ 

This new method is based on Schnirelmann's density and reduces Waring's 

problem to the proof that the·sum of a sufficiently large number of 

sequences is a sequence of positive density. Linnik's method is 

strictly an existence proof and does not provide·asymptotic formulae 

for rk· · (n) or an uppe11 bound for G (k) as the Hardy-Littlewood ,s 

and Vinogradov methods do. 



In order to illustrate the meaning of g(k) , Table I lists the 

values of g(k) for k = 2, 3, 4, 5, 6, and Tables II, III, IV, V, 
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VI list all the integers from 1 to 100 with a decomposition of these 

integers into the minimum number of squares, cubes, biquadrates, fifth-. 

powers, and sixth~powers. The examination of the following tables will 

tend to give some insight into the possible size of g(k) • 

TABLE I 

VALUES OF g(k) FOR SMALL POWERS 

k g(k) 

~ 4 

3 9 

4 19 

5 37 

6 73 
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TABLE II 

DECOMPOSITION lNTO SQUARES 

Number Sqµares · Number Squares 
Required Required 

1 = 12 1 26 = s2 12 2 

2 = 2·1 
2 2 ~ 

27 = s. + 2·12 3 

3 = 3·12 3 
·2 

28 = 5 + 3·1 2 
4 

4 = z2 1 29 = 52 + 22 2 

2 S = 2 + 12 2 30 = 52 + 22 + 12 3 

6 "" 2
2 

+ 2·1 
2 

3 31 = 52 + 22 + 2·12 4 

2 
7 = 2 + 3·1

2 
4 32 = 2,42 

2 

8 = 2·22 2 33 = 2 2·4 + 12 3 

9 ... 32 1 34 = 52 
+ 32 2 

10 = 32 
+ 12 2 35 = 52 + 32 + 12 3 

11 32 2 3 36 62 1 "' + 2·1 = 

12 = 3·22 3 37 = 62 
+ 12 2 

13 = 32 + z2 2 38 = 62 
+ 2·1 2 

3 

14 = 32 + 22 + 1 
2 3 39 = 62 

+ 3·12 
4 

15 = 32 + 22 + 2·12 4 40 = 62 + 22 2 

16 = 42 1 41 = 52 +i 2 

2 12 2 42 52 + i + l2 3 17 = .4 + = 

18 = 2,32 2 43 = 52 + 2·3 2 3 

19 2·32 + 12 3 44 = 62 2 
3 = + 2·2 

20 
2 + 22 2 45 = 62 

+ 32 = 4 2 

21 = i + 22 + 12 3 46 = 62 + 32 2 
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TABLE II (CONTINUED) 

Number Squares Number Squares 
Requtred Required 

22 = 42 + 22 3 47 = 62 + 32 + 2·12 4 

23 = 2·32 + 22 + 12 4 48 = 3.42 3 

24 = 42 + 2·i 3 49 = 72 1 

25 = 52 1 50 = 72 + 12 2· 

51 72 2 3 76 2·62 + 22 3 = + 2·1 = 

52 = 62 + 42 2 77 = 82 + 32 + 22 3 

53 = 72 + 22 2 78 = 72 + 52 + 22 3 

54 72 + 22 + 12 3 79 72 2 22 + 12 4 = = + 5 + 

55 72 + 22 2 4 80 82 + 42 2 = + 2·1 = 
56 62 + 42 2 3 81 92 1 = + 2 = 
57 72 2 3 82 92 + 12 2 = + 2•2 = 
58 = i + 32 2 83 = 92 + 2·1 2 3 

59 = 72 + 32 + 12 3 84 = 82 + 42 + i2 3 

60 72 + 32 2 4 85 72 + 62 2 = + 2·1 = 
61 = 62 + 52 2 86 = 72 + 62 + 14 3 

62 = 62 + 52 + 12 3 87 = 72 + 62 + 2·12 
4 

63 = 62 + 52 + 2·12 4 88 = 2·62 + 42 3 

64 = 82 1 89 = 82 + 52 2 

65 82 + 12 2 90 92 2 2 = = +.3 

66 82 2 3 91 92 + 2 12 3 = + 2·1 = 3 + 

67 72 2 3 92 92 + 32 + 2·12 4 = + 2·3 = 
68 = 82 + i2 2 93 = 82 + 52 + 22 3 

69 82 2 12 3 94 92 + 32 + 22 3 = + 2 + = 
70 = 62 + 52 + 32 3 95 = 92 

+ 32 + 22 + 12 4 

71 = 62 + 52 + 32 + 12 4 96 = 82 
+ i 2 

72 = 2,62 2 97 = 92 
+ 2·42 3 

73 = 82 + 32 2 98 = 2,72 2 

74 = 72 + 52 2 99 = 2,72 + 12 3 

75 = i+ 52 + 12 3 100 ·= 102 1 
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TABLE lII 

DECOMPOSITION INTO CUBES 

Number Cubes Number Cubes 
Required Required 

1 13 1 26 = 3 2·13 
5 = 3•2 + 

2 = 2.13 2 27 = 33 l 

3 = 3·1 3 28 = 33 + 13 2 
3 4 29 33 + 2·13 3 4 = 4·1 = 

5 = 5·13 
5 30 = 33 + 3'13 

4 

6 = 6,1 3 6 31 = 33 + 4,1 3 
5 

7 = 7·13 7 32 = 4·23 
4 

8 = 23 1 3 33 = 4.2 + 13 5 

9 
3 13 2 

3 3 
6 = . 3 . + 34 = 4.2 + 2·1 

10 = 23 + 2· 13 3 35 = 33 + 23 2 

11 = 23 + 3·13 4 36 = 33 + 23 + 13 3 

12 = 3 4·13 5 37 33 + 23 + 2·13 
4 2 + = 

13 "' 23 + 5,13 6 38 = 33 + 23 
+ 3·13 5 

14 = 23 
+ 6°13 7 3 

39 = 3 + 23 + 4.13 6 

15 = 23 + 7·13 8 40 = 5·2 3 
5 

16 = 2,23 2 41 = 5·23 
+ 13 6 

17 = 3 2·2 + 13 3 42 = 5·2 
3 + 2·1 3 7 

18 = 3 2·2 + 2·13 4 43 = 33 + 2·23 3 

19 
3 3 5 44 = 33 + 3 13 4 = 2·2 + 3·1 2·2 + 

20 
3 3. 

6 _45 33 + 3 3 5 = 2·2 + 4•1 = 2·2 + 2·1 

21 3 3 7 46 33 + 3 3 6 = 2·2 + 5·1. = 2°2 + 3·1 

22 3 3 8 47 33 + 3 ' 3 
7 = 2·2 + 6·1 = 2·2 + 4·1 

23 = 3 3 2·2 + 7·1 9 48 = 6,2 3 6 

24 = 3.23 3 49 3 13 7 = 6,2 + 

25 3 13 4 50 3 2·13 8 = 3·2· + = 6,2 + 

51 = 33 + 3.23 4 76 = 43 + 23 
+ 4·13 6 

52 3 3 13 5 77 43 
+ 23 + 5·1 3 7 = 3 + 3·2 + = 

53 = 33 +.3·23 + 2·13 6 78 3 3 5 = 2·3 + 3•2 

,. 
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TABLE. III (CONTINUED) 

Number Cubes Number Cubes 
Required Required 

54 2,33 2 79 3 3 + 13 6 = = 2·3 +3,2 

55 3 13 3 80 43 + 2·33 3 = 2,3 + = 

56 = 2·33 + 2,13 4 81 = 3.33 
3 

57 2·33 + 3.13 5 82 3 13 4 = = 3,3 + 

58 2·33 + 4,1 3 6 83 3 2.13 5 = = 3.3 + 

59 33 3 5 84 3 3·1
3 

6 = + 4·2 = 3.3 + 

60 33 + 3 13 6 85 3,33 3 7 = 4.2 + = + 4·1 

61 33 + 4·23 3 7 86 2·33 3 
6 = + 2,1 = + 4•2 

62 3 3 3 87 2·33 3 + 13 7 = 2•3 + 2 = + .4·2 

63 = 2·33 + 23 + 13 4 88 = 43 + 3.33 
4 

64 = 43 
1 89 = 3.33 + 23 4 

65 = 43 + 13 2 90 = 3,33 + 23 + 13 5 

66 :::; 43 + 2· 13 3 91 = 43 + 33 2 

67 43 3 4 92 43 + 33 + 13 3 = + 3•1 = 
68 43 + 4·13 5 

- 3 33 + 2·1 3 
4 = 93 =·4 + 

69 = 43 + 5·1 3 
6 94 = 43 

-+i 
33 + 3·13 

5 

70 2·33 3 4 95 43 + 33 + 4•13 
6 = + 2•2 = 

71 2·33 + 2·23 + 13 5 96 3 4·33 
5 = = 4 + 

72 43 + 23 2 97 3·32 3 
5 = = + 2·2 

73 = 43 + 23 + 13 3 98 = 3.33 + 2,23 + 13 6 

74 3 23 3 
= 4 + + 2·1 4 

3 99 :;:,4 + 3 3 3 + 2 3 

75 43 + 23 3 5 100 = 43 
+ 33 + 23 + 13 4 = + 3·1 
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TABLE IV 

DECOMPOSITION INTO BIQUADRATES 

Number Biquadrates Number Biquadrates 
Required Requried 

1 = 14 1 26 = 24 + 10· 14 
11 

2 = 2·14 2 27 = 24 + 11 ·14 12 
4 3 28 24 + 12·14 13 3 = 3,1 = 
4 4 29 4 = 4·1 = 24 + 13·14 14 
4 5 30 24 + 14·14 15 5 = 5·1 = 
4 

6 31 24 + 15·14 16 6 = 6·1 = 
4 7 32 2,24 2 7:: 7.1 = 

8 = 8,1 4 8 33 = 2·24 
+ 14 3 

4 9 34 4 2.14 4 9 = 9•1 = 2,2 + 

4 
10 35 4 4 5 10 = 10·1 = 2·2 + 3·1 

11 = 11' 14 11 36 4 4 6 = 2·2 + 4·1 

12 = 12·14 12 37 = 4 4 2·2 + 5·1 7 

13 = 13·14 13 38 = 2·24 
+ 6'14 8 

14 = 14·14 14 39 4 4 9 = 2·2 + 7·1 

15 4 15 40 4 4 10 = 15·1 = 2·2 + 8·1 

16 24 1 41 4 4 
11 = = 2•2 + 9·1 

17 = 24 + 14 2 42 = 2· 24 
+ 10· 14 12 

18 = 24 
+ 2·14 3 43 = 4 4 2·2 + 11·1 13 

19 24 + 3-· 14 4 44 = 4 4 14 = 2,2 + 12·1 

20 24 + 4.14 5 4 4 15 = 45 = 2·2 + 13·1 

21 24 
+ 5·14 6 4 4 16 = 46 = 2·2 + 14•1 

22 = 24 
+ 6·14 7 4 4 47 = 2·2 + 15·1 · 17 

4 4 23 = 2 + 7·1 8 48 = 3·2 4 3 
4 4 9 49 4 14 4 24 = 2 + 8·1 = 3•2 + 

25 24 + 9·14 10 so 4 2·14 5 = = 3·2 + 
4 4 6 76 4 12·14 16 51 = 3·2 + 3•1 = 4·2 + 
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TABLE IV (CONTINUED) 

Number Biquadrates Number Biquadrates 
Required Required 

52 = 4 4 3·2 + 4·1 7 4 77 = 4·2 + 13·14 17 

53 = 4 4 3·2 + 5•1 8 4 78 = 4·2 + 14·14 18 

54 = 4 4 3·2 + 6•1 9 79 = 4 4·2 + 15·14 19 

55 = 4 4 3·2 + 7•1 10 80 = 5.24 s 
56 = 4 4 3·2 + 8·1 11 81 = 34 l 

57 = 4 4 3·2 + 9•1 12 82 = 34 + 14 2 
4 .4 

58 = 3 · 2 + 10, l 13 83 = 34 + 2·1
4 

3 
4 4 

59 = 3 · 2 + 11 · 1 14 
4 4 84 = 3 + 3'1 4 

4 12,14 15 85 34 + 4·14 
5 60 = 3·2 + = 

61 = 4 4 16 86 34 + 5·14 6 3·2 + 13·1 = 
62 = 4 4 17 87 34 

+ 6·14 7 3,2 + 14·1 = 
4 .4 

63 = 3·2 + 15·1 18 88 = 34 
+ 7·14 8 

4 4 89 34 + 8·14 9 64 = 4,2 = 
65 = 4·24 

+ 1·14 5 90 = 34 
+ 9·14 10 

4 2.14 6 91 34 
+ 10·14 

11 66 "' 4·2 · + = 
4 4 67 = 4·2 + 3·1 7 92 = 34 

+ 11 · l 4 12 
4 4 68 = 4.2 + 4·1 8 93 = 34 + 12,14 13 
4 4 

9 94 34 + 13•14 14 69 = 4·2 + 5·1 = 
4 · 4 

10 95 34 + 14·14 15 70 = 4·2 + 6·1 = 
4 4 

11 96 6·2
4 

6 71=4·2 +7·1 = 
4 4 12 97 4 14 7 72=4·2 +8·1 = 6·2 + 
4 4 

73 = 4·2 + 9·1 13 
4 

98 = 6·2 + 2·1
4 

8 
4 4 74:::: 4·2 + 10·1 14 4 4 99 = 6·2 + 3·1 9 
4 4 

75 = 4 · 2 + ll · 1 15 100 = 34 
+ 24 + 3·14 5 
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TABLE V 

DECOMPOSITION INTO FIFTH-POWERS 

Number Fifth.,.Powers. Number Fifth-Powers 
Required Required 

1 = 15 1 
. 5 

26 = 26·1 26 

2 = 2·1 
5 

2 27 = 27·15 27 

3 = 3·15 
3 28 = 23·15 

28 

4 = 4·15 
4 29 = 5 29·1· 29 

5 = 5·15 5 30 = 30·15 30 

6 = 6·1 5 
6 31 = 31·15 31 

7 = 7·1 5 7 32 = 25 l 

8 = .. 8· 1 
s 8 33 = 25 + 15 2 

9 9·15 9 34 = 25 5 3 = + 2·1 

10 10· 15 10 35 = 25 5 
4 = + 3·1 

11 11· 15 
11 36 = 25 5 

5 = + 4·1 

12 = 12·15 12 37 = 25 + 5,15 6 

13 = 13·15 13 38 25 5 7· = + 6·1 

14 = 14·15 14 39 25 5 8 = + 7·1 

15 = 15·15 15 40 = 25 + 8' 15 9 

16 = 16,15 16 41 = 25 + 9·1 5 10 

17 = 17·15 
17 42 = 25 + 10· 15 

11 

18 = 18, 15 18 43 = 25 + 11 · 1
5 12 

19 = 19·15 19 44 = 25 + 12·15 13 

20 = 20·15 20 45 = 25 + 13·15 14 

21 = 21,15 21 46 = 25 
+ 14• 15 15 

22 = 22,15 22 47 = 25 + 15·15 16 

23 = 23·15 23 48 = 25 + 16·15 17 

24 = 24·15 24 49 = 25 + 17·15 
18, 

25 = 25·15 25 50 = 25 + 17·15 19 

SJJ' = 25 + 19'15 20 76 = 5 5 2·2 + 12·1 14 

52 = 25 + 20,15 21 77 = 2·25 + 13·15 15 
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TABLE V (CONTINUED) 

Nuntl),er Fifth-Powers Number Fifth Powers 
Required Required 

53 = 25 + 21,15 22 78 = 2·25 
+ 14· l 5 16 

54 = 25 + 22,15 23 79 = 2,25 
+ 15·15 17 

55 25 + 23·15 24 80 s 16·15 18 = = 2,2 + 

56 = 25 + 24'15 25 81 = 2·25 + 11.15 19 

57 25 5 26 82 5 18·15 20 "" + 25·1 = 2·2 + 

58 = 25 + 26,15 27 83 = 2.25 
+ 19·15 21 

59 25 + 21,15 28 84 5 20·15 22 = = 2'.2 + 

60 = 25 
+ 28·15 29 85 = 2,25 + 21,15 23 

61 = 25 5 30 86 5 22·15 24 + 29·1 = 2·2 + 

62 = 25 5 31 87 2;25 
+ 23·15 25 + 30·1 = 

63 = 25 + 31·15 32 88 = 2·25 
+ 24·15 26 

64 = 2,25 2 89 = 2·25 + 25·15 27 

65 2·25 . 5 
3 90 2·25 

+ 26·15 28 = + l·l = 
66 = 2·25 

+ 2·15 4 91 = 2·25 
+ 27·15 29 

67 = 2·25 
+ 3·15 5 92 = 2·25 

+ 28·15 30 

68 "' 2·25 
+ 4·15 

6 93 = 2·25 
+ 29·15 31 

69 2·25 5 7 94 = 2·25 5. 
32 = + 5·1 + 30'1 

70 = 2·25 
+ 6 15 8 95 = 2·25 

+ 31·1 5 33 

71 s . 5 
9 96 = 3·25 3 = 2,2. + 7'1 

72 = 2·2
5 

+ 8°15 
10 

5 97 = 3,2 + 15 4 

73 = 2·25 
+ 9·1 

5 
11 98 = 3·25 

+ 2;15 5 

74 = 2·25 
+ 10·15 12 99 = 3·25 

+ 3,15 6 

75 = 2,25 + 11·15 13 100 = 3· 2 5 
+ 4·15 7 
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TABLE V! 

DECOMPOSITION INTO SIXTH-POWERS 

Number Si~th-Powers Ntunber Sixth~Powers 
Required Required 

1 = 16 1 26 = 26·1 
6 26 

2 = 2,16 
2 27 = 27·16 

27 

3 = 3,16 3 28 = 28·16 28 

4 = 4· 16 4 29 = 29·16 
29 

', t:. 
30°1

6 
5 = 5·1° 5 30 = 30 

6 = 6,16 
6 31 = 31.16 31 

7 = 7,16 7 32 = 32.16 32 
6 8 33 33·16 33 8 = 8·1 .. 

9 = 9· 16 
9 34 = 34·16 34 

10 = 10·16 10 35 = 35,16 
35 

11 :: 11 · 1
6 11 36 = 36· 16 36 

12 = 12·16 12 37 = 37·16 37 

13 = 13· 16 13 38 = 33·16 
38 

14 = 14·16 14 39 = 39·1 
6 

39 

15 = 15·16 15 40 = 40·1 
6 40 

16 = 16·16 16 41 = 41·16 41 

17 = 17 .16 17 42 = 42•1 6 42 

18 = 18·16 18 43 = 43·16 43 

19 19· 16 19 6 44 = 44 = 44·1 

20 = 20·16 20 45 = 45·16 
4~ 

21 = 21,16 21 46 = 46·16 
46 

22 = 22·16 22 47 = 47,16 47 

23 = 23·16 23 48 = 48·16 48 

24 = 24· 16 24 49 = 49·16 49 

2.5 = 25·16 25 50 = 50·16 50 



14 

TABLE VI (CONTINUED) 

Number Sixth-Powers Number Sixth-Powers 
Required Required 

6 51 76 = 26 12·16 13 51 = 51·1 + 

52 = 52·1 6 52 77 = z6+ 13·16 
14 

53 = 53·1 
6 53 78 = 26 + 14·16 15 
6 54 79 26 + 15·16 16 54 = 54•1 = 
6 55 80 26 + 16'16 17 55 = 55•1 = 
6 56 81 26 + 11· 16 18 56 = 56·1 = 

57 = 57·16 57 82 = z6 + 18·16 19 

58 = 58·1 6 58 83 = z6 + 19·16 20 

59 = 59· 16 59 84 = 26 + 20·16 21 
6 

60 85 z6 6 22 60 = 60·1 = + 21·1 
6 61 86 26 ,i, 22· 16 23 61 = 61·1 = 

. 6 62 87 26 + 23·16 24 62 = 62·2 = 
63 = 63·2 6 63 88 = 26 + 24·16 25 

64 = 26 1 89 = z6 + 25·16 26 
6 16 2 90 z6 + 26·16 27 65. ... 2 + = 

66 = z6 + 2·16 3 91 = z6 + 27·16 28 

67 = 26 6 4 92 z6 
6 

29 + 3'1 = + 28·1 

68 = 26 + 4· 16 5 93 = 26 + 29·16 30 

69 z6 6 6 94 = z6 + 30·16 31 = + 5:1 

70 26 6 
7 95 = 26 + 31·16 32 = + 6·1 

71 z6 6 8 96 = 26 + 32·16 33 = + 7·1 

72 26 6 9 97 = z6 + 33·16 34 = + 8·1 

73 = 26 + 9·1 6 10 98 = z6 + 34·16 35 

74 = z6 + 10·16 11 99 = 26 + 35·16 36 

75 = 26 + 11·16 12 100 = 26 + 36·16 37 
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In Table II, it can be seen that many of the integers from 1 to 

100 require at least four squares for their decomposition, and it 

should also be noted that no integer in the·table requires ~ore than 

four squares. ·The integer 

2 2 2 2 
7 "" 2 + l + 1 + 1 

for example, cannot·be expressed as the sum of less than four squares. -

Thus Table II implies that g(2) ?: 4 and indicates that there is a 

strong possibility that g(2) "' 4 . A proof that g(2) "" 4 will 

be contained in Chapter II. 

The integers that require four squares can be proved to be 

k exclusively those of the form 4 (Sn+ 7) . A proof of this theorem 

will also be included in Chapter II. 

The·irl~egers from 1 to 100 can be.expressed as the sum·of at 

most nine cubes, as seen in Table III; The integer 

cannot be expressed as the sum of les~ than nine cubes, thus Table III 

implies that g(3) ~ 9 It is important to note that 23 is the only 

integer in the.table that requires nine cubes and that there are only 

three integers, (15, 22, SO), that require eight cubes; Dickson [13] 

proved that every integer except 23 and 239 can·be expressed as the 

sum of eight or less cubes, and it seems that there are only 15 integer$ 

(15, 22, 50, 114, 167, 175, 186, 212, 231, 238; 303; 364, 420; 428, and 

454), that require eight cubes. 

Table IV illustrates that part of Waring's problem which is 

considered by many number theorists to be the most interesting as well 

as the most difficult. It can be seen that 
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4. 4 79 111 4.2· + 15·1 

cannot be expressed·by less than·nineteen·fourth powers.· Thus g(4) ~ 19 

It should be noticed that 79 is the only value in the table that re-

quires ·19 fourth powers, and 63 and 78 are·the only integers 

requiring 18 fourth powers. 

In Table V one·can see that no integer from 1 to·100 requires .37 

fifth_--powers; However, if we examine the table closely, we can see a 

pattern that will give us a·number requiring 37· fifth powers. 

31 = 5 2 .. 1 = 31·1
5 requires 31 fifth powers 

5 
63 = 2,2 - 1 = 

95 = 3·25 1 = 2·25 
+ 31·15 

127 = 4·25 1 = 3·25 
+ 31·15 

159 = s·25 1 = 4·25 
+ 31·15 

5 · 5 5 191 = 6·2 - 1 = 5·2 + 31·1 

223 = 7·25 - 1 = 6·25 
+ 31·15 

255 = s·25 - 1 = 

II 

II 

II 

II 

II 

II 

II 

32 II " 
33 II . II 

34 II II 

35 II . II 

36 II II 

37 II 

13 II . II 

Now,· 35 
= 243 , and 7 · 25 = 224 , so it is apparent that these 

integers cannot be used in the decomposition of 223 into a minimum 
t' 

number of .fifth powers. Thus, 223 requires ·· 37 fifth powers, and 

this implies that g (S) ~ 37 . The next number·· in the pattern·· esta-

blished above, is 255, and this integer can be·represented by 

Hence, 225 is the swn of 13 rather than 38 fifth 

powers, as one might suspect. 

No integer in Table VI requires 73 sixth powers, but it can be 

seen that . 6 63 = 2 - 1 does require 63 sixth powers. Following a 
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pattern similar·to that used for fifth powers; we may locate an integer 

that requires 73 sixth powers. 

63 = z6 1 = 63·16 requires •63 sixth powers 

127 = 2·26 - 1 = 26 + 63°16 
" 64 II . Ii 

191 = 3,26 
1 = 2,i + 63· 16 II 65 II . II 

255 = 4,26 
1 = 3·26 

+ 63·16 
" 66 II ii 

319 6 
l 4,26 63· 16 ii 67 II II = 5·2 - "' + 

383 = 6·26 
1 "' 5·26 

+ 63·16 !I 68 II ii 

447 :::: 7,i 1 = 6·26 + 63·16 
" 69 II Ii 

511 = 8·26 1 = 7,26 
+ 63· 16 " 70 II II 

575 = 9·i 1 "' s,i + 63·16 
" 71 II Ii 

639 10,z6 1 
6 

+ 63·16 II 72 II II = =,9,2 

703 6 
1 10' 26 6 II 73 II II = · 11·2 = + 63·1 

767 = 12·26 
1 = 36 + 38,16 II 39 II Ii 

Since.· 36 = 729 and 11 · 26 = 704 , these integers can not be 

used to represent 703 as a sum of sixth powers; Hence, 10,26 
+ 

63·16 is the decomposition of 703 into the minimum number of sixth 

powers, since 63, 16 cannot be replaaed by 36 . Therefore an 

integer, which requires 73 sixth powers, has been·found, and this 

implies that g (6·) ::: 73 . It might. be expected that the next integer D 

767, in the pattern established above; is the sum of 74 sixth 

powers, but 767 = 36 
+ 38°16 , and is the sum·of only 39 sixth 

powers. 

From Tables II, III, IV, V, VI, we proved that g(2)::: 4, 

g(3) ~ 9, g(4) ~ 19, g(5) ~ 37, g(6) ~ 73, but the method that we 

used to get these values becomes more difficult as k increases 
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so that other methods must be used·to obtain more information concerning 

g(k). 

A rather simple lower bound for the value of g(k) was determined 

early in the study of this problem. This result and some of·the work 

preceding it is presented·below. 

J. A. Euler, · stated in 1772 that in order to express · every integer 

as a sum of kth powers; at least k 3 k 
I (k) = 2 · + [ Ct) ] - 2 terms are 

neces~ary. Iri other·words 

Theorem 1.1. 
k• 3 k 

g (k) ::: I (k) = 2 + [ (2) ] - 2, k = · 1 p 2 ~ ... 

Proof:· Let 

(1.1) n = l [(3/] - 1 2 

n is a natural numbel:", a1'U since [x] < x , ·we have 

Thus 

(l.2) k n < 3 . 

By definition of g(k) 

(1. 3) • • • + 

where x. [i = l, 2, . ~ . , g (k)] are non-negative integers. 
1 

(1. 2) and (1. 3) 

k k k 3k xl + x2 + . . . + xg(k) < . 

Therefore each x. (i = 1, 2, . . . , g (k)] must be less than 
1 

From 

3 0 Then 

each x. can take only the values 0, l, and 2 , Suppose that there 
1 



19 

are a different -integers among the· x; 's ··equal -to- 2, b · diffierent 
1 

integers equal to -1-, and c different integers·equal to O ; Clearly, 

a, b, and c are non~negative integers, and 

(1.4) 

Since 

k k k k 2 + 2 + ,,, + 2 = 2 a and k k k 
1 + 1 + ... + 1 = b . 

~ 
a times 

from (1. 3) 

(1.5) 

and from (l, 1) 

This gives 

and 

This imples 

(1.6) 

From (1. 5) 

and 

~ 

k n=2a+b 

k n ::: 2 a 

k k 3 k 
2 a ~ n. < 2 [ (2) ] 

3 k a < [ (2) J . 

b - n - la 

b times 

(1. 7) a+ b =a+ n - 2ka = n - (2k - l)a. 

Since k is a natural number, 2k - 1 is also a natural number. 

Multiply (1.6) QY 2k ~ 1 and obtain 



Tfien by Cl.4), (1.7), (1.6), and Cl.l) 

Therefore· 

In this 

g(k) >a+ b = n - cl - l)a?: n - C2k - l)([C~l]-1) 
2 

= n - cl [ c~ll - 1) + ~k + [ c~l] - 2 

= l + [ c~/1 - 2 

g(k) k 3 k 
?! 2 + [ C2) l - 2 , 

formula, . 

I (2) = 22 + [2-] 
4 

- 2 = 4 + 2 - 2 = 4 

I(~) 3 [27] 2 8 + 3 - 2 = 9 = 2 + = 8 

I (4) 4 [!!.] 2 16·+ 5 - 2 = 19 = 2 + = 16 

I (S) 5 [243] 2 32 + 7 - 2 = 37 = 2 + - = 32 

I (6) 6 [729] 2 64 + 11 - 2 = 73 = 2 + = 64 

20 

Thus g(2) ~ 4 , gC3) ?: 9, g(4) ?.: 19, g(S) ~ 37 , and g(6) ?.: 73, 

These lowers bounds.for g(k) are exactly those we·derived previously. 

However, a lower·bound for g(k) may·now be:deterrnined for any value 

of k . This finding of a lower bound for· g(k) was.relatively easy» 

but it is much more'complicated to find the exact value of g(k) . 

Waring was.not the first to state that every integer is the stun 

of four squares. This was known as Bachet's theorem, called after 

C. J, Bachet, who remarked in 1621 that ~ny number ;is either a square 
. I 

or the sum of 2, 3, or 4 ~quares. Girard and Fermat also stated this. 

theorem remafking that Diaphantus seemed to have known.it. As usual» 



21 

Fermat stated that he-possessed-a proof-of this theorem, but he never 

published it. L~onard Euler made many unsµccessful attempts to prove 

this result, and the first published proof was given in 1770 by Lagrange 

who acknowledged-his great dependence on results-obtained by Euler, 

In 1770, Lagrange was able to-prove that g(2) -= 4, but it was 

a more formidable task to prove that g(3) = 9 . -The first attempts 

at this proof w~re in the form of tables .of the smallest number of 

positive cubes into which whole numbers can be decomposed· (similar to 

Table III). At the suggestion of Jacobi, Zornow -constructed such a 

table in 1835 for each integer:;; 3,000, Dashe extended this table to 

12,000 in 1851, and in 1903, Von Sterneck [SO] continued this table 

to 40,000. These tables verified that all integers up to 40,000 can 

be represented by at most 8 cubes (except 23·and 239, which require 

9 cubes). All numbe.rs between 454 and 40 ,000 require at most 7 cubes 8 

and all numbers between 8042 and 40,000 require-at most 6 cubes. 

From these tables it-was,presumedthat every ~nteger greater than 

8042 is the·sum of at most 6 cubes. 

Maillet [31] ·was the first to find an upper-bound for g(3) , 

when he showed in 1895 that g(3) ~ 21 . By a variation of Maillet's 

proof; Fleck [15] was. able to prove that g(3) ~ 13- in 1906. The 

big breakthrough came in 1909 when Wieferich [54] -finally proved 

g(3) = 9. However, due to an oversight, there was-a gap in the. 

proof that was finally filled by Kempner [24] in -1912, In referring 

to Wieferich' s proof; Landau said that it was one· of the most·.· satisfy­

ing advances in number theory. 

Proofs of g(3) s 21 , g(3) s 17 and g(3) s 13 will be included 

in Chapter III, and a proof that g(3) = 9 will also be given. 
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It was exceedingly'difficult·to establish that· g(4) = 19. The 

ablest mathematicians·· of the nineteenth ·and twentieth centuries have 

attempted to determine g ( 4) , but without success;· When Liouvi lle 

proved that g(4) ~ 53 in·1859; this was the first actual proof 

associated with g (k) except for Lagrange's famous proof. ·· This upper 

bound was reduced to 47, 45, 41, 39, 38 and finally to 37 by Wieferich 

_ [55] · in 1909. · In his doctoral dissertation, Baer [ 3] gave a simpler 

proof that g(4) -~·37, and it was not until 1933 that this value could 

be improved upon~ ·Emily Chandler [5 ] succeeded in·proving g(4) :a: 35 

in her dissertation in 1933, and this-result is· still the best avail­

able today. There has never been a counterexample to·disprove that 

g ( 4) = 19 ·, and it is surprising that in the 36 years since Chandler's 

proof, · her upper bound has not been improved upon. 

Liouville's important result of· g(4)::: 53 will be·proved in 

Chapter IV, and by very interesting methods it will also 'be shown 

that g(4) is less than 45, 41, 39, 38, and-finally 37; These proofs 

are elegent · in thei,r simplicity and lead one to the illusion that 

still lower bounds ·may be easily found. It would be worthwhile for 

anyone. who has· taken; or is taking ·number theory, to· go ·_:tl\JrOUgh these 

proofs. 

The value of g (5) has also not been determined~- ·Maillett [ 32] 

was the first to find an upper bound for g (5) when he ·proved that 

g(S) S: 192 in 1895. Fleck reduced this bound by about·36, Wieferich 

[53] proved g(5) -~ 59, Baer [3] proved g(5)::: 58, and·Dickson 

[9] finally proved g(5) ::: 54 in 1933. This was the best upper 

bound for g(S) for·26 years until Chen [6] supposedly proved 

g(S) ~ 40 in 1959. Thus· 37 ~ g(S) f 40, and g(S) is almost 
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determined. There is no ·obvious reason 'Why ·fourth ·and fifth powers , 

should present so much more difficulty than all of the other powers, 

but they are still the only powers·for .. which· g(k) · is not determined. 

Sixth powers seem to have a special significance·in·waring's 

problem, for in 1936, Pillai (39] and Dickson [11]·independently 

determined g(n) for n > 6, subject·to certain·restrictions. However~ 

the proof that g(6) = 73 was more difficult. In 1907 Fleck [16] 

established the first upper ·bound for g (6) when he ·proved g (6) ::: 184', 

g (3) + 59. Since g (3) was only known to be ,s· 13 » this bound was 

2451, which is a long way from the ideal of 73, but using Wieferich's 

proof that g(3) = 9 the bound would be 1715. By an interesting method~. 

Kempner [25] was able to prove that g(6) ~ 970 in 1912, and this upper 

bound was. lowered to 478, 183, 160, 115, 110, and 104 until in 1940~ 

• Pillai [40] finally proved that g(6) = 73 . 

The proofs of theorems relating to the detennination of g(5) and 

g(6) tend to be quite lengthy and analytic in nature. For this reason 

the proof that g(5) ~ 59 is not given in detail. On the basis of 

this result, it is proven that g(6) ~ 184 · g(3) + 59, and g(6) ~ 

970, thus establishing a upper bounds for g (5) and g (6) , 

It has been proven in Theorem 1.1 th~t 

g(k) ?: I (k) = l + [ cI) kJ - 2 • 
2 

The conjectUrE:l that g(k) = I(k) is referred to as the Ideal Waring 

Theorem. The history of the attempts to prove this theorem and their 

success is outlined in Chapter VI. 

It is apparent that only the smaller integers of 
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k 
+ ••• + xg(k) 

require g(k) terms. For example, for k =.3, n = 23·and n = 239 are 

the only integers which require 9 cubes [ 13] . ·· This has lead to the 

definition of G(k) , where G(k) is the ritt,nber of kth powers required 

to represent every sufficiently large numb,er. Theorems concerning 

G(k) are more difficult and analytic than those dealt with in this 

thesis. The determination of G (k) will not be discussed in this. 

report. 



CHAPTER II 

SQUARES 

Lagrange's proof in 1770, ~hat every integer is the sum of four 

squares, was rather involved. Three years later; L. Euler gave a much 

simpler proof. A modification of Euler's proof has become a standard 

theorem in most textbooks on number theory, and this proof will now be 

given. 

An integral part of the following proof is the identity 

2 2 2 2 2 2 2 2 
(Xl + x2 + x3 + x4)CY1 + Y2 + Y3 + Y4l 

2 2 
~ (xlyl + X2Y2 +.X3Y3 + X4Y4) + (xly2 - x2yl + X3Y4 - X4Y3) 

2 2 
+ (X1Y3 - X3Y1 + X4Y2 - X2Y4) + (X1Y4 - X4Y1 + X2Y3 - X3Y2) 

This identity is known as Euler's identity and can·be verified by 

multiplying out both sides of the equation. From this-identity itis 

apparent that the product of two numbers that are the sum of four 

squares is'also the·sum of four squares. If it could be·shown that 

every odd prime is the sum of at most four.squares, then all primes 

2 2 would be the sum of at most four squares, sine!;} · 2 = · l + 1 . Then 

Lagrange's theorem would follow by the Fundamental '.Theorem of Ari th-

metic. It will now beproved that every odd·prime·is·thesum of at 

most four squares. 

Lemma 2.1. Let p be an odd prime. There exists·an integer m where 

25 



2.6 

1::: m < p such that mp= xi+ x; + x; + x~ ·for some:integers · x1 , 

x2, x3, x4 

Proof:· Let x; , where 
l 

that lie in the interval 

i = o, 1, 2, i••J 

-- £:.!. 
0 < x. < -

2 
.• · 

- 1 -

F2
1 ; represent the integer~ 

The!re ~~~ P2
1 + -1 -= p;l such 

integers; 

then 

No two integers 2 x. are. congruent modulo p ·, for if 
l 

2 2 
x. - x. (mod p) 

l J 
E.:l i:f,.j,j-0,1,2,.,., 

2 

(x. - x.)(x. + x.) = 0 (mod p) , 
l J l J 

This would imply' x. - x. or x; + x. is divisible by p, but this 
l J l J 

is impossible since each is less than p. 

E.::.!. Similarly, let {yi, i = O, ••• , 
2

} h 12:t!. . represent t e 
2 

integer~ 

in the same interval ancl form the numbers·· ..;1 - y~ 
l 

are also incongruent modulo p, for if 

then 

2 
-1 - y. 

l. 
- -1 - y~ (mod p) -i 

J 

2 2 
y. = y . (mod p) . 

l J 

This congruence has been shown to be impossible. 

Since there are p+l integers in the sets x~ 
l 

taken together, two of them must be congruent modulo 

and 2 
-1 - y be these integers, then 

2 2 x - -1 - y (mod p) 

and 

x2 + y2 
+ 12 

+ o2 ~ 0 (mod p) 

These integers 

; j 

and- ..; 1. 2 - y. 
l 

Let 2 p·. x 



hence 

Now, 

and since 

2 p 

which implies 

Therefore 

2 0 < mp = x 

mp, 

2 2 
x < E. 

4 

> 2, 2p2 = 

where mis a positive integer. 

2 
'.P 

2 

2 2 
y < p 

4 

+ p 2 
> p 2 

+ 2 

2 
> 12. + 1 p 2 . 

2 2 2 2 2 
2 

+ y + 1 < E..+.£.+ 1 = .E. + 1 < p 4 4 2 

This shows that m < p, and as a result 1 < m < p. 
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Lemma 2.2. If p is an- odd prime and m is the least positive integer 

such that 2 2 2 2 then is odd. mp =,Xl + x2 + X3 + X4 ' m 

JProof: There is at least such If is is 2 one m . x. even, so x. » 
1 l 

and·if is odd, then 2 is also odd. Suppose that is x. x. m even 9 
1 1 

then so is 2 2 2 2 Then the are (1) all mp =·xl + x2 + x3 + X4 x. even~ 
1 

(2) all odd, or (3) two are even and two are odd. In any of these cas®~~ 

the. x. can be numbered and grouped· in··pairs in so that x
1

+x
2 

~ O(mod 2) 
1 

x
3 

+ x
4 

- 0 (mod 2). Then, (x1 + x2)/2 and (:x3 + :x:4)/2 afe · 

integers, and so are (x1 - x2) /2 · and (x3 - x4) /2 . Therefore, 

2 
X4 m 

+ --- = p 2 2 , · 



28 

Thus there is an integer ; . smaller than m such that f is the · 

sum of four squares. This contradicts the minimality of m, therefor~ 

m must be odd. 

Lenuna 2.3. Let p be an odd prime and rn the least positive integer 

less than p 2 2 2 2 such that mp= x1 + x2 + x3 + x4 . If m is not l » 

th,):·~ exists a positive integer n where n < m 

2 2 
Y3 + Y4 

Proof: By Lemma 2.2, m is odd, and if it is .not 1 , then 3 < m < p·, 

Let be chosen, for 

This can be done, since 

Then since. 

Hence 

and 

i a: 1, 2, 3, and 4, in such a way that 

-m-1 m-1 
- < y < - is a complete set of residues. 

· 2 · - 2 

y~ = x~ (mod m) 
l l 

mn. 

The integer n is not O, for if it were, y. = 0 and it follow§ 
l 

that x. = 0 (mod m). 
1 

Then m divides x. ' 1 

2 m divides 
2 2 

Ex. , m 
1 

divides. mp and this implies that m divides p. But, this is a 

contradiction since l < m < p , 

Furthermore~ since 
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IY· I < l. 

m 2 m2 
2 , Yi < 4 and 

2 m2 2 
Ey i = mn < 4. 4 = m 

. Therefore, n < m and 1 < n < m . 

Theorem 2 . 4. Every odd prime is a sum of at most four positive- squares • 

Proof:. From Lemma 2.3 and Euler•s identity 

2. 2 2 2 2 m np = (xl + x2 + x3 + X4) 

= (xlyl + X2Y2 + x.!/3 

+ (xly3 - X'!/1 + x4Yz 

"'A2 2 2 2 
·1 + A2 + A3 + A4. 

But since y. - x. (mod m) 
l l 

and 

2 2 
(yl + Yz 

2 2 
+ Y3 + Y4) 

2 
(xly2 + X4Y4) + - X2Y1 + X3Y4 

2 
- X2Y4) + (X1Y4 - X4Y1 + X2Y3 -

X4Y3) 

x,!l2) 

Similarly, A3 = 0 (mod m) and A4 = 0 (mod m), implying that m 

divides Ai and m2 divide~ Ai . Therefore, 

with O < ·· n < m • But this conclusion contradicts the fact th~t m 

2 

2 

was chosen as the .least positive integer such that mp ~s the sum of 

four squares. Therefore m = 1 and every odd prime is a sum of at 

most four positive squares. 
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Theorem 2.5. Every integer is a sum of at most four positivesqu:are~. 

Proof: By Theorem 2.4, every odd prime is the sum of at most four 

positive squares and since. 2 = 12 + 1
2 , every prime is the sum of at 

most four positive squares. The theorem follows innnediately from 

Euler's identity and the fact that any integer can be expressed as a 

Product of primes. 

In Chapter IV, which deals with fourth powers, it is essential 

to know what integers require four squares and what integers can be 

expressed as a sum of three or fewer squares. An important theorem 
. . . . r 

will now be proved that integers of the form · 4 (Sn + 7) require four 

squares, Of this theorem, Dickson [14] has said; "the following result 

is used more often than any other in researches in the theory of 

numbers." 

It should be noted that part of this theorem will be proved using 

Fermat's "method of infinite descent." Hollingshead [23] has suggested 

that this method should be one of the important topics treated in any 

high school number theory.course, and there·is·an entire chapter 

dealing with Fermat's method in the SMSG publication, "Essays on.Number 

Theory II", written fqr high school students. Thus, Theorem 2.6 would 

be an illustration of the usefulness .of Fermat's "method of infinite 

descent." 

Theorem 2.6. Positive integers of the .form 4r(sn·+·7), w;ith r and 

n integers greater than zero, are not the sum of three squares .• 

Proof: If an integer x is even (x = 2m) , then 

2· 2 
x = (2m) - 0 (mod 4), 

and if x is odd (x = 2m + 1), 
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x2 = (2m .+ 1) 2 - 1 (mod 4) and x2 = (2m + 1) 2 - 1 (mod·: 8). 

For any integer x , it follows that 

2 x _ O, l, or 4 (mod 8) , 

and from this-

2 2 2 x + y + z - O, 1, 2, 3, 4, 5; or 6 (mod 8)t 

where y anq. z· are arbitrary integers: Therefore 2 2 2 
x+y+zl7 

(mod 8), and integers of the form 8n + 7 cannot be represented as 

the sum of three squares. 

Suppose that 4r (8n + 7) 2 2 2 = .x + y + z , for r > 1 . Then 

2 2 2 x + y + z - 0 (mod 4). 

But, from above, this is true only if. x, y, and z are all even. Let 

x =-2a
1

, y = 2b
1

, z = 2c
1 

, ,hence 

2 2 x + y 

Therefo:re, 

or 

In a similar manner,. 

l{x2 + y2 + z2) 
4• 

r-1 4 (8n + 7) 

and a1, b1, c1 are· even. Then 

0 (mod 4) , 
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and· 

r-2 2 2 2 
4 (8n + 7) = a 2 + b 2 + c~ 

Repeating this, argument will show· that 

r-j 2 2 2 
4 (8n + 7) = a. + b. + c .. 

J J J 

For j = r , 

8n + 7 = a2 
+ b2 

+ c2 
r · r r 

But this is a contradiction. Thus no positive integer of the form 

r 4 (8n + 7) is a sum of three squares. 

For several theorems in Chapter IV, it is essential to know that 

all integers not of the form 4r(8n + 7) can be expressed as the sum 

of three squares. However, the.proof of this theorem involves the use 

of the theory of ternary.forms and is:much more·difficult than the proof 

of Theorem 2. 6. For these -reasons, . Theorems 2 .11 and 2 .12 will be 

stated without proof,. Proofs of these theorems-may be found in 

Landau [ 27]. At first reading, it might be suggested that the proof 

of Theorem 2.i3 could be omitted. 

Definition 2;7. If Xp X2' X3 are integral values, and if the numbers 

akg , for l -5 k 5 g :::: 3, are integral coefficients, then 

F .F (x1, x3) 
2 

2a12xlx2 2a13xlx3 + 
2 = X2' = a1P-i + + a22x2 

is called a ternary form.· 
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Definition 2.8. The determinant d = · jakgl ·is 'called the discriminant. 

of the ternary form F, where 

Definition 2.9. If 

are ternary forms, then F is equivalent to G if there are 9 inte-

gers Ckg of determinant 

for which the 3 equations 

Definition 2.10, F is called definite, if. F > 0 for all integral 

values of xl' :x:
2

, x
3 

that do not all vanish simultaneously. 

3 
Theorem 2 .11. F = E 

k,g=l 
the following hold: 

is . definite if and only if all of 
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Theorem 2.12. Every definite ternary form with discriminant 1 is 

equivalent to the form 

Theorem 2.13. If n > 0 is not of .the form 4r(8k + 7), r :=: O, 

k::: 0, then· n can be written as a sum of three squares. 

Proof: If n - 1, 2, 3, 5, or 6 (mod 8), then n is not of the form 

To prove the theorem, it will be sufficien~ to show that 

n is the.sum of three squares for one of the above forms. If 

2 2 2 n :: x . + y + z · , then 

2 · ? 2 4n = (2x) + (2y)- + (2z) 

In a similar way, if 
m 2 2 2 

4 n :: x + .y · + z , then 

4m-1 n = (x) 2 + (y) 2 + (!.) 2 2 2 2 d f. l l 2 2 2 = x1 + y1 + z1 , an 1na y 

n :: . (3. ) 2 + (y ) 2 + ~,./ = xm2 + y2 + zm2 
~m 2m 2m m 

Therefore, let n = 1, 2, 3, 5, or 6 (mod 8). By Theorem 2.12., 

the theorem will be proved if a definite ternary form of discriminant 

1; which represents n, can be found. By Theorem 2.il, nine members, 

all' a12 , a13 , a22 , a23 , a33 , x1, x
2

, x3 , must be found that satisfy 

the following conditions: 

2 
+ 2a12xlx2 + 2a13xlx3 + 

2 
+ 2a23X2x3 + 

2 
n = a xl a22x2x a33x3 11 

all > 0 , 

2 
> 0 , all a22 - a12 

all a12 a13 

a21 a22 a23 = 1 . 

a31 a32 a33 



Assume 

It will be _shown that suitable values of all' a12 and a 22 may be 

aetermined such that the above'four conditions are·su11 ·satisfied. 

From the above· assumptions, · - a 11 , a12 and a
22 

must satisfy thre 

following conditions~ 

a22 = bn - 1, 

all al2 1 

since 0 (all ·a22 · -
2 

bn 1 al2 a22 = a12·) n - a22 - - a22 = . 
1 0 n 
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The problem can then be reduced to·showing b -> 0, and since 

2 
a 12 = -b + all (bn ..; 1) , - b must be shown to be· a quadratic _residue 

mod (bn - 1). 

Let n = 2 or 6 (mod 8). Then (4n,, n - 1) = 1, and by Dirichlet's_ 

Theorem on Arithmetic Progressions, there is·a·prime 

p - n-1 (mod 4n) . 

Let b = 4v + 1 , then b > 0 and p = bn - 1 . 

Since p ~ 1 (mod 4) and (b, p) =-1, it follows by properties 

of quadratic residues that· 
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Hence, -b is a quadratic .residue mod· (bn 1) ; · as was •to be proved. 

Let n - 1, 3, or 5 (mod 8) If n - 3 (mod 8), let c = 1 

and if n - 1 or 5 (mod 8), set c = 3 In both'ca~~~. ·en; 1 is 

dd h (4n'. en -
2 

1) -- 1 , A · b · · h Th o , t us gain, y D1r1c let's· eorem on 

Arithmetic Progressibns there is a prime 

en - 1 p - --.2-. (mod 4n) 

Let 

p = en - 1 
2 

1 
+ 4nv = 2 [(8v + c) n-,.1] 

If b = 8v + c , then b > 0 and 2p ::;; bn - 1 . 
Then 

b - 3 (mod 8) and p - 1 (mod 4) for n - l (mod 8) 

b - 1 (mod 8) and p - 1 (mod 4) for n - 3 (mod 8) ' . 

b - 3 (mod 8) and p - 3 (mod 4) for n - 5. (mod 8) 

For b - 1 or 3 · (mod 8) 
' 

-2 
(,-) = 1 

and by properti~s of quadratic residues, 

Thus; -b is a quadratic residue mod p. Since 2 ~b = 1 (mod 2) , it 

follows.that -b is a quadratic residue mod 2p. 

For n _ 1, 2, 3, S, or 6 (mod 8) , it has now been.preven •tha.t • 

b > 0 and. -b is a quadratic residue mod (bn-1). · The theorem then 

follows by Theorem 2.12. 



CHAPTER JII 

CUBES 

The technique used by Maillet in his search for an upper bound for 

g(3) is quite different from the.approaches ·used in any of the follow-

ing chapters. Maillet' s method is to determine an interval with the . 

property that every integer contained in it can be represented as the 

sum of 21 or fewer cubes. The bounds of this interval are manipulated 

and it is determined that from a certain point onward, successive 

intervals-always overlap. Then every integer can be'represented by 

at most 21 cubes. 

In his proofs that g (3) -~ 21 and g (3) ~ 17 ·, Maillet makes· 

use of several identities. The use of identities is a common element 

in many of the theorems of Chapters II, III, IV, and V; and in most 

cases it is the basis for the proof·of these theorems. 

Maillet (31] begins his proof of g(3) ~ 21 · with the identity 

(3.1) 3 3 2 2 (a~ x) + (a - x) = 2a(a + 3x) 

where a and x are integers. tf 

(3.2) 

the .two cubes on the left hand side of (3.1) will be positive. Let 

x1, x2, x3 and. x4 be four values of x, each satisfying (3.2). 

If these values.are substituted in (3.1) and the equations.added to-. 

gether, the following equation is obtaineq 
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(3.3) 

It is apparent that the left hand side of (3;3) -is the sum of eight 

po~itiv:e cubes. 

Let 

(3. 4) 

m be a number such that 

2 
0 ~ m < a 
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By Theorem 2 • 5 and each x. . 1 satisfies (3.2), 

Then by (3:3), the following lemma has been established. 

Lemma 3.1 Any integer of the form 

(3.5) 2a [4a.2 + 3m] 

is the sum of eight or fewer cubes provided 2 
0 -$ m :::: a 

Consider an integer of the form 

(3.6) 

where 

(3.7) 

From (3.6) 

(3. 8) 

2A = 2a. ( 4a. 2 + 3m) + 2a' ( 4a.' 
2 

+ 3m') 

2 
O s; m :::: a d O I ,2 an < m :::: a 

3 3 
2A - 8(a ·+_a' ) = 6(am + a'm') "" 6A'. 

The following lemma will now be proved. 

Lemma 3.2. Any integer·of the form 

(3.9) 
3 3 2A = 8(a + a' ) + 6A' 

I 

is the sum of 16 or: fewer cubes of positive integers provided 



(3.10) 

2 :s Cl. 

Proof: Con~ider the integer 

and (a, a') = l . 

(3.11) A' = am + ct'm' 

According to (3.7), 3 3 6 ::: A' :'.S a + a' . 

39 

Suppose that A1 is given, and that when a and a' are determin~d 

it will be demanded that (a, a')= 1 and that a< a' . Equation 

(3.11) will now be solved in such a way that m and m' are integers 

and (3.7) holds, 

Consider 

(3. 12) 
·A - am --........ - = m' a' 

Let Os A' :s ci. 13 and let min (3:12)take on the values 

(3. 13) O, 1, 2, ... , a' - 1 

where it is presumed 

a' < a 
2 

Consider the following numbers 

(3.15) A ' , A' - a t A 1 
- 2a , . . . , A 1 

- ct (a. 1 
- 1 ) • 

There are (l I numbers in (3.15) and they are non congrue:ht 

To see this, suppose that any two numbers· A' - Lct· and A' 

modulo 

- L'ci. 

(3.15) are congruent modulo 0\ I . Then, A' - La = A' - LI 0\ (mod 

and a(L' - L) = 0 (mod a'). Since (a, (l I) = 1 -
' then L' = L ' 

OI. i 

of 

0\ i) 

Thus, one of the integers in (3.15) is congruent to zero modulo a. 0 
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and the corresponding-value of m' in (3.12) ·is integral·and could be 

written as 

m' = A' - L'a. 
Cl. I 

Since, A' s a. 13 and O s L' ·:;; a.'; then m' s a. 12 , and m' wi:U 

be ·positive if A' ~ a.a' , 

Therefore if 

(3.16) I A' ,3_, -a.a :::; s: a 

2 as a' < a and (a, a')= 1 

Integral values of m. and m' can.be found that·satisfies (3,7) 

and (3.11). Thus, by (3.8L (3.6), (3.5) and (3;3) the lemma is 

established. 

Lemma 3.3. Any integer B such that 

(3, 17) 

is the sum of 21 or fewer cµbes provided 2 
ct < a' < a· 

Proof: From equations (3.9) and-(3.16) 

3 3 3 
S 2A S 8 ( a + a ' ) +6 a ' 

and 2A differs from 3 3 8 (a + Cl. I ) by a multiple·of six. Unity is the 

cube of an integer and if at most five unit~es·are added to each of 

these numbers, then the lemma is established. 

At this point in his proof, Maillet has proved that every integer 

in a certain interval is the sum of at most 21 cubes. It now remains 

to be shown that by manipulating a and a' , the intervals obtained 

will overlap, and this will imply that all integers from a certain 
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point onward are the sums of 21 or fewer cubes._ 

Theorem 3.4. Any integer greater than 14;372 can be represented as 

the sum of 21 or feWel' cubes. 

Proof: In equation (3.17) let a and a' be y - 1 and y. The 

conditions of (3.17}, 2 y-1 < y < (y~l) and (y-1, y) = 1 will be 

satisfied if y ~ 3. Equation (3.17) will then hold for any number 

B such that 

If y and y+l are substituted into (3.17) for a and a' , the 

conditions of (3.17) are satisfied for y ~ 2 . Equation (3.18) will 

then become 

(3.19) 

It is now important to find out if the intervals defined in (3.18) and 

(3.19) overlap. It is obvious that 

3 3 3 3i 8[y + (y-1) ] + 6y(y~l) ~ 8[y + (y+l) J + 6y(y+l) 

when y is a positive integer. The intervals would overlap if 

3 3 3 3 _ 3 8[(y-l) + y] +.6y > 8[y +(y+l) ] + 6y(y+l) 

It is not readily apparent that this inequality holds, so reducing 

the inequality 

3 y3 - 27y2 - 3y ~ 8 > 0 

is obtained, This inequality holds for y ~ 10 
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For y = 10, the greatest lower bound of the intervals·defined in 

(3.18) and (3;19) is 

. 3 3 . 8[(y~1) + y] + 6y(y-1) 

It has thus been determined that from 14,372 onward successive intervals 

as defined in (3.18) and (3.19),-will always overlap. Therefore, every 

integer greater than 14,372 is in some interval and thus can be 

represented as the sum of 21 or fewer cubes. 

To complete Maillet' s proof it must ·be shown that all integers 

up to 14,372 are the sum of 21 or fewer cubes. 

Theorem 3.5. Any positive integer is the sum of 21 or fewer cubes, 

Proof: By Dickson's ·tables [13] all integers less. than 560,000 are 

the sum of at most eight cubes except for 23 and·239 which are rep-

resented as the sum of ni.ne cubes. Thus, by these tables and Theorems 

3.4, any positive integer is the sum of 21 or fewer cubes. 

Maillet was able to lower the upper bound of g(3) to 17 from 

21 using the same general pattern but with arguments that are a little 

more complicated. 

In equati9n (3.12) assume that a and a' are odd and relatively 

prime and that 

(3,20) 8 a a' s A' < 

Let m in equation (3.12) take·on the values 

(3.21) 0, 1, 2, ..• , 8a' - 1 • 

Among the corresponding numbers 
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(3. 22) 

exactly 8 of them are divisible by a'. The eight corresponding value§ 

of m and m' given by equation (3.12) will be integral. These values 

will be positive because of (3.20). It wi11·be useful to write m and 

m' in the form 

(3,23) m = m
1 

+ ja' m' = m' - ja 1 

(j = 0, 1, 2, ... ' 7) ' 

Since· a' is odd, the numbers 0, a', 2a', 7a' are non-congruent 

to one another modulo 8. This is also true for the numbers O, a, 

2a, ... , 7a. Among the integers m1 + ja' there are only three 

numbers at most.of the form 4h(8n + 7) for h and n non-

negative integers. This is also true for· mi - ja Then from the 

8 systems of values of m and m' , there will be at least two for 

which neither m nor m' will be of the form 4h(8n+7) Choose 
I 

one of these systems. Then by Theorem 2.13 , m and m will each 

be the sum of three squares. 

Let x
1

, x2, x3 be three values of x satisfying (3.2.). If 

these values are substituted in (3.1) and if the resulting equations 

are added together, the following equation is obtained 

3 3 3 2 2 2 2 (3.24) r [ (a + x.) + (a = x.) ] = 6a[a + (xl +x2+x3)]. 
i=l 

]. ]. 

If 
2 2 2 with the conditions· m = xl + x2 + X3 

(3.25) 

then the following lemma is ·established. 
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Lennna 3.6 Every integer of the form 6a.(ct2 + m) is ·the sum of· 6' o:r 

fewer cubes ·if O -< m < a.2 and in ,;, 4h (8n+ 7) 

Followfng ·a pattern s_imilar _to that used for Lennna· 3. 2, consider 

(3.26) 2 . 2 
6A = 6a(a. + m) + 6a.' (a' + m') 

where m satisfies (3.25) and m' its analog. Then 

(3; 27) 

where 

(3.28) A' = am + a 'm' . 

By (3.25) 
3 3 

0 < A' < a + a' 

If a and a' are odd and relatively prime, ·by·the previous, 

method it follows that two positive integers ·m and m' can be found 

that 'will ·satisfy {3.2S) ·and· (3~28) and they will each be the sum of 

these·squares. 

Then since (3.25) ·is·the sum·of 12 cubes and since 

the following lemma is established. 

Lennna 3.7 ·Every integer 6A such that 

(3.29) 
3 3 · 3 

6A ~ 6 (a. + ct.' ) + 6a 1 
• 

2 
where 

. Cl. 
a< a' < - and a, a' 

8 
are odd and (a., a') - 1 , is the sum 

of 12 or fewer cubes.of positive integers; 

To. Q.btain a general theorem from Lemma 3~ 7, the same method that 

was used in Theorem 3,4 will be successful. Let y be odd,· a=y-2, 
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a' = y and y ·:! 13. By the same reasoning as Lemma 3.7, if y is 

above a finite limit, then the intervals (3.29) obtained by letting 

y vary will overlap and the theorem beJow follows~ 

Theorem 3.8. Every integral multiple of six above a certain finite 

limit is the sum of 12 or fewer cubes of positive integers. 

For y = 13, the lower limit of the inte.rval defined by (3.29) 

has a value of 28, 032. It is this apparent that Dickson I s tables [13 L . 

showing that all integers less than 560 ;000 are the sum of 9 or fewer. 

cubes., are sufficient to fill the gap left in Theorem 3,8 and prove 

the following theorem. 

Theorem 3.9. Every integral multiple of six is the sum of 12 or 

fewer ct1bes of positive integers. 

Fleck [15] was able to improve on Maillet's upper bound for g(3) 

in a simple way. It is surprising that Maillet did not see this himself, 

It is well known that a3 = a (mod 6) for any integer. Consider 

the integers 6m + a (a= 1, 2, 3, 4, 5). 

Now 

6m + a 3 = a + 6µ , 

By Theorem 3,9, 6µ is the sum of at most 12 .cubes. Thus, every 

integer of the form 6m + a is the sum of 13 cubes. · This proves the 

following .theorem., 

Theorem 3.10. Every r,ositive integer can be expressed as the·sum of 

13 or fewer cubes; 

It will now be proved that g(3) = 9 . In Chapter I, it was 

proven.that g(3)::: 9, and it was shown that 23 requires 9 cubes. 
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Dickson (l3] has proven that 23 and 239 are the only integers which 

require nine. cubes, and all other·positive integers can be expressed 

as the sum of eight or fewer cubes. It will be shown below that ev~ry 
33 . 

integer greater than 5 can be expressed as.a sum of at most eight 

cubes.· Actually, the proof given below is due to Watson [52] and 

shows that G(3) ::: 8 . The integers·less than 533 are known to be 

the sum of 9 or fewer cubes by Dickson's tables for cubes. Thus, 

it wUl fol:lbw that g (3) = 9 

Fbr~ijtatidnal purposes, C · will be used·to denote·the .sum of 
k 

k. or fewer cubes of positive integers. 

The proof begins with two theorems which are usually found in 

elementary number theory texts and are stated here without proof. 

Theorem 3.11. The congruence 

(3. 30) 
.3 
X · - n (mod 5) 

is solvable (uniquely) for every n. 

Theorem 3.12. The congruence 

(3.31) x3 - n (mod 5!) 

a) always has a unique solution .if n 1- 0 (mod S), 

b) is solvable for v(n) > 0 provided that v(n) either divides by 

three or is not less than r , 

Lemma 3.13. If there exists an m satisfying the three conditions· 

(3.32) (m, 6) ='l 

(3.33) 3 3 
N 

3 3 
4m < < 2 m 

(3.34) N = 3m (mod 6m) » 



then .N is c6 , 

Proof: From (3.33) and (3.34) 

3 
BN = 6 m + 6mk, 

Hence 

2 
0 < k < m 

6mk =.BN - 6m3 = ·24m - 6m = 18m (mod 48m) 

Then, because (m, 6) = 1 k = 3 (mod 8) . 

By Lemma 4.13, k is the sum of three odd squares, 

Let Then, 

SN 3 2 2 2 
= 6m + 6m(x1 + x2 + x3) 

3 3 3 = E {(m+x.) + (m-x.) } 
i=l + l 

identically. Since each· X < k1/ 2 and m and x. are odd, l - l 

is the sum of six positive even cubes. Thus, 

6 
3 

6 
3 SN ..., E (2y.) = ~ E y. 

i=l l i=l l 

6 
3 N = r y. 

i=l l 

and the lemma is proved. 

Lemma 3,14. If there exists an m such that 

(3. 35) 
3 3 3 3 3/4 m < n - x - y < 3/2 m 

(3. 36) 
3 3 _ 

x + y = n (mod m) 

and 

(3,37) x + y - n + 3 (mod 6) 

then n is CS . 

47 

8N 
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Proof: Assume there exists an m such that G3.35), (3.36L and (3.37L 

are satisfies. · Let N = n ..;, x3 - y3 . If · (m, 6) ·= l , then (3. 34) 

may be'broken up into 

(3. 38) x3 
+ y3 =·n - 3 m (mod m) 

and · 

(3. 39) 
3 3 x + y = n - 3 m (mod 6) • 

From (3. 38) it obviously follows that 

3 3 
x + y = n (mod m) 

Since x3 
- x (mod 6) 

3 and y - y (mod 6) 

(3.40) 
3 3 x + y = x + y (mod 6) . 

By (3.32) m = 1 (mod 6) or m = 5 (mod 6) 

thus 

(3. 41) 3m = 3 (mod 6) . 

Therefore, by (3,40) and (3.41), (3.39) becomes 

x + y = n + 3 (mod 6) . 

Let N satisfy (3.33), then 

3 3 3 3 
3/4 m < n - x - y < 3/2 m . 

Then, if there exists an m satisfying (3.35), (3.36) and (3.37), 

m also satisfies (3.32), (3.33) and (3,34), thus by Lemma 3,13, N 

is c6 . But n = N + x3 
+ y3 therefore n is CS . 
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Let ~ = ~r; with r defined by 

(3.42) s3r s n < 53Cr+l) 

then r > 10 ii' n ~ s30 . If 

(3. 43) 0 ':: x < 1/2 m 

and 

(3.44) 
3 3 · . 3 2 

n - 7/8 m > y ~ max (n - 2 m , O) 

then (3.35) will hold. The inequality (3.44) defines an interval who~e 

length is greater than m/120 . The interval will be smallest when 

n = s3r + 3 - 1 = 12Sm3 
- 1 

and even then., it is much 1-arger than m/120 , 

Watson [52] now proceeds ·to prove that G(3) :s 8 by using Lemma 

3.14. 

Th 3 15 If . . d 533 · ·eorem . . n 1s an integer .an n ~ · then n is C 
8 

•. 

Proof: Let m =Sr, with r defined by (3.42). If it can be shown 

that this value of m satisfies (3.35), (3.36), and (3.37), then 

n is c
8 

by Lemma 3.14. However) it is pointed out above» that 

(3.43) and (3.44) imply (3.35). Watson's method of proof is to show 

that if r m = S, then an x and y may be found that satisfies 

(3.36), (3.37}, (3.43}, and (3.44), thus implying that subject to 

certain restriGtions, n is c8 . 

Consider any n > s33 . · If n/125 is integral and· c8 , then 

n --= 125 
3 x. 
1 



and 

8 
n = E 

i=l 

3 (5x.) 
l. 

Thus, if n/125 is integral and c
8

, it follows that n is c
8 

. 

Then for v(n) = 3, 4, or 5, v(n/53) = O, 1 or 2, and these cases 

will be dealt with below. 

Watson shows that for v(n) = O, 1, 2, -and> 6 , (3.36) (3.37), 

(3.43) and (3'44) will be satisfied. 

For v(n) ~ 6 . Let x = 25X and y = 25Y. It will be shown 

that (3,36), (3.37), (3,43) and (3.44) are satisfied. 
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Since -6 1 -2 
6: 5 m < 2 5 m , (3. 43) will be satisfied if a suitable 

" A can be found such that 

-6 0 ~ X < 6'5 m. 

From (3.44) y = 52Y must belong to an interval of length 

f?:Teater than m That is, y must belong to an interval of Tio 
greater than m m Now = 

52,120 24·53 . 

m < 

7 
m 

24·53 

length 

- Therefore, if Y is in an interval of length 5-6 m , there exists an 

equivalent y in the required interval. Let Y
0 

be any value of Y 

in the required interval. 

From (3.36) 

Then 

3 3 
x + y _ 56 x3 

+ 56 Y3 
- n (mod m) • 
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and 

x3 - -Y
0 

+ Sv(n)-6 n0 (~od s-6 m) 

. -6 
- a (mod 5 m) 

for some. a . This congruence is solvable by Theorem 3,12. Let XO 

be a solution. 

From (3.37} 

x + y - s2 X + 52 y - n+3 (mod 6) ; 

that is 

X + Y - n + 3 (mod 6) 

and 

X = -Y + n + 3 (mod 6) · 

Now solve 

and 

X = -Y
O 

+ n - 3 (mod 6) , 

- -6 by the Chinese Remainder Theorem, and the resu1t·is X =·Xi (mod 6·5 ), 

This will provide the desired result, 

The case v(n) = 0 will be dealt with here; The cases for 

\! (n) = 1 and 2 are handled in a similar manner. 

Let v(n) = 0. This implies n t O (mod S) . Now for any \ 

and 
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But since l-l+l2 - 0 (mod 5) has no solution, 

v (1-l+A 2) = 0 • 

Therefore 

(3.45) v (l+A 3) = v (l+;\) . 

Consider 

(3.46) 

with X "t O (mod 5) • 

If A 1 -1 (mod 5) then \) (l+l) 3 = v(l+A) = 0 . Hence for some a, 

3 r-5 
( 1 + 11. ) a = 1 (mod 5 ) . 

The congruence (3.46) can be written 

This congruence is solvable, by Theorem 3.12. 

Now, A must be chosen so that v (l+l) = 0 , and it may also 

be chosen such that 

(3.47) 

3 Let n 1 0 (mod 5) , then v(n) f 3. 

From (3.46) 

(3.48) 

If 

(3.49) 



then 

(3.50) 3 3 r·5 X + Y = n (mod 5 ) 

Since X t O (mod 5) and A2 = 1201 (mod 55) , then 

A t O (mod 5) , thus Y "1- 0 (mod 5) • 

Therefore, 

(3. 51) XY t O (mod 5) . 

Since the modulus in (3.49) is Sr-5 , X and Y can be chosen so 

that· 

(3. 52) 

Let 

(3, 53) 

Then (3.36) becomes 

and 

o < x < sr-S r-5 and O ::: Y < 5 , 

r-5 r-5 x = X + 5 u and y = Y + 5 · v. 

53 

(3.54) (X + 5r-5u) 3 ,+ (Y+5r-\r~, x3 + 3X2Sr-5u + Y3 + 3Y2Sr-Sv (mod Sr) 
.. 

_ x3 + Y3 + 3.5r-S (X2u + Y2v) (mod Sr) 

= n (mod Sr) 

if 2(r-5) ~ r, that is, if r ~ 10 . 

But from (3 ,49) 

(3.55) 3 3 r-5 X + Y ·~ n + k 5 . 

Substitute (3,55) in (3.54), then 



Cancel r-5 5 , hence 

Substitute Y = AX in the above congruence.· 

Then, 

Since, X t O (mod 5) , 

for some M1 , Now use the Chinese Remainder Theorem to find an M 

such that 

and 

M = n + 3 (~od 6) " 

Then by (3.47), (3.36) and .(3,37) together become 

(3.57) ti+ µv = M (mod 6·55) 

where 
,2 

µ = A = 1201. 

Now, (3.5,7) is to be solved.· By (3.52) and (3.53),. 0 5 u ~ 1561 
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and ensures (3o43) and (3.44) hold, By (3.52) and (3.53), the interval 

defined by (3.44) permits at least [55/120] = 26 consecutive integral 

values of v . By a transformation .these values may be considered 

the values O, 1, 2, ... , 25 If v = [M/µ] ~ 15 , then this pro-

vides a solution Of (3o57). 
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Thus, for 33 r: 10, n ~ S , (3.36), (3.37), (3.43) and (3.44) 

hold. Hence n is c 8 by Lenuna 3.14. 

Theorem 3.16. g(3) = 9 . 

P f If . . h . C 1' f s33 b Th roo : n is . an integer t en n is 8 n :: · , y eorem 

3.15. By Dickson's tables [13] all integers less than s33 are c9 . 

Thus, 'all positive integers n are c9 or g(3) = 9 . 

. .. 



CHAPTER IV 

BIQUADRATES 

In Chapter I, it was mentioned that the .value of g(4) has not 

been precisely determined. From Theorem 1. 1, g ( 4) ~ 19. , and if an 

upper bound could be found for g(4) , then one might suppose that it 

would not be too difficult to reduce thi$ upper bound towards the goal 

of 19. 

In this chapter, Liouville's classical proof that g(4) s 53 will 

be given., as well as succeeding proofs that g(4) -~ 45, 41, 39, 38, and 

37, basically due to Lucas, Lucas, Fleck, Landau, and Baer respectively. 

The improvement bf the upper bound of g(4) by a few integers is not 

too important., espe_ciaUy when one realizes that the ideal is 19 ;' 

However, the$e proofs.are an excellent illustration of how progress 

is made in number theory in proving or attempting to prove a.conjecture. 

A person studying these theorems ·should realize that the proof of 

g(4) ~ 53 is not a very significant result i1' itself, :but the fact 

that Liouville's proof was the .first to establish an upper bourid for 

g(4) is important. The method of proof used by Liouville is .also impo:r-· 

tant in that all succeeding improvements of his·result used his basic 

method to obtain their proofs. 

Many-of the identitites and theorems proved·in this chapter were 

once well known in number theory, but few of them are found in the 

standard number theory text books today. Most undergraduate students 
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of number theory. would probably not be familiar with -them, -and· could 

broaden their knowledge of number theory by: studying them. · Since many 

of the proofs are simple, the undergraduate student ·might enjoy obtain-J 

ing the proofs for himself or trying to improve·on the results. 

Theorem 4.4 is Liouville's proof that g(4) ~ 53. In this 

proof, a simpler identity established by Lucas.will be used, instead 

of the original identity u~ed by Liouville. 

· .. 
Lemma 4.1. Every integer of the form 6a2 is the sum of· ·· 12 \ biquadl-

rates; if a is a positive integer. 

Proof: Let a be a positive integer. Then by Theorem 2;2 

Now, 

2 2 2 2 2 
(xl 

4 
+. (xl 

,4 
(Xl 

4 6(x1 + x2 + x3 + X4) = + x ) - x2) .. + + X3) 2 

.. +. (xl 
·4 

+ X J4 +. (X 
4 

- x ) + (X - x ) 3 . l 4 .. 1 4 

(x2 
4 

(x2 
4 

(x2 y4 + + X3) + ... X3) + + X4 

This identity was first established by Lucas [29] in 1876. Since 

it follows that 2 6a. is the.sum of 12 biquadrates. 

Theorem 4.2. Every positive integer of the form 6m is the sum of 

not more than 48 fourth powers. 

Proof: Every positive integer m is·the sum of four squares, by 

Theorem 2. 5. Thus, . 
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and 

2 2 2 2 6m = 6(a1 + a 2 + a3 + a4) 

2 2 2 2 = 6a1 + 6a2 + 6a3 + 6a4 

By Lemma 4.1, 2 6a. is the sum of 12 biquadrates. ThereforeD 6m is 
1 

the sum of 12 + 12 + 12 + .12 = 48 biquadrates. 

For convenience; the notation n = B. 
1 

will be used to mean that 

n can be expressed as the sum of.at most i positive biquadrates. 

For example, Theorem 4.2 states that 6m = B48 . 

Corollary 4.3. If m is·the sum of 3 squares, then 6m = B36 . 

Theorem 4.4. Every positive integer can.be expressed as the sum of 

not more than 53 fourth powers. 

Proof: Any positive integer n is of the form 6m + r, where 

m ::: 0 and r = 0, 1, 2 ~ 3, 4, or 5. , By Theorem 4. 2, 6m is the sum 

of 48 biquadrates .. Since· r is expressible by ·at most. 5, 14 , then 

n is.the sum of 58 + 5 = 53 biquadrates; 

The proof of the .above theorem is dependent,on expressing a 

positive integer as the sum of four squares, but by Theorem 2;13, it 

is known that certain integers can be expressed as the sum of three 

squares. This information will now be used to establish the following 

theorem, due to Lucas [ 28] . 

Theorem 4.5. Every positive integer can be expressed as the sum of 

not more than 45 fourth powers.· 
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Proof: By Theorem 2.13, if m = 8h + j (j = 1, 2; 3, 5, or 6) and 

m > 0, then m is the sum of thte~ squares. Let 

then 

n = 6m + r 

by Lemma 4. L 

If m = 8h or 8h + 4, since 8h - 27 = 5 (mod 8) and 

8h + 4 - 27 = 1 (mod 8), .it follows that m - 27 = 5 or 1 (mod 8), 

Now, if m-27 > O it is the sum of three squares; ·since m - 27 is 

not of the form r 4 (8n + 7). Hence, 

n = 6m + r 

= 6 (m - 27) + 6 . 27 + r 

2 2 2 4 
= 6(a1 + a2 + a3) + 2·3 + r 

2 2 2 2•34 = 6a1 + 6a2 + 6a3 + + r 

If m = 8h + 7 and m > 14, then 

m - 14 = 8h + 7 - 14 - 1 (mod 8) · 

and m-14 is a sum of three squares. Therefore, 
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n = 6m + r 

= 6 (m - 14) + 6, 14 + r 

2 2 2 4 
3 = 6(a1 + a2 + a3) + 3 + + r 

2 2 2 34 + 3 = 6a1 + 6a2 + 6a3 + + r 

= 845· 

Since m was _chosen > 27 and > 14, it remains to establish how 

many fourth powers are required to represent n = 6m + :r for m:;:: 27, 

Now, 6·27 + 5 = 167 and all positive integers less than 167 are 

the sum of not more than 19 fourth powers, as can be seen in 

Bretschneider's [4] tables which give the decomposition of numbers· 

$; 4100 into a sum of biquadrates. 

Therefore, any positive integer can be expressed as the sum of 

not more than 45 fourth powers. 

In order to improve his upper·bound for g(4) ; Lucas divided 

the integers into classes modulo 48 instead·of modulo 8. Modulo 48 

was not an arbitrary choice, as may be seen·in·the·following lemma~ 

which is also essential in the remaining theorems in this chapter. 

Lemma 4.6. Every positive integer of the form 48h·+ j , for 

j = 6, 12, 18, 30, or 36, is the sum of not more than 36 fourth 

powers. 

Proof: . If . m = Sh + j (j = 1, 2, 3, 5, or 6) and m · > · 0 ~ then m 

is the sum of three . squares, by Theorem 2 .13. · Hence, - 6m = B36 

by Corollary 4.3. Therefore, every integer having one of the following 
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forms is the sum of not more than-36 ··fourth ·powers: 

6(8h + 1) = 48h + 6 6(8h + 5) = 48h + 30 

6 (8h + :2) = 48h + 12 6(8h + 6) = 48h + 36 

6 (8h + 3) = 48h + 18. 

Thus; the lemma is proved. 

So far, it has been shown that g(4): 45, ·but by the above lemma~ 

certain numbers require only· 36 biquadrates. ·Thus, Lemma 4. 6 would 

appear to be a significant result, for if every integer could be 

expressed in the form of 48h + j (j = 6, 12, 18, 30, or 36) plus 
I 

a certain number of biquadrates; it seems that the upper bound for g(4l 

could be.reduced, A table will now be given-to see if every integer 

can be expressed in the form 48h + j (j =, 6, 12, · 1s, 30, or 36) plus , 

at most five biquadrates. If this can be done, it will prove that 

g(4) = 36 +.5 = 41 . 

By Lemma 4.6, 48h + 36 = B36 . Hence, 

48h + 37 = (48h + 36) + 14 = 837 

48h + 38 = (48h + 36) + 2·14 = B38 

48h + 39 (48h1+ 36) 4 
B39 = + 3·1 = 

48h + 40 = (48h + 36) + 4·14 = B40 

48h + 41 (48h + 36) 4 
B41 = + 5·1 = 

48h + 42 = (48h + 36) + 6·14 = B42 

---«· .• ··-··---- -

However, 48h + 42 = B42 is unsatisfactory, since each number· is -to be 

expressed as a sum of not more than 41 biquadrates. But, 



62 

48h + 42 - 48(h 1) + 6 + 34 + 3· 14 = B40 

48h + 43 = 48(h 1) + 6 + 34 + 4·14 
= 841 

48h + 44 = 48h + 12 + 2.i = 838 

48h + 45 48h + 12 + 
4 14 839 = 2·2 + = 

48h + 46 = 48h + 12 + 2·24 + 2·14 = 840 

48h + 47 = 48h + 12 + 2·24 + 3· 14 
= 841 

It has now been shown that 48h + j (j = 36, 37, ···» 47) is the. 

sum of not more than 41 biquadrates. In a similar manner; it can be· 

shown that 48h + j (j = 0, 1 J •• liil., 35) can be expressed in the form 

48h + r (r = 6, 12, 18, 30, or 36) plus at most five biquadrates. 

This is shown in Appendix A. 

Although 

48h + 46 = (48h + 12) + 2·24 
+ 2,14 = B40 , 

this result can be improved upon by writing 

48h + 4 = (48h + 30) + 24 = B37 . 

Whenever more than one representation is available for an integer, the 

one requiring the smallest number of biquadrates is used. 

Theorem 4.7. g(4) :s 41 

Proof: Let n be a positive integer, then n = 48h + j for 

47. If j = 6, 12, 18, 30, or-36; then by Lemma 4,2~ 

n = B36 . If j is not 6, 12, 18, 30, or 36, then 48n + j can 

be expressed in the form 48k + r (r = 6, 12, 18, 30, or 36) plus 
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at most five biquadrates. (l) 

For 48(h - 4) + 30 to be positive,· h must be four or greater. 

Thus., it has been proved that every integer~ 48,4 = 192 is the sum 

of 36 + 5 = 41 biquadrates. Bretschneider [ 4] proved that all 

integers< 4,100 are B19 . Therefore, all integers are the sum of 

not more than 41 biquadrates. 

The method of proof used in Theorem 4.7 will be used in the follow= 

ing theorems to reduce the upper bound for g(4) . This method consists 

of refinements of the upper bound which can be established from some. 

integer on. For the numbers up to that point, the result is established 

by direct calculation. Baer's [3] proof that all integers s 934 - 456 

are s38 will be necessary to complete the proof of the remaining 

theorems of this chapter, and will be assumed. 

In his proof of g(4) ~ 41, Lucas [29] states how many biquad-

rates each residue class modulo 48 requires, but he does not show this. 

Appendix A was made up by this writer to complete the proof of Lucas. 

It should be noted that Lucas states. 48h + 45 = B39 , when he· could 

have proved that 48h + 45 = B37 , as is shown in Appendix A. 

In Theorem 4.7, integers of the form 48h + 11 , 48h + 27, and 

48h + .43 require 41 biquadrates, and those of the· form 48h + 10, 

48h + 26, and 48h + 42 require 40 biquadrates. For the upper 

bound of g ( 4) to be· reduced. to 39, these integexs would have to be 

expressed as.a sum of fewer biquadrates. This will now be proved using 

the method due to Fleck (15]. 

1see,Appendix.A 
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Theorem 4,8, g ( 4) :s 39 

Proof: From Theorem 4, 7, it will be sufficient to prove that 48h + r 

(r = 10, 11, 26, 27, 43, and 42) = B39 , 

Now,·. 

48h + .10 = 48 (h - .2) + 24 + 82 

= 48m + 24 + 34 
+ 14 

= 6'4(2m + 1) + 34 + 14 

where m = h - 2 , If 2m + 1 is not of the form 8n + 7 then 

6°4(2m + 1) = B36 , by Corollary 4i3, Hence, 6°4(2m +.l) + 34 
+ 14 = 

B36 + B2 = B38 , Suppose 2m + 1 = .8n + 7 Since 14 ~ s4 - 13.48, 

48h + 10 = 48m + 24 + 34 
+ 14 

= 48(m - 13) + 24 + s4 + 14 

= 6°4[8(n - 3) + 5] + s4 
+ 14 

By Corollary 4,3,, 6'4[8(n - 3) + SJ =·B36 , and 

6·4[8(n - 3) + 5] + s4 
+ 14 = B36 + 82 = B38 , 

Therefore, ·. 48h + 10 = B38 . 

Similarly, 

48h + 26 = 48h + 24 + 2,14 

= 6·4(2h + 1) + 2,14 

If 2h + 1 ~ 8n + 7, then 6•4(2h + 1) = 836 , . Hence,· 

6°4(2h + 1) + 2·14 = 838 , 



Also, 

48h + 42 = 6·4(2h + 1) + 24 
+ 2,14 = 839 1 

if 2h + 1 = 8n + 7. Let 2h + 1 = 8n + 7, then 

48h + 42 = 6·4(2h + 1) + 24 
+ 2,14 

= 6·4[8(n - 3) + 5] + 54 
+ 24 

+ 14 

= 839 ' 

Then, 48h + 42 = 839 . 

Finally, 

48h + 43 = 6·4[2(h - 3) + l] + 2·34 
+ 1

4 

if 2 (h - 3) + 1 ,j: 8n + 7.. If 2 (h - 3) + 1 = 811 + 7 , 

48h + 43 = 6,4[8(n - 3) + 5] + 54 
+ 2·34 

= 839 ' 

Therefore, 48h + 43 = 839 . 
Now, 

48h + 11 = .48h + 10 + 14 
= 839 > 

and 

48h + 27 = 48h + 26 + 14 
= 839 . 

Consequently, 

g(4) < 39 . 

Therefore, the theorem is proven. 
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In Theorem 4.8, the integers requiring 39 biqm1.drates, are of the 

form 48h + r Ct - 1, 11, 17, 25, 27, 33, 41, 42; 43). In order to 

prove g(4)::; 38, the above integers would have to be shown to be 

s38 .. Several lemmas, necessary for Landau's [ 4] proof of g( 4) ~ 38 t 

will now be established. 

Lemma 4,9. 2 2 2 Any odd integer is of the form x1 + x2 + 2x3 . 

Proof: Let n be an arbitrary integer. Then·any number of the form 

4n + 2 is not of the form 4r(8t + 7) . Hence, 4n + 2 is the sum 

of three squares, by Theorem 2.13. Let 2 2 2 4n + 2 = a + b + c 

Since 4n + 2 is not.divisible by 4 this implies that a, b, and c. 

cannot all be even. However, 4n + 2 is even, therefore the number 

of odd integers among a, b, and c must be·even. Let a and b 

be odd, then c must be even. The integers a+ b and a - b are 

even. Hence, a + b = 2x
1 

and a - b = 2x2 ~ · Now,, a = x1+x2, 

b = x
1
-x2 > .. and if c = 2x3 

4n + 2 2 2 2 
= a + b + c 

(xl 
2 2 2 

= + x2) + (x - x ) + 4x3 1 2 

2 2 2 ' 2 
= 2x1 + x2.+ 4x3 

Therefore, 

2n + 1 = x2 + x2 +·2x2 
1 2 3 ' 

and the lemmais proven. 

Lemma 4.10. 

Proof:, In Lucas' identity in Lemma 4.1, let x3=x4 . Then· (x3-x4) 4=0 9 

and one of the biquadrates in the identity is zero. Therefore, 



Corollary 4 .11. If u is an odd integer, 

Proof: Let u be an 

Hence, by Lenuna 4.10, 

odd integer. 

2 
6u = 8ll . 

By Lenuna 4.9., 

Lemma 4.12. If u is an odd integer, 24·4u2 = B11 
2 2 2x2 Proof: If u is an odd integer, u = x
1 

+ x2 + 
3 

by Lemma 4.9, 

Now, 

by Leriuna 4. 10. · 

Lemma 4.13. Let 

2 24·4u = 16'6u2 

2 2 2 2 2 = 4 ·6(x1 + x2 + 2x3) 

[(2 ) 2 (2 )2 2(·2x··3)2]·2 ~ 6. xi + .. x2 + 

8n + j Then, ·one of the· x. 
1· 

is 
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odd if j = 1 or 5 · , two of the x. 
l 

are odd if j = 2 or 6 ~ and 

all the x. 
l 

are odd if j = 3 

Proof:' If 8n + j 2 2 2 then j 1, 2, · 3, 4 5» or 6, by = xl + x2 + x3 J = ' 
Theorem 2.13. If is odd integer, 2 

1 (mod 8), and if x. an x. -
l l 

is even, x~ - 0 or 4(mod8). If exactly .one of the· x. is 
l l· 

2 2 2 1 or 5(mod8). If exactly two of the xl + .X:2 + x3 - x. are 
l 

2 2 2 3 (mod 8) xl + x2 + X3 - . 

Lemma 4.14. 48h + 18 = 833 , 48h + r (r = 12, 36) = s34 , and 

48h + r (r = 6, 30) = 835 . 

odd» 

odd, 

)L 
l 

then 
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Proof: By Lemma 4 .13, Bh + · 1 is·· the sum of· three· squares· of which one 

is odd. Hence, 

48h + 6 = 6(8h + 1) 

6(x2 2 z2) = + y + 

6x2 2 2 = + 6y + 6z 

= 811 + 812 + 812 

= 8
35 

by Lemma 4.1 and Corollary 4.11. Every integer of the form Sh+ 2 is 

the sum of three squares, two of which are odd. 

Therefore 1 

48h + 12 = 6(8h + 2) 

6(x2 2 z2) = + y + 

= Bll + 811 + 812 

= 834 

Since 8h + 3 is the sum of three odd squares, 

48h + 18 = .6 (8h + 3) = 811 + 8u + 811 = 833 . 

Similarly, 

48h + 30 = 6(8h + 5) = 8u + 812 · + 812 = 835 , 

and 

48h + 36 = 6(8h + 6) = Bll + Bll + 812 = 834 

Corollary 4.is. 48h + l = 837 , and 48h + r (r = · 11, 17, 33) = 838 ' 

Proof: By Lemma 4.14, 
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4 48h + 1 = 48(h - 4) + 30 + 2·3 = B
37

, 

4 4 48h + 11 = 48(h - 2) + 25 + 3 + 1 = 838 

48h + 17 = 48(h 2) + 30 + 3
4 

+ 2·1
4 = 838 

48h +.33 4 = 48h + 30 + 3·1 = 838 

Lemma·4.16. Every integer of the form 8h +.5 or 8h + 6 is the.sU!lffi 

of three squares, of which one is twice an odd integer. 

Proof: If n = 5 (mod 8) then 2 2 2 where is , n = x1 + x2 + X3 x. 
l 

odd, 2 
0 (mod 8); and 2 - 4 (mod 8), by Lemma 4.14. Now, x

3
,,.2t. x2 ·- X3 = 

Suppose, t is even (t = 2r), then x2 ·= 4t2 
= 16r

2 = 0 (mod 8) ~ 3 

which is a contradiction. Thus t is odd. By the ·same lemma, if 

n = 6 (mod 8), ·then 2 2 2 where· are odd, and n = >"1 + Y2 + Y3 Y1 , Y2 
2 -

Y3 = 4 (mod 8). Since Y3 =.2k , suppose k is even (k = 2s) 

Then y2 = 4k2 = 16s2 - 0 (mod 8) , which is a contradict.ion. Thus 3 

the .lemma follows. 

Lemma 4.17. 48h + 25 = B36 .. 

Proof: Let u = 48h + 25 where u > 134 Then 

u - 14 = 48h + 24 = 24(2h + 1) , 

u - 54 = 48h 600 = 24(2h 25) , . 

u - i =48h 2376 = 24(2h 99) 

u - 134 = 48h -28536 = 24(2h 1189) 

The integers. 2h + 1, 2h - 25, 2h - 99, 2h - 1189 are·all positive, 

and one of them is congruent to five modulo 8 .. Suppose h = 4n then 

2h · - 99 = 8h - 99 = · 5 (mod 8) . . If h = 4n + 1 ; 2h - 1189 -- 8n 1187 -

5 (mod 8). If h = 4n + 2, 2h + 1 = 8n + 5 (mod 8). Finally, for 

h = 4n + 3 , 2h - 25 = 8n - 19 = 5 (mod 8) . By Lenuna 4, 16, .one of the 
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integers 2h + 1, 2h - 25, 2h - 99, or 2h - 1189 can ·be expressed as· 

the sum of three squares of:which one is twice·an·odd number. Therefore, 

24(8t + 5) = 24(x2 + y2 + z2) 

2 2 2 = 24((2~) + y + z) 

= 24·4u2 ·+ 24y2 + 24/ 

2 2 · 2 = 24·4u + 6(2y) + 6(2z) 

= 811 + 812 + 812 

=. 835 , 

by Lemmas 4.1 and 4.12. Hence; u = 48h + 25 = s36 . 

Corollary 4.18. 48h + 27 = s38 , 48h +.41 = B37 , and 48h + r 

Cr= 42, 43) = B38 . 

Proof: By Lemma 4.17, 

48h + 27 48h + 25 + 4 
= 2,i. =·B38 

48h + 41 48h + 25 + 4 
= 2 = B37 

48h + 42 48h + 25 4 4 
= + 2· + 1 = 838 

48h + 43 48(h - 3) 4 = + 25 + 2,3 = B38 

Theorem 4.19. g(4) 5 38 

Proof: The integers which·require 39 biquadrates in Theorem 4.8 1 

are of the form 48h + l, 48h + 11, ,48h + 17, 48h · + 25, 48h + 27, 

48h + 33, 48h + 41, 48h + 42, and 48h + 43. By Lemmas 4.14 and 4.17, 

and Corollaries 4 .15 and 4; 18, all of the above integers ·are the S'UIIl 

of not more than 38 biquadrates. 

Lemma.4.20. 

Proof: Let u = 48h + l 

48h + 1 = 836 

4 where u > 13 . . Then 
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u - 14 = 48h = 24·2h 

u - 54 = 48h 624 = 24(2h - 26) 

4 2400 24(2h - 100) u - 7 = 48h - = 

u - 134 = 48h - 28560 = 24(2h - 1190) 

The integers· 2h, 2h - 26; 2h - 100, and 2h - 1190 are all positive. 

Since 

2h 26 = Sn 2.6 - 6(mod 8) if h = 4n 

2h 100 = 8n 98 - 6 (mod 8) if h = 4n + 1 

2h 1900 = 8n 1186 ·- 6 (mod 8) if h ::; 4n + 2 

2h = 8n + 6 - 6 (mod 8) if h = 4n + 3 

one of the integers 2h, 2h - 26, 2h - 100, or 2h - 1190 is congruent 

6( d 8) H f h . . l 2 2 . 2 to mo . . ence; one o t ese 1ntegers is equa. · to x · + y + z 

where x is twice an odd integer (x = 2k) , by Lenuna 4.8. Therefore, 

2 2 2 = 24·4k + 6(2y) + 6(2z) 

= 811 + 812 + 812 

= 835 

by Lemmas 4.1 and 4.12. Thus· u =.48h + 1 = B36 . 

Lemma 4. 21. 24m + 9 = B~6 

Proof: Let u = 24m + 9 where u > 214 . Then 

u - 34 = 24m - 72 = 24(m - 3) 

u - 94 - 24m - 6552 = 24(rn - 273) 

u - 154 = 24m - 50616 = 24(m - 2109) 

u - 214 = ,24m -194472 - 24(m - 8103) 
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Since· 

m - 3 = 8k 3 =,S(mod 8) if m = 8k 

m - 3 = 8k 2 = 6 (mod 8) if m = ~k + 1 

m - 2109 - 8k - 2107 = S(mod 8) if m = 8k + 2 

m - 2109 = 8k 2106 = 6(mod 8) if m = 8k + 3 

m - 8103 = 8k - 8099 = 5 (mod 8) if m = 8k + 4 

m - 8103 = Bk 8098 = 6(mod 8) if m = Bk + 5 

m - 273 = 8k 26.7 = S(mod 8) if m = Bk+ 6 

m - 273 = Bk - 266 = .6 (mod, 8) if m = 8k + 7 

one of the.integers m - 3, m - 273, m - 2109, or m - 8103 is congruent 

to 5 modulo 8 if mis even, or if mis odd, one of these integers fa 

congruent to six modulo 8. Hence,; one of the numbers m., 3, m - 273~ 

m - 2109, or m - 8103 is the .sum of three squares cx2 + y2 
+ z2) 

where x is.twice an odd integer (x = 2t) , by Lemma 4.16. Thus, 

24(x2 
+ y2 

+ z2) = 24·4t2 
+ 6(2y) 2 

+ 6(2z) 2 

= 811 + 812 + 812 

= 835 

by Lemma 4.1 and 4.12. Therefore~ u = 24m + 9 = 836 . 

Lemma. 4. 22. All integers of the form 48h + .1 -or 48h + 33 can be 

represented by at most 34 biquadrates. 

Proof: For every integer of the form 

find 16 integers a.(i = 1, 2, ... , 16) 
1 

48k + 1 or·48k + 33, one can 

4 such that.· 1 - a. and 
1 

4 33 - ai is of the form 48ai , where ai takes on every value in the 

least positive .residue class modulo 16. This is shown in the following 

table. 



a. 1 S · 7 11 13 17 19 23 25 29 31 37 43 49 SS 61 
l 

1-a~ 

48
1 =ai: 0 3 i4 15 13 4 5 10 6 1 8 11 7 12 2 9 (mod 16) 

a. 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 
l 

. 4 
33-a. 

1 

48 ai= 5 8 2 13 11412 11 3 4 6 9 5 10 0 7 (mod 16) 

For convenience, the symbol { ;
3

~ will be used to mean 1 or 3.3 o 
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For each a. 
l 

in the table, there exists an ai , where 0 < a. < 93, 
1 -

and 

Let 

then 

4 - a. - 48a. (mod 48·16) 
1 1 

a. = 6 - h (mod 16) 
1 

where k is some integer. If s is of the form 48h + 1 or 

48h + 33, then 

4 1 4 
s = ai = 48h + { 33} - ai 

= 48,16k + 48·6 

= 2
4 

• 6 (8k + . 3) 

4 2 · 2 2 = 2 ·6(u1 + u2 + u3) 
4 

+ 811 + Bll) - 2. · (Bll 

4 = 2 ·833 

by Lemma 4.13 and Corollary 4.11. Since 2
4·x4 = (2x) 4 , 2

4
B33 is 

also the sum of 33 biquadrates, Hence, 



It was ·assumed above' that h > -1 . Then, 4 s - a. > ~480 and 
l 

s > 934 - 480, since O < a. < 93; It has been·proven that all 
l 

integers of the form 48h + 1 or 48h + 33, which are ~-934 - 480 

are a34 . 

Corollary 4;23, 48h + 17 = 835 

Proof: 

48h + 17 = 48h +.1 + 24 = B35 

Lemma 4.24, 

Proof: 

24(xi 
2 2 2 2 

(xl 
4 

(xl + ~~ ·.+ x + x ) ' = + x2 + X3 + X4) + + x2 + X3 - X4) 3 4 

+ (xl + x2 + x -3 x ) 4 +·cx 4 . 1 - X2 + X3 + X4) 

+ (xl + x2 - x 3 + X4)4 + (xl - x2 ... x 
3 - X4) 

(xl + X4)4 + (xl + - x2 - X3 - x2 - x - X4) 3 

4 4 4 4 
+ (2x1) + (2x2) + (2x3) + (2x4) 

Corollary 4.25. 

Lemma 4.26. 9 
48h + {25} = B35 . 
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4 

4 

4 

4 

Proof: [ 3 ] Let s be an integer of the ,form 48h + . 9 or 48h + 25. 

Then, s.- 24 is of the form 48h + 33. or 48h + 1 . By Lemma 4.22, 

there exists an integer a. > 0 such that 
l 
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24 - 4 24.6(8k + 3) s - a. = 
1 

whel'e k is a positive integer. Now 
' 

4 4 
+ 24 24(32k + 12 + 1) 24 (16L + 13) s - a. = 2 · 6 (8k + 3) = = 

1 

where L = 2k is an integer ~· 0 Since 16L + 13 = 5 (mod 8) 

161 + 13 2 2· 2 If is an odd·integer, 1 9 = vl + v2 + v3 v v = or 

(mod 16) 1 and if v is even, then v = 0 or 4 (mod 16). Therefore~ 

2 2 2 - 13 (mod 16) implies that one of the squares., 2 
vl + v2 + V3 = say vl 9 

is 9 (mod. 16), second 2 is= 4 (mod 16), and - a square, say v2, 
2 v 3 - 0 (mod 16) Hence, v1 = 3 or 5 (mod 8), v2 = 2 or 6 (mod 8)~ 

and v3 ='0 or 4 (mod 8) By Theorem 2.13, v1 and v2 are the 

sum of three squares, and by Theorem 2.5, v3 is the·sum of four squares, 

Therefore, 

s = a1 + 24(161 + 13) = 
1 

by Lemma· 4, 24 and Corol la:ry ·· 4. 25. 

Since ·k > -1 , s > 934 . - 456 ·. It has now been proven that 

every integer of the form 48h + 9 or 48h + 25 , ·which is > 934 - 45,(. \\}) ~ 

is B35 . Thus; the lemma is proven 

Theorem 4,27. g(4) ~ 37 . . 
Proof: In Theorem 4.19, ·the· integers which require 38 biquadrates 

are of the form 48h + r (r = 1, 9, 11, 27, 33, 42, 43). By Lemnia 

4.22, 48h + 1 = 834 and 48h + 33 = 834 Since 48h + 9 and 48h + 25 
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are B35 , by Lemma 4.25, then 

48h + 11 = 48(h - 2) + 25 + 34 
+ 14 = B37 

. 4 
48h + 27 = 48h + 25 + 2 · 1 = B37 

4 48h + 42 = 48(h - 1) + 9 + 3 = B36 

48h + 43 = 48h(h - 1) + 9 + 34 
+ 14 = B37 

Therefore, every integer can be expressed as the sum of 37 or less 

biquadrates. 

The upper bound of 37 for g(4) is still distant from Waring's 

conjectured value of 19. Chandler [5] proved that g(4) ~ 35 by 

extensive analytic work·which involved proving that·all integers 

< 1026 are B19 . This result has not been improved-on in-36 years, 

indicating why g(4) = 19 is regarded·as the most.difficult portion 

of Waring's conjecture. 

From the theorems and-lemmas of Chapte:t·IV; it appears that 35 

is the best result that can·be obtained using·present information. 

There appear to be several possible approaches·to t~ke in reducing 

35 towards 19. One method·would be·to find·new·identities·which would 

yield better results .than those used in Lemmas·4;1 and-4.24. Many of 

the theorems of Chapter IV are dependent on the representation of an 

integer·as·the sum of·a minimum number·of squares. --1£ more was'known 

about the representations -of integers as ·sums 'Of· squares; it appears 

quite likely that the upper bound of g(4) - could be reduced. 



CHAPTER V 

FIF'TH AND SIXTH POWERS 

The techniques involved in estimating g(k) for k = 5 and 6 are 

similar to and more complicated than those used for k = 3 In both 

cases an algebraic identity plays an important role. Some of these 

results and arguments are outlined here. A more detailed discussion 

of these cases can be found in [53] , [16], [25] and [ 3] . 

In his article "Zur Darstellung der Zahlen als Summen von Sten 

ten und 7 Potenzen positiver ganzer Zahlen", Wieferich [53] proves that 

g(S) :s 59 . This proof is not algebraic, as were the proofs for squares 

and fourth powers, and is thus more difficult to follow. Wieferich's 

proof consists of showing that if z > 2545 , then subject to certain 

restrictions, integers i::, A, B1, and z1 can be found such that 

(5 .1) +As+ 5 1 z = e B1 + z 

It will be pointed out later that the number e is O or 1 , and that 

1 z is the sum of at most 56 fifth powers. It will then follow from 

(5.l)that g(S) :5 59 . Th . 2545 e integers< are shown to be the sum of 

at most 59 fifth powers by constructing suitable tables to cover 

this range. Wieferich does not give the reasoning behind his proofi 

he merely states that he can always find over forty numbers, subject 

to certain conditions, by which he can define 1 A, B1, and z in (5 .1). 

If z is a positive integer, Wieferich ingeneously develops 

77 
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various equations with restri'ctions on their·variables until he .obtains 

5 5 1 z = E +A_+ Bl+ z 

where E is chosen as O if z is odd, but E· is 1 if z is even. 

The number B1 has been arrived at by a complex·process 

BS= 155 . 2v + 8 + n. BS 
1 

where v is determined by 

P + Q < z - e < 2
5 

{P + Q) 

for 

P = 15·2v + 7 (2 2v - 6 • 1377 +·1) 2 - 1579·25v + 6 

and n is determined by 

wh.ere 

n = 2, 3, 4, 5, 6 

v + 3 + n = 0 (mo4 5) . 

The term B is chosen in such a way that 

· 4v - 18 
0 < M1 < 2 

4 n 5 
M1 = M - 15 ·2 ·B . • 

The number M. is of the form 4N +·3 and is dependent on·the·choice 

of A5 . 

5 v + 8 
A = z - e - P - 15·2 · M 



79 

where A is determined such that 

o ~A< 15'2v + B . 

The restrictions on these integers imply that v is.greater than 

95 If z > v is greater than 95 , thus the theorem will 

be proven for z > 

The only remaining letter in (5.1) to be explained is z1 , which 

is probably the most important term in the expression,· Wieferich 

defines z1 to be 

where are ntunbers such that v - 2 y . < 2 . 

Then 

If 

Xl 

If a, ui' vi, w i are any; ntunbers, the following is an identity, 

A. 
l 

4 

(Ba 5 
(Ba 

5 
( Ba v. )5 + . (Ba. -= + u.) + u.) + + v.) 

l l l l 

(Ba 
5 

(Ba 
5 

(a 5 
+ + w.) + - w.) + + ui + v. + w.) ' 

l l l l 

(a w. )5 (a 5 
+ - u. - v. - + - u. + v. + w.). 

l l l l l l 

+ (a + 

+ (a -

+ (a 

5 u. - v. - w.) 
l l l 

5 u. + v. - w.) 
l l l 

5 
i - v. + w.) 

u l l 

(a + + ui - v. ·+ w.) 
l l 

(a + + u. + vi - w.) 
l J. 

2 2 2 2 2 · 4 = 2a{60 [43 + u. + v. + w.] - B•l579a} 
l J. l 

5 

5 

5 

i: A .. = 
i=l l 

3 
15 · 2 · oi 

4 
r 

i=l 

2 2 2 2 2 - 6 -- 5 
[43·a + u. + v. + w.J - 2 · 1579•a . 

l 1, l. 
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Then 

4 
E 

i=l 
A. = 15·2v + 3 . 

l 

4 2v 2 2 . · 2 2 6 Sv 
E (43·2 · .. + yli .+ y21 .+ y3i] - 2 ·1579·2 , 

'Thus~ 

A. is the sum of 
l. 

i=l 

14 

4 
E 

i=l 

fifth 

1 A. = z 
l. . 

powers, and 

of at most 4·14 = 56 fifth powers.· Since 

l 4 
z. = E A. i S thie £,1l)]IDJll 

i<::l l 

Wieferich thus concludes that any z > 2545 can be represented by the 

sum of at most 59 fifth powers. 

Wieferich then constructed a table that showed that the numbers 

from l·to 500 can be·represented as the sum of at most 37 fifth powers 

and the.numbers from 500 to 3,000 can be represented by the.sum of at 

most 28 fifth powers. To· establish that g (5) ·::: 59 , it remains to 

show that all integers between 3,000 and 2545 can be expressed as the 

sum of 59 or less.fifth powers. 

Wieferich established that all integers z < 2545 ·can be written 

as 

(5, 2) 

where z22 < 50,000. This equatibri plays an important role'in Wiefe­

rich' s proof. If z can be.· represented ·by equation (5. 2); then z 

is the sum of 22 fifth powers and z22 .. If z,~2 could be shown to 

be the sum of fewer than 37 fifth powers, .then it would follow that 

z would be the sum of at most 59 fifth powers. 
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Therefore, to complete Wieferich's proof that· g(S):;: 59 ~ it must 

be proved that all integers 545 
z < 2 can be Tepresented by (5. 2) » and 

that z
22 

be proven to be the sum·· of fewer than · 37 fifth powers, · 

Lennna 5 .1. All integers z < 
545 

2 can be represented by 

where z22 < 50,000 

Proof; Let 

By a suitable choice of A 
1 

If 

+ •on + 

5 z. ·= 
1 

z - A . 1 

it can be arranged 

z < S·z415 
1 

by choice of A2 , it can be arranged that 

1 + s = 5 

·so that 

For z3 = z2 - AS Wieferich found that he · could make 
3 c4/ 4 4 c.!y2 

5< l + 5 + 
5 

5 5 
5 

Z3 < . Zz . z 

By continuing this process h~ found that 

4 (4)y--2 

2 
< 51 + s·+ ·~· + s 

v-1 

Let z v = z A
5 

V-1 - v By a suitable choice of Av , it can be arrarfftwlL 

that 

4 4 
- -+ 

< 5 • ZS < 51 + 5 2 v v-1 
O z 

or 
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4 v v 4 v 

55 
(-) .. (4) s . (-) - 5, 5 z 5 ( z ) 5 z < = 5 . 

55 v 

If the upper bound of 2545 is used for z and if z :i: 22 » then 

5 
z < 5 · 22 

'545 (4)22 
c-2-) 5 < 50,000 

55 

Now that it has been shown that z22 < 50,000 , it remains to be proven 

that z22 is the sum of at most 37 fifth powers; This was. established 

by Wieferich [53] in the following way, 

Lemma 5,2; If z22 < 50,000, then z22 is the sum of 37 or fewer 

fifth powers. 

Proof: Let z22 be an integer such that z22 ·< 50,000 . If z22 ~ 

3,000 , then from the previously mentioned tables, z22 is·the sum of 

at most 37 fifth powers, 

Let 

If 

let 

If 

let 

Then 

If 

let 

This implies that 

If 

set 

where E = 1 or 2 , 

3,000.< z22 < 50,000 . 

33.,500::: z < 50;000, 22 
5 z22 = 8 + z23 - 32,768 + z

23 

17,500 ~ z22 '< 33;500 ' 

z22 = 75 + 
z23 = 16,807 + 2 23 

500 < z23 <. 17,500 

8i500 s z23 < 17,500, 

z23 = 65 
+ z24 = 7,776 + z24 

sso < z < 1a~boo. 24 ,, · 

4,000 < z24 < 10,000, 

5 
z24 = E • 5 + z26 

= E ' 3125 + z26 
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500 < z26 < 4,000 , 

If 3,000 < z26 < 4;000, 

set Z = 45 
+ z 26 27 

= 1,024 + z27 

then 500 < z27 < 3,000 . 

Thus z27 is the sum of 28 or fewer fifth powers. · Therefore» z
22 

is the sum of at most 37 fifth powers.-

By using Lemmas 5.1 and 5,2 a final result dealing with fifth 

powers can be-obtained. 

Theorem 5,3. All integers z < can be represented as the sum 

of 59 or fewer fifth powers. 

Proof; Since 545 z ·. < 2 , by Lemma 5 . 1 

where z22 < 50,000 , By Lenuna 5.2, z22 is the sum of 37 or fewer 

fifth powers. Therefore,· z is the sum of at most· 22 + 37 = 59 

fifth poy,,ers. 

Sixth pwers seem to have a special significance in·Wa:tingts 

conjecture. The first general determination of g(n) was accomplished 

independently by Dickson [11] ·and Pillai· [39]. ·· Dickson ·determined a 

formula for g(n) , subject to certain restrictions, for n > 6 . The 

following chapter outlines the results in this case; -Thus: g(6) is 

the.one remaining value of g(n) to be discussed. 

Fleck [16] made the first important contribution concerning sixth 

powers when he proved that g (6) ~ 184, g (3) + 59 - , This was. a notable 

step because it proved that g(6) was finiteJ and it also gave a 



method by which the problem might ·be ·attacked~· ·An ·int_egra.l part of 

this method was the construction of the·following·identity: 

2 2 2 - 2 3 
60 (a + b + c + d) = 

(a+ b + c)6 +. (.;.a +·b + c)6 + (a - b + c)6. (a·+ b 6 
+ - c) 

+ (a + b + d)6•+ (-a + b + d)6 + (a - b + d)6 + (a·+ b - d)6 

+ (a+ c + d) 6 + (-a + c + d) 6 + (a. - c + d)6 + (a·+ c - d)6 

(b + d)6·+ (-b + 6 (b 
6 (b ·+ d)6 + c + c + d) + - c + d). + .c -

+ 2 (a + b) 6 + '2(a 
. 6 

- b) + 2(a + 
6 c) + ·2 (a - c) 

6 

+ 2(a + d)6 + 2(a - d)6 + 2(b 6 + c) + 2(b - c)6 

+ 2 (b + d)6 + 2 (b 6 .., d) + Z(c + d)6 + 2 (c - d)6 

6 6 6 6 +.36a + 36b + 36c + 36d . 

where the right hand side is the sum of l!l6 + 2,12 + 36·4 = 184 
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sixth powers. By Theorem 2,2, any positive integer may be expressed 

as the sum of- a2 + b2 + c2 + d2·. Thus the following lemma has been 

proven. 

Lemma 5.4~ If ·n is any positive integer, then 60n3 · can be expre~ 

ssed·as the sum of·l84·sixth powe.rs. · 

This .lemma was .. not discovered by accident; ' · Fleck specifically 

2 2 · 2 2 3 attempted to· express · (a + b + c + d ) or·· a :multiple of it as 

the sum of sixth powers of the form (eta+ Sb +ye+ od) 6 . The 

coefficients a., 13; y, o must be so determined that in _the expanded 

sum of (a2 +.b2 + c2 +·i) 3 , all the terms.which contain odd 

powers of a; b, c, d will dis.appear. With these ideas in mind, 

Fleek ·derived a method which determined the a; ·· 13, ·y, and o , as 

illustrated in Lemma 5.4. With this lemma, an upper bound for g(~) 



can be found, as is proven in the·.following·theorem. 

Theorem.5.5. g(6) s 184'g(3) + 59 

Proof: Let m be any positive integer; Then 

By Lemma 5.4, each 

60m = 3 3 3 60(n1 + n2 + ... + ng(3)) 

3 60n3 3 = 60n1 + + ••. 11 ·,+ .60ng(3) 2 

60n~ is the sum of 184 sixth powers. 
1 

Hence, 

60m is .. the sum of 184 · g (3) · sixth powers. Since· any integer is of 

the form 60m + r -, for r = 0, 1; ..• ; 59 , it follows that 

g(6) ~ 184·g(3) +.59 . 

Corollary 5.6. g(6) ~ 1715 

Proof: Since· g(3) = 9, g(6) S 184•9 + 59 = 1715 . 
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The proof tha:t g(6) ~ 1715 is far.from a proof of g(6) = 73 , · 

but it did inspire Kempner to approach the 'problem in· a manner similar 

to that used by Fleck. 

Kempner - [ 25] derived the , following identity: 

2 2 2 2 3 6 6 · 6 6 (5.3)120(a +b +c +d) =(a+b+c+d) +(a-b+c+d) +(a+b-c+d) +(a+b+c~d) 

+ (a-b-c+d;6 
-f (a-~:+c-d) 6 + (a+b~c.:.d) 6 (a-b-c--d) 6 

+8(a+b) 6+8(a-b) 6+8(a:+c) 6+8(a:.:.c) 6+8(a+d) 6+8(a-d) 6 

+8(b+c) 6+8(b-c) 6+8(b~~) 6+8(b-d) 6+8(c+d) 6+8(c-d) 6 

+(2a)6 + (2b) 6 + (2c) 6 + (2d)6 . 

There are· 8 + 8•12 + 4 = 108 sixth powers on the right-hand side of 

this· identity. · This proves the following lemma. 

Lenuna·S,7; For·any.positive integer n, 120n3 · is the·sum·of 108 
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s.ixth powers. 

With . this lemma; it was easy· for Kempner. [25] ·to· improve on· Fleck es 

results, as is shown in the following theorem. 

Theorem 5.8. g(6)·~·108 g(3)"+ 119 

Proof: If rn is·any positive integer, 

120rn 

Each 120n~ is the sum of 108 sixth powers by the previous lemma, 
1 

Thus, 120m is the sum of 108· g (3) sixth powers; Any integer is of 

the form 120m + -r , where r = ·o, 1, . , , , · 119 . 
Therefore, g(6) S 108·g(3) ·+ 119 . 

Corollary 5. 9. g (6) s: 1091 

Proof: ·. Since g(3) = 9, g(6) s 10&•9 + 119-. 1091. 

An integral part• of Theorem· 5. 8 is the representation of ni as 

·the .sum ·of four squares. If ni --could be ·expressed as ·the sum of 
. 3 

fewer.than four·sqtiares, it would follow that· 120n1 _ could be repre"" 

sented by fewer'than 1Q8 sixth powers; and'the·upper·bound for g(6) 

could ·be reduced. ·As ·in Chapter IV ; Theorem 2~13 ·and Lemma 4 ,9 

appear to play a significant role in the ·reduction· of· the '.·upper bound 

for g(k}. Once again, the import1:1,nce·of knowledge·concerning the 

representa~ion of a·number·as the sum·of squares is·emphasized. 

Kempner [25] used Theorem 2;6 and Lemma 4.9·to prove the following 

theorem. 

Theorem 5.10. g(6) s 107·g(3) +.a (0-~ a~ 119) 
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Proof:, By'Theorem 2il3 .. and·Lenuna 4~·3;--everyiriteger is·of-the form 

2 2 2 .. 2 2- 2 2 2 2 
a + b + c or of the form· a + b + 2c · . ·If n = a + b + c 

is used in the identity· of Lenuna 5.7, this· implies that d = 0 and 

120n 3 will be the of 107 sixth If 2 + b2 2c 2 sum powers. n = a + 

then c = d in (S .3) and since -s (c - d)6·= () ,-the'right hand side 

of the identity will be .composed of 100 sixth powers.· Thus all integer§ 

can be represented by at most 107·g(3) + a (O'.s as 119) sixth powers, 

Corollary 5 .11. g(6) ·:. 1026 

a can.be expressed in the form. S 6 2 + y; where S is O or l . 

Then the maximum number of sixth powers occurs when S = 0 and 

y'= 63·16 . Hence, 107·g(3) +.a= 107·9 +· S ·26
_+ y < 963 +63 = 1026. 

In most elementary text books on number theory congruences 'play 

a very important role, and the Chinese Remainder Theorem is also 

regarded as an essential·topic. The proof of the·following lenuna is· 

an excellent illustration· of the· application ·.of several· of th_e proper-

ties of congruences·and also includes·a pt~ctica1-application-of the 

Chinese Remainder'Theorem; This·Iemmacould thus·serve as·a useful 

supplement to any first ·cou:rse in number theory;· 

If A is •any positive integer, the congruence 

(5, 4) 6 6 A - z
1 

+ z
2 

+ · • , • ,+ 
6 z
7 

(mod 120) 

is solvable, since the congruence A= y1 + y~ +· •• , 

I 

+ y6 is solvable 
7 

d I 3 5 8 b . . I· ·II II mo u o , , Y y 1, ···i Y7, Y1, ,,,, Y7 , Y1, ,,., Y7 and the. 

solution of the congruences ·. 



z. - 'y·! (mod 5) 
l ·l 

z: - y~' (mod 8) 
l 1. 

satisfy (5.4). For example, let A = 1607 . · Then 

0, and y" = y" = 1 2 

1607 _ 2 (mod 3) 

1607 - 2 (mod 5) 

1607 - 7 (mod 8) 

- y"' - 1 ··. o•• - 7 - By the Chinese Remainder Theorem, 
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the values of z. may be found by solving the·simultaneous congruences 
l 

z. - 1 (mod 3) z; - 0 (mod 3) 
l J 

zi - 1 (mod 5) z. - 0 (mod 5) 
J 

~i - 1 (mod 8) z. - 1 (mod 8) 
J 

where i = 1, 2, and j = 3, -4, -5, 6~ 7 . Hence; z
1 

= z
2 

-= 1 , 

z3 "" = z7 = 105, and 1607 = 16 
+ 16 

+ (105)6 + ,,, + (105) 6 (mod 

120) The next lemma follows easily from above .. 

Lemma 5.12, The congruence· 

6 6 6 A - z1 + z2 + •.• + z7 (mod 120) 

is solvable if. A · is any positive integer. 

This lemma is the core. of Kempner' s proof [ 25] of g (6) -< 970 , 

Theorem 5.13. g(6) ·~ 970 

Proof: In Lemma· 5, 12 J it may be assumed that - z. 
l 

~ 119 for 

i = 1, 0 0 0 ) 7 . Let A > 7 .119
6 . Then; by the above lemma J there 
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exist seven sixth pbwers which may be'subtrac:ted .from ·A, and the 

resulting positive integer will be·divisible·by· 120. · However~ by 

Lemma 5. 7 and Theorem 5:10, it is known that every·positive multiple 

of 120 can.be expressed as·the sum of 107·9 = 963 sixth powerso 

Therefore; ·every integer· ~ · 7 · 119 ·can· be· represented by means· of 

963 + 7 = 970 sixth powers. The integers :s 7·1196 are the sum of 

not more than 186 sixth powers as'calculated by Baer [ 3], Thus the 

theorem is proven. 



CHAPTER VI 

THE IDEAL WARING THEOREM 

In Theorem 1.1 it was proven that 

g (k) ~ I (k) 

where k 3k I (k) = 2 + [ (2) ] - 2 • 

If the values of I(k) are examined for k = 2, 3, 4, S, and 6b it is 

found that I(2) = 4 I(3) = 9 , I(4) = 19, .1(5) = 37, and I(7) = 73 

These values ·are not only lower bounds to g(k), but it appears·that 

g (k) = I (k) in these cases. It has been conjectured that g (k) ... I(k) 

for every positive integer k, and this prediction has been called 

the Ideal Waring Theorem. 

Let 
0 < r < l 

q = [ c~/J and f = Uj/J . 

Dickson [10, 11] and Pillai [39] independently proved that for k > 6 

and k > 7 respectively, 

(6 .1) g(k) = I(k) if r ~ 2k __ q - 3 

Dickson [11] was also able to prove that for k > 6 , if 

k 
r > 2 - q 

then 

90 
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(6. 2) tk) + 
f if 2k = fq + f + q 

f 

g(k) = 
2k < (k) + f - 1 if. fq + f + q 

It can pe shown that for k 
r > 2 - q 

then 

2k < fq + f + q. 

Since Dickson's first proof was for r ~ 2k - q - 3 and hi~ ~~cond 

k one was for r > 2 - q, it can be seen that there is a gap to be 

filled. 

Niven [35} was able to prove 

g(k) = I(k) if r = 2k._ q - 2 . 

Dickson [11] was able to show that with 

k 0 < r < 2 

it is impossible for r to be ..equal to l - q - 1. Rubugunday [43] 

showed that r = 2k - q is also impossible. 

Thus, g(k) = I(k) k k for r < 2 - q - 3 and for r = 2 - q - 2 

and since k k r = 2 - q - 1. and r = 2 - q are impossible) then it 

has been proven that 

g(k) = I (k) for k 
r < 2 - q 

Since Dickson proved (6.2) if r > /._ q, the conjectured result 

would need to be modified in this case. Hd\-;ever, the ideal Waring 

Theorem would be proved (except for k=4 and k=S) ~ if it could 

be shown that there are no such that k This appears r r > 2 - q 

very likely. Dickson [12] has shown that k 
3 for r:,; 2 - q -
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4 <ks 400, and Mahler [30] has proved that r > 2k - q is possibl® 

for only a finite number of positive integers· k - if at all. 

By using an IBM 7090 computer, Stemmler [47] was able to extend 

Dickson's results., She was able to prove that up to k = 200 ~ 000 j it 

is true that 2k > q + r and the Ideal Waring Theorem thus holds for 

these values. 

Mahler's proof is based on a theorem by Ridout [42] on rational 

approximations of algebraic numbers. This theorem [30: 123] states: 

Let 
p 1' ... ' 
and let 

C be any algebraic number other than O; let 
Ps' Q1 , ... , Qt be finite sets of distinct primes; 
a, S, y, c be real numbers satisfying 

0-S as 1, 0-s es 1, y > a+ S, c > 0 

Let p, q be restricted.to be integers of the form 
hl hs kl kt 

p = p* pl ... PS 'q = q* Ql ... qt 

where h
1

, ... , h, k
1

, ... , kt are non-negative integers 
and p* , q* aresintegers satisfying 

0 < IP*I a s cp, 

There exists a positive number C 
and the primes P1, .. ;, Q1, ... , 
of· the above form, _we have. 

depending on r;, · a, B, y, c 
such that, for all p and - q 

! C - £.I > £y p-rovided q q 

The cohstant C used by Ridout can not be determined by his method. 

If C ·could be evaluated, it would be known whether Stemmler has 

completed the proof-of the Ideal Waring Theorem; or at least the value 

of k to which her work would have to be extended in order to complete 

the proof. 

Thus, the determination of g(k) is now complete except for k"'4 

and 5, and the uncertainty whether or not k for any r > 2 - q r 
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APPENDIX 

g(4) ::: 41 

48h = 48(h-4)+30+2·3
4 = 838 

. 4 4 
48h+l = 48(h-4)+30+2·3 +l = 839 

4 48h+2 = 48(h-1)+18+2,2 = 838 

48h+3 = 48(h-2)+18+34 
= 837 

48h+4 = 48(h-1)+36+24 = B37 
48h+S = 48(h-1)+36+24+14 = 838 
48h+6 = B36 

4 
48h+7 = 48h+6+ . 1 = 837 · 

4 
48h+8 = 48h+6,+2, 1 = 838 

. 4 
48h+9. = 48h+6+3·1 = 839 

48h+l0 = 48h+6+4·1: = 840 

48h+ll = 48h+6+5·1 = 841 

48h+l2 = 836 
4 

48h+l3 = 48h+l2+1 = ;837 
4 

48h+14 = 48h+l2+2·1 = 838 

48h+15 = 48(h-2)+30+34 =.837 
48h+16 = 48(h-2)+30+3

4
+1

4 = 838 
· · 4 4 

48h+l7 = ,48(h-2)+30+3 +2,1 = 839 

48h+l8 = ·836 
4 

48h+l9 = 48h+l8+1 = 837 

48h+20 = 48h+l8+2·1
4 = 838 

48h+21 = 48h(h..;2)+36+34 = 837 . 

48h+22 = 48h+6+2
4 = 837 

.f ,. 4 4 
48h+23 = 4~h+6+2 +l = 838 

98 

48h+24 = .48 (h-3) +6+2' 34 = B38 
48h+25 = 48(h-3)+6+2·34+l~B39 4 4 
48h+26 = 48(h-3)+6+2·3 +2·1 =!3'1H} 

48h+27 = 48(h-3)+6+2·34+3·14
=B

41 
48h+28:::: 48h+12+24 = 837 

1 
4 4 48h+29 = 48h+l2+2 +1 = B38 

48h+30 = 
48h+31 

48h+32 

836 
= 48h+30+1

4 = 837 
4 = 49h+30+2·1 = 838 
4 

48h+30+3~1 = B39 
48h+33 = 
48h+34 = 
48h+3.5 = 

48h+36 = 
48h+37 = 
48h+38 = 

48h+39 = 
48h+40 = 
48h+41 = 
48h+42 = 

48h+l8+2 = 837 
48h+l8+24+14 = B38 
8 

36 4 48h+36+1 = B37 . . 4 
48h+3.6+2 · l = B38 ' 4 
48 {h-1)+6+3 = 837 

48 (h-1)+6+34+14 = B
38 

48 (h-1)+6~3
4

+2·1
4 = 839 

, 4 4 · 
48 (h-1)+6+3 +3·1 = 840 

48h+43 = 4g (h-1)+6+34+4·14 = 841 
.. ' 4 

48h+44 = 48h-t:12+2·2 = B38 
48h/I.2+34 

= 837 48h+45 = 
48h+46 = 
48h+47 = 

4 
48h+30+2· = 837 

4 4 
48h+30+2 +1 = 838 
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