ANALYSIS OF PLATES WITH FREE EDGES
ON ELASTIC WINKLER FOUNDATIONS
BY THE GRID FRAMEWORK

METHOD

By

WILLIAM MAXWELL LUCAS, JR.
)l
Bachelor of Science
University of Kansas

Lawrence, Kansas
1956

Master of Science
University of Kansas
Lawrence, Kansas
1962

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 1970



r
b
#

L
ANALYSTS OF PLATES WITH FREE EDGES™.._

“’.,

5,

ON ELASTIC WINKLER FOUNDATIONS
BY THE GRID FRAMEWORK
METHOD

Thesis Approved:

Thesis Adviser

/ )
/ v/ 7
, i

\(:\

- N\

L 57 o J N

i Eh=2 s \l\(f/)/&ﬂ&i:j

ii




PREFACE

The application of the grid framework analogy to the
analysis of plates on elastic foundations investigated in
this thesis is the culmination of the author's studies at
Oklahoma State University. With the rapid increase in the
availability of digital computers in the consulting field,
more structural engineers are entering the profession with
abknowledge of computer techniques. In addition, the use
of a high épeed computer makes the‘SOlution of many dif-
ficult problems much easier for the consulting office.
This investigation provides a numerical technique for the
solution of an elastic plate supported by an elastic foun-
dation. The grid framework method is readily adapted to
many frame and grid analysis programs now available. |
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CHAPTER I
INTRODUCTZION
Discussion of the Problem

The recent increase in the availability of high speed
digital computers has greatly affected the field of struc-
tural engineering. The accompanying increase in the avail-
ability of computer software has made use of the computer
relatively easy for routine arithmetic operations. Because
of these facts, the analysis of highly indeterminant frame-
work structures poses few problems for the structural
engineer. In addition, a highly accurate structural
analysis of a continuous elastic medium is now possible if
the physical properties of the medium can be simulated by
an equivalent framework structure. The significance of
this possibility is that problems which have been concerned
with continuous elastic structures and which have usually
been beyond the ability of the consulting engineer can now
be solved using available techniques. Such a problem is
the analysis of an elastic plate resting upon an elastic
foundation.

The solution of this problem can be approximated in
either of two ways: by the use of a finite element

approach; or by the use of a line element approach. These



methods produce comparable results. The finite element
method allows deformations to occur. at the joints of fﬁe‘
approximating system, and the mathematical relationships
are best defined in terms of displacement functions. On
the other hand, the line element method uses deformable-
members with continuous joints and lends itself to more
commonly used techniques of analysis such as the stiffness
method. This property of the line element approach makes
it more readily adaptable by the average consulting engi-
neer. It is, therefore, the purpose of this thesis to
develop in . terms of the stiffness or displacement method of
structural analysis an equivalent grid framework model for
an elastic plate resting upon an elastic foundation. Such
a method of solution offers many advantages: first, the
introduction of different boundary conditions will not-
change the procedure nor will it alter the governing equa-
tion; secondly, the analysis will closely follow methods
used to analyze other framework structures and will either
be familiar to the consulting engineer or available through
commercial computer facilities. Finally, plates of irregu-
lar boundaries or internal configurations can be analyzed
with the same ease as plates with more regular confor-

mation.
History of the Problem

The basic differential equation governing the deflec-

tion of thin plates was developed by Lagrange and Sophie



Germain (1) in 1811 and was the first major contribution in
the theory of thin plates to be presented.

Poisson (2), in a paper on elasticity published in
1829, set forth the first investigation of the problem of
an elastic plate using the general equations of elasticity.
Poisson's derivation contains a set of boundary conditions;
thus, he was able to obtain the solution for circular
plates under symmetrical loading conditions.

Kirchhoff (3), in a paper published in 1850, derived
the governing equation and the corresponding boundary con-
ditions by using the energy principles or the principle of
least work. In this paper, Kirchhoff was able to reduce
by one the number of boundary conditions necessary to
describe a free edge as proposed by Poisson.

The first study of elastic.foundations was conducted
in 1887 by E. Winkler (4) and was concerned with beams on
elastic foundations. This theory was extended in 1888 by
H. Zimmerman (5) in his treatise which was directed toward
foundation problems under railroad tracks.

In the particular area of plates resting upon elastic
foundations the first contribution was made in 1881 by H,
Hertz (6), who investigated the problem of an infinite
floating plate subjected to a concentrated load. Hertz
used the assumption that the intensity of the foundation
reaction was proportional to the deflection of the elastic
plate. This assumption was identical to that proposed by

Winkler in the previously discussed paper on beams resting



on elastic foundations.

In 1923 Westergaard (7) extended the theory of plates
on elastic foundations to the analysis of infinite pave-
ments. This work was then expanded to include practical
applications of pavement designs. In the design of pave-
ments, Westergaard's solution is generally used today,
thereby assuming that the slab under consideration has
infinite dimensions.

More recent discussions of the problem of plates on
elastic foundations have been presented by Timoshenko and
Woinowsky-Krieger (8), who have developed a solution for a
circular plate with a center load. In 1953 R. K. Livesley
(9) presented a formal solution for the case of a semi-
infinite plate and an infinite quadrant, simply supported
along their edges, in terms of double Fourier transforms.
In addition, the "method of images" was investigated by
Arnold D. Kerr (10) and presented in 1963.

The analysis of elastic mediums by the use of a grid
framework model was first presented in 1841 by A. Hren-
nikoff (11) in a paper which proposed a square grid model
and utilized a constant Poisson's ratio:of 1/3. Othef
writers such as Newmark (12), Ang and Newmark (13), and
Yettram and Husain (14) have refined the technique by
developing more general plane framework models. In addi=
tion, the special case of Poisson's ratio equal to zero-
was investigated by Christensen-(lS), Lightfoot (16), and

Yettram and Husain (14).



An interesting application of numerical models to the
problem of plates on elastic foundations was presented in
1967 by Hudson and Matlock (17) in a paper concerning
crackeq pavement slabs with non-uniform support. This ap-
proach uéed a finite element grid model with infinitely
stiff edge members, torsional resistant cross members, and
flexible, deformable joints. The mathematical formulation
of the problem then assumed a finite difference approach by
relating the equilibrium expressions formed from a study of
a free body of a general joint. The solution of the result-
ing set of simultaneous differential equations was accom-
plished by using a cross iteration technique to obtain the
deformation of each joint. Whereas this procedure pro-
vided a numerical method which was quite flexible to obtain
answers for a previously difficult problem, the formulation
cf the method did not relate to techniques readily avail-
able to the average structural engineer.

The stiffness method of structural analysis is a
matrix algebra representation of the slope deflection
equations familiar to structural engineers and has been
presented by N. Willems and the writer (18) and others
(19), (20), (21). This method is particularly suited to
high -speed computation as the repetetive manipulation of
many terms 1s necessary, The suitability of the stiffness
method to problems involving a large number of members was
demonstrated by Eiseman, Namyet, and Woo (22) in 1962,

This property indicates that the method is suited to solve



the stiffness equations necessary to define a grid frame-

work used to represent an elastic medium. -
Definition of Terms and Basic Assumptions

In the analysis of plates on elastic foundations the
term "thin plate" refers to a plate for which the thick-
ness is small in comparison to its other dimensions. For
the purpose of this paper, a plate will be considered thin
when its thickness is less than one-twentieth (1/20) of its
next smallest dimension.

In addition to the relative thickness of the subject
plate, a distinction is usually made between thin plates
with small deflections and thin plates with large deflec-
tions. In the classical derivation of the governing
equation for a plate on an elastic foundation, the assump-
tion is usually made that the deflections are small in
comparison to the thickness of the plate. To allow for a
comparison of resgults, thin plates with small deflections
are considered in this thesis.

The equivalent grid framework model used to approxi-
mate the actions of an elastic plate is composed of members
that are similar to those used in any regular grid struc-
ture. For the development of this model the .assumptions
are made that the material is homogeneous, isotropic, and
continuous. In addition, it is assumed that the modulus of
elasticity is a known constant and is the same in both

tension and compression and that the material -deformations



follow Hooke's law.,

In the analysis of plates resting on an elastic foun-
dation, it is commonly assumed that the support offered by
the foundation 1s proportional to the deflection of the
plate. This assumption was first introduced by E. Winkler
(4) and the corresponding foundation is usually referred to
as a "Winkler foundation."

Many subsoils display deformations localized mainly in
the loaded region, and for such soils close agreement be-
tween computations based upon Winkler's hypothesis and
test results is usually observed. For instance, Wester-
gaard (7) developed his theory for the design of infinite
slabs on the above assumption, and the resulting calculated
values have been shown to agree closely with experimental

results.
Discussion of the Procedure

The procedure followed in the development of a grid
framework approach to the solution of plates resting on
elastic foundations consists first, in Chapter II, of a
discussion of the stiffness approach to the solution of
general grids. The general stiffness equations and
ﬁatrices are developed for grid structures, and the
solution of these equations is explained.

Chapter III applies the principles of the stiffness
equations for grid structures to the development of a grid

framework model for an elastic plate element. The model



matrix equation is then solved in terms of the actual unit
displacements of the plate element, and the properties of
the model grid members are thereby established.

An extension of the grid framework model stiffness
equation is presented in Chapter IV where the effects of an
elastic Winkler foundation are introduced. These founda-
tion effects are assembled into a new matrix, K, combined
with the joint stiffness matrix, and methods of solution of
the governing equation are presented.

The application of the method to plates of various
shapes and subjected to various loading conditions is the
subject of Chapter V. The results of the grid framework
method are compared to deformations obtained by other.
methods for four different types of plate problems;

In Chapter VI, the versatility of the method is demon-
strated through the analysis of plates with variable
rigidities. Solutions are presented for tapered concrete
pavement slabs with stiffenedrand unstiffened edges, and
for slabs tapered in two directions.

The results of the investigation and the analysis
procedure are summarized in Chapter VII and conclusions

as to the suitability of the method are presented.



CHAPTER TII
ANALYSIS OF GRIDS BY THE STIFFNESS METHOD
Introduction

The high speed digital computer has made the stiffness
method an efficient tool for the structural engineer.

Using matrix algebra, the method can be, organized into a
highly systematic procedure which is readily programmed for
computer application. The stiffness method is particularly
suited to the analysis of framed structures and is, there-
fore, applicable to the problem of solving grid framework
systems.

In this chapter, the member stiffness method will be
presented and applied to grid structures. Stiffness in-
fluence coefficients are presented for a general grid
member, and these are assembled into a memberQOPiented
stiffness matrix. This matrix is then rotated by means of
angular transformation matrices to form the structure
oriented member stiffness matrix for a general grid member.
‘The genéqal grid member stiffness matrices are then
assembled into the struéture joint stiffness matrix, and
methods of solution for the‘general matrix equation are

discussed.
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Member Stiffness Matrices for Grid Elements

The fundamental matrix equation of the stiffness method
is

{A} = [S] {D} ©(2-1)

which states that the actions of a system can be,expresséq
in terms of the displacements of the system by the“formﬁf
lation of a stiffness matrix representing actions due to
unit values of the displacements. In the stiffness method
this equation is used to ensure the equilibriﬁm of forcéé
at the various joints. |

The stiffness matrix is a sqﬁare, symmetrical'matrix
composed of stiffness influence coefficienta;' A stiffness
influence coefficient is the force produced by‘a'gnit Aefdr-‘

mation of a given member in a particular direction.

Figure 1. General Member of a Structurall Grid
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Consider for example, a general member i of a sfructural
grid shown in Figure 1, The centroid of the member lies
along the Xm axis and the Ym and Zm axes are also assumed
to occur about these principal axes. Therefore, the shear
center of the member is considered to coincide with the-
centroidal axis. The Xs’ Ys’and ZS axes are assumed to be
the structure oriented coordinate system and are arbi-
trarily chosen for the convenience of future calculations.
The ends of the member i are denoted J and K, and at
each end there are three possible deformations: a joint
translation in the %n direction and member rotations about
the Xm and Ym axes. If the member is allowed to deform one
deformation at a time, and the resulting forces are
recorded in matrix form, the resulting matrix is the
stiffness matrix for the member. The three deformations
for the J end and their associated reactions are given in

Figure 2 and the similar values for the K end of the member

_ l —
GI, 0 0 | eI, 0 0
i : T
|
0 LET 6ET 0 2EI 6ET
y - | y 2y
2
L L : T, i (2-2)
2FET 0 BET 12ET
0 6ET 1 v : _6ET, _ Lsy
' L2 L3 1.2
[Snl, = fo oo P 2
oms GI 0 0 1' GI 0 0
- X X
i § T.
0 2FET 6ET | 0 LET 6ET
N -y N N
L. LZ i L7
0 BET 1281 ! 0 BET  12EI
y - vy o1 y y
: 1.2 L3 ; .z - 7.3
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m ‘ :
GI ‘ a=1 _ _ -’ RS
T b/ i -1 B
L o
. é1¢~§——- —pn Xm : :
T _ — _ = m

(1) Unit rotation about Xm axis

A#*’// Y CLZEL, .

(3) Unit Deformations at J End of Memberf 

Figure 2. Unit Deformations at J End of Member
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(1) Unit rotation about Xm’axis

3

47
74

(3) Unit translation in Z_ directicnﬁ'_;fﬂ'

Figure 3. Unit Deformations at K End of Member
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are given in Figure 3. The resulting stiffness matrix for
a general grid member in terms of the member oriented axes
is then given in Equation (2-2) whefe G is the shear

modulus of the member, E is the modulus of elasticity, IX

and Iy are the moments of inertia about the Xm and Ym axes

respectively and L is the length of the member.
Rotation of Stiffness Matrices

While Eqﬁation (2-2) represents the stiffness matrix
for a general member of a structural grid, it is in terms
of the member oriented axes. However, in order to combine-
the stiffness matrices for all members of a structural grid
into the structure stiffness matrix, it is necessary for
the stiffness influence coefficients to be in terms of a
single reference coordinate system. This reference coordi-
nate system is chosen in relation to the complete struc-
tural system and is known as the structure oriented
system. Although the member oriented reference system for
gome members of a particular grid will coincide with the
structure oriented system, this is not the case for all
members. In the situation where the two coordinate systems
are not identical, the member sfiffness matrices must be
rotated by means of angular transformation matrices to the
structure oriented coordinate system.

Referring again to Figure 1, it can be seen that the
axes of the member oriented system, denoted by the sub-

scripts m, are rotated an angle o from the structure



15

oriented system, which is indicated by the subscripts s.
The transformation matrix relating the deformations of the
structure oriented and member oriented systems is of the

form

JI Cos o Sin o 0 JI
m s
J?2 = |-Sin o Cos o 0 J2 (2-3)
m s
J3 0 0. 1 J3
_ _
or, in general terms
J, . J
()3 = [r_1{D7} (2-4)

where qg are the deformations at the J end of the member in
terms of the member oriented system and Dg represents. the
deformations at the J end in terms of the structure ori-
ented system. RO is the_éngular transformation matrix
composed of the direction cosines of the member. When
deformations at both ends of the member are considered

simultaneously, the relationship may be expressed as

qi R { 0 Dg
EREES
m | e} s
or simply
{Dm}EEQ]{DS} (2-6)

where Q is the complete angular transformation matrix for

a grid structure and is given by
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I
I (2-7)
- == -
I %o
A similar expression may be written for the actions

at the ends of the member in the form:

J ' J
_ ém_ =l Eo_}~0_ /- ﬁs_ A (2-8)
K ' K
Am 0 ; R, AS
or, in matrix form:
(A} = [QI{A} (2-9)

which is similar to the expressions given for angular rota- -
tion of the deformations presented in Equation (2-6).
The general stiffness equation for structural systems

is given as
{a} = Is 1D} (2-10)
in terms of the structure oriented coordinate system and

{a } = [s_1{D_} (2-11)

in terms of the member oriented system. As a general rule,
however, it is more convenient to express the actions and
deformations in terms of the structure oriented system
whereas the physical propertiés of the member which are
used to formulate the member stiffness matrix are given in
the member oriented system. Substituting the expressions

from Equations (2-6) and (2-9) into Equation (2-11) yields:
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[Ql{A } = [S_10QI{D_} (2-12)

When both sides of this equation are premultiplied by the

inverse of the Q matrix, Equation (2-12) becomes

{A ) = [Q“‘J[st[Q]{DS} (2-13)

Comparing Equation (2-13) with Equation (2-10), it can be

seen that

[s 1 = [Q7'ILs 1] (2-14)

which gives the relationship between the member stiffness
matrix expressed in terms of the structure oriented coor-
dinate system and the same matrix. in terms of the member-
oriented coordinate system. It should be noted that be-
cause of the particular properties of the angular trans-
formation matrix Q, the inverse Q! is also equal to the.
transpose QTQ This property allows the general stiffness
matrix of Equation (2-14) to be obtained without the neces-
sity of inverting a large Q matrix.

Using the relationship derived above and inserting the
particular member stiffness matrix for a structural grid,
the rotational process of the general grid member stiffness
matrix is given in Equation (2-15), and the rotated matrix
in expanded form is expressed in Equation (2-16) where
C represents cos o and S represents sin a. Therefore, it
can be seen that if the member stiffness matrix is written

in terms of the member oriented coordinate system, it is
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an- easy operation to transform these results to a struc-
turally oriented system. Indeed, the member stiffness
matrix can be determined directly in the structure-oriented
coordinate system by the use of the expressions given in |
Equation (2-16).

The necessary direction cosines used in Equation
(2-16) are directly obtainable from the coordinates of
‘each end of the grid member. If the coordinates of the J
end of the member are denoted by Xj and Yj and the K end
coordinates by Xk and Yk’ the direction cosines for any

angle o are given by

cos a = k_Xj and cos B = sin o = "k " (2-17)

where

- 2 2 |
L -'\/(xk-xj) + (YY) (2-18)

and- then all necessary quantities used to formulate the
member stiffness matrix for a general grid member in terms

of the structure oriented coordinate system are known.
Solution of the General Egquation

Once the individual member stiffness matrices for
each member of the structural grid have been obtained in
terms of the structure oriented axes, the joint stiffness:
matrix may be formed. This formulation is accomplished

by the superposition of the individual member stiffness
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matrices as dictated by thelgrid joint conditions. In
other words, at each joint there are three possible
deformations in- terms of the structure obiented coordinate
system. However, because of the total structure compata-
bility conditions, all members entering any given joint are
subjected to the same three possible deformations et that
joint. Therefore, the stiffness influence coefficients
for all of these members, associated with the same three
possible deformations, must be superimposed to reflect the
total stiffness of the system. The results of the super-
position of the individual member stiffness matrices is
known as the joint stiffness matrix.

Upon the complefion of the structure joint stiffness

matrix the governing stiffness equation
{a ) = [SSJ{DS} (2-19)

can be solved for the unknown deformations and these defor-
mations will then form the basis of calculations for any
other unknown value the.designef wishes to compute. The
method of solution of Equation (2?19) can take one of two
forms. First,‘the matrix expression may be treated as a.
set 6f linear simultaneous equations and may be solved

using an elimination or iteration technique such as the

Gauss-S8é&

thei‘Crout methad: "0p, Fhe systen may be
solved by matrix inversion. In the latter method both
sides of Equation (2-19) are premultiplied by the inverse

-of the joint stiffness matrix S as



-1 - -1
[SS ]{AS} = [Ss ][SS]{DS}
- which reduces to the form

-1 _
(s '1{Aa} = (D}

and provides the solution for the deformation

22
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matrix Ds'



CHAPTER IIT
DEVELOPMENT OF A GRID FRAMEWORK MODEL
Introduction

The governing equation for the deflection of a general

elastic plate is given as

Viw = (3-1)

oho

in which w is the vertical deflection, g is the load func-
tion, D is the flexural rigidity of the plate, and V" is
the bi-Laplacian operator. In this chapter a rectangular
grid framework model will be presented which will allow the
numerical solution of the partial differential governing
equation, Equation (3-1). Because of the assumptions used
in developing the basic elastic plate theory, it is neces-
sary to consider only bending displacements in the develop-
ment of the grid framework model. Therefore, a grid frame-
work model can be developed by equating the displacements
of the gfid model to the actual displacements of a plate
element subjected to bending and twisting moments. This
grid framework model consists of six members--four
perimeter beams, each capable of resisting out of plane
bending as well as torsion, and two diagonal beams capable

of withstanding only out of plane bending. In this manner

23



(a) Dimension of elastic plate element

(b) Application of Bending Moment M,

(d) Application of Twisting Moment M;

Figure 4., Element of a General Elastic Plate
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a rectangular grid model with five cross sectional proper-

ties will define uniquely a rectangular element of a plate.
Properties of a Plate Element

Consider the rectangular elastig plate element shown
~in:Figure 4-a which has exterior dimensions L-and oL for
the side lengths and t for the_thickhess. When- this plate
element is subjected to bending moments Mi, as shown in
Figure L4-b, the aggular rotation in the direction of bend-

ing is.given as

61 = alLMi

3
E(I7)

(3-2)

where E is the modulus of elasticity of the material.
Taking Poisson's ratio as u, the angular rotation in- the

L 3
orthogonal direction is

_ uLMy {3-3)
LR 0

Similarly, when the element is subjected to bending
moments M; along the other two edges, 'as shown in Figure
L-c, the angular rotation about the X and Y axes are given

by
1M,

E,t3
(1)

83 = (3-4)
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and

ualM2

By =
ot
E(TT) (3-5)

Finally, if twisfing moments of intensity Mj; are
applied to all edges of the element as in Figure 4-d, the

resulting ahgle of twist will be

_ oLM3(1+yu)

0
+3
E(1p) (3-6)

Therefore, the deformations of a general plate element

subjected to bending and twisting moments are known.

Development of the Stiffness Equation

for the Equivalent Grid

An equivalent grid model of the plate element can be
constructed of six members. The physical properties of the
grid members can then be determined by equating the rota-
tion of the grid nodes with those of the same size plate
element. It is important that both the plate element and
the equivalent grid structure be subjected to statically
.equivalent loads.,

Consider, for example, a structural grid as shown in
Figure 5-a composed of six members. The physical dimen-
sions of the grid are L and oL as the lengths of the edge
members and BL as the length of the diagonals. The two

end members of length L have moments of inertia about



(b) Applications of equivafent bending'homéntg le e

aLM,

(c) Applications of equivalent bendihgzmanents:Mz'jw

alMs

(d) Applications of equivalent twisting”méhéhtéﬁMj -

Figure 5. Equivaient'Grid Struéﬁufé;i
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their Y axis designated as Ie and torsional constants
designated as GJe/Ee Similarly, the two side members have
moments of inertia and torsional constants equal to Is and
GJS/E respectively. The diagonal members are assumed to
resist no torsion but have a moment of inertia equal to Ida
The joint stiffness matrix for the complete system can
now be formulated by substituting the above member prop-
erties into the general grid member stiffness matrix of
Equation (2-16) and then assembling all of the resulting
stiffness influence coefficients into the joint stiffness
matrix. The location of the stiffness influence coeffi-
cients in the joint stiffness matrix is determined by the
number of the deformation causing the action to occur. At
each joint of the model structure, three deformations and
three corresponding actions can occur. As shown in Figure
1, the J end actions are désigﬁated Jl, J2, and J3 and the
K end actions are designated Ki, K2, and K3. If a number-
ing system i1s chosen for these actions that corresponds to

the number of the joint, automation of computation is

enhanced. TFor example, consider the system where
Jl = 3n-2
J2 = 3n-1 (3-7)
J3 = 3n

where n is the number of the joint. As can be seen, a
logical numbering relationship then exists between the
number of actions and the joint designations. In addi-

tion, a similar set of expressions can be written for the
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K end of the member. To formulate the joint stiffness
matrix for the model structure, consider the member stiff-
ness matrices for each member. First, for the side mem-
bers A and B, the member stiffness matrices are as given

in Equation (3-8). Secondly, for the end members where

sin ¢ = 1.0 and cos o = 0.0; the member stiffness matrices
are of the form of Equation (3-9)., TFor the diagonal member
E, sin o = 1/8 and cos o = o/B and for diagonal member F,
sin a = 1/B and cos o = o/B. The member stiffness matrices
for these members are given in Equations (3-10) and (3-11)
respectively.

Once the member stiffness matrices are complete, the
joint stiffness matrix, and then the governing stiffness
equation, can be assembled. This final matrix equation for
the structural grid model is of the form of Equation (3-12)
where Ag denotes action number i occurring at joint J and

D% is the deformation in the 1 direction of joint j.

Solution of the Equivalent Grid

Stiffness Equation

In order to obtain the physical constants of the
equivalent grid framework members such that the model
represents the actions of a plate element, the deforma-
tions of the grid framework model are equated to the cor-
responding deformations of the plate element. The defor-
mations of the grid model may be found by solving Equation

(3-12) when the model is alternately subjected to loads
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‘LMl/Z, aLM2/2 ahd the twisting moments as shown in Figures
5-b, 5-c¢, and 5-d. TFor each loading condition, two inde-
pendent simultaneous equations are formed from the matrix
relationships of Equation (3-12). By equating these inde-
pendent equations, expressions are obtained for the defor-
mations of the grid framework mgdel in terms of the unknown

member properties as

3
o, - L2Mio x B L, *+ Iy (3-13)
- 3 3
2E R IeIS + IdIs + .0 IdIe
o - LiMia? x | a (3-11)
i 3 L
2E B IeIS + IdIS + qa IdIe
3 31 '
6, = LMoo B g 4 a1y (3-15)
- 3 3
2k 8 IeIs + IdI o IdIe
L* N I (3-16)
05 = FoE ¥ grr T )
+
2k 8 J:e S Id s % Lite
6., - L2MsB%a (3-17)
2E[8° (Ve) + 201 ]
E
and
wy = =-L0O3y (3-18)
Equating corresponding deformations, it can be seen
that

0, B (3-19)

4]

B, = B8y (3f20)
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83 = Og (3-21)
94 = eg : (3—22)
and Bs = 81, N (3-23)

Expanding and solving Equations (3-19) through (3-23), the

final beam properties are computed as

I, = (a?® - Wik t? (3-24)
20(1 - u?) 12
I, = (1 - a’wL . t? (3-25)
2(1 - p?%) 12
I4 = ug°L .t (3-26)
20(1 - p?%) 12
6J = (1 - 3L Tt (3-27
| - 200 - u 12
and SJe = a1 - 3L . t? (3-28)
12

E 2(1 - u2)

Using Equations (3-24) through (3-28), a plate may be
idealized into an equivalent grid framework model which,
when analyzed by any standard frame or grid analysis
computer program, will represent the actions of the

original plate structure.



CHAPTER IV

DEVELOPMENT OF MODEL FOR PLATES

ON ELASTIC FOUNDATIONS
Introduction

In the previous chapters the stiffness method of
structural analysis was discussed and used to develop a
grid framework model for the analysis of an elastic plate.
The grid framework model, therefore, may be considered to
be a means of solving the fourth order partial differen-
tial equation

V' = g (4-1)
D

which describes the deflection surface of an elastic

plate, by the matrix expression
{A} = [S1{D} (4-2)

However, the development of the grid framework model in
Chapter II did not include a discussion of support condi-
tions for the elastic plate. While simple supports, fixed
supperts or free edges, as found in general elastic plate
problems pose little difficulty for the grid framework
method, the inclusion of elastic support conditions neces-

sitates a re-formulation of the governing equation,

37
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Equation (4-2). The consideration of these foundation
support reactions and the accompanying modifications of
the grid framework stiffness equations are discussed in

the following sections.
Effects of Elastic Foundation Forces

The basic assumptions usually made in the analysis of
plates resting on elastic foundations is that the intensity
of the subgrade reaction is proportional to the deflection
of the plate. This foundation reaction is expressed by
the function kw where w is the deflection of the plate and
k, expressed in pounds per square inch per inch of deflec-
tion, is known as the "modulus of the foundation." As
discussed previously, this-assumption was first made by
E. Winkler, and the resulting foundation system is usually
referred to as a Winkler foundation.

In considering the effects of the elastic foundation,
the foundation reaction, kw, must be incorporated into the
governing eguation. Including these effects as part of
the load expression in Equation (4-1) the governing equa;”

tion becomes

Vi = g - kw (4-3)
D

The solution of this equation by a grid framework model

will now be investigated.
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Derivation of Model Matrix Equation

Consider an equivalent grid framework modelg similar
to that discussed in Chapter III, resting on a System'of

spring supports. Such a model is shown in,FigUresS."If

p4
s

oL

Figure 6. Equlvalent Grid Model for a Plate ?_
With an Elastlc Foundatlon z s.~
the spring constants are glven as c, then avgeneralbg_;
corner reactlon can be expressed as cw where wl iS»f‘
defined as the vertical deflectlon of corner i.- When theb
verticai deformation at each joint is cdnsidefed 'and s'
these deformations are expressed in matrlx notatlon the

vertical force matrlx,‘FV, 1s of the fonn
{F,} = c'{w} T (ke

where ¢ is a scalar multiplier representing the foundation

- spring constant and W is a column matrix of the vertical



40

deflections. Including this expression of vertical founda-
tion forces into the governing matrix equation, Equation

(4-2) becomes
{A} + {FV} = [S1{D} or {A} + c{W}= [s]{D} (u4-5)

or, rearranging terms

{A} = [S1{D} - e{w} (5=86)

Equation (4-6) may now be written as

{A} = [S1{D} - cl[I1{wW} (4-7)

without changing the value of the original equation since
I represents the identity or unit matrix.
Consider now only the term c[IJ{W} of Equation (4-7).

Written in its expanded form the term may be expressed as

cl1l{wt = ¢ [1 0 0 o . . . . o] o] [o
0 1 0 0 ljo] o

0 0 1 O Wil [CWi
0 0 0 1 o |{o

0 |=| 0 |(s-8)

s . W2 CW,)_

o . o 1 W CcwW

n n

b P S U 2 S

However, because of the particular laws of matrix multi-

plication, the results of Equation (4-8) may be obtained



in more than one manner. TFor example, a new matrix K may

be defined in such a way that

[KI{D} = c[I1{W} (4-9)
or
[ - [ -
[K] le 0
Oly 0
Wy cwl
02X = 0 (4-10)
O2y 0
W oW,
W CwW
n n
L. —d - —

For this relationship to be valid, the matrix K must be of

the form

K= fo 0o o0 0o 0 o 0 |
000 0 0 0 O :
0 0 ¢ 0 0 0
0 0 0 0 0 O :
0 0 0 0 0 0
0 0 0 0 0 c (4-11)
: 0
o . c
_ .
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where K is a diagonal matrix, and every third term of the
diagonal represents the foundation spring constant ¢, and
all other terms are equal to zero.

Substituting Equation (4#-9) into Equation (4-7), the

governing matrix equation may now be written as

{A} = [s1{p} - [KI{D} (4-12)
or, collecting terms,

{A} = [s - K1{D} (4-13)

Comparing Equation (4-13) with the general stiffness matrix
equation, Equation (#-2), it can be seen that for an
equivalent grid framework model for a plate resting

upon an elastic foundation the stiffness matrix is of the

form
[Sk] = [Ss - K] (4-147]

where S represents the grid model stiffness matrix, and
K represents the foundation spring constant matrix.
Therefore, the stiffness matrix for a plate resting upon
an elastic foundation, written in itsg expanded form, is

ziven as
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S.K = ?11 Si2  Sis Siu . . . . Sin—
S21 S22 Sz Sa2y | .
Saz  Saz (Sszz-c) Ssy .
Si1  Suz 3%3 '# Syy .
. R . . (4-15)
/
Sni . . . e e o (Snn—03

The significance of Equation (4-15) is that plates
resting on elastic foundations can be analyzed by the
grid framework method, using the same equations that are
necessary for the analysis of general grids. The dif-
ference in the analysis of the two structural systems are
the inclusion of the foundation spring constants in every
third term on the diagonal of the overall joint stiffness
matrix, and the difficulty in using the resulting in-
ternal member forces. These resulting member moments and
shears represent the,localizea effects of the individual
member stiffness and not the total joint forces which are
of interest in the design.

In the analysis of elastic plates, the problem is:
usually considered to be solved when the deflections of
the middle surface are known. The grid framework method
provides these results. Once the deflections are known,

the internal plate forces can be obtained by using a
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number of different approaches. An example of one numeri-
cal technique, the finite difference method, is presented

in Appendix C.



CHAPTER V

APPLICATION OF THE METHOD

Introduction

While the development of theory and the derivation of
equations are important in the field of structural engi-
neering, the application of the methods to actual struc-.
tural problems is of egual importance. In this section the
analysis of four selected plates is presented. Each plate
was completely analyzed, and vertical deflections were
computed for all points on the middle surface. These
analyses were accomplished on a General Electric 650
digital computer using a . program written to analyze struc-
tural grids. After geometric properties of the members
and the complete structure were designated, the following
procedure of analysis was used:

1. Physical properties of each member were

computed by evaluating Equations (3-24)

through (3-28).

N
°

The thirty-six stiffness influence coef-
ficients of Equation (2-16) were deter-
mined. for each member, and the member

stiffness matrix was formed.
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3. Member stiffness matrices were next assem-
bled into the structure joint stiffness
matrix.

4. The effects of the elastic foundation
forces were included as indicated by
Equation (4-15).,

5. The structure joint Stiffﬁess matrix -
was inverted.

5. External structure loads were read, and
the resulting load vectors were formed.

7. Equation (4-13) was solved for the un-
known Jjoint displacements.

The basic logic of the computer program is given
above, and a complete listing of the program is presented
in Appendix A, Input data provided geometric 'properties
of members and structure configuration, the modulus of
the elastic foundation, and the external loads. Output
was presented as the grid joint displacements, and all

other processes were internal to the computer.
Solution of a Centrally Loaded Square Plate

A 12" % 12" square plate, centrally loaded, is
analyzed in the first example. The thickness of the plate
ig 1/% inch, Poisson's ratio equals 0.3 and the modulus of
elasticity is taken as 30,000,000 psi. The modulus of the

foundation is assumed as 200 1b./in?/in., and a 1000 1b.

H

oad was applied at the center of the plate. The
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equivalent grid framework used to analyze this plate is

as shown in Figure 7. The grid increment was chosen as.

2 in., and the member and joint numbers are as shown. Due
to the symmetrical properties of the plate system, it was
necessary only to consider one quadrant of the equivalent
grid model. The computer input necessary to analyze this
plate problem is presented in Appendix B, and the final
deformations are tabulated in Table I. A similar problem
was solved by N. Willemsg (23) using the Ritz method of

analysis, and the deflection at the center of the plate,

TABLE T

DEFLECTIONS OF A CENTRALLY LOADED
SQUARE PLATE

JQint Deformation Joint Deformation
1 -0.011838 in. 9 -0.026240 1in.,
2 -0.019723 in., 10 -0.035820 in.
3 -0.026240 1in. 11 -0.045531 in.
b -0.028841 in. 12 -0.,050283 in.
5 -0.,019723 in. 13 ~0.028841 in.
6 ~0.028218 in. 14 -0.039139 in.
7 -0.035820 in. | 15 -0.050283 in.
8 -0.039139 in. 16 -0.056380 in.
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Figure 7.

Equivalent Grid Framework Model for
a Square Plate Centrally Loaded

m— - 02
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under the load, was determined to be -0.0528 in. The
results of the grid framework solution indicate that the
maximum deflection at joint 16, the point of loading, is
-0.056380 in., This is a difference of 0.00370 in. or ap-
proximately 6%. However, the Ritz method itself is an
appfoximate solution, involving the truncation of a double
trigonometric series, and the analysis was based upon the
Westergaard assumption of a plate with infinite dimensions

in one direction.
Solution of a Centrally Loaded Circular Plate

A second problem which demonstrates the application
of the grid framework method in cases of nonrectilineab
boundaries and also provides an additional check on the
accuracy of the method is the solution of a centrally
loaded circular plate. A ten inch diameter circular plate
of 1/3 inch thickness is chosen. Poisson's ratio is set
equal to 0.3, the modulus of elasticity is given as
30,000,000 psi, and the foundation constant is again set
at 200 1b./in?/in. The plate is centrally loaded with a
640 pound load. The equivalent grid framework model is
shown in Figure 8, and the final joint deformations are
given in Table II.

A similar problem was analyzed by Timoshenko and
Woinowsky-Kreiger (8), and a comparison of results is
again possible. The maximum deflection under the load

point was given in Table II as -0.040365 in., and the
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Figure 8. Equivalent Grid Framework Model for a
Circular Plate Centrally Loaded: . ', ° "



TABLE II

DEFLECTIONS OF A CENTRALLY.LOADED
CIRCULAR PLATE

V“Joint | Deformation Joint  Deformation |
1 -0.039668 in., 17 —0.040028 in.
2 -0,039714 in. 18 -0.040123 in,
3 -0.039732 in. 19 -0.040160 in.
4 ~0.039598 in, 20 -0.039714 in.
5 -0.039699 in, 21 -0.039843 in.
6 -0.039785 in. 22 -0.039982 in.
7 ~0.039843 in. 23 -0,040123 in.
8 -0.039864 in. h 24 ~0.040242 in,
9 -0.039699 in. | 25 -0.040294 in.

0 -0.039808 in. 26 -0.039732 in.
11 ~0.039908 in. HH 27.  ~0.039864 in.
12 -0.039982 in. 28 -0.040010 in.
13 -0.040010 in. 29 -0.040160 in.
14 ~0.039668 in. 30 -0.040294 in.
15  -0.039785 in. 31 -0.040365 in.
16 ~0.039908 in. |

deflection .at the boundary,of.the:plate'mas-determined to
be -0.03370 inches. Timoshenko computed deflections of
-0.04300 in. at the center and -0.,03910 in. at the edges

of a similar plate. These results arve within 6% at the
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center and approximately 2% at the boundary points. The
same problem was again solved by Timoshenko using an
approximate finite difference approach, and a deflection
of -0.04180 in. was determined for the center point.
This solution is within 3% of that obtained by the eQuiv—

alent grid framework method.

Solution of an Edge Loaded

Pavement Slab

A more realistic problem involving plates on elastic
fouﬁdations is the analysis of concrete pavement slabs.

In this area, checking the solution of a particular prob-
lem becomes more difficult because few problems have been.
accurately solved. The analysis presented in this section
is of a 24' x 24' concrete pavement slab with a ten inch
thickness. The modulus of elasticity of concrete is given
as 3,000,000 psi and Poisson's ratio is taken as 0.20. The
foundation modulus was assumed to be 200 1b./in%/in.,.and

a concentrated load of 10 kip was applied at the center of
one edge. The grid increment was chosen as 3 ft. and is
shown in Figure 9,

This slab was analyzed by Hudson and Matlock (17) in
their previously discussed paper, and their analysis indi-
cated a defiection under the load of -0.018 inches. The
resuits of the grid framework analysis are tabulated in
Table III and give a(déflectibn of —0.018024 inches at the:

point of loading. In addition, the computed deformations



TABLE III

DEFLECTIONS OF AN EDGE LOADED
PAVEMENT SLAB

53

Deformat

Joint ion Joint Deformation
1 -0.000017 in. 24 0.000298 in.
2 -0.000011 in. 25 0.000329 in.
3 ~0.000011 in. 26 0,000471 in.
Y -0.000014 in. 27 0.000449 in.
5 -0.000017 in. 28 0.000430 in.
6 -0.,000035 in, 29 0.000331 in.
7 -0.000023 in. 30 0.000276 in.
8 -0.000017 in. 31 0.000802 in.
9 ~0.000013 in. 32 0.000547 in.

10 -0.000013 in. 33 0,000125 in.
11 ~0.00004Y4 in. 34 ~0.000696 in.
12 -0.000020 in. 35 -0.001202 in.
13 ~-0,000003 in. 36 0.000863 in.
14 0.000013 in. 37 0,000049 in.
15 0.000022 in. 38 ~0,001534 in.
16 ~-0.000002 in. 39 -0.004502 in.
17 0.000035 in. 40 ~-0.006555 in.
18 0.000073 in. 41 0.000562 in.
19 0.000113 in. 42 -0.001055 in.
20 0.000136 in. 43 -0,004599 in,
21 0.000160 in. 4y -0,011561 in.
22 0.000198 in. 45 -0,018024 in.
23 0.000250 in.
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Equivalent Grid Framework Model and
Deflection Contours for a
Square Pavement Slab
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at all other points on the plate closely match those
obtained by Hudson and Matlock. The deflection contour
lines are plotted over the grid frameworkiof Figure 9, and
it can be seen that there are.areas:where upward deflection
of the plate is indicated. This condition of uplift is
present in mosf loaded slabs on elastic foundétions;
however, the sensitivity in the analysis»necessary to show
.this effect has not always beenlpresght ;n.ppeyipgsly

proposed methods.

Solution of an Edge Loaded

Cracked Pavement Slab

The final example of the application of the grid
framework method is the analysis of a cracked pavement
slab. To illustrate this condition, the slab analyzed in
the previous example is used again. For this case a crack
was assumed through the midsection of the slab, and the.
10 kip load waslﬁlaced on one edge of the plate and
centered over‘the crack. The results of,fhis analysis are
‘given in Table IV, and a‘deflection ofv—0,024225 in. is
indicated under the load. This again‘campareé favorably
with’a‘deflection of'—0.0és in. computed by Hudson and

Matlock for a similar slab.



TABLE IV

DEFLECTIONS OF AN EDGE IL.OADED

CRACKED PAVEMENT SLAB
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Joint Deformation Joint Deformation
1 -0.000022 in. 24 0.000353 in.
2 -0.000012 in. 25 - 0.000267 in.
3 -0.000011 in. 26 0,.000347 in.
b -0.000016 in. 27 0.000514% in.
5 -0,000025 in. 28 0.000623 in.
6 -0.000046 in. 29 0.000374 in.
7 -0.000024 in. 30 -0.000184 in.
8 -0.000012 in. 31 0.000667 in.
9 -0.000009 in. 32 0.000734 in.

10 -0.000013 in., 33 0.000536 in.
11 -0.000066 in. 3n -0.,000675 in,
12 -0.000020 in. 35 -0.002819 in.
13- 0.000012 in. 36 0.000842 in.
14 0.000030 in. 37 0.000529 in,
15 0.000034% in. 38 -0,000657 in,
18 -0.000045 in. 39 -0.004301 in.
17 0.00004%1 in. 40 -0.010434 in.
18 0.000112 in. 41 0.000821 in.
18 0.000150 in. 42 -0.000048 in.
20 0.000154 in. ﬁ43 -0.002834 in.
21 0.000080 in. Ly -0.010463 in.
22 0.000220 in. 45 -0.010463 in.
23 - 0.000341 in.




CHAPTER VI
ANALYSIS OF PLATES'OF VARIABLE RIGIDITY .
Introduction

In the preceding chapter, the grid framework method
of analysis for plates on elastic foundations was applied
to four different plate problems. Each plate was com-
pletely analyzed, and the results were, compared to defor-
mations obtained by other methods of sglutionﬁ’ In this
manner, the accuracy and veréatility Sf the method were
established. However, all four of these example problems
consisted of elastic plates of constant thickness.

The solution of the basic plate equation has been
mainly concerned with plates of constant rigidity. How-
ever, plates of variable thickness are now being used more
and more in engineering structures. The classical
theories of plates on elastic foundations do apply to
plates of variable rigidity, but, unfortunately, very few
solutions have been developed for these cases. This: lack
of closed form solution for plates of variable thickness
may be attributed to the increased mathema%ical complexity
of the problem when exact solutions are desired.

The grid framework method lends itself ideally to the

analysis of plates of variable rigidity. The basic
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stiffness equations were developed for an individual grid
model, and each plate element makes its own contribution

to the torsional and flexural rigidity of each corresQ
ponding grid member. Because of this relationship‘thé_
physical properties of each equivalent grid element may
vary from element to element, and the bésic mathematical
matrix relationships are not altered. In this chapter, the
application of the grid framework method of analysis to
plates of variable rigidity on elastic foundations will be

demonstrated.
Analysis of a Tapered Concrete Pavement Slab

Consider first the analysis of a concrete pavement
slab as shown in Figure 10. The portion of pavement to be
analyzed is 24 ft, wide and 12 ft. long. The thickness of
the slab.is 12 inches at the crown and tapers to a thick-
ness of 4 inches at the outside edges. The material con-
stants for the concrete are a modulus of elasticity of
3,000,000 psi and a Poisson's ratio equal to 0.20. The
foundation modulus is taken as 200 1b./in%/in. In order
to extend the analysis of this slab to demonstrate still.
another application of the grid framework method, the slab
is.-assumed to resist two moving wheel loads of 10,000
pounds each. This condition may be simulated by analyzing
- the slab with the two loads placed in a static condition
at the edge of the pavement and then-moving the loads one

grid space inward in each succeeding analysis. If the
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grid increment is chosen at three feet, then one compﬁter
run.is necessary for the two loads placed at 0 ft., 3 ft.,
and 6 ft. to analyze the slab completely. The resulting
deformation contour lines are plotted for each load con-
dition as given in Figures 11, 12 and 13, and the engineer
can then visualize the effects of moving wheel loads on a

pavement to be designed.
Analysis of Slabs with Stiffened Edges

The grid framework method is also suitable for ap-
proximate analysis of slabs with abrupt changes in rigidity
such as pavements with curbs or otherwise stiffened edges.
In order to apply the method to slabs with these condi-
tions, the effects of the unusually stiff slab areas must
be approximated in the equivalent grid members representing
these rigid elements. As an_example,‘consider again the.
tapered pavement slab analyzed in the previous section.

For this illustration, assume the properties and config-
uration of the slab are as before with the addition of a
6 in. by 12 in. curb along the two exterior edges of the
pavement. If loading condition Number 3 is repeated for
this slab, a comparison may be obtained between deforma-.
tions in a slab with stiffened edges and one with unstif-
fened edges. To effect this comparison, the deflection

contours for thié-slab with stiffened edges are given in
Figure 1l4. The deformation contours for the same slab

with unstiffened edges were previously presented in
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Figure 13.
Analysis of Doubly Tapered Slabs

As a final example of the application of the grid
framework method to plates with variable rigidities, a
plate tapered in two directions will be investigated.

Such a.plate is shown in Figure 15. The plate itself is
12 in. by 12 in. and varies in thickness from 0.30 in. at
the thickest point to 0.18 in, at the thin corner. The:
modulus of elasticity is assumed to be 30,000,000 psi with
Poisson's ratio taken as 0.30. The modulus of the foun-
dation is assumed to be 200 1b./in?%/in., and a 1000 iba
load was applied at the center of the plate. The grid.
increment was chosen to be two inches in each direction,
and the resulting deformation contours are shown in Figure
16.

An examination of the deflection contours of Figure
16 shows that they are not symmetrical about the point of
loading. This result is, of course, to be expected, as.
the nonsymmetrical contours are the result of the differ-
ent rigidities of adjacent plate elements. However, in
the past, such a complete»deflectionwanalysis of every
part of a tapered plate would have been extremely difficult

to obtain.



64

i
i 0.30" 026"
/L‘_ TR T T e e b .
e
i C:z%29/vf
7
e
<
-
//// O.18"
7
Figure 15. Doubly Tapered Elastic Plate
//" ‘\‘(< cz%
r-. 035
/ ‘,v-"""‘-.[ N
y S N\
4 o¢5 B '
I - --.~\ \ \\
] /" =~ N\
! 1 ~ \ \.
4 a .
! ) L e T OB5 ‘\ \
/ S~ : \ \ -\
Pl { ~ Y
by P \ v
|‘ X 1 C\ ; :
' L1000 145
VLN T /7 / /’ "
\ \ "I\\ // / /
\ ‘\ ‘\ /, Y4 /
\\ \ N R // //
‘ \ ‘ g
\ \ . \~lb—’ v/ ,,/ Il
re
™S -1 A_ 015
\~‘ /, P4 ’
Figure 16. Deflectlon Contours for a. Doubly

Tapered Elastlc Plate



CHAPTER VII
SUMMARY AND CONCLUSIONS
Summary

The development of an equivalent grid framework
system to analyze plates on elastic foundations is pre-
sented.

An eqguivalent grid framework model is formulated to
represent an element of an elastic medium, and the physical
relationships of the model are presented in terms of stiff-
ness influence coefficients. The resulting member stiff-
ness matrices are assembled into the joint stiffness
matrix, and the model deformations are equated to the
known deformations of the original plate element. The:
resulting stiffness equation is then solved to provide
physical constants for the grid framework model such that
the actions of the elastic medium are reproduced. Next,
the effects of elastic support conditions are introduced,
and, the eiastic spring constant matrix, K, is defined and
included in the general expression for the system stiff-
ness matrix. The resulting matrix equation, when solved,
prqvides the deformations of an equivalent grid framework

system which represents the corresponding deformations of
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an elastic plate supported upon an elastic foundation.

Application of the method is demonstrated, and numer- .
ical results are compared with solutions obtained by other
methods. It is then found that the grid framework method
provides deformations which are in close agreement with
other known results.

The versatility of the grid framework method is indi-
cated by the variety of problems solved. In particular,
it is shown that this method provides an easily applied,
rapid solution for plates of variable rigidities on
elastic foundations. In the past, the mathematical com-
plexity of plates of this type has been a major’problem
to engineers concerned with pavement design.

In addition, the formulation of the equivalent grid
is such that each plate element makes its own contribution
to the flexural and torsional properties of the corres-
ponding grid members. Therefore, plate discontinuities,
such as cut-outs or irregular boundaries may be easily

approximated by the proper choice of grid pattern.
Conclusions

Based upon the results of this investigation, the

following conclusions are drawn:

1. The equivalent grid framework method provides an
efficient and easily applied method of analysis for plates

on elastic foundations.
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2. The inclusion of elastic foundation effects in the
matrix formulation of this problem is unique and has not

been expressed before.

3. The results of the grid framework method correlate

closely with results obtained by other methods.

4. The grid framework method is applicable to plates

of irregular configuration or variable rigidities.

5. The grid framework method provides a systematic
method of analysis which can be applied to existing com-

puter programs readily available to consulting engineers.

6. Cocmplex problems involving multiple load systems
and a combination of boundary conditions can be solved

with the same ease as problems of simple configuration.
Recommendation for Further Study

The method of analysis discussed in this work forms
the basis for possible extension and further study. For
example, while skew plates can be approximated by the
orthogonal grid system presented, the results wouyld un-
doubtedly be more accurate if a skew grid system were
used. To facilitate this system, the stiffness influence
coefficients should be derived in terms of a skew coor-
dinate system. Once this has been accomplished, the

equivalent grid system could be formulated and compared to
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the deformations of a skew element of a skew elastic plate.
The remainder of the solution procedure would then follow
the derivation presented in this work.

The analysis of ribbed plates is an area in which an
extension of the method presented here would prove bene-
ficial. A three dimensional equivalent grid system would
be necessary to accomplish this type of analysis. Many
existing computer programs are readily available to solve
space frames, and application of the method would again
follow the procedure presented in this thesis.

In addition, the grid framework method provides a
means of approximating any continuous elastic medium.
Solution of a framework system by the stiffness method of
analysis is currvently known by most structural engineers.
The combination of these two facts indicates that this
method can provide an easily understood. and quickly appli-
cable method of solution for many problems which currvently
are avoided by many engineers because of their mathematical

complexity.
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APPENDIX A

COMPUTER PROGRAM FOR ANALYSIS OF

PLATES ON ELASTIC FOUNDATIONS
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03-05-70 . 12,125 . ANALYSIS OF. PLATES OV ELASTIC FOUNDATIONS

Oaoaoacnacoaaaaaaada

102
0t
602

‘Cocoo
c

103
104

 PART % ..,;;.INPUT AND PR;N? srRucrunE”bArkisj*

' 1CX(160)nCY(léU);JT(léO)‘CONS(160).JED(160)

i

" ANALYSIS OF "PLATES ON ELASTIC FOUNDATFONS ™ 7~ ===
BY THE USE OF THE 'GRID FRAMEWORK METHOD o

LR TR P R 2 R R Y L L Ry P TN - R - - w0

" ANALYSIS OF ‘PLATES ON ELASTIC FOUNDATIONS =7

- gy T e ) e W L e -

1969 ¢ v o oo o0 WILLIAM M, LUCAS, JR.

DIMENSION SMD(6,6):A(160), AML(lbO 6);AE(160) AC(160
10(160)5AR(1600/S(160,160) , SRR
INTECER B1.:B2+83,84, RL(lbD);CRL(ibo)

WRITE(6,1100) , L

>“FORMAT(42H1ANALYSIS or PLAIES ON. ELASTIC FOUNDA
A, STRUCTURE naaan&reas AND ELAST!C MODULU
READ(S»lOl)NM:NJ.NR NRJ, EsG; ruK,Poxs
FORMAT (415,2F10.0,2F10,4)
1F(NV,EC,0)GO 10 1000 -

" Nz3eMNJ-NR R : g
WRITE(6,)102)INiNM;NJ,NR) NRJ:E»G '
FORMAT(17HOSTRUCTURE DATA ,7H . N=15.8H

18H NR=IS,9H . NRJs1Se7H s F10 o.
:READ(S.box)xch.vth.scou L L
FORMAT(3F20,8) - :

- CONSTEXINC*YINCSSCON ™ EE

'NR!TE(&»bOZ)SCON.CONST . ‘

FORMAT(/15H. SQIL CONSTANT-oFiO 5 sx 16H JOINT
e
By JCINT COORD!NATES ‘ .‘sx*,;=f .

'Do 1110 JEL NG T P
READ(S.lOJ)JT(J).X(J),Y(J)oJED(J)
FORMAT(1I5,2F10;,0.,15) e
NR!TE‘6.104)JT(J).X(J)nY(J) . '7;- SEERRENCY iy
FORnAT(ZSHOCOURDINATES oF JDKNTS : )su J315,6KW X (J)=F10,4

1F10,4) . S .
CONTINUE T

1110

READ(5¢9300)L@L LKL LJv, LKV.LJD LKD .
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9300 FORMAT(615)
COXLVEX(LKVI-X(LJV)

CYLVEY(LKV) =Y (LJV) ’
XLVVZSQRT(XLVS#2eYLVoe2)

CXLLaX (LKL)=X(LJL)
YLL=Y(LKL)=Y(LJL) R SRR S AP
XLLLESORTAXLL##2+YLL0w2) o o O
CON=XLLL/XLVY o T T R

Covee €y MEMBER DESIGNATIONS AND eaq#ERT)Es_

- DO 120 1=1iNM-
» READ(balil)JE(l).KE(l)oMDES.IHK
111 FORMAT(315,F10,4)
: K1zKE(1)
NIsJE(L) - v
XCL=x (K1)=-x(J1)
YCL=y (K1) =Y(JI
XLt1)® SORI(XCLanz#YCLGGZ)
CXtysxCL/sxLely -
CY1)=YCL/XL (]
GO TC (241,242,243),MDES o
241 UP=((XLCLY)/CON)-POIS«CONaXL (D) ST
DN=2,08(1.0-CPOIS®02)y . . 0 oo
RAT=(THK##3) /12,0 o T
g Y1(1)2RAT®UP/DN .
: . UPN=(XL(1))e(1,0-(3, OuPOIS))
ONN=Z,9(1,0- (POlqauz)) S
XI(1)s (UPN“RAIOE)/(DNN“G)' ol
GQ TC 244 :
242 UpP= (xL(1)>u((CONn¢2) ~pPO1S)
" DN=2,0#CON®# (10 -(PO[S#*?))
RAT=(THKe®#3)/12,0°
YIC[)sRAT®UP /DN
UPN=CON®(XL(T))e(1,0~¢3, 0¢PoIS))
© DNN=g,e(1.0-(ROISe82)) , v
CX[tys (UPN“RATGE)/(DNN’G) T
v GO TC 244 ‘
243 RON=XL (1)/XLVY
" UP= PC‘S“(RONG”?)“‘XL(‘))
DN=2.#CON®# (1,0-(PO[S#w2))"
RATz(THK##3)/712,0
YICL)SRATSUP/DN
X1(11=20.0 Lo IR
244 CONTINUE - ! o ‘

. WRITE(6,112)1 0], Kl»Xl(l).Yl(l).XL(I) CX(X)aCY(l) ' L
112 FORMAT(35HOMEMBER DESIGNATIONS AND PROPERTIFS/.}H Tz16; 6H J(X):lb.'
16H K(1)e15, 7 X1(1)=F10, 6.7H YI(I) Flo 6.7H XLA(1)=F10,2, 74 a5
11072,7H CY(l)*Fin,2) ' -

120 CONTINUE




03-05-70 12,125 ANALYSIS OF PLATES ON ELASTIC FQUNDATIONS

. c P - . - N . . - , J—, L N S e am e

Covves D, JCINT RESTRAINT LIST ) ) CUMULATIVE RESTRAINT L]ST
c

NJ3=2aNJ

DO 930 JK=1,NJ3

RL(JK) =0

930 CONTINUE
IF(NRJ.EQ:D) GO TO 1141
DO 1130 JKL=1#NRJ
*READ(5,121)K R, (3K~ 2)0RL(J!K-1).RL($9K)
1241 FORMAT(4]Y)
WRITE(6+122)KsRL(S0K=2) RL(38K~ 1),aL(3-K) '
122 FORMAT(1BHOJOINT RESTRAINTS »3H K=l5,11H RL($9KR2)»IS.11H RL(&»K 1T
1)215,9H RL(32K)=15)
1130 CONTINUE
1141 CRL(1)=RL(1)
NJ3=z3eNJ
" DO 133 K=2,NJ3 » : e
Kisk-1 el et e e L
CRL(K)=CRL{KL}+RL{K) :
134 CONTINUE

PART 2 ...., STRUCTURE STIFFNESS MATRIX

...... 4 e s (P e e B e %0 e B o e W PP e T W e W o e > e e s P e

veer A, GENERATION OF STIFFNESS MATRIX PR

IR0

‘DO 2700 1=1,NM
J1=3uJE(]) = 2
J2=3aJEC]) -
J3=3eJE(D)
Ki=3aRE(])~
K2=JuKE(]) - 1 ) i
K3=3uKE (1) S e e
SCHys(GeXI (1)) /Z%L(Y) o
SCH2z (4, O“E&Yl(l))/XL(I)
SCM3=(1,5%SCM2)/XL(])
SCM4z(2.,0%SCHEY/XLLTY

. IF(RL(Jl))16301324133 i .

432 Jiegi-CRLLJLY e
GO TC 134 : :

133 JisN+CRL(JL) )

134 IF(RL(JZ))1364135»136

135 J2=42~CRL(J2)
GO TC 137

© 136 J2=N+CRL(J2)
137 IF(RL(J3))139:138»139
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141
142
143
144

145

146
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149

 .SMD(¢aL) sSMD(5,5) 7

SHD(4,4)= SCM1°CXll)0!20SCM2¢CY¢l)002
SMD(1,2)=8MD(2,1y T T

T'SMD(4,3)=SCM3RCY ().
SMD(31)=5MD(3,4)

- SMD(4,6)=5MD(6,4)

“SHD (& 1)“(SCH1'SCH2“0oS)OCX(l)“CY(I)

SMDB(£)2)25MD(D,6) o i i: ‘ }"“;vf
SMD(2)6)SMD(6,2) E
SHD(.nz)=-SCM1¢CY(l)“iZ*SCHZGO 5acx(l>--2

SMD(€6)=5CHa
SMD(2,3)=SMD(6,6) "
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JBEJTSCRLCRY T S e
GO TC 1140 : L .
J3=N4+CRL (J3)

IF(RL(KI))1420141 142

KizKi- CRL(Kl)

GO TC 143

K1=N+CRL (K1)
IF(RL(KE))145v144-145v
K2zKZ~CRL(KZ) :

GO TC 146

K2=N+CRL(K2)
IF(RL(K3))1489147,148 .
K3=K3=CRL(K3) °
GO TC 149 .
K3=N+CRL(K3)

SMD(1)1)35MD(4,4)
SHD(Z,1)7(SCML~ SCMZ)'CX(I)'CY(I)‘

SMD(Ei4)=5MD(1,2) -
SMD(445)=SMD(%,4)

SMD(2,4)=8MD(4,3)

SMDC(1,3)=25MD(d,1)
SMD(€44)=-SMD(1,3)

SMD(€,1)=5MD(4,6) ’ - I T,
SMD(1,6)=SMD(6,1) o - ST

SMD (4, l)"SCHlnCX(l)'02350H200 5°CV(1)”2

SMD(1,4>-SMD<4 1y I j*“f;_‘,’,ifi

SHD(l,S) SMD(9410.

SMD(4,2)= 5MD(1'5)

SMD(Z4)=SMD(4,2) ' RERE
SMD(%,5)= 5CH1“CY(I)"2*SCH2“CX(])Gﬂz

SHMD(5;3)=~-SCMIeCX(])
SMD(2,5)=5MD(%,3)
SMD(3,2)25MD(3,5)
SMD(C+3)=5MD($,;2) . L
SHD(G;5)='SMD(203) o
SHMD(E,6)=SMD(6,5) T

SMD(25)=5MD(%,2)

SMD(€)3)==SCH4
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SMD(3,6)=SMD(H,3)
Jl3-EuJE(l)
J12=.13-1

coJI1s 13-2

1150

TS(J2,J1) =802 10 4SMBC2, 1) 7T T

151
152

TFCRL(JILICNESG) GO TO 151

S(J1,J13=5(U1.01)+5MD(1,1)

S(J3,J1)=50030J1)+SHD(T, 1)
S(K1,J1)=5MD(4,1) -

§(K2,J1)=5MD(9,1)
S(K3,J1)=SMD(6,1)

TF(RL(JI2).NE+O) GO TO 153
S(J1,d2)35(J1+)2)+5HD(1,2)
S(J2,J2)=8(J21J2)+5MD(242)
S(J3,J2)350U39J2)+5MD (5, 2)

CS(K1,421=5MD(4,2)

153
154

S(K2,J2)=5MD(9,;2)
S(K3;J2)= SMD(b.Z)
TF(RL({JI3).NE.D) GO TO 155
S(J1,J3)=25(U19J3)+8MD(1,3)
S(J2,J3)38(J2,J3)+SMD(2,3)
S(J3,Jd3)=5(J31J3)+5MD(3,3)

"S{K1,J3)=5MD(4,3)

15%

S(K2,J3)=5MD(%,3)
S(K3,J3)sSMD(6,3)
Ki3=3axkE(lY -
Kj2z=k]13-1

Ki1=k]3-2

156

IF(RL(KIL1)NEVD) GO TO 157
S(JL,KL)I=5MD(1,4)
S(J2,K1)=8MD(2,4)

SIS KLIESMNS, 4)
" S(K1,K1)133(K1:K1)+5MD(4,4)

S(K3,KLIES(KIWKLI*SHD(6,4) - . C
IFCRLEKI2) . NELO) GO TO 459 . -~ oo

157
158

159
1160

2200

S(K2,K1)1=S(K2+K1)+SMD(5,4)

S(J1,K2)=5MD(1,5)
S(J2,K2)=8MD(2,5)
S(J3,K2)=SMD(3,5)
S(KL,K2)=5(K1s Kz)oSHD(d 5)
S(K2,K2)=85(K2,K2)¢5MD(5,5)
S{K3,K2)=S(KI+K2)+5MD(6,5)

TF(RL{KI3).NE.0). GO YO 2200'

S(J1,K3)=8SMD(1,6)
S{J2,K3)=8MD(2,6)
S(JI, K3 =SMD(S5,6)
S(KL, K3)=28(K1eK3)+SMD(4,6)
S(K2,K3)=5(K2,KI)+SMD(5,6)

S(K3,K3)=ELKISKI)eSMD(6,6) T

CONTINUE
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Civvs B, GENERATION OF SOIL CONSTANT MATRIX

DO 7C00 Jz1,NJ
KNzJED(J)
KJ=30J ) . . -
GO TC (7015702,703,704) KN -~ T T e
701 CONS{(KJ)=CONST :
GD YC 7000
702 CONS(KJ)3CONST#0.5
Go 1¢ 7000
703 CONS(KJ)= CONST®D. 25 : . .
6o ¥ 7000 N S e e e
704 CONS(KJ)=CONST#0,75 S o S
7000 CONTINUE

c :
Civse C, GENERATION OF (S-K) MATRIX
c .

J1=0.0

J2=N

DO 900 1=1,NJ3

IF(RL(I),EQ,1) GO TO 910

JizJiel ‘ : S .

S(JL,J1)=8(J1rd1)+CONS(T) , '

60 T 500 T
910 J2zJZel

S(J2,d42)= s<J2o42>+c0Nstx)
900 CONTINUE

c : ) ' , . Lo
Cvevv Dy INVERSION OF STIFFNESS MATRIX - . - . o
NODE=1 R
CALL INVERT (8§, N,s.o DET,160,160, NoDE)' ' '
"
¢ e “mecieremmn- B T P el B T
o : , ST I E
e PART 3 +.evr INPUT AND PRINT LOAD DATA oo
¢ ' *
c ————————————— W er - ~v-o-——«--;;----p-;w--—~:’--~—~—-—H-~~‘~--_,.»-
z . o !
Cvves A, NUMBERS QOF LOADED JOINTS AND MEMBERS .~ 7 7. i
¢ .
READ (5201 INLJ/NLM
201 FORMAT(21%) , . _
WRITE(6,202)NLJsNLNY . ‘ '

202 FORMAT(11HOLOAD DATA »5H NLJ=15:5H NMsIS)

Coves B, ACTIONS APPLIED Ar_aoxn1s.3‘“ﬁ‘““‘

IFINLY)203,2210,203 "
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203
20¢
205

- 209
c N
c.'.l
£
2210
211

212

213
219

naaoaaaoaaa

L B

2220
221

222
c!‘co
c

223

c224

225
226

227
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Do 2c 9 J 1 NLJ . . . - - . - . i i el o m e e e e e ‘....4 . o ., ..‘.,v..u..._Aj..;.z._«,._..‘__,

READ(5,204)K,A(30K=2),A(38K-1),A(38K)

FORMAT(15:5X,8F1040)

WRITE(6+205)KsA(38K-2)sA(3®K=1),A(38K)

FORMAT(27HOACTIONS APPLIED AT JOINTS ,7H JUXNT X5 10H X ACTIOM §3G

1.0,1CH Y ACTIUN F10,0,10H Z ACYION F10.0)

C ON T l N UE ‘ e ey ' o *"— “" = '*’“:""""""" hat

C, ACTIONS AT ENDS OF RESTRAINED MEM3ERS DUE 1O LOADS

IF (NLM)211,2220, 211

DO 219 J=1.NLM ' ‘
READ(5,212) 1, AMLCT, 13, AMLCL,2) 4 AML(113) ) AM
FORMAT(15,5X,6F10,2)

WRITEC6,213) 1eAML(L, 1) AMLC], Z’oAML(lo3)oAML(la4)aAML(l 5) AHL(Iné

1)

FORMAT(3H 1=19,10H AML(],1)=F10,2,10R AML(1,2)2F10.2/10H. &ML(!oS.o3

CONTINUE

e o P ee o .- - - R

PART 4 ,.... CONSTRUCTION OF VECTORS ASSOCIATED NlIH’LOADST

A, ECUIVALENT JOINT LOADS

IF(NLM)221,228,221 ‘ o

DO 222 1=1,NM : , N L
a5 il . e i e
AE(JT3-2)5AE (J13-2) =AML (1,1)8CX (1) eAML(1,2)8CY(]) R

\AE(J18-1)5AE (J]3-1) =AML (1,52 0CY (1) =ANL(T,2)wCX(1)

AE(J1S)=AECJIS) -AHLLT,8) , R
KI3=2eKE(1) o
AE(KI8-2)=AE(K]3-2)~ AML(1.4)¢Cx(l)oA%L(IOS)-LY(l)j”_Hjw‘v'
AE(KI3=1)TAE(K]3-1) =AML (1, 4)8CY (1) -AMLCTF5)8CX (D)
AE(K18)=AE(KIS)-AML(1,6)
CONTINUE

B, CCMBINED JPINY LOADS

NNR=h¢NR

DO 227 J=1,NNR
IF(RL(J) 224,225,224
K=N+CRL(J)

GO TC 226

KsJ~-CRL(J)
ACIKISACJI+AE(S)
CONTINUE

1F10,2, 10K AMLCT/4)=F10, 20100 AMLCT,5)2F10.2,10H AMLLI 6)2F10,2)
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tes

aaaaaoaaoaoano

228

oo

229

2230

231
232

S BREME=2

236
237
1000

4576 WORDS
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Ny - LA A AR Al A ok bt et daind . S fnddal ol ol e ot il ol -
PART 5 +.v.. CALCULATION AND QUTPUT OF RESULTS 9

A, JCINT DISPLACEMENTS AND SUPPORTVREACTXGNS

DO 228 J=1,N

DO 228 K=1.,N
D(JI=D(JI*S(IpKIRAC(K)
CONTINUE '

COMPLTE SUPPORT REACTIONS - 9

Ni=N+1
NNR=N+NR : | ‘ . S
DO 229 KeNL,NNR 7 7 s e
AR(K)Ys-AC(K) Co : I E

DO 229 J=1.N
AR(KI=SAR(K)+S(Ky)J)®D(J)
CONTINUE

NNR=N*NR

JeNel

DO 222 ME1=1,NNR
MEsNNR~-MEL +1
IF{RL(ME))231,2230, 231
Jzd-1

D(MEI=D(N)

Gg 1C 282

D(MEY=0,0 ' : o D e
CONTINUE . p RSSO
NJ3=24NJ i : S
DO 237 ME=3,NJ3,3 ' ' A
_B3zMEw1 : o . T

B4=ME . : ) Co R . R
ByepE /3 , - . ”:;‘uv.:qu S
HR]TE(6;266)81.D<82).D(BS):D(Bd) ' ‘
FORMAT(7HUJOINT=15,10H X DISPL.-FlO 6 10H Y DlSPL.-FiD.&:JOH Z D!S
1PL,=F10,86)
CONTINUE
STop o , e e s

END , T

OF MEMORY USED BY THIS COMPILATION .~
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- CINVER

onooaooagaaoaaaaaaoaaaaoaaoaaaoaoaaoonaaaoaaaaoaaaaaanaan

.SUBRCUTINE lNVERT( Ap N, B» M, DETEZRM, MA, NA, NODE)

80

12,237
T

i)

THIS SUBROUTINE 1S A SUBPROGRAM FOR INVERTING A MATRIX OR SOLV!NG
A SYSTEM OF SIMULTANEOUS LINEAR EQJATIONS BY THE GAUSS-JORDAN . =

- METHCD, AT EACH STAGE THE LARGEST E.EMENT OF THE SUBMATRIX UNDER.

CONSIDERATION IS FOUND, ROWS AND COLUMNS ARE INTERCHANGED. YO MAKE

THIS THE PIVOT ELEMENT, AND ALL ELEMENTS ARE DIVIDED BY el

‘TH!S SUBROUYINE COMPUTES THE INVERSE AND THE DETERMINAVT FOR THE:

MATRIX A OF ORDER N BY N, 17 ALSO SOLVES THE MATRIX Eounrloni'u”“
AsX .8 HHERE 8 1S A RECTANGULAR MATRIX OF ORDER N 8Y M,

UPON EXlTlNG FROM THIS SUBROUTINE, THE lNVbRSE OF & NILL HAVE
REPLACED A" AND X s A(INVERSE)oa WICL HAVE REPLACED B, ™"

IF M = 0, ONLY THE INVERSE AND THE DETERMINANT OF A ARE COMPUTED.

‘IN THIS CASE, B IS NOT TOUCHED AND IN lTb PLACE WE CAN "ALSO HAVE A
CCIF-THIS IS DONE, SET NA = MA), '

THE VALUE OF NODE YRANSMITIED FROM THE CALLING PROGRAM“TO”YHIS““””'
SUBRCUTINE CONTROLS THE WRITTING OF MESSAGES BY THIS SUBROUTINE.
IF THE INPUT VALUE OF NODE = 3, THE LOWER BOUND AND THE'
UPPER BOUND OF THE CONDITION NUMBER FOR THE MATRIX ARE
CWRITTEN OUT, ALSOs A MESSAGE STATING THAT THE MATRIX I§"
NEAR-SINGULAR IS WRITTEN 0JT IF THIS 1S FOUND FO :BE. TRUE, -
Ik THE INPUT VALUE OF NODE = 0, NONE UF THESE MESSAGES ARE™
WRITTEN OUT AND NEITHER. THE LOWER HOUND MOR THE UPPER
BOUND OF THE CONDITION NUM3ER IS CALCULATED, ~ .. B
. IRREGARDLESS OF THE INPUT VALUE OF NODE, A MESSAGE STATING
THAT NO SOLUTION EXISTS IS NR!TT&N ouT lﬁ A SINGULAR S
_ MATRIX 1S ENCOUNTERE°~,yAH- e e i i
THE VALUE OF NODE RETURNED FROM THIS 'SUBROUTINE TO THE CALL(NG
PROGRAM 1S USED TO INDICATE CONDITIONS FOUND BY THIS SUBROUTlNE
NODE = 0. [F THE MATRIX WAS FOUND TU BE SINGULAR. - ;,,m
NUDE & 2 IF THE MATRIX WAS FOUND TO BE NEAR-SINGULAR,
NODE # 1 -IF NEITHER OF THE ABOVE WAS _FOUND T0 BE: Tnuﬁ

I SFOULD BE NOTED THAY ACTUALLY FOR A SleULAR SYSTEM: FITHER NQv,
SOLUTION EXISTS AT ALL: OR THERE NILL BE AN INFINITE NUMHER OF

SOLUTIONS,

DETERM = THE DETERM[NANT or MATRIX A, L ' o *1ﬂ o
CNLB. = THE LOWER BOUND OF . THE COMD!TION ‘NUMBER' roa MArnlx BT
CNUB = THE UPPER aoumn OF THE CONDITION NUMBER FOR MAtRxw A, '

THE CONDITION NUMBER oF A MATRIX 15 THE RAT[O OF THE MAX]HU

. EIGENVALUE TO THE MINIMUM EIGENVALUJE, . HOWEVER, 9COMPUTING, YHlSVg"
QUANTITY IS A COMPLEX9AND LENGTHY PROCESS, THERE:-ARE MORE EASILV

EVALLATED OQUANTITIES WHICH BOUND THE CONU]TION NUMHER AND THESE

ARE THE ONES LALCULATED.
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v

81

12,237

. DIMENSION A( MA, MA), B( MA, NA), INDEX(160, 2), 1PIVOT(160)

Coves
10

15
20
30
C'ggoo
40
45

60
80
8%
90
100

109
Conen

(P

106

EQUIVALENCE ( JROW, JROW), ¢ 1COLUM» JCOLUM): { AMAX, T, SWARPY ™
INITIALIZATION, ‘

DETERM = 1.0

NODEIN = NODE

NODE = 1

DO 2¢ J=1,N ‘ . o
iyt e

‘DO 550 I=1.N

SEARCH FOR PIVOT ELEMENT,

AMAY = 0,0

DO 1C5 J=1/N

IFCIFIVOTAJ) = 1) 60, 105, 60

DO 100 K=i.N

IFCIFIVOT(K) = 1) 80, 100, 715 '
IFCAES (AMAX) = ABS (A(J4K))) 85, 100, 100
IROW = J

ICOLLM = K

AMAX = ACJIK)

CONTINUE

CONTINUE

SET ZERO EQUAL' TO 10%8-5 TIMES THE MAGNITUDE OF THE LARGESY
ORIGINAL ELEMENT,

IF(] ~ 1) 108y 106, 108
ALBIC = AMAX

ZERQ = AMAX @ {,E-05.

- IF(ZERO) 110, 715, 110

C,..v
.
109
127
110
260
270
c'q.-
130
140
150
. 160
170
200

210
220
230
250
.'C'ont
310
330
340
350

CHECK FOR A SINGULAR MATRIX OR A NEAR- SINGULAR HATRIX. e
IF(AES (AMAX) = ABS (ZERO)) 109, 110.,110 : L

IF (AMAX) 107, 715, 107 L

NODE = 2 _ . AR o
IPIVCTCICOLUM) = IPIVOT(ICOLUMY & g 7 i e i
INDEX(I+1) = TROW o S
INDEX(1,2) = 1COLUM ’ L ot e
INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL. S
IF(IROW - ICOLUM) 140, 310, 140 :

DETERM = ~DETERM .

DO 200 L=1.N

SWAP = ACIROWsL) ,

ACIRCW,L) = ACICOLUMIL)
ACICCLUM/L) = SWAP

IF(M) 310, 310, 210

DO 250 L=1.M

SWAP = B(IROWsL) :

BOIRCW,L) = BCICOLUMAL)

B(ICCLUMiL) = SWAP

DIVILCE PIVOT ROW BY PIVOT ELEMENT,
PIVOT=(A(ICOLUM, ICOLUM) ) #a(=1)
AC1CCLUM, ICOLUMY = 1,0 h

DO 350 L=1.N ST
ACTCCLUM,L)Y = A(1COLUMsL) ® PIVOT -




03-05-7

358
360
370
C'...
380
390
490
420
430
450
455
460
300
© 550
C...q
600
510
820
630
640
650
660
870
700
705
710

730

801

Coeuo
802

803
C'..n
Cq.ot

804

82

0 12,237
IF(M) 380, 380, 360
DO 370 L=1i,M !

BCICCLUMSLY = B(ICOLUM,L) o PlvOT T e e
REDUCE NON-PIVOT ROWS,

DO 550 tiz1,N

IF(L1 = 1COLUM) 400, 550, 40

T = A(L1,ICOLUM)

A{L1,1COLUM) = 0,0

DO 450 L=1,N

A(L1,L) = A(LL,L)Y = ACICOLUMILY) o T

IF(M)} 550, 550, 460

DO 5C0 L=1,M

B(L1+L) = B(L1,L) = BCICOLUMoL) » T
CONTINUE

INTERCHANGE COLUMNS,

DO 710 I=1.N

L= N +21 -1 .

IFCINDEX(Ls1) = INDEX(L+2)) 630+ 710: 630
JROW = INDEX(L;1)

JCOLLM = INDEX(L,2)

DO 705 Ksl.N

SWAP = A(K,JROW)

A(K,.ROW) = A(K,JCOLUM)

A(K, COLUM) = SWAP

CONTINUE

CONTINUE

DO 730 K=1,N .
IFCIFIVOT(K) = 1) 715, 730, 715
CONTINUE

IF(NCDEIN .EQ, 0) RETYURN :
IF(NCDE .EQ, 1) 60 TO 802 oy

HRITE (6,801) . : N
FORMAT ( /777 10%, 68HTHE MATRIX 15 NEAR~SINGULAR SINCE ONE™OF THE
1 PIVCT ELEMENTS 1S SMALL , / 10X, SBHCOMPARED 7O THE HAGNITUDE of
2THE LARGEST ORJGINAL ELEMENT, )

SEARCH FOR THE LARGEST ELEMENT IN THE INVERIED MATRIX,

A2BIC = 0.0
DO 8C3 Jzl.N S
DO 8C3 Ksi.N ’ ,
IF(AES (AZBIG) (LT. ABS (A(UsK))) 42316 = A(J,K)
CONTINUE

DETEFMINE THE LOWER BOUND AND THE JPPER BOUND or THE CONDITION
NUMBER FOR THE MATRIX, : '
CNLB = ABS (A1BIG & A2BIG)
CNUB = CNLB o FLOAT(N @ N}
WRITE (6,804) CNLB: CNUB
FORMAT ( /777 10X, 42HTHE LOWER 8O0JND OF 'THE CONDITION NUMH&R z
1 E15.8; / 10%, 42HTHE UPPER BOUND OF THE CONDITION NUMRER =
2 E15,8) / 10Xs 70HIF THE CONDITION NUMBER {S LARGER THAN 10#s#8. oR
310#aG, THEN THE MATRIX , / 10X, 6741S ILL~CONDITIONED AND 1T .1S Fa
41RLY SAFE YO CONCLUDE THAT SOLUTIONS » 7/ 10Xs 64HOF" LXVEAR FOUATIO
SNS ASSOCIATED WITH THIS MATRIX ARE MtANINGLEbS. )
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RETURN
715 NODE = 0
DETERM = 0.0
WRITE (6,800)
800 FORMAT ( ///7 10X, 47HNO SOLUTION EXISTS SINCE THE MATRIX IS SINGU
- 1LAR )
RETURN
END

123697 HOQDS OF MEMORY USED BY THIS COMPILATION

&



APPENDIX B
SAMPLE DATA FOR SQUARE

PLATE PROBLEM
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DATA FbR SQUARE PLATE ON ELASTIC FOUNDATION

k2 16 8 7 30000000 12000000

2.0 2,0
1 O, 0. 3
2 Oe 2, 2
3 0, Lo 2
hy 0, 6o 3
5 2e 0, 2
6 2 2 1
7 ’ 20 )Jo l
8 2 6s 2
9 Lo " Qs 2
10 ho 2, 1
11 e bie 1
12 ho [ 2
13 6e 0e 3
lh 60 29 -2 0
15 6o Lo 2 )
16 6o 6s 3
1 2 1 5 1 6
1 2 1 0625
2 3 1 0.25
3 L1 0625
5 6 1 0.25
6 7T 1 00,25
7 8 1 0,25
9 10 1 0.25
10 11 1 0,25
11 12 -1 0.25
13 1, 1 0,25
1, 15 1 0,25
15 16 1 0.5
1 5 2 0,25
5 9 2 0425
9 13 2  0s25
2 6 2 0425
6 10 2 0.25
10 1y 2 0.2%
3 7 2 0425
7 11 2 0625
11 15 2 0,25
b 8 2 0425

0.25

- 200,

85
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APPENDIX C

THE SOLUTION OF PLATE MOMENTS AND SHEARS

BY THE FINITE DIFFERENCE METHOD
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The Solution of Plate Moments and Shears

by the Finite Difference Method

bThe grid framework method calculates the joint dis-
placements for all joints of the equivalent grid model.
In addition, most grid programs will also compute the
member forces for each member. However, when using this
procedure for the analysis of an‘elastic.plate, the in-
ternal member forces as computed cannot be used. As
explained in Chapter IV, the grid member forces represent
the localized effects of the individual member stiffness
and not the total joint forces. The plate moments Mx? My’
and'Mxy, and the plate shears QX and Qy can be obtained
from the internal grid forces, buf that procedure may
entail somewhat lengthy computations. However, these
forces are readily computed using the well known plate:
formulas applied either to the average curvatures of each
element or to the vertical déflections, If these plate
forces are to be computed from the deflections of the
middle surface, the'simplest'approaCh'is by finite dif-
ferences.

Consider the general expressions for plate moments
and shears as given by Timoshenko and Woinowsky-Krieger

(8) as

M, = =-D(w__ + vw__ ) ‘ (c-1
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M = -D(w + vw__ ) (C-2)
y yy XX
= D(1 - vw (C-3)
Xy Xy
Q. =-D 3w + w._ ) (C-1)
ple 5% XX vy
and
Q, = D Alw  + w_ ) (C-5)
y 55 vy
From Figure 17, the finite difference expressions for
wxx? Wyy’ and wa are expressed as
= . - c. oW . z -
W (wi+l,j 2wlj wl—l,j)/(AX ) (C-6)
W = (We s,4 - 2Ws. + w. . )/ (Ay?) (c-7)
yy i,j+1 1] i,3-17"7Y
= -W . . + . . "W . - . . :
Wiy ( wl._%l,]_l w1+1,j&l 4 Wi1,4-1 wl_l’j+l)/4AxAy
(Cc-8)

Having the deflections for a given grid, the differ-
ence expressions of Equations (C-6) through (C-8) are
readily formed. Substituting these values into the gen-
eral equations for the plate moments and shears, the
regulting internal plate forces MX, M , M _, Q. , and Qy

y Xy X

are obtained.
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