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PREFACE 

The application of the grid framework analogy to the 

analysis of plates on elastic foundations investigated in 

this thesis is the culmination of the author's studies at 

Oklahoma State University. With the rapid increase in the 

availability of digital computers in the consulting field, 

more structural engineers are entering the profession with 

a knowledge of computer techniques. In addition, the use 

of a high speed computer makes the solution of many dif

ficult problems much easier for the consulting office. 

This investigation provides a numerical technique for the 

solution of an elastic plate supported by an elastic foun

dation. The grid framework method is readily adapted to 

many frame and grid analysis programs now available. 
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CHAPTER I 

INTRODUCTION 

Discussion of the Problem 

The recent increase in the availability of high speed 

digital computers has greatly affected the field of struc

tural engineering. The accompanying increase in the avail

ability of computer software has made use of the computer 

relatively easy for routine arithmetic operations. Because 

of these facts, the analysis of highly indeterminant frame

work structures poses few problems for the structural 

engineer. In addition, a highly accurate structural 

analysis of a continuous elastic medium is now possible if 

the physical properties of the medium can be simulated by 

an equivalent framework structure. The significance of 

this possibility is that problems which have been concerned 

with continuous elastic structures and which have usually 

been beyond the ability of the consulting engineer can now 

be solved using available techniques. Such a problem is 

the analysis of an elastic plate resting upon an elastic 

foundation. 

The solution of this problem can be approximated in 

either of two ways: by the use of a finite element 

approach; or by the use of a line element approach, These 

1 
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methods produce comparable results. The finite element 

method allows deformations to occur at the joints of the 

approximating system, and the mathematical relationships 

are best defined in terms of displacement functions. On 

the other hand, the line element' method uses deformable 

members with continuous joints and lends itself to more 

commonly used techniques of analysis such as the stiffness 

method. This property of the .line element approach makes 

it more readily adaptable by the average consulting engi

neer. It .is, therefore, the purpose of this the~is to 

develop in terms of the stiffness or displacement method of 

structural analysis an equivalent grid framework model for 

an elastic plate resting upon an elastic foundation. Such 

a method of solution offers many advantages: first, the 

introduction of different boundary conditions will not 

change the procedure nor will it alter the governing equa

tion; secondly, the analysis will closely follow methods 

used.to analyze other framework structures and will either 

be familiar to the consulting engineer or available through 

commercial computer facilities. Finally, plates of irregu

lar boundaries or internal configurations can be analyzed 

with the same ease as plates with more regular confor

mation. 

History of the Problem 

The basic differential equation governing the deflec

tion of thin plates was developed by Lagrange and Sophie 
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Germain (1) in l811 and wa~ the first major contribution in 

the theory of thin plates to be presented. 

Poisson (2), in a paper on elasticity published in 

1829, set forth the first investigation of the problem of 

an elastic plate using the general equations of elasticity. 

Poisson's derivation contains a set of boundary conditions; 

thus, he was able to obtain the solution for circular 

plates under symmetrical loading conditions. 

Kirchhoff (3), in a paper published in 1850, derived 

the governing equation and the corresponding boundary con

ditions by using the energy principles or the principle of 

leq.st work. In this paper, Kirchhoff was able to reduce 

by one the number of boundary conditions necessary to 

describe a free edge as proposed by Poisson. 

Tne first study of elastic foundations was conducted 

in 1867 by E. Winkler (4) and was concerned with beams on 

elastic foundations, This theory was extended in 1888 by 

H. Zimmerman (5) in his treatise which was directed toward 

foundation problems under railroad tracks. 

In the particular area of plates resting upon elastic 

foundations the first contribution was made in 1881 by H, 

Hertz (6), who investigated the problem of an infinite 

floating plate subjected to a concentrated load. Hertz 

used the assumption that the intensity of the foundation 

reaction was proportional to the deflection of the elastic 

plate, This assumption was identical to that proposed by 

Winkler in the previously discussed paper on beams resting 
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on elastic foundations~ 

In 1923 Westergaard (7) extended the theory of plates 

on elastic foundations to the analysis of infinite pave

ments, This work was then expanded to include practical 

applications of pavement designs. In the design of pave

ments, Westergaard's solution is generally used today, 

thereby assuming that the slab under consideration has 

infinite dimensions. 

More recent discussions of the problem of plates on 

elastic foundations have been presente¢ by Timoshenko and 

Woinowsky-Krieger (8), who have developed a solution for a 

circular plate with a center load. In 1953 R. K, Livesley 

(9) presented a formal solution for the case of a semi

infinite plate and an infinite quadrant, simply supported 

along their edges, in terms of double Fourier transforms. 

In addition, the "method of images" was investigated by 

Arnold D. Kerr (10) and presented in 1963. 

The analysis of elastic mediums by the use of a grid 

framework model was first presented in 1941 by A. Hren

nikoff (11) in a paper which proposed a square grid model 

and utilized a constant Poisson's ratio of 1/3. Other 

writers such as Newmark (12), Ang and Newmark (13), and 

Yettram and Husain (14) have refined the technique by 

developing more general plane framework models. In addi ... 

tion, the special case of Poisson's ratio equal to zero 

was investigated by Christensen (15), Lightfoot (16), and 

Yettram and Husain (14). 
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An interesting application of numerical models to the 

problem of plates on elastic foundations was presented in 

1967 by Hudson and Matlock (17) in a paper concerning 

cracked pavement slabs with non-uniform support. This ap

proach used a finite element grid model with infinitely 

stiff edge members, torsional resistant cross members, and 

flexible, deformable joints. The mathematical formulation 

of the problem then assumed a finite difference approach by 

relating the equilibrium expressions formed from a study of 

a free body of a general joint. The solution of the result

ing set of simultaneous differential equations was accom

plished by using a cross iteration technique to obtain the 

deformation of each joint. Whereas this procedure pro

vided a numerical method which was quite flexible to obtain 

answers for a previously difficult problem, the formulation 

of the method did not relate to techniques readily avail

able to the average structural engineer. 

The stiffness method of structural analysis is a 

matrix algebra representation of the slope deflection 

equations familiar to structural engineers and has been 

presented by N. Willems and the writer (18) and others 

(19), (20), (21). This method is particularly suited to 

high-speed computation as the repetetive manipulation of 

many terms is necessary, The suitability of the stiffness 

method to problems involving a large number of members was 

demonstrated by Eiseman, Namyet, and Woo (22) in 1962. 

This property indicates that the method is suited to solve 



the stiffness equations necessary to define a grid frame

work used to represent an elastic medium. 

Definition of Terms and Basic Assumptions 

6 

In the analysis of plates on elastic foundations the 

term "thin plate" refers to a plate for which the thick

ness is small in comparison to its other dimensions. For 

the purpose of this paper, a plate will be considered thin 

when its thickness is less than one-twentieth (1/20) of its 

next smallest dimension, 

In addition to the relative thickness of the subject 

plate, a distinction is usually made between thin plates 

with small deflections and thin plates with large deflec-

tions. In the classical derivation of the governing 

equation for a plate on an elastic foundation, the assump

tion is usually made that the deflections are small in 

comparison to the thickness of the plate, To allow for a 

comparison of results, thin plates with small deflections 

are considered in this thesis. 

The equivalent grid framework model used to approxi

mate the actions of an elastic plate is composed of members 

that are similar to those used in any regular grid struc-

ture. For the development of this model the assumptions 

are made that the material is homogeneous, isotropic, and 

continuous. In addition, it is assumed that the modulus of 

elasticity is a known constant and is the same in both 

tension and compression and that the material deformations 
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follow Hooke's law. 

In the analysis of plates resting on an elastic foun

dation, it is commonly assumed that the support offered by 

the foundation is proportional to the deflection of the 

plate. This assumption was first introduced by E. Winkler 

(4) and the corresponding foundation is usually referred to 

as a "Winkler foundation," 

Many subsoils display deformations localized mainly in 

the loaded region, and for such soils close agreement be

tween computations based upon Winkler's hypothesis and 

test results is usually observed. For instance, Wester

gaard (7) developed his theory for the design of infinite 

slabs on the abo~e assumption, and the resulting calculated 

values have been shown to agree closely with experimental 

results. 

Discussion of the Procedure 

The procedure followed in the development of a grid 

framework approach to the solution of plates resting on 

elastic foundations consists first, in Chapter II, of a 

discussion of the stiffness approach to the solution of 

general grids. The general stiffness equations and 

matrices are developed for grid structures, and the 

solution of these equations is explained. 

Chapter III applies the principles of the stiffness 

equations for grid structures to the development of a grid 

framework model for an elastic plate element. The model 
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matrix equation is then solved in terms of the actual unit 

displacements of the plate element, and the properties of 

the model grid members are thereby established. 

An extension of the grid framework model stiffness 

equation is presented in Chapter IV where the effects of an 

elastic Winkler foundation are introduced. These founda

tion effects are assembled into a new matrix, K, combined 

with the joint stiffness matrix, and methods of solution of 

the governing equation are presented, 

The application of the method to plates of various 

shapes and subjected to various loading conditions is the 

subject of Chapter V. The results of the grid framework 

method are compared to deformations obtained by other 

methods for four different types of plate problems. 

In Chapter VI, the versatility of the method is demon

strated through the analysis of plates with variable 

rigidities. Solutions are presented for tapered concrete 

pavement slabs with stiffened and unstiffened edges, and 

for slabs tapered in two directions. 

The results of the investigation and the analysis 

procedure are summarized in Chapter VII and conclusions 

as to the suitability of the method are presented, 



CHAPTER II 

ANALYSIS OF GRIDS BY THE STIFFNESS METHOD 

Introduction 

The high speed digital computer has made the stiffness 

method an efficient tool for the structural engineer. 

Using matrix algebra, the method can be.organized into a 

highly systematic procedure which is readily programmed for 

computer application. The stiffness method is particularly 

suited to the analysis of framed structures and is, there

fore, applicable to the problem of solving grid framework 

systems. 

In this chapter, the member stiffness method will be 

presented and applied to grid structures. Stiffness in-

fluence coefficients are presented for a general grid 

member, and these are assembled into a member-oriented 

stiffness matrix, This matrix is then rotated by means of 

angular transformation matrices to form the structure 

oriented member stiffness matrix for a general grid member. 

The g~mer1al grid ,member stiffness matrices are then 

assembled into the structure joint stiffness matrix, and 

methods of solution for the general matrix equation are 

discussed. 

9 
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Member Stiffness Matrices for Grid Elements 

The fundamental matrix equation of the stiffness method 

is 

{A} = [S] {D} (2-1) 

which states that the actions of a system can be expresse~ 

in terms of the displacements of the system by the formu-

lation of a stiffness matrix representing actions due to 

unit values of the displacements. In the stiffness method 

this equation is used to ensure the equilibrium of forces 

at the various joints. 

The stiffness matrix is a square, symmetrical matrix 

composed of stiffness influence coefficients. A stiffness 

influence coefficient is the force produced by a unit defor-

mation of a given member in a particular direction. 

Figure 1. General Member of a Structural:Grid 
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Consider for example, a general member i of a structural 

grid shown in Figure 1, The centroid of the member lies 

along the X axis and the Y and Z axes are also assumed m m m 

to occur about these principal axes. Therefore, the shear 

center of the member is considered to coincide with the 

centroidal axis. The X, Y and Z axes are assumed to be 
S S S 

the structure oriented coordinate system and are arbi-

trarily chosen for the convenience of future calculations. 

The ends of the member i are denoted J and K, and at 

each end there are three possible deformations: a joint 

translation in the Zm direction and member rotations about 

the X and Y axes. If the member is allowed to deform one m m 

deformation at a time, and the resulting forces are 

recorded in matrix form, the resulting matrix is the 

stiffness matrix for the member. The three deformations 

for the J end and their associated reactions are given in 

Figure 2 and the similar values for the K end of the member 
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are given in Figure 3. The resulting stiffness matrix for 

a general grid member in terms of the member oriented axes 

is then given in Equation (2-2) where G is the shear 

modulus of the member, E is the modulus of elasticity, I x 

and I are the moments of inertia about the x and y axes y m m 

respectively and L is the length of the member. 

Rotation of Stiffness Matrices 

While Equation (2-2) represents the stiffness matrix 

for a general member' of a structural grid, it is in terms 

of the member oriented axeso However, in order to combine 

the stiffness matrices for all members of a structural grid 

into the structure stiffness matrix, it is necessary for 

the stiffness influence coefficients to be in terms of a 

single reference coordinate system. This reference coordi-

nate system is chosen in relation to the complete struc-

tural system and is known as the structure oriented 

system. Although the member oriented reference system for 

some members of a particular grid will coincide with the 

structure oriented system, this is not the case for all 

members. In the situation where the two coordinate systems 

are not identical, the member stiffness matrices must be 

rotated by means of angular transformation matrices to the 

structure oriented coordinate system. 

Referring again to Figure 1, it can be seen that the 

axes of the member oriented system, denoted by the sub-

scripts m, are rotated an angle a from the structure 



15 

oriented system, which is indicated by the subscripts s. 

The transformation matrix relating the deformations of the 

structure oriented and member oriented systems is of the 

form 

JI Cos Cl Sin Cl 0 JI m s 

J2 = -Sin Cl Cos Cl 0 J2 m s 
(2-3) 

J3 0 0 1 J3 m s 

or, in general terms 

{DJ} = [R ]{DJ} 
m O S 

(2-4) 

where DJ are the deformations at the J end of the member in m 
J terms of the member oriented system and D represents the s 

deformations at the J end in terms of the structure ori-

ented system. R is the angular transformation matrix 
0 

composed of the direction cosines of the member. When 

deformations at both ends of the member are considered 

simultaneously, the relationship may be expressed as 

(2-5) 

or simply 

(2-6) 

where Q is the complete angular transformation matrix for 

a grid structure and is given by 
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Q = [ ~o-i_o_ j (2-7) 

O I R 
I O 

A similar expression may be written for the actions 

at the ends of the member in the form: 

{- A~ 1 =t 

I 

j {- :i-f R I 0 (2-8) 0 I 

AK 0 
-,- -

I R 
m I 0 

or, in matrix form: 

{A}= [Q]{A} 
m s 

(2-9) 

which is similar to the expressions given for angular rota-

tion of the deformations presented in Equation (2-6). 

The general stiffness equation for structural systems 

is given as 

{A } = [S J{D } 
s s s 

(2-10) 

in terms of the structure oriented coo;rdinate system and 

{A } = [ S ] { D } 
m m m 

(2-11) 

in terms of the member oriented system. As a general rule, 

however, it.is more convenient to express the actions and 

deformations in terms of the structure oriented system 

whereas the physical properties of the member which are 

used to formulate the member stiffness matrix are given in 

the member oriented system" Substituting the expressions 

from Equations (2-6) and (2-9) into Equation (2-11) yields: 



17 

[Q]{A} = [S ][Q]{D} (2-12) s m s 

When both sides of this equation are premultiplied by the 

inverse of the Q matrix, Equation (2-12) becomes 

{A}= [Q- 1 ][s·J[Q]{D} 
s m s (2-13) 

Comparing Equation (2-13) with Equation (2-10), it can be 

seen that 

(2-14) 

which gives the relationship between the member stiffness 

matrix expressed in terms of the structure oriented coor-

dinate system and the same matrix in terms of the member-

oriented coordinate systemo It should be noted that be-

cause of the particular properties of the angular trans

formation matrix Q, the inverse Q- 1 is also equal to the 

t QT_ rans pose _ This property allows the general stiffness 

matrix of Equation (2-14) to be obtained without the neces-

sity of inverting a large Q matrix. 

Using the relationship derived above and inserting the 

particular member stiffness matrix for a structural grid, 

the rotational process of the general grid member stiffness 

matrix is given in Equation (2-15), and the rotated matrix 

in expanded form is expressed in Equation (2-16) where 

C represents cos a and S represents sin a. Therefore, it 

can be seen that if the member stiffness matrix is written 

in terms of the member oriented coordinate system, it is 
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an easy operation to transform these results to a struc-

turally oriented system. InQeed, the member stiffness 

matrix can be determined directly in the structure-oriented 

coordinate system by the use of the expressions given in 

Equation (2-16). 

The necessary direction cosines used in Equation 

(2-16) are directly obtainable from the coordinates of 

each end of the grid member. If the coordinates of the J 

end of the member are denoted by X. and Y. and the K end 
J J 

coordinates by Xk and Yk, the direction cosines for any 

angle a are given by 

where 

__ Xk-XJ. cos a 
L 

and cos S = sin a= Yk-Yj 
L 

(2-17) 

(2-18) 

and then all necessary quantities used to formulate the 

member stiffness matrix for a general grid member in terms 

of the structure oriented coordinate system are known. 

Solution of the General Equation 

Once the individual member stiffness matrices for 

each member of the structural grid have been obtained in 

terms of the structure oriented axes, the joint stiffness 

matrix may be formed. This formulation is accomplished 

by the superposition of the individual member stiffness 
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matrices as dictated by the.grid joint conditions. In 

other words, at each joint there are three possible 

deformations in terms of the structure oriented coordinate 

system. However, because of the total structure compata

bility conditions, all members entering any given joint are 

subjected to the same three possible deformations at that 

joint. Therefore, the stiffness influence coefficients 

for all of these members, associated with the same three 

possible deformations, must be superimposed to reflect the 

total stiffness of the system. The results of the super-

position of the individual member stiffness matrices is 

known as the joint stiffness matrix. 

Upon.the completion of the structure joint stiffness 

matrix the governing stiffness equation 

(2-19) 

can be solved for the unknown deformations and these defor-

mations will then form the basis of calculations for any 

other un'knbwn value the. designer wishes to compute. The 

method of solution of Equation (2-19) can take one of two 

forms. First, the matrix expression may be treated as a 

set of linear simultaneous equations and may be solved 

using an elimination or iteration technique such as the 

Ga,js~ _;g,giJiti:f)i~?:':<t:'he,(Cr9cit:1::met:hb:d ,· 'iO:t>, '.fihe: ·~~y.2\tcim. may be 

solved by matrix inversion. In.the latter method both 

sides of Equation (2-19) are premultiplied by the inverse 

of the joint stiffness matrix Ss as 
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(2-20) 

which reduces to the form 

(2-21) 

and provides the solution for the deformation matrix D. s 



CHAPTER III 

DEVELOPMENT OF A GRID FRAMEWORK MODEL 

Introduction 

The governing equation for the deflection of a general 

elastic plate is given as 

= g_ 
D 

(3-1) 

in which w is the vertical deflection, q is the load func

tion, Dis the flexural rigidity of the plate, and V4 is 

the bi-Laplacian operator. In.this chapter a rectangular 

grid framework model will be presented which will allow the 

numerical solution of the partial differential governing 

equation, Equation (3-1). Because of the assumptions used 

in developing the basic elastic plate theory, it is neces-

sary to consider only bending displacements in the develop-

ment of the grid framework model. Therefore, a grid frame-

work model can be developed by equating the displacements 

of the grid model to the actual displacements of a plate 

element subjected to bending and twisting moments. This 

grid framework model consists of six members--four 

perimeter beams, each capable of resisting out of plane 

bending as well as torsion, and two diagonal beams capable 

of withstanding only out of plane bending. In this manner 

23 
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y 

z t s aL -# t 

l
s/ , A_ 

v:: z_ 
Ca) Dimension of elastic plate element 

Cb) Application of Bending Moment M1 

Cc) Application of Bending Moment M2 

Cd) Application of Twisting Moment. M, 

Figure 4. Element of a General Elastic Plate 
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a rectangular grid model with five cross sectional proper

ties will define uniquely a rectangular element of a plate. 

Properties of a Plate Element 

Consider the rectangular elastic plate element shown 

in. Figure 4-a which has exterior dimensions Land aL for 

the side lengths and t for the thickness. When this plate 

element is subjected to bending moments M1 , as shown in 

Figure 4-b, the angular rotation in the direction of bend-

ing is given as 

61 = aLM1 
t3 

E(IT) 

(3-2) 

where Eis the modulus of elastici~y of the material. 

Taking Poisson's ratio asµ, the angular rotation in the 

• 
orthogonal direction is ... 

~.3-3) 

. 
Similarly, when the element is subjected to bending 

moments M2 along the other two edges, as shown. in Figure 

4-c, the angular rotation about the X and Y axes are given 

by 

e 3 = .LM2 

E(!_:_) 
12 

(3-4) 
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and 

(3-5) 

Finally, if twisting moments of intensity M3 are 

applied to all edges of the element as in Figure 4-d, the 

resulting angle of twist will be 

es -- aLM 3 ( 1 +µ) 
t3 

E(IT) (3-6) 

Therefore, the deformations of a general plate element 

subjected to bending and twisting moments are known. 

Development of the Stiffness Equation 

for the Equivalent Grid 

An equivalent grid model of the plate element can be 

constructed of six members, The physical properties of the 

grid members can then be determined by equating the rota-

tion of the grid nodes with those of the same size plate 

element, It is important that both the plate element and 

the equivalent grid structure be subjected to statically 

equivalent loads, 

Consider, for example, a structural grid as shown in 

Figure 5-a composed of six members. The physical dimen-

sions of the grid are Land aL as the lengths of the edge 

members and BL as the length of the diagonals, The two 

end members of length L have moments of inertia about 



(a) Dimension of equivalent grid structure 

LM1 /·. 
-2- • 

Cb) Applications of equivalent bending momenti:i M1 ·• 

aLM2 
-2-

Cc) Applications of equivalent bending manents M2 

·-2-

-2-

(d) Applications of equivalent twisting moments Ms 

Figure 5 .. Equivalent Grid Structure 
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their Y axis designated as I and torsional constants e 
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designated as GJ IE. e Similarly, the two side members have 

moments of inertia and torsional constants equal to I and s 

GJ IE respectively. The diagonal members are assumed to s 

resist no torsion but have a moment of inertia equal to Id. 

The joint stiffness matrix for the complete system can 

now be formulated by substituting the above member prop-

erties into the general grid member stiffness matrix of 

Equation (2-16) and then assembling all of the resulting 

stiffness influence coefficients into the joint stiffness 

matrix. The location of the stiffness influence coeffi-

cients in the joint stiffness matrix is determined by the 

number of the deformation causing the action to occur. At 

each joint of the model structure, three deformations and 

three corresponding actions can occur. As shown in Figure 

1, the J end ~ctions are designated Jl, J2, and J3 and the 

K end actions are designated Kli K2, and K3. If a number-

ing system is chosen for these actions that corresponds to 

the number of the joint, automation cif computation is 

enhanced, For example, consider the system where 

Jl::: 3n-2 

J2 = 3n-l (3-7) 

J3 = 3n 

where n is the number of the joint. As can be seen, a 

logical number0 ing relationship then exists between the 

number of actions and the joint designations. In addi-

tion, a similar set of expressions can be written for the 
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K end of the member. To formulate the joint stiffness 

matrix for the model structure, consider the member stiff-

ness matrices for each member. First, for the side mem-

bers A and B, the member stiffness matrices are as given 

in Equation (3-8). Secondly, for the end members where 

sin a= 1.0 and cos a= 0.0; the member stiffness matrices 

ar•e of the form of Equation ( 3-9). For the diagonal member 

E, sin a= 1/B and cos a= a/Band for diagonal member F, 

sin a= 1/B and cos a= a/S. The member stiffness matrices 

for these members are given in Equations (3-10) and (3-11) 

respectively. 

Once the member stiffness matrices are complete, the 

joint stiffness matrix, and then the governing stiffness 

equation, can be assembled. This final matrix equation for 

the structural grid model is of the form of Equation (3-12) 

where Aq denotes action number i occurring at joint j and 
i 

D~ is the deformation in the i direction of joint j. 
i 

Solution of the Equivalent Grid 

Stiffness Equation 

In order to obtain the physical constants of the 

equivalent grid framework members such that the model 

represents the actions of a plate element, the deforma-

tions of the grid framework model are equated to the cor-

responding deformations of the plate element. The defor-

mations of the grid model may be found by solving Equation 

(3-12) when the model is alternately subjected to loads 
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LM1 /2, aLM2 /2 and the twisting moments as shown in Figures 

5-b, 5-c, and 5-d. For each loading condition, two inde-

pendent simultaneous equations are formed from the matrix 

relationships of Equation (3-12). By equating these inde-

pendent equations, expressions ar8 obtained for the defor-

mations of the grid framework model in terms of the unknown 

member properties as 

L2M1a 
(3 3 1 + Id 

86 
x e 

- 2E (3 3 1 I + Id Is + a 3 I I e s d e 

(3-13) 

87= 
L2M:ia 2 x Id 

2E (3 31 I + Id Is + agidie e s 

(3-14) 

L2M2a 6 3 1 + a 3 I 
8 a s d = x S 3 t I Id Is a 3 I I 2E + i. 

e s d e 

(3-15) 

89 
L 2 M2a 3 Id 

= x 2E $ 3 1 I + Id Is + a 3 I I 
e s d e 

(3-16) 

(3-17) 

and 

(3-18) 

Equating corresponding deformations, it can be seen 

that 

(3-19) 

(3-20) 



8s = 8a 

and 
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(3-21) 

(3-22) 

(3-23) 

Expanding and solving Equations (3-19) through (3-23)~ the 

final beam properties are computed as 

I = (a2 - µ)L t3 
e 2a(l µ :,_) IT -

(3-24) 

I = (1 - a 2µ )L t3 
s 2(1 µ2) IT -

(3-25) 

Id = µ f3 3 L t3 
2a(l - µ"7-) IT 

(3-26) 

GJS = (1 - 3µ) L t 

-r 2(1 - µ2) IT 
(3-27 

and GJe a(l 3µ) L t3 = (3-28) 
-r 2(1 - µ2) IT 

Using Equations (3-24) through (3-28), a plate may be 

idealized into an equivalent grid framework model which~ 

when analyzed by any standard frame or grid analysis 

computer program, will represent the. actions of the 

original plate structure. 



CHAPTER IV 

DEVELOPMENT OF MODEL FOR PLATES 

ON ELASTIC FOUNDATIONS 

Introduction 

In the previous chapters the stiffness method of 

structural analysis was discussed and used to develop a 

grid framework model for the analysis of an elastic plate, 

The grid framework model, therefore, may be bonsidered to 

be a means of solving the fourth order partial differen-

tial equation 

(4-1) 

which describes the deflection surface of an elastic 

plate, by the matrix expression 

{A} = [SJ {D} (4-2) 

However, the development of the grid framework model in 

Chapter II did not include a discussion of support condi-

tions for the elastic plate. While simple supports, fixed 

supports or free edges, as found in general elastic plate 

problems pose little difficulty for the grid framework 

method, the inclusion of elastic s~pport conditions neces-

sitates a re-formulation of the governing equation, 

37 



Equation (4-2). The consideration of these foundation 

support reactions and the accompanying modifications of 

the grid framework stiffness equations are discussed in 

the following sections, 

Effects of Elastic Foundation Forces 

38 

The basic assumptions usually made in the analysis of 

plates resting on elastic foundations is that the intensity 

of the subgrade reaction is proportional to the deflection 

of the plate. This foundation reaction is expressed by 

the function kw where w is the deflection of the plate and 

k, expressed in pounds per square inch per inch of deflec

tion, is known as the "modulus of the foundation." As 

discussed previously, this assumption was first made by 

E. Winkler, and the resulting foundation system is usually 

referred to as a Winkler foundation. 

In considering the effects of the elastic foundation, 

the foundation reaction, kw, must be incorporated into the 

governing equation. Including these effects as part of 

the load expression in Equation ( 4-1) the governing equa"'.":' 

tion becomes 

V ""w = 9.--=_k_w_ 
D 

(4-3) 

The solution of this equation by a grid framework model 

will now be investigated. 



Derivation of Model Matrix Equation 

Consider an equivalent grid framework model, similar 

to that discussed in Chapter III, resting on a system of 

spring supports. Such a model is shown in Figure 6. If 

Figure 6. Equivalent Grid Model for a Plate 
With an Elastic. Foundation 

the spring constants are given as c, then a general 

corner reaction can be expressed as cw. where w. is ·· 
. 1 1 

defined as the vertical qeflection of corner i. ··When the 

vertical deformation at each joint is considered, and 

these deformations are expressed in matrix notation, the 

vertical force matrix, Fv' is of the form 

{Fv} ·= c{W} (4-4) 

39 

where c is a scalar multiplier representing the· foundation 

-spring constant and W is a column matrix of the vertical 
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deflections. Including this expression of vertical founda-

tion forces into the governing matrix equation, Equation 

(4-2) becomes 

{A}+ {F} - [S]{D} or {A}+ c{W}= [S]{D} (4-5) 
v 

or, rearranging terms 

{A} - [S]{D} - c{W} (4-6) 

Equation (4-6) may now be written as 

{A}= [S]{D} - c[I]{W} (4-7) 

without changing the value of the original equation since 

I represents the identity or unit matrixo 

Consider now only the term c[I]{W} of Equation (4-7), 

Written in its expanded form 

c[I]{W} - c 1 0 0 0 

0 1 0 0 

0 0 l 0 

0 0 0 1 

the term may be 

0 

1 

expressed as 

0 

0 

W1 

0 

0 :::: 

Wi 

0 

0 

CW1 

0 

0 

CW2 

cw 
n 

(4-8) 

However, because of the particular laws of matrix multi-

plication, the results of Equation (4-8) may be obtained 



41 

in more than one manner. For example, a new matrix K may 

be defined in such a way that 

[K]{D} = c[I]{W} (4-9) 

or 

[K] 01x 0 

oly 0 

wl cw1 

0
2x ·- 0 (4-10) 

o? 0 
-Y 

w 
2 cw

2 

w cw n n 

For this relationship to be valid, the matrix K must be of 

the form 

K - 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 c 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 c (4~11) 

0 

0 c 
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where K is a diagonal matrix, and every third term of the 

diagonal represents the foundation spring constant c, and 

all other terms are equal to zero. 

Substituting Equation (4-9) into Equation (4-7), the 

governing matrix equation may now be written as 

{A} = [S]{D} - [K]{D} (4-12) 

ori, collecting terms, 

{A} - [S - K]{D} ( 4--13) 

Comparing Equation ( 4-13) with the general stiffness matrix 

equation, Equation (4-2), it can be seen that for ati 

equivalent grid framework model for a plate resting 

upon an elastic foundation the stiffness matrix is of the 

rorm 

(4-14] 

where S represents the grid model stiffness matrix, and 

K represents the foundation spring constant matrix. 

Therefore, the stiffness matrix for a plate resting upon 

an elastic foundation, written in its expanded form, is 

given as 
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sk :: S1 1 Sil2 S1 s S1 t+ s 1n 

821 822 S23 S24 

s 3)1 S32 (S,3-c) S34 

s !L) l Si, 2 S l:. 3 S44 

U+-15) 

s n1 • (S -c) nn ' 

The significance of Equation (4-15) is that plates 

resting on elastic foundations can be analyzed by the 

gr-id framework method, using the same equations that are 

necessary for the analysis of general grids. The dif-

ference in the analysis of the two structural systems are 

the inclusion of the foundation spring constants in every 

third term on the diagonal of the overall joint stiffness 

matrix, and the difficulty in using the resulting in-

terna1 member forces. These resulting member moments and 

shears represent the localized effects of the individual 

member stiffness and not the total joint forces which are 

of interest in the design. 

T ..... n the analysis of elastic plates, the problem is 

usually considered to be solved when the deflections of 

the middle surface are known. The grid framework method 

provides these results. Once the deflections are known, 

the internal plate forces can be obtained by using a 
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number of different approacheso An example of one numeri

cal technique, the finite. difference method, is presented 

in Appendix Cc 



CHAPTER V 

APPLICATION OF THE METHOD 

Introduction 

While the development of theory and the derivation of 

equations are important in the field of structural engi

neering, the application of the methods to actual struc

tural problems is of equal importance. In this section the 

analysis of four selected plates is presented. Each plate 

was completely analyzed, and vertical deflections were 

computed for all points on the middle surface. These 

analyses were accomplished on a General Electric 650 

digital computer using a.program written to analyze struc

t:ural grids o After geometric properties of the members 

and the complete structure were designated, the following 

procedure of analysis was used: 

1. Physical properties of each member were 

computed by evaluating Equations (3-24) 

thl."OUgh ( 3- 2 8) . 

2. The thirty-six stiffness influence coef

ficients of Equation (2-16) were deter

mined for each member, and the member 

stiffness matrix was formed. 
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3. Member stiffness matrices were next assem

bled into the structure joint stiffness 

matrix. 

4. The effects of the elastic foundation 

forces were included as indicated by 

Equation (4-15). 

5. The structure joint stiffness matrix 

was inverted. 

6. Ext,ernal structure loads wer~. read, and 

the resulting load vectors were formed. 

7. Equation (4-13) was solved for the un

known joint displacements. 

46 

The basic logic of the computer program is given 

above, and a complete listing of the program is presented 

in Appendix A, Input data provided geometric 'properties 

of members and structure configuration, the modulus of 

the elastic foundation, and the external loads. Output 

was presented as th~ grid joint displacements, and all 

other processes were internal to the computer. 

Solution of a Centrally Loaded Square Plate 

A 12" x 12" square plate, centrally loaded, is 

analyzed in the first example. The thickness of the plate 

is 1/4 inch, Poisson's ratio equals 0.3 and the modulus of 

elasticity is taken as 30,000,000 psi. The modulus of the 

foundation is assumed as 200 lb./in 2 /in., and a 1000 lb. 

load was applied at the center of the plate. The 
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equivalent grid framework used to analyze this plate is 

as shown in Figure 7. The grid increment was chosen as 

2 in., and the member and joint numbers are as shown. Due 

to the symmetrical properties of the plate system, it was 

necessary only to consider one quadrant of the equivalent 

grid model. The computer input necessary to analyze this 

plate problem is presented in Appendix B, and the final 

deformations are tabulated in Table I. A similar problem 

was solved by N. Willems (23) using the Ritz method of 

analysis, and the deflection at the center of the plate, 

Joint 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE I 

DEFLECTIONS OF A CENTRALLY LOADED 
SQUARE PLATE 

Deformation Joint Deformation 

-0.011838 in. 9 -0.026240 in. 

-0.019723 in. 10 -0.035820 in. 

-0.026240 in. 11 -0.045531 in. 

-0.028841 in. 12 -0.050283 in. 

-0.019723 in. 13 -0.028841 in. 

-0.028218 in. 14 -0.039139 in. 

-0.035820 in. 15 -0.050283 in. 

-0.039139 in. 16 -0.056380 in. 
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Figure 7. Equivalent Grid Framework Model for 
a Square Plate Centrally Loaded 
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under the load, was determined to be -0.0528 in. The 

results of the grid framework solution indicate that the 

maximum deflection at joint 16, the point of loading, is 

-0.056380 in. This is a difference of 0,00370 in. or ap

proximately 6%. However, the Ritz method itself is an 

approximate solution, involving the truncation of a double 

trigonometric series, and the analysis was based upon the 

Westergaard assumption of a plate with infinite dimensions 

in one direction. 

Solution of a Centrally Loaded Circular Plate 

A second problem which demonstrates the application 

of the grid framework method in cases of nonrectilinear 

boundaries and also provides an additional check on the 

accuracy of the method is the solution of a centrally 

loaded circular plate. A ten inch diameter circular plate 

of 1/3 inch thickness is chosen. Poisson's ratio is set 

equal to 0.3, the modulus of elasticity is given as 

30,000,000 psi, and the foundation constant is again set 

at 200 lb./in~/in. The plate is centrally loaded with a 

640 pound load. The equivalent grid framework model is 

shown in Figure 8, and the final joint deformations are 

given in Table II. 

A similar problem was analyzed by Timoshenko and 

Woinowsky-Kreiger (8), and a comparison of results is 

again possible. The maximum deflection under the load 

point was given in Table II as -0.040365 in., and the 
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Figure 8, Equivalent Grid Framework Model for a 
Circular Plate Centrally Loaded 
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Joint 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

TABLE II 

DEFLECTIONS OF A CENTRALLY.LOADED 
CIRCULAR PLATE 

Deformation Joint Defonnation 

-0.039668 in. 17 -0.04Q028 in. 

-0.039714 in. 18 -0.040123 in. 

-0.039732 .in. 19 -0.040160 in • 

. -o. 039598 in. 20 .... o.039714 in • 

-0.039699 in. 21 -0.039843 in. 

-0.039785 in. 22 · -0.039982 in. 

-0. 03981',3 in. 23 -0.040123 in. 

-0.039864 in. 24· -0. 04024·2 in. 

-0.03~699 in. 25 -0.-040294 in. 

-0.039808 in. 26 -0.039732 :l,n • 

-0.039908 in. 27 -0.039864 in. 

-0.039982 in. 28 -0.040010 in. 

-0.040010 in. 29 -0.040160 in. 

... o.039668 in. 30 -0.040294 in. 

-0.039785 in. 31 -0.040365 in. 

.;;Q • 0 3.9 9 0 8 in • 

def1ection at the boundary of the .plate was determined to 

be -0.03~70 inches. Timoshenko computed deflections of 

-0.04300 in. at the. center and -0.03910 in. at the edges 

of a similar plate. These results are within 6% at the 
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center and approximately 2% at the .boundary points. The 

same problem was again solved by Timoshenko using an 

approximate finite difference approach, and a deflection 

of -0.04180 in. was determined for the center point. 
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This solution is within 3% of that obtained by the equiv

alent grid framework method. 

Solution of an Edge Loaded 

Pavement Slab 

A more realistic problem involving plates on elastic 

foundations is the analysis of concrete pavement slabs. 

In this area, checking the solution of a particular prob

lem becomes more difficult because few problems have been 

accurately solved. The analysis presented in this section 

is of a 24' x 24' concrete pavement slab with a ten inch 

thickness. The modulus of elasticity of concrete is given 

as 3,000,000 psi and Poisson's ratio is taken as 0,20, The 

foundation modulus was assumed to be 200 lb./in~/in., and 

a .concentrated load of 10 kip was applied at the center of 

one edge. The grid increment was chosen as 3 ft. and is 

shown in Figure 9s 

This slab was analyzed by Hudson and Matlock (17) in 

their previously discussed paper, and their analysis indi

cated a deflection under the load of -0.018 inches. The 

results of the grid framework analysis ~re tabulated in 

Table III and give a deflecti6n of -0.018024 inches at the 

point of loading. In addition, the. computed deformatiorn;; 
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TABLE III 

DEFLECTIONS OF AN EDGE LOADED 
PAVEMENT SLAB 

Deformation Joint Deformation 

-0 .. 000017 in. 24 0.000298 in. 

-0.000011 in. 25 0.000329 in. 

-0,000011 in. 26 0,000471 in. 

-0.000014 in. 27 0,000449 in. 

-0.000017 in. 28 0.000430 in. 

-0.000035 in. 29 0.000331 in, 

-0,000023 in. 30 0.000276 in. 

-0.000017 in. 31 0,000802 in. 

-0,000013 in. 32 0, 0 0 0 S:4 7' in, 

-0.000013 in. 33 0.000125 in. 

-0.000044 in. 34 -0.000696 in. 

-0.000020 in. 35 -0.001202 in. 

-0.000003 in. 36 0.000863 in. 

0.000013 in. 37 0.000049 in. 

0.000022 in. 38 -0.001534 in. 

-0,000002 in. 39 -0.004502 in. 

0.000035 in. 40 -0.006555 in. 

0.000073 in. 41 0,000562 in. 

0.000113 in. 42 -0.001055 in. 

0.000136 in. 43 -0.004599 in. 

0.000160 in. 44 -0.011561 in. 

0.000198 in. 45 -0.01~024 in. 

0.000250 in. 
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Figure 9. Equivalent Grid Framework Model and 
Deflection Coptours for a 

Square Pavement Slab 
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at all other points on the plate closely match those 

obtained by Hudson and Matlock. The deflection contour 

lines are plotted over the grid framework i.of Figure 9, and 

it can be seen that there are areas where upward deflection 

of the plate is indicated. This condition of uplift is 

present in most loaded slabs on elastic foundations; 

however, the sensitivity in the analysis necessary to show 

this effect has not ~lways been present in previ?~sly 

proposed methods. 

Solution of an Edge Loaded 

Cracked Pavement Slab 

The final example of the application of the grid 

framework method is the analysis of a cracked pavement 

slab. To illustrate this condition, the slab analyzed in 

the previous example is used again. For this case a crack 

was assumed through the midsection of the slab, and the 

10 kip load was placed on one edge of the plate and 

centered over the crack, The results of this analysis are 

given in Table IV, and a deflection of -0,024225 in. is 

indicated under the load. This again compares favorably 

with a deflection of -0.025 in. computed by Hudson and 

Matlock for a similar slab. 
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TABLE IV 

DEFLECTIONS OF AN EDGE LOADED 
CRACKED PAVEMENT SLAB 

Deformation Joint Deformation 

-0.000022 in. 2 4 0.000353 in. 

-0.000012 in. 25 0.000267 in. 

-0.000011 in. 26 0.000347 ino 

-00000016 ino 27 0.000514 in. 

-0,000025 in. 28 0.000623 in. 

-0.000046 in. 29 0.000374 in. 

-0.000024 in. 30 -0.000184 in. 

-0.000012 in. 31 0.000667 in. 

-0.000009 in. 32 0.000734 in., 

-0.000013 in. 33 0.000536 in. 

-0.000066 in. 3 4 -0,000675 in. 

-0.000020 in. 35 -0.002819 in. 

0.000012 in. 36 0.000842 in. 

0.000030 in. 37 0.000529 in. 

0.000034 in. 38 -0.000657 in. 

-0.000045 in, 39 -0.004301 in. 

0.000041 in. 40 -0.010434 in. 

0.000112 in. 41 0.000821 in. 

0.000150 in. 42 -0.000048 in. 

0.000154 in. 43 -0.002834 in. 

0.000080 in. 44 -0.010463 in. 

0.000220 in. 45 -0.010463 in. 

0.000341 in. 
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CHAPTER VI 

ANALYSIS OF PLATES OF VARIABLE RIGIDITY 

Introduction 

In the preceding chapter, the grid framework method 

of analysis for plates on elastic foundations was applied 

to four different plate problems. Each plate was com

pletely analyzed, and the results were'. compared to defor

mations obtained by other methods of sdlution~ In this 

manner, the accuracy and versatility bf the method were 

established. However, all four of these example problems 

consisted of elastic plates of constant thickness. 

The solution of the basic plate equation has been 

mainly concerned with plates of constant rigidity. How

ever, plates of variable thickness are now being used more 

and more in engineering structures. The classical 

theories of plates on elastic foundations do apply to 

plates of variable rigidity, but, unfortunately, very few 

solutions have been developed for these cases. This lack 

of closed form solution for plates of variable thickness 

may be attr1 ibuted to the increased mathematical complexity 

of the problem when exact solutions are desired. 

The grid framework method lends itself ideally to the 

analysis of plates of variable rigidity. The basic 
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stiffness equations were developed for an individual grid 

model, and each plate element make,s its own contribution 

to the torsional and flexural rigidity of each corres

ponding grid member. Because of this relationship the 

physical properties of each equivalent grid element may 

vary from element to element, and the basic mathematical 

matrix relationships are not altered. In this chapter, the 

application of the grid framework method of analysis to 

plates of variable rigidity on elastic foundations will be 

demonstrated. 

Analysis of a Tapered Concrete Pavement Slab 

Consider first the analysis of a concrete pavement 

slab as shown in Figure 10. The portion of pavement to be 

analyzed is 24 ft. wide and 12 ft. long. The thickness of 

the slab is 12 inches at the crown and tapers to a thick

ness of 4 inches at the.outside edges. The material con

stants for the.concrete are a modulus of elasticity of 

3,000,000 psi and a Poisson's ratio equal to 0.20, The 

foundation modulus is taken as 200 lb./in~/in. In order 

to extend the analysis of this slab to demonstrate still 

another application of the grid framework method, the slab 

is assumed to resist two moving wheel loads of 10,000 

pounds each. This condition may be simulated by analyzing 

the slab with the two loads placed in a static condition 

at the edge of the pavement and then moving the loads one 

grid space inward in each succeeding analysis. If the 
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Figure 10. Tapered Concrete Pavement Slab 
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Figure 11. Tapered Concrete Pavement Slab 
Loading Condition Number 1 
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grid increment is chosen at three feet, then one computer 

run is necessary for the two loads placed at Oft., 3 ft., 

and 6 ft. to analyze the slab completely. The resulting 

deformation contour lines are plotted for each load con~ 

dition as given in Figures 11, 12 and 13, and the engineer 

can then visualize the effects of moving wheel loads on a 

pavement to be designed. 

Analysis of Slabs with Stiffened Edges 

The grid framework method is also suitable for ap

proximate analysis of slabs with abrupt changes in rigidity 

such as.pavements with curbs or otherwise stiffened edges. 

In order to apply the method to slabs with these condi

tions, the effects of the unusually stiff slab areas must 

be approximated in the equivalent grid members representing 

these rigid elements. As an example, consider again the. 

tapered pavement slab analyzed in the previous section. 

For this illustration, assume the properties and config

uration of the slab are as before with the addition of a 

6 in. by 12 in. curb along the two exterior edges of the 

pavement. If loading condition.Number 3 is repeated for 

this slab, a comparison may be obtained between defonna

tions in a slab with stiffened edges and one with unstif

fened edges. To effect this comparison, the deflection 

contours for this slab with stiffened edges are given in 

Figure 14. The deformation contours for the same slab 

with unstiffened edges were previously presented in 
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Analysis of Doubly Tapered Slabs 

As a final example of the application of the grid 

framework method to plates with variable rigidities, a 

plate tapered in two directions will be investigated. 
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Such a plate is shown in Figure 15. The plate itself is 

12 in. by 12 in. and varies in thickness from 0.30 in. at 

the thickest point to 0.18 in. at the thin corner. The 

modulus of elasticity is assumed to be 30,000,000 psi with 

Poisson's ratio taken as 0.30. The modulus of the foun

dation is assumed to be 200 lb./in~/in., and a 1000 lb. 

load was applied at the center of the plate. The grid 

increment was.· chosen to be two inches in each direction, 

and the resulting deformation contours are shown in Figure 

16. 

An examination of the deflection contours of Figure 

16 shows that they are not symmetrical about the point of 

loading. This result is, of course, to be expected, as 

the nonsymmetrical contours are the result of the differ

ent rigidities of adjacent plate elements. However, in 

the past, such a complete deflection analy:;;is of every 

part of a tapered plate would have been extremely difficult 

to obtain. 
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Figure 15. Doubly Tapered Elastic Plate 
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Figure 16. Deflection Contours for a Doubly 
Tapered Elastic Plate 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Summary 

The development of an equivalent grid framework 

system to analyze plates on elastic foundations is.pre

sented. 

An equivalent grid framework model is formulated to 

represent an element of an elastic medium, and the physical 

relationships of the model are presented in terms of stiff

ness influence coefficients. The resulting member stiff

ness matrices are assembled into the joint stiffness 

matrix, and th~ model deformations are equated to the 

known deformations of the original plate element. The 

resulting stiffness equation is then solved to provide 

physical constants for the grid framework model such that 

the actions of the elastic medium are reproduced. Next, 

the effects of elastic support conditions are introduced, 

and the elastic spring constant matrix, K, is defined and 

included in the general expression for the system stiff

ness matrix. The resulting matrix equation, when solved, 

provides the deformations of an equivalent grid framework 

system which represents the corresponding deformations of 
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an elastic plate supported upon an elastic foundation. 

Application of the method is demonstrated, and numer

ical results are compared with solutions obtained by other 

methods. It is then found that the grid framework method 

provides deformations which are in close agreement with 

other known results. 

The versatility of the grid framework method is indi

cated by the variety of problems solved. In particular, 

it is shown that this method provides an easily applied, 

rapid solution for plates of variable rigidities on 

elastic foundations. In the past, the mathematical com

plexity of plates of this type has been a major problem 

to engineers concerned with pavement design. 

In addition, the formulation of the equivalent grid 

is such that each plate element makes its own contribution 

to the flexural and torisional properties of the corres

ponding grid members. Therefore, plate discontinuities, 

such as cut-outs or irregular boundaries may be easily 

approximated by the proper choice of grid pattern. 

Conclusions 

Based upon the results of this investigation, the 

following conclusions are drawn: 

1, The equivalent grid framework method provides an 

efficient and easily applied method of analysis for plates 

on elastic foundations. 
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2. The inclusion of elastic foundation effects in the 

matrix formulation of this problem is unique and has not 

been expressed before. 

3. The results of the grid framework method correlate 

closely with results obtained by other methods. 

4, The grid framework method is applicable to plates 

of irregular configuration or variable rigidities. 

5. The grid framework method provides a systematic 

method of analysis which can be applied to existing com

puter programs readily available to consulting engineers. 

6, Complex problems involving multiple load systems 

and a combination of boundary conditions can be solved 

with the same ease as problems of simple configuration. 

Recommendation for Further Study 

The method of analysis discussed in this work forms 

the basis for possible extension and further study. For 

exarnple, while skew plates can be approximated by the 

orthogonal grid system presented, the results wo~ld un

doubtedly be more accurate if a skew grid system were 

used. To facilitate this system, the stiffness influence 

coefficients should be derived in terms of a skew coor

dinate system. Once this has been accomplished, the 

equivalent grid system could be formulated and compared. to 
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the deformations of a ske'{J element of a skew elastic plate. 

The remainder of the solution procedure would then follow 

the derivation presented in this work. 

The analysis of ribbed plates is an area in which an 

extension of the method presented here would prove bene

ficial. A three dimensional equivalent grid system would 

be necessary to accomplish this type of analysis. Many 

existing computer programs are readily available to solve 

space frames, and application of the method would again 

follow the procedure presented in this thesis. 

In addition, the grid framework method provides a 

means of approximating any continuous elastic medium. 

Solution of a framework system by the stiffness method of 

analysis is currently known by most structural engineers. 

The combination of these two facts indicates that this 

method can provide an easily understood. and quickly appli

cable method of solution for many problems which currently 

are avoided by many engineers because of their mathematical 

complexity. 
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COMPUTER PROGRAM FOR ANALYSIS OF 

PLATES ON ELASTIC FOUNDATIONS 
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ANALYSIS OF. PLATES O~ ELASTIC FOUNDATIONS 

.... ANALYSIS OF.PLATES O~ ELASHC.FOUNDATIONS ________ -------------

BY THE USE Of THE 'GRID F~A~E~ORK METHOD 
I ~ -· • -----.--------·-~-------------------------~----------------~-----~-~ 

.. . . . ·:· '· ·. :_. .: .... .' -· .,,· ------------~·----------------------------~-~---~~~~--~-~----~~·~~ 
1969 1,,, .! , , Wl~L1At1 H, LUCAS, JR, ........... :, --·-·----·· - ....... . 

--------~--~-·---------~-------------~---~----~-~-~-~~-~~~~-·~~--~· 
PART 1 ''!'' INPUT ~ND PRINT STRUCTURE,OATA 

--- - - -- - - - - - ~·- - --- .... - --- -- -- ---- - -- - - - -- ·-~ - - ..... --- -·- - "'" - -·- - -· -- "'!''-• - --

D l MH S l ON X(160),Y(160),JE(160>,t<EC160>,Xl(lt.O>,YJC160>,XLC160),_ 
1CX (HO), CY ( 160) 1 JT ( 160); CONS ( 160), ;JED ( 160) · ·-·. ,. ·· 0 ::·/;:-:'· ·-··c>'c-·"'::;·-··-~ 
- DIMEt-StON SMD(6;6).A(160>,AMLC160,6),AE(16U)~AC(160>,' . . 
1b(16CHARC160>,SC160,160> .. 

INTEGER Bl,B2,B3,B4,RLC160),CRLl160) 
1 WRITECt>,1100) .. ··-.· ... ·-·· - ··· .. · • . · ... - .. · .···,. .· . 

1100 F0RH.AT<42H1ANAL.YSIS Of PLATES ON EL.ASTIC fOUNDATIONS> ,,' . --c - . --- -- -- - . -- - ... -- .. - . . -- ... ---- . . -- --"- -.. -- .. . -- ----- .. , ............. ---,-··· ....... -... --~----:-- .. ··---- ···------- ..0·--- .-~-----

c:.,,, A, STRUCTURE IUfUMeTERS AND ELASTIC MODULU~ 
c 

c 

READ<5tl01>NM,NJ,NR,NRJ1E,G•THK,POlS 
101 FORMAT C4l5,if10,0,2f10,4) . . 

lfCN~,EQ,O)GO .. TO 1000 
N:3oi\J·NR . ··- . --------·----

WRITE (6, 102)N, NM, NJ,NR,NRJ,i,G 
102 fORHATC17HOSTijUCTtiRE DATA ,7H 

18H NR=15,fH NRJ=I5,7H 
READC5i60llXINC,YINC,SCON 

601 FORHAT(3F20,a> 
CONST=><INC•YINC•SCON -
WR1TE(6,602)SCON;CDNST 

602 fORMAf(/15H SQIL CONSTANT=,F10,5,5X,t6H 

C,,,, a·, JClNT COORDINATES ·.~ 
c 

DO 1110 J=l,NJ 
READ(5i10JlJT(J),X<J>,Y(J),JEO(J) 

103 fORMH(l5,2F10;0,i5> .. 
WRITE(6,104)JT(J);X(Jl,Y<J> 

104 t0RMATC25HOCOORDINATES OF JOINTS-· ,3H J:pi,6H >1c../>:F'10,:4,6H 
1r10;4f · · · -

. 1110 CONTINUE . - · • 
READC5i9300)L~L,LKL,LJV,LKV,LJD,LKD. 
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· 9300 roqMjT(6t~l 
XLV:)(LKV>-X(LJV) 
YLV:Y(LKV>-YCLJV> 
XLVV=SQRT(XLVtto2+YLVoo2) 
XLL:)CLKL>-XCLJL> 
YLL=YCLKL)-Y(LJL> 

c 

XLLL~SQRTJXLL~•2+YLL••2) 
CON:)l,.LL/XLVV 

C,,,, C, MEMBER DESIGNATIONS AND PROPERTIES 
c 

DO 120 l=l;NM 
REAOC5i111>JE(IJ,KE<l),~DES,lH(. 

111 FORMAT(3l~•f10,4) 
Kl:KE(i> 
Jl:JE(l) 
XCL:;.(KI >-X(Jl) 
YCL:Y(Kl)-Y(JI) 
.XL<t>=SORf(XCL••2+YCL••2> 
ex< t > ;:XCL/XL( 1 > 
CY(tl=YCLIXL<l.) 
GO TC <241,24~1243>,MDES 

241 UP=CCXLClJl/CON>·PO!S•CON•XLCll 
ON=2,0•<l,0-CPOIS••2>> 
RAT:CTHK••J)/12,~-. 
YIC!l=RATtiUP/PN 
UPN:CXL<l>>•Cl,0-(3,0•POISl> 
DNN=~··c1.o-cro1s••2>> · 
XICl>=<UPN•RAT•E>l(DNN•G> 
GO TC 2.44 

242 UP:()l(l)l•C<CON••2>~?01S> 
DN=2,0•CON•Cl,0-(POIS••2>) 
RAT:<THK••3)/12,0 
Y!Cl):RAT•UP/llN 
UP~J:CON•(XL(!))•Cl.0-<3,0•POISll, 
DNN:i,•C1,0-(~0IS••2>l . 
x1c1,~<UPN•RAl•E)/(ONN•G) 
GO TC 244 

243 RON:)LCl>IXLVY 
UP=PCIS•CRDN••2>•CXLClll 
DN=2,•tON•C1,0~<POIS••2>)· 
RAT:CTHK••3)/12,0 
YI ( I ):RATOUPIDN 
Xl(I)::0,0 

244 CONTINUI: 
WR!TEC6,112)!,Jl,Kl,Xl(ll,Yl<ll1XL<ll,CX(Il,CYCf} 

73 

112 FORH•TC35HOMEMBER DESIGNATIONS AN~ PROP£HTlfS/,3H )~l6i6H JCI)il6, 
16~ K<ll~l~,7H XIC!)rf10,6,7H VICl)~f1U,.6,7H XL411:f10,l,JH CXrl>•f 110 ·; 2, 7 H CY C l )S F10; 2 > •· . . ,. . . . .. ··c· .. · ···" ... ,., ,- ., ... c ., ··c· ··-;···,---····-

120 CONTINUE 
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c 
C,,,, D, JCJNT HESTRAINT LIST > 
c 

CU~ULATlVE RESTRAINT LIST 

c 
c 
c 
c 
c 
c 
c 

NJ3:~•NJ 
DO 9~0 JK=1,NJ3 
RL<JK):O . 

930 CONTINUE 
IF<N~J.EQ,0) GO TO 1141 
DO 1130 JKL:1,NRJ 

·READ(5,121)K,H~<3•K-2),RL<J•K-t>,RL<3•K> 
121 f"ORH.AT<41!>) 

WRITE(6,122)K,RL<3~K-2>,RL(3•K-1>,~L<3•K> 
122 fORHn<18HOJOINT RESTRAINlS ,31-l K:15,11H RLl3•KR2):15,1t\.i Rl.f3•K;;,'1 

1l=l5i9H RL<3•K>=I5> 
1130 CONT I NllE 
1141 CRL<l)=RL<l> 

NJ3::!•NJ 
DO 1H K:2,NJ;j 
Kl=K-1 .. 
CRL(K):CRL<Kt)+RL<K> 

131 CONTINUE . 
' - .. . .. 

-------------·----------·-------------------- .--~----~---- .--· .---

. " ., .· ------~------~--------------·--------~--~------~~~~---~-----------
c.' .. A, GENERATION OF STIFFNESS MATRIX 

DO 220(1 1=1,NM 
c 

J1:3aJE<J>-2 
J2=3•JE< I >-1 
J3:3aJl::(l) 
K1=3•KE<l>-2 
K2=3ijKECl>-1 
K3;3aKE ( I l 
SCMi:(G•XICl))IXL(ll 
SCH2:(4,0•E•YICll)/XL(Ij 
SCH3=11,5~SCH2)/XL(I) 
SCM4:(2,0•SCM3)/XL<I) 
lf(RL(J1))133t132,t33 

13~ J1=J1•CRL<J1) 
GO TC 1J4 

133 J1:N+CRLCJ1) 
134 lf(RL(J2)l136,135,136 
135 J2=J~~CRL<J2) 

GO TC 137 
136 J2=N•Cf.lL(J2) 
137 IF(RL(J3))139,138,139 
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13A 

139 
1140 

141 

142 
143 
144 

145 
146 
147 

148 
149 
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JJ:J;?•CHL(JJ) 
GO TC 114U 
J3=N•CRL(J3) 
lf(RL(Kl))142,141,142 
K1=1<1 .. CRL(K1) 
GO TC 143 
Kl=N•CRL(Kl) . 
lf(RL(K2)>145,144~145 
K2=K:1-CttL ( K2) 
GO TC 146 
K2=N•CRL(K2) 
JF(RL(K3)>148,147,148 K3=K:!-CHL(K3) ....................... -· -- ------- ·- - ·-······-
GO TC 149 
K3=N•CRL(K3) 
SMb<4,4):SCM1•CX(l>••2•SCM2•CYCl>••2 
SMD<t,1):SMD<4,4). -
SMD<1,1):(SCMi•SCM2>•CX(l>•CY(I> 
SM D ( 1 1 2) =SM O ( ~ i 1) . ' . -· ·-· - .... - ····- --- - ···-------- ... 
SMD(S,4)=SMD<1,2) 
5MD(415):SMDc,,41 
SHb( 4, 3 > :SCMJIICY (I) 
SH~(:!14>=SM014,3) 
SHD<~11>=SMD<3,4> 
SHD(l,3):SMD<Jil> 
SMDlf,4>=-5MD(1,3) 
SMD<4,6l:SMD<6,4) 
SMD<f,ll=SM0<4,6) 
SMD<t,6l=SMD<6,1i 
SMD I 411 > ::..ScMi •CX ( l I .. 2iscM2•0, 5•C\'C I) 02 
SMD<l ,4 )::SHD<.4,1) . ··-- . . ·-·---·,- ... ,._ .... -,----.,--··--·-·•a .. ·-----~--¥-·n-··-
SMD <,, 1 > = - < scM1 +scM2• o. s >•ex, 1 , •cY < n 
SMD<l15>:SMDl)t11 
SM0(4,2>=SMD<115> 
SMD<~t4l=SMD<4,2) 
~MDc!,5):SCH1•CY<l>••2+SCH2•CX(llt•2 
SMD c 2, 2): S HO<~, 5 > -- -···-. ., .. ,..--.... ---· ·----··----· .. -·-----··-·'"······-·····-·····-·-·--,· 

5MD(513>=-SCM~•CX<I> 
SHD(~15>=SMD<>,J> 
SMD(:!12>=SM0(315) 
SHD(::13):SHDcJ,2> 
SMD<615>=-SMDC2,3) 
SHD<!16):SMD<6151 
SHD(f,2):SHD<>,6> 
SHD1~16):SMD(612) . 
SHDC512>=-SCM1•CY(l>••2+SCM2•D,5•CX<Jj••2. 
SMD(~15>=SMDC),2) . . 
SHD<t:;6):SCM4 
SMD<!,3):SMU(616) 
SHD<f,3>=-SCM4 
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SM0(! 1 6):SMD(6 1 3) 
Jl3::!ttJE<ll .. 
Jl2: .. 13-1 
JU: .. 13·2 
IFIRL(Jll),~E~O) GO TO 151 

1150 S(Jl,Jl):S(JliJl>+SMD<l,1) 
S(J2,Jl>=SIJ2,Jll+SMDC2,1) 
S(J3,Jll=S<J31J1>+SM0(3.1) 
S<K1,J1):SMD<4,1) 
S(K2,J1):SMb<),1) 
S(K3,J1):SMD<~,1) 

151 1FIRL(Jl2l,~E;Ol GD TO 153 
152 S(J1,J2):S<JliJ2)+SMD(1,2) 

S(J2,J2):SIJ21J2>+SH0(2,2> 
S(J3,J2)~S<J31J2l+SMOC3,2) 
S(K1,J2>=SM0<4,2) 
S(K2,J2>:SM0(~;2> 
SCK3iJ2):5MD<6,2) 

153 IFIRL(Jl3),~E~O> GO TO 155 
154 S<J1,J3l=S<J11J3l+SM0C1,3) 

S(J2,J3):S(J21J3l+SMD12,J) 
S(J3,J3):S(J3,J3>+SMD<3,3> 
S(K1,J3):SM0(4,3) 
S(K2,J3):SMOl~t3> 
S(K3,J3):SM0(6 1 3) 

155 KI3::!•KECI> -
Ki2:1<13-1 
K!l:1<13-2 
IFIRL(Klll,~E,1) GD TO 157 

156 S(Jt,Kl>:SMD(l,4> 
S(J2,K1>=SMDl2 1 4l 
S(J3,'K1>=!:iMl)(.S,4) 
S(K1,Kl>=SIK1•K1>+SHD14,41 
S(K2,Kl>=SIK2,Kl)+SH015,4> 
S(K3,Kl>=SIK3,~1l+SHD16,4) 

157 1F(Rl(Kl2l,NE,O> G~ TO 159 
158 SCJ1,K2l=SM0<1,5> 

S(J2,K21=SMD1215l 
SJJ3,K2>=5MDCJ 1 5> . 
S(Kt,K2)=SIK1,K2l+SMDC4,5) 
S(K2,K2):SCK2~K2)+SM0(5,5> 
S(K3,K21=SIK3,K2)+SMOC6,5) 

159 IF<RLIKI3l ,tJE,0) GO TO 2200 
1160 S(Jt,K3):SMDC1,6> 

S(J2,K3):SMDC2,6l 
S(J3,K3l=SMD<J,6l 
S1Kt,K31=SIK1,K3l+SM014,6) 
S(K2,K31=SIK2,K3l+SMD(5,61 
S<K3,K3l=S~K3,K3l+SHD<6~6> 

2200 CONTINUf: 

76 
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c 
c. t •• 

c 

701 

702 

703 

704 
7000 

c 
c •••• 
c 

c 

910 

900 

B, GENERATION Of SOIL CONSTANT MATRIX 

DO 7COO J:1,NJ 
KN=JEO<J> 
KJ:3aJ 
GO TC (701,70~,7n3,704),KN 
CONS(KJ):COt,.;ST 
GO TC 7000 
CONSCKJ):CONST•0,5 
GO TC 7000 
CONS<KJ):CONST•0,25 
GO TC 7000 
CONSCKJ>=CONST•0,75 
CONTINUE 

c, GENERATION or (S~K) MATRIX 

J1=0,0 
J2=N 
DO 9CO J:1,NJ3 
lf(Rl(l),cQ,1) GO TO 910 
Jt=J1+1 
S(J1,J1)=S<J1,J1>+CONS(I> 
GO TC ~00 . 
J2=J2+1 
S(J2,J2):S(J2,J2)+CONS(l> 
CONTIN!.JE 

C,, .. 0, 11\VERSION OF' STIFFNESS MATRIX 
c 

NOOE=l 
CALL INVEHT <?1N,S,0,0ET,160,160,NODE) 

c 
c 
c 
c 
c 
c 

------~-----. ~-------------------------~--------.--. ---:-~- --~-

PART 3 ,,,,, INPUT ANO PRINT LOAD 0/lTA 

-------------~--------------------·--r--·------··--- -- .---~--~ c 
C,,,, A, NLMB!:RS or L,OAOED JOINTS ANO ME"18ERS 
c 

c 

READ<5;201lNLJ,NLM 
201 fORM.AT<2I~> 

WRITE(6,202)NLJ,NLM 
202 F'ORM~T<11HOLOAD OATA ,5H NLJ=IS,5H N~H=l~> 

C,,,, B, ACTIONS APPLIED AT JO!~TS 
c 

lfCNLJ>20J,2210,203 

.I 

. ···~·"' · ..... _.-, ' .... ,. ... -,:· .... 

77 
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c 

203 DO 2C9 J:1,NLJ 
RE4D<5,204)K,~(3•K·2),A(3oK-1),A(3•K) 

204 fORM~T<15,5X,3F1Di0l 
~RITE(6,205)K~A(3oK-2>,A<3•K~l),A(3•K) 

205 FORM~T(27HOACTIONS APPLIED AT JOINTS ,7H JOINT 
1,0,lCH Y ACTION F10,0,10H Z ACTION F10,0) 

·209 CONTINUE ... -· - - . 

i5,10H X ACTION 110 

C,' •' C, ACTIONS AT ENOS OF RESTRAINED MEM3ERS DUE TO LOADS 
c 

2210 
211 

lf<NLM>211,2220,211 
DO 219 J:1,NLM 
READ<5,212>I,AML<I,ll,AML<l,2l,(ML(l,3>,AM 

·212 fORM~T<l5,5X,6f10,2l 
WRITE(6,213)1iAML(l,1>•AML<l,2),AM~(l,3),AML(!,4l,AML(l,5>,AML(l,6 

1> . . 
213 FORH~T<3H l:l~1lOH AML<l,l>=fl0,2,10~ AML(l,l):f10,2,1~H·AML(l,3,: 

1f10,2110H AML(l,4):F10,2,1-0H AML<J,5):f10,2,10H AMLCl,6):F10,2) 

78 

219 CONTINUE . . .... . ... . .. --· ·-··-- -----·---------· 
c 
c 
c 
c 
c 
C, 

--•---w------~----------~------------~------------~-·---••-•••----
PART 4 ''!'• CONSTRUCTION OF VECTO~S ASSOCtATED WITH LOADS. 

.... -.. ' . ., .. ~·- ...... ,_ . 

-------------~------~~----------------------------------- .--~-----c 
C,,,. A, ECUIVALENT JOINT LOADS 
c 

c 

2220 1F<NLM)221,2231221 
221 DO 222 l=l,NH 

JI3=~•JE( I> 
AE(Jl3-2)=AE<Jf3·2)-AML(l,1)•CX(l)•A~L<J,2loCY<I> 

\AE(Jl3-l);AE(Jl3•ll-AHL<l,1>•CY(l)·A~L<l,2)~CX{J) 
AE(J13)=AE(Jl3)·AML<l,3) 
K13=3•KE(ll 
AE(Kt3·2)=AE(KJ3·2l-AHL(l,4l*CX(l)•AML<l•5l•CY(l) 
AE(Kl3-l)=AE<K13-1l-AHL<l,4)•CY(l)-A~L<l•5>~CXCI> 
AE<K13)=A~(Kl3)-AHL<l,6) . 

222 CONTINUE . . 

C,,,, 0, CCMBIN~D JPtNT LOADS 
c 

223 NNR:t-•NR 
DO 2';7 J:1,NNR 
lf(RL(J>>224,225,224 

224 K:N+CRLCJ> 
GO TC 226 

225 K:J-CRL(J) 
226 AC<K>:A(J)+AECJ> 
227 CONTINUE: 

,! 
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c 
c 
c 
c 
c 
c 
c: 

--·-----------~~--------------------------------- --------=~------~=· 
PART 5 ••••• CALCULATION AND OUTPUT or RESULTS 9 

------.------~----------------------------·---------------- ·-~~~~-
C, • • • A, JClNT DISPLACEMENTS AND SUPPORT REACTlONS 
c 

c 
c 
c 

DO 228 J:1,N 
DO 228 K=1,N 
O(J):D<Jl+S(J1Kl•AC<Kl 

22~ CONTINUE . . ... . .. 

COMPLTE SUPPOHT REACTIONS 

N1=N•1 
NNR:l\+NR 
DO 229 K=N1,NNR 
AR(K):-ACIK) 
DO 2,:9 J=l,N 
AR(K)=AR(Kl•S(K,J)•D<J> 

229 CONTINUE . 
NNR=l\+NR 
J:N+1 
DO 232 ME1=1,NNR 
ME=NI\R-ME1+1 
lf(RL(MEll23112230,231 

2230 J:J-1 . 
D(HEl=O(J) 
GO TC 2.S2 

231 D(HEl=O,O 
232 CONTINUE. 

NJ3=~•NJ 
DO 237 ME=3,NJ3,3 
83:ME.,1 
B2=ME-2 
84:ME 
Bl=HE/3 
WRITE(6,2.S6>Bi,D<82),DCB3),D(B4l 

236 FORHAT<7HUJOINT=l5,10H X DISPL,=F10,6,10H 
1PL;:F10,6) 

237 CONTINUE 
GO TC: 1 

1000 STOP 
ENO 

4576 ~o~os or MEMORY USEO BY THIS COHPILA!ION 

9 

\ 

Y DISPL,=f10,6i1DH l DlS 
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Cl~VERT 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c . 
c 
c 
c 
c 
C. 
c 
c 
c 

SUBRCUTINE 1NV
1
ERTC A, N, 8, M, DETERM, HA, NA, N_ODE> __ 

( .. 
THIS SUBROUTINE JS A SUBPROGRA"I FOR INVERTING A ~ATRIX OR SOLVING 
A SYSTEM OF SIMULTANEOUS LINEAR EQJATIONS ijy THE GAUSS-JORDA~ 
METHco; AT EACH STAGE THE LARGEST e~e~ENT OF THE SUBMAT~IX UNOER. 
CONSIDERATION IS FOUND, ROWS A~D COLUMNS ARE INTERCHANJEO TO MIKE 
THI$ THE PIVOT ELE"IENT, AND_ ALL ELEHEN_TS AH~ DIVIDED.BY IT~--~·-····-·· .. 

THIS SUBROUTINE COMPUTES THE INVERSE AND THE OETERMINA~T FOR THE 
MATRIX A OF OHCER N BY N, IT ALSO SOLVES THE MATRIX EOUA11DN 
A•X: B WHERE B IS A RECTANGULAR MATRIX OF OHOER N BY M, 

UPON EXITING FROM THIS SUBROUTINE, TliE INVl:RSE OF.A WILL HAVE 
REPL~CED A AND X : AC INVERSE>•B Wl1.L HAVE REPLACED 8, ··"·····--····-·-· 

IF H • O, ONLY THE INVERSE AND THE DETERMINANT OF A ARE COM?UTED, ... 
IN T~IS CASE, B IS NOT TOUCHED AND IN ITS PLACE WE tAN ALSO HAVE A 
<IF THIS IS CONE, SET NA: MA), . 

THE ~ALUE or NODE TRANSMITTED FROM THE CALL"ING PROGRAM"TO THrs·'-'-·--
SUBRCUTINI: CONTROLS THE WRtTTING OF MESSAGl:S BY THIS SUBROUTINE 

If TH~ INPUT VALUE OF NODE : 1, THE LOWER BOU~D AND THE 
UPPER BOUND OF THE CONDITION NUMBER t6i THE MATRIX ARE 
WRITTt:N OUT, ALSO, A MESSAGE STATING' THAT THE MATRI)( IS 
Nl:AR·SINGULAR IS WRJTTEN OJT IF THIS IS FOUND TO BL TRUE, 
H TH~ l'IIPUT VALUE OF NODE :: O, NONE OF .THESE- ~ESSAGtS~ARE
WAITT~N OUT AND NEITHER THE LO~ER HOUND NOR THE UPPER 
BOUND OF THE CONDITION NUM3ER IS CALCULATED, . 
IRREGARDLESS OF THE INPUT VALUE OF NOOE, A MESSAGE STATING 
THAT NO SOLUTION EXISTS IS WRITTeN OUT I~ A SINGULAR . 
MATRIX IS ENCOUNTERED, . .. 

•-'•'•-' •·~- •··-•hO~ ••••·••'.·•-,•,M•-••••o;,,.:,~. "'"••••••• • ,·-•·-·• 

THE IJALUE OF NODF RETURNED FROM THIS SUBROUTINE TO THE .CALLING 
PROGf.AM IS USl:D TO INDICATE CONDITIO"IS FOUND BY THIS StlBPOUTINE 

NODE~ 0 IF THE MATRIX WAS FOUND TO BE SINGULAR,: 
NUDE= 2 IF THE MATRIX WAS FOUND TU BE NEAR-SINGULAR, 
NODE ;i 1 IF NEITHER OF _THE_ ABOVE ~AS_ fPU~JR TQ '.~t . .!!1UE,! 

IT 51-0ULD BE NOTF.D THAT ACTUALLY FDR A SINGULAR SYSTEM, EITHER NO 
SOLUTION l:XISTS AT ALL, OR THERE WILL BE AN INFINJt~ NUMBER OF 
SOLUTIONS, .. 

DETEJ;M: THE DET~RMINANT Of MATRIX A, 
CNLB: THI: LOWER BOUND OF THE CONDITION NUMBER ~OR.HATR1X 
CNUB: TH~ UPPER BOUND OF THE CONDITION ~UHB~R FOR MATRI~. 

THE CONDITION NU~BER OF A MATRIX JS THE HATJO OF lHE MAX~MC~ 
EIGE~VALUI: TO THE MINIMUM EIGENVALJE; H0Wl:Vl:Ri9COMPUTING THIS -
QUANTITY IS A COMPLEX9AND LENGTHY PROC~SS, THERE ARE MORE EASILY 
EVHLATEC OUANTITIES WHICH BOUND TrlE CONUIT]ON NllMAER ANO THe:se,·-~ 
ARE THE ONES CALCULATED, . . 
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c 

c,'. i 

DIMEIISION A( MA, HA>, BC MA, NA>, INDEXC16U, 2l, IPIVOTc'160l 
EQUP,ALENCE C !ROW, JROW), C ICOLUM, JCOLUM),-( AMAX, T, St.'AP)
INI T IALl ZAT I 0"4, 

10 DETEi;H : 1.0 
NOOEIN = NOOE 
NODE: 1 

15 DO 2C J=l,N 
2.0 IP I. V CT c J l = 0 
30 DO 550 1=1,N 

C~•·• SEARCH FOR PJVOT ELEMENT, 
40 AMAX: 0,0 
45 DO 1C5 J:1; N 

I F C I F I VO T .( J ) • 1l 6 O , 1 0 5 , 6 O 
60 DO 100 K=i,N. . 

IF<!FlVOT(K) • 1) 80, 100, 715 
80 lf<AES (AMAX) ~ ABS (ACJ,K))l 85, 100, 100 
85 !ROW: J 
90 ICOLLM = K 

100 
105 

AMAX: ACJ,K) 
CONTINUE . 
CONT ltWE 

c' •··. c I j • > 

SET z=RO cOUAL TO 10••~5 TIMES THE MAGNITUDE OF THE LARGEST 
ORIGINAL cLEM=Nr, 

106 

c' •. ' 
108 
109 
107 
110 
260 
270 

cf ft I 

130 
140 
150 
160 
170 
200 

210 
220 
230 
250 

. c I It' 
310 
330 
340 
350 

IFC! ~ ll 108, 1"6• 10H 
A1B I<? ': AMAX 
ZERO: AMAX• 1,E-05 
IFCZERO> 110, 715, 110 
CHECK FOR A SINGULAR MATRIX OR A NEAR-SINGULAR MATRIX, 
IFIAES (AMAX) • ABS <ZERO>> 109, 110, 110 . 
IF (~MAX) 107, 715, 107 
N-ODE: 2 . . 
IPIVCT(ICOLUM> : IP!VOTCICOLUM) ~ 1 
INDE)(!,1) : JROW 
INDE)(l,2> : ICOLUM 
INTEi;CHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL, 
IF(IROW - ICOLUM) 140, 310, 140 
DETei;M: -DETcRM 
DO 2CO L=l,N 
SWAP: AllROW•L) 
A<IRCW,Ll = A(ICOLUM,Ll 
AC ICCLUM,L> = SWAP 
lf<Ml 310, JlU, 210 
DO 2'::0 L=l,M 
SWAP: BCIRQW,L,) 
BCIRCW,L) = B(ICOLUH,Ll 
Bl ICCLUM,Ll : SWAP 
DIVJCE PIVOT ROW BY PIVOT ELEMENT, 
PIVOT=IACICOLUM,JCOLUH1>••<-1l 
A( ICCL.UH, ICOLUM) : 1;0 
DO 350 L=l,N. 
A(ICCLUH,Ll = 4(!CDLUM,Ll • PIVOT 

9 

81 
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355 !F'OI> 380, 3801 360 
360 DO 370 L=l,M 
370 BCICCLUH,L> : BCICOLUM,L> o PIVOT 

REOUCE NON-PIVOT ROWS, c'' .. 
380 
390 
400 
420 
430 
450 
455 
460 
500 
550 

c' •. {I 

60!1 
610 
620 
630 
640 
650 
660 
670 
700 
705 
710 

DO 550 L1=1,N 
lF'(L1 - !COLUM) 400, 550, 400 
T: .A(Ll,ICOLUH) 
A(Ll, lCOLUH) : 0,0 
DO 4!:0 L=l,N . 
ACL1,L> = A(Ll,L> - A(lCOLUH,Ll e T 
IF'<Hl 550, 5501 460 
no 5CO L=l,M 
B(LliLl = B(Ll,L> • 8ClCOLUH,Ll e T 
CONTINUE 
INTE~CHANGE COLUMNS, 
DO 710 1=1,N 
L=l'\+1-1 
IF' (J I'\ DEX (L , 1) " I ND EX < L , 2 )) 6 3 0 , 71 0 , 6 3 O 
JROW: !NUEX<L,1) 
JCOLLM = INDEX(L,2l 
DO 7C5 K=l,N 
SWAP: ACK,JROW) 
A(K,.ROW) = A(K,JCOLUM) 
A(K,.COLUMl : SWAP 
CONTI NU!: 
CONTINUE 
DO 7~0 K=l,N 
!F(IFIVOT<K) - 1) 715, 730, 715 

730 CONTINUE 
lf<NCDEIN ,EQ, 0) RETURN 
IFCNCDE ,l:Q, l) GO TO 802 
WRITE (6,ti01) 

801 F'ORHPT ( //// 10X, 6BHTHE MATA!~ IS NEAR-SINGULAR SINCE ON~·or·THE 
1 PIVCT ELl:MENTS IS SMALL , I 10X, 58HCOMPAR~U TO THE MAGNITUDE OF' 
2THE LARGEST ORIGINAL ELEMENT, > 

C,, •• SEARCH ~ OR THE LARGEST ELEMENT IN THE lNVENTED MATRIX, 
802 A2B!G = 0,0 

DO 8C3 J=l,N 
DO 8C3 K:1,N 
IFIAES <A~BIG) ,LT, ABS CA(J,K))) A23!G: A(J,K) 

603 CONTINUE 
C,,,, DETE~MINE THE LOWER BOUND AND THE JPPER BOUND OF THE CONDITION 
C, 1 ,, NU'18ER FOR THI: MATRIX, 

CNLB = ABS (AlBIG o A281G) 
CNUB: CNLB o ,LOAT(N o N) 
WRITE 16,tl04) CNLB, CNUB 

604 F"ORHPT C Ill/ 10X, 42HTHE LOWER BOJNO OF 'THE CONiHTION N\JMHER : , 
1 E15,8, I 10X, 42HTHE UPPER BOJND OF' THE CONDITION NUM8ER: , 
2 E15,81 I 10X, 70HIF THE CONDITION NJHBER IS LARGER THAN 10•o8 QR 
31000~, lHtN THE ~ATRIX , I 10X, 67rllS !LL•CONDITIONED ANP IT JS FA 
41RLY SAFE TO CONCLUDE THAT SOLUTIO'JS ~ I 1ox, 64HOf" Ll"JEAR-EOUHlO 
5NS ASSOCIATED WITH THIS MATRIX ARE MEANINGLESS, ) 
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01 03-05-70 1c, 237 

RETUf;N 
715 NODE; 0 

DETEl<M : O, 0 
WRITE <6,ljQQ) 
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800 FORM~T ( ill/ 10X, 47HNO SOLUTlON EXISTS. SINCE THE MATRIX IS SINGU 
1LAR ) 

RETUf;N 
END 

y ?3697 WO~DS OF MEMORY USED BY THIS COMPILATION 



APPENDIX B 

SAMPLE DATA FOR SQUARE 

PLATE PROBLEM 
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DATA FOR SQUARE PLATE ON ELASTIC FOUNDATION 

42 16 8 7 30000000 12000000 0.25 0~3 
2.0 2.0 200.0 

l o. o. 3 
2 o. 2. 2 
3 o. 4. 2 
4 o. 6. 3 
5 2. o. 2 
6 2. 2o l 
7 2. 4. l 
8 2. 6. 2 
9 h. o. 2 

10 4a 2. l 
11 4. 4. l 
12 ho 6. 2 
13 6. o. 3 
14 6. 2. 2 
15 6. 4. 2 
16 6. 6a 3 

l 2 l 5 l 6 
l 2 l 0.25 
2 3 l 0.25 
3 4 l 0.25 
5 6 l 0.25 
6 7 l 0.25 
7 8 l 0.25 
9 10 l 0.25 

10 11 l 0.25 
11 12 l Oe25 
13 14 l 0.25 
14 15 l 0.25 
15 16 l 0.2, 
l 5 2 0.2, 
5 9 ::2 0.25 
9 13 2 0.25 
2 6 2 Oe25 
6 10 2 0.25 

'10 l4 2 0.25 
3 7 2 0.25 
7 11 2 0.25 

11 15 2 0.25 
4 8 2 0.25 
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8 12 2 Oo25 
12 16 2 0.25 
1 6 3 Oo25 
5 2 3 0.25 
2 7 3 0.25 
6 3 3 0.25' 
3 8 3 0.25 
7 4 3 0.25 
5 10 3 0.25' 
9 6 3 0.25 
6 ll 3 0.25 

10 7 3 0.25 
7 12 3 0.25 
ll 8 3 0.25 
9 14 3 0.25 

13 10 3 0.25 
10 15 3 0.25 
14 11 3 0.25 
ll 16 3 0.25 
15 12 3 0.25 
ll l 0 0 
8 l 0 0 

1.2 l 0 0 
l) 0 l 0 
14 0 l 0 
15 0 l 0 
16 l l 0 
1 0 

16 o. o. -2,0. 



APPENDIX C 

THE SOLUTION OF PLATE MOMENTS AND SHEARS 

BY THE FINITE DIFFERENCE METHOD 
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The Solution of Plate Moments and Shears 

by the Finite Difference Method 

The grid framework method calculates the joint dis

placements for all joints of the equivalent grid model. 

In addition, most grid programs will also compute the 

member forces for each member. However, when using this 

procedure for the analysis of an elastic plate, the in-

ternal member forces as.computed cannot be used. As 
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explained in Chapter IV, the grid member forces represent 

the localized effects of the individual member stiffness 

and not the total joint forces. The plate moments Mx' My, 

and Mxy' and the plate shears Qx and Qy can be obtained 

from the internal grid forces, but that procedure may 

entail somewhat lengthy computations. However, these 

forces are readily computed using the well known plate 

formulas applied either to the average curvatures of each 

element or to the vertical deflections. If these plate 

forces are ta be computed from the deflections of the 

middle surface, the simplest approach is by finite·dif-

ferences. 

Consider the general expressions for plate moments 

and shears as given by Timoshenko and Woinowsky-Krieger 

( 8) as 

= -D(w + vw ) . xx yy (C-1) 



M y 

M xy 

Qx 

and 

~ -D(w + 
yy 

= D(l - v)w 

=-D a(wxx 
ax 

._a ( w 
- xx 
ay 

vw ) 
xx 

xy 

+ w ) 
yy 

+ w ) 
yy 
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(C-2) 

(C-3) 

(C-4) 

(C-5) 

From Figure 17, the finite difference expressions for 

wxx' wyy' and wxy are expressed as 

w ::: (w.+l . 2w .. + w. 1 .)/(/:o.x2) 
xx l ,J lJ l- 'J 

(C-6) 

w :: (w. '+;L - 2w .. + w .. l)/(!:o.y2) yy l,J ; l] l,J-
(C-7) 

w ::: ( -w. + ~ . 1 + w. 1 . 1 +· w. 1 . 1 xy i
1
1.,J- i+ ,J.+ i- ,J- wi-l,j+l)/4Llxb.y 

(C-8) 

Having the deflections for a given grid, the differ-

ence expressions of Equations (C-6) through (C-8) are 

readily formed, Substituting these values into the gen-

eral equations for the plate moments and shears, the 

resulting internal plate forces Mx' My' Mxy' Qx' and Qy 

are obtainedo 
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y 
• 

' i-2 i-1 i+l i+2 

j+2 --
>-
<l 

(i,j+l) 
·--j+l 

>-
<l 

(i, j) (i+l,j) - x j 

>-
<l 

j-1 - -

>-
<l 

j-2 ----
•.. 

6.x . ,. 6x 
Ax .1 . 6.x .1 

Figure 17. General Differenc~ Grid 
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