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CHAPTER I 

INTRODUCTION 

For several years the tradition.al mathematic:s cul;'ricul.um has been 

under close examination and revision. Though suggestions for improve-

ment have been diverse, some degree of agree~ent has been evol.ved on 

the content of the secondaJ;y school mathematics program. At the pres

ent there is generally an outline agl;'eemept on the curriculum thJ;ough 

grade eleven. However, the twelfth-grade program is still un4ecided 

and various proposals are under discussion. 

, A decade ago the pattern was fairly consistent: algebra in the 

ninth grade, plane geometry in the tenth grade, advanced algebl;'a in the 

eleventh grade. The appropriate twelfth-grade offering is now acute in 

small. as well as large high schools because of the quickening pace of 

curriculu:qi development in mathematics. The improved ma.tel'ials and the 

shift of emphasis in grades seven and eight have produced some students 

who enter gJ;ade nine having a background of algebra, Thus, many 

. schools are finding it necessal;'y to provide something different from 

existing courses for these accelerated and enriched groups of students 

when they reach the twelfth grade •. The trend towai;-d elimination of 

solid geometry as a separate course through fusion with plane geometi;-y, 

even with no other changes, creates an open semester i:n grade twelve. 1 

The Commission on Mathematics of the College Entrance~xamination 

Bo1;1rd in 1959 gave three different proposals for tweHth.,.grade 

1 
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mathematics, including strong endorsement of the inclusion of some 

probability theory. 
2 

The School Mathematics Study Group has proposed 

matrix algebra and elementary functions. 3 Calculus has been extensive-

ly disc:ussed as a possible subject for high school seniors. A course 

in computer mathematics is also gaining adherents as computers become 

increasingly important in our society. Thus, a current problem in high 

school mathematics education conc:erns the question of what mathematics 

topics ought to be taught to twelfth-grade mathematics students. 

One of the most recent and c;:omplete studies of the emerging 

twelfth-grade mathematics program was a U. S, Office of Educ;:ation 

survey conducted by Woodby. Information was obtained from 66 high 

schools in 20 states by means of correspondence, classroom visits, and 

interviews with teachers and administrators. Woodby found that calcu-

lus with analytic geometry was the course most frequently offered to 

those students who were able to take a fifth course in mathematics at 

the high school level. However, it was recommended that courses in 

calculus of less than a full year in duration not be offered. 4 This is 

in accord with the CEEB Commission on Mathematics :i,n 1959.
5 

McKillip found that the grades of students wl)o had at least one 

semester but less tha.n two complete semestei:-s of calculus in high 

school were not significantly different from the grades they would have 

been expected to earn without high school calculus. The students who 

had two semesters of calculus in high school made significantly better 

6 than the grades they would have been expected to earn. 

Some mathematicians take a dim view of offering calculus :i,n high 

school, while others believe that capable students can and should study 

calculus before entering college, Different points of view exist wl:li,ch 
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have been emphatically expressed at professional meetings and in the 

7 8 literature .. Blank l) Ferguson , and other writers supporting calculus 

in high schooll) generally agree that students should have completed t;he 

prerequisite courses by the end of the junior year and that the teacher 

should be fully qualified to teach a college level course in calculus. 

Allendoerfer expressed the case against calculus when p.e wrote: 

Calculus is frequently taught at the wrong time, by the 
wrong people, and in the wrong way. It is high time we gave 
th,is matter our urgent attention •. , ~· The prel,lsures on 
:school sys terns to modernize their rnatbemat;ics teaching c;1.re 
all to the good; however)) the superintendent has tr;i,ed tc;> 
get off the hook by offering half-baked calculus to unprepared 
students in classes with incompetent teachers.9 

Allendoerfer argues that no school should attempt to teach any calculus, 

probability, matrix algebra, or finite mathematics until analytic geom-

etry has been properly presented to the students. 

In the spring of 19.64l) Buchanan sent a questionnaire to the chair-

man of each of the 223 departments of mathematics of the colleges and 

universiti,e:;; located in the United States which offered a graduate 

program. He found that 61 per cent were opposed to both a unit on 

calculus in any form and a semester course in calculus. ;u the first 

semester of the twelfth grade is devoted to elementary functions, then 

the survey indicated that the preferred course fo:i; the second semester 

was analytic geometi;-y l) additional elejllentary func t;i.ons ~ probab:i..li ty and 

statistics)) or matrix algebra, in that order. 10 

In the article previously menti,oned, Woodby found that there are 

many different courses being taQght; and still others al;'e in the plan-

ning stage. There is no particular program that seems to be the most 

appropriate at the present time. He notes that most of the advanced 

courses are either calculus and analytic geometry or algebra and 
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analysis intended to prepare students for calculus. He concludes that 

many high schools are teaching calculus courses of good quality; how-

ever, there is a trend toward the teaching of nonrigorous courses in 

calculus that emphasize only the mechanics of differentiation and 

. . 11 integration. 

Grossman asserts that :for some college-bound students who are 

ready for the calculus and who are mature enough to accelerate, a cal-

culus course may be satisfa.ctory. He raises t;he question of why we 

want to accelerate so many. He thinks that a more worthwhile objective 

would be enrichment :t;"ather than acc,eleration. Grosi;;man points out that 

many courses in calculus are "once over lightly" approaches with a 

minimum of rigor and understanding. He argues that by postponing the 

study of calculus for one year, with the added maturity and added 

enrichment that the twelfth grade can provide, t;he student's under-

standing of the c;oncepts of the calculus will more than repay the 

. 12 wait. 

Woodby recommends that experimentation with various twelfth-grade 

courses should continue. He recommends that seminar-type courses 

should be developed and that the colleges and universities should pro-

vide guidance in the development of twelfth-grade programs. He also 

notes that the trend is toward the offering of calculus. 13 

In addition to suggesting the need for enr~chment, many_ writers 

have specified particµlar enrich.-rnent: topics. For example, Grossman 

recommends the following topics as areas of enrichment for a twelfth-

grade program: nature of number systems, isomorphic systems, linear 

algebra, abstract systems (groups, rings, and fields), Boolean Algebra, 

probability, elementary func.tions, and computer mathematics, 14 



Holl~ngstec1,d suggested that many topics from number theory are 

appropriate for high school seniors" 15 In his famous essay, "A 

Mathematician's Apology," Hardy noted the importance of number theory 

when he wrote: 

The element;:ary theory of numbers should be one of the very 
best subjects for early mathematical instruction" It demands 
very little previous knowledge; its subject matter is tangi
ble and familiar; the processes or reasoning which it employs 
are simple, general and few; and it is unique among the 
mathematical science;s: in its appeal to natural human curios
ity" A month 1 s intelligent inst:ruction in the theory of 
numbers ought to be twice as instructive; twice as useful, 
and at least ten times as entertaining as the same amount 
of Calculus for Engineers"16 

Filipponi suggested that topics such as the ft;mdame.ntal theorem of 

arithmetic 9 prime numbers, the set of real numbers, groups, theory o:f; 

setsf and elementary topology would be appropriate for high school 

seniors" 17 The Oklahoma State Committee on the Improvement of Mathe-

matics Instruction indicated that such topics as convex sets, Boolean 

5 

Algebra, probability models, inequalities, group theory, conic sections, 

finite and infinite series, finite mathematical systems, computer 

science, mathematical induction, and topology are appropriate for 

18 
enri,ch.ment for talented students in grades ten through twelve. 

A consideration of the suggested enri,ch.,.ment topics in light of 

Woodby 1 s proposed seminar type course or independent study programs 

involving enrichment le.ads the writer to the following problem. 

Statement of the Problem 

The purpose of this study is to develop enrichment topics in 

mathematics for twelfth-grade mathematics students" The materials 

developed are designed for senior mathematics students who have com-

pleted a minimum of basic algebra., geometry, and advanced algebra" 
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Scope o~ the Study 

The topics developed in this study were carefully selected from 

the topics suggested in the literature. Topics were selected from the 

fields of number theory, abstract algebra, topology, geometry, and 

probability theory. Topics from these fields were chosen to give the 

students a broader perspective of the domain of mathematics and to 

reinforce many of the fundamental concepts of mathematics such as sets, 

relations~ functions, isomorphism, and so on. The approach used for 

each topic varies somewhat with the sophistication of the concepts 

involved. The approach to groups and graph theory is rather intuitive, 

while the approach to Farey fractions, fields, finite geometries, ~nd 

probability theory is more rigorous. 

The importance of the axiomatic method was stressed in the devel

opment of algebraic and geometric systems. The proofs to most of the 

theorems are given, although the teacher might not actually expect the 

students to be able to supply the proof to a given theorem since a 

considerable amount of originality and insight into the proble"(ll is 

rE,quired, Ihe proofs, however, are s true tured in terms of concepts 

that should be famil:l,ar to the students, and the students should be 

able to understand the proofso 

In addition to the basic manipulative skills of algebra and the 

basic concepts of geometry~ the presentation of topics assumes that the 

students are familiar with the basic properties of the real number 

system. 'fhe student should also be somewhat familiar with proof by 

mathematical induction and indirect proof. Mo~eovE;lr, the students 

should have been exposed to the basic rudiments of set theory. 
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If a concept arises that might be somewhat unfamiliar, a reference 

is given so that additional information can be obtained if the concept 

is not clear, Appendix A provides a ready source of collateral refer

ences on the various topics covered so that students or teachers can 

find additional information on a specific topic. References are also 

given on related topics so that if a student or group of students 

become interested in some area the teacher could suggest other topics 

of a similar nature for study. 

Significance of the Study 

The primary contribution of this dissertation is the development 

of reference materials for enrichment topics for high school senior 

mathematics students. The materials attempt to incorporate many of the 

topics suggested in the literature. The treatment of these topics i,s 

original in many cases. The materials developed :ln this study are 

quite flexible. They could be used to supplement any of the various 

suggested twelfth-grade courses such as elementary functions, analytic 

geometry, and so forth. The materials could be used as seminar topics 

in a mathematics laboratory or a Math 12X course offered in many high 

schools as an addi tiona.l elective in the twelfth grade (i. e,, in place 

of calculus or concurrent with calculus), Although the primary intent 

of the materials is enrichment for twelfth-grade mathematics students, 

many of the topics could be used for enrichment for grades nine through 

twelve for talented students. 

The materials could also be used very appropriately as independent 

study topics to augment most any type of high school mathematics cur

riculum. The materials are developed in such a manner that any portion 

or section could be presented separately. 
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Summary and Overview 

In this chapter the writer has developed the background for the 

problem, stated the problem, explained the scope of the study, and 

indicated the significance of the study. 

Chapter II is a development of a topic from the field of number 

theory which has its derivation in the observations of a geologist 

named John Farey in 1816, The idea of Farey frc1ctions ls developed in 

a rather heuristic manner initially appealing to the intuition of t;he 

students 1 knowledge of common fractions, After certain basic conjec-

tures about Farey fractions have been established, this theory is then 

used to give a rational approximation of an irrational number, 

Chapter III is an intuitive introduction to finite groups. The 

approach is concrete in nature. Interesting topics such as loops and 

braids are also introduced. Several games such as the network game and 

tangliods are illustrated as amusing applications to the theory of 

groups. Chapter IV is an extension of the theory of groups, The field 

u.nder consideration is an extension of the integers, that is, a field 

is developed as ordered triples of integers. Various properties of 

fields are considered through the study of this one algebraic system. 

Chapter Vis a discussion of various Euclidean and non-Euclidean 

finite geometries, The importance of the undefined terms "point" and 

11 line11 are emphasized and the essential properties o:i; independence, 

consistency~ and completeness of postulates are considered. Theorems 

ar,e proven in each of the different geometries. 

' 
Chapter VI is a consideration of some of the interesting applica-

tions of graph theory, Initially~ the famous Ko'nigsberg Bridge Problem 

is considered as motivation for the study of graphs. Gradually, the 
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intuitive notation o:f; a graph is defined more abstractly in terms of a 

binary relation defined on a set. Some of the fundamental theorems of 

graph theory are proven and solutions are given to some of the histori

cally famous problems such as Hamilton's Travelers Dodecahedron problem. 

Chapter VII is a set theoretic approach to finite probability. 

The basic notations of probability are developed from a set of three 

basic axioms. Various examples a.re given to illustrate the applica

tions of the theory that is developed. 

Chapter VIII includes a summary and recommendations for further 

study. 



FOOTNOTES 

1 L, G. Woodby, Emergi_gg Twelfth~Grade Mathematics Programs 
(Washington, 1965), Po l, 

2
commission on Mathematics of the College Entrance Examination 

Board. Report of th~ Commission on Mathematics: Program for College 
Preparator_y (New York, 1959), po 12, 

3
school Mathematics Study Group, Mathematics for High School 

(New Haven, 1962), p. 19, 

4 
Woodby, pp. 1-40, 

5
commission on Mathematics of the College Entrance Examination 

Board, po 14. 

6w. Do McKLllip, "The Effects of High School Calculus on Students' 
First Semester Cakulus Grades at the University of Virginia, 11 The 
Mathematics Teacher, JLIX (May, 1966), pp, 470-472, 

1 A. A. Blank, "Remarks on the Teaching 0f Calculus in the Second-
ary School," The Mathematics Teach_er » LII (November, 1960), pp. 537-539. 

8w, E. Ferguson, "Calculus in the High School," The Mathematics 
Teacher,, LIII (October, 1960), pp. 451-453. 

9c, B. Allendoerfer, ''The Case Against Calculus," The Mathematics 
Teacher, LVI (November, 1963,), p. 483, 

10
0, L. Buchanan, "Opinions of College Teachers of Mathematics 

Regarding Content of the Twelfth-Year Courses in Mathematics," The 
Mathemati~s 'I'eacher, ·LVIII (March, 1965), pp. 223-225, 

11 
Woodby, p. 35 . 

12 II f George Grossman, Advanced Placement Mathematics or Whom, 11 The 
Mathemat:ks Teacher, LV (November, 1962L pp. 560-566, 

13 
Woodby• p, 36 • 

14 
Grossman, p, 562. 

15 rrving Hollingstea.d, "Number Theory--A Short Course for High 
School Seniors, 11 The Mathematics Teacher, LX (March, 1967)i, pp, 222-
227. 

10 



11 

16G. H. Hardy, "A Mathematician's Apology," The World of Mathemat• 
~' ed. J. R. Neuman (New York, 1956), p, 2032. 

17 S. R. Filippone, "A Course of Basic Mathematical Concepts for 
Advanced High School Students," The Mathematics Teacher, LIII (April, 
1960), pp. 256~259. 

18J. H. Zant, Improvement of Mathematics Instruction in Oklahoma 
Grades K-12 (Oklahoma City, 1967), pp, 39-40. 



CHAPTER II 

FAREY FRACTIONS 

The study of common fractions has long intrigued man. Beginning 

with the rules of calculation and properties of the integers, it would 

appear that there is nothing so mysterious about a common fraction a/b 

where a and bare integers and where b > O., Definition 2.1 exhibits a 

condition for equivalence of two common fractions, while Definition 2.2 

presents an inequality which insures an ordering of the common frac

tions. 

Definition 2.1. a/b = c/d iff ad= be. 

Definition 2.2. a/b < c/d iff ad< be. 

lf we stipulate that a/b < c/d means the same as c/d ;> a/b, then 

it is obvious that the trichotomy property bolds for common fractions; 

that is, for any. two fractions x/y and z/w one and only one of the 

following :ls true: x/y < z/w,. x/y, = z/w, or x/y > z/w, liowever, there 

are ;infinitely many fractions which are equivalent to a given fraction. 

For example, 12/18 ;::; 14/21 = 10/15 = 2/3 = ••••. This concept of a 

class of fractions each equivalent to a given fraction was a point of 

concern for the early mathematician. It is normally taken for granted 

that among the infinitely many fractions which are equivalent there is 

exactly one which is in reduced form with the numerator and denominator 

having no. common divisor except 1. 

12 



A geologist named John Farey in 1816 made a .very interesting 

observation about a certain set of reduced fractions between O and 1. 

He WJ;."ote down a sequence of reduced fractions between O and i whose 

denominators were limited by a number 1 
n. 

Listed in Figure 1. below are the first six rows of Farey' s frac

tions. 

n .. = 1: . 0/1, 1/1 

n = 2: 0/1 1/2,. 1/1 

n.= 3: 0/1, 1/3, 1/2, 2/3,. 1/1 

n = 4: 0/1, 1/4, 1/ 3, 1/2, 2/3, 3/4, 1/1 

n = 5: 0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4·, 4/'J, 1/1 

13 

n = 6: 0/1, 1/6, 1/5, 1/41 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1 

Figure 1 

.At first glance, these fractions may not appear to be very inter

esting or profound; however, it turns out that Farey's observation was 

quite remarkable. These fractions have some very unusual properties. 

After a thorough investigation of the fractions in Figure 1, a 

student should be able to detect JllOSt of the following relationships. 

1 .. Each fraction appears in reduced form, 

2 •. Each fraction a/b satisfies O ~ a/b ~ 1. 

3. The denominator of each fraction in a given row is less than 

or equal to the numbei- of the row. 
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4. In each row, the fractions are linearly ordered by II<''. 

5. Once a fraction appears in a row it appears in each subsequent 

row. 

6. No two consecutive fractions have the same denominator except 

in the first row. 

7. For any two consecutive fractions a/b, c/d in the nth row, 

ad - be= -1. 

It Should be noted that these relationships are only conjectures 

based on observations of the first six rows. These conjectures may or 

may not be true for an arbitrary n. Before the validity of these con

jectures can be tested, one needs to discover some general method for 

constructing a table of Farey fractions with n rows. First, rearrange 

the fractions in Figure 1 in a slightly different manner. 

row 1 0/1 1/1 

row 2 0/1 1/2 1/1 

row 3 0/1 1/3 1/2 2/3 1/1 

row 4 0/1 1/4 1/3 1/2 2/3 3/4 1/1 

row 5 0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1 

row 6 0/1 1/6 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/6 l/1 

Figure 2 

Analyzing rows 1 and 2, 1/2 is the only fraction inserted. Analyz

ing rows 2 and 3, 1/.3 arid 2/3 were inserted. What is the relationship 



between 0/1, 1/2, 1/1; 0/1, 1/3, 1/2; and 1/2, 2/3, 1/1? . One notice

able relationship is the following: 1/2 = (0 + 1)/(1 + 1), 

1/3 = (0 + 1)/(1 + 2), and 2/3 = (1 + 1)/(2 + 1). 

15 

Conjecture 2 .1 •. If a/b, a 1 /b 1 , and a 1 '/b' ' are three consecutive Farey 

fractions in the nth row, then a'/b' = (a+ a' ')/(b + b''). 

Is this conjecture true for the sixth row of the table in Figure 2? 

Even if the conjecture is true for any n, will this relc1tionship allow 

one to systematically generate a table of n rows? To answer this ques

tion, note that the fractions appearing in the nth row that did not 

appec1r in the (n - l)st row will have denominator n. Thus if a/b, 

a'/b 1 are consecutive fractions in the (n - l)st row and h + b' = n, 

then (a + a')/ (b + b 1 ) appears in the nth row (assuming the above con

jecture is true!). This approach may lead to a method of generating 

the nth row from the (n - l)st row which, in general, will yield a 

systematic method of constructing a table of n rows. Before attempting 

to prove the above conjecture, it is necessary to prove a result that 

was conjectured by Farey and later proven by the famous mathematician, 

2 
A. L. Cauchy. 

Theorem 2.1. . For any two consecutive Farey fractions a/b, c/d in the 

nth row, ad - be= -1. Note that ad - be= -1 is equivalent to 

I: ~, = -1. 

Proof: The proof of this theorem is by mathematical induction. The 

statement is certainly true for n = 1, 2, 3, 4, 5, 6 by inspect;i.on. 

Thus assume it to be true for n and then show that it is true for 

n + 1. Let a/b be a reduced fraction not in the nth row and then b > n. 
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Thus, 0 < a/b < 1 and a/bis between some two consecutive Farey frac-

tions h/k and t/m in the nth row by the defin:i,tion of Farey fractions. 

If oc: = I~~, and /3 = I!~, , then oc: = ak - bh and 13 = tb - am. Since 

h/k < a/b < t/m, then oc: > 0 and 13 ?, 0. Consider the sys tern of equa-

. ; . ak - bh = oc: 
t1.ons: . -am + bt. = 8 Solving these equations for a and b, yields: 

a = I; -~1 
,~m-~, 

= /3 h + oc:t and b = I k oc:I 
-m /3 (3k + oc: m. 

lk -h, 
-mt 

Therefore, h/k < ((3h + oc:t)/ (/3k + cxrn) < t/m. If oc: = O, then a/b = 

!3h/l3k which is a reduced fraction only when 13 = 1. However, if /3 = 1, 

the a= hand b = k which implies that b < n. This contradicts the 

assumption that a/bis not in the nth row, therefore, oc: + O. A similar 

argument shows that (3. + O •. Hence, a/b = ((3h + oc:t)/((3k + oc: m), oc::::, 1, 

13 2::, 1. Next, note that the smallest value for b occurs when oc: = 1 and 

13 = 1. Therefore, a = h+ t and b = k+ m. But, k+ m = n+ 1 since 

a/b is in reduced form and b is as small as possible. Hence, a/b = 

(h + t)/(k + m) .and a/b satisfied Farey 1 s theorem since ,~ ~, h (h + t) l ,~ !l -1 and 
k (k + m) -

,~ !I (h + t) t 
I = 1: !I = -1. Thus, Farey I s = 

(k + m) m 

theorem holds for n + 1 and the theorem is true for all n by mathemati-

cal induction • 

. Definition 2.3. If h/k, z/w are any two consecutive Farey fractions in 

the nth row, then (h + z) / (k + w) is called the mediant between h/k 

and z/w. 
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Theorem 2.2. The fractions which belong to the (n + l)st row are 

mediants of the fractions in the nth row. 

This theorem is a result of the proof of Theorem 2.1 and gives a 

method to systematically construct a table of Farey fractions with n 

rows. Note that this is the result earlier conjectured. Formally 

stated 9 the method f0r constructing a table of Farey fractions is given 

by the following. In the first row write 0/1 and 1/1. For n = 

2, 3, 4, ... • use the rule: form the nth row by copying the (n - J)st 

row in order, but insert .the fraction (a+ a')/(b + b') between the 

consecutive fractions a/band a 1 /b 0 of the (n - l)st row if (b + b') < 

n. It is now possible to investigate some of the conjectures made 

earlier. 

Definition 2.4. If a and bare integers with a 1 0 and there exists 

an integer c such that b = ac, then a divides band is denoted by ajb . 

. Theorem 2.3. If alb and ale, then al(bx + cy) for any x and y. 

Proof: If alb and ale, then there exist integers rands such that 

ar =band as= c. Then, bx+ cy = arx + asy = a(rx + sy) so that 

al(bx + cy) for any x and y. 

Theorem 2.4. Every fraction a/bin the table is in reduced form, that 

is, (a,.b) = 1 (the greatest common divisor of a and b is 1). 

Proof: Suppose that a/b, z/w are consecutive fractions in the nth 

J Iba wzl = row and that (z,w) = d, d 1 1. Then Theorem 2.1 implies that 

=l or bz =aw= 1. Since dlw and dlz, the d!(bz = aw) by Theorem 2.3 

which implies that d IL But since d 1 1, this is a contraction. 
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Hence, the theorem is true. 

Theorem 2.5. If n > 1, then no two successive fractions a/b, a'/b' in 

the nth row have the same denominator. 

Proof~ This theorem is proven indirectly. Suppose the a/band a'/b' 

are consecutive fractions in the nth row and b > 1. If a/b < a'/b' , 

then a+ 1 < a' < b, But then a/b < a/(a - 1) <(a+ 1)/ b < a'/b 

which implies that a/(b -1) is between a/band a 1 /b which is a contra-

diction. Therefore, no two successive fractions in the nth row have 

the same denominator. 

Theorem 2. 6. The fractions in each row are listed in order of their 

Proof~ Suppose that ai/bi, ai+l/bi+l are consecutive fractions with 

Theorem 2.1 implies that 
ai+l ai 

bi+l bi 
= -1 or 

Therefore» a/bi < ai+/bi+l and the fractions a.re listed in order of 

their size. 

The next theorem is adapted from a theorem given by Niven and 

3 Zuckerman. 

Theorem 2.7. If a/band a 1 /b 1 are consecutive fractions in any row, 

then among all rational fractions with values between these two, 
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(a+ a 1 )/(b + b 1
) is the unique fraction with the smallest denominator. 

Proof~ The fraction (a+ a 1 )/(b + b') will first appear in the 

(b + b 1 )th row. Let x/y be any fraction between a/band a 1 /b'. Now, 

a 1 /b 0 
- a/b = (a 1 /b 1 

- x/y) - (x/y - a/b) = (a'y - b'~)/b'y + 

(bx - ay)/by ~ l/b 1 y + 1/by = (b + b 1 )/bb'y. Therefore, a'/b' - a/b = 

(a'b - b'a)/bb 0 = 1/bb' 2:', (b + b 0 )/bb 1 y which implies that y > (b + b'), 

then (a 1 y - b I x) /b 'y + (bx - ay)by = 1/b 'y + 1/by which implies that 

a'y - b 0x = 1 and bx - ay = 1 •. Solving these two equations for x and y 

yields x =a+ a' and y = b + b 1
• Therefore, (a+ a')/(b + b') is the 

unique fraction lying between a/b and a 1 /b 1 
• 

. Theorem 2.8. If O.:::; m .:Sn and (m,n) = 1, then the fraction m/n appears 

in the nth and all later rows. 

Proof: The proof of this theorem is by induction. It is certainly 

true for n = 1. Suppose that it is true for n - 1 and then show that 

it is true for n. Consider the fraction k/n where (k,n) = 1. The 

fraction k/n does not belong to the (n - l) st row by the definition of 

Farey fractions. Thus, k/n must lie between two consecutive fractions 

a/band a 0 /b' in the (n - l)st row; that is, a/b < k/n < a 1 /b 1
• Also 

a/b <(a+ a 1 )/(b + b') < a 0 /b 0 and (a+ a 1 )/(b + b') does not belong 

to the (n - l)st row which implies that (b + b') > n - 1 or that 

(b + b 1
) 2: n. Theorem 2.7 implies that n > (b + b'). Hence, n = b + b' 

which implies that k =a+ a 1
• Thus, k/n =(a+ a')/(b + b') which 

belongs to the nth row and by mathematical induction it belongs to all 

later rows. 

Note that a method has been developed to generate a given row from 

the previous row, but is it possible to find the fraction succeeding a 
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given fraction in that row without generating the table? For example, 

is it possible to find a fraction x/y such that h/k and x/y are consec-

utive frations in the nth row? Using Theorem 2 .1, it would follow that 

kx - hy= 1. Do there exist integers X yo so that kx - hy = 1? o' 0 0 

This is an important question. If there does not exist a solution to 

this equation, then there are no hopes of solving the problem at hand. 

Definition 2.5. A Diophantine equation is an equation that has a solu-

tion in integers. 

This type of equation is named after the Greek mathematician 

4 Diophantus of Alexandria who lived about 250 A. D. 

Theorem 2.9. If (a,b) = 11 then the Diophantine equation ax+ by= 1 

is solvable. 

Proof: First, it is possible to assume without loss of generality that 

o <a< b. Since (a 1 b) = 1, a/bis a proper reduced fraction and con-

sequently a/bis a Farey fraction. Consider the Farey fraction h/k 

where h/k 1 a/bare consecutive fractions in the nth row. If h/k < a/b, 

then Theorem 2 .1 implies that ,~ : I = -1 or that ak - bh = 1. There-

fore, x = k, y = -k is a solution to the equation ax+ by= 1. 

Using Theorem 2.9 1 there does exist a solution to the equation 

kx - hy = 1. 

a solution. 

If (x 1 y) is a solution, then x + rh, y + rh is also 
0 0 0 0 

If n -k < y + rk ~ n, then there is a solution (x,y) of 
0 

kx - hy = 1 such that (x~y) = 1 and O < n -k < y ~ n. Note that (x,y) 

= 1. and y 5; n requires that x/y be. in the nth row and x/y = h/k + 1/ky 

·> h/k. 'ro see that this is true suppose that x/y > h'/k 1 where h'/k 1 
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is the next fraction following h/k. Then, h/k < h' /k 1 < x/y and 

x/y - hg/k 1 = (k'x - h 0y)/k 1 y > l/k 1 y. But h'/k 1 h/k = 

(kh 1 
- hk1 )/kk 1 2: 1/kk'. So, 1/ky = (kx - hy)/ky = x/y - h/k 2::: 1/k'y + 

1/kk 1 = (k + y) /kk u y. But (k + y) /kk I y > n/kk I y 2: 1/ky implies that 

1/ky > 1/ky. This is a contradiction and x/y = h'/k' which implies 

that x/y is the next fraction following h/k. 

Thus, there exists a roe thod to find the succeeding fraction follow-

ing a given fraction in the nth row. Suppose as an example one wanted 

to find the successor of 4/9 in the 13th row. First, find a solution 

One solution is x = 1, y = 2. 
0 0 

Then chooser so that 13 - 9 < 2 + 9r < 13. Certainly r = 1 will make 

this inequality true. If r = 1, then x = 1 + 4r = 5 and y = 2 + 9r = 

11. Thus, the required fraction is 5/11. 

. Definition 2. 6, A Farey sequence of order n, denoted F, is the 
n 

ascending sequence of all irreducible fractions between O and 1 whose 

denominators do not exceed n. 

Therefore, h/k E Fn if Os h s ks n, (h,k) = 1. Thus, F1 is the 

first row of the table and F' is the nth row of the table. 
n 

Theorem 2.10 •. If al' a
2

, •.. , ak are the denominators of the fractions 

preceding from left to right in the Farey sequence of order n, then 

n-1 
1 ~ (a.a.+1)- = 1. 

n=l J J 

Proof: The proof of this theorem is by mathematical induction. The 

statement is obviously true for n = 1. Assume the statement is true 

for n = k and show that it is true for n = k + l; that is, show that 
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± (aJ.aJ.+l)-l = 1 
j=l 

given that 
k-1 -1 L (aJ.aJ.+1) = 1. 
j=l 

First, note that 

the only difference in 
k -1 ,L (a.a.+1) 

j=l J J 
and 

. k_:l 

L occurs as 
j=l 

a result of the insertion of new fractions in the nth row. For each 

h/k in the nth row that is not in the (n - l)st row where a/b < h/k < 

a 1 /b 1
~ note that -l/bb 1 + 1/bb' + 1/kb 1 = (kb'+ kb)/k

2
bb' - 1/bb' = 

(k(b + b')/k
2

(bb 1
) - 1/bb' = [(b + b') - k]/kbb' = 0 since (b = b') = k. 

Therefore, 
k-1 .,1 
L (aJ.aJ.+1) 
j=l 

for every n by induction. 

= 
k -1 L (aJ.aJ.+1) 

j=l 
and the theorem is true 

Another interesting property of Farey sequences is due to a con-

5 jecture by Aaron. 

Theorem 2.11 (Aaron 1 s Conjecture). The sum of the numerators of the 

fractions of a Farey sequence F is equal to one-half the sum of the 
n 

denominators of the fractions of F. 
n 

Proof: The proof of this conjecture is given in the American Mathemat

ical Monthly by Blade. 6 However~ the following proof does not depend 

so heavily on the theory of numbers. Two lemmas are proven to facili-

tate the proof of this conjecture. 

Lemma 2.11.1. If h/k· E F , then (1 - h/k) = (k - h)/k and (1 - h/n) E 1 
n 

F . 
n 

. Proof: If h/k E F. then O ~ h/k:::; 1. Therefore, 0 .:S (1 - h/k) .:S 1. 
n 

But (1 - h/k) = (k - h) /k where k s n which implies that (k - h) /k E F n 

Hence (1 - h/k) E F. 
n 
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Lemma 2.11.2. If h/k < 1/2, then (1 - h/k) > 1/2. 

Proof: h/k < 1/2 implies that (h/k - 1) < (1/2 - 1) or (1 - h/k > 1/2. 

Aaron's conjecture can now be proven using these two lemmas. Let 

A= [h./k. I h./k. < 1/2 and h./k. E F, for all i = 1, 2, ... , n}. 
i i i i i i n 

By Lemma 2.11.1, (1 - h./k.) > 1/2 and (k. - h~)/k~ E F for i = 
l_ l_ l_ L L n 

1, 2, 3, ... , n. Thus, taking the sum of the numerators of the frac-

tions in F, 
n 

n 
~ h. + 
i=l l. 

n 
L (k. - h.) + 1 
i=l l. l. 

n 
L k. + i. 
i=l l. 

n 
summing the denominators of the fractions in F, 

n I: k. + 
i=l l. 

n 

Similarly, 

n 

L 
i=l 

k. + 2 
l. 

= 2 L k. + 2. 
l. 

Hence, the sum of the numerators divided by the sum 
i=l 

of the denominators yields 
n 

( L ki + 1) / (2 
k=l 

the conjecture is proven since n is arbitrary. 

n z= k. + 2) = 1/2 and 
i=l l. 

At this point in the discussion, all of the earlier conjectures 

have been proven. Although Farey fractions have a very simple begin-

ning, it is possible to put the theory thus far developed to work to 

prove some rather useful results concerning rational approximations of 

irrational numbers •. It is strange in a sense how a mathematician can 

begin with a very simple idea and keep enlarging its applications. 

This is one of the inherent beauties of mathematics. 

Letµ. be an irrational number. Suppose one wishes t;o find a 

rational approximation ofµ., 

Theorem 2.12. For an irrational number,.µ., and a positive integer n 

there exists a fraction h/k with denominator k < n such that 
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jµ - h/kl < 1/(n + l)k. 

Proof: In the Farey sequence of order n, one can find two consecutive 

fractions a/band c/d such that a/b < µ < c/d. Let oc = (a+ c)/(b + d), 

then either a/b < µ < oc or oc < µ < c/d. Since oc does not belong to 

F, then either O < µ - a/b < oc - a/b or O < c/d - µ < c/d - oc. But, n 

oc - a/b = (a+ c)/(b + d) - a/b = (be ad)/b(b + d) ~ 1/(n + l)b since 

be - ad= 1 by Theorem 2.1. Similarly, c/d - oc = c/d - (a+ c)/(b + d) 

= (cd + cd - ad - dc)/d(b + d) = 1/d(b + d) ~ 1/(n + l)d. Therefore, 

0 < µ - a/b ~ 1/(n + l)b or O < (c/d - µ) < 1/ (n + l)d and in either 

case there exists a fractio~ such that Iµ - h/kl < 1/(n + l)k. 

Theorem 2.13 •. Ifµ is an irrational number, then there exists a frac-

tion h/k such that Iµ - h/k I < l/2k
2

• 

Proof: Suppose that in the Farey sequence of order n, a/b < µ < c/d, 

2 2 
Now show that eitherµ -a/b < l/2b or c/d - µ < l/2d. The theorem 

will be proven indirectly. Therefore, assume thatµ is irrational and 

. µ - a/b ~ l/2b
2 

and c/d - µ ~ 1/2d
2

. Then, c/d - a/b ~ l/2b
2 + l/2d

2 
= 

(b
2 + d

2
)/ 2b

2
d

2
• But, c/d - a/b = (cb - ad)/db = 1/bd by Theorem 2.1. 

(b - d) 2/2b 2d2 is true only when b = d. But, ad - be= -1 implies that 

b = d = 1. Hence, for a Farey sequence of order n > 1,. µ -a/b ~ l/2b2 

and c/d --µ ~ l/2d2 is false •. So that there exists a fraction h/k such 

that Iµ - h/kl < 112k
2

• 

Now, is it possible to get a better approximation? That is, does 

there exist a fraction h/k such that Iµ - h/kl < l/ck
2 

where c > 2? 
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This question was answered completely by A. Hurwitz. 7 He proved the 

following theorem, 

Theorem 2.14, Given any irrational numberµ, there exists infinitely 

many different rational numbers h/k such that Iµ - h/kl < 1/ ~k2• 

Hurwitz also proved that~is the best possible constant; that is 

if {sis replaced by any larger value the above theorem is not true. 

Strangely enough, the concept of Farey sequences can be related to 

geometry in a very special way, 

.Definition 2.7. A Ford circle, C(h/k), is a circle in the complex 

plane in the form lz - (h/k + i/2k
2)1 = 1/k

2
, where h/k is a Farey 

fraction. 

A Ford circle C(h/k) has its center at h/k + i/2k2 and has radius 

1/2k2• C(h/k) lies in the upper half-plane and is tangent to the x 

axis at x = h/k. 

C(a/x) 

a 
X 

Figure 3 

C(b/y) 

b 
y 

1 
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Ford circles have a very intriguing property which is stated in the 

following theorem. 

Theorem 2.15. Two distinct Ford circles never intersect. They are 

tangent if£ their fractions are adjacent in some Farey sequence. 

Another configuration is peculiar to these Ford circles. If a/b, 

c/d, and e/f are three consecutive Farey fractions, then C(a/b), C(c/d), 

and C(e/f) are mutually tangent circles. Figure 4 illustrates this 

situation. 

a 
b 

B'/' .£. B1 
'' 

B'' d 

Figure 4 

The above configuration forms some rather interesting figures. Geomet-

ric figures such as those illustrated by A' 'B' 'C and A'''B' ''Care 

called circular triangles. 



It turns out that this rather remote concept of Ford circles can 

be used to prove Theorem 2.14. The proof is given in Radamacker. 7 

27 

Hopefully, presentation of this concept originated by Farey and 

the development of the related mathematical theqry, shows some very 

important aspects of the developmental nature of mathematics. The fact 

that the rather simple concept of Farey fractions can be used to give~ 

good rational approximation of an irrational number is remarkable. 

The Appendix includes additional references pertaining to Farey frac

tions and other related topics such as Lucas and Fibonacci numbers. 
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CHAPTER III 

GROUPS, LOOPS, AND BRAIDS 

Frequently, secondary mathematics students have the notion that 

mathematics is strictly a quantitative science. The theory of groups 

is one of the important non-quantitative branches of mathematics. The 

concept of a group is relatively recent in the development of mathemat-

ics; however, the study of groups has been quite fruitful. Groups have 

become a powerful tool in the investigation of algebraic equations, 

geometric transformations, and problems in topology. Group theory is 

used today in many of the sciences; ~or example, physicists and chemists 

study the symmetries of particles and fields of force. In addition to 

being one of the most useful concepts in mathematics, groups are also 

f h . 1 1 one o t e simp est. 

The study of groups has traditionally been delayed until rather 

late ;in a student's mc;1.thematical education. One reason that is often 

given for postponing the study of group theory is that a high degree of 

abstraction is inherent in group theoretical ideas, and the ability to 

cope with these abstract concepts comes only with mathematical maturity. 

However 1 .A.dler notes that it is often overlooked that group theory need 

not be approached in a highly abstract manner. A concrete approach to 

group theory can offer a basic understanding of the concepts involved 

and provide an excellent enrichment topic for high school students. 2 

29 
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The modern approach to secondary school mathematics emphasizes 

structure and the basic properties of the real system. Using this 

approach, the student should be familiar with the defining properties 

of major mathematical systems normally studied. 

Definition 3.1. A mathematical system consists of three parts: 

(1) A universial set 

(2) Axioms or postulates which are statements assumed to be trqe 

with respect to the universial set 

(3) Definitions yielding relations, operations, etc. 

Definition 3.2, A binary operation on a set Sis a rule which assigns 

to each ordered pair of elements of Sa uniquely defined element of the 

same set S. 

If Sis a set of elements and# is a binary operation defined on 

the set S, the < S, 11 > is used to denote the mathematkal. system 

associated with Sunder the operation#. 

Definition 3.3. A group is a mathematical system conf:iisting of a 

binary operation, denoted here by 11, defined on a non-.empty set G that 

satisfies the following: 

G. l Closure For each a, b E G, a1Fb E G 

G.2 Associative For each a,b,c E G, (a1/b)1/c = a1/(b1/c) 

G.3 Identity There exist an element e E G such that for each 

a E G, a11e = e1fa = a. 

G.4 Inverse 
~1 

For each a E G, there exists an element a E G such 

= e. 
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If one wants to test whether a given set of elements with a spe-

cific binary operation constitutes a group, one must check to see that 

each of the above axioms is satisfied. For example, consider the set 

of integers with the binary operation addition. Addition of integers 

is closed and associative. The identity element is O since for each 

integer a, a+ 0 = 0 +a= a. If a is an integer, then -a is the 

inverse of a since a+ (-a)= (-a)+ a= O. Therefore, the set of 

integers under addition forms a group. Since the set of integers is 

an infinite set, then it is referred to as an infinite group. 

The set consisting of the numbers 1 and -1 with ordinary multipli-

cation as the binary operation also forms a group. Closure and associ• 

ative are obvious. The identity element is 1 and each element is its 

own inverse, that is, (-1)-l = -1 and 1-l = 1. The number of elements 

in this group is finite and this is a finite group. 

Many examples of groups arise quite naturally from mathematical 

systems that are studied in high school mathematics, Numerous examples 

3 , 4 
of this type are given by Crouch and Beckman and Laatsch. 

A concrete approach to the study of finite groups is now consid-

ered. In general, if < S, 1F > is a mathematical system, then it would 

be nice if one had a systemic method for determining whether < S,. 1F > 

is a group .. One of the most common methods for analyzing finite groups 

5 was developed by Arther Caley. Caley used a scheme similar to the 

familiar multiplication tables of arithmetic. He arranged the elements 

of the group in a square array, called a Caley square, so that the 

group elements are displayed in the top row and, in the same order, in 

the left column of the table. The entires in the table are determined 

by the group operation on the elements forming the row and column of 
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that particular entry. For example, consider the Caley square for the 

set S = (1,-1} under ordinary multiplication given in Figure 5 • 

. 1 -1 . . 1 -1 

1 l•l 1--1 1 ·.1 -1 

-1 -1.1 -1--1 -1 -1 1 

Figure 5 

Notice that the Caley square allows one to check closure immedi

ately, that is, every entry in the table is a member of the set under 

consideration •. One also can determine the identity element by inspec

tion. In this particular example, it is obvious that 1 is the identity 

element, since 1.a = a.1 = a for any non-zero integer a, In general, 

the identity element reveals itself in a Caley square since it is the 

element whose row is a copy of the column labels, column by column, and 

whose column is a copy of the row labels, row by row. Inverse elements 

can be discovered by observing in which row and column the identity 

element occurs, that is, 1~. 1 = 1 and -1· -1 = 1 so that each element is 

its own inverse. In general, associativity is the property that is 

most difficult to check. In this particular case, associativity is not 

so difficult to verify. The order of a finite group is the number of 

elements in the group. 
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The examples that have been considered thus far involve sets of 

numbers and familiar operations; however, the usefulness of the group 

concept is derived from its application to various sets of element~ and 

operations. To illustrate this fact, consider a group whose elements 

are motions of an equilateral triangle. The motions will be considered 

as rotations in the plane of the triangle about an axis through its 

center. In order to establish a starting point, arbitrarily choose a 

particular position in the plane. For easy identification, assign~ 

letter to each vertex. In Figure 6, the dot in the center represent~ 

the intersection of the axis of rotation and the plane. The second 

triangle shown in Figure 6 is a 120° clockwise rotation of the original 

triangle. 

C 

Initial Position 

Figure 6 

Position After 120° 
Clockwise Rotation 

If the triangle is rotated 240° clockwise from the initial posi-

tion, point a moves to the initial location of point c, b moves to the 

initial location of point a, and c moves to the initial location of 

point b, A rotation of 360° clockwise returns the triangle to it~ 
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initial position. Similarly, one can rotate the triangle 120°, 240°, 

and 360° in a counterclockwise direction. It should be obvious that a 

counterclockwise rotation of 120° is equivalent to a clockwise rotation 

of 240°; that is, the triangle is in the same position. Thus, it is 

not too hard to visualize that several rotations may have the same net 

result. For example, a rotation of 480° clockwise is equivalent to 

120° clockwise rotation. 

In order to make this discussion more definite, consider the 

following two classes of rotations: S = [clockwise rotations of 120° 

t (360k)
0

; k = O, 1, 2, ••. } and T = [counterclockwise rotations of 

120° ± (360k) 0
; k = O, 1, 2, }. The sets Sand T define what is 

meant by a rotation of the triangle. Two rotations are the same or 

equivalent if they have the same effect. 

Each of the rotations defined in Sor T result in one of three 

basic positions. To best illustrate this fact, an equilateral triangle 

can be cut out of paper or cardboard and each vertex labeled as shown 

in Figure 6. It is much easier to visualize a rotation with a physical 

model present. In Figure 7, the three basic positions are illustrated 

and each rotation is labeled for future reference. 

It may seem reasonable at this point to conjecture that the set of 

rotations defined in Figure 7 form a group. However, it should be 

noted that the definition of a group requires not only a set of ele

ments but a binary operation defined on this set. Thus, define a 

bi.nary operation IF which means "followed by". That is, AIFB meat).s per

form rotation A followed by rotation B. The rotation A#B is equivalent 

to the rotation I since the net result of A#B is I and is written 

A#B = I. Figure 8 illustrates the fact that A#B = I. 
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Notion Symbol Final Position 

o0 
rotation I 

120° clockwise A 
rotation 

240° clockwise B 
rotation 

Figure 7 

Rotation A Rotation B 

Initial Position Initial Position 

Figure 8 

Using the physical model of the triangle, the remaining si~ prod-

ucts can be computed. As a matter of convention, one often refers to 

abstract operations as products even though the operations may not 

resemble multiplication in the normal sense. The group table or Caley 

square is often referred to as a multiplication table. The operation 
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symbol is also often omitted, that is, A#B is written AB. The nine 

products associated with the three rotations of the triangle are given 

in the Caley square in Figure 9. 

# I A B 

I I A B 

A A B I 

B B I A 

Figure 9 

An examination of the products in the table in Figure 9 reveals 

that I is the identity element and that A-l =Band B-l = A since 

AB= BA= I. The table also shows that all elements commute with each 

other, that is, AB= BA, AI= IA, and BI= IB. 

Definition 3.4. A group < G * > is commutative iff for all elements 

a, b E G a* b = b * a. A commutative group is often called an 

abel.ian group. 

An inspection of the symmetry about the major diagonal of a group 

table is the easiest method to check for commutativity. The major 

diagonal runs from the upper left-hand corner to the lower right-hand 

corner of the table. Figure 10 indicates the major diagonal and the 

symmetry of the respective products. 
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I A B 

I 

B 

Major Oiagonal 

Figure 10 

Thus, a finite group is commutative if and only if the multiplica

tion table associated with the group has the property that products 

located symmetrically with respect to the major diagonal represent the 

same group element. 

Associativity is the most difficult group property to verify. 

However, associativity should not be taken for granted since it is 

possible for a mathematical system to satisfy all of the group axioms 

except for associativity. 

Definition 3.5. A mathematical system that satisftes group axioms G. l, 

G.3, and G.4 is called loop, 

Let A= {e,a,h,c,d} and let the binary operation & be defined on A 

as indicated in Figure 11. It is not difficult to conclude that A is 

closed with respect to & and that e is the identity element. Further

more, the table reveals that each element is its own inverse. Thus, 

. < A, & > forms a loop. However, < A, & > does not form a group since 

the associative property does not hold. To see this, note th~t a&(b&c) 

= a&b = c and (a&b)&c = c&c = e. Therefore, a&(b&c) + (a&b)&c. 
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& e a b C 

e e a b C 

a a e C b 

b b b e b 

C C C b e 

Figure 11 

The fact that some systems form loops but not groups requires that a 

certain amount of care be given to associativity. Fortunately, there 

are methods by which associativity can be checked without having to 

test all possibilities. Checking all possibilities can become extremely· 

cumbersome. 3 In general, if a set has n elements, then there are n 

different possibilities to check. 

Zassenhaus developed a technique that reduces the number of compu~ 

tations considerably. 6 However, Watson gave a generalization of 

Zassenhaus' method which is substantially easier to employ. Watson's 

rule states: 

. In the multiplication table of the loop choose any four 
places forming vertices of a rectangle. Suppose the entries 
are 

1-----f 
I I 

p-----~ 
If this loop is a group, then all other rectangles having 
p, q, and r as entries at successive vertices, with p and q 
sharing a column, will haves as the entry at the fourth 
vertex. The converse is also true.7 

To illustrate Watson's method, consider the set S = [e,a,b,c} with 

the binary operation? defined on Sas indicated in the Caley square in 
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Figure 12. To illustrate Watson's method, the writer will not attempt 

to indicate all possible rectangles that would need to be checked; 

however, several different rectangular patterns will be illustrated . 

. In Figure 12 below, the rectangle in the upper left of the table has 

a, e, and a at successive vertices, a and e in the same column, and e 

at the fourth vertex. The rectangle indicated in the lower right car-

ner of the table is similar to the rectangle described above. Analo-

gous observations can be made relative to the rectangles indicated in 

the upper right and lower left hand corners, 

? e a b C 

e t-- -t 1i1-- -f 
I I 

a a- -... -tk t-- -b 
b b-- -r r-- ,.....a 

I 
I 

I 

C b-- -b it-- -e 

Figure 12 

The rectangles indicated in Figure 13 have c, a, and e as succes-

sive vertices with bas a fourth vertex while a and care in the same 

column in each of the three rectangles. The procedure illustrated 

would be continued until all possibilities satisfying Watson's rule 

have been exhausted. If in each case the rule holds, then the loop is 

a group. 
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? e a b C 

e e r- - -p C 

I I 

I f-- -? a y,-- 1 I i 

b ? I -t a f- - t 
i I • 
I --b L- -e C c--

Figure 13 

One can simplify Watson's method somewhat by only considering the 

rectangles that have the identity element in one corner. For each of 

these rectangles, if the product of the entry that is in the same 

column as the identity element with the entry that is in the same row 

as the identity element is equal to the entry diagonally opposite the 

identity element, then the associative property is satisfied, For the 

lack of a better name. this will be referred to as the rectangle 

property. In other words, if e is the identity element and 

is a rectangle in some Caley square, then yx = z. To see that this 

condition is enough to guarantee that a loop is a group, consider a 

loop< S9 • > which satisfies the rectangle property. If e is the 

identity element of Sand r. s, and tare arbitrary elements of S, the 

-1 -1 
r ES and rr = e. Now consider the rectangle indicated in Figure 14; 

and not.e that since the elements r 9 s, and t are arbitrary elements of 

Sit is not necessary to fill in the table specifically. 



-1 
r t 

r e- - - - - -rt 
I I 
I I 
I I 

sr t-----(s~)t 

Figure 14 
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Since s, r, t ES, then sr, rt, and (sr)t are elements of S by the 

closure property. -1 The entry at the corner where r row crosses thee 

The entry at the corner where the s 

row crosses thee column is s, since se = s. Likewise, the entry at 

the corner where the r-l row crosses the r columnise and the entry at 

the corner wheres crosses the r column is sr. Since the rectangle 

property is assumed, it follows that (sr)r-l = s. Hence, the entries 

in the table in Figure 14 are justified and by the rectangle property, 

s(rt) = (sr)t. Since r, s, and tare arbitrary elements in S, then S 

must be associative with respect to the operation".'' and< S, •.::::> is 

a groupo This restriction of Waston's method is probably the simplest 

method for checking associativity in tables for finite groups. 

Using the groups of rotations of an equilateral triangle defined 

in Figure 7, add three additional motions and consider the resulting 

system. As in Figure 15, define three motions by flipping the triangle. 

The easiest way to think about this is as a rotation of 180° aboµt an 

altitude from one of the vertices. 
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Motion Symbol Initial Position 

180° rotation about 
the a 1 ti tude from the I C 
top vertex 

180° rotation about 
the altitude from D 
the left vertex 

180° rotation about 
the altitude from E 
the right vertex 

Figure 15 

Let S be the set of rotations I, A, B, C, D, and E defined in 

Figures 7 and 15. Let- 1/: be the binary operation II followed by" defined 

on S, Is < S,1/: > a group? An examination of the Caley square for 

< S, 1fo > shown in Figure 16 reveals that < S, 11 > is a group of 

order 6, 

< S, 1fo > is often referred to as the group of symmetries of an 

equilateral triangle. It is suggested that the beginning student 

verify the above group table using a physical model. It is interesting 

to note that < S, ti > is not a commutative group since C1FD = A and 

D11C = B, 

Another simple example of a group that involves rigid motions of 

a geometric figure is the rotations of a rectangle. This group is 

defined by the rotations illustrated in Figure 17. 



11 I 

Motion 

No rotation 

Rotate 180° 
clockwise 

Rotate horizontally 
about the median 

I 

A 

B 

C 

D 

E 

Rotate vertically 
about vertical median 

I 

A 

B 

C 

D 

E 

_ Symbol 

i 

p 

q 

r 

A 

A 

B 

I 

D 

E 

C 
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B C D E 

B C D E 

I E C D 

A D E C 

E I A B 

C B I A 

D A B I 

Figure 16 

Initial Position _Final Position 

a b a b 

C d C d 

a b d C 

C d b a 

a b C d 

C d a b 

a b b a 

C d d C 

Figure 17 
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If the binary operation "followed by" is defined on the set of 

rotations given in Figure 17, then one can form the group table given 

in Figure 18. 

ti i p q r 

i i p q r 

p p i r q 

-· 
q q r i p 

r r q p i 

Figure 18 

Since group multiplication is a generalization of ordinary multi-

plication, it seems reasonable to denote the group element AIIA or M as 

2 3 A and AM by A •. Using this convention, the products in the group 

tab le in rigure 9 would be, M = A2 = B, AB= MA = A3 = I, BB = A2A 2 
= 

A4 3 IA= A, BA = AM= A3 + i, and AI= IA A. Thus, the table =AA= ::;: 

in Figure 9 could be written as in Figure 19. 

It is interesting to note that every element of the group is a 

power of the single element A since I= A3 • A group with this property 

is sa.id to be a cyclic group generated by the element A and A is called 

a generator. 



IF I A A2 

I I A A2 

A A A2 I 

A2 A2 I A 

Figure 19 

Definition 3.6. A group G is cycle iff there is an element aEG such 

k that for any bEG there is some integer k such that b =a. 

Thus, the group of rotations of an equilateral triangle is a cycle 
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group of order 3 •. Since A generates this group, one can write succes-

sive powers of A which exhibit a cyclic repetition of the basic pattern 

A, A2, A3 = I. This characteristic lends itself to a geometric inter-

pretation. For example, if each element of the group represents a 

vertex of a triangle, then the group can be represented as a network 

of directed segments as shown in Figure 20 where each side of the 

triangle has a direction assigned to it as ;indicated by the arrow. 

Moving in the direction of the arrow corresponds oo right multiplication~ 

that is, moving from A3 to A represents A3A, Moving in the direction 

opposite the arrow corresponds to right multiplication by A~ 1, the 

inverse of A, Hence, moving from A to I in the opposite direction of 

-1 the arrow yields A A= I .. A network such as the one illustrated in 

Figure 20 is often called a Caley diagram or the graph of a group. 
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Figure 20 

Definition 3.7. A Caley diagram is a network or graph that represents 

a group as a network of directed segments where the vertices correspond 

to elements and the segments correspond to multiplication by group 

generators and their inverses. 

To further illustrate the idea of graphing a group consider the 

group defined in Figure 21. Is it possible to construct a Caley 

diagram for the group defined in Figure 21? ~o answer this question 

one must determine if the group is cyclic or find a generator for the 

group. If a is a genera.tor, then a must generate the group, that is, 

successive powers of a will produce all the elements of the group. 

I# i a b C 

i i a b C 

a a b C i 

b b C i a 

C C i a b 

Figure 21 
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2 2 3 
Note that, aa = b =a, ba = c = a a= a l

. 3 4 ca= = a a= a, and 

ia = a. Thus, a is a generator. Notice that c is also a generator but. 

bis not a generator. Using the fact that a generates the group, the 

group table can be written as follows: 

1fo i 
2 3 a a a 

i 
2 3 a a a a 

2 3 i a a a a 

2 2 3 i a a a a 

3 3 
i 

2 
a a a a 

Figure 22 

The Caley diagram for the group defined in Figure 22 can now be 

con:s true ted. 

'' 

'I 

Figure 23 
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Modular arithmetic offers numerous examples of groups •. Early in 

life a child is exposed to modular arithmetic when he first learns to 

tell time •. In the ordinary clock arithmetic with 12 numbers, a strange 

type of addition was learned, that is, 9 + 4 = 1 and 6 + 8 = 2. These 

additions are thought of as rotations of the hands of the clock around 

the clock face. 

This same idea can be extended to modular systems containing a 

different number of elements. Each number can be interpreted as a 

motion on the number line. For a specific example, consider a system, 

s
3

, that contains the elements O, 1, and 2. Think of these elements as 

representing three equally spaced points on a given circle, called 

units. This is illustrated in Figure 24. 

Figure 24 

In order to define addition, denotedE!:), interpret each number as 

a clockwise rotation of a whole number of units around the circle. 
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Thus, the number O represents a motion of zero units, 1 stands for a 

motion of 1 unit, and 2 stands for a motion of 2 units. Hence to find 

2(±)2, start at O and move 2 units clockwise followed by a movement of 

2 units clockwise which implies that 2{!)2 = 1. Similarly, 2Ei:)3 = 2 • 

. In Figure 25, a table is constructed to record the various sums for the 

set s3 = [0,1,2} under the binary operation+. Note that< s
3

, ~> 

forms a group. 

© 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

Figure 25 

By a similar process, one can ~onsider a modular system for 

· s
4 

= fO, 1, 2, 3} and construct a physical model to illustrate the 

binary operation +. It is easy to verify that < s
4

, + > forms a group 

by checking the Caley square shown in Figure 26. 

It is rather interesting to note that certain groups are very 

similar in an abstract sense. For example, consider the group of 

rotations of an equilateral triangle defined in Figure 8 and the group 

< s
3

, + > defined in Figure 25, . In order to compare these groups, 

their group tables are shown in Figure 27. 
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© 0 1 2 3 

0 0 1 1 2 3 

3 1 
1 1 2 3 0 

2 2 3 1 1 
2 

3 3 0 1 2 

Figure 26 

1fa I A B (±) 0 1 2 

I I A B 0 0 1 2 

A A B I 1 1 2 0 

B B I A 2 2 0 1 

table a table b 

Figure 27 

Note tha.t the arrangement of symbols I, A, and Bin table a is the 

same as the arrangement of the symbols O, 1, and 2 in table b. Thus, 

whenever I appears in table a, 0 appears in table b; whenever A appears 

in table a, 1 appears in table b; and whenever B appears in table a, 

2 appears in table b, Hence, if one starts with table a and inter

changes the operation 1ft and@ and substitutes O, 1, and 2 for I,. A, and 

B, then table is obtained •. Similarly, one could change table b to 

table a since these two tables only differ in the symbols that are 
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used, Figure 28 illustrates the appropriate substitutions that change 

table. b to table a. 

(±) ) ti 

0 I 

1 >t~ 

2 >B 

Figure 28 

If the tables for two groups are the same except for the differ

ences in language or notation, then the groups are said to have the 

same structure and are called isomorphic groups. The concept of 

isomorphism is one of the fundamental concepts of mathematics. 

To further illustrate the concept of isomorphism, consider the 

groups given in Figures 21 and 26, These group tables are reproduced 

in Figure 29 for easy comparison, It should be obvious that these two 

groups are. isomorphic since the groups are related by the correspondence 

given in Figure 30. 

Before leaving the topic of groups, one should investigate permuta

tion groups which were the historical instigators of the study of 

groups .. Emil Artin developed an interesting and unique approach to the 

study of certain types of permutation groups in his so-called "theory 

of braids 11
•
58 
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{p i a b C (±) 0 1 2 3 

i i a b C 0 0 1 2 3 

a a b C i 1 1 2 3 0 

b b C i a 2 2 3 0 1 

C C i a b 3 3 0 1 2 

Figure 29 

{p ~ 

i 0 

a 1 

b )-2 

C 3 

Figure 30 

To illustrate Artin 9 s approach~ a simple example consisting of 

three strands is considered. Let S denote the set of c.onfigurations in 

Figure 31. Let "0" be the binary operation defined as follows: 

Definition 3.8. If X and Y are any two members of S, then X.OY desig

nates the symbol which is formed by placing X and Y together so that 

the top points of Y coincide with the bottom points of X; and then 

mentally removing the coincident points and stretching the lines 

straight. 
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I = I I I A -

c.= IX D = )K E= X I 
Figure 31 

For example~ AOB means 

~~I I I = I and 

Therefore, AOB = I and AOC= D. A physical model can be constructed to 

represent Artin's braids as defined above by using a pegboard or geo

board and rubber bands for strands. Figure 32 illustrates AOB. 

Using a physical model or a mental model~ the student should be 

able to construct the group table shown in Figure 33. The permutation 

group as defined in Figure 33 is the basis for a rather interesting 

game called a network tracing game. Since there are only three strands 

i.n the defining properties of this group~ only three people can play. 

The game begins by drawing three vertical lines on a sheet of paper. 



AOB 

. Initial Position 

Figure 32 

0 I A B C 

I I A B C 

A A B I D 

B B I A E 

C C E D I 

D D C E A 

E ·E D C B 

Figure 33 

I 

I 
0 0 

0 0 

0 0 

Position after removing 
the center pegs 

D E 

D E 

E C 

C D 

B A 

I B 

A I 
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One of the players holds the pa.per so that his friends cannot see what 

he is doing and randomly labels the lines A, B, and C where each player 

is associated with a letter. He then folds the top of the sheet of 

paper so that the letters are concealed. Figure 3Lf illustrates a 

possible play for the first player. 
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B A C 

"-·························--·------

Figure 34 

The second player is given the paper and he draws a series of 

random horizontal liness called shuttles, each connecting two of the 

vertical lines, The third player adds a few more shuttles and then 

places an X at the bottom of one of the vertical lines, The paper is 

then unfolded and player A starts at the top of column A and traces 

downward until he hits a shuttle, He then turns and proceeds to the 

end of the shuttle and turns do~mward again. This process is continued 

until player A reaches the bottom of a vertical line, Note that 

shuttles drawn from the first vertical line on the left to the last 

vertical line on the right cannot be entered from the center line, 

Player Band player C follow the same tracing process and the player 

that ends up at the Xis the loser, Figure 35 gives a sample of the 

tracing process and shows each playeres path assuming the shuttle 

pattern given in the upper Left corner of the figure, 

At first glance th.is netwo:n:-k game may not appear to be related to 

the permutation group defined in Figure 33; however, a careful investi

gation would re.vea.l that the configurations in Figure 36 represent the 

possible configurations involved in the network game, 
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I i 

' 

! 
Pla,yer B plays Player C plays 

B P· r 
I 

A C 
~- -~- - -- -

J r 
-- - - _) I 
I I 
I 

t 
I 

r 
I - - - _J 

I 
L. -- --

I 
- -- _l 

' I 
- -- I 

I 

X 

I 
~ 

X 

Player A traces his path Player B traces his path 

A B A C 

--~- ___ _J 

! 
I ! ____ 

I 
i 
~ L ____ 

I 
I 
I 
I - - --,x .X 

B C ; 

Player C traces his path Final Positions 

F'igure 35 
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I 1 l ~ Wi 
' 

I A B 

~ IH HI 
C D E 

Figure 36 

The configurations defined in Figure 36 produce the permutation 

group defined in Figure 33. The group table clarifies the above game, 

For example, shuttle pattern B followed by shuttle pattern Chas the 

same effect as shuttle pattern E. 

It is interesting to note that the network game will never permit 

two players to end their pa.th on the same vertical line. This can be 

illustrated intuitively by just thinking of the three lines as three 

ropes~ and each shuttle has the same effect on path order as crossing 

two ropes. It was this idea of visualizing this simple problem involv= 

ing permutation groups in terms of ropes that lead Emil Artin to 

develop a rather elegant theory of braids. 9 In this theory, the ele-

ments of the group are weaving patterns and the operation consists~ as 

in the network game, of following one pattern with another. 

Piet Hein, a Danish mathematician, developed an unusual game 

10 called tangloids that involves bra.id theory. To illustrate this 
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game, first construct a physical model for easy reference. A triangu

lar shaped piece of heavy cardboard or plywood and 3 pieces of cord 

or rope are all the materials that are needed. Three holes are punched 

in the flat end of the triangular plaque and the three cords are 

attached as shown in Figure 37. The cords should be fairly flexible 

and approximately two feet in length. It also helps if the cords are 

different colors, but it is not necessary. The other end of the three 

cords are attached to some stationary object such as a chair back. 

A B C 

Figure 37 

The plaque can be rotated in six different ways to form six dif

ferent braids. _ It can be rotated sideways to the right or to the left; 

it can be rotated forward or backward between strands A and B; and it 

can be rotated forward or backward between strands Band C. Figure 38 

shows the braid formed by a forward rotation between Band C. Is it 

possible to untangle this braid by weaving the plaque in and out 

through the strands, keeping the plaque horizontal, X-side up, and 

pointing forward at all times? The answer is no. However, if the 

plaque is given a rotation in any of the six different ways, the 
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resulting braid can. be untangled by weaving the plaque without rotating 

it. 

A B C 

Figure 38 

An interesting result of braid theory is the fact that all braids 

produced by an even number of rotati.ons can always be untangled by 

weaving the plaque without rotating it; however, braids produced by an 

odd number of rotations can never be untangled. It makes a rather 

interesting game to let one player form a braid by rotating the plaque 

an even number of times. The second player then attempts to untangle 

the braid as quickly as possible. The pl.ayer who untangles the braid 

tb,€.,.fas..t~$.t is the winner. Some players even use a stop watch and keep 
- .• - !.)I>·. : ; .: 

tract of the score in seconds, For further explanation and examples of 

braid theory see Artin11 and refer to the Appendix. 
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CHAPTER IV 

AN UNFAMILIAR FAMILIAR FIELD 

The study of simple mathematical systems involving only one binary 

operation, such as groups, are quite interesting; however, most mathe-

matical structures that high school students are acquainted with 

involve two major binary operations. The mathematical system involving 

two binary operations of principal importance is called a field. The 

concept of a field has been studied by mathematicians for many years; 

yet it can properly be considered a part of modern mathematics since 

much research is still being done in field theory . 

. Definition 4, 1. A field is a mathematical system consisting of a set 

F and two binary operations which will be denoted by(±) andQ such that: 

(1) F is a commutative group t.mde:r (±) . 

(2) F fl [i} 1 is a commutative group under Q , where i is the 
i 

identity element with respect to(±) • 

(3) 0 is distributive over(±) that is, for each x, y, z E F 

Much of mathematics 0 and indeed much of the mathematics studied by 

a high school student deals directly or indirectly with numbers systems, 

. Three very important number systems are examples of fields: the 

rational numbers 1 the real numbers, and the complex numbers. 

61 



62 

The intent of this section is to present a slightly different 

mathematical system which is an extension of the integers. the system 

< M) +, • > is characterized by the following tour definitions; 

Definition 4.2. (a,b,c) ~ M if£ a, b, care integers and ct O • 

. Definition 4.3. (a,b,c) = (d,e,f) if£ (ac + b)f = (df + e)c . 

. Definition 4,4. (a,b,c) + (d,e,f) = (a+ d, bf+ ce, cf). 

Definition 4.5. (a,b,c) · (d,e,f) = (ad, aec + dbf + be, cf). 

An initial investigation of this system will reveal that the 

relation 11=11 given in Definition 4.3 is an equivalence relation. ~his 

equivalence relation induces a partition of the set Minto mut~ally 

disjoint subsets called equivalence classes, that is, (a,b,c) = 
[ (x,y,z) I (ac + b)z = (xz + y)c }. Frequently, when dealing with 

equivalence classes it is not obvious that two elements belong to the 

same class. A process called reduction will, in many cases~ help in 

this regard. For example, the elements (7,9,51) and (7,3,17) are in 

the same class and the reduction process can be generalized by showing 

that (a,bn,cn) = (a,b,c) where n is a non-zero integer. A,nother useful 

reduction is (a,b,c) = (0, ac + b, c) and a third which is not quite so 

obvious is (a,b,c) = (an, b + ac(l-n),c). 

To continue the investigation of this system, the subsystem 

< M, +>is considered. It should be clear that Mis closed under+ 

since the addition and multiplication of integers is closed. In order 

to verify the commutative and associative properties for+ the follow

ing theorems are proven. 



Theorem 4.1. If (a,b,c) , (d,e,f) EM, then 

(a,b,c) + (d,e,f) = (d,e,f) + (a,b,c). 

Proof: By Definition 4.4, 

(a,b,c) + (d,e,f) =(a+ d, bf+ ce, cf)= (d + a, fb + ea, fc) 

since addition and multiplication of integers is commutative. But 

(d + a, ec + fb, fc) = (d,e,f) by Definition 4.4. Therefore, 

(a,b,c) + (d,e,f) = (d,e,f) + (a,b,c). 

Theorem 4.2 .. If (a,b,c), (d,e,f), and (g,h,i) E ~, then 

(a,b,c) + [(d,e,f) + (g,h,i)] = [(a,b,c) + (d,e,f)] + (g,h,i). 

Proof: first, note that 

(a,b,c) + [(d,e,f) + (g,h,i)] = (a,b,c) + (d + g, ei + fh, fi) 

= (a+ d+ g, b(fi) + c(ei + fh, c(fi) ) 

= (a+ d+ g, b(fi) + )c(ei) + c(fh, c(f;i.) ) 

= (a+ d+ g, (bf) i + (ce) i + (cf)h, (cf)i ) 

(a+ d + g, (bf + ce) i + (cf)h, (cf) i ) 

(a + d, bf + ce, cf)+ (g,h,i) = [(a,b,c) + (d,e,f)] + 

(g,h,:t). 

A search for a representative for the identity and inverse ele

.ments for addition might logically lead the student to the following 

type reasoning,. If (a,b,c), (x,y,z) EM and (x,y,z) is the additive 

identity, then (a,b,c) + (x,y,z) = (a,b,c). Therefore, 

(a+ x, bz + cy, cz) = (a,b,c) 

which implies that 

[(a+ x)cz + (bz + cy)]c = (ac + b)cz 

or 
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(a+ x)cz + (bz + cy) = (ac + b)z. 

Hence, 

acz + xcz + bz + cy = acz + bz. 

So, xcz + cy = O, which implies that c(xz + y) = 0, or that, xz + y = 0~ 

since ct Q. If xz + y = O, then y = -xz. Therefore, (x, =xz, z) is a 

representative for the additive identity for arbitrary x and z, if 

z t O. A simple representative of this class is (0,0,1). 

If (a,b,c), (x,r,z) EM and (x,y,z) is the additive inverse of 

(a,b,c), then (a,b,c) + (x,y,z) = (0,0,1). Therefore, 

(a + x, bz +. cy, cz) = (0, 0, 1) wh:i.ch :implies that (a + x)cz + bz + cy 

= 0. The problem now is to choose values for x,y,z such that the above 

statement is true and (x,y,z) EM, Since (x,y,z) represents an equiva-

lence class, there are many choices for x, y, and z. Probably the most 

obvious choice is to let x = 0 since every element in M can be reduced 

so that a zero appears in the first position. This approach would 

yield acz + bz + cy = 0 or (ac + b)z = -cy which is certainly true if 

y = ac +band z = -c. Therefore, (O, ac + b, -c) is a representative 

for the additive inverse. 

Another approach to finding values for x, y, z in the above prob-

lem might begin by letting z = c since ct O and z must be non-zero if 

(x,y,z) EM, If z = c, then (a+ x)c 2 +be+ cy = 0 or (a+ x)c + 

(b + y) = o. This statement is certainly true when x = -a and y = -b. 

Therefore, another representative for the additive inverse for (a,b,c) 

would be (-a, -b, c). Hence, < M, + > is a commutative group. 

The subsystem< M, , > is now investigated, It is immediately 

obvious from Definiti1:m 4.5 that M is closed under multiplication since 

multiplication and addition of integers is closed, 



The following theorems verify that multiplication is commutative 

and associative. 

Theorem 4.3 •. If (a,b,c), (x,y,z) EM, then 

(a,b,c) • (x,y,z) = (x,y,z) • (a,b,c). 

Proqf: First, note that 

(a,b,c)·(x,y,z) = (ax, aye+ xbz + by, cz) = (xa, xbz + zyc + by, zc) 

since addition and multiplication of integers is commutative. B\.l.t, 

(xa, xbz +aye+ by, zc) = (x,y,z) • (a,b,c) 

which implies that (a,b,c) • (x,y,z) = (x,y,z) • (a,b,c). 

Theorem 4.4 •. If (a,b,c), (d,e,f), (g,h,i) EM, then 

6.5 

(a,b,c) ·[ (d,e,f) • (g,h,i) J = [ (a,b,c;). (d,e,f) J · (g,h,i). 

Proof: From the definition of multiplication in M, 

(a,b,c) , [(d,e,f) • (g,h,i)] = (a,b,c) , (dg, dhf + gei + eh, fi) 

~ (adg, a(dhf + gei + eh)c + dgbfi + b(dfg + gei + eh), cfi) 

= (adg, adhfi + ageic + aehc + dgb fi + bdgf + bgei + heh, cfi) 

= (adg, adhcf + gaeci + gdbfi + bgei + aech + dbfh,+ heh, cfi) 

= (adg, adcf + g(aec + dbf + be)i + (aec + dbf + be)h, cU) 

= (ad, aec + dbf + be, cf) . (g,h,i) 

= [(a,b,c) (d~e,f)] . (g,h,i). 

Hence, commutativity and associativity of multiplication hold for 

< M, •. >. A search for the multiplicative identity and inverse might 

lead the student to the following type reasoning. If (a,b,c), (k,m,n) 

EM and (k,m,n) is the multiplicative identity, then (a,b,c) • (k,m,n) 

= (a, b , c) . But, 

(a, b, c). • (k,m, n) = (ak, am(;! + kbn + bm, en) = (a, b ,c). 



So 

[(qk)(cn) + amc + kbn + bm]c = (ac + b)cn 

and 

akcn + amc + kbn +bro= acn + bn. 

Hence, 

acn(k - 1) + bn(k - 1) + (ac + b)m = 0 and 

(acn + bn)(k - 1) + (ac + b)m = (ac + b)(nk - n) + (ac + b)m = 

(ac + b)[nk - n + m] = 0 which implies that ac + b = 0 or nk - n + m 

= 0. If (nk - n + m) = O, then m = n(l - k) and (k,n(l - k), n) is a 

representative for the multiplicative identity for arbitrary k and m, 

if m + O. A simple representative of this class is (1,0,1) . 

. If (a,b,c), (x,y,z) EM, (a,b,c) + (0,0,1) qnd (x,y,z) is the 

multiplicative inverse of (a,b,c), then (a,b,c) · (x,y,z) = (1,0,1). 

Thus, (ax, zcy + bxz + by, cz) = (1,0,1) which implies that 

axcz + acy +bx+ by= cz or (ac + b)(xz + y) = cz. Again, if x F O, 

then (ac + b)y = cz which is true when y = c and z. = ac + b. Hence, 

(a,c,ac + b) is a representative for the multiplicative inverse of 

(a,b,o) if (a,b,c) f (O,O,k). 
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Thus, the non-zero elements of M form a group under multiplication. 

The next theorem shows that multiplication distributes over addition 

in M. 

Theorem 4.5. If (a,b,c), (d,e,f), (g,h,i) EM, then 

(a,b,c) • [(d,e,f) + (g,h,i)] = [(a,b,c) • (d,e,f)J + [(a,b,c) • 

(g,h,i)]. 

Proof: Using the definition of addition in M, 

(a,b,c) • [(d,e,f) + (g,h,i)] = (a,b,c)(d + g, ci + fh, fi) 



= (a(d + g), a(ei + fh)c + (d + g)bfi + b (ei + fh), cfi) 

= (ad + ag, aeic + afhc + dbfi + ~b;fi + bei + bfh, cfi) 

=(ad+ ag, (aeic + afhc + dbfi + gbfi + bei + bfh)c, cfic) since 

(a,b,c) = (a, bn, en). 

'l;he:i;-efore, 

(ad + ag, aeic :+-. afhc + dbfi :+-. ~bfi :+- bci :+-. bfh, cfi) 

= (ad +. ag, aecci +. bdfci +. beci +. cfahc + cfgbi +. cfbh, cfci) 

= (ad + ag, (aec + dbf + be)ci + cf (ahc :+-. gbi + bh), cfci) 

= (ad, aec :f":. dbf t be, cf) + (ag, ahc f: bgi +. bh, ci.) 

= (a,b,c) • (d,e,f) + (a,b,c) • (g,h,i). Thus, multiplication 

distributes over addition in M. 
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Relative to the < M, +, • > , it has been shown that (1) < M, + >. 

forms a commutative group, (2) Mn ((O,O,k)} forms a commutative group 

under multiplication, and (3) multiplication distributes over addition 

in M. Thus, the mathematical system< M, +, • > forms a field. One 

can now seek to discover if this field has some of the common character

istics of familiar fields, For example, one might seek answe:i;-s to the 

following questions. Is< M, +, • > an ordered field? Is< M, +, • > 

isomo:i;-phic to a familiar field? These are important questions and will 

be considered in the following discussion. 

Before one can investigate the possibility of< M, +, • > forming 

an ordered field, an order relation must be defined on M. 

Definition 4.6. (a,b,c) EM is in simple fo1;m iff c> 0 and (b,c) = 1. 

Note that given an arbitrary representative for a class it is always 

possible to reduce this element to simple form. For example, 

(3, 1.5, 21) = 0,5,7) and (-21, 14, -35) = (-21, -2, 5). 



Definition 4.7. If (a,b,c), (d,e,f) EM and (a,b,c), (d,e,f) are in 

simple form, then (a,b,c) <i (d,e,f) iff (ac + b)f < (df + e)c. 

Definition 4.8. If (a,b,c), (d,e,f) EM and (a,b,c), (d,e,£) are in 

simple form, then (a,b,c) >1 (d,e,f) iff (d,e,f) <l (a,b,c). 

Theorem 4.6. "<i" is an order relation on M. 

Proof; . Suppose that (a,b,c), (d,e,f), (g,h,i) EM and are in simple 

form. If (a,b,c) <r (d,e,f) and (d,e,f) <i (g,h,i), then 

(a,b,c) <1 (g,h,i), that is, <
1 

is transitive. To see that this is 

true, note that (a,b,c) <1 (d,e,f) implies that (ac + b)f < (df + e)c 

and (d,e,f) <1 (g,h,i) implies that (df + e)i < (gi + h)f. If 
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(ac + b)f < (df + e)c, then (ac + b)fi < (df + e)ci since i > 0. If 

(df + e)i < (gi + h)f, then (df + e)ic < (gi + h)fc since c > 0. Since 

''<'' is a transitive relation on tlw integers, (ac + b)fi < (gi + h)fc 

which implies that (ac + b)i < (gi + h)f since c > 0. But 

(ac + b)i < (gi + h)f impl:les (a,b,c) <1 (g,h,i) and thus "<i" is an 

order relation on M • 

. Definition 4.9. A field< f, +, . > is an ordered field if the 

following properties are satisfied: 

(1) There exists a subset P, not containing the zero element, z, 

of F such that if xt z, then one and only one of x and-xis in P. 

(2) If x and y are in P, then (x + y) E P ~nd (x~y) E P. 

The elements of Pare known as the positive elements of F and all 

other non-zero elements of Fare known as the negative elements of F. 

Theorem 4. 7. . < M, +, • , <i > is an ordered field. 



Proof: ·Define P and N as follows: 

. p· = [(a,b,c) EM (a,b,c) is in simple form and (a,b,c) >1 (0,0,1)} 

N= [(a,b,c) EM (a,b,c) is in simple form and (a,b,c) <1 (O,O,l)}, 

If (;x:,y,z) EM and (x,y,z) is in s:i,mple form with (x,y,z) t (0,0,1), 

then (x,y,z) E P or (x,y,z) EN since (x,y,z) >l (0,0,1) or 

(x,y,z) <l (O,O,l) but not both. If (a,b,c) E P and (d,e,f) E P, 

then (a,b,c) >
1 

(0,0,1) and (d,e,f) >i (0~0,1) or (ac + b) > 0 and 

(df + e) > 0 which implies (ac + b)f > 0 and (df + e)c > 0 since 

f > 0 and c > O. 

Therefore, 

[ ( ac + b) f + ( d f + e) c J > 0 

which implies that 

( ac f + def + bf + c e). > 0 

or that 

[ (a + d)cf + df + ce] > 0 

which in turn implies that 

(a+ d, df + ce, cf)= [(a,b,c) + (d,e,f)J >1 (0,0,1). 

Hence, 

(a,b,c) + (d,e,f) E P • 

. Similarly, if (a,b,c), (d,e,f) E P, then (ac + b) > 0 and 

(df + e) > 0 which implies that (ac + b)(df + e) > 0 

or that 

(adcf + aec + bdf + be) > 0. 

Therefore, 

(ad, aec + bdf + be, cf) = [ (a, b ,c) • (d, e, f) J >1 (0, 0, 1) which 

implies that (a,b,c) • (d,e,f) E P. Thus,. < M, +, . <1 > is an 

ordered field. 
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Definition 4.10. If (a,b,c) EM and n is a positive integer~ then 

n(a,b,c) is the nth natural multiple of (a,b,c), that is, n(a,b,c) = 

(a,b,c) + (a,b,c) + •.• + (a,b,c) (n summands of (a,b,c)) • 

. Definition 4 .11. An ordered field F is an Archemedian ordered field 

iff for any two positive elements x and yin F, there exists a positive 

integer n such that nx > y. 

Theorem 4.8. If (a,b,c) EM, then n(a,b,c) = (na, nb, c). 

Proof: This theorem is proven by induction. It is true for n = 1 

since (a,b,c) = (a,b,c). Assume that ;i.t is true for n = k, that is, 

k(a,b,c) = (ka, kb, c). Now show the statement is true for n = k + 1. 

First, note that (k + l)(a,b,c) = k(a,b,c:) + (a,b,c) = (ka, kb, c) + 

· (a,b,c) by the induction hypothesis. 

But 

(ka, kb, c) + (a,b,c) 
2 

= (ka + a, kbc + be, c. ) 

2 = ((k + l)a, (k + l)bc, c.) 

= ((k + l)a, (k + l)b, c) 

since (a,b,c) = (a, bn, en). Therefore, the statement is true for 

every n. 

Theorem 4.9 •. < M, +, ., <
1 

> is an Archemedian ordered field. 

Proof: Without loss of generality, suppose that (a,b,c), (d,e,f) E P 

and that (a, b, c). <
1 

(d, e,:f;). If thel;'e exists a positive integer n 

such that n(a,b,c) >l (d,e,£), then (nae+ nb)f > (df + e)c or 

nf(ac + b) > (df + e)c. Let n = (df + e)(c + 1) and then 

(df + c)(c + l)f(ac + b) > (df + e)c or (c.+ l)f(ac + b) > c which is 

certainly true since f> 0 and ac + b > o. Thus, given that 
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(a,b,c), (d,e,f) E P, then there exists a positive integer n such that 

n(a,b,c) >1 (d,e,f) which implies that < M, +, ·, <1 > is an 

Archemedian ordered field . 

. It is a historical fact tha,.t often independent studies have been 

made of two or more mathematical systems, and later these systems have 

been recognized to be essentially the same system. This phenomenon was 

noted in the study of groups in Chapter III. As noted earlier, these 

systems are referred to as peing isomorphic . 

. Definition 4.11. Two mathematical systems Sand Tare called isomor

phic if there is a one-to-one correspondence between the elements, 

relations, operations of Sand T such that under this correspondence of 

elements all relations and operations are preserved. 

To say that operations are preserved by the correspondence, one 

means that if a corresponds to a' and b corresponds to b', with 

a,b ES and a', b' ET, it follows that ab corresponds to a'b'. In 

order to further clarify this idea of a correspondence, it is often 

helpful to think of this correspondence as a function from S to T. 

Definition 4.12. Let f be a function defined on S. f is said to be 

one-to-one on S iff, for every x and yin S, f(x) = f(y) implies that 

X = y, 

. Definition 4.13. If f is a function such th&t f: S.-+T, Then f is a 

function of S onto Tiff f(S) = T. 

Definition 4.13 •. If Sand Tare two mathematical systems such that for 

each operation and relation in S there is a corresponding relation or 

operation in T, and f is a one-to-one function from S onto T which 
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preserves the relations and operations of S, then f is an isomorphism 

from S to T. 

As a familiar example of an isomorphism between two mathematical 

systems, consider the set S of positive real numbers, expressed as 

powers of 10, with the binary operation of ordinary multiplication, and 

the set T of all real numbers with the binary operation of ordinary 

addition •. If f is a function from S to T defined by f(lOx) = x, then 

f is a one-to-one function from S onto T. Further, note that the 

operations are preserved since f(lOx • lOY) = f(lOx + y) = x + y = 

f(lOx) + f(lOY). Hence, f is an isomorphism. This isomorphism is 

commonly referred to as the common logarithm function. 

It is now possible to use the concept of isomorphism to reveal 

that the system< M, +, • > is isomorphic to the rational numbers, Q. 

Theorem 4.10. < M, +, . > ts isomorphic to the ratipnal numbers, Q. 

Proof: 
ac + b Let f: M-;...Q such that f(a,b,c) == 

C 

function since if f(a,b,c) = f(d,e,f), then 

ac + b 
C ·- df + e 

f 

f is a one-to-one 

or (ac + b)f = (df + e)c which implies that (a,b,c) = (d,e,f). f is 

also onto since for any a/bE Q, there exists an element (x,y,z) EM 

such that f(x,y,z) = a/b; namely; (x,y,z) = (O,a,b). f also preserves 

the operations of addition and multiplication since 

f[(a,b,c) + (d,e,f)] = f(a + d, bf+ ce, cf) 

= acf + def + bf + ce 
cf 

= ac + b + df + e 
C f 



Further, 

= f(a,b,c) + f(d,e,f). 

f[(a,b,c) • (d,e,f)J = f(ad, aec + bdf + be, cf) 

adcf + aec + dbf + be = cf 

= ac(df + e) + b(df + e) 
cf' 

_ (ac + b)(df + e) 
cf 

= ac + b 
C 

df + e 
f 

= f(a,b,c) f(d,e,f). 

Thus, the unfamiliar field < M, +, '· > is nothing more than the 
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field of mixed numbers disguised as ordered triples of integers. This 

example provides a situation in which one can illustrate and reinforce 

several of the fundamental concepts of abstract algebra. The beauty 

of this system lies in the fact that the student is placed in somewhat 

of a strange situation since he loses his intuition and must rely on 

his understanding of the concepts involved •. Hopefully, this artificial 

situation is both intriguing and rewarding for the student. 



CHAPTER V 

SOME FINITE GEOMETRIES 

An interesting question for a mathematics class to consider might 

be: "What is a point?" Typical responses such as: "A point is a 

position in space," "A point has no length or width," or "A point is 

the intersection of two lines", each fail as a definition. If the 

discussion persisted, the responses would more than likely dwindle 

until the class retreated into a frustrated silence. What is important 

here is that only rarely will any student take issue with the legitimacy 

of the question. It seems quire reasonable to the stuqent that after 

studying plane geometry for a year he should be able to define a point 

in the same sense that he was able to define a triangle or a circle. 

However, the question is not legitimate since the word "point" in 

geometry is not defined in the usual sense. The words "point," "line," 

"on," and some others are primitive notions or undefined terms of the 

system. They are taken as undefined in order to avoid circularity of 

definitions. 

The axioms for a given system merely specify the behavior of the 

undefined terms; however, they do not specify the meaning of the 

undefined terms. This is an important consideration which is often 

overlooked. Wylie notes that the logical defects in the word of Euclid 

placed particular emphasis on the role of undefined terms and axioms or 

postulates in the development of a mathematical system. 1 The words 
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axiom and postulate have the same meaning and are used interchangeably. 

The study of miniature or finite geometries provides an excellent 

vehicle for the study of abstract axiomatic systems .. MacNeish defines 

a finite geometry as a geometry based on a set of postulates, undefined 

terms, and undefined relations which limits the set of all points and 

1 . f · · b 2 ines to a inite num er. The elements "point" and "line" are unde-

fined terms. Golos points out that in some of the modern systems the 

words "point" and "line" are replaced by nonsense words such as "abba" 

and "dabba" to stress the fact that the words "point" and "line" are 

truly undefined. 3 Thus, whatever "points" are, they can be considered 

a.s elements in some universal set. A "line" is regarded as some 

undefined subset of the universal set •.. 

It is customary to represent points by capital letters and lines 

by small letters. However, it is much more consistent with set nota-

tion to represent sets of elements by capital letters and elements of 

a set by small letters. Thus, lines are represented by capital letters 

A, B, C, ••. and points are represented by small letters a, b, c, 

• , ., z .. If a point belongs to a subset calle~ a line, then the 

point is said to be on tha. t line. Conversely, the line is on or passes 

through the point. Two lines that have a point in common are said to 

intersect in that point. 

Historically, the study of foundations of Euclidean geometry led 

to the axiomatic approach and its importance in all branches of mathe-

matics. The axiomatic approach involves selecting a set of undefined 

terms and a set of axioms containing them. The system is developed by 

deducing theorems from these axioms or·from previously deduced theorems 

by means of the chosen logic. Thus, a theorem is a logic,al consequence 
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of the axioms. The axiom system as such is meaningless and the ques-

tion of the "truth" of the axioms is irrelevant. If meanings are 

assigned to each of the undefined terms in such a way that the axioms 

are judged to be "true", then the axiom set is said to be interpreted. 

A model of a postulational system is obtained when each undefined 

t . . d 4 erm 1s interprete • Golos suggests that there are three important 

concepts usually associated with an axiomatic system: consistency, 

independence, and completeness. 

_Definition 5.1. An axiom system is consistent if£ there do not exist 

in the system any two axioms, any axiom and theorem, or any two theo-

rems that are contradictory. 

Consistency is the most important and the most fundamental proper-

ty of a set of axioms. The most successful test for consistency is the 

method of models._ If there exists a model for a set of axioms, then 

the set is consistent. 

Definition 5.2. An axiom is independent from the other axioms of the 

system if it cannot be derived from these axioms. An axiom system is 

independent if each axiom is independent. 

To prove that a given postulate is independent of the other postu~ 

lates of the system, it is sufficient to construct a model in which the 

given postulate is not valid, but all other postulates of the system 

are valid. This is not always easy to do, and can be quite a lengthy 

process. Eves and Newsom point out that independence of a postulation-

al system is by no means necessary~ and the system is not i:nv~lidated 

j~$J:,.J,Hwause it lacks independence. 6 Mathematicians prefer that a 
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postulati.onal system be independent, thereby minimizing the number of 

necessary assumptions. 

In developing an axiomatic system, the set of axioms should be 

inclusive enough to imply the truth or falsity of any possible state

ment using these undefined terms and relations. Clearly, if a state

ment cannot be classified as true or false with respect to the existing 

system, it can only be because the axiomatic system is lacking necessary 

axioms. This leads to the concept of completeness of an axiom set. 

Definition 5.3. An axiom system is complete if it is impossible to add 

an independent axiom which is consistent with the given set of axioms 

and which does not contain any new undefined terms. 

It is often difficult to prove directly that a given set of axioms 

is complete. The test for completeness relies on some rather sophisti

cated concepts that are beyond the scope of this presentation. A 

complete discussion of consistency, independence, and completeness is 

7 given by Blumenthal. 

To introduce the idea of a finite geometry, consider System I 

whose undefined elements, point and line~ satisfy the following postu

lates. 

System I 

Pl: There exist exactly three distinct points. 

P2: Two di.stinc t points determine a unique line. 

P3: Not all points are on the same line. 

P4: Two distinct lines determine least point. 
8 

a. t one 
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The finite geometry determined by this postulational system might 

well be considered the simplest non-trival finite geometry. A model 

for this system is given in Figure 39. Clearly, this model illustrates 

the consistency of the system. 

b 

Figure 39 

The independence of the postulational system is proven as follows: 

Independence of Pl: A rectangle suffices to illustrate the inde

pendence of this postulate since Pl is not satisfied by this model, but 

the remaining three postulates are satisfied" 

Independence of P2: Three points and no lines will satisfy all 

the postulates except P2. 

Independence of P3: If a model is constructed with one line and 

three points on it, then P3 is not true, but the other three postulates 

hold. 

Independence of P4: Figure 40 illustrates two lines with no 

points in common" Then, Pl, P2 9 and P3 are satisfied while P4 is not. 
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a 

Figure 40 

Thus, Pl, P2, P3, and P4 form a consistent set of axioms and each 

axiom is independent. A theorem that might be deduced from this system 

is that there are exactly three lines. 

Another example of a finite geometry consists of a definition and 

four postulates which are given below in System II. 

System II 

Definition 1: Two lines are parallel if£ no point lies on both 

lines • 

. Pl: There is at 1,ea.st one point. 

P2: Every line is a set of exactly two points. 

P3: Every point lies on exactly two lines. 

P4: To a given line there are exactly three parallel lines. 9 

To establish the consistency of this postulate set, the model 

shown in Figure 41 consisting of six points and six lines can be used, 

A figure with no points and no lines, the null set, can be used to 

establish the independence of PL Figures 42, 43, and 44 illustrate 

the independence of postulates P2, P3, and P4, respectively. 



f e 

F 

a d 

C 

Figure 41 

Figure .42 Figure 43 F:i,gure 44 

Using the postulates for System II, it is possible to verify· 

each of the foilowing theorems. 
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Theorem 5.1. If there are two distinct points, a and b, lying on both 

Land~' then L = K. 

Proof: Suppose the points a and b both lie on lines Land K, where 

a+ b, Tqen, L = ab and K = ab by P2. Therefore L = K. 

Theorem 5.2. There is ~t least one line. 

Proof: By Pl, there is a point and from P3, every point lines on 

exa~tly two lines, Hence, there exists at least one line, 
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Theorem 5,3. To a given line there are exactly two non-parallel lines. 

Proof: Let L be the given line, Then 9 L = ab, where a f b, by P2. 

There are lines Mand N, distinct from L, containing a and b respec

tively~ by P3. But Mand N are not parallel to L, 

Theorem 5.4. There are exactly six lines. 

Proof: From Theorem 5.2, there is a line. Theorem 5,3 implies that 

there are two lines not parallel to a given line and P4 implies that 

there are three lines parallel to a given line. Therefore, there are 

six lines. 

Theorem 5.5. There are exactly six points, 

Proof: From Theorem 5.4, there are six lines. P2 guarantees that each 

line contains two points and P3 insures that each point 1.ies on two 

lines. Hence, there are exactly six points. 

The. next example of a finite geometry to be considered is the 

seven.,.point seven .. line finite geometry. The postulational system for 

this geometry is given below in System IIL 

System III 

Pl: If a and bare distinct points of S, then there exists at 

least one line containing both a and b. 

P2: If a and bare distinct points of S, then there is not more 

than one line containing both a and b, 

P3: Any two lines have at least one point of S in common., 

. P4: 'I'here exists at least one li.ne. 



P5: Every line contains at least three points of S. 

P6: .Not all points are on the same line. 

P7: No line contains more than three points of S. lO 

A model that will demonstrate consistency is the set of seven 

letters a, b, c, d, e, f, g arranged in seven lines with three points 

on each line. Figure 45 illustrates this configuration where the 

vertical columns represent the lines. 

a b c d e f g 

b c d e f g a 

d e f g a b c 

Figure 45 

Figures 46 and 47 illustrate two geometric models that also 

satisfy this postulate set. 

d 

g 

F'igure 46 Figure 47 
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To establish independence, consider the following mod~ls: 

Independence of Pl: Let the set S consist of the points a, b, c, 

d, e with the lines dae and dbc. Pl does not hold since there is no 

line with both a and bas elements; however, the remaining six postu

lates hold. 

Independence of P2: Let S be a tetrahedron, Figure 48, abed where 

the faces represent lines, 

d 

C 

a 

Figure 48 

Independence of P3: Let S consist of nine points and twelve lines 

as shown in Figure 49, where the vertical columns represent lines. 

Note that P3 is not true, but the remaining postulates are true. 

a a a a b b b c c c d g 

b d e f e f d f d e e h 

C g i h h g i i h g f i 

Figure 49 
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Independence of P4: For a single point a, P4 does not hold; how

ever, the remaining postulates are fulfilled vacuously • 

. Independence of PS: A triangle with a, b, c as vertices satisfies 

all the postulates but PS. 

Independence of P6: A line containing three points a, b, c will 

not satisfy P6 but the other postulates are valid. 

Independence of P7: Let S consist of a thirteen-point thirteen

line array with four points on each line. The vertical columns again 

represent the lines. All the postulates but P7 are satisfied by the 

configuration shown in Figure 50. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

2 3 4 5 6 7 8 9 10 11 12 13 1 

4 5 6 7 8 9 10 11 12 13 1 2 3 

10 11 12 13 1 2 3 4 5 6 7 8 9 

Figure 50 

What theorems can be proved in this geometry? MacNeish suggests 

that the duals of the postulates may be proven as theorems. 11 

. Definition 5 .4. Two statements which differ only in the interchange of 

the words "point" and "line" are said to be duals of each other. 

For example, Postul~te Pl and P3 are duals of each other. 
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Theorem 5.6 (Dual of P2). Two distinct lines have only one point in 

common. 

Proof: Any two lines have at least one point in common by P3. Assum~ 

ing that these two lines have two points in common contradicts P2. 

Therefore, the two lines have exactly one point in common. 

Theorem 5.7 (Dual of P6). All lines do not pass through the same 

point . 

. Proof: The existence of at least one line is guaranteed by P4, every 

line contains three points by PS and P7, and not all points are on the 

same line by P6. Now, let L be the line determined by the points a, b, 

and c. Any line connecting a point d to any point of the line abc must 

contain another point since each line contains exactly three points. 

But there is exactly one line containing any two points of S by 

Theorem 5.1, Therefore, all lines do not pass through the same point. 

Theorem 5.8 (Dual of P4). There exists at least one point, 

Proof: This theorem is an immediate consequence of P4 and PS. 

Theorem 5.9. There are exactly seven points. 

Proof: There exists at least one line by P4 and this line contains 

three points, a, b, and c. By P6, not all the points are on the same 

line. Let d be the point not on abc. The line joining a and d must 

contain three point.s. CaU this third point e. Neither b or c can 

be on line ade since there are exactly three points on each line. 

Similarly, there is a line bdf. Thus, there are three lines abc, ade, 

and bdf which imply there are at least six points. It is possible to 
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connect a with either b, c, d, ore. Since a must be connected with 

f, and b, c, d, and e cannot be used, then there must be a seventh 

point g. Hence, afg is a line. Suppose that there is an eighth point 

h, then the line connecting a and h could not have a point in common 

with any of the lines without violating Theorem 5.6. Thus 1 there are 

exactly seven points. 

Theorem 5.lO(Dual of Theorem 5.9). There are exactly seven lines. 

_ Proof: From the proof of Theorem 5. 9, _the lines are those illustrated 

in Figure 51. 

a a a a c b c 

b d d f e e d 

C e f g f g g 

Figure 51 

Thus, there are exactly seven lines. 

Theorem 5 .11. _ Exactly three lines pass through every point. 

Proof: This theorem is an immediate consequence of Theorems 5.9 and 

5.10. 

The next finite geometry to be considered is Young's nine-point 

twelve-line geometry. The postulates for this geometry are given 

below in System IV. 
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System IV 

Pl: If a and bare distinct points of S, then there exists one 

line containing both a and b. 

P2: If a and bare distinct points of S, then there exists not 

more than one line containing a and b. 

P3: Given a line L not containing a point a, then there exists 

one line containing a and not containing any point of L. 

P4: Given a line L not containing a point a, then there exis t;s 

not more than one line containing a and not containing any point o;E L. 

PS: Every line contains at least three points. 

P6: Not all points are contained by the same line. 

P7: There exists at least one line. 

PS N 1 . . h h . 12 : o ine contains more tan tree points. 

I;.. model demonstrating consistency for this postula~e set is given 

in Figure 52. 

1 1 1 1 2 2 2 3 3 3 4 7 

2 4 5 6 5 4 6 4 5 6 5 8 

3 7 9 8 8 9 7 8 7 9 6 9 

Figure 52 

A geometric model serving the same purpose is given in rigure 53. 
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The independence of this postulate set is shown as follows; 

Independence of Pl: Two lines~ abc and def, satisfy all postu~ 

lates except Pl. 

Independence of P2: The arrangement of six points taken three at 

a time to form twenty lines illustrates the independence of P2 since 

every postulate is satisfied except P2. This arrangement is illustrat~ 

ed in Figure 54, 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 4 

2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 5 4 4 5 5 

3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 6 5 6 6 Q 

Figure 54 



Independence of P3: The seven-point finite geometry given in 

System III will suffice to show the independence of P3. 

Ind$pendence of P4: An array of thirty-five lines, formed from 

fifteen points taken three at a time given in Figure 55 serves as a 

model to illustrate the independence of P4. 

1 2 3 4 5 6 7 8 9 10 11 12 

4 5 6 7 8 9 10 n 12 13 14 15 

5 6 7 8 9 10 11 12 13 14 15 1 

13 14 15 1 2 3 4 5 6 7 1 2 

1 2 3 3 4 5 6 7 8 9 8 ~ 

2 3 4 9 10 11 12 13 4 15 10 11 

3 4 5 6 .1 2 1 2 3 4 5 

10 11 12 13 7 8 6 7 8 .9 10 

12 13 14 15 14 15 11 12 13 14 15 

Figure 55 

Independenc;e·of PS: A complete quadrilateral as ill.ust:rated in 

Figure 56 serves as a model to illustrate the independence of PS. 

C 

Figure 56 
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Independence of P6: A single line of three points does not 

satisfy P6, but does satisfy the other postulates. Note that P3 and 

P4 are satisfied vacuously. 
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Independence of P7: A single point and no lines satisfies all qf 

the postulates except P7. 

Independence of P8: ~lane Euclidean geometry suffices to show 

independence of this postulate. 

Some theorems that result from this finite geometry are given 

below. The proofs of these theorems are quite simple apd follow the 

patterns used in the previous sections. 

Theorem 5.12, If a and bare distinct points of S, then there exists 

exactly one line containing both a and b. 

Theorem 5.13. Given a line L not containing a point a, there exists 

exactly one line containing a and not containing any point of L. 

Theorem 5.14. Every line contains exactly three points. 

Theorem 5.15. There exists exactly nine points. 

Theorem 5.16. There exists exactly twelve lines. 

Theorem 5.17 .. Every line has precisely two lines parallel to it. 

System Vis the postulate set for the Pappas finite geometry • 

. System V 

Pl: There exist at least one line. 

P2: Not all points are on the same line. 
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P3: Given two distinct points, there is at most one line joining 

them. 

P4: Every line contains at least three points. 

PS: No line contains more than three points. 

P6: Given a line and a point not on that line, there exists a 

line containing the given point which has no point in common with the 

first line, 

P7: Given a line and a point not on that line, there exists not 

more than one line containing the given point which has one point in 

common with the first line. 

P8: Given a point and line not containing that point, there 

exists a point contained in the given line which is not. on any line 

with the first point. 

P9: Given a point and a line not containing the point, there 

exists not more than one point contained in the given line which is 

not on any line with the first point. 13 

A model illustrating the consistency of this postulational system 

consists of nine points and nine lines. Figure 57 illustrates nine 

points and nine lines in an array where ~he vertical columns represent 

lines. 

1 1 1 2 2 3 3 4 7 

2 4 5 4 6 5 6 5 8 

3 8 9 7 9 7 8 6 9 

Figure 57 
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A geometric ~igure illustrating the con$istency o{ this po$tulate 

is given in Figure 58. 

Figure 58 

The independence of this postulate set can be shown as follqws: 

Independence of Pl: A single point does not satisfy Pl, but the 

other postulates are fulfilled vacuously . 

. Independence of P2: A single line containing three points, a, b, 

c, does not satisfy P2~ however, the other postulates remain true • 

.. Independence of P3: The faces of an octahedron wpere the faces 

represent lines as shown in Figure 59 illustrate the independence of 

P3. 

1 1 1 1 

2 2 4 3 

3 4 5 5 

6 6 6 6 

2 2 5 3 

3, 4 4 5 

Figure 59 



Figure 60 gives a geometric model which also shows the independ

ence of P3. 

b 

a 

f 

Fi·gure 60 

9J 

Independence of P4: A simple quadrilateral abed satisfies all the 

postulates except P4. 

Independence of P5: An arrangement of sixteen points and sixteen 

lines with four points on a line serves as a model to illustrate the 

independence of P4. This arrangement is illustrated in Figure 61. 

Independence of P7: A figure with six points and four lines with 

three points on a line as shown in Figure 62 serves as a model to 

illustrate the independence of P7. 
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1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 

9 10 11 12 10 9 12 11 11 12 9 10 12 11 10 9 

13 14 15 16 16 15 14 13 14 13 16 1~ 15 16 13 14 

Figure 61 

C 

Figure 62 

Independence of l'8: The nine-point twelve-line geometry deter-

mined by System IV serves as a model to establish the independence of 

P8. 

Independence of P9: Two non~intersecting straight lines, abc and 

def, satisfy the first eight postulates but not P9 . 

. Some theorems arising from the Pappas finite geometry are: 

'.['heorem 5 .18. Every line contains exactly three points, 

Theorem 5 .19. Given a line and a point not on that line, there E:\Xis t!:l 

exactly one line containing the given point which has no point in 

common with the first line. 



Theorem 5.20. Given a point and a line not containing that point, 

there exists exactly one point contained in the given line which is 

n<;:>t on any l~ne with the first point. 

Theorem 5.21. There exists at least one point. 

Theorem 5.22. Not all lines pass through the same point. 

Theorem 5.23. Two distinct lines have at most one point in common. 

Theorem 5.24. At least three lines pass through each point. 

Theorem 5.25. At most three lines pass through each point. 

Theorem 5.26. Exactly three lines pass through each point. 

The Pappas finite geometry is treated in some detail by 

Richardson. 14 

To this point in the discussion the finite geometries considered 
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have had only a slight resemblance to the familiar Euclidean geometry; 

however, many of the Euclidean plane geometry theorems can be proved in 

the Cundy 25-point geometry. This geometry is defined by the postu-

lates given in System VI. 

. Sys tern VI 

Pl: There is one and only one line joining any two points. 

P2: Two lines meet in one point unless they are paralle~. 

P3: Throtigh any point there is one and only one po:i,nt line 

parallel to a given line. 

P4: Through any point there is one and only one line perpendicular 

. 1· 15 to a given ine. 
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Many of the theorems from Euclidean geometry expressed in terms of 

this geometry can be proved. To facilitate the discussion of tqis 

geometry, 25 letters are arranged in a special way and presented in 

Figure 63. Using this tabie, it is now possible to state definitions 

which are basic to the development of this geometry. 

a b C d e a i 1 t w a h 0 q X 

f g h i j S V e h k n p w e g 

k 1 m n o g o r u d V d f m t 

p q r s t y C f n q j 1 s U C 

u V wx y m p s b j r y b i k 

Block l Block 2 Block 3 

Figure 63 

Definition 5 .5. A straight line is any row or any column of the three 

blocks in Figure 63. 

For example, fghij and hpdly are lines. Note that there are a 

total of 30 lines in this geometry and each line is determine by 

exactly five points. 

_ Definition 5,6. The distance between two points is defined as the 

least number of steps separating the points on the line which 

contain them. 
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For example, the distance between a and ion the line ailtw is 1 

and the distance between wand b on owfsb is z. (See Figure 64.) 

l 2 

o~fsb 

1 2 3 

Figure 64 

Numerals such as 1 and 2 will be used to designate row distances, 

while primed numerals such as 1' and 2' will designate column distanc~s. 

Definition 5.7. A line segment, a pair of points, is called congruent 

to another line segment when both segments occ~r in rows (or both in 

columns) and if the number of steps between the points is the same in 

both segments, 

For example, line segment ai is congruent to line segment sr • 

. Definition S.S. If two lines have a single point in common, then that 

point is called the point of intersection of the two lines • 

. Definition 5.9. Two straight lines are parallel iff they have no 

points in common. 

Thus, fghij 11 klmno and ifocp 11 lerfx. Note that for lines to 

be parallel they must both be rows (or both columns) from the same 

block, 



.Definition 5.10. Two or more lines are said to be concurrent if they 

intersect in a point. 
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Definition 5.11. Any three non-collinear points determine a triangle, 

The sides are segments ·dete;rmined by taking th.e triple of poinps in -

pairs. 

Thus, osu is a triangle where the segments os, su, and ou deter

mine the lines klmno, pqrst, and uvwxyz, respectively •. Cundy notes 

that there are 2000 triangles in this geometry of which 1200 are 

scalene right~angled triangles. He also concluded that there were 600 

isosceles triangles and 200 equilateral triangles. 16 For example, 

abf is isosceles right-angled triangle since ab= 1, af = 1', 

bf= 2 1
, and abJ_af. Note that 6abi is an equilateral triangle and 

~abh is an isosceles triangle, 

. Definition 5.12 •. If there is a triple of points on the same line such 

that the number of steps from the first to the second is the same as 

the number of steps from the second to the third, then the second point 

is called the midpoint of the segment determined by the first and 

third points. 

Hence, dis the midpoint of the segment ab since ad= bd. 

Definition 5.13. A circle is a set of points such that any one of them 

taken with the center determines a segment which is congruent to every 

other such segment. 

For example, lnjpft forms a circle with center m since ml= mn = 

mj =mp= mf = mt. Cundy found that there are 100 circles for the 25 
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t d 4 °bl d 0 
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17 cen ers an possi era ii. 

As mentioned earlier, many of the theorems in Euclidean geometry 

expressed in terms of the 25ppoint geometry are true. However, a 

rigorous proof of these theorems is a very laborious task. In 

Euclidean geometry it is possible to select an arbitrary geometric 

figure satisfying the hypothesis of the theorem and then deducing the 

conclusion using the axioms an~ previous theorems. In the 25-point 

geometry, selecting a geometric figure arbitrarily has very little 

meaning. Thus, a rigorous proof of a theorem would involve an argument 

by cases until the set under consideration is exhausted. 

In the proofs that follow, only one case is illustrated. There-

fore, these proofs are by no means complete. They do, however, offer 

some indication why an Euclidean geometry theorem is true in the 

25-point geometry. 

a b 

Figure 65 

Theorem 5.27. The diagonals of rhombus are perpendicular. 

Proof: Consider the rhombux abyx shown in Figure 65. The diagonal ay 

determines the line asgym and the diagonal bx determined the line mpxbj. 

The point of intersection ism and the two lines are perpendicular 
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since asgyrn is a column and mpxbj is a row. 

Figure 66 

Theorem 5.28. The diagonals of a parallelogram bisect each other. 

Proof; Consider the parallelogram in Figure 66 determined by aeuy. 

The diagonals ay and ue determine the lines asgyrn and qemui, respec-

tively. But am= ym =em= 1'. Therefore, the diagonals bisect each 

other. 

f 

Figure 67 



Theorem 5.29. The altitude to the base of an isosceles triangle 

bisects the base. 
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Proof: Consider Aabj shown in Figure 67. Note that gf =fro= 1 and 

gm= 2'. The base is asgym and the vertex is f. Also, 

ycfnj_asgyn at y. But gy = ym = 1 which implies that the altitude 

ycfnq bisects af. 

C 

figure 68 

Theorem 5.30. The segment joining the midpoints of two sides of a 

triangle is parallel to the third side. 

Proof: Consider 6. acn shown. in Figure 68. Notice that b and f are 

midpoints of the sides ac and en, respectively. The third side of the 

triangle is anvjr and owfsb is the line determined by the segment bf. 

Thus ' anv j r 11 owfs b a 

There are many other Euclidean theorems that hold in this geometry 

and it is an intriguing exercise to hunt for such theorems. The 

theorems listed below ma.ke interesting exercises and were suggested 
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by Coxford. 
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Theorem 5.31. The segments determined by the midpoints of the sides of 

a parallelogram form a parallelogram. 

Theorem 5.32. The altitudes of a triangle meet in a point called the 

orthocenter. 

Theorem 5.33. The perpendicular bisectors of the sides of a triangle 

meet in a point called the circumce.nter. 

Theorem 5.34. For isosceles and equilateral triangles there are 

circles whose centers are the midpoint of the segment joining the 

orthocenters and the circumcenters, and which pass through the feet of 

the altitudes, the midpoints of the sides, and the midpoints of the 

segments joining the vertices of the triangles to the orthocenters. 

Theorem 5.35. The orthocenter, circumcenter, and centroid are 

collinear; and the distance from the orthocenter to the centroid is 

twice the distance from the centroid to the circurncenter. 

For the reader who is interested in more advanced ideas in this 

19 20 geometry, see the articles by Cundy a.nd Heidlege. 

Hopefully, this development of finite geometries illustrates 

that many of the basic properties of axiomatic systems and geometric 

systems ca.n be introduced through the study of finite geometries. 

Additional references for other finite geometries and related topics 

a.re given in the Appendix. 
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CHAPTER VI 

SOME INTERESTING APPLICATIONS OF GRAPH THEORY 

The theory of graphs is one of the few fields of mathematics with 

a definite birthdate. In 1736 at the age of 20, the Swiss mathematician 

Leonhard Euler presented the first paper on graphs to the Russian 

Academy of Science. Euler began his paper by discussing a then famous 

puzzle, the so-called Konigsberg Bridge Problem.
1 

Konigsberg stands on the banks of the River Pregel in East Prussia. 

In the center of the river lies the small island of Kneiphof and span

ning the river are seven bridges as shown in Figure 69. 

North 

Kneiphof 

West 

South 
·6.t=j7 

Figure 69 
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The problem simply stated is as follows: Is it possible to plan a 

walk in such a manner that, starting from any given position, one can 

return to that position after having crossed each river bridge just 

once? 

It was Euler's fundamental analysis of this problem that lead to 

the study of graphs and ultimately gave rise to the science of combina-

torial topology. Barnard attributes Euler's astonishing success as a 

mathematician to his genius for stripping away inessentials, and 

reducing the problem to its simplest form. 2 

In the case of the bridge problem, Euler imagined that the pieces 

of land had shrunk to mere points connected by lines representing the 

brides. Thus, Euler reduced the problem as given in. Figure 69 to the 

diagram given in Figure 70. 

n 

5 

7 

s 

Figure 70 
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Euler then noted that if he could find a way to trace the whole 

figure without lifting his pencil from the paper, and without going 

over the same line twice, the Konigsberg problem could be ~olved. 

Euler called such a path a unicursal route • 

. Euler concluded that this problem was not solvable and his ~eason-

ing was quite interesting. F{e called the points n, s, w, and k repre-

senting the land masses "nodes" and classified them as "odd-nodes" 

according to the number of lines joining at a particular point •. Eulei: 

then made two rather remarkable observations concerning the traceabili-

ty of a linear graph. 

(1) If there are no odd-nodes, then it is possible to start 
at any point and finish at that point. 
(2) If there are only two odd-nodes, then it is possible to 
start from one odd-node and finish at the other odd-node.3 

Looking now at the bridge problem illustrated in Figure 70, it is 

easy to see that there are four nodes each of which is odd. Thus, the 

figure cannot be traced (or a unicursal path does not exist). The 

graph theory that developed from this simple beginning will be consid-

ered later. First, it seems appropriate to look briefly at the remark-

ability of Euler's observations. 

Barnard points out that at the time that Euler was pondering over 

the Konigsberg Bridge Problem, geometry was confined to the description 

of certain Euclidean figures such as squares, triangles, circles, etc. 

The theorems of Euclidean geometry established certain relationships 

that were true for plane Euclidean figures; however, if a triangle was 

irregularly shaped the normal Euclidean theorems did not apply. Thus, 

some mathematicians began to investigate the properties of geometric 

figures without concern for size and measurement. Their concern was 

mainly with the spatial relationships existing between a figure and its 
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parts. For example, notice that there is little resemblance between 

the map in Figure 69 and the diagram in Figure 70. ~arnard credits the 

recognition by Euler of the non-measurable properties of a figure as 

the spark that gave rise to the science of combinatorial topology. 4 

In mathematics, graph theory is classified as a branch of topology. 

The theory of graphs has applications in many diverse fields: electri-

cal circuitry, programming, economics and psychology, to name just a 

few. Puzzles similar to the bridge problem have remained an intriguing 

part of the theory of graphs. 

A linear graph is normally thqught of as a certain collection of 

points called vertices and certain line segments connecting these· 

vertices, called edges of the graph. To be som~what more precise about 

what is meant by a graph, a graph will be defined abstractly as a 

representation of a set and a binary relation on that set • 

. Definition 5.1. The Cartesian cross-product of two sets A and B, 

denoted AX B, is the set of all ordered pairs in which a is in A and 

bis in B, that is, 

AX B = ( (a, b) I a EA and b E ~·}. 

For example, if A = (x, y} and B = p, 2}, then 

A X B = ( (x, 1), (::x;, 2), (y, 1), (y, 2) } , 

.Definition 5.2. A binary relation between two sets A and Bis a subset 

of the ordered pairs in the carestian product AX B, 

For example, [ (a, x), (a,y), (b ,y)} is a binary relation between 

the sets [a,b,c} and [x,y}, A binary relation between two sets can be 

represented in the form of a matrix or an array. For example, 
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Figure 71 shows a representation of the relation [(a,x), (a,x), (b,y), 

(c,z)} between the sets (a,b,c} and [x,y,z}. 

X y z -
a -I / 
b / 
C / 

Figure 71 

A check mark in a cell indicates that the elem~nt identifying the 

row that contains the cell and the element identifying the column that 

contains the cell are related. Notice that the row entry is the first 

position in the ordered pair, while the column entry is in the second 

position.. 

Definition 5.3. A binary relation on a s~t Sis a binary relation 

between the set Sand itself. 

Thus, if Risa binary relation on S, the R c S XS. For example, 

[(x,x), (x,y), (y,z), (z,x)} is a binary relation on the set (x,y,z} • 

. Definition 5.4. A binary relation Ron a set Sis called an equiva-

lence relation if the following conditions are satisfied: 

(1) Every element in the set Sis related to itself, that is, 

for every a EA, (a,a) ER or a Ra (read a is related to a) 

(Reflexive Property) 
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(2) For any two elements a and b in S, i:E a is related to b, then 

bis also related to a, that is, if (a,b) ER, then (b,a) ER, 

(Symmetric Property) 

(3) For any th:i:-ee elements a, b, and c in S, if a is related tp b 

and bis related to c, then a is also related to c, that is, if 

(a,b) ER and (b,c) ER, then (a,c) ER. (Transitive Property) 

The:i:-e are many familiar equivalence relations that play an impor-

tant role in the development of many areas of mathematics. For exampte, 

the following common equivalence relations: the equality relation"=" 

in various number systems, the congruence relation 11 sti 1 in geometry, and 

the congruence relation, "=", in the integers . 

. In graph theory, the sets under consideration are normally quite 

small so it is feasible to represent a binary relation on a given set 

in matrix form. Con~ider the binary relations defined on the set 

(a,b,c,d} as illustrated in Figure 72. 

a b C d a b C d 

a / I / a / 
b ./ -I / b ./ / 
C / C ../ ./ 
d / / / d V. /. 

(a) (b) 

relation R1 relation R2 

Figure 12 
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The binary relation illustrated in Figure 72(a) is an equivalence 

relation. Note that to check the reflexive property all one has to do 

is make sure the major diagonal is filled. The symmetry property can 

be checked by noting the symmetry about the major diagonal. Transitiv~ 

ity can be checked by inspecting the various possiblities. For example 

in Figure 72a, (a,b), (b,d) E R
1 

which implies that (a,d) mvst belong 

to R1 if R1 satisfies the transitive property. 

In Figure 72(b), it should be obvious that R
2 

is not symmetric and 

not transitive. However, R2 is reflexive, For a more detailed cliscus~ 

5 6 sion of relations see ~ves and.Newsom or Ore • 

The concept of a binary relation is now used to define what is 

meant by a linear graph. Let S = fa,b,c} and R be a bJnary relation 

defined by R = ((a,b), (b,a), (b,c), (c,a), (c,c)}. :Figure 73(a) 

shows R represented in matrix form. An alternate way of representing 

the binary relation is shown in Figure 73(b). 

a b C 

a / a 

b -/ / 
C ./ 

(a) (b) 
:;.-1-':''·" 

;v· Figure .73 



~he elements in Sare represented by the points a, b, and c. The 

ordered pair (a,b) is represented by an arrow from a to b, and so on. 

Such a representation of a set and~ binary relation defined on the set 

is called a linear graph. 

Definition 5.5. A graph G is an ordere9 pair (S, R), where Sis a set 

and Risa binary relation on S, 

The elements of Sare called vertices, and the ordered pairs in Rare 

called edges of the graph. An edge (a,b) is said to be incident with 

the vertices a and b. For the graph G = (S, R) shown in Figure 74(a) 

tµere is a pair of edges joining every two vertices that are related, 

since Risa symmetric relation. Thus, R can be represented in Figure 

74(b) where each edge represents two edges in Figure 74(a) and the 

direction arrows are omitted. 

a 
a 

C 

(a) (b) 

Figure 74 



113 

A graph is said to be a directeq graph if directions are assigned 

to the edges and undirected if directions are not assigned to the 

edges. Thus, a set and a symmetric relation can be represented as a 

directed or undirected graph, but a set and a non-symmetric relation 

can only be represented by a directed graph. 

To illustrate the concept of a graph somewhat more concretely, 

suppose that there are five different factories in the local area that 

exchange the parts that they produce. Denote the tive factories by 

a, b, c, d, and e and let S = (a,b,c,d,e}. Let R be the binary relation 

"exchanges parts with." Suppose the general situation is as follows: 

a exchanges parts with c and d 

b exchanges parts with c, e, and d 

c exchanges parts with a and b 

d e~changes parts with a, e, and b 

e exchanges parts with band d. 

This situation can be represented by a directed and undirected graph 

as illustrated in Figure 75. 

b 

(b) 

F:i,gure 75 
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Notice that the edges of the graph appear to intersect although no ~ew 

vertices are formed._ One mi~ht think of the edges as threads crossing 

each other. The straight line segments 9f the undirected graph cause 

the most difficulty because of the resemblance to lines in Euclidean 

plane geometry. However, there is nothing that requires that the 

edges of an undirected graph be line segments so that F:i,.gure 75(a) 

could be represented as shown in Figure 76. 

Figure 76 

It is possible to have a null graph, that is, a gr~ph which con

sists of isolated vertices with no edges. The graphs illustrated :i,.n 

Figure 77 are null graphs. 

__ Definition 5. 6. '.rwo graphs are said to be isomorphic iff there is a 

one•to-one correspondence between their vertices and between their 

edges such that _incidences are preserved. 
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w .. x. 

b • z • Y• 

Figure 77 

Thus, if two graphs G1 and G2 are isomorphic, then if there is an 

edge between two vertices in G1, there is a corresponding edge between 

the corresponding vertices in G2• In the isomorphic graphs in Figure 

78, the corresponding vertices are labeled with the same letters, 

primed and unprimed. To check the isomorphism simply check the inci

dence relations. 

a' 
a b 

Figure 78 

In a directed or undirected graph, the local degree of vertex.is 

the number of edges that are incident with it. In a directed graph, 

the incoming degree of a vertex a is the number of edges that are 

incident to a, denoted by p(a), and the outgoing degree at a vertex a 



is the number of edges that are ~ncident from a~ denoted by p'(a). 

Thus, tn a directed graph G w~th n vertices, v1, v2, ••• , vn, ~he 

number of edges of G is given by 

ll.6 

N = p(v1) + p(v2) + ... + p(vn) = p' (v1) + p' (v2) + .•. + p' (v
0
). 

Figure 79 provides a simple example where p(v) and p'(v) = 1 :for every 

vertex v o{ the graph. 

Figure 79 

In t~e undirect~d graph in Figur~ 76, p(a) = p(c) = p(e) ~ 2 and 

p(b) = p(d) = 3. 

It i~ often qutte important to know the number of edges in a 

graph. One can always count the edges, but in general it is mu~h 

easier to count the number of edges at each verte~ and add. However, 

this process counts each edge twice so that the m.i,mber of edges is half 

this sum. In general if G is a graph with n vertices, v1, v2, , •• , 

vn, havi,ng local degrees p(v1), p(v2), ••. , p(v
0
), then t)le number 

of edges in G is 
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Theorem 5 .1 •.. In any graph G, the sum of the local degrees is an even 

number • 

. Proof: The proof of this theorem follows directly from the fact that 

the number of edges in a graph G is N = 1/2 ~ p(v.). 'l'hus, 
i=l ]. 

~ 
i=l 

p (v .) = 2N and the sum of the local degrees is an even number. 
]. . 

'l'he vertices of a graph are classified as even or odd according to 

the number of edges incident at a particular vertex. For example in 

Figure 76 vertices a, c, and e are even while vertices band dare odd, 

Theorem 5.2 •. In any graph, there is an even number of oc;ld vertices, 

Proof:. Let N be the number of edges in the graph. Then, since every 

edge contains two vertices, there are 2N vertices. Let v1 be the num

ber of vertices with only one incident edge, v2 be the number of 

vertices with 2 incident edges, v3 be the number of vertices with 3 

incident edges, and so forth. Then it is required that 

V = v1 + v2 + v3 + ... is an even number. The number of vertices in 

the graph is M = v 1 + 2v2 + 3V3 + 4V 4 + ... and M = 2N which implies 

that M is an even number. Let E ;:: 2V2 + 2V
3 

+ 4V4 + 4V5 + 6V6 + 

6V7 ••• and note that Eis an even number. Therefore, M - E = V ~ 
0 

where V
0 

is the number of odd vertices. But since the difference of 

two even numbers is even, V is even and the theorem is proven. 
0 

It is often useful to think of a graph as a road map where the. 

edges correspond to roads and the vertices correspond to towns, For a 

given graph G, if it is possible to begin at some vertex a and follow 

a route that leads to kin any manner, then a is said to be connected 



118 

to k. A route in G that passes no vertex twice is called an arc. The 

route in Figure 80 is an arc and c is connected tow. 

b 

w 

y 

Figure 80 

If every vertex in a graph is connected to every other vertex by an 

arc, then the graph is said to be connected. A route that never passes 

over the same edge twice is called a path. Notice that a path may pass 

the same vertex several times. If a path returns to the starting 

point, then it is referred to as a cyclic path or a circuit. In Figure 

81, the route described by the sequence aecdb is an arc. The route 

described by the sequence aecdbe is a path and aedbeca is a circuit. 

a b 

f 

C 

Figure 81 
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In certain graphs it is possible to find a cyclic path that passes 

through all edges just once. Tb,is is the type of path that Euler was 

concerned with in the Konigsberg Bridge Problem. Thus, a cyclic path 

that passes through all edges just once is called an Euler path. Like~ 

wise, a circuit that passes through all edges just once is an Euler 

circuit. 

The next theorem is adapted from theorems given by ausacher and 

7 Saaty. 

Theorem 5.3. An undirected graph possesses an Euler path iff it is 

connected and has no, or exactly two, vertices that are of odd local 

degree. 

Proof: Suppose that a graph G possesses an Euler path L. Since G 

possesses an Euler path, G must be connected. When Lis traced and the 

path meets a vertex, there are two edges that are incident with this 

vertex that have not been traced before since with the exception of the 

two terminal vertices of the path, the degree of any other vertex in 

the graph must be even. If the two terminal vertices of Lare distinct, 

then their degrees must be odd •. If the two terminal vertices coincide, 

then their degrees are both even, and Lis an Euler circuit. Thus, the 

necessity of the condition is proven. 

To prove the sufficiency of the condition, suppose that an Euler 

path Lis constructed by starting at a, one of the two vertices of odd 

degree, and going through the edges of the graph Gin such a way that 

no edge will be traced more than once. For a vertex of even degree, 

whenever the path enters the vertex through an edge, it can always 

leave the vertex through another edge that has not been traced before. 
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Thus, if G has no odd vertices, L must return to the vertex from which 

it started. If G has exactly two odd vertices, then L must end at the 

other odd vertex. If L passed through all edges, then Lis an.Euler 

path. If there is some vertex b such that L did not pass through b, 

then there are edges not traced by L. Therefore, band all other 

vertices that were concurrent with L must have an even local degree • 

. Define a second Euler path K similar to L beginning at b using the 

edges not contained in L. The path K must be c;yclic since b has an 

even degree. Now, consider the path LUK •. If L·U K i,s not an Euler 

path, then there must exist vertices in G not contained in LUK. In a 

similar manner, define a third path Mand continue the process. 

EventualJy by exhaustion, the graph G must contain an Euler :path. 

Corallary 5.3.1, A directed graph possesses an Euler circuit iff it is 

connected and its vertices are all of even degree. 

Corallary 5.3.2. A directed graph possesses an Euler path iff it is 

connected and the incoming degree of every vertex is equal to its out

going degree with the possible exception of two vertices. For these 

two vertices, the incoming degree of one is 1 larger than its outgoing 

degree, and the incoming degree of the other is 1 less than its out• 

going degree. 

Corallary 5.3.3. A directed graph possesses an Euler Circuit iff it is 

connected and the incoming degree of every vertex is equal to its 

outgoing degree, 

Using Theorem 5.3, it is possible to solve many of the simpler 

puzzles that are associated with graph theory. Theorem 5.3 actually 
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characterizes Euler's original observations. It is easy to see why the 

Konigsberg Bridge Problem was not solvable since the graph representing 

the problem in Figure 70 has four odd vertices. Consider each of the 

undirected graphs illustrated in Figure 82. 

m 

n 

(b) 

(c) 

, Figure 82 

The graph illustrated in Figure 82(a) has an Euler path since there are 

four even vertices. In fact, an Euler circuit could begin at any of 

the vertices •. Likewise, the graph illustrated in Figure 82(b) has an 

Euler path that must begin at either morn. The graph in Figure 82(c) 

does not have an Eu1$r path since there are four odd vertices. The 

graph in Figure 82(d) has an Euler path that could start at x or y. 
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The directed graph shown in Figure 83(a) does not have an Euler 

path by Corallary 5.3.2. However, the graph illustrated in Figure 83(b) 

does have an Euler path. 

a a 

(a) (b) 

Figure 83 

A classic puzzle involving the basic concept of an Euler path is 

the Sixteen Door Problem. To illustrate this problem, consider the 

five roomed house with sixteen doors arranged as shown in Fi81Jre 84. 

·B 

D E 

Figure 84 
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The problem asks whether it is possible to draw a continuous line 

without lifting the pencil from the paper, passing through each door 

once and only once. The solution to the problem is not difficult 

using graph theory, but one might spend a considerable amount of time 

attempting to solve the problem by trial and error. To solve the 

problem, simply note that rooms B, D, and E have five doors eaGh. 

Thus, the number of vertices with odd local degrees would be three. 

Hence, the problem is not solvable. 

There is another problem that often arises which is similar to the 

question of whether or not a particular graph has an Euler path. The 

most familiar example of a problem of this type was posed by an Irish 

mathematician Sir William Row Hamilton.8 Hamilton developed a puzzle 

by using a polyhedron having regular pentagons for its faces, with 

three edges of these pentagons meeting at each of the 20 corners. 

Hamilton labelled each corner with the name of an important city. The 

problem consisted of finding a route along the edges of the dodecahedron 

which passed through each city exactly once. The dodecahedron was a 

rather cumbersome figure to work with so Hamilton revised the problem 

by constructing .a plane figure which was isomorphic to the dodecahedron. 

l'he cross shaded route shown in Figure 85 is a solution to the problem. 

In honor of Hamilton's Travelers Dodecahedron Problem, a path in 

a graph that passes through each vertex exactly once is called a 

Hamilton path. It is interesting to note that mathematicians have 

found no criteria for the existence of a Hamilton path in a graph. 

Ore suggests that many of the problems in the field of operations 

research are very similar to the problem of finding a Hamilton path, 

For example, a traveling salesman wants to visit a number of cities on 
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a particular route. The salesman is interested in finding a route that 

is the most economical in terms of time and money. A problem of this 

type can be solved by trial and error~ but this is often very costly. 9 

Figure 85 

Many problems in graph theory depending on the existence or 

non-existence of Hamilton paths cannot be solved. This points out one 

of the intriguing aspects of mathematics, A rather interesting apprpach 

to problems involving Euler and Hamilton paths is given by So K. SteinfO 
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CHAPTER VU 

A SET THEORETIC APPROACH TO FINITE PROBABILITY 

The word "probability" mean,s many things to many people. For 

example, one often hears phrases such as "the probability of fair 

weather over the weekend," or "the probability of the Mets winning the 

world series." In each of these cases, the word probability has only 

a vague meaning. However, the development of a mathematical theory of 

probability depe!).ds on a precise definition of "probability." Before a 

formai discussion of the theory of probability is introduced, it might 

be interesting to note the origins of probability theory and some of 

its applications. 

The founders of the mathematical theory of probability were two 

Fren9h mathematicians of the seventeenth century, Pierre Fermat (1601· 

1665) and Blaise Pascal (1623-1662). Both of these men a~e well known 

for their contributions to mathematics. Fermat is most noted for his 

d~s~overies in the theory of numbers, and Pascal for his work in geome

try. Historically, the initial problem out of which evolved the theory 

of probability was a gambling .ppoblemi,p;-9ppsed by a gamble-r, the 

Chevalier de M~ri, The problem was basically a question of how the 

stakes should be divided between two players in a game of chance if the 

game was stopped before the game was finished. In the course of solv

ing this rather simple problem, other challenging questions in proba

bility and laws of chance occurred to Pascal. Unable to solve them, 
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he turned to his friend fermat, and a very pr9fitable correspondence 

arose which, in time, resulted in some of the basic concepts of the 

theory of probability. 1 
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The theory that originated in a game of chance has become of great 

importance in the modern world, It is the mathematical foundation of 

numerous kinds of financial insurance and mathematical statistics, It 

finds applications in many aspects of the biological and social 

sciences, physics, and engineering. 

In the discussion that follows, illustrations using dice, cards, 

or coins will be used since these objects are familiar and their proba

bilistic aspects are often reasonable to compute. Moreover, they 

provide good illustrations of the basic principles of the theory. 

Probability is commonly referred to as the ).Ilathematics of chance. 

Frequently, one wishes to determine how likely it is that a certain 

event will occur, One obvious approach to the problem is to perform 

an experiment under controlled conditions and observe the outcomes. 

Definition 7.1. An experiment is any operation whose outcome cannot be 

predicted with certainty. 

Definition 7.2. The sample space of an experiment is the set of all 

possible outcomes for the experiment, 

. Ex.ample. 7 .1. Consider the experiment of rolling a s;tngle die one time. 

The sample space for this experiment is s
1 

= [1,2,3,4,5,6} where the 

integers 1 through 6 represent the number of spots on the upmost faye 

of t:he die after it stops rolling. For the same e~periment, another 

sample space is s2 = (even, odd} where the list of possible outcomes 

is even and odd numbered faces of the die. 
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Example 7 .2. Consider the experiment of tossing a coin. The sample 

space is s1 = [H, T} where H denotes a head and T denotes a tail. If 

two coins were tossed, then the sample space would be 

S2 = [HH, HT, TH, TT} • 

. Example 7.3. Consider the experiment of rolling a pair of dice, one 

r~d and the other green. The sample space consists of the 36 outcomes 

listed in S. The first position represents the number correspondi.ng to 

the red die and the second corresponds to the green die. 

(1,6) (2,6) (3,6) (4, 6) (5, 6) (6,6) 

(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 

(1,4) (2,4) (3,4) (4,4) (5, 4) (6,4) 
s = 

(1,3) (2,3) (3,3) (4, 3) (5, 3) (6,3) 

(1,2) (2,2) (3,2) (4,2) (5, 2) (6,2) 

(1,1) (2,1) (3,1) (4, 1) (5, 1) (6, 1) 

Definition 7.3. An event is a subset of the sample space. Every 

subset of the sample space is an event. 

In Example 7~2 where the sample space was S = (H,T}, the sets 

A= [H,T}, B = {H}, and C = {T} are events. Likewise, in Exqlllple 7.1, 

the sets A= (1,3,5}, B = [2,4,.6}, and C = [1,2} are events. 

The theory of probability is concerned with, establishing a con

sistent way of assigning numbers to events which are called probabili

ties of the occurrence of these events. Thus, probability can be 

thought of as a measure applied to the events that can occur in a given 

experiment. Formally, the probability measures must satisfy the three 

axioms given in Definition 7 .5 defined i.n terms of a probability func

tion. 
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Definition 7.4. A rule f which associates a real number with each 

subset of some universal set is called a real-valued set function. 

For example, if S = fa,b,c}, then the possible subsets of Sare 

[ ~' (a}, fb}, fc}, [a,b}, fa,c}, [b,c}, (a,b,c} }. Then a rule f 

defined by f(A) = 0 if 1 EA and f(A) =·1 if 1 $ A, where Ac S, is a 

set function. 

Definition 7.5. A probabil:i,ty function is a real-valued set function 

defined on the class of all subsets of the sample space S satisfying 

the following three axioms: 2 

(1) P(S) = 1 (Axiom 1) 

(2) P(A) > 0 for all Ac S (Axiom 2) 

if A. n A.=~ for all it j, 
l J 

(Axiom 3) 

Example 7.4 •. Consider the experiment in which a fair die is rolled 

once~ as in Example 7.1. The sample space is S = (1,2,3.,4,5,6}. Since 

the die is fair, the outcomes are equally to occur, so it would seem 

reasonable to assume that each outcome should be assigned the same 

probabi 1i ty. Let El = 

and E
6 = [6}. Axiom 1 

P(El U E2 . U E6) 

riL E2 = f2L E3 = [ 3}' E = £4}, E5 = [5}, 
4 

implies that P(S) = 1 and Axiom 3 implies that 

= P(E1 + P{E 2) + . . • + p,(E6) since 

But i=. P(Ei) = P(S), therefor$, 
i = 1 

1 and each event is equally likely. 
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Example 7.5. Consider the experiment of tossing a biased coin. 

Suppose that based on a statistical study of a particular coin, it is 

known that a tail is twice as likely to oc.cur as a head. What proba-

bility measure should be assigned to each outcome?. Let S = (H,T}, 

A= (H}, and B =·CT}. If theP(A) =~.then P(B) should be 2x since 

a tail is twice as likely to come up as a head. But by Axiom 3, 

P(A U B) = P(A) + P(B) since An B = th 
'I'' Axiom 1 implies that 

P(S) = P(A LJ B) = 1. Thus, P(A) + P(B) = x + 2x = 1 or X = 1/3. 

Therefore, let P(A) = 1/3 and P(B) = 2/3. 

Definition 7.6. If Eis an event, then E' denotes the complement of E 

relative to S. · E 1 is called the complementary event of E. 

The following sequence of theorems was adapted from theorems and 

bl . p 3 pro ems in arzen. 

Theorem 7.1. . If Eis an event in a sample space S, then P(E) + P(E') 

= 1. 

Proof: It is evident that Eu E' = S, while En E' = ~- Thus, by 

Axiom 3 P(E U E 1
) = P(E) + P(E 1

). But P(E U E') = P(S) = 1 by Axiom 1. 

Therefore, P(E) + P(E') = 1. 

Theorem 7.2, P(~) = 0 for any sample space S. 

Proof: First, note that S u $ = s. Thus, P(S U ~) ;:: p (S) = 1 by 

Axiom l, But S n ~ = $ so that P(S LJ $) = P(S) + P(~) = 1+ P($) by 

Axiom 3. Thus, 1 + P($) = 1 which implies that P($) = o. 

Example 7.6, Given S = p,2,3}, A= p,2}, B = p}, C = (2}, P(A) = 

2./3, and P(B) = 1/3. Find P(A n :B) and P(A n C). Since An B = ~' 
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then P(A n B) = P($) = 0. But (An C) = £2} so P(A.n C) = P(£2}) = 
P(C). Theorem 7.1 implies that P(C) + P(C') = 1 which implies P(C) = 

0. Therefore P(A n C) = 0. 

Theorem 7.3 .. If A and Bare events of a sample space S, then 

P(A' n B) = P(B) - P(A n B). 

Proof: . B can be written as B n S, but AU A' = S. Thus, 

B = Bin S = B n (A LJ A')= (B n A) LJ (B n A') 

since n distributes over:U. Then P(B) = P( (B n A) U (B n A') ). But 

since (B,n A) n (B n A')=~' Axiom 3 implies that 

P(B) = P(B n A)+ P(B n A'). 

Thus, P(A' n B) = P(B) = P(A n B). 

Theorem 7.4. If A and Bare events in a sample space S, then 

P(A U B) = P(A) + P(B) - P(A n B). 

Proof: First, note that AU B =Sn (AU B) = (i U A') n (AU B) = 

AU (A' n B) since U distributes over n. Thus, P(A U B) = 

P(A U (A 0 n B)). But An (A' n B) = ~' therefore, by A~iom 3 

P(A.LJ (A' n B)) = P(A) + P(A'n .B). But P(A' n B) = P(:8) - P(A n B) by 

Theorem 7.3 which implies that 

P(A U B) = P(A) + P{B) - P(A n B). 

,. Example 7.7. Stl.ppose that S = (1,2,3}, A= P}, B = [2}, and C = (3}. 

Suppose also that an experiment is run so that P(A) = 1/2 and P(B) = 

1/5, Compute the probabilities: (a) P(C), (b) P(A U B), (c) P(A'), 

and (d) P(A' n B1
). 

(a) First, note that AU BU C = S. Thus, P(A U BU C) = P(A) + P(B) + 

P(C) = 1/2 + 1/5 + P(C) = 1 which implies that P(C) = 3/10. 
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(b) By Theorem 7.4, P(A U B) = P(A) + P(B) - P(A n B), But An B = ~' 

therefore by Theorem 7.2 P(A n B) = 0. Thus, P(A U B) = P(A) + P(B) = 

1/2 + 1/5 = 7/10. 

(c) P(A) + P(A') = 1 by Theorem 7.1. Thus, P(A 1
) = 1 - P(A) = 1/2. 

(d) P(A' n B1
) = P(B') - P(A n B') by Theorem 7.3. P(B') = 1 - P(B) = 

1 - 1/5 = 4/5 by Theorem 7, 1. B' = [1, 3} and A = { 1} which implies 

that A n B V = (1} A, So P(A n B') = P(A) = 1/2. Thus, P(A' n B') = 

P(B 1
) - P(A n B') = 4/5 - 1/2 = 3/10. 

When dealing with finite sample spaces, it is quite convenient to 

assign probability to a given event A by considering the probabilities 

of the single element events that comprise A. 

Definition 7.7. A single-element event is a subset of the sample space 

S which contains one and only one element of S. 

Thus, if. S = {1,2,3}, then the single element events are (l}, [2}, 

and. [3}. For the sample space (HH, HT, TH, TT}, the single-element 

events are f HHL [HT}. {THL and [T'I}, Thus, if S has n ele\Ilents, then 

there are exactly n distinct single-element events. 

n 
Theorem 7.5. Let S be any sample space and ES, then P(E) = L P(E.) 

k=l ]. 

., E are distinct single-element events and 
n 

Proof: Since Ep E
2

, .•• ,. En are distinct single-elements events~ 

E. n E. =$for i + j. Axiom 3 implies that P(E) = 
1. J 

= ~ P(E.), 
i=l ]. 
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For experiments in which it is reasonable to assume that each 

single element event is equally likely to occuri, then it is quite easy 

to assign probabilities to the events when the sample space is finite. 

Definition 7.8. If A is a seti, then n(A) is the number of elements in 

A. n (A) is read "the number property of A." 

The number property of a set can be used to assign probability to 

any event Ac S when the outcomes are equally likely. Suppose that 

there are n equally likely outcomes to an experiment. Since P(S) = 1 

and each of the outcomes are equally likely, the probability assigned 

to a single-element event must be 1/n. Any event E c S must be a 

union of single-element events; thusl) P(E) can be written as the sum 

of the probabilities of the single-element events that comprise E. 

Hence)) it would seem reasonable to let P(E) =~·~~~where E c S. 

To see that this assignment of probability satisfiei, the three axioms 

for a probability function)) the following theorem is proved. 

Theorem 7.6. If Sis a. sample space with k elements and E c Sl) then 

- .lli!1 the probability assignment given by P(E) - n(S) satisfies the three 

axioms for a. probability function. 

Proof: Since S has k elementsi, n(S) = k. Thusl) P(S) = ~ = 1 = 1 
n(S) k 

so Axiom 1 is satisfied. If E c Si, then n(E) > 0. Thusi, P(E) = 

.!!.!fil. > 0 for any E c S and Axiom 2 is satisfied. n(S) -
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P(E
1 

U E
2 

= 
n(E

1 
U E

2
) n(E

1
) 

+ 
n(E

2
) 

= p (E 1) + p (E 2) • A similar = 
n(S) n(S) n(S) 

argument could be given for any number of subsets. 

Example 7.8. Consider an experiment where a fair coin is tossed 3 

times. The sample space could be illustrated by 

S = [ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }, 

Since n(S) = 8, the probability of 1/8 could be assigned to each 

single-element event. Let E
1 

be the event that exactly two tails occur 

and let E2 be the event tha.t at least one tail occurs. Find P(E 1) and 

n(E 1) 
P(E2). First, note E1 = tHT'I\ TH'f, TTH}, so that P(E1 ) = n(S) = 3/8. 

n(E
2

) 
Since E

2 
= [HHT, H'.rH, H'fT, THH, THT, TTH, TTT}, P(E

2
) = · = 7/8. 

n(S) 

Often times it is easier to find the probability of the complement of 

an event and then use Theorem 7.1.. For example,, E1

1 = 1/8 and Theorem 

7.1 implies that P(E
1

) = 1 - P(E\) = 1 - 1./8 - 7/8. 

Example 7/, 9. Consider an e:x;periment of drawing a card from a.n ordinary 

deck of cards. Assume that each of the 52 cards is equally likely to 

be drawn. Let E
1 

be the event that an ace is drawn, E2 the event a 

spade .is drawn, and E
3 

the event tha.t an ace of spades i.s drawn. 

Assume that the 52 cards are ordered in some manner and a unique number 

from 1 to 52 is assigned to each card. Then, S = [ 1, 2, 3, •• , , 52}. 

n(E
1

) "" 4 since there are 4 aces inan ordinary deck of cards. Thus, 

P(E
1

) = n(E 1)/n(S) = 4/52. Simi 1.ar 1.y, p (E2) = n(E2)/n(S) = 13/52 and 

P(E
3

) = n(E3)/n(S) ;; 1/52. 
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Definition 7.9. An item is selected at random from a group of items if 

the selection procedure is such that each item in the group is equally 

likely to be selected. 

Example 7.10. Let S be a set. of 60 students studying at least one of 

two languages French or German. Let F represent the set of students 

studying French and G represent the set of students studying_ German. 

Assume the following information is known: _ n(F) = 30, n(G) = 50, and 

n(F n G) = 20. What is the probability that a student selected at 

random (1) will study German and French~ (2) will study German but not 

French. The Venn diagram in Figure 86 will help illustrate the problem. 

s 

Figure 86 

The solutions are: 

(1) P(F n G) = n(F n G)/n(S) 20/60 = 1/3 

(2) P(G n F1
) = n(G n F1 )/n(S) = 30/60 = 1/2 

Many of the solutions to probability problems depend on being 

able to count the elements belonging to particular sets. There are 
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many useful techniques available. The two most common counting tech-

niques involve permutations and combinations. 

Definition 7 .10. An arrangement of n symbols in definite order is 

called a permutation of n symbols. 

Frequently, one is interested in selecting and arranging a speci-

fied number of elements of a set. For example, one may wish to select 

r elements from a. set of n elements, where r :5n, and then arrange 

these r elements in some order. 

Definition 7 .11. The number of different arrangements, each consisting 

of r elements, that cam be selected from a set of n distinct elements 

is called the number of permutations of n elements taken rat a time, 

and is denoted by P . n r 

Theorem 7.7. p 
n r n(n - l)(n - 2) .•. (n - r+l). 

'Io see that this theorem is valid, simply note that the first of 

the r positions in a permutation can be filled inn different ways. 

'then the second position can be filled in n - 1 different ways, the 

third in n - 2 ways, a.nd so on. Thus, the number of ways of filling 

each position is n minus the number of positions alre.ady filled. When 

the rth element is to be chosen~ r-1 pla.ces have al.ready been filled. 

Hence» the rth position can be filled inn -(r - 1) = n - r + 1 ways. 

Definition 7.9. kl= k(k - l)(k - 2) ..• 3.2.1 for integers k > 0 

and 0~ = 1. 
~ 

Theorem 7 .8. P = n Q! I (n - r) n r 
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Proof: P = n(n - 1) ..• (n - r + 1) from Theorem 7. 7. Then, note n r 

that multiplying P by (n - r) I /(n - r)I does not change the value n r ~ • 

of P , Thus, n r 

p = n(n n r .l)(n 2) . (n - r + 1). (n - r)! I (n 

= }.l(n - l)(n - 2) (n - r + l)(n - r)(n - r - 1) ... 2.1 

(n - r)j 

= n! 
(n - r) I ... 

Example. 7.11. How many permutations can be formed from the letters of 

the word BACKSPIN if four letters are taken at a time? The answer is 

. Definition 7.10. The number of subsets, each of sizer, that a set 

with n elements has is called the number of combinations of n things 

rat a time and ie denoted by C . n r 

If A is a set of n elements, note that P counts the number of n r 

different arrangements of subsets containing r elements. However, C n r 

counts the number of different subsets of A, each containing r 

eltements. But since sets are not ordered, there are P different 
r r 

arrangements of the C subsets, that is, C • P n.r n r r r = C .r I = P • 
n r • n r 

But P = nl/(n - r)I 
n r .. " 

which implies that C • r! = n! /(n - r)! or nr 

.tha t C = n I I r I 
n r • • 

(n - r) I . 
. . 

Example 7 .12. If 10 boys go out for basketball at a particular school, 

then how many different teams could be fielded from these boys? The 

answer is 10c5 = 10]1s!s!= 252. 
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The most difficult part of many counting problems is deciding 

whether ordering should be of importance. If order does not matter, 

use combinations; however~ if order is important use permutations. 

A very interesting and quite refreshing approach to counting problems 

o o b N' 4 is given y iven. 

To help acquaint the reader with counting techniques a.nd their 

applications to probability problems~ the following example are pro-

vided. 

Ex.ample 7 .13. · A bridge hand consists of a. 13 card subset of the set of 

52 cards in an ordinary deck of playing cards. Find the probability 

that a bridge hand chosen at random contains all four kings of the 

deck. Let Ebe the event of a hand containing four kings. Let S be 

the set of all possible bridge hands. Since each hand consists of 

13 cards chosen at random from the 52 cards~ n(S) = 52c
13

• Since the 

cards are chosen at random~ one hand is. as likely as any other~ Thus, 

P (E). = n(E) /n(S). Since the deck only contains four kings, the four 

kings can be selected 
4
c

4 
ways~ while the other 9 cards can be selected 

from the remaining 48 cards in 
48

c
9 

ways. Therefore~. P(E) = 

Example 7.14. Suppose a box contains 5 red a.nd 4 white balls. Three 

balls are drawn at random. What is the probability of obtaining 3 red 

balls and obtaining 2 red balls and 1 white ball. Let E
1 

be the event 

of drawing 3 red balls and E
2 

be the event of drawing 2 red balls and 

1 white ball. Let S be the possible outcomes when 3 balls are drawn. 

n(S) = 
9
c3 = 9 ! /3 ! r 61 = 84. Since there are 5 red balls~ the number 

of ways E can happen is the number of ways 3 balls can be chosen from 
l 
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5 or 
5
c3 = 10. Since each ball is equally likely to b~ dl;'a.wn, P~E1) = 

n(E1) /n(S) = 10/84 = 5/42. Similarly,. P(E2) = n(E2) /n(S). The 

number of ways in which 2 red balls can be picked from 5 red balls is 

5
c2 = 10. The number of ways 1 white ball can be selected from 4 white 

balls is 4c1 = 4. However, each of the ways of picking 2 red balls can 

happen simultaneously with each of the ways of picking 1 white ball. 

Thus~ 2 red balls and 1 white ball can be selected in 10 • 4 or 40 ways 

which implies n(E2) = 40. Therefore~ P(E 2) = n(E2)/n(S) = 40/84 = 

10/21. 

It is interesting to note that many problems involving probability 

do not appeal to one's intuition about a particular problem. Probably 

the most famous problem illustrating this is the so called Birthday 

Problem5 • 

Example 7.15 (The Birthday Problem) .. Suppose that n people are in a 

room. What is the probability that at least .two of the people have the 

same birthday? For the purposes of this problem~ assume that there are 

only 365 days available for birthdays and that each of the days is 

equally likely to occur. The solutionset of possible birthdays is 

A = [Jan. 1~ Jan. 2~ • . • • ~ Dec. 30~ Dec. 31}. For convenience, suppose 

the days are numbered from 1 to 365. Then A can be written, A= 

fL»2~3~ •• •» 365}. Suppose that n birthdays are expressed in an 

ordered n-tuple (b 1~ b2~ •. ·~ bn) where b1 is the number representing 

the birthday of the first person; b2 is the number representing the 

birthday of the second person, and so on. Then it is fairly obvious 

that the sample space is the collection of all possible n-tuples that 

could occur for the birthdays •. S,ymbollically » 
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S = ( (b 1, b2, ••. , \) I bi EA, i = 1,2, ... , n}. Since there 

are 365 choices for each birthday, there are 365n possibilities for the 

birthdays of n people, that is, n(S) = 365n. 

Now define E to be the event that at least two people have the 

same birthday. Then E' is the event that no two people in the room 

have the same birthday. Since P(E') is easier to find, P(E') will be 

computed and then Theorem 7.1 will be used to find P(E) . 

. Since P(E') = n(E')/n(S) = N(E')/365n, the problem reduces to 

finding n(E'). Observe thatn(E') is equivalent to the number of ways 

of selecting n different numbers from a set of 365 different numbers. 

Thus, n(E') - 365P n = 365 . 364 • . . (365-n + 1), Therefore, 

P(E') = 365 • 364 • n (365 - n + 1) / 365 and by Theorem 7 .1 

P(E) = 1 - P(E') = 1 - (365 • 364 • (365 - n+ 1))/365n. If 

n = 4, then P(E) = 1 (365 • 364 • 363 • 362)/3654 ~ 1 - Q.984~ 0.016. 

Thus, if four people selected at random were in a room, the probability 

of at least two people having the same birthday is 0,016. Using a 

similar process and letting n vary for values between 1,0 and 60, the 

values as shown in the table in Figure 87 could be derived. 

Notice that if n > 22, then P(E) > 1/2 which is rather surprising. 

However, if n = 60, thenP(E) = .994. 'l;hus, in a random group of 60 

people it is almost a certainty that at least two of the people have 

the same birthday. This is a very interesting conclusion and certainly 

does not appeal to one's intuition. 

Often times the probab;i..lity of events with certain conditions 

attached are needed, For example, suppose that an event E
1 

has 

occurred and you are asked to find the probability of an event E
2 

f,rom 

the sample space. · For a specific example consider the following 



situation: suppose a team of medical resear~hers are conducting an 

experiment, A randomly selected person is found to have a family 

history of diabetes. What is the probability that this person also 
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has diabetes? Questions of this type lead to conditional probabilities. 

n P(E') P(E) 

10 .871 .129 

20 .589 .411 

21 .556 .444 

22 .524 .476 

23 .493 .507 

30 .294 .706 

40 .109 .891 

50 .030 .970 

60 .006 .994 

Figure 87 

Definition 7.12. The conditional probability of B occurring, given 

that A has occurred (written P(BIA) ) is P(BIA) = P(B nA)/P(A) U 

P(A) > 0. If P(A) = 0~ then defined P(BIA) = 0. 

Example 7 .16 •. Suppose that two dice are thrown. What is the probabil

ity that the sum of the .two faces is 7, knowing that one face has 



142 

2 . 
turned up 5?. The sample space obviously contains 6 outcomes; however, 

only a subset of these 36 outcomes need be considered. Let A be the 

subset of S where at least one member is a 5~ Thus, A= 

[ (.5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5), (3,5), (4,5), 

(6,.5). } which implies that n(A) = 11. Let B be the event that the 

faces sum to 7. Then B = [ (2,5), (5,2)} and n(B) = 2. P(BnA)= 

n(B,n A)/n(S) = 2/36 and P(A) = n(A)/n(S) = 11/36. Ther?for?, 

, P(B!A) = P(B,n A)/P(A) = (2/36)/(11/36) = 2/11,. 

Example 7 .17. Given that 10 per cent of the light bulbs produced are 

blue and 2 per cent of all bulbs are blue and defective. What is the 

probability that a bulb selected at random is defective if it is known 

that it is blue? 

Let A be the event that the light bulb is blue and B be the event 

that the light bulb is defective. Then, P(B A)/P(A) = (2/100)/(10/100) 

= 1/ .5 0 

One of the most useful results in problems involving conditional 

proba.bi li ty is known as Bayes I Theorem or Bayes I formula.. Bayes 1 

Theorem has recently been applied to many different kinds of probtems. 

6 The proof of Bayes 1 Theorem is adopted from Larsen. 

Theorem 7 .9 (Bayes) •. Suppose that k events Al' Az, ••• , ~ are given 

such that AL U A2 U • u ~ = s and A. n A.=.~ 
1 J 

for all i + j; 
then for an event E c S, 

±:: P(A.)P(E IA.)' 
. 1 1 1 1= 

j = 1,2,3, •.• , k . 
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Proof: Since A1 U A2 U ..• U ~=Sand Ai n Aj,= ~. for if j, then 

for any event E c S, E = (E n A
1

) U (E n A2) U ••• U '(E n ~). · Since 

(E n Ai) n (E n A} = ~ for i f j , then 

P(E) = P(E n A
1

) + P(E n A2) + ••• +· P(E n ~). But 

P(E n A.) = P(A.)P(EjA.) for each i by Definition 7.11. Thus, 
l. l. l. 

+ P(~)P(Ej~). By defini-

tion, P(A. IE) = P(A. n E)/P{E), j. = 1, 2., 3, ••• , k. Hence, 
J J . 

n 
P(A. jE) = P(A.)P(EjA.)/ L P(A.)P(EjA.) for j = 1,2,3, ••• , k 

J J J i=l l. l. 

which is the desired result. 

To illustrate how Bayes' Theorem can be used, consider the follow-

7 
ing example given by Parzen • 

. Example 7.17. Suppose, contrary to fact, there was a diagnostic test 

for cancer. Let A denote the event that a person tested has cancer and 

B denote the event that the test states that the person tested has 

cancer. Assume also that P(BjA) = 0.95 and P(B' IA') = 0.95. Find the 

probability that a person who according to the test has cancer actually 

. has it, that is, compute P(AjB). Assume that the probability that a 

person that has taken the test actually has cancer is given by 

P(B) = .005. Since AUA' =Sand AnA' = ~' Bayes' Theorem implies 

I P B A P A 
P{A B) = P(B A)P(A) + P(B A')P(A') 

(0.95)(0.005) 0.00475 
= -( o-.-9-5-) -< o ....... ._o ___ o5"-) ........ +----( o-.""""o..._5_) -< 0-.-9-9 5-) = -o-. 0-0-4"""'7-5 _+_o ..... 0_4_9_7_5 = 0 • 087 • 
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One shoµld carefully consider the meanings of this result in terms 

of the original problem. The cancer diagnostic test was assumed to be 

highly reliable, since it could detect cancer in 95 per cent of the 

cases in which cancer was present. However, in only 8.7 per cent of 

the cases in which the test indicates that the person has cancer is it 

actually true that cancer is present. 

8 The following example is a problem posed by Larson. 

Example 7.19. Suppose that you are being held a political prisoner in 

Russia and will be exiled to either Siberia or Mongolia with probabili-

ties .7 and .3 respectively. Suppose also that it is known that the 

probability of a Siberian resident wearing a seal-skin coat is .8, 

whereas this same event has probability .4 in Mongolia. Late one night 

you are blindfolded and thrown on a truck •. After approximately two 

weeks' travel, the truck stops and your blindfold is removed. The 

first person you see is not wearing a seal-skin coat. What is the 

probability you are in Siberia?. Bayes' Theorem can be used to answer 

this question. Let A be the event you are sent to Siberia and A' be 

the event. you are sent to Mongolia. Let B be the event that a randomly 

selected resident is wearing a seal-skin coat. From the information 

given in the problem,. P(A) = .7, P(A') = .3, P(BjA)·= .8, and 

P(BIA'), = .4. The remaining probl~m is to compute P(AjB'). Note that 

AU A' =Sand An A'=$ so that Bayes' Theorem implies that 

p (A I B) = ________ P __ . (.._A.._)P..,(~B-' I ..... A ...... ) --

P (A) P (l3' jA) + P(A'.)P(B' IA') 
__ _,(...., ....... n'""'<--· ..... 2 ):...-.-- = 7 I 16 • 
(.7)(.2)+ (.3)(.6) 

There has been a certain amount of confusion surrounding Bayes' 

Theorem. Difference of opinion exist even among experts. However, 
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Bayes' Theorem remains a very powerful tool in many applied problems. 

An interesting use of Bayes' Theorem to evaluate probabilities dµring 

the course of a bridge game is given by 8 Waugh and Waugh. 

If A and B are two possible events in the same sample space, then 

the likelihood that A occurs may or may not be effected by whether or 

not B occurs. 

Definition 7.12. Two events, A and Bin the same sample space, are 

said to be independent iff P(A n B) = P(A)P(B). They are called 

dependent events if P(A n B) + P(A)P(B). 

Before some concrete examples are considered, it is possible to 

explore the intuitive notion of independence to deduce some rather 

obvious results. 

Theorem 7.10. If Sis a sample space and Ac;:: S, then Sand A are 

independent. 

Proof: Since An S = A, P(S r.,A) = P(A) = P(A)P(S) l,)ecause P(S) = 1. 

Thus,. A and S are independent events. 

Theorem 7.11. If A and Bare disjoint events in the same sample space 

with P(A) + 0 and P(B) + 0:, then A and Bare dependent events. 

Proof: If An B = ~' then P(A n B) = P(~) = 0. But, if P(A) t O and 

P(B) t O, then P(A n B) t P(A)P(B). Thus, A and Bare dependent 

events. 

Theorem 7.12. If A and Bare independent events in the same sample 

space, then P(AiB) = P(A) and P(BjA) = P(B). 
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Proof: If A and Bare independent, then P(AjB) = P(A n B)/P(B) = 

P(A)P(B)/P(B) = P(A) and P(BjA) = P(B n A)/P(A) = P(B)P(A)/P(A) = P(B). 

Example 7.20. · Suppose a 13-card hand is randomly selected from a deck 

of 52 cards. Let A be the event that a hand containing an ace of 

spades is drawn. Let B be the event that a hand containing a three 

of clubs is drawn. Are these two events independent? If A and Bare 

independent, then P(A n B) = P(A)P(B). First, note that An Bis the 

event that a hand contains an ace of spades and a three of clubs. 

P(B) = 51c12/ 52c13 which implies that P(A)P(B) = 1/16. Therefore, 

P(A n B) = 1/17 + 1/16 =P(A)P(B) which implies that A and Bare 

dependent. 

Example 7.21.. Suppose that based on previous medical experiments the 

following probabilities have been established for a person selected at 
., 

random. Let A be the event that a person smokes and B be the event 

that he gets cancer. Then assume P(A n B) = .50, P(A n B') = .2, and 

P (A I n B 1 ) = • 2. Does it seem r.easonable that A and B are independent? 

As in the last example, one must find P(A:), P(B), and P(A n B). Note 

that A can be written as A= An S =An (BUB') and since n distrib-

utes over U, A.= (An B) U (An B'). Also, (An B) n (An B') = t, so 

that, P(A) = P( (An B) U (An B') ) = P(A n B) + P(A n B') = 

.50 + .20 = .70. Similarly, P(B) = P(A n B) + P(A' n B) = .50 + .10 = 

.60. But, P(A n B). = .50 and P(A)P(B) = (.70)(.60). Therefore, 

P(A n B) + P(A)P(B) which implies that A and Bare not independent. 
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Much of the theory developed in this chapter can be found pre

sented in a more advanced level in Feller10, Parzen
11, and Larson12 • 

For the reader who is interested ;in intriguing problems in probability, 

Fifty. Challenging Problems. in Probability by, F. Mosteller13 is an 

excellent reference. See the Appendix for other references. 

The presentat;ion given in this chapter is a set theoretic 

approach to probability in f;ini te sample spaces. Many of the funda

mental concepts involved in a study of discrete probability were 

considered in a somewhat simplified approach along with various appli

cations of probability theory, 



FOOTNOTES 

1J. B. Fraleigh, Mainstreams of Mathematics (Reading, Massachu
setts; 1969), p. 417. 

2 
E, Parz~n,. Modern Probability Theory ~ Its AJ?plications (New 

York, 1960), p. 18. 

3
Ibid., pp. 18-31. 

4
1. Niven, Mathematics of Choice: How 1£ Count Without Counting 

(New York, 1965), pp. 1-160. 

5 
H. F. Fehr, L. N. Bunt, and G. Grossman,,&!! Introduction to 

Sets, Probability, ~ Hypothesis Testing (Boston, 1964), p: 214-:-

6 
H. J. L&rson, Intl;"oduction to Probability~ Statistical 

Inference (New York, 1969), p. 47. 

7 
W. Feller, An Introduction_!;£ Probability Theory and~ 

Applications, Vol. I (New York, 1968)~ p. 36. 

8 
Larson, pp. 47-48. 

9 
D. F. Waugh and F. V. Waugh, "On Probabilities in Bridge," 

Journal ofAme:dcan Statistical Association, XLVIII (October, 1953), 
pp. 79-87. 

10 
Feller, pp. 10-121. 

11 Parzen, pp. 8-91. 

12 Larson, pp. 15-61. 

13
F. Mosteller, Fifty Challenging Problems in Probab;i.lity.with 

Solutions (Reading, Massachusetts; 1965), pp. 1-88. 

148 



CHAPTER VIII 

SUMMARY AND RECOMMENDAr:i:ONS 

Summary 

The purpose of this study was to develop enrichment topics for 

twelfth-grade mathematics students. The materials developed were 

designed for senior mathematics students who have completed a minimum 

of basic algebra, geometry, and advanced algebra. 

The topics developed in this study were carefully selected from 

the topics suggested in the literature. Topics were selected from the 

fields of number theory, abstract algebra, topology, geometry, and 

probability theory to give the student a broader perspective of the 

domain of mathematics. The topics were also selected to emphasize many 

of the fundamental ideas of mathematics such as sets, relations, func

tions, isomorphism, and so on. The importance of the axiomatic method 

was stressed in the development of algebraic systems and geometric 

systems. 

The approach used for each topic varied somewhat with the sophis

tication of the concepts involved. The approach to groups and graph 

theory was rather intuitive, while the approach to Farey fractions, 

fields, finite geometries,. and probability was more rigorous. 

In Chapter I the writer developed the backgroun,d for the problem, 

stated the problem, explained the scope of the study, and indicated the 

significance of the study. Chapter II included a basic discussion of 

149 
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Farey fractions and Farey sequences. The theory dev·eloped in relation 

to Farey fractions was used· to give a rational approximation to an 

irrational number. 

Chapter III presented an intuitive introduction to finite groups. 

Other related topics such as loops and braids were also discussed. 

Several games such as the network game and tangloids were illu1;1trated 

as amusing applications to group theory. In Chapter IV an algebraic 

system developed as ordered triples of integers was shown to be an 

Archemedian ordered field isomorphic to the rational numbers. The 

various properties of ordered fields were investigated through the 

study of this one algebraic system, 

Chapter V contained a discussion of various Euclidean and non

Euclidean finite geometries, while Chapter VI included a consideration 

of applications to graph theory. The Konigsberg Bridge Problem was 

considered as motivation for the study of graph1;1. Gradually~ the 

intuitive notion of a graph was defined more abstractly and some of 

the fundamental theorems of graph theory were proven. Solutions to 

such historically famous problems as Hamilton's Travelers Dodecahedron 

problem were also given. Chapter VII presented the development of a 

set theoretic approach to finite probability. The basic notions of 

probability were developed from three basic axioms and various examples 

were given to illustrate the theory that was developed. 

Recommendations 

It is recommended that the materials developed in this study be 

used as enrichment topics for twelfth-grade mathematics students. It 

is recommended that a study be conducted to determine the effectiveness 
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of enrichment in the twelfth-grade as compared to standard acceleration 

with no enrichment. The study should involve a comparison of college 

performance, attitudes, and conception of mathematics as a science. 

It is further recommended that the importance of enrichment be 

given strong consider.ation as a means for challenging the mathematical-

ly talented. It is al.so recommended that enrichment be given consider-

ation in developing the twelfth-grade mathematics curriculum. Enrich-

ment could be provided in mathematics laboratories, mathematics clubs, 

seminars, as well as a supplement to standard courses. 

It is recommended that the relationship between constructing 

models for finite geometries and graph theory be investigated. That 

is, one may be able to characterize the model for a finite geometry 

from the postulate set using graph theory. 

It is recommended that other enrichment topics be developed 

particularly from the newer areas of mathematics. For example, 

computer logic and programming offer excellent possibilities for 

enrichment topics. Other topics that have received limited attention 

include linear programming, convex sets, calculus of finite differ-

ences, and lattice theory. 

The late G. H. Hardy once observed that there are few more popular 

subjects than mathematics. His contention is amply borne out by the 

universal interest manifested in mathematical recreations for over 

1 2000 years. As mathematical knowledge grows, the opportunities for 

new topics for. enrichment increase. Historically, the interest in an 

intriguing problem in a given area of mathematics ha!:! precipitated a 

keen interest in the study of mathematics. For example, Euler's 

. interest in the Konigsberg Bridge Problem led to the<.study/of graphs 
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and many Wl;'iters feel that this was the beginning of combinatorial 

topology. 

, Enrichment materials are designed to encourage and nourish the 

interest of young people in mathematics. Enrichment has usually been 

achieved by guiding students to deeper consideration of standard topics 

in a course of study, encouraging individual research, and organizing 

extra-curricular activi,ties in the form of mathematics clubs. 2 

The materials developed in this study could be used as enrichment 

materials to supplement standard courses. The materials could also be 

used for independent study projects for particular students or groups 

of students in seminars as the time and interest of the students and of 

the teacher may make feasible. It should be noted that no teacher of 

mathematics, at any level, can be expected to be familiar with all 

areas of mathematics. Some of the topics developed in this paper may 

not be familiar to many high school mathematics teachers. However, 

these teachers should not hesitate to make a topic a joint study 

. project. This will force a certain amount of independence upon the 

student since he will not be able to ask the teacher each little detail. 

Thus, the student must reason through the material himself with the 

help of additional references and limited help from the teacher, 

. Enrichment topics offer an excellent opportunity for indi.yiduali-

zation of instruction and for developing independent study. techniques. 

In addition enrichment topics offer a means for introducing and rein-

forcing many of the basic concepts of mathematics in a different and 

challenging manner. 

3 Enrichment Mathematics for High School, Mathematics for the 

4 Academically Talented Student J:g the Secondary. School , and 
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Recreational Mathematics5 contain excel.lent bib Uographies of enrich

ment for high school mathematics students. 

The aca,demically talented student in mathematics will continue to 

be a point of concern for high school teachers and administrators. 

Ropefully, mathematics teachers and school administrators are cognizant 

of the need for more mathematically trained students, However, the 

exponential growth of mathematics, both theoretical and applied, does 

not dictate that acceleration is the only concern. Enrichment should 

play an important role in the mathematics curriculum of the future. 



FOOTNOl'ES 

1w. L. Schaaf, Recreational Mathematics (Washington, D, C.; 1963), 
p. 1. 

2National Council of Teachers of Mathematics, Enrichment Mathe
matics !2£ High School (Washington, D. C.; 1963), p. 2. 

3Ibid., p. 3. 

4
J. H, Hlavaty, ed., Mathematics .!.2!:. ~ Academically Talented 

Student 2:.!1 the Secondary School (Washington, D~ C.; 1959), pp. 6~16 and 
379-388. . 

5 · Schaaf, pp, 44-48. 
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