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PREFACE 

Several recent texts which would be appropriate for the three 

semester-hour course in real analysis recommended for the General 

Curriculum in Mathematics for Colleges by the Committee on the 

Undergraduate Program in Mathematics of the Mathematical Ass ocia­

tion of America contain an introduction to the topics of divergent 

sequences and summability methods. 

This collection of results on summability methods, sequence 

spaces, and applications is intended for those students who show an 

interest in investigating methods which are more general than conver­

gence by which a number can be assigned to a sequence. 

The writer acknowledges his indebtedness to Professors L. 

Wayne Johnson and John Jewett, and to each member of the mathematics 

faculty for the assistance and encouragement they have given. Pro:.:. 

fess or Jeanne L. Agnew deserves whatever credit this work is due. 

Her patience and tolerance do not seem to have an upper bound. My 

family has lent me the moral support necessary to persevere 1n this 

effort, and my wife, Phyllis, has been my greatest help. 
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CHAPTER I 

INTRODUCTION 

The topics of infinite sequences, convergence, and infinite 

series are introduced in elementary calculus. In most instances diver-

gent sequences and series are not given much attention, Once a 

sequence or series is shown to be divergent, it is not usually regarded 

as an object of compelling interest, One of the simplest examples of 
00 

a divergent series is the alternating series Z:: (-1 )n which seems at 
n=O 

first glance to sum nicely to zero if it is written as 

00 

z:; (-l)n = [ I +(-1)] + [1 +( 9 1)] + ...... :1 

n=O 

but the sequence of partial sums 1s an oscillating sequence of zeros and 

ones and does not converge. This is an excellent example of the fact 

that parentheses cannot be inserted or removed with impunity in the 

case of a divergent series. 

Since the definitions of convergence of a sequence and of the sum 

of an infinite series are a way of assigning a number to a sequence, 

1;1ome students must wonder if there could be a number between zero 

oo n 
and one which might be assigned to Z:: (-1) in some other natural way. 

n=O 
Some students may discover that the sequence of arithmetic means of 

oo n 
the sequence of partial sums of Z:: ( -1) converges to 1 /2, which is 

n=O 
the arithmetic mean of O and 1. 

1 
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In any case, the concept of the limit of a sequence can be 

extended for students who wonder about divergent series by an intro-

duction to methods of summability, to the structure of the set of 

sequences, and to some applications of methods of summability. 

Some of the more prominent mathematicians who have contri-

buted to the theory of divergent sequences and series are Niels Henrik 

Abel (1802-1829), Emile Borel (1871-1956), Augustin Louis Cauchy 

(1789-1857), Ernesto Cesaro (1859-1906), Peter Dirichlet (1805-1859), 

Leonhard Euler (1707-1783), Leopold Fej~r (1880-1959), Jean Baptiste 

Joseph Baron de Fourier (1768-1830), David Hilbert (1862-1943), Otto 

Holder (1859-1937), Gottfried Wilhelm van Leibniz (1646-1716), Gosta 

Mittag-Leffler (1846-1927), and Simeon Denis Poisson (1781-1840). 

Comprehensive collections of the theory and applications of divergent 

series were written by K. Knopp in 1928 and G. H. Hardy in 1949. 

Leibniz and Euler used divergent series in some of their works in 

analysis although Abel is reported to have written, "Divergent series 

are an invention of the devil, and it is shameful to base any demons tra-

tion on them whatsoever." Perhaps his remark stimulated mathemati-

cians into efforts to make divergent series respectable. 

The usual definitions and some theorems which follow readily 

from them are listed below for reference or for comparison with 

similar theorems concerning summability methods. 

Definition 1. 1. A sequence x + = {xn}, n E I of complex numbers 

1s a function from I+ into E. 

It is Gustomary to write {x } for the sequence rather than 
n 

{ (n, x )} where x = f(n), since the domain of a sequence is always the 
n n 

positive or the nonnegative integers. 



Definition 1. 2. Let {a } and {b } be two sequences. These 
n n 

sequences are the same if and only if a 
n 

+ = b for every n E I . 
n 

Definition I. 3, A sequence {a } in E, the set of complex 
n 

numbers, converges to a complex number a if and only if, given any 

real number e > 0, there exists an integer N such that n > N implies 

/ a - an/ < e. a is called the Emit of the sequence {an}, written 

lim a = a. 
n 

Theorem 1. 4. lim a = a and lim a = b implies a = b and 
n n 

a = a for every n implies lim a = a. 
n n 

Theorem 1. 5. Let lim a = a and let limb = b. Then 

i) lim ( a + b ) = a + b , 
n n 

ii) lim a b = ab , 
n n 

iii) if c E E then lim ca = ca. 
n 

n n 

From the first theorem one can observe that the concept of 

3 

convergence corresponds to the idea of a function defined on the set of 

convergent sequences. The second theorem states that the limit 

function is additive, multiplicative, and homogeneous. 

The notion of a subsequence is frequently a useful tool. 

Definition 1. 6. A subsequence y of the sequence {~}, n E I+ is 

a function from I+ into I+ such that y(i) < y(j) if i < j for i, j in I+. 

Definition I. 7. If x = {x } is a sequence of complex numbers n , 

and y = {n.} is a subsequence of 1+, then x(y) = {xnJ is called a sub~ 
1 1 

sequence of~_. 
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Boundedness and monotonicity are also properties which will be 

us ef:lJ)!l. in what follows. 
;1 .,~ 

Definition 1. 8. The sequence { a } in E is bounded if and only 
n 

if there exists a nonnegative number M such that /an/ < M for every 

+ n E I . 

The following theorem is a direct result of the last two defini-

tions. 

Theorem 1. 9. Every subsequence of a bounded sequence in E 

is bounded. 

Since a sequence is a function it can be characterized as mono-

tone increasing or monotone decreasing if it is a sequence of real 

numbers. 

Definition 1.10. A sequence {a} in R is monotone nondecreas­
n 

ing if and only if a < a +l for all n e I+ A sequence is monotone non­
n - n 

increasing if and only if an+l .:::.. an for all n E I+. A sequence is mono-

tone if and only if it is monotone nondecreasing or monotone nonincreas-

ing. A sequence {a } is monotone increasing if and only if a < a +l 
n n n 

+ for all n E I . A sequence { a } is monotone decreasing if and only if 
n 

+ an> an+l for all n E I A sequence is strictly monotone if and only if 

it is monotone increasing or monotone decreasing. 

The relationships of subsequences and monotonicity is clear 

from the following theorem. 

Theorem 1. 11. Every subsequence of a monotone nonincreasing 

(nondecreasing) sequence is monotone nonincreas ing (nondecreasing). 
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Every subsequence of a monotone increasing (decreasing) sequence is 

monotone increasing (decreasing). 

Sequences in R have the following important property. 

Theorem l. 12. Every sequence of real numbers has a mono-

tone subsequence. 

The supremum or least upper bound and the infimum or greatest 

lower bound of a set of real numbers are defined next. 

Definition l. 13. If AC R then b is the supremum of A, written 

b = sup A, if and only if for all a E A, a < b and for any x such that, for 

all a E A, a < x then b < x. 

Definition I. I:4. If AC R then c is the infimum of A, written 

c = inf A, if and only if for all a E A, c < a and for any y such that for ;~i: 

all a e A, y .:::_ a then y 2. c. 

The completeness of Rand E can be stated in terms of Cauchy 

sequences. 

Definition 1. 15. 
",} 

A sequence { an} in E is called i1 Cauchy 

sequence (or a fundamental sequence) if and only if for every real 

+ number e > 0 the re exists N E I such that / a - a / < e whenever 
m n 

m,n > N. 

Theorem L 16. If {a } is Cauchy-in E or in R then lim a 
n n 

exists and is an element of E or R respectively. 

Theorem I. 17. The sequence {a} in Eis convergent if and 
n 

only if { a } is a Cauchy sequence in E. 
n 
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Theorem 1. 18. Every convergent sequence in E is bounded. 

Theorem 1. 19. A monotone sequence in R converges if and 

only if it is bounded. 

There are, of course, sequences in R which are bounded which 

are not convergent. Consider the sequence {a } = { 1, 0, 1, 0, 1, 0, ... } 
n 

+ where a 2n = 0 and aZn-l = 1, n e I . It can be seen that the subse- · ~ ,:: 

quences { a 2n} and { a 2n_ 1} are convergent sequences. This obs erva-

tion is included in the Balzano-Weierstrass Theorem for sequences. 

Theorem 1. 20. Every bounded sequence 1n R has a convergent 

subsequence. 

The concepts of limit superior and limit inferior for sequences 

m R are defined next. 

that 

Definition 1. 21. Let { a }be a sequence in R and let u e R such 
n 

i) for every e > 0 there exists N e I+ such that n > N implies a < u + e, 
n 

ii) for every e > 0 and for every m > 0 there exists n e 1+, n > m such 

that a > u - e .. 
n 

Then u is the limit superior of {a } , written u = lim a . The 
n n 

limit inferior of {an}, written lim an' is defined to be -lim bn where 

+ b = -a for all n E I . 
n n 

Thus the sequence {a } = {l, 0, 1, 0, 1, 0, ... } has lim a = 1, 
n n 

lim a = 0. The following theorem lists some of the more important 
n 

properties of lim a and lima and their connection with convergence. 
n -- n 

Theorem 1. 22. Let {an} be a sequence m R. Then: 
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i) lim a < lim a • n - n• 

ii) { a } converges if and only if lim a , lim a e R and lim a = lim a . 
n n--n n n 

In this case lim a = lim a = lim a . 
n n n 

Infinite series are defined in terms of their sequences of 

partial sums and the results for sequences are directly applicable. 

Definition 1. 23. Let {a } be a sequence m E, and define 
n 

n 

+ 
2::: ak' n e I , 

k= 1 

The sequence {s } is called an infinite series. The number a 1s 
n n 

called the .!1ih term of the series. The series converges if and only if 

{s } converges. 
n 

00 
Write 2::: ak for { s } , and if lim s = s, write 

k=l n n 

00 

2::: ak = s. 
k=l 

A series may sometimes be written more conveniently as 

00 
2::: a and 

n=O n 

n 
s = ao + al + 0"" + a = 2::: ak, n n 

k=O 

Theorem l. 24. Let 

00 00 

a = 2::: a and b = 2::: b 
n=l 

n 
n=l 

n 

1n E, Then for any a,(3 E E, 

00 00 00 

2::: (aa + f3 b ) = 
n=l n n 

a2:::a +(3 2:::b. 
n= 1 n n= I n 



Theorem 1. 25. Let a > 0 for all n E I+. 
n-

verges if and only if {s } is bounded above. 
n 

00 

Then l: a con­
n= l n 

8 

Theorem 1. 26. Let {a } and {b } be sequences in E such that 
n n 

+ 00 
a = bn+l - bn for all n E I . Then l: a converges if and only if 

n n= 1 n 

limb = b e E. In this case, 
n 

00 

l: a 
n 

n=l 

co 

=limb 
n 

Theorem L 2 7. l: a converges if and only if for every e > 0 
n=l n 

there exists NE I+ such that n > N implies I a +l + ... + a I < e for 
n n+p 

+ each p e I . 

Definition 1. 28. If a > 0 for all n E I+, the series 
n 

1s called an alternating series. 

Theorem I. 29. If {a } is a decreasing sequence converging to 
n 

0, the alternating series 

converges. 

Notice that in the case of the series 

co 
l: (-It+l 1/n 

n=l 

the sequence of partial sums is the sequence {s } = {l, -1/2, 1/3, ... } 
n 

and 
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(X) 

I: (-lt+l 1/n 
n:: 1 

converges by Theorem l. 29. However 

(X) 

I: /(-l)n+l 1/n/ 
n::: l 

is the harmonic series which diverges. This concept is formalized in 

the next definition. 

00 
if I: 

n== l 

Definition 1, 3 0. 

/a / converges. 
n 

(X) 

converges but I: / a / 
n:: l n 

Theorem l. 31. 

vergence. 

(X) 

A series I: a is called absolutely donvergent 
n:: 1 n 

(X) 

It is called conditionally convergent if I: a 
n== 1 n 

diverges. 

(X) 

Absolute convergence of I: a implies con­
n== 1 n 

The following topics will be used m Chapter IV. 

Definition 1. 32. Let z
0 

e E and let an e E for n e I+ U { O}. 

Then the infinite series 

or more briefly 

is called a power series 1n z - z
0

, 

Theorem 1. 3 3. Let 



n 
be a power series and let \ = lim ~' r = 1 /\, (where r = O if 

n 

10 

\ = + oo and r = + oo if\= 0). Then the series converges absolutely if 

jz - z
0

j <rand diverges if jz - z
0

/ > r. 

The material included in this section is not exhaustive of the 

topics to be considered concerning convergence of sequences and series, 

but should suffice as a background for what is to follow. Additional 

material and proofs of theorems included here may be found in many 

books, for example [2 ], [7 ], and [ 10]. 



CHAPTER II 

S UMMABlLlIDxf' 1ME1'ilJHODS: ' 

The objective of this chapter is to consider methods of assigning 

a number to sequences which are divergent. One method, which would 

c;ertainly make this investigation a short one, would be to assign each 

sequence in E the number 0. This would not produce many interesting 

results. One consideration to be kept in mind is that a worthwhile 

method of assigning a number to a sequence should not cause a conver-

gent sequence to diverge. In other words, a desirable method should 

preserve the property of convergence when applied to convergent 

sequences. { 
l 2.n 

If it has become customary to assign the sequence 1+2 } 

the number 1, it might be desirable to continue the custom. Thus a 

desirable summability method might be required to assign convergent 

sequences their usual limits. Some definitions and the ore ms to formal-

ize these concepts and some examples of summability methods follow. 

Again let E represent the set of complex numbers, R the set of 

real numbers. Let s represent the set of sequences in E, c the set of 

convergent sequences in E, and F [(O, oo)] the set of complex functions 

defined on (0, oo) C R. 

Definition 2. 1. Let {f (x)} be a sequence of functions rn 
n 

F[(O, oo)] and let {z } be a sequence of complex numbers. If 
n 

00 

g(x) = 2::: f (i:)z 
n=l n n 

11 
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belongs to F[(O, oo)] and if lim g(x) = t ,:f. oo, then {f (x)} will be called 
X-> (X) n 

a sequence -to-function,;i;um.mabHii:ty: method (or transformation), and 

{ z } will be said to be in the domain of {f (x)}. 
n n 

The sequence-to-function transformation {f (x)} operates on the 
n . 

sequence { z } in a way suggested by the inner product of vectors. One 
n 

would define an inner product of vectors in an infinite dimensional 

vector space to be the infinite series used to define g(x). For example, 

let{z} = {1,0,1,0,1,0,, .. } and let 
n 

{ } { x n} 
fn(x) = ( 3x+l ) ' 

Example 2. 2. 

{ix~! ' 2 

(3x: 1) ' 
3 

(3x:l) ' 

x x . x 3 ( )2n-l 
g(x) = 3x+ 1 + ( 3x+ 1) + · ' · + 3x+ 1 + 

(X) 

= ~ 
n=l 

= g(x). 

(
_x ) 2n-l 
3x+l 

The formula for the sum of a geometric series can be used to write 

this in closed form as 

g(x) 
x 

= 3x+l 

Hence 

g(x) = 
2 

3x +x 
2 ' 8x +6x + 1 

and { z } is as signed the number lim g(x) = 3 / 8. If { f (x)} = {l /2n}, 
n x->oo n 
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a sequence of constant functions in F[(O, oo)], then 

Example 2. 3. 

1 
0 
1 

{t, 1 1 :n , ... } 0 00 
21 - 2n 

4 ' 8' .. 0 .. j 1 = g(x) = ~ 

0 n=l 

In this instance 

g(x) = 1/2 C-~ 14 ) = 1/2(4/3) = 2/3, 

and {z } is assigned the number lim g(x) = 
n 2 /3. Notice that the 

x->oo 

sequence 

{(3x:r} 
and the sequence {z~} assign the divergent sequence { !, 0, !, 0, !, 0, ... ) 

two different limits, 3/8 and 2/3 respectively. This is an indication 

of the variety which exists when different summability methods are 

applied. 

It is quite possible that a particular sequence {f (x)} will not 
n 

transform a sequence to a function g(x) e F[(O, oo)] . Consider the 

sequence 

{f (x)} = {(x~~r} n 

Here 

00 ( ~) 2n-l 
g(x) = ~ 

n= 1 
x+l 



2x 
and for x > 1, x+l > 1 so that 

00 

1:: 
n=l 

14 

(
~) Zn~l 
x+l 

diverges and g(x) is not defined. Thus in Definition 2. 1 the statement 

that g(x) belongs to F[(O, oo)] is not satisfied. In general it is necessary 

to assume, whenever the expression 

00 

g(x) = 1:: f (x)z 
n=l n n 

appears, that {z } is in the domain of {f (x)} and that g(x) is a function 
n n 

in F[(O, oo)J. Care must therefore be exercised in the application of 

the definitions and theorems in each particular case. 

A case of particular importance arises when the functions 

{fk(x)} in Definition 2. 1 are step functions. That is, when fk(x) is 

constant on each interval (n-1, n]. Consider the function values at the 

right-hand endpoints n. Since the sequence {n} = { 1, 2, 3, ... , n, ... } 

is an element of s, the symbol {fk(n)} represents a sequence of 

sequences. That is, the continuous variable x is replaced by the 

discrete variable n and the set of function values 

can be arranged in the rectangular array of an infinite matrix. As 

usual, n denotes the row subscript and k denotes the column subscript. 

Definition 2. 4. Let (ank) be an infinite matrix of complex 

· numbers and let {z } be a sequence of complex numbers. If 
n 

{z' } = 
n 
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belongs to s, then (a k) will be called a sequence -to -sequence summa ~ n - -~~-- ----

bility method (or transformation), and {zn} will be said to be in the 

domain of (ank), 

A summability matrix transforms sequences in the same way 

matrices transform vectors in a linear space. For example, let 

{z} = {l,0,1,0,1,0, ... } and let (a k) = (1/(n+l)k) so that 
n n 

Example 2. 5. 

1/2 

1 /3 

1/4 

(a k){z } = n n 

1/n+l 

1/4 

1/9 

1 /16 

1/8 

l/27 

1/64 

l/(n+l)
2 

l/(n+l)
3 

00 co 

k 
1/(n+l) ... 

co 

l 

0 

1 

0 

1 

0 

{]] 1 l l 1 
= 2k~l' 

:z:; 
Zk~l' 

:z:; 
4 

2k- l '· • ·' :z:; · Zk-1 
2 k= I 3 k= 1 k=l (n+l) 

2 3 4 n+l ... } = { 3' 8 'Ts'' Q Q O j) n(n+2) 9 

= { z' } and lim z 1 = 0. 
n n 

If (a k) is the infinite matrix where a 
2 1 

= I and a .. = 0 
n n, n - lJ 

otherwise, and if {zn} = { 1., 0, 1, 0, 1, 0, ... }, then 

00} 
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Example 20 6, 

1 0 0 0 0 1 

0 0 I 0 0 0 

0 0 0 0 1 1 

(a k)(z ) = n n 0 

1 

0 

so that {z~} = { 1, 1, 1, 0 •• } and lim z'n = L Notice that these matrices 

respectively assign the limits O and 1 to {l, 0, 1, 0, 1, 0, 0 0.}, so that 

variety is still possible when infinite matrices instead of sequences of 

functions are used to transform diver gent sequences. 

There are situations where a particular infinite matrix cannot 
00 

transform a particular sequence since ~ a kz may be a divergent 
k=l n n 

series. Consider the matrix (ank) where ank = 1 for n, k e I+ and the 

sequence {z } 1 {l, 0, 1, 0, l, 0, 0 0. }. In this case each series n , 
00 

~ ankzn is divergenL Again it wiH be necessary to assume whenever 
k=l 
{ z i } is written as 

n 

{z } are such that 
n 

00 

{ ~ a kz } that the matrix (a k) and the 
k= 1 n n oo n 

each series ~ a kz is convergent, and 
k=l n n 

sequence 

to use 

caution in applying definitions and theorems to particular sequences 

and matrices. 

The lemmas which follow are required for the proof of a f~nda-

mental theorem concerning summability methods. It will become 

evident that the proof is not short or easy. Shorter proofs using the 

methods of functional analysis are given in [11] and [13]. 
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Lemma 2. 7, Let {f (x)} be a sequence of functions in F[(O, oo)] 
n 

+ such that lim f (x) = a f. oo for every n e I , ,: Then if there exists an 
x-+oo n n 

x
0 

E (0, oo) and there exists Me (0, oo) such that 

00 

00 

;[; 

n=l 
!f(x)i<M 

n 

for all x > x
0 

> 0, then ;[; a is absolutely conve rgenL 
n= 1 n 

Proof: lim f (x) = a -f. oo for all n e I+ implies that for every 
x-+oo n n 

positive number e and each integer p e I+ there exists x, depending on 

n, written x(n) > 0 such that if x > x(n) then / a - f (x) / < e/p, Since 
n n 

la I - /f (x)I < /a -f (x)/ <e/p, it follows that la I< /f (x)I +e/p n n - n n n n 

whenever x > x(n), 

Now 

00 

;[; 

n=l 
/f(x)l<M n 

for all x > x
0 

> 0 implies that 

p 
;[; 

n=l 
1£ (x) / < M n 

+ + for every integer p e I whenever x > x
0

. Given any p e I , 

p p 
2: /a I< 2: (/£ (x)/ + e/p) 

n= l n n= l n 

for x > max {x(l).,,, ,x(p)}. or 

p 
2: la /<M+e 

n= I n 

for x > max {x
0

, x( l ). , , , , x(p)}, Thus for each p e r+, 
p 
2: /an/ :::_ M + e' 

n=l 
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00 

and the sequence of partial sums of ~ 
n=l 

/a I n 
is bounded. This proves 

the lemma. 

The next lemma concerns the behavior of a divergent sequence. 

00 
Lemma 2. 8. If ~ / u / is divergent, then there exists a 

n= 1 n 

sequence { z } in E where lim z = 0 and 
n n 

1s not bounded. 

since 

ic/> 

Proof: Let un :::: / un I e n and choose a real number r > l. Then 

00 + 
~ / u / is divergent there exists p

0 
e I such that 

n= l n 

Po 
~ 

n= l 
/u I > r. n 

2 + 
Now r > l implies r > r > l and there exists p

1 
E I such that 

lu I> n 

2 
r . 

3 2 + 
Similarl.y we have r > r > r > 1 and there exists Pz e I such that 

lu I> n 
3 

r ' 

Let -ir.Dn 
z = e for l .'.'.::. n .'.'.::. Po, n 

~ir,6 e n 
for :::: Po < n .'.'.::. P1 • r 

-ic/> 
e n 

= -2- for P1 < n .::_ Pz, ... 
r 



Note that lim z = 0 and that 
n 

oo Po 
~ u z = ~ 

n= 1 n n n= l 

>r+r+r+ 

and the lemma is proved. 

.... ' 

lu I+ l/r2 
n lu I + 0 •• n 

The following lemma discuss es the pr ope rtie s of an infinite 

matrix whose rows and columns obey certain conditions. 

Lemma 20 9. Let (snk), n, k e I+ be an infinite matrix of real 

numbers and let lim s k = bk for all k E I+ 0 If 
n ..... oo n 

+ for every n e I , then the sequence 

s 
n 

{ ~ Is kl} 
k=l n 

+ is bounded £or each fixed p E I . 

Proof: The matrix is exhibited in Figure 2. IO 

s 11 8
12 s 13 ·C; 

~lp ~ Is rk ! 
8

21 
8 22 8

23 s2p ~ ls2kl 
8

31 
8

32 
8

33 s3p ~ I s3k I 
s s 

n2 
s 

n3 
s ~ /snk! nl np 

t 
b 

p 

Figure 2 0 l. 

= s 
l 

= sz 

= s3 

= s 
n 

19 



The hypothesis that lim s k = bk justifies the appearance of 
n-->oo n 

20 

column limits in the diagram. Further, lim s k = bk implies that for 
n ... m n 

+ every positive number e and for each fixed integer p e I there exists 

N(p) e I+ such that if n > N(p) then I snk ~ bk I < e/p. Hence 

I snk I < lbk I + e /p and 

In Figure 2. l this states that partial sums along the nth row are 

,bounded by partial sums of the column limits for rows sufficiently far 

down in the array. 

Now let us consider the rows above the (N+l)st row and the 

columns through the pth column. In this rectangular array in the 

upper left-hand corner of the diagram, 

so that 

~ Is I< ~ p . ( p 

k= 1 nk k= l 

N 
~ 

n=l 

where l is added to insure strict inequality. Therefore the partial 

row sums above the (N+l )st row are still bounded by the sum of the 

elements in then Xp rectangular array in the upper left-hand corner 

of the diagram plus one. 

Suppose that 

+ is not bounded for some fixed p E I , then for each M > 0 there exists 

j e I+ such that 



Let 

p 
~ jsJ.k! > M. 

k=l 

Mc max h /bk/ 
G=l 

+ e, 
N 
~ 

n=l 

Now if j > N, then 

and if 1 ~j ~N, then 

p 

< ( ~ N 

/snk/) + I :',M ~ is.kl ~ 

k=l J k=l n= l 

which is a contradiction. Hence for each fixed p E I+ there exists 

M > 0 such that 
p 

+ for all n E I . 

In the case that 

{ ; is kll 
k=l n J 

is not a bounded sequence, the next lemma exhibits a convergent 

sequence {xk} such that the transform of {xk} by (snk) diverges. 

Lemma 2. l 0, If 

21 

for all n e I+ and {sn} is not bounded, then there exists a sequence {xk} 

such that lxkl ~ 1 fork.er\ Um xk = 0, and 



{x'} = [; s x } 
n l k= 1 nk k 

has a subsequence {x'n_.} which diverges. 
1 

22 

Proof: If {s } is not bounded then for every r > I there exists 
n 

n
1 

and q
1 

in I+ such that 

Otherwise, 

q 
I 
~ 

k=l 

2 
r . 

2 < r 

for every q
1 

and n
1 

E I+ would imply that sn
1 

< r
2 

for all n
1 

E I+, so 

that { s } is bounded, contrary to hypothesis. 
n 

Let e > 0, then there exists N E I+ such that 

whenever m > N. Hence 

whenever m > N. Now 

implies that 

I sn ~ 1;? / s k I I < e 
k=r n I 

m 
s 

n - ~ /s kl < e 
k=l n 

00 

~ 

k=l 

00 

s 
n 

~ I snk I < e 
k=m+l 

whenever m > N. Thus there exists an integer p
1 
~ q

1 
such that 



co 
~ Is k/<eo 

k=p
1 
+l n 1 

Now the first p
1 

terms of {xk} may be defined as follows, 

= 

= 

x = 
P1 

Notice that 

and that 

/snlpl/ 

rs 
nlpl 

if s l -/:- 0, x I = 0 if 
nl 

if s 
2 

i 0, 
nl 

if s 
nlpl 

j 0, x = 0 
P1 

/sulk/ 

=L 
if s k>O 

nl 
s 

n
1

k 
if s k < 0 

nl 

if s 
nlpl 

/ snl k / 
for l~k~p 1o s x = n

1
k k r 

= Oo 

Now consider the transform of the first p
1 

terms of {xk} by the n 1st 

row of (snk), 

Also 

P1 
I 

~ /s k/>ro 
r k= l nl 

23 



if sn
1

k-/:. 0 and lxk/ = 0 ifsn
1

k = 0 so that /xk/ < 1 for l .:::_k.:::_pl" 

With the assumption that it will be possible to define {xk} so that 

jxkj < 1 for every k e r\ let 

Now 

00 

~ Is kl < e 
k=p

1 
+ 1 n 1 

and 

so that 

Consider the following diagram. 

8 
11 

8
12 813 8 

lql 
s 

lpl 
s 

Iq2 
s 

Ipz 

'
8 21 8

22 
8

23 82 s 8 s 
ql 2pl 2q2 2p2 

8
31 

8
32 

8
33 

s s s s3 3ql 3pl 3q2 Pz 

8 
n 

1
1 

s 
n? 

s n
1

3 · · · s ... s s s 
nlql nlpl nlql nlp2 

s 
nzl 

8 
n

2
2 s n

2
3 · · · s s s s 

n2ql n2P1 n2q2 n2Pz 

2.4 
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The subscripts n
1 

and p
1 

have been used to define the first p
1 

terms of 

{xk} and the first term x' of a subsequence of 
nl 

Now choose the distinguished subscripts n
2 

> n
1 

and q_
2 

> q
1 

such that 

q2 

_!_2 ~ I s k I > M + r2' 
k 1 n2 P 1 r =pl+ 

where M is the upper bound for 
P1 

which is provided for in Lemma 2. 9. Next choose the subscript 

Pz ::::_ q 2 such that 

00 

~ Is kl<e 
k=pz+l n2 

Now define xk for p 1 < k .:::_ Pz as follows: 

x = 
Pz 

Again notiGe that 

if s t- 0, 
nzPz 

x = 0 if 
Pz 

s = 0 • 
nzPz 



for p 
1 

< k ~ p 
2 

, and that 

= _l_ < 1 
2 

r 

for p 1 < k ~ Pz· The transform of the first Pz terms of {xk} by the 

n 2 th row of (snk) is 

Again assume that lxkl < 1 for all k EI+ and define 

Now 

P1 Pz 
.!.. "" + l "" 

£..../ snzkxk -2 £..../ 

r k=l r · k=p
1

+1 

> 
Pz 

_l_ ~ 
2 

r k=p 1+1 
Is k I n2 

Thus since /xkl < l for l ~k~p 1 , 

and 

2 
orlx' l>r -e. 

nz 

P1 
l ~ s x < M 
r k= l n 2k k p 1 

- e 

- e, 

- e. 

26 
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Continuing in this fashion, for each k e I+ there exists n e I+ 

such that I xk I < r -n and lim xk = 0. In addition for each i and each k 

in I+ there exists n. in I+ such that /x1n I > rk. Thus {x 1 
} diverges 

i i - ni 

and the lemma is proved. 

To illustrate Lemma 2 1 10, consider the infinite matrix (snk) 

k 
where s lk = l /2 and 

- (n-l)k-1 
snk - n 

for n > l, as in the diagram below. 

l /2 

1 

1 

1 

l 

l / 4 

1/2 

2/3 

n-1 
n 

1 

1/8 

1/4 

4/9 

1 

l/2k L Is ik I 

l/2k-l L I s2k I 
(2/3)k-l L I s3k I 

~ )

k-1 
n-1 

n 

1 

Let r = 2 so that integers n
1 

and q
1 

must be found so that 

ql 

If n 
1 

= 8 and q 
1 

= 6 then 

6 
L (7 /8t-l = 

k=l 

L Is k I > 4. 
k= 1 nl 

l -(7 /8)
6 

= 
1-7/8 (

'144, 495) 8 262, 144 > 4 · 4 , 

= 1 

= 2 

= 3 

00 
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using the formula for the sum of n terms of a geometric progression. 

Following the pattern of Lemma 2. 10, let e =l so there must be an 

integer p
1 

:::._ q
1 

= 6 so that 

00 

~ (7 /St-I < 1. 
k=p1+1 

If p 1 = 20 then 

~ (7/st-i= s -7 >7.4 
20 ( 20 20) 

k=l s 19 

and 

00 

~ (7 /8)k-l < . 6 < L 
k=21 

This means that xk = 1 /2 for 1 .:::_ k .:::_ 2 0, and that 

x 1 =l/2(7.4)+.6=4.3>r-e=2-l=l. 
nl 

In the next part of the lemma, n
2 

and q
2 

must be chosen so 

that n
2 

> 8 and q
2 

> 20 and at the same time 

or 
q2 (n -1 )k- l 
~ 2 

> 4 M 2 O + 16 . 
k=2 l n2 

Note that M
20

, which is the maximum term of 

is less than or equal to 20. Hen,_ce n
2 

and q
2 

must be such that 

Jtz:/ rl > 96. 



Now 

20 (l 24)k- l 
~ 125 < 20 , 

k= 1 

so let n 2 = 125 and let q
2 

= 340. Thus 

\~ 0 ( 12 4) k - 1 - 1 0 0 
k=21 125 

and p
2 

::_ 340 can be chosen so that 

00 (124)k-l 
~ \125 < 1. 

k=p2+1 

This gives xk = 1 /4, 20 < k :::_ p
2 

and 

/x' />20+4-20-1 
n2 

2 
=2 -e=3. 

Continuing in this fashion, lim xk = 0 and { / x~. /} is not bounded. 
1 

Now the conditions under which a summability transformation 

29 

will transform convergent sequences into convergent sequences can be 

examined. 

Definition 2. 11. Let f (x) be a sequence-to-function summa­
n 

bility method. If 

00 

g(x) = ~ f (x)z 
n=l n n 

belongs to F[(O, oo)] and if lim g(x) = t f. oo for every convergent 
x-100 
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sequence {z } in E, then {f (x)} is a conservative sequence-to-function 
n n 

s umma b ili ty method. In this case {f (x)} will also be called a Kojima 
n 

sequence or a K-sequence. 

The following theorem 1 which gives necessary and sufficient 

conditions that a sequence {f (x)} should be conservative, was proved 
n 

by Kojima in 1917 and extended by Schur in 1918. Its present form is 

the result of further extension and refinement by Agnew, Cooke, Hardy, 

and others. 

Theorem 2. 12. (Kojima~Schur) Let{£ (x)} be a sequence-to­
n 

function summability method. Then { f (x)} is a K ~sequence if and only 
n 

if: 

i) there exists x
0 

e (0, oo) and there exists Me (0, oo) such that 

00 

ii) 

2:: /fn(x)/ .:::_M, forallx>x
0

>0, 
n=l 

lim f (x) 
n x-+oo 

00 

= a I- oo for all n e 1+, 
n 

iii) 2:: f (x) = f(x) and lim f(x) = a I- oo. 
n= l n x -+oo 

In this case 

lim 
x-oo 

where lim z = z. 
n 

g(x) = lim 
x-oo 

00 

2:: f (x)z 
n=l n n 

00 

= az + 2:: a (z - z) 
n=l n n 

Proof: a) The three conditions are sufficient. 

Let {z } be a convergent sequence, that is, let lim z = z. This 
n n 

means that for all positive real numbers Mand e, there exists N 
1 

e I+ 

such that / zn - z I < e/3M whenever n > N 
1

. Let 
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k = max { j zn - z j : 1 :::_ n :::_ N 
1
}, 

00 

From conditions i and ii, and Lemma 2. 7, ~ a 1s absolutely 
n=l n 

convergent, Hence, there exists an integer N
2 

such that 

/a I :::_M, n 

for every positive number M. 

Choose N = max {N 1, N2 } and consider / fn (x)- an j, where 

1 < n < N. + From condition ii, there exists x 1 e R such that 

whenever x > x 1
• Hence 

for x > x 1 • 

These bounds for I zn - z /, 1 :::_ n :::_ N 
1

; for 

and for 

N 
~ 

n=l 
If (x) - a I, n n 

x > x 1 will be used to show that 

00 

lim ~ f (x)( z - z) = 
n=l n n X--+ 00 

Condition i implies that 

co 
~ a (z ~ z). 

n=l n n 



co 
~ 

n=N+l 
If (x) I < M 

n 

whenever x > x
0 

> 0. Now let x = max {x
0

, x 1} and write 

co 
~ (£ (x)-a }(z -z) 

n=l n n n 

N oo 
= ~ (£ (x)-a }(z -z) + ~ (£ (x)-a )(z - z) 

n=l n n n n=N+l n n n 

< 

+ 

N co 
~ jf (x)-a llz -zl+ ~ jf (x}llz -zl 

n=l n n n n=N+l n n 

co 
~ 

n=N+l 
ja llz - zj. n n 

With N chosen, and with x > x, 

32 

co 
~ (£ (x)-a )(z - z) 

n= 1 n n n 
< 3 (k+ 1) (k+l}+M · 3~ +M· 3~ =e. 

Hence 

co co 
lim ~ f (x)(z -~ z) = ~ a (z - z), 

n= 1 n n n=l n n X-, 00 

and 

co co co 
lim ~ f (x)z - z 

n=l n n 
lim ~ f (x) = ~ a (z - z). 

n= 1 n n= 1 n n x- co x--, co 

Condition iii implies that 

lim 
x-co 

since 

co co 
~ f (x)z - za = ~ a (z - z), 

n= 1 n n n= 1 n n 

lim 
x --,co 

co 
~ 

n=l 
f (x) = a. 
n 



Now if 

converges, then 

00 

L a (z - z) 
n=l n n 

00 

lim L f (x)z 
n=l n n x-+oo 

will exist as a finite number in E. Now 

00 

co 
L 

n=l 
Ja l=t-loo n 

33 

since L a is absolutely convergent and J z J < r -I oo since lim z = z, 
n=l n n n 

Also I zn - z I .:::_ j zn J + I z J < r + J z J, and therefore, 

so thc1,t 

00 

L 
n=l 

I a 11 z - z I n n 

00 

< L 
n=l 

la j(r+ lzl) = (r+ lzf)t, 
n 

00 

L 
n=l 

a (z - z) 
n n 

is absolutely convergent, Thus 

is convergent and 

00 

lirrt L f (x)z 
n= 1 n n x-+m 

a finite number in E, 

00 

L 
n= 1 

a (z ~ z) 
n n 

= lim g(x) = 
x--+oo 

00 

az + L a (z - z ), 
n=l n n 

This proves that 1, ii, and 111 are sufficienL 

b) The three conditions are necessary, 
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Lemma 2. 10 will help to show that condition i is necessary. 

Suppose condition i is not satisfied. That is, suppose that given 

x e (0, oo) and given Me (0, oo) there. exists x
0 

> x such that 

00 

:E I fn(xo) I > M. 
n=l 

Let.£ (x) = u (x) + iv (x), where u (x) and v (x) are re.al. Then there n n n n n 

exists a sequence { y } such that limy = x
0 

and there exist sequences 
. n n 

{ s } = ) ; I uk ( y ) IL and 
n lk=l n j { t } = f; I vk(y ) 1} 

n lk=l n 

such that for every M > 0, either lim s > Mor lim t > M. Suppose 
n n 

that for every M > 0, lim sn >Mand write snk = uk(yn), so that 

s 
n 

Lemma 2. 10 shows that there exists a sequence {xk} which converges 

to zero, but the sequence 

has a subsequence {x'n.} which diverges. This means that if condition 
1 

i is not satisfied then there is at least one convergent sequence which 

is transformed by {f (x)} into a divergent sequence. Thus condition i 
n 

is necessary. 

For the second condition, let z = 0, n f. p and let z = 1 if n = p. 
n n 

Then lim z · = 0 and g(x) = f (x) $0 that lim i (x) = a f. oo for all 
n p x .... 00 n n 

·+ n E I is necessary for lim g(x) = z
0 

f. oo. 
x-+oo 
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In the case of condition iii, let z = 1, n e I+ so that lim z = 1. 
n n 

Then 

CD 
g(x) = ~ f (x), 

n=l n 

and therefore, 

CD 
~ f (x) = f(x), 

n=l n 

where lim f(x) = a I- oo, is necessary for lim g(x) = z
0 

I- CD. 
x-oo x-CD 

This proves the the or em. 

Example 2. 13: An example of a K-sequence is the sequence 

{ { [ -x 2 2] -1 f(x)}= (e +l) +n }. 
n 

Here 

and it can be shown that 

CD 
~ 

n=l 
/£ (x)/ = 'IT -x 1 

coth rr(e +l) -
n 

Thus, 

and 

for x e (0, CD). Also 

CD 
~ 

n=l 
If (x) / < ~ c oth 2,r -

1 
n - 2 8' 

00 

~ 

n=l 
/ f (x) / < M 

n 

[ -x 2 2] -1 
lim f (x) = lim ( e + l) + n 

n 
x-CD x-CD 

for all n e I+. 

2(e-x+l) 2 



Last, 

lim ~ f (x) = lim 'TT coth [ ,r( e -x + 1)] 

x ..... oo n= 1 n x ..... oo 2 ( e -x + 1) 

1 

'TT 1 = z coth 'IT - z 

This means that if lim z = z then 
n 

lim g(x) = lim r ¥- coth 'TT - -}] z 
x .... oo x-100L 

Let 

so that lim z = 0 and 
n 

2 
{z } = { .!±~} 

n Zn 

lim g(x) = 
X_,00 

00 
~ 

1 

n= 1 Zn 
= 1. 

00 z -z 
+ ~ n 

n= 1 1 +n2 . 

36 

Example 2. 14, AK-sequence which transforms every conver-

gent sequence into a sequence which has the limit zero is the sequence 

Here 

(X) 

~ 

n=l 
I£ (x) I n 

{fn (x)} = { 2 
1 

2 2} · 
x +4n n 

00 
= ~ 

n=l 

1 
2+4 2 2 x n 'TT 

from results in the theory of functions of a complex variable, and 

whenever x > 10 > 0. 

00 
I ( 4 I ) ~ / fn (x) / ~ 20 To + IO 

n= 1 e - I 

In this example, lim f (x) 
X_,00 n 

+ = 0 for all n e I and 



q:> 
lim ·~ f (x) = 0. 

n=l n 

Hence 

x ..... (X) 

(X) 

lim g(x) = lim [Oz + ~ 
x->oo x-+oo n=l 

for every convergent sequence {z }. 
n 

O(z - z)] = 0 
n 

37 

Now that the notion of K-sequence has been characterized, the 

same scrutiny can be applied to infinite matrices. The next definition 

and theorem will do this. 

Definition 2. 15. Let (ank) be a sequence-to-sequence summa-

bility method. If every convergent sequence { z } in E is in the domain 
n 

of (ank), and if 

lim z 1 = 
n 

lim 
n ..... oo 

t =f. (X)' 

then (a nk) is a conservative sequence -to -sequence summability method. 

In this case (ank) will also be called a Kojima matrix or a K-matrix. 

Theorem 2. 16. Let (ank) be a sequence-to-sequence summa-

bility method. Then (ank) is a K-matrix if and only if: 

i) there exists n
0 

1: I+ and there exists Me (0, oo) such that 

ii) 

00 ' + 
n:l Jank/< M for every n > n 0 > 0, ne I, 

lim a k = bk =f. oo for every fixed k e I+, 
n->oo n 

00 

iii) ~ a k = r 
k=l n n 

and lim r = a =f. oo. 
n 

In this case 

lim z 1 = lim 
n n ..... oo 

00 00 

~ ankzk = az + ~ bk(zk - z) 
k= I k= 1 



where lim z = z. 
n 

Proof: Let n, k e I+ and for n - 1 < x ~ n define fk(x) = ank" 

This means that the rows of (ank) correspond to a sequence of step 

functions in F[(O, oo)J. Thus condition i holds if and only if 

for every x > n
0

. Next, condition ii holds if and only if 

x-> (X) n ->oo 

+ for every k e I . Lastly, condition iii holds if and only if 

(X) 

~ 

k= I 
a = r 

nk n 

and lim r = a f: oo. Thus Theorem 2, 16 is a special case of the 
n 

Kojima- Schur theorem. This means that 

(X) 

lim ~ fk(x)zk = lim 
x _, oo k= 1 n ..... oo 

(X) 

~ a , zk 
k= 1 UK 

00 

= az + ~ bk(zk- z) 
k=l 

= lim z 1 

n 

whenever lim z = z, and the theorem is proved. 
n 

Example 2. 17. The matrix 

(a ) = (~) 
nk nZk 

is an example of a K-matrix, since 

38 
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3n-l 
<4 

n 

+ 
for all n e I and since lim (3n-l)/n = 3. Also, 

lim 
3n-l 3 

= 
n2k 2k n-'>OO 

for all n E I+. Here the characteristic numbers are ak = 3 /2k and 

a= 3. In this case the transform of a constant sequence will converge 

to three times the constant. The sequence {z} = {l,O,l,0,1,0, . .,} 
n 

2(3n-l) . 
is transformed by (ank) into the sequence { 3n } which converges 

to 2. 

Example 2. 18. The matrix (ank) = 2-k is a K-matrix because 

00 

~ 2 -k = 1 
k=l 

for all n e I+, and lim 1 = 1. Here lim 2-k = 2-k, and the character­
n .... oo 

-k 
istic numbers of (ank) are ak = 2 and a= 1. The sequence 

{z} ={l,O,l,0,1,0, ... } is transformed into the sequence 
n 

{2/3, 2/3, 2/3, .. ,}, a constant sequence with limit 2/3. 

Notice that Theorem 2. 16 and Theorem 2. 12 not only charac -

terize K-matrices and K-sequences, but they also state the relation-

ship between lim z if { z } e c and lim z 1 where {z 1 
} is the transform 

n n n n 

of { z } . The numbers a and a in Theorem 2. 12 and the numbers a 
n n 

and bk in Theorem 2. 16 are called respectively the characteristic 

numbers of the K-sequence {f (x)} or the characteristic numbers of 
n 

the K··matrix (ank) because of their role in determining the value of 

the transformed sequence. 
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The next definitions and theorems are concerned with sequences 

{fn(x)} and matrices (ank) which assign convergent sequences their 

usual limits. 

Definition 2. 19. Let {f (x)} be a sequence-to-function summa­
n 

bility method. If every convergent sequence {z } in E is the domain 
n 

of {f (x)} and if 
n 

00 

lim g(x) = lim 
X ... CD X ... 00 

L f (x)z = z 
n=l n n 

whenever lim z = z, then {f (x)} is a regular sequence-to-function 
n n 

summability method. In this case {fn (x)} will also be called a Toeplitz 

sequence or a T-sequence. 

The following theorem concerning T-s equences was first proved 

by Toeplitz in 1911, extended by Silverman in 1913 and by Schur in 

1920. 

Theorem 2, 20. (Toeplitz-Silverman) Let {f (x)} be a sequence­
n 

to-function summability method. Then { f (x)} is a T-s equence if and 
n 

only if: 

i.) there exists x
0 

E (0, oo) and there exists M E (0, oo) such that 
00 

n:l ifn(x) I .:::, M, for all x > x 0 > O, 

ii) lim f (x) = 0 for all n E I+, 
X ... 00 n 

00 

iii) L f (x) = f(x) and lim f (x) = 1. 
n=l n x ... oo 

In this case 
00 

lim g(x) = lim 
X_,CD X--,00 

L f (x)z = z 
n=l n n 



whenever lim z = z I: oo. 
n 
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P:i;oof: a) i, ii, and 111 are sufficient. Let a = 1 and a = 0 m 
n 

Theorem 2. 12 so that 

00 

lim g(x) = lz + ~ O(z - z) = z. 
n=l n X->OO 

b) i, ii, and iii are necessary. Since every T-sequence is a 

K-sequence, and condition i is necessary for {£ (x)} to be a K­
n 

sequence, then condition i is necessary for {f (x)} to be a T~sequence. 
n 

Let z = 0 ifn I: p and let z = 2. In this case lim z = 0 and 
n p n 

00 

~ f (x)z = 2£ (x), 
n= 1 n n p 

This will. be zero only if lim f (x) = 0. Hence condition ii is necessary. 
X->00 p 

Let z = 1 for all n e I+. In this case lim z = 1 and 
n n 

00 00 

~ f (x)z 
n=l n n 

= ~ f (x). 
n=l n 

This will be one only if condition iii is satisfied, This proves the 

theorem. 

Example 2. 21. The Mittag .,Leffler sequences are a collection 

of T-sequences where 

{£ (x)} = {g(n) xn-llI 
n E(x) 

such that g(n) ~ 0, g(n) > 0 for infinitely many integers n e /, and 

E(z) 
00 

n·· I = ~ g(n)z 
n=l 



is an entire function. That is, E(z) is analytic rn the finite complex 

plane. Now 

so that 

Also 

Now 

so 

1im 
x-+.~ 

00 

z:: 
n=l 

If (x) I = n 

00 

z:: 
n=l 

n-1 
g(n)x 

E(x) 

lim 
x->oo 

lim f (x) 
n 

x ->oo 

= 
1 

E(x) 

00 n-1 
Z:: g(n)x 

n=l 

1 
= E(x) · E(x) = 1, 

00 

Z:: f (x) = 1. 
n=l n 

n·-1 x = g(n), lim E(x) . 
x->oo 

= ( ; g(k)xk-n 
k=l 

n 
+-x­

n-1 
x 

00 k-1)-1 Z:: g(n+k)x 
k=l 

n-1 x . 
E(x) 

= (M + lim x: ~ g(n+k)xk·-l)-\ O 
x _, oo k= 1 

since g(n) > 0 for infinitely many n E I+. 

Example 2. 22. A particular Mittag-Leffler sequence is the 

Borel sequence, 

{f (x)} 
n 

For the Borel sequence, 
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(X) 

~ £ (x) 
n=l n 

Now 

lim £ (x) 
n x ->(X) 

Hence 

(X) 

= ~ 
n-1 

x 
x 

n= 1 e (n-1) ! 

= 
1 

lim 
(X) _(n-1) ! x ->(X) 
~ 

lim 
x ..... (X) 

(X) 

~ 

n=l 

k=l 

£ (x) = 1 
n 

1 
k-n+l = 

x 
(k-1 )! 

+ and lim £ (x) = 0 for all n e I . Consider the sequence 
X->(X) n 

{ z } = { 1, 0, 1, 0, 1, 0, ... } . Then 
n 

and 

(X) 

~ 

n=l 

(X) 

£ (x)z = ~ 
n n n= 1 ex(2n- l) ! 

= e -x sinh x 

lim 
-x 

e sinh x = 1/2. 
x .... (X) 

o. 

so that { 1, 0, 1, 0, 1, 0,.,.} is assigned the limit 1 /2 by the Borel 

sequence. 

Example 2. 23. If g(n) = (2n-2)! when n = 2k-l, and g(n) = 0 

when n = 2:k then 

Thus, 

oo 2n-2 
E(z) = ~ -,--,z=-----=-c~ 

n= 1 (2n-2 )! 
= cosh z. 

n-1 

{fn(x)} = { coshxx (2n-2)!} 

and if {u } = { 1, -(2), 4/2, -6/3, ... } then 
n 
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(X) 

Z: f (x)u 
n= I n n 

= I 
cosh x 

O'.) 

z: 
n=l 

(-xt- l 
= (n-1)! 

1 
cosh x 

I 
x 

e 
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so that lim g(x) = 0. Note that, for this choice of g(n), the sequence 
x ..... O'.) 

{f (x)} is quite powerful! 
n 

The next definition and theorem characterize T-matrices. 

Definition 2. 24. Let (ank) be a sequence-to-sequence summa-

bility method. If every convergent sequence {z } in E is in the domain 
n 

of (ank)' and if 

O'.) 

lim z 1 = lim Z: a kzk = z 
n n ...., oo k= 1 n 

whenever lim zn = z /. oo, then (ank) is a regular sequence-to-sequence 

summability method. In this case (ank) will be called a Toeplitz 

matrix or a T-matrix. 

Theorem 2. 25, Let (ank) be a sequence-to-sequence summa­

bility method. Then (ank) is a T-matrix if and only if: 

i) there exists n
0 

E I+ and there exists ME (0, m) such that 

~ /ankj .:::,Mforeveryn>n0 >0, ne 1+, 
n=l 

ii) lim ank = 0 for every fixed k E 1+, 
n .... oo 

(X) 

iii) Z: a k = r 
k=l n n 

and lim r = 1. 
n 

In this case 

lim z 1 = 
n 

where lim z = z. 
n 

lim 
n...., m 

(X) CQ 

Z: a kzk = 1 z + Z: 0 ( zk- z) = z 
k= I n k= 1 
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Proof: a) i, ii, and iii are sufficient. Let a = 1 and bk = 0 in 

Theorem 2. 16 so that 

lim z 1 

n 

co 
= 1 z + ~ O(zk - z) = z. 

k= 1 

b) i, ii, and iii are nec;essary. Since every T~matrix 

is a K-matrix, and condition i is necessary for (ank) to be a K-matrix, 

then condition i is necessary for (ank) to be a T-matrix. 

Let zk = 0 if k "f p and let zp = 'TT. Then 

Here lim z = 0 and 
n 

co 
~ a kzk = 7ra 

k=l n np 

co 
~ a kzk = 7ra 

k= 1 n np 

Now lim na 
np 

= 0 only if lim a 
n .... co np 

= 0. This means that condition ii 
n .... co 

is necessary. 

Now 

Let z = I for all n e I+ so that lim z = 1 and 
n n 

00 

~ a kzk = 
k=l n 

lim 
n .... co 

00 

~ a k' 
k= 1 n 

will be one only if condition 111 is satisfied, and the theorem is proved. 

Exam:ele 2. 26. An example of a T-matrix is the matrix (ank) 

where ank = 1 /n if k .:::_ n and ank = 0 if n < k. This matrix is called 

the matrix of arithmetic means. For this matrix, 
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n 
1 = 1 

for all n E I+ and lim a k = 
n-+oo n n-+oo n 

lim 
1 

= 0 for all k e I+. Hence its 

characteristic numbers are ak = 0 and a = 1. This matrix transforms 

{z } = {l, 0, l, 0, 1, 0, ... } into the sequence 
n 

1 2 1 2 1 
{l, 2' 3' 2' · .. ' 2k-l '2' · "} 

which has the limit 1 / 2. 

Example 2. 27. The matrices of Cesaro means of order r > 0 

are a family of T-matrices where 

a = nk 

if k < n and a k = 0 if n < k. - n 

rr(n+l)r(r+n-k) 
r (n-k+ 1 )r ( r+n+ 1) 

Here 

r (x) 

and r(n) 
+ =(n-l)!forneI. Note that rr(r) = r(r+l). Thus 

00 n 
rr(n+l) 

n 
r (r+n-k) 

lank! 
'.\'\ 

~ = ~ a = E 
k=O k=O . 

Consider 

1 

(l··Z)j+l 

and 

I 

(1-z)m+l 

nk r(rt.1'.i+J) k=O 

= ~ r(j+n+l) 
n=O r(j+l)r(n+l) 

r(n-k+l) 

n 
z ' 

= ~ r(m+n+l) zn 
n=O r(m+l) r(n+l) 



whenever j z I < 1. Then 

(1-z)j+l (1-z)m+l 
= 

CX) 
~ f'(m+j+n+2) zn 

n=O f'(m+j+2)f'(n+l) 
1 1 

h · f h ff' · f n - k k so t at 1 t e coe 1c1ents o z · z = 
n 

z are equated, 

n ( r(j+n-k+l) f'(m+k+l) ) f'(m+j+n+2) 
k:o f'(j+l)f'(n-k+l) · f'(m+l)f'(k+l) = r(m+j+2)f'(n+l) 

Now let m = 0 and let j = r-1, then for r > 0, 

n 
~ f'(r+n-k) f'(r+n+l) 

= k=O f'(r)f'(n-k+l) f'(r+l)f'(n+l) 

Hence, 

n 
r f'(n+l )f'(r+n-k) 

k:o f'(r+n+l)f'(n-k+l) 

and ak = 1 for all k E I+. It can be shown that 

= 1, 

n+ -ik: -n .J..2 q(n) 
f'(n+l)=n "'e 2rr e 

where lim nq(n) = 0. This means that 
n _., oo 

1. f'(r+l)f'(n+l)f'(r+n-k) 
im f'(r)r(n-·k+l)f'(r+n+l) 

n ->oo 

= r lim 
ll""'OO 

r(n+l)f'(r+n-k) 
r (n-k+ 1 )f'( r+n+ 1) 
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= r lim 
n...., oo 

n+i -n2 i q(n)( + k l)r+n-k-! -r-n+k+l 2 1a; q(r+n-k-1) n e rr e r n - - e 'IT"' e 

= re lim 
n...., oo 

( k)n-k+ ! -n+k 2 ! q(n-k) ( + )r+n+! -r-n2 ! q( r+n) n- e rr e r n e rr e 



= re lim 
n ->co 

= re lim 
n -+co 

= 0 
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(
~)n+! (r+n-k-l)n-k+i (r+n-k-1) r ( 1 ) 
r+n n-k r+n r+n-k-1 

(~ ~ )
n+! (1 + E.:...!-) n-k+! (1 - k+l )r ( 1 ) 

1 
n-k r+n r+n-k-1 

n 

for all k < n and for all r > 0, so that a= 0 and the Cesaro matrices of 

all orders r > 0 are T-matrices. If r = 1, then ank = 1/(n+l) if k ~ n 

and ank = 0 if n < k so that the sequence {zn} = {l, 0, 1, 0, 1, 0, ... } is 

transformed into the sequence { 1 /2, 1 /3, 1 /2, ... , 1 /2, k/(2k-l), ... } 

whose limit is 1 /2. 

For every sequence {x } in E there.is an associated infinite 
n 

co 
series k~l ck where c 1 = x 1 and ck= xk- xk-l if k > 1. Thus 
n co 
L ck = x , and { x } is the sequence of partial sums of L ck. This 

k= 1 n n k= 1 

means that the results on sequence -to -function transformations can be 

extended to theorems on series -to -function transformations. 

Definition 2. 28. + 
Let hk(x) e F[ (0, co)] for all k E I , and let 

co 
L ck be an infinite series of complex numbers such that 

k=l 

co 
g(x) = L hk(x)ck 

k= l 

belongs to F [(O, co)]. If lim g(x) = t f:. co, then {hk(x)} will be called 
x-+co oo 

a series -to-function summability method, and L ck will be said to be 
k= 1 

in the domain of {hk(x)}. 

Just as before, care must be exercised in the application of this 

definition to particular sequences {hk(x)} and to particular series 
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00 00 

~ ck since ~ hk(x)ck may not converge to a function in F [(O, oo)J. 
k= 1 k= 1 

Conservative and regular series -to -function transformations 

are defined in a manner analogous to that for conservative and regular 

sequence-to-function transformations. 

Definition 2.29. Let {hk(x)} be a series-to-function summa­

bility method. If 

00 

g(x) = ~ hk(x)ck 
k= 1 

belongs to F [(O, oo)] and if lim g(x) = t f. oo for every convergent series 
00 

x-->oo 

~ ck in E, then {hk(x)} is a conservative series -to-function summa­
k= 1 
bility method. In this case {hk(x)} will also be called a @ -sequence. 

Definition 2. 30. Let {hk(x)} be a series-to-function summa-

bility method, If 

00 

g(x) = ~ hk(x)ck 
k= 1 

00 

belongs to F[ (0, oo)] for every convergent series ~ ck = t m E 1, and 
k= 1 

if 

lim 
x-->oo 

00 

g(x) = ~ ck = t, 
k=l 

then {hk(x)} is a regular series -to-function summability method. In 

this case {hk(x)} will also be called a -y-sequence. 

The following lemma, first proved by R. Henstock, will be used 

in the proof of a theorem for series -to·-function transformations which 

is the analogue of Theorem 2. 12. 



Lemma 2.31. Let {gk(x)} be a sequence of functions in 
00 

F[ (0, oo)] such that for every convergent series ~ ck in E, there 
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k=l 
exists x 0 e R + such that ] 

1 
gk(x)ck converges for every fixed x > x

0 
> 0. 

Then there exists a real number M(x) for each fixed x > x
0 

> 0 such 

that I gk(x) I ~ M(x) whenever k e r+. 

Proof: Suppose the lemma is false, that is, suppose that for 

every r E I+ there is an x > x
0 

s.uch that {gk(x)} has a subsequence 

{gk (x)} where /gk (x)/ > r
2

. Let ck= 0 if k f. kr; let 
r r 

= 2 
r gk (x) 

r 

if gk (x) f. O; and let ck = 0 if gk (x) = 0. 
r r r 

Now 

00 00 

~ lckl < ~ 
k=l k=l 

00 

-2 
r 

which is a convergent series. Thus, 
00 

~ ck is absolutely convergent. 
k= 1 

Hence ~ ck is convergent, and 
k=l 

00 00 00 00 2 
~ g (x)c = ~ I gk(x) I > ~ I gk (x) I > ~ r 

k=l k k k=l r=l r r=l 

00 
Thus, ~ gk(x)ck is a divergent series. This contradicts the hypo­

k= l 
thesis, so the lemma is proved. 

The next theorem was proved by Bosanquet in 1931. Cooke's 

modification of the proof is based upon the lemma of R. Hens tock. 

Theorem 2. 32. Let {hk(x)} be a series -to-function summability 



method. Then {hk(x)} is a f3 -sequence if and only if: 

i) there exists x
0

e (0, co) and there exists Me (0, oo) such that 

co 

ii) 

for all x > x
0 

> 0, 

~ lhk(x) - ~+1(x)I <.M 
k= 1 

+ lim hk(x) = ak /. oo for every k e I . 
x~oo 

In this case 

lim g(x) = lim 
x ... co X-> CO 

co 
= a 1 t + ~ (ak- ak+l,)(tk- t) 

k= 1 ' 

k 
where tk = ~ c and lim tk = t /. oo. 

n=l n 

00 
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Proof: a) Conditions i and ii are sufficient. Let ~ ck = t be 
k=l 

a convergent series in E and write 

CO 00 

~ hk(x)ck = h 1 (x)t + ~ (hk(x) - hk+l (x))(tk - t). 
k=l k=l 

00 
The task at hand is to prove that k~ 

1 
hk(x)ck converges if {hk(x)} 

satisfies i and ii above. If it can be shown that i and ii imply that 

converges, the task will be accompHshed. 

00 

~ I fk(x) I ~ M 
k=l 



for all x > x
0 

> 0 if and only if 

for all x > x
0 

> 0. 

Lastly, 

and 

00 

~ / hk ( x) - hk + l ( x) I < M 
k= 1 

Next, lim fk(x) = a 'k if and only if 
x-+oo 

00 

~ fk(x) = h 1 (x) 
k=l 

00 

lim ~ fk(x) = a 1 -:/: oo 
x -+oo k= 1 

if and only if lim h
1 

(x) = a
1

. Now lim (tk- t) = 0, so that Theorem 
X---,00 

2. 12 applies, and 

converges for all x > x
0 

> 0. 

Now let M be the constant from condition i. Since lim tk = t, 
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it is possible to choose N so that / tk- t I < e /M whenever k > N. Hence 

= h
1 

(x)t + HN(x) + H(x) . 

Condition ii implies that 

N 
lim HN(x) = ~ (ak- ak+l) (tk- t), 

x -+oo k= I 



53 

and condition i implies that 

/ H(x) / = 

< 

< M · e;M = e 

for each fixed x > x
0 

> 0. From condition ii, lim h
1 

(x) = a
1 

so that 
X->OO 

00 

lim g(x) = a 1t + ~ (ak- ak+l) (tk~ t). 
X-> 00 k= 1 

This proves that the conditions are sufficient. 

b) The conditions are necessary. Now suppose that 

lim g(x) = lim 
x-+oo x -+oo 

CD 

exists whenever ~ ck converges, let ck= 0, k =f:. N, and let cN = 1. 
k=l 

This means that g(x) = ~(x). Thus condition ii, lim hk(x) = ak for 
x-+oo 

all k EI+ is necessary. Next write 

n-1 
= k:'. 

1 
(hk(x) - hk+ 1 (x) (tk - t)) + h 1 (x)t + (tn - t)hn (x). 

From Lemma 2. 31, /hn(x) / .:::_ M(x) for each fixed x > x 0 > 0 and for 
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+ all n e I . Hence 

lim (t - t) h (x) = 0, 
n n 

n-> oo 

and since 

n 
lim ~ hk(x)ck = g(x) 1 

n _, oo k= 1 

then 

n-1 
lim ~ (hk(x) - hk+l(x)) (tk- t) +h 1(x)t = g(x) 

n _, oo k= 1 

for all fixed x > x
0 

> 0. Since lim g(x) exists by hypothesis, we can 
X-> 00 

apply Theorem 2. 12 to the sequence of functions 

{f (x)} = {h (x) - h +l(x)} n n n 

and to the sequence {t }. Thus, the conditions are necessary and the 
n 

theorem is proved. Note that the Kojima-Schur Theorem is the key-

stone of the results which characterize summability methods for 

sequences and series. 

Example 2. 33. A (3 ~sequence can be constructed from the K-

sequence 

by letting 

h (x) 
n 

Here a
1 

= 0 and ak- ak+l = 0 for all k e I+ so lim g(x) = 0 and {h (x)} 
X->OO n 

transforms every convergent series into a function which has limit 

zero. 
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The next theorem is the analogue of Theorem 2. 16 for infinite 

series. 

Theorem 2. 34. Let {hk(x)} be a series -to-function summability 

method. Then {hk(x)} is a '{ -sequence if and only if: 

i) There exists x
0 

E (0, oo), and there exists ME (O,oo)' such that 

ii) 

for all x > x
0 

> 0, 

00 

~ jhk(x) - ~+l (x) I < M 
k=l 

+ lim hk(x) = 1 for all k E I . 
X-,00 

In this case 

whenever 

00 

lim g(x) = lim ~ hk(x)ck = t =/:. oo 
x ..... 00 x--, 00 k= 1 

00 

~ c = t is a convergent series in E. 
k= 1 k 

Proof: a) Conditions i and 11 are sufficient. Let ak = 1 m 

Theorem 2, 32 so that: 

00 

lim g(x) = 1 t + ~ O(tk ~ t) = t. 
X--> CD k=} 

b) Conditions i and ii are necessary. Since a'{-

sequence must be a ~-sequence, and condition i is necessary for{hk(x~ 

to be a ~ -sequence, then condition i is necessary for{hk(x}to be a 

'{-sequence. Let ck = 0, k =/:. N, and cN = 1. Then g(x) :;: hN(x) and 

t = 1 so that condition ii is necessary. This proves the theorem. 



Example 2. 3 5. The Borel exponential sequence 

. { 1 J' x -t k } { hk(x)} = k! 
0 

e t dt , 

is a \'-sequence. Here integration by parts can be used to give 

Thus 

and 

-:x: k+ 1 e x 
(k+lH + hk+l (x). 

-x k+l 
e x 

(k+ 1 )! 

oo k+ 1 
-x = e ~ x = 

k= 1 (k+l )! 

-x x 
e (e -1-x) < 1 

for all x > 1 > 0. Also 

lim 
;x _, 00 

so that the Borel exponential sequence is indeed a 'I-sequence. Let 

so that 

O'.) 00 

~ c = ~ (-1 t- 1 

k= 1 k k= 1 

oo oo (-1t'"'"l f x e-ttkdt 
~ h c :::: ~ 

k= 1 k k k= 1 k! 0 

oo 2k-l 
-x x -x x 

= e (e ·- 1)-e ~ -(2-k---1-)! 
k=l 

x -x 
-x x = e (e - 1 -

e - e 
2 ) 

1 = 1 - 2 - 1 1 
+ e2x · 
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Hence lim g(x) 
X-, 00 

00 k-1 = 1/2, and ~ (-1) is assigned 1/2 for its limit. 
k=l 

It should now be apparent that the ways in which a divergent 
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sequence can be assigned a number are many and varied. The concept 

of convergence can be viewed as a special case of more general methods 

which assign numbers to sequences. The divergence of a sequence or 

a series is no longer a cause for alarm, or for discarding it as totally 

useless. The re may well be a summability method, which is applicable 

in a particular model of a physical siti,lation, that can assign a number 

to the sequence. Aside from applications, there is ample opportunity 

to experiment with devising new summability methods. 

The matrix of arithmetic means and the Cesaro matrices have 

special applications in dealing with divergent Fourier series, and the 

Borel and Mittag-Leffler sequences have applications concerning 

Taylor series of function,s outside thei,r circle of convergence. These 

applications will be examined in Chapter IV. 

Many areas of interest concerning summability methods are 

now within view. The structure of the sets of K-sequences and T-

sequences, of K-matrices and T-matrices have been examined by 

Agnew, Cooke, and others. K-sequences and K-matrices form an 

algebra, but the 11nice" sequences and matrices, the T-sequences and 

matrices, are not so fortunate. The ele:rp.ent-wise sum of two T-

matrices may not yield a T-matrix. Hill, Cooke, Dienes and others 

have considered whether one value assigned to a divergent sequence 

is better, or more natured, than other values. 

There is a considerable amount written on whether one summa-

bility method is stronger than another. Wilansky has given necessary 

and sufficient conditions for a summability method to be stronger than 
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convergence. Zeller has given a criterion for testing the relative 

strengths of summability methods which belong to certain families, 

These and other topics are referred to in the books and articles listed 

in the bibliography. 

Mazur, Ohrlich, Wlodarski, and most recently, Wilansky have 

examined the structure of the set of sequences itself. The use of the 

theory of linear spaces can lead to answers to questions about the size 

of the domain of a summability method and the relation 

of the domains of two summability methods to each other. This and 

other related topics will be the subject of the next chapter. 



CHAPTER III 

SEQUENCE SPACES 

The notion of a linear space, or a vector space, in which there 

is defined a distance -like function has led to a branch of analysis called 

functional analysis. Examples of linear spaces, which should be 

familiar, are the spac;es of n-tuples of real numbers or of complex 

numbers. In particular, the spaces of ordered pairs or ordered triples 

of real numbers from analytic geometry are indispensable to analysis 

of functions of several variables. Since sequences are a natural 

generalization of an ordered n-tuple, it should be expected that certain 

sets of sequences form linear spaces and that the domains of infinite 

matrices and distinguished subsets of their domains can be examined 

by the methods of functional analysis. 

Some of the sets of sequences under consideration will be the 

sets of all sequences of complex numbers, the set m of all bounded 

sequences of complex numbers, the set c of all convergent sequences 

of complex numbers, and the set c
0 

of all sequences of complex 

numbers which converge to zero. Sequences which converge to zero 

will be called null sequences, thus c
0 

is the set of null sequences. 

The study of the properties of sets of functions using the concept 

of a linear space was pioneered by Banach. Studies in the application 

of the methods of functional analysis to sequence spaces and infinite 

matrices are an area of recent research concerning summability 
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methods. An introduction to sequence spaces is given in this chapter 

to demonstrate some of the types of problems concerning summability 

methods which are being examined using methods of functional analysis. 

The next definition is that of a linear space. 

Definition 3. 1. A linear space~. over a field G of scalars, is 

a set for which an additional operation is defined making X a commuta-

tive group, and a multiplication by scalars is defi.:rted satisfying the 

following conditions: 

i) t(a+b) = ta + tb, 

ii) (r+t)a = ra + ta, 

iii) (rt)a = r(ta), 

iv) la= a, 

where a, b e X and r, t, 1 e 13. 

One exc;tmple of a linear space is given by letting X = 13 = R, the 

set of real numbers. Another example of the same sort is given by 

letting X = 13 = E, the set of complex numbers. Since conditions i 

through iv do not require anything not already present in a field, it can 

be seen that any field can be considered to be a l.inear space over itself. 

An example of a linear space, which is basic to the study of sequence 

spaces, is a set M of functions whose range .is a subset of a field 13. 

Define (f+g)(x) = f(x) + g(x) and define (tf)(x) = t(f(x)). Then M is a 

linear space over 13. In the next theorem this fact is demonstrated for 

the particular case in which M is s, the set of all functions from I+ to 

E. 

Theorem 3. 2. The sets is a linear space over the field E 

where x + y = { z + w } and tx = { tz } for x = { z } and y = { w } in s and 
n n n n n 
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t in E. 

Proof: Let x = {z } and let y = {w } belong to s, and let r, t 
n n 

belong to E. Then s_ is a commutative group under the addition defined 

above since E is a commutative group under addition. 

Now 

t(x+y) = {t(z + w )} = {tz + tw ·} = {tz } + {tw } = tx+ty, n n n n n n 

from the field properties in E and the definitions of addition and scalar 

multiplication. Thus i is satisfied. Also 

(r+t)x = {(r+t)z } = {rz + tz } = {rz } + {tz -} = rx+tx, 
n n n n n 

for the same reasons, and ii is siatisfied. 
', 

From the definition of scalar multiplication, (rt)x = { (rt)z } . 
n 

From associativity of multiplication in E, { (rt)z } = { r(tz )} . Using n n 

the definition of scalar multiplication again, { r(tz )} = r(tx) so that iii . n 

is satisfied. 

Lastly, lx = { lz } = {z } = x from the definition of scalar 
n n 

multiplication, and the identity for multiplication in E. This means 

that iv is satisfied, and the theorem is proved. 

Theorem 3. 3. The sets c, c
0

, and mare linear spaces over 

thefieldE. 

Proof: Let addition and scalar multiplication be defined as in 

Theorem 3.2. Then c, c
0

, and mare commutative subgroups of s 

under addition, as is,.shown below. 

Ifx = {z} and y = {w} belong 
·n n 

to m, then there exist M and x 

My in (0, oo) such that I zn I < Mx and I wn I + < M for all n e I . Hence 
y 
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/ z + w / < /z / + /w / < M + M for all n Er+, and x+y belongs tom. n n- n n x y 

Since / z / = / -z /, each element of m has an additive inverse in m. 
n n 

Thus x + (-y) belongs tom for all x and yin m. Addition is commuta-

tive in m since addition is commutative in E. This means that mis a 

commutative subgroup of s. 

If x = {z } and y = {w ·} belong to c or c
0

, then Theorem 1. 5 
n n 

implies that x + y belongs to c or c
0 

respectively. Again, Theorem 

1. 5 implies that if x belongs to c or c
0

, then -x belongs to c or c
0

, 

Thus x + ( -y) belongs to c or c
0 

whenever x and y belong to c or c
0

. 

Addition is commutative inc and c
0 

since addition is commutative in 

E. This means that c and c
0 

are commutative subgroups of s. 

Properties i, ii, iii, and iv are inherited by m, c, and c
0 

from 

s. This proves the theorem, 

Now that the sets and its subsets m, c, and c
0 

have been shown 

to be linear spaces, the notion of distance in m, c, and c
0 

will be 

explored. To appreciate the usefulness of a distance function, consider 

the linear space of Rover itself. Here the distance from any point x 

of the real line to the origin has the handy representation, /x /. Note 

that I tx / = / t / /x / in R 1 and that / x-y / is the distance from x to y or 

from y to x. The set {x: /x - y / < r, r e (0, ro)} is an open interval 

with midpoint y and length Zr. Recall that convergence of a sequence 

{x } in R to the limit b requires that, for an arbitrarily small interval 
n 

with b as midpoint, there exists an index N such that x is in the 
n 

interval about b for all n > N. 

In the linear space formed by taking E over itself, things look 

very similar to the situation in R. The distance from any point z of 

the complex plane to the origin is still written / z /, but recall that 
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I 2 2 
/ z / = 'Yx + y where z = x + iy. Again / tz / = / t / I z / and I z - w / is the 

distance from z tow or from w to z. However, the set 

{z: lz -wl < r, r E (0, oo)} is an open disc with center w. Here the 

convergence of a sequence { z } in E to the limit u requires that, for n 

an arbitrarily small disc with u as center, the re exists an index N 

such that z is in the disc about u for all n > N. 
n 

The pe rt:inent properties of Ix I in R or / z I in E are collected 

to define the notion of a norm for a linear space X over E in the follow-

ing definition. 

Definition 3. 4. A norm for a linear space X over E is a func-

tion (i} from X to [O, oo), 0: X .... [O, oo), which satisfies the following 

requirements: 

i) Ql(x) = 0 if and only if x is the additive identity in X, 

ii) (/J(x) > 0, for all x e X, 

iii) 0(-x) = 0(x), for all x e X, 

iv) (i}(x+y) ~ 0(x) + 0 (y} for all x, y E X, 

v) (i}(tx) = It/ 0(x) for all t E E and all x E X. 

If X is a linear space over E with a norm defined on it, then X 

is called a normed linear space. It is customary to write llx II for (i}(x). 

Since it is relatively easy to define a norm form, c, and c
0

, it 

will be desirable to concentrate on these spaces for much of what is to 

follow. It is pas sible to define a distance -like function in s. Wilansky 

discusses this topic and many others concerning sequence spaces in 

[ l l]. 

The following theorem yields the norm for m, c, and c
0 

which 

was promised. 
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Theorem 3. 5. /Ix// = sup { /z 1 :x = {z } } is a norm form. 
n n 

Proof: Note that 11 x 11 = sup {/z I : x = { z } } is well defined for n ,n 

all x in m since every bounded set of real numbers has a unique 

supremum. 

Now sup { I z 1 : x = { z } } = 0 if and only if I z 1 = 0 for all n n n 

n EI+. Further, /z 1 = 0 if and only if z = 0. Hence llx/j = 0 if and 
n n 

only if x = {O, O~ 0, ... }, and i of Definition 3. 4 is satisfied. 

Next, since /z I:::_ 0 for all z in E, then I/xii= sup { /zn/ :x= {zJ} 

> 0 in m so that ii is satisfied. 

In E, j -z j = j z /, so that 11 -x II = j/x 11, and iii is satisfied. 

Now let A = sup { / z + w /: x = { z }, y = { w } }, let 
n n n n 

B=sup{/z /:x={z }}, and let C=sup{/w /:y={w }}. Then for n n n n 

all n e r+, B + C > I z I + / w 1 > / z + w I. Further, for every e > 0 - n n - n n 

there exists an, integer N such that A ~ e < / zN + wN I. This means 

that for every e > 0 there exists an integer N such that 

and B + C + e > A. Hence B + C > A or //x/1 + /jyj/ > llx+yll for all 

x, yin m so that iv is satisfied. 

Since /t//z / = /tz /, /t/l!x/1 = l!tx/1 so that vis satisfied. n n 

Thus 11 x II is a norm for m and the theorem is proved. 

Corollary 3. 6. /!xii = sup { I z I: x = { z } } is a norm for c and 
n n 

Proof: c and c
0 

are linear subspaces of m, so that each state -

ment of Theorem 3. 5 applies to them as well as to m, and the corollary 
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is proved. 

Since the generalization of the properties of Ix I in R and I z I in 

E gave the concept of a norm for a linear space over E, it would seem 

reasonable that a generalization of /x-y I in R or lz-w I in E would lead 

to the concept of a distance measuring function which could be applied 

tom, c,- and c
0

. 

Definition 3. 7. A metric for a nonempty set X is a real function 

d of two variables satisfying for all x, y, z in X, 

i) d(x, y) ~ 0, 

ii) d(x, y) = O if and only if x = y, 

iii) d(x, y) = d(y, x), 

iv) d(x, y) ~ d(x, z) + d(z, y). 

The next theorem shows that II x-y II is a metric for m, c, and 

Theorem 3. 8. If(/) is a norm for a linear space X then 

d(x, y) = QJ(x-y) is a metric for X. 

Proof: Property ii of Definition 3. 4 insures that d(x, y) > 0, 

and i of Definition 3. 4 implies that d(x, y) = 0 if and only if x-y is the 

additive identity in X, which is true if and only if x = y. d(x, y) = d(y, x) 

since r/J(x-y) = r/J(y-x) from iii of Definition 3. 4. Now x-y = (x-z) + (z-y) 

so that d(x, y) < d(x, z) + d(z, y) from iv of Definition 3. 4. This proves 

the theorem. 

Corollary 3. 9. llx-y II is a metric for m, c, and c
0

. 

Example 3. 10. The metric just given will now be illustrated 



as it applies to some sequences in m. The sequences 

x= {1,0,1,0,1,0, ... }, 

y = { 1, 1 I 2, 1 I 4, ... , 2 1 -n, ... } , 

and 

v = {0,3/2, 2/3, .. ,, (n+(-lt)/n, ... } 

belong tom, and so do the constant sequences O = {O, 0, 0, ... } and 

T' ::: { 1, 1, 1, ... } . Now 

llxJ! = /IYII = J/TI! = 1, 

IJvll -3/2, and !loll= 0. Also, 

1/x-y// = llx-T// = JJy-vll = !Ix-Oil = i!Y-01! 

::: IIY-TII = !IT-oil = !Iv-Tl! = 1. 

Finally, 

1/x-v/l ::: llv-oll ::: 3/2. 

Note that xis not an element of c, limy= 0, lim v = 1, lim O ::: 0, 
n n n 

and Um l ::: 1. This should point out that the metric just defined for 
n 

m, c, and c
0 

does not have much relation to limit points and the 

distances between them in E with the metric d(z, w) ::: / z-w /. 

Definition 3. 7 defines a metric on a general nonempty set X, 

and thus in particular for a linear space. It is clear that the concept 
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of a metric requires no linear space structure on the set for which the 

metric is defined. Indeed, some of the properties of sequence spaces 

to be examined in this chapter depend only on metric concepts, while 
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some depend only on linear space concepts. The combination of the 

two yields even more information as will be seen. 

Now that a metric is at hand for the spaces m, c, and c
0

, 

sequences in these spaces and convergence of sequences in these 

spaces can be explored. Consider a sequence {:x: } in m. 
n 

This is a 

sequence {x 1, x 2 , x 3 ,.,., xn' ... } where xn is an element of m. That 

is, 

where z k' the kth term of the sequence x , is an element of E, This 
n n 

situation corresponds to an infinite matrix (znk)' whose rows are the 

elements x of a sequence {x }, (see Figure 3. l, p. 73 ). With the 
n n 

diagram in mind, consider the following definition of convergence of 

a sequence in a metric space. 

Definition 3. 11. Let {:x: } be a sequence in a metric space X 
n 

with metric d(x, y). Then lim x = :x: e X if and only if for every e > 0 
n 

+ there exists NE I such that d(:x: ,:x:) < e whenever n > N. 
n 

In the metric spaces m, c, and c
0

, the definition would read 

lim xn = x Em, c, or c
0

, if and only if for every e > 0 there exists 

NE I+ such that !Ix -:x:/1 < e whenever n > N. Note that 
n 

/Ix - xi/ = sup { /z k- zk/ :x = {znk}, x = {zk}}. n k n n 

From the diagram, this means that given e> 0, one must be able to 

find a row in the array such that for all rows further down in the array, 

+ In other words, each column { znk}, n E I , 

must converge uniformly with respect to k, in the usual sense in E, to 
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the corresponding zk. 

Convergence of a sequence {x ·} to a limit x in a metric space 
n 

is equivalent to lim d(x , x) = 0 in R. From Theorem 1. 4, limits of 
n 

sequences m Rand E are unique. The next theorem shows that this is 

also true in a metric space. 

Theorem 3. 12. Let {x .} be a sequence in a metric space X 
n 

with metric d(x, y). Then lim x = x e X and lim x = y e X implies 
n n 

that x = y. 

Proof: From Definition 3, 7, 

d(x, y) < d(x, x ) + d(x , y) 
- n n 

so that 

lim d(x, y) < lim d(x, x ) + lim d(x , y). 
- n n 

Hence, d(x, y) .:':.. 0, but d(x, y) :::_ 0 by Definition 3. 7, so that d(x, y) = 0 

and x = y by Definition 3. 7. This proves the theorem. 

Now consider a metric space X with metric d
1 

(x, u) and another 

metric space Y with perhaps a different metric d
2

(y, v). Continuity of 

a function f from X to Y, f: X .... Y is the subject of the next definition. 

Definition 3. 13. Let X and Y be metric spaces with metrics 

d
1 

(x, u) and d
2

(y, v), respectively. Then a function f: X .... Y is 

continuous if and only if for every sequence {xn} in X such that 

l~ 
1 

x = x 
n ' 

lim f(x ) = f(x) in Y. 
dz n 

Some functions connected with the linear structure of a space 

are addition, scalar multiplication, and the projection or coordinate 
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functions. Addition as a function on a linear space is a function of two 

variables whose range is the linear space. That is, if Lis a linear 

space, then addition is a function Gl from L X L to L; EB : L X L --. L. 

Scalar multiplication is again a function of two variables whose range 

is the linear space. Here ®is a function from EX L to L, ®:EX L-L, 

where Lis a linear space over E. In a sequence space, the coordinate 

functions P (x) are functions such that if x = { z } , then P (x) = z . 
n n n n 

Thus P is a function from m to E, P : m -E. An important character-
n n 

is tic of m, c, and c
0 

is that addition, scalar multiplication, and the 

coordinate functions are continuous. This is the topic of the next 

theorem. 

Theorem 3. 14. Addition, scalar multiplication, and the coor-

dinate functions are continuous on m, c, and c
0

. 

Proof: Let lim (x , y ) = (x, y) in m X m. That is, let lim x = x 
n n n 

and let limy = y. Then since EB({x}, {y }) = {x + y} and 
n n n n n 

EB(x, y) = x+y, it must be shown that lim (x + y ) = x+y. Now 
n n 

lim II x -x II = 0 and lim II y - y II = 0 implies that for every e > 0 there 
n n 

exists an integer N 
1 

such that II xn - x II < e /2 whenever n > N 
1

, and 

there exists an integer N
2 

such that II yn - y II < e /2 whenever n > N 2 . 

Let N = max {N 1,N2 } so that llxn-xll + IIYn-YII < e whenever n > N. 

Then 

II x - x + y - y 11 = 11 x + y - (x + y) 11 < e n n n n 

whenever n > N, and addition is continuous on m. 

Next let lim (t, x ) = (t, x) where tis a scalar in E and {x } is a 
n n 

sequence in m such that lim x = x in m. Now ®(t, {x }) = {tx} and 
n n n 

®(t,x) = tx so it must be shown that lim tx = tx. Suppose ti- 0. Now 
n 
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lim //xn - xi/ = 0 implies that for every e > 0 there exists anA~nteger N 

such that 1/xn-xl/<e//t/ whenevern>N. Hence /t///xn-x// <e, and 

I/ tx - tx II < e by Corollary 3. 6 whenever n > N. If t = 0, then 
n 

t~h = {tznk} = {O, 0, 0, ... } for every n e I+ and tx = {O, 0, 0, ..• } so 

that lim tx = tx. This proves that scalar multiplication is continuous 
n 

in m. 

Now let {x } be a sequence in m such that lim x = x in m. 
n n 

Then Pk(xn) = znk and Pk(x) = zk. Hence it must be shown that 

lim znk = zk. Now for every e> 0 there exists an integer N such that 

/Ix - xi/< e whenever n > N, and since 
n 

/Ix - x JI = sup { / z k- zk / : x = { znk}, x = { zk}}, n k n n 

it must also be true that /znk- zk/ < e for all ke I+. This shows that 

lim znk = zk for all k et and that the coordinate functions are contin-

uous. 

Since c and c
0 

are linear subspaces of m, the arguments pre­

sented above also apply to c and c
0

, so that the theorem is proved. 

Nov.l the interaction between linear and metric concepts can be 

seen quite clearly. The metric has been used in m 1 c, and c
0 

to refine 

the linear structure by showing addition, scalar multiplication, and the 

coordinate functions to be continuous functions. Spaces in which the 

linear structure and the metric interact in this fashion are character-

ized in the next definition. 

Definition 3. 15. A space Xis a linear metric space if and only 

if it is a linear space whose metric is such that addition and scalar 

multiplication are continuous. 
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Corollary 3. 16. m, c, and c
0 

are linear metric spaces, 

Proof: Definition 3. 15 and Theorem 3. 14. 

From Theorem 1. 17, it is seen that a convergent sequence and 

a Cauchy sequence are equivalent in Rand in E. Cauchy sequences 

can be defined in a general metric space, and a convergent sequence 

is a Cauchy sequence. It is not true for a general metric space that a 

Cauchy sequence is always convergent. 

Definition 3. 17. Let {x } be a sequence in a metric space X 
n 

with metric d(x, y). Then {xn} is a Cauchy sequence in X if and only if 

for every e > 0 there exists an integer N such that d(x , x ) < e when­
n m 

ever m, n >N. 

Theorem 3, 18. Let {x } be a convergent sequence in a metric 
n 

space X with metric d(x, y). If lim x = x e X, then {x } is a Cauchy 
n n 

sequence in X. 

Proof: For every e > 0 there exists an integer N such that 

d(x , x) < e/2 and d(x, x ) < e/2 whenever n, m > N. Hence 
n m 

d(x , x ) < d(x , x) + d(x, x ) < e/2 + e/2 = e 
n m - n m 

whenever m, n > N and the theorem is proved. 

The completeness property of R states that every Cauchy 

sequence in R converges to an element of R. E is also complete so 

that every Cauchy sequence of complex numbers converges to a com-

plex number. The next definition states this concept for a general 

metric space. 
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Definition 3. 19. A metric space X is a complete metric space 

if and only if every Cauchy sequence in X converges to an element of X. 

The set of rational numbers is the usual example of a metric 

space which is not complete. 

Since Unear metric spaces are the subject at hand, it is natural 

to consider complete linear metric spaces. 

Definition 3. 20. A complete linear metric space is called a 

Fr~chet space. 

If m, c, and c
0 

are complete, then they are Frechet spaces. 

The next theorern states that such is the case. 

Theorem 3. 21. m, c, and c
0 

are Frechet spaces. 

Proof: Let {x } be a Cauchy sequence in m. Then for every 
n 

e > 0 there exists an integer N such that Jlx - x JI< e whenever p, q>N. 
p q 

Now jz k-z kl< Jjx -x II forallke I+sothateachcolumnof{x} = 
p q - p q n 

(znk) is a Cauchy sequence in E. This means that each column of (znk) 

must converge to an element zk in E, as in Figure 3. 1, and that the 

convergence is uniform with respect to k. It remains to be shown that 

I/xi/ 

so that x belongs to m. Let n
0 

> N so that 

and 

+ for all k E I . Hence 



sup { I zk I: x = { zk}} ~ sup { I z k I: x = { z k}} + e = M + e. 
k k no no no no 

Therefore II x II < co, and x is an element of m. 

= 

x = n 

x = 

Figure 3. I 

z 
np 

z 
p 

z 
nq 

z 
q 

Let {xn} be a Cauchy sequence inc. Then each row of (znk)' 

+ k e I , in Figure 3. 1 is a convergence sequence with limit wk in E. 
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Again, llx -x ll<ewheneverm,n>Nimpliesthat/z k-zk/<e m n m n 

whenever m, n > N so that each column of (znk) is a Cauchy sequence in . -,, 
E. Hence the column limits are justified in''Figure 3. I. Now this 

means that for every e > 0 there exists an integer N 
1 

such that 
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I z - z I < e/3 whenever n > Nl and I z - z I < e/3 whenever n > Nl. p np q nq 

Let n
0 

be a fixed integer greater than N
1

. Now since each row of (znk) 

is a convergent sequence, for every e > 0 there exists an integer K 

which depends on n 0 such that I zn
0
p- zn

0
q I < e/3 whenever p, q > K. 

Hence 

< e/3 + e/3 + e/3 = e 

whenever p, q > K. This proves that {zk} is a Cauchy sequence in E, 

and therefore {zk} is an element of c, so that c is a Frechet space. 

Since lim znk = zk, lim zk = z, and lim z k = wn' one 
n ->oo k ..... oo k ..... oo n 

would suspect that lim w exists and is equal to lim zk. Such is the 
n->oo n k->oo 

case, and the uniform convergence of the columns of (znk) is the key 

to proving this statement. First it will be shown that 

i:um znk = z. 
n-100 
k->oo 

For every e > 0, there exists an integer N 1 such that I znk- zk I < e;2 
+ whenever n > N 

1 
for every k E I Given e > 0, choose an integer N

2 

such that if k > N
2

, lzk- z/ < e;z. This can always be done since 

lim z = z. 
k ..... oo k 

Let N = max {N 
1

, N
2

} so that 

whenever n > N and k > N. Next it will be shown that lim w = z. 
n->oo n 

From what has just been done, for every e > 0 there exists an integer 

N
3 

so that /znk- zl < e;z whenever n > N 3 and k > N 3 . Given e > 0, 

for each n E r+, there exists an integer N
4

(n), which depends on n, suc::h 
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that /wn - znk I < e/2 whenever k > N
4

(n). Now for each n > N
3 

choose 

N
4

(n) and choose a fixed integer k
0 

> N = max {N
3

, N
4

(n)}. This means 

that 

whenever n > N. Thus, lim w = z. 
n .... oo n 

To repeat, this is possible only 

be<:;ause of the.uniform convergence of the columns of (znk) which was 

used to show that 

Now let {xn} be a sequence m c
0

. As before, each c;olumn of 

(znk) ::: {xn} is a Cauchy sequence so that lim xn = x = {zk} and each 

row of (znk) = {xn} converges to zero so {wn} = { 0, 0, 0, ... }. Hence 

lim zk = 0 and c
0 

is complete. 
k ->co 

Thus, m, c, and c
0 

are Frechet spaces, and the theorem is 

proved. 

Frechet sequence spaces with continuous coordinate functions 

are a distinguished callee tion of sequence spaces. The next definition 

gives the name of these spaces. 

Definition 3. 22. A Frechet sequence space with continuous 

coordinate functions is an FK-space. 

Theorem 3. 23. m, c, and c
0 

are FK-spaces. 

Proof: Corollary 3. 16, Theorem 3. 21, and Definition 3. 22 

prove the theorem. 
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Another result from the application of functional analysis to 

summability methods is that the set of sequences which is the domain 

of an infinite matrix is an FK-space. That is, if A is an infinite 

matrixthendA = {x:Axe s} is an FK-space. Note that this state­

ment does not require the matrix to be a summability matrix, nor 

does it require the transformed sequence to be convergent. The proof 

that d A is an FK --space is not included here. Some of the concepts 

used in the proof require more background than the reader for whom 

this paper is intended may have. A proof that dA is an FK-space for 

an arbitrary infinite matrix A can be found in [11 ]. 

Another set of sequences associated with an infinite matrix are 

those sequences which are transformed by the matrix into convergent 

sequences. 

Definition 3. 24. Let A be an infinite matrix. Then the set 

c A = {x: Ax e c} is called the convergence domain of A. 

The next theorem shows that if A is a K ~matrix or a T-matrix, 

then CA rim is an FK·-space. 

Theorem 3. 25, If A is a K-matrix or a +-matrix, then 

cAr1 mis an FK~space. 

Proof: Let x, y e c An m. Since A(tx) = tAx, and since 

A(x+y) = Ax+Ay, it is clear that rx+ ty belongs to cA r'i m for all x, y 

in CA nm and all r, tin E. Thus, CA nm is a linear space. 

Since cAn m Cm, the metric 1/x-y/l on m applies to cAr'i m 

and c An m is a metric space. Similarly, the properties of m assure 

that CA nm is a linear metric space. 
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Now let {xn} be a Cauchy sequence inc An m. It must be 

shown that lim xn exists and is an element of c An m. From Theorem 

3. 22, lim x = x e m, so it must be shown that Ax exists and is conver­
n 

gent. Since {xn} is a Cauchy sequence inc An m, Axn exists and is 

+ convergent for all n e I . That is, 

Ax = {~ a z } = 
m k=l nk mk 

and 

lim w = t /. oo 
n ..... oo mn m 

+ 00 
for all m e I • In order for Ax to e.xist it must be shown that !: a kzk 

k=l n 
+ exists and is finite for each n e I . Since A is a K-matr~x, Theorem 

2. 16 implies that 

sup {~I [ank[:n E !+} 0 M < oo, 

and since x belongs tom, sup { / zk /: x = {zk}} = J < oo. Thus, 

00 

so that: !: a kzk is absolutely convergent for all n e I+ and Ax exists. 
k=l n 

Now it must be shown that Ax belongs to c. If A is a K-matrix, then 

00 
!: a k = r for each integer n and lim r = a/. oo, by Theorem 2. 16. 

k=l n n n 
00 

Thus, { L: a k} is a Cauchy sequence in E, and for every e > 0 there 
k=l n 

exists an integer N such that 

00 00 

I L: a k - L: a k I < e; J 
k= 1 n k=l m 
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whenever m, n > N. Recall that 

sup { I zk I : x = { zk}} = J < oo 

so that 

(X) (X) (X) (X) 

/ L a kzk -, L a kzk / < / L a k - L a k j • J < e, 
k= 1 n k= 1 m k= 1 n k= 1 m 

Hence Ax is a Cauchy sequence in E, and this means that Ax belongs to 

c. This proves the theorem. 

In the above theorem it was necessary to consider only those 

sequences in c An m so that the metric for m could be used to full 

advantage. This result can be extended to c A in the case that A is a 

K-matrix for which ank = 0 whenever k > n. In this situation, another 

metric exists in terms of which cA itself is an FK-space. 

Definition 3. 26. If A is an infinite matrix such that a f. 0 for , nn 

all n e I+ and ank = 0 whenever k > n then A is called a triangle. 

A property of triangles which will be useful later is the fact 

that a triangle A maps cA one-to-one and onto c. 

Theorem 3. 2 7. If A is a triangle and x, y belong to c A' then 

Ax= Ay implies x = y and w = Ax has a unique solution for all we c. 

Proof: SupposeAx=Ayinc. Then Ax-Ay=A(x-y)={0,0,0, .. J 

and this implies that 

n 
L a k (xk ~ yk) = 0 

k=l n 

for all n. Now a 11 (x1 - y
1

) = 0 implies x
1

""' y 1 since a 11 f. 0. 



+ Continuing in this fashion, xk= yk for all k E I so that x = y. 

Next consider w = Ax where w is a fixed sequence inc. Then 

wl = allxl, 

where 

Similarly 

and x
1 

= w
1
/a

11 
since a

11
-/: 0. 

w2 
x2 = --

a22 

b21 = 

( 

a21 wl 
or X2 

alla22 

-a21 
and b22 

alla22 

n 
x 

n = ~ b kwk 
k=l n 

Next, 

2 
= ~ b2kwk 

k= 1 

1 
= 

a22 

for each fixed n E I+. Let bnk = 0 for k > n so that B = (bnk) is a 

triangle. Note that: if Ax= w then Bw = x and B is a left inverse for 
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A. Thus w = Ax has a unique solution for all win c, and the theorem 

is proved. 

The metric for cA when A is a conservative triangle is the 

subject of the next theorem. 

Theorem 3. 28. If A is a conservative triangle then 

is a norm for cA, and Ix -yl is a metric for cA. Note that lxl = IIAxll 

and Ix -yl = II Ax -Ayll. 

(X) 

Proof: Since A is conservative, { I kfl ankzk I} is a convergent 

sequence of nonnegative real numbers so that /x/ exists, is finite, and . . 
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is nonnegative. The fact that the supremum of a bounded set of real 

numbers ~s unique insures that Ix I is well defined for x in cA. . . 
Each sum is actually a finite sum because ank = 0 for k > n, 

+ for all n e I so that !xi = 0 if and only if 

for all n E I+. Now a
11 

z 
1 = 0 implies a22z2 = 0, .. '' implies a z = 0 nn n 

for every n E I+. Since a 
nn :f. O for all n, this implies that z = O for n 

all n. Hence Ix! = 0 if and only if x = {O, 0, 0, ... } . 

for all n implies that Ix I = / -x /. Also 

for all n implies that /x+yl .:::_ Ix/ + /y/. Last 

for all n implies that I tx I = It 11 x I, and this proves that Ix I is a norm . . 
for cA. From Theorem 3. 8, Ix -y/ is a metric for cA' and the 

theorem is proved. 

Theorem 3. 29. If A is a conservative triangle, then c A is an 

FK-space. 
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Proof: The same arguments used in Theorem 3. 25 can be used 

to show that c A is a linear space. 

Let {xn} and { yn} be sequences m c A such that lim xn = xi~ c A 

and lim yn =yin cA. Also let t be an element of E. It must be shown 

that lim (x + y ) = x + y and that lim (tx ) = tx. Now lim xn = x in cA 
n n n 

implies that for every e > 0 there exists an. integer N 
1 

such that 

Ix - x I < e/2 whenever n > N 1 and lim y = y in cA implies that there 
. n . n 

exists an integer N
2 

such that IY - Yi< E',/2 whenever n > N 2 . Let 
, n • 

N = max { N 
1

, N 
2

} so that 

ix -x+y -yl = ix +y -(x+y)I <ix-xi+ IY -yl <e12+e12=e ,n n .n n , .n, .n, 

whenever n > N. This means that addition 1s continuous inc A' Since 

I tx - tx I = I t I I x - x I ' . n , . n . 

if t =/= 0, then for every e > 0 there exists an integer N such that 

[xn- xi< e/ltl, and [txn- tx[ < e whenever n > N. Now let t = 0 so 

. I + that tx = tx = {0,0, 0, ... } and /tx - tx < e for all n EI. Thus 
n . n . 

scalar multiplication is continuous in c A. Now let {x } be a Cauchy 
m 

sequence in cA. Since xm is an element of cA for all me I+, it is 

clear that Ax = w = {wm} is inc for all m E I+. Since {x } is 
m m n m 

Cauchy in c A' for every e > 0 there exists n E I+ such that 

Ix - x I = II Ax - Ax II < e . p q. p q 

whenever p, q > N. Thus llw - w II < e whenever p, q > N and {w } is 
p q m 

a Cauchy sequence 1n c. This means that there exists win c such that 

lim w = win c. Let x be the unique pre -image of w guaranteed by 
m-+oo m 



Theorem 3. 2 7. It will be shown that lim x = x in cA. Now 
m .... oo m 

Ix - x I = II Ax - Ax !I = II w - w Jj . , m • m m. 

Hence for every e > 0 there exists an integer N such that 

llzw - w 11 = Ix - x I < e m . m , 

whenever m > N. This proves that c A is complete. 

82 

Now it must be shown that the coordinate functions, P (x). are 
q 

continuous on CA. Let {x } be a sequence in cA such that lim x = x 
n n-oo n 

Then if w = Ax and w = Ax, lim w = w in c, from what 
m m m--.oo m 

was shown earlier. By the definition of P (x), 
q 

jP (x ) 
q m 

. .,_ p (x)j 
q = I z - z I mq q 

= l i; b k(Ax - Ax) l 
k=l q m 

where B = (bnk) is the left inverse of A given by Theorem 3, 27. Since 

Ax -- Ax is an element of c, 
m 

sup {1 ~ a k z k -
k=l n m 

and thus 

q 

00 

2:: a kzk 
k=l n 

2:: b k(Ax - Ax) 
k=l q m 

< //Axm - Axjj 

j/Ax - Axjj, m 

q 
2:: b 

k=l qk 

+ Hence for every e > 0 and for each fixed q E I there exists an integer 

N(q) such that 
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//Ax ,- Ax!/ m = /lw - w/1 < e 
m 1ib 

k=l qk 

whenever m > N(q). This means that j P (x ) - P (x) j < e whenever 
q m q 

m > N( q), and the coordinate functions are continuous on c A' Thus c A 

is an FK-s pace, and the theorem is proved. 

A natural question to consider when two or more summability 

matrices are at hand is the question of whether they have the same 

convergence domains, whether the convergence domain of one contains 

the convergence domain of another, or whether there are any sequences 

that are in the intersection of the convergence domains of the matrices. 

At least a partial answer is available for the first part of this question. 

Definition 3. 30. Let A and B be K-matrices. Then A is 

equivalent to B if and only if cA = cB. 

In a paper published in 1963, Wilansky stated the opinion that 

no really satisfactory characterization of convergence domains among 

FK-spaces exists. Note in particular that Definition 3. 30 does not 

require that lim Ax = lim Bx when x e c A = cB' or that lim Ax == lim x 

if x E c. All that is required is that Ax and Bx belong to c for all x in 

c A = cB. If the convergence domains of T-matrices are the object of 

interest, Cooke has defined a more restricted equivalence which is 

given in the next definition. 

Definition 3. 31. Let A and B be T-matrices. Then A is 

absolutely equivalent to B if and only if lim (Ax - Bx) = 0 for all x m 
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Note that this definition requires that Ax and Bx have the same 

limit for all x in c An cB n m. It should be pointed out that it is 

possible for lim (Ax - Bx) to be zero when neither of Ax or Bx are 

convergent sequences. However, one would certainly have 

lim (Ax - Bx) = O for all x in cA n cB n m if A and B were absolutely 

equivalent. The following theorem of Cooke's, published in 1936, 

gives a necessary and sufficient condition for two T-matrices to be 

absolutely equivalent. 

Theorem 3. 32. If A= (ank) and B = (bnk) are T-matrices, then 

A is absolutely equivalent to B if and only if 

Proof: a) The condition is sufficient. Since x e m, 

so that 

CD 

Ax-Bx=(A-B)x = ~ (a k- b k)zk. 
k= l n. n 

Hence for every E',, > 0 there exists an integer N such that 

whenever n > N. This means that 

00 00 00 

~ l ankzk - /~ 1 bnkzk < k: l I ank - bnk I I zk j < e, 

whenever n > N, and this proves that the condition is sufficient. 
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b) The condition is necessary. The proof of necessity 

is similar to the proof of Lemma 2. 10. It will be assumed that 

or that 

has at least one finite limit point a f. 0. Then a sequence x = {zk} will 

be constructed with /zk/ .:::_ 1 for all k e I+, and it will be shown that 

for this x~ lim (Ax- Bx) f. 0. 

The assumption that 

has at least one finite limit point a f. 0 is valid since if A and B are 

T-matrices then Theorem 2. 25 implies that 

. + for all n E I . Hence 

for all n E I+, and Theorem 1. 12 implies that 

has at least one finite limit point a 1 which is different from zero. 

Now let 



s = n 
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O'.) O'.) 

~ I a k- b k I = ~ I c k I 
k=l n n k= 1 n 

and let { sn } be a subsequence such that lim s = a. Note that a is 
r r""'m nr 

a real number. There exists an integer n such that sn > 3a/4 
rl rl 

whenever n > nr , since lim sn = a. Now choose an integer m 1 so 
r- 1 r .... m r 

that 

(X) 

~ !en kl < a/24, 
k=m 1+1 r 1 

and define the first m
1 

terms of {zk} as follows. Let 

c 
n kl 

1 rl 
z - if c k - c 

k 
n 

n 
rl 

and let zk = 0 if cnr k = 0 for 1 ~ k ~ m 1. 
1 

k-/: 0 

rl 

Then 

> 3a/4 °" a/12 = 2a/3. 

+ 
Since A and B are T-matrices, lim c k = 0 for all k e I . This 

n .... m n 

means that there exists an integer nr > nr so that 
2 1 

ml 

~ /en kl < a/6, 
k= 1 r 2 

and there exists an integer m
2 

> m
1 

such that 



Now define zk = O for m
1 < k 2- m 2 

so that 

00 ml 00 
zt = ,~ c kl < ~ I c -

kl + ~ jc kl n 
k=l 

n 
k=l 

n n 
r2 r2 r2 k=mz+l r2 

< a I 6 + a/ 6 = a/ 3. 

If this process is continued, then each zk will be zero, one or minus 

one and each term of { z ~ } , a subsequence of j Ax - Bx I, is either 
r 
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greater than 2a /3 or less than a/3. Hence / Ax - Bx/ cannot converge 

to zero. This proves that the condition is necessary, and the theorem 

is proved. 

Example 3. 33. As an application of this theorem, it will be 

shown that the matrix A of arithmetic means and the matrix c
1 

of 

Cesaro means of order one are absolutely equivalent. Recall from 

Chapter II that for A, ank = 1 /n if k < n and ank = 0 if n < k. Also for 

c1, 

c = 
nk 

l(r(n+l)r(n+l-k)) n! 1 
= = r(n-k+l)r(n+2) (n+l)! n+l 

if k < n and cnk = 0 if n < k. Here 

= j 1 / n - 1/(n + ~ j = -n (-~-+-1 ) 

O if n < k. Hence 

n 
~ __ l_ 

k=l n(n+l) 
1 

= 
n+l ' 

and lim 1/(n+l) = 0. 
n->oo 

Thus A and C 
1 

are absolutely equivalent. 
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When it is possible to show that two summability matrices have 

the same convergence domain, some mathematicians have considered 

certain distinguished subsets of the convergence domains. If a 

distinguished subset of the convergence domain. of two equivalent 

matrices depends only on the set which is the convergence domain, 

and not on the matrices, then the subs et is said to be invariant. 

There has been a considerable amount of investigation into the invar-

iance of some of the distinguished subsets. The distinguished subset 

which will be considered is defined next. 

Definition 3. 34. Let A be a K-matrix with convergence domain 

Then 

BA= {xe cA: There exists M(x} m (O,ro} such that 

m 
I k:_ 

1 
ankxk I < M(x) for all m, n in I+}. 

Note that BA is the subset of c A for which the sequence of 

partial row sums is uniformly bounded for every row of A = (ank). 

The notation M(x) is intended to indicate that the number M is not 

necessarily the same for all x in BA" 

This set is used to define what is called the "mean value prop-

erty" of a K-matrix. A theorem for real triangles concerning a 

property similar to the property defined by BA is next. 

Theorem 3. 35. Let A= (auk) be a triangle where auk is real 

for all n, k in I+, and let x = {xk} belong to the domain of A. If 



and 

ii) 

then for each n < m 

a 
mk-1 

a 
nk-1 

n 

( 1 .:::_ k .:::_ n < m) 

, Proof: The sum ~ a x can be written as 
k=l mk k 

n amk 
~ ankxk 

k=l ank 

since ank f. 0 for all n .:::_ m by i. Now ii implies that aml /anl is the 

largest of the nonnegative ratioslamk/a,.nk for 1 < k < n < m. Hence 

and i implies that 

This proves the theorem. 

n 

j ~ a kxk j' 
k=l n 

Example 3. 3 6. As an example of a matrix which has this 
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property, consider the matrix A of arithmetic means. Here ank= 1 /n f. 

O for 1 .:::_ k .:::_ n, and if n < m then a k/a k = n/m so that O < n/m < 1 - m n 

when n < m. Also 

a 
mk-1 

ank-1 
= n/m = 

for 1 < k < n < m. Since J = 1, it is clear that 



n r 

l/::1 amkxk/ < l~~\ /k~l arkxk/ 

for the matrix of arithmetic means. The matrix c
1 

of Cesaro means 

of order one is an entirely analogous example of a matrix with the 

property of Theorem 3.35. 
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To return to the set BA and the mean value property for 

summability matrices I note that if it is required that x belong to c A in 

Theorem 3. 35, then 

n 

/k~/mkxk/ < /x/ 

+ for all m, n e I . This means that if A satisfies the hypothesis of 

Theo:i,-em 3, 35, then cA = BA. The next definition gives a formal 

statement of the mean value property, 

Definition 3. 37. Let A be a conservative triangle. Then A 

has the mean value property if and only if cA = BA. 

The following theorem shows that the set BA depends only on 

the set c A' and not on the matrix A. 

Theorem 3. 38. Let A
1

, A
2 

be conservative triangles such that 

c A = c A and let A 1 have the mean value property. Then A 2 has the 
1 2 

mean value property. That is, BA· is invariant. 
1 

Proof: Since BA C c A by definition, it must be shown that 
2 2 

that c A = BA . Now let x belong to c A so that 
2 2 2 

Then there exists a unique y in c A 
1 

= c A such that 
2 



n 

IL 
k=l 

a(2) x I 
mk k = 

n 

IL 
k=l 

and since A
1 

has the mean value property, 

a ( i) Y I 
mk k 

+ forallm,ne I. Hencexe BA andcA C BA. This shows that 
2 2 2 

c A = BA , and this proves the theorem. 
2 2 
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This theorem justifies writing B without the subscript identifying 

a particular matrix. It must be remembered however, that the set B 

is invariant in the sense that it depends only on the convergence domain 

of a set of equivalent matrices. The convergence domain must still 

be identified by one of the equivalent matrices. 

Example 3. 39. An example of a conservative triangle which 

does not have the mean value property is the matrix 

1 0 0 0 

-1 1 0 0 

A= 0 -1 1 0 

0 0 -1 1 

Consider the sequence x = {l,2,3,4, ... }. In this case Ax={l, 1, 1, ... } 

so that x belongs to c A. The sequence of partial row sums 

{l, -1, ·-2, -3, ... } is not bounded, however, so that BA is a proper 

subset of c A. Thus A cannot have the mean value property. 

Several subsets of the convergence domain of a conservative 
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matrix are known to be invariant. Others are still under investigation. 

Another topic involved in characterizing convergence domains 

is that of determining the sequences which are a bas is for the conver­

gence domain. [11] and [12] contain more information concerning this 

topic. 

The introduction to sequence spaces, to FK-spaces in particular, 

which is given here is only a beginning for many of the results which 

have come from the application of functional analysis. The reader can 

verify this easily in Chapters XI and XII of [ 11 ]. 

The next chapter will contain some of the applications of 

summability methods which were mentioned in Chapter IL 



CHAPTER IV 

APPLICATIONS 

Under certain conditions, functions from E to E can be repre-

s ented by an infinite series. Some exampks of power series which 

should be familiar are 

z 
e = 

and 

00 k 
~ 

z 
vr ' k=O 

00 

sin z = ~ 

k=O 

cos z 

2k+l 
z 
(2k+l)! 

These series representations are particular cases of the theory of 

representing functions by Taylor series. There are also series 

representations for certain functions from ["rf, rr] to R by infinite series 

of trigonometric functions called Fourier series. 

Taylor series are fundamental to the study of the class of 

analytic functions in the theory of functions of a complex variable. 

In fact, a function is analytic in a domain in E if and only if at each 

point of the domain it has a Taylor series representation valid in a 

neighborhood of the point, On the other hand, a power series with 

radius of convergence r > 0 represents a function which is analytic at 

every point within the circle of convergence. 

Fourier series representations of real functions have wide 

application in the solution of differential equations. The differential 
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equations which rep:i;-esent the motion of a vibrating string or a vibrating 

membrane are two standard applications. This is not too surprising, 

when the periodicity of a vibrating string or membrane and the periodi-

city of the trigonometric functions are considered. Since the solution 

of a differential equation with boundary conditions or initial conditions 

involves integration and the choice of a particular integral, it is clear 

that Fourier s.eries representations allow evaluation of difficult 

integrals. Thus a differential equation may describe the motion of a 

physical object and Fourier series can be used to find the function 

which gives the posit ion of the object at a given time. 

Two 

considered. 

types of applications of summability methods will be 

00 k 
By div is ion, 1/ ( 1-·z) has the formal representation ~ z 

k=O 
It can be shown that 

1 
1-z 

00 

= ~ 
k=O 

k 
z 

for all z such that lzl < 1. Now 1/(1-z) is defined for all z f:- 1, but 

the series ~ zk is convergent only for j z j < 1. By analytic continua­
k=O 

tion, 1 / ( 1-z) can be represented by Taylor series at other points. 

This process requires that 1 / ( 1 -z) be represented by a family of 

Taylor series. 

It will be shown that there is a T-sequence which transforms 

the sequence of partial sums of ~ zk into a function g(x) such that 
k=O 

lim g(x) = 1 / ( 1 -z) for all z in E\ [ l, oo). Thus the Taylor series for 
x-oo 

1/(1-z) can be transformed into a function g(x) whose limit as x-oo is 

1/(1-z) in a larger subset of Ethan the set U = {z: lzl < l}. When 

Fourier series representations of functions are used, they may not 

converge, or they may converge to a value different from the value 
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of the function at a given real number in the domain of the function. 

There are restrictions on the function which will be shown to 

guarantee that the transform of the sequence of partial sums of the 

Fourier series by the Cesaro matrix of order one will converge to the 

value of the function. Since the Cesaro matrix of order one is a T-

matrix, convergence and limits of convergent sequences are preserved. 

To summarize, summability methods will be applied to the 

problems of analytic continuation of Taylor series and convergence of 

Fourier series. Taylor series will be considered first. 

Definition 4. 1. Let 

and let f(z) be a function from E to E such that in)(a) exists for all 

+ n e I . Then 

00 

z:: 
k=O 

k 
(z -a) 

is called the Taylor series of f(z) at a. 

It should be pointed out that the series may diverge for all z 

except z = a. However, if it converges at a point z
0 

# a, then it 

converges in the interior of some circle with a as center. From 

Theorem 1. 33, if 

a 
n 

then the radius of convergence is 

n = 0, 1, 2, ... , 



1 
r = 

lim ~ n 

A Taylor series will be said to be convergent only if r > 0. 

The star domain of a function will now be defined. 

Definition 4, 2. Let P be the set of finite singular points off, 

and let c be a regular point of f. Then 

D,~ = E \ U {;u : u ;::: z + t( z :.. c), t ~ 0} 
Z E p 

is the star domain off with respect to the point c, 

Note that {u: u = z + t(z - c)} is the ray with endpoint z which 
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has the direction of the segment from c toward z. In other words, the 

star domain of f(z) with respect to c is the complex plane with the rays 

determined by c and the singular points of f(z) deleted from z on out-

ward. Figure 4. li may be helpful. 

.i =O 

Figure 4. 1 



Thus D>:< for f(z) = l/(z4 +4) with respect to c = 0 is E with the 

rays depicted-deleted. As another example, D>:< for f(z) = 1/(1-z) 

with respect to z = 0 is E with the ray [ 1, oo) deleted. 
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Dienes has proved the following theorem concerning the rep re -

sentation of a function f(z) by a power series in the star domain of f(z) 

with respect to the origin. 

Theorem 4. 3. Let 

00 

E(z) = ~ h(k)zk 
k=O 

be an entire function with h(k) > 0 for every k = 0, 1, 2,... . If for 

every e > 0 E(z) converges uniformly to zero in e ~ 0 < 2,r - e as j z j 

increases without bound, z = re i 0, then Mittag-Leffler 's representation 

OO k+l 
~ sk(z)h(k+l)x 

f(z) = lim g(x) = lim k=O 

X .... 00 X .... 00 00 

~ h(k)xk 
k=O 

is valid in the star domain of f(z) with respect to z = 0. Here 

k 
= ~ 

n=O 

is the kth partial sum of the Maclaurin series of f(z). 

.. 

The proof of this theorem can be found in [SJ, p. 309. 

A theorem of LeRoy and Lindelof shows that the functions 

L()=~ ( z 
t z k= 0 log (k+t) 

t > 1, 
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satisfy the requirement that for every e > 0, Lt(z) converges uniformly 

to zero in e < 0 < 21r - e as / z / increases without bound, z = rei0. 

This theorem can be found in [5], pp. 340-345. It is straight forward 

to show that Lt(z) satisfies the other hypotheses of Theorem 4. 3. 

Theorem 4. 4. If 

h(k) 

then 

1 = ------
[log (k+t) t ' t > 1, 

~ 

k=O 
h(k)zk 
,·,, 

is an entire function with h(k) :::_ 0 for every k;:: 0, 1, 2, .... 

Proof: The radius of convergence of 

00 

~ h(k)zk 
k=O 

1s infinite since 

X. = 1 im ( / h ( k) / 1 / k) = 0 . 

Thus Lt(z) is an entire function. Since 

log (k+t) :::_ log t > log 1 = 0, 

h(k) is positive for all k = 0, 1, 2,.,. , This proves the theorem. 

Now it is clear that the Lindelof function, Lt(z), can be used to 

define a subset of the set of T-sequences of Mittag-Leffler type which 

were mentioned in Chapter II. Thus if 

f( z) = 1 
1-z 

00 k 
= ~ z 

k=O 



a sequence 

transforms the sequence 

n 
x 

n 
log (n+t) 

~o ( log t'~+t)) k 

t > 1, 

into a function g(x) such that lim g(x) = f(z) = 1/(1-z) for all z in 
x-+ CXl 
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E \ [l, oo). This then is the application of T-sequences to the represen-

tation of a function by its Taylor series. 

To summarize, a Lindelof sequence will transform the sequence 

of partial sums of the Taylor series of f(z) into a function g(x) such 

that lim g(x) = f(z) for all z in the star domain of f(z) with respect to 
X ..... 00 

a regular point of f(z). 

This means that f(z) can be represented in its star domain with 

respect to the origin by its Taylor series at z = 0 and by the Lindelof 

sequence. Thus the collection of Taylor series required by analytic 

continuation is reduced to two formulas. 

Another method of representing a function f in a domain larger 

than the circle of convergence was developed by Borel. 

Definition 4. 5. If 

f(z) 

for /z/ < r, 0 < r < m, then 

00 

= ~ a zn 
n=O n 



co 
F(zx) = ~ 

n=O 

n n a z x 
n 

n! 

where x ER is the entire function associated with f(z). 

The next two theorems concern improper integrals of F(zx) 

and its derivatives, Proofs may be found in [5], 

Theorem 4, 6. Let 

andi:let 

I (z) 
m 

= J 
co 

0 

-x 
e 

.. ~x F( )d e'i zx x, 
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If these integrals are absolutely convergent for z
0 

= q;i 
0
ei

8 o, they are 

absolutely convergent for all u such that u = tz
0

, 0 2. t 2. 1, and r
0

(z) 

represents the analytic continuation of f(z) in the disc 

Theorem 4, 7, If f(z) is analytic for / z - z
0

/z / 2.]z
0

/2 /, then 

· Borel's integrals are convergent for u = tz
0

, 0 2. t 2. L 

In the proof of Theorem 4, 7 it is shown that Borel's integrals 

are convergent for all z such that Re(z/z
0

) < 1. Now {z: Re(z/z
0

) < l} 

is the half plane containing the origin whose edge is the line through z
0 

perpendicular to the seg:lruent from the origin to z
0

. Let U = {u: u is a 

singular point off}, Then both theorems apply to all z in the set 

P = 11 {z: Re(z/u) < l}, 
ueU 
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If U is finite, Pis the intersection of a finite collection of half-planes. 

In other words, Pis a polygon. The diagram below illustrates the 

Borel polygon for f(z):::: 1/(z4 +4). 

Figure 4. 2 

Here U:::: {l+i, -l+i, -1-i, 1-i}, and Pis the shaded portion of 

the diagram, not including the boundary, which contains the circle of 

4 
convergence of the Taylor series of l /(z + 4). 

It can be shown that 



where 

loco e -x F(zx)dx = lim g(x) = lim 
x--+oo x-+oo 

s (z) 
n 

n 
= :E a zn 

k=O n 

-x 
e 

(X) 

:E 
n=O 

n 
s (z)x 

n 
n! 

is the nth partial sum of the Taylor series for f. From Chapter II, 

g(x) is the transform of {sk(z)} by the Borel T-sequence, 

Again note that f can be represented m P by two formulas, 

-x k 
{ e x } 

k! . 
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The representation of real functions by Fourier series will now 

be considered. The results included here will contain the restriction 

that a function f(x) defined on [-TI, 1T] with function values in R be 

Lebesgue integrable on [-TI, rr], written f e L[-TI, TI]. 

Definition 4. 8. If f e L[-rr, TI]. then the Fourier series for f is 

the series 

where 

and 

ao (X) 

2 + :E (ak cos kx + bk sin kx)(-rr .::_ x .::_ TI) 
k=l 

1 
a = 

k 1T 

1 

f 1T f(x) cos kxdx, k= 0, 1,2, ... 
-1T 

J 1T f(x) sin kx dx, 
-TI 

k = 1, 2, 3, ... 
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The numbers ak and bk are called the Fourier coefficients for £. 

Example 4. 9. As an example of a Fourier series representa-

tion of a function, let f(x) = 1 if -TT < x < 0 and let f(x) = 0 if O < x < TT. 

Here 

SO that ao = ( 1 /TT)(TT) = 

J TT f(x) cos kx dx = 
-TT 

1, and 

1 
TT J

o 
cox kx dx 

-fl' 

1 ( si: kx I O 0 ak = = TT -TT 

fork= 1,2, .... Next, 

and 

TT 
bk = ~ f f(x) sin kx dx = 

-TT 

1 ( -cos kx 
bk = TT k ' I O = 

-TT 

TT

l f O sin kx dx, 
-TT 

COS kTT - 1 
kTT 

fork= 1,2, ... This means tha,t bk= 0 if k = 2, 4, 6 ... and bk= -2/kTT 

if k = 1 , 3 , 5, . . . 

1 
2 

Thus the Fourier series representation for f(x) is 

2 [s in
1 

x + s i~ 3x +. s in
5 

5x + ... ] . 
TT 

To illustrate the fact that Fourier series may converge to a value 

other than the function value, note that f(O) = 0, but the series con-

verges to 1 /2 at x = 0. 

Example 4. 10. A further example is the Fourier series 

representation for f(x) = !xi on [-TT, TT], 



iT 

2 

and x = 0, f( 0) = Io I = o, and the Fourier series for 

iT 4 
[1 + 2 -

iT 

It can be shown that 

1 
+ 1 + ... 1 

9 25 (2k+l)
2 

(X) 1 
2: ----

k=O (2k+l)
2 

2 
iT =s 

Jx J at x = 0. 

+ .. J. 

so that the Fourier series for J x J at x = 0 has the value 

which is the same as f(O). 
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is 

In the examples just given, the Fourier series representations 

both converge at x = 0, in one case to the function value, and in the 

other case to a value different from the function value. It is not so 

apparent whether or not they converge to f(x) at x 1- 0 in [-1r, iT ]. 

The next two theorems give some information regarding the 

Fourier series representations of functions. Detailed proof of these 

can be found in [7]. 

Theorem 4. 11. Let f e L[-1r, 1r ], let 

ao n 
s ( t) = 2 + 2: (ak cos kt + bk sin kt) n 

k=l 

for -iT < t < iT, then 

ao (X) 

f(x) = 2 + 2: (ak cos kx + bk sin kx) 
k=l 



if and only if 

where 

t :/:- 0 ± 2k;r, 

lim ! Ia ;r ~(x+t) ~ f(x-t) 

n-co 

D (t) 
n 

l = z + ~ cos kt = 
k=l 

n 

D (0 ± 2k;r) = n + l /2. 
n 

sin [(2n+ 1 )t/2] 
2 sin (t/2) 
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Since c
1 

summability of Fourier series is the topic of immed­

iate concern, the next theorem gives necessary and sufficient conditions 

for the transform { C 
1 
sn} of the sequence { sn} to converge to the 

function f(x), 

Theorem 4. 12. Let f e L[-;r, ;r ], let 

ao n 
s (b) = z+ ~ (ak cos kt+ bk sin kt), 

n \ k= 1 

and let 

for -'lT < t < ;r. Then 

if and only if 

where 

lim 
n ..... co 

f(x) = lim o- (x) 
n ..... co n 

! ~ iT [ f ( x+t) ; f ( x - t) 

n-1 2 
1 

Kn(t) = 2n sin (t/2) ~ sin (k + l/2)t = ~in (~t/ 2 ) , 
k=O 2nsin (t/2) 



t i- 0 ± 2kir, K (0 ± 2k1r) = n. 
n 
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Proof: Now lim a- (x) = f(x) if and only if lim (a- (x) - f(x)) = 0, 
n ..... oo n n ..... cn n 

and the theorem will be proved if it can be shown that 

( ) f. ( ) 2 rrr [f(x+t) + f(x-t) 
O"n x - x = -:; Jo 2 

Since 

s ( x) = l ( rr [ f ( x+t) - f ( x - t ) ]D ( t) d t 
n Tr Jo n 

from Theorem 4, 9, 

a- (x) = 1 
n n 

n2~;1 (; f
0

rr [f(x+t) + f(x-t) ]°iz(t)dt) 
k=O 

and 

1 rr ( n-1 ) 
<T (x) = f

0 
[ f(x+t) + f(x-t)] ¢; 2:: Dk (t) dt . 

n rr k=O 

Now 

1 
n-1 

1 
n-1 

n 2:: Dk(t) = 2n sin t/2 2:: 
k=O k=O 

sin [(2k+l)t/2] = K (t) = 
n 

sin
2 

(nt/2) 
2 . ' 

2n sin (t/2) 

so 

1 f Tr a- (x) = - [ f(x+t) + f(x-t)] K (t)dt. 
n rr 

O 
n 

If g(x) = 1, thens 0 (x) = s 1 (x) = ... = sn_ 1(x) = 1 so thato-n(x) = 1 

and g(x+t) = g(x-t) = 1. This means that 

~ f rr K (t) dt = 1 
rr O n 
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and-that 

f(x) = ~ f TI f(x)K (t)dt, 
TI O n 

Thus 

from which the theorem readily follows. 

A sufficient condition which applies directly to the function f is 

given in the next theorem which shows that if f(x) is continuous and 

Lebesgue integrable on [-TI, TI], then lim CJ" (x) = f(x) for -TI< x < TI. 
n -oo n - -

Here continuity of f(x) on [-TI, TI] means that the extension of f(x) by 

f(u) = f(u+2TI) is continuous on R. This requires that f(-TI) = f(-TI+2TI) = 

f (TI). 

Theorem 4. 13. If f e L [-TI, TI] and f(x) is continuous on [-TI, TI], 

then lim CJ" (x) = f(x) for -TI< x < TI. 
n--+oon - -

Proof: Let e be a positive real number. It must be shown that 

there exists an integer N such that jO" (x) - f(x) j < e whenever n > N. 
n 

The continuity off implies that there exists a number 6 where 

0 < 6 < TI such that j f(y) - f(x) j < e/2 whenever / y-x / < 6. Now if 

0 < t < 6, then jx+t-x/ = /x-t-x/ < 6, and 

I f(x+t) + f(~-t) - 2f(x) l < 1 / f(x+t) - f(x) / + / f(x-t) - f(x) / 

< -} (e/2 + e/2) = e;2. 

This means that 



6 6 I~ ~ [ f(x+t) ; f(x-t) - f(x) J Kn (t)dt I < f ( ~ ~ Kn (t)dt) . 

Now K (t) > 0 so that if O < 6< TT then 
n 

Thus, 

~ f OK (t)dt < ~ (TT K (t)dt = 1. 
TT Q n TT J0 n 

I~ 16 [f(x+t) + f(x-t) - f(x)J K (t)dt I < f 
TT Q 2 n 2 

for O < 6 < TT. For t ~ 6, 

so that 

K (t) < 
n - 2 

1 

6/2) 

,~ {TT [ f(x+t) + f(x-t) 
TT ., O 2 

< 
2nTT sin 

2 
6/2 

1 

e( TT - 0) 
< 

4nTT sin
2 

6/2 

2n(s in 

!TT ( I f(x+t) - f(x) I + I f(x-t) - f(x} I )dt 
6 

Thus for a given e and corresponding 6, choose N so that 

TT-0 < ..!_ 

4NTT sin
2 

(6/2) 
2 

That is, chaos e 
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Thus 

I a- (x) - f(x) I = I~ f rr [f(x+t) + f(x-t) - f(x)J Kn (t)dt I n rr O 2 

6 
- f(x) J Kn (t)dt / < / ~ L [f(x+t) + f(x-t) 

rr O 2 

+ ;j,;~ f 
5

rr [f(x+t) ; f(x-t) - f(x) J Kn (t)dt / 

< 
e + e e 2 2 = 

whenever n > N. This proves the theorem. 

Continuity is a rather strong condition to impose in order to 

guarantee that lim a- (x) = f(x). Actually it can be shown that 
n .... oo n 

lim <T (x) = f(x) for all x in the set 
n .... oo n 

H = {x e [-rr,rr] :f(x) = dF(x) where F(x) =Jx f(t)dt} 
dx 

O 
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Now if f is Lebesgue integrable on [-rr, rr] then the measure of [-rr, rr ]\H 

is zero, Thus it can be said that for f E L[-rr, rr ], 

11 almost all 11 x in [-rr, rr]. 

lim <T x = f(x) for 
n .... oo n 

It must be pointed out that continuity is not sufficient to insure 

that lim s (x) = f(x) on [-rr, rr ]. There exists a function which is 
n .... oo n 

continuous on [-rr, rr] but { s (x)} diverges on a dense subset of [-rr, ,r ]. 
n 

Worse yet, there exists a Lebesgue integrable function whose Fourier 

series diverges everywhere in [-rr, rr]. However, if a function is 

Lebesgue integrable on [-rr, rr] its Fourier series must be summable to 

the function by the c
1 

:matrix almost everywhere in [-rr, rr]. 
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Further information concerning Fourier series can be found in 

[3], [6], [10], and [15]. 
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Name 

Arithmetic means 

Cesaro matrix of 
order one, cl 

Cesaro matrix of 
order r > 0, C 

r 

Abel 

Borel 

Borel triangle, 
B , r > 1 

r 

Euler -Knopp, 
E,O<r<l 

r 

Norlund 

II Almost none II 

Raff. 

TABLE I 

SELECTED T-MATRICES 

1 /n, k < n 
0, k > n 

1/(n+l), k<n 
0, k > n -

rr(n+l) r(r+n-k) k < n 
r(n-k+l) r(r +n+l) ' 

0, k > n 

k 
n 

(n+lt+l 

-n k 
e n 

k! 

e -n/r (n/r)k 

k! k<n 

0, k > n 

0, k > n 

0, k > n 
n 

k··<:··n 

k < n (p. > 0, i e I+) 
1 

[P = ~ p., lim(p}VP )= o] 
n i= 1 1 n n 

1 /2, k = n or k = n + 1 
0, k -f. n and k -f. n + 1 

1, n = k = 1 or n = k + 1 
0, otherwise 
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Reference 

[4, p. 68] 

[4, p. 69] 

[4, p. 69] 

[4, p. 73] 

[4, p. 70] 

'{4, p. 200] 

[4, p. 200] 

[4, p. 73] 

[4, p .. 22~] 
' 'r'. 

[4, p. 178] 



114 

TABLE II 

SELECTED T-SEQUENCES OF MITTAG-LEFFLER TYPE 

Name 

Borel 

Lindelof 

Mittag-Leffler 

Malmquist 

Name 

Abel 

Bessel of order r 

Riesz of order r 

h(k) 

1 /k ! 

[log (k+t)rk, t > 1 

[r(l +ak)r 1 , 0 < a < 2 

( r [ 1 + (lo:kf ])-!, 0 <a< 1 

(k ~ 2) 

TABLE III 

SELECTED T-SEQUENCES 

k 
x 

(x+l)k+l 

2 
2 J k+r (x) 

( 1 - ~) r - (1 - k:l )(, k+ 1 < x 

0, k+l ~ x. 

kx --+l x+l ·· 
(k+ 1) .-

(k+ 1 )x + 1 x+l 
(k+2) 

Reference 

[4, p. 182] 

[4, p. 182] 

[ 4, p. 182] 

[4, p. 182] 

Reference 

[4, p. 218] 

[4, p. 71] 

[4, p. 72] 

[4, p. 92] 
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