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PREFACE

Several recent texts which would be appropriate for the three
semester-hour course in real analysis recommended for the General
Curriculum in Mathematics for Colleges by the Committee on the
Undergraduate Program in Mathematics of the Mathematical Associa-
tion of America contain an introduction to the topics of divergent
sequences and summability methods.

This collection of results on summability methods, seqlience
spaces, and applications is intended for those students who show an
interest in investigating methods which are more general than conver-
gence by which a number can be assigned to a sequence.

The writer acknowledges his indebtedness to Professors L.
Wayne Johnson and John Jewett, and to each member of the mathematics
faculty for the assistance and encouragement they have given. Pro-
fessor Jeanne L. Agnew deserves whatever credit this work is due.
Her patience and tolerance do not seem to have an upper bound. My
family has lent me the moral support necessary to persevere in this

effort, and my wife, Phyllis, has been my greatest help. /
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CHAPTERI
INTRODUCTION

The topics of infinite sequences, convergence, and infinite
series are introduced in elementary calculus. In most instances diver-
gent sequences and series are not given much attention, Once a
sequence or series is shown to be divergent, it is not usually regarded

as an object of compelling interest. One of the simplest examples of

e}

a divergent series is the alternating series X (-wl)n which seems at
n=0

first glance to sum nicely to zero if it is written as

n

(e 8]
S (-0 =[1+-D]+ 1+ + ...,

n=0

but the sequence of partial sums is an oscillating sequence of zeros and
ones and does not converge. This is an excellent example of the fact
that parentheses cannot be inserted or removed with impunity in the
case of a divergent series.

Since the definitions of convergence of a sequence and of the sum
of an infinite series are a way of assigning a number to a sequence,

some students must wonder if there could be a number between zero

and one which might be assigned to %o (-«l)n in some other natural way.,
Some students may discover that th(;l—s(;quence of arithmetic means of
the sequence of partial sums of O§O(ml)n converges to 1/2, which is

the arithmetic mean of 0 and 1. "~



In any case, the concept of the limit of a sequence can be
extended for students who wonder about divergent series by an intro-
duction to methbods of summability, to the structure of the set of
sequences, and to some applications of methods of summability.

Some of the more prominent mathematicians who have contri-
buted to the theory of divergent sequences and series are Niels Henrik
Abel (1802-1829), Emile Borel (1871-1956), Augustin Louis Cauchy
(1789-1857), E;'nesto Cesaro (1859-1906), Peter Dirichlet (1805-1859),
Leonhard Euler (1707-1783), Leopold Fejér (1880-1959), Jean Baptiste
Joseph Baron de Fourier (1768-1830), David Hilbert (1862-1943), Otto
Hblder (1859-1937), Gottfried Wilhelm von Leibniz (1646-1716), Gosta
Mittag-Leffler (1846-1927), and Simeon Denis Poisson (1781-1840).
Comprehensive collections of the theory and applications of divergent
series were written by K. Knopp in 1928 and G. H. Hardy in 1949.
Leibniz and Euler used divergent series in some of their works in
analysis although Abel is reported to have written, "Divergent series
are an invention of the devil, and it is shameful to base any demonstra-
tion on them whatsoever.' Perhaps his remark stimulated /mathematiﬂ
cians into efforts to make divergent series respectable.

The usual definitions and some theorems which follow readily
from them are listed below for reference or for comparison with

similar theorems concerning summability methods.

Definition 1.1. A sequence x = {xn}, nel of complex numbers

is a function from I+ into E.
It is customary to write {xn} for the sequence rather than
{(n, Xn)} where X = f(n), since the domain of a sequence is always the

positive or the nonnegative integers.



Definition 1.2. Let {an} and {bn} be two sequences. These

sequences are the same if and only if a = bn for every n ¢ I+.

Definition 1.3, A sequence {an} in E, the set of complex

numbers, converges to a complex number a if and only if, given any

real number € > 0, there exists an integer N such that n > N implies

|a -an] < €. ais called the limit of the sequence {an}, written

lima = a.
n

Theorem 1. 4.

lim a =a and lim a = b implies a = b and
a =a for every n implies lim a_ = a.

Theorem 1. 5.

Let lim an - a and let lim bn =b. Then

i) lim (an+bn):a+b,
ii) lim a_b_ = ab,
nn
iii) if ¢ € E then lim ca_ = ca.
From the first theorem one can observe that the concept of

convergence corresponds to the idea of a function defined on the set of

convergent sequences. The second theorem states that the limit

function is additive, multiplicative, and homogeneous.

The notion of a subsequence is frequently a useful tool.

Definition 1.6. A subsequence y of the sequence'{n}, n ¢ ¥ is

a function from I into I such that y(i) < y(j) if i <j for i,j in I,

Definition 1. 7. If x = {Xn} is a sequence of complex numbers

and y = {ni} is a subsequence of I+9 then x(y) = {x, } is called a sub-
i

sequence of x.



Boundedness and monotonicity are also properties which will be

us efjuu& in what follows.

Definition 1. 8. The sequence {an} in E is bounded if and only
if there exists a nonnegative number M such that ]an[ < M for every
n e I+.

The following theorem is a direct result of the last two defini-

tions.

Theorem 1.9. Every subsequence of a bounded sequence in E

is bounded.

Since a sequence is a function it can be characterized as mono-
tone increasing or monotone decreasing if it is a sequence of real

numbers.

Definition 1,10. A sequence {an} in R is monotone nondecreas -

ing if and only if a <a for all n e I+. A sequence is monotone non-

n+l

inc¢reasing if and only if a 52, for alln e I+. A sequence is mono-

tone if and only if it is monotone nondecreasing or momnotone nonincreas-

ing. A sequence {an} is monotone increasing if and only if a, <a .y

for all n e I+. A sequence {an} is monotone decreasing if and only if

a_ > for all n ¢ I+., A sequence is strictly monotone if and only if

a
n n+1l

it is monotone increasing or monotone decreasing.

The relationships of subsequences and monotonicity is clear

from the following theorem.

Theorem 1.11. Every subsequence of a monotone nonincreasing

(nondecreasing) sequence is monotone nonincreasing (nondecreasing).
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Every subsequence of a monotone increasing (decreasing) sequence is
monotone increasing (decreasing).

Sequences in R have the following important property.

Theorem 1.12. Every sequence of real numbers has a mono-

tone subsequence.

The supremum or least upper bound and the infimum or greatest

lower bound of a set of real numbers are defined next.

Definition 1.13. If AC R then b is the supremum of A, written

b = sup A, if and only if for all a ¢ A, a <b and for any x such that, for

all ae A, a < x then b < x.

Definition 1.14. If A( R then c is the infimum of A, written

c = inf A, if and only if for alla € A, c < a and for any y such that for §

alla e A, y<atheny <c.

The completeness of R and E can be stated in terms of Cauchy

sequences.

Definition 1.15. A sequence {a_} in E is called 4 Cauchy

sequence (or a fundamental sequence) if and only if for every real

number &€ > 0 there exists N ¢ I+ such that Jam= anf < € whenever

m,n > N,

Theorem 1.16. If {an} is Cauchy in E or in R then lim a

exists and is an element of E or R respectively.

Theorem 1, 17. The sequence {an} in E is convergent if and

only if {an} is a Cauchy sequence in E.



Theorem 1. 18, Every convergent sequence in E is bounded.

Theorem 1.19. A monotone sequence in R converges if and

only if it is bounded.

There are, of course, sequences in R which are bounded which
are not convergent. Consider the sequence {an} ={1,0,1,0,1,0,...}
where a =0 and a =1, ne I+. It can be seen that the subse- ~::::

2n 2n-1

quences {aZn} and {aZn-—l} are convergent sequences. This observa-

tion is included in the Bolzano-Weierstrass Theorem for sequences.

Theorem 1.20. Every bounded sequence in R has a convergent

subsequence.

The concepts of limit superior and limit inferior for sequences

in R are defined next.

Definition 1.21. Let {an}be a sequence in R and let u ¢ R such
that
i) for every € > O there exists N ¢ I+ such that n > N implies an< ut+é€,
ii) for every € > 0 and for every m > 0 there exists n « I+, n > m such

thata > u - &,
n

Then u is the limit superior of {an}, written u = lim a - The

limit inferior of {an}, written lim a s is defined to be -lim bn where

b = -a_ for allne I+°
n n
Thus the sequence {an} ={1,0,1,0,1,0,..} has lim a =1,
lim a = 0. The following theorem lists some of the more important

properties of lim a and lim a and their connection with convergence,.

Theorem 1. 22. Let {an} be a sequence in R. Then:



]

i) lima <lim a
== "n = n
ii) {a.} converges if and only if lima_, lima ¢ Rand lima_= lima_ .

n n —m n n — n

In this case lima = lima = lima .
n n a— n

Infinite series are defined in terms of their sequences of

partial sums and the results for sequences are directly applicable.

Definition 1.23, Let {an} be a sequence in E, and define

n
sn:a1+”.+a:2akgnel+,
nok=1

The sequence {sn} is called an infinite series. The number a is
called the nth term of the series. The series converges if and only if

©
{sn} converges. Write kfl i for {sn}y and if lim s_ = s, write

[e.0]

2 a = 8.
k:lk

A series may sometimes be written more conveniently as

Theorem 1.24. Let

00 f¢'e)
a= X a and b= Zb
n n
n=1 n=1
in E. Then for any o, ¢ E,
00 00 lo's)
Z)(aan+(3bn): aZ)an-l-ﬁZ)bn.
n=1 n=1 n=1



(e8]
Theorem 1.25. Leta_ >0 foralln e 1*. Then =
- n=1

a con-
n

verges if and only if {sn} is bounded above.

Theorem 1.26. Let {an} and {bn} be sequences in E such that

oo
a =b -b_ foralln e I+. Then X a_ converges if and only if
n n+l n n=1] B

lim bn =b ¢ E. In this case,

0o
Z a_=limb_-b,.
n n 1
n=1
o
Theorem 1.27. Z}lan converges if and only if for every € > 0
n=
there exists N ¢ I+ such that n > N implies [a +... +a { < € for
n+l n+p

each p e I+,

Definition 1. 28. 1If a_ > 0 for all n ¢ I+, the series

00
zZ (-1

n=1

is called an alternating series,

Theorem 1.29. If {ah} is a decreasing sequence converging to

0, the alternating series

converges.

Notice that in the case of the series

the sequence of partial sums is the sequence {sn} ={1,-1/2,1/3,...}

and



converges by Theorem 1.29. However

n+

i 1
= J(-1) 1/n|

n=1

is the harmonic series which diverges. This concept is formalized in

the next definition.

oo

Definition 1,30. A series X a, is called absolutely donvergent
n=1

oo o)
if = ]a ] converges. It is called conditionally convergent if = a
n=1" B o n=1 1

converges but = fa fdiverges.
n=1 -

oo
Theorem 1,31, Absolute convergence of = a implies con-
n=1]

vergence,
The following topics will be used in Chapter IV.

Definition 1.32. Let z_ ¢ E and let a € E forn e I+U {o0}.

0

Then the infinite series

a,.t 2 a (z -~z )n,
0 0
n=1
or more briefly
Q n
z an(z - zO) ,
n=0
is called a power series in z - Zg
Theorem 1.33. Let
© n
2 a (z - zo)
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be a power series and let X = lim ¥ lan], r = 1/x, (wherer = 0 if
AN=+oand r =+ oo if X\ = 0). Then the series converges absolutely if

]z - zol < r and diverges if ]z - ZO, > r,

The material included in this section is not exhaustive of the
topics to be considered concerning convergence of sequences and series,
but should suffice as a background for what is to follow. Additional
material and proofs of theorems included here may be found in many

books, for example [2], [7], and [10].



CHAPTER II
SUMMABILITY MEWHODS: '

The objective of this chapter is to consider methods of assigning
a number to sequences which are divergent. One method, which would
certainly make this investigation a short one, would be to assign each
sequence in E the number 0. This would not produce many interesting
results. One consideration to be kept in mind is that a worthwhile
method of assigning a number to a sequence should not cause a conver-
gent sequence to diverge. In other words, a desirable method should
preserve the property of convergence when applied to convergent
sequences. If it has become customary to assign the sequence {1+len}
the number 1, it might be desirable to continue the custom. Thus a
desirable summability method might be required to assign convergent
sequences their usual limits. Some definitions and theorems to formal-
ize these concepts and some examples of summability methods follow.

Again let E represent the set of complex numbers, R the set of
real numbers. Let s represent the set of sequences in E, c¢ the set of

convergent sequences in E, and F[(O, oo)] the set of complex functions

defined on (0, c0) C R.

Definition 2. 1. Let {fn(x)} be a sequence of functions in

F[(0, )] and let {zn} be a sequence of complex numbers. If

o0
glx) = 2 I (x)z



12

belongs to F[(0, co)] and if lim g(x) =t # oo, then {f_(x)} will be called
. X QO

a sequence -t_o~fun,c-tibﬂasumma;5ﬂii’st%y: method (or transformation), and

{zn} will be said to be in the domain of {fn(x)}.

The sequenc“e»—to-functi.o:n transformation {fn(x)} operates on the
sequence {zn} in a way suggested by the inner product of vectors. One
would define an inner product of vectors in an infinite dimensional
vector space to be the infinite series used to define g(x). For example,

let {z_.} = {1,0,1,0,1,0,...} and let

{£ ()} = {557}

Example 2. 2.

2 3 \ N '
x x x x
{3x+1 ’ <3x+1> ’ (3x+1> P (3x+1> ’ }

°o»—~O»—ao»—a/
1
oQ
J

< « \ 3 « \2n-1 oo 5 \2n-1
g(x) = 397 +(3x+1) oot (3x+1) Feee = 2 <3x+1) :

The formula for the sum of a geometric series can be used to write

this in closed form as

Hence

3x2+x
glx) = ———,
8x " +b6x+1

and {z } is assigned the number lim g(x) = 3/8. If {f (x)} = {1/2"},

X=00
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a sequence of constant functions in F[(Oj oo)], then

Example 2. 3.

1
0
1
0 0o
{%%% T S R Qe N S
2 0 n=1
_—

In this instance

g(x) =1/2 (ﬁ) = 1/2(4/3) = 2/3,

and {zn} is assigned the number lim g(x) = 2/3. Notice that the
X =00

)"}

and the sequence Ln assign the divergent sequence {1,0,1,0,1,0,...}
2

two different limits, 3/8 and 2/3 respectively. This is an indication

sequence

of the variety which exists when different summability methods are
applied.

It is quite possible that a particular sequence {fn(x)} will not
transform a sequence to a function g(x) ¢ F[(0, ®)]. Consider the

sequence

Here



14

and for x > 1, 2x > 1 so that
- X+l —
x+1
n=1

diverges and g(x) is not defined. Thus in Definition 2. 1 the statement
that g(x) belongs to F[(0, o0)] is not satisfied. In general it is necessary

to assume, whenever the expression

appears, that {zn} is in the domain of {fn(x)} and that g(x) is a function
in F[(0, ©)]. Care must therefore be exercised in the application of
the definitions and theorems in each particular case.

A case of particﬁlaﬁr importance arises when the functions
{fk(x)} in Definition 2.1 are step functions. That is, when f (x) is
constant on each interval (n-1, n)]. Consider the function values at the
right-hand endpoints n. Since the sequence {n} = {1,2,3,...,n,...}
is an element of s, the symbol {fk(n)} represents a sequence of

sequences. That is, the continuous variable x is replaced by the

discrete variable n and the set of function values

{ank: a = fk(n)g a € E}

can be arranged in the rectangular array of an infinite matrix. As

usual, n denotes the row subscript and k denotes the column subscript.

Definition 2. 4. Let (ank) be an infinite matrix of complex

“‘numbers and let {Zn} be a sequence of complex numbers. If

GO
{zt = A 2 Faid
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belongs to s, then (a will be called a sequence-to-sequence summa-

nk)

bility method (or transformation), and {zn} will be said to be in the

domain of (ank)‘

A summability matrix transforms sequences in the same way
matrices transform vectors in a linear space. For example, let

{z_} ={1,0,1,0,1,0,...} and let (a_,) = (1/(n+1)5) so that

a'1'1k

Example 2. 5.

1/2 1/4 1/8 12k \ (1\
1/3 1/9 1/27 ... 1/3% 0
1/4 1/16 1/64 1/4:k 1
(ank){zn} = ) ) . . <0
1/ndl 1/(m+1)* 1/m+1)° ... 1/, L. 1
Z ° 0
GO o0 o0 < (e 0]
1 ] 1 ]
={ = > , = ey 24 -
{k:l p2ko17 gDy g2kel? Dy 42kl k=1 (n+1)°K"1
- (2,2, 4 n+1 }
= 135 g0 75 ¢ At °

It

A ; [
{zn} and lim z' = 0.

If (a , ) is the infinite matrix where a = 1 and a.. = 0

nk n, 2n-1 j

otherwise, and if {zn} ={1,0,1,0,1,0,...}, then
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Example 2. 6.

1 0 0 0 0 1\
0 0 1 0 0 0
0 0 0 0 1 1
(@ Nz)) = < 0 f
0
so that {z’n} ={1,1,1,...} and lim z' = 1. Notice that these matrices
respectively assign the limits 0 and 1 to {1,0,1,0,1,0,...}, so that

variety is still possible when infinite matrices instead of sequences of
functions are used to transform divergent sequences,

There are situations where a particular infinite matrix cannot

0o
transform a particular sequence since X a k%, may be a divergent
k=1
series. Consider the matrix (ank) where a = 1 forn, ke I+ and the
sequence {zn} £ {1,0,1,0,1,0,...}. In this case each series
00
Z a 1%, is divergenf. Apgain it will be necessary to assume whenever
k=1 0o
" ! 4 et . 3 . )
{zn} is written as {kZ_JI ankzn} that the matrix (ank) and the sequence
= 0o
{z_} are such that each series X a_,z_is convergent, and to use
n k-1 nk'm

caution in applying definitions and theorems to particular sequences
and matrices,

The lemmas which follow are required for the proof of a fynda-
mental theorem concerning summability methods. It will become
evident that the proof is not short or easy. Shorter proofs using the

methods of functional analysis are given in [11] and [13].
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Lemma 2.7. Let {fn(x)} be a sequence of functions in F[(0, c)]
such that lim f (x) = a_ # oo for everyn ¢ I+. i+ Then if there exists an
X —00 n n

X € (0, ) and there exists M ¢ (0, o) such that

oo
for all x > X, > 0, then X a, is absolutely convergent.

n=1
Proof: lim f (x) =a_# o foralln e it implies that for every

x-o0 B n
positive number € and each integer p ¢ I+ there exists x, depending on
n, written x(n) > 0 such that if x > x(n) then ’anm fn(x)i <E&/p

ENENINCIES

n ——

Since

a_- fn(x)]<8/pn itfolhnvsthat[anj < Jﬂ#x)[+~8/p
whenever x > x(n).

Now

for all x > % > 0 implies that

P
z | x| <M
n=1

. } . +
for every integer p e I+ whenever x > Xq- Given any p e I ,

b

P
S Ja|< 2 ([t,00] +e/p)
n=1 =1
for x > max {x(1),...,x(p)}, or
P
=z Ja_j<M+€
n=1 o

for x > max {XOSX(I), ..,%x(p)}. Thus for each p e I+,
p

z |la|<M+E€,
al S
n=1
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00
and the sequence of partial sums of Z ]an[ is bounded. This proves
n=1
the lemma.

The next lemma concerns the behavior of a divergent sequence,

00
Lemma 2.8, If X fun] is divergent, then there exists a
n=1

sequence {zn} in E where lim z_ = 0 and

{ : |
zZ .z
k=1 k“k
is not bounded.
id
Proof: Let u, = [unfe Y and choose 2 real number r > 1. Then
(0's)
since X funf is divergent there exists Py € I+ such that
n=1
Py
= ’u ] > r,
n
n=1

Now r > 1 implies rz > r > 1 and there exists p; ¢ I+ such that

i 2
= [unf>r .
n:p0+1

Similarly we have 'r3 > rz > 1r > 1 and there exists p, ¢ I+ such that

P
3 3
5 ful >,
n:p1+1
Let : : . midn
zn:e forlinipos
eaidn
- ~forp0<n_<_p1»
~id
e n

= rz forp1<n§p2w”
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Note that lim zn = 0 and that

oo Py by 5 Pz
> uz = Z [u[+1/r = ?uf-ﬂ-l/r = ]uf+.,.
n=1 * % p=1 7 n=p0+1 o n:p1+1 n

>r+r+r+...,

and the lemma is proved,
The following lemma discusses the properties of an infinite

matrix whose rows and columns cbey certain conditions.

Lemma 2.9. Let (snk)),ny ke I+ be an infinite matrix of real

numbers and let lim s =h, for all k ¢ I+‘, If
n - 00 nk

P

1 'Snkr = Sn

T8

+
for every n € I , then the sequence

P n
2| f
k=1 &K

h

is bounded for each fixed p ¢ I+°

Proof: The matrix is exhibited 1n Figure 2. 1.

11 %12 %13 0 fip Z syl = sy
21 S22 %23 0 fap Z [sgp! = 55
S31  S32  S33 - S3p Z [sgy | = 55
*nl Sn2 *n3 S‘mp = rsnk[ = ®a
) } ) )
By B, By .. By

Figure 2. 1.



20

The hypothesis that lim s = b, justifies the appearance of
nooo DKk k

column limits in the diagram. Further, lim s K= bk implies that for
‘ n- o

every positive number € and for each fixed integer p ¢ I+ there exists

“N(p) e 1* such that if n > N(p) then 'Snka bkf < &/p. Hence

’snk‘ < [bkl + & /p and

Mo

z 'Snki <

b, | + €.
k=1 k=1 ©

1

In Figure 2.1 this states that partial sums along the nth row are -
Jbounded by partial sums of the column limits for rows sufficiently far
down in the array. l

Now let us consider the rows above the (N+1)st row and the
col.umﬁs through the pth column. In this rectangular array in the

upper left-hand corner of the diagram,

N
nkv ianl ’Snki

|s

so that

[Snk’ + 1,

where 1 is added to insure strict inequality. Therefore the partial
row sums above the {(N+1)st row are still bounded by the sum of the
elements in the n Xp rectangular array in the upper left-hand corner
of the diagram plus one.

Suppose that

k:jijsnkl

is not bounded for some fixed p ¢ I+9 then for each M > 0 there exists

j e I+ such that



; Is.. | >M
> M.
k=1 ik
Let
P N
M = max | = Ibk[ +&€,| = b ]s k’ + 1
k=1 k=1 n=1
Now if j > N, then
p i
Z ls,l<Z b l+e<M
—- k:
and if 1 <j <N, then
BDY -
= < b 2 8 + 1 <M
k=1 JF k=1 n=1 ©¥ -

which is a contradiction. Hence for each fixed p ¢ I+ there exists

M'p > 0 such that

p
= {snk’ <M
k=1 p
for alln ¢ I+.
In the case that
w ?
2 |8
k=1 nk

is not a bounded sequence, the next lemma exhibits a convergent

sequence {Xk} such that the transform of {xk} by (s ;) diverges.

Lemma 2,10, If

[Snki = %h

1

T8

for alln ¢ I' and {sn} is not bounded, then there exists a sequence {x

such that [xkr <1 for ke I+, lim Xy = 0, and

)



o~

oo

o | —
{Xn} - kz—l ®ak Kk

has a subsequence {'x”rli} which diverges.

22

Proof: If {sn} is not bounded then for every r > 1 there exists

ny and d; in I+ such‘that

94

- 2
= s kf>r’ )
k=1 21

Otherwise,

for every d; and n ¢ I+ would imply that s < rZ for all n, ¢

1
that {sn} is bounded, contrary to hypothesis.

Let &> 0, then there exists N ¢ I+ such that
|
s - X ]s» < &
ke nk

whenever m > N. Hence

m
s - is f < &
n k=1 nk
whenever m > N. Now
S s |
b S = s
k=1 nk n
implies that
= |s .|
b s < &
k=m+1 nk

1

I

+

whenever m > N. Thus there exists an integer > such that
g Py Z %

2

80



00
= isnkl<8°

k=p1+1

Now the first p, terms of {xk} may be defined as follows,

s
|"n, 1]
X T o 1sn1¢09 x1=01fsn1=0
nll 1 1
°n 2]
XZ:rs lfan;EO, XZZO 1fsn2—0
n12 1 1
|"np, |
Xp:rs 1fsnp¥09 xp:OlfSnp=0
1 0Py i¥1 1 it1
Notice that
s 1 ifs >0
I nlkvl nlk
s 9
nk -1if s <0
n.k
1
and that
= k]
Snlkxk: g for lik_<_p1°

Now consider the transform of the first p, terms of {xk} by the n st

row of (s

ak)?

Also



l . }SnlkH
k' Tl rs_

nlk}

‘x :L<1
r

ifsnlk # 0 and [x, | :()ifsnlk::O so that |x, | <1for 1 <k<p,.
With the assumption that it will be possible to define {xk} so that

‘Xkl <1 for every k ¢ I+, let

1 pl [ F le'e)
x! == 2 |s + = I X
T ka1 MK k=p,+1 ny Kk
Now
o
= fs ki <€
k:p1+1 1
and
oo o
= fs X f < = is ] < & v
k=p +1 KK k=p,+ K
so that
sl 2 e B e
x| >= T s - > S >r -8
Ny T o ™K k=p +1 npk

Consider the following diagram.

s, . s s c.. 8 .. 8 .. B ... 8 \

11 12 %13 lq, 1p, lq, 1p,
8. s s e.. 8. ... S s s
21 22 23 qu 2p1 Zqz sz
s 3 s s s s s
31 32 33 ‘3q1 3>pl 3q2 3p2
Sn 1 Sh.2 Sn 3 Sn Sn Sn Sn
] i1 1 191 171 191 1P2
s s S s s s
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The subscripts n., and Py have been used to define the first Py terms of

1

{xk} and the first term x! of a subsequence of
1

0o

kZ:l Sk k

Now choose the distinguished subscripts n, >n, and q, > q

such that
9,

—%5 s l>M_ o+ e,
r k=p;+1 "2 Py

where Mp is the upper bound for
1
P

which is provided for in Lemma 2. 9. Next choose the subscript
P, > 4y such that

00
) [snzk]<8.

k:p2+l

Now define x; for p; < k < p, as follows:

fSanl-H[ . ,
x = et if s 0, x =0 if s =0
p1+1 rzsn " n2p1+1 p1+1 n2p1+l
2P1
*n,p, |
x = —5 272 if s #0, x_ =0 if s =0
Py 1% 1P, ) 1P,
1P

Again notice that



_ 2 1
’xk] = rzs = =5 <1
nzk t
for p, < k < Pys and that
s
%0,K]
2
s X, = ——a
nzk k £

for Py < k <p,. The transform of the first p, terms of {xk} by the

nzth row of (snk) is

1 "1 1 "2
= 2 s X, + = p) ]s I
T =1 PR K2 k=p +1 nyk

1 P 1 ) ! )
x! == X s X, + -5 z s + z s x
P2 T kel "2NF P kepit1l P2 kepal 2K
Now
P, P,
B : S0 Kk % T s, l]-&
k=1 2 r® k=py+l 2
‘ P , P
| I e e
r” k=p+1 12 Fr=1 "2
Thus since rxk[ <1 for 1 Skf_pl,
1 "1
— s X <M
Ty nzk k Py
and
, 2
<t I>M  +r"-M  -&
2 1 Py



27

Continuing in this fashion, for each k ¢ I" there exists n e IT
such that lxk[ <r " and lim x, = 0. In addition for each i and each k
in I+ there exists n, in I+ such that ]xinl > rk. Thus {x! } diverges
T i

and the lemma is proved.

To illustrate Lemma 2, 10, consider the infinite matrix (snk)

where s = 1/2k and

1k

for n > 1, as in the diagram below.

/2 1/4 1/8 ... 12k L. \ = [slkj =1
112 14 ... 172570 z |s, | =2
1 2/3  4/9 ... (2/3)K! Z sy | =3

2 k-1
1 fa-l -1
B R o B L
i } } l i
1 1 1 1 oo

Let r = 2 so that integers n, and q; must be found so that

9

> [s f>4.,
k=1 ™MK

1

Ifn1 = 8 and q, = 6 then

6 6 \
ek-l _ 1-(7/8)° (144,495
A v 7 <262g144>> + 4
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using the formula for the sum of n terms of a geometric progression.
Following the pattern of Lemma 2. 10, let € =1 so there must be an

integer p; > q, = 6 so that

(0]
= (7/8)k'1 <1
k=p1+1
If P, = 20 then
20 20 .20
> (7/8)k° ! =<8 - >:>7.4
k=1 8
and
(0]
= -(7/8)k“1 <.6<1,
k=21

This means that X, = 1/2 for 1 <k <20, and that

X!
n

=1/2(1.4)+.6=4.3>r -€=2-1=1.

In the next part of the lemma, n, and q, must be chosen so

2

that n, > 8 and q, > 20 and at the same time
L %2 fn,- 1\
Z z o > MZO + 4
k=21 2
or
B (n,-1¥!
= i > 4M, * 16.
k=21 2
Note that M, ., which is the maximum term of

20

20 k-1 - \19
= Gﬁﬂq = n.~(n~1)(gll) ,

k=1 n n
is less than or equal to 20. Hence n, and q4, must be such that
4, nz_l k-1
= > 96.

k=21 "2
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Now
20 k-1
= (124> < 20,

125

so let n, = 125 and let 9, = 340. Thus

340 124 k-1 ]
= TZ—S- = 100
k=21

and Py 2 340 can be chosen so that

Z (ﬂ)k“l <
k:p2+l 125

This gives x, = 1/4, 20 < k f_pz and

k

20 Py o
x' = % Z s k(%) + % = ‘S kl + Z s 1K
1o k=1 "2 k=21 ™2 k=p,+1 o

E38 [>20+4-20-1:22—8:3.
2

Continuing in this fashion, lim x, = 0 and {Jx'n |} is not bounded.
i

k
Now the conditions under which a summability transformation

will transform convergent sequences into convergent sequences can be

examined.

Definition 2. 11. Let fn(X) be a sequence-to-function summa -

bility method. If

belongs to F[(0, o0)] and if lim g(x) =t # oo for every convergent
X = 00
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sequence {Zn} in E, then {fn(x)} is a conservative sequence-tofunction

summability method. In this case {fn(x)} will also be called a Kojima

sequence or a K-sequence.

The following theorem, which gives necessary and sufficient
conditions that a sequence {fn(x)} should be conservative, was proved
by Kojima in 1917 and extended by Schur in 1918. Its present form is
the result of further extension and refinement by Agnew, Cooke, Hardy,

and others.

Theorem 2, 12. (Kojima-Schur) Let {fn(x)} be a sequence-to-

function summability method. Then {fn(x)} is a K-sequence if and only

if:
i) there exists X € (0, o) and there exists M ¢ (0, co) such that
o
S |f (x)] <M, forallx>x, >0,
n=] B — 0

i) lim f_(x)=a_# o for alln e i

X =00
0

iii) 2 f (x) = {(x) and lim f(x) = a # oo.
n=i X =00

In this case

00 o)
lim g(x) = lim X j‘fn(x)zn zaz + X2 an(zn~ z)
X =00 x =00 n=l n=1

where lim z =z

Proof: a) The three conditions are sufficient.

Let {zn} be a convergent sequence, that is, let lim z = Z. This

means that for all positive real numbers M and €, there exists Nl € I+

such that ]zna zﬂ < €/3M whenever n > Nl' Let
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k:max{lzn—zl:liniNl},

so that [zn=zf<k+lforlin§N

1
00
From conditions i and ii, and Lemma 2.7, X a, is absolutely
n=1
convergent., Hence, there exists an integer N2 such that
o)
> ]a ] < M,
n
n:N2+l

for every positive number M.
Choose N = max {N.,N,} and consider |f (x)-a_|, where
17772 n n

1 <n <N. From condition ii, there exists x'¢ R+ such that

e
12,60 - 2. | < 33T
whenever x > x'. Hence
N e
Z () -] < g
n=1

for x > x!.

and for

x > x! will be used to show that

00 oo
lim 2 f (x)(znn z)= Z an(zna. Z).
x=w n=1 n=1

Condition i implies that
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whenever x > x, > 0. Now let X = max {xo,x'} and write

NI
n=N+1 o
With N chosen, and with x > x,
o € € €
I GEagleg e | < gy (PO AM g Mgy = €
Hence
foe) 0
lim > f (x)(znm z) = Z an(zn- z),
x—-o n=1l n=1
and
o foe) [¢'%)
lim 2 f(x)z_ ~2z lim X {f (x)= Z a (z_-z).
n n n n''n
x-00 n=1 x-00 n=1 n=1

Condition iii implies that
00 0
lim Z f (x)z_~za= Z a_(z_ - z),
n n :
x-o n=1 n=
since

lim X2 f (x)=a.
x=00 n=1
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Now if
oo
Z a (z_«z)
n''n
n=1
converges, then
oo
lim 2 f (x)z
n n
x=-o00 n=l
will exist as a finite number in E. Now
€0
z fanl =t# oo
n=1
o)
since X a_ is absolutely convergent and ]z ] <r # oo since lim z_ = z.
n=1 B n n

Also ]z - zf < [z f + }z[ <r+ ]z], and therefore,
n — " n :

S fallo -zl <5 la |+ 2]
Z |a z -z| < Z Ja_ |(r+z!])=(r+ |z}t
n=1 n n n=1 n
so that

QO

nzzilan(n~Z)

is absolutely convergent. Thus

f0's)
= an( a” z)
n=1
is convergent and
0o f0's)
lim Z- fn(x)zn = lim g{x)=az+ Z an(znw z),
x=m n=1 X =00 n=1

a finite number in E.

This proves that i, ii, and iii are sufficient.

b) The three conditions are necessary.
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Lemma 2. 10 will help to show that condition i is necessary.
Suppose condition i is not satisfied. That is, suppose that given

x € {(0,00) and given M € (0, 00) there exists X > x such that

00
nzl £ (x5)] > M.

Let f (x) = u_(x) + iv_(x), where u_(x) and v_(x) are real. Then there
n n n n n

exists 'a sequence {yn} such that lim Vv, =X and there exist sequences

0

(0 0]
{s,} = Z lu (v )[p and {t} = =z v (v )]

such that for every M > 0, either lim s, >Mor lim t, > M. Suppose

that for every M > 0, lim s_ > M and write s = u, (y_), so that
S n nk n

k

n
i
T™8

1|sr‘1k|.

Lemma 2. 10 shows that there exists a sequence {x which converges

"
to zero, but the sequence
oo

H —_
{xy} = 131 "nk*k

has a subsequence {x'nl} which diverges. This means that if condition
iis not satisfied then there is at least one convergent sequence which
is transformed by {fn(x)} into a divergent sequence. Thus condition i
is necessary.

For the second condition, let z = 0, n # pand let z = 1 if n=p.
Then lim Z = 0 and g(x) = fp(x) so that lim f (x) = a, # oo for all

X 00

n e'I+ is necessary for lim g(x) = Zg # oo.
X = 00



In the case of condition iii, let z = 1, ne I+ so that lim z =

Then

o)
gx) = Z f (x),

n=1 "
and therefore,
oo
= fn(x) = f(x),
n=1

where lim f(x) = a # oo, is necessary for lim g(x) = zg # co.
X =00 X — 00

This proves the theorem,

Example 2. 13: An example of a K-sequence is the sequence

{f ()} = {[(e™+ 1)2 + nz]“l}. Here
o0 o0
z £ (x)] =2 [ (e™*+ 1)% +n?]" L,
n=1 n=1
and it can be shown that
@ ™ 1
= }f (x)f = = coth m(e T +1) - = 3
n=1 " 2(e F+1) 2(e T41)
Thus,
®© ™ 1
= ]fn(x)] <5 coth 2w - 3
n=1
and
(0.0]
= ]fn(x)J <M
n=1
for x ¢ (0, 00). Also
lim f (x) = lim [ X+ 1) +n%17t = (1 +0%7 !
X =00 X =00

for alln e IT.
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Last,
. 00 v -X ;
lim I f (x)= lim mcoth [_’T}ie D] L S
x=-00, n=1 X =00 2(e 7+ 1) 2(e T+1)
= IZT- coth m - —;—
This means that if lim z =2 then
] 00 Z -Z
lim g(x) = lim T cothm-5|z + = B—.
2 2 2
X ~ 00 X = 00 n=1 1+n
Let
2
1+n
{z} ={—2}‘r‘
so that lim z = 0 and
©
lim g(x)= % — =1.
n
X 00 n=1 2

- Example 2. 14, A K-sequence which transforms every conver-

gent sequence into a sequence which has the limit zero is the sequence

{f (x)} =
n x +4n frr2
Here
fo's) le'e} .
1 1 1 1 1
2 ol - 3 gy - A (E-Le 1),
n=1 o n=1 x2+4n211'2 2x \2 X eXr-l

from results in the theory of functions of a complex variable, and

m 3

1 4 1
0] < ZU<T6 1o >
n=1 e -1

whenever x > 10 > 0. In this example, lim f (x) = 0 for alln ¢ I+ and
X - 00
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lim Z f (x)=0.
n
x-00 n=1

Hence
lim g(x) = lim [0z+ Z 0(z_-2z)] =0
X =00 X =00 n=1
for every convergent sequence {Zn}'
Now that the notion of K-~sequence has been characterized, the
same scrutiny can be applied to infinite matrices. The next definition

and theorem will do this.

Definition 2. 15. Let (a be a sequence~to-sequence summa -

nk)

bility method. If every convergent sequence {zn} in E is in the domain

of (ank)’ and if
0
lim z! = lim Z a .z, =t# oo,
n-oo k=] nk k
then (a k) is a conservative sequence-to-sequence summability method.
n

In this case (a will also be called a Kojima matrix or a K-matrix.

nk)

Theorem 2. 16. Let (ank) be a sequence-to-sequence summa -

bility method. Then (a is a K-matrix if and only if:

nk)

i} there exists n, ¢ I+ and there exists M ¢ (0, co) such that

0
© , +
z ’ank[ <M for everyn>ny >0, ne I',
n=1
.. . ' . +
ii) r{l—l-’»nooank = by # oo for every fixed k e I,
a o s m .
iii) k.?lank =T and lim r =a # 0.

In this case

lim z? = lim Z.a z, =az+ Z b,(z, - z)
n o k=1 nk"k k=1 k'"k



where lim z = z.
n

Proof: Letn,k e I+ and for n - 1 <x < n define fk(x) =a ).

This means that the rows of (ank) correspond to a sequence of step
functions in F[(0, oo)]. Thus condition i holds if and only if

£ )= B |a|
f(x)] = Z |a <M
1 k k=1 nk! —

T™8

for every x> n Next, condition ii holds if and only if

0"

lim fk(x) = lim a = bk# 0
X = 00 n - oo

for every k € I+. Lastly, condition iii holds if and only if

o0 (e 0]
Z fi(x)= Z a, =71
k=1 ¥ k=1 "k m

and lim r = a # co. Thus Theorem 2.16 is a special case of the

Kojima- Schur theorem. This means that

oo oo
lim X f (x)z, = lim X a_,z
x=-00 k=1 k k n-o k=1 °F k

= lim z'
n
whenever lim z =z and the theorem is proved,

Example 2. 17, The matrix

is an example of a K-matrix, since

38
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@ 3n-1 3n-1

= = < 4
k=1 n2F

+
for alln ¢ I and since lim (3n-1)/n = 3. Also,

lim 222l o 3
n - oo nZk Z.k
+ .. k
for alln e I . Here the characteristic numbers are a, = 3/2 and

k

a = 3. In this case the transform of a constant sequence will converge

to three times the constant. The sequence {zn} ={1,0,1,0,1,0,...}
. . 2(3n-1) .
is transformed by (ank) into the sequence {T—} which converges
to 2.
Example 2. 18. The matrix (ank) =27k is a K-matrix because
oo
s 27k
k=1
+ . . . -k -k
forallnel , and lim 1 =1. Here lim 2 = 2 7, and the character-
n - o0
istic numbers of (a _,) area, = 2K anda=1. The sequence
{zn} ={1,0,1,0,1,0,...} is transformed into the sequence

{2/3,2/3,2/3,...}, a constant sequence with limit 2/3,

Notice that Theorem 2. 16 and Theorem 2. 12 not only charac-
terize K~matrices and K-sequences, but they also state the relation-
ship between lim z_ if {zn} ¢ c and lim z' where {z"ﬁ} is the transform
of {Zn}" The numbers a and a_ in Theorem 2. 12 and the numbers a
and bk in Theorem 2.16 are called respectively the characteristic
numbers of the K-sequence {fn(x)} or the characteristic numbers of
the K-matrix (ank) because of their role in determining the value of

the transformed sequence,
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The next definitions and theorems are concerned with sequences
{fn(x)} and matrices (ank) which assign convergent sequences their

usual limits,

Definition 2. 19. Let {fn(x)} be a sequence -to-function summa -

bility method. 1If every convergent sequence {zn} in E is the domain

of {fn(x)} and if

00
lim g(x) = lim = fn(x)zn =z
X = x=op n=1

whenever lim z_ = z, then {fn(x)} is a regular sequence-to-function
summability method. In this case {fn(x)} will also be called a Toeplitz

sequence or a T-sequence.

The following theorem concerning T-sequences was first proved
by Toeplitz in. 1911, extended by Silverman in 1913 and by Schur in

1920.

Theorem 2,20. (Toeplitz-Silverman) Let {fn(x)} be a sequence-

to~function summability method. Then {fn(x)} is a T-sequence if and

only if:
i) there exists Xq € (0, o) and there exists M ¢ (0, o) such that
o)
= Jf (x)] <M, forallx>x, >0,
. ' - 0
n=1
. +
i1) lim f (x)=0forallnel,
x=oo I
v 00
iii) ¥ f (x) = {(x) and lim f(x) = 1.
n=1 & X - 00
In this case
o'e)
lim g(x)= lim Z fn(X)Zn =z

X = 00 x—-00 n=1
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whenever lim z = z. ¢ oo.

Proof: a) i, ii, and iii are sufficient. Let a = 1 and a = 0 in

Theorem 2.12 so that

00
lim g(x)=1z+ Z O(zn— z) = z.
X = 00 n=1

b) i, ii, and iii are necessary. Since every T-sequence is a
K-sequence, and condition i is necessary for {fn(x)} to be a K-
sequence, then condition i is necessary for {fn(x)} to be a T-sequence.

Letz =0 ifn # p and let Z5 = 2. In this case lim z_ = 0 and

0o
> f (x)z = 2f (x).
ne] B n P
This will be zero only if lim f _(x) = 0. Hence condition ii is necessary.
X =00

Let z = l for all ne It. In this case lim z = 1 and

This will be one only if condition iii is satisfied, This proves the

theorem.

Example 2.21. The Mittag-Leffler sequences are a collection

of T-sequences where

f _ Jgn) Xnml\
{f (=)} = _Wf

such that g(n) > 0, g(n) > 0 for infinitely many integers n ¢ I+, and



is an entire function. That is, E(z) is analytic in the finite complex

plane. Now

00 00 n-1
z Ifn(x)' = g(nE):(x)
n=1 n=1
00
1 n-1
= = Z gh)x
E(x) n=1
S Ex)=1
T E(x) -
so that
0
lim b f.n(x) = 1.
x=-00 n=1l
Also
Xn-~1
lim f (x) = g(n). lim
0 X =00
Now
n-l n n fe'e} -1
X k-n b'e k-1
= 2z k + z +k
E(x) k:lg( )% Xnml k:lg(n )x
so
C Xnml 00 k-1 -1
lim ~ = | M+ lim x 2Z g(ntk)x ) =0
iy BE(x) _
X 08 - x-oo k=1

since g(n) > 0 for infinitely many n e I+.

Example 2,22. A particular Mittag-Leffler sequence is the

Borel sequence,

For the Borel sequence,

42



0 (e’s) xn~1 % x
zZ f(x)= = =e (e )=1
n x
n=1 n=1 e (n-1)!
Now
li f (x) = 1 li 1 =0
™oty T (n-1)1 m oo _k-n+l
X =00 i X =00 > X
- 1
k=1 (k-1)!
Hence
[0's)

lim Z f(x)=1
x=00 n=]

and lim f (x) = 0 forallne I+., Consider the sequence
X = 00

{zn} ={1,0,1,0,1,0,...}. Then

(D -
zZ {(x)z_ = = X - e ¥sinhx
n=1 B n

and
lim e ~ sinh x = 1/2.
X = 00
so that {1,0,1,0,1,0,.,.} is assigned the limit 1/2 by the Borel

sequence.

Example 2,23, If g(n) = (2n-2)! when n = 2k-1, and g(n) = 0

when n = 2k then

Thus,

n-1
X

{fn(x)} = { cosh x(2n=-2)!}

and if {un} ={1, -(2), 4/2,-6/3,...} then

43
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so that lim g(x) = 0. Note that, for this choice of g(n), the sequence
X =00

{fn(x)} is quite powerful!
The next definition and theorem characterize T-matrices.

Definition 2.24. Let (ank) be a sequence-to-sequence summa-

bility method. If every convergent sequence {zn} in E is in the domain

of (ank)’ and if

fe's)
M 1 —_ 3 —_
lim z' = lim x ankzk =z

n=0 k=]
whenever lim z =2 # oo, then (ank) is a regular sequence-to-sequence
summability method. In this case (ank) will be called a Toeplitz

matrix or a T-matrix.

Theorem 2.25, Let (a be a sequence-to~-sequence summa-

nk)

is a T-matrix if and only if:

bility method. Then (ank)

i} there exists ng ¢ I+ and there exists M ¢ (0, co) such that
m Y X +
n%}]ank] < M for every n > ng > 0, nel,

ii) lim a_, = 0 for every fixed k ¢ I+,
nk
n- oo

o0
iii) = a

=z r and limr =1,
k=1 n n

nk

In this case

0o oo
limz! = lim 2 a ,z, =lz+ Z 0(z,-2)=2z
n-oo k=] nk k k=1 k

where lim Zn =z,
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Proof: a) i, ii, and iii are sufficient. Leta = 1 and bk = 0.in

Theorem 2. 16 so that

8

. . _ -
lim z' = 1z + = O(zk z) = z.
k=1
b) i, ii, and iii are necessary. Since every T-matrix
is a K-matrix, and condition i is necessary for (ank) to be a K-matrix,
then condition i is necessary for (ank) to be a T-matrix.

Let z :Oifk;«‘pandletzp:'n'. Then

k
oo
kZ_l a 1%k " wanp.
Here lim z = 0 and
oo
151 a K%k = nanp'
Now lim mwa__ = 0 only if lim a__ = 0. This means that condition ii

1s necessary.

Let z, = 1 for all n ¢ I+ so that lim z = 1 and

Now

lim = ak
n-o k=1 n

will be one only if condition iii is satisfied, and the theorem is proved,

Example 2.26. An example of a T-matrix is the matrix (@ i)

where a = i/nifk<nanda = 0ifn <k. This matrix is called
nk — nk

the matrix of arithmetic means. For this matrix,
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00 no
z Ja,l=2 &-=1
k=1 k=1
+ . . 1 + .
forallnel and lim a . lim = =0 forallkeI . Hence its
n-oo 1 n - oo
characteristic numbers are ak = 0and a = 1, This matrix transforms

{Zn} ={1,0,1,0,1,0,...} into the sequence

1

{1: 2’

WIN

which has the limit 1/2.

L L
P20 Zk-10 27

Example 2,27. The matrices of Cesaro means of order r > 0

are a family of T-matrices where

a rT(ntl)TC(r +n-k)

nk = T(n-k+1)T (r+n+l)

ifk_<_na.nda.n :Oifn<k.‘ Here

k

and I'(n) = (n-1)! forn € I'. Note that r['(r) = T(r+1).

L(rtn-k)
T{n-k+1) °

T e l- za, -2 §
k=g Dk k=0 DK P(;:?:tr.{frl)i k=0
Consider
1 _ § __L(+ntl)
(1-z)t1 pzp TUHDDintl)
and
1 _OZO C(m+n+l)
(1-z)yt1 oo TEtl)T(n+l)
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whenever [z] < 1. Then

1 1

. T'(m+j+nt2) n
(luz)J+l . m+1

T'(m+j+2)T(n+1)

00
=
n=0

n-k k
-z

so that if the coefficients of =z =z are equated,

o I(j+n-k+l) C(m+k+l) \ _  D(m+j+n+2)
k=0 T (j+1)I'(n-k+l) T (m+1)I'(k+1) | = I(m+j+2)T(n+l) -~

Now let m = 0 and let j = r-1, then for r > 0,

; T'(r+n-k) _ T(r+tn+l)
k=0 T(r)C(n-k+1) ~ T(r+1)T'(n+l) °
Hence,
n
5 rC(n+])C(r+n-k) 1
k=0 T(r+n+1)T(n-k+1)
and a, = 1 for all k ¢ I+. It can be shown that
1 1
T(n+l) = ot §e-n2'rrgeq(n)

where lim nq(n) = 0. This means that
n - oo

T(r+1)I"(n+1)(r+n-k)

lim roree
A oo T (r)I"(n-k+1)T" (r+n+l)

I'(n+l)C(r+n-k)

T Tk DT (D)
1 _ 1 1 2 N
= r lim n"" %e n2"T“eq(n)(r+n»-k»—l)r+n k-go-r-ntktl, & a(rin-k-1)
n - oo - 1 1 w . T
(nmk)n k+ge n+k2.n.geq(n k)(r+n)r+n+-§e T nzﬁgeq(r+n)
n+ g r+n-k-%
= re lim n 2(r+n_k_1) 7
n - 0o (nmk)n k+ 9(r+n)r+n+'§
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1 L
- re lim n \*E a1\ PRTE (1) T 1
B nooo \Itn n-k r+n r+n-k-1
y 1 \tE ( 1\ Pkt 1 \* 1
= re nl-l;noo E 1+ n-k 1 r+n r+n-k-1

for all k <n and for all r > 0, so that a = 0 and the Cesaro matrices of
all orders r > 0 are T-matrices. Ifr =1, thena , = 1/(n+l) if k <n

and a = 0 if n < k so that the sequence {zn} ={1,0,1,0,1,0,...} is

k
transformed into the sequence {1/2,1/3,1/2,...,1/2,k/(2k-1),...}

whose limit is 1/2.

For every sequence {Xn} in E there’'is an associated infinite

w r .
series Z}: ck where cl :_x1 and Ck = Xy - Xk-l if k> 1. Thus
n 00
kz':—-lck =x_, and {Xn} is the sequence of partial sums of k2:1 ¢y This

means that the results on sequence ~-to-function transformations can be

extended to theorems on series-to-function transformations.

Definition 2.28. Let hy (x) ¢ F[(0, )] for all k ¢ 1t and let
00
Z cyp be an infinite series of complex numbers such that
k=1

belongs to F[(0,00)]. If lim g(x) = t # oo, then {h, (x)} will be called
X =00 0
a series-to-function summability method, and % ¢

K will be said to be

in the domain of {hk(x)}.

Just as before, care must be exercised in the application of this

definition to particular sequences {hk(x)} and to particular series
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0o o
¥ c¢, since X h, (x)c, may not converge to a function in F[(O, o0)].
k=1 K k=1 k 'k & )

Conservative and regular series-to-~function transformations

are defined in a manner analogous to that for conservative and regular

sequence-to~function transformations.

Definition 2.29. Let {hk(x)} be a series-to-function summa -

bility method. If

(e 0]
g(x)= Z h
k=1

(x)c

k k

belongs to F[(0, 00)] and if lim g(x) =t # co for every convergent series
X = 00

0o
= Cq in £, then {hk(x)} is a conservative series-to-function summa-
k=1

bility method. In this case {hk(x)} will also be called a B ~-sequence.

Definition 2.30. Let {hk(x)} be a series-to-function summa -

bility method, If

oo
g(x) = = h (x)c
k=1 k k
0o
belongs to F[ (0, )] for every convergent series X ¢ =t in El’ and
k=1
if
] oo
lim gx)= = ¢ = t,
X = k=1

then {hk(x)} is a regular series -to~function summability method. In

this case {hk(x)} will also be called a y-sequence.

The following lemma, first proved by R. Henstock, will be used
in the proof of a theorem for series-to-function transformations which

is the analogue of Theorem 2. 12.
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Lemma 2.31. Let {gk(x)} be a.sequence of functions in
o)
F[ (0, )] such that for every convergent series = ) in E,. there

0 0

Then there exists a real number M(x) for each fixed x > X4 > 0 such

00
exists x, ¢ R+ such that kzl gk(x)ck converges for every fixed x>x_> 0.

that ng(x)} < M(x) whenever k ¢ I+.

Proof: Suppose the lemma is false, that is, suppose that for

every re I+ there is an x > x, such that {gk(x)} has a 'subsequence

0

. 2 _ 0 .

{gkr(x)} where ]gkr(x)[ >r”, Let ¢y = 0 if k # kr’ let
C = “‘f‘ r

k 2
r Tgy (x)
r

if 8 (x) # 0; and let ¢y = O if gkr(x) = 0.
r r

" Now
00 00 2
= 'ckli Z r
k=1 k=1

oo
which is a convergent series. Thus, Z Cq is absolutely convergent.

0o
Hence X% Cr is convergent, and
=1

™8
H

= 2 lgm|> = lg, @]
Z g (x)e, = Z |g.x))>2Z |g X|>
k=1 &K oy K r=1 Fr

o s} .
Thus, kZ gk(x)ck is a divergent series. This contradicts the hypo-
=1

thesis, so the lemma is proved.

The next theorem was proved by Bosanquet in 1931. Cooke's

modification of the proof is based upon the lemma of R. Henstock,

Theorem 2.32. Let {hk(x)} be a series-to-function summability
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method. Then {hk(x)} is a B -sequence if and only if:

i) there exists xbe (0, c0) and there exists M ¢ (0, co) such that

o0

kzl ,hk(x) - h_k+1(x)| <M

for allx>x0> 0,

ii) lim hk(x) =a, # oo for every k ¢ I+.
X =00

In this case

00
lim g(x)= lim Z h, (x)c
k k
X = x-oo k=l
0
= alt + Z (ak— ak+l=)(tk_ t)
k=1 !
k .
where tk = nélcn and lim tk =t # oo.
m .
Proof: a) Conditions i and ii are sufficient., Let X €y T t be
k=1
a convergent series in E and write '
o 00
kZjihk(x)ck = hl(x)t + 151 (hk(x) - hk+1(x))(tk t).

o)
The task at hand is to prove that kzl hk(X)Ck converges. if {hk(x)}

satisfies i and ii above. If it can be shown that i and ii imply that

converges, the task will be accomplished.

Define £, (x) = hk(xﬁ)%'- h, | (x) so that

k+1
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for all x > x_ > 0 if and only if

0
feo]
Z by (x) - hy (=] <M
k=1
for all x > x_ > 0. Next, lim f (x)=a' if and only if
0 xooo K k
i o = L = -
lim hk(x) hk+1(x) al =a -a .
X = 0
Lastly,
00
> f.(x)=h,(x)
k=1 k 1
and
0

lim X f(x)=a; # oo
k 1
x=-00 k=1

.. Now lim (t, - t) = 0, so that Theorem

if and only if lim hl(x) =a K

X = 00 1
2.12 applies, and

converges for all x > x_ > 0.

0

Now let M be the constant from. condition i. Since lim tk =t

it is possible to choose N so that !tk— t’ < € /M whenever k > N.  Hence

Qo N o0
2 h, ({x)c, = h,(x)}t+ Z (h, (x)-h )Nt -t)+ = (h, (x)-h (x))(t, ~t)
=1 k k 1 k=1 k k+1 k KeN+1 k k+1 k

= hl(x)t + HN(x) + H(x) .

Condition ii implies that

N
lim HN(X) = X (ak_ ak+1) (tk— t),
X — 00 k=1
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and condition i implies that

(0 0]
|H(x)| = Z  (hy(x) -h (%) (t -~ t)
K= N+1 k k+l k
BN - ¢
< = h (x) - h,  (x)|]t -t
T =N+l k k+1 k

< M- E/M =€

for each fixed x> x, > 0. From condition ii, lim h_ (x) = a, so that
0 x—00 1 1

0o
lim gx)=a,t+ X (a, - a t).
k=

k™ 2ke1) (B
X =00

This proves that the conditions are sufficient.

b) The conditions are necessary. Now suppose that

0
lim g(x) = lim = vhk(X)Ck
X =00 x oo k=1
o) .
exists whenever X ¢, converges, let Cy = 0, k# N, and let c._. = 1,
k=1 N
This means that g(x) = hN(X). Thus condition ii, lim hk(x) = a2y for
X =00
all k ¢ I+ is necessary. Next write
n n
Z h (x)e, = Z h (x)({t -t )
k=1 k k k=1 k k-1
n
= Z @) [ (e 1) - (b_q- )]
k=1
n-1
:‘kzz)l (hk(x) - hk+l(x) (tk— t))+ hl(x)t + (tn~ t)hn(x),

From Lemma 2. 31, }hn(x)J < M(x) for each fixed x > x

< O>Oandfor
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alln ¢ I+. Hence

and since

then

n-1
lim % (h(x) - h_ (x)) (- t) + h, (x)t = g(x)
n—-oo k=1

for all fixed x > Xq > 0. Since lim g(x) exists by hypothesis, we can
X = 00

apply Theorem 2. 12 to the sequence of functions

{£,(0} = {b () - h_, (x)}

and to the sequence -{tn}. Thus, the conditions are necessary and the
theorem is proved. Note that the Kojima-Schur Theorem is the key-
stone of the results which characterize summability methods. for

sequences and series.

Example 2,33. A p -sequence can be constructed from the K-

sequence

2 2 2.~1
{fn(x)} = {(x"+ 4n"r") "}

by letting

00

'hn(X) = X fk(x).

k=n
‘ + .
Here a, = 0 and a, - a4 = 0 forallk e I so lim g(x) = 0 and {hn(x)}

X =00
transforms every convergent series into a function which has limit

zZero,
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The next theorem is the analogue of Theorem 2. 16 for infinite
series,

Theorem 2,34, Let {hk(x)} be a series-to-function summability

method. Then {hk(x)} is a Y-sequence if and only if:

i) There exists X € (0, o0), and there exists M ¢ (0, co) such that

o

= |h(x) -k (x)] <M
k=1

for allx>x0 > 0,

i) lim hy(x)= 1forall ke it
X = Q0

In this case

0o
lim g(x)= lim X h, (x)c, =t+# o
k k
X =0 x->0 k=1

o0

whenever Z = t i1s a convergent series in E,

Proof: a) Conditions i and ii are sufficient. Let ay = 1 in

Theorem 2,32 so that

[o.0)
lim g(x) = lt+ T 0t - t) = t.
X = QO k= )

b) Conditions i and ii are necessary. Since a y-

sequence must be a B-sequence, and condition i is necessary for{hk(x»

to be a B ~sequence, then condition i is necessary for{hk(x}to be a

y-sequence. Let Cp = 0, k# N, and e T 1. Then g(x) :_hN(x) and

t = 1 so that condition ii is necessary. This proves the theorem.



Example 2.35. The Borel exponential sequence

is a y~sequence. Here integration by parts can be used to give

e—xxk+l
) =TT P 9
Thus
e—xxk+1
by () = by ) = =y
and
0o l ' x @ Xk+1 R .
Z th (x)-h (x)| = e b r=e (e ~l-x)<1
k=1 k k+1 k=l(k+1)

forallx> 1> 0. Also

.
lim f e Ffat = k1,
0

so that the Borel exponential sequence is indeed a y-sequence. Let
o} 0o
Z ¢, = Z (-1)
k:l k:

so that

1 Kk 1 k! 0
= e X(eF- 1)-e7F OZ)O li—ziji—
2, @k
X -X
- e-x(ex_: ] . € nze )
- 1-% B —i * éx
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: © k-1
Hence lim g(x) = 1/2, and kEl(—l)

X =00

is assigned 1/2 for its limit.

It should now be apparent that the ways in which a.divergent
sequence can be assigned a number are many and varied. The concept
of convergence can be viewed as a special case of more general methods
which assign numbers to sequences. The divergence of a sequence or
a series is no longer a cause for alarm, or for discarding it as totally
useless. There may well be a summability method, which is applicablé
in a particular model of a physical sitpation, that can assign a number
to the sequence. Aside from applications, there is ample opportunity
to experiment with devising new summability methods.

The matrix of arithmetic means and the Cesaro matrices have
special applications in dealing with divergent Fourier series, and the
Borel and Mittag-Leffler sequences have applications concerning
Taylor series of functions outside their circle of convergence. These’
applications will be examined in Chapter IV,

Many areas of interest concerning summability methods are
now within view, The structure of the sets of K~-sequences and T -
sequences, of K-matrices and T-matrices have been examined by
Agnew, Cooke, and others. K-sequences and K-matrices form an
algebra, but the ''mice' sequences and matrices, the T-sequences and
matrices, are not so fortunate. The eleifglentnwise sum of two T-
matrices may not yield a T-matrix. Hill, Cooke, Dienes and others
have considered whether one value assigned to a divergent sequence
is better, or more natural, than other values.

There is a considerable amount written on whether one summa-
bility method is stronger than another. Wilansky has given necessary

and sufficient conditions for a summability method to be stronger than
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convergence. Zeller has given a criterion for testing the relative
strengths of summability methods which belong to certain families,
These and other topics are referred to in the books and articles listed
in the bibliography.

Mazur, Ohrlich, Wlodarski, and most recently, Wilansky have
examined the structure of the set of sequences itself. The use of the
theory of linear spaces can lead to answers to questions about the size
of the domain of a summability method and the relation
of the domains of two summability methods to each other, This and

other related topics will be the subject of the next chapter.



CHAPTER III
SEQUENCE SPACES

The notion of a linear space, or a vector space, in which there
is defined a distance-like function has led to a branch of analysis called
functional analysis. Examples of linear spaces, which should be
familiar, are the spaces of n-tuples of real numbers or of complex
numbers. In particular, the spaces of ordered pairs or ordered triples
of real numbers from analytic geometry are indispensable to analysis
of functions of several variables. Since sequences are a natural
generalization of an ordered n-tuple, it should be expected that certain
sets of sequences form linear spaces and that the domains of infinite
matrices and distinguished subsets of their domains can be examined
by the methods of functional analysis.

Some of the sets of sequences under consideration will be the
set s of all sequences of complex numbers, the set m of all bounded
sequences of complex numbers, the set ¢ of all convergent sequences

of complex numbers, and the set ¢, of all sequences of complex

0

numbers which converge to zero. Sequences which converge to zero

will be called null sequences, thus ¢, is the set of null sequences.

0
The study of the properties of sets of functions using the concept
of a linear space was pioneered by Banach. Studies in the application

of the methods of functional analysis to sequence spaces and infinite

matrices are an area of recent research concerning summabi lity

59
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methods. An introduction to sequence spaces is given in this chapter
to demonstrate some of the types of problems concerning summability
methods which are being examined using methods of functional analysis.

The next definition is that of a linear space.

Definition 3. 1. A linear space X, over a field 8 of scalars, is

a set for which an additional operation is defined making X a commuta -
tive group, and a multiplication by scalars is defiﬁed satisfying the
following conditions: |
i) t(at+b) = ta + tb,
ii) (r+t)a = ra + ta,
iii) (rt)a = r(ta),
iv) la = a,

where a,b ¢ X and r,t, 1 ¢ 8.

One example of a linear space is given by letting X = 8 = R, the
set of real numbers. Another example of the same sort is given by
let;:ing X = 8= E, the set of complex numbers. Since conditions i
through iv do not require anything :aot already present in a field, it can
be seen that any field can be considered to be a linear space over itself,
An example of a linear space, which is basic to the study of sequence
spaces, is a set M of functions whose range is a subset of a field 8.
Define (f+g)(x) = {(x) + g(x) and define (tf)(x) = t(f(x)). Then M is a
linear space over 8. In the next theorem this fact is demonstrated for
the particular case in which M is s, the set of all functions from I+ to
E.

Theorem 3.2. The set s is a linear space over the field E

where x+y = {zn+ Wn} and tx = {tzn} for x = {Zn} and y = {Wh} in s and
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t in E.

Proof: Let x = {zn} and let y = {wﬁ} belong to s, and let r,t
belong to E. Then s is a commutative group under the addition defined
above since E is a commutative group under addition.

Now
t(x+y) = {t(zn+ Wn)} = {tzn+ twn} = {tzn} + {twn} = tx + ty,

from the field properties in E and the definitions of addition and scalar

multiplication. Thus i is satisfied. Also
(r+t)x = {(r+ t)zn} = {rzn+ tz } = {rz } + {tzﬁ} = rx + tx,

for the same reasons, and ii is ;é’satisfied.

From the definition of scalar multiplication, (r‘t)x =v{(rt)zﬁ}.
From associativity of multiplication in E, {(rt)zn} = {r(tzn)}. Using
the definition of scalar multiplication again, {r(tzn)} = r(tx) so.that iii
is satisfied.

Lastly, 1x = {lzﬁ} = {zn} = x from the definition of scalar

multiplication, and the identity for multiplication in E. This means

that iv is satisfied, and the theorem is proved.

Theorem 3.3. The sets c, and m are linear spaces over

CO,

the field E.

Proof: Let addition and scalar multipiication be defined as in

Theorem 3.2. Then ¢, ¢c,, and m are commutative subgroups of s

O’
under addition, as is-shown below.

Ifx={z}andy-s= {wh} belong to m, then there exist M_ and

M. in {0, o) such that Iz [ < M_ and ’w ’ <M_forallne I+. Hence
N n X n vy
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|z +w_ | <|z_| +|w | <M_+M_forallne I+, and x +y belongs to m.
n n' —'n n x y

Since lzn[ = I_zn’, each element of m has an additive inverse in m.

Thus x + (-y) belongs to m for all x and y in m. Addition is commuta-

tive in m since addition is commutative in E. This means that m is a

commutative subgroup of s.

If x = {zn} and y = {Wﬁ} belong to ¢ or ¢,, then Theorem 1.5

0,

implies that x + y belongs to ¢ or ¢, respectively. Again, Theorem

0

1. 5 implies that if x belongs to ¢ or Y then -x belongs to ¢ or o

Thus x + {-y) belongs to ¢ or ¢, whenever x and y belong to ¢ or ¢

0 0

Addition is commutative in ¢ and S since addition is commutative in
E. This means that ¢ and o are commutative subgroups of s.
Properties i, ii, iii, and iv are inherited by m, ¢, and ¢, from

0

s. This proves the theorem,

Now that the set s and its subsets m, ¢, and o have been shown
to be linear spaces, the notion of distance in m, c, and o will be
explored. To appreciate the usefulness of a distance function, consider
the linear space of R over itself. Here the distance from any point x
of the real line to the origin has the handy representation, [x[ Note
that |tx| = ’LJ (x] in R, and that fx=y[ is the distance from x to y or
from y to x. The set {x:|x-y| <r, re (0,o)} is an open interval
with midpoint y and length 2r. Recall that convergence of a sequence
{Xn} in R to the limit b requires that, for an arbitrarily small interval
with b as midpoint, there exists an index N such that X is in the
interval about b for all n > N,

In the linear space formed by taking E over itself, things look
very similar to the sifuation in R. The distance from any point z of

the complex plane to the origin is still written lz ] , but recall that
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]z’ = x2+ yz' where z = x + iy. Again [tzf = ]t[ lzf and lz—w] is the
distance from z to w or from w to z. However, the set
{z: ’z ~w| <r, re (0,00)} is an open disc with center w. Here the
convergence of a sequence {Zn} in E to the limit u requires that, for
an arbitrarily small disc with u as center, there exists an index N
such that z is in the disc about u for all n > N.

The pertinent properties of ’x' in R or ’zl in E are collected
to define the notion of a norm for a linear space X over E in the follow-

ing definition.

Definition 3.4. A norm for a linear space X over E is a func-

tion ¢ from X to [0, ), #:X =[0, o), which satisfies the following
requirements: B
i)  @(x) = 0 if and only if x is the additive identity in X,
ii) @(x) >0, for all x ¢ X,
iii) @(-x) = @(x), for all x ¢ X,
iv)  B(xty) < B(x) + @ (y) for all x,y ¢ X,

v)  B(tx) = |t]| §(x) for allt ¢ E and all x ¢ X.

If X is a linear space over E with a norm defined on it, then X
is called a normed linear space. It is customary to write Hx” for @(x).

Since it is relatively easy to define a norm for m, ¢, and o it
will be desirable to concentrate on these spaces for much of what is to
follow, It is possible to define a distance-like function in s. Wilansky

discusses this topic and many others concerning sequence spaces in

[11].

The following theorem yields the norm for m, ¢, and ¢. which

0

was promised.
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Theorem 3.5. |[x| = sup { Izn] (X = {zn}} is 2 norm for m.

Proof: Note that [|x]|| = sup {]zn, 1X = {zn}} is well defined for
all x in m since every bounded set of real numbers has a unique
supremum.

Now sup { ]zn] 1% = {zn}} = 0 if and only if lzn[ = 0 for all
n e I+. Further, ]zn] = 0 if and only if z = 0. Hence ”x“ = 0 if and

only if x = {0,0,0,...}, and i of Definition 3.4 is satisfied.

Next, since |z]| > 0 for all z in E, then [x]| = sup { lzn[:x={zh}}
> 0 in m so that ii is satisfied.

InE, |-z|=]|z]|, sothat |-x]| = [|x]||, and iii is satisfied.

i

Now let A = sup{‘zn+ Wnl:x: {zn}y y = {Wh}}’ let
B = sup {Izn[:x = {zn}}, and let C = sup{lwnl: y = {w_,}}. Then for
alln ¢ I+, B+C> [z ]+ fw [> ]z+w l Further, for every € >0
= '"n n! =" "n

there exists an integer N such that A - € < [z This means

N+ WNIQ

that for every € > 0 there exists an integer N such that
B+ C2> |z | + [wyl > [agtwyl>Aa-¢8

and B+ C +€>A. Hence B+ C2>Aor Hx“ + ”y” > “x+y” for all
X,y in m so that iv is satisfied.
Since ]t[ ]znf = ]tzn], [t[ ”x” = ”tx” so that v is satisfied.

Thus |[x|| is 2 norm for m and the theorem is proved.

Corollary 3.6. x| = sup {’zn]:x = {Zri}} is a norm for ¢ and

Proof: ¢ and c, are linear subspaces of m, so that each state-

ment of Theorem 3.5 applies to them as well as to m, and the corollary
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is proved.

Since the generalization of the properties of [x] in R and fz] in
E gave the concept of a norm for a linear space over E, it would seem
reasonable that a generalization of fx-=y! in R or'z ==wf in E would lead
to the concept of a distance measuring function which could be applied

to m, ¢, and <o

Definition 3.7. A metric for a nonempty set X is a real function

d of two variables satisfying for all x, y, z in X,
i) dx,y) >0,
ity d{x,y) = 0 if and only if x = vy,
iii)  d(x,y) = d{y, %),

iv) d(x,y) <d(x,z) + d(z,y).

The next theorem shows that Hx«y“ is a metric for m, ¢, and

Theorem 3.8. If @ is a norm for a linear space X then

d(x,y) = @{x-y) is a metric for X.

Proof: Property il of Definition 3.4 insures that d(x,y) > 0,
and i of Definition 3.4 implies that d(x, vy} = 0 if and only if x-y is the
additive identity in X, which is true if and only if x = y. d(x,vy) = d(y, x)
since @{x-y) = @(y-x) from iii of Definition 3.4. Now x-y = (x-z) + (z-y)
so that d(x, y) <d(x, z) + d(z,y) from iv of Definition 3.4. This proves

the theorem.

Corollary 3. 9. Hx~=y ” is a metric for m, ¢, and cy-

Example 3.10. The metric just given will now be illustrated
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as it applies to some sequences in m. The sequences

x=1{1,0,1,0,1,0,...},

y={1,1/2,1/4,...,2*0, ...},

and

n

v=1{0,3/2,2/3,...,(n+-1)")/n,...}

belong to m, and so do the constant sequences 0 = {0,0,0,...} and

1={1,1,1,...}. Now

=l = fiylh = 1Tl =1,

”V'” =3/2, and ”6” = 0. Also,

Iyl = [=-1]| = ly-vll = [x-0] = |ly-0]
= ly-T] = IT-5) = fo-Tj = 1.
Finally,
I-v] = v-0] = 3/2.

Note that x is not an element of ¢, lim V.= 0, lim v, = I, lim 6n = 0,
and lim Tn = 1. This should point out that the metric just defined for
m, ¢, and €4 does not have much relation to limit points and the

distances between them in E with the metric d(z, w) = Izmwl°

Definition 3.7 defines a metric on a general nonempty set X,
and thus in particular for a linear space. It is clear that the concept
of a metric requires no linear space structure on the set for which the
metric is defined. Indeed, some of the properties of sequence spaces

to be examined in this chapter depend only on metric concepts, while
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some depend only on linear space concepts. The combination of the
two yields even more information as will be seen.

Now that a metric is at hand for the spaces m, ¢, and o
sequences in these spaces and convergence of sequences in these
spaces can be explored. Consider a sequence {Xn} in m. This is a
sequence {XI,XZ,X3, . ,xn, ...} where xnvis an element of m. That

1s,

s Z

x = {an’zn2’2n3"" nk""}

where I the kth te»rm of the sequence X is an element of E, This
situation corresponds to an infinite matrix (an)’ whose rows are the
elements X of 2 sequence {xn}, (see Figure 3.1, p. 73). With the
diagram in mind, consider the following definition of convergence of

a sequence in a metric space.

Definition 3, 11. Let {xn} be a sequence in a metric space X
with metric d(x, y). Then lim X =XE€ X if and only if for every € > 0

there exists N ¢ I+ such that d(xngx) < & whenever n > N.
In the metric spaces m, ¢, and o the definition would read

lim X FX &m, ¢, orc if and only if for every € > 0 there exists

09

N ¢ I such that ”XH“X” < € whenever n > N. Note that

I <l = s (e 7oy = Ly = ()

From the diagram, this means that given €> 0, one must be able to

find a row in the array such that for all rows further down in the array,
, . L+ +

]an“ Ak[ < & forallk eI . In other words, each column {an}’ nel,

must converge uniformly with respect to k, in the usual sense in E, to
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the corresponding Zy -
Convergence of a sequence {xﬁ} to a limit x in a metric space
is equivalent to lim d(xn,x) =0 in R. From Theorem 1.4, limits of

sequences in R and E are unique. The next theorem shows that this is

also true in a metric space.

Theorem 3.12. Let {Xﬁ} be a sequence in a metric space X
with metric d(x,y). Then lim X = XE X and lim X =ye X implies
that x = v.

Proof: From Definition 3,7,

d(x,y) < d(x,x ) +d(x_,y)

so that

lim d(x, y) < lim d(x, Xn) + lim d(xn, v).

Hence, d(x,y) <0, but d(x,y) > 0 by Definition 3.7, so that d(x,y) =0

and x = y by Definition 3.7. This proves the theorem,

Now consider a metric space X with metric dl(x,u) and another
metric space Y with perhaps a different metric dz(y, v). Continuity of

a function f from X to Y, f:X =Y is the subject of the next definition.

Definition 3. 13, Let X and Y be metric spaces with metrics

dl(x, u) and d

continuous if and only if for every sequence {Xh} in X such that

2(y, v), respectively, Then a function f:X - 7Y is

lér;’l X =X liég f(xn) = f(x) in Y.
Some functions connected with the linear structure of a space

are addition, scalar multiplication, and the projection or coordinate’
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functions. Addition as a function on a linear space is a function of two
variables whose range is the linear space. That is, if L. is a linear
space, then addition is a function® from L X L to L; ®:L X‘L - 1.
Scalar multiplication is again a function of two variables whose range
is the linear space. Here ®is a function from E X L to L,  : EXL-1,
where L is a linear space over E. In a sequence space, the coordinate
functions Pn(x) are functions such that if x = {zn}, then Pn(x) =z .
Thus Prl is a function from m to E, Pn:m -E. An important character-

istic of m, ¢, and c, is that addition, scalar multiplication, and the

0
coordinate functions are continuous. This is the topic of the next

theorem.

Theorem 3. 14, Addition, scalar multiplication, and the coor-

dinate functions are continuous on m, ¢, and c..

0

Proof: Let lim (xn,yn) = (x,y) in m Xm. Thatis, let lim x = X
and let lim y = y. Then since GB({xn}, {yn}) = {xn+ yn} and
@(x,y) = x+vy, it must be shown that lim (xn+ yn) =x+y. Now
lim ”xnmx ” = 0 and lim ” V- y” = 0 implies that for every € > 0 there

exists an integer N1 such that “Xn“ x” < € /2 whenever n > Nl’ and

there exists an integer N, such that ” V- y” < € /2 whenever n > N

2

Let N = max {Nl,NZ} so that ”xn~xH + ”yney“ < € whenever n > N.

2-

Then

”Xnm xty - vyl = ”Xn+ V- x+y)|l <&

whenever n > N, and addition is continuous on m.
Next let lim (tyxn) = (t,x) where t is a scalar in E and {xn} is a
sequence in m such that lim x_ = x in m. Now ®(t, {Xﬁ}) = {txn} and

®(t,x) = tx so it must be shown that lim tx = tx. Suppose t # 0. Now
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lim Hxna x|l = 0 implies that for vevery € > 0 there exists an@i%j,_j_nteger N
such that Hxn~ x” < &/ ]t{ whenever n > N. Hence ltl ”Xn" x” <€, and
I tx - tx | < € by Corollary 3.6 whenever n > N. Ift= 0, then
tx%l= {tznk} = {0,0,0,...} for everyn ¢ I+ and tx = {0,0,0,...} so
that lim tx = tx. This proves that scalar multiplication is continuous
in m.,

Now let {x _} be a sequence in m such that lim x =X inm.

Then Pk(xn) =z . and Pk(x) =z Hence it must be shown that

nk k-

lim Z g T Py Now for every €> 0 there exists an integer N such that

”Xn== XH < € whenever n > N, and since

”Xn“ x| = s‘}ip {’an" Zkl:Xn = {an}, X = {Zk}}:

it must also be true that ’Zn - zk} <€ for allke I'. This shows that

k

lim Z = %y for all k € I+ and that the coordinate functions are contin-

uous.
Since ¢ and c, are linear subspaces of m, the arguments pre-

0

sented above also apply to ¢ and ¢, so that the theorem is proved.

05

Now the interaction between linear and metric concepts can be
seen quite clearly. The metric has been used in m, c, and o to refine
the linear structure by showing addition, scalar multiplication, and the
coordinate functions to be continuous functions. Spaces in which the

linear structure and the metric interact in this fashion are character-

ized in the next definition.

Definition 3.15. A space X is a linear metric spaéé if and only

if it is a linear space whose metric is such that addition and scalar

multiplication are continuous.
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Corollary 3.16. m,c, and c, are linear metric spaces,

Proof: Definition 3. 15 and Theorem 3. 14.

From Theorem 1.17, it is seen that a convergent sequence and
a Cauchy sequence are equivalent in R and in E. Cauchy sequences
can be defined in a general metric space, and a convergent sequence
is a Cauchy sequence. It is not true for a general metric space that a

Cauchy sequence is always convergent,

Definition 3. 17. Let {xn} be a sequence in a metric space X

with metric d(x,y). Then {xn} is a Cauchy sequence in X if and only if

for every € > 0 there exists an integer N such that d(xn,xm) < € when-

ever m,n > N.

Theorem 3.18. Let {xn} be a convergent sequence in a metric
space X with metric d(x,y). If limx = x ¢ X, then {Xn} is a Cauchy

sequence in X.

Proof: For every € > 0 there exists an integer N such that

d(xn,x) < €/2 and d(x, xm) < £/2 whenever n,m > N. Hence

d(xn,xm) < d(xn,x) + d(x,xm) <E/2+¢E&/2=E

whenever m,n > N and the theorem is proved.

The completeness property of R states that every Cauchy
sequence in R converges to an element of R. E is also complete so
that every Cauchy sequence of complex numbers converges to a com.-
plex number. The next definition states this concept for a general

metric space.
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Definition 3. 19. A metric space X is a complete metric spéée

if and only if every Cauchy sequence in X converges to an element of X.
The set of rational numbers is the usual example of a metric
space which is not complete.
Since linear metric spaces are the subject at hand, it is natural

to consider complete linear metric spaces.

Definition 3.20. A complete linear metric space is called a

Fréchet space.

If m, c, and c, are complete, then they are Fréchet spaces.

0

The next theorem states that such is the case.

Theorem . 3.21. m, c, and S are Fréchet spaces.

Proof: Let {Xn} be a Cauchy sequence in m. Then for every
€ > 0 there exists an integer N such that ”xpm Xq ” < € whenever p,q>N.
+
Now fzpkm qu; < pr— Xq H for all k € I so that each column of {Xn} =
(znk) is a Cauchy sequence in E. This means that each column of (znk)

must converge to an element z, in E, as in Figure 3.1, and that the

k

convergence is uniform with respect to k. It remains to be shown that

x| = Sﬁp {lzklzx ={z,}} =M <o

so that x belongs toc m. Letn, > N so that

0
}Zkl lznokl S]Znokb Zkl <&
and
EARL RN

for all k ¢ I+g Hence



sup {2 ]:x = {z.}} < sup {l=,

Therefore ”x” < oo, and x is an element of m.

1 7 %11
X2 = Z21
X3 T | %31
Xn = an
X = Z.r1
o 0
! !
X = Z1

Let {Xn} be a Cauchy sequence in ¢. Then each row of (z
ke I+, in Figure 3.1 is a convergence sequence with limit w

Apgain, ”x - X ” < € whenever m,n > N implies that lz
m “n m

12

22

32

n2

13

23

33

n3

0

1|

X

Figure 3.1

0

= {z + €=M
(2, B o=,

lq
2q

3q

ngq
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+ €,
0

k)’
in E,

_an’ <&

whenever m,n > N so that each column of (an) is a Cauchy sequence in

° -+
E. Hence the column limits are justified in*Figure 3.1. Now this

means that for ever'y € > 0 there exists an integer N

1

such that
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7z -z [ < €/3 whenever n > N
p np 1

Let n, be a fixed integer greater than N

and ]z -z f < €/3 whenever n > N..
q ng 1

Now since each row of (z

1° nk)

is a convergent sequence, for every € > 0 there exists an integer K

which depends on n

0 such that [znop- znoq[ < &/3 whenever p,q > K.

Hence

[z~z'<lz-z l+)z

p~ “q' = !"p” "n p np"znthzn - %]
0 0 0

0 4

<e/3+e/3+¢&/3=¢

whenever p,q > K. This proves that {zk} is a Cauchy sequence in E,

and therefore .{zk} is an element of ¢, so that ¢ is a Fréchet space.

Since %113100 Z g T Zyo kh—>nolo Zy = 2, and kh—»ngo z k= W, one
would suspect that lim w_ exists and is equal to lim z,. Such is the
n -o0o n k- o0 k

case, and the uniform convergence of the columns of (an) is the key

to proving this statement. First it will be shown that

Yim z K = 2
n = oo
k- oo

For every € > 0, there exists an integer N. such that [ Zog" Zk' <E&/2

1

whenever n > N1 for every k ¢ I+, Given € > 0, choose an integer N2

such that if k >rNZy fzkm z‘ < &€/2. This can always be done since

klintlb z, = z. Let N = max {Nl’NZ} so that

z[ < ]z _Zk! +}zk—~z[ <8/2+8/2;6

E

nk~ nk

whenever n > N and k > N. Next it will be shown that lim W =z
n =oo

. From what has just been done, for every € > 0 there exists an integer

and k > N,. Given € > 0,

- zf < E/2 whenevern>N3 3

Ny so that [zn

+ . .
for eachn ¢ I , there exists an integer N

k

4(n), which depends on n, such
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that |w_- z | < €/2 whenever k > N, (n). Now for eachn > N, choose
n “nk 4 3
N'4(n) and choose a fixed integer ko > N = max {N3, N4(n)}. This means
that
[W‘n~ z| < [wn-» Z k { + lznk - zf <E/2+E&/2=2¢8
0 0
whenever n > N. Thus, lim W, =z To repeat, this is possible only
n - oo
because of the%luniform convergence of the columns of (an) which was

used to show that

lim =z ,= =z.
-0 nk
- 0

Now let {xn} be a sequence in ¢ As before, each golumn of

0

(znk) = {xn} is 2 Cauchy sequence so that lim x = x = {zk} and each
row of (z ;) = {xn} converge;s to zero so {w_} = {0,0,0,...}. Hence
lii—{noo 2y = 0 and <o is complete.

Thus, m, c, and ¢y are Fréchet spaces, and the theorem is
proved.

/s s o ° o
Frechet sequence spaces with continuous coordinate functions
are a distinguished collection of sequence spaces. The next definition

gives the name of these spaces.

Definition 3.22. A Fréchet sequence space with continuous

coordinate functions is an FK-space.

Theorem 3.23. m, ¢, and c, are FK-spaces,

Proof: Corollary 3.16, Theorem 3.21, and Definition 3. 22

prove the theorem.
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Another result from the application of functional analysis to
summability methods is that the set of sequences which is the domain
of an infinite matrix is an FK-space, That is, if A is an infinite
matrix thend, = {x:Ax e s} is an FK-space. Note that this state-
ment does not require the matrix to be a summability matrix, nor
does it require the transformed sequence to be convergent. The proof

that d, is an FK-space is not included here. Some of the concepts

A
used in the proof require more background than the reader for whom

this paper is intended may have. A proof thatd, is an FK-space for

A
an arbitrary infinite matrix A can be found in [11].
Another set of sequences associated with an infinite matrix are

those sequences which are transformed by the matrix into convergent

sequences.

Definition 3, 24. Let A be an infinite matrix. Then the set

= {x: Ax ¢ c} is called the convergence domain of A,

€A

The next theorem shows that if A is a K-matrix or a T-matrix,

then ¢, Mm is an FK-space.

‘Theorem 3.25, If A is a K-matrix or a T-matrix, then

cAf\ m is an FK-space.

Proof: Letx,y e c, (Ym. Since A(tx) = tAx, and since

A
A(xty) = Ax+Ay, it is clear that rx+ty belongs to cAm m for all x,y

in cAm m and all r,t in . Thus, ¢ Mm is a linear space.

A

Since cAfW m ( m, the metric Hx =y“ on m applies to cAm m

and cAm m is a metric space. Similarly, the properties of m assure

that cAm m is a linear metric space.
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- Now let {xn} be a Cauchy sequence in cAm m. It must be
shown that lim X exists and is an element of cAm m. From Theorem
3.22, lim X =X em, so0 it must be shown that Ax exists and is conver-
gent. Since {xn} is a Cauchy sequence in cAﬁ m, Ax exists and is

convergent for all n € I+. That is,

@
A'Xm =9.Z fnk’mk ( T {Wmﬁ}’
k=1
and
lim w =t 4 o
n-— oo n m
+ ©
for allm e I . In order for Ax to exist it must be shown 1:ha1:k21ankzk

exists and is finite for each n € I+. Since A is a K-matrix, Theorem

2. 16 implies that

® +
sup ¢ = lankl:nel = M < oo,
k=1

and since x belongs to m, sup { lzkl:x = {2, }} = J <oo. Thus,

12 el €2 laga ] = 2 fayllnl
2 a1z, | < Z la,z, | = 2 Ja Z, | <M:* J
k=1 nk'k ~ k=1 nkk k=1 nk k! =
® +
so that > a_, 2z, is absolutely convergent for all n ¢ I’ and Ax exists.
k=1 nk'k
Now it must be shown that Ax belongs to c. If A is a K-matrix, then
fo'o)
> a_, = r_for each integer nand lim r_ = a # oo, by Theorem 2. 16,
k=1 nk n n
oo
Thus, { = ank} is a Cauchy sequence in E, and for every € > 0 there

k=1

exists an integer N such that

TM8
)
TM8

amk[ <€&/J

nk 1
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whenever m,n > N. Recall that

sup {]zk]:x= {zk}} =J < oo

so that
. 00 0o 0o [e)
‘!kz—_-lankzk ulkzz:la kzk'i,kflank-kz;la k, IeE

Hence Ax is a Cauchy sequence in E, and this means that Ax belongs to

c. This proves the theorem.

In the above theorem it was necessary to consider only those

sequences in ¢, (' m so that the metric for m could be used to full

A

advantage.' This result can be extended to ¢, in the case that A is a

A

K-matrix for which a = 0 whenever k > n. In this situation, another

metric exists in terms of which Cp itself is an FK-space.

Definition 3.26. If A is an infinite matrix such that annql 0 for

+ . .
alln e I and ank = 0 whenever k > n then A is called a trlangle.

A property of triangles which will be useful later is the fact

that a triangle A maps ¢, one-to-one and onto c.

A

Theorem 3.27. If A is a triangle and x,y belong to ¢ then

A!

Ax = Ay implies x = y and w = Ax has a unique solution for all w ¢ c.
Proof: Suppose Ax = Ay in ¢. Then Ax-Ay=A(x-y)={0,0,0,..}
and this implies that

n
2 a
k=1

nk &k~ V) = 0

for all n. Now all(xln yl) = 0 implies x =y, since a # 0.
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Continuing in this fashion, x for all k ¢ I+ so that x = vy.

k- Yk

Next consider w = Ax where w is a fixed sequence in ¢. Then

Wy o= agX, and x| = Wl/a,11 since a,, # 0. Next,
w a,. . w 2
Xzzaz‘ama1 or X, = X by wy
22 ‘11722 k=1
where
-a
21 1
b = ——-— and b = -,
21 alla22 22 a22
Similarly
n
x = Z b .,.w
n k=1 nk k

for each fixed n ¢ I+. Leié bn = 0 for k >n so that B = (bnk) is a

k
triangle. Note that if Ax = w then Bw = x and B is a left inverse for

A, Thus w = Ax has a unique solution for all w in ¢, and the theorem

is proved.

The metric for Ca when A is a conservative triangle is the

subject of the next theorem.

Theorem 3.28. If A is a conservative triangle then

© +
’x[ = sup ’kZ:lankzk cn el
L
is a norm for Cp» and !x my[ is a metric for CA- Note that ’x’ = HAX”

and !xmy-‘ = f’A)f'AYJI*

oo
Proof: Since A is conservative, {,kZ;l ankzk’} is a convergent

sequence of nonnegative real numbers so that lx] exists, is finite, and
- .
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is nonnegative. The fact that the supremum of a bounded set of real

numbers is unique insures that lx] is well defined for x in ¢

o A
Each sum is actually a finite sum because ay = 0 for k > n,
I oo n
Z a .,z = | X a %z
k=1 nk™k k=1 nk"k
+ ; . .
for alln e I so that ]xf = 0 if and only if
n
zZ a .z 0
k=1 nk™k
. + y o . _ : . _
forallnel . Now ay1%; = 0 implies a55Z5 = 0,..., implies & n%n " 0

for every n ¢ 1*. Since a . # 0 for all n, this implies that z =0 for

all n. Hence ]x] = 0 if and only if x = {0,0,0,...}.

n n
2 a .z = Z a . (-z )i
k=1 k7k k=1 nk' "k
for all n implies that |x| = |-x|. Also
| n n n
Z oa . (z, +w ) < Zazlﬁ- Z a W!
o kR Yk o Pnkk o kK
for all n implies that ‘x+»y < Ixt + fy] Last
n n
Za(tz)’:{t}zaz
k=1 nk' "k ko1 nk“k
for all n implies that [tx] = ]tl Jx[; and this proves that }x] is a norm
for Cp- From Theorem 3.8, x~y! is a metric for Cpv and the

theorem is proved.

Theorem 3.29. If A is a conservative triangle, then CA is an

FK-space.
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Proof: The same arguments used in Theorem 3.25 can be used

to show that ¢, is a linear space.

A
Let {xn} and {yn} be sequences in c , such that lim x = x lnx,,\CA
and lim v, =Y in Cp- Also let t be an element of E. It must be shown
that lim (xn+ yn) = x + y and that lim (txn) = tx. Now lim x =xinc,

implies that for every € > 0 there exists an integer N1 such that
‘xn- x] < &/2 whenever n > N1 and lim V., =Y in CpA implies that there
exists an integer N2 such that fyn= y[ < €/2 whenever n > N2° Let

N = max {NI,NZ'} so that

1%, Xty - y! = [xn+ V.- (x+y)l < !xnm xl + [yn— y! <eé&j2+E&/2=¢8
whenever n > N. This means that addition is continuous in Cp- Since
!txnw tx! = Jtl !xnwxl‘,

if t # 0, then for every & > 0 there exists an integer N such that

I.Xnm xl < 8/]1: , and [txnm tx[ < € whenever n > N. Now lett =0 so
that tx_ = tx = {0,0,0,...} and [tx - tx| <€ forallneI'. Thus
scalar multiplication is continuous in CA- Now let {xm} be a Cauchy
sequence in Cp Since x is an element of Cp for all m ¢ I+, it is

clear that Ax = w_ = {w.} is in c for all m ¢ 1*. Since {x_1} is
m m n m

for every € > 0 there exists n ¢ I+ such that

@

Cauchy in Cps

lx - X ,: ”Ax - Ax ”<8
. q. P q

P

whenever p,q > N. Thus pr— Wq” < & whenever p,q > N and {Wm} is
a Cauchy sequence in ¢. This means that there exists w in ¢ such that

lim w__ = win ¢. Let x be the unique pre-image of w guaranteed by
m - 0o ,
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Theorem 3.27. It will be shown that lim x =xinc,. Now
m=-co M A
™ | = - A = - wll

Hence for every € > 0 there exists an integer N such that

whenever m > N. This proves that ¢, is complete.

A

Now it must be shown that the coordinate functions, Pq(x), are

continuous on Let {xn} be a sequence in ¢, such that lim x_ = x

CA‘ A n-00

in Ch- Then if w = Ax  and w = Ax, lim w_= w in ¢, from what
m m moo M
was shown earlier. By the definition of Pq(x),

[Pyleg) ¥ P | = [z -2 ]
q

where B = (bnk) is the left inverse of A given by Theorem 3, 27. Since

Axm~ Ax is an element of ¢,

e0]

0 0]
+v
sup gkél & KPmk " kZ:1 a )%y |ime I p= ”Axm~ Ax H,
and thus
q q
I b (Ax - Ax) | < lAx_-Ax]| | = b K
k=1 ¢ ™ -oom k=1 4

Hence for every € > 0 and for each fixed q ¢ I+ there exists an integer

N(qg) such that
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e R R R
Z b
Ik:l gk
whenever m > N(q). This means that {Pq(xm) - Pq(x)l < € whenever

m > N(q), and the coordinate functions are continuous on Cp- Thus SN

is an FK-space, and the theorem is proved.

A natural question to consider when two or more summability
matrices are at hand is the question of whether they have the same
convergence domains, whether the convergence domain of one contains
the convergence domain of another, or whether there are any sequences
that are in the intersection of the convergence domains of the matrices.

At least a partial answer is available for the first part of this question.

Definition 3, 30. Let A and B be K-matrices. Then A is

equivalent to B if and only if Cp = CR-

In a paper published in 1963, Wilansky stated the opinion that
no really satisfactory characterization of convergence domains among
FK-spaces exists. Note in particular that Definition 3.30 does not

require that lim Ax = lim Bx when x ¢ ¢ or that lim Ax = lim x

AT B
if x ¢ ¢. All that is required is that Ax and Bx belong to ¢ for all x in

Cp = Cpe If the convergence domains of T-matrices are the object of
interest, Cooke has defined a more restricted equivalence which is

given in the next definition.

Definition 3.31. Let A and B be T-matrices. Then A is

absolutely equivalent to B if and only if lim (Ax - Bx) = 0 for all x.in

dAr\dBf‘\, m # §.
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Note that this definition requires that Ax and Bx have the same
limit for all x in cAf\ CBm m. It should be pointed out that it is
possible for lim (Ax - Bx) to be zero when neither of Ax or Bx are
convergent sequences. However, one would certainly have

lim (Ax «Bx) = 0 for all x in ¢, M cBm m if A and B were absolutely

A
equivalent. The following theorem of Cooke's, published in 1936,

gives a necessary and sufficient condition for two T-matrices to be

absolutely equivalent.

Theorem 3.32. IfA=(a ,)and B = (b, ) are T-matrices, then
nk nk

A is absolutely equivalent to B if and only if

o0
lim 2

no oo k=1 Iankq bnk,

Proof: a) The condition is sufficient. Since x ¢ m,
sup { ’zkl: x = {zk}} =M< o
so that

(a_,-b

Ax - Bx = (A -B)x = 1 nk nk)zk'

T8

Hence for every & > 0 there exists an integer N such that

o I [
2 a.,.-b <& /M
k=1 nk nk
whenever n > N. This means that
o0 o0 o0 ] I l ’
>z a .z > b .z < X Ja.-b Z <&
k=1 nk k k=1 nk k ~ o nk nk k

whenever n > N, and this proves that the condition is sufficient.



85

b) The condition is necessary. The proof of necessity
is similar to the proof of Lemma 2.10. It will be assumed that
oo

lim | Z |a_, ~Db =a #0
n-oo \ k=1 nk nk'

or that
00
>

=1 'ankm bnk l

has at least one finite limit point @ # 0. Then a sequence x = {zk} will
be constructed with [zk[ <1 for all k ¢ I+, and it will be shown that
for this x, lim ‘(Ax - Bx) # 0.

The assumption that

o 2 Pl

has at least one finite limit point @ # 0 is valid since if A and B are

T-matrices then Theorem 2.25 implies that

o oo
z la +1<Z:1 b | <M+ Mg

k=1

for all n ¢ l+, Hence

| <M, +M

l a’1’1km bnk A B

T M8

1

for all n e I+g and Theorem 1.12 implies that
o0
Z

k=1 ’ankm bnk’

has at least one finite limit point @, which is different from zero.

Now let
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5 | =3 |
s = X J|a_,-b = Z Jc [
I nk Tnk k=1 nk
and let {s,, } be a subsequence such that lim s_ =a. Note that a is
r r-oco "r
a real number. There exists an integer n. such thats > 3a/4
1 |
whenever n_ >n, , since lim s = a@. Now choose an integer m, so
r—"1 r-co r 1
that
co

= ‘Cn k, < af24,

k:m1+1 r1

and define the first m, terms of {zk} as follows. Let

andletzk:O 1fc:nr K = Oforlikiml. Then
1
=z > % e, | T e, 4
z! = | Z ¢ z > Z e -2 = c
n . n_k'k! =" n_ k . n_ k
T k=1 ry k=1 ry k—m1+l Ty
>3a/4 - af12 =2 af3..
Since A and B are T-matrices, lim c¢ = 0 for all k e I+. This
n-co Bk
means that there exists an integer nr2 > nr1 so that
™
z e | < a/6,
k=1 nrzk

and there exists an integer m_ > m. such that

@ L
5 le, | <alb
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Now define Zy = 0 for m, <k <m, so that

1 2

N -
z! = | Z ¢ < 3 c + > c
nrz k=1 nrzk T k=1 nrzk k=m,+1 nrzk

< alb+ a/b6 = af3.

If this process is continued‘, then each Zq will be zero, one or minus
one and each term of {z'n }, a subsequence of [Ax-u Bx', is either

r
greater than 2a/3 or less than o/3. Hence ,Ax -BXI cannot converge
to zero. This proves that the condition is necessary, and the theorem

is proved.

Example 3.33. As an application of this theorem, it will be

shown that the matrix A of arithmetic means and the matrix C1 of
Cesaro means of order one are absolutely equivalent. Recall from
Chapter II that for A, a_

:l/nifkf_nandan = 0 ifn <k. Also for

k k
Cly
. = (I (n+l) T (n+l-k)) = n! 1
nk  T'(n-k+1)I"(n+2) =~ (n+1)! = n+l
if k <n and ¢ = 0 if n < k. Here
-~ nk
N - _ 1
‘ankw anI = [Un - 16 +)] = n(n+1)
ifk<nand [a,-c,[=0ifn<k Hence
00 n
1 1
Z la_, - = = s
k:ll nk an‘ k=1 n(n+1l) n+1

and lim 1/(n+l) = 0. Thus A and C1 are absolutely equivalent.
n—00
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When it is possible to show that two summability matrices have
the same convergence domain, some mathematicians have considered
certain distinguished subsets of the convergence domains. If a
distinguished subset of the convergence domain of two equivalent
matrices depends only on the set which is the convergence domain,
and not on the matrices, then the subset is said to be invariant.

There has been a considerable amount of investigation into the invar-
iance of some of the distinguished subsets. The distinguished subset

which will be considered is defined next.

Definition 3.34. Let A be a K-matrix with convergence domain

% Then
B, = {x e c,: There exists M(x) in (0, o) such that
m +
| = a_x | <M(x) for allm,n in I"}.
nk 'k ,
k=1
Note that BA is the subset of CA for which the sequence of

partial row sums is uniformly bounded for every row of A = (ank)"

The notation M(x) is intended to indicate that the number M is not

necessarily the same for all x in B,-

This set is used to define what is called the '"mean value prop-

erty" of a K-matrix. A theorem for real triangles concerning a

property similar to the property defined by B, is next.

Theorem 3.35. Let A = (a be a triangle where a K is real

nk)
for all n, k in I+,7 and let x = {xk} belong to the domain of A. If
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and

a a
i) a’rnk-l > a’rnk (1 <k<n<m)
nk-1 nk
then for each n <m
n T
2 a X < J max > a ,x
l1<=1 il < 1<r<n Ikzl Kk

_Proof: The sum X a .x, can be written as
; -1 mkik

n a k
o A
k=1 %*nk ™

since ank 4 0 for alln <m by i. Now ii implies that aml/anl is the
largest of the nonnegative ratiosfa . /a |, for l<k<n <m, Hence
mk’ nk B

E |< oml |3 |
2z a X < 2 a .x s
k=1 mk k anl k-1 kk

n r
lkZ:DIa kxkl ijlirr;’a;{n lkz a ka!

This proves the theorem.

Example 3. 36.

As an example of a matrix which has this

property, consider the matrix A of arithmetic means,

Here a = 1/n #

0 for 1 <k <n, and if n < m then a /a =n/m so that 0 <n/m < 1

- - — mk’ nk — —
whennirm Also

a'rnk~1 a
7 =n/m=g
nk-1

mk

nk

for 1 <k <n<m. Since J =1, it is clear that
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r
amkxk, < max ] 2 a

X
1 < 0 2 e

TMe

for the matrix of arithmetic means. The matrix C1 of Cesaro means
of order one is an entirely analogous example of a matrix with the
property of Theorem 3.35.

To return to the set B, and the mean value property for

A

summability matrices, note that if it is required that x belong to CA in

Theorem 3. 35, then

TMs

larnkxkI = ’x!

for allm,n ¢ I+, This means that if A satisfies the hypothesis of
Theorem 3.35, then Cp = By- The next definition gives a formal

statement of the mean value property.

Definition 3.37. Let A be a conservative triangle. Then A

has the mean value property if and only if Cp = Ba-

The following theorem shows that the set BA depends only on

the set CAs and not on the matrix A,

Theorem 3.38. Let Al’ A‘2 be conservative triangles such that

cAl = CAZ and let A1 have the mean value property. Then A‘2 has the

mean value property. That is, B, is invariant.
i

Proof: Since B, (C ¢, by definition, it must be shown that
AZ 1&2
CAZC BAZ so that CAZ = BA2° Now let x belong to CAZ so that

in ¢. Then there exists a unique y in ¢ =c such that
A Ay

Ax:vv‘2

Aly =W, Thus AZX = Aly so that
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n
_ (1)
- ,kzzl dmk ykl

and since A1 has the mean value property,

(2)

| = a x| <My

k=1

for all m,n ¢ I+, Hence x ¢ B and ¢, (_ B, . This shows that
A2 AZ Ay

CAZ = BAZ, and this proves the theorem.

This theorem justifies writing B without the subscript identifying
a particular matrix. It must be remembered however, that the set B
is invariant in the sense that it depends only on the convergence domain
of a set of equivalent matrices. The convergence domain must still

be identified by one of the equivalent matrices.

Example 3.39. An example of a conservative triangle which

does not have the mean value property is the matrix

Consider the sequence x = {1,2,3,4,...}. In this case Ax={1,1,1,...}

so that x belongs to ¢ The sequence of partial row sums

A

{1,-1,~2,-3,.,.} is not bounded, however, so that B, is a proper

A
subset of CA Thus A cannot have the mean value property.

Several subsets of the convergence domain of a conservative
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matrix are known to be invariant. Others are still under investigation.

Another topic involved in characterizing convergence domains
is that of determining the sequences which are a basis for the conver-
gence domain. [1] and [12] contain more information concerning this
topic.

The introduction to sequence spaces, to FK-spaces in particular,
which is given here is only a beginning for many of the results which
have come from the application of functional analysis. The reader can
verify this easily in Chapters XI and XII of [11].

The next chapter will contain some of the applications of

summability methods which were mentioned in Chapter II.



CHAPTER IV

APPLICATIONS

Under certain conditions, functions from E to E can be repre-
s ented by an infinite series. Some examples of power series which

should be familiar are

Z @ Zk © Zzk
e = X =, cos z = Z s
k=0 k!! k=0 (2k)!
and
o) 2k+1
sin z = X C—
(2k+1)!

k=0

These series representations are particular cases of the theory of
representing functions by Taylor series. There are also series
representations for certain functions from [~n‘r, 'rr] to R by infinite series
of trigonometric functions called Fourier series,

Taylor series are fundamental to the study of the class of
analytic func‘t‘ions in the theory of functions of a complex variable.
In fact, a function is analytic in a domain in E if and only if at each
point of the domain it has a Taylor series representation valid in a
neighborhood of the point, On the other hand, a power series with
radius of convergence r > 0 represents a function which is analytic at
every point within the circle of convergence.

Fourier series representations of real functions have wide

application in the solution of differential equations. The differential

93
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equations which represent the motion of a vibrating string or a vibrating
membrane are two standard applications. This is not too surprising,
when the periodicity of a vibrating string or membrane and the periodi-
city of the trigonometric functions are considered. Since the solution
of a differential equation with boundary conditions or initial conditions
involves integration and the choice of a particular integral, it is clear
that Fourier series representations allow evaluation of difficult
integrals. Thus a differential equation may describe the motion of a
physical object and Fourier series can be used to find the function
which gives the position of the object at a given time.
Two types of applications of summability methods will be
Lk

considered. By division, 1/(1-z) has the formal representation X z

It can be shown that

for all z such that ,z] < 1. Now 1/(1-z) is defined for all z # 1, but
the series OZ?) z  1s convergent only for |z| < 1. By analytic continua-
tion, 1/(1-z)— can be represented by Taylor series at other points.
This process requires that 1/(1-z) be representéd by a family of
Taylor series,

It will be shown that there is a T-sequence which transforms
the sequence of partial sums of OZ(J_) zk into a function g(x) such that

lim g(x) = 1/(1-z) for all z in E\[1, c0). Thus the Taylor series for
X =00

1/(1-z) can be transformed into a function g(x) whose limit as x - is
1/(1-z) in a larger subset of E than the set U = {z: |z| < 1}. When

Fourier series representations of functions are used, they may not

converge, or they may converge to a value different from the value
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of the function at a given real number in the domain of the function.
There are restrictions on the function which will be shown to
guarantee that the transform of the sequence of partial sums of the
Fourier series by the Cesaro matrix of order one will converge to the
value of the function. Since the Cesaro matrix of order one is a T-
matrix, convergence and limits of convergent sequences are preserved.
To summarize, summability methods will be applied to the
problems of analytic continuation of Taylor series and convergence of

Fourier series. Taylor series will be considered first.

Definition 4. 1. Let

and let f(z) be a function from E to E such that f(n)(a) exists for all

n e I+. Then

k=0
is called the Taylor series of f(z) at a.
It should be pointed out that the series may diverge for all =z
except z = a, However, if it converges at a point z # a, then it

converges in the interior of some circle with a as center. From

Theorem 1.33, if

then the radius of convergence is
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1

- n .
lim ﬂanT

r. =

A Taylor series will be said to be convergent only if r > 0.

The star domain of a function will now be defined.

Definition 4, 2. Let P be the set of finite singular points of {,

and let c be a regular point of f. Then

D*:E\ U {u:u=2z+t(z=-c), t>0}
zeP B

is the star domain of f with respect to the point c,

Note that {u:u =z + t(z -c)} is the ray with endpoint z which
has the direction of the segment from ¢ toward z. In other word‘s, the
star domain of f(z) with respect to ¢ is the complex plane with the rays
determined by c and the singular points of f(z) deleted from z on out-

ward. Figure 4.limay be helpful.

-1+1i I+i

v

-1-1i,: -1

Figure 4.1
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Thus D* for f(z) = 1/(z4+4) with respect to ¢ = 0 is E with the
rays depicted~=»deleted. As another example, D* for f(z) = 1/(1-2)
with respect to z = 0 is E with the ray [1, o) deleted.

Dienes has proved the following theorem concerning the repre-

sentation of a function f(z) by a power series in the star domain of f(z)

with respect to the origin.

Theorem 4.3. Let

be an entire function with h(k) > 0 for every k=0,1,2,... . If for
every € > 0 E(z) converges uniformly to zero in € < @ < 2w - € as ]z[

increases without bound, z = rela, then Mittag-Leffler's representation

is valid in the star domain of f(z) with respect to z = 0. Here

is the kth partial sum of the Maclaurin series of {(z).

The proof of this theorem can be found in [5], p. 309.

A theorem of LeRoy and Lindel8f shows that the functions

(e's} 2 k
L(Z):E(——'——>, t>1,
t oo \ Log (kFt)
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satisfy the requirement that for every € > 0, Lt(z) converges uniformly
to zero in € < @ <2m - €as sz increases without bound, z = rel¢.
This theorem can be found in [5], pp. 340-345. It is straight forward

to show that Lt(z) satisfies the other hypotheses of Theorem 4. 3,

Theorem 4. 4. If

h(k) = 1 =, t> 1,
' [log (k+t)]
then
el K
L(z) = Z h(k)z
k=0 U

is an entire function with h(k) > 0 for every k= 0,1, 2, .

Proof: The radius of convergence of

00
P h(k)zk
k=0
is infinite since
i/k

A= lim (|h(k)|""7) = 0.
Thus Lt(z) is an entire function. Since
log (k+t) >logt>1logl =0,

h(k) is positive for all k= 0,1,2,... , This proves the theorem.

Now it is clear that the Lindeldf function, Lt(z), can be used to
define a subset of the set of T-sequences of Mittag-Leffler type which

were mentioned in Chapter II. Thus if
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a sequence

n
- x
(L. (%)} = log (n+t)" Cs
tn fo0) < k ’ 2
2o (log (k+t)>
transforms the sequence
k
{sk} =< = 2z
n=0

into a function g(x) such that Xlingo g(x) = f(z) = 1/(1-2z) for all z in
E\[1,00). This then is the application of T-sequences to the represen-
tation of a function by its Taylor series,

To summarize, a Lindeldf sequence will transform the sequence
of partial sums of the Taylor series of f(z) into a function g(x) such
that Xlim g{x) = f(z) for all z in the star domain of f(z) with respect to

-0
~ a regular point of f(z).

This means that f(z) can be represented in its étar domain with
respect to the origin by its Taylor series at z = 0 and by the Lindeldf
sequence. Thus the collection of Taylor series required by analytic
continuation is reduced to two formulas.

Another method of representing a function f in a domain larger

than the circle of convergence was developed by Borel.

Definition 4. 5. If

for ]z] <i', 0 <r < oo, then
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n n
a 7z X
n

00
F(zx) = Z m

n=0

where x ¢ R is the entire function.associated with f(z).

The next two theorems concern improper integrals of F(zx)

and its derivatives. Proofs may be found in [5].

Theorem 4. 6. Let

and:tet

i0
If these integrals are absolutely convergent for Zg = @Oel 0, they are

absolutely convérgent for all u such that u = tz 0<t<1, and Io(z)

O’
represents the analytic continuation of f(z) in the disc

|z ~24/2] < |=z,/2].

Theorem 4. 7. If f(z) is analytic for |z -zO/Zf i,zo/Zl, then

"Borel's integrals are convergent for u =tz , 0 <t< 1,

09

In the proof of Theorem 4.7 it is shown that Borel's integrals

are convergent for all z such that Re(z/z,) < 1. Now {z: Re(z/zo) <1}

0

is the half plane containing the origin whose edge is the line through zg

perpendicular to the segihent from the origin to z Let U={u:uis a

0
singular point of f}. Then both theorems apply to all z in the set

P= M {z:Re(z/u)<1}.
ue U
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1f U is finite, P is the intersection of a finite collection of half-planes.

In other words, P is a polygon. The diagram below illustrates the

Borel polygon for f(z) = l‘/,(z4+ 4).

e
LR

v

N

N

\

Figure 4.2

Here U = {1+i, -1+i, -1-1,1-i}, and P is the shaded portion of
the diagram, not including the boundary, which contains the circle of
convergence of the Taylor series of 1/(z4+ 4).

It can be shown that
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o x @ sn(z)xn
f e Fzx)dx = lim g(x)= lim e 2 .y
0 X =00 X =00 n=0 )
where
o n
sn(z) = 2 a z
k=0

is the nth partial sum of the Taylor series for f. From Chapter II,
g(x) is the transform of {sk(z)} by the Borel T-sequence,

e_xxk

Again note that f can be represented in P by two formulas,

(¢! ~x k

= akzk and {e——kTX——}
k=0 )

The representation of real functions by Fourier series will now
be considered. The results included here will contain the restriction
that a function f(x) defined on [-=Tr, ] with function values in R be

Lebesgue integrable on [-, ], written f € L{-m, w].

Definition 4. 8. If f € L[-m, w], then the Fourier series for f is

the series

2, 0
-+ kZ)“I (ak cos kx + bk sin kx)(-m <x < m)
where
1 ™
ay = = f f(x) cos kxdx, k=0,1,2,..
-
and
1 T
bk = = f f(x) sin kx dx, k=1,2,3,.
™

-m
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The numbers a and bk are called the Fourier coefficients for f.

Example 4. 9. As an example of a Fourier series representa-

tion of a function, let f(x) = 1 if -1 <x <0 and let {(x)=0if 0 <x<m

Here
1 T 1 [0
a = = f f(x) cos kx dx = = f cox kx dx
-®

1
o

fork=1,2,... Next,
] T 1 0 ‘
bkz = f f(x) sin kx dx = = f sin kx dx,
T T
~1TT ~-TT
and
0
b:l—coskxl _ cos kmr -1
k T k 7 kT
-T
for k=1,2,... . This means that bk =0ifk=2,4,6... and bk =-2/km
ifk=1,3,5,... . Thus the Fourier series representation for f(x) is

T T3t T

1 2 {:sin b4 sin 3x . sin bx ]
: —_ + ... .
2 ™

To illustrate the fact that Fourier series may converge to a value
other than the function value, note that f(0) = 0, but the series con-

verges to 1/2 at x = 0.

Example 4.10. A further example is the Fourier series

representation for f(x) = ’xf on [—TT, Tr],
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o 4 lcos x cos 3x cos 5x
> - = [ i + g + 5E + .. ] '
and x = 0, £(0) = IO' = 0, and the Fourier series for [x[ at x = 0. is
T 4 [ 1 1 1 ]
> - = 1+ =+ 52 +... —— +...].
2 B 9 25 (2k+1)2
It can be shown that
© 1T2
Z e = g
k=0 (2k+1)

so that the Fourier series for ]x] atvx = 0 has the value
LU 4 (ﬁ) =0
2 ™ \8 /)~

which is the same as {(0).

In the examples just given, the Fourier series representations
both converge at x = 0, in one case to the function value, and in the
other case to a value different from the function value. It is not so
apparent whether or not they converge to f(x) at x # 0 in [-m, 7].

The next two theorems give some information regarding the
Fourier series representations of functions. Detailed proof of these

can be found in [7].

Theorem 4.11. Let f e L{-m ], let

a, n
sn(t) = > + = (ak cos kt + bk sin kt)
k=1
for -m <t <m then
a, oo
f(x) = > + = (ak cos kx + bk sin kx)

k=1
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if and only if

where

sin [(2n+i)t/2]
2 sin (t/2) °’

n
+ 2 cos kt=
k=

t # 0 +2km, D_(0#2km)=n+1/2.

ol

Since C1 summability of Fourier series is the topic of immed-
iate concern, the next theorem gives necessary and sufficient conditions
for the transform {Clsh} of the sequence {Sh} to converge to the

function f(x).

Theorem 4.12. Letf ¢ L{-m, Tr], let

2, n ’
s (t-\)_~ = —2‘—1+ >~ (a, cos kt+bk sin kt),

k=1 k

and let
1 (%o i ’
O"n(t) = Cls (t) = i ("2— + = Sk(t))
k=1
for -m < t<w. Then
f(x) = lim o_(x)
n-oo

if and only if

where

~1 .2
1 n . . sin” (nt/2)
sy D, Sin (k4 1/2)t = —S—oers

K_(t) =
oo k=0 2nsin“(t/2)
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t £ 0 + 2km, Kn(O + 2km) = n.

Proof: Now lim o _(x) = f(x) if and only if lim (o
n- oo n n-—o n

and the theorem will be proved if it can be shown that

| m ‘,
o (%) - £(x) = % f [f(X”) ; fx-t) | f(x)] K_A(t)dt.
‘o

Since

and

Now

n-l n-1 2
22 D)= oy Z osin [@KH)E/2]= K (5) = 28 (nt/2)

k=0 k=0 . 2n sin® (&/2)’

SO

1 T
o (x) = = fo [ f(x+t) + f(x-t)] Kn(t)dt°

n

If g(x) = 1, then s (x) = s,(x) = ... =s__ (x) = 1 so that o_(x) = 1

and g(x+t) = g(x-t) = 1. This means that

2 m
—f K (t)dt =1
™ 0 n
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and that

Thus

™
0

from which the theorem readily follows.

A sufficient condition which applies directly to the function f is
given in the next theorem which shows that if f(x) is continuous and
Lebesgue integrable on [-m, 7], then nlirr;o o (x) = {(x) for -m<x <.
Here continuity of f(x) on [-m, 7] means that the extension of f(x) by

f(u) = f(u+2m) is continuous on R. This requires that f(-m)=f(-7+27) =

f(mr).

Theorem 4.13. Iff e L[=TT, ] and f(x) is continuous on [—Tr, Tr],

then lim o (x) = f(x) for ~-m<x < .
n — oo - ‘

Proof: Let € be a positive real number. It must be shown that
there exists an integer N such that ]crn(x) - f(x)] < &€ whenever n > N.

The continuity of f implies that there exists a number & where
0<b8< Tr’such that |f(y) - f(x)| < €/2 whenever |y-x| < 8. Now if

0 <t< 39, then lx+t-x[ = lx—tax[ < §, and

f(x+t) + f(x-t) - 2f(x) [f(xtt) - £(x)| + [f(x-t) - £(x)]

1
2 =37

(&/2 +8&/2) = &/2.

N]»—l

This means that
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oo
1
=
X
| I
~
jn]
G
[o N
+
A
N ™
T
SR
o »
[og}
=~
jn]
=
[o N
+
S

Thus,

for 0 < 6<m Fort>39,

1 .
K (t) < ———
T an(sin® §/2)

so that

i
%[6 [f(x+t) er fx-t) f(X)J Kn(t)dtl
1 i
< = j (|f(x+t) - £(x)| + [£(x-t) - £(x)])dt
2nm sin” &/2 )
E(m - 6)

IA

4nm sin2 &5/2
Thus for a given € and corresponding &, choose N so that

mT=-8
ANT sin® (

<

| =

5/2)

That is, choose
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Thus

6
'% '/; |:f(x+t) -Iéf(x-t) ) f(x):lKn(t)dt]

=
- .
€ €
< 2 + 5 = &

whenever n > N.. This proves the theorem.

Continuity is a rather strong condition to impose in order to

guarantee that lim o (x) = f(x). Actually it can be shown that

n = oo
lim o (x) = f(x) for all x in the set
n- oo
d F(x) *
H={x¢ [-m, m] f(x) = —ax -where F(x) =f f(t)dt';}‘ .
0

Now if f is Liebesgue integrable on [-TT, ] then the measure of [-TT, TT]\H
is zero, Thus it can be said that for f ¢ L[-m, 1-r], lim o X = f(x) for
n=- oo

"almost all'" x in [-'rr, Tr],

It must be pointed out that continuity is not sufficient to insure

that lim s

.n(x) = f(x) on [-m 7]. There exists a function which is
n-oo

continuous on [-m, ] but {sn(x)} diverges on a dense -subset of [-m, ).
Worse yet, there exists a Lebesgue integrable function whose Fourier
series diverges everywhere in [-'rr, m]. However, if a function is
Lebesgue integrable on [-7, m] its Fourier series must be summable to

the function by the C1 matrix almost everywhere in [-m, 7).
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Further information concerning Fourier series can be found in

[3], [6], [10], and [15].
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TABLE 1

SELECTED T-MATRICES

A= (ank)
Name a Reference
nk
Arithmetic means 1/n, k<n [4, p. 68]
: 0, k>n : :
Cesaro matrix of 1/(n+1), k<n [4, p. 69]
order one, C1 0, k>n '
: I'(n+l) I’ (r+n-k) '
Cesaro matrix of r , k<n [4, p. 69]
order r > 0, Cr T'(n-k+1)I'(r +n+1)
0, k>n
nk 1
Abel —_—— (4, p. 73
(n+1)k+1
—nnk
Borel T | [4, p. 70]
o n/i'(n/ )k .
Borel triangle, o, k<n 4, p. 200]
B, r>1 )
T
0, k>n
n
Euler-Knopp, (k) rk(l—r)n“k k<n [4, p. 200]
E,O0<r<l k! =
T
0, k>n
N&rlund P /Py k<n (p;>0,iel) [4, p. 73]
0, k>n
n
[Pn =z P lim (pr/l;:a/-Pn) = 0]
i=1 :
"Almost none" 1/2, k=nork=n+1 [4, p. 226]
0, k#nand k#n + 1 !
Raff l, n=k=1lorn=k+1 (4, p. 178]
0, otherwise
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SELECTED T-SEQUENCES OF MITTAG-LEFFLER TYPE

Name hik) Reference
Borel 1/k! [4, p. 182]
Lindels [log (k+£)]7%, £ > 1 [4, p. 182]
Mittag-Leffler [C(1+ak)]™, 0 <a <2 [4, p. 182]

. K -1
Malmgquist (r[l + ————D , 0<a<l1 [4, p. 182]
(log k)*
(k> 2)
TABLE III
SELECTED T-SEQUENCES
Name fk(x) Reference
Lk
Abel T [4, p. 218]
(x+1)
2
Bessel of order r 23y, (%) [4, p. 71]
r r
Riesz of order r (l - 5) - <1 - k—+l'> , kt1l < x (4, p. 72]
0, k+l>x.
Tl S e
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