A STUDY OF THE EFFECTS OF SINGLE CONCEPT LOOP FILMS UPON LABORATORY TECHNIQUES WHEN USED FOR PRE-LABORATORY INSTRUCTION IN THE INTRODUCTORY ORGANIC CHEMISTRY

LABORATORY

By

HARRY BALDWIN HERZER III

Bachelor of Arts The College of Emporia Emporia, Kansas 1956

Bachelor of Science The College of Emporia Emporia, Kansas 1956

Master of Science Kansas State Teachers College Emporia, Kansas 1961

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF EDUCATION July, 1970

28 1970

A STUDY OF THE EFFECTS OF SINGLE CONCEPT LOOP FILMS UPON LABORATORY TECHNIQUES WHEN USED FOR PRE-LABORATORY INSTRUCTION IN THE INTRODUCTORY ORGANIC CHEMISTRY

LABORATORY

Thesis Approved: ser

Dean of the Graduate College

763594

ACKNOWLEDGMENTS

Research cannot take place in a vacuum. Any success incurred from this study is a direct result of the interactions of many individuals. I would like to take this opportunity to give my special thanks to a few of these people.

For my doctoral committee, each for his own specific talents and expertise. Dr. Kenneth E. Wiggins, committee chairman and thesis advisor, Dr. Henry P. Johnston, Dr. Ernest M. Hodnett, Dr. Gene L. Post, and Dr. L. Herbert Bruneau.

To Dr. Kenneth E. Wiggins, Professor and Associate Director, Research Foundation. Without Dr. Wiggins' frequent prodding I would not have left the security of full time teaching for the rigors of graduate study. I also thank Dr. Wiggins for his patience as well as keen interest and encouragement in seeing this project to fruition.

To Dr. Henry P. Johnston, Professor of Chemistry. Dr. Johnston's sage advice and council as well as providing the course in which to evaluate the films were sincerely appreciated.

To Dr. Ernest M. Hodnett, Professor of Chemistry. Dr. Hodnett's advice on laboratory techniques and suggestions for the JH₂S Examination were indeed appreciated.

To Dr. Gene L. Post, Associate Professor of Education. Dr. Post's knowledge and experience with instructional media was invaluable.

To Dr. L. Herbert Bruneau, Professor of Zoology. Dr. Bruneau provided a necessary service with his objective detachment from the

iii

specific aspects of organic chemistry and his warm and encouraging advice for the project as a whole.

To my good friend Mr. Calvin T. McBride, formerly of the English Department, Baker University, Baldwin City, Kansas, whose efforts to attempt to allieviate my horrendous grammer and awkward prose were deeply appreciated. For those errors which remain, I accept full responsibility.

To the Research Foundation, Oklahoma State University. For without their interest and encouragement in the form of a grant to produce the films, this project would not have been possible.

Finally, to the students enrolled in Chemistry 3015, fall semester 1969. For without these cooperative students the evaluation of this study could not have been successfully completed.

TABLE OF CONTENTS

Chapter		Ρ	age
I.	INTRODUCTION	•	1
	Nature of the Problem	• • • •	3 8 9 11 12 12
II.	REVIEW OF THE LITERATURE	•	13
	Media Used in Courses	•	14 18 19 22
III.	EXPERIMENTAL DESIGN	•	24
	Preparation of the Single Concept Films	• • • • •	24 24 31 39 42 44
IV.	DATA, STATISTICAL ANALYSES, AND RESULTS	•	46
	Statistical Measures. . Distribution of the Group . Experimental Data and Results . Time Spent . Breakage . Accidents . Laboratory Skill Survey. . Attitude .	• • • •	46 51 79 95 110 114 123
V .	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS.	•	159
	Summary	•	156 162 163 164

hapter Pag	ze
ELECTED BIBLIOGRAPHY	57
PPENDIX A - JH ₂ S EXAMINATION	74
PPENDIX B - SUMMARY OF JH2S SCORES AND BACKGROUND DATA 18	36
PPENDIX C - TIME SPENT ON EACH EXPERIMENT	€94
PPENDIX D - SUMMARY OF LABORATORY BREAKAGE	15
PPENDIX E - ATTITUDE SCALE	26
PPENDIX F - SUMMARY OF ATTITUDE SCALE RESPONSES	32
PPENDIX G - MATERIALS GIVEN TO STUDENTS	51
PPENDIX H - SUMMARY OF FILM VIEWING	78
PPENDIX I - STATISTICAL FORMULAS	31

LIST OF TABLES

Table		Pa	age
I.	Techniques Needed for Organic Chemistry Laboratory Experiments (CHEM 3015)	· 0	25
II.	Observed Mistakes or Difficulties Encountered in Experiments	•	28
III.	Film Titles and Objectives	•	32
IV.	Films Keyed to the Experiments	•	37
V.	Assignment of Groups and Instructors	۰.	41
VI.	Distribution of Students by Subsections (Classes)	•	52
VII.	Chi Square Analysis of Laboratory Sections by Classification	0	5 3
VIII.	Chi Square Analysis of Laboratory Sections by College	•	54
IX.	Chi Square Analysis of Laboratory Sections by Sex	٠	54
Χ.	Chi Square Analysis of Treatments by Classification	•	55
XI.	Chi Square Analysis of Treatments by College	•	56
XII.	Chi Square Analysis of Treatments by Sex	•	56
XIII.	Chi Square Analysis of Classification by Subsection	o	58
XIV.	Chi Square Analysis of College by Subsection	۰	59
XV.	Chi Square Analysis of Sex by Subsection	•	60
XVI.	Chi Square Analysis of Mean Chemistry Semester Hours by Subsection	•	62
XVII.	Chi Square Analysis of Mean Chemistry Laboratory Semester Hours by Subsection		63
XVIII.	Chi Square Analysis of Mean Chemistry Grade Point Averages by Subsection	•	64

Table

XIX.	Chi Square Analysis of Mean Overall Grade Point Averages by Subsection	65
XX.	Chi Square Analysis of Distribution of Chemistry Semester Hours by Treatment	66
XXI.	Chi Square Analysis of Distribution of Chemistry Laboratory Hours by Treatment	67
XXII.	Chi Square Analysis of Distribution of Chemistry Grade Point Averages by Treatment	68
XXIII.	Chi Square Analysis of Distribution of Overall Grade Point Averages by Treatment	69
XXIV.	Chi Square Analysis of the Distribution of Chemistry Semester Hours by Subsection	.71
XXV.	Chi Square Analysis of the Distribution of Chemistry Laboratory Semester Hours by Subsection	.72
XXVI.	Chi Square Analysis of the Distribution of Chemistry Grade Point Averages by Subsection	.73
XXVII.	Chi Square Analysis of the Distribution of Overall Grade Point Averages by Subsection	.74
XXVIII.	Tabulation of High School Chemistry Grades	.75
XXIX.	Chi Square Analysis of High School Chemistry Background by Section (Time of Day)	.76
XXX.	Chi Square Analysis of High School Chemistry Background by Treatment	.77
XXXI.	Chi Square Analysis of High School Chemistry Background by Subsection (Class)	78
XXXII.	Mean Times Spent on Each Experiment by Subsection (Class)	83
XXXIII.	Mean Times Spent on Each Experiment by Teacher	85
XXXIV.	Mean Times Spent on Each Experiment by Section (Time of Day)	86
XXXV.	Mean Times for All Experiments Between Experimental Group and Control Group	87
XXXVI.	Summary of Results of Analysis of Time Spent	88

Page

m-	L	1	~
τa	υ	÷	e

XXXVII.	Chi Square Analysis of Time by Teacher and Treatment for All Experiments	90
XXXVIII.	Chi Square Analysis of Time by Teacher and Treatment for Direct Filmed Technique Experiments	90
XXXIX.	Chi Square Analysis of Time by Teacher and Treatment for Indirect Filmed Technique Experiments	91
XL.	Chi Square Analysis of Time by Teacher and Treatment for Non-Filmed Technique Experiments	91
XLI.	Mean Time Differences Between Experimental and Control Classes for Each Teacher and the Signed Ranks for Each Category	93
XLII.	Number of Incidents of Equipment Breakage by Each Student	99
XLIII.	Number of Individuals Reporting at Least One Incident of Equipment Breakage	100
XLIV.	Comparison of Cost of Breakage, Quantity of Items Broken, and Number of Students for Each Subsection for All Experiments	101
XLV.	Comparison of Cost of Breakage, Quantity of Items Broken, and Number of Students for Each Subsection for the Direct Filmed Technique Experiments	102
XLVI.	Comparison of Cost of Breakage, Quantity of Items Broken, and the Number of Students for Each Sub- section for the Indirect Filmed Technique Experiments	103
XLVII.	Comparison of Cost of Breakage, Quantity of Items Broken, and the Number of Students for Each Subsection for the Non-Filmed Technique Experiments	104
XLVIII.	Comparison of Cost of Breakage, Quantity of Items Broken and the Number of Students for Each Subsection for the Items of Standard Taper Glassware which was Broken Throughout the	105
	Semester	105
XLIX.	Summary of Results of Breakage and Cost Comparisons	106
L.	Equipment Breakage by Female Students	107
LI.	Summary of Statistical Analysis of Breakage by Female Students	109

Table

LII.	Tabulation of Number and Kind of Accidents Reported by the Experimental and Control Group Classes 111
LIII.	Chi Square Analysis of Students Attending Class Per Accident by Teacher and Treatment
LIV.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results of the Laboratory ² Skill Profile for Group 100 115
LV.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results of the Laboratory Skill Profile for Group 200 116
LVI.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results from the Laboratory Skill Profile for Group 300 117
LVII.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results from the Laboratory Skill Profile for Group 400 118
LVIII.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results from the Laboratory Skill Profile for Group 500 119
LVIX.	Tabulation of Ranks of Scores and Rank Differences Between the JH_2S Examination and the Results from the Laboratory Skill Profile for Group 600 120
LX.	Tabulation of Ranks of Scores and Rank Differences Between the JH ₂ S Examination and the Results from the Laboratory Skill Profile for Group 700 121
LXI,	Summary of Results from Spearman Rank Correlations Between JH ₂ S Examination and Laboratory Skills Profile
LXII.	Mean of S _{.50} Values and Rank Order for Overall Attitude of Students Toward the Selected Experiments
LXIII.	Analysis of Attitudes Toward the Selected Experi- ments by Kruskal-Wallis One Way Analysis of Variance
LXIV.	Rank Order of Attitudes Toward the Selected Experiments by Experiment Type
LXV.	Analysis of Attitude Toward the Selected Experiments Between Experimental and Control Groups and by Experiment Type by Mann-Whitney II Test

Page

Table

LXVI.	Mean of S 50 Values and Rank Order of Attitude Toward the Difficulty of the Laboratory Techniques for the Selected Experiments
LXVII.	Analysis of Attitude Toward the Difficulty of the Laboratory Techniques Involved in the Selected Experiments by Kruskal-Wallis One Way Analysis of Variance
LXVIII.	Rank Order of Attitudes Toward the Difficulty of the Laboratory Techniques of the Selected Experiments by Experiment Type
LXIX.	Analysis of Attitude Toward the Difficulty of the Laboratory Techniques Involved in the Selected Experiments Between the Experimental and Control Groups and by Experiment Type by the Mann- Whitney U Test
LXX.	Results from the JH_2S Examination by Subsection 141
LXXI.	Summary of Analysis of JH_2S Examination
LXXII.	Summary of Results of JH_2S Examination Scores by Sex 142
LXXIII.	Analysis of JH ₂ S Scores by Film Viewing. Random Samples of Fifteen Scores for Each Viewing Category
LXXIV.	Analysis of JH ₂ S Scores by Film Viewing and Teacher. Random Samples of Five Scores for Each Category
LXXV.	Test Questions Keyed to Experiments and Films 148
LXXVI.	Number of Individuals Giving Correct and Incorrect Answers to Questions on JH ₂ S Examinations with Respect to Whether They Watched or Did Not Watch the Relevant Films
LXXVII.	Number of Individuals in the Control Group Giving Correct and Incorrect Answers to Questions on the JH ₂ S Examination
LXXVIII.	Percent of Students Answering Each Question Correctly on the JH ₂ S Examination
LXXIX.	Summary of Breakage Factors

CHAPTER I

INTRODUCTION

There are many problems confronting the chemistry teacher today. Part of these problems are common to the entire teaching endeavor. The burgeoning college enrollments are causing a variety of pressures upon the teaching community. Not only are more highly capable students entering college today but the student body encompasses a much broader. range of talents and intellect. The trend today is for the students to continue their education beyond secondary school. This is causing the need for a more diverse educational program. The colleges cannot afford unlimited professional faculty--nor could the students and taxpayers afford to pay the expense which that would entail. Therefore the college and university must be able to cope with the increased student-teacher ratio as well as to be able to teach a diverse student body. Even in so-called homogeneous grouping there is a diversity of interests as well as intellect. The real question is simply how can we provide an educational program which will make more efficient use of the professor's time. The primary answers lie in freeing him from non-professional record-keeping which could be performed by a secretary or a computer, freeing him from repetitive duties, and allow him to use his time dealing directly with the students.

The demand for increased professional salaries further necessitates the more efficient use of time without depersonalizing the

teaching-learning process. Whatever solution (or partial solution) to the problem the cost must be considered. It seems apparent that one possible answer lies in instructional media. The cost of either professional or para-professional personnel continues to increase. Presently the cost of hardware for computer assisted instruction is rather high, although the cost is dropping (3). Through technology the cost of equipment lessens as the device becomes widely used.¹

There are problems which confront the entire teaching community. In chemistry not only do we have these problems but we also have others. The laboratory is an integral part of the teaching of chemistry. The problems related to mass teaching of techniques, procedures, safety precautions are but a few of the problems related to laboratory instruction. In lecture courses some feel that the answer lies in large group instruction, but this far no one has suggested large group laboratory sessions utilizing only one instructor.

This study deals with laboratory instruction using a media approach. Specifically the use of single concept loop films. The single concept loop film consists of a segment of motion picture film wound in a spiral, spliced end-to-end, so that it forms a continuous loop. Mounted in a special cartridge, the loop allows continuous running without the need (or capability) of rewinding. These loop films may be operated by the students themselves. It is not necessary to have the instructor supervise their operation.

The remainder of this study will focus upon the use of single

¹Consider the decrease in long distance telephone rates during the past four decades as opposed to the inflationary costs of T-bone steak and other food items.

concept loop films and how they may be used to alleviate the problems encountered in laboratory instruction as well as provide more efficient use of the professor's time.

Nature of the Problem

It is generally agreed that significant learning is acquired through doing when the subject matter as understood by the learner is related to his own perceived needs or purposes (76). This is the basis for science because of the emphasis upon doing actual laboratory experiments. Regretably, however, much of the laboratory experience is reduced to following the directions and plodding step-by-step through the experiments. The laboratory instructor attempts to prod the slow while striving to keep the faster students busy in order that all will finish the experiment on time. This type of experience is no more valuable than sitting through a demonstration or a film (92).

The laboratory should be a place where the student is confronted with a question or a problem to solve. The most natural speed for the solution of this problem is the student's own pace, which may be rather slow while he becomes used to new surroundings, techniques and equipment. Later, as he gains in skill and expertise the pace should quicken. Some students will enter a given laboratory already possessing some of the necessary skills while others will be completely devoid of them. Some students will gain the requisite skills more rapidly than others. The individual student differences manifest themselves in varied learning rates as well as varied learning depths. Why should all of the students be forced into the same pattern? We should maintain minimum standards for a course, but why should we affix a limit?

3.

No maximum should be considered if it is obtainable within the framework of the time and equipment limitations.

The question which must be answered is how much and when to teach those methods and techniques which are fundamental to a particular discipline. The conventional approach is for the instructor to show the entire group prior to the beginning of the experiment. This method has certain limitations. In order to concentrate upon a specific situation, consider organic chemistry. Students taking organic chemistry have already had a course in general chemistry. The techniques in general chemistry require little more than relatively simple techniques such as heating test tubes and flasks, collecting gases, and simple filtration. They have had some introduction into fundamental laboratory techniques and essentials of safety procedures, yet the course does present them with a great challenge. The laboratory techniques required are much more involved and complicated than in general chemistry. Organic chemistry confronts the student with a minimum of 500 new terms during the first semester.² This assumes that the student is already with some of the common terms such as "alcohol", "protein", and "carbohydrate". Although these terms will take on broader, less restrictive meanings which are related to their general structural classification, others which might be familiar to them might take on more narrow meanings. Together with the new vocabulary, the student

²This number is taken from Hart and Schuetz, 3d Edition (28), the textbook used in Chem 3015. This is one of the smallest organic chemistry textbooks consisting of only 353 pages. Presently the organic chemistry textbook which is one of the most popular throughout the United States and is being used in Chem 3053 for chemistry majors is Morrison and Boyd 2d Edition (42) which confronts the students with a minimum of 850 new terms in its 1204 pages.

must grasp new laboratory techniques as well as learn to manipulate new equipment in order that he will be enabled to prepare, purify, and elucidate his preparations. In organic chemistry the student encounters a formidable jigsaw puzzle of standard taper glassware which includes a kit of over a dozen pieces of interchangeable parts which may be put together in a myriad of combinations. In addition he may confront for the first time a variety of items such as filtering flasks and funnels, melting point apparatus, and steam lines.

The most common method of pre-laboratory instruction is for the instructor to demonstrate the necessary techniques for the experiment. Although teachers feel that all of their students should read the experiment prior to coming to class, it is all too common for the students to enter the laboratory ill-prepared. When they are shown some new technique they are not certain what it is for, therefore the demonstration has less meaning for them. The effective pre-laboratory demonstration requires that all of the students must be ready to view the demonstration at the same time. The students must be able to see the demonstration clearly, and for effective learning the student must feel that he heeds this knowledge. If he is uncertain as to its purpose, he may fail to grasp some of the essential features. Thus demonstrations require that all students be ready at a particular moment while single concept films are ready when the student feels the need.

The lack of visibility is a considerable problem when viewing a demonstration from across the laboratory. Single concept films provide each student with more than a front row seat. They provide him with as close a view as is necessary. This might be a long show of an entire apparatus or a laboratory or a close-up of a thermometer scale or the

surface of a crystal.

Sole reliance upon demonstrations brings up several other difficulties. How does the student who has forgotten or could not see clearly receive reinstruction? How does the student who was absent receive the information? The single concept film provides instruction and reinstruction whenever needed. The only inherent weakness in this system is that it cannot duplicate the excellent teacher who provides reinforcement not by identical repetition but with a variety of examples and approaches. One explanation or example may capture the imagination of one student but not of another. This limitation of the single approach used in each film might be alleviated by producing a variety of films on the same topic.

One needs to consider the future design of laboratory programs. It is pedagogically sound for the student to be allowed to work at his own pace and learn all of the salient features, gaining understanding as he proceeds through a group of exercises merely hitting the high points in order that he might keep up, finish on time, and receive credit. Single concept loop films could provide the necessary instruction whenever needed. In those courses where the availability of individual items of equipment or facilities is limited³ the films could be used to advantage to instruct the student on the use of the more specialized equipment. Written manuals provide some explanation but films could show the equipment in operation as well as point out difficulties, malfunctions, and point out trouble shooting procedures. The

³Examples would be such advanced laboratory courses as physical chemistry, organic analysis, inorganic preparations, and instrumental analysis. All of these courses primarily rely upon one item of each kind. Experiments are assigned on a rotating basis.

student when left to his own initiative or using a sketch in the laboratory manual (which frequently describes a different style of equipment from that which the student is using) may find that the results are not only disastrous to his equipment and his preparation but also to himself. It is necessary for efficient laboratory instruction to be given. In some cases the laboratory instructor may explain and show each step of the experiment thus robbing the student of the thrill of discovery. The students then resort to mimicing the instructor. However, even in these extreme cases, the unfortunate student on the other side of the room cannot see the smaller and more subtle details clearly. This is another of the disadvantages to the demonstration as the only pre-laboratory instruction.

The increased demand upon the time of the professor in charge of a laboratory course makes it exceedingly difficult to communicate all of the laboratory skills, techniques, and procedures that he deems desirable. An experienced teacher will pick up subtle little tricks which make the particular job easier or perhaps safer. The young graduate students do not in many instances, have the benefit of years of successful teaching experience. The periodic staff meetings are desirable in some instances to impart this information, however as schedules become crowded it becomes quite difficult to find a suitable time. The use of single concept loop films provides a uniform quality of information. In this manner the professor in charge can cantrol the quality of instruction.

Most laboratory courses have sufficient enrollment to require several sections. Scheduling a multi-sectioned laboratory is a logistic difficulty. At Oklahoma State University the laboratories are

taught for the most part by graduate teaching assistants. The O.S.U. Chemistry Department allows its graduate teaching assistants to enroll in the courses they are taking first, after which their teaching assignments are scheduled to fit. The quantity of the graduate teaching assistants depends upon funds available as well as the pool of potential graduate teaching assistants. One can forsee a lack of qualified teaching assistants available. Is it possible to gird oneself for the event of such a possibility?

Another factor which should be considered arises when one instructor has two or more identical sections. It is possible to forget and leave out a portion of the explanation. One finds that he cannot remember whether he has shown this section or perhaps it was the other section. Film loops free the instructor from this worry. He then can concentrate upon the other important matters such as individual student problems.

Thus the nature of the problem is to determine if a series of single concept loop films (SCLF) can be used for the pre-laboratory instruction of techniques more effectively than the present conventional approach through demonstrations and verbal instructions.

Statement of the Problem

The specific problem to be explored by this study is to determine the effects of using single concept loop films to instruct the students in the basic techniques and equipment manipulation in the introductory organic chemistry laboratory.

Definitions

Control Group - Those subsections which are taught by the conventional manner without the single concept films. Also referred to as the "non-film group."

Experimental Group - Those subsections which receive the single concept film loop instruction. Also referred to as the "film group."

Chemistry 3015 - The designation of the course entitled Introductory Organic Chemistry at Oklahoma State University. The laboratory

phase of this course was used for this study.

- Chemistry Background The semester hours of chemistry courses previously taken by the student.
- Chemistry Lab Background The semester hours credit received by the student from laboratory instruction only.
- Chemistry GPA The gradepoint average for the chemistry courses previously taken by the student computed on a four point scale.
- Data Card A 3x5 inch card completed by each student for each laboratory period. The card will contain information pertinent to the experiment. The student will give the card to the instructor prior to leaving the laboratory.
- Entry Skills The level of laboratory sophistication and self confidence as measured by the laboratory skills survey upon entering the course.
- Exit Skills The level of laboratory sophistication and self confidence as measured by the laboratory skills survey upon leaving the course.
- Experiment Type The experiments classified into direct, indirect, or non-filmed technique experiments.

- GPA The overall grade point average of the student as measured on a four point scale.
- Direct Filmed Technique Experiments The experiments in which a technique was initially encountered and taught via SCLF in the experimental group. (Also referred to as direct type.)
- Indirect Filmed Technique Experiments The experiments in which the techniques had previously been instructed via SCLF in the experimental group. Also referred as indirect type experiments.
- Non-filmed Technique Experiment Those experiments which involved techniques which were not instructed via SCLF because of previous chemistry training (i.e., general chemistry) or triviality.
- Laboratory Accidents The accidents which occur during an experiment from minor cuts and burns to severe accidents. These will be reported in brief detail on the data card.
- Laboratory Breakage The items broken during an experiment. This will not include equipment broken during washing. Laboratory breakage will be reported on the data card.
- Laboratory Breakage Cost The cowt of laboratory breakage computed from the equipment list given each student when he checked out his laboratory equipment.
- Laboratory Technique Examination A written five foil multiple choice examination dealing with laboratory procedures, setups, and techniques, but not theory. This examination was developed by Dr. H. P. Johnston, Dr. E. M. Hodnett, Mrs. M. R. Stephanik, and the author. It is also known as the JH₂S Exam.
- Loop Film A segment of super eight millimeter silent motion picture film wound in a spiral, spliced end-to-end, forming a continuous

loop with a maximum of five minutes running time. The terms single concept loop film, SCLF, film loop, and loop film, may be considered synonymous in this study.

Laboratory Skill Survey - A written check list survey dealing with

laboratory procedures, set-ups, and techniques. Section - The entire group meeting at a given laboratory period. Subsection - The group meeting in a particular laboratory. A maximum

of 24 students can be accommodated in one subsection. Treatment - The treatment refers to whether the students received in-

struction via SCLF or not.

Assumptions

1. The group involved in this study is assumed to be a random sample of undergraduates pursuing science related majors. It is assumed that their abilities will approach a Gaussian distribution.

2. The JH_2S examination is assumed to measure accurately the laboratory skills and techniques as learned in Chem 3015.

3. The laboratory skill survey taken upon commencing and completing the course is assumed to be an accurate reflection of their selfappraisal in laboratory skills (when allowance is made for carelessly completed forms.)

4. Placement of a given student into the experimental or control group is assumed to be by chance.

5. Assignment to a given laboratory section is assumed to be by chance.

6. Assignment to a given laboratory subsection is assumed to be by chance.

7. The Data Card is assumed to reflect accurate data as reported by the student.

8. It is assumed that no differences will occur as a result of placement in any one of the three laboratories (PS 356, 357, or 358).

Limitations

This study will be limited to determining if single concept loop films depicting laboratory techniques and set-ups have any effect upon the improvement of laboratory skills, the time required to perform an experiment, the number of accidents, and the equipment breakage in the laboratory and their attitude toward the experiments and the techniques.

Significance of the Problem

Any technique or method which will 1) provide uniform repetitive instruction of high quality; 2) free the instructor from the tedium of repetitive instruction in order to allow him to deal with individualized student problems; and 3) permit individual instruction to allow for varying student abilities and progress rates, should be worthy of consideration for inclusion in any course where needed.

CHAPTER II

REVIEW OF THE LITERATURE

The value of the science laboratory is not the question in this study. However, other studies indicate that the students gain more knowledge when they experience science either from demonstration or by actual experimentation rather than an explanation by lecture only (92). Another study was made by Bradley (15) in which various parameters were compared. The study was made between a series of lecture demonstrations and individual experiments in physical science. The results indicated that there were no significant differences between methods, because of sexes, instruction, or scientific backgrounds. The only case in which there was a difference (although not significant at the 0.05 level) was in classes of predominantly superior students regardless of method. This is a typical case of an educational study in which no significant differences were detected. (The problem of contamination, confounding variables, and instruments will be discussed in a later chapter.)

In industry it has been discovered that instructors seek out or produce visual aids and other instructional media on their own initiative yet many of them have had no professional teaching experience or training. They are merely practioners who are attempting to get across a point, method, process or idea. By trial and error, they have found their students understand better when they use an approach which

stimulates them both visually and audibly (17). Industry's results with audio-visual media may not be immediately attainable in public and higher education. While industry generally restricts itself to teaching skills, schools, have multiple goals. Some courses teach few if any skills and most go beyond them to underlying theories, backgrounds, or affective behavior. Finally, industry enjoys working with smaller classes. But even though institutions of learning may face a radically more complex situation, they must make more and efficient application of instructional media.

In the search for methods of improving instruction, several kinds of media are receiving particular attention today. Those which are being used in chemistry include full length sound motion pictures, computer assisted instruction (CAI), programmed material, closed circuit television (CCTV), and single concept loop films.

Media Used in Courses

Dworkin and Holden (24) examined the differences between a series of sound filmstrips and lectures, but they found no significant differences between groups. This study did not, however, test the interest level of the students over a period of time, nor did it attempt to go beyond factual matter to communicate experimental techniques.

Motion pictures based in the classroom since 1920 (46), have sometimes yielded encouraging results. Hart (36) studied the U. S. Navy's use of these during World War II, in science and technology applications. He found students trained with films recalled 35% more factual material and remembered the material 55% longer than those students who were taught the same material without the films.

Findings such as these created a great deal of activity in the late 1950's with the John Baxter chemistry films (6,7,8,40,64,72) and the Harvey White physics films (5,59,60,64,71,72,90) as well as their respective Continental Classroom chemistry and physics courses on commercial television. Yet contrary to expectation, studies related to the use of these films to replace the lecture and the laboratory resulted in no significant differences even in those studies which were most favorable toward the film (or TV). A majority of the studies, in fact, revealed a significant difference in favor of the non-film (control) groups. In film groups, the interest of the student diminished throughout the semester (6). Wendt and Butts (89) exploring the matter, discovered a saturation point which is exceeded when 30 minutes of film is shown daily for a period of several months.

The Physical Science Study Committee (PSSC) and the Chemical Education Materials Study (CHEM Study) films though enjoying wide acceptance have produced relatively few studies (67). The CHEM Study films, for example, have received wide acclaim from chemists and teachers for their treatment of the subject matter (both live and animated), as well as having won a host of medals and awards from the film industry for artistic treatment and photographic quality.

McTavish (52) showed that repetitive viewing increases retention to a certain extent. Viewing a film twice increases achievement but forcing the students to view a film as many as four times resulted in a slight reduction in learning.

There is still a great deal of activity in film, although other media are receiving increasing attention. Computer Assisted Instruction (CAI) although expensive to initiate and operate, is being used to

teach a variety of subjects. Many aspects of chemistry are being adapted to the computer for tutorial and computational purposes.¹ Studies using CAI for general chemistry (21) and organic chemistry (68) have been released. Both (at the University of Texas) have shown a significance in favor of CAI as an adjunct to the regular class.

It is probable that as mass production decreases the cost of computers, they will increasingly supplement instruction. For reasons found by Strum and Ward (84), it is doubtful, however, that CAI will replace the teacher. They cite 1) poor communication between man and machine (due in main to the author of the program); 2) the inability of the system to interpret the student's answers; 3) the immense amount of effort required to prepare the course material; 4) the high cost of hardware and actual programming; 5) the high proportion of down-time for repairs; and 6) the CAI's effectiveness for the superior student as opposed to their lack of effectiveness with remedial students.

Improvements in computer languages can enable the student to communicate with the computer more easily. Among these languages and tutorial systems, Alpert (3) feels that the PLATO III, and (subsequentally) the PLATO IV systems will provide solutions to many difficulties such as those described by Strum and Ward. High CAI costs, though, are still prohibitive, Alpert indicates PLATO III ranges from \$2.00 to \$5.00 per student-contact-hour when the costs are amortized over a five year period. He feels that through extensive use and redesigned consoles and systems (e.g., PLATO IV) the costs could be reduced to

^LFor an entire issue devoted to the use of computers in teaching chemistry see <u>J</u>. <u>Chem</u>. <u>Educ</u>. 1970 <u>47</u> (2) (February, 1970).

between \$0.34 and \$0.68, which will make CAI competitive with present methods in public schools.

Programmed instruction, another medium, may be as sophisticated as a teaching machine or as simple as a printed booklet. Geller (30) concluded that students liked the programmed material (a unit on organic chemistry in a general chemistry class), but that they did not like the teaching machines (Koncept-O-Graph) themselves. Generally, teaching machines (not to be confused with CAI) are difficult to load and store as well as being quite unreliable mechanically. Hence, printed programmed booklets have almost completely replaced the machines (31).

These programmed materials have been used in a variety of situations with mixed results. Geller's study (30) found that the students using programmed material learned the basic concepts of organic chemistry just as well as those who were taught the same material by lecture. On factual examinations there were no significant differences between the groups.

Young (93) studied the effects of programmed booklets² as a supplement to general chemistry. He found no overall significant difference between the group using the supplementary material and the group which did not. However, the booklets were worthwhile, complementary study aids (93).

Television has been employed in chemistry instruction primarily for lectures (12,13,41,77). However, it is also being used for prelaboratory instruction (14). Although no statistical evaluations have

²The series of five booklets by Virginia P. Powell, "Programmed Units in Chemistry," Prentice-Hall, Inc., 1965, were used in this study.

been published, these programs have generally met with the approval of the faculties using them. Siegel (78) compared lectures both with and without discussion, closed circuit television, multiple sections taught by graduate students, and independent study in a variety of subject areas including chemistry. The results as measured by achievement tests showed no significant differences among the methods. Students preferred the smaller classes irrespective of the method. This study also showed that the instructor himself had more to do with the attitude of the student toward the class no matter whether the instructor lectured in person or on television.

Media Used for Laboratory Instruction

Various media approaches have been employed in laboratory courses. An attempt to alternate filmed experiments which involved either lengthy reactions or expensive equipment with actual experiments performed by the students was made by Brubacher and co-workers without statistical evaluation. Although no direct results were obtained from this approach, it was reported that the students did display a high degree of enthusiasm for this method (19).

A study of teaching biological sciences laboratory techniques through the use of tape recorded instructions and 35 mm colored slides was made by Requa (66). The results indicated no significant difference between the experimental and control groups; however, the experimental group demonstrated a positive attitude toward this method.

The Purdue Research Foundation (65) has shown that the presentation of lecture demonstration experiments by short motion picture films is as effective as the conventional method of presenting lecture

demonstrations.

Barnard and Yingling (14) have produced films in modules of between one and five minutes for pre-laboratory instruction in general chemistry at Ohio State University. These are viewed by closed circuit television in each laboratory. The program has been well received by both faculty and students; however, no statistical evaluation has been reported.

Single Concept Loop Films

In recent years the single concept loop film (SCLF) has received considerable attention. As its name implies, this medium presents only one idea, topic, or technique in each film. Thus if one wishes to have a concept repeated, he need not wait while several minutes of irrelevant film pass through the projector as he must well multi-concept films.

SCLF cartridges have received much attention from classroom teachers since the Technicolor Corporation introduced their cartridge loop projectors in 1962 (20,46,47,81). The titles available have increased from 700 in 1964 to 3,000 barely two years later (73). By 1968 well over 6,600 titles were available with more coming each month. The quality of these loops does, however, vary. Many of them consist simply of segments clipped from existing footage instead of having them designed as SCLF (20).

Stein (82) in 1958 used SCLF in beginning typewriting classes. She found that although the film group typed more rapidly (but less accurately) than the non-film group, there was no significant difference overall.

Steiner (83) has used single concept loop films for pre-laboratory instruction in biology with success but without statistical evaluation.

The U. S. Air Force has used single concept loop films for teaching the operating procedures for some of their equipment. Since these training films have been employed, there has been a notable saving in the repair of the particular equipment (20,74).

In technical education Gaussman and Vonnes (29) have used SCLF for teaching a wide variety of topics including the proper use of tools, food preparation, and the operation of business machines. These films are being used to lend maximum flexibility to their instructional program. Students may view and review the films whenever they wish. It was discovered that 90 percent of their students enrolled in the business machines course received proficiency certificates from the manufacturer. Since the national average was only 50 percent these results indicate that the films were helpful in increasing manipulative skills.

Trinklein (86) used excerpts from the CHEM Study film on Bromine in his study. He found that these clips were useful as supplementary material because the group which viewed the full films plus the excerpts learned significantly more factual data than those viewing either the films or the clips once only. The confounding variable in this case is repetition, known to increase the retention (52).

Brandon (16) examined the quality of SCLF's produced by clipping segments from existing footage. He reported that a group of high school chemistry teachers in an NSF Summer Institute found that the existing 16 mm films provided few suitable single concept film clips with the exception of some of the CHEM Study films. The clips of reasonable quality included some of the animations of reaction mechanisms as well as some of the demonstrations from the CHEM Study films.

The major difficulty with the existing loop films appears to be that they do not fit the format of the single concept film. The Advisory Council on College Chemistry (AC_3) in an effort to upgrade the single concept films has sponsored workshops for producing single concept films (62). It is only when the single concept films are produced for a specific purpose by the teachers themselves that they will become the paperbacks of the instructional media (2).

The single concept format differs from that of the ordinary motion picture. Titles and credit lines are kept to a minimum. Explanatory titles and directions last only a few frames. If the viewer needs to read the directions he may stop the film. If he does not then little time will be wasted. Usually the demonstrator in a regular motion picture picture is considered the "star" because of his dominant role and frequent appearance in the scenes. In the single concept format, no more than the hands of the demonstrator may appear. Scenes of a particular operation are taken from "zero angle"³ Showing the operation from the perspective of the one performing it. Thus, when zero angle films are used for pre-laboratory instruction there is no rightto-left transfer of direction necessary. Furthermore, the student has a close-up view of the operation.

Anderson (4) indicates that the single concept film will fill the void between lectures or demonstrations and self-instruction. At the

³The camera angle is coincident with the normal viewing angle. This is achieved by aiming the camera over the shoulder of the demonstrator.

proper moment in the instructional sequence, the student can view the film (46). He may even view the film a number of times and adapt the SCLF to his own learning rate.

Color Versus Black and White

The advantages of color over black and white presentation have yet to be adequately shown by research studies. It is axiomatic that films depicting color changes would be worthless if viewed in black and white. May and Lumsdaine (54) indicate that the only definite correlation (r=0.90) exists between the gain in knowledge for both color and black and white. Material which is effective in black and white will also be effective in color, whereas that which is not effective in black and white correspondingly will not be effective by color. Their study was limited to material in which color did not play an important part.

Vandermeer (88) reports that although there is no significant learning differences (factual) between color and black and white film, the recall of material from color film was greater (although not significant at the 0.05 level) in three out of five cases. All of the above tests were based upon factual knowledge and recall and did not indicate the interest or aesthetic value of the color.

Kanner (44) reported that black and white and color television yielded no significant differences in learning factual knowledge in 10 out of 11 cases. A subsequent report by Rosenstein and Kanner (70) indicated no significant difference between color and black and white. All of these studies, however, used color merely to illustrate a graph or a picture. Color was employed only to increase the discernability of the image, an end which can be accomplished in black and white with proper contrast control. The evaluations, achieved by factual multiple choice tests, made no attempts to determine the motivation or the attitude of the students.

Barnard and O'Connor (13) feel that in chemistry films, the appeal or interest value of color is sufficiently significant to warrent its use, but their opinion is not substantiated by statistical examination. The cost of color films frequently deters their use, and the cost of color television cameras is considerably higher than black and white. It is surprising to note, however, that the cost of amateur motion picture film and processing is not significantly different from that of black and white.⁴

⁴The average cost of Kodak Tri-X (black and white) super 8 mm film with processing is \$4.49. Kodak Kodachrome II (color) super 8 mm film also with processing (by Kodak) is \$4.46. Thus while almost the same cost, the color film is actually cheaper. It should be noted that these are discount prices which anyone can obtain by careful shopping. The processing of the color film was by Kodak Laboratories and the black and white by a reputable independent processor. The difference in cost is primarily due to the great demand for color film by amateurs as opposed to the relatively little use which black and white receives.

CHAPTER III

EXPERIMENTAL DESIGN

Preparation of the Single Concept Loop Films

Criteria for the Films

To insure that films for this study be related to the techniques needed for Chemistry 3015, it was necessary to determine which experiments were to be assigned. Dr. Henry P. Johnston (professor in charge of the course) selected and determined the order of experiments from the laboratory manual by Coleman, Wawzonek, and Buckles (22) and from those written by Dr. Johnston and others of the O.S.U. Chemistry Department. Table I shows the experiment titles (in assigned order) as well as those techniques, manipulations, and equipment setups needed.

The next step was to determine which techniques and experiments the students appeared to need most help with. To do so, the author visited a Chemistry 3015 laboratory for one semester (not as a teacher but ostensibly as a casual observer). It was found that techniques demonstrated were at times difficult to see. This situation, together with the fact that occasionally a student would allow his attention to wander, resulted in less than the total group's knowing what to do. And, while some students would ask their instructor, classmates, or the author for help, others would blunder ahead. Table II shows a list of techniques which students occasionally or frequently performed

TABLE I

TECHNIQUES NEEDED FOR ORGANIC CHEMISTRY LABORATORY EXPERIMENTS (CHEM 3015)

EXPERIMENT		
Number	Name Techniques (setups, manipulations)	Source
1	Purification by Crystallization Seeding or scratching the supersaturated solution Use of boiling chips Use of decolorizing carbon Folding Fluted filter paper Suction filtering (Hirsch) Reflux condenser	CWB
2	Determination of melting points Preparation of the melting point capillary Determination of melting point with Thiele- Dennis Tube Calibrating a thermometer	CWB
3	Distillation and the determination of boiling points Setting up and operating a simple distillation Use of boiling chips Placement of the thermometer bulb	CWB
4	Fractional Distillation Setting up and operation of fractional distillation apparatus Boring holes in corks Thermometer bulb placement Use of boiling chips	CWB
5	Qualitative analysis for elements Sodium fusion testsmaking the solution Tests for nitrogen, sulfur, and halogens	CWB
6	Hydrocarbons: Methane, Acetylene, Ethylene Use a side arm tube and gas collection*	CWB
meta-Dinitr	robenzene H Recrystallization Suction filtering (Buchner) Melting point determination	PJ-OSU
TABLE I (Continued)

EXPERIM	1ENT	· · · · · · · · · · · · · · · · · · ·
Number	Name Techniques (setups, manipulations)	Source
13	Cyclohexanol; Properties of Alcohols Steam distillation (set up and operation) Salting out Ether extraction Drying the ether extract Ether removal	CWB
11 .	n-Propylbromide Simple distillation Washing with a carbonate Drying with CaCl ₂ Filtering through cotton Distillation range	CWB
Methyle	ethyl ketone Simple distillation Use of boiling chips Fractional Distillation	HPJ-OSU
Methyl	salicylate Reflux Use of boiling chips Neutralizing with bicarbonate (washing with carbonate) Separation	HPJ-OSU
Ferment	tation (Ethanol) Fermentation lock* Fractional distillation Use of boiling chips	HPJ-OSU
16	Carbonyl Compounds Tollens test* Schiffs test* Bisulfite addition* Iodoform test* Phenylhydraxine*	CWB
17	Acids Simple distillation Freezing (melting) point determination* Use of boiling chips	CWB

TABLE I (Continued)

EXPERIMENT

Number	Name Tochniquos (cotuno, monipulations)	Source
20	Saponification of Isoamylacetate Reflux Use of boiling chips	С₩В
	Simple distillation Washing with carbonate Separation Filtering through cotton	
Butter	and Oleomargarine Reflux Use of boiling chips Simple distillation	HPJ-OSU
35	Aspirin (Acetylsalicylic acid) Reflux Rapid filtering (Buchner) Decolorizing, fluted filter, and recrystallizati Melting point determination	CWB
26	Properties of Amines Melting point determination Preparation of anilides* Preparation of benzanilides* Preparation of benzenesulfonamide* Preparation of picrates*	CWB
30	Diazo compounds Preparation of diazonium salt (diazotization) Coupling reaction	CWB
29	Sulfanilamide Gas trap Rapid filtering (Buchner) Decolorizing, fluted filter, recrystallization Melting point determination	CWB
36	Carbohydrates Benedicts or Fehling's test* Osazone test* Periodic acid test*	CWB

* Technique not covered in films.

TABLE II

OBSERVED MISTAKES OR DIFFICULTIES ENCOUNTERED IN EXPERIMENTS

Technique	Common Problems or Errors
Seeding a super	rsaturated solution: Did not know what to expect Did not know how to seed a supersaturated solution Did not know how to scratch the inner surface
Use of decolor:	izing carbon: Could not see the demonstration Did not comprehend the difference between filtering and decolorizing action
Folding fluted	filter paper: Could not follow directions Did not fold the paper properly
Suction filter:	ing: Used incorrect size paper Did not properly support or clamp the flask Did not know how to remove precipitate (Some scraped precipitate from paper before removing paper from funnel.)
Reflux:	Did not support the flask properly Clamped the apparatus inefficiently Used a stopper to close the system Reversed the water inlet and outlet Did not add boiling chips
Use of boiling	chips: Lacked the knowledge of why chips are used Had not experienced bumping of solutionuntil too late Did not know the proper size of chips
Melting point o	capillaries: Sealed capillaries improperly Experienced difficulties in filling capillaries
Thiele-Dennis	tube: Heated oil too fast Allowed rubber retaining ring to become immersed in oil Did not place capillary next to thermometer bulb
Calibrating a	thermometer: Had the incorrect belief that all laboratory thermometers yield a correct reading

TABLE II (Continued)

Common Problems or Errors Technique Simple distillation: Set up the apparatus inefficiently Clamped the apparatus improperly Reversed the water inlet and outlet Used improper methods for holding receivers Placed thermometer improperly Did not add boiling chips Fractional distillation: Set up the apparatus inefficiently Clamped the apparatus improperly Reversed the water inlet and outlet Used improper methods for holding receivers Used inefficient methods for changing the receivers Failed to use boiling chips Placed a thermometer improperly Sodium fusion tests: Used too much sodium Waited too long before placing sodium fusion mixture in water Used tap water instead of distilled Did not heat unknown long enough with the sodium Did not boil solution before filtering Did not know what results to expect Did not know what results were positive, inconclusive, or negative Steam distillation: Used too long a steam line between the trap and flask Allowed the trap inlet to be higher than the outlet Bled steam line then turned off steam and closed system thus allowing precious preparation to be forced back into the trap and down the drain Did not know how to go about setting up apparatus efficiently Confused the difference between steam distillation and distillation using steam as a heat source. Salting out: Did not know the purpose of salting out Did not know how much salt to use Washing with a carbonate: Used too much carbonate thus allowing the effervescent solution to spill over

TABLE II (Continued)

Techniques Common Problems or Errors Use of separatory funnel: Did not know which layer to save and which to discard Did not know how to properly relieve the pressure generated in the closed funnel Did not know when to stop the stopcock Ether extraction: Did not understand the reasons for extraction Did not understand the use of several small applications of extracting solvent rather than one large one. Placed subsequent aliquots of ether with the ether layer rather than the aqueous layer Drying the ether extract: Did not know how to remove the moisture from the ether extract Did not know how much drying agent to use Did not know how to tell if too little drying agent was used Did not know how to effectively remove the solid drying agent Removing the ether from the solution: Used unsafe procedures such as flame Diazotization: Added nitrite solution too rapidly or in too large amounts Did not keep the temperature cool enough Use of a gas trap: Did not understand the purpose or function of the HC1 trap for sulfanalimide experiment It was noted that some of these difficulties continued each time a particular technique was used. In time, with patient prodding, some managed to overcome their original difficulties.

incorrectly, haphazardly, or dangerously.

In accordance with the experiments assigned by Dr. Johnston and the needs of students observed by the author, each film was designed to demonstrate any one of the following: 1) a laboratory setup of standard taper glassware, 2) a technique or process which the students were likely to have difficulty executing; 3) a technique or process implied by some of the experiments, although not specifically demonstrated by the teacher.

Producing the Films

Films were designed to require minimal adaptation to the intended tasks. They were planned in accordance with the objectives shown in Table III and keyed to the experiments shown in Table IV. Films were photographed on location in the laboratory showing the same equipment to be used by the students. Scenes indicate faithfully the locations of facilities such as water, gas, sinks, steam, aspirators, and fume hoods. In addition, films were shot from zero angle, permitting emphasis upon the task rather than the demonstrator. Films conforming to these criteria show setups and techniques as students will view them while performing the experiments.

Because this study was a pilot project, only two copies of each film were needed: an original and a duplicate to replace damaged loops. Super eight millimeter film was chosen for two reasons. The cost of filming the same scenes twice directly on super eight is considerably less than producing a master print on sixteen millimeter for

TABLE III

FILM TITLES AND OBJECTIVES

The objectives for the films were to show the following:

- 1. Crystallization (Supersaturation)
 - A. The effect of "seeding" a supersaturated solution.
 - B. The effect of rubbing or scratching the inner walls with a glass rod.
- 2. Decolorizing
 - A. Filtering through paper does not remove colored impurities.
 - B. The approximate amount of decolorizing carbon to use.
 - C. The decolorizing effect of decolorizing carbon.
 - D. The sequence of procedures in decolorizing.
 - E. Fluted filter paper being used as a matter of simplicity and speed.
- 3. Folding Fluted Filter Paper
 - A. Folding fluted filter paper properly.
 - B. Folding fluted filter paper improperly.

4. Rapid Filtration

- A. Both Hirsch and Buchner funnels and filter flasks.
- B. The filtering operation.
- C. The proper method of supporting the filtering flask.
- D. The selection of the proper size of filter paper.
- E. The procedures for washing the precipitate.
- F. The procedures for removing the paper from the funnel.
- G. The circumstances in which each of the funnels should be used.
- 5. Reflux
 - A. A reflux column in operation.
 - B. A systematic method for setting up a reflux column as well as supporting and clamping the entire assembly, and proper placement of the water inlet and outlet hoses.
 - C. The filling of the flask (and not overfilling) and the addition of the boiling chips.
- 6. The Use of Boiling Chips
 - A. Proper even boiling
 - B. Bumping without boiling chips.
 - C. The effects when boiling chips are added to a hot solution.
 - D. The bubbles eminating from the chips.

- 7. Methods of Heating
 - A. Heating a flask (round bottom) with and without a wire screen and burner.
 - B. Heating with steam.
 - C. Heating with hot or warm water.
 - D. The proper methods of support with different heating methods.
- 8. Thermometer Correction
 - A. A group of laboratory thermometers do not give the same reading when placed in a bath of uniform temperature, thus each must be calibrated to standard or known values.
 - B. The procedures to determine correct temperature values.
- 9. Melting Point Determination (Capillary Preparation)
 - A. How to prepare and seal a capillary by cutting and sealing.
 - B. How to prepare a capillary and seal it by heating and pulling.
 - C. How to fill and cause the sample to reach the bottom of the capillary.
 - D. The difference between good and bad capillaries.
 - E. Proper methods for affixing capillary to thermometer.
- 10. Melting Point Determination (Thiele-Dennis Tube)
 - A. The Thiele-Dennis Tube in operation.
 - B. The melting of the wax (or oil).
 - C. The proper amount of oil.
 - D. Where to heat the tube.
 - E. Where to place the thermometer bulb.
 - F. The vent for pressure release.
 - G. That the melting point is the range between the initial melting and the final melting.
 - H. That the heating rate should not exceed a degree per minute.
 - I. That the thermometer should be read to the nearest 0.1 or $0.2^{\rm O} C$.
- 11. Boring Holes in Corks
 - A. The set of cork borers.
 - B. The proper method of selecting the proper size of borer.
 - C. The selection of the proper size of cork.
 - D. The cork borer sharpener.
 - E. The proper method of sharpening a cork borer.
 - F. Moistening the cork borer.
 - G. Drilling the cork (with a twisting motion) from both ends toward the middle.
 - H. The effects of improper boring such as "blown" corks.
 - I. The proper method of putting the cork on a glass tube.

- 12. Simple Distillation (Setting Up)
 - A. The distillation in operation.
 - B. Setting up the simple distillation apparatus in a logical order (flask, column, hoses on condenser, condenser, adapter, receiver).
 - C. The proper placement of clamps.
 - D. The proper placement of water inlet and outlet on condenser.
 - E. Proper methods of attaching the receivers with two methods of clamping.
 - 13. Simple Distillation (Operational Hints)
 - A. The proper methods of filling the flask.
 - B. The proper thermometer bulb placement.
 - C. The effect if proper attachment of adapter is not used.
 - D. The effect if the proper attachment of the receiver is not used.
 - E. The proper method of changing the receivers.
 - 14. Thermometer Placement
 - A. The proper placement of a thermometer bulb in distillation.
 - B. That the temperature of the boiling liquid is slightly higher than the vapor in the column.
 - C. The temperatures as read by the thermometer when the bulb is slightly higher, at, and slightly lower than the outlet to the condenser.
 - 15. Fractional Distillation
 - A. Two alternate types of distilling columns.
 - B. Methods of changing receivers.
 - C. A distillation in operation boiling smoothly.
 - D. Flooding in the column from too rapid heating.
 - 16. Sodium Fusion Tests 1-Solution Preparation
 - A. Placement of soft glass tube in the transite square.
 - B. How to judge the appropriate volume of distilled water.
 - C. The proper size piece of sodium.
 - D. The proper treatment of the sodium by absorbing the kerosine with filter paper.
 - E. The proper sequence of events; a) melting the sodium,b) adding a small quantity of unknown, c) strong heating of the unknown with the sodium, and quickly plunging the hot tube into the distilled water.
 - F. The proper method of plunging the hot tube into the distilled water thus breaking the tube.
 - G. Boiling the solution to insure dissolving.
 - H. Filtering the solution to remove glass and insoluble materials.

- 17A. Sodium Fusion Tests. II Nitrogen Test
 - A. The proper sequence of operations in the nitrogen determination.
 - B. Positive results.
 - C. The lack of color which may occur at first but slowly the color develops into a bluish or greenish color of the positive test.
 - D. The result of filtering an indistinct result thus showing the traces of blue precipitate.
- 17B. Sodium Fusion Tests. III Sulfide Test
 - A. The proper sequence of operations in the sulfur (sulfide) test.
 - B. Both positive and negative results.
- 17C. Sodium Fusion Tests. IV Halogen Test
 - A. The proper sequence of operations in the halogen tests.
 - B. The acidifying and boiling of the solution to remove HCN and H_2S which interfere.
 - C. Both positive and negative results.
 - D. The use of a blank test.

18. Steam Distillation

- A. A steam distillation in operation.
- B. The assembling of a steam distillation apparatus.
- C. "Bleeding" of the steam line prior to commencing.
- D. The use of a short distance between the steam trap and the distilling flask.
- E. The use of the steam trap.
- F. How to start the steam distillation.
- 19. Separation and Purification 1: Washing with a Carbonate
 - A. How to use a saturated sodium carbonate solution to remove the excess acid.
 - B. The use of solid sodium carbonate.
 - C. The proper method of small applications with shaking rather than one large application.
 - D. The proper handling of the separatory funnel.
- 20. Separation and Purification II: Salting Out
 - A. The use of sodium chloride.
 - B. How to estimate the amount of salt to use.
 - C. The proper method of shaking a separatory funnel.

- 21. Separation and Purification III: Ether Extraction The use of small applications with ether.
 - Α.
 - B. Determining which layer is the ether.
 - The proper method of shaking and relieving the pressure С. of the evaporated ether with the separatory funnel.
 - D. The proper method of stopping the level at the interface.
 - E. Saving the ether extractions together.
 - F. The addition of a fresh aliquot of ether to the aqueous layer.
- Separation and Purification IV: Drying Ether. 22.
 - The application of anhydrous potassium carbonate (as well Α. as calcium chloride and other drying agents).
 - Allowing the solution to stand for a period of time. в.
 - C. What to do in case the potassium carbonate dissolves.
 - D. Filtering through cotton, pressing the cotton with a glass stopper and rinsing with dry ether.
- 23. Separation and Purification V: Ether Removal
 - The safest method of removing the ether is by distilling Α. off the ether with a steam bath and an ice packed reciever.
- 24. Fume and Vapor Removal
 - The use of the fume hood. (Shows the effect of pulling Α. out nitrogen dioxide vapors.)
 - The use of the water aspirator and a funnel to improvise Β. the removal of small amounts of noxious noncorrosive vapors at ones desk.
 - Vapor removal in distillation columns, and vapor traps С. for reflux columns.
- 25. Diazotization
 - The diazotiazation procedure using a three neck flask Α. and sulfuric acid. This is useful when followed by steam distillation.
 - в. The use of a steady drip of the nitrite solution rather than intermittant larger amounts.
- 26. Diazotization II

ر بر میش

- The diazotization procedure using a single neck flask Α. and hydrochloric acid.
- В. Using a steady drip of the nitrite solution rather than intermittent larger amounts.

ТΑ	BL	Æ	IV
----	----	---	----

FILMS KEYED TO THE EXPE	RIMENTS	
-------------------------	---------	--

Experiment	Title	Film Numbers
1	Crystallization	1, 2, 3, 4, 5, 6, 7
2	Melting Points	8, 9, 10
3	Distillation	12, 13, 14, (6)
4.	Fractional Distillation	11, 14, (6), (14)
5	Qualitative Analysis	16, 17A, 17B, 17C
6	Hydrocarbons (Procedures used in general che	None emistry)
	<u>m</u> -Dinitrobenzene	(2), (4), (9), (10)
13	Cyclohexanol	18, 19, 20, 21, 22, 23
11	n-Propyl Bromide	(12), (13), (14), (15), (6)
	Methyl Ethyl Ketone	(12), (13), (14), (15), (6)
	Ethanol (new techniques quite easy to f	(6), (15) Follow in directions)
16	Carbonyl Compounds (tests quite easy to perform, r	None esults not confusing)
16	Acids	(6), (12), (13), (14)
	Methyl Salicylate	(5), (6), (19), (20)
20	Isoamyl Acetate	(5), (6), (12), (13), (14)
	Butter and Oleomargarine	(5), (6), (4), (1), (2), (3), (9), (10)
35	Acetylsalicylic Acid	(5), (6), (1), (2), (3), (9), (10)
26	Amines (Tests easy to perform, results	None (9), (10) s not confusing)

n a Santa Rati

TABLE IV (Continued)

Experiment	Title	Film Numbers [*]
30	Diazo Compounds	25, 26
29	Sulfanalimide	(1), (2), (3), (4), (5), (9), (10)
36	Carbohydrates (Tests easy to perform, re	None esults not confusing)

* Film numbers in parentheses indicate titles for review only if needed. The techniques have been covered in previous experiments. reduction copying onto eight or super eight millimeter.¹ In addition, super eight's format of 21.5 mm² provides 50 per cent greater image area than eight's 14.3 mm² and, hence, sharper resolution for the same viewing image size.

Equipment for filming included the following:

Beaulieu 2008S, super eight millimeter motion picture camera equipped with an f/1.4 Angineaux 8 to 64 mm variable focus (zoom) lens. The camera employs through-the-lens focusing and viewing as well as an automatic diaphragm control with manual override capabilities.

Three Smith-Victor lighting stands equipped with 3200^OK quartz-halide lamps to provide proper color balance with Kadachrome II film.

Quick Set Husky elevator tripod.

Backgrounds of textured surface poster board in pastel shades.

Titles provided by rub-off letters on matte finish poster board; credits and titles provided by adhesive backed three dimensional plaster letters mounted on orange burlap.

Following processing by Eastman Kodak's Chicago Laboratory, the editing was accomplished with a Vernon action viewer and a Kodak Presstape splicer. (Tape splices hold eight millimeter film better than cold cement (53).) Finally, the edited films were placed into Techicolor Magicartridges for projection in Technicolor 800 projectors.

Experimental Design

The experimental design for this study required that it be

^LDuplication without reduction copying results in a significant loss of contrast and detail.

adaptable to the existing class schedules and procedures for Chemistry 3015 with a minimum of disruption. Therefore the evaluation will, of necessity, be a comparative method design. To overcome the obvious shortcomings of comparative method studies, and yet provide a maximum of individuals, the following plan was used.

The 170 students of Chemistry 3015 were assigned as randomly as possible to the experimental and control groups. This was done during pre-enrollment by the Registrar's office. Schedules are frequently rearranged during pre-enrollment course balancing. The only student bias involved in section assignment is that created by time conflicts with other courses. Thus, while a student may indicate preferences, his assignment to a laboratory section is not directly determined by the student himself, but indirectly as a result of his other schedule in view of the schedule readjustments made by the Registrar's office during pre-enrollment. Assignment to subsections is normally by alphabetical arrangement. However, to achieve maximum randomization, the class cards for a given section were shuffled seven times and dealt into the appropriate number of stacks face down for assignment to a subsection. Because the three laboratories which were being used for Chemistry 3015 are essentially identical, it was arbitrarily determined to designate PS-356 for the experimental subsections. Locating all three of them in one laboratory permitted keeping the films and projectors there facilitating student access to them during class, at other times they could be kept in locked drawers.

Because the individual teacher or time-of-day differences might possibly contaminate the results, the schedules as presented in Table V will allow for these differences, if present, to be statistically determined.

General instructions, any modifications in the basic experiment, and safety precautions, were written and given to the instructors in lieu of staff meetings. The instructors in the experimental groups were cautioned to omit from their pre-laboratory discussion anything which was covered in the films. The students in the experimental groups were shown how to use the Technicolor Projectors and the film cartriges. They also were instructed in what to do in case a film jammed. Finally, they were given a list of films keyed to the experiments (Appendix G) and informed that they could look at the films at any time during the laboratory period except during discussions or quizzes.

TABLE V

Room: Section:	PS 356	PS 357	PS 358
Section 1 MW 1:30-4:20	Subsection 1 J. Tai Teacher A Film Group (Group 100)	Subsection 2 H. Herzer Teacher C Non Film Group (Group 600)	Subsection 3 P. Mooney Teacher B Non Film Group (Group 500)
Section 2 10:30-2:20	Subsection 1 P. Mooney Teacher B Film Group (Group 200)	Subsection 2 J. Tai Teacher A Non Film Group (Group 400)	
Section 3 2:30-5:20	Subsection 1 H. Herzer Teacher C Film Group (Group 300)	Subsection 2 R. Lyeria Teacher D Non Film Group (Group 700)	

ASSIGNMENT OF GROUPS AND INSTRUCTORS

Control groups were taught in the conventional manner. The laboratory instructor began with a brief discussion of the theory underlying the reactions, a description and demonstration of the techniques involved, plus any deviations from the instructions in the laboratory manual. Emphasis was given to safety procedures and handling of hazardous materials. Students in both groups were required to have their equipment setup checked before they began their experimentation.

Experimental groups were handled in the same manner except the instructor did not demonstrate the equipment setup or the techniques which are covered in the films. In those cases where a student had an incorrect setup, it was suggested that he review the film rather than the instructor telling him how to correct his error.

Instruments

1. Data Card. Each student was asked to submit pertinent data on a 3 x 5 inch card and hand it to the instructor prior to leaving the laboratory. These cards were provided for the students and a specimen of one completed was posted in the laboratory. Data requested varied from day to day (depending upon the nature of the experiment), and instructors received directions before each session. Items recorded included name, date, subsection, experiment number, time spent on the experiment exclusive of clean up or prelaboratory discussion (calculated to the nearest five minutes), name of partner (if any), percent yield, melting point, breakage (exclusive of clean up), and accidents (each briefly described).

2. Laboratory Skill Survey. A self appraisal in organic laboratory procedures was determined by a laboratory skill survey given at

the commencement and conclusion of the course (Appendix G). The students were informed that the results would have no effect upon their grades for the course. The care with which each instrument was completed was ascertained by checking those items which involve techniques which they should know (such as lighting a bunsen burner and simple filtration) and those techniques which they should not know (such as vacuum distillation) and by the consistency with which they responded to duplicate items.

This instrument was adapted from a form used at Michigan State University in Physiology (42). The Michigan State form was used in conjunction with a media approach to the preparative laboratory in Advanced Mammalian Physiology. Techniques such as muzzling a dog and pithing a frog were listed with response choices related to the knowledge or ability required to perform the particular operation.

3. Attitude Survey. A survey of ten selected experiments five of which (2, 3, 4, 5, and 13) involved films directly and five of which (11, 16, 17, 26, and 35) did not. The survey administered near the semester's close asked their opinion of these ten experiments in terms of time requires, how interesting, value or usefulness, academic value, difficulty, directions, techniques, manipulations, and overall opinion. These nine categories were arranged in Likert-type scale choices (Appendix E). The attitude survey was anonymous (although responses were segregated by subsection) in order to increase the reliability (25).

4. JH₂S Examination. In the absence of a direct measuring instrument for laboratory techniques, it was necessary to prepare a laboratory examination which covered laboratory techniques, procedures,

setups, but no theoretical aspects. Rather than drawings or diagrams, the examination employed photographs of equipment used by the students in their experiments. Students were asked fifty multiple choice questions about equipment shown properly and improperly set up. Because of the possibility of awareness and the lack of a sufficiently large sample for split group technique, it was not administered as a pre-test, post-test instrument. The reliability of the instrument was determined by Kuder-Richardson Formula 21 which is widely accepted for this purpose (32). For future work, an item analysis was run in order to determine which questions need to be rewritten.

Hypotheses

The following major null hypotheses were tested. Ho 1: There will be no significant differences between the background of the students in the experimental and control groups. Ho 2: There will be no significant differences in the time required to perform the experiments between the experimental and control groups. Ho 3: There will be no significant differences in the breakage parameters between the experimental and control groups. Ho 4: There will be no significant differences in the number of accidents occurring between the experimental and control groups. Ho 5: There will be no significant differences in the self appraisal of laboratory techniques as measured by the laboratory skill survey between the experimental and control groups.

Ho 6: There will be no significant differences in the attitude toward the experiments between the experimental and control groups.

Ho 7: There will be no significant differences in the laboratory proficiency as measured by the JH₂S Examination between the experimental and control groups.

Each of these major hypotheses was subdivided in order to ascertain the location and extent of the statistical differences.

CHAPTER IV

DATA, STATISTICAL ANALYSES, AND RESULTS

Prior to establishing whether significant differences occur between treatment groups, it was necessary to determine if differences might, indeed, be attributed to the differences in the groups themselves. For this reason if the groups are found to be randomly distributed with respect to factors which might affect the results, than it is more likely that significant differences discovered will be due to treatment differences and not to a non-random distribution of the subjects.

Following a description of the statistical measures used in this study will be the determination of the random distribution of the subjects and finally the data, analyses and results of the study.

Statistical Measures

In this study the null hypothesis form is used throughout. For convenience the alternate hypothesis form is not stated in order to prevent confusion. Because the related studies (20,29,74) indicate trends in favor of the use of SCLF the alternate hypothesis would be stated in a directional form in favor of the experimental group. For this reason, one tail probabilities will be used throughout.

Siegel (57,60) attributes the lack of significance in educational studies of the comparative type of the other variables interacting in supposedly balanced groups. Using analysis of variance or covariance

designs, Seigel feels, should yield more significant results.

The analysis of variance is a more robust test than the covariance. That is to say, the former will yield reliable results even though all of the rigid assumptions are not strictly adhered to, whereas in the latter the reliability tends to suffer when more deviations occur. (62)

Tukey (66) indicates that there is no real need for the artificial limitations of the 0.01 or the 0.05 level of significance. In the testing of a new drug, perhaps the 0.001 level might not be sufficiently significant, whereas for a gambler, the 0.45 level would be suitable in order to net him a steady profit. In educational situations the 0.20 or some other level might be just as appropriate as the widely used 0.05 level.

For this study the significance level for the purpose of rejecting the null hypothesis will be set at the 0.10 level.

Parametric statistical evaluation is based upon samples drawn from a normal population. Samples which deviate from normality decrease the effectiveness of the statistical tests. Non-parametric tests can be employed in instances where the data lacks some of the rigorous assumptions demanded by parametric statistics. Also different types of data lend themselves to different statistical tests.

Hence, a variety of statistical tests were used in this study. All of these tests are widely accepted and included in some of the commonly employed educational statistics reference works such as Siegel (80), Popham (62), and Guilford (33). However, because the formulas and symbols vary slightly, Appendix I contains a compilation of each of the statistical formulas and their respective terms which were used in this study.

The following statistical tests were employed. Included is a brief description of their respective uses, strengths and weaknesses.

Mann-Whitney-U Test. The Mann-Whitney U is frequently employed when scores of two similar groups are ranked together. If the two groups are from essentially the same population there will be considerable intermingling of the two groups. If one group significantly exceeds the other, then the ranking of the superior group will be significantly higher than the inferior. The Mann-Whitney U is frequently employed in place of the parametric t test (Student's t test) with little loss in power (62). The Mann-Whitney U has one of the highest power efficiency of the nonparametric tests, approaching 95 per cent even with moderate size samples (79).

Friedman Two Way Analysis of Variance. When two or more groups are compared in which the items are matched or related, the Friedman Test is conveniently employed. This technique involves a ranking of treatments within a set of data. The formula into which the squared sum of the ranks are inserted yields a value which may be interpreted from a table of chi square values. The exact power of the Friedman Test is now known (79), but it compares favorably with the most powerful parametric test, the F test. Friedman (79) reported that in 45 out of 56 cases, the probability levels between the Friedman Test and the F test were the same. Friedman has also made comparisons between chi square values (commonly used to interpret the results) and calculated values from the z test. The results indicate that as either k (the number of columns) or N (the number of rows) increases, the difference between the two values diminishes to zero. For example, at the 0.05 level when k equals three, the chi square value will be 5.991, as N

increases from 10, to 20, and to infinity, the value from z increases from 5.959 to 5.983, to 5.991 respectively (28).

Randomization Test for Two Independent Samples. The randomization test for independent samples is a powerful nonparametric test which requires much less stringent assumptions than are required for the parametric t test. The exact probability can be determined without assuming a normal distribution or homogeneity of variance (79). When n_1 and n_2 are large, the computation becomes tedious and unwieldy. Pitman (79) has shown that if the kurtosis of the combined sample is small and if the ratio of the size of the two groups does not exceed five, then the distribution closely approximates the t distribution, thus:

$$t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{\sum(x_{1} - x_{1})^{2} + \sum(x_{2} - x_{x})^{2}}{n_{1} + n_{2} - 2}}} \sqrt{\frac{1}{n_{1}} - \frac{1}{n_{2}}}$$

Which is essentially the same formula as the pooled variance formula of the t test. Thus in this study the t test will be employed, not as a parametric test but as a nonparametric test, so that a normal distribution need not be assumed. The form of the t test will be

$$t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\left(\frac{\Sigma x_{1}^{2} + \Sigma x_{2}^{2}}{n_{1}^{+} n_{2}^{-2}}\right)\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

The power efficiency of the randomization test for two independent samples is 100 per cent because of the definition and the fact that it uses all of the information in the samples (79).

Chi Square. The chi square test is a goodness of fit test which can be used to determine if a distribution varies significantly from a random distribution. The magnitude of the chi square statistics depends upon the disparity between the actual frequencies and the expected frequencies. The power efficiency cannot be computed for chi square because there is not alternative parametric test.

Spearman Rank Order Correlation. The Spearman rank order correlation coefficient is the nonparametric alternative to the Pearson Product Moment correlation. The Pearson correlation requires homoscedastisity (equal scattering) and the Spearman does not. The Spearman also is much easier to compute. The efficiency of the Spearman rank order correlation is 91 per cent when compared to the Pearson Product moment (80).

Wilcoxon Matched-Pairs Signed-Ranks Test. The Wilcoxon test is based upon the premise that if most of the major differences favor one group then it follows that it should be significantly superior to the other (62). This test is based upon the rank of the magnitude and its direction. The Wilcoxon Matched-Pairs Signed-Ranks test compares favorably with the power of the t test when parametric assumptions are met. For small samples the efficiency approaches 90 per cent (80).

Kruskal-Wallas One Way Analysis of Variance. This test determines whether a group of independent samples are from different populations on the basis of their rank order. The test assumes that the

and the second secon

variable under study has a continuous distribution. The Kruskal-Wallas test has an efficiency of 95.5 per cent when compared to the F test (80).

Distribution of the Group

Because one major difficulty in educational studies is determining what factors are responsible for success with the measuring instruments, the treatment samples were examined. It was assumed that each group contains a random sample of the pre-medical, pre-veterinary, pre-dental, agricultural, and arts and sciences students who usually enroll in Chemistry 3015. (See Chapter III for assignments to sections and subsections.) The question whether sections also contained a random distribution according to classification, college, and sex generated the following three null hypotheses.

Ho 1.01 There will be no significant difference in the distribution of the students by classification among the sections.

Ho 1.02 There will be no significant difference in the distribution of the students by college among the sections.

Ho 1.02 There will be no significant difference in the distribution of the students by sex among the sections.

These hypotheses may be tested by chi square analysis, is essentially a curve-fitting formula, which will serve to determine if the observed distribution deviates from that expected in a random distribution. The data is tabulated in Table VI and the chi square analyses follow in Tables VII, VIII, and IX.

The rejection of Ho 1.01 but not the Ho 1.02 or Ho 1.03 tended to support the assumption that the group had indeed been randomly

DISTRIBUTION OF STUDENTS BY SUBSECTIONS (CLASSES)

Classification	100	200	300	400	500	600	700
Male	22	17	18	21	20	17	22
Female	2	7	66	2	0	4	2_
Sophomore	14	14	10	10	10	11	12
Junior	6	6	13	6	8	8	9
Senior	3	4	1	7	2	1	3
Graduate	<u> </u>	0	0	0	0	1	0
College/Major	k						
Agriculture: General Agriculture Pre-Veterinary Animal Science Agronomy Agri-Economy Dairy Subtotals:	0 5 2 1 1 (14)	1 7 1 2 0 1 (12)	1 6 5 1 0 0 (13)	1 6 0 2 0 0 (9)	0 7 3 1 0 1 (12)	1 3 1 0 0 0 (5)	1 9 4 0 0 0 (14)
Engineering: Chemical Engineering	3	2	1	2	2	4	1
Arts and Science: Physical Science Chemistry Pre-Medical Zoology Pre-Dental Botany Microbiology Medical Technology Physiology Wildlife Ecology Biological Sciences Psychology Undecided Subtotals Business: Ceneral Business	0 0 1 0 2 0 1 1 0 0 0 0 0 0 (5)	0 4 0 0 1 1 3 0 1 0 0 (10)	1 0 3 2 1 0 0 1 0 1 0 0 0 (9)	0 1 4 2 0 0 0 1 2 1 1 2 1 1 0 0 (12)	0 0 2 1 0 1 0 0 0 1 0 0 0 1 (6)	0 0 1 2 2 1 0 1 1 0 0 1 0 0 1 0 (9)	0 0 2 2 0 1 1 0 0 0 0 0 0 (9)
General Business	0	0	0	0	0	1	0
Home Economics: Nutrition	1	0	1	0	0	1	0
Graduate: FNIA Agriculture	0 1	0 0	0 0	0 0	0 0	1 0	0 0

distributed by college and by sex, but not by classification. Table VII shows a fairly even distribution of sophomores and juniors, but section 2 (Tu-Thu 11:30) has a higher proportion of senior-graduate students. (Table VI shows these are all seniors.) It is then necessary to determine the distribution between the experimental and control groups. This generated the following set of null hypotheses.

TABLE VII

CHI SQUARE ANALYSIS OF LABORATORY SECTIONS BY CLASSIFICATION

	MonWed 1:30	TuThu 11:30	TuThu 2:30	Totals
Sophomores				i
observed	35	24	22	81
(expected)	(32.91)	(23.79)	(24.30)	
Juniors				
observed	22	12	22	56
(expected)	(22.75)	(16,45)	(16.80)	
Senior/Graduate				
observed	8	11	4	23
(expected)	(9.34)	(6.76)	(6.90	<u></u>
Totals	65	47	48	160

X² = 7.2607
df = 2

significant at 0.05 level
Ho 1.01 rejected

	MonWed 1:30	TuThu 11:30	TuThu 2:30	Totals
Agriculture				
observed	31	21	27	79
(expected)	(32.09)	(23.21)	(23.70)	
Arts & Sajanco				
and a because	20))	10	60
	20 (2/ 28)			00
(expected)	(24.38)	(17.63)	(18.00)	
Engineering				
observed	9	4	2	15
(expected)	(6.09)	(4.41)	(4.50)	,
Other			· · ·	č
observed	5	0	1	6
(expected)	(2.44)	(1.76)	(1.80)	Ũ
Totals	65	47	48	160

CHI SQUARE ANALYSIS OF LABORATORY SECTIONS BY COLLEGE

ΤA	BL	E	IX

CHI SQUARE ANALYSIS OF LABORATORY SECTIONS BY SEX

	MonWed 1:30	TuThu 11:30	TuThu 2:30	Totals
Male				
observed	59	38	40	137
(expected)	(55.66)	(40.24)	(41.10)	
Female				
observed	6	9	8	23
(expected)	(9.34)	(6.76)	(6.90)	
Totals	65	47	48	160

 $X^2 = 2.4665$ df = 2 NS

Ho 1.03 not rejected

Ho 1.04 There will be no significant difference in the distribution of the students by classification between the experimental and control group.

Ho 1.05 There will be no significant difference in the distribution of the students by college between the experimental and control group.

Ho 1.06 There will be no significant difference in the distribution of the students by sex between the experimental and control group.

TABLE X

CHI SQUARE ANALYSIS OF TREATMENTS BY CLASSIFICATION

	Sophomore	Junior	Senior/Grad.	Totals	
Experimental observed (expected)	38 (36.45)	25 (25.20)	9 (10.35)	72	
Control observed (expected)	43 (44.55)	31 (30.80)	14 (12.65)	88	
Totals	81	56	23	160	

 $x^2 = 0.4429$ df = 2 NS

Ho 1.04 not rejected

TABLE XI

	Arts and					
······	Agriculture	Science	Engineering	Other	Total	
Experimental observed (expected)	29 (36.04)	25 (27.38)	6 (6.84)	3 (2.74)	73	
Control observed (expected)	40(42.96)	35 (32.63)	9 (8.16)_	3 (3.26)	87	
Totals	79	60	15	6	160	
$x^2 = 1.5483$	df = 3 NS	Ho 1.05 not	rejected			

CHI SQUARE ANALYSIS OF TREATMENTS BY COLLEGE

TABLE XII

CHI SQUARE ANALYSIS OF TREATMENTS BY SEX

Male	Female	Totals
57 (61.65)	15 (10.35)	72
80 (73.35)	8 (12.65)	88
137	23	160
	Male 57 (61.65) 80 (73.35) 137	MaleFemale 57 (61.65) 15 (10.35) $\frac{80}{(73.35)}$ $\frac{8}{(12.65)}$ 23

 X^2 = 3.8205 df = 1 (Yates Correction used) *significant at 0.10 Ho 1.06 rejected

Thus Ho 1.04 and Ho 1.05 were found to be tenable, but Ho 1.06 untenable and must be rejected. Therefore the distribution of the students between the experimental and control groups was random by college and classification but not by sex. Examination of the data show that the experimental group has a higher proportion of female students. It was necessary to determine the effect of the imbalance of the sex distribution. This effect will be shown in subsequent analyses. It was necessary to determine whether the distribution of students by sex, college, and classification was random among the individual classes (subsections). This generated the following null hypotheses.

Ho 1.07 There will be no significant difference in the distribution of the students by classification among the subsections.

Ho 1.08 There will be no significant difference in the distribution of the students by college among the subjections.

Ho 1.09 There will be no significant difference in the distribution of the students by sex among the subsections.

Thus Ho 1.07 and Ho 1.08 were found to be tenable but Ho 1.09 was not. This has confirmed the random distribution of the students by classification and college but not by sex. It was necessary to determine the effect of this imbalance of female students. Because the distribution of the students into subsections was accomplished by randomization techniques, the randomization would be destroyed if some of the female students were redistributed. Therefore it was necessary to examine the statistical results both with and without female students and observe the differences.

It was then necessary to determine the distribution of the chemistry semester hours, semester hours of chemistry laboratory courses,

TABLE XIII

					· · · ·				
	100	200	300	400	500	600	700	Total	
Sophomore									
observed	14	14	10	10	10	11	12	81	
(expected)	(12.15)	(12.15)	(12.15)	(11.64)	(10.13)	(10.63)	(12.15)		
Junior									
observed	б	6	13	6	8	8	9	56	
(expected)	(8.40)	(8.40)	(8.40)	(8.05)	(7.00)	(7.35)	(8.40)		
Senior/Grad			-			,			
observed	4	4	1	7	2	2	3	23	
(expected)	(3.45)	(3.45)	(3.45)	(3.30)	(2.88)	(3.02)	(3.45)		
Totals	24	24	24	23	20	21	24	160	

CHI SQUARE ANALYSIS OF CLASSIFICATION BY SUBSECTION

 $x^2 = 12.5831$ df = 12 NS

Ho 1.07 not rejected

		all was a summed at a standard with a standard of the standard					<u></u>	
	100	200	300	400	500	600	700	Total
Agriculture								
observed	14	12	13	9	12	5	14	79
(expected)	(11.85)	(11.85)	(11.85)	(11.36)	(9.88)	(10.37)	(11.85)	
Engineering								
observed	3	2	1	2	2	4	1	15
(expected)	(2.25)	(2.25)	(2.25)	(2.16)	(1.87)	(1.97)	(2.25)	
Arts and Science an	nd Others							
observed	7	10	10	12	6	12	9	66
(expected)	(9.90)	(9.90)	(9.90)	(9.49)	(8.25)	(8.66)	(9.90	
Total	24	24	24	23	20	21	24	160
2					······································	<u>.</u>		

CHI SQUARE ANALYSIS OF COLLEGE BY SUBSECTION

TABLE XIV

 $x^2 = 12.5116$ df = 12 NS

Ho 1.08 not rejected

ţ

ΤA	BLE	XV

	100	200	300	400	500	600	700	Total
Male	· · · · · · · · · · · · · · · · · · ·	**************************************	<u></u>	<u> </u>	- Love destruest som dette			
observed	22	17	18	21	20	17	22	137
(expected)	(20.55)	(20.55)	(20.55)	(19.69)	(17.13)	(17.98)	(20.55)	
Female								
observed	2	7	6	2	0	4	2	23
(expected)	(3.45)	(3.45)	(3.45)	(3.31)	(2.88)	(3.02)	(3.45)	
Totals	24	24	24	23	20	21	24	160

CHI SQUARE ANALYSIS OF SEX BY SUBSECTION

, ~

chemistry grade point averages, overall grade point averages among the subsections. The distribution of these factors was not a random sample from a normal population. The distribution of these values is skewed, polymodal, platykurtic, and homoscedastic. This precludes the use of regression, hence analysis of covariance. However, it can be determined if the distribution of these factors is randomly distribution among the subsections. Thus the following null hypothese were considered.

Ho 1.10 There will be no significant difference in the distribution of the mean chemistry semester hours among the subsections.

Ho 1.11 There will be no significant difference in the distribution of the mean semester hours of chemistry laboratory experience among the subsections.

Ho 1.12 There will be no significant difference in the distribution of the mean chemistry grade point averages among the subsections.

Ho 1.13 There will be no significant difference in the distribution of the mean overall grade point averages among the subsections.

Thus, all four null hypotheses were found to be tenable, confirming that the chemistry hours, laboratory hours, chemistry grade point averages and overall grade point average do not deviate significantly from one another. Perhaps the distribution of the hours or the grade point averages within a class or a group might not be randomly distributed. The following null hypotheses were considered next.

Ho 1,14 There will be no significant differences in the frequency distribution of the chemistry semester hours between the experimental and control group.

Ho 1.15 There will be no significant difference in the frequency distribution of the chemistry laboratory hours between the experimental
TADLE AVI	TABLE XVI	
-----------	-----------	--

CHI SQUARE ANALYSIS OF MEAN CHEMISTRY SEMESTER HOURS BY SUBSECTION

	100	200	300	400	500	600	700	Total
Mean chemistry seme	ester hours				· · · ·		· · · · · · · · · · · · · · · · · · ·	
observed:	9.4545	8.6087	9.6818	10.6316	9.1250	9.1000	8.3810	64.9826
(expected)	(9.2832)	(9.2832)	(9.2832)	(9.2832)	(9.2832)	(9.2832)	(9.2832)	

 $x^2 = 0.3592$ df = 6 NS Ho 1.10 not rejected

۰.

TABLE XVII

CHI SQUARE ANALYSIS OF MEAN CHEMISTRY LABORATORY SEMESTER HOURS BY SUBSECTION

	100	200	300	400	500	600	700	Total
Mean chemistry lab	oratory semeste	er hours		·····	·			
observed	4.2727	3.9130	4.0909	4.8947	3.8125	4.1000	3.9048	28.9886
(expected)	(4.1412)	(4.1412)	(4.1412)	(4.1412)	(4.1412)	(4.1412)	(4.1412)	

 $x^2 = 0.1945$ df = 6 NS

NS Ho 1.11 not rejected

TABLE XVIII

CHI SQUARE ANALYSIS OF MEAN CHEMISTRY GRADE POINT AVERAGES BY SUBSECTION

						· ·		
	100	200	300	400	500	600	700	Total
Mean chemistry gra	ade point avera	ges				<u> </u>		
observed	2.7218	2.7983	2.7709	2.9011	2.3706	2.6579	2.6666	18.8873
(expected)	(2.6982)	(2.6982)	(2.6982)	(2.6982)	(2.6982)	(2.6982)		-
				- 		. <u></u>	. <u></u>	· .
$X^{-} = 0.0620$ df	= 6 NS	Ho 1,12 not	rejected					

TABLE XIX

CHI SQUARE ANALYSIS OF MEAN OVERALL GRADEPOINT AVERAGES BY SUBSECTION

	100	200	300	400	500	600	700	Total
Mean overall grad	le point average	28			<u> </u>			
observed	2.8005	3.0265	2.7950	2.9700	2.6119	2.8553	2.9681	20.8610
(expected)	(2.8610)	(2.8610)	(2.8610)	(2.8610)	(2.8610)	(2.8610)	(2.8610)	
	· · ·		<u> </u>					
$x^2 = 0.0383$	1f = 6 NS	Ho 1.13 not	rejected					

and control groups.

Ho 1.16 There will be no significant difference in the frequency distribution of the chemistry grade point averages between the experimental and control groups.

Ho 1.17 There will be no significant difference in the frequency distribution of the overall grade point averages between the experimental and control groups.

TABLE XX

CHI SQUARE ANALYSIS OF DISTRIBUTION OF CHEMISTRY SEMESTER HOURS BY TREATMENT

	Experimental	Control	Total
0 - 5 hrs observed (expected)	5 (3.57)	3 (4.43)	8
6 - 10 hrs observed (expected)	57 (59.84)	77 (74.16)	134
<pre>11 - 15 hrs observed (expected)</pre>	6 (4.47)	4 (5.53)	10
16 or more observed (expected)	3 (3.13)	4 (3.87)	7
Totals	71	88	159

 $x^2 = 2.2348$ df = 3 NS

Ho 1.14 not rejected

TABLE XXI

CHI SQUARE ANALYSIS OF DISTRIBUTION OF CHEMISTRY LABORATORY HOURS BY TREATMENT

<u></u>	Experimental	Control	Totál
2 to 3 hrs observed (expected)	9 (5.81)	4 (7.20)	13
4 hrs observed (expected)	54 (57.60)	75 (71.40)	129
5 to 6 hrs observed (expected)	4 (4.47)	6 (5.53)	10
7 or more hours observed (expected)	4 (3.13)	3 (3.87)	7
Total	71	88	159

 $x^2 = 4.1069$ df = 3 NS

Ho 1.15 not rejected

TABLE XXII

CHI SQUARE ANALYSIS OF DISTRIBUTION OF CHEMISTRY GRADE POINT AVERAGES BY TREATMENT

	Experimental	Control	Total
1.99 and below observed (expected)	4 (4.04)	5 (4.96)	9
2.00 to 2.49 observed (expected)	16 (19.77)	28 (24.23)	44
2.50 to 2.99 observed (expected)	18 (16.63)	19 (20.37)	37
3.00 to 3.49 observed (expected)	16 (15.28)	18 (18.72)	34
3.50 to 3.99 observed (expected)	10 (8.99)	10 (11.01)	20
4.00 and up observed (expected)	7 (6.29)	7	14
Totals	71	87	158

 $x^2 = 1.9245$ df = 5 NS Ho 1.16 not rejected

TABLE XXIII

	Experimental	Control	Total
2.49 and below observed (expected)	16 (15.73)	19 (19.27)	35
2.50 to 2.99 observed (expected)	27 (26.06)	31 (31.94)	58
3.00 to 3.49 observed (expected)	16 (18.87)	26 (23.13)	42
3.50 and up observed (expected)	12 (10.36)	11 (12.66)	23
Totals	71	87	158

CHI SQUARE ANALYSIS OF DISTRIBUTION OF OVERALL GRADE POINT AVERAGES BY TREATMENT

 x^2 = 1.3399 df = 3 NS Ho 1.17 not rejected

Thus all four hypotheses are found to be tenable and cannot be rejected which further substantiated the random distribution of the backgrounds of students. However, as a further test these distributions were compared among the subsections.

Ho 1.18 There will be no significant difference in the frequency distribution of the chemistry semester hours among the subsections.

Ho 1.19 There will be no significant difference in the frequency distribution of the chemistry laboratory semester hours among the subsections.

Ho 1.20 There will be no significant difference in the frequency distribution of the chemistry grade point averages among the subsections.

Ho 1.21 There will be no significant difference in the frequency distribution of the overall chemistry grade point averages among the subsections.

Again these null hypotheses were found to be tenable. This confirmed the random distribution of this phase of the background of the students. Perhaps the high school chemistry background or the lack of it might have an effect upon the results of this study. The following null hypotheses were considered.

Ho 1.22 There will be no significant difference in the distribution of the high school chemistry background of the students among the sections.

Ho 1.23 There will be no significant difference in the distribution of the high school chemistry background of the students between the experimental and control groups.

Ho 1.24 There will be no significant difference in the distribution of the high school chemistry background of the students among the subsections (classes).

The data is compiled in Table XXVIII and the analysis by chi square in Tables XXIX, XXX and XXXI.

Again these three hypotheses were found tenable which confirming the random distribution of their backgrounds. From all of these data may be assumed that a random distribution of students exists in each of the classes and between the experimental and control groups with respect to classification, college or major, high school chemistry

TABLE XXIV

CHI SQUARE ANALYSIS OF THE DISTRIBUTION OF CHEMISTRY SEMESTER HOURS BY SUBSECTION

· · · · · · · · · · · · · · · · · · ·	100	200	300	400	500	600	700	Total
0 to 5 hours	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>				<u></u>
observed	1	2	2	0	0	2	1	8
(expected)	(1.21)	(1.26)	(1.11)	(1.16)	(1.01)	(1.06)	(1.21)	
6 to 10 hours								
observed	20	21	16	20	18	17	22	134
(expected)	(20.23)	(21.07)	(18.54)	(19.38)	(16.86)	(17.70)	(20.23)	
11 or more hours								
observed	3	2	4	3	. 2	2	1	17
(expected)	(2.57)	(2.67)	(2.35)	(2.46)	(2.14)	(2.25)	(2.57)	

 $x^2 = 7.3680$ df = 12 NS Ho 1.18 not rejected

TABLE XXV

	100	200	300	400	500	600	700	Total
2 to 3 hours	······································							
observed	3	4	2	0	1	1	2	13
(expected)	(1.96)	(2.04)	(1.80)	(1.88)	(1.64)	(1.72)	(1.96)	
4 hours								
observed	18	19	17	20	16	18	21	129
(expected)	(19.47)	(20.28)	(17.85)	(18.66)	(16.23)	(17.04)	(19.47)	
5 or more hours								
observed	3	2	3	3	3	2	1	17
(expected)	(2.57)	(2.67)	(2.35)	(2.46)	(2.14)	(2.25)	(2.57)	

CHI SQUARE ANALYSIS OF THE DISTRIBUTION OF CHEMISTRY LABORATORY SEMESTER HOURS BY SUBSECTION

 $x^2 = 7.0862$ df = 12 NS Ho 1.19 not rejected

TABLE XXVI

CHI SQUARE ANALYSIS OF THE DISTRIBUTION OF CHEMISTRY GRADE POINT AVERAGES BY SUBSECTION

	100	200	300	400	500	600	700	Total
1.99 and below observed (expected)	1 (1.37)	0 (1.42)	3 (1.25)	2 (1.31)	1 (1.14)	2 (1.14)	0 (1.37)	. 9
2.00 to 2.49 observed (expected)	5 (6.68)	8 (6.96)	3 (6.13)	4 (6.13)	6 (6.41)	6 (5.57)	12 (5.57)	44
2.50 to 2.99 observed (expected)	6 (5.62)	6 (5.85)	6 (5.15)	6 (5.39)	6 (4.68)	4 (4.68)	3 (5.62)	37
3.00 to 3.49 observed (expected)	9 (5.16)	3 (5.38)	4 (4.73)	5 (4.95)	5 (4.30)	4 (4.30)	4 (5.16)	34
3.50 to 3.99 observed (expected)	3 (3.04)	3 (3.16)	4 (2.78)	2 (2.91)	1 (2.53)	4 (2.53)	3 (3.04)	20
4.00 to 4.49 observed (expected)	0 (2.13)	5 (2.22)	2 (1.95)	4 (2.04)	1 (1.77)	0 (1.77)	2 (2.13)	14
Totals	24	25	22	23	20	20	24	158

 $x^2 = 31.2087$ df = 30 NS

Ho 1.20 not rejected

TABLE XXVII

CHI SQUARE ANALYSIS OF THE DISTRIBUTION OF OVERALL GRADE POINT AVERAGES BY SUBSECTION

	100	200	300	400	500	600	700	Total
2.49 and below observed (expected)	7 (5.32)	3 (5.54)	6 (4.87)	5 (5.09)	8 (4.43)	6 (4.43)	0 (5.32)	35
2.50 to 2.99 observed (expected)	7 (8.81)	12 (9.18)	8 (8.08)	7 (8.44)	5 (7.34)	4 (7.34)	15 (8.81)	58
3.00 to 3.49 observed (expected)	6 (6.38)	4 (6.65)	6 (5.85)	7 (6.11)	6 (5.32)	6 (5.32)	7 (6.38)	42
3.50 and up observed (expected)	4 (3.49)	6 (3.64)	2 (3.20)	4 (3.35)	1 (2.91)	4 (2.91)	2 (3.49)	23
Totals	24	25	22	23	20	20	24	158
<u> </u>						····		

 $x^2 = 24.8312$ df = 18 NS Ho 1.21 not rejected

background, semester hours of chemistry, semester hours of chemistry laboratory, chemistry grade point average, and overall grade point average.

TABLE XVIII

TABULATION OF HIGH SCHOOL CHEMISTRY GRADES

		100	200	300	400	500	600	700
High Sc	hool	Chemistry	у					
Grade:	А	5	7	3	9	7	3	3
	в	12	14	11	9	7	11	10
	С	3	1	3	2	3	4	6
	D	0	0	0	1	0	0	1
None:		4	2	7	3	3		2

TABLE XXIX

CHI SQUARE ANALYSIS OF HIGH SCHOOL CHEMISTRY BACKGROUND BY SECTION (TIME OF DAY)

	MonWed 1:30	TuThu 11:30	TuThu 2:30	Total
Δ				
observed	15	16	6	37
(expected)	(15.13)	(11.17)	(10.70)	
В				
observed	30	23	21	74
(expected)	(30.25)	(22.34)	(21.41)	
C or below				
observed	10	4	10	24
(expected)	(9.81)	(7.25)	(6.94)	
No high school chemist	ry			
observed	10	5	9	24
(expected)	(9.81)	(7.25)	(6.94)	<u> </u>
Totals	65	48	46	159

 $x^2 = 8.6207$ df = 6 NS Ho 1.22 not rejected

TABLE XXX

CHI SQUARE ANALYSIS OF HIGH SCHOOL CHEMISTRY BACKGROUND BY TREATMENT

	Experimental	Control	Total
Α			
observed	15	22	37
(expected)	(16.75)	(20.25)	
В			
observed	37	37	74
(expected)	(33.51)	(40.49)	
C or below			
observed	7	17	24
(expected)	(10.87)	(13.13)	
No high school chemistry			
observed	13	11	24
(expected)	(10.87)	(13.13)	. <u></u>
Totals	72	87	159

 $x^2 = 4.2797$ df = 3 Ho 1.23 not rejected

TABLE XXXI

	200	300	400	500	600	700	Total
*****					· ·	· · · · · · · · · · · · · · · · · · ·	
5	7	3	9	7	3	3	37
(5.58)	(5.58)	(5.58)	(5.58)	(4.65)	(4.89)	(5.12)	
				• .			
12	14	11	9	7	11	10	74
(11.17)	(11.17)	(11.17)	(11.17)	(9.31)	(9.77)	(10.24	
3	1	3	3	3	4	7	24
(3.62)	(3.62)	(3.62)	(3.62)	(3.02)	(3.17)	(3.32)	
stry							
4	2	7	3	3	3	2	24
(3.62)	(3.62)	(3.62)	(3.62)	(3.02)	(3.17)	(3.32)	
24	24	24	24	20	21	22	159
	$5 \\ (5.58)$ $12 \\ (11.17)$ $3 \\ (3.62)$ $.stry$ $4 \\ (3.62)$ 24	5 7 (5.58) (5.58) $12 14 (11.17) (11.17)$ $3 1 (3.62) (3.62)$ $.stry 4 2 (3.62) (3.62)$ $24 24$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CHI SQUARE ANALYSIS OF HIGH SCHOOL CHEMISTRY BACKGROUND BY SUBSECTION (CLASS)

 $x^2 = 19.5154$ df = 18 NS Ho 1.24 not rejected

» .'

Experimental Data and Results

This study measured a variety of parameters in order to ascertain the particular types of changes, if any which would result from the use of single concept loop films. The time required to perform the experiment, the amount of breakage in kind and cost, the number and kinds of accidents, the results of the self concept of laboratory techniques profile, the attitude of the students toward selected experiments, and the success of the students on the JH_2S examination were explored and will be dealt with individually and in depty in this chapter.

Time Spent

The time spent on the experiment was measured from the time each student commenced his experiment after the pre-laboratory discussion and quizzes and concluded his experiment exclusive of clean up. The time was measured to the nearest five minutes. The students in the experimental groups who viewed films during the laboratory period did not deduct the viewing time. The increased data keeping on the part of the student might have resulted in less film viewing because of the added details.

A perusal of the mean times spent by students in the seven classes will show that there is a greater time difference between instructors than between experimental and control groups for any given experiment.

The research questions which need to be answered include 1) Is there a difference in the time spent between the film group and the non film group? 2) Is there a difference in the mean time spent for a given group between those experiments which directly showed the necessary techniques using loop films (direct filmed technique experiments: 1,2,3,4,5,13), those experiments which indirectly relied upon those techniques (indirect filmed technique experiments, e.g. all others except 6 and 16) and those experiments which required no techniques covered in the films? 3) Does the time of day for the experiment have any effect upon the time spent? 4) Does the instructor have any effect upon the time spent?

The preceding questions generated the following null hypotheses. For convenience, the hypotheses are stated in a group, followed by the table of data and statistical results.

Ho 2.01 There will be no significant difference in the mean times spent on each experiment in the seven subsections (classes).

Ho 2.02 There will be no significant difference in the mean times spent on each experiment in the seven subsections on the direct filmed technique experiments. (Experiments 2,3,4,5, and 13.)

Ho 2.03 There will be no significant difference in the mean times spent on each experiment in the seven subsections on the indirect filmed technique experiments. (All experiments except the above and 6 and 16.)

Ho 2.04 There will be no significant difference in the mean times spent on each experiment in the seven subsections on the experiments which utilize no filmed techniques. (Experiments 6 and 16 only.)

Ho 2.05 There will be no significant difference in the mean time spent on each experiment by the students of each teacher for all experiments.

Ho 2.06 There will be no significant difference in the mean times spent on each experiment by the students of each teacher for the direct filmed technique experiments. Ho 2.07 There will be no significant difference in the mean times spent on each experiment by the students of each teacher for the indirect filmed technique experiments.

Ho 2.08 There will be no significant difference in the mean times spent on each experiment by the students of each teacher for the nonfilmed technique experiments.

Ho 2.09 There will be no significant difference in the mean times spent on each experiment by the students in a laboratory section (time of day) on each experiment.

Ho 2.10 There will be no significant difference in the mean times spent on each experiment by the students in a laboratory section for the direct filmed technique experiments.

Ho 2.11 There will be no significant difference in the mean times on each experiment by the students in a laboratory section for the indirect filmed technique experiments.

Ho 2.12 There will be no significant difference in the mean times spent on each experiment by the students in a laboratory section for the non-filmed technique experiments.

Ho 2.13 There will be no significant difference in the mean times spent on each experiment between the students in the experimental group and the control group on all experiments.

Ho 2.14 There will be no significant difference in the mean times spent on each experiment between the experimental group and the control group on the direct filmed technique experiments.

Ho 2.15 There will be no significant difference in the mean times spent on each experiment between the students in the experimental group and the control group on the indirect filmed technique experiments.

Ho 2.16 There will be no significant difference in the mean times ; spent on each experiment between the students in the experimental group and the control group on the non-filmed technique experiments.

Ho 2.17 There will be no significant difference in the mean times, spent between the students in the experimental group and those of the control group taught by the same teachers as the experimental group on all experiments.

Ho 2.18 There will be no significant difference in the mean times spent between the students in the experimental group and those of the control group taught by the same teachers for the direct filmed technique experiments.

Ho 2.19 There will be no significant difference between the mean times spent by the students in the experimental group and those of the control group taught by the same teacher for the indirect filmed technique experiments.

Ho 2.20 There will be no significant difference in the mean times spent between the students in the experimental group and those of the control group taught by the same teachers on the non-film technique experiments.

Because the time spent on each experiment varied considerably from one experiment to another, as well as the times within a particular class not conforming to a normal distribution, and not being homoscedastic, the Friedman Two Way Analysis of Variance Test was employed. Tables XXXII, XXXIII, XXXIV, and XXXV show the data which has been taken from individual data as shown in Appendix C.

TABLE XXXII

MEAN TIMES SPENT ON EACH EXPERIMENT BY SUBSECTION (CLASS)

Expt	Group	Group	Group	Group	Group	Group	Group
Nr.	100	200	300	400	500	600	700
1*	149.79(6)	115.40(1)	131.09(5)	150.65(7)	117.78(2)	130.00(4)	122.83(3)
2*	153.04(7)	112.83(3)	131.30(5)	136.30(6)	110.75(2)	125.71(4)	102.08(1)
3*	126.25(6)	95.21(2)	104.13(4)	128.54(7)	101.05(3)	104.76(5)	74.57(1)
4*	119.16(7)	90.60(2)	105.00(5)	108.96(6)	103.00(4)	97.62(3)	87.50(1)
5*	141.04(6)	107.83(1)	131.67(5)	145.71(7)	111.71(3)	111.67(2)	129.17(4)
6#	120.26(5)	98.88(2)	120.23(4)	142.50(7)	92.50(1)	129.52(6)	100.87(3)
13*	224.09(4)	202.60(1)	248.70(7)	230.87(6)	210.88(2)	215.71(3)	228.70(5)
11	226.09(6)	208.40(5)	234.58(7)	198.70(2)	200.63(3)	204.75(4)	195.83(1)
MeSal	224.78(5)	215.00(3)	235.91(6)	243.26(7)	206.05(2)	205.00(1)	220.43(4)
Ethano1	150.21(6)	107.08(3)	144.09(5)	154.13(7)	96.43(2)	144.05(4)	95.21(1)
16#	119.05(5)	95.83(1)	120.22(6)	98.04(2)	107.35(4)	128.37(7)	102.17(3)
MEK	182.08(5)	155.65(1)	197.73(6)	168.48(2)	168.61(3)	198.81(7)	181.04(4)
17	118.70(7)	96.25(2)	111.67(5)	109.05(4)	101.07(3)	114.47(6)	96.30(1)
20	136.00(7)	116.20(2)	133.41(5)	137.39(6)	123.33(3)	131.80(4)	111.70(1)
26	127.38(7)	102.50(4)	101.00(3)	125.00(6)	97.63(2)	105.00(5)	95.68(1)
30	81.25(5)	65.28(1)	69.70(2)	86.25(6)	73.53(3)	76.11(4)	86.43(7)
35	104.78(7)	80.42(2)	95.95(4)	97.95(6)	81.84(3)	96.47(5)	53.50(1)
B&O	176.36(6)	161.04(1)	165.68(4)	205.71(7)	162.50(2)	163.10(3)	175.00(5)
MDNB	150.00(4)	125.00(3)	188.10(7)	153.96(5)	124.33(2)	163.75(6)	105.24(1)
29	200.42(3)	174.57(2)	201.59(4)	214.35(5)	214.74(6)	226.19(7)	171.11(1)
Sum of ran	ks for all e	xperiments:					
2	114	42	99	111	55	90	49
$X_{r}^{2} = 59.37$	**significa	nt at 0.001 Ho 2	.01 rejected				
Sum of ran	ks for direc	t filmed techniqu	e experiments	(*):			ی این این این این این این این این این ای
n	36	10	31	39	16	21	15
$x_{r}^{2} = 27.36$	**significa	nt at 0.001 Ho 2	.02 rejected				

Expt	Group	Group	Group	Group	Group	Group	Group
NR.	100	200	300	400	500	600	700
Sum of ra $X_r^2 = 31.9$	nks for indire 68 4 **significa	ct filmed tech 29 nt at 0.001	nnique experiments: 58 Ho 2.03 rejected	63	34	56	28
Sum of ra $x_r^2 = 2.69$	nks for non-fi 10 NS	lmed technique 3	e experiments (#) 10 Ho 2.04 not rejec	9 ted	5	13	6

TABLE XXXIII

	Teacher	Teacher	Teacher	Teacher
Expt	#A	#B	#C	# D
Nr.	(100+500)	(200+500)	(300+600)	(700)
1*	150.22(4)	116.59(2)	130.54(3)	122.83(1)
2*	144.67(4)	111.79(2)	128.51(3)	102.08(1)
3*	127.40(4)	98.13(2)	104.45(3)	74.57(1)
4*	114.06(4)	96,80(2)	101.31(3)	87.50(1)
5*	143.38(4)	109.77(1)	121.67(2)	129.17(3)
6#	131.38(4)	95.69(1)	124.88(3)	100.87(2)
13*	227.48(2)	206.74(1)	232.21(4)	228.70(3)
11	212.40(3)	204.52(2)	219.67(4)	195.83(1)
MeSal	234.02(4)	210.53(1)	220.46(3)	220.43(2)
Ethanol	152.17(4)	101.76(2)	144.07(3)	95.21(1)
16#	108.55(3)	101.59(1)	124.28(4)	102.17(2)
MEK	175.28(2)	162.13(1)	198.27(4)	181.04(3)
17	113.88(4)	98.66(2)	113.07(3)	96.30(1)
20	136.70(4)	119.77(2)	132.61(3)	111.70(1)
26	126.19(4)	100.07(2)	103.00(3)	95.68(1)
30	83.75(3)	69.41(1)	72.94(2)	86.43(1)
35	101.37(4)	81.13(2)	96.21(3)	53.50(1)
B&O	191.04(4)	161.71(1)	164.39(2)	175.00(3)
MDNB	151,98(4)	124.67(2)	175.93(3)	105.24(1)
29	207.39(3)	194.66(2)	213.89(4)	171.11(1)
Sum of ranks	for all exper	iments:		
0	72	32	62	34
$x_{r}^{2} = 36.24$	**significant	at .001 Ho 2.0	5 rejected	
Sum of ranks	for direct fi	lmed technique ex	periments (*)	
0	22	10	18	10
$X_{r}^{2} = 10.80$	**significant	at .02 Ho 2.0	6 rejected	
Sum of ranks	for indirect	filmed technique	experiments	
2	43	20	37	20
$x_{r}^{-} = 20.90$	**significant	at .001 Ho 2.0	7 rejected	
Sum of ranks	for non-filme	d technique exper	iments (#)	
2	7	2	7	4
$X''_{r} = 5.40$ NS	5	Но 2.0	8 not rejected	

MEAN TIMES SPENT ON EACH EXPERIMENT BY TEACHER

	MonWed	TuThu	TuThu
Expt	1:30PM	11:30AM	2:30 PM
Nr.	(100+500+600)	(200+400)	(300+700)
1*	132.52(2)	133.03(3)	126,96(1)
2*	129.83(3)	124.57(2)	116.69(1)
3*	110.69(2)	118.88(3)	89,35(1)
4*	106.59(3)	99.78(2)	96.25(1)
5*	121.47(1)	126.77(2)	130.42(3)
6#	114.09(2)	120.69(3)	110.55(1)
13	216.89(2)	216.74(1)	238.70(3)
11	210.49(2)	203.55(1)	215.05(3)
MeSal	211.94(1)	229.13(3)	228.17(2)
Ethanol	130.23(3)	115,85(1)	119.65(2)
16#	118,24(3)	96.94(1)	111.20(2)
MEK	183.17(2)	162.07(1)	189.39(3)
17	111.41(3)	102.65(1)	103.99(2)
20	130.38(3)	126.80(2)	122.56(1)
26	109.67(2)	113.75(3)	98.34(1)
30	76.96(2)	75.77(1)	78.10(3)
35	94.36(3)	89.19(2)	74.73(1)
B&O	167.32(1)	183.38(3)	170.34(2)
MDNB	146.03(2)	139.48(1)	146.67(3)
29	213.78(3)	194.46(2)	186.35(1)
Sum of rank	s for all experiment	ts:	
0	45	38	37
$x_{r}^{2} = 1.90 N$	Ho 2.09	9 not rejected	
Sum of rank	s for direct filmed	technique experiments (*)	المله الأمار السر المال الألة الملة السر السر المار جرم الرم الم
· •	13	13	10
$x_{r}^{2} = 3.01 N$	Ho 2.10) not rejected	
Sum of rank	s for indirect filme	ed technique experiments	
r	27	21	24
$X_{r}^{2} = 1.40 N$	Ho 2.1	l not rejected	
Sum of rank	for the non-filmed	<pre>technique experiments (#)</pre>	
0	5	4	3
$X_{r}^{2} = 1.00 N$	Ho 2.12	2 not rejected	_

MEAN TIMES SPENT ON EACH EXPERIMENT BY SECTION (TIME-OF-DAY)

TABLE XXXV

	Control	·····		norimon+	-1	C.	ntrol
Fynt	Group		E2	Croup Croup	ат .		
Nr.	400+500+600+700	Rank)	(Rank)1	00+200+3	00(Rank)	(Rank)/	
1*	130.31	(1)	(2)	132.09	(1)	(2) 13	32.81
2*	118.71	(1)	(2)	132.39	(2)	(1) 12	24.25
3*	102.23	(1)	(2)	108.53	$(1)^{(-)}$	(2) 11	L1.45
4*	99.27	(1)	(2)	104.92	(2)	(1) 10	03.19
5*	124.57	(1)	(2)	126.85	(2)	(1) 12	23.03
6#	116.35	(2)	(1)	113.12	(1)	(2) 12	21.51
13*	221.54	(1)	(2)	225.13	(2)	(1) 21	L9.15
11	199.98	(1)	(2)	223.02	(2)	(1) 20	01.36
MeSal	218.69	(1)	(2)	225.23	(2)	(1) 21	L8.10
Ethanol	122.46	(1)	(2)	133.79	(2)	(1) 13	31.54
16#	108.97	(1)	(2)	111.70	(2)	(1) 11	L1.24
MEK	179.24	(2)	(1)	178.49	(1)	(2) 17	78.63
17	105.22	(1)	(2)	108.87	(1)	(2) 10	08.20
20	126.06	(1)	(2)	128,54	(1)	(2) 13	30.84
26	105.83	(1)	(2)	110.29	(2)	(1) 10	09.21
30	80.58	(2)	(1)	72.10	(1)	(2) 7	78.63
35	82.44	(1)	(2)	93.72	(2)	(1) 9	92.09
B&O	176.58	(2)	(1)	167.69	(1)	(2) 17	77.10
MDNB	136.82	(1)	(2)	159.37	(2)	(1) 1 ⁴	47.35
29	206.50	(2)	(1)	192.19	(1)	(2) 21	L8.43
Sum of :	ranks for all exp	erimer	nts:				
bam of	canno for art cap	25	35		31	29	
$x_{r}^{2} = 5.0$	00 **significant	at 0.0)5	x_r^2	= 0.20 NS	5	
Ho_2.13	rejected			<u>Ho</u>	2.17 not	rejecte	ed
Sum of :	ranks for direct	filmed	l expert	iments			
		é	12		10	8	
$x_{r}^{2} = 5.9$	99 **significant	at O	.02	x_r^2	= 0.67 NS	5	
Ho 2.14	rejected			Ho	2.18 not	rejecte	ed
Sum of :	ranks for indirec	t film	ned tech	nnique ex	periments	5	
		16	20		18	18	
$x_{r}^{2} = 1.1$	36 NS			x_r^2	= 0.02 NS	5	
<u>Ho 2.15</u>	not rejected			Ho	2.19 not	rejecte	ed
Sum of :	ranks for non-fil	med te	echnique	e experim	ents 3	з	
$x_{-}^{2} = 0.0$	00 NS	J	J	x ²	= 0.00	.	
Г Чо 0 14	not not -to-1			. r	2 20		. 4
по 2.10	not rejected			Но	2.20 not	rejecte	eα

MEAN TIMES FOR ALL EXPERIMENTS BETWEEN EXPERIMENTAL GROUPS AND CONTROL GROUPS

TABLE XXXVI

SUMMARY OF RESULTS OF ANALYSIS OF TIME SPENT

Null		Degrees of	2	
Hypothesis	Criteria	Freedom	^x r	Probability
Ho 2.01	All experiments by subsection (class)	6	59.37	** 0.001
Но 2.02	Direct filmed techniques by subsection	6	27.36	** 0.001
Но 2.03	Indirect filmed techniques by subsection	6	31.94	** 0.001
Ho 2.04	Nonfilmed techniques by subsection	6	7.69	NS
Ho 2.05	All experiments by teacher	3	36.24	** 0.001
Но 2.06	Direct filmed techniques by teacher	`3	10.80	** 0.02
Ho 2.07	Indirect film techniques by teacher	3	20.90	** 0.001
Но 2.08	Nonfilmed techniques by teacher	3	5.40	NS
Но 2.09	All experiments by section (time-of-day)	2	1.90	NS
Ho 2.10	Direct filmed techniques by section	2	3.01	NS
Ho 2.11	Indirect filmed techniques by section	2	1.40	NS
Ho 2.12	Nonfilmed techniques by section	2	1.0	NS
Ho 2.13	All experiments by treatment (all experiments vs.			
	all control)	1	5.0	** 0.05
Ho 2.14	Direct filmed techniques by treatment	1	5.99	** 0.02
Ho 2.15	Indirect filmed techniques by treatment	1	1.36	NS
Ho 2.16	Nonfilmed techniques by treatment	1	0.00	NS
Ho 2.17	All experiments by treatment (Groups 100+200+300 vs.			
	400+500+600)	1	0.2	NS
Ho 2.18	Direct filmed techniques by treatment	1	0.67	NS
Ho 2.19	Indirect filmed techniques by treatment	1	0.02	NS
Но 2.20	Nonfilmed techniques by treatment	1	0.00	NS

The summary as shown in Table XXXVI indicates that in all cases for the non filmed technique experiments there is no significant difference between the groups by class (subsection), teacher, time of day or treatment. There appears to be more difference attributed to the teacher rather than to the treatment. For example, hypothesis 2.01 through 2.03 indicate significant differences between classes, however this can be attributed to teacher difference because the Friedman analysis only shows that a difference exists but does not indicate the direction.

One may explore further by utilizing a chi square analysis of the following null hypotheses.

Ho 2.21 There will be no significant difference in the overall mean time spent by students in the experimental and control classes for a given teacher.

Ho 2.22 There will be no significant difference in the overall mean time spent on direct filmed technique experiments by the students in the experimental and control classes for a given teacher.

Ho 2.23 There will be no significant difference in the overall mean time spent on the indirect filmed technique experiments by the students in the experimental and control classes for a given teacher.

Ho 2.24 There will be no significant difference in the overall mean time spent on the non filmed technique experiments by the students in the experimental and control groups for a given teacher.

Thus all four null hypotheses are found tenable and cannot be rejected. This confirmed the observation that the overall time difference lies between the teachers rather than between methods.

TABLE XXXVII

	Teacher #A	Teacher #B	Teacher #C	Totals
Observed				
Experimental (expected)	151.54 (151.80)	126.33 (128.42)	148.59 (146.24)	426.46
Observed				
Control (expected)	151.79 (151.53)	130.29 (128.20)	143.64 (145.99)	425.72
Totals	303.33	256.62	292.23	852.18

CHI SQUARE ANALYSIS OF TIME BY TEACHER AND TREATMENT FOR ALL EXPERIMENTS

 $x^2 = 0.1445$ (df = 2) NS Ho 2.21 Not rejected

TABLE XXXVIII

CHI SQUARE ANALYSIS OF TIME BY TEACHER AND TREATMENT FOR DIRECT FILMED TECHNIQUE EXPERIMENTS

				-
	Teacher #A	Teacher #B	Teacher #C	Totals
Observed				
Experimental	152.23	120.75	141.99	414.97
(expected)	(152.68)	(124.51)	(137.78)	
Observed				
Control	150.17	125.86	130.91	406.94
(expected)	(149.72)	(122.10)	(135.12)	
Totals	302.40	246.61	272.90	821.91
$x^2 = 0.4918$ (df = 2) NS	Ho 2.22 Not re	jected	

TABLE XXXIX

· · · · · · · · · · · · · · · · · · ·			and the second	
	Teacher #A	Teacher #B	Teacher #C	Totals
Observed		<u> </u>		
Experimental	156.50	133.95	156.62	447.07
(expected)	(157.03)	(135.63)	(154.40)	
Observed				
Control	157.85	137.56	152.46	447.87
(expected)	(157.32)	(135.88)	(154.68)	
Totals	314.35	271.51	309.08	894.94
$x^2 = 0.1090$	(df = 2) NS	Ho 2.23 Not re	jected	

CHI SQUARE ANALYSIS OF TIME BY TEACHER AND TREATMENT FOR INDIRECT FILMED TECHNIQUE EXPERIMENTS

TABLE XL

CHI SQUARE ANALYSIS OF TIME BY TEACHER AND TREATMENT FOR NON FILMED TECHNIQUE EXPERIMENTS

	Teacher #A	Teacher #B	Teacher #C	Totals
Observed	<u></u>			
Experimental	119.66	97.36	120.23	337.25
(expected)	(117.89	(100.35)	(122.42)	557 125
Observed				
Control	120.27	99.93	128.93	349.13
(expected)	(122.04)	(100.68)	(126.74)	
Totals	239.93	197.29	249.16	686.38
$x^2 = 0.2240$ ((df = 2) NS	Ho 2.24 Not re	jected	

The next logical step was to compare the mean times for each experiment between each teacher separately. This was accomplished by the Wilcoxon Matched Pairs Signed Rank Test. The following null hypotheses were tested.

Ho 2.25 There will be no significant difference in the time required for all of the experiments between the experimental group and the control group for a given teacher.

Ho 2.26 There will be no significant difference in the time required for the direct filmed technique experiments between the experimental and the control group for a given teacher.

Ho 2.27 There will be no significant difference in the time required for the indirect filmed technique experiments between the experimental and the control groups for a given teacher.

Ho 2.28 There will be no significant difference in the time required for the non filmed technique experiments between the experimental and the control group for a given teacher.

Table XLI shows the results. Thus it is found that although some experimental groups (those of Teachers A and B) have more faster times in the twenty experiments there is no overall significant difference in time spent between the experimental and control groups for a given teacher. Therefore it can be concluded that the use of single concept loop films does not result in any lengthening of the experimental time even though the students gain their setup directions and manipulative hints during the experiment from viewing the film.

	Teacher A			Teacher B			· · · · · · · · · · · · · · · · · · ·	Teacher C		
	Time	Ranl	cing	Time	Ranl	king	Time	Ran	king	
Experiment	diff	a11	other	diff	all	other	diff	a11	other	
1*	- 0.86	- 5	- 2*	- 2.38	-14.5	6*	1.09	7	3*	
2*	16.74	48	16*	2.08	12	4*	5.59	26	9*	
3*	- 2.29	-13	- 5*	- 5.84	-27	-10*	- 0.63	- 3	- 1*	
4*	10.20	41	14*	-12.40	-44	-15*	7.38	33	12*	
5*	- 4.70	-22	- 8*	- 3.88	-18	- 7*	20.00	50	17*	
6#	-22.74	-52	- 5#	6.38	29	1#	- 9.29	-39	- 3#	
13*	- 6.78	-30	-11*	- 8.28	-37	-13*	32.99	59	18*	
11	27.39	55	32	7.77	34	21	29.83	57	34	
MeSal	-18.48	-49	-29	8.95	38	23	30.91	58	35	
Ethanol	- 3.92	-19	-12	10.65	42	25	0.04	1	1	
16#	21.01	51	6#	-11.52	-43	- 4#	- 8.11	-35	- 2#	
MEK	13.60	46	27	-12.96	-45	-26	- 1.08	- 6	- 4	
17	9.65	40	24	- 4.82	-23	-15	- 2.80	-17	-11	
20	- 1.39	- 8	- 5	- 7.13	-32	-20	1.61	11	8	
26	2.38	14.5	9	4.87	24	16	- 4.00	-21	-14	
30	- 5.00	-25	-17	- 8.25	-36	-22	- 6.33	-28	-18	
35	6.83	31	19	- 1.42	- 9	- 6	- 0.52	- 2	- 2	
B&O	-29.35	-56	-33	- 1.46	-10	- 7	2.58	16	10	
MDNB	- 3.96	-20	-13	0.67	4	3	24.25	53	30	
29	-13.93	-47	-28	40.17	60	36	-24.60	<u>-54</u>	<u>-31</u>	
No. Expts in	which									
Expt1 Group w	as faster	12			12			9		
All Experimen	its:									
T = 939.5			Z = 0.18	04	x	Prob. =	0.4286 N	S		

MEAN TIME DIFFERENCES BETWEEN EXPERIMENTAL AND CONTROL CLASSES FOR EACH TEACHER AND THE SIGNED RANKS FOR EACH CATEGORY AND ANALYSIS BY WILCOXON MATCHED PAIRS SIGNED RANKS TEST

TABLE XLI

TABLE XLI (Continued)

- <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Teacher A				Teacher B			Teacher C		
Experiment	Time Ranking Time Ranking ment diff all other diff all other		nking other	Time diff	Ranking a11o	ther				
Direct filmed technique experiments(*) T = 90			Z = 0.1960			Prob. = 0.4207 NS Ho 2.26 not rejected				
Indirect filmed technique experiments T = 321			Z = 0.1885			Prob. = 0 Ho 2.27).4247 NS not rejected			
Non-filmed te	chnique expe T = 7	riments	(#)	Z = 0.68	31		Prob. = 0 Ho 2.28).2483 NS not rejected		

Breakage

The comparison of breakage and the resulting costs is difficult to compare directly. Considering the number of items broken, which is more serious breaking several test tubes at seven cents each, two beakers at approximately fifty cents each, or only one 500ml three-neck flask at approximately ten dollars. Certainly breaking many items, although inexpensive is serious and can be attributed to carelessness, the breakage of costly items is another factor which should be considered. Organic chemistry laboratories now utilize standard taper glassware which avoids cork stoppers and rubber tubing connectors and the contamination and inconvenience which results. Does the use of single concept films lower the amount of these expensive pieces of standard taper glassware broken? To allow for these various factors, the following criteria were compared between the experimental and control groups.

 The number of students having at least one incident of breakage.

2. The cost of items broken.

3. The total number of items broken.

4. The average cost per item broken.

5. Comparison of the above criteria for all experiments, the direct filmed technique experiments, indirect filmed technique experiments, and the non filmed technique experiments. The cost factors will also be compared for the breakage of standard taper glassware.

These statements generate the following null hypotheses.

Ho 3.01 There will be no significant difference in the proportion of students having at least one incident of breakage between the experimental and control groups.

Ho 3.02 There will be no significant difference in the cost of breakage per student attending class between the experimental group and control group for all experiments.

Ho 3.03 There will be no significant difference in the cost of breakage per student attending class between the experimental group and the control group for the direct filmed technique experiments.

Ho 3.04 There will be no significant difference in the cost of breakage per student attending class between the experimental and control group for the indirect filmed technique experiments.

Ho 3.05 There will be no significant difference in the cost of breakage per student attending class between the experimental group and control group for the non filmed technique experiments.

Ho 3,06 There will be no significant difference in the cost of breakage per student attending class between the experimental group and the control group for standard taper glassware.

Ho 3.07 There will be no significant difference in the number of incidents of breakage per student attending class between the experimental group and the control group for all experiments.

Ho 3.08 There will be no significant difference in the number of incidents of breakage per student attending class between the experimental group and the control group for the direct filmed technique experiments.

Ho 3.09 There will be no significant difference in the number of incidents of breakage per student attending class between the experimental group and the control group for the indirect filmed technique experiments. Ho 3.10 There will be no significant difference in the number of incidents of breakage per student attending class between the experimental group and the control group for the non filmed technique experiments.

Ho 3.11 There will be no significant difference in the number of incidents of breakage per student attending class between the experimental group and the control group for standard taper glassware.

Ho 3.12 There will be no significant difference in the cost of breakage incident per student attending class between the experimental and control groups for all experiments.

Ho 3.13 There will be no significant difference in the cost per breakage incident per student attending class between the experimental group and control group for the direct filmed technique experiments.

Ho 3.14 There will be no significant difference in the cost per breakage incident per student attending class between the experimental group and the control group for the indirect filmed technique experiments.

Ho 3.15 There will be no significant difference in the cost per breakage incident per student attending class between the experimental group and the control group for the non filmed technique experiments.

Ho 3.16 There will be no significant difference in the cost per breakage incident per student attending class between the experimental group and the control group for the standard taper glassware.

Ho 3.17 There will be no significant difference in the mean cost per item broken between the experimental group and the control group for all experiments.
Ho 3.18 There will be no significant difference in the mean cost per item broken between the experimental group and the control group for the direct filmed technique experiments.

Ho 3.19 There will be no significant difference in the mean cost per item broken between the experimental group and the control group for the indirect filmed technique experiments.

Ho 3.20 There will be no significant difference in the mean cost per item broken between the experimental group and the control group for the non filmed technique experiments.

Ho 3.21 There will be no significant difference in the mean cost per item broken between the experimental group and the control group for the standard taper glassware.

The data is taken from Appendix D and compiled into the various categories in Tables XLII through XLVIII with the results summarized in Table XLIX.

1xxxxxxxxxxxxxxxxxx2XxXxXx0XxXxx3XX0XxxXx04XXxXxxXx0050XxXxxXxx0Xxxxxx60ZXxXxXx070XxxXX0Xx8X00XxXXx9XxxXxXxX001000XxXXXxXXx11XX0XXx13X0XXXX14X0XXXXX15XXX0XXXXX16XXX0XXXXXX17XXXXX0XXXXXX18Xx0XXXXXX20X0XXXXX210000-0220XXXX	X X X X X XX
2XXXXXXX0XXXXX3XX0XXXXX04XXXXXXX0050XXXXXXXX0XXXXXX60ZXXXXXX070XXXXX0XX8X00XXXXX9XXXXXXXX001000XXXX0XXXX11XXX0XXXXXX13X0XXXXXXXX14X0XXXXXXXXX15XXXXXX0XXXXX16XXX0XXXXXXXX17XXXXXXXXXXX18XX0XXXXXXXX19XXXXXXXX20X0XXX210000-0220XXXX	X X X X XX
3XX0XXXXX04XXXXXXX0050XXXXXXXX0XXXXX60ZXXXXXX070XXXXX0XX8X00XXXXX9XXXXXXX001000XXXX0XX11XX0XXXX13X0XXXXXX14X0XXXXXXXX15XXX0XXXXXXX16XXX0XXXXXXXXX18XX0XXXXXXXXX19XXXXXXXXXXXX20X0X0-2100XXX-220XXXX-	X X X XX
4XXXXXXX0050XXXXXXXX0XXXXX60ZXXXXXX070XXXXX0XX8X00XXXXX9XXXXXXX001000XXXX0X11XX00XX12XXXXXXXXXXX13X0XXXXX14X0XXXXX15XXX0XXXXXX16XXX0XXXXXXXXX18XX0XXXXXXX19XXXXXXXXXXX20X0X0-210XXX220XXXX	X X XX
50XXXXXXXX0XXXXXX60ZXXXXXXXX070XXXXX0XX8X00XXXX009XXXXXXXX0001000XXXX0XXX11XX00XXXXXXXXX12XXXXXXXXXXXXXXXX13X0XXXXXXXX14X0XXXXXXXX15XXX0XXXX0XXXXXX16XXX0XXXXXXXX17XXXXXX0XXXXXXX18XX0XXXXXXXX20X0XXXX0-2100XXX0-0220XXXXX	x xx
60ZXXXXXXXX070XXXXX0XX8X00XXXXXX9XXXXXXXX001000XXXX0XX11XX00XXXXX12XXXXXXXXXXXXX13X0XXXXXXXX14X0XXXXXXX16XXX0XXX0XXXXXX17XXX0XXXXXXX18XX0XXXXXXX20X0X0-XXXX2100XXX220XXXXX	XX
70XXXXXXX8X00XXXXXX9XXXXXXX001000XXXX0XX11XX00XX12XXXXXXXXXXXXX13X0XXXXXXX14X0XXXXXX15XXX0XXX0XXXXX16XXX0XXXXXX18XX0XXXXXXX19X0X0-XXXX20X0X0-0210XXXX220XXXX	
8X00XXXXXX9XXXXXXXX001000XXXX0XX11XX00XX12XXXXXXXXXXX13X0XXXXXXX14X0XXXXXX15XXX0XXX0XXXXX16XXX0XXXXXXXXX17XXX0XXXXXXXXXXX18XX0XXXXXXXXXXXXX20X0XXXX0-XXXX210000-00220XXXXX	Х
9XXXXXXXX001000XXXX0XX11XX00XX12XXXXXXXXXXXXX13X0XXXXXXX14X0XXXXXXX15XXXXXXXXXX16XXX0XXXXXXXX17XXXXXX0XXXXXXX18XX0XXXXXXXXX20X0X0-XXXX210000-0220XXXXX	X
1000XXXX0XX11XX00XX12XXXXXXXXXXXXX13X0XXXXXXX14X0XXXXXX15XXXXXXXXXX16XXX0XXXX0XXXXXX17XXX0XXXXXXXX18XX0XXXXXXXXX19XXXXXXXXXXXX20X00-X210000-0220XXXX	xx
11XX00XX12XXXXXXXXXXXXXXXX13X0XXXXXXX14X0XXXXXX15XXXXXXXXXXX16XXX0XXXX0XXXXX17XXX0XXXXXXXX18XX0XXXXXXXXX19XXXXXXXXXXX20X00-X2100XX220XXXX	XX
12XXXXXXXXXXXXXXX13X0XXXXXXX14X0XXXXXX15XXXXXXXXXX16XXX0XXXX0XXXXX17XXXXXX0XXXXXXX18XX0XXXXXXXXX19XXXXXXXXXXX20X0X0-210XXX220XXXX	0
13X0XXXXXXX14X0XXXXXX15XXXXXXXXXX16XXX0XXX0XXXXX17XXXXXX0XXXXXXX18XX0XXXXXXX19XXXXXXXXXXX20X0X0-210000-0220XXXX	0
14X0XXXXXX15XXXXXXXXX16XXX0XXX0XXX17XXXXXX0XXXXX18XX0XXXXXXX19XXXXXXXXXXX20X0X0-210000-0220XXXXX-	XX
15XXXXXXXXX16XXX0XXX0XXXXX17XXXXXXX0XXXXXXXXXX18XX0XXXXXXXXXXXXXX19XXXXXXXXXXXXXXX20X0X0-X210000-0220XXXXX-	х
16 XXX 0 XXX 0 XXX XX 17 XXX XXX 0 $XXXX$ X XXX 18 XX 0 XX $XXXX$ X $XXXX$ 19 X XX XXX X X $XXXX$ 20 X 0 X 0 $ X$ 21 0 0 0 0 $ 0$ 22 0 X X X X $ -$	XX
17 XXX $XXXX$ 0 $XXXX$ X XXX 18 XX 0 XX $XXXX$ X $XXXX$ 19 X XX XXX X X $XXXX$ 20 X 0 X 0 $ X$ 20 X 0 X 0 $ X$ 21 0 0 0 $ 0$ 22 0 X X X X $-$	XX .
18 XX 0 XX XXXXX X XXXX 19 X XX XXXX X X XXXX 20 X 0 X 0 - X 21 0 0 0 - 0 22 0 X X X - -	0
19XXXXXXXXXXXXX20X0X0-X210000-0220XXX	0
20X0X0-X210000-0220XXX	XX
21 0 0 0 0 - 0 22 0 X X X - -	XX
22 O X X X	Х
	0
23 XX XX - 0	XXXXX
24 XXXX X - X	0
25	-
Incidents: 18 16 17 18 15 16	18
Nr Students:24 25 24 23 19 21	24
% of Class having	

NUMBER OF INCIDENTS OF EQUIPMENT BREAKAGE BY EACH STUDENT

X = incidents of breakage; 0 = individuals without breakage; - = no student with that number

TABLE XLIII

0	Ex	perimental	1		Cont	rol	
Group	100	200	300	400	500	600	700
Individuals w/Breakage	18	16	17	18	15	16	18
Nr Students	24	25	24	23	19	21	24
Percent of Class Reporting Breakage	75.00	64.00	70.83	78.26	78.95	84.21	75.00
Rank	4.5	6	7	3	2	1	4.5

NUMBER OF INDIVIDUALS REPORTING AT LEAST ONE INCIDENT OF EQUIPMENT BREAKAGE

u = 0.5 z = 1.9623 p = 0.0250 **Significant beyond 0.05 level Ho 3.01 rejected

IADLC AL.	τv
-----------	----

COMPARISON OF COST OF BREAKAGE, QUANTITY OF ITEMS BROKEN, AND NUMBER OF STUDENTS FOR EACH SUBSECTION FOR ALL EXPERIMENTS

- <u></u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Cost	Breakage	Cost Per	Cost
		Number	Number	Per	Per	Break Per	Per Item
Group	Cost \$	Items	Students	Student	Student	Student	Brokena
100 (rank)	\$46.45	33	444	\$0.1046 (4)	0.0743 (4)	0.00317 (4)	\$1.408 (3)
200 (rank)	34.08	31	470	0.0725 (7)	0.0660 (6)	0.00233 (7)	1.099 (7)
300 (rank)	49.36	43	440	0.1121 (3)	0.0977 (1)	0.00261 (6)	1.148 (6)
Expt	· · · · ·						
Group:	129.89	107	1354	0.0959 (14)	0.0790 (11)	0.000897 (17)	1.214 (16)
400 (rank)	45.15	35	451	0.1001 (5)	0.0776 (3)	0.00286 (5)	1.290 (4)
500 (rank)	30.13	25	356	0.0846 (6)	0.0702 (4)	0.00339 (3)	1.205 (5)
600 (rank)	114.31	40	402	0.2844 (1)	0.0995 (2)	0.00711 (1)	2.857 (1)
700 (rank)	52.08	25	451	0.1155 (2)	0.0554 (7)	0.00462 (2)	2.083 (2)
Control Group:	241.67	125	1660	0.1456 (14)	0.0753 (16)	0.001165	1.9333 (12)
Total	371.56	232	3014	0.12328	0.07694	0.0005314	1.6015

.

TABLE XLV

COMPARISON OF COST	OF BREAKAGE	, QUANTITY OF	ITEMS BROKEN	, AND	NUMBER	OF	STUDENTS	FOR	EACH
	SUBSECTION	FOR THE DIRECT	FILMED TECH	NIQUE	EXPERIM	ENT	'S		

				Cost	Breakage	Cost Per	Cost
		Number	Number	Per	Per	Break Per	Per item
Group	Cost \$	Items	Students	Student	Student	Student	Broken
100 (rank)	\$15.65	16	141	0.1110 (6)	0.1135 (3)	0.00694 (6)	0.9781 (6)
200 (rank)	14.72	18	146	0.1009 (7)	0.1233 (2)	0.00560 (7)	0.8178 (7)
300 (rank)	24.88	15	135	0.1843 (3)	0.1111 (4)	0.01229 (3)	1.8178 (3)
Experiment	al						
Group (sum of ra	55.25 nks)	49	135	0.1309 (16)	0.1161 (9)	0.00267 (16)	1.1276 (16)
400 (rank)	15.96	15	138	0.1157 (5)	0.1087 (5)	0.00771 (5)	1.0640 (3)
500 (rank)	17.55	15	112	0.1567 (4)	0.1339 (1)	0.01045 (4)	1.1700 (4)
600 (rank)	29.26	9	124	0.2360 (1)	0.0725 (7)	0.02622 (1)	3.2511 (1)
700 (rank)	31.26	11	139	0.2249 (2)	0.0791 (6)	0.02044 (2)	2.8418 (2)
Control							
Group (sum of ra	94.03 nk <u>s)</u>	50	315	0.1833 (20)	0.0975 (19)	0.00367 (12)	1.8806 (12)
Total	149.28	99	935	0.15966	0.1059	0.00161	1.5079
						- <u></u>	· · · · · · · · · · · · · · · · · · ·

Group	Cost \$	Number Items	Number Students	Cost Per Students	Breakage Per Student	Cost Per Break Per Student	Cost Per Item Broken
100 (rank)	\$30.31	16	263	0.11525 (2)	0.06084 (3)	0.00720 (5)	1.894 (4)
200 (rank)	19.36	13	276	0.07015 (6)	0.04711 (5)	0.00540 (6)	1.489 (6)
300 (rank)	21.48	17	261	0.08229 (4)	0.06513 (2)	0.00484 (1)	1.264 (7)
Experiment Group (sum of ra	al 71.15 nks)	46	800	0.08894 (12)	0.05750 (10)	0.00193 (12)	1.263 (17)
400 (rank)	23.85	14	266	0.08966 (3)	0.05263 (4)	0.00640 (4)	1.703 (3)
500 (rank)	12.30	6	208	0.05913 (7)	0.02885 (7)	0.00986 (2)	2.050 (3)
600 (rank)	83.13	25	236	0.35225 (1)	0.10593 (1)	0.01409 (1)	3.325 (1)
700 (rank)	20.29	9	266	0.07627 (5)	0.03383 (6)	0.00848 (6)	2.544 (2)
Control Group (sum of ra	139.57 nks)	54	976	0.14300	0.05533	0.00265	2.5846 (11)
Total	210.72	100	1776	0.11865	0.056036	0.00119	2.1072

COMPARISON OF COST OF BREAKAGE, QUANTITY OF ITEMS BROKEN, AND THE NUMBER OF STUDENTS FOR EACH SUBSECTION FOR THE INDIRECT FILMED TECHNIQUE EXPERIMENTS

TABLE XLVI

-

TABLE XLVII

COMPARISON OF COST OF BREAKAGE, QUANTITY OF ITEMS BROKEN, AND THE NUMBER OF STUDENTS FOR EACH SUBSECTION FOR THE NON-FILMED TECHNIQUE EXPERIMENTS

		Number	Number	Cost Per	Breakage Per	Cost Per Break Per	Cost Per Item
Group	Cost \$	Items	Students	Students	Student	Student	Broken
100 (rank)	0.49	1	40	0.0122 (4)	0.0250 (6)	0.01225 (1)	0.4900 (2)
200 (rank)	0.00	0	48	0.0 (7)	0.0 (7)	0.0 (7)	0.0 (7)
300 (rank)	3.00	11	44	0.0681 (2)	0.2500 (1)	0.00619 (4)	0.2727 (4)
Experiment	a1		· ·		-		· · ·
Group (sum of ra	3.49 nks)	12	132	0.0264 (13)	0.0909 (14)	0.0022 (12)	0.2908 (13)
400 (rank)	5.34	6	47	0.1136 (1)	0.1277 (3)	0.01330 (2)	0.8900 (1)
500 (rank)	0.28	4	36	0.0077 (6)	0.1111 (4)	0.00194 (6)	0.0700 (6)
600 (rank)	1.92	6	42	0.0457 (3)	0.1428 (2)	0.00761 (3)	0.3200 (3)
700 (rank)	0.53	5	46	0.0115 (5)	0.1089 (5)	0.00230 (5)	0.1060 (5)
Control							
Group (sum of ra	8.07 nks)	21	171	0.04719 (15)	0.12281 (14)	0.002247 (16)	0.38485 (15)
Total	11.56	33	303	0.038152	0.1089108	0.00156	0.350303

.

TABLE XLVIII

COMPARISON OF COST OF BREAKAGE, QUANTITY OF ITEMS BROKEN AND THE NUMBER OF STUDENTS FOR EACH SUBSECTION FOR THE ITEMS OF STANDARD TAPER GLASSWARE WHICH WAS BROKEN THROUGHOUT THE SEMESTER

Group 100	Cost \$ 21.72	Number Items	Number	Por	T		
Group 100	Cost \$ 21.72	Items		Ter	Per	Break Per	Per Item
100	21.72		Students	Students	Student	Student	Broken
(rank)		4	~ 444	0.0489 (4)	0.0090 (6)	0.0122 (2)	5.4300 (1)
200 (rank)	13.91	3	470	0.0296 (7)	0.0064 (7)	0.0099 (4)	4.6367 (4)
300 (rank)	17.73	6	440	0.0403 (5)	0.0136 (4)	0.0067 (7)	2.9550 (6)
Experimenta	1	. •					
Group (sum of ran	53.36 ks)	13	1354	0.0394 (16)	0.0096 (17)	0.0030 (13)	4.1046 (11)
400 (rank)	28.17	7	451	0.0625 (3)	0.0155 (3)	0.0089 (5)	4.0243 (5)
500 (rank)	11.48	4	356	0.0322 (6)	0.0112 (5)	0.0081 (6)	2.8700 (7)
600 (rank)	91.89	18	402	0.2286 (1)	0.0448 (1)	0.0127 (1)	5.1050 (2)
700 (rank)	37.49	8	451	0.0831 (2)	0.0177 (2)	0.0104 (3)	4.6863 (3)
Control Group (sum of ran	169.03 ks)	37	1660	0.2287	0.0223 (11)	0.0028	4.5684 (17)
Total	222.39	50	3014	0.0738	0.01659	0.001476	4.4478

TABLE XLIX

SUMMARY OF RESULTS OF BREAKAGE AND COST COMPARISONS

St.

а. . а. .

······································		Sum of	ranks				· · · · · · · · · · · · · · · · · · ·
Hypothesis	Comparison	Expt'1	Cont 1	U .	Z	Probability	Significance
Ho 3.01	Incidents of breakage	17.5	10.5	0.5	-1.9623	0.025	**0.05
Но 3.02	Breakage cost per student						
Но 3.02	all experiments	14	14	4	-0.7071	0.2389	NS
Но 3.03	direct filmed technique	16	12	2	-1.4142	0.0793	**0.10
Но 3.04	indirect filmed technique	12	16	6	0.0000	0.5000	NS
Но 3.04	Non-filmed technique	13	15	5	-0.3536	0.3632	NS
Но 3.06	Standard Taper Glass	16	12	2	-1.4142	0.0793	**0.05
	Breakage incidents per student						
Но 3.07	all experiments	11	17	(5)	+0.3536	0.6368	NS
Но 3.08	direct filmed technique	9	19	(3)	+1.0607	0.8554	NS
Но 3.08	indirect filmed technique	10	18	(4)	+0.7071	0.7511	NS
Ho 3.10	Non-filmed technique	14	14	4	-0.7071	0.2389	NS
Ho 3.11	Standard Taper Glass	17	11	1	-1.7497	0.0401	**0.05
	Cost per item per student		,				
Но 3.12	all experiments	17	11	1	-1.7497	0.0401	**0.05
Ho 3.13	direct filmed technique	16	12	2	-1.4142	0.0793	**0.10
Но 3.14	indirect filmed technique	18	10	0	-2.1213	0.0170	**0.02
Ho 3.15	Non-filmed technique	12	16	6	0.0000	0.5000	NS
Но 3.16	Standard Taper Glass	13	15	5	-0.3536	0.3632	NS
	Cost per item broken						
Ho 3.17	all experiments	16	12	2	-1.4142	0.0793	**0.10
Ho 3.18	direct filmed technique	16-	12	2	-1.4142	0.0793	**0.10
Но 3.19	indirect filmed technique	17	11	1	-1.7497	0.0401	**0.05
Но 3.20	Non-filmed technique	13	15	5	-0.3536	0.3632	NS
Ho 3.21	Standard Taper Glass	11	17	(5)	+0.3536	0.6368	NS
	-						

+ indicates Z in favor of control group
- indicates Z in favor of experimental group

These hypotheses were tested using the Mann Whitney U test. Table XLIX summarizes the results of these tests. It was found that each of the criteria tested for the non-filmed technique experiments resulted in no significant difference. This was expected from groups which were randomly divided. The mean breakage per student for all experiments as well as the direct and indirect filmed technique experiments also resulted in no significant difference. However the mean number of items of standard taper glassware was significantly lower for the experimental group. Comparison of the average cost per item broken per student attending class and the overall mean cost per item broken resulting in a significant difference in favor of the control group.

The question of lack of randomness of the female students required that it be determined if any differences in breakage may be attributed to the female students. The following hypotheses were considered.

Ho 3.22 There will be no significant differences in the mean cost of equipment broken by female students between the experimental and control groups.

Ho 3.23 There will be no significant differences in the mean number of items of equipment broken per female attending class between the experimental and control group.

Ho 3.24 There will be no significant difference in the cost per item broken per female attending class between the experimental and control groups.

Ho 3.25 There will be no significant difference in the cost of breakage per female attending class between the experimental and control groups.

	100	2⁄00	300	400	500	600	700
Cost of Breakage	\$14.38	4.04	4.86	0.82		11.28	5.09
Number of items broken	5	9 .	4	2		2	1
Number of females per group	2	7	6	2	0	4	2
Cost per item broken (rank)	\$2.876 (2)	0.4489 (5)	1.210 (4)	0.410 (6)		2.820 (3)	5.090 (1)
Number of items broken per female attending class (rank)	2.5 (1)	1.2857 (2)	0.667 (4)	1.00 (3)		0.50 (5.5)	0.50 (5.5)
Cost per item broken per female (rank)	1.438 (2)	0.0641 (6)	0.2025 (5)	0.2050 (4)		1.410 (3)	2.545 (1)
Cost of breakage per female attending	7 100	0 5771	0.8100	0. 4100		2 820	2 5/0
(rank)	(1)	(5)	(4)	(6)		(2)	(3)

EQUIPMENT BREAKAGE BY FEMALE STUDENTS

TABLE LI

SUMMARY OF STATISTICAL ANALYSIS OF BREAKAGE BY FEMALE STUDENTS

	· · · · · · · · · · · · · · · · · · ·					
	Sum of	ranks				
	Exptl	Contl	U	Z	prob.	Signif.
· · · · · · · · · · · · · · · · · · ·						
Cost per item broken						
by females	11	10	4	-0.2182	0.4129	NS
Ho 3.22 not rejected						
Number of items broken per female attending	n					
class	. 7	14	(1)	+1.5276	0.0630	**
Ho 3.23 rejected in fa	avor of co	ntrol gro	oup			
Cost per item broken per female attending class	13	8	2	1.0911	0.1379	NS
Ho 3.24 not rejected						
Cost of breakage per female attending class	10	11	(4)	+0.2182	0.4129	NS
Ho 3.25 not rejected						

Thus it can be seen that there is no significant difference between the breakage of females in three out of four measures. Only the number of items broken per female resulted in significance, however, it is in favor of the control group. This means that those differences which were found in favor of the experimental group may be attributed to the treatments and not to the slight imbalance of females in the experimental group.

The overall results of the breakage study indicate that a smaller

percentage of students who have access to the single concept films have indicents of breakage. Those students who have access to the films break fewer items of standard taper glassware and incur less breakage as the course progresses. The use of the films when a technique is first encountered lessens the amount of breakage when the technique is used at a later time in the course.

Accidents

Safe procedures need to be stressed in all laboratories but more especially in the undergraduate teaching laboratories because the students are more unaware of the many potentially hazardous situations. It is not unvommon for at least one student to be spashed or sprayed with sulfuric acid or perhaps showered with glass particles during every semester. In the organic laboratories safety must be stressed because of the many extremely toxic and explosive chemicals which are routinely handled. Goggles were mandatory in the organic laboratories whereas any kind of spectacles were allowed in the general laboratories. (This was changed at the beginning of the Fall 1969 semester when safety goggles became mandatory for all undergraduate laboratories.) It is a departmental policy that any student having any injury or accident must report it to his instructor. However, it is suspected that a great many minor cuts and acid burns go unreported. Students were asked to indicate on the data cards any accidents which they incurred during the experiment and to include a brief description. Surprisingly no serious accidents occurred in any of the classes used for this study. Thus, if one considers that all of the accidents which did occur (such as minor cuts, heat and acid burns, spilled sulfuric acid, minor fires)

110

TABLE LII

TABULATION OF NUMBER AND KIND OF ACCIDENTS REPORTED BY THE EXPERIMENTAL AND CONTROL GROUP CLASSES

Experiment	: Group	Group	Group	Group	Group	Group	Group
Number	100	200	300	400	500	600	700
2					· · ·	608 cut	· ·
						612 burne	ed finger
5	123 burned finger			405 Na	expl.	611 burne	ed finger
	ے جن بی بی بی در سر سر بی			<u>421 Na</u>	expl.		
6			307 burr	ned thumb		· · · · · · · ·	707 burned thumb
			<u>317 burn</u>	ed thumb			
13							703 burned finger
							704 cut thumb
11		203 burned	finger				
		206 burned	finger				
		_215 spilled	d sulfuric				
					501 sp1a	ashed acid 61/	burned finger
MEK					<u>51/ spi</u>	lled sulfuric	
17		·	314 burr	ned finger			
20						601 burne	ed finger
20						616 cut	finger
MDNB	112 small fire					· · · ·	
29	ند ند نند بو ند امر د. جر بو بو ور و بو بو بو بو بو بو بو بو بو بو بو بو بو بو بو بو		308 H ₂ 0	in C1S0301	1		
Total numb	per of accidents per g	roup:	,	0	0	r	2
	2	3	.4	Z	Z	0	3
Number of	students per group:	(total number	er in atter	ndance)			
	444	470	440	431	339	384	429
Number of	students attending pe	r accident (occurring:			анананан алар алар алар алар алар алар а	
	222	156.67	110.0	215.5	169.5	64.0	143.0

TABLE LII (Continued)

Experiment Number	Group 100	Group 200	Group 300	Group 400	Group 500	Group 600	Group 700
Rank	1	4	6	2	3	7	5
Sum of ranks:			11		17		

U = 5, Z = -0.3536, probability = 0.3632 (not significant)

Ho 4.01 not rejected

then the following hypotheses can be tested.

Ho. 4.01 There will be no significant difference in the number of accidents occurring between the experimental group and the control

TABLE LIII

	Teacher A	Teacher B	Teacher C	Totals
Experimental				
observed	222.0	156.7	110.0	488.7
(expected)	(228.0)	(170.0)	(90.7)	
Control				
observed	215.5	169.5	64.0	449.0
(expected)	(209.5)	(156.2)	(83.3)	<u> </u>
Totals	437.5	326.2	174.0	937.7

CHI SQUARE ANALYSIS OF STUDENTS ATTENDING CLASS PER ACCIDENT BY TEACHER AND TREATMENT

 $x^2 = 11.0812$ (df = 2) *significant at 0.01 level Ho 4.02 rejected

Thus it is found that there is no significant difference in the number of accidents occurring between the experimental and control groups. However, the rank of the students per accident for an experimental class is superior to the control class for a given teacher in two out of three instances. It was suspected that the teacher has an effect upon the number of accidents occurring. This question generated the following null hypothesis. Ho 4.02 There will be no significant difference in the number of students per accident occurring between the experimental and control groups for a given teacher.

Ho 4.02 was found to be untenable and was rejected. Thus the number of accidents occurring among the teachers is not random. It may be seen from Table LIII that in two out of three cases the observed number of students attending class per accident is less than the expected value for the experimental group. While this does not conclusively indicate that less accidents occur in the experimental group it indicates a definite tendency in that direction.

Laboratory Skill Survey

The laboratory skill survey profile was administered upon commencing and concluding the semester. It was determined whether students accurately indicate their skill in laboratory procedures or do those who possess a high degree of competancy tend to estimate their skill conservatively and those who possess a meagre degree of competency tend to be more liberal in their rating. Using the JH₂S examination scores as a measure of the laboratory skills because it covered some of the same techniques as a measure of the laboratory skills involved, the following hypotheses were tested.

Ho 5.01 There will be no significant difference in correlation between the JH_2S scores and the Entry skills for each of the classes.

Ho 5.02 There will be no significant difference in the correlation between the JH_2S scores and the Exit skills for each of the classes.

114

TABLE LIV

<u></u>	Rank	Entry	·····	Exit		Net S	ki11	
Group 100 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff	
1	16	16	0	20	- 4	17	- 1	
2	14	2	12	13	1	19	- 5	
3	-	_ 1	-	-	-	-	-	
4	13	4	11	1	12	2	11	
5	16	19	4	14	2	6	10	
6	11	7	4	10	1	12	- 1	
7	-	-	-	-	-	-	-	
8	-	-	—	_	-	- ,	-	
9	4	11	- 7	2	2	1	3	
10	20	18	2	15	5	11	9	
11	6	13	- 7	5	1	7	- 1	
12	-	-	- .	- .	-	-	-	
13	18	1	17	18	0	20	- 2	
14	19	17	2	7	12	4	15	
15	1	20	-19	11	-10	13	-12	
16	6	16	-10	19	-13	16	-13	
17	6	5	1	16	-13	18	-12	
18	2.5	. 8	- 5.5	12	9.5	14	-11.5	
19	16	10	6	9	6	10	4	
20	2.5	6	- 3.5	6	- 3.5	9	6.5	
21	12	12	0	4	8	3	9	
22	8.5	14	- 5.5	17	8.5	15	- 6.5	
23	8.5	3	5.5	3	4.5	5	3.5	
24	12	9	3	8	4	8	4	
Sum of square differences	es of rand	k 12	95	108	1089		1367	
Spearman rank correlation	: 15:	$r_{s} = 0.02$	63	0.181	.2	-0.02	.78	

TABLULATION OF RANKS OF SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS OF THE LABORATORY SKILL PROFILE FOR GROUP 100

TABLE LV

TABULATIO	I OF	RANKS	S OF	SCOR	ES	AND	RANK	DIFFI	ERENCES	BETV	VEEN	THE	JH2S
EXA	MIN	ATION	AND	THE	RES	SULTS	FROM	THE	LABORA	FORY	SKII	L	2
				PROF	ILF	E FOR	GROU	JP 200)				

	Rank	Entry		Exit	. <u></u> · <u>.</u>	Net S	kill
Group 200 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff
1	3.5	7	- 3.5	13	- 9.5	12	- 8.5
2	21	21	0	18	3	18	3
3	22	11	11 .	15.5	6.5	17	5
4	10	19.5	- 9.5	19	- 9	20	-10
5	-	-	-		-	-	-
6	14	15	5	· 1	13	1	13
7	6.5	22	-15.5	21	14.5	19	12.5
8			-	-	-	-	-
9	14	14	0	11	3	8	6
10			· _	- .	_	_	-
11	6.5	5	1.5	9	2.5	9	2.5
12	20	1	19	2	18	14	6
13	6.5	4	2.5	. 8	1.5	10	3
14	3.5	19.5	-16	17	-13.5	16	12
15	2	18	-16	14	-12	7	5
16	16.5	3	13.5	3	13.5	5	10.5
17	14	16,5	- 2.5	15.5	- 1.5	13	1
18	10	9.5	0.5	12	- 2	11	- 1
19	18.5	14	4.5	5	13.5	. 3	15.5
20	12	16.5	- 4.5	10	2	6	6
21	6.5	6	0.5	7	1.5	4	2.5
22	18.5	8	10	4	14.5	2	16.5
23	1	2	- 1	6	- 5	15	-14
24	10	17	- 7	22	12	22	-12
25	16.5	9.5	11	20	3.5	21	4.5
Sum of squares differences:	of rank		1870.75		2038		1815
Spearman rank correlations	:	r =	-0.0563	-0	.1508	-0.	0248

TABLE LVI

	Rank	Entry	-	Exit		Net S	
Group 300 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff
1	5	3	2	. 13	- 8	16	-11
2	14.5	1	13.5	. 9	5.5	20	- 5.5
3	14.5	7	6.5	2	12.5	3	11.5
4	- '	-	-		-	-	-
5	7.5	19	-11.5	19	11.5	14	6.5
6	3.5	4	- 0.5	17	13.5	18	14.5
7	-	-	-	-	-	. –	-
8	7.5	10	- 2.5	14	- 6.5	13	- 5.5
9	7.5	8	- 0.5	8	- 0.5	9	- 1.5
10	20	6	14	18	2	19	1
11 ·	14.5	20	- 5.5	1	13.5	1	13.5
12	7.5	11	- 3.5	5	2.5	5	2.5
13	14.5	5	9.5	6	8.5	10	5.5
14	11.5	15.5	- 4	10	1.5	6	5.5
15	17	18	- 1	7	10	4	13
16	2	12	-10	16	-14	15	-13
17	11.5	9	2.5	11	0.5	11	0.5
18	- · .	_	. –	-	_	_ `	-
19	1	13	-12	15	-14	12	-11
20	10	14	4	3	7	2	8
21	3.5	15.5	-12	20	-16.5	17	.13.5
22	19	17	2	12	7	7.5	11.5
23	18	2	16	4	14	7.5	10.5
24	-	-	-	-		– .	-
Sum of squares differences:	of rank		1397.2		1933		1766.5
Spearman rank correlation:		$r_{s} = -0$	0508	-0.	4534	-0.	3282

TABULATION OF RANKS OF SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS FROM THE LABORATORY SKILL PROFILE FOR GROUP 300

TABLE LVII

, 	Rank	Entry		Exit	····	Net S	kill
Group 400 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff
1	7	19	-12	19	-12	19	-12
2	18	9.5	8.5	1	17	1	17
3	-	-	-	-		- .	-
4	4.5	3	1.5	3.5	1	10	- 5.5
5	3	14	-11	18	-15	18	-15
6	2	17	-15	10	- 8	6	- 4
7	-	-	-	-	<u> </u>	-	-
8	14.5	6	9.5	16	- 1.5	16	- 1.5
9	4.5	9.5	5	12	- 7.5	9	- 4.5
10	11.5	12	- 0.5	15	- 3.5	14	- 2.5
11	18	4	14	3.5	14.5	4	14
12	1	16	-15	9	- 8	3	- 2
13	15.4	15	- 0.5	2	12.5	12	2.5
14	-		-	_	_	- .	_
15	7	5	2	13	- 6	11	4
16	11.5	13	- 1.5	11	0.5	8	3.5
17	18	18	0	14	4	7	11
18	7	8	- 1	8	- 1	5	2
19	16	7	11	5	11	2	14
20	11.5	1.5	10	6.5	5	13	- 1.5
21	-	-	-		- .	-	-
22	9	1.5	7.5	6.5	2.5	15	6
23	11.5	11	0.5	17	5.5	17	- 5.5
24	- .	_	-	-			-
Sum of squares differences:	of rank		1368	· ·	1460		1357
Spearman rank correlation:		$r_{s} = -0.$	2000	-0.	280 9	-0.	1904

TABULATION OF RANKS OF SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS FROM THE LABORATORY SKILL PROFILE FOR GROUP 400

TABLE LVIII

	Rank	Entry		Exit		Net	Skill
Group 500 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff
1	4.5	7	- 2.5	6	- 1.5	8	- 3.5
2	8	1	7	4.5	3.5	11	- 3
3	11	4	7	′ 2	9	4	7
4	8	2.5	5.5	7.5	0.5	9.5	- 1.5
5	8	2.5	5.5	7.5	0.5	9.5	- 1.5
6	-	-		-	-	-	-
7	2	11	- 9	11	- 9	7	5
8	-	·	-	-	_	-	-
9	-	-	-	-	_	-	-
10	3	10	- 7	4.5	- 1.5	2	1
11	13	8	5	9	4	6	7
12	-	—	- ,		· _	-	-
13	8	5	3	12	4	13	5
14	4.5	13	- 8.5	10	5.5	5	1.5
15	13	6	7	3	10	3	10
16	-	-	-	-	-	-	-
17	13	14	- 1	14.5	- 0.5	12	1
18	8	9	- 1	1	7	1	7
19	-		— 1	. —	-	-	-
20	1	12	-11	13.5	-12.5	14	-13
21		-	-	-	-	-	-
22	-	_	-	· -	-		-
23	-	-	-	_	_	-	-
24	_	-	-	_		-	-
Sum of squa differenc	res of rank	· · ·	573		547		496
Spearman ra correlati	ink .on:	r = -(s	0.2593	-(0.2022		-0.0901

TABLULATION OF RANKS OF SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS FROM THE LABORATORY SKILL PROFILE FOR GROUP 500

TABLE LVIX

Group 600	Rank	Entry	Rank	Exit	Rank	Net S	kills Rank
Student Nr.	JH2S	Rank	Diff	Rank	Diff	Rank	Diff
1	3.5	13	- 9.5	14.5	-11	15	-11.5
2	12.5	17.5	- 5	13	- 0.5	11	1.5
3	3.5	2	1.5	19	-15.5	19	15.5
4	15.5	17.5	- 2	17	- 1.5	15	1.5
5	14	4	10	5	9	6	8
6	7	16	- 9	6	1	3	4
7	7	11,5	- 4.5	16	- 9	16	- 9
8	3.5	6	- 2.5	1	2.5	4	- 0.5
9		-	-	-	-	-	-
10	3.5	3	0.5	18	-14.5	18	-14.5
11	19	14	5	10	9	8	11
12	15.5	11.5	4	12	3.5	12.5	3
13	17	10	7	9	8	9	8
14	10.5	1	9.5	3	7.5	10	0.5
15	18	19	1	4	14	1	17
16	1	8	- 7	11	-10	12.5	-11.5
17	9	5	4	7	2	7	2
18	10.5	8	2.5	2	8.5	2	8.5
19	-	_	-	-	-	-	-
20	12.5	15	2.5	8	2.5	5	7.5
21	7	15	2.5	8	2.5	5	7.5
Sum of squares differences:	of rank		589		1421.5		1596.5
Spearman rank correlation:		r_ = +(.4833	-0	.24 69	-0	.4004

TABULATION OF RANKS AND SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS FROM THE LABORATORY SKILL PROFILE FOR GROUP 600

ТΔ	RT	F.	T.X
	ידרצ		7777

	Rank	Entry		Exit		Net S	kills
Group 700 Student Nr.	on JH ₂ S	Skills Rank	Rank Diff	Skills Rank	Rank Diff	Change Rank	Rank Diff
1	3.5	18	-14.5	5	- 1.5	3	0.5
2	15.5	15.5	0	18	- 2.5	16	- 0.5
3		. * *	. –	- .	 .	-	
4	6	12	- 6	· 6 ·	0	4	2
5	15.5	13	2.5	3	12.5	2	13.5
6	18.5	3	15.5	8	10.5	6.5	12
7	10	15.5	- 5.5	16	- 6	14	- 4
8	6	19	-13	1	5	1	5
9	3.5	15.5	-12	14	-10.5	8.5	- 5
10	10	2	8	7	3	12	- 2
11	-	-	-	-	-	-	-
12	-	- '	-	_	-	-	-
13	15.5	1	14.5	4	11.5	13	2.5
14	12.5	15,5	- 3	10	2.5	5	7.5
15	20	. 20	0	2	18	18	2
16	8	4	4	15	- 7	15	- 7
17	10	10.5	- 0.5	19	- 9	19	- 9
18	1	10.5	- 9.5	13,	-12	10.5	- 9.5
19	15.5	8	7.5	20	- 4,5	20	- 4.5
20	18.5	8	7.5	17	1.5	17	1.5
21	6	8	- 2	12	- 6	10.5	- 4.5
22	2	5	- 3	9	- 7	6.5	- 4.5
23	12.5	6	6.5	11	0.5	8.5	4
Sum of squares differences:	of rank		1393.5		1299.5	-	766.5
Spearman rank correlation:		$r_s = -0$.	0477	+0	.0229	+0	.4237

TABULATION OF RANKS AND SCORES AND RANK DIFFERENCES BETWEEN THE JH₂S EXAMINATION AND THE RESULTS FROM THE LABORATORY SKILL PROFILE FOR GROUP 700

TABLE LXI

SUMMARY OF RESULTS FROM SPEARMAN RANK CORRELATIONS BETWEEN JH2S EXAMINATION AND LABORATORY SKILLS PROFILE

Hypothesis		Hó 4	4.01	Но	4.02	Но 4.03			
Descriptions		Entry	Skills	Exit	Skills	Net Change	in Skills		
Group	N	df.	rs	t.	rs	t	rs	t	
100	20	18	+0.0263	+0.1116 NS	+0.1812	+0.7817 <u>NS</u>	-0.0278	-0.1180	
200	22	20	-0.0563	-0.2522 NS	0.1508	-0.6822 NS	-0.0248	-0.1109 NS	
300	20	18	-0.0508	-0.2158 NS	-0.4534	-2.1582 **sig at 0.05	-0.3282	-1.474 NS	
400	19	17	-0.2000	-0.8416 NS	-0.2807	-1.2058 NS	-0.1904	-0.7997 NS	
500	14	12	-0.2593	-0.9300 NS	-0.2022	-0.7152 NS	-0.0901	-0.3134 NS	
600	19	17	+0.4833	+2.2762 **sig at 0.05	-0.2469	-1.0505 NS	-0.4004	-1.8016 **sig at 0.10	
700	20	18	-0.0477	-0.2026 NS	+0.0229	+0.0972 NS	+0.4237	+1.9845 **sig at 0.10	

Ho 5.03 There will be no significant difference in the correlation between the JH_2S scores and the net skill change for each of the classes.

Tables LIV through LX and the results summarized in Table LXI indicate the ranks, and rank difference of the scores as taken from the data in Appendix B.

Thus it was observed that the majority (16 out of 21) of the correlations are negative (whether significant or not) and that in the four cases which are significant at the 0.10 level two are positive and two negative. Thus while the three null hypotheses are tenable, the suspicion that the students do not accurately access their degree of laboratory proficiency is confirmed.

Attitude

The attitude or the feeling of like or dislike with which the student felt toward the experiments was tested by selecting ten of the experiments, five of which involved direct filmed techniques (2,3,4,5,and 13). Of the other five, one involved no filmed techniques (16) and the other four (11,17,26,35) involved indirect filmed techniques. These were chosen rather than some of the others because all ten of these experiments were in Coleman, Wawzonek, and Buckles (22) the laboratory manual for the course. Some of the other experiments such as the preparation of <u>meta</u>-dinitro benzene and methyl ethyl ketone were mimeographed by the department and were written in a different style. The change of style and format for these experiments would provide a confounding variable.

The attitude scale utilized nine categories and a Likert-type.

123

scale response for each. The identical scale was used for all of the ten selected experiments. See Appendix E for a copy of the attitude scale questionnaire. A compliation of frequencies of the responses for each category was made for each subsection. This information is compiled in Appendix F. From these data the median (S $_{50}$) was calculated according to Edwards (25). In order to estimate the reliability of the instrument, the interquartile range (Q) was also determined. Thorndike (25) has reported that a large Q value is related either to the ambiguity of the question or to misinterpretation by the responder. Thus. those factors which yield a high Q value may be eliminated. Appendix E contains the frequency of responses for each item on each experiment by subsection. The data also includes the computation of S $_{50}$ and Q for each item as well as the total and mean values of S $_{50}$ for each experiment. Because the scale ranged from zero for a high or positive response to ten for a low or negative response, it was felt that these results could be easily misinterpreted. The S values used in the body of the paper for all computations was determined by subtracting the calculated S $_{.50}$ value from ten to yield a quantity which would be higher for a positive attitude.

When the experimental framework for this study is considered, the following questions pertaining to the attitude of the students become important. The differences in the overall attitude toward the experiments between the experimental and control groups. The influence of the teacher upon the attitude of the students toward the experiments (not the course). The influence of the time of day upon the attitude of the students toward the experiments. The difference in attitude, if any, between those experiments in which laboratory techniques are

124

initially encountered and explained by demonstration or SCLF (i.e., direct filmed technique experiments) and those later experiments in which the students are expected that they will be able to use these same techniques without further explanation (i.e., indirect filmed technique experiments). The difference, if any, between the attitude of the students in the experimental and control groups for the direct filmed technique experiments and for the indirect filmed technique experiments.

These may be directed toward any or all of the parameters of the attitude scale. Specifically this study is concerned with laboratory techniques consequently the attitude of the students toward techniques and their difficulty was of prime interest. The difficulty level of the techniques corresponds to items E, F, G, and H on the attitude scale.

These problems generated the following set of null hypotheses.

Ho 6.01 There will be no significant difference in the attitude of the students toward the selected experiments among the teachers, type of experiment, and by treatment.

Ho 6.02 There will be no significant difference in the attitude of the students toward the selected experiments between the teachers.

Ho 6.03 There will be no significant difference in the attitude of the students toward the selected experiments between the experimental and control groups.

Ho 6.04 There will be no significant difference in the attitude of the students toward the selected experiments between the direct filmed technique experiments and the indirect filmed technique experiments.

Ho 6.05 There will be no significant difference in the attitude of the students toward the selected experiments between the sections (time of day for the experiment). Ho 6.06 There will be no significant difference in the attitude of the students toward the selected experiments between the teacher and treatment (each group).

Ho 6.07 There will be no significant difference in the attitude of the students toward the selected experiments between the experiment type and treatment.

These hypotheses were tested utilizing the Kruskal-Wallis One Way Analysis of Variance. Table LXII contains a compilation of the data from Appendix F and Table LXIII contains a summary of the analysis of the hypotheses.

These results show that there was no significant difference in the attitude toward the experiments between the students of the experimental group and the control group. This resulted from the distribution of the students between treatment groups as well as the Hawthorne effect being equalized or nonexistent. There is no significant difference in the attitude of the students between the four teachers or the section times. However significant differences were found between the type of experiment (0.01 level in favor of the direct filmed technique experiments) and also among the factors between experimental, control, direct filmed technique and indirect filmed technique.

The analysis by the Kruskal-Wallis test does not indicate the direction or location of the significance but only the existence and level of significance. Consequently it was necessary to analyze the data further. The following null hypotheses were considered.

Ho 6.08 There will be no significant difference in the attitude of the students toward the selected experiments between the direct and indirect experiments of the experimental group and the direct and

126

IADEE LAII

MEAN OF S.50 VALUES AND RANK ORDER FOR OVERALL ATTITUDE OF STUDENTS TOWARD THE SELECTED EXPERIMENTS

	#2	. #3	#4	#5	#13	
100	6.0963 (29)	6.1134 (31)	6.3655 (53)	5.7063 (14)	5,8940 (21)	148
200	6.6996 (63)	6.3650 (51)	6.1925 (38)	6.1524 (34)	6.2833 (46)	232
300	6.5397 (59)	6.3824 (54)	6.1739 (37)	6.1697 (36)	6.7055 (64)	250
	SU	lb-total for experimen	tal group and dire	ct filmed technique		630
400	6.5470 (60)	6.3652 (52)	6.5698 (61)	5.7823 (17)	6.0353 (27)	217
500	6.2444 (43)	6.1296 (32)	6.0981 (30)	5.5325 (4)	5.8129 (18)	127
600	6.8459 (67)	6.9074 (69)	6.9166 (70)	6.3000 (49)	6.1932 (39)	294
700	6.7924 (66)	6.1637 (35)	6.8899 (68)	5.4995 (2)	6.3378 (50)	221
	sub total f	or control group and	direct filmed tech	nique experiments		859
total	for all groups	and direct filmed te	chnique experiment	S .		1489
	#11	#16	#17	#26	#35	
100	5.5521 (6)	5.8495 (19)	6,2972 (48)	5.8909 (20)	6.7296 (45)	138
200	5.6688 (12)	6.4912 (57)	5,5026 (3)	5,9225 (22)	6.2181 (41)	135
300	5.6283 (9)	6.6405 (62)	5.6558 (11)	5,9378 (24)	6.2592 (44)	150
	st	b-total for experimen	tal group and indi	rect filmed technique		423
400	5.7681 (16)	6.1438 (33)	5.9883 (25)	6.0371 (28)	6.1979 (40)	142
500	5.2796 (1)	5.5426 (5)	5.6032 (7)	5.7483 (15)	6.2926 (47)	75
600	5.9701 (26)	6.4000 (55)	5.9289 (23)	6.6333 (10)	6.5122 (58)	172
700	6.4604 (56)	5.7562 (65)	5.6987 (13)	6.6260 (8)	6.2307 (42)	184
	Sub-total	for control group and	indirect filmed t	echnique experiments		573
total	for all groups	and indirect filmed	technique experime	nts	· · · · · · · · · · · · · · · · · · ·	996
Grand	total for all	rankings				2485

() indicates rank order

`

TABLE LXIII

ANALYSIS OF ATTITUDES TOWARD SELECTED EXPERIMENTS BY KRUSKAL-WALLIS ONE WAY ANALYSIS OF VARIANCE

Topohor Trootmont M	,						
Group:	100	200	300	400	500	600	700
Sum of ranks Direct:	148	232	250	217	127	294	221
Nr items ranked:	139	125	150	5 1/2	5	5 172	5 197
Nr items ranked:	138 5	135 5	5	142 5	5	5	5
H = 20.1461 df = 13 Ho 6.01 rejected	** sig	nificar	nt at O.	10 leve	1		
Teacher: Sum of ranks: Nr items ranked	A 645 20		B 569 20		C 866 20		D 405 10
H = 5.1350 df = 3 Ho 6.02 not rejected	NS						
Treatment: Sum of ranks: Nr items ranked: H = -1.2578 df = 1 Ho 6.03 not rejected	NS	Exper 1	imental 1053 30		Contr 143 4	ol 2 0	
Experiment type: Sum of ranks: Nr items ranked: H = 7.0551 df = 1 Ho 6.04 rejected	** sign	Di 1 ificant	Lrect 1489 35 : at 0.0)1 <u>1</u> eve1	Indir 99 3	rect 96 95	~ - -
Time of Day (Sections) Sum or ranks: Nr items ranked: H = 0.8214 df = 2 N Ho 6.05 not rejected	1:MW 95 3 S	1:30 4 0	2:TuT 7	hull:30 26 20		3:TuTh 8	u 2:30 05 20
Class (Teacher and Trea	tment) 100	200	300	400	500	600	700
Sum of ranks:	286	376	400	359	202	466	405
Nr items ranked:	10	10	10	10	10	10	10
H = 9.3042 dI = 6 N Ho 6.06 not rejected	0						
Type and Treatment		Exper irect	imental Indire		Contr rect	ol Indirec	
<pre>Sum of ranks: Nr items ranked H = 7.0778 df = 3 * Ho 6.07 rejected</pre>	* signi	630 15 ficant	423 15 at 0.10	level	895 20	573 20	

TABLE LXIV

RANK ORDER OF ATTITUDES TOWARD THE SELECTED EXPERIMENTS BY EXPERIMENT TYPE

		Dir	ect Fi	1med I	echniq	ue		·	Indi	rect F	ilmed	Techniq	ue
Group:	2	3	4	5	13	·	<u> </u>	11	16	17	26	35	
100	8	10	24	3	6	51		4	14	29	15	27	89
200	29	22	16	12	19	98		10	.32	2	16	24	84
300	26	25	15	24	30	110		7	34	9	18	26	94
Experiment	al Tota	1				(259)							(267)
400	07	n n	20		7	20		10	2.2	10	01	. 00	0.0
400	27	23	20	4	1	09		TO	~ ~ ~ ~	19	21	23	90
500	18	11	9	2	5	45		1	, 3	5	12	28	49
600	32	34	35	20	17	138		20	30	17	8	33	108
700	31	13	33	1	21	99		31	35	11	6	25	108
Control To	tal					(371)							(363)

TABLE LXV

		Overall	Rank Sums		····
Group	Туре	Rank Sum	Direct Only	Indirect	Only
100	Direct	148	51		
100	Indirect	138		89	
200	Direct	232	98		
200	Indirect	135		84	
300	Direct	250	110		
300	Indirect	150		94	
400	Direct	217	89		
400	Indirect	142		98	
500	Direct	127	45		
500	Indirect	75		49	
600	Direct	294	138	×	
600	Indirect	172		108	
700	Direct	221	99		
700	Indirect	194		108	
Rank Sum:	Experimental:	1053			
	Control:	1432			
	U = 588				
	Z = 0.1424				
	P = 0.4443 NS	·			
Ho 6.08 n	ot rejected				
Rank Sum.	Direct:	 1 9 7 9	ι ω ,		
Kank ban.	Indirect.	996			
	II = 583	JJU			
	7 = 0.3465				
	P = 0.3669 NS				
Ho 6.09 n	ot rejected				
Park Sum	Direct Only.	-Exportmental.	250		
Kalik Juli	Direct Only.	Control.	239		
		11 = 130	J/1		
		7 = 0.3667			
		P = 0.3557 NS			
Ho 6.10 n	ot rejected	I = 0.5557 NS			
			· · · · · · · · · · · · · · · · · · ·	-	
kank Urde	r indirect Unly	Exper		20/	
			Δ1. //7	202	
		$\cup = 1$ 7 - 0	1000		
			4602 NS		
Ho 6.11 n	ot rejected	1~0	• 7 002 10		

ANALYSIS OF ATTITUDE TOWARD THE SELECTED EXPERIMENTS BETWEEN EXPERIMENTAL AND CONTROL GROUPS AND BY EXPERIMENT TYPE BY MANN-WHITNEY U TEST

indirect experiments of the control group.

Ho 6.09 There will be no significant difference in the attitude of the students toward the selected experiments between the direct experiments of the experimental and control group and the indirect experiments of the experimental group and the control group.

Ho 6.10 There will be no significant difference in the attitude of the students toward the selected direct filmed technique experiments between the experimental and control group.

Ho 6.11 There will be no significant difference in the attitude of the students toward the selected indirect filmed technique experiments between the experimental and the control group.

These hypotheses were tested by means of the Mann-Whitney U test upon data taken from Tables LXII and LXIV. The analysis and results are summarized in Table LXV.

The results from these analyses confirmed the previous hypotheses in that there indeed is no significant difference between the treatment groups in over all attitude toward the difficulty level. The result that there is a significant difference in attitude in favor of the direct filmed technique experiments both toward the experiments as a whole and toward the difficulty level was confirmed. However, it should be noted that neither treatment group significantly favored the direct filmed technique experiments nor did either treatment group favor the indirect filmed technique experiments.

The next step was to consider the attitude of the students toward the techniques involved in the experiments as well as their respective difficulty. Consequentally the following hypotheses correspond to those previously considered with respect to the overall attitude toward the experiments.

Ho 6.12 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments among the teachers, experiment type, and treatments.

Ho 6.13 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments among the teachers.

Ho 6.14 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the experimental and control groups.

Ho 6.15 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the direct filmed technique experiments and the indirect filmed technique experiments.

Ho 6.16 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the sections (time of day for the experiment).

Ho 6.17 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the subsections (teacher and treatment groups).

Ho 6.18 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty

132

with respect to the selected experiments between the experiment type and the treatment.

These hypotheses were also tested utilizing the Kruskal-Wallis One Way Analysis of Variance. Table LXVI contains a compilation of the data from Appendix F and Table LXVII contains a summary of the analysis of the hypotheses.

These results also show that there was no significant difference in the attitude of the student between the experimental and control groups. There was also no significant difference found between the teachers, or the time of day for the experiment. However again a difference was found between the attitude toward the first experiments encountered (direct filmed technique experiments) and the later experiments (indirect filmed technique experiments).

In order to determine the direction and degree to which these differences lie, the following null hypotheses were considered.

Ho 6.19 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the direct and indirect experiments of the experimental group and the direct and indirect experiments of the control group.

Ho 6.20 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected experiments between the direct filmed technique experiments of the experimental and control groups and the indirect filmed technique experiments of the experimental and control groups.

133
TABLE LXVI

MEAN	OF	S	50	VALUES	AND	RANK	ORDER	OF	ATTI	UDE	TOWARI) THE	DIFFICULTY	OF	THE	LABORATORY
		•				TECHN	NIQUES	FOR	THE	SELI	ECTED E	EXPER:	IMENTS		'	

·										
	#2		#3		#4		#5	#13		
100	5.4607	(28)	5,6686	(54)	5.4391	(35)	5.2364 (17)	5.3612	(29)	163
200	6.5918	(50)	5.7550	(60)	5.6458	(53)	5.5583 (47)	5.4479	(36)	246
300	6.3502	(38)	5.7372	(58)	5.7827	(61)	5.5297 (44)	5.1815	(13)	214
		sub-total	for exp	perime	ental group and	dired	ct filmed technique			633
400	6.5418	(46)	5.6419	(52)	5.7186	(57)	5.3208 (25)	5.2349	(16)	196
500	5.9584	(65)	5.8334	(62)	5.5166	(42)	5.1043 (9)	5.0707	(7)	185
600	6.7102	(69)	6.4166	(68)	5.9048	(64)	5.8750 (63)	5.2433	(20)	284
700	7.0000	(70)	6.2529	(67)	5.9732	(66)	5.1418 (12)	5.4972	(41)	256
		sub-total	for con	ntro1	group and dire	ct fil	lmed techniques			923
total	for bot	th groups and	direct	filme	d technique ex	perime	ents			1556
	#11		#16		#17		#26	#35		
100	5.0024	(5)	5.3903	(30)	5.7499	(59)	5.4941 (40)	5.4048	(31)	165
200	5.3157	(24)	5.4885	(39)	5.7172	(56)	5.5251 (43)	5.2738	(22)	184
300	5.4118	(33)	5.7160	(55)	5.2448	(21)	5.5595 (48)	5.3402	(27)	184
		sub-total	for con	ntro1	group and ind	irect	filmed techniques			533
400	5.0750	(8)	5.2871	(23)	5.3331	(26)	5.4286 (34)	5.6389	(51)	142
500	5.1292	(11)	4.8875	(2)	5.2184	(15)	5.2418 (19)	5.0335	(6)	53
600	4.9687	(3)	5.4625	(37)	5.5311	(45)	5.0000 (4)	5.2082	(14)	103
700	5.1167	(10)	5.5896	(49)	5.4076	(32)	4,8419 (1)	5.2370	(18)	110
		Sub-total	for con	ntrol	group and indi	rect i	filmed techniques			408
Total	for bot	th groups and	indired	et fil	med technique	experi	iments			941
Grand	Total i	for all ranki	ngs							2485

() indicates rank order

TABLE LXVII

ANALYSIS OF ATTITUDES TOWARD THE DIFFICULTY OF THE LABORATORY TECHNIQUES INVOLVED IN THE SELECTED EXPERIMENTS BY KRUSKAL-WALLIS ONE WAY ANALYSIS OF VARIANCE

Teacher, Treatment Type: Group:	100	200	300	400	500	600	700
Sum of ranks Direct: Nr items ranked:	163	246	214	196	185	284	256
Indirect: Nr items ranked: H = 23.3198 df = 13	165 5 **	184 5 signific	184 5 cant at	142 5 0.05 1e	53 53 vel	103 5	110 5
Ho 6.12 rejected							
Teacher: Sum or ranks: Nr items ranked: H = -0.1300 df = 3 N Ho 6.13 not rejected	A 666 20 S		В 668 20		C 785 20		D 366 10
Treatment: Sum of ranks: Nr items ranked: H = -0.1187 df = 1 N Ho 6.14 not rejected	S	Expe	rimenta1 1156 30	-	Conti 13	ro1 29 40	
Experiment Type Sum of ranks: Nr items ranked: H = 11.1886 df = 1	** s:	D	irect 1544 35 nt beyon	nd 0.001	Indi: 94 1evel	rect 41 35	
Time of day (Sections) Sum of ranks: Nr items ranked: H = 0.4791 df = 2 NS Ho 6.01 rejected	(1)	MW 1:30 953 30	(2)Tu	1Thull:3 768 20	0	(3)TuT	hu 2:30 764 20
Subsection (Teacher and '	Irea 100	tment) 200	300	400	500	600	700
<pre>Sum or ranks: Nr items ranked: H = 4.3202 df = 6 NS Ho 6.17 not rejected</pre>	328 10	430 10	398 10	338 10	238 10	387 10	366 10
Type and Treatment		Expe	rimental		Cont	rol	
Sum or ranks: Nr items ranked: H = 16.3195 df = 3 Ho 6.18 rejected	** S	623 15 ignifica	1ndire 533 15 nt beyor	ect Di 3 5 nd 0.001	921 20 level	1ndire 408 20	CT
							-

Ho 6.21 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect to the selected direct filmed technique experiments between the experimental and control groups.

Ho 6.22 There will be no significant difference in the attitude of the students toward the laboratory techniques and their difficulty with respect tot the selected indirect filmed technique experiments between the experimental and control groups.

These hypotheses were tested utilizing the Mann-Whitney U test. The data is taken from Tables LXVI and LXVIII and Table LXIX contains a summary of the analyses.

It should be noted that again there was no significant difference between the experimental and control groups for the attitude of the students toward the laboratory techniques involved in the experiments. There was also no significant difference in the attitude between the experimental and control groups for the direct filmed technique experiments. However a significant difference was found in favor of the experimental group when one compares the attitude of the students toward the techniques involved in the indirect filmed technique experiments. Thus neither treatment group favored the direct filmed technique experiments but the experimental group significantly (0.005 level) favored the indirect filmed technique experiments. This is indeed an important point. These experiments involve laboratory techniques in which the students were previously instructed (i.e., the direct filmed technique experiments) and are expected to routinely perform those techniques. It is apparent that the students in the control group found these later experiments more difficult than those students in the

TABLE LXVIII

	Dir	ect Fi	lmed 1	lechnic	lue Expe	eriments	 Indi	rect	Filmed	Techni	lque l	Experiments
Group	2	3	4	5	13		 11	16	17	26	35	
100	13	22	11	6	10	62	5	20	35	27	21	108
200	19 <u></u>	25	21	18	12	95	17	26	34	28	15	120
300	9	24	26	16	4	79	23	33	14	30	19	119
Experimental	l Tota	1				(236)						(347)
400	17	20	23	8	5	73	7	16	18	24	32	97
500	30	27	15	2	1	75	9	2	11	13	6	41
600	34	33	29	28	7	131	3	25	29	4	10	71
700	35	32	31	3	14	115	8	31	22	1	12	74
Control Tpta	a 1					(394)						(283)

RANK ORDER OF ATTITUDES TOWARD DIFFICULTY OF THE LABORATORY TECHNIQUES OF THE SELECTED EXPERIMENTS BY EXPERIMENT TYPE

TABLE LXIX

1.5

ANALYSIS OF ATTITUDE TOWARD THE DIFFICULTY OF THE LABORATORY TECHNIQUES INVOLVED WITH THE SELECTED EXPERIMENTS BETWEEN THE EXPERIMENTAL AND CONTROL GROUPS AND BY EXPERIMENT TYPE BY MANN-WHITNEY U TEST

· <u></u>			Ran	k Sums
		Overal1	Direct	Indirect
Group	Туре	Rank Sum	Only	Only
100	Direct	163	62	<u> </u>
100	Indirect	165	02	108
200	Direct	246	95	100
200	Indirect	184		120
300	Direct	214	79	
300	Indirect	184		119
400	Direct	196	73	
400	Indirect	142		97
500	Direct	185	75	
500	Indirect	53		41
600	Direct	284	131	
600	Indirect	103		71
700	Direct	256	115	
700	Indirect	110		74
Rank Sum.	Experimental	• 1156		
lant bant	Control:	1329		
	U = 509	1019		
	Z = 1.0800			
	P = 0.1401 N	S		
Ho 6.19 n	otrejected			
Pople Sum.	Dimost	1556		
Kalik juli.	Indiroct.	2550 QA1		,
	II = 200	, 941		
	7 = 3 6824			
	P = 0.0002 *	* significant		
Ho 6.20 r	ejected	bignit icunt		
Rank Sum,	Direct Only:	Experimental:	236	
		Control:	394	
		U = 116		
		Z = 1.1333		-
		P = 0.1292 NS		
Ho 6.21 n	ot rejected			
Rank Sum	Indirect Only	• Evneriment	 al·	- 347
- Dung	indificet only	Control:		283
		U = 73		205
		Z = 2.5667		
		P = 0.0051	** significant	
Ho 6.22 r	ejected		. .	

experimental group who had access to the single concept loop films.

In summary the students attitude toward the experiments (not the course as a whole) does not differ for the different teachers, the time of day, or the treatment groups. Overall the students prefer the earlier experiments over the later experiments in which they are supposed to rely upon what they have learned. The major difference found is that those students who had access to the single concept loop films felt that these later experiments were less difficult than those students in the control group who did not have access to the films.

Laboratory Proficiency

The proof of laboratory proficiency should be a combination of correct set-up, high purity of yield, optimum percent yield, and positive results on unknown analyses. These data were reported, when applicable, on the data cards. However, their interpretation would require the wisdom of Solomon and the patience of Job. If melting point becomes the criteria for purity (gas chromatography, TLC, infrared, and NMR were not available for the Chem 3015 students) it is diffilcult to evaluate which of the following would represent the better result: a single value such as 89.9°C for the melting point of mdinitrobenzene or a range 89.4⁰-89.9⁰C reported by a careful student. Upon questioning, the former would reply that the sample had a sharp melting point. This would be the proper "textbook" answer, however, this experiment will yield a sample which is not sufficinetly pure to produce that sharp a melting point. Percentage yields can be accurately computed, but usually the higher percentages are damp or otherwise contaminated. The unknowns were direct and straightforward with no

tricks, thus the majority of the students submit a correct analysis.

Until precise methods are agreed upon and the correlation between purity and percentage yield is also established for comparison purposes, it is quite difficult to compare the results of these experiments with a more than pass-fail, or good-fair-bad categories.

The major purpose of this study was to determine the effects of the single concept loop films and determine if they were effective in enabling the student to properly set up and use his equipment. For this reason the JH₂S examination was administered to ascertain whether differences would be found between those students who watched the films and those who did not. The overall results of the JH₂S examination may be seen in Table LXX. It would be expected that students in the experimental group should score higher than those in the control group. The following null hypotheses were considered.

Ho 7.01 There will be no significant difference in the means of the JH_2S Exam scores between the experimental and control groups.

Ho 7.02 There will be no significant difference in the means of the JH_2S Exam scores between the experimental and control groups of each teacher.

It was shown that the slight imbalance of females in the experimental group did not effect the overall differences in laboratory breakage. One might wonder what effect the female students would have on the JH₂S Examination scores. This question generated the following null hypotheses.

Ho 7.03 There will be no significant difference in the means of the JH_2S examination scores of the female students between the experimental and control groups.

Group	N	x	Σx^2	ΣΧ	Σx^2	s ²
100	22	20.1819	9258	444	297.2728	14.1558
200	22	21.1364	10071	465	242.5909	11.5519
300	22	25.4545	14600	560	345.4546	16.4502
Experiment Group	al 66 (22.2576	33929	1469	1232.6212	18.9634
400	19	20.7895	8523	395	311.1579	17.2865
500	15	20.4667	6357	307	73.7334	4.2666
600	19	23.0000	10255	437	204.0000	11.3333
700	21	19.5714	8273	411	229.1429	11.4571
Control Group	74	20.9459	33408	1550	941.7838	12.9011
Total	140	21.5643	67337	3019	2234.4214	16.0750

RESULTS FROM ${\tt JH}_2{\tt S}$ EXAMINATION BY SUBSECTION

Kuder-Richardson Formula 21, r = 0.7328

TABLE LXXI

SUMMARY OF RESULTS FROM ANALYSIS OF RESULTS OF ${\rm JH}_2{\rm S}$ EXAM

Criteria	N	X	s ²	t	· · · · · · · · · · · · · · · · · · ·
Experimental	66	22.2576	18.9634	1.9508	**significant at .05
Control	74	20.9459	12.9011		Ho 7.01 rejected
100 400	22 19	20.1819 20.7895	14.1558 17.2865	-0.4912	NS
200 500	22 15	12.1364 20.4667	11.5519 5.2666	0.6559	NS
300 600	22 19	25.4545 23.0000	16.4502 11.3333	2.0879	**significant at 0.025

TABLE LXXII

SUMMARY OF RESULTS OF JH_2S EXAMINATION SCORES BY SEX

Comparison	N	. X	s ²	t	probability
Experimental group females only	14	20.8572	19.5165	0.9106	NS
Control group females only	8	19.2500	9.0714	Но 7.03	not rejected
Experimental group males only	52	22.6346	18.5109	1.9876	** 0.05
Control group males only	66	21.2727	7.4937	Но 7.04	rejected
Males only					
100 200	20 17	20.3500 21.0588	15.2921 18.6838	-0.4723	NS
200 500	15 15	22.2667 20.4667	8.6381 5.2667	1.8692	** 0.05
300 600	17 15	25.6471 23.5333	16.9931 10.6952	1.6109	** 0.01
				Но 7.05	rejected
200 500 300 600	15 15 17 15	22.2667 20.4667 25.6471 23.5333	8.6381 5.2667 16.9931 10.6952	1.8692 1.6109 Но 7.05	** 0.05 ** 0.01 rejected

Ho 7.04 There will be no significant difference in the means of the JH_2S examination of the male students between the experimental and control groups.

Ho 7.05 There will be no significant difference in the means of the JH_2S examination scores of the male students between the experimental and control group classes of each teacher.

It is found that Ho 7.08 was tenable, thus there was no difference between the female students. However, eliminating the female students increased the value of t for the overall group, thus leaving the females in each group had a conservative effect upon the results consequently strengthening the case for single concept films.

One would expect to find a difference in the JH₂S examination scores with respect to the amount of film viewing. This question generates the following null hypothesis.

Ho 7.06 There will be no significant difference in the means of the JH_2S Examination scores among those students watching a greater number of films (13 or more), those watching a moderate number (7 to 12), those watching few (0 to 6) and those in the control group watching none.

This analysis may be accomplished by a single classification analysis of variance. Fifteen scores were selected at random for each group. It can be seen from the results in Table LXXIII that the mean score increases rapidly with increased viewing.

Therefore the null hypothesis was untenable. Thus the difference in the JH₂S Examination score was dependent upon viewing the single concept loop films. These results were from a random sample of scores. Perhaps there is also a difference which can be attributed to the

TABLE LXXIII

ANALYSIS OF JH₂S SCORES BY FILM VIEWING. RANDOM SAMPLES OF FIFTEEN SCORES FOR EACH VIEWING CATEGORY

	13 or more	7 to 12	0 to 6	none (control)	Totals
Σx^2	9749	7480	6707	5791	29727
ΣΧ	377	326	313	293	1309
x	24.1333	21.7333	20.8667	19.5333	21.8167
		df	SS	ริ	F
	Between	3	256.8501	85.6167	5.256**
	Within	56	912.1332	16.2881	
	Total	59	1168.9833		

**significant beyond 0.01 level

Ho 7.06 rejected

teacher. The following null hypotheses were considered.

Ho 7.07 There will be no significant difference between the mean JH₂S examination scors between those who watched more (13 or more) films, those who watched less (12 or less) and those in the control group who watched none.

Ho 7.08 There will be no significant difference between the means of the JH_2S Examination scores between the teachers who taught both experimental and control groups.

Ho 7.09 There will be no interaction between the teachers and the film viewing.

In order to utilize a two way analysis of variance, equal cell frequencies are necessary, five examination scores were selected for each category at random. The results are shown in Table LXXIV.

Thus the null hypotheses were untenable and it was concluded that both the teacher and the viewing habits contributed to success on the examination.

Another interesting aspect to consider is the examination itself. Table LXXV indicates the particular laboratory technique tested with each question on the examination. The list also includes the relevant films and whether the technique is covered specifically in the particular film. Table LXXVI and LXXVII show the number and percentage of students answering each question correctly and whether or not they watched the relevant films. We would expect a higher percentage of those students who watched the relevant films to answer a particular question correctly. This led to the following null hypothesis.

Ho 7.10 There will be no significant difference in the percentage of students answering questions on the JH_2S Examination correctly among

those who watched the relevant films and those who did not both in the control and in the experimental groups.

Table LXXVIII shows the tabulation of percentage of students answering each question correctly in the three categories. Friedman Two Way Analysis of Variance was used. The hypothesis is untenable and was rejected. Thus confirming the belief that watching the relevant films had a positive effect upon answering the particular questions correctly.

TABLE LXXIV

ANALYSIS OF JH₂S SCORES BY FILM VIEWING AND TEACHER. RANDOM SAMPLES OF FIVE SCORES FOR EACH CATEGORY

	Viewed 13 or more	7 to 12	6 or less	Viewed Non
Teacher A	2720 116 23.20	2018 100 20.00	2038 100 20.00	6776 316 07
Teacher B	2184 104 20.80	1874 96 19.20	1848 96 1920	5906 296 19.73
Teacher C	4240 144 28.80	3047 123 24.6	1989 99 19.80	9276 366 24.40
Σx^2 Σx \overline{x}	9144 364 24.27	6939 319 21.27	5875 295 19.67	21958 978 21.73
Film Viewing Teacher Interaction Within Total	df 2 2 4 36 44	SS 163.60 173.33 81.87 284.00	<u>5</u> 5 81.80 86.67 20.47 7.89	F 10.367 ** 10.985 ** 2.594 NS

** significant beyond 0.01 level Ho 7.07 rejected

Ho 7.08 rejected

Ho 7.09 not rejected

TABLE LXXV

TEST QUESTIONS KEYED TO EXPERIMENTS AND FILMS

<u> </u>	• • • • • • • • • • • • • • • • • • •		Covered	<u> </u>
Question	Technique		in film	Film Number
· · · · · · · · · · · · · · · · · · ·	Mothoda of heating (high ha &		· · · · · · · · · · · · · · · · · · ·	<u></u>
–	flammable)		No	7
2	Methods of heating (low hp & no	n -		7
-	flammable)	11	No	7
3	Methods of heating (warming)		No	7
4	Filling distilling flask		Yes	, 13
5	Addition of boiling chins		Yes	6
6	Methods of collecting (flammabl	e)	Indirectly	13
7	Methods of collecting (reammed)	2)	Indirectly	13
8	Methods of collecting (whats		Indificulty	
	wrong)		Indirectly	13
9	Thermometer placement		Yes	13.15
10	Steam distillation		Yes	18
11	Thermometer placement		Yes	13
12	Thermometer placement		Yes	13
13	Thermometer placement		Yes	13
14	Thermometer placement		Yes	13
15	Melting point		Yes	9.10
16	Melting point		Yes	9.10
17	Melting point		Yes	9.10
18	Rapid filtration		Yes	4
19	Rapid filtration		Yes	4
20	Rapid filtration		Yes	4
21	Distillation heating methods		Yes	7.12.13
22	Distillation heating methods		Yes	7.12.13
23	Methods of collecting		Yes	13
24	Methods of collecting		Yes	13
25	Methods of collecting		Yes	13
26	Methods of collecting		Yes	13
27	Concentrating on aqueous soluti	on	No	7
28	Heating a flammable solvent		Indirect	7
29	Ether removal from ether extrac	t	Yes	23
30	Drilling a cork		Yes	11
31	Placement of tubing on a conden	ser	Yes	11
32	Clamps in distillation		Yes	12
33	Set up in distillation		Yes	12
34	Filling a distillation flask		Yes	13
35	Methods of separating		Implied,	1,12,13,18,
36	Methods of separating	requi	ires inductive	19,20,21,
37	Methods of separating	reaso	oning from	23,22
38	Methods of separating	films	3	
39	Removal of decolorizing carbon		Yes	1,3
40	Removal of CaCl, from ether			
	solution		Yes	22(19-23 series)

Question	Technique	Covered specifically in film	Film Number
41	Rapid filtering	Vec	4
42	Diaxotization (methods of	105	-
	addition)	Yes	25 or 26
43	Determination of acidity or		
	basicity	Yes	17A,17B,17C
44	Sodium removal	No	
45	Nitrogen test in Na fusion	Yes	17A
46	Esterification	Implied	(5)
47	Diazotication reaction	Implied	(25 or 26)
48	Solvent heating	Implied	(7)
49	Saponification	Implied	(4)
50	Waste removal	No	
	- · · · · · · · · · · · · · · · · · · ·		

TABLE LXXV (Continued)

TABLE LXXVI

NUMBER OF INDIVIDUALS GIVING CORRECT AND INCORRECT ANSWERS TO QUESTIONS ON EXAMINATION WITH RESPECT TO WHETHER THEY WATCHED OR DID NOT WATCH THE RELEVANT FILMS

<u> </u>			Group	100		(Group	200		,	Grou	p 300		· - ··· - ·- ·		Totals			
Question	n Film	Wat	ched	Did	not	Wate	ched	Did	not	Wat	ched	Did	not	Watc	hed		Did	noť	
Nr	Nr.	OK.	X	OK.	X	OK	X	OK	X	OK	··X	OK	Х	OK	Х	%	OK	. X	%
1.	7	4	7	0	8 -	0	7	1	8	2	5	4	10	6	19	24.00	5	26	16.13
2.	7	1	10	1	7	1	6	1	8	1	6	4	10	3	22	12.00	6	25	19.35
3.	7	7	4	4	4	2	5	7	2	7	0	12	2	16	9	64.00	23	6	79.31
4.	13	0	11	0	8	0	7	1	8	0	17	0	4	0	35	00.00	1	20	04.76
5.	6	10	- 2	3	4:	3	4	5	4	10	5	6	0	23	11	67.65	14	12	53.85
6.	13	2	9	1	7	1	6	1	8	1	16	0	4	4	31	11.43	2	19	09.52
7.	13	6	5	1	7 -	4	3	4	5	8	9	2	2	18	17	51,43	7	14	33.33
8.	13	5	6	4	4	3	4	6	3	12	5	2	2	20	15	57.14	12	9	57.14
9	13 or 15	3	10	3	3	0	7	2	7	9	8	0	4	12	25	32.43	5	14	26.32
10.	18	2	3	2	12	0	3	5	8	5	11	0	5	7	17	29.17	7	25	22.58
11.	13	7	4	8	0	7	0	9	1	16	1	3	1	30	5	85.71	19	2	90.48
12.	13	4	7	6	2	6	1	6	3	13	4	4	0	23	12	65.71	16	5	76.19
13.	13	7	4	6	2	5	2	7	2	16	1	4	0	28	7	80.00	17	4	80.95
14.	13	10	1	5	3	5	2	7	2	13	4	2	2	28	7	80.00	17	4	80.95
15.	9,10	5	11	0	3	4	5	6	1	9	8	2	2	18	34	34.62	8	6	57.14
16.	9,10	0	16	0	3	1	8	0	7	1	16	0	4	2	40	04.76	0	14	00.00
17.	9,10	6	10	0	3	5	4	4	3	8	9	2	2	19	23	45.24	6	8	42.86
18.	4	2	13	2	4	3	2	4	7	10	5	4	2	15	20	42.86	10	13	43.48
19.	4	8	5	2	4	3	2	7	4	13	2	4	2	24	9	72.73	13	10	36.52
20.	4	6	9	3	4	2	3	3	8	5	10	2	4	13	22	37.14	8	16	33.33
21.	7,12,13	7	9	1	7	4	4	2	6	4	9	0	1	13	22	37.14	3	14	17.65
22.	7,12,13	2	9	0	8	2	6	1	7	1	12	1	0	5	27	15.63	2	15	11.76
23.	13	9	2	6	2	5	2	7	2	17	0	3	1	31	4	88,57	16	5	76.19
24.	13	7	4	6	2	4	3	5	4	9	8	0	4	20	15	57.14	11	10	52.38
25.	13	1	10	0	8	1	6	1	8	6	11	0	4	8	27	22.86	1	20	04.76
26.	13	6	5	0	8	3	4	6	3	6	11	4	0	15	20	42.86	10	11	47.62
27.	7	4	7	3	5	1	6	5	4	4	3	6	8	9	16	36.00	14	17	45.16

.

TABLE LXXVI (Continued)

.		<u>i</u>	Grou	p 100	· · · · · ·	(Grou	p 200				Grou	p 300		•		Totals			
Question	Film	Wat	ched	Did	not	Wate	ched	Did	not	1	Wat	ched	Did	not	Watc	hed		Did	not	:
Nr.	Nr.	OK	Х	OK	Х	OK	Х	OK	X	(ОК	Х	OK	Х	OK	X	%	OK	X	%
28.	7	5	6	5	3	3	4	3	6		6	1	8	6	14	11	56.00	16	15	51.61
29.	23	1	0	7	11	2	2	5	7		8	14	7	0	11	16	40.74	19	18	51.35
30.	11	5	3	2	9	1	2	2	11		6	1	13	1	12	6	66.67	17	21	44.74
31.	5,12,15	9	8	2	1	5	6	3	2		14	7 -	0	0	28	21	57.14	5	3	62.50
32.	12	10	2	5	2	9	1	3	3		15	3	3	0	34	6	85.00	11	5	68.75
33.	12	1	12	1	5	2	5	3	6		4	15	1	2	7	32	17.95	5	13	27.78
34.	13	6	5	3	5	1	6	1	8		9	8	4	. 0	16	19	45.71	8	13	38.10
35.		8	5	5	1	7	1	3	5		17	4	0	0	32	10	76.19	8	6	57.14
36.		6	7	2	4	~ 3	5	1	7		11	10	0	0	20	22	47.62	3	11	21.43
37.		5	8	-3	3	6	2	1	7		10	11	0	0	21 :	21	50.00	4	10	28.57
38.		5	8	0	6	0	8	1	7		5	17	0	0	10	32	23.81	1	13	07.14
39.	1,3	3	12	0	4	0	7	1	3		2	6	0	13	5	30	14.29	1	19	05.00
40.	22	1	4	0	14	2	4	8	8		2	5	2	12	5	13	27.78	10	34	22.73
41.	4	14	1	4	0	4	1	10	1		15	0	4	2	33	2	94.29	18	3	85.71
42.	25,26	0	0	3	16	0	0	0	16		1	0	7	13	1	0.	10.00	10	45	18.18
43.	A,B,C	6	2	4	7	2	4	5	5		7	4	5	5	15	10	60.00	14	17	45.16
44.	17			(17	2)			(9	7)				(13	8)				(39	17)	69.64
45.	17A	1	7	0	11	0	6	0	10		1	10	1	9	2	23	08.00	1	30	03.23
46.	(5)	2	16	0	1	2	8	2	4		9 ·	12	0	1	13	36	26.53	2	6	25.00
47.	(7)	2	9	4	4	1	6	3	6		2	5	8	6	5	20	20.00	15	16	48.39
48.	(7)	3	15	0	1	2	8	2	4		7	15	0	1	12	38	24.00	.2	6	25.00
49.	(4)	7	11	0	1	7	3	3	3		12	9	1	0	26	23	53.06	4	4	50.00
50.	none			(17	2)			(15	1)				(19	2)			i.,	(51	5)	91.07

TABLE LXXVII

NUMBER OF INDIVIDUALS IN THE CONTROL GROUPS GIVING CORRECT AND INCORRECT ANSWERS TO QUESTIONS ON ${\rm JH}_2{\rm S}$ EXAMINATION

· · · · · · · · · · · · · · · · · · ·	Grou	p 400	Group	500	Group	600	Group	700	Tota	1s .	
Question	ОК	X	OK	Х	OK	Х	OK	X	OK	Х	% Correct
1.	3	16	4	11	8	11	3	18	18	56	24,32
2.	2	17	0	15	4	15	3	18	. 9	65	12.16
3.	13	6	14	1	16	3	15	6	58	16	78.38
4.	1	19	1	14	0	19	0	21	2	72	2.70
5.	12	7	8	7	11	8	14	7	45	29	60.81
6.	3	16	1	14	3	16	1	20	8	66	10.81
7.	7	12	7	8	15	4	10	11	49	35	66.22
8.	12	7	7	8	12	7	15	6	46	28	62.16
9.	6	13	1	14	11	8	5	16	23	51	31.08
10.	4	15	3	12	6	13	4	17	17	57	22.97
11.	16	3	15 ,	0	17	2	16	5	64	10	86.49
12.	14	5	13	2	12	7	18	3	57	17	77.03
13.	16	3	13	2	15	4	17	4	61	13	82.43
14.	10	9	4	11	10	9	17	4	41	33	55.41
15.	3	16	5	10	4	15	0	21	12	62	16.22
16.	0	19	1	14	0	19΄	1	20	2	72	2.70
17.	5	14	5	10	6	13	2	19	18	56	24.32
18.	13	6	7	8	11	8	11	10	42	32	56.76
19.	10	9	10	5	10	9	13	8	43	31	58.11
20.	3	16	7	8	4	15	4	17	18	56	24.32
21.	2	17	6	9	3	16	7	14	18	56	24.32
22.	0	19	0	15	3	16	1	20	4	70	5.41
23.	14	5	10	5	15	4	19	2	58	16	78.38
24.	9	11	6	9	7	12	13	8	34	40	45.95
25.	1	18	1	14	. 6	13	2	19	10	64	13.51
26.	8	11	10	5	11	8	7	14	36	38	48.65
27.	4	15	3	12	5	14	4	17	16	58	21.62

	Grou	p 400	Grou	500	Grou	p 600	Grou	o 700	Tota	als	
Question	OK	X	OK	Х	OK	Х	ОК	Х	OK	X	% Correct
28.	11	8	7	8	3	16	14	7	35	39	47.30
29.	14	5	- 9	6	10	9	9	12	42	32	56.76
30.	4	15	2	13	17	2	1	20	24	50	32.43
31.	8	11	10	5	12	7	13	8	43	31	58.11
32.	12	7	9	6	17	2	10	11	48	26	64.86
33.	0	19	3	12	3	16	6	15	12	62	16.22
34.	7	12	5	10	3	16	4	17	19	55	25.68
35.	12	7	10	5	15	. 4	. 17	4	54	20	72.97
36.	12	7	6	9	5	14	9	12	32	42	43.24
37.	12	7	6	9	3	16	10	11	31	43	41.89
38.	6	13	1	14	5	14	4	17	16	58	21.62
39.	4	15	0	15	3	16	1 .	20	18	56	24.32
40.	2	17	-1	14	1	18	2	19	6	68	8.11
41.	17	2	13	2	18	1	18	3	66	8	89.19
42.	4	15	2	13	6	13	. 2	19	14	60	18.92
43.	7	12	9	6	16	3	2	19	34	38	45.95
44.	15	4	8	7	10	9	9	12	42	32	56.76
45.	1	18	1	14	0	19	3	18	5	69	6.76
46.	5	14	5	10	11	8	6	15	22	52	29.73
47.	12	7	7	8	11	8	16	5	46	28	62.16
48.	5	14	3	12	3	16	- 5	16	16	58	21.62
49.	16	3	9	6	11	8	5	16	41	33	55.41
50.	17	2	12	3	18	1	19	2	66	8	89.19

TABLE LXXVII (Continued)

TABLE LXXVIII

Question Number	Watch Film	ned ns	Did N Watc	Control		
1	24.00%	(2)	16.13%	(3)	24.32%	(1)
2	12.00	(3)	19.35	(1)	12.16	(2)
3	64.00	(3)	79.31	(1)	78.38	(2)
4	0.00	(3)	4.76	(1)	2.70	(2)
5	67.65	(1)	53.85	(3)	60.81	(2)
6	11.43	(2)	9.52	(3)	10.81	(2)
7	51.43	(2)	33.33	(3)	66.22	(1)
8	57.14	(2.5)	57.14	(2.5)	62.16	(1)
9	32.43	(1)	26.32	(3)	31.08	(2)
10	29.17	(1)	22.58	(3)	22.97	(2)
11	85.71	(3)	90.48	(1)	86.49	(2)
12	65.71	(3)	76.19	(2)	77.03	(1)
13	80.00	(3)	80.95	(2)	82.43	(1)
14	80.00	(2)	80.95	(1)	55.41	(3)
15	34.62	(2)	57.14	(1)	16.22	(3)
16	4.76	(1)	0.00	(3)	2.70	(2)
17	45.25	(1)	42.86	(2)	24.32	(3)
18	42.86	(3)	43.48	(2)	56.76	(1)
19	72.72	(1)	56.52	(3)	58.11	(2)
20	37.14	(1)	33.33	(3)	24.32	(2)
21	37.14	(1)	17.65	(3)	24.32	(2)
22	15.63	(1)	11.76	(2)	5.41	(3)
23	88.57	(1)	76.19	(3)	78.38	(2)
24	57.14	(1)	52.38	(2)	49.95	(3)
25	22.86	(1)	4.76	(3)	13.51	(2)
26	42.86	(3)	47.62	(2)	48.65	(1)
27	36.00	(2)	45.16	(1)	21.62	(3)
28	56.00	(2)	51.61	(3)	47.30	(1)
29	40.74	(3)	51.35	(2)	56.76	(1)
30	66.67	(1)	44.74	(2)	32.43	(3)

PERCENT OF STUDENTS ANSWERING EACH QUESTION CORRECTLY ON THE JH₂S EXAMINATION

Question	Watch	ned	Did	Not		<u>.</u>
Number	Film	ns	Wat	ch	Cont	rol
31	57.14	(3)	62.50	(1)	58.11	(2)
32	85.00	(1)	68.75	(2)	64.84	(3)
33	17.95	(2)	27.78	(1)	16.22	(3)
34	45.71	(1)	38.10	(2)	25.68	(3)
35	76.19	(1)	57.14	(3)	72.97	(2)
36	47.62	(1)	21.43	(3)	43.24	(2)
37	50.00	(1)	28.57	(3)	41.89	(2)
38	23.81	(1)	7.14	(3)	21.62	(2)
39	14.29	(2)	5.00	(3)	24.32	(1)
40	27.78	(1)	22.73	(2)	8.11	(3)
41	94.29	(1)	85.71	(3)	89.19	(2)
42	100.00	(1)	18.18	(3)	18.92	(2)
43	60.00	(1)	45.16	(3)	45.95	(2)
44	69.64	(1.5)	69.64	(1.5)	56.76	(3)
45	8.00	(1)	3.23	(3)	6.76	(2)
46	26.53	(2)	25.00	(3)	29.73	(1)
47	20.00	(3)	48.39	(2)	62.16	(1)
48	24.00	(2)	25.00	(1)	21.62	(3)
49	53.06	(2)	50.00	(3)	55.41	(1)
50	91.07	(1.5)	91.07	(1.5)	89.19	(3)
Sum of ranks:	·····	(85.5)	<u></u>	(113.5)		(101)

 $x_r^2 = 7.87 ** (df = 2)$

**significant at 0.02 level

Ho 7.07 rejected

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The purpose of this study was to determine the effects of the use of single concept loop films on pre-laboratory instruction in introductory organic chemistry. A series of twenty-six single concept loop films were produced by the author to depict techniques determined by his observations of a similar introductory organic chemistry laboratory section. Those techniques in which the students had difficulties as well as all of the laboratory setups requiring the use of standard taper glassware formed the basis for the objectives in the films. The films were produced on super 8 mm color film and placed in Technicolor Magi-Cartridges after editing.

The evaluation of the films was accomplished under actual classroom conditions and use. Three Technicolor 810 projectors were available for the students to use In their laboratory. One subsection during each laboratory period was used for the experimental class and the remaining subsections served as a control. The Hawthorne effect was equalized in each class by collecting data cards from all students. Each was told that this was part of a project designed to improve the course. In fact, students in the author's control class seemed eager to help. They dutifully wrote down their time spent, the equipment which they broke, and the other pertinent data. During the following

semester, moreover, students from this particular control class were asking how the project came out. In the experimental classes, the purpose of the films and their operation was explained without subsequent elaboration or reinforcement. The strategy was to use a low key approach. The evaluation of the films was made through analyses of the actual time necessary to perform the experiments, the breakage of laboratory equipment, the accidents, attitude, self-appraisal of laboratory techniques, and the JH₂S Laboratory Technique Examination.

The results from the statistical analyses of the group showed that the group was randomly distributed with respect to classification, college of major, high school chemistry background, semester hours of college chemistry, semester hours of chemistry laboratory credit, chemistry grade point average, and overall grade point average. Only sex was found to be nonrandomly distributed. There were slightly more women in the experimental group. However, it was discovered that the women scored slightly lower on the JH_2S Examination than the men causing a conservative effect upon the overall results. The laboratory breakage difference between the women in the experimental and control groups was not significant except the number of items broken per female attending class which was significant in favor of the control group. This would also have a conservative effect upon the results. One can, therefore accept the findings which are in favor of the experimental group.

It was discovered that more experimental time differences occurred among teachers than between treatments. However, it was found that there was no overall differences in the amount of time necessary to perform an experiment between those students who had the techniques

explained to them prior to commencing the experimentation and those who were given the basic precautions and objectives but had to learn the techniques from viewing the films. It must be noted that not all of the students in the experimental classes watched the films. Some students watched the films. Others waited until the experiments were underway and tried to imitate the techniques of those who had watched the films. The experimental times reported did include the time spent in watching the films. However, most of the films were less than four minutes in length and would not add significantly to experimental times. In fact, students in the experimental classes did not require a longer time to perform the experiments, but appeared to proceed efficiently.

Fortunately no serious accidents occurred during the semester, although they are not uncommon in organic chemistry laboratories. All of the accidents which did occur were, however, minor. These consisted of minor surface burns, small cuts, splashed acid, a small acetone fire (although no ether fires), and only one incident of a flask of chlorosulfonic acid turning over in the ice bath. If one were to consider all of these accidents of equal magnitude, then there was no significant differences in the accidents between groups. A trend may be indicated by the fact that in two of three cases the students in the experimental class of a given teacher had less than the expected¹ number of accidents when compared to the corresponding control class which had more accidents than expected.

Significant differences did result in the amount and kind of

¹Chi square analysis.

laboratory breakage. Table LXXIX summarizes the results from the breakage study. It should be noted that all criteria where differences did occur favored the experimental group. (Less breakage or lower cost is considered to be favorable.) There is no significant difference in any of the factors for the non-filmed technique experiments. This is to be expected: the groups were randomly distributed; they were as equal as one can expect for a random distribution. If all factors are equal and the experiment does not require that the techniques which were shown by the films, one would expect no differences in the amount or kind of breakage. One finds no significant difference in the overall number of items broken by student for the direct filmed technique experiments or the indirect filmed technique experiments. One finds significance, however, at the 0.04 level in the number of items per student of standard taper glassware broken. The cost-per-item-perstudent (a factor that considers the cost of items broken in proportion to the number of students) shows significance in favor of the experimental group at the 0.04 level. In the direct filmed technique experiments which came at the first of the semester there is a significant difference only at the 0.08 level. For the indirect filmed technique experiments which follow later in the term, the level of significance has increased to 0.02, which indicates that the care of the students (their technique) was improving. This is borne out by the mean cost per item broken. There is significance at the 0.08 level overall as well as for the direct filmed technique experiments. In the experimental group, the indirect filmed technique experiments show even more favorable significance at the 0.04 level.

Thus one may summarize the effects of the single concept films

upon the breakage of laboratory equipment by indicating that the number of items of standard taper glassware is significantly less and the impact of the films has a lasting effect: the cost-per-item-per-student factor decreases for the later experiments which require techniques and manipulations taught earlier by SCLF.

TABLE LXXIX

SUMMARY OF STATISTICAL SIGNIFICANCE OF BREAKAGE FACTORS

	Cost per student	number of items broken per student	cost per item broken per student	mean cost per item broken
All experiments	NS	NS	.04	.08
Direct filmed technique experiments	.08	NS	.08	.08
Indirect filmen technique experiments	NS	NS	0.02	.04
Non-filmed technique experiments	NS	NS	NS	NS
Standard Taper glassware	.08	.04	NS	NS

**All significance in favor of the use of single concept loop films.

The results from the self appraisal of laboratory techniques questionnaire yielded a nonsignificant negative correlation. This

result indicated that the students who claim that they are proficient in a particular task frequently are not as proficient as they indicate, while those who actually are quite adept tend to be modest about their proficiency. The lack of significance in the results is a result that some of the students did, in fact, appriase their abilities accurately.

The attitude of the students did not differ significantly between the experimental and control groups neither did it vary much among the different teachers nor did it vary much among the times of day. The entire group liked the earlier experiments (direct filmed technique experiments) better than the later experiments (indirect filmed technique experiments). The attitude of the students specifically toward the difficulty of the laboratory techniques did not differ from their attitude toward the experiments as a whole. However those students in the experimental group felt that the techniques required for the later experiments were significantly less difficult. Only one factor was different. Specifically, those students in the experimental group found the techniques required in these later experiments were not as difficult as did the students in the control group. This result indicated another residual effect of the use of SCLF.

Results of the JH₂S Examination indicate that students viewing SCLF learn enough to enable them to cope with new situations. Some of the photographs used in the JH₂S Examination depicted incorrect or slightly unsafe equipment setups and procedures. (These setups did not appear in the SCLF.) Those students who watched more films scored significantly higher than other students in their group and higher than those in the control group who saw none of the films. The narrow range of scores on the examination makes it doubtful that the examination

covered particular points treated only in the films but not in the control classes. The examination was constructed from the techniques needed for the course and not specifically from the objectives for the films.

Conclusions

1. Students given basic objectives of the experiment and allowed to learn their manipulative techniques by watching single concept loop films required no more time for actual experimentation than students who watched the technique performed as a demonstration. Despite the time and effort required by the instructor to assemble the equipment and demonstrate its use, SCLF's save the instructor this time and effort and require no additional time from the students.

2. The use of SCLF's reduced significantly the breakage of standard taper glassware.

3. The proportion of students having incidents of laboratory equipment breakage was significantly less for those students who had access to the single concept loop films.

4. The use of SCLF for the initial exposure to a set of laboratory techniques resulted later in an overall significant reduction in breakage when these same techniques were encountered again.

5. The attitude of the students toward the experiments did not differ between the experimental and control groups. The students preferred the experiments in which laboratory techniques were introduced (by either demonstration or SCLF) rather than those experiments in which the students had to rely upon techniques which they had previously been instructed. 6. The students in the control group found the techniques required in the later experiments significantly more difficult than the students who had access to the SCLF. It is apparent that the students in the experimental group had gained confidence in these techniques and could more readily put them into practice.

7. The residual effects of SCLF's upon laboratory techniques manifests itself in the reduction of equipment breakage and increase in confidence in the execution of laboratory techniques which were previously taught by the films.

8. The results of the JH₂S Examination indicate that students using SCLF are better enabled to detect unsafe or improper setups and select the optimum equipment or setup for a given task.

Recommendations for Further Study

This study explored one approach to teaching laboratory techniques. There are certain topics which demand further investigation.

1. Determination of the specific effects upon the quality of preparation through the use of highly detailed and specific SCLF. This will entail comparison of the actual purity and percentage yields of the products.

2. Specific comparisons of written laboratory examinations and the quality of laboratory preparations.

3. The use of coordinated sound directions on synchronized magnetic tape or sound film loops. When questioned, students felt that the question of narrated directions would increase the effectiveness of single concept loop films (Appendix H).

4. The effects of repetitive film loop viewing. McTavish (52)

has shown that learning factual material increases with viewing up to three times but diminishes slightly with four (forced) viewings. He did not, though, explore laboratory proficiency, breakage, accidents, experimentation time, and attitude.

5. The effects of parallel films. When a lack of understanding occurs, repetition of the exact same material may not help. The effects of a series of parallel films each utilizing the same behavioral objectives but approaching the problem from a slightly different point and with different details have not been studied.

6. The possible effects of goal, intelligence and aptitude upon learning manipulative skills with SCLF's. Differences in vocational goals, intellect, mechanical aptitude, arithmatic reasoning, verbal reasoning, intellectual set, and other psychological parameters may result in differences in the skills acquired through the use of single concept technique films.

Recommendations for Use of Single Concept Films

1. The results from this study may be applied to the use of any mode of projection. The differences between Technicolor loop film cartridge projection and Kodak Ektagraphic reel-to-reel systems are merely technological. Both systems are convenient for the student to operate and the projected images are identical.

2. It is recommended that in any utilization of single concept films for individual student use that a convenient viewing area be provided and that multiple copies as well as available replacement footage be available. If SCLF are used when an entire class will be needing the information at nearly the same time no more than ten or twelve students per copy would be suggested. One of the important features of SCLF is that they are ready whenever the student needs the information. In a laboratory class the time is important and hould not be wasted by waiting.

3. The use of SCLF should prove effective in other chemistry courses such as physical chemistry, instrumental analysis, organic analysis, inorganic preparation and others where laboratory techniques, procedures, and equipment operation is vital to the success of the course. Courses, such as those mentioned, frequently involve one instrument of each type needed which are used in a varied sequence throughout the course. It is quite difficult for the instructor to make certain that he has shown the operational procedures to each individual. SCLF could allieviate this difficulty.

4. The use of SCLF in other laboratory courses, including individualized instruction and research projects which lead one into areas of unfamiliarity with equipment should prove effective. Radiation monitoring techniques, preparing samples for neutron activation analysis, operation of x-ray apparatus, preparation of samples for x-ray crystallography, operation and handling of x-ray cameras, electronics, are but a few examples from physics. In the biological sciences equipment such as microscopes and Warburg apparatus have been quite common. However there is an increasing array of equipment such as pH meters, burets, automatic titrometers, analytical balances, desk calculators, gas chromatographs, spectrometers, which were once only in the domain of the physical scientist. These and other devices need to be routinely and proficiently used by the student as well as the researcher whenever the task requires its use. The utilization of SCLF could

allieviate not only the problem of introduction into the operation of a particular instrument but could bridge the gap which exists in the operational characteristics between two models of a similar device.

SELECTED BIBLIOGRAPHY

- (1) Abramson, Bernard, "A Comparison of Two Methods of Teaching Mechanics in High School," Science Education, 1952 36 96-106.
- (2) Advisory Council on College Chemistry, <u>Newsletter</u> Nr. 12. (Serial Publication 33) Stanford, California, January 1968.
- (3) Alpert, D. and Bitzer, D. L., "Advances in Computer Based Education," <u>Science</u> 1970 <u>167</u> 1582-1590.
- (4) Anderson, J. L., "The Rebirth of Single Concept Films," <u>Educa</u>tional Screen and Audiovisual Guide, 1966 45 (2) 28-29.
- (5) Anderson, Kenneth E., and Montgomery, Fred S., "An Evaluation of the Introductory Physics Course on Film," <u>Science Educa-</u> tion, 1959 43 386-94.
- (6) Anderson, Kenneth E., Montgomery, Fred S., and Moore, Sid F., "An Evaluation of the Introductory Chemistry Course on Film," <u>Science Education</u>, 1961 45 254-69.
- (7) Anderson, Kenneth E., Montgomery, Fred S., and Scannel, Dale P., "An Evaluation of the Introductory Chemistry Course on Film by Factorial Design and Covariance With Method and Sex as the Major Variables," Science Education 1961 45 269-274.
- (8) , "An Evaluation of the Introductory Chemistry Course on Film by Factorial Design and Covariance With Method and Career Plans as the Main Variables," <u>Science Education</u> 1961 45 275-278.
- (9) Babcock, Chester, "Evaluating Educational Innovation," <u>Audio</u> Visual Instruction, 1964 9 268-270.
- (10) Barnard, W. Robert, "Teaching Aids 8mm Projectors in the Modern Chemistry Classroom," Journal of Chemical Education, 1968 45 136-140.
- (11) Barnard, W. Robert, et. al., "Modern Teaching Aids for College Chemistry," Advisory Council on College Chemistry Serial Publication 18, Stanford, California, December 1966, 46 pp.
- (12) Barnard, W. Robert, Lagowski, J. J., and O'Connor, Rod, "Teaching Aids - The Modern Chemistry Classroom," <u>Journal of</u> Chemical Education, 1968 45 63-70.

- (13) Barnard, W. Robert, and O'Connor, Rod, "Teaching Aids: Television for the Modern Chemistry Classroom, Part II," <u>Journal of</u> Chemical Education, 1968 45 745-749.
- (14) Barnard, W. Robert, and Yingling, Richard T., "Prelaboratory Instruction Films," Unpublished mimeographed pamphlet, Ohio State University, Columbus, ca. 1968, 8pp.
- (15) Bradley, Robert L., "Lecture Demonstration v. Individual Laboratory Work in a Natural Science Course at Michigan State University," Unpublished Ph.D. Dissertation, Michigan State University, East Lansing, Michigan, 1962, 68pp.
- (16) Brandon, Julian, R., "Single Concept Film: A Pilot Study Based on CHEM Study Films," Journal of Research in Science Teaching, 1966 4 187-191.
- (17) Broadwell, Martin M., "Successful Instructor Training in Industry," J. Eng. Educ., 1967 58(2) 132-134.
- (18) Brown, Dean R., Michaels, Gene E., and Bledsoe, Joséph, C., "An Experiment In The Use of Film Slides In An Introductory Course in Microbiology," Journal of Research in Science Teaching, 1965 <u>3</u> 333-334.
- (19) Brubacher, C. H. Jr., Schwendeman, R. H., and McQuarrie, D. A., "Live and Filmed Laboratories," Journal of Chemical Education, 1964 41 670-671.
- (20) Camilla, Sister Mary, "Single Concept Film Loops," <u>Catholic</u> School Journal 1968 68 47ff.
- (21) Castleberry, S., and Lagowski, J. J., "Individualized Instruction Using Computer Techniques," J. Chem. Educ., 1970 <u>47</u> 91-96.
- (22) Coleman, George H., Wawzonek, Stanley, and Buckles, Robert E., "Laboratory Manual of Organic Chemistry," 2nd Edition, Prentice Hall, Englewood Cliffs, New Jersey, 1962, 218pp.
- (23) Cowger, Richard W., "Retention of Film Content Under Conditions of Self Selection and Individual Viewing," Unpublished Ed.D. Dissertation, University of Oregon, Eugene, 1968.
- (24) Dworkin, Solomon, and Holden, Alan, ..."An Experimental Evaluation of Sound Filmstrips v. Classroom Lectures," <u>Audio Visual</u> <u>Communications Review</u>, 1960 8 157.
- (25) Edwards, Allen L., "Techniques of Attitude Scale Construction," Appleton-Century-Crofts, Inc., New York, 19__.
- (26) Ellis, Henry C., Greenwood, Charles M. Lindberg, Howard P., and Moore, Richard K., "Effect of Repetition in Programmed Learning," I.E.E.E. Trans. on Educ. 1964 E-7 (1) 1-5.

- 169
- (27) Foecke, H. A., "Effective Teaching and the Educational System," J. Eng. Educ., 1967 58(2) 117-21.
- (28) Friedman, Milton, "A Comparison of Alternate Tests of Significance for the Problem of <u>M</u> Rankings," <u>Ann. Math. Stat.</u> 1940 <u>11</u> 86.
- (29) Gausman, Chester H., and Vonnes, John, "The Single Concept Film-Tool for Individualized Instruction," <u>American Vocational</u> Journal 1969 44 14-17.
- (30) Geller, Molly, "The Measurement of the Effectiveness of a Teaching Machine Program in the Organic Chemistry Area of First Year College Chemistry," Journal of Research in Science Teaching, 1963 1 154-161.
- (31) Greenhill, Leslie P., "Electronic Aids to Learning," <u>Electronics</u> and <u>Power</u> 1965 <u>11</u> 54-56.
- (32) Greenhill, Leslie P., and McNiven, Malcolm, "Relationship between Learning and the Perceived Usefulness of a Film," <u>Audio Visual Communications Review</u> 1956 4 255-267.
- (33) Guilford, J. P., "Fundamental Statistics in Psychology and Education," 2nd Ed., McGraw-Hill Book Cos, New York, New York, 1950, p. 495.
- (34) Happe', L. B. K., "Development of the Educational Single Concept Film in Great Britain," J.S.M.P.T.E. 1963 72 679ff.
- (35) Harby, S. F., "Evaluation of a Procedure for Using Daylight Projection of Film Loops in Teaching Skills," (Technical Report No. SDC 269-7-25 Instructional Film Research Program, Pennsylvania State College) AV Comm. Rev. 1953 1 291-2.
- (36) Hart, Gardner L., "Navy Training Films Program," in Brock, Doris L., "New Tools for Instruction," Hinds, Haydn, and Eldridge, Inc., New York, 1948.

.

- (37) Hart, Harold, and Schuetz, Robert D., "Organic Chemistry," 3rd Ed., Houghton Mifflin Co., Boston, 1966, 353 pp.
- (38) Hendricks, B. Clifford, "Laboratory Performance Tests in Chemistry," Journal of Chemical Education, 1950 27 309f.
- (39) Hermanson-Snickars, F., Jeppeson, B. I., and Wallmark, J. T., "Experiment with Pretesting of Programmed Texts," <u>I.E.E.E.</u> Trans. on Educ. 1968 E-11 (1) 37-41.
- (40) Homman, Guy B., and Anderson, Kenneth E., "A Study of Several Factors and Their Relationship to Achievement in High School Chemistry By Use of Factorial Design and Covariance," <u>Science Education 1962 46</u> 269-282.
- (41) Isbell, A. F., "Teaching Aids Program," Advisory Council on College Chemistry, <u>Newsletter</u> Nr. 10 (Serial Publication 28) Stanford, California, August 1967.
- (42) Jeffery, Jack C., "Identification of Objectives of the Chemistry Laboratory and Development of Means for Measuring Student Achievement of Some of These Objectives," Unpublished Ph.D. Dissertation, University of Texas, Austin, 1967.

- (43) Johnston, Raymond; Piel, Nicholas; Davis, Robert; and Hartsell, Horace, "Physiology 501 - Preparatory Laboratory, Michigan State University, Summer 1966;" from N.D.E.A. Institute for Advanced Study in Educational Media, July 31-Sept. 1, 1967, Instructional Media Center, Michigan State University, East Lansing.
- (44) Kanner, Joseph H., "The Instructional Effectiveness of Color in Television: A Review of the Evidence," (ERIC Clearinghouse on Educational Media and Technology,) <u>AV Comm. Rev. 1968 16</u> 333.
- (45) Kemp, Jerrold E., and Szumski, Richard F., "8 Millimeter Film," Educational Screen & Audiovisual Guide, 1968 47 (7) 12-13.

.

- (46) _____, "8 Millimeter Film II, "<u>Educational Screen & Audio-</u> visual Guide, 1968 47 (10) 17ff.
- (47) _____, "8 Millimeter Film, Part III," <u>Educational Screen &</u> Audiovisual Guide, 1968 47 (12) 19-20.
- (48) Kennedy, Mannert, "BSCS Single Topic Films," <u>American Biology</u> Teacher, 1967 29 552-6.
- (49) Knudsen, Steve, "Aspects and Applications of the Single Concept Film," J.S.M.P.T.E. 1963 72 295.
- (50) Lewis, William C., "Technology for Education," J.S.M.P.T.E. 1968 77 1031-1033.
- (51) Lumsdaine, A. A., "Audio-Visual Research in the U.S. Air Force," Audio Visual Communications Review, 1953 1 76-90.
- (52) McTavish, Chester L., "Effect of Repetitive Film Showing on Learning," Technical Report SDC 269-712 Special Devices Center under contract with Pennsylvania State College, November, 1947.
- (53) Matzkin, Myron A., ... "Can a \$5.95 Splicer do a \$299 Job?" Modern Photography, 1969 33 (72).
- (54) May, Mark, and Lumsdaine, Arthur A., "Learning From Films," Yale University Press, New Haven, 1958, p. 18ff.

- (55) Miller, Elwood E., "Single Concept Films: Criteria for Clipping," Audio Visual Instruction, 1967-12-36-38.....
- (56) Miller, Elwood, and Bollmann, Charles G., "The Case for the Short Film" J.S.M.P.T.E. 1968 77 1046-1048.
- (57) Morrison, Robert T., and Boyd, Robert N., "Organic Chemistry," 2nd Ed., Allyn & Bacon, Inc., Boston, 1966, 1204pp.
- (58) Myers, Nat C. Jr., "Automatic Cartridge 8mm Sound Film Loop Application in Education: A Progress Report," <u>J.S.M.P.T.E.</u> 1966 75 1132f.
- (59) Nelson, Kenneth G., and Pella, Milton, O., "Evaluation of the Adapted Harvey White Physics Films in Turkey," <u>Science Edu-</u> <u>cation</u> 1961 <u>45</u> 284-293.
- (60) Noall, Matthew F., and Wingert Lerue, "Staff Utilization Studies Help With Education: B The Physics Film Project," <u>Bulletin</u> of the National Association of Secondary School Principals, 1959 43 183-95.
- (61) O'Connor, Rod, "Status of the AC₃ Film Program," Advisory Council on College Chemistry, <u>Newsletter</u> Nr. 17 (Serial Publication 30) Stanford, California, October 1967.
- (62) O'Connor, Rod, and Slabaugh, Wendell, "Teacher-Produced Instructional Films in Chemistry," Advisory Council on College Chemistry, Serial Publication 31, Stanford, California, December, 1967, 33p.
- (63) Popham, W. James, "Educational Statistics," Harper and Row, New York, 1967.
- (64) Popham, W. James, and Sadnavitch, Joseph M., "Filmed Science Courses in the Public Schools, an Experimental Appraisal," Science Education 1961 45 327-335.
- (65) Purdue Research Foundation, Preparation & Evaluation in Use of a Series of Brief Films of Selected Demonstrations From the Introductory Physics Course. Final Report to the U.S. Office of Education, August 31, 1961, p. 36.
- (66) Requa, Lyle Keith, "An Analysis of Two Methods of Teaching Biological Sciences Laboratory," Unpublished Ed.D. Dissertation, Oklahoma State University, Stillwater, 1966.
- (67) Ridgeway, David W., "The Success Story of CHEM Study," <u>Educa-</u> <u>tional Screen and Audiovisual Guide</u> 1967 <u>46</u> (10) 23-25.
- (68) Rodewald, L. B., Culp, G. H., and Lagowski, J. J., "The Use of Computers in Organic Chemistry Instruction," J. Chem. Educ., 1970 47 (2) 134-136.

- (69) Rogers, Carl R., "On Becoming a Person," Hogg Research Foundation For Mental Health, University of Texas, Austin, 1954.
- (70) Rosenstein, Alvin J., and Kanner, Joseph H., "Television and Army Training: Color v. B&W," AV Comm. Rev. 1961 9 (1) 44-9.
- (71) Sadnavitch, Joseph M., and Popham, W. James, "Measuring Attitudes Toward Filmed Courses," <u>Audio Visual Communications Review</u> 1960 8 286-288.
- (72) Sadnavitch, Joseph M., Popham W. James, and Black, W. A., "Retention Value of Filmed Science Course," <u>Science Education</u> 1962 46 22-27.
- (73) Scuorzo, Herbert E., "Big Boom in Loops," <u>Grade Teacher</u>, 1966 83 (2) 80f.
- (74) _____, "Single Concept Film," <u>Grade Teacher</u>, 1964 <u>81</u> (5) 15ff.
- (75) Sharefkin, Jacob, "Perspectives in Organic Chemistry Instruction," Journal of Chemical Education, 1949 <u>26</u> 222-223.
- (76) Siegel, Laurence, (ed) "Instruction Some Contemporary Viewpoints," Chandler Publishing Co., San Francisco, 1967, 276pp.
- (77) _____, "The Instructional Gestalt: A Conceptual Framework," Teachers College Record, 1960 62 202-213.
- (78) Siegel, Laurence, Macomber, E...G., and Adams, James F., "The Effectiveness of Large Group Instruction at the University Level," Harvard Educational Review, 1959 29 216-26.
- (79) Siegel, Laurence, and Siegel, Lila Corkland, "The Instructional Gestalt: A Conceptual Framework and Design for Educational Research," <u>Audio Visual Communications Review</u>, 1964 <u>12</u> 16-45.
- (80) Siegel, Sidney, "Non Parametric Statistics," McGraw-Hill Book Co., New York, 1956.
- (81) Sleeman, Phillip J., and Crosswhite, Vivian, "The 8mm Film Revolution," <u>Audio Visual Instruction</u>, 1968 <u>13</u> 880-2.
- (82) Stein, Sarah C., "An Experimental Study of the Use of Motion Picture Film Loops in the Instruction of Beginning Typewriting," Unpublished Doctoral Dissertation, University of Southern California, Los Angeles, 1968.
- (83) Steiner, Richard L., "Using Audiovisual Materials in Presenting Investigative Laboratory Projects," <u>American Biology Teahcer</u>, 1966 28 404-5.

- (84) Strum, R. D. and Ward J., "Some Comments on Computer Assisted Instruction in Engineering Education," <u>I.E.E.E.</u> Trans. on <u>Educ.</u>, 1967 <u>E-10</u> (1) 1-3.
- (85) Tabutt, Frederick, D., "Computers in Chemical Education," <u>Chem</u> and Eng. News, 1970 48(3).
- (86) Trinklein, Lloyd A., "A Comparative Study of the Effectiveness of Using Full Film and Short Format Films to Teach Chemistry," Unpublished Ph.D. Dissertation, Michigan State University, East Lansing, 1966.
- (87) Tukey, John W., "Conclusions Vs. Decisions," <u>Technometrics</u> 1960 2 423-433.
- (88) Vander Meer, A. W., "Relative Effectiveness of Color and Black and White in Instructional Films," <u>Audio Visual Communica-</u> <u>tions Review 1960 8</u> 156.
- (89) Wendt, Paul R., and Butts, Gorden K., "Audio Visual Materials," Review of Educational Research, 1962 32 (2) 149-155.
- (90) Wittich, W. A.; Pella, Milton, O.; and Wedemeyer, C. A., "The Wisconsin Physics Film Evaluation Project," <u>Audio Visual</u> <u>Communications Review</u> 1960 <u>8</u> 156.
- (91) Woodruff, Asahel, D., "Basic Concepts of Teaching," Chandler Publishing Co., San Francisco, 1962.
- (92) Yager, Robert E.; Engen, Harold B.; and Snider, Bill F. C., "Effects on Laboratory & Demonstration Methods Upon the Outcomes of Instruction in Secondary Biology," <u>Journal of</u> <u>Research in Science Teaching</u> 1969_6_76-86.
- (93) Young, Alfred F., "A Comparative Study of Supplimentary Programmed and Conventional Methods of Instruction in Teaching Freshman Chemistry 1015 at Oklahoma State University," Unpublished Doctoral Dissertation, Oklahoma State University, Stillwater, 1970.

APPENDIX A

JH2S EXAMINATION

JH2S EXAMINATION

INTRODUCTORY ORGANIC CHEMISTRY L'ABORATORY TECHNIQUES EXAMINALTION

Please do not open this test booklet until instructed to do so.

DO NOT MARK ON THE QUESTION BOOKLETS

Select what you consider to be the BEST answer. DO NOT MARK MORE THAN ONE ANSWER.

Questions 1 through 3 refer to photographs 1, 2, 3, 4.

- Which would be suitable for heating a solution whose boiling point is 123°C and whose vapors are rather flammable?
 A) 1; B) 2; C) 3; D) 4; E) Either 1 or 3.
- 2. Which would be suitable for heating a solution whose boiling point is 60°C and whose vapors are not flammable?
 A) Any of them; B) 1, 2, or 3; C) Only 3; D) 1 or 3; E) 1 or 2.
- 3. Which would be suitable for warming but not necessarily boiling a solution whose vapors are extremely flammable?A) 1; B).2; C) 3; D) 4; E) None of them.

- 4. Refer to photographs 5 through 9. Which of them would be proper for commencing a distillation?
 A) Any of them; B) 6 through 9; C) 7 through 9; D) 6 through 8;
 E) 7 through 8.
- 5. You will notice that the boiling chips have been left out of the above flasks. When should the boiling chips be added?A) Before the liquid was added; B) After the liquid was added; C) After the liquid has been warmed; D) A or B; E) B or C.

Questions 6 through 8 refer to photographs 10, 11, 12, 13.

- 6. Which of the methods of receiving the distillate would be suitable to collect a distillate which was flammable?A) 10; B) 11; C) 12; D) 13; E) None of them.
- 7. Which of the methods would be suitable to collect a distillate when one wished to measure the time and volume delivered?A) 10; B) 11; C) 12; D) 13; E) Either none of them or both 12 and 13.
- 8. What is wrong with photograph #10? A) Nothing--it is correct; B) Should use a round bottom flask; C) Neck of flask should be positioned higher; D) Flask should be clamped or should be resting on the table rather than sitting on a water bath; E) It is the wrong size flask.
- 9. Refer to photographs 14 through 16. Which of the thermometer positions will yield the correct temperature of the distilling vapors?
 A) 14; B) 15; C) 16; D) Either 14 or 15; E) Actually there will be no significant difference in the temperature readings.

10. Refer to photographs 17 and 18. If it is necessary to move the steam distillation away from the source of steam, which would be preferable?
A) 17; B) 18; C) Either; D) Neither; E) Use a larger steam line.

Questions 11 through 14 refer to photographs 19, 20, 21, 22.

- 11. Which of the thermometer positions will yield the temperature of the distilling vapors? A) 19; B) 20; C) 21; D) 22; E) 20, 21, and 22.
- 12. Which of the thermometer positions will produce the highest reading? A) 19; B) 20; C) 21; D) 22; E) They will all read the same.
- Which of the thermometer positions will produce the lowest reading?

 A) 19;
 B) 20;
 C) 21;
 D) 22;
 E) They will all read the same.
- 14. Which of the thermometer positions will indicate the temperature of the boiling liquid?A) 19; B) 20; C) 21; D) 22; E) None of them.

- 15. Which of the following will yield the most desirable melting point information? A) 23; B) 24; C) 25; D) 26; E) 27.
- 16. If you were not completely satisfied with the choices in the preceding question, what changes would you make?A) None except 24, 26, and 27 are correct; B) Raise the thermometer bulb on 24 or 26; C) Lower the thermometer bulb on 26 or 27; D) Lower the thermometer bulb on 26; E) Properly fill the capillaries.
- 17. What is wrong in photograph 24?
 - A) Nothing (except the tube was not clamped in a vertical position);
 - B) The liquid will expand upon heating and push the cork out;
 - C) The liquid will expand upon heating and touch the rubber ring;
 - D) The thermometer bulb is low;
 - E) Capillary is improperly filled.

- 18. Which would be the proper set-up for filtering approximately 150 ml of a solution which contains about 10 grams of precipitate?
 A) 28 or 29; B) 30 or 31; C) 28 or 30; D) 29 or 31; E) Only 29.
- 19. Which would be the proper set-up for filtering about ten ml of a solution which contains about a gram of precipitate?A) 28; B) 29; C) 30; D) 31; E) More than one would be proper.
- 20. During a filtration if one notices that the filtering action slows down even though the paper is not clogged with precipitate, which of the following is most likely the reason?A) Water pressure was turned down; B) Holes in the filter paper; C) Thin wall rubber tubing has collapsed; D) Filter paper was too fine a porosity; E) Not enough information given.

- 21. Which of these distillation set-ups would be suitable for the distillation of a flammable liquid? A) 32; B) 33; C) Both; D) Neither; E) 32 if there are no leaks.
- 22. Which of these would be suitable for the distillation of a high boiling non-flammable liquid?A) 32; B) 33; C) Both;D) Neither; E) 32 if there are no leaks.
- 23. Which of the receivers would be suitable for a flammable distillate?A) 34; B) 35; C) 36; D) 37; E) Either none or more than one.
- 24. Which of the methods is least desirable (least safe?) A) 34; B) 35; C) 36; D) 37; E) 35 and 37.
- 25. Which of the methods would be suitable for collecting a distillate which will be discarded?A) 34; B) 35; C) 36; D) 37; E) Any of them.
- 26. What is wrong with 36?A) The flask should be clamped with a utility clamp rather than rest on an iron ring; B) The receiver should be positioned lower; C) The rubber band should extend down to the rim on the neck of the flask; D) It is the wrong size flask; E) Nothing: it is correct.

- 27. Which would be most suitable for concentrating an aqueous solution?A) 38; B) 39; C) 40; D) 41; E) 42.
- 28. Which would be most suitable for heating a solvent such as methyl ethyl ketone? A) 38; B) 39; C) 40; D) 41; E) 42.
- 29. Which would be most suitable for removing ether from an extraction? A) 38; B) 39; C) 40; D) 41; E) 42.
- 30. The best method for drilling a hole in a cork is A) from the small end; B) from the large end; C) from either end; D) from one end to about the middle then drill from the other; E) makes little difference if the cork borer is sharp.
- 31. What general rule is always followed in the placement of tubing on a water cooled condenser for reflux or distillation?
 A) The end toward the boiling flask is the outlet (to the sink) and the other end is the water inlet.
 B) The end toward the boiling flask is the water inlet and the other end is the outlet and goes in the sink.
 C) The lower end is the water inlet and the upper end is the outlet.
 D) The upper end is the water inlet and the lower end is the outlet.
 E) None of the above because reflux goes one way and distillation goes just the opposite.

- 32. Which distillation set-up is properly clamped?A) 43; B) 44; C) 45; D) 46;E) Either none or more than one.
- 33. What would you add next to the system?A) receiver; B) receiver adapter;C) thermometer; D) water in the condenser; E) the liquid to be distilled.

34. Which is the proper method for filling the distilling flask? A) 47 or 48; B) 49 or 50; C) 48 or 49; D) 47 or 50; E) Only one.

35. Which would be most suitable for separating a mixture of cyclohexanol and water?A) 51; B) 53; C) 54; D) 55; E) Either 52, 56, or 57.

51

54

歌

52

- 36. Which would be most suitable for separating a mixture of hydrocarbons? A) 52; B) 53; C) 55; D) 56 or 57; E) 52 or 55.
- 37. Which would be most suitable for separating acetanalide from water? A) 51; B) 52; C) 53; D) 54; E) 55.
- 38. Which would be most suitable for the separation of volatile water-insoluble components from non-volatile components?
 A) 52; B) 53; C) 55; D) 56; E) 57.

- 39. Which would be most convenient for removing decolorizing carbon from a solution?A) 58; B) 59; C) 60; D) 61; E) More than one is correct.
- 40. Which would be most convenient for removing calcium chloride from an ether solution?A) 58; B) 59; C) 60; D) 61; E) More than one is correct.
- 41. Which of the methods is most rapid?A) 58; B) 59; C) 60; D) 61; E) More than one is correct.
- 42. If during a diazotization reaction one needed to add 15 ml of a nitrite solution, which of the following would be best?
 - A) All of the 15 ml poured in rapidly with stirring.
 - B) Three portions of about 5 ml each with stirring.
 - C) Portions of about 1 ml each minute with stirring.
 - D) One drop every three or four seconds with stirring.
 - E) One drop every thirty seconds with stirring.
- 43. Which is the best method for determining whether a particular solution is acidic or basic?
 - A) Dip a piece of litmus paper in the solution.
 - B) Dip a piece of both red and blue litmus paper in the solution.
 - C) Dip a stirring rod in the solution and touch the wet rod to red and blue litmus.
 - D) Use a pH meter.
 - E) More than one of the above is correct.
- 44. The safest method for getting rid of excess dodium metal left over from a sodium fusion is to
 - A) place it carefully in a large beaker of water.
 - B) place it in a quantity of alcohol.
 - C) bury it in dry sand or earth.
 - D) cover it with powdered sulfur (flowers of sulfur.)
 - E) place it in the sink with plenty of running water.
- 45. If one suspects nitrogen in a sample and the test of the sodium fusion yields a barely discernable green, what should you do next?
 - A) Report 'no nitrogen present.'
 - B) Report 'nitrogen present.'
 - C) Filter the solution and look for traces of blue on the paper.
 - D) Repeat the sodium fusion and nitrogen test.
 - E) Repeat the nitrogen test on another portion of the fusion extract.

- most suitable for the reaction between ethanol and acetic acid?
 A) 62; B) 63; C) 64; D) 65; E) 66.
- 47. Which would be most suitable for the diazotization of aniline?
 A) 62; B) 63; C) 64; D) 65;
 E) 66.
- 48. Which would be most suitable to heat a solvent for recrystallization such as isopropyl alcohol?A) 62; B) 63; C) 64; D) 66; E) Either 62 or 63.
- 49. Which would be most suitable for a saponification reaction?A) 62; B) 63; C) 64; D) 65; E) 66.
- 50. What would be the best means of getting rid of excess benzen A) Pour it down the sink (with plenty of water). B) React it with ethanol and then pour it down the sink; C) Pour it into the waste jar in the hood; D) Bury it in dry sand, earth, or vermiculite; E) Allow it to evaporate in the hood.

APPENDIX B

Stud. NR	JH2S	Chem Hrs	Lab Hrs	Chem GPA	00.4 GPA 2020	Entry Skills	Exit Skills	Net Skills
101	17	0	,	0 500	2,000	0.5		1074
101	10	8 15	4	2,500	2.900	95 154	232	112%
102	10		0	1.500	1,500	154	: 207	112~
103	-	10	4	2.500	2,590	153	-	
104	19	8	4	2.000	2.100	144	373	229*
105	17	10	4	3.400	3,500	84	258	197
106	20	8	4	2.000	2.030	120	276	156
107	24	10	4	2.500	3.200	. 99	-	-
108	_	6	3	3.000	2.810	108	-	-
109	24	7	3	3.430	2.210	108	344	236*
110	13	8	4	3.500	2.800	85	247	162*
111	23	8	4	3,500	2.410	106	301	195
112	19	8	4	3.500	3.050	82*	-	·
113	15	10	4	2.500	2.500	158	240	88*
114	: 14	13	6	2.380	3.200	90	295	205*
115	26	8	4	2.500	2.300	125	275	150*
116	16	18	7	3.170	3.520	91	237	146
117	23	8	4	3.000	3.620	123	245	122
118	25	5	2	3.000	3.200	119	268	149*
119	17	10	4	2.000	2.650	112	278	166*
120	25	8	4	3.000	3.550	128	299	171
121	21	8	4	3.000	3.240	107	330	223*
122	22	10	4	3.000	3,030	97	245	148
123	22	10	4 4	2.500	2.200	145	343	198*
124	19	10	4	2.000	2.900	116	291	175*
Totals	6	208	94	59.880	61.610	· · · · · · · · · · · · · · · · · · ·		
Mean		9.46	4.27	2.722	2.801			

Stud. NR	JH ₂ S	Chem Hrs	Lab Hrs	Chem GPA	GPA	Entry Skills	Exit Skills	Net Skills
201	24	16	s 8	2.000	2.300	107	294	187
202	15	10	4	3.000	2.600	86	263	177
203	12	8	4	3.500	3,870	103	283	180
204	22	5	2	4.000	3.460	90	254°	164
205	5 m	10	4	4.000	2.500	86	243	157
206	20	8	4	2.500	2.500	99	361	262
207	23	8	4	2.000	2.700	74	243	169
208	17	14	6	2.640	2.650	-	863	853
209	20	8	4	3.500	3.750	101	300	199
210		8	4	2.500	2.400	116	274	158
211	23	10	4	4.000	3,200	117	313	196
212	16	8	4	2,000	2.800	164	349	185
213	2,3	8	4	2.000	2.920	123	318	195
214	24	8	4	2.500	3,500	90	271	181
215	27	8	4	2.500	2,000	92	292	200
216	19	8	4	4.000	3.700	137	344	207
217	20	8	4	4.000	3,750	97	283	186
218	22	10	4	2.000	2.500	104	295	191
219	18	8	4	3.000	3,500	102	- 325	223
220	21	. 8	4	2.000	2.850	97	302	205
221	23	7	2	2.720	2,900	113	322	209
222	18	7	2	2.000	2.700	105	333	228
223	29	5	2	3.000	3.200	140	323	183
224	22	10	4	2.000	2,800	93	223	130
225	19	8	4	3.500	3.460	104	a 250	146
Totals		198	90	64.360	69.610	<u>, , , , , , , , , , , , , , , , , , , </u>		
Mean		8.60	3.91	2.798	3.026			

ŝ

<

Stud. NR	JH ₂ S	Chem Hrs	Lab Hrs	Chem GPA	GPA	Entry Skills	Exit Skills	Net <u>Skills</u>
301	28	20	5	2.500	2.680	133	276	143
302	24	8	4	3.000	3.000	178*	296	118
303	24	. 10	4	2.670	2,000	117	339	222
304	18	10	4	1.500	1,900	. =		· 80
305	27	15	7	3.330	3.330	91	246	155
306	29	10	4	4.000	3.200	128	257	129
307			· -		· _	-	·	
308	27	8	4	3.500	3.300	109	273	164
309	27	. 8	4	2.500	.2.700	112	298	186
310	18	12	6	3.670	.3,670	121	249	128
311	24	8	4	2.500	2.950	90	350	260
312	27	8	4	2,500	2.750	108	315	207
313	24	8	4	2.000	2.970	125	309	184
314	25	8	4	2.500	2.750	99	293	194
315	23	14	. 4	1.890	2.000	92	305	213
316	30	5	2	3.000	3.000	105	256	151
317	25	10	4	3.500	2.400	111	290	179
318	23	10	4	1.500	2.400	143	60	-
319	37	8	4	4.000	4.000	103	269	166
320	26	5	2	3.000	2.890	100	332	232
321	29	8	4	3.500	3.100	99	237	138
322	22	10	4	2.500	2.500	96	285	189
323	23	10	4	2.000	2.000	137	326	189
324	: -	an	· 1000	· -	. e e	-	- 	80
Totals	3	- 213	90	60.960	61.490		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Mean		9.68	4.09	2.770	2.795			

Stud. <u>NR</u>	JH ₂ S	Chem Hrs	Lab Hrs	Chem GPA	GPA	Entry Skills	Exit Skills	Net Skills
401	22	8	4	2.000	2,790	77	141	74
402	16	- 8	4	4.000	3.500	104	400	296
403	-	10	4	3,000	2.600	116	0	0
404	24	38	15	2.900	2.500	177	355	178
405	25	8	4	4.000	3.570	94	220	126
406	28	13	7	2.540	2.500	83	306	223
407	ang	10	4	2.000	2.400	143	336	193
408	18	8	4	3.000	2.600	113	252	139
409	24	8	4.	3.500	3.000	104	293	189
410	19	8	4	3.500	.3.860	97	260	163
411	16	8	4	2,500	3.230	125	355	230
412	31	8	4	4,000	3.790	89	321	232
413	18	8	4	2.000	3.100	92	357	165
414		10	4	2.500	2.500	. 119	349	230
415	22	8	4	3.000	3.450	117	285	168
416	19	10	. 4	2.000	2,000	95	295	200
417	16	- 8	4	2.500	2.420	77	280	203
418	22	16	7	3.180	3.300	109	336	227
419	17	8	4	4.000	3.350	110	344	234
420	19	10	4	3.000	2.800	180	339	159
421		18	4	1.500	2.000	119	84	· 00
422	20	10	4	2.500	3.100	111	310	199
423	19	9	4	1.000	1.570	98	228	130
424	. 🖚		~	-	-	-	·	86
Totals		202	93	55.120	56.430	<u></u>		
Mean		10.63	4.8	9 2.901	2.970			

GROUP 500

Stud. <u>NR</u>	JH2S	Chem Hrs	Lab <u>Hrs</u>	Chem GPA	GPA	Entry Skills	Exit Skills	Net Skills
501	21	10	4	4.000	3.400	107	332	225
502	20	8	4	2.500	2.400	123	333	210
503	19	7	2	2.430	2.600	116	353	237
504	20	8	4	1.500	2.100	94	337	243
505	20	8	4	3.000	3.200	120	331	211
506	20	8	4	2.500	2.980	126	· _	· •
507	23	8	4	2,500	3.000	76	307	231
508	. –	10	6	3.310	3.400	115	306	191
509	· _	8	. 4	2.500	2.200	· ••	-	
510	22	8	4	2.500	2.400	82	333	- 251
511	18	8	4	3.000	3.350	94	326	232
51 2	. –	8	4	2.500	2.800	. 111	-	. 69.
513	20	8	4	3.000	3.450	115	280	165
514	21	8	4	- 2.000	2.400	75	309	234
515	18	19	5	2.000	2.000	112	352	240
516	-	9	4	3,560	2.700	71	295	224
517	18	10	4	2,000	2.710	73	263	190
518	20	12	6	2.000	2.100	91	357	266
519		. 9	4	2.000	2.100	80	-	· 60,
520	27	8	4	3.000	3.700	75	263	113
Totals		146	61	37,930	41.790	<u></u>		
Mean		9.1	2.3.81	2.370	2,611			

GR	οι	JP (6	00)
~ ~ ~ ~	~ ~		-	~ ~	•

Stud. <u>NR</u>	JH ₂ S	Chem Hrs	Lab Hrs	Chem GPA	GPA	Entry Skills	Exit Skills	Net Skills
601	. 26	5	4	3.000	3.000	107	300	. 193
602	22	12	6	3,330	3.600	95	305	210
603	26	7	4	1.290	2.200	148	277	129
604	20	8	4	2.500	3.130	95	294	199
605	21	10	4	2.000	2.200	. 130	357	227
606	25	9	4	2.560	3.300	102	354	252
607	25	8	4	··· 2.000	2.400	108	298	150
608	26	8	4	2.000	2.100	126	374	248
609	17	10	4	. –	~)	140	181	41
610	26	8	4	3.500	3.600	133	282	149
611	11	8	4	3.500	3.500	104	327	223
612	20	10	4	3.500	3.200	108	309	201
613	18	10	4	3.000	2,600	- 111	330	219
614	23	10	4	2.000	2.03	154	367	213
615	17	8	4	3.500	3.400	82	358	276
616	28	8	4	2.500	2.500	112	313	201
617	24	7	2	2.430	2.350	128	353	225
618	23	18	6	2.890	3.540	112	371	259
619	ap.	4	.4	1,500	2.600	152	, au	
620	22	9	. 4	2.000	2.600	103	331	228
621	25	9	4	3.000	3,000	112	. 300	188
Totals		182	82	50.500	54.250	╼╾ _{┿╸} ╬┉┇╶╺ <u>╴</u> ┹╖╬┥ <u></u> ╺╼╸ _┙ ╸		
Mean		9.10	4.10	2.657	2.855			

Stud. <u>NR</u>	JH ₂ S	Chem Hrs	Lab Hrs	Chem GPA	GPA	Entry Skills	Exit Skills	Net Skills
701	23	10	. 4	4,000	2.800	96	319	223
702	17	8	3	2.000	2.700	101	265	164
703	-	8	4	2.000	2.500	77		
704	22	8	4	2.000	2.600	104	317	213
705	17	8	4	2.500	3.410	102	330	228
706	16	8	4	2.000	2.790	116	312	196 [.]
707	19	8	4	2.000	2.500	÷101	275	174
708	22	8	4	3.500	3.100	90	343	253
709	23	10	4		2.800	101	291	190
710	19	8	4	2.000	2.890	132	313	181
711	-	8	4	e 2.000	;3.000	121	282	161
712	17	10	4	2.000	2.700	124	: -	
713	17	8	4	3,000	3.200	143	320	177
714	18	8	4	··· 2, 500	2.970	101	305	204
715	15	8	. 4	3.500	3.600	89	335	157
716	21	5	2	.3.000	3.200	115	281	166
717	19	. 8	4	3.000	3.700	110	254	144
718	28	8	4	3.000	2,800	110	292	182
719	17	8	4	2.500	a 2 . 900	111	165	54
720	16	8	4	2.000	2.600	111	. 273	162
721	22	13	5	2.000	2.920	111	293	182
722	25	8	4	2.000	2.750	113	309	196
723	18	8	4	3.500	3.400	112	302	190
724	-	8	4	2,000	3.111	139		· 049
Total		176	82	56.000	62.330	<u></u>	·. · · · · · · · · · · · · · · · · · ·	<u> </u>
Mean		8.38	3.90	2.666	2.968			

APPENDIX C

.

(Films 1, 2, 3, 4, 5, 6, 7) Crystallization

Student Number	100	200	300	400	500	600	700
1	150	105	110	150	105	· -	150
2	150	120	140	165	140	120	115
3	150	120	135	155	100	120	120
4	150	110	125	165	135	135	120
5	165	120	125	120	140	125	110
6	160	110	125	155	95	-	110
7	150	120	125	165	105	115	95
8	150	70	120	165	105	140	120
9	150	120	140	150	-	140	110
10	150	120	150	130	120	135	120
11	150	130	120	150	90	130	90
12	140	130	120	150	95	120	-
13	150	120	125	150	120	140	90
14	150	120	135	155	150	140	135
15	150	120	130	130	110	135	120
16	150	120	135	120	120	130	170
17	150	120	130	165	14,0	115	150
18	150	115	125	165	130	140	120
19	165	120	140	150	-	130	120
20	J 165	120	135	150	843	120	150
21	150	120	135	160	120	140	120
22	115	110	140	150		·	120
23	135	.90	120	150	an	-	120
24	150	120	-	36	B 0	· =•	150
25	-	115	- 🖛	-	-	-	`, ang
Total	3595	2885	3015	3465	2120	2470	2825
NR	24	25	23	- 23	18	19	23
Mean	149.79	115.40	131,59	150.65	117.78	130.00	122.83

EXPERIMENT #2 (Films 8, 9, 10) Melting Points

Student Number	100	200	300	400	500	600	700
1	165	75	140	120	60	-	105
2	135	120	160	140	60	135	165
- 3	150	105	135	140	70	120	90
4	165	130	165	120	120	140	100
5	165	145	150	135	90	120	. 110
6	165	110	135	120	105	120	75
7	160	90	120	100	120	120	140
.8	-	135	135	120	90	120	85
9	150	90	135	165	110	130	120
10	165	120	120	160	155	125	90
11	165	113	135	140	130	150	105
12	140	120	150	140	145	110	100
13	150	115	85	165	150	125	135
14	150	120	120	150	120	150	120
15	150	120	120	90	120	120	90
16	150	120	145	150	130	120	105
17	150	120	150	175	140	120	120
18	150	120	90	130	60	140	75
19	165	105	110	120	135	105	90
20	160	105	135	120	75	120	60
21	150	120	130	135	₽ ₽	130	120
22	120	120	120	150		120	100
. 23	135	75	135	150	6 2,	-	120
24	165	105	-	-	m ,	-	90
25	-	105	-	-	-	-	-
Total	3520	2693	3020	3135	2315	2640	2510
NR	23	24	23	23	20	. 21	24
Mean	153.04	112.83	131.30	136.30	110.75	125.71	102.08

Number 100 200 300 400 500 600 1 150 105 125 90 70 120 2 90 - 120 90 105 105 3 150 90 120 120 70 120 4 150 90 100 120 90 120 5 130 80 125 120 90 120 6 135 65 120 135 65 120 7 120 80 105 90 90 105 9 120 90 90 90 105 105 10 120 90 90 150 75 105 11 120 90 90 150 75 105 12 120 120 105 150 75 105 13 120 120 95	700 0 80 5 80 5 80 0 60 0 60 0 80 0 80 0 75
11501051259070120290-120901051053150901201207012041509010012090120513080125120901206135651201356512071208010590901058120909090105912090901501201012090901506510511120909015075105121201201051507510513120120951501358014120901201651357516120105120165135751715090120120135100	> 80 > 80 > 60 > 60 > 80 > 80 > 80 > 80 > 75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 80) 60) 60) 80) 80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 60) 60) 80) 80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 60) 80) 80) 75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 80) 80
6135 65 120135 65 120 7 120801059090105 8 12090909090105 9 1209090150120105 10 120909015065105 11 120909015075105 12 12012010515075105 13 1201209515013580 14 1209012016513575 16 12010512016513575 16 12010512016513575 17 15090120120135100) 80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$; 75
8 120 90 90 90 90 105 9 120 90 90 90 150 120 105 10 120 90 90 90 150 65 105 11 120 90 90 90 150 75 105 12 120 120 105 150 75 105 13 120 120 95 150 135 80 14 120 90 105 150 135 90 15 135 90 105 150 135 75 16 120 105 120 165 135 75 17 150 90 120 120 135 100	, ,,
9 120 90 90 150 120 105 10 120 90 90 90 150 65 105 11 120 90 90 90 150 75 105 12 120 120 105 150 75 105 13 120 120 95 150 135 80 14 120 90 120 165 135 90 15 135 90 105 150 135 75 16 120 105 120 165 135 75 17 150 90 120 120 135 100	; 70
1012090901506510511120909015075105121201201051507510513120120951501358014120901201651359015135901051501357516120105120165135751715090120120135100	5 105
11120909015075105121201201051507510513120120951501358014120901201651359015135901051501357516120105120165135751715090120120135100	5 105
12 120 120 105 150 75 105 13 120 120 95 150 135 80 14 120 90 120 165 135 90 15 135 90 105 150 135 75 16 120 105 120 165 135 75 17 150 90 120 120 135 100	5 75
13120120951501358014120901201651359015135901051501357516120105120165135751715090120120135100	i 85
14120901201651359015135901051501357516120105120165135751715090120120135100) 60
15135901051501357516120105120165135751715090120120135100) 60
16120105120165135751715090120120135100	; 90
17 150 90 120 120 135 100	9 0
) 60
18 120 90 70 120 135 105	60
19 165 105 85 120 - 100) 105
20 150 120 110 120 105 120) 55
21 90 90 110 130 - 120) 60
22 .90 120 90 120	60
23 90 95 90 150	60
24 150 105 - 120	5 2
25 - 75	· • • • • • • • • • • • • • • • • • • •
Total 3030 2285 2395 3085 1920 2200) 1715
NR 24 24 23 24 19 21	23
Mean 126.25 95.21 104.13 128.54 101.05 104	+.76 74.57

EXPERIMENT #4 (Films 11, 15) Fractional Distillation

Student							
Number	100	200	300	400	500	.600	700
1	150	90	95	60	.70	90	75
2	105	90	90	60	120	130	-
3	120	90	90	150	.70	90	80
4	120	90	90	90	90	120	80
5	120	105	95	75	90	120	75
6	120	105	. 90	120	105	90	75
7	120	95	80	75	105	60	75
8	120	75.	110	90	105	60	
9	120	110	110	120	120	70	90
10	130	105	105	130	75	75	90
11	105	105	105	130	90	85	90
12	150	90	90	130	90	85	90
13	120	90	90	120	80	120	90
14	105	60	90	105	80	120	120
15	150	60	90	120	150	105	90
16	150	110	120	105	150	105	90
17	120	90	120	100	120	110	105
18	90	90	100	90	130	130	100
19	120	90	120	100	130	105	90
20	150	90	145	120	90	90	90
21	60	75	150	120	-	90	90
22	105	. 90	120	120	. –		. 90
23	60	75	120	120	~	-	75
24	150	100	-	75	-		75
25		105	-	· 260		-	-
Total	2860	2275	2415	2615	2060	2050	1925
, NR	24	25	23	24	20	21	22
Mean	119.17	90.60	105.00	108.95	103.00	97.62	87.50

EXPERIMENT #5

(Films 16, 17A, 17B, 17C) Qualitative Analysis

Student Number	100	200	300	400	500	600	700
1	150	90	150	165	70	150	165
2	150	120	120	150	135	120	165
3	130	120	140	150	120	120	110
4	165	90	135	120	110	150	110
. 5	150	-	100	130	120	135	150
. 6	135	120	135	150	105	135	150
. 7	120	90	105	120	135	120	120
8	150	90	150	-	105	150	110
9	120	120	105	-	·	135	165
10	165	120	135	170	105	130	95
11	120	150	150	150	75	105	165
12	150	60	75	150	90	130	120
13	150	120	150	165	150	160	145
14	120	120	160		90	135	120
15	150	120	135	120	110	135	150
16	150	120	150	165	120	135	120
17	150	120	115	135	120	95	165
18	150	90	150	150	130	120	125
19	155	120	150	135	-	105	90
20	150	120	105	120	120	120	75
21	120	90	150	150	. =	. 90	105
22	120	120	150	150			105
23	135	. 90	, 	150	-	- 6 87 -	140
24	130	120	-	165		-	135
25	. –	100	· _	•	· -	· 🕳	
Total	3385	2600	2915	3060	2010	2695	3100
NR	24	24	22	21	18	21	24
Mean	141.04	107.83	131,67	145.71	111.67	128.33	129.17

199

EXPERIMENT #6 Hydrocarbons

Student							
Number	100	200	300	400	500	600	700
1	150	120	120	150	90	135	105
2	90	90	120	150	90	120	105
3	· -		120	120	75	135	110
. 4	120	90	135	120	90	150	110
5	135	80	125	140	80	150	90
6	135	80	120	150	90	135	90
7	120	90	130	135	90	120	105
8	_	90	120	135	90	120	120
9	120	95	120	150	105	125	90
10	-	90	130	150	90	120	90
11	140	120	130	150	90	140	90
12	140	120	120	150	90	130	90
13	120	90	120	150	120	130	105
14	120	120	130	140	90	120	105
15	120	90	160	150	90	120	90
16	120	90	120	150	90	120	90
17	-	90	120	150	90	130	90
18	-	120	125	120	120	120	90
19	135	120	140	140	90	130	120
20	130	90	120	120	90	135	90
21	90	90	120	150		135	120
22	90	90	120	150		R Ú	120
23	90	90	,	150	-	· •	105
24	120	90	-	150			a 2
25		90	· _	-		· •	85
Total	2285	2325	2645	3420	1850	2720	2320
NR	19	24	22	24	20	21	23
Mean	120.26	96.88	120.23	142.50	92.50	129.52	100.87

ł:

<u>M</u>-Dinitrobenzene

Student Number	100	200	300	400	500	600	700
1	-	90	160	120	105	180	-
2	120	90	210	120	135	135	
3	· _	150	160	120	105	180	135
4		150	160	120	120	180	135
5	150	150	160	150	120	180	90
6	150	150	190	180	110	165	90
7	150	150	-	150	105	120	120
8	150	120	150	150	105	120	-
9	·	150	150	150		140	80
10	· · · · ·	120	165	150	120	140	80
. 11	180	-	165	150	120	150	150
12	180	120	240	150	. - -	150	120
13	180	120	240	160		165	90
14	180	120	220	165	150	315	90
15	120	150	220	120	150	165	180
16	120	120	180	180	150	150	90
17	180	120	180	170	-	160	90
18	180	120	165	170	135	135	90
19	150	120	165	165	-	180	135
20	150	120	230	165	135	165	85
21	120	90	230	180	-	(pair	90
22	120	120	210	180	-	· 	90
23	, · · -	120	R 2	180		* 65	90
24	120	120	. –	150	-		90
25	-	120	-	-	-	. –	-
Total	2700	3000	3950	3695	1865	3275	2210
NR	18	24	21	24	15	20	21
Mean	150.00	125.00	188.10	153.96	124.33	163.75	105.24

EXPERIMENT #13 Cyclohexanol Films 18, 19, 20, 21, 22, 23 Total Time

Student	100	200	300	400	500	600	700
1	150	210	215	210	105	100	210
1	150	210	215	210	195	100	210
2	230	210	275	210	200	195	210
.3	150	180	230	210	195	180	250
4	150	240	210	210	210	210	250
5	285	180	215	240	210	210	205
6	285	180	265	240	210	210	. 205
7	240	210	210	240	210	240	270
8	- .	210	210	240	210	240	240
9	300	210	210	240	200	180	205
10	300	240	270	240	210	180	-
11	130	240	270	285	210	220	205
12	130	180	240	285	210	220	250
13	240	180	240	285	195	270	210
14	290	180	255	- .	· •	270	210
15	330	205	240	285	240	245	180
16	300	180	235	240	240	245	180
17	330	180	235	210	240	210	225
18	240	210	270	210	· _	195	225
19	240	210	270	240	-	210	285
20	240	210	285	240	200	240	225
21	230	210	300	240	a⊊,	180	270
22	230	210	300	240	-	·	270
23	. 🖛	180	270	240		-	240
24	150	210	-	240	· •	-	240
25	/ .	210	-	_	· - .	-	3 80
Total	4930	5065	5720	5310	3585	4530	5260
NR	22	25	23	23	17	21	23
Mean	224.09	202.60	248.70	230.87	210.88	215.71	228.70

	. 	210				· •	
24	195	210	:255	i		-	210
. 23	195	220	255	195	86	BD.	210
22	225	210	235	190		-	210
21	225	210	235	190		180	210
20	225	210	225	180	180	180	180
19	225	175	170	180	-	180	210
18	225	210	170	210		275	225
17	225	205	220	210	180	180	225
16	210	205	220	210	200	295	180
: 15	210	220	225	215	200	295	180
14		210	225	210	, -	185	180
13	240	2 10	250	215	200	185	180
12	245	180	235	210	210	185	180
11	245	180	235	210	· _	185	180
10	255	225	235	220	180	205	210
9	255	225	250	220	180	205	2 10
8	240	245	250	195	210	170	180
7	240	175	250	200	210	170	180
6	255	245	260	195	180	225	180
5	255	210	230	195	240	185	180
4	210	210	250	180	240	185	210
- <u>2</u>	210	190	260	180	180	275	230
2	195	210	260	180	240	275	180
1	100	210	230	180	180	225	180

Student Number	100	200	300	400	500	600	700
1	210	210	230	240	180	275	250
2	210	210	270	240	225	180	-
3	210	180	225	240	180	275	210
4	210	180	225	240	185	210	200
5	215	210	235	240	185	195	210
6	215	210	270	335	180	275	210
7	215	210		240	225	180	270
8	-	185	255	240	225	180	270
9	315	210	255	240	240	160	210
10	315	215	270	255	215	160	200
. 11	250	-	270	300	195	185	250
12	250	210	215	300	195	185	250
13	250	210	215	190	220	215	240
14	250	215	215	190	215	215	240
15	265	215	215	190	215	220	240
16	265	240	245	180	240	220	210
17	180	210	250	210	185	200	. 210
18	180	270	235	210	185	180	210
19	240	270	235	190	-	200	195
20	255	225	220	190	225	200	195
21	255	175	220	300		195	180
22	210	150	240	335	· =	-	200
23	210	225	180	300	a	•	210
24	210	180	-	· • •	und	· 089.	210
25	-	165	-	** *	-		· 040
Total	5170	5160	5190	5595	3915	4305	5070
NR	23	24	22	23	19	21	23
Mean	224.78	215.00	235.9	1 243,26	206.05	205.00	220.43

Ethanol

Student Number	100	200	300	400	500	600	700
1	165	120	145	210	90	155	120
2	150	120	135	210	90	145	· -
3	150	90	120	120	90	140	80
4	150	90	130	120	-	125	80
5	115	90	175	180	.90	125	90
6	115	90	135	165	. 90	150	90
7	120	90	125	120	90	130	120
.8	180	105	125	120	90	110	120
9	195	105	195	155		135	75
10	195		195	155	90	135	75
11	125	130	105	120	-	155	90
12	165	150	105	120	120	1,55	90
13	125	150	180	125	90	145	60
14	125	90	180	180	-	145	60
15	150	90	150	150	90	185	90
16	150	90	:150	180	90	185	90
. 17	180	120	115	150	-	150	120
18	180	135	115	150	150	145	120
19	150	135	155	180	-	150	100
20	150	100	155	180	90	130	75
21	135	105	155	150	-	130	105
22	150	100	125	150		-	105
· 23	135	80	, —	155	-		105
÷ 24	150	90	-		-		105
25	-	105	-	. 	1 -	· ••	· -
Total	3605	2570	3170	3545	1350	3025	2285
NR	24	24	22	23	14	21	24
Mean	150.21	107.08	14 4. 10	154.13	96,43	144.05	95.2
EXPERIMENT #16 Carbon Compounds

Student				·			
Number	100	200	300	400	500	600	700
1	110	105	155	150	90	130	90
2	110	120	140	90	105	130	. 120
3	120	75	125	90	80	135	-
4	-	85	140	90	90	120	110
5	90	85	130	90	110	110	75
6	95	120	125	75	120	150	75
7	-	150	. .	75	75	90	135
8	· •	· •	125	90		100	90
9	160	90	125	90	-	105	90
10	160	90	120	95	150	135	90
11	120	90	125	95	120	125	90
12	155	90	90	95	120	145	120
13	150	150	90	110 ·	135	130	. 80
14	120	90	120	100	120	175	120
15	120	90	125	120	120	125	105
16	120	90	140	90	90	145	120
17	120	90	120	90	120	120	120
18	90	90	100	90	120	120	80
19	130	70	120	90	-	120	120
20	125	100	105	120	60	120	90
21	105	90	105	105	-	165	80
22	110	100	130	110	=	-	100
23	80	55	90	105		· -	120
24	110	90	-	-	, =	-	120
25	-	95	-	-	-	-	84
Total	2500	2300	2645	2255	1825	2695	2350
NR	21	24	22	23	- 17	21	23
Mean	119.05	95.83	120.23	98.04	107.35	128.33	102.17

Methyl Ethyl Ketone

Student	1.0.0	• • • •					
Number	100	200	300	400	500	600	700
1	180	145	210	150	165	185	240
2	180	145	205	150	150	190	240
3	145	-	205	120	165	185	130
4	145	145	210	120	150	180	130
· . 5· .	145	145	200	150	150	200	130
6	145	160	205	240	180	195	130
7	140	160	· _	160	180	140	130
8	140	160	205	160	180	140	190
9	180	190	205	120	180	195	215
10	180	- '	165	120	180	195	215
11	210	160	165	120	180	210	150
12	210	150	185	120	195	210	185
13	200	150	185	195	190	215	215
14	210	120	225	150	180	215	215
15	240	120	170	120	190	230	210
16	240	180	170	150	135	230	185
17	210	180	180	165	135	215	150
18	190	140	180	165	-	190	210
19	180	150	240	240	-	215	210
20	. 180	150	240	240	150	220	135
21	180	190	210	240	-	220	180
22	180	150	210	240	-	· -	180
. 23	180	150	180	240		• -	185
24	180	150	·	- 	-	-	185
25		190	-	. गु	· 🛥	. 	
Total	4345	4370	3580	4350	3875	3035	4175
NR	24	23	22	. 23	- 18	21	24
Mean	182.08	155,65	197.73	168.48	168.61	198.81	181.04

EXPERIMENT #17

Acids

Student							
Number	100	200	300	400	500	600	700
1	120	80	125	90	75	130	105
2	120	120	115	90	-	120	105
3	120	. 85	105	90	75	130	105
4	120	- 75	105	120	95	105	105
. 5	95	85	125	90	95	105	90
6	95	85	115	125	120	130	90
7	120	120	· . -	90	90	120	90
8	120	85	120	90	90	120	90
9	120	120	120	120	. •	105	100
10	. 120	_ =	100	130	120	105	100
11	150	110	100	100	میں ر	105	·
12	150	85	75	100	120	105	105
13	120	85	75	-	· =	110	75
14) -	. 90	120	120	85	120	75
15	90	90	. =	90	140	120	85
16	120	90	125	120	140	115	105
17	150	90	150	-	90	105	. 90
18	155	130	105	120	-	120	90
19	125	130	125	150	=0	-	90
20	125	85	105	90	80	-	90
21	90	85	105	120		105	110
22	120	90	125	120	, m	. 🛥	110
23	90	120	105	125		· · -	105
- 24	95	85	. .	- 1 2	· •	=1	105
25	ena 1	. 90		36 3	ap.	-	·
Total	2730	2310	2345	2290	1415	2175	2215
NR	23	24	21	21	14	19	23
Mean	118.70	96.25	111.67	109.05	101.07	114.47	96.30

EXPERIMENT #20

Isoamylacetate

Student Number	100	200	300	400	:500	600	700
1	150	115	135	150	120	136	144
2	-	115	135	150	125	125	-
3	150	100	125	130	125	135	115
4	150	100	125	130	110	115	115
5	-	110	135	150	110	115	120
6	145	110	135	150	150	135	120
7	150	105	-	135	120	125	100
8	150	135	125	150	120	125	100
9	120	110	125	120	-	135	105
10	120	105	140	120	150	135	105
11	135	110	140	135	90	125	120
12	135	110	120	135	90	125	120
13	120	110	120	145	115	-	120
14	120	110	140	120	115	150	120
. 15	135	110	140	155	120	135	90
16	135	120	130	120	120	195	120
17	130	110	130	120	200	125	120
18	130	120	130	150	120	125	120
. 19	130	120	130	120	_ as i	125	120
. 20	130	135	155	120	120	125	105
21	-	135	155	135		125	100
22	. - .	135	135	135		' 080	100
23	150	120	130	185	-	-	120
24	135	120	-	. –	, -	-	70
25	- -	135	· _	· _	-	· -	· 200
Total	2720	2905	2935	3160	2220	2636	2569
NR	20	25	22	23	18	20	23
Mean	136.00	116.20	133.41	137.39	123.33	131.80	111.70

a and a set of

Student							
Number	100	200	300	400	500	600	700
1	120	70	. 90	120	80	90	150
2	100	90	90	120	120	100	105
3	150	90	90	120	75	105	105
4	150	80	90	120	90	-	105
5	110	-	80	150	90	-	75
6	105	80	85	120	120	85	75
7	-	120		-	90	125	80
8	90	105	77	150	75	-	80
9	180	80	70	120	120	120	100
10	180	-	80	125	120	130	105
11	180	-	80	120	130	110	90
12	180	150	75	120	90	110	120
13	120	120	65	105	120	100	90
14	-	120	120	100	100	105	90
15	135	120	120	120	90	100	90
16	140	90	130	90	90	125	120
. 17	120	-	125	-	75	80	-
18	115	105	110	150	120	115	75
19	-	120	110	150	~	85	90
20	130	100	150	120	60	105	90
21	75	100	150	150	-	100	90
22	120	100	130	135	-	-	90
23	75	-	105	120			90
24	100	110	-	. –	· 🖛 .	· @	-
25	· •	100	. 190	-	* cm a	-	· ,
Total	2675	2050	2222	2625	1855	1890	2105
NR	21	20	22	21	19	18	22
Mean	127.38	102.50	101.00	125.00	97.63	105.00	95.68

EXPERIMENT #30 Diazo Compounds

Student Number	100	200	300	400	500	600	700
. 1	120	60	. 70	75	60	75	150
2	65	90	85	75	90	_	· 69
3	85	60	75	70	60	85	65
. 4	85	60	75	60	. 75	65	65
5	85	60	70	90	75	65	60
6	85	60	85	90	60	70	60
7	85	60	-	·	90	, -	. 90
8	90		60	60		95	90
9	90	70	60	90	60	75	80
10	90	75	60	90	90	75	105
11	60	. - 1997	70	-	90	70	120
12	60	613	50		90	70	120
13	-	-	50	95	. 🛥	80	<u>_</u> 60
14	2 -	. 90	70	90	80	. 90	60
15	: -	90	70	90	60	65	75
16	85	75	80	90	60	80	, 199
17	100	75	90	90	60	70	90
18	75	50	65	150	60	80	90
. 19	~	50	65	75	, -	80	75
20	125	45	75	75	90	6 2	90
21	[`] 45	, ee i	75	90	-	-	90
22	65	45	65	90	265 1	80	90
23	45		· 000	90	a	. 6 3	90
24	85	60	***		* G 9	· 042	
25	-	. 265	225	. inn	· -	·	, e s
Total	1625	1175	1465	1725	1250	1370	1815
NR	20	. 18	21	20	17	18	21
Mean	81,25	65.28	69.76	86.25	73.53	76.11	86.43

EXPERIMENT #35 Aspirin

Student Number	100	200	300	400	500	600	700
1	120	100	105	90	60	105	
2	70	100	. 95	. 90	120	85	-
3	105	90	90	90	60	105	50
4	105	90	.90	90	· 60	95	50
5	105	60	105	120	60	-	45
6	105	60	95	120	90	120	45
7	115	105	-	75	75	110	50
8	115	75	105	75	75	110	. 50
9	140	105	105	90	60	90	60
10	140	. –	90	120	90	90	60
11	120	75	90	90	105	75	60
12	120	60	75	90	90	75	60
13	90	60	. 75	-	100	95	45
14	•	90	95	85	100	95	45
15	95	90	95	85	85	-	· •
16	95	45	90	85	85	-	60
17	115	45	90	105	60	105	60
18	115	90	-	105	60	85	60
. 19	105	90	90	130	₽.	e 2,	45
20	105	7.5	110	120	120	100	. 45
21	80	75	105	90		100	<i>,</i> 60
22	80	80	115	90	-	· 	60
23	80	. 75	105	120		·	60
24	90	120		-	· •	-	-
25	-	75	-	· · _	· •••		
Total	2410	1930	2015	2155	1555	1640	1070
NR	23	24	21	22	19	17	20
Mean	104.78	180.42	95.95	97.96	81.84	96.47	53.50

NK Mean	22 176.36	24 161.04	22 165.68	21 205,71	18 162,50	21 163.10	22 175.00
Total	3880	3865	3645	4320	2925	3425	3850
25 		120		· 660	· •	<u> </u>	ant
. 24	160	150	-	· •	-	· •	2 7
23	160	190	155	~	-	-	150
. 22	195	165	155	210	-	- 00	150
21	195	150	135	210	-	145	150
20	190	165	135	240	165	145	210
19	190	190	225	240		180	210
18	255	190	225	180	195	160	180
17	300	150	145	180	æ	180	180
16	195	150	145	195	150	145	180
15	195	180	150	180	150	145	180
14	, - .	180	150	195	195	165	180
13	120	180	155	-	195	165	210
12	120	150	155	180	210	125	210
. 11	120	. .	130	180	150	125	210
10	180	195	130	180	150	180	150
9	-	150	280	180	180	180	150
8	150	150	280	240	150	170	140
. 7	150	150	-	240	150	170	140
6	180	150	155	210	150	185	180
5	180	150	155	240	135	165	180
4		150	140	180	135	165	150
. 3	150	150	140	180	150	185	150
. 2	195	120	155	240	165	160	-
1	150	. 120	150	240	150	185	210
Student Number	100	200	300	400	500	600	700

Sulfanilamide

Mean	200.42	174.57	201.59	214.35	214.74	226.19	171.1
Total NR	4810 24	4015	4435	4930 23	4080	4750 21	1.8
25	· ••	210	œ		-	· _	-
24	255	195		· •	-	-	·
23	135	180	185	240	~~	· 000	150
22	240	140	210	240		-	150
21	135		230	240		295	150
20	240	140	230	240	. 240	295	180
· 19	290	185	160	240		195	180
. 18	180	185	140	240	150	170	150
17	120	. 180	160	240	150	265	180
16	290	180	195	210	210	245	180
15	290	190	190	165	180	. 245	
14	120	190	190	210	250	245	180
13	120	120	220	. 185	250	215	180
12	120	120	220	180	195	200	180
11	120	120	240	180	195	200	·
10	120		215	230	210	205) —
. 9	120	180	205	210	250	205	140
8	185	210	215	210	240	170	. 210
7	185	180	معو	210	240	190	210
6	270	180	225	» 240	210	235	210
5	270	. 180	215	210	195	205	. m
. 4	210	165	190	210	195	230	140
3	180	165	190	180	240	255	140
2	240	210	195	210	· 2 40	195	
1	255	210	215	210	240	250	210
Student <u>Number</u>	100	200	300	400	500.	600	700

APPENDIX D

SUMMARY OF LABORATORY BREAKAGE

	and the state	and the second					
Group 100		Group 200		Group 300		Totals	
EXPERIMENT #1			·····				
102 - funnel	0.75*	205 - 125ml E Flask	0.58	306 - 50ml Grad Cyl	1.45*		
109 - funnel	0.75	215 - 125ml E Flask	0.58*	319 - funnel	0.75*		
109 - 125ml E Flask	0.58	217 - T-tube	0.07*				
116 - 100ml Beaker	0.53*	217 - T-tube	0.07*				
4 items cost:	2.61	4 items cost:	1.30	2 ftems cost:	2.20	10 items total cost:	6.11
(24 students)	· · · ·	(25 students)		(22 students)		(71 students)	
EXPERIMENT #2							
102 - Thiele	4.41*			305 - 50ml Beaker	0.49*		
			· · ·	306 - Thiele	4.41*		
		یک اخذ کار برویو بیاد کا کار بین دل بین چار خانی من کرد میروی بی بی بی بی دل این میروی بی بی بی دل بی بی بی بی		309 - Therm	2.85*		بی می منبعان بزدجرد با این می می می این این ا
1 item cost:	4.41	0 items		3 items cost:	7.75	4 items total cost:	12.16
(23 students)	۱	(24 students)		(23 students)	•	(70 students)	
EXPERIMENT #3							
<u> 104 - funnel</u>	0.75	212 - 50ml Beaker	0.49	318 - West Condenser	7.36*		**********
1 item cost:	0.75	1 item cost:	0.49	l item cost:	7.36	3 items total cost:	8.60
(24 students)		(24 students)	54 (C)	(23 students)		(71 students)	
EXPERIMENT #4				e .			
108 - 50ml RB Flask	2.51	207 - T-tube	0.07	313 - 100ml RB Flask	2.41		•
109 - 10m1 Grad Cy1	1.15	212 - 50ml RB Flask	2.51				
118 - Therm	2.85*	217 - funnel	0.75*				· · ·
		224 - 50m1 Grad Cy1	1.45	·····			
3 items cost:	6.51	4 items cost:	4.78	l item cost:	2.41	8 items total cost:	13.70
(24 students)		(25 students)		(23 students)		(72 students)	

LABORATORY BREAKAGE AND COST BY EXPERIMENT, BY CLASS, AND BY INDIVIDUAL FOR EXPERIMENTAL GROUP

Group 200		Group 300		Totals	· · · · · · · · · · · · · · · · · · ·
		and the second			
201 - 100ml Beaker	0.53	302 - 100ml Beaker	0.53		
202 - T-tube	0.07	310 - funnel	0.75		
203 - T-tube	0.07	312 - 10ml Grad Cyl	1.15		
206 - T-tube	0.07	318 - 100ml Beaker	0153		
		320 - T-tube	0.07		
ا میں اور	-	<u> 321 - 250ml Beaker</u>	0.49	یں کا ان سے این اور بارے پی ان خان کا ان کا اور اور اور اور اور اور اور اور اور او	
4 items cost:	0.74	6 items cost:	3.52	15 items total cost:	5.51
(23 students)		(21 students)		(68 students)	
· · · · · · · · · · · · · · · · · · ·			<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	······································	· · ·
		301 - T-tube	0.07		
		302 - T-tube	0.07		
		304 - Side arm tube	2.30		
· · · · ·		307 - T-tube	0.07		
		316 - T-tube	0.07		
		322 - T-tube	0.07	بر از بر بر بر از ماری بر از از از ماری باز از ماری باز از از ا	•
0 items		6 items cost:	2.65	7 items total cost:	3.14
(24 students)		(22 students)		(65 students)	
202 - 10ml Grad Cvl	1.15*	321 - Therm	2.85	· · ·	, · · · ·
209 - Hirsch funnel	1.85	e		· · ·	
2 items cost:	3.00	1 item cost:	2.85	3 items total cost:	5.85
(24 students)	5.00	(21 students)		(63 students)	
	Group 200 201 = 100ml Beaker 202 - T-tube 203 - T-tube 206 - T-tube 4 items cost: (23 students) 0 items (24 students) 202 - 10ml Grad Cyl 209 - Hirsch funnel 2 items cost:	Group 200 201 = 100ml Beaker 0.53 202 - T-tube 0.07 203 - T-tube 0.07 206 - T-tube 0.07 4 items cost: 0.74 (23 students) 0.74 0 items (24 students) 202 - 10ml Grad Cy1 1.15* 209 - Hirsch funnel 1.85 2 items cost: 3.00	Group 200 Group 300 201 = 100ml Beaker 0.53 302 = 100ml Beaker 202 - T-tube 0.07 310 - funnel 203 - T-tube 0.07 312 - 10ml Grad Cyl 206 - T-tube 0.07 318 - 100ml Beaker 320 - T-tube 0.07 318 - 100ml Beaker 321 - 250ml Beaker 321 - 250ml Beaker 4 items cost: 0.74 6 items cost: (23 students) (21 students) 301 - T-tube 302 - T-tube 304 - Side arm tube 307 - T-tube 316 - T-tube 322 - T-tube 0 items 6 items cost: (24 students) (22 students) 202 - 10ml Grad Cy1 1.15* 321 - Therm 202 - 10ml Grad Cy1 1.15* 321 - Therm 202 - 10ml Grad Cy1 1.85 2 2 items cost: 3.00 1 item cost:	Group 200 Group 300 201 - 100ml Beaker 0.53 302 - 100ml Beaker 0.53 202 - T-tube 0.07 310 - funnel 0.75 203 - T-tube 0.07 312 - 10ml Grad Cyl 1.15 206 - T-tube 0.07 318 - 100ml Beaker 0153 320 - T-tube 0.07 318 - 100ml Beaker 0153 320 - T-tube 0.07 312 - 250ml Beaker 0.49 4 1tems cost: 0.74 6 items cost: 3.52 (23 students) (21 students)	Group 200 Group 300 Totals 201 - 100ml Beaker 0.53 302 - 100ml Beaker 0.53 202 - T-tube 0.07 310 - funnel 0.75 203 - T-tube 0.07 312 - 10ml Grad Cyl 1.15 206 - T-tube 0.07 318 - 100ml Beaker 0153 320 - T-tube 0.07 312 - 10ml Grad Cyl 1.15 206 - T-tube 0.07 312 - 250ml Beaker 0.13 320 - T-tube 0.07 312 - 250ml Beaker 0.49 4 items cost: 0.74 6 items cost: 3.52 15 items total cost: (23 students) (21 students) (68 students) (68 students) 301 - T-tube 0.07 302 - T-tube 0.07 302 - T-tube 0.07 304 - Side arm tube 2.30 307 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07 322 - T-tube 0.07

	Group 100		Group 200		Group 300		Totals		
EXP	PERIMENT #13	······································	i an	······································	······································		······		 :
112	2 - T-tube	0.07*	201 - T-tube	0.07	305 - Stopper	1.57*			
113	3 - Vial	0.05	201 - T-tube	0.07	305 - T-tube	0.07*			
			207 - Therm	2.85	and the second				
			223 - Therm	2.85					
			223 - Stopper	1.57			من بر بر فر بر با ما مارد بر از مانه مز بن 200 100 100 100 100 100		
2 1	ltems cost:	0.12	5 items cost:	7.41	2 items cost:	1.64	10 items total cost:		9.17
(22	2 students)		(25 students)		(23 students)		(70 students)		
EXP	PERIMENT #11	·			terre en entre de la companya de la				
116	5 - 10ml Grad Cvl	115*	209 - 250ml Beaker	. 0.49	310 - 50ml Grad Cvl	1.45*			
120) - Rod	0.08*						1	
2 1	ltems cost:	1.23	1 item cost:	0.49	l item cost:	1.45	4 items total cost:	· · ·	3.17
(23	3 students)		(25 students)	÷	(23 students)		(71 students)		
MET	THYL SALICYLATE		·····		·····			:	
117	7 - 250ml Beaker	0.49			309 - Stopper	1.57*			
124	- T-tube	0.07*		•	312 - 50ml Grad Cyl	1.45	an a	50 50	· ·
			e - ce citere - it is a line AS il estate:	وحديا كالناطات وحويدي م	317 - Stopper	1.57			
2 1	items cost:	0.56	0 items		3 items cost:	4.59	5 items total cost:		5.15
(23	3 students)		(24 students)		(22 students)		(69 students)		
ETH	IANOL				•	·······			
					307 - 250ml E Flask	0.60			
•					309 - 10ml Grad Cyl	1.15			
				استجابونيم فكنف سدي كنساب بونج	311 - Therm	2.85			
0 1	ltems		0 items		3 items cost:	4.60	3 items total cost:		4.60
(24	students)		(23 students)		(22 students)	,	(69 students)		

Group 100	Group 200		Group 300		Totals		
EXPERIMENT #16	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				-
			310 - T-tube	0.07			
	· · · · ·		313 - T-tube	0.07			
			314 - T-tube	0.07			
·			316 - T-tube	0.07			
		·	318 - T-tube	0.07	,	са. С	
0 items	0 items		5 items cost:	0.35	5 items total cost:	0.35	
(21 students)	(24 students)	-	(22 students)		(67 students)	0.00	
				·····		·	-
117 Distilling Column 9.40	217 - 3 pools PR Flack	0 934	316 - Modicino dronnor	0.05*	- · · · ·		
123 - Therm 2.85	217 - 5 HECK KD Flask	3.03.	510 - Medicine diopper	0.05	and the second second		:
	· · · · · · ·						
2 items cost: II.25	1 Item cost:	9.03	1 Item Cost:	0.05	4 Items total cost:	21.13	
(23 students)	(23 students)		(22 students)		(68 students)		•
EXPERIMENT #17							
101 - 100ml RB Flask 2.41	201 - T-tube	0.07	302 - 250ml E Flask	0.60			
117 - T-tube 0.07	207 - 250ml Beaker	0.49	304 - T-tube	0.07*			
124 - funnel 0.75*	219 - T-tube	0.07*	314 - Evaporating Dish	0.90*			
	220 - 250ml E Flask	0.60					-
3 items cost: 3.23	4 items cost:	1.23	3 items cost:	1.57	10 items total cost:	6.03	
(23 students)	(24 students)		(21 students)		(68 students)		
EXPERTMENT #20					• • • • • • • • • • • • • • • • • • •		
124 - Distilling column 8,40*							
1 daga and 8 40	Λ iteme		O items		1 item total cost.	8 40	1
i item cost:	(25 students)		(22 students)		(67 students)	0.40	,
			(22 Students)	·····	(07 Students)		1
	2						

		and the second			,		
	<i></i>	and the second			•		
Group 100		Group 200	•	Group 300		Totals	
BUTTER AND OLEOMARGARINE						<u> </u>	
118 - 10ml Grad Cyl	1.15			312 - Dropper 312 - Vial	0.05		
1 item cost: (22 students)	1.15	0 items (24 students)		2 items cost: (22 students)	0.10	3 items total cost: (68 students)	1.25
EXPERIMENT #35		215 - funnel	0.75				
0 items (24 students)		1 item cost: (24 students)	0.75	0 items (21 students)		l item total cost: (69 students)	0.75
EXPERIMENT #26 116 - T-tube 116 - 50ml Grad Cyl	0.07	205 - T-tube 211 - 50ml Grad Cyl	0.07		· · · · · · · · · · · · · · · · · · ·		
2 items cost: (19 students)	1.52	2 items cost: (19 students)	1.52	(22 students)		4 items total cost: (60 students)	3.04
EXPERIMENT #30 124 - T-tube	0.07						· · · ·
l item cost: (20 students)	0.07	0 items (18 students)	· ·	0 items (21 students)		<pre>1 item total cost: (59 students)</pre>	0.07
EXPERIMENT #29							
115 - 50ml Grad Cyl 119 - 50ml Grad Cyl	1.45* 1.45*	204 - 250ml E Flask 205 - 50ml Grad Cyl 222 - 250ml Beaker	0.60* 1.45 0.49	304 - 50ml Grad Cyl 309 - 100ml RB Flask 312 - 100ml RB Flask	1.45* 2.41* 2.41*		· · · · · · · · · · · · · · · · · · ·
2 items cost: (24 students)	2.90	3 items cost: (23 students)	2.54	3 items cost: (22 students)	6.27	8 items total cost: (69 students)	11.71
33 items cost: (444 students)	46.45	32 items cost: (470 students)	34.08	43 items cost: (440 students)	49.36	108 items total cost: (1354 students)	129.89

· · · · · · · · · · · · · · · · · · ·		GROUP	400	Gro	oup 500	Gro	up 600		Group 700	Totals
EXPERIMENT #1				•			······			
405 - 250ml Beaker	0,49	50	1 - T-tube	0.07	602 - 250ml E Flask	0.60	714 - 50ml RB Flask	2.51	1. A.	
405 - funnel	0.75	50	3 - 125ml E Flask	0.58	605 - T-tube	0.07				
406 - T-tube	0.07	50	7 - 100ml Beaker	0.53			and the second			
406 - 250ml E Flask	0.60									
407 - West Condenser	7.36	· .				-			and the second second	
412 - funnel	0.75									
418 - T-tube	0.07	1 - C	*		· · · · · ·					
423 - 125ml E Flask	0.58	1							2	
8 items cost:	10.67	3	items cost:	1,18	2 items cost:	0.67	1 item cost:	2.51	14 items total cost:	15.03
(23 students)		(1	8 students)		(19 students)	· · ·	(23 students)		(83 students)	
EXPERIMENT #2						······································				
422 - T-tube	0.07				622 - Thiele	4.41	719 - Therm	2.85		
1 item cost:	0.07	0	items		1 item cost:	4.41	1 item cost	2.85	3 items total cost:	7.33
(23 students)		(2	0 students)		(21 students)	1	(24 students)		(88 students)	
EXPERIMENT #3				and a second						
408 - funnel	0.75			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	618 - 100ml RB Flask	2.51				
413 - funnel	0.75									دى ئېرى پېرى <u>دى د د د د د د د د د د د د د د د د د </u>
2 items cost:	1.50	0	items		1 item cost	2.51	0 items		3 items total cost:	4.01
(24 students)		(1	9 students)		(21 students)		(23 students)		(87 students)	
				<u> </u>			······································			

LABORATORY BREAKAGE AND COST BY EXPERIMENT, BY CLASS, AND BY INDIVIDUAL FOR CONTROL GROUP

								· · ·		÷
	Grou	p 400		Sroup 500		acoup 600	Group. 700	Totals		
EXPERIMENT #4 401 - 100ml RB Flask	2.41	507 - Therm 509 - Therm 517 - 50ml Grad Cyl 518 - Therm 519 - 100ml RB Flask	2.85 2.85 1.45 2.85 2.41	608 - Therm-Adapter	1.66	709 - Therm 713 - Receiver Adapter 721 - Dist. Column 723 - 250ml RB Flask	2.85 5.09 8.40 3.11			r 21 1
L item cost: (24 students)	2.41	5 items cost: (20 students)	12.41	<pre>1 item cost: (21 students)</pre>	1.66	4 items cost: (22 students)	19.45 11 items total ((87 students)	:ost: 35.93	t se s	
EXPERIMENT #5 417 - 250ml Beaker 424 - T-tube	0.4 9 0.07	501 - T-tube 502 - 250ml E Flask 503 - Rod 512 - T-tube 517 - T-tube 520 - funnel	0.07 1.35 0.08 0.07 0.07 0.75			701 - T-tube 716 - T-tube 723 - T-tube	0.07 0.07 0.07			
2 items cost: (21 students)	0.56	6 items cost: (18 students)	2.39	0 items (21 students)	- 	3 items cost: (24 students)	0.21 11 items total (84 students)	ost: 3.16		
EXPERIMENT #6 409 - Side Arm tube 413 - Side Arm tube 419 - 50ml Beaker	2.30 2.30 0.53			611 - 10ml Grad Cyl 617 - T-tube	1.15 0.07	706 - T-tube 706 - Fusion tube	0.07 0.25			
3 items cost: (24 students)	5.13	0 items (19 students)		2 items cost: (21 students)	1.22	2 items cost: (23 students)	0.32 7 items total co (87 students)	ost: 6.67		
										۰ .

Oroup 400 Group 500 Group 600 Group 600 Group 700 Totals NETA DINTRO SERIES 502 - 10ml Grad (x)1 1.15 605 - 10ml Grad (x)1 1.15 0 items 2 items total cost: 2.30 0 items 1 item cost: 1.15 1 item cost: 1.15 0 items 2 items total cost: 2.30 0 items 0.75 Sile - Glass Stopper 1.57 607 - Receiver Adapter 5.09 709 - 10ml Grad (x)1 1.15 0 items 0.75 Sile - Glass Stopper 1.57 607 - Receiver Adapter 5.09 1.15 1.15 0 item cost: 0.75 1 item cost: 1.57 607 - Receiver Adapter 5.09 1.15 1 item cost: 0.75 1 item cost: 1.57 607 - Receiver Adapter 5.09 1.15 1 item cost: 0.75 1 item cost: 1.57 607 - Receiver Adapter 5.09 1.15 0 item cost: 0.75 1 item cost: 1.57 4 item cost: 2.10 644 etudents) 644 etudents) 0.158	· ·									
Group 400 Group 500 Group 600 Group 600 Group 700 Totals MEXA DINTRO BEREME 592 - 10ml Grad Cyl 1.15 693 - 10ml Grad Cyl 1.15 0 tems 2 tems total cost: 2.30 0 tems 1 ftm cost: 1.15 693 - 10ml Grad Cyl 1.15 0 tems 2 tems total cost: 2.30 0 tems 1 ftm cost: 0.15 607 - 10ml Grad Cyl 1.15 0 tems (20 students) (20 students) (21 students) (21 students) (21 students) (21 students) (21 students) (21 students) (23 students) (24 students) (23 students) (24 students) (23 students) (24 students) (23 students) (24 students) (24 students) (23 students) (24 students) (24 students) (25 students) (25 students) (24 students) (24 students) (24 students)	• •									· · · ·
Group 400 Group 500 Group 600 Group 700 Totals META DINITIO ENZERS 502 - 10c1 Gred Cyl 1.15 605 - 10c1 Gred Cyl 1.15 0 frems 1 frem cost: 1.15 1 frem cost: 1.15 0 frems 2 frems total cost: 2.30 (24 students) (23 students) (20 students) (21 students) (60 students) 2.30 (24 students) (15 students) (20 students) (21 students) (60 students) 2.30 (24 students) (15 students) (20 students) (21 students) (60 students) 2.30 (24 students) (17 students) (17 students) (21 students) (21 students) (21 students) (24 studen										
Group 400 Group 500 Group 600 Group 700 Totals META DINTRO BENERNE 592 - 10nl Grad Cy1 1.15 605 - 10nl Grad Cy1 1.15 0 items 2 items total cost: 2.30 0 items 1 item cost: 1.15 1 item cost: 1.15 0 items 2 items total cost: 2.30 (24 students) (25 students) (20 students) (21 students) (30 students) 2.30 EXPERIMENT #44 417 - funcel 0.75 516 - Glass Stopper 1.57 607 - Receiver Adapter 5.09 709 - 10nl Grad Cy1 1.15 1 item cost: 0.75 516 - Glass Stopper 1.57 607 - Receiver Adapter 5.09 714 - Dist. Adapter 5.09 1 item cost: 0.75 1 item cost: 1.57 4 items cost: 20.01 2 items cost: 6.24 8 items total cost: 28.57 (23 students) (17 students) (21 students) (23 students) (33 students) (33 students) (33 students) 1 item cost: 2.41 0 items 4 items cost: 19.19										
META DINITRO BENZENE 502 - 10nl Grad (yl 1.15 605 - 10nl Grad (yl 1.15 0 items 2 items total cost: 2.30 0 items 1 item cost: 1.15 1 item cost: 1.15 0 items 2 items total cost: 2.30 (24 students) (21 students) (21 students) (20 students) (20 students) (20 students) EXPERIMENT #L#			Group 400		Group 500	Gro	ար 600	Grou	p 700 Total	Ls
0 items 1 item cost: 1.15 1 item cost: 1.15 0 items 2 items total cost: 2.30 (24 students) (25 students) (20 students) (21 students) (21 students) (30 students) EXPERIMENT #L# 417 - fumel 0.75 516 - Glass Stopper 1.57 607 - Receiver Adapter 5.09 709 - Johl Grad Cyl 1.15 1 item cost: 0.75 1 item cost: 1.57 4 items cost: 2.00 2 items cost: 6.24 8 items total cost: 28.57 (23 students) (17 students) (21 students) (23 students) (23 students) (23 students) (24 students) EXPERIMENT #11 602 - Therm 2.85 .09 .01 cost: 2.160 .01 cost: 21.60 414 - 100ml RB Flask 2.41 602 - Therm 2.85 .09 .01 cost: 21.60 .01 .01 cost: 21.60 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	META DINITRO BENZENE		502 - 10ml Grad Cyl	1.15	605 - 10m1 Grad Cyl	1.15				
EXPERIMENT #L# 417 - funnel 0.75 516 - Glass Stopper 1.57 607 - Receiver Adapter 5.09 709 - 10ml Grad Cyl 1.15 613 - Receiver Adapter 5.09 714 - Dist. Adapter 5.09 613 - Receiver Adapter 5.09 714 - Dist. Adapter 5.09 613 - Receiver Adapter 5.09 5.09 516 - Glass Stopper 5 1 item cost: 0.75 1 item cost: 1.57 4 items cost: 20.01 2 items cost: 6.24 8 items total cost: 28.57 (23 students) (17 students) (21 students) (23 students) (84 students) 28.57 414 - 100ml RB Flask 2.41 602 - Therm 2.85 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Dist. Column 8.40 613 - Receiver Adapter 5.09 5.09 616 - Therm 2.85 1.15 1 item cost: 2.41 0 items (20 students) (24 students) 63 students)	0 items (24 students)		l item cost: (15 students)	1.15	l item cost: (20 students)	1.15	0 items (21 students)		2 items total cost: 2.3 (80 students)	0
1 item cost: 0.75 1 item cost: 1.57 4 items cost: 20.01 2 items cost: 6.24 8 items total cost: 28.57 (23 students) (17 students) (21 students) (23 students) (84 students) 28.57 EXPERIMENT #11	EXPERIMENT #L# 417 - funnel	0.75	516 - Class Stopper	1.57	607 - Receiver Adapter 602 - 3 Neck RB Flask 613 - Receiver Adapter	5.09 9.83 5.09	709 - 10ml Grad Cyl 714 - Dist. Adapter	1.15 5.09		
EXPERIMENT #11 414 - 100ml RB Flask 2.41 602 - Therm 2.85 613 - Dist. Column 8.40 615 - Receiver Adapter 5.09 618 - Therm 2.85 1 item cost: 2.41 0 items 4 items cost: 19.19 0 items 5 items total cost: 21.60 (23 students) (16 students) (20 students) (24 students) (83 students) METHYL SALICYLATE 0 items 0 items 0 items 0 items 0 items 0.000 (23 students) (19 students) (21 students) (23 students) (86 students)	1 item cost: (23 students)	0.75	l item cost: (17 students)	1.57	4 items cost: (21 students)	20.01	2 items cost: (23 students)	6.24	8 items total cost: 28.5 (84 students)	7
1 item cost: 2.41 0 items 4 items cost: 19.19 0 items 5 items total cost: 21.60 (23 students) (16 students) (20 students) (24 students) (83 students) METRYL SALICYLATE 0 items 0 items 0 items 0 items 0.00 (23 students) (19 students) (21 students) (23 students) (86 students)	EXPERIMENT #11 414 - 100ml RB Flask	2.41			602 - Therm 613 - Dist. Column 615 - Receiver Adapter 618 - Therm	2.85 8.40 5.09 2.85				
METHYL SALICYLATE 0 items 0 items 0 items 0.00 0 items 0 items 0 items 0.00 (23 students) (19 students) (21 students) (23 students) (86 students)	1 item cost: (23 students)	2.41	0 items (16 students)		4 items cost: (20 students)	19.19	0 items (24 students)		5 items total cost: 21.6 (83 students)	0
0 items 0 items 0 items 0 items 0.00 (23 students) (19 students) (21 students) (23 students) (86 students)	METHYL SALICYLATE	15							•	
	0 items (23 students)		0 items (19 students)		0 items (21 students)	4	0 items (23 students)		0 items 0.0 (86 students)	0

		• .		· · · · · · · · · · · · · · · · · · ·						
	G	Group 400	1 s	Group 500	Group	600		Group 700	Totals	1. T
ETHANOL	· · · · · · ·	4 .		·····		· · · · · · · · · · · · · · · · · · ·				<u> </u>
				605 - Dist. Column	8.40	714 - Condenser Adapter	5.09			
1				607 - T-tube	0.07	720 - T-tube	0.07	1		
				617 - Reflux Column	7.36	723 - 10ml Grad Cyl	1.15			
				619 - Therm	2.85					
0 items		0 items		4 items cost:	18.68	3 items cost:	6.31	7 items total cost:	24.99	1. A.
(23 students)		(15 students)		(21 students)		(24 students)		(83 students)		
EXPERIMENT #16				•		•				
401 - T-tube	0.07	511 - T-tube	. 0.0	7 608 - T-tube	0.07	702 - T-tube	.0.07			
401 - T-tube	0.07	516 - T-tube	0.0	7 608 - T-tube	0.07	712 - T-tube	0.07			
403 - T-tube	0.07	517 - T-tube	0.0	7 611 - T-tube	0.07	716 - T-tube	0.07			
		520 - T-tube	0.0	7 616 - 250ml Beaker	0.49				i	
3 items cost:	0.21	4 items cost:	0.2	8 4 items cost:	0.70	3 items cost:	0.21	14 items total cost:	1.40	
(23 students)		(17 students)		(21 students)	· · · · · · · · · · · · · · · · · · ·	(23 Etudents)		(84 students)		
METHYL ETHYL KETONE	· · ·									
418 - 250ml RB Flask	3.11		<u>_</u>	618 - 3 Neck RB Flask	9.83	709 - 250ml RB Flask	3.11		*********	
l item cost:	3.11	0 items		l item cost:	9.83	l item cost:	3.11	3 items total cost:	16.05	
(23 students)		(18 scudents)		(21 students)		(24 students)		(86 students)		
EXPERIMENT #17	and the second		· · ·							·······
403 - T-tube	0.07	514 - 100ml RB Flask	2.4	1 613 - 100ml RB Flask	2.41	704 - T-tube	0.07			
404 - 100ml RB Flask	2.41			617 - 100ml RB Flask	2.41	705 - Receiver Adapter	5.09			
415 - T-tube	0.07	an a				708 - T-tube	0.07	and the state of the		·
418 - T-tube	0.07		·			723 - 100ml Beaker	0.53			
4 items cost:	2.62	l item cost:	2.4	1 2 items cost:	4.82	4 items cost:	5.76	11 items total cost:	15.61	
(21 students)	te det i de la Ali	(14 students)	(*	(19 students)		(23 students)		(87 students)	12 A.	1

		Alexandre de la companya de la compa								
				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		· · · · · · · · · · · · · · · · · · ·	e de la composition d			
	Grou	p 400		Group 500	Gr	oup 600	G	roup 700	Totals	
EXPERIMENT #26										
403 - T-tube	0.07			601 - 100ml Beaker 605 - T-tube	0.53	710 - 125ml Flask	0.58			
1 item cost:	0.07	0 items	- 1	2 items cost:	0.60	l item cost:	0,58	4 items total cost:	1.25	
(21 students)		(19 students)		(18 students)		(22 students)		(80 students)		
EXPERIMENT #30					••••		· · · · · · · · · · · · · · · · · · ·			
		502 - 50ml Grad Cyl	1.45	601 - 50ml Beaker	0.53	÷., · · ·	1			
	· · · ·			605 - T-tube	0.07	·				t sa Anna Anna Anna Anna Anna Anna Anna Ann
0 items	serve de la	l item cost:	1.45	2 items cost:	0.70	0 items		3 items total cost:	2,15	
(20 students)		(17 students)		(18 students)		(21 students)		(86 students)		
EXPERIMENT #29			·							
414 - 250ml RB Flask	3.11	516 - 50ml Grad Cyl	1.45	601 - 50ml Grad Cyl	1.45	703 - Thiele	4.41			a de la Tra
417 - 50ml Grad Cyl	1.45		· · .	613 - 50ml RB Flask	2.51	710 - T-tube	0.07			
418 - funnel	0.75		1.12	620 - 50ml Grad Cyl	1.45					· · ·
418 - 50ml Grad Cy1	1.45		·····							
4 items cost:	6.76	1 item cost:	1.45	3 items cost:	5.41	2 items cost:	4.48	10 items total cost:	18.10	1.
(22 students)		(19 students)		(20 students)		(19 students		(80 students)		
35 items cost:	45.15	25 items cost:	30.13	40 items cost:	117.87	28 items cost:	52.08	128 items total cost:	245.23	
(451 students)		(356 students)		(402 students)		(451 students)		(1660 students)		
						and the second		and the second		
EXPERIMENT #20			and an	and the second						
EXPERIMENT #20 405 - West Condenser	7₊36		and a second second	605 - 100ml RB Flask	2.41	an a				· · · · · · · · · · · · · · · · · · ·
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl	7.36 1.45		een jaar na hori galaan ingo	605 - 100ml RB Flask 605 - West Condenser	2.41 7.36	an a				· · · · · · · · · · · · · · · · · · ·
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl	7.36 1.45			605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl	2.41 7.36 1.45					
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl	7.36 1.45			605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser	2.41 7.36 1.45 7.36			21.		
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl	7-36 1-45			605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Thoma Admicenter	2.41 7.36 1.45 7.36 2.51			21.		
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl	7.36 1.45			605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter	2.41 7.36 1.45 7.36 2.51 1.66					
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (21 sundense)	7.36 1.45 8.81	0 items (19 studente)		605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask <u>618 - Therm Adapter</u> 6 items cost:	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items		8 items total cost: (())	31.56	
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students)	7.36 1.45 8.61	0 items (18 students)		605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask <u>618 - Therm Adapter</u> 6 items cost: (20 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	O items (23 students)		<pre>8 items total cost: (84 students)</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 1tems cost: (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube	7.36 1.45 8.81	0 items (18 students) 515 - Receiver Adapter	5.09	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	O items (23 students) 707 - Vial	0.05	8 items total cost: (84 students)	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost:	7.36 1.45 8.81 0.07 0.07	0 items (18 students) 515 - Receiver Adapter 1 item cost:	<u>5.09</u> 5.09	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial	0.05	<pre>8 items total cost: (84 students) 3 items total cost;</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students)	7.36 1.45 8.61 0.07 0.07	0 items (18 students) 515 - Receiver Adapter 1 item cost: (19 students)	<u>5.09</u> 5.09	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 studente)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students)</pre>	31.56	
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT #35	7.36 1.45 8.61 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students)	<u>5.09</u> 5.09	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students)	0.05 0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students)</pre>	31.56	
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT #35	7.36 1.45 8.81 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funpel</u>	<u>5.09</u> 5.09 2.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students)</pre>	31.56	
EXPERIMENT #20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT #35 0 items	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - fungel</u> 1 item cost:	<u>5.09</u> 5.09 <u>0.75</u> 0.75	<pre>605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items</pre>	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	<pre>605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)</pre>	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05 0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56 5.21 0.75	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items cost: (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56 5.21 0.75	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students) EUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	5.09 5.09 2.75 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05 0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56	
EXPERIMENT \$20 405 - West Condenser 408 - 50ml Grad Cyl 2 items costi (23 students) BUTTER AND OLEOMARGARINE 421 - T-tube 1 item cost: (21 students) EXPERIMENT \$35 0 items (22 students)	7.36 1.45 8.81 0.07 0.07	0 items (18 students) <u>515 - Receiver Adapter</u> 1 item cost: (19 students) <u>513 - funnel</u> 1 item cost: (19 students)	<u>5.09</u> 5.09 <u>0.75</u> 0.75	605 - 100ml RB Flask 605 - West Condenser 612 - 50ml Grad Cyl 616 - West Condenser 617 - 25ml RB Flask 618 - Therm Adapter 6 items cost: (20 students) 0 items (21 students) 0 items (17 students)	2.41 7.36 1.45 7.36 2.51 1.66 22.75	0 items (23 students) 707 - Vial 1 item cost: (22 students) 0 items (20 students)	0.05	<pre>8 items total cost: (84 students) 3 items total cost: (83 students) 1 item total cost (78 students)</pre>	31.56	

APPENDIX E

ATTITUDE SCALE

This is a survey of some of the experiments which you performed this semester. We invite your comments on these or any of them. This rating scale is designed to simplify your comments. You may wish to consult your laboratory manual and notebook in order to refresh your memory. Please use your own opinion and not that of your lab partner or friends.

The results of your rating will have no effect whatsoever upon your grade. Please do not write your name on these sheets. However please do write your name and laboratory section on the small piece of paper stapled to the corner. It will be removed later in order that the ratings be anonymous.

To conserve time and space the rating form is condensed on the rating sheets. It will be necessary that you consult the complete scale below.

First think about the particular experiment. Next look at the rating item, select the response number which is closest to your opinion. Then circle that number on the rating sheet. (Note that all of the scales are not in the same direction.)

A) Time required to adequately perform the experiment:

012345678910needed more timetoo longaboutsomewhatentirelyentirely too longpropershorttoo brief

B) How interesting was this experiment?

0 1 2 3 4 5 6 7 8 9 10 highly interesting /interesting/ average/ neither dull / boring nor exciting

C) Value or usefulness:

0 1 2 3 4 5 6 7 8 9 10 highly valuable useful average uncertain useless

D) Academic rigor and value:

	0	1	2	. 3	4	5	6	7	8	9	10
high	ly in	struct	ive		mo	derat	е			poi	ntless

E) Difficulty level:

:	0	1	2	.3	4	5	6	. 7	8	9	10
ted	lious an	nd dif	ficult		p	roper		eas	у	to	o easy
F)	Direct	ions	given:								
- 1 -	0	1	2	3	4	5	6	.7	8	9	10
cle	ar and	easy	LO IOII	.OW / .	clear	/adeo	quate	/somewr	at/unc	lear/q m	uddled
G)	Techni	ques	learned	0 0							
	0	1	2	. 3	4	5	6		8	9	10
qui	te usef.	ul	p	robab	1y			not very	learne vwell	d non	e learned
H)	Teçhni	ques	involve	d: (Manipu	lation	ns)				
·	0	1	2	.3	4	5	6	7	8	9	10
too	• compli	cated			moo	derate	e			quit	e simple
I)	Overal	1 exp	eriment	•							
	0	1	2	3	4	5	6	<u> </u>	8	9	10
shc	uld be			sho	uld be			slight	- 4. 4	exc	ellent
omi	tted			rew	ritten			moditic	ation	as	15

A) Time required:	0 1 2 3 4 5 6 7 8 9 10
B) How interesting:	. 0. 1·2·3·4·5·6·7 8·9 10
C) Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D) Academic value:	0 1 2 3 4 5 6 7 8 9 10
E) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F) Directions:	0 1 2 3 4 5 6 7 8 9 10
G) Techniques:	0 1 2 3 4 5 6 7 8 9 10
H) Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I) Overall:	0 1 2 3 4 5 6 7 8 9 10

© EXPT #3 → DISTILLATION AND THE DETERMINATION OF BOILING POINTS

A) Time required:	0 1 2 3 4 5 6 7 8 9 10
B) How interesting?	0.1.2.3 4.5 6 7 8 9 10
C) Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
(D) Academic value:	0 1 2 3 4 5 6 7 8 9 10
E) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F) Directions:	0 1 2 3 4 5 6 7 8 9 10
G) Techniques:	0 1 2 3 4 5 6 7 8 9 10
H) Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I) Overall:	0 1 2 3 4 5 6 7 8 9 10

CEXPT #4 FRACTIONAL DISTILLATION

10
10
10
10
10
10
10
10
10

CEXPT #5 QUALITATIVE ANALYSIS FOR ELEMENTS

(A)	Time required:	0 1 2 3 4 5 6 7 8 9 10
B)	How interesting:	0 1 2 3 4 5 6 7 8 9 10
(C)	Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D)	Academic value:	0 1 2 3 4 5 6 7 8 9 10
) E)	Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F)	Directions:	0 1 2 3 4 5 6 7 8 9 10
G)	Techniques:	0 1 2 3 4 5 6 7 8 9 10
·H)	Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I)	Overall:	0 1 2 3 4 5 6 7 8 9 10

EXPT #11 <u>n=BUTYL</u> BROMIDE

(A)	Time required:	0 1 2 3 4 5 6 7 8 9 10
B)	How interesting:	0 1 2 3 4 5 6 7 8 9 10
;C)	Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D)	Academic value:	0 1 2 3 4 5 6 7 8 9 10
)E)) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F)	Directions:	0 1 2 3 4 5 6 7 8 9 10
G)	Techniques:	0.122345678910
H)	Manipulations:	0.1.2.3.4.5 6 7 8 9 10
I)	Overall:	$0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$

EXPT: #13 CYCLOHEXANOL; PROPERTIES OF ALCOHOLS

A)	Time required:	0 1 2 3 4 5 6 7 8 9 10
B)	How interesting:	0.1.2.3 4 5 6 7 8 9 10
(C)	Value or usefulness	0 1 2 3 4 5 6 7 8 9 10
) D)	Academic value:	0 1 2 3 4 5 6 7 8 9 10
E)	Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F)	Directions:	0 1 2 3 4 5 6 7 8 9 10
G)	Techniques:	0 1 2 3 4 5 6 7 8 9 10
H)	Manipulations:	0 1 2 3 4 5 6 7 8 9 10
(I)	Overall:	0 1 2 3 4 5 6 7 8 9 10

EXPT #16 CARBON COMPOUNDS

A)	Time required:	0 1 2 3 4 5 6 7 8 9 10
B)	How interesting:	0 1 2 3 4 5 6 7 8 9 10
C)	Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D)	Academic value:	0 1 2 3 4 5 6 7 8 9 10
E)	Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F)	Directions:	0 1 2 3 4 5 6 7 8 9 10
G)	Techniques:	0 1 2 3 4 5 6 7 8 9 10
H)	Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I)	Overall:	0.1 2.3 4 5 6 7 8 9 10

> EXPT #17 ACIDS

A) Time required:	0 1 2 3 4 5 6 7 8 9 10
B) How interesting:	0 1 2 3 4 5 6 7 8 9 10
C) Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D) Academic value:	0 1 2 3 4 5 6 7 8 9 10
E) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F) Directions:	0 1 2 3 4 5 6 7 8 9 10
G) Technqiues:	0 1 2 3 4 5 6 7 8 9 10
H) Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I) Overall:	0 1 2 3 4 5 6 7 8 9 10

EXPT #26 PROPERTIES OF AMINES

(A) Time required:	0 1 2 3 4 5 6 7 8 9 10
B) How interesting:	0 1 2 3 4 5 6 7 8 9 10
C) Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D) Academic value:	0 1 2 3 4 5 6 7 8 9 10
E) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F) Directions:	0 1 2 3 4 5 6 7 8 9 10
G) Techniques:	0 1 2 3 4 5 6 7 8 9 10
H) Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I) Overall:	0 1 2 3 4 5 6 7 8 9 10

BEXPT #35 ASPIRIN (ACETYLSALICYLIC ACID)

A) / Time required:	0 1 2 3 4 5 6 7 8 9 10
B) How interesting:	0 1 2 3 4 5 6 7 8 9 10
C) Value or usefulness:	0 1 2 3 4 5 6 7 8 9 10
D) Academic value:	0 1 2 3 4 5 6 7 8 9 10
E) Difficulty:	0 1 2 3 4 5 6 7 8 9 10
F) Directions:	0 1 2 3 4 5 6 7 8 9 10
G) Techniques:	0 1 2 3 4 5 6 7 8 9 10
H) Manipulations:	0 1 2 3 4 5 6 7 8 9 10
I) Overall:	0.1.2.3.4.5.6.7 8 9 10

APPENDIX F

SUMMARY OF ATTITUDE SCALE RESPONSES

EXPERIM	4ENT #2	2 G	roup	100	N =	19							
1	0	. 1	2	. 3	- 4	5	6	. 7	8	9	10	S	Q
A	0	0	1	1	3	9	2	3	0	. 0	0	1.0555	2.7788
В	0	1	1	8	1	5	0	. 2	- 1	0	. 0	3.9373	1.8064
С	0	0	1	8	1	6	1	1	1	0	0	4,5000	1.2396
Ď	0	. 2	1	3	6	4	: 2	- 0	. 1	0	0	4.5833	1.9792
E	0	1	0	. 2	· 2	5	3	0	3	2	0	4.5502	3.5421
; F	2	. 0	4	24	4	- 1	2	2	0	0	0	3.8751	2.5636
G	0	. 0	. 1	1	. 3	7	3	0	, 2	: 1	. 1	4.3748	2.9378
Η	0	0	. 1	1	3	7 °.	- 3	0	2	- 1	1	5.3572	2.6668
·I	0	0	0	0	. 1	1	. 2	5	5	3	2	2.8997	1,9335
												35.1331	
												6.9037	
												6.0963	

EXPER	IMENT #	3 G	roup	100	N =	=19							
-	0	. 1	2	- 3	4	5	6	7	8	9	10	S	Q
A	0	0	0	2	1	. 11	1	1	2	0	1	0.8637	3,5818
В	0	. 0	. 3	. 3	3	. 5	1.	2	0	2	0	5.0999	2.6677
C	0	0	2	9	- O	1	3	2	2	0	0	3.8332	3.4443
; D	1	0	1	. 5	5	3	3	- 1	0	0	. 0	4.5000	2.2000
E	0	1	1	3	0	6	· 5	1	2	0	0	4.1003	2.7337
F	0	0	. 2	7	1	4	2	. 3	0	0.	0	4.5000	2.8040
G	0	1	5	- 3	. 5	2	- 1	0	. 2	0	. 0	4.0999	2.3754
H	0	. 0	0	. 1	2	5	4	- 3	2	2	0	4.6252	3.2502
<u>I</u>	0	0	. 0	1	0	3	. 1	7	3	. 3	1	3.3572	2.0008
												34.9794	_ ,
												3.8866	
												6.1134	

	0	. 1	.2	3	4	- 5	6	7	8	9	10	S	Q
A	0	. 0	1	0	4	7	5	1	0	0	1	1.6252	1,9715
В	- 0	. 1	. 1	8	1	3	2	- 2	0	0	1	3.9373	2.7818
С	1	0	2	7	2	2	2	2	0	. 1	0	3.9286	2.8794
D	0	0	2	4	- 5	3	3	1	0	. 1	0	4.6998	2.3962
Е	0	. 2	0	.3	2	4	: 2	5	- 1	0	0	4.7381	3.3336
F	0	1	4	. 4	: 3	4	- 2	1	0	. 0	. 0	4.1666	2.6247
G	- 2	- 2	0	. 5	4	2	4	0	0	0	0	3.1501	2.4748
Н	0	0	. 0	0	4	7	4	2	1	0	1	5.2142	2,7052
I	. 0	0	0	. 0	1	1	5	1	4	· 3	4	1.2502	3.1996
												32.7101	
												3.6345	

EXPERI	IMENT #5	G	roup	100	N=.	L <u>9</u>							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	2	2	0	3	7	3	1	0	0	1	1.8334	4.4468
В	2	1	1	5	3	3	2	1	0	0	1	4.1666	2.5997
С	0	0	1	5	5	4	4	0	0	0	1	4.6998	2.0628
D	1.	0	0	2	9	4	1	0	1	0	1	4.7222	1.3681
Е	0	1	1	2	3	7	3	1	0	1	0	4.8214	1.8334
F	1.	0	4	5	1 :	3	1	2	1	1	0	3.8997	3.3132
G	1	1	1	4	3	6	1	1	0	1	0	4.8334	2.2709
H	0	1	0	2	4	5	2	2	1	1	1	5.5000	3,6879
I	0	0	0	1.	3	3	3	3	2	3	1	4.1666	3.3747
		њ.										38.6431	
κ.												4.2937	
												5.7063	

EXPERI	MENT #1	13	Group	100	N	I=19							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	2	3	0	10	1	2	1	0	0	0.9500	3.6504
В	1	2	1	5	3	2	4	1	0	0	0	4.1666	2.9126
С	2	1	. 0	4	4	3	2	2	- 1	0	0	4.6252	2.6879
D	1	0	1	5	7	2	0	2	1	0	0	4.3572	1.5756
E	1	0	1	2	5	6	2	0	0	2	0	4.6998	2.8333
F	1	2	2	5	0	3	2	2	0	2	0	3.8997	2.5421
G	2	0	. 2	4	4	2	1	2	1	1	0	4.3748	2.0634
H	Ó	1	0	2	1	8	3	1	2	0	0	1.1666	3.6513
I	0	0	0	2	2	3	2	1	4	2	3	3.5000	3.8752
						,						31.7399	
												3.5267	
												6.4733	

EXPERIMENT #11			Group	100	Ν	=19							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	1	1	2	7	4	2	1	1	0	2.1249	3.7570
В	0	0	3	3	5	3	3	1	1	0	0	4.6998	2.5003
С	0	1	0	2	4	6	2	2	2	0	0	5.4167	2.1874
D	0	1	1	3	5	4	1	1	2	1	0	4.8997	2.3346
Е	0	0	1.	1	3	7	3	4	0	0	0	4.5000	2.8334
F	2	0	2	2	2	5	4	0	2	0	0	5.2998	2.9375
G	0	2	1	4	3	6	0	3	0	0	0	4.8334	2.2709
H	0	0	0	3	2	7	3	3	1	0	0	5.3572	3.0712
I	0	0	0	3	2	7	3	3	1	0	0	2.8997	1.8752
												40.0312	
												4.4479	

EXPERIMENT #16 Group 100 N=19

				F									
(0	1	2	3	- 4	- 5	6	7	8	9	10	S	Q
(0	0	0	2	: 3	. 9	1	3	- 1	. 0	0	1.1666	3.0971
	1	1	1	5	3	3	. 3	1	. 9	1	0	4.4997	1.7337
	1	1	1	- 3	. 5	2	4	- 2	0	. 0	0	4.6998	1.7293
	1	. 1	1	2	. 3	5	3	. 2	0	1	0	5.2998	2.5421
· (C	. 0	- 2	- 3	- 2	4	4	. 3	- 1	0	0	4.2142	2.8964
	L	0	3	- 4	4	. 5	1	1	1	0	0	4.3748	2.2622
	1	- 2	. 1	- 1	6	1	4	, 1 [·]	. 1	1	. 0	4.7498	2.8115
· () C	0	0	· 0	5	5	6	1	2	0	0	5.0999	1.7586
(<u>)</u>	0	0	0	2	2	. 4	2	4	1	4	3.2498	3.0618
									<i>.</i>	· ,		37.3544	
												4.1505	
												5.8495	
		0 0 1 1 1 0 1 1 0 0 0	$\begin{array}{c ccc} 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

2	EXPERIMENT	#17	Group	100	N=20
	the second se		the second s		The second s

	- 0	1	2	- 3	4	5	6	7	8	9	10	S	Q
A	0	0	0	0	1	10	6	1	1	1	0	0,9500	2.0668
В	1	2	1	8	3	1	2	. 2	1	0	0	3.6875	1.6560
С	1	0	- 1	4	8	2	2	1	0	1	0	4.4374	1.4380
D	Ó	1	. 1	6	4	2	1	3	2	0	0	4.3748	2.7928
E	0	0	. 2	1	. 3	.1	6	3	. 3	0	0	3.8286	3.0006
F	0	3	. 4	÷ 3	, 2	2	3	. 3	0	0	1	3.8334	3.7461
G	1	. 2	1	4	. 4	4	2	2	0	0	0	4.3748	2.3749
H	0	0	0	0	2	1	11	1	3	1	1	5.3636	1.8182
I	0	0	0	0	. 3	- 2	3	2	4	3	3	2.8751	3.1665
												33.3252	
												3.7028	
												6.2972	

EXPER	RIMENT #:	26 -	Grou	p 10	0 N	=19							
	0	1	. 2	3	4	5	6	7	8	9	10	S	Q
A	0	0	. 0	3	2	5	6	2	1	0	0	2.4167	2.4669
В	2	1	. 1	6	3	- 1	2	. 3	0	0	0	3,9167	3.0003
C	1	. 1	1	5	3	4	0	4	0	0	0	4.4997	2.0643
D	1	. 1	2	4	6	1	. 4	1	0	0	0	4.2498	2.0643
Έ	0	1	1	2	. 3	. 5	- 3	1	3	0	0	4.7985	2.4996
F	2	0	3	2	5	- 3	3	1	0	0	0,	4.5000	2.8334
G	· 2	- 3	2	4	2	4	1	1	0	0	0	3.6252	3.1463
Н	0	0	0	2	3	5	- 3	4	. 1	0	1	5.0999	2.3962
I	0	- 0 [°]	1	1	0	1	6	4	3	1	2	3.8751	2.1251
												36.9816	
												4 1091	

4.1091 5.8909

EXPERIMENT #35 Group 100 N=19

			0100	P = 0									
	0	- 1	2	- 3	4	5	6	7	8	9	10	S	Q
A	 0	0	0	0	4	. 9	- 3	3	0	0	. 0	1.1249	1.8889
В	3	1	. 4	6	3	0	0	2	- 0	. 0	0	3.2498	1.8960
C	2	- 2	1	5	4	1	- 1	. 3	0	0	. 0	3.8997	2,5000
; D	- 1	1	. 1	7	3	3	3	0	0	0	. 0	3.9286	2.1667
Е	- 1	0	1	1	6	5	3	2	0	. 0	. 0	4,5001	1.7920
F	1	0	. 3	4	- 3	0	4	53	. 1	0	0	4.4997	3.3749
G	1	3	0	. 5	3	3 ′	0	. 2	- 1	1	0	4.1666	2.5997
н	0	Ö	0	2	2	7	2	3	1	1	. 1	5.2142	2.3095
: <u>I</u>	 0	0	0	. 2	1	1	1	. 4	: 5	- 1	4	2.8997	3.5000
	 . ,											33.4833	
												3.7204	
												6.2796	

EXPERIMENT #2 Group 200 N=18

		<u> </u>											
	0	1	2	. 3	4	- 5	6	7	8	9	10	S	Q.
A	0	1	0	0	2	12	2	1	0	0	0	0.7500	1.3748
В	0	0	1	5	4	4	0	4	0	0	0	4.7502	2.1751
С	0	. 0	. 3	11	0	3	1	0	0	0	0	3,5454	0.8182
D	0.0	0	. 4	- 3	5	5	0	1	0	0	0	4.3999	2.1331
E	0	0	0	. 3	. 3	4	4	. 1	1	2	0	4.1665	2.3752
F	1	6	3	- 5	1	0	- 1	1	0	0	0	2.6665	2.1165
G	1	. 4	. 5	6	1	0	. 1	0	0	0	0	2.7999	1.7084
H	0	0	1	2	3	2	- 1	1	3	4	1	4.0000	4,6248
<u> </u>	0	0	1	0	0	0	1	4	8	3	1	2.6251	1.3123
									1			29.7035	
					\$							3.3004	
												6.6996	

EXPERIMENT #3 Group 200 N=18

	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	. 2	0	2	1,1	2	0	1	0	0	0.8182	2.8411
В	0	0	. 2	- 3	6	3	0	2	2	0	0	4.6667	2.0000
С	- 2	0	4	6	2	3	0	1	0	0	0	3.5002	2.1247
D	0	. 2	- 2	- 4	. 4	- 3	. 3	0	0	0	0	4.2502	2.3746
Е	0	0	0	6	1	8	0	0	. 2	1	0	4.9244	2.0625
F	0	. 4	- 3	6	3	0	2	0	0	0	0	3.3333	2.0000
G	1	0	6	9	0	2	1	0	0	0	0	3.2222	1.1389
H	0	0	0	1	4	8	1	1	1	2	0	5.5000	1.6251
<u> </u>	0	0	0	1	0	0	0	6	4	7	0	2.5000	1.7739
												32.7152	
												3.6350	
												6,3650	

EXPERIMENT #4	Group 200	N=18
---------------	-----------	------

	0	1	2	. 3	4	. 51	6	7	8	9	10	S	Q.
A	0	. 0	. 1	2	- 3	8	2	2	0	0	. 0	1.3335	2.6876
В	0	2	- 2	3	1	6	2	· 1	1	0.	0	5.1668	2.7501
C	0	. 3	6	2	1	5	0	0	. 1	0	0	3.0000	3.0500
D	0	1	. 5	- 3	4	: 3	. 1	1	0	0	0	4.0000	2.4670
Е	0	1	0	3	4	7	1	1	1	0	0	4,7500	1,6607
F	0	. 3	: 2	3	3	3	2	1	. 1	0	0	4.3335	3.0834
G	0	. 2	5	6	2	1	0	0	0	0	0	3.3333	1.7502
Н	0	0	0	1	6	5	1	1	4	0	0	5,6001	2.9167
I	0	0	. 0	. 1	1	0	2	4	4	4	2	2.7502	2.2498
	······											34.2674	
												3.8075	
												6.1925	

EXPERIMENT #5 Group 200 N=17

		<u> </u>			~ * *								
	Ô	1	2	3	4	5	6	7	8	9	10	· S	Q
A	- 0	0	2	1	2	7	4	0	1	0	0	1.7500	2.3304
В	4	0	1	3	3	3	0	. 2	0	0	0	4.1666	3,3300
С	1	. 1	2	. 5	1	6	0	1	0	0	0	3,9000	2,4085
D	- 0	. 1	3	5	- 4	- 2	0	. 2	0	0	0	3,9000	1, 8 875
Е	0	0	1	. 3	- 1	. 9	1	2	0	. 0	0	4.9000	1,6112
F	0	: 2	. 3	. 6	1	1	2	2	0	0	. 0	3.5835	2.9999
G	0	1	4	5	- 5	1	1	0	0	0	0	3.7001	1.7376
Н	0	. 0	0	3	. 3	6	3	1	. 1	0	0	5,8535	1.8329
<u>I</u>	. 0	. 0	. 0	0	0	0	2	6	4	3	2	2.8751	1.8750
												34.6288	,
												3.8470	
												6.1524	

EXPERI	MENT #:	13	Grou	p 20)0 N	=17							
	0	- 1	2	3	4	5	6	7	8	9	10	S	Q
A	0	. 0	0	0	4	12	1	0	0	0	0	0.7083	0,8332
В	- 0	3	0	- 6	1	5	1	1	0	0	0	3.9167	2.3419
С	1	1	2	5	- 2	2	- 1	. 3	0	0	0	3,9000	2.8250
D	- 1	1	. 1	4	- 5	- 3	0	. 1	. 1	0	0	4.2999	1.9375
Е	0	0	0	3	- 1	8	2	- 2	0	0	0	4.8751	1.3438
F	0	2	0	5	3	. 3	. 4	. 0	0	0	0	4.4997	2.4665
G	- 2	4	3	. 6	0	2	- 1	0	0	0	0	3.8334	2.0624
H	0	. 0	0	. 3	6	4	2	0	3	0	0	5.0000	2.0003
I	0	0	0	3	6	4	· 2	0	3	0	0	2.4168	1.7335
												33.4499	
												3.7167	
												6.2833	

EXPERI	IMENT #	11	Grou	p 20	0 N	=17							
· · · · · · · · · · · · · · · · · · ·	0	- 1	2	: 3	4	5	6	7	8	9	10	S	Q
A	0	0	1	2	0	13	0	1	0	0	0	0.6539	0.6539
В	0	1	0	2	3	- 2	- 2	- 5	- 2	0	0	6.2500	3.1338
С	0	1	2	2	1	5	2	2	2	0	0	5.5002	3.2500
D	0	0	0	4	3	6	3	1	0	0	0	5.2499	1.8750
E	0	0	0	2	3	9	- 2	1	0	Q	0	4.4998	1.1111
F	0	0	3	2	2	5	2	2	. 0	0	0	5.2999	2.7500
G	0	0	1	6	4	· 2	- 1	2	1	0	0	4.3748	2.3332
H	0	. 0	0	. 3	6	4	2	0	.3	0	0	4.5625	4.2500
I	0	. 0	0	0	2	1	3	. 5	5	1	0	2.5002	3.9329
												38.9812	

)

4.3312 5.6688

EXPERIMENT #16 Group 200 N=18

,

			0100										
	0	1_	2	- 3	- 4	5	6	. 7	8	9	10	S	Q.
A	0	0	0	2	3	12	1	0	0	0	0	0.7500	1.1249
В	- 2	- 3	- 1	3	6	1	0	- 1	0	0	0	4.0000	2.9169
C	0	:3	: 5	- 5	· 0	4	0	0	0	0	0	3.2001	2.8252
D	0	1	6	3	4	3	. 1	0	. 0	0	0	3.6665	2.2499
Е	0	0	0	. 3	. 3	5	5	1	2	0	0	4.5486	2.0003
F	1	- 2	~ 3	- 4	. 1	4	2	0	0	0	Q	4.6252	3.0209
G	- 0	2	5	- 4	- 2	. 2	1	0	1	Ó	0	3.4722	2.4248
Η	0	0	0	. 4	- 3	5	0	. 3	. 3	0	. 1	3.3994	3.3329
I	. 0	0	. 1	0	0	. 0	. 0	6	1	6	3	1.9167	2.2502
												31.5792	
												3.5088	
												6.4912	

1

	EXPERIM	<u>ENT #</u> 1	.7	Grou	p 20	0 N	=17							
		0	. 1	2	3	. 4	5	6	7	8	9	10	· S	Q
	A	0	0	0	1	.5	10	1	0	0	0	0	0.8501	1.1252
	В	0	0	2	- 1	3	2	1	. 4	1	1	0	6.5000	3.5211
	С	0	0	1	- 1	1	7	0	4	2	0	0	5.7143	2.3571
- ,	D	0	1	0	1	6	5	1	2	0	0	0	5.1000	1.5748
•	E	. 0	0	0	. 1	. 2	8	4	: 1	1	0	0	4.8334	1.2811
ł	F	0	3	0	4	. 4	2	2	1	0	1	0	4.3748	2.5626
	G	0	0	. 1	. 6	4	: 4	2	0	0	0	0	4,3748	1.8955
	H	0	0	0	1	2	8.	3	3	0	0	0	5.3126	1.4274
ļ	I	. 0	0	0	1	0	1	2	6	2	2	2	3.4168	3.2500
													40.4768	
													4.4974	
													5.5026	

EXPERI	MENT #2	26	Grou	p 20	0 N	=20							
	0	1	2	- 3	. 4	5	6	7	8	9	_10	ŝ	Q
A	0	0	0	2	2	6	7	2	1	0	0	2.2857	2.1667
В	2	- 1	1	6	-4	1	2	3	0	0	0	4.0000	2.8333
. C	- 1	1	1	6	3	4	0	4	0	. 0	0	4.3333	2.4167
D	1	. 1	. 2	- 3	7	1	4	1	0	0	0	4.4286	2.6667
Е	0	. 1	1	. 2	3	6	3	1	. 3	0	0	4.5663	2.3334
\mathbf{F}	2	0	. 3	: 2	6	3	3	1	0	0	0	4.5000	2.6667
G	- 2	4	2	- 3	- 2	- 5	1	1	0	0	0	3.6667	3.6500
H	0	. 0	0	1	4	6	3	4	1	0	1	5.1667	3.2500
: I	0	. 1	. 0	0	. 1	1	7	4	4	1	2	3.7500	2.0714
· · · · ·												36.6973	
												4.0775	

EXPERIMENT #35 Group 200 N=18

	0	1	2	. 3	4	5	. 6	7	8	9	10	S	Q
A	0	0	0	0	. 3	10	3	2	0	0	0	0.8999	1.7168
В	3	- 1	4	6	5	0	0	, 2	0	0	0	3,2498	1.8960
C	2	2	. 0	6	4	· 1	1	. 3	- 0	0	0	3.9167	2.1259
D	1	1	. 1	6	3	4	: 3	0	0	. 0	· . 0	4.1666	2.2709
Е	1	0	1	0	7	5	· 3	. 2	0	0	0	5.0000	1.5427
F	1	0	. 3	. 3	. 3	0	5	4	. 0	- 0	0	4.8334	3.5997
G	1	. 3	0	5	4	- 3	0	. 2	1	. 1	0	4.1249	2.266 6
Н	- 0	0	0	. 1	2	7	2	4	· 1	1	1	5.0714	2.3125
I	- 0	0	0	. 1	1	1	1	5	- 5	1	. 4	2.8997	2.0989
			,									34.0375	
												3.7819	

EXPERIMENT #2 Group 300 N=19

	· · · · · · · · · · · · · · · · · · ·		- 0	roup	, 200	- AN 11	-12							
		0	- 1	2	.3	- 4	5	6	7	8	- 9	10	S	Q
A		0	1	0	0	2	12	2	2	0	. 0	. 0	0.7916	1.7296
В		0	0	1	5	4	. 4	0	4	- 1	0	0	4.8751	3.3127
С		0	0	. 3	11	0	. 3	1	0	0	. 0	0	3.5909	1.9245
D		0	0	. 4	3	: 5	- 5	0	1	0	. 0	0	4,5000	2.1996
Έ		0	. 0	0	. 3	3	- 4	4	. 1	1	2	0	4.8659	2.6677
F		1	6	3	- 5	1	0	1	. 1	0	0	. 0	2.8334	2.2248
G	1	1	4	- 5	6	1	0	1	0	0	0	0	2.8997	1.7706
Η		0	0	. 1	. 2	3	. 2	1	. 1	. 3	4	1	4.0000	4.6248
I	-	0	. 0	1	0	0	. 0	1	4	7	3	1	2.7858	1.7056
													31.1428	
													3.4603	
													6.5397	

EXPERIM	ŒNT #3	3 G	roup	300	N=	19							
	0	1	2	. 3	4	- 5	6	7	8,	9	10	S	Q
A	. 0	0	2	0	2	11	2	0	. 1	0	0	0.7727	1.4887
В	0	0	- 2	- 3	6	´3	0	. 2	2	0	0	4.6667	2.0000
C	2	0	4	. 6	2	- 3	1	0	0	0	0	3.5002	2.1247
D	0	2	- 2	4	: 4	3	- 3	0	0	. 0	0	4.2502	2.3746
Е	0	0	0	6	1	8	0	0	. 2	1	0	4.7858	2.1146
F	0	. 4	- 3	6	3	0	2	0	. 0	. 0	0	3.3333	2.0000
G	1	. 0	6	8	0	2	1	0	0	. 0	0	3.2500	1.2293
H	0 /	0	0	1	4	8	1	. 1	. 1	2	0	5.5000	1.6251
I	0	0	0	0	. 0	0	0	7	3	7	0	2.4997	1.7858
			,									32.5586	
												3.6167	
												6.3824	

EXPER	IMENT #	<u>4 G</u>	roup	300	N=1	8							
	0	1	2	- 3	. 4	5	6	7	8	9	10	S	Q.
A	. 0	. 0	1	2	3	8	2	- 2	0	0	. 0	1.3335	2.6876
В	0	2	- 2	- 3	- 1	6	2	- 1	1	0	. 0	5.1668	2.9169
С	0	:3	6	2	1	5	0	0	1	0	· 0	3.0000	3.0500
Ð	0	1	5	3	. 4	- 3	1	. 1	0	0	. 0	4.0000	2.4670
9 E	0	. 1	0	. 3	4	7	1	. 1	1	0	. 0	4.9177	1.6607
F	0	3	2	- 3	3	- 3	2	- 1	1	0	0	4.3335	3.0834
G	0	2	- 5	6	2	- 1	2	0	0	0	0	3.3333	1.7502
Η	. 0	0	0	1	6	5	1	1	4	- 0	0	5,6001	2.9167
I	· <u>0</u>	. 0	. 0	. 1	. 1	. 0	. 2	4	4	. 4	2	2.7502	2.2498
												34.4351	
												3.8261	
EXPERIMENT #5 Group 300 N=17

DALL L	1 (1 4		roup	0	· · 11 -	T /							
	0		1	2	3	4	5_	6	7	8	9	10	S	Q
А	0		0	. 2	1	. 2	7	4	0	. 1	0	0	1.7500	2.3304
В	- 4		: 0	. 1	. 3	· 3	. 4	. 0	2	0	0	. 0	4.1666	3.1873
С	1		. 1	· <u>.</u> 2	÷ 5	1	6	0	1	. 0	0	. 0	3.9000	2.4085
D	- 0		. 1	. 3	. 5	4	2	- 0	2	0	0	0	3.9000	1.8875
Ε	0		0	, 1	.3	1	9	0	, 2	· 0	0	0	4.9309	1.6695
F	0		2	3	- 6	1	1	. 2	2	- 0	0	. 0	3.5835	2.9999
G	0		. 1	. 4	: 5	5	1	- 1	0	0	0	0	3.7001	1.7376
H	0		. 0	0	3	3	- 6	3	1	. 1	0	0	5.6667	2.0000
<u> </u>	0		0	0	0	0	0	, 2	6	4	- 3	2	2.8751	1.8750
													34.4729	
													3.8303	
													6.1697	

EXPERIMENT	₩13 Gro	up 300	N=19
······································			

	0	1	2	. 3	.4	- 5	6	7	8	9	10	S	Q.
A	0	0	0	0	.3	12	1	0	. 0	0	0	0,3434	0.6667
В	0	3	0	6	1	- 5	1	1	0	0	0	3.9167	2.3419
. C	- 1	. 1	. 2	: 5	2	2	- 1	- 3	0	0	0	3.9000	2.8250
2 D	1	1	1	4	5	3	0	1	. 1	. 0	. 0	4.2999	1.9375
E	0	0	0	. 3	- 1	8	2	2	0	. 0	0	4.9410	2.0316
F	0	2	0	5	3	3	4	0	. 0	0	0	4.4997	2.4665
G	0	2	. 4	: 3	6	0	2	1	0	0	0	6.0000	3.0003
H	· 0	. 0	0	. 3	6	4	- 2	0	. 3	0	. 0	1.7501	2.2082
I													
												29.6508	
												3.2945	

			-		-
6	•	7	Ò	5	5

EXPER	IMENT #	11	Grou	p:30	0 N	=18							
	0	1	2	- 3	4	- 5	6	7	8	9	10	S	Q
A	0	. 0	. 1	3	0	13	0	1	0	0	0	0.6923	2.8506
в	0	1	0	. 2	3	: 2	- 2	- 5	2	0	0	6.2500	3.1338
C	. 0	1	2	. 2	. 1	5	2	2	2	0	0	5.5002	3.2500
: D	0	0	. 0	. 4	4	6	3	1	0	0	· 0 ·	5.2499	1.8750
9 E	. 0	0	0	- 2	: 3	9	3	1	0	. 0	. 0 .	4.9001	1,1111
F	0	0	. 3	- 2	11	5	2	2	0	. 0	. 0	4.3282	1.0795
G	· 0	0	1	6	4	2	. 1	2	· 1	0	. 0	4.3748	4.2188
·H	0	0	. 1	1	. 2	. 8	- 1	- 1	3	0	0	4.7498	3.0003
I	0	0	. 0	0	÷ 2	1_	. 3	. 5	. 6	1	0	3.2999	3.7081
												29.3452	
												4.3717	

EXPERIMENT #16 Group 300 N=19

_	0	1	2	3	. 4	5	6	7	8	9	10	S	Q
A	0	0	0	. 2	- 3	12	. 1	0	0	0	0	0.7500	1.1247
В	2	÷ 3	• 1	. 3	6	1	0	1	0	0	0	3.8334	2.8750
С	0	3	5	- 5	0	. 4	0	0	0	0	0	3.1000	1.7001
D	0	1	6	3	4	- 3	0	0	0	0	0	3.4997	2.1458
Е	0	0	. 2	2	5	- 5	1	2	0	0	0	4.6358	2,1009
F	1	- 2	. 3	4	1	4	2	0	0	0	0	3.6252	3.0209
G	0	, 2	5	- 4	- 2	·, 2	1	0	1	0	0	3.3748	2.4248
H	0	0	0	4	: 3	5	0	3	. 3	0	. 1	5.5000	3.4996
<u>I</u>	. 0	. 0	1	0	0	0	0	6	1	6	3	1.9167	2.2502
												30.2356	
												3.3595	
												6.6405	

EXPERIMEN	<u>T #17</u>	Group	300	<u>N=17</u>

	0	1	2	. 3	4	5	6	7	8	- 9	10	S	Q
A	0	. 0	0	. 1	5	10	1	0	. 0	0	0	0.8501	1.1252
В	1	0	. 3	1	. 3	2	. 1	4	. 1	1	0	5.2500	4.1873
С	0	0	2	1	- 1	7	0	4	2	0	0	5.6428	2.4016
D	0	. 1	0	2	6	5	1	2	1	0	0	4.9167	1.5418
Е	0	0	0	1	2	8	4	1	1	Q	0	4.8334	1.7188
F	0	1	. 1	4	. 4	: 2	2	1	0	1	0	4.6252	2.8123
G	· 0	0	. 2	6	4	4	1	0	0	. 0	0	4.1249	1.8122
Н	0	0	0	. 2	2	8	- 3	2	0	0	0	5.4375	1.2187
I	0	0	0	2	0	1	2	6	2	2	2	3.4168	2.2500
												39.0947	
												4.3442	
												5.6558	

EXPERIN	AENT #2	2.6	Grou	p - 30	0N	=20							
	0	1	2	- 3	. 4	-5	6	7_	8	9	_10	S	Q
A	0	0	0	2	2	6	7	2	1	0	0	2.2857	2.1667
В	2	1	- 1	6	4	1	2	- 3	0	0	. 0	4.0000	2.8333
С	1	1	1	6	3	4	0	4	0	0	0	4.3333	2.4167
D	- 1	1	. 2	- 3	7	1	4	1	0	0	0	4.4286	2.6667
Е	0	1	. 1	2	3	6	3	1	3	0	0	4.4286	2.3334
F	: 2	0	3	2	6	3	: 3	1	0	0	0	4,5000	2.6667
G	- 2	4	2	- 3	. 2	- 5	1	1	0	0	0	3.6667	3.6500
H	- 0	0	0	1	4	6	3	4	1	0	1	5.1667	2.2500
<u> </u>	0	0	1	0	0	1	7	4	4	1	2	3.7500	2.0714
												35.5695	
												4.0622	
												5.9378	

i

EXPERIMENT #35 Group 300 N=20

· · · · · · · · · · · · · · · · · · ·	0	1	2	3	- 4	5	6	7	8	9	10	S	Q
A	0	0	. 0	0	. 3	11	3	: 3	- 0	. 0	. 0	0.9091	0.8788
В	· 3	- 1	4	7	3	0	0	2	0	. 0	. 0	3.2857	1,5000
C	2	2	0	6	· 5	· 2	- 1	. 3	0	0	0	4.0000	1.8333
: D	- 1	1	. 1	7	3	4	- 3	0	0	0	0	4.0000	2.2143
3 E	1	0	. 1	0	7	6	3	2	0	0	0	4,5556	2.3334
F	1	. 0	. 3	.3	- 3	- 0	. 5	4	. 0	0	0	4.8334	3.5997
G	- 1	. 3	- 0	. 5	. 4	3	0	2	- 1	1	- 0	4.2500	2.4667
H	× 0	0	. 0	. 2	< 2	7	2	4	. 1	1	1	5.0000	2.3571
I	0	· <u> </u>	. 0	. 1	1	1	1	5_	6	1	4	2.8333	1.8000
												33.6671	
												3.7408	
												6.2592	

EXPERIMENT #2 Group 400 N=14

	0	. 1	. 2	. 3	- 4	5	6	7	8	9	10	S	Q
A	0	0	0	1	. 2	9	1	. 1	0	0	0	0.7777	1.4157
В	0	. 1	. 1	2	- 5	, 2	0	1	1	0	1	4.6001	2.0000
С	0	1	2	6	2	0	2	0	- 1	0	0	3.6666	1.6662
D	0	2	0	1	3	5	0	. 3	0	0	. 0	5.1999	1.7334
Ε	0	0	. 0	1	1	2	- 3	. 3	. 4	0	0	3.0000	2.3755
F	0	. 4	- 2	2	- 4	: 2	0	0	. 0	0	0	3.4997	2.7501
G	· 0	. 2	× 3	6	2	1	0	0	0	. 0	. 0	3.3334	1.4169
Η	0	0	. 0	0	. 1	. 5	1	2	2	- 3	. 0	4.0000	3.2503
<u> </u>	0	. 0	0	0	1	2	1	. 2	: 5	1	1	3.0000	2.9499
	_											31.0774	
												3.4530	•
												6.5470	

	0	1	2	3	4	5	6	7	8	. 9	10	S	Q
Ā	. 0	0	1	1	2	9	0	. 0	. 0	0	0	0.7222	1.0141
В	1	0	. 2	1	6	0	1	1	1	0	0	4.4167	1.7087
Ċ	0	1	5	. 3	- 2	: 1	0	1	0	0	0	3.9168	1.9251
D	0	, 2	2	4	0	4	. 0	1	0	0	0	3.6250	2.8119
· E	0	. 1	1	2	: 3	1	. 1	4	0	0	0	5.6112	3.6254
F	0	. 1	. 2	7	2	1	0	. 1	0	0	0	3.5714	1.1784
G	0	. 4	. 3	4	. 0	2	1	0	0	0	0	3.0000	2,0000
H	- 0	. 0	0	0	. 4	4	- 3	1	1	0	1	5.2499	2.2083
N.I.	0	0	0	. 0	0	1	. 2	2	- 5	3	1	2.6001	1,9161
	······································					, , , , , , , , , , , , , , , , , , , ,						32.7133	
												3.6348	
												6.3652	

EXPER	IMENT #4	G	roup	400	N =	13							
	0	1	2	. 3	4	5	6	7	8	- 9	10	S	Q
A	0	0	1	1	2	8	1	0	. 0	. 0	0	0.8125	1.4690
В	0	0	4	: 3	2	- 2	- 1	0	1	0	0	3.8332	2.5627
С	0	1	5	- 5	1	0	0	1	0	0	0	3.1001	1.3000
D	0	. 3	1	3	5	0	. 0	. 1	0,	0	0	. 3.8332	2.3002
: E	0	. 0	0	, 2	3	. 4	2	1	1	0	0	4.5000	1.9584
F	0	2	· 3	2	- 3	. 2	1	1	0	0	0	3.7503	2.4996
G	0	. 1	5	4	. 0	. 3	0	0	0	0	0	3.1251	1.4875
Н	. 0	. 0	2	0	. 1	. 3	2	2	2	. 1	0	5.7503	2.7916
<u>I</u>	0	0	0	0	0	1	1	2	3	6	0	2.1668	2.8333
												30.8715	
												3.4302	
												6.5698	

•

EXPERIMENT #5 Group 400 N=13

EVI DU TL	\mathbf{m}	<u> </u>	roup	400	. 11 -	- <u></u>							
	0	1	2	3	4	- 5	6	7	8	9	10	S	0
A	0	. 0	1	1	.3	6	0	2	- 0	0	. 0	1.1668	3.2086
B	· 0	0	0	. 5	- 2	- 4	- 0	2	· 0	. 0	. 0	4.7503	2.0374
C	0	. 0	2	- 1	4	-, 4	: 1	1	0	0	0	4.8749	1.6250
D	- 0	0	. 1	2	· 5	3	2	0	. 0	0	0	4.6999	1.5333
E	0	0	. 1	. 1	4	- 3	0	2	: 2	· 0	. 0	4.4167	3.0626
F	0	<i>.</i> 0	, 1	. 3	: 5	1	1	0	. 2	0	0	4,5000	2.0003
G	- 0	0	. 1	. 4	: 3	- 3	- 1	1	0	0	0	4.5000	2.0206
Η	- 0	. 0	2	0	1	- 5	2	0	. 3	0	0	5.3001	1.8253
. <u>I</u>	0	0	0	0	2	. 0	3	. 6	1	1	0	3.7502	1.3747
					_							37.9589	
												4.2177	
												5.7823	

EXPERIMENT #13 Group 400 N=13

			0100	- P - I - O									
	0	1	.2	3	. 4	5	6	7	8	9	10	S	Q
A	0	. 0	0	. 1	4	7	0	0	. 1	0	0	0.9285	1.2231
В	· 0	0	. 1	. 5	· 2	4	- 1	0	0	0	. 0	4.2503	1.9873
C	0	. 1	1	7	3	. 0	1	0	0	0	0	3.6429	1.0714
D	0	0	, 2	: 5	- 3	: 2	1	0	0	. 0	0	3,9002	1.6663
Έ	0	0	0	. 2	·. 4	4	1	0	. 2	0	. 0	4.8077	1.6250
F	0	. 1	0	7	5	0	0	. 0	0	0	0	3.7857	1.0286
G	- 0	. 0	. 4	: 2	3	÷ 2	2	0	0	0	0	4.1668	2.5627
Н	0	. 0	. 1	1	. 5	<u>~</u> 2	0	. 1	. 1	. 2	0	6.3001	3.5004
I	- 0	. 0	1	0	0	2	1	2	5	· 1	1	3.9002	1.5002
												35.6824	
												3.9647	
												6.0353	

EXPERIMENT #11 Group 400 N=13

	0	. 1	2	: 3	. 4	- 5	6	7	8	9	10	S	0
A	 0	. 0	1	. 1	• 3	7	1	0	0	. 0	. 0	0.9285	1.4521
В	0	0	. 1	4	. 4	- 2	0	. 1	1	0	0	4.3750	1.8126
С	0	0	- 1	4	: 2	- 2	. 1	. 2	1	0	. 0	4.7503	3.1877
D	0	. 1	0	. 2	7	3	0	1	0	0	0	4.4999	0.9285
E	0	. 0	0	. 2	- 5	- 2	- 3	. 1	0	0	0	5.4584	2.0000
F	0	0	. 1	. 2	5	: 3	. 1	0	. 0	. 0	0	4.6999	1.5333
G	0	0	0	. 5	- 4	: 2	. 0	. 1	1	0	0	4.3750	1.7252
Н	0	. 0	1	0	. 3	3	. 2	· 2	. 2	0	0	5.1668	2.6245
I	0	. 0	1	0	. 0	: 2	- 3	. 3	. 3	1	0	3.8332	2.1664
a-ma												38.0870	
												4.2319	

EXPERIMENT #16 Group 400 N=13

<u></u>				· · · · ·									
	0	. 1	2	. 3	. 4	: 5	. 6	7	8	- 9	10	S	Q
A	0	0	1	0	1	8	2	- 0	0	. 1	0	0.8125	1.9690
·B	0	1	3	. 3	. 2	1	3	0	. 0	.0	0	.3.8332	3.0003
С	· 0	. 1	. 3	. 3	- 1	. 2	. 3	- 0	. 0	0	0	3.8332	3.1252
D	0	. 2	1	. 3	- 4	- 3	0	0	0	0	0	4,1251	1.8544
Ε	0	. 0	0	. 1	3	3	3	. 3	0	0	0	4.1251	3.1664
F	0	1	2	5.3	73	: 2	. 0	. 2	0	0	0	4.1668	2.2920
G	- 0	. 1	1	5	2	- 2	- 2	0	0	0	0	3.6429	2.1251
H	- 0	0	. 1	0	. 3	2	1	. 3	- 2	- 1	. 0	6.9168	2.1668
I	0	. 1	0	1	0	1	2	. 2	4	. 2	0	3.2503	2.5626
												34.7059	
· ,												3.8562	
												6.1438	

EXPERI	MENT #	17	Grou	<u>ιp 40</u>	<u>)0 :</u> N	=12							
	0	1	2	3	. 4	5	6	7	8	- 9	10	S	Q.
A	0	0	. 1	1	1	6	2	1	0	0	. 0	1.5007	3.2086
В	0	0	. 1	. 3	4	2	0	1	0	1	0	4.6250	2.1252
C	0	. 0	0	8	1	0	2	0	1	0	0	3.8125	2.9690
D	0	0	, 2	2	5	: 2	0	1	0	0	0	4.5000	1.7497
Ε	0	. 1	0	2	: 3	- 5	0	0	0	- 1	0	4.0000	1.6000
F	0	. 0	1	5	3	- 1	. 1	. 1	0	. 0	0	4.1668	2.3002
G	0	. 0	3	: 3	1	1	2	0	2	0	0	4.5007	3.7920
H	0	1	0	. 1	0	. 4	0	4	2	0	0	6.0000	2.5002
1	. 0	. 0	2	- 1	. 0	. 1	0	. 2	5	0	. 1	3.0000	.3.6000
												36.1057	
												4.0117 5.9983	

EXPER	IMENT #	26	Grou	<u>1p.4</u>	<u>10 N</u>	=12							
	0	1	2	- 3	4	5	6	7	8	9	10	S	Q_
A	0	. 0	0	3	1	6	0	2	0	0	. 0	1.0000	3.1668
В	0	1	0	4	53	3	0	0	1	0	0	4,3332	1.8330
C	0	0	. 3	. 2	- 3	1	. 2	1	0	0	0	4.3332	4.0000
D	0	. 1	. 1	2	. 2	. 3	- 3	0	0	0	0	5.0000	2.5003
Е	0	0	0	. 2	2	5	0	2	0	. 1	0	4.8523	1.5003
F	0	1	. 1	6	1	- 1	0	2	0	0	0	3.6666	1.8334
G	0	. 1	. 2	: 5	0	2	2	0	. 0	0	0	3.6000	2.0000
Н	0	0	. 1	0	, 6	· 2	2	0	. 1	0	0	6.1666	1.6666
I	0	0	0	1	0	1	1	2_	7	0	. 1	2.7144	1.2139
		-	_									35.6663	

3.9629 6.0371 EXPERIMENT #35 Group 400 N=13

	· · · ·	0	1	2	3	4	. 5	6	7	8	- 9	10	, S	Q
A		0	1	. 1	0	0	10	. 0	0	1	0	0	0.6500	0.6500
. B		0	. 1	.3	. 3	- 4	: 1	0	0	. 1	0	0	3.8332	1.9374
С		0	. 1	. 1	2	- 3	. 5	1	0	0	0	0	4.8332	1.9244
D		0	1	.,3	. 0	6	2	0	0	. 0	0	0	4.3334	1.8334
$e^{i}\mathbf{E}$		0	. 0	0	. 1	. 2	- 5	- 2	1	2	0	0	4.5000	1.8253
F		0	1	0	9	2	1	0	0	. 0	0	0	3.6112	0.7223
G		0	. 1	.3	3	<i>,</i> 3	- 2	0	. 1	. 0	0	. 0	3.8332	2.1664
Н		0	0	. 1	0	4	- 3	- 1	1	.3	0	0	5,5000	3.1877
<u> </u>	_	0	1	0	0	0	2	0	4	4	. 0	2	3.1251	1.6250
													34.2193	

3.8021 6.1979

EXPERIMENT #2 Group 500 N=12

	0	1	2	3	- 4	5	6	7	8	- 9	: 10	S	Q
A	0	0	. 0	0	. 3	6	1	. 2	0	0	0	1.0000	1.5000
В	· 0	0	. 0	3	- 2	- 5	0	2	0	1	0	5.3001	1.8253
С	1	0	. 1	2	4	: 3	0	. 1	0	0	. 0	4.5002	1.8335
D	- 0	. 0	1	4	- 3	. 2	- 1	0	. 1	0	0	4.3332	1.9995
Е	0	0	0	. 3	0	. 3	- 1	. 2	2	- 1	0	4.0000	4.0000
F	0	. 3	3	- 1	1	. 1	1	2	- 0	. 0	0	3.0000	4.0000
G	- 1	. 1	. 3	. 1	4	• 1	0	. 1	0	0	. 0	4.0000	3.4169
H	0	. 0	0	. 1	0	6	1	2	0	2	0	5.1666	2.1669
<u> </u>	0	. 0	- 0	. 0	. 0	. 0	3	<u> </u>	4	2	2	2.5002	2.5003
												33.8003	·····
												3.7556	
												6.2444	

	0	1	2	3	4	5	6	_7	8	9	10	S	Q
A	0	. 0	1	. 2	- 4	3	1	1	0	. 0	0	1.7501	1.4997
В	· 0	. 0	1	1	. 3	4	- 1	1	0	. 1	0	5.2499	1.6668
С	0	. 0	. 1	6	0	- 1	2	. 2	0	0	0	3,8334	3.1663
C	0	0	, 2	- 4	2	. 3	. 1	0	0	. 0	0	4.0000	2.0833
Е	. 0	. 0	0	. 2	1	. 4	. 1	1	2	1	0	4.3332	3.0000
F	- 1	3	2	: 0	1	. 1	. 3	- 1	0	. 0	. 0	3.0000	4.6664
G	· 1	1	. 1	2	. 3	0	. 3	- 1	0	0	0	4.3332	3.3332
H	. 0	0	0	1	1	4	. 4	2	0	0	0	5.0000	1.5002
I	0	0	0	0	0	1	1	6	1	3	0	3.3334	1.8334
												34.8332	
												3.8704	
												6.1296	

EXPER	RIMENT #4	i G	roup	500	N =	12							
· · · ·	0	. 1	2	3	4	5	6	7	- 8	9	10	S	Q
A	0	1	2	1	3	4	0	1	0	. 0	0	1.6668	4.2499
В	0	1	1	2	. 3	- 2	: 2	- 1	0	0	0	4.6668	2.5003
C	0	. 0	. 1	. 5	6	0	0	0	. 0	0	0	4.0000	1.1000
D	0	0	2	- 3	. 4	. 0	. 1	. 2	0	. 0	. 0	4.2499	1.6668
Е	0	. 1	0	. 1	0	6	2	. 1	1	0	0	4.6666	1.3331
F	1	1	2	- 3	1	3	. 0	0	1	0	0	3.6668	2.8335
G	· 1	0	. 3	, 2	- 2	- 3	. 1	0	0	0	0	4.0000	2.6664
Н	0	1	. 1	0	. 2	5	· 1	2	0	0	. 0	5.6000	1.4997
<u> </u>	1	0	. 1	1	0	0	0	. 1	5	- 3	0	2.6000	3.0000
												35.1169	
												3.9019	

EXPERIMENT #5 Group 500 N=12

			·			4.1								
;		0	. 1	2	3	: 4	: 5	6	7	8	9	10	S	Q :
A	·····	0	. 0	1	1	. 4	: 4	0	. 1	0	1	0	1.1249	3.0000
В		1	÷ 0	. 1	. 1	. 3	. 3	0	1	. 1	0	1	5.0000	2.0000
С		1	. 0	2	2	. 2	· 1	. 3	. 0	. 1	0	0	4.4997	3.3332
D		1	1	0	. 3	- 2	4	- 1	0	0	. 0	. 0	4.4997	2.1670
Ë	(0	. 0	1	2	- 3	: 2	- 2	- 1	0	0	0	5.0000	2.4997
F	· (0	. 2	- 1	- 2	- 3	1	3	0	1	0	0	4.3332	3.0000
G	· (0	. 1	. 2	- 2	4	. 0	2	1	0	0	0	4.2499	2.000.0
H	· · · · ·	0	0	1	2	3	2	- 3	. 0	1	0	0	6,0000	2.3332
I	·	0	2	0	0	3	. 2	0	1	3	1	0	5.4997	4.0000
													40.2071	
													4.4675	
						1							5.5325	

EXPE	RIMENT #	12	Grou	р 50) <u>0</u> N	=12							
	0	. 1	. 2	3	. 4	: 5	6	7	8	9	10	S	Q
A	0	0	. 1	.3	0	5	3	0	7	0	0	2.3332	2.7332
В	- 0	0	- 1	. 3	- 5	1	1	0	. 1	0	0	4.4000	1.3332
. C	0	0	2	- 2	5	1	1	1	0	0	. 0	4.4000	1.5003
3 D	- 0	2	0	. 1	6	· 2	1	0	0	0	0	4.5000	1.0000
E	0	. 1	0	. 2	2 2	- 4	·; 2	- 1	. 1	0	0	4.8000	2.0000
F	· 0	2	1	- 1	4	: 2	- 1	0	0	0	0	4.5002	2.4997
G	0	1	. 3	73	: 2	2	- 1	- 2	0	0	0	3.6668	2.3332
H	. 0	1	2	1	- 1	. 2	2	1	1	0	0	6.7503	3.7498
े <u>।</u>	0	. 0	2_	0	0	. 0	1	1	. 3	5	0	2.3332	2.7332
												37.6837	
												4.1871	
												5.8129	

EXPER	IMENT #	11	Grou	ıp 50	0 N	=12							
	0	. 1	2	- 3	4	- 5	6	7	8	- 9	10	S	0
A	0,	0	1	2	- 4	. 0	. 3	0	1	- 1	0	2.6668	2.2499
В	0	1	1	1	2	2	0	. 4	. 0	. 0	. 1	5.0000	2.0000
С	0	0	3	0	. 2	: 3	. 1	3	0	. 0	0	5.3332	4.0000
D	0	. 1	. 1	2	2	2	- 2	- 1	1	0	0	5.0000	3.0000
(; E	0	. 0	. 1	. 0	. 4	- 3	- 1	2	1	0	. 0	4.4000	2.4997
F	0	. 1	2	. 3	- 2	2	0	., 2	0	. 0	0	4.0000	2.4997
G	- 0	. 2	0	1	. 4	: 2	0	3	- 0	0	0	4,7501	2.0000
H	. 0	. 1	. 0	. 3	: 3	. 3	- 2	0	. 0	. 0	. 0	6.3332	2.0000
<u> </u>	0	. 1	1	0	2	. 2	- 1	1	. 3	. 0	1	5.0000	3.8329
												42.4833	
												1 700/	

4.7204 5.2796

EXPERIMENT #16 Group 500 N=12

	 0	1	. 2	3	. 4	5	6	7	8	9	10	S	Q
A	0	1	1	. 2	2	. 4	2	. 0	0	Ó	0	2,0000	2.7496
В	0	. 1	1	3	. 3	0	. 1	1	2	0	. 0	4.3332	3.6668
C	1	0	2	- 3	: 2	- 1	0	. 2	1	0	. 0	4.0000	3.0000
D	. 0	1	3	. 1	3	: 3	0	. 1	0	. 0	. 0	4.3332	2.6664
Е	0	0	1	1	1	4	- 2	. 3	0	0	. 0	4.7837	1.0000
F	0	. 2	- 2	- 0	. 1	2	4	: 0	1	0	0	5.4997	4.0005
G	0	1	2	1.	- 3	. 3	1	0	1	0	0	4.6668	2.6668
Η	0	0	1	2	2	2	0	4	1	0	0	5.4997	3.4998
<u> </u>	 _1	0	0	2	1	2	1	. 0	1_	.3_	1	5.0000	5.3332
												40.1163	
												4.4574	
												5.5426	

EXPER	IMENT #	17	Grou	ıp 50	0 N	=12							
	0	1	2	3	.4	: 5	6	7	8	9	10	S	Q
A	0	. 0	1	1	3	4	- 0	. 1	1	0	0	1,6113	3,5621
В	0	. 0	, 2	2	- 3	- 1	2	0	1	0	0	4.5002	2.6252
С -	0	Q	. 1	- 2	- 3	- 1	3	1	0	0	0	4.8335	2.5415
D	. 0	. 1	. 1	2	: 3	: 2	- 2	0	. 0	. 0	0	4.5002	2.2498
Е	0	0	. 0	2	- 2	- 3	- 1	.3	0	. 0	0	4.2499	2.8335
F	0	. 1	1	3	- 1	4	- 1	. 0	0	0	0	4.5006	2.3123
G	· · 0	1	0	. 3	- 1	1	3	2	- 0	0	. 0	5.5006	3.1665
H	- 0	0	. 1	0	. 2	2	. 4	- 1	. 1	0	0	4.8751	0.0973
<u> </u>	0	0	0	1_	3	1	1	0	1	2	1	5.0000	4.7500
												39.5714	
												4.3968	
												5.6032	

EXPER	IMENT #	26	Grou	ıp.50	0 N	=12							
	0	. 1	2	- 3	. 4	. 5	6	.7	8	9	10	S	Q_
A	0	0	0	. 0	6	5	0	1	0	0	0	1.1666	1.0666
В	0	1	2	: 3	2	• 1	2	1	0	. 0	0	4.0000	.3.0000
C	0	2	1	. 3	0	. 3	- 3	0	0	0	0	4.0000	3.0000
- D	- 1	1	1	0	. 3	- 4	2	- 0	0	0	. 0	5.0000	2.7501
E	. 0	0	1	. 2	2	4	: 2	. 0	. 1	0	0	4.6000	2.0000
F	0	2	- 1	. 0	2	2	. 3	2	0	0	. 0	5.4997	3.6668
G	- 0	2	2	- 1	2	3	. 2	0	. 0	0	0	4.4997	3.7671
H	0	. 0	. 1	1	. 1	. 5	- 4	. 0	0	0	0	5.4997	2.4998
I	. 0	1	1	1	2	1	0	2	. 2	1	1	4.0000	4.5003
												38,2657	
	-											4.2917	
							÷	÷				5.7483	

EXPERIMENT #35 Group 500 N=12

			0 - 0	~ ~ ~									
	0.	1	2	3	4	5	6	7	8	9	10	S.	Q
A	0	0	0	1	4	4	2	0	1	0	0	1.5002	1.7496
В	1	1.	2	4	2	0	1	1	0	0	0	3.5002	2.0000
Ç	1	0	1	1	4	2	3	0	0	0	0	4.5002	2.0000
D	1	1	0	4	2	1	3	0	0	0	0	4.0000	2.7501
Е	0	0	0	1	3	5	1	1	1	0	0	5.7000	3.5003
F	0	2	2	1	3	2	0	2	0	0	0	4.3332	3.0000
G	1	1	1	2	3	2	1	1	0	0	0	4.3332	2.4997
H	1	0	0	2	2	2	4	1	0	0	0	5.4997	2,4998
I	1	0	0	0	1	1	1	2	3	2	1	; 3.0000	3.0000
				~								33.3667	
												3 7074	

3.7074 6.2926

EXPERIMENT	#2	Group	600	N=17
------------	----	-------	-----	------

THEFT WHERE				4 4 -									
	0	1	2	3	4	5	6	7	8	9	10 .	S	Q
A	0	0	0	3	2	9	3	0	0	0	0	0.9445	2.1108
В	1	0	1	3	5	1	0	3	1	0	2	4.7001	3.8329
С	1	2	4	6	1	2	1	0	0	0	0	3.2499	1.6458
D	1	0	2	6	1	2	1	0	0	0	0	3.9167	1.9416
Е	0	0	0	1	2	5	2	4	3	0.	0	3.4091	2.4377
F	2	2	2	4	4	0	0	1	1	0	1	3.6252	2.5626
G	- 3	3	1	4	2	2	0	0	1	0	0	3.3748	3.4586
н	1	0	0	1	1	3	1	1	2	5	2	2.7500	4.1328
I.	1	0	0	0	2	2	0	0	6	2	4	2.4168	5.2500
									1	,		28.3871	
								1.1				3.1541	
												6.8459	

EXPERIMENT	#3	Group	600	N=18	

	0	1	2	3	4	5	6	7.	8	9	10	S	Q
A	1	0	0	2	3	12	0	0	0	0	0	0.7500	1.1247
В	2	1	2	4	2	1	1	4	1	0	0	4.0000	3.2502
С	2	6	1	3	3	1	1	0	0	1	0	3.0000	2.5833
D	1	2	3	4	3	3	1	0	1	0	0	3.7502	2.6667
Е	Ó	0	0	0	2	7	3	2	2	1	1	4.0000	2.3926
F	4	1	2	2	4	2	2	0	1	0	0	4.0000	3.7502
G	3	3	2	3	3	3	0	1	0	0	0	3.3335	3.3335
Н	0	0	0	0	1	6	1 .	1	5	3	0	3,0000	3.3167
Ι.	1	0	0	0	0	1	0	4	3	6	3	2.0000	2.1250
												27.8335	
												3.0926	
												6.9074	

EXPERIME	ENT #4	Gi	roup	600	N=	18							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	1	0	0	2	12	2	0	0	0	0	0.7500	1.3748
В	2	1	2	4	2	1	1	4	1	0	0	4.3333	3.0000
С	2	6	1	3	3	1	1	0	0	1	0	3.0000	3.2919
D	1	2	3	4	3	3	1	0	1	0	0	4.5005	2.9582
E	0	0	0	0	2	7	3	2	2	1	1	4.0000	2.3926
F	4	1	2	2	4	2	2	0	1	0	0	5.0000	3.4999
G	3	3	2	3	3	3	0	1	0	0	0	2.7143	3.4285
H ·	0	Q	0	0.	1	6	1	1	5	3	1	4.6667	1.9167
I .	0	0	2	3	6	3	0	2	2	0	0 ·	4.6665	2.0000
												29.8098	

3.3122 6.6878

EXPERIMENT #5 Group 600 N=18

DUL DUT	TTATE 11 2	<u> </u>	roup	000		LO							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	0	1	1	2	8	2	1	1	1	0	1.5005	3.9374
В	2	1	5	1	2	3	1	1	1	0	1	4.0000	3.5333
С	0	1	4	5	6	1	0	1	0	Ó	0	3.7999	1.7084
D	0	2	1	4	4	4	1	2	0	0	0	4.5000	2.2502
Е	1	0	0	0	3	5	4	3	1	0	1	4.0000	2.1667
F	3	1	1	4	3	2	1	1	1	0	1	4.0000	3.2498
G	1	2	4	4	3	2	0	1	0	0	1	3.5000	2.4583
Н	1 .	0	0	2	3	3	3	1	3	1	1	5.0000	3.6665
<u>I</u>	0 ·	0	1	0.	1	1	1	5	2	4	3	3.0000	2.5250
,	χ.											33.3004	
												3.7000	
												6.3000	

EXPER.	IMENT #1	L3	Grou	5 60	0 N	=17		_				·	
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	1	2	1	11	1	0	1	1	0	0.8182	2.8411
В	1	2	4	3	2	2	1	2	1	0	0	3.6665	3.3749
С	0	2	2	6	2	3	1	1	1	0	0	3.8335	2.4163
D	0	4	1	3	4	3	1	2	0	0	0	4.2502	2.9997
Е	0	1	0	0	5	6	2	3	1	0	0	4.8928	2.0999
F	2	2	1	3	2	5	2	1	0	0	0	4.5005	3.1998
G	0.	3	1	6	3	4	0	0	0	1	0	3.8335	2.0417
Н	0	0	0	2	5	5	0	3	1	1	0	5.7999	2.8666
I	0	0	0	0	0	3	1	3	3	4	3	2.6665	3.1251
					·							34.2616	
												3.8068	
												6.1932	

EXPERI	MENT #	11	Group	600	N	=17		2.1					
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	1	0	2	2	10	1	0	1	0	0	0.8501	2.3250
B	0	2	3	6	1	3	1	0	0	0	1	3.5835	2.4998
С	0	0	2	5	4	4	0	0 ·	1	0	0	4.3748	1.9871
D	0	0	· 3	4	6	2	0	1	0	0	1	4.2499	1.6459
Е	0	0	0	3	3	7	2	2	0	0	0	4.8750	2.6519
F	2	1	1	3	1	4	1	2	2	0	0	5.1249	3.6667
G	.0	0	4	2	4	4	1	1	0	0	1	4.6252	2.5626
H	0	1	0	2	3	5	2	3	1	0	0	5.7999	2.8666
I	0	1	0	1	0	1	1	3	7	2	1	2.7856	1.7382
		•		•								36,2689	-
												4.0299	

EXPERIM	ENT #:	L6	Grou	p. 600) N	= 18							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	1	1	1	1	8	3	2	1	0	0	2.0000	3.6876
В	2	2	4	1	3	5	. 0	2	0	0	0	4.0000	3.1748
С	0	0	6	6	1	5	0	0	0	0	0	3.5002	2.3500
D	0	3	6	2	4	3	0	0	0	0	0	3.0000	2.3752
E	0	0	0	2	4	6	1	3	2	0	0	-3.6999	2.5417
F	1	2	5	1	3	4	0	0	2	0	0	4.0000	5.0750
G	1	Ò	3	3	8	1	2	0	0	0	0	4.2500	1,6458
H	0	Q	2	1	2	5	1	4	2	1	0	5.2001	2.8753
I	0	0	1	0	1	2	3	4	5	1	0	2.7502	2.8002
									-			32.4004	
												3,6000	
						÷						6.4000	

EVLEVIL	YLEINI #		Jrou	וטס	JN	=TO							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	0	0	1,	2	12	2	0	0	0	0	0.7500	1.3748
В	1	Q	1	4	1	4	1	3	2	1	0	5,5000	3.8746
С	0	2	0	5	2	5	0	2	2	0	0	5.0000	2.3999
D	1	1	2	7	5	0	1	1	0	0	0	3.7143	1.4285
E	0	Q	1	Q	3	5 -	3	4	2	0	0	4.0000	2.2748
F	2	1.	3	4	2	3	1	2	0	0	0	3.7502	3.0000
G	0	1	1	4	4	2	3	1	1	0	0	4.7502	2.8746
H	0	0	0	3	1	8	2	1	- 2	1	0	5.3751	1.6875
I	2	0	1 .	2	0	1	2	5	1	1	3	3.7999	4.7502
												36.6397	
												4.0711	
												5.9289	

EXPERI	MENT #2	26	Group	p 600) N:	=18							1
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	0	0	1	2	7	4	2	1	0	0	2.0000	2.8575
В	1	2	2	2	4	2	1	1	2	1	0	4.5000	3.7502
C .	0	2	0	5	2	5	0	2	2	0	0	4.0000	3.1501
D	1	1	2	7 -	5	0	1	1	0	Ò	0	5.0000	2.6668
E	0	0	1	0	3	5	3	4	2	0	0	4.5000	3.2709
F	2	1	3	4	2	3	1	2	0	0	0	5.0000	3.0667
G	0	1	1	4	4	2	3	1	- 1	0	0	5.2001	2.5417
H	0	0	0	3	1	8	2	1	2	0	0	5.3000	2.0502
I (2	0	1	2	0.	1	2	5	1	1	3	3.7999	1.9166
												39.3000	
												1. 2667	

4.3667 5.6333

EXPERIM	ENT #:	35 (Grou	5 60(л	=18							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	0	1	1	3	11	0	1	. 0	0	0	0.8182	1.4241
В	2	6	1	6	0	1	0	1	0	0	1	3.0000	2.3334
С	0	5	2	4	0	4	2	0	0	1	0	3.5000	3.7252
D	1	3	4	3	3	2	1	1	0	0	0	3.3335	2.7081
E	0	0	0	2	0	9	1	2	4	0	0	5.0000	2.4720
F	2	2	2	2	2	6	2	0	0	0	0	4.5005	3.3331
G	1	2	2	6	2	3	1	0 ·	1	0	0	3.6667	2.4170
H	0	0	1	2	6	5	2	1	1	0	0	6.0000	1.6500
1	0	0	1	1	0	1	1	1	1	7	5	1.5714	2.6001
												31.3903	
												27.070	

3.4878 6.5122 EXPERIMENT #2 Group 700 N=22

	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	0	. 1	1	19	0	1	0	0	0	0.5790	0.5790
В	3	1	2	0	4	9	1	2	0	0	0	5.1112	2.9720
С	0	3	.0	10	2	4	0	2	1	0	0	3.8000	2.1252
D	0	1	0	7	5	7	1	1	0	0	0	4.6001	1.8573
E	0 -	0	0	0 ·	1	3	7	5	6	.0	· 0	3.0000	1.8689
F	4	3	4	1	3	3	1	2	1	0	0	3.0000	4.0000
G	1	8	2	6	1	4	1	0	0	0	0	3.0000	2.3544
H	0	1 -	0	2	0	4	3	1	6	3	2	3.0000	3.2919
Ι.	0	0	0	0	1	2	1	5	9	1	3 -	2.7778	3.5333
												28.8681	······································
												3,2065	
												6.7935	

EXPERI	MENT #3	3 G	roup	7.00	N=	22							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	0	1	8	10	1	1	1	0	0	1.1251	1.2626
В	2	0	2	2	3	5	1	5	1	1	0	5.3999	3.5497
C :	0	3	3	5	0	5	1	2	3	0	0	4.0000	4.4169
D	0	2	1	5	4	5	3	2	0	0	0	4.5000	2.3999
Е	0	0	0	1	0	8	2	9	2	.0	0	3.0000	2.0487
F	1	1	2	3	7	0	3	3	2	0	0	4.5713	3.3328
G	0	5	3	4	6	3	1	0	0	0	0	3.7503	2.5835
H	0	0 -	0	2	2	5	0	6	5	2	0	3.6667	3.0000
I	0	0	0	1	0	4	5	3	6	3	1	3.3336	2.4499
												34.5269	
												3.8363	
												6.1637	

EXPERI	MENT #4	ί Gʻ	roup	700	N=	22						•	
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	1	1	5	12	1	2	0	0	0	0.9166	1.4414
В	0	3	4	5	4	4	0	2	0	0	0	3.7998	2.5000
С	0	3	5	8	0	3	0	1	3	1	0	3.3751	2.6666
D	0	5	0	9	2	2	3	0	0	1	0	3.6666	2.1942
Е	0	0	0	0	2	7	5	4	3	1	0	3.9349	2.0000
F	1	1	3	6	3	3	4	1	0	0	0	4.0000	2.7496
G	0	6	4	6	4	0	2	0	0	0	0	3.1669	2.2081
Н	0	0	0	0	2	8	1	6	3	2	0	4,0000	2.4792
I	0	0	0	0	2	1	3	4	3	8	1	2.6664	2.6040
												27.9913	
												3.1101	

Q

2.7497

2.8249

1.1210

1.7084

2.8664

2.9249

2.3750 2.7832

3,4003

EXPERIMENT #5 Group 700 N=22

	0	1	2	3	4	5	6	7	8	.9	10	S	Q
A	0	0	0	4	6	9	2	0	0	0	1	1.3333	2.1392
В	0	2	1	4	0	3	4	3	2	1	2	6.2503	4.2079
C	1	0	4	6	0	3	1	5	1	1	0	4.0000	4.2168
D	0	1	1	3	2	6	3	3	3	0	0	5.6667	2.9167
Е	Ò	0	0	2	5	6	5	3	1	0	0	4.9444	2.0000
F	0	1	1	5	7	2	3	3	0	0	0 ·	4.5713	2.4664
G	1	2	2	3	4	4	3	2	0	0	0	4.5713	3.0000
H	0	0	0	3	4	6	3	5	2	0	0	5.1669	2.4249
I .	1	0	1	3	1	_4	1	5	2	4	0	4.0000	3.7486
				,								40.5042	
											•	4.5005	
												5,4995	

	0	1	2	3	4	5	6	7	8	9	10	S
A	0	0	2	2	4	11	1	1	0	0	1	1.0000
В	1	1	• 4	5	2	5	1	3	0	0	0	4.0000
С	1	1	· 3	11	3	1	2	0	0	0	0	3.5454
D	0	2	2	9	4	3	0	2	0	0	0	3.7778
Е	1	0	1	.2	- 5	6	1	3	2	1	0	4.9398
F	0	1	3	4	3	4	5	2	0	0	0	5.0000
G	0	- 1	6	7	2	4	1	2	0	0	0	3.5713
н	0	0	1	2	5	4	3	6	0	0	0	4.5000
I.	0	0	0	1	1	5	0.4	1	8	5	1	2.6251
	4. 1.4											32.9594
												3.6622
												6.3378

EXPERI	MENT #1	L 1 (Group	5.700) N	=22							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	Q	1	3	3	10	2	1	1	0	0	1.1666	2.7248
В	0	2	1	4	0	3	4	3	2	1	2	5.2500	1.8127
С	1	Ó	4	6	0	3	1	5	1	1	0	4.6001	2.3249
D	0	1	1	3	2	6	3	3	3	0	0	4.6110	1.5000
Е	Ó	0	0	2	5	6	5	3	1	0	0	4.9324	2.0000
F	0	1	1	5	7	2	- 3	3	0	0	0	5.0000	2.5000
G	1	2	2	3	4	4	3	2	0	0	0	4.5006	1.3991
Н	0	0	0	3	4	6	3	5	2	0	0	5.1001	2.0668
I	1	0	1	3	1	4	1	5	2	4	0	4.2002	2.8751
												35.8567	
												3.5396	

,

EXPERIMENT #16 Group 700 N=22

DUT DUT		-0	GLOG	9 10									
	0	1	2	3 .	4	5	6	7	8	9	10	S	Q
A.	0	1	1	1	5	11	1	1	0	0	1	1.0000	1.9989
В	. 1	0	4	5	3	5	0	3	1	0	0	4,3336	2.6001
С	0	1	Ó	9	2	5	1	0	1	0	0	4.5006	2.3998
D	0	2	1	6	8	2	1	2	0	0	0	4.2500	1.5210
Ę	0	0	0	6	2	5	4	4	0	1	0	4.8750	3.1774
F	0	3	4	2	4	5	2	2	0	0	0	4.5000	3.0751
G	0 .	0	8	5	3	4	0	1	0	1	0	3.6001	2.4373
Н	0	0	1	1	3	5	3	6	2	1	0	4.6664	2.4831
I	0	0	0	1	2	2	2	4	5	5	1	3.0000	2.8506
						,.						38.1944	
												4.2438	
												5.7567	

EXPERI	MENT #1	17	Grou	o 700) N	=22							
	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	1	0	0	3	2	15	0	1	0	0	0	0.7334	1.3836
В	0	0	4	3	5	2	2	2	3	0	1	4.7998	3.7497
С	0	0	4	3	5	2	2	2	3	0	1	5.0000	2.5417
D	0	0	1	6	3	7	0	3	1	0	0	5.1430	2.1788
Е	0	0	0	2	1	12	1	2	3	0	0	4.9523	2.0916
F	0	1	3	4	4	6	1	1	1	0	1	4.7503	2.3748
G	0	0	3	6	6	5	2	1	0	1	0	4.3333	1.8834
H	0	0	:1	0	2	9	3	4	1	1	1	4.3336	2.0974
I	1	0	· · 2	0	4	3	3	6	1	2	0	4.6664	2.9585
												38.7121	
												4.3103	
												5.6987	

EXPERIM	MENT #2	26	Group	5 . 70	0 N	=22							
	0	1	2	3	4	5	6	7.	8	9	10	S	Q
A	0	1	3	0	4	11	1	2	0	0	0	1.0000	3.7497
В	0	1	2	6	4	5	1	2	1	0	0	4.5000	2.0832
С	Ó	0	4	5	4	6	1	1	1	0	0	4.5000	2.2834
D	0	1	3	5	5	5	2	1	0	0	0	4.3999	2.1998
E	0	1	3	2	1	7	3	3	1	0	0	4.8824	3.4996
F	0	1	0	4	2	8	3	1	2	0	0	5.5000	2.2503
G	0	1	2	6	2	6	3	2	1	0	0	5.0000	2.5002
H	0	0	0	1	6	8	2	5	2	0	0	5.2500	2,2376
I	Q	0	0	1	4	4	3	3	4	2	1	4.3336	3.2502
												39.3600	
												4.3440	
												5.6260	

EXPERIMENT #35 Group 700 N=22

	0	1	2	3	4	5	6	7	8	9	10	S	Q
A	0	0	1	1	4	14	1	0	1	0	0	0.7857	1.2321
В	0	2	6	5	6	2	0	1	0	0	0	3.6001	2.0000
С	0	2	5	7	4	1	1	2	0	0	0	3.5713	1.9249
D	0	2	5	3	4	5	2	1	0	0	0	4.2503	2.7998
E	0	0	0	4	2	8	1	4	3	0	0	5.6251	3.1713
F	0	1	2	4	5	4	2	2	2	0	0	4.7998	2.6248
G	0	1	4	4	4 -	9	0	0	0	0	0	4.5000	2.2640
H	0	1 -	0.	0	5	8	2	4	2	0	° 0	5.3751	2.2248
I	0	_1 ·	0	0	5	8	2	4	2	0	0	2.6664	4.1249
												33.9236	
												3.7693	

APPENDIX G

MATERIALS GIVEN TO STUDENTS

CHEMISTRY 3015 LABORATORY SCHEDULE FALL, 1969-70

WEEK OF	FIRST LABORATORY	SECOND LABORATORY
Sept. 10	NO CLASSES	CHECKIN LAB
Sept. 15	Exp. 1, Crystallization	Exp. 2, Melting Points
Sept. 22	Exp. 3, Distillation-Boiling Pts.	Exp. 4, Fractional Distillation
Sept. 29	Exp. 5, Qualitative Analysis	Exp. 5, continued
Oct. 6	Exp. 6, Hydrocarbons	*m-Dinitrobenzene
Oct. 13	Exp. 13, Cyclohexanol; Alcohols	Exp. 13, continued
Oct. 20	Exp. 11, n-Propyl Bromide	Exp. 11, continued
Oct. 27	*Methyl Ethyl Ketone and start *Fermentation	Complete Methyl Ethyl Ketone
FIRST	LAB EXAM TUESDAY OCTOBER 28	5:30 P.M ES. 317
Nov. 3	*Complete Fermentation	Exp. 16, Carbonyl Compounds
Nov. 10	Exp. 17, Acids	*Methyl Salicylate
Nov. 17	*Complete Methyl Salicylate	Exp. 20, Saponification of Isoamyl Acetate
Nov. 24	*Butter	Thanksgiving Vacation
Dec. 1	*Oleomargarine	Exp. 25, Acetylsalicylic Acid
Dec. 8	Exp. 26, Properties of Amines	Exp. 30, Diazo Compounds
Dec. 15	Exp. 29, Sulfanilamide	Exp. 29, continued
SECOND	LAB EXAM THURSDAY DECEMBER	18 5:30 P.M ES 317
Dec. 22	Christmas Vacation	
Dec. 29	Christmas Vacation	
Jan. 5	Exp. 36, Carbohydrates	CHECK-OUT OF LAB
Jan. 12	FINALS WEEK	

*Mimeographed experiments

Name	Lab. Subsection:
SexAgeDate of Birth Marital Military Status Status:(service, reserve,	Class: <u>So Jr Sr Gr</u> ROTC, NG,/classification)
Stillwater Address:	Phone
Home Address:	
College: Major:	Proposed Vocation:
Do you work? Approx. how	many hours per week?
Chemistry Background:	
High School Chemistry: School	·
Approx. Enrollment:Year Taken	1: Fr So Jr Sr Text Used:
How often did you have lab?	Grade Received
Freshman Chemistry: Number: N	lame: Hrs: Grade:
Institution where taken:	
Other Chemistry Courses: Number:_	Name: Sem. Hrs
Institution:	Grade:
Did your high school course contai	n any organic? How much?
Did your freshman course contain a	ny organic? How much?
Overall GPA: GPA in Major:	GPA in Chem. Courses:

The next two pages contain a survey to determine your background in some laboratory techniques. Many of the names will be strange to you. Some of the names or techniques are common to anyone who has had any introduction into the chemistry laboratory.

This survey will not be used in any way to determine your grade. It is part of our program to revise our courses to make them more relevant and meaningful.

This survey will be taken in two parts. First to indicate your entering skills then at the conclusion of the course to reflect the changes. Look at the responses in the first section (1-4). These are the entering skills or behaviors. Merely place an x or a \checkmark in the appropriate column after each of the 55 skills.

263

Chemistry 3112, 3252, 3015

8/19/69/jr

This is an inventory of the apparatus in your desk. You will be held responsible for all this equipment which must be returned clean, dry and in good condition at the end of the semester or at any time that you drop the course.

1 Beaker, 50 ml.	.49
1 Beaker, 100 ml.	.53
1 Beaker, 250 ml.	.49
1 Beaker, 400 ml.	,58
1 Beaker, 600 ml.	.73
1 Beaker, 800 ml.	.89
2 Bottles, 1 oz., glass stoppered, narrow mouth, ea.	.85
2 Bottles, 1 oz., glass stoppered, wide mouth, ea.	1.15
1 Cylinder, graduated, 10 ml.	1.15
1 Cylinder, graduated, 50 ml.	1.45
1 Cylinder guard, 10 ml.	.10
1 Cylinder guard, 50 ml.	.15
1 File, triangular, 4"	.40
1 Flask, Erlenmeyer, 125 ml.	.58
1 Flask, Erlenmeyer, 250 ml.	.60
1 Flask, filter, 125 ml.	1.95
1 Flask, filter, 500 ml.	2.67
1 Forceps	.30
1 Funnel, short stem, pyrex, 50 ml.	.75
1 Funnel, Buchner No. 1, 56 mm. with stopper	2.87
1 Funnel, Hirsch, No. 000, with stopper	1.85
2 Glass rods, each.	.08
3 Medicine droppers, ea.	.05
1 Melting point tube, Thiele	4.41
3 Rubber stoppers - 1 No. 2, solid	.03
1 No. 2, 1-hole	.03
l No. 00. solid	.02
1.Scoopula	.30
l Spatula, nickel, double end	1.25
6 Test tubes, 13 x 100 mm., pyrex, ea.	.07
6 Test tubes, 18 x 150 mm., pyrex, ea.	.11
1 Test tube brush, medium	.15
1 Test tube clamp	.25
1 Test tube rack, 13 place, drying pin	2.25
6' Tubing, rubber, 1/4 x 1/16"	1.08
2' Tubing, rubber, 1/4 x 1/8"	. 72
1 Watch glass, pyrex, 125 mm.	.23
1 Water bath, 6"	6.50
1 Wing top	.45
l Wire gauze, asbestos center	.27
1 Withdrawal pad	N.C.
1 Vial	. 05
l Sidearm Tube	2.30

ORGANIC KIT

l Box Polyestyrene, Expanded	
1 Condenser, West Type, 200 mm. 19/22 joint	7,36
1 Distilling Column, 200 mm. 19/22 joint	8.40
1 Flask, Round Bottom, 25 ml. 19/22 joint	2.51
l Flask, Round Bottom, Single Neck, 50 ml. 19/22 joint	2.51
l Flask, Round Bottom, Single Neck, 100 ml. 19/22 joint	2.41
1 Flask, 250 ml. with side tube, 19/22 joint	3.11
1 Flask, 3-neck, angle type, 500 ml. 19/22 joint	9.83
l Funnel, separatory, pear-shape addition, w/teflon plug, 125 ml. 19/22 joint	13.74
1 Stopper, Glass, solid, 19/22, each	1.57
l Tube, adapter, straight, 19/22 joint Thermadapter	1.66
l Rubber connection for straight adapter	.26
l Tube, bleed, gas (steam)	.37
l Tube, connecting, 3-way, paralleled side arm, 19/22 joint claisen	6.85
1 Tube, connecting, 3-way, 19/22 joint	5.81
l Tube, connecting, distilling, 19/22 joint adapter	5.09
1 Thermometer, -10 to 360°C	2.85

111.	I do not know when or under what circumstances this would be used.	17						10	i i i i			r Ge					(ajeta				Ì			a ci			-35	18. 18.				- 1995 - 1995 - 1995	24 - 2
п.	I feel that I know some circum- stances when this could be used,				F					·			ŀ										1		T								Π
I.	I feel that I know when and under what conditions I would use this.							1				T	T					-								1				T			
8.	Did not use or need this technique in this class.												T					T													Π		
7.	Feel that I have gained skill and am proficient in the technique.										-							T		—			T	ſ								÷	
6.	Can perform the technique without difficulty.											ľ												T									
5.	Can perform the technique alone but lack confidence.												Ī	Γ										-		Γ			Ī				
4.	Can perform the technique but feel need for some aid from a fellow student.							1										ŀ															
3.	Can perform the technique but feel need for some help from the instructor.											, ,																				۰.	
2.	Vague recollection of the technique.					ŀ				÷.					·							Τ							ļ				
1.	Had no knowledge or experience.							-				-	•]				i.																
4.	Proficient in the technique.	Γ	1			ŀ						T.									ļ			Γ					1				Τ
3.	Some experience but no proficiency.	Τ	T							÷		Τ					1		1			1	1	Т	1.	Į.			T			а. 11 м.	
2.	Some knowledge but no experience.	T											1					ŀ				Τ	Т	1	ŀ	1			1				
1.	Have no knowledge or experience.				ί.													Ι			į												
Name	Lab Section Subsection Date Fart 11 completed Date Fart 11 completed Flace an x or a y in the most Appropriate response.	1. Sumple filtration.	2. Simple filtration with fluted filter paper.	3. Suction filtration with a Hirsch funnel.	4. Suction filtration with a Buchner funnel.	5. Reflux condenser.	6. Simple distillation.	7. Fractional distillation.	8. Steam distillation.	9. Vacuum distillation.	10. Solvent selecting (the best for the	11. Salting out.	12, Washing with a carbonate.	13. Ether extraction.	14. Melting point determination.	15. Reading a thermometer.	16. Preparing and filling a melting point capillary	17. Calibrating a thermometer.	18. Boiling point determination.	19. Correct placement of a thermometer	In distillation;	20. Thiele-Dennis (of Ihiele) tupe.	22. Distilitur column.	23. Diazotization.	24. Steam heating.	25. Use of fuse hood.	26. Sodium fusion tests.	27. Saponification.	28. Drying ether.	30. Hooking up a condenset in the water.	31. Boring a hole in a cork.	32. Boring a hole in a stopper.	33. Callbrating a thermometer.

	Name		:	12	ω.			2.	μ	-		•	7.	0 0	H	Ħ	H
			Have n	Some k	Some e	Profic	Had no	Vague	Can pe for so	Can pe need f	Can pe lack c	Can pe diffic	Feel t am pro	Díd no ín thí	. I feel what c	. 1 feel stance	. I do n círcum
· ;			o kno	nowle	xper:	lent	kno	reco	rfor me h	rfor or s	rfor	rforn ulty	hat : fici	t us s cla	that	that s who	ot ki
in a s	· .		pule	edge	Lenc	15	Led	lleci	a th	ome	ence	F	I hav	2 OF	E I I	en I I	es t
÷	• 11		lge	but	e bu	the	ge o	rion	e te Erom	e te	6	e te	Lin 8	nee	3 I W	KIJOW 11S	hen
÷	•		9	ß	t no	tech	E E	ę,	chni	chn4 from	chni	chni	aíne he t	ц. С	whe wou]	son	NOL
1			xpe	Ę.	pr	h ta	per	the	que	que	que	que	ech	ils -	d n u e	4 F	und 1d
			rien	erie	ofic	це	lenc	tec	but	fell	alo	wit	k111 n1qu	tech	se t	ircu e us	67
;			Ce.	nce	leno		e.	hnic	fee	fe	ne i	hout	e g	nlqı	ndei his	ed.	hat.
					Ÿ			que.	: E 5	stud	ŭt	"		· P			
- P.									eed	ent.							
										ľ							· ·
=	34.	Putting standard tager classware together.	\vdash														·
e i h	35.	Friedel-Crafts reaction.					-										
	36.	Using a graduated cylinder.															······
	37.	Correcting a thermometer reading.				·											
	38.	Determining sulfur in an organic compound.															
• •	39.	Determining whether bonding is saturated									·						
· · ·		or unsaturated.		 			L										
	40.	Using the centigram or decigram balance.					<u> </u>	<u> </u>			ļ	<u> </u>					
	41.	deck area															
	42.	Determining presence of nitrogen in an		-			 										<u> </u>
		organic compound.														· ·	1
	43.	Determining presence of chlorine or chloride.		1													
,	44.	Removing highly flammable solvents.															
	45.	Sharpening a cork borer.															
	46.	Bending glass tubing.															
	47.	Removing a colored impurity from a colorless		1 ·												· ·	4
-		sample.		 			L				ļ						
•	48.	Determining presence of phenolic ring in	ŀ						, i		•				· ·		
÷	. 40	Compound.	 	<u></u>			ļ				Ì						
	50.	Soxblet extraction.															
•	51.	Treating an acid burn.	-														
	52.	Removing traces of water from nonpolar	1	 													
		solvent.															
	53.	Electric heating mantle.															
	54.	Distinguishing between a reducing and															
· .		nonreducing sugar.												· ·			:
	55.	Preparing an ester.	I	I			<u> </u>								ļ	·	
							1										r ,
t in																	
. ÷÷.				l													
			11	1	1	, 1	19		•	1		l			ŧ	i	
								•									

CHEM 3015 "Experimental Sections" Suggested Film Viewing The following list is merely a suggestion as to films recommended for a particular experiment. Subsequent experiments may repeat a technique. One may review the film if and when desired. It is also recommended that you view or preview the films during the previous laboratory period. (After you complete an experiment you may then begin to prepare for the next. It also prevents a traffic jam at the projectors.) Film #7 Methods of Heating and #24 Fume A Vapor Removal are of general interest and should be viewed as soon as convenient. Week of First Laboratory Second Laboratory

<u>neek or</u>	<u>TITOL Baboratory</u>		ceond haboracory
Sept. 10	Expt. 1, Crystallization #1 Decolorizing #2 Supersaturation #3 Folding Fluted Filter Paper #4 Rapid Filtration #5 Reflux	Expt. #8 #9	<pre>2, Melting Points Thermometer Correction Melting Point Deter- mination: 1: Capillary Prepa- ration</pre>
	<pre>#6 Use of Boiling Chips #7 Methods of Heating</pre>	: <i>‡</i> 10	Melting Point Deter- mination 2: Thiele-Dennis Tube
Sept. 22	<pre>% Expt. 3, Distillation-Boiling Pts.</pre>	Expt.	4, Fractional Distilla- tion
	<pre>#12 Simple Distillation 1: Setting Up #13 Simple Distillation 2: Operational Hints #14 Thermometer Placement</pre>	,#11 ,#15	Boring Holes in Corks Fractional Distillation
Sept. 29	Expt. 5, Qualitative Analysis #16 Sodium Fusion Tests 1: Test Soin Prep. #17A Sodium Fusion Tests 2: Nitrogen Detn.	Expt. #17B #17C	<pre>5, cont. Sodium Fusion Tests 3. Sulfur determina- tion Sodium Fusion Tests</pre>

		tion
Oct. 6	Expt. 6, Hydrocarbons	m-Dinitrobenzene
Oct. 13	<pre>Expt. 13, Cyclohexanol, Alcohols #18 Steam Distillation #19 Sep & Pur 1: Washing with a Carbonate #20 Sep & Pur 2: Salting Out #21 Sep & Pur 3: Extraction</pre>	Expt. 13, cont. #22 Sep & Pur 4: Drying #23 Sep & Pur 5: Ether Removal
Oct. 20	Expt. 11, n~Propyl Bromide	Expt. 11, cont.
Oct. 27	Methyl Ethyl Ketone	MEK cont.
Nov. 3	Fermentation	Expt. 16, Carbonyl cpds
Nov. 10	Expt. 17, Acids	Methyl Salicylate
Nov. 17	Methyl Salicylate cont.	Expt. 20, Saponification
Nov. 24	Butter	XXX
Dec. 1	Oleomargarine	Expt. 35, Acetylsalicylic

Expt. 35, Acetylsalicylic acid

4. Halogen determina-

<u>Week of</u>	First Laboratory	Second Laboratory
Dec. 8 Ez	kpt. 26, Amines	Expt. 30, Diazo Compounds #25 Diazotization I #26 Diazotization II
Dec. 15 Ez	kpt. 29, Sulfanilamide	Expt. 29, cont.
Jan. 5 Ex	xpt. 36. Carbohydrates	

ι

SYNOPSIS OF SINGLE CONCEPT FILMS FOR LABORATORY TECHNIQUES IN ORGANIC CHEMISTRY

#1 DECOLORIZING (2.02 min.)

Shows a solution of a colorless compound which contains a trace of a colored impurity. Shows that filter paper does not remove the colored matter. Solution is mixed with a small amount of decolorizing carbon (Norit A) and then filtered.

#2 SUPERSATURATION (1.02 min.)

Shows methods of disturbing a supersaturated solution including adding a seed crystal and scratching the inner surface.

#3 FOLDING FLUTED FILTER PAPER (2.23 min.)

Shows an efficient method for folding fluted filter paper. Also shows two methods for the regular folding of filter paper.

#4 RAPID FILTERING (3.40 min.)

Shows both Hirsch and Buchner funnels. Be certain to wash the precipitate with small applications of the wash solvent rather than large applications lest the precipitate appreciably dissolve.

If the solvent is corrosive to metal a trap should be placed inbetween the filter flask and the aspirator. This also is helpful if the volume of liquid is greater than the filter flask and there would be a possibility of the solvent being pulled into the aspirator. This can be avoided by halting the operation and emptying the filter flask then resuming the filtration.

#5 REFLUX (3.17 min.)

Shows the reflux condenser in operation. Shows the proper method of assembling the apparatus.

#6 USE OF BOILING CHIPS (1.55 min.)

Shows erratic boiling without boiling chips. Shows smooth even boiling due to the irregularities on the chips which allow the formation of bubbles.

#7 METHODS OF HEATING (2.38 min.)

Using a reflux condenser as an example heating on a hot water (or boiling water) bath, steam bath, burner flame with a wire screen, and burner flame without a wire screen is shown. Heating a beaker is also shown on the steam bath.

Note the possibility which occurs when a burner without a screen is used with a flammable solvent.

#8 THERMOMETER CORRECTION (3.43 min.)

Shows several laboratory grade thermometers immersed in the same bath. Shows one thermometer placed in various materials whose temperatures are accurately known. It is necessary to use amounts sufficient to cover the thermometer to its immersion depth. This amount of material also will change temperature more slowly than would a melting point capillary immersed in wax or oil.

What are the actual melting (or boiling) points? The following are <u>not</u> those which appear on the film but are given to present a similar example.

cpd:	<u>actual ^OC</u>	therm. reading	correction
water (m.p	0	+ 10	(aut lo reading) = 1.0
m-dinitrobenzene	89.5	90.2	- 0.7
water (b.p.)	99.7	100.4	· - 0:7
salicvlic acid	156.0	155.9	+ 0.1
isatin	200.0	199.4	+ 0.6
anthraquinone	286.0	284.5	+ 1.5
			'
		• • • • • • • • • • • • • • • • • • •	••••••
		• • • • • • • • • • • • • • • • • • • •	D
• • • • • • • • • • • • •			D
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	, .
1.0		•••••••••••••••••	
+0.8	• • • • • • • • • • • • • • • •		•••••• R
+0.6			· · · · · · · · · · · · · · · · · · ·
+0.4 .:			· · · · · · · · · · · · · · · · · · ·
+0.2	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
050-	100	150200	-250300
0.0	. /		S
=U.Z			. [] يُو
-0.4		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
-0.8	·····		••••••••••••••••••••••••••••••••••••••
-1.0	••••••••••••	• • • • • • • • • • • • • • • • • • • •	·····
-T.O	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••••••••••••

#9 MELTING POINT DETERMINATION Part 1: Capillary Preparation (2.30 min.)

Shows two methods of preparing and sealing melting point capillaries. Shows the filling of capillaries and their insertion in the rubber ring on the thermometer. Shows some poor capillaries (red background: bent, misshapen and/or not quite sealed) and some good capillaries (blue background.)

#10 MELTING POINT DETERMINATION Part 2: Thiele-Dennis Tube
 (1.35 min.)

Shows the capillary in the Melting Point Tube. (An alternate method not shown would be to clamp the tube as indicated and clamp the cork holding the thermometer somewhere above the maximum temperature to be determined. This allows reading temperatures near the mouth of the Tube and it would not be necessary to cut a channel in the cork to allow pressure equalization.

Shows the melting of the sample in the capillary. Note the temperature when the melting begins and the temperature when the melting is complete. (If heating occurs too fast the thermometer reading when the last crystal metls will be higher than the melting point actually is. What is the melting point range of this sample?

#11 BORING HOLES IN CORKS (2.33 min.)

Shows cork selection, cork borer selection, and sharpening the cork borer. On boring the hole note that merely pressing down on the borer does <u>not</u> drill the hole easily. However by pressing down and turning the cutting occurs easily. A quarter turn is quite convenient--then turn the cork and twist again. Note also that the cork is drilled through from both ends toward the middle. This avoids "blown out" ends--see the bad holes as compared to the good examples. Shows putting the cork on tubing (in this case a thermometer). Be certain to lubricate the tubing with water or glycerol.

#12 SIMPLE DISTILLATION Part 1: Setting Up (3.22 min.)

Shows proper methods of setting up a simple distillation apparatus. It includes the recommended order of placement as well as placement of clamps. Shows recommended methods of securing the receiver adapter and clamping the receiver.

#13 SIMPLE DISTILLATION Part 2: Operational Hints (2.38 min.)

Shows what happens when either the receiver or adapter is not clamped. Shows filling the flask and insertion of the thermometer. Note flask should not be filled more than 2/3 full. If more liquid must be distilled use a larger flask or distill in several portions-then mix the distillates and distill again.

#14 THERMOMETER PLACEMENT (2.38 min.)

Using a known compound (aniline) it shows the relation of the pot temperature to the temperatures in the column above, at, and below the outlet. What is the temperature you actually wish to measure? If it is the temperature of the vapor which is leaving then where should the thermometer bulb be placed?

#15 FRACTIONAL DISTILLATION (4.03 min.)

Shows two column types. Shows receiver changing. No distillate will be lost if when the temperature is reached for the change, the heat is removed and the few drops of distillate present in the condenser are allowed to come over. The temperature as registered on the thermometer will drop slightly. Change the receivers then resume heating. Note that no distillate will come over until the temperatures at which heating was stopped is reacted.

#16 SODIUM FUSION TESTS Part 1: Solution Preparation (3.49 min.) Shows the method of using soft glass test tubes in a transite square. Be certain to place the piece of sodium on filter paper to absorb the kerosine. Be certain to use distilled water in the beaker. (What would you expect to find if you used tap water?)

#17A SODIUM FUSION TESTS Part 2: Nitrogen Determination (1.45 min.)

Shows the procedure for determining the presence of nitrogen. The blue or blue-green color may not appear for several minutes. If in doubt filter the solution. The blue is due to Prussian (or Turnbull's) Blue--the iron (11)(111) cyanide.

#17B SODIUM FUSION TESTS Part 3: Sulfur Determination (1.01 min.) Shows the procedure for determining the presence of sulfur.

#17C SODIUM FUSION TESTS Part 4: Malogen Determination (1.26 min.) Shows the halogen test (for Cl, Br, and l, but not F.) Frequently seen though distilled water is used there is some chloric contamination which will produce a thin white precipitate. If a halogen is present in the sodium fusion extract it will normally manifest itself as a dense heavy white silver halide precipitate. **.***.

#18 STEAM DISTILLATION (3.41 min.)

Shows the steps to assemble and operate steam distillation. Before commencing operation (after preliminary running of the steam and before solution is added or the steam inlet is connected) make certain that the valve is open so that the pressure in the flask and the steam trap is equalized. If this is not done the steam present in the adapter will condense thus reducing the pressure and causing the material present in the distilling flask to be forced into the adapter and perhaps worse--into the sink.) (It is rather difficult to distill when one's preparation is in the adapter or down the sink) rather the solution is placed in the distilling flask turn on the steam then place the inlet stopper in place.

#19 SEPARATION AND PURIFICATION Part 1: Washing with a Carbonate (1.19 min.)

Shows the addition of a saturated aqueous solution of sodium carbonate as well as solid potassium carbonate (or sodium carbonate) to the solution which contains some traces of unused acid. Be careful not to add too much carbonate so that the solution foams over and sample is lost.)

#20 SEPARATION AND PURIFICATION Part 2: Salting Out (3,40 min.)

Shows the addition of sodium chloride to the mixture of water and an organic compound. As the polarity of the aqueous phase is increased by the addition of the salt the organic compound comes out of solution.

If there is a sufficient quantity of the organic compound the aqueous phase is removed for ether extraction and the organic layer (usually on top) is reserved to be combined with all of the ether extractions. Otherwise if there is only a small amount of the organic compound the first portion of ether will dissolve it. (See next film.)

#21 SEPARATION AND PURIFICATION Part 3: Extraction (3.20 min.)

Shows the addition of ether to the aqueous solution containing some dissolved organic compound. $K_{\rm D}$ for this compound in ether and water must begreater than 1 for efficient separati n. Which is more efficient-one large application or several smaller ones? The following graph represents pyrogallol in ether and water \cdot

= 1.33

Assuming 100 ml aqueous

83.3 g/100 ml ether

Cumulative total amount of solvent used. (To determine the size of each individual extraction follow a particular curve to its initial point. This amount of solvent was used for each extraction. The number of points on the time indicate the number of extractions.)

Three questions usually present themselves. 1) Which layer should be saved? 2) Which layer is which? 3) Where should the interface between the two liquids be stopped? How does the density of water compare to most organic liquids? Most of the common solvents have a density between 0.8 and 0.99. However there are some common organic liquids whose densities are greater than 1.0. You should be able to name (If in doubt look in the handbook...) Because dissolved several. solutes alter the density a mere comparison of handbook densities may not yield the correct information. It is a simple technique to add 1 drop of water to the separatory funnel and watch whether the drop remains in the top layer or passes through to the bottom layer. (This also could be done with the extracting solvent -- in fact it would be more logical to test with the extracting solvent because the purpose of the operation is to cause the solute to preferentially go into the extracting solvent rather than the water. However one drop is not critical at this stage.) Which layer should be saved? Of course the organic layer should be saved. But the aqueous layer will contain some of the dissolved compound therefore it must be saved for subsequent extractions. After the final separation the aqueous layer may be discarded. When in doubt save it with a label until you are certain. Where should the interface be stopped? Just before (or as) the top layer meets the stopcock or when it enters the stopcock? Ask yourself what will become of each layer? During initial extractions the idea

274

is to separate the ether and water layers then add more ether to the water layer. Under these conditions one would not want water in the Therefore the ether layer (top layer) would be allowed to enter ether. the stopcock. If a drop of the ether layer happened to get through to the water layer it would not matter--more ether will be added to it anyway. However if this will be the last extraction one would not want to lose any ether. Therefore the interface should just touch the stopcock. (Note: in the film for demonstration purposes the aqueous layer is dyed blue. Notice that first the separation is stopped just as the colorless upper layer (ether) reaches the stopcock. Note that the color of the liquid in the hole in the stopcock is blue indicating that it contains the aqueous layer. Then one drop is allowed to be released. Now the color of the liquid in the hole in the stopcock is colorless indicating that it contains the upper layer. If a tiny trace of water should get into the ether it would not be too detrimental. Anhydrous potassium carbonate or some other dessicant will be added to absorb the small amount of water which is dissolved in the ether.

#22 SEPARATION AND PURIFICATION Part 4: Drying (1.36 min.)

Shows the use of one dessicant (anhydrous potassium carbonate) employed to remove small amounts of water which are dissolved in the ether solution. Other dessicants may be used. Some are mentioned in the film.

#23 SEPARATION AND PURIFICATION Part 5: Ether Removal (1.12 min.) Boiling off ether can be quite dangerous. This shows a relatively safe method using a distillation apparatus and the steam bath as the heat source. Ice surrounds the receiver to reduce the evaporation of the ether. Even so there should be NO FIRES OR FLAMES in the laboratory during this operation. Note that in this case when the solution quits boiling the ether has been removed. The boiling point of this compound (cyclohexanol) happens to have a boiling point greater than 100°C. What if your preparation has a boiling point between that of ether (35°C) and that of steam?

#24 FUME AND VAPOR REMOVAL (3.27 min.)

Shows the fume hood in operation. (Using NO₂ to demonstrate the fume removal visually.) Shows the use of the water aspirator and funnel for fume removal at the desk and sink. (NOTE: Avoid corrosive vapors which could damage the metal parts of the water aspirator.) Shows methods of vapor removal from distillation receivers and reflux columns.

#25 DIAZOTIZATION I (2.52 min.)

Shows the diazotization reaction using sulfuric acid to produce the aniline sulfate. In this example a 500 ml 3-neck flask is used. This simplifies the process if further reactions yield products which will be steam distilled.

#26 DIAZOTIZATION II (2.08 min.)

Shows the diazotization reaction using HCl to produce the aniline hydrochloride. This example uses a single-neck flask for the diaxotization reaction.

A word of caution for both examples. Make certain that the pieces of ice are small enough to enter the neck of the flask--do not force them and break the neck.

A <u>slow</u> steady drop (one drop every two to three seconds) of the sodium nitrite solution is preferable to dumping in larger amounts periodically. The nitrite has a greater probability of reacting in the desired manner.

,‡

FIL	M SECTIONS ONLY								
1.	Circle the numbers of	the fi	lms wł	nich	you h	ave v	iewed:		
	1 2 3 4 5 14 15 16 17A 17 25 26	6 B 17C	7 18	8 19	9 20	10 21	11 5 22	12 23	13 24
2.	List the numbers of t	he film	ns whic	ch w€	ere pa	rticu	larly	helpfu	1:
3.	List the numbers of t	he film	ns whic	ch we	ere NO	T par	ticula	rly he	lpful:
4.	If you did not view a technique?	partic	cular f	Eilm,	how	did y	ou lea:	rn the	
	Watch classmates? Lab. manual?		Wa	utch Oth	lab. ner:	partn	er?		
5.	What suggestions woul more fewer sh	d you n orter	nake re lor	egard nger	ling t s	he fi ound	lms?		
6.	What topics not cover	ed in t	he fil:	ms c	lo you	feel	would	be he	lpful?
#1	Decolorizing		#15	Fra	action	al Di	stilla	tion	
;#2	Supersaturation		#16	Soc	lium F	usion	: Sol	ution	Prep.
<i>,</i> #3	Folding Fluted Filere	Paper	#17A	Soc	lium F	usion	: :Nit:	rogen	Det'n
#4	Rapid: Filtering		:#17E	Soc	lium F	usion	: Sul:	fur De	t'n
#5	Reflux		#170	: Soc	lium F	usion	: Halo	ogen D	et'n
#6	Use of Boiling Chips		#18	Ste	am Di	stilla	ation	0	
;#7	Methods of Heating		#19	Was	hing v	with	a Carbo	onate	
∦8	Thermometer Correction	ı	#20	Sal	ting (Out			
∵#9	Melting Point (Capill Prep'n.)	ary	#21	Ext	racti	on			
#10	Melting Point (Thiele Tube)	-Dennis	#22	< Dry	ing				
#11	Boring Holes in Corks		#23	, Etł	aer-Re	moval			
#12	Simple Distillation (Sup)	Setting	g-, #24	Fun	ne and	Vapo	r Remov	val	
#13	Simple Distillation (Operation)		₩Z5	μ 1 ε	ZOCIZ	ation	÷ 1		
#14	Thermometer Placement		#2.6	' Dia	zotiz	ation	II		
APPENDIX H

SUMMARY OF FILM VIEWING

	100	200) 300) Total
More films	1	0	. 8	9
Fewer films	5	- 5	• 0	. 10
Shorter films	0	0	1	. 1
Longer films	- 4	: 1	. 3	8
Sound	10	8	8	26
More copies	0	0	. 1	. 1
Slow motion	0	0	. 1	. 1
Better viewing area	. 0	. 3	2	5
Information source other tha	t from the fi	1ms:		
Lab partner	3	. 1	0	. 4
Classmates	6	. 8	10	24
Lab manual	14	. 9	13	36
Instructor	7	9	- 3	19
Took course before	1	.2	0	. 3
Guessed	. 1	1	0	2
Number responding	19	16	21	46

RESULTS OF QUESTIONNAIRE SUBMITTED TO FILM GROUP

Suggestions for other films or modification of present films: More safety precuations (What to do when something is spilled, handling glassware.) Care in handling samples (maintaining purity, avoidance of contamination) What to look for, more on topics "which the instructors take for granted that students know . . . sometimes we don't know!" Explanation of reaction mechanisms, more on reactions, films are

useful if the students take the time to view the films.

SUMMARY OF FILM VIEWING BY STUDENTS

Film Nr.	Group 100	Nr found film Helpful / not		Group 200	Nr found film Helpful / not		Group 300	nd film	
1	18	2	3	7	0	· 2	8	1	5
2	19	3	4	8	1	. 1	10	. 3	: 2
. 3	19	2	. 3	12	、 3	- 3	13	1	6
4	16	6	1	6	3	0	15	8	1
5	19	6	0	10	3	1	. 20	2	6
6	14	2	3	7	0	2	14	÷ 2	6
- 7	11	. 3	. 2	- 7	3	0	. 7	4	- 2
8	11	2	× 2	8	0	. 3	: 2	2	0
9	16	5	0	9	- 3	1	17	10	0
10	13	. 4	1	4	: 0	0	. 12	7	0
11	9	2	2	3	. 0	. 0	7	2	· 2 ´
12	14	. 6	2	8	4	0	18	12	0
. 13	12	4	. 4	7	4	• 0	17	4	0
14	. 9	4	· 2	- 3	2	1	. 4	: 4	0
15	11	3	- 1	6	3	0	. 17	13	0
. 16	6	7	2	8	0	0	13	10	. 0
1 7A	8	3	2	6	1	0	12	9	0
17B	. 7	4	1	6	1	0	. 12	9	0
17C	7	4	- 1	6	1	0	12	9	0
18	6	3	1	3	3	0	15	10	0
19	1	0	0	0	0	0	7	0	. 1
. 20	4	0	0	. 3	3	0	9	: 2	0
21	- 1	0	0	1	0	0	. 3	- 1	0
. 22	2	. 0	. 0	. 1	0	0	6	· 2	0
. 23	: 2	0	0	. 1	. 1	0	7	3	0
24	• 0	0	0	0	0	0	. 2	~ 1	0

APPENDIX I

STATISTICAL FORMULAS

Mann-Whitney U Test.

$$U = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

Select the smaller U value.

Correction for ties.

$$T = \frac{t^3 - t}{2}$$

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\left(\frac{n_1 n_2}{N(N-1)}\right) \left(\frac{N^3 - N}{12}\right) - \Sigma T}}$$

When no ties appear, the - T value may be eliminated.

- U = The Mann-Whitney U statistic. It is interpreted from a table of U values or is placed in the z distribution formula.
- $n_1 =$ Number of items in group 1.
- n_2 = Number of items in group 2.

N = Total number of items.

 $R_1 = Sum of ranking of group 1.$

 $R_2 = Sum \text{ or ranks in group 2.}$

t = Number of items which are tied in value or rank.

T = Tie correction value for each tied rank.

 $\Sigma T = Tie$ correction value (sum of T values).

z = Distribution value. May be interpreted directly in probability. Friedman Two Way Analysis of Variance

$$\begin{aligned} x_r^2 &= \frac{12}{Nk(1+1)} \sum_{J=1}^k (R_j)^2 - 3N(k+1) \\ x_r^2 &= Friedman statistic, interpreted from a table of chi square values. \\ N &= Number of rows. \\ k &= Number of columns. \\ R_j &= Sum of ranks for column j. \\ \Sigma(R_j)^2 &= Sum of squares of the sums of ranks in the columns. \end{aligned}$$

Randomization test for Two Independent Samples or Student's t test.

$$\overline{x}_{1} = \frac{\Sigma}{n}$$

$$x^{2} = \Sigma x^{2} - \frac{(\Sigma \cdot x)^{2}}{n}$$

$$s^{2} = \frac{\Sigma x^{2}}{n-1} = \frac{\Sigma x^{2} - \frac{(\Sigma \cdot x)^{2}}{n}}{n-1}$$

$$s = \sqrt{s^{2}} = \sqrt{\frac{x^{2}}{n-1}} = \sqrt{\frac{\Sigma x^{2} - \frac{(\Sigma \cdot x)^{2}}{n}}{n-1}}$$

Homogeneity of variance test.

$$F_{a,b} = \frac{s^2}{s^2}$$
 (Larger value over smaller

Separate Variance formula

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$\mathbf{x}_{1} - \bar{\mathbf{x}}_{2}$$

$$\sqrt{\left(\frac{\mathbf{x}_{1}^{2} + \mathbf{x}_{2}^{2}}{\mathbf{n}_{1} + \mathbf{n}_{2} - 2}\right)\left(\frac{1}{\mathbf{n}_{1}} + \frac{1}{\mathbf{n}_{2}}\right)}$$

- t = Student's t statistic and statistic for Randomization test. May be interpreted from a table of t values.
- X = Sum of values.
- \overline{X} = Mean value.
- n = Number of values.
- S^2 = Variance (also σ^2) (S symbol is used when a sample rather than a population is used.)
 - s = Standard deviation. (also σ)
- Fa,b = Homogeneity of variance. Interpreted by a table of F
 values. a is the (n-1) value of the numerator and b
 is the (n-1) value of the denominator.

Edwards Median and Interquartile Range

Median

$$s_{50} = \ell + \frac{(0.50 - \Sigma b)}{Pw} W$$

$$C_{25} = \ell + \frac{(0.25 - \Sigma b)}{Pw} W$$

$$C_{75} = f + \frac{(0.75 - \Sigma b)}{Pw}$$

Where

 χ = interval containing the median or the quartile

Σb = summation to the summation of frequencies to interval below (cumulative frequency of interval below)

Pw = frequency within the interval

W = width of interval (1 in all cases in this study.)

Interquartile Range

$$Q = C_{75} - C_{25}$$

Chi Square

$$x^2 = \frac{(obs - exp)^2}{exp}$$

rows columns

where:

x² = Chi square statistic obs = the observed frequency exp = the expected frequency exp = (row total)(column total) grand total

Spearman Rank Order Correlation

$$r_{s} = 1 - \frac{6 - d^2}{n^3 - n}$$

where:

r = Spearman statistic (sometimes written as rho. s)

 d^2 = sum of squares of deviations between ranks

n = number of ranked items

$$t = r_s \sqrt{\frac{n-2}{1-r_s^2}}$$

where:

t = equivalent to student's t statistic thus the probability may be interpreted from a table of t values. Kuder-Richardson Formula #21

$$r = \frac{\left(n \quad s_t^2\right) - \bar{R}\bar{W}}{(n-1) \quad s_t^2}$$

where:

r = Kuder-Richardson reliability statistic \overline{R} = mean of entire examination \overline{W} = N - R N = total number of items on examination n = number of examination scores s_{+}^{2} = variance of entire examination

Kruskal-Wallis One Way Analysis of Variance

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{\Sigma r_j}{n_j} \right) - 3(N+1)$$

where:

H = Kruskal-Wallis statistic. For cases of large values of N, H may be interpreted from a chi square table.

N = Total number of ranked items

k = number of groups

 $n_i = number of items in a particular group$

 $\Sigma r_i = sum of ranks in a particular group$

VITA 3 Harry Baldwin Herzer III

Candidate for the Degree of

Doctor of Education

THESIS: A STUDY OF THE EFFECTS OF SINGLE CONCEPT LOOP FILMS UPON LABORATORY TECHNIQUES WHEN USED FOR PRE-LABORATORY INSTRUCTION IN THE INTRODUCTORY ORGANIC CHEMISTRY LABORATORY

Major Field: Higher Education

Biographical:

- Personal Data: Born February 1, 1934, in Emporia, Kansas, the son of Mrs. Louise Spencer Herzer Currier and the late Charles M. Herzer.
- Education: Graduated from Emporia High School, Emporia, Kansas, May, 1952. Graduated from The College of Emporia with a Bachelor of Arts degree in chemistry and a Bachelor of Science degree in natural science, June, 1956. Attended NSF Summer Institutes at University of Kansas, Lawrence, 1959, Kansas State Teachers College, Emporia, 1960 and 1961. Received Master of Science degree in physical science from Kansas State Teachers College, Emporia, August, 1961. Attended Kansas State College, Pittsburg. Shell Merit Fellow, Stanford University, Stanford, California, summer 1964. Completed requirements for Doctor of Education degree from Oklahoma State University, July, 1970.
- Professional Experience: Chemistry, mathematics, and general science teacher, Atchison County Community High School, Effingham, Kansas, 1958 through 1961. Chemistry teacher, Shawnee-Mission East High School, 1961 through 1966. Visiting instructor in chemistry, Kansas State College, Pittsburg, Kansas, Summer 1966. Chemistry teacher and chairman of the Science Department, Shawnee-Mission South High School, 1966 through 1968. Graduate Teaching Assistant, Department of Education, Oklahoma State University, 1968 through 1969. Graduate Teaching Assistant, Department of Chemistry, Oklahoma State University, 1969 through 1970.

Professional Organizations: American Chemical Society, National Science Teachers Association (Life Member), American Association for the Advancement of Science, National Science Supervisors Association, Kansas Academy of Science, Kansas Association of Teachers of Science.