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CHAPTER i 

INTRODUCTION 

The stochastic process (Xt; t=O, 1, 2, 3~o •. ) is a 

Markov chain if it has the following properties: 

1. A finite set of possible outcomes. 

2. The probability of the 1iext outcome is dependent 

upon its immediately preceding o~tcorne(s). 

3. These probabilities are constant over time. 

A stochastlc process having the above Markov proper­

ties is said to be a fl rst order Markov chain If its next 

outcome depends only upon the prese.nt outcome; a second 

order Markov chain if its next outcome depends upon its 

present outcome, and the outcome immediately preceding the 

present outcome, and so on. 

First order Markov chains have been studies and re­

viewed in detail by Kemeny and Snell (8), Karlin (7), 

Brelman (2), Parzen (9), Hillier and ·teiberman (5), Chung 

(3 L and others. A short discuss ion of first ord.er 

Markov chains, their solutions and properties wi 11 follow. 

Markov chains can be analyzed using the fund~rnehtfal~ 

of classical probability theory. Markov chains can b~ 

analyzed by means of their transition probability matfices. 

Each element in the transition matrix represents the 



probabi 1 ity of going from one state to another. For 

notation purposes, an element in a transition probability 

matrix wi 11 be called p ..• This is the conditional proba-
1 J 

bility that if the process is now in state i, it will be 

in state j on the next step. To be a transition matrix, 

the following conditions must be met: 

1. Each element must be a probability, i.e., 

O.:::.p .. ~l. - IJ -

2. Each row must sum to exactly one, i.e., 

m 
~ 

j = 1 
the 

p .. = l, where i, and j are for identifying 
I J 

process's present and past outcomes respect-

ively. 

For the state space S= (S.; i=l, 2, •• , m) the 
I 

transition probability matrix P of the first order Markov 

chain (Xt; t=O, 1, 2, •q) would c;3ppear as follows: 

s 1 S2 S3 s m 

s l p 1 1 P12 P13 Pim 

S2 P21 P22 P23 Pzm 

S3 P3 1 P3 2 P33 P3m 
P= 

2 



3 

In the matrix P for a given state at the kth period, 

a row exhaustively enumerates all possible states that the 

process can take. Thus a row is a probability vector. 

This is to be expected since a vector is simply a 1 x m 

matrix. Thus a transition matrix P is a matrix composed of 

rows of probabi llty vectors. For purposes of notation, a 

row vector (probability vector) will be represented as Vi 

to represent the ith row. The distribution of the process 

for the kth stage can be analyzed by obtaining Pk. Pk is 

obtained by multiplying P successfvelf~ If Vik is the pro­

bability vector describing the probabilities of possible 

outcomes 

could be 

obtained 

in k steps for·the ·preseltltsSt,B'b-.eiS;·,·.
1
theh 't:hls1:.' 

obtained if v. 2 ,earn: be obtained. v. 2 Is 
I I 

either by the classical probability method or by 

the matrix method. If the present, the next, and the 

time after next steps are represented by 0, 1 and 2, then 

the possible states in every step are as follows: 

0 2 

k= 1 , 2, •• , m. 

For the above possible states in the respective stages 

m 
= !: p i J0 pj. k 

j=l 

2 
where pik = the conditional 

probab i 1 i ty of 
the process 
being ink, time 
after next given 
that It is in i 
now. 



Therefore, 

2 2 2 2 
Vi = (pil ' pi2 ' •• , Ptm ). 

In the matrix method v. 2 is obtained from the product 
I 

of V. 1 and P, i.e., 
I 

v.2 = v. ,P 
I I 

= (p.,, P·2,··, p. ) 
I I Im 

X 

m m 
= ( E p i J0 pJ. 1 ' 

j= 1 
I: piJ0 PJ0 2' 
j=l 

2 2 2 
= (pil ' P12, ••• , Pim) 

therefore, 

v.k = v. k-lP 
I I 

= V. 1 Pk- 1 
I 

k k = (pil ' ••• , Pim) 

I, 

m 
••• , !: PtJ·P-J·m) 

j=l 

4 



where p .. k is the probabf lity of the process being in the 
I J 

state j at t=k given that it is In the state: i -;,at :t=© 00 :' 

(now). Thus the probability vector Vik describes the 

probability distribution of the process for the kth step 

from now. Actually, If the results after k steps are 

desired, Pk gives even more complete Information since it 

is composed of all the individual vectors Vik" Thus Pk 

gives the probabilities of being in any given state for 

all possible starting conditions or states. 

If the system or process being modeled, as::a:Ma'rkb.\bv · 

chain has certain properties, it is possible to determine 

5 

the probabilities of outcomes after steady state conditions;,. 

have been reached. After the process has been in operation 

for a long period of time, a given outcome will result X 

percent of the time. At times, it is desirable to be able 

to determine these percentages. Perhaps the most detri­

mental assumed condition in this case is the requirement 

that the transition matrix contain probabll ities which 

are constant over time. This requirement should always be 

kept in mind when this analysis is being made to Insure 

that the results obtai.ned are properly interpreted, 

To insure that steady state conditions may be reachedf 

the chain must be ergodic. An ergodic chain mathematically 

describes a process in which it is possible to eventually 

go from any one state to any other state. It is not 

necessary that this be accomplished in just one step but it 

is required that it is possible for any outcome to be 
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possible regardless of the present state. 

A more restricted case of an ergodic chain is a 

regular chain. A regular chain may be defined as a Markov 

chain having a transition matrix P, which for some power 

of P, has only positive probability elements. Note that 

all regular chains will be ergodic but the reverse is not 

necessarily true. 

The existence of steady state conditions in an ergodic 

Markov chain can be most easily demonstrated by computing 

Pk for VqrJous values of k. Ask becomes larger, the 

values p •. ~ tend to a fixed limit and each probability 
J J 

k, vector v. tends to become equal for all values of i. This 
I 

suggests the following statements: 

1. For a sufficiently large value of k, the 

probability vector v.k becomes equal for all 
I 

i and does not change significantly for larger 

values of k. 

2. S. V k+l V kp d v.k+l 1nce . = ~ , an = 
I I I 

exists a vector V* such that 

k V. , then there 
I . 

The vector v,•,: contains the probabilities which exist at 

steady state conditions. Let v. be the .th element in the 
J J 

probability vector V*. Since V* is a probability vector 

the following condition must still exist: 

V. = 1 • 
J 



And from statement 2, 

(v 1, v 2, •. , vm) P=(v 1, v2, •.• ,.vrr/·· .lf'th'is 

matrix product is expanded, there will be m equations. 

When added to the requirement that the sum of the pro­

babilities equal 1, there are (rn+l) equations and mun­

knowns. These may be solved for them unknowns by dis­

carding any 1 of the last m equations. 

A special case of Markov chains that is used to de­

scribe those processes which cease upon reaching certain 

given conditions is called absorbing Markov chains. 

Several kinds of pertinent information may be obtained 

from the analysis of this type of chains. Lt is possible 

to determine the following data: 

1. The expected number of steps before the process 

is absorbed. 

2. The expected number of times the process ls in 

any given non-absorbing state. 

3. The probability of absorption by any given 

absorbing state. 

The first step in the analysis is to rearrange the 

transition matrix so that four sub-matrices exist as in-

dicated below: 

0 
p = ------

A N 

7 



These smaller matrices contain probability elements but 

taken individually do not constitute a transition matrix. 

If taken individually, they contain the following infor­

mation concerning probabilities. Assume there are a 

absorbing states, n non-absorbing states and a+ n = m 

total states. 

- an ax a identity matrix, representing the 

probabilities of staying within any absorbing 

state. 

0 - an ax n zero matrix, representing the pro­

babilities of going from any absorbing state to 

any other non-absorbing state. 

A - an n x a matrix, containing the probabilities 

of going from any non-absorbing state to any 

other absorbing state. 

N - an n x n matrix,containing the probabilities of 

going from any non-absorbing state to any other 

non-absorbing state. 

One way of finding the expected number of steps be­

fore the process is absorbed would be to find the expected 

number of times the process would be in each non-absorbing 

state and sum these. 

The expected number of times the process is in a 

non-absorbing state j is the sum of the following terms. 

8 

Expected number of times in j = (1) (probability of 

being in j at start)+ (l) (probability of being in J after 

l step)+ (l) (probability of being in J after 2 steps)+ ••. 



= I+ N + N2 + . . . 
For the larger power of N, the above geometric series 

- l converges to ( I - N) (Kemeny and Snell, 8L Thus, for a 

given starting state, the matrix ( I - N)-l gives the ex-

pected number of times a process is in each non-absorbing 

state before absorption. 

To find the probability of absorption by any given 

absorbing state, a similar logic is used in the qnalysis. 

Let j signify some given absorbing state; let i signify 

some specified non-absorbing state, 

9 

Probability of ending in j = (probability of going 

from i to j in l step)+ (probability of going from i to j 

in 2 steps)+ (probability of going from i to j in 3 steps) 

+ .•. 
2 =A+ NA+ NA+ ... 

= ( I + N + N2 + .•• ) A ..• 
2 For higher powers of N the quantity (I+ N + N + •.• ) 

( ) - l converges to I - N • Therefore, 

( I + N + N2 + ••• ) A = ( I - N )- l A • 

Higher order Markov chains are those Markov chains 

whose future outcomes depend upon one or more immediately 

preceding states. For example, in the csse of the first. 

order Markov chain the next outcome depends only upon the 

present state, in the second order Mqrkov chain the 

future outcome depends upon the present state and the state 



immediately preceding the present state, in then order 

chains the future outcome will depend upon the present 

state and the (n-1) states immediately preceding the 

present state. 

10 

The objective of this research is to develop appropri­

ate methods of analysis for higher order Markov chains, 

thus allowing them to be applied to O.R. problems. Second 

order chains are studied in detail. In the second chapter, 

a model is developed after discussing the notations used. 

n-dimensional matrix algebra is considered as a substitute 

to the classical probability theory. In the third chapter 

then-dimensional matrix algebra developed in the second 

chapter is used to analyze the distribution of second order 

chains at various stages (steps or periods). Steady state 

probabilities, expected number of times the process is in 

a non-absorbing state and the probability of the process 

being absorbed are discussed in detail with examples. 



CHAPTER I I 

CONCEPT OF n-ORDER MARKOV CHAINS 

The stochastic process (Xt; t=O, 1, 2 ••• ) defined in 

the state space S = (s 1, s2, ••• , Sm) is an n-order Markov 

chain if it has the transition probability matrix P having 

the following properties: 

1. The element of P which is the probability of the 

next outcome is dependent upon the present state 

and (n-1) states immediately preceding the present 

state. 

2. The elements of Pare constant over time. 

As in the case of first order Markov chains, the elements of 

the transition probability matrix of higher order Markov 

chains are also called one step transition probabilities 

since they describe the conditional probability of being 

. . 1 . h th . h rn a partrcu ar state 1n ten step, given testates 

at t=O, 1, 2, •• , n-1. 

Notations 

It is worthwhile to describe the notations before the 

detailed study of the Markov chains is undertaken. 

P - transition probability matrix, or the matrix of 

one-step probabilities. 

1 1 



p b .. - element of the matrix of one-step a, , •. ,1,J 

transition probabilities. It is the conditional 

probability of the process being in the state l 
at the nth step given that it was in the states 

a,b, ••• ,J_ at t=O, 1, 2, •• , n-1 respectively. 

12 

pk - probability of the process being in the a,b, ••• ,i,j 
th state, j at the (n-l+k) step given that it was in 

the states~'~, ••. ,_!_ at t=O, 1, 2, ••. , nwl 

respectively. 

- Identity matrix. 

Model 

It may be convenient to think of a Markov chain as a 

modeling and analysis technique suitable for a special case 

of probability problems. These probability problems may 

be analyzed theoretically using the fundamentals of classi­

cal probability theory. If a process is to be analyzed by 

an n=order Markov chain model, the process must have one 

step probabilities. These one-step probabilities consti­

tuting the transition probability matrix characterize the 

process during its transition from a given condition to 

any other state in one step. The elements of a transition 

matrix must satisfy the Markovian properties mentioned in 

the beginning of this chapter. Since the transition 

matrices of third or higher order Markov chains have more 

than three dimensions, it is advisable to consider the 



transition matrix of a second order Markov chain for dis­

cussion. 

Let (Xt; t=O, 1, 2, ••. ) be a second order Markov 

chain with the state space Shaving only two discrete 

points (a, b), then its three dimensional transition pro­

bability matrix P in two dimensions will be as given 

be low: 

t=O t=l t=2 

a b 

a Paa a 

a 

P= b Paba Pabb . 

a Pbaa Pbab 

b 

b Pbba pbbb 

Each row in p is a probability vector describing the 

process exhaustively for the given present state and the 

state immediately preceding the present state. Since 

13 

each row is a probability vector the sum of the probabi= 

lities in each row must be equal to one. The dependency of 

the process upon the state immediately preceding the 

present state (state at t=O) is shown in Figure l?in three 

dimensions. In Figure 1, there are two 2 x 2 matrices, one 

for every possible state at t=O. If the process does not 

depend upon the outcome at time t=O, then these two 2 x 2 



t =O 

/ 

/ 
/ 

/ 

/ 
I / 
~-

a b t = 2 · 

t = 1 

Figure 1. The Transition Probability 
Matrix P of A Second Order 
Markov Chain with the State 
Space S=(a,b) 

14 
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matrices reduce to a single 2·x 2 matrix independent of the 

outcome at t=O and it is a.first order Markov chain. 

The one- step probab i 1 it i es can be used to ana 1 yze ·the 

distribution of the process at different steps using the 

classical probability theory. Ann-dimensional matrix 

method is developed as a substitute to the classical pro­

bability theory. Since the discussion about the steady 

state and the absorption characteristics of the process 

requires the knowledge of n-dimensional matrix a1gebra, it 

is deferred to the next chapter. 

Solution of Higher Order Markov Chains and 

n-Dimensional Matrix A)gebra 

Let (Xt ; t=O, 1, 2, ••• ) be a second order Markov 

chain with the state space S= (a, b) and the transition 

probabi 1 ity matrix P having the fol lowing numerical values:. 

Paa a Paab 0.8 0.2 
,. --

Paba Pabb o.6 o.4 

P= Pbaa Pbab = 0.5 0.5 

Pbba pbbb 0.3 0.7 

P consists of four probability vectors, v 1 =(0.8, 0.2), 

V2 =(0.6, 0.4), v3 =(0.5, 0.5), and v4 =(0.3, 0.7). The 

second stage distribution of the process can be analyzed 

either by the classical method or by the matrix method. 

The classical and matrix methods are both discussed to 
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show that they give the same result. However, the matrix 

method is computationally superior to the classical method. 

Classical Method 

Suppose Paba 2 is the probability of the process being 

in the state a time after next (i.e., at time t=3) given 

that it was in the state~ in the step immediately pre­

ceding the present stage (i.e., at t~o) and is in£ now 

( i.e., at t=l). This probability can be calculated by 

analyzing the possible states that the process may take 

during the intermediate stages between the present and the 

final stages by letting the first (the stage immediately 

preceding the present stage), the second (the present), and 

the third (the stage immediately following the present 

stage) stages to be 0 1 1, ahd 2 

stage t=O 2 3 

state m=a b a orb a 

For the above possible states in the corresponding periods, 

2 
Paba = Paba Pbaa + Pabb Pbba · 

The rest of the second-stage probabilities can be 

calculated in the same way. 

3 For Paba the possib1e states in the corresponding 

periods will be: 

stage t=O 2 3 4 

stage m= a b a or b a or b a • 
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For the above possible states 

3 
Paba = Paba Pbaa Paaa + Paba Pbab Paba 

( l ) 

The rest of the third-stage probabilities can be calculated 

in the same way, 

Matrix Method 

The distribution of higher order Markov chains at 

various stages will be analyzed by the matrix method after 

the discussion of the process of higher order matrix 

mu l t i pl i cat ion. 

The process of multiplication with matrices of 3 or 

more dimensions proceeds in a similar manner to the 

multiplication of two-dimensional matrices. An element in 

the product matrix is the result of the product of two 

uniquely deflned vectors. 

Even in a matrix of more than two dimensions, a 

vector is sti 11 identified by a fixed position in every 

dimension but one and it contains all elements in that 

dimension which are common to the fixed positions of the 

other dimension. For example, in a 2-dimensional matrix, 

a row vector is that vector in the i 1th row which contains 

all i 2= 1, 2, •.. elements in the i 2th row. Note that an 

element is uniquely defined by an i 1i 2 subscript, 



!n a three dimensional matrix, an element is uniquely 

identified by three subscripts, perhaps labeled 111213 with 

each letter denoting a position in that given dimension. 

A vector may be defined by fixing two of these dimensional 

variables and whl le containing all elements in the third 

dimension having the fixed subscripts in common. Referring 

to Figure 2, element (3,2,2) is the third element in the 

i 1 dimension, the second element in the i 2 dimension and 

the second element in the 1
3 

dimension. A vector might be 

labeled as (1 1=4, i 2=3, 1
3

= 1,2, •.. ) which says that lt 

contains all elements having i 1=4, i 2=3 in common. 

To obtain an element in the product matrix, the dot 

product of two vectors must be obtained. For example, in 

a three-dimensiona1 matrix, element (i 1=2, 12=3, 13=5) is 

the dot product of the vectors (i 1=2, i 2=3, l
3
=li 2, 3 ... ) 

and (1
1
=3, 1

2
=1 1 2, 3 ..• , ,

3
=5). In terms of notation, 

m 
the product element (2,3,5) = ~ (a 23 k)(b3k5 ) for a cubic 

k= l 
matrix of m elements on a side. in 5 dimensions, the 

m 
product element (2,3,5,4,6) =k~

1
(a 2354k)(b354k6). in the 

case of n-dimensional matrices of m elements on a side, 

the product element (1,2,4, .. , m-1,5) is the dot product 

of the row vector (i 1=1, 12=2, i 3=4, ... , 'n-l=m-1, in= 

1,2, ... , m) and the column vector (i 1=2, 12=4, ... 9 in_ 7= 

m- l, i 1=1,2, ... , m, i =5). n- n 
As an example of matrix multiplication, consider the 

product of two four-dimensional matrices A and B 

AB=C 
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Let each matrix contain two elements along each dimension. 

Since It is not possible to display a matrix In the full 

4 dimensions, a two-dimensional array identified by 

subscripts wil 1 be used. 

a1111"" 2 a1112=3 

a 
1121"

111 a 1122""'4 

a 1 21 1 =3 al21222 

Ar=. 
8 1221°5 !11222=4 

a2111"" 2 a2112=3 

a2121=l a2122:::l 

a2211= 7 a2212=5 

a2221=6 a2222=6 

b1111=6 b1112e: 1 

b1121=6 bll22= 2 

b1211= 2 b1212=4 

B= 
b1221=4 b1222= 1 

b 2111 =6 b2112=6 

b2121=6 b2122=3 

b22.11= 1 b2212=4 

b2221=3 b2222=6 
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2 2 

cllll= t alllk bllkl Cl l 12= Il a 11 l k bl 1 k2 
k= 1 k= 1 

= (2)(6)+(3 )(6)=30 = (2)(1)+(3)(2)=8 

2 2 

Cll21= ~ all2k bl2kl 
k= l 

Cl l 2 2::::; i:: all2k bl2k2 
k=l 

= ( l )(2)+(4)(4)=18 = ( l )(4)+(4)( 1 )= 8 

2 2 

Cl2ll= r: al2lk b2lkl 
k= l 

c1212= ~ al2lk b21k2 
k= 1 

= (3 )(6)+( 2) (6)=30 = (3 )(6)+(2)(3 )=24 

2 2 

Cl221= !: al22k b22k1 
k=l 

cl222::::; ~ al22k b22k2 
k=l 

AB=Ci::: = (5)(1)+(4)(3)=17 = (5)(4)+(4)(6)=44 

2 2 

c2 l 11::::; ~ a2llk bllkl 
k= 1 

C 2 112= E a 2 l l k b 11 k2 
k= l 

= (2)(6)+(3 )(6)=30 = (2)(1)+(3)(2)=8 

2 2 

C2121= '.E a212k bl2k1 
k=l 

c2122= ~ a212k b12k2 
k=l 

= ( 1 )( 2) + ( 1 )( 4) =6 = ( l )(4)+( 1) ( 1)=5 

2 2 

C2 2 11 = E a22lk b2lkl c2212= ~ a22lk b2lk2 
k=l k= 1 

= (7)(6)+(5)(6)=72 = (7)(6)+(5)(3)=57 

2 2 

C2221= ~ a222k b22kl 
k=l 

c2222= ·~ a222k b22k2 
k= l 

= (6)( 1 )+(6)(3)=24 = ( 6 )( 4) +( 6) ( 6) =60 



0 1 2 .3 .•• 

1 

2 

3 

. 
~.3 ••• 

Figure 2, A Representation of a Three­
Dimensional Matrix Sub-
s c r i pt ed by ( i 1 , i 2 1 i 3 

) 

21 



Determination of the Distribution of Higher Order 

Markov Chains at Various Stages by the 

Process of Matrix Multiplication 

22 

Let the first, the second, and the third stage 

transition probability matrices be repre~ented by P, P2~ 

and P3 respectively. The transition matrix P2 is obtained 

by multiplying P by itself. 

To find the value of Paba 2 by the matrix method the 

following procedure is followed. Take the probability 

vector such that each of its elements has the first n of 

the given states as its first n subscripts in the proper 

order. The next step wi 11 be to find the column in pk-l 

such that its first element's first n subscripts are the 

same as the last n subscripts of the first element of the 

row vector, these n subscripts in both the elements must 

be in the same order. The same relationship must ~xist 

for the rest of the elements of the row and column vectors. 

The n+l st subscript of all the elements of the column 

vector is the state ~here the process is going to be in the 

n-l+k th step, where k=l 1 2, 3 ~··· After selecting 

the row and column vectors they are dotted with each other 

to get the conditional probability. 2 
For Paba, the row 
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and column vectors are (paba' respective-

l y. Therefore, 

• .. ~ ·.•. •.:J I 

2 
Paba 

2 
Paa a 

= (paba' Pabb). (Pbaa) 
Pbba 

= (Paaa' Paab). (Paaa) 
Paba 

= (Paaa Paaa + Paab Paba). 

2 2 2 
The same way as above the values of Ppba, Pbbb, Paab, 

2 2 Pbaa, and Pbab are calculqted. These values constitµte 

the second stage transit I on probab i 1 i ty matrix P
2

, i.e. 

2 2 
Paa a Paab 

2 2 2 
~:'.· = Paba Pabb 

2 2 
Pbaa Pbab 

2 2 
Pbba pbbb 

For the numer i ca 1 example, p2 w i l l be: 

0.76 0.24 

p2 = o.42 0.58 

0.70 0.3 0 

0 .36 o.64 
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The elements of P2 completely describe the process at the 

second stage. Each vector gives the probability of the 

process for all possible states in the second step for the 

present and past states. 

To obtain the third stage probability transition 

matrix P3 , Pis multipliec;! by P2, i~e., P3 = P x P
2

• 

p3 = 

3 
Paba = 

::;: 

3 
Pabb = 

= 

3 
Paaa = 

= 

paaa Paab Paaa 

Paba Pabb Paba 

Pbaa Pbab X Pbaa 
~ 

Pbba pbbb Pbba 

( Paba' Pabb) • {Pbab :) 

~bbb 

2 

2 

2 

2 

2 2 
(paba Pbab + Pabb Pbbb ). 

( Paaa' Paab) · {Paaa :\ 

~aba } 

( 2 + 2) 
Paaa Paaa Paab Paba • 

. 2 
Paab 

2 
Pabb --2 
Pbab 
. 2 
pbbb 



3 
Paab = 

25 

(:::: :) 
= (Paaa Paab

2 
+ Paab Pabb

2
)· 

3 
( Pbba' Pbbb) · ( 2) Pbba = Pbaa 

Pbba 
2 

( Pbba 
2 2 

:; Pbaa + Pbbb Pbba ) • 

3 

(Pbab:) pbbb = ( Pbba' Pbbb) • 

pbbb 

( Pbba 
2 2 = Pbab + pbbb pbbb ) • 

= 

= 

If P3 is rewritten in terms of its elements it would 

appear as given below: 



3 
Paaa 

3 
Paba 

3 
Pbaa 

3 
· Pbba .--

The ele~ents of p3 

3 
Pc;iab -.--

3 
Pabb 

obtained by the matrix method are the 

same as those of P3 obtained by classical method. This 

can be verified for the value of Paba3 • 
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Paba 
3 
= 

2 2 
Paba Pbaa + Pabb Pbba • ( 2) 

From p2 
' 

2 
Pbaa = 

and 

2 
Pbba = 

Substituting the values of pbaa 2, and pbba 2 in (2), 

3 
Paba = 

= 

Pabb Pbba Pbaa + Pabb Pbbb Pbba. 

3 The same value for Paba was obtained in the classical 

method (Equation 1). 

( 5) 



For the numerical example, ,P3 would be 

0.692 

0.564 

o. 590 

0.462 

0.308 

O. 43 6 • 

o.410 

0.938 

In m~ltiplying higher order matrices, care must be 

taken to see that Pk= P x Pk-l F pk-l x P. This can be 

proved by considering the ~bove-mentioned second order 

Markov chain having the transition probability matrix P 

and the state space S= ( a, b,). If the method of P2 x P 
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i s used to determine the third stage transition probab i l ~ 

it i es, the element Paba3 would be as given be low: 

Paba3 = Paba 2 Pbaa + Pabb 2 Pbba . 
Representing Paba2 and Pabb2 in terms of one step 

probabilities 

Paba3 = (paba Pbaa + Pabb Pbba) Pbaa + (paba Pbab 

+ Pabb Pbbb) Pbba 

+ Pabb Pbbb Pbba ( 6). 

Equation (6) is not equal to (5). The first and the third 

factor in (6) do not follow the logic. The first factor 

must give the conditional probabil lty of process being in 

a at (t=4) given that it was in a at t=O, is in b, !, and 

! at t=l, t=2, and t=3 respectively. The subscripts of the 

one step probabilities of the first factor are not 
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according ,to the required states at various steps. The 

third factor, in the same way, does not follow the required 

distribution of the states at various steps. 

Therefore, Pk= P x pk-l # pk-l x P. 

From the matrix method it is observed that Pk can be 

determined from Pk-land P. In the classical method all 

the states in between the stages are analyzed exhaustively 

to determine Pk. For higher values of k, the classical 

method, therefore, does not have computational superiority 

over the matrix method. 

Ge~eralization of Matrix Method for 

n-Order Markov chains 

Let (Xt; t=O, l, 2, . , • ) be an n-order Markov chain 

with state space S= (a, b, c, .•• , m) and the transition 

probability matrix P. The k step transition probability 

matrix Pk is the product of P and Pk-l•" In determining 

the element of Pk the procedure mentioned in the descrip­

tion of the matrix method is followed. For example, 
k 

p b • ,::: a, , .. ,,,J 
k-1 

Pb .. , i,a,j 

k- l 
Pb ' b . •• ,,, ,J 

(p b . p b • b p b . ) a, , •• ,1,a, a,, •• ,,,, •. , a, , •• 1,m. 

k-1 
Pb •• , i , m, 
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It is noticed from the equation that the first n subscripts 

of all the elements of the row vector of Pare the same as 
k the first n subscripts of p b .. and these n sub-a, , •• ,,,J 

scripts h~ve the same order. The last n subscripts of the 

elements of the row vector are the same as the first n 

subscripts of the corresponding elements of the column 

vector. The (n+1)st subscript of all the elements of 

column vector wi 11 be the state where the process is 

required to be at the (n-1 + k)th step. 

The result of the above equation is 

k 
p b • .= a, , .•. ,,,J 

k- 1 
(p b • ) (pb· • ') a, , •• ,,,a , •• ,1,a,J + 

( P b ' b) ( pbk .. l · b ' ) a,, .. ,,, ' .• ,,, ,J 

k- 1 
+ •••• + (pa b · ) (pb · .). , , •• 1,rn , •• ,1,m,) 



CHAPTER I I I 

STEADY STATE AND ABSORPTION PROPERTIES OF 

HIGHER ORDER MARKOV CHAINS 

Determination of Steady State Conditions of 

Higher Order Ergodic Markov Chains 

The existence of steady stat~ conditions in a hi~her 

order ergodic Markov chain can be demonstrated by ,c:ompµt .. 

ing Pk for various values of k. For the example given 

in Chapter I I the probability matrix at the steady state 

would be as given below: 

• 6 • 4 

k .6 ~ 
p = 

. 6 . 4 

. 6 • 4 

Because of the tediousness involved in th~ above 

work, a comp~ter program i? given on page-1J_~ 

To determine the analytical method for finding 

the steady state probabilities recall what was said in 

Chapter I regarding the ste~dy state probabilities of first 

order Markov chains. As in the case of the first order 

Markov chains, steady state probabilities for higher order 

30 



A FORTRAN IV Prog ram for Determin i ng t he Steady State 

Probabilities of a Second Order Ma rkov Chai n with the 

State Space S=(a , b) : 

l U 1 ME NS I ON A I A I , PI 8 I , R ( 8 I , SI 8 I 
2 DA fAS( 11, S(2 1 , S13 1,Sl41 ,SI 51,$161 , Sl7 1 ,S l 81/ 0 , 0 , 0 , 0,0,0,0,0,0 , 0, 

l(I , 0 , 0 , 0 , 0, 0 I 
3 REA0(5 , llA 
4 FORMATl8F4,2 1 
s no21~t. 21 
6 1 FI I , G f , 11 GU T03 
1 005J=l , 8 
8 5 PIJl=A IJI 
9 GO T04 

10 3 Rlll =A lll•P171tA1 2 l*Pl , I 
11 Rl 21=A lll* P IBltAl 2 1*Pl 6 1 
l l Rl3 1=i\lJ l *P ( ;ll +Al 'tl*f' lll 
13 k (41 =A l)l*P l4 1+A (4 1•Pl21 
14 H15 1•A 15 ) +P (71+Al h l •Pl5! 
1 5 Rl b l •A l51•PI Bl •Al b l*P16 1 
1~ Rl7) =A 171*P (3 1~A l d ) +P (ll 
17 Rl81=A l71 •P 141tA IUl *P l 2 1 
1 8 Otll>K C, I, U 
l 'J 6 P IKI • l{(K I 
20 4 WR I ft; I h 1 7 11' 
21 OUBL= l , 8 
22 8 S(Ll =~IL)+P ILJ 
23 2 CONT INUE 
7 4 7 Ff ll<M A 'f 15 X , d I F II , 6 , 2 X I I 
25 WPIT El 6 , 71S 
2 6 $ TIii ' 
i' I l· NO 

!ENTRY 
l) , 600000 0 , 4000110 ll , IIU(J(JUO O. lOOOCJO 0 . 1 0() 0()0 0 . 700000 (). !">00000 0 , 500000 
1) , 4 20000 o. 11110,wo U, 71,0U ()O 0 , l'100UO 0,31>0000 0 , 640000 0 ,700000 0 . 3µ0000 
o . 5 n4 000 0 ,4 ) 1,0UO 1) , (,92000 0,300000 0 , 462000 o,s3aooo 0 , !,90000 0,410000 
{l . ~ JOOOO u. ,,i. I llll) v . '>M,t, 00 o . 333600 •b,500't00 0,499(l00 0 , 628000 0, 3 7200 0 
o . ~ t 69bO o . ',11u•,u ti , {, 401) U() o . )'j<Jl 20 0 , 5d8680 0,461320 ... 0,402600 0 , .39.7400 
o . ', 77 0 J 2 U. 1,;., I 'If J ti , t,t 1!fl <1t, O. Jt J <.0 4 0 . 5578% 0 ,44 2 144 0 . 608920 0. 391080 
(I . '>18494 0 . , , J l ~,.' ', lJ , c, I (I: ti, o • . ;/14 l l u 0 . '>13175 0 , 426B24 0 , 602564 0,·3974 36 
0 . 5'JOH0tt 0 , t, O•Jl 'II I) . ,, 1 lO () 'i 0 . 31J7994 0 . 5fl l99l 0 ,41 8008 o . 603188 0 . 396811 
o . 594 71 0 o . '•0'>290 U, b077no 0 , )?aH O,!>lJ8350 0,411649 o:60·1401 0;391159) 
0 , 596 184 0 , 1, tHU I '> () . r'.,0'> 15', o . J91tl:l45 0 , 59.!Zt, 7 (),407732 0 ~60 1;!38 o . ~90762 
0 , 59 7649 0 . 1, 0.?j', () u. t.o·n,.o 0 . )9f,L39 0 , 594950 0 ,40504 1 · 0 , 60P669 o.;3.99l')o 
<, , ')9838) 0 . , .. , 11,14 0 . 60l2 l tl o. J'/7'18 1 0 , 5%6 71 0 , 40H£7 0 , 600505 0 , 399494 
O. 'i98971 u . ,, cll 0)7 0 . ,,,>14 5 l o • .3'10547 o •. 5971!2 1 ll , 402 177 0 , 60030 1 0 , 39%97 
0.';99304 o . ,,or, ,.,11, II. ,,Oll'l'> •, o • .sC/ ' )043 O,'i'lfl56 'i O , 40 l '• 33 () . £,00711 Q . 'i9'J71J7 
0 , 599'553 o. 400:,1, t, U, h 0 06l.b 0 , 399372 o. 599059 0,400939 (J, 000132 0 , 399866 
0 , 599703 0 . 400295 0 , ,,00411 0 . )9958 7 0 . 59938 1 0 . 4006l 7 ,Q. 600C.(l9 0 , 399909 
0 , 59'1 806 o . 400 192 0 , 6002 70 0 , 39'>729 0 , 599593 o .• 4oo~os ... 0.600057 .,.o .39994 ~ 
.> . 5 'Nu 7Z 0 . ,, 011 l I I 0 . ,,00 1 n o . J<.J<JB? l o . 599732 0 ,400266 0 ,6p0038 0 , 39')96 0 
o . 599'11 b o . ,, (11 ) 1/tt l 0 . 1, 00 l l h 1) , 'W9tHi2 0 , 599824 0 ,400114 0 , 600024 0 , 3'.19')7,4, 
0 . 599944 0 , 4000'> '• U, t.>00071> o. i"l'J9 2? 0 , 599804 o,~o.op, o . ~oqo1~ . o , 39~98?. 
o . 599963 0 , 4000 1'> ll , oO 1)()4 1) 0 , 39'194 8 o . 599923 O,'tOQ07'fJ", o : p()OO'lO i,. Q,89 99~8 
o . 599975 0,4 0002l 0, 1,00032 U. 3')'1966 0 , ':>9'>9',9 o . t,00010 ' 0,.600006 . ··o,'399~92 
0 , 599983 0 , 4000 14 0 , 600021 o . 31)997 1 o . 599%6 0.40003 1 ; Q . 600003' ~'0,'l99991t 
0 . 599989 o. ,, ooflo•, c) , (,000 11 0 , 3') 9'184 0 . 5<J99 77 0,400020 0 ,600002 •! ~.)9,996 
0 . 599992 o . 40000'> O. oOODOfl o . 3'}')9tl9 0.5999{15 o.400llP ,. 0 , buOOO l · 0 , 39<J ?9 7 
0 . !>999'14 0 ,4 0,)r) t) l () . ,. ()i) C, l) .. 0 • 3"1 1/992 0,59•}9fl9 Q,400Q08 ~ .o.-~oooo o o . 39999] 
0 . 599990 0 . t, rn1no I () . ,. 00001 0 , )999') 4 0, 599993' ~ 0,409005 1p;ij99999 0,19~998 .......... ... (ll ,ct{l'\J,~ . ('(,!I, . ,;, ..... ..... , •• v • ......... .... , ...... . : ... .,,~~-~ .. ' .. ,.. ... , ... 

3 1 
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Markov chains do not depend upon the present and past 

states of the process. Because of the complexity involved 

in the multiplication of higher order matrices, the 

analytical calculation of steady state probabilities for 

higher order Markov chains is much more diffic~lt than in 

the case of first order Markov chains. The general pro­

cedure is to reduce the probability tran$1tion matrix P 

of the higher order Markov chain to an equivalent first 

order matrix. Once a first order matrix is determined, 

determination of steady state probabilities becomes easy. 

The concept of reducing an n~order matrix can be demon~ 

strated with a second order matrix. Let P be the trans• 

ition probability matrix of a second order Markov chain, 

then P would appear as given below: 

Paa a 

P~ Paba 

Pbaa 

Pbba 

Paab 

Pabb 

Pbab 

pbbb 

P contains two 2 x 2 matrices, one for the state a immedi­

ately preceding the present state and the other for the 

state b. If the process is an ergodic one, th~se two 

matrices must be the same at the steady state independent 

of the states immediately preceding the present state. 

Since this steady state still depends upon the present 

state, it is called an intermediate steady state. The 
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intermediate steady state probabilities can be determined 

by treating the above matrices as first order ones. 

k 
Paba = 

= 

= 

= 

If X = 

and y = 

t hen k­Paba -

= 

= 

= 

.; •. 

k 
Limit Paba -
k =;> co 

k- l k- l 
Paba Pbaa + Pabb Pbba 

k- l ( l ) k- l + pk- l 
Paba Pbaa + -pbbb - Paba aba Pbbb 

k-2 (paba (X) +Y) X + y 

k-2 2 ( Paba (X ) + Y l + X) 

(p~b~ (X) + Y) X2 + Y (1 + X) 

k-3 3 2 Paba (X ) + Y (1 + X + X ) 

k l 2 k-2) Paba X - + Y ( l + X + X + ... + X 

k l 2 k-2 
Limit(PabaX- +Y(l+X+X + .. +X )) 
k ~co 



If 

and 

then 

k 
Paba = 

k 
Paba = 

k 
Pabb = 

= 

= 

= 

X = 

y = 

k ... l ( ) k- 1 
l-pbaa - Pabb l-pbaa + Pabb Pbbb 

k- l 
Pabb (pbbb + Pbaa -l) + (l - Pbaa) 

1 - Pbaa 

k k-1 
Pabb = Pabb X + y 

= k-2 
(pabb X + Y) X + y 

= 

= Pabb xk-1 + Y (l + x + x2 + 

34 

Limit p~bb = Limit (pabb xk~l +Y (l + x +x 2 + •.• +xk- 2)) 
k ~ co k :::;> co 



35 

= 
1 - Pb aa 
2-pbbb - Pbaa 

k 1- p baa (9). Pabb = 
2-Pbaa-Pbbb 

k k- 1 + pk-1 
Paaa = Paaa Paaa Paba aab 

k- 1 
Paaa + ( 1- k- l ) (l-pabb) = Paa a Paa a 

k- 1 
Paaa + (l-pabb) 

k- l 
(l-pabb) = Paaa - Paaa 

= k-1 
Paaa ( Paaa + Pabb - 1 ) + ( l - Pabb) . 

If X = Paaa + Pabb - 1 

and y = ( l - Pabb) 

then k pk-1 X + y Paaa = aaa 

k-2 + y) X + y = ( Paaa X 

k-2 x2 + y ( 1 + X) = Paa a 

= Paaa 
X k- 1 + y ( 1 + X + ••• + xk-2) 

Limit k Limit (paaa X k- 1 + y ( 1 + X + ••• + xk-2)) 
Paa a = 

k =t,. 00 k ~00 

= y (1-X)-l 



36 

k l - P abb 
( l O) • Paa a = 

2 - Paa a 
-, 

Pabb 

k k-1 k-1 
Paab = Paa a Paab + Paab Pabb 

= k-1) (l-Paab ( 1·Paaa) + k- l 
Paab Pabb 

(1-p )- k- l 
(l-Paaa) 

k-1 = Paab + Paab Pabb aaa 

k-1 
(paaa + Pabb - l ) + ( l-paaa) = Paab . 

Let X = Paaa + Pabb - l 

and y = (l-paaa) 

then k k- l + y Paab = Paab X 

= k-2 
(paab X + Y) X + y 

k-2 2 + y ( l + X) = Paab X 

Limit k 
Paab = Limit ( Paab 

xk- 1 + y ( l + X + ... + xk-2)) 

k .::> co k ==> (l) 

k y 
Paab = 1 - X 

k l ~ p ( l 1). aaa 
Paab = 

2 - Pabb - Paaa 

k 
Pbba = k-1 

Pbba Pbaa + k- l 
pbbb Pbba 
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= k- l ( ) 
Pbba Pbaa + Pbbb - l) + (l - Pbbb • 

Let X = Pbaa + pbbb - l 

and y = 

k 
then pbba = 

= 

k 
Limit pbba = 
k :::;> CX) 

k- 1 
pbba X + y 

k-2 
( pbba X + y) X + y 

( k- l ( k= 2 Limit pbba X + Y 1 + X + • • . + X ) ) 
k => a, 

y 
l = X 

( 1 2) 0 



38 

( 1 - Pbaa) 
k- l 

( l - Pbaa) + k- 1 = - pbbb pbbb pbbb 

= k-1 
pbbb ( Pbbb + Pbaa - l ) + ( l-pbaa) • 

If X = Pbbb + Pbaa • 1 

and y = l - Pbaa 

then k k- l + y pbbb = pbbb X 

k-2 + Y) X + y = (pbbb X 

k-2 x2 + y ( l + X) = pbbb 

k-1 + y ( 1 + xk-2) = pbbb x· + X + • • 

Limit k Limit ( k- 1 + y ( l + X + ••• + xk=2)) pbbb = pbbb X 
k~co k =:>oo 

k y 
pbbb = 

- X 

k 1- p baa ( 13 ) 0 pbbb = 
2 - pbbb - Pbaa 

k 
Pbaa = k-1 

Pbaa Paaa 
k- l 

+ Pbab Paba 

k-1 ( k-. l ) (l-pabb) = Pbaa Paa a + l -pbaa 

k- l 
Paaa + ( 1-Pabb) 

k-1 
( l-pabb) = Pbaa - Pbaa 
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k- 1 
( Paaa + Pabb "" 1 ) + (l .. pabb) = Pbaa • 

If X = Paa a + Pabb - l 

and ·y = ( l - Pabb) 

then 
k k-1 X + y Pbaa = Pbaa 

= k-2 
(pbaa X + Y) X + y 

= 
k-2 

Pbaa 
x2 + y ( l + X) 

= Pbaa 
xk- 1 + y ( l + X + ••• + xk-2) 

Limit 
k 

Limit (pbaa 
xk-1 + y ( l + X + ••• xk-2)) 

Pbaa = 

k =;> C'O k => C'O 

k = 
y 

Pbaa 
"" X 

k l - Pabb 
( 14). Pbaa = 

2 ~ Paaa - Pabb 

k k~l 
Paab + 

k- l 
Pbab = Pbaa Pbab Pabb 

k-1 
(l-paaa) = (l-pbab) + k-1 

Pbab Pabb 

(l-paaa) 
k- l 

(l·Paaa) + k-1 = - Pbab Pbab Pabb 

k-1 
( Pabb + Paa a - 1 ) + (l .. p ) = Pbab . aaa 
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If X = Pabb + Paaa .. 1 

and y = ( 1 - Paaa) 

then k k-1 X + y Pbab = Pbab 

k-2 + Y) X + y = ( Pbab X 

k-2 x2 + y ( l + X) ,... 
Pbab 

= Pbab 
xk- 1 + y (l + X + ••• + xk-2) 

Limit k Limit (p xk-1 + y ( l + X + , •. + xk-2)) 
Pbab = bab 

k 9 CX) k =9 CX) 

k y 
Pbab = 

- X 

k l -paaa 
Pbab = ( 15) • 

2 - Pabb'" Paa a 

From equations (8) and ( l 2) 

k k l -pbbb 
( 16) • Paba = Pbba = 

2 - Pbaa 
,- pbbb 

From equations (9) and ( 13 ) 

k k 1- Pb aa ( l 7) • Pabb = pbbb = 
2 .. Pbaa - pbbb 

From equations ( l O) and ( 14) 
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k k 1"'Pabb 
Paaa = Pbaa = 

2 - Paaa .. Pabb 
( 18) • 

From equations ( 1 1 ) and ( 15) 

k k l-paaa 
Paab = Pbab = 

2 ~ Paaa .. Pabb 
( 1 9) • 

It is clear from (16), (17), (18) 1 and (19),that at the 

intermediate steady state the effect up.on the process by 

its state immediately preceding the present state is 

eliminated and the two 2 x 2 matrices are equal. They 

would appear as given below: 

k pk 
Paa a aab --, 

k 
Paba 

k 
Pabb 

p = I k 
Pbaa 

k 
Pbab 

k 
Pbba 

k 
pbbb 

If the results of (16), (17), (18), c1nd (19) are utilized 

for P1, it would appear as given below: 

k k 
Paa Pab 

k k 
Pba pbb 
~ ~ 

p = k k I Paa Pab 
.......,--

k 
Pba 

k 
pbb 
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From the above representation, it is observed that P1 
consists of two identically equal 2 x 2 first orper 

matrices. The steady state probabilities for these first 

order matrices can be computed using the same procedure 

for the determination of intermediate steady state 

probabilities. At the steady state all the probability 

vectors wi 11 be the same. This is due to the elimination 

of the effect of the process 1 i present state. The steady 

state probab i 1 i ty matrix p 
s would appear as given be low: 

k 
p~ Pa - -

k k 
Pa Pb 

P-= k k s pq Pb -
k 

Pa p~ 

where 

pk 
k 

= 1 "'pbb (20) a k k 2 .. Paa 
,. pbb 

clnd 
1 ~ pk 

,, 

k aa (21),. Pb = k k 2 .. Paa ~ pbb 

Suffix a of p~ refers to the future outcome of the 

process. The future outcome of the process is completely 

independent of the process 1 s present and past outcqmes. 

The intermediate steady state probabi llties for the 

numerical example helving the Pas given below can be 
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calculatep us Ing the above method. 

paaa Paab .8 • 2 

Paba Pabb .6 .4 
-.-

P= = • 
Pbaa Pbab . 5 .5 

-.-. 

Pbba pbbb .3 .7 

From equation ( 16) 

k k k 1"' pbbb 
Paba = Pbba = Pba = 

2 - Pbaa - pbbb 

l - .7 = 
2 - .5 - . 7 

= 0.3 75 

From equation ( 17) 

k k k 
1 ~ p baa 

Pabb = pbbb = pbb :;:: 

2 - Pbaa - pbbb 

1 - .5 = 
2 - .5 - • 7 

= 0.625 



From equationa ( 18) 

and 

k 
Paaa = 

k k 
Pbaa = Paa 

from equation ( 19) 

k k k 
Paab = Pbab = Pab 

= 

= 

= 

44 

2 .. Paaa - Pbbb 

l .., . 4 

2 "' .8 .... 4 

0.75 

1-p aaa = 
2 - Paaa - Pabb 

l - .8 = 
2 .. .8 .. .4 

= 0.25 

Therefore the intermediate steady st~t~ probability matrix 

wou 1 d be: 

,75 . 25 

.3 75 . 625 
p I ;:: 

___,,........,. 

. 75 . 25 

.3 75 • 625 

Fina 11 y, the steady state probabilities 

from equations (20) and (21). 
k 

l -pbb 
= k k 2 - Paa - Pbb 

= 1 - • 6 25 
2 - . 75 - • 625 

can be computed 



= 0.6 
k 

k 1- p 
= aa 

Pb 
2 k k - Paa - pbb 

1 - • 75 = 
2 - .75 - • 625 

= 0.4 

Therefore, the ·steady state probability matrix P would s 

appear as given below: 

.6 .4 

p = s 
.6 .4 

.6 .4 __..., 

.6 .4 
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The same value of Ps was obtained using the computer. The 

computer solution is given on page _ll. 

Steady State Conditions of Higher 

Order Markov Chains 

The procedure for finding the steady state probability 

distributions of higher order Markov chains can be demon­

strated by using a third order Markov chain. Let 

(Xt; t = O, 1, 2, ••• ) be a third order Markov chain de­

fined in the state space S= (a, b) having the transition 

probability matrix P, P will have four dimensions for the 

third order Markov chain and the number of elements of P 



will be 16. After the first red~ction the int~rmediate 

steady state probabilities will be as follows: 

k k k 
Paaaa = Pbaaa = Paaa = 

k k k 
Paaab = Pbaab = Paab = 

k k k 
Paaba = Pbaba = Paba = 

k k k 
Paabb = Pbabb = Pabb = 

k k k 
Pabab = Pbbab = Pbab = 

k k k 
Pabba = Pbbba = Pbba = 

k k k 
Pabbb = Pbbbb = pbbb = 

l-paabb 

2 - Paaaa - Paabb 

1·Paaaa 

2 - Paaaa - Paabb 

l-pabbb 

2 - Pabaa - Pabbb 

l-pabaa 

2 - Pabaa - Pabbb. 

l-pbabb 

2 ~ Pbbaa - Pbbbb 

l-pbbaa 

From the above it is noti~ed that the process is reduced 

to a second order chain after the first reduction. The 
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process now depends only upon the present state and the 

state immediately preceding the present state. Two more 

reductions will lead to the steady state depending only up­

on the future outcomes. This has been shown in the second 



order Markov chain example. 

The knowledge of steady state probabl lity distribu­

tions of second and third order Markov chains can be 
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utilized for developing a generali~ed procedure to deter­

mine the steady state probability distributions of n-order 

Markov chains. Let (Xt; t=O, 1, 2, ••• ) be an n-order 

Markov chain with the state space S= (a, b) and the one­

step transition probability matrix P. P wi 11 haven+ 1 

dimensions. The number of reductions necessary to deter­

mine the steady state condition of this n-order Markov 

chain is n. In the first reduct j on the dependency of the 

process upon its past outcomes is reduced from n states to 

n- l states. Let TT represent the ordered sequence of the 

outcomes of the process from t=l to t= n-1. Then, k p .. a,n,a 
represents the probability of the process being in the 

state a at the (n+k)th step given that it was in~' and 

n. The process has to pass intermediate steady states 

to reach the final steady state and each intermediate 

steady state will be reached at every k steps. For de­

termining the intermediate steady state the process is 

.considered to be a first order one as far as the state for 

which the intermediate steady state is required. Therefore, 

k 
p a,n,a = 

= 

k-1 p a,n,a 

k"' 1 p a,n,a 

p n,a,a 
+ pk- l p 

a,n,b n,b,a 

p + (l-pk-1 ) (1-pn,b,b) n,a,a a,n,a 



= Pk ( + ) a,TI,a PTI,a,a PTI,b,b .. 1 +(l-p bb). 
TI' ' 

Let (pTI a a +Ip b b-1) 
1 ' TI, ' 

= X 

and (1-p b b) 
TI' ' 

= y • 

k k-1 (X) + y p = p a,TI,a a,TI,a 

(X k-2 + Y) X + y = p a,n,a 

x2 k-2 + y ( l + X) = p a,TI,a 

= xk-lP 
a,TI,a 

+ y ( 1 + X 

Limit k y p a,TI,a = 
k r::> 0::, - X 

l -p b b 
= n' ' 

2 - p - PTI,b,b TI,a,a 

Using the above procedure 

Thus 

P
k 1- p b b 
b TI,.' ' TI' a = ---------~----

k 
p 

2 - p - p TI,a,a TI,b,b 

k 

+ x2 + . . . + X k- 2) 

a,TI,a = Pb,TI,a = 
2 - p - p TI,a,a TI,b,b 
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. 

The values of other elements are determined in a slmiliar 

manner. From the above result it is observed that the 

effect of one past state on the process 1 s future outcome 



is eliminated and (n-1) more such reductions wlll com­

pletely eliminate the effect of all the past states and 

the future outcome of the process is independent of the 

past outcomes. 
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The procedure for determining the steady state dis­

tribution of higher order Markov chains is applicable only 

when the process has two states. A reduction technique 

for the case when the process has three or more states is 

discussed along with an example. let a second order Markov 

chain have the transition matrix Pas given below • 

Paaa Paab Paac ,3 . 4 .3 
--,---., 

Paba • 2 • 2 .6 

Paca Pacb .3 .3 .4 

• 2 • 7 . l 
P= 

.4 .3 .3 

.6 .3 . l 

.6 • 2 • 2 

Pcba .s .4 • 1 

• 1 .8 . l 

Si nee the process is a second order Markov chain, it has 

to pass through an intermediate steady state before 

reaching final steady state. The intermediate steady 

state would be found as given below: 
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a b C .3 .4 .3 a b C 

a b C X • 2 • 2 • 6 = a b C ( 22) • 

a b C .3 .3 .4 a b C 

a+b+c=l ( 23). 

d e f • 2 . 7 • 1 d e f 

d e f X ,4 ,3 .3 = d e f ( 24). 

d e f .• 6 ,3 • 1 d' e f 

d+e+f=l ( 25), 

g h . 6 • 2 • 2 g h 1 ( 26) • g h X • 5 .4 • 1 = g h 

h • 1 .8 • 1 h g g ~ 

g+h+i=l ( 27). 

From the matrix equations (22) and ( 23) a,b, and care 

determined. Equations (24) and ( 25) are used to determine 

d, e, and f. The quantities g,h, and i are determined from 

equations ( 26) and ( 27). Therefore, the intermediate 

steady state distribution would be as given below: 
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a b C -
d e f 

.9. h 

a b C 
P= -

• 
d e f -
.9. h 

a b C -
d e f -
.9. h 

From the above it is observed that the effect of one past 

state is eliminated. Therefore the intermediate steady 

state transition matrix P1 app~ar~ as giVen below: 

p = 
I 

a 

d 

b 

e 

h 

C o. 273 

f = 0.365 

o.490 

0.300 

o.446 

0.362 

.. 0.427 

o. 189 

0. 148 

P1 is equivalent to a first order matrix and the following 

matrix equatiais are used to determine·the f.inal steady.· 

state. 

X Y.. z a b C X y_ z - - -
X y_ z X d e f :;:; X Y.. z -
X Y.. z .9. h X Y.. z - -

x+y+z=l . 



Therefore, the steady state distribution Ps will be 

X :y_ z 0. 341 0.3 72 0.287 .... 
p = X :y_ z = 0.341 0.3 72 0.287 s 

X :y_ z 0.341 0.3 72 o. 287 

From the above p 
s' i t is observed that the effect of a 11 

past states is el i mi na t ed at the steady state. A re-

duction technique for n-order Markov chains will be de­

veloped after presenting an example for third order 
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Markov chains with three states. Let (Xt; t=0,1,2,.,.) be 

a third order Markov chain with the state space S:i: (a,b,c) 

and the transition matrix P. In interpreting the element 

p b for example, of P given below, it is the conditional aa a, . · 
probability of the process being in a at t=3, given that 

it was in ~,a, and~ at t=O, l? and 2 respectively. 
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..-- -
Pa aaa Paaab C Paa a 0.6 0,3 0. 1 

Pa aba Paabb Paab C 
o.s 0.2 0.3 

Pa aca Paacb Paac C 0.4 0. 1 0.5 

Pb aaa C 0.7 0. l 0.2 

Pb aba C 
o.6 0.2 0.2 

Pb aca C 
0.2 0.6 0.2 

Pc aaa C 
o.s 0.3 0.2 

Pc aba Pcabb C 
0.3 0.3 o.4 

Pea ca Pcacb C 
0.2 0.3 0.5 

Pab aa Pabab c; 0.5 0. 1 0.4 

Pab ba Pabbc o.4 0.3 0.3 

Pab ca Pa bee 0.2 o.s 0.3 

pbb aa 0. l o.8 0. 1 
P= ::;: 

pbb ba 0.2 0.6 0.2 

pbb ca 0.3 0.2 0.5 

Pcb aa Pcbac o.4 0.4 0.2 

Pcb ba Pcbbb Pcbbc 0.6 0.2 0.2 

Pcb ca Pcbcb 0.3 0.3 0.4 

Pac aa Pa cab Pacac 0.7 0.2 0. l 

Pacb a Pa ebb Pacbc 0. l 0.7 0.2 

Pace a Paccb Pac cc 0.2 0.7 o. 1 
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o.s o.4 0. 1' 
--4.. 

4 

o.4 0.5 0. 1\ 

o.6 0. 1 0.3 

Pcaaa Pcaab o.8 0. l 0. 1 ,/ 

Pcaba Pcabb Pcabc 0.7 0. 1 0.2 

Pcaca Pcacb Peace 0.2 0.7 0.2 

In P there are 3 submatrices for every step. For all the 

3 steps, there are 9 submatrlces. At the first inter-

mediate steady state the three submatrices at every step 

will give one submatrix. This is because of the reduc~ 

tion of the effect of one past outcome on the process. 

The reduction of the 9 submatrices into 3 submatrices is 

as given below: 

,..._ 
Paaaa Paaa~ 

Paaba Paabb Paabc 

Paa ca Paacb Paa cc 

Pbaaa Pbaac Paa a Paab ,530 . ,229 . ,241 

Pbaba Pbabc ~ Paba Pabb Pabc = · 577 ,222 .201 

Pbaca Pbacc .329 .300 .371 

Pcaaa Pcaab Pcaac 

Pcaba Pcabb Pcabc 

Pcaca· p · ... 
· :<:::a¢c· - -



...-- -
Pabaa Pabab Pabac 

Pabba Pabbb Pabbc 

Pabca Pabcc 

Pb baa Pbbac 

Pbbba Pbbbc 

Pbbca Pb bee 

Pcbaa Pcbab Pcbac 

Pcbba Pcbbb Pcbbc 

Pcbca pcbcc 
:-- -

__ , 

. 3 70 

.205 

. 43 7 

. 293 

. 538 

. 3 12 
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,33 7 

. 257 

; 25 l 
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,..._ 

Pacaa Pa cab Pacac 

Pacba Pacbb Pacbc 

Pacca Paccb Paccc 

Pbcaa Pb cab Pbcac Pcaa Pcab Pcac • 288 .556 • 156 
...--,.-

Pbcba Pb ebb Pbcbc Pcba Pcbb Pcbc = .472 .403 . 125 

Pbcca Pbcc;b Pbccc Peca Pccb Pccc • 712 . 170 • 118 

Pccaa Pccab Pccac 

Pccba Pccbb Pccbc 

Pccca Pcccb pcccc 
...,._ 

The reduced transition matrix P 1 after the first reduction 

i 5, therefore, 

~ Paab ~ • 530 .229 .241 

Paba Pabb Pabc .577 .222 .201 
_,,..--.,--

Paca Pacb Pace .3 29 .300 . 3 71 
-,- ...-,,...--

Pbaa Pbab Pbac .3 70 . 293 .33 7 

p = Pbba pbbb Pbbc = .205 .538 • 257 I 

Pbca Pbcb Pbcc • 43 7 • 3 12 . 25 l 

Pcaa Pcab Pcac . 288 .556 . 156 

Pcba Pcbb Pcbc .472 • 403 • 125 

Peca Pccb ··pccc • 712 • 170 • 1 18 
- _,_ 
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In the second reduction the ~bove three submatrices will be 

reduced to a single 3 x 3 submatrix as given below: 

Paa Pab Pac .488 .246 .266 

Pl= Pba pbb Pbc = .3 24 • 3 95 . 281 

Pea Pcb Pee .427 . 43 6 • 13 7 
-

After the second reduction the process becomes a first 

order Markov chain, i . e. , its future outcome depends only 

upon its present outcome. In the third reduction the 

above matrix will have equal probability vectors. The 

final steady state probability matrix would be as givne 

below: 

Pa Pb Pc . 3 15 . 3 61 .3 24 
- --. --

p :;:: Pa Pb Pc :;:: . 3 15 . 3 61 ,3 24 s 

Pa Pb Pc • 3 15 • 3 61 . 3 24 
......;_....j 

Interpreting Ps, the future outcome of the process does 

not depend upon its past outcomes. 

The knowledge acquired from the above examples can be 

used to generalize the procedure for determining the 

steady state distribution of an n-order, m-state Markov 

chain. Let (Xt; t=O, l, 2 .•. )bean n-order Markov chain 

with the state space S= (a~b, 0 • • ' m) and the transition 

probability matrix P. P will haven x m submatrices. 

This n-order Markov chain will need n reductions to reach 



58 

the steady state. The reduction ratio will be m: l, i.e., 

if there are m submatrices now, then in the next inter­

mediate steady state there will be only one submatrix, 

For all then reductions the proc~dure discussed for the 

reduction of third order, 3-state Markov chains is used. 

Analysis of Higher Order Absorbing Markov Chains 

The following information may be obtained from the 

analysis of higher order absorbing Markov chains: 

1. The expected number of steps the process is in 

any given non-absorbing state, 

2, The probability of absorption by any given 

absorbing state. 

The transition probability matrix P is rearranged 

into four submatrices as the first step in the analysis. 

After rearranging P, it wi 11 appear as indicated below: 

p = I 0 

A N 

The submatrices I, O, A, and N are interpreted in the same 

way as in the first order case. Before attempting to 

obtain the above mentioned information about the absorption 

properties, the concept of identity matrix for higher 

order matrices is developed. An identity matrix for a 

second order matrix P for the state space S= (a,b) can 

be determined from the matrix concept P x I = P. It must 

be remembered that P x I# Ix P in the case of higher 
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o rd er mat r i c es • 

If P and I are represented as: 

Paa a Paab 

Paba Pabb 
P= 

Pbaa Pbab 

Pbba pbbb 

1aaa 1aab 

1aba 1abb 
I= 

1baa 1bab 

1bba 1bbb 

p X I = p 

i . e. , 

Paaa Paab - 1c;1aa I aab Paa a Paab 
~ __,..,....-

Paba Pabb 1aba 1abb Paba Pabb -- ....---..-,--
X = 

Pbaa Pbab 1baa 1bab Pbaa Pbab 
.....,...,...,- ...,....-.,--

Pbba pbbb 1bba 1bbb eba pbbb 
~ 

__J 

If the above equations are solved the idE:?ntity matrix I 

i s obtained as shown be low: 
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0 

0 
I= 

0 

0 

The above procedure is used for matrices of any size, 

The expected number of times the process will be in 

a non-absorbing state SJ is the sum of the following ·terms: 

Expected number of times ins.= (1) (probability of 
J 

being ins. at start) 
J 

+ (1) (probability of being in S. 
J 

after one step)+ (1) (probability of being in 

steps) + . . . 
= + N + N2 + ... 

s. after 2 
J 

As k becomes large, Nk approaches zero. In the Ci:lSe of the 

first order chain the quantity I + N + N2 + ... is a 

geometric series and is equivalent to ( l-N)- 1• In the 

higher order chains even though Nk approaches zero for 
2 large value of k and the quantity I + N + N + ••• seems 

to be a geometric series and eqw:1ls to ( 1-N)~ ~' considerable 

difficulty is faced in determining the inverse of higher 

order matrix. Therefore, a method along with a numerical 

example is discussed for solving the series. Let 

(Xt; t=O, l, 2, ••• ) be a second order Markov chain with 

the state space S= (a,b,c) and the trensition probability 

matrix P with c as the absorbing state as indicated below: 
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Paaa Paab Paac .3 .3 .4 

Paba Pabb Pabc • 2 • 2 .6 

Paca Pacb Pace 0 0 

Pbaa Pbab Pbac .s .4 • 1 

P= ~ = 
Pbba pbbb Pbbc .4 .2 .4 

Pbca Pbcb Pbcc 0 0 1 

Pcaa Pcab Pcac 0 0 

Pcba Pcbb Pcbc 0 0 1 
-

Peca P~cb Pccc 0 0 - -----
The submatrix N of P wi 11 be as given be low: 

paaa Paab .3 .3 

Paba Pabb • 2 • 2 
,> 

N= -= 
Pbaa Pbab .s .4 

pbbc;:3 pbbb .4 • 2 

For this N, the expected' number df times that the process 

being in every nonabsorbing stat~ E i s given by the series 

E = I + N + N2 + N3 + . . . 



n • n • 
I !: p I 

• !: P aaa 
0 . I= l i=l aab 

n . n . 
I I 

0 
.'E Paba .I: Pabb 
r=l 1=1 

= + 
n . n . 
!: p I 'E p I 

0 i=l baa i=l bab 

n . n . i !: p I .r: pbbb 
0 i = 1 bba r=l 

m ~ ~ m ~ ~ 

i 'E i i i 
To find ~ Paaa' Paab' 'E Paba' 'E Pabb, -'E Pbaa' 'E Pbab' 

i=l i=l i=l i=l i=l i=l 

co i cc 0 

.r pbba' and .t p~bb' the following procedure is used: 
1=1 1=1 

Paba 

2 
Paba 

3 
Paba 

n 
Paba 

n .. 
z:: p l 

. . 1 aba 
1= 

As. n ~m 

= 

= 

= 

= 

= 

Paba 

n- 1 n .. l 
Paba Pbaa + Pabb Pbba 

n- l . 
I 

Paba .~ Pbaa 
1=1 

+ 
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co i 
• l:; Paba 
1=1 

Similarly: 

co • 
I 

.~ Pabb 
1=1 

CQ i 
.t Paaa 
1=1 

co • 
I 

r P aab 
I= 1 

co • 
I 

.~ pbbb 
I =1 

and 

co 
i 

. r: Pbab 
1=1 
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= Paba ( 28) • 

~ = . 
= Paba t P

1 
+ Pabb (l+ .t Pb

1
bb) i=l bab i=l 

(29) 

CQ • co 

= Paaa (l + i! 1P!aa) + Paab i! 1P!ba (3 0) 

( 3 1 ) 

co CX) 

= (1 + ~ i ) + ""pi Pbba ·~ Pbaa · Pbbb ~ bb 
1=1 i=l a 

( 3 2) 

( 33) 

co co 

= Pbaa ( 1 + ~ Pi ) + P t Pi 
i=l aaa bab i=l aba 

(34) 

co co • 

= Pbaa .t P!ab + Pbab (l + .}:; P!bb) 
1=1 . 1=1 

( 3 5) • 

The above eight simultaneous equations are solved for the 

eight unknowns. 

co co 

(28) x pbba ~ (32) x Paba - p I: pi - p r: pi bba i=l aba aab i=l bba 

therefore, 

co I 
= ( Pbba Pabb - Paba Pbbb . ~ Pbba 

1=1 
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0:, • 

I 
.E Paba 
1=1 

co 

= ((paba + Pbba Pabb - Pabb Pbba)/pbba~ 
1
~

1
P~ba 

(30) x Pbab - (34) x Paab 

Therefore, 

co • 

co • 

= (l+ .~ P!aa)(PaaaPbab 
I = 1 

"' Pbaa Paab) • 

(3 6). 

. E P!aa = (paaa Pbab - Paaa Paab)/(pbaa Paab - Paaa Pbab 
1=1 

co 

- )) E i Paaa Pbab ~ Pbaa 
1=1 (3 7). 

(30) x Pbaa - (34) x Paaa 
co "i co i 

= Pbaa i~ 1Paaa - Paaa i~lPbaa 

co i 
Substituting (37) for .r Paaa in (38) 

1=1 

co 

Pbaa (.E P~aa Paab + Paaa Pbab - Pbaa Paab)/(pbab 
1=1 

co 

+ Pbaa Paab - Paaa Pbab) - Paa E pi = 
i=l baa 

co • 

- Paaa Pbab) . E P!ba 
I :;:: l 

(38). 

( 3 9). 



(X) 

i Substituting (32) for .r: pbba in (28) 
1=1 

(X) i 
.E Paba 
1=1 

(X) 

= (l + .~ P~aa)(paba - Paba Pbbb 
1=1 

(X) 

Substituting (40) for E pi in (39) 
i=l aba 

(X) • 

~E P~aa Paab + Paaa Pbab - Pbaa Paab)/ 
1=1 

(X) 

(pbab + Pbaa Paab - Paaa Pbab) - Paaa .E P~aa 
1=1 

(X) 0 

= (pbaa Paab - Paaa Pbab) (l + .~ P~aa) 
1=1 
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( 4 l ) . 

(X) 

In equation (41), E pi is expressed in terms of one-step 
i=l baa 

probabilities. Substituting the values of these probabi-

lities for the numerical example in (41) 

C0 O 

I 
.E Paaa 
1=1 

1. 100 

(X) 

i Substituting the values of.~ pbaa' and the one-step 
1=1 

probabilities in (32), 

(X), 

~ p i -'""' l 05 
t., bb • 

i = l a 

(X) 

i Substituting the value of .E pbba in (36) 
1=1 

co 
i 

.E Paba 
1=1 

o.63 



From (3 7) 

cc 

" i -'- 0 70 
• L, Paaa - · 
1=1 

cc co • 

Similarly, .~ P!ab ~ 0.66, 
1=1 

I 
.~ Pabb~ 0.53, 
1=1 

co • 
I r pb b.a... 0.94, and 

i = l a 

Therefore, 

0 0.70 o.66 1. 70 o.66 -
0 o.63 0.53 0.63 1. 53 

E= + ---= 
0 1. l 0 0,94 2. l 0 0,94 

0 1. 05 0.72 1.05 1. 72 -- --,-,-

A FORTRAN IV program for I + N + N2 + . . . was 

I BM/360, the result obtained ( page_Jl) was the 

above result. From E, i t i S observed that the 
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run in 

same as the 

expected 

number of times that the process being in the non-absorbing 

state~ given that it was in state a previously and is in 

a now, is 1,70, The other elements of E are identified in 

the same way. 

The above method can be used to formulate a genera~ 

lized procedure for determining the expected number of 

times that an n~order chain will be in the non~absorbing 

state before it is absorbed. Let (Xt; t=O, 1, 2, ••• ) be 

an n-order Markov chain with the state space S= (a,b, ••• ,m). 

If mis the absorbing state then the non-absorbing 



submatrix N will have (m-l)n elements in it. This will 

lead to (m-l)n equations in (m-l)n unknowns, and these 

equations can be solved for the unknowns. 
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To find the probability of absorption by ·any given 

absorbing state, a similar logic is used in the ar,alysis. 

Let SJ signify some given ·absorbing state; let Si 

signify some specified non-absorbing state. 

Probability of ending ins. = (probabi1 ity of going 
J 

from s. to S. in 1 step)+ (probability of going from S. 
I j I 

to s. in 2 steps) + ••. 111 the first order Markov chain!;i 
J 

this can be obtained from the series A+ NA+ N2A + ••• 

without difficulty. In the case of the higher order chains, 

care must be taken in determing the factors of the series. 

Let (Xt; t=O, 1, ••• ) be a second order Markov chain with 

S= (a,b,c). If c is the absorbing state then N and A 

would be as given below: 

Paa a Paab 

Paba Pabb 
N= 

Pbaa Pbab 

Pbba pbbb and 

Paac 

A= 
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In the series A+ NA+ N2A + ••• , the elements NA, 2 
N A, ••• 

are obtained by using n-dimensional matrix algebra. If 

the probability of the process ending in Sj can be obtained 
2 2 from A+ NA+ NA+ •.• , then NA, for example, must give 

the probability of the process being absorbed in exactly 

three steps for various given conditions. If the proba-

bility of the process being absorbed in exactly three 

steps given that it was in a at t=O and is in a at t=l is 

P~ac then, according to N2A this would be equal to 

Paaa Paaa Paac + Paab Paba Paac + Paaa Paab Pabc 

+ p p p According to the classical method p3 aab abb abc~ aac 

will be equal to 

Paaa Paaa Paac + Paab Paba Pbac + Paaa Paab Pabc 

+ Paab Pabb Pbbc. Therefore, in the higher order case, 
2 the series A+ NA+ NA+ .•• will not give the required 

absorption probabilities if the above method of deter­

mining the factors of the sertes~is used.~ According to the 

n-dimensional matrix algebra 

A+ NA+ N2A + N3A + ••• =A+ NA+ N (NA)+ N (N(NA))+ •.. 

Therefore, to determine N2A, for example, NA is determined 

first and then NA is multiplied by N, ie., the order of 

multiplication is from right to left. The value of N2A, 

determined in this way, can be shown to be the same as 

that of the classical m~thod. 
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Paa a Paab 
2 

Paac 
3 

Paac 

2 3 
Paba Paba Pabc Pabc 

N2A 
-

:;: N(NA) = X 2 = 3 
Pbaa Pbab Pbac Pbac 

2 3 
Pbba pbbb Pbbc Pbbc 

From the above. 3 
Paac~ the probability of the process being 

absorbed given that it was 
2 

will be equal to Paaa Paac 

in a at t=O and is ·in a at t= l, 
,- -

2 + p p Substituting for aab abc. 

the values of P~ac and P~bc 

3 
Paac = Paaa Paaa Paac + Paaa Paab Pabc + Paab Paba Pbac 

+ Paab Pabb Pbbc· 

One more example will be discussed before generalizing 

for n-order Markov chains, Let (Xt; t=O, 1, 2, ••• ) be a 

second order Markov chain with the state space 

S= (a,b,c,d,e) and the transition matrix Pas given below: 
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Paa a Paab Paac Paad Paae 0.2 0.2 0.3 0. 1 0.2 

Paba Pabb Pabc Pabd Pabe 0.4 . 0. 1 0.2 0.2 0. 1 

Paca Pacb Pace Pacd Pace 0.3 0.3 0. 1 0~2 0 ~ 1 

•,. 

Pad a Padb 
p J; 

ad<:.' Padd P~de 0 0 0 0 

Paea Paeb Paec Paed Paee 0 0 o· 0 i-

Pbaa Pbab Pbac Pbad Pbae 0.2 0. 1 0:3 0. 1 0.3 

Pbba pbbb Pbbc pbbd pbbe 0. ·1 0.4 0:2 0:2 O. T 

Pbca Pbcb Pbcc Pbcd Pbce 0. 1 0.3 0. 1 0~3 0.2 

Pbda pbdb Pbdc pbdd Pbde 0 0 0 1 . 0 

. Pbea Pbeb Pbec Pbed Pbee 0 0 0 0 

Pcaa Pcab Pcac Pead Pcae 0.3 0. 1 o.4 0. 1 0. 1 -
Pcba Pcbb Pcbc ·Pcbd Pcbe 0. 1 0.3 0.3 0. 1 0.2 

P= = 
Peca Pccb Pccc Peed Pcce 0.4 0.2 0. 1 0.2 0. 1 

...._,.,.... 

Pcda Pcdb Pede Pcdd Pede 0 0 0 0 
-

Pcea Pceb Pcec Peed Pcee 0 0 0 0 
-

Pdaa Pdab Pdac Pdad Pdae 0 0 0 0 

Pdba pdbb Pdbc pdbd Pdbe 0 0 0 0 

Pdca Pdcb Pdcc Pdcd Pdce 0 0 0 0 -
Pdda pddb pdd<C pddd Pdde 0 0 0 0 

·Pdea Pdeb Pdec Pded Pdee 0 0 0 1 0 
-

Peaa Peab Peac P~ad Peae 0 0 0 0 
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Peba Pebb Pebc Pebd Pebe 0 0 0 0 

Peca Pecb Pecc Peed Pece 0 0 0 0 

Peda Pedb Pede Pedd Pede 0 0 0 0 
~ 

Peea Peeb Peec Peed Peee 0 0 0 .0 

For the above absorbing states d, and e of P, the 

submatrices N and A are as given be low: 

0.2 0.2 0.3 0. l 0.2 

0.4 0. 1 0.2 0.2 0. l 

0.3 0.3 0. l 0.2 0. l 
/ 

0.2 0. l 0.3 0. l 0.3 
N= A:.: 

0. l o.4 0.2 0.2 0. l 

0. l 0.3 0. l 0.3 0.2 

0.3 0. l o.4 0. l 0. 1 

0. l 0.3 0.3 0. l 0.2 

0.4 0.2 0. l 0.2 o. l 

A FORTRAN IV program for A +NA+ N (NA) + N (N(NA)) + ••• 

was run i n IBM/360 and the result was found to be 

( page 74 ) ., 



- -
o.466 0,533 

o. 534 o.465 

0.555 0.444 

0.413 0.586 
A+ NA+ N (NA)+ N (N(NA)) + •. = 

0.586 0.413 

o. 55 2 0.447 

0.515 0.484 

0.482 O. 517 

0.558 o.441 
.__ -

Each row in the solution matrix of A+ NA+ N (NA) 

+ N (N (NA))+ .. is a probability vector. Therefore, 
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theoretically, the elements of each row vector must sum 

to one. The difference between the row sum determined by 

the computer and l depends )upon how many terms of the 

series A+ NA+ N (NA)+ N (N (NA))+ .. are used by the 

computer to compute the row sum. 

From the above two fs!;'umerical examples a procedure 

can be developed for determining the absorption probabi­

lities for n---prder Markov chains. Let (Xt; t=O, 1, 2, •• ) 

be an n-order Markov chain with the state space 

S= (a,b, •• , j, j + 1, .• m). For the absorbing states 

j + 1, •• , m, the submatrix N will haven dimensions and j 

number of j x j submatrices and .the submatrix A will have 

n dimensions and j number of (m - j) x (m .~ j) submatrices. 

The absorption probabilities are obtained from the series 

A+ NA+ N (NA)+ N (N(NA)J + ••• , 



A FORTRAN IV Program for Determining the Expected Number 

of Times that a Second Order Markov Chain is in any 

Non - Absorbing State: 

OI MENSION A181,P181,Rl81,Sl81 l 
2 OATAS( ti , S I 21, SC3 1 ,SC 41, SI 5 1, S l6l, SI 71,Sl81/0.o,o.o , o.o ,o. o,o.o , 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
l3 
14 
15 
16 
17 
18 
19 
20 
2 • . 
22 
23 
24 
25 
26 
27 1 

10,0,0.0,0.01 
REA015,llA 
FORM A Tl Sf',• 21 
D02 l s 1,l1 
IFII. GT.llGOT03 
D05J,.1,8 

5 P(Jl=AIJ I 
GOTO't 

3 Rll l =A(ll*P (7l+At2J~ 
Rl2 1=A lll*Pl8l tAC 2 l*P1 6 1 
Rl3l=A(3l * Plll+Al4l *P lll 
Rl 4l=AIJl•Pl4l+AC4 1*P l 2 1 
Rl51=AISl•Pt71+A16l*Pl51 
R(61:A(51•P18 1+Al61*P l 61 
Rl71sA(7 1•PI J l+Al 8 l•Plll 
Rl81•A171•P l41tAl81 * P l21 
D06K2 \,8 

6 PIKl=RIKI 
4 WRIT I' 1 n ,7 p> 

008L=l 1 8 
8 SIL l =SIL~t PIL I 
2 CONT lNUE 
7 f 0RMAT(5X,81F8 . 6,2XII 

WR l T I: I 6 , 1 1 S 
STOP 
ENO 

$ENTRY 
0.200000 0.200000 0 .100000 0 . 100000 0.400000 
0,180000 0 ,1 ?0000 0 .1 50000 o.1soooo 0,280000 
o. 102000 O. Otl6000 0 .099000 o. 08 1000 O,l48000 
0.059000 0.051000 0 . 060300 0.050100 o.oee400 
0,035740 0 . 030 100 0 , 035790 0 . 030330 0 ,053800 , 
0.021510 O, O I Iii ()b o . 0214 59 0.018129 0.032260 
0.012890 0 . 0 10-0110 0.012891 0 .010010 0.019328 
o. 001732 0.006526 0 , 007734 o . 006525 O.Oll599 
0,004640 0 , 003•)15 0,004640 0,003915 0,006960 
0.002784 o.ooz34q 0 ,002784 0,002349 0,004176 
0.001670 O.OOl4Q9 0 . 001610 0 , 001409 o. 002 506 
0.001002 0 . 0110/146 o . 00100?. 0 , 000846 0 . 00 1503 
0 . 000601 o . 000">0 7 0 . 000601 0 . 000507 ·0 . 000902 
o.ooo3oi 0.000304 0.000361 0.000304 o.000541 
0.000216 o.00018i U. 000216 o . 0001a3 0,000325 
0 . 000130 0 . 000110 0 . 000130 o . 000 11 0 0,000195 
0.000078 0.000066 0 . 000078 · o. 000066 ~ o. 000 ll 7 
o.000047 0 . 000039 0.00001, 1 0.000039 O. OOtl070 
0,000028 0 , 000024 0 . 000028 o. 000024 0.000042 
0 . 000011 o . pooo14 0.0000 11 0,000014 0,000025 
0,000010 0,000009 0 , 000010 0,000009 0,000015 
0,000006 0.000005 0.000006 0;000005 .0,000009 
0.000004 0 . 000003 0 ,00000'+ 0~000003 ... 0 . 000005 
0.000002 0.000002 o. 000002 o. 000002 o. 000003 
0.000001 0.000001 o .00000 1 0 . 000001 0 . 000002 
0.000001 0,00000 1 0 .000001 0.000001 0,000001 
0 .000000 0.000000 0.000000 0 .000000 o, 00000} 
0/630471 0~ 532398 0.. 698772 0.65674 J 1,050776 

0 . 200000 o.500000 0 . 400000 
0 , 200000 0, 230000 , 0 , 230000 
0.132000 o.11e1000 0,123000 
0,075600 0,090300 0,074900 
0,045080 0,053750 ~ 0,045450 
0 . 027 196 0,032 191 0 , 02120; 
0.016321 o. 019333 0,016307 
0.00'1787 0 . 011601 0 . 00976 7 
0.005672 0,006%0 0,005673 
0 , 003524 0.004176 0,003524 
0.002 114 0,002506_ o.0021L4 
0.0012<,6 0,'001503 0 . 00121,e 
0 . 00011, 1 0.000902 0 . 000761 
Or000457 , 0 . 00054l 0 . 000457 
0.000274 0.000325 0,000274 
0,000164 0 . 000195 0 . 000164 
0.000099 0 . 0001"1 7 0.000099 
0.000059 0.000010 0.000059 
0.000036 0.000042 0.000036 
0 . 000021 0,000025 0.000021 
0.000013 0 .00001s 0 , 000013 
o . oooooa o . 0,00009 o.oooooe 
0,000005 ... 0 . 000005 .• 0.000005 
0.000003 0 . 000003 0 , 000003 
0,000002 0.000002 0.000002 
0.000001 0 . 000001 0.00000 l 
o.000001 0 .000001 o.000001 
0.720663 1.10'1563 0,941329 
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A FORTRAN IV Program for the ·Determinati,on:·of:;the 

Absor~tion Probabi lltie~ of a Setond' Order Mar~ov Chain: 

I DIMENS10NA1271,PI 181,RI 181,SI 1!11 
2 003M=l,18 
3 3 SIMl=o.o 
~ R~A015,41P 
5 4 FORMATl18F4.21 
b REA015,IIA 
Y FORMATi20F4.21 
8 OOll=l,21 . 
9 1r11.e;;,.11c;:.1roo; 

10 ~lll=Altf•Plll+AIZl•Pl3l+Al31•P15i 
II Rl2l=Alll•P12l+Al2l*Pl4l+Al31•Plbl 
12, Rl31=AC4l•Pl71+Al51•Pl9ltAlbl•P.I Ill 
13 Rl41~A14l*PIKl+A15l•PllOl•Alhl•Pll21 
14 Rl51=Al7l•PI l31,+Al8l*PI 15l•Al9l•PI UI 
1.5 1Uhl=A17l*PI 141 +AIB l•PI li.ltAl9l•PI lfll 
16 Rl11=AilOl•PllltAllll•~l3l+All2i•PJ5) 
17 RIBl~Al(Ol•Pl21+Allll*Pl4l+All21•Plbl 
18 Rl91 =Al 131•PI 'ti +Ill 14 I *Pl91 tAI 151•P 1111 
19. RIIOl=l\113l•Plill+Atl41•PllOl•All51•Pli21 
20 Rllll=/\ll61•Pll31+All1l*Pll51tAll8'1•Pll11 
21 RI l2l=AI l61•PI 14ltAI l 71•PI lblt·AI UI l•Pll81 
22 Rll31=AU9l•i'llltAl20l•Pl31tAl2fl•Pl5.I . ' 
23 Rll41=All9!0Plil+~l20\~pl41+AIJJ)•Pl6). 
24 RI 151 =Al 22 l•P 111 +Al 23 l*Pl9 l+~l24 l•P I 111, 
25 Rllbl=Al221•Pl81tA123l*PI.IOl+Al24)•PJ121' 
2h Rll ll=Al251*Pll31+Al26.IOPI l51+Al2ll•PI 171 
27 RI l81=Al25l*PI 14l+All11l*!'I 16l•Al271*Pll81 
28 OUhK•l,18 . . . . 
29 6 PIKl=RIKI 
30 5 D02L=l,18 
31 2 SILl=SILltrlLI 
32 1 f0KMATl5X,~(Fd.6,2XII 
33 ~RITtl~,715 
34 s T(Jp 

35 END 

SENTltY 
o .• 400911 o.5:i.io57 o,534480 0.41,5493 o.5,5460 o.444501 o.413464 o,586508 0,586.344 

,413630 0,'>52122 0.4471,55 o.,;151,99 o.48426.3 O~'t82942 o.517033 0,558736 0,441230 
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CHAPTER IV 

CONCLUSION 

This research was primarily concerned with the 

presentation of quantitative information about the 

solution of higher order Markov chains. Part one re­

viewed the work done in the first order Markov chains. 

Part two developed a model for n-order Markov ·chains along 

with the concept of n-dimensional matrix algebra. Part 

three analyzed the steady state and absorption character­

istics of higher order chains. Since the study was broken 

into three parts, the summary will follow the same general 

plan. 

n-Dimensional Matrix Algebra and Solution of 

Higher Order Markov Chains 

Three dimensional matrices were analyzed with respect 

to how they can be multiplied. The concept of three dimen­

sional matrix algebra was extended ton-dimensional 

matrices. Second order M9rkov chains were solved by the 

matrix method and its computational superiority over the 

classical probability theory was proven. When the concept 

of n-dimensional matrix algebra was used to solve higher 
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k k .. l order Markov chains, it was observeG that P = P x P 

.J. pk- l .,... X p • 

Steady State and Absorptions Characteristics 

It was observed that at sufficiently large number of 

steps the probability distribution of higher order 

ergodic Markov chains is independent of its past and 

present outcomes. A re·duction technique was used as an 
- ~ 

analytical method in determining the steady probabilities. 

For an n-order Markov ·chain n reductions were required to 

reach the steady state. It was observed that for every 

reduction the number of states the process depends upon 

for its future outcomes was reduced by one, and at the 

steady state the process depends only upon its future 

outcome. 

Difficulty was experienced in determining the inverse 

of higher order matrices, and therefore a new method called 

the simultaneous equations method was developed to analyze 

the absorption characteristics. In determining the 
? 

absorption probabilities it was observed that the series 

A+ NA+ N2A + ••• ,difqj not give the required result if 

the order of multiplicatio.n for every factor of the s.eries 
/ 

was from left to right. The logical way to determine.the 
\ 

value of N2A) for example, would be to determine N~ first 

and then multiply N by NA, ie., N2A = N (NA). According 

to the order of multiplication the series A+ NA+ N2A + 

N3A + ••• would be equal to A+ NA+ N '(NA) + N .(N. (NA)) 

+ ••• 
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