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CHAPTER |
INTRODUCT 1 ON

The stochastic proceSS’(Xt;}f=b, 1, 2;-3,004) fé a
Markov chain if it haé the following properties:

I. A finite set of possibie outcomes.

2. The probabinty of the next butCOmé ﬁs dépendent

upon its immediately preceding outcome(s).

3. These probabilities are constant over time.

A stochastic process having the above Markov proper-
ties is said to be a first order Markov chain if its next
outcome depends only upon thé present outcome, aisécond
order Markocv chain if its next outcome depends upon its
present outcome, and the outcome ﬁmmedfateiy preceding the
present OutCOme,-and SO on. |

First order Markov chains have been studies and re-
viewed in detail by Kemeny and Snell (8); Kartin (7),
Breiman (2), Parzéﬂ {(9), Hiﬂ?ier and Leiberman (5)y Chung
(3), and others. A short discussion of first ordé?

Markov chains, their solutions and properties will foiﬂow;u

Markov chains can be analyzed using the fundéméﬁtﬁ]é
of classical probability theory. Markov chains can bé":
analyzed by means of their transition probability maffideég*

Fach element in the transition matrix represents the



probability of going from one state to another. For
notation purposes, an element in .a transition probability
matrix will be called pij' This is the conditional proba-
bility that if the process is now in state i, it will be
in state j on the next step. To be a transition matrix,
the following conditions must be met:

1. Each element must be a probability, i.e.,

Oépijé1-
2. Each row must sum to exactly one, i.e.,

m
b2 p = 1, where i, and j are for identifying

. ]
j=1
the process's present and past outcomes respect-
ively.
For the state space S= (Si; i=1, 2, .., m) the

transition probability matrix P of the first order Markov

chain (Xt; t=0, 1, 2, ...) would appear as follows:

Sy S, Sy - - - = S
S1 Py Pr2 Pz - - 7 - Py
>2 P21 P2 Pz - T T 7 Py
53 P3y P3p P33 T T T T Py

S Pml P2 Pn3 - B o7 Prm



In the matrix P for a given state at the K th period,
a row exhaustive]y enumerates a1T_possible states that the
process can take. Thus a row is a probability vector.
This is to be expected since-a vector is simply a 1 x m
matrix. Thus a transition matrix P is a matrix composed of
rows of probability vectors. For purposes of notation, a

row vector (probability vector) will be represented as Vi

to represent the ith row. The distribution of the process

for the kth stage can be analyzed by obtaining Pk. Pk is

obtained by multiplying P successive]?; | f Vik is the pro-
bability vector describing the probabilities of possible

outcomes in k steps férfthe*pneaemtsstatelsigjthehﬁthfsﬁﬁ

could be obtained if Viz ccan:' be obtained. Vi2 is

obtained either by the classical probability method or by
the matrix method. 1f the present; the next, and the
time after next steps are represented by 0, 1 and 2, then

‘the possible states in every step areas follows:

Sy (S SZ""Sm) Sl<

1° k=], 23 v oy M.

For the ‘above possible states in the respective stages

P;; P: Wwhere pik2= the conditional
3] probability of
the process
being in k, time
after next given
that it is in i
now.



Therefore,

2 _ 2 2 2
Vi - (pi] ’ piz 9 . 00y pim )°

In the matrix method Vi2 is obtained from the product

of Vi] and P, i.e.,
v.2 =v.lp
] ]
P11 P12 = = Pip
I 1 - - a1
= (pil’ piZ’ ’ plm) X ! ! ~ - - :
I 1 T |
Pmi Pm2 = 7 7 P
m m - m
= (% pP.:P.q, T . :Dsns ,
<j=1 PriPo =1 PiiPj2 §=1 leme)

2 2 2
(pi] H piz 9y 200y Pim )

therefore,

Vik'= Vi'k-lp

=P e Py



where pU.k is the probability of the process being in the
state J at t=k given that it is in the statenivat: t=0-"
(now). Thus the probability vector Vik describes the
probability distribution of the process for the kth step
from now. Actua]]y, if the results after k steps are
desired, Pk gives even more complete information since it
is composed of all the individual vectors Vik. Thus Pk
gives the probabilities of being in any given state for
all possible starting conditions or states,

If the system or process being modelédas:a:Markbwu:.

chain has certain properties,vit'is possible to determine

the probabilities of outcomes after steady state conditions ¢

have been reached. After the process has been in.operation
for a long period of time, a given outcome will result X -
percent of the time. At times, it is desirable to be able
to determine these percentages. Perhaps the most detri-
mental assumed condition in this case 1s the ‘requirement
that the transition matrix contain probabilities which

" are constant over time. This requirement should always be
kept in mind when this analysis is belng made to insure
that the results obtained are properly interpreted,

To insure that steady state conditions may be ‘reached,
the chain must be ergbdiq, An ergodic chain mathematically
describes a process in which it is possible to eventually
go from any one state to any other state. It is not’
necessary that this be accomplished in just one step but it

is required that it is possible for ‘any outcome to be



possible regardless of the present state.

A more restricted case of an-ergodic chain is a
regular chain. A regular chain may be defined as a Markov
chain having a transition matrix P, which for some power
of P, has only positive probability elements. Note that
all regular chains will be ergodic but the reverse is not
necessarily true.

The existence of steady state conditions in an ergodic
Markov chain can be most easily demonstrated by computing
Pk for various values of k. As k becomes larger, the
values pjjk tend to a fixed limit and each probability
vector Vik tends to become equal for all values of i. This
suggests the following statements:

1. For a sufficiently large value of k, the

probability vector Vik becomes equal for all
i and does not change signifiéant]y for larger
values of k.

k+1 k

2. Since Vi = Vi

P, and Vik+] = Vik, then there

exists a vector V* such that:
V& = V*P,
The vector V* contains the probabilities which exist at
steady state conditions. Let v; be the jth element in the
probability vector V*. Since V* is a probability vector

the following condition must still exist:

m
by veo= 1.
j=1



And from statement 2,

(vys Vos e vm) P=(v]; Vo ;f,wvm)rzflfithis?@
matrix product is expanded, there will be m equations,
When added to the requirement that the sum of the pro-
babilities equal 1, there are (m+1) equations and m un-
knowns. These may be solved for the m unknowns by dis-
carding any 1 of the last m equations.

A special case of Markov chains that is  used to de-

scribe those processes which cease upon reaching certain

given conditions is called absorbing Markov chains.
Several kinds of pertinent information may be obtained
from the analysis of this type of chains. It is possible
to determine the following data:
1. The expected number of steps before the process
is absorbed.
2. The expected number of times the process is in
any given non-absorbing state. |
3. The probability of absorption by any given
absorbing state.
The first step in the analysis is to rearrange the
transition matrix so that four sub-matrices exist as in-

dicated below:




These smaller matrices contain probability elements but
taken individually do not constitute a transition matrix.
| f taken individually, they contain the following infor-
mation concerning probabilities. Assume there are a
absorbing states, n non-absorbing states and a + n = m
total states.

| - an a x a identity matrix, representing the
probabilities of staying within any absorbing
state.

0 - an a x n zero matrix, representihg the pro-
babilities of going from any absorbing state to
any other non-absorbing state. |

A - an n x_a matrix, containing the probabi]itfes
of going from any non-absorbing state to any
other absorbing state.

N - an n x n matrix, containing the probabilities of
going from any non-absorbing state to any other
non-absorbing state.

One way of finding the expected number of steps be-
fore the process is absorbed would be to find the expected
number of times the process would be in each non-absorbing
state and sum these.

The expected number of_times the process is in a
non-absorbing state j is the sum of the following terms.

Expected number of times in j = (1) (probability of
being in j at start) + (1) (probability of being in ] after
1 step) + (1) (probability of being in j after 2 steps)+...



= ]+ N+ N2+ ...

For the larger power of N, the above geometric series
converges to (1| - N)m1 (Kemeny and Snell, 8). Thus, for a
given starting state, the matrix (1 - N)"] gives the ex-
pected number of times a process is in each non-absorbing
state before absorption.

To find the probability of absorption by any given
absorbing state, a similar logic:is used in the analysis.
Let j signify some given absorbing state; let i signify
some specified non-absorbing state,

Probability of ending in j = (probability of going
from i to j in 1 step) + (probability of going from i to j

in 2 steps) + (probability of going from i to j in 3 steps)

+.
= A+ NA + N2A + ...
= (| + N + N2 + ...) A..
For higher powers of N the quantity (1 + N + N2 + hee)
converges to (I - N)'] . Therefore,
2

(L +N+N+ ) a=(1-N)"a.

Higher order Markov chains are those Markov chains
whose future outcomes depend upon one or more immediately
preceding states. For example, in the case of the first.
order Markov chain the next outcome depends only upon the

present state, in the second order Markov chain the

future outcome depends upon the present state and the state
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immediately preceding the present state, in the n order
chains the future outcome will depend upon the present
state and the (n-1) states immediately preceding the
present state.

The objective of this research is to develop appropri-
ate methods of analysis for higher order Markov chains,
thus allowing them to be applied to 0.R. problems. Second
order chains are studied in detail. In the second chapter,
a model is developed after discussing the notatiohs used.
n-dimensional matrix algebra is considered as a substitute
to the classical probability theory. In the third chapter
the n-dimensional matrix algebra developed in the second
chapter is used to analyze the distribution of second order
chains at various stages (steps or periods). Steady state
probabilities, expected number of times the process is in
a non-absorbing state and the probability of the process

being absorbed are discussed in detail with examples.



CHAPTER 11
CONCEPT OF n-ORDER MARKOV:  CHAINS

The stochastic process (Xt; t=0, 1, 2...) defined in
the state space S = (S], 52, ceoy Sm) is an n-order Markov
chain if it has the transition probability matrix P having
the following properties:

1. The element of P which is the probability of the
next outcome is dependent upon the present state
and (n-1) states immediately préceding the present
state. |

2. The elements of P are constant over time.

As in the case of first order Markov chains, the elements of
the transition probability matrix of higher order Markov
chains are also called one step transition probabilities
since they describe the conditional probability of being

th

in a particular state in the n step, given the states

at t=0, 1, 2, .-, n-1.
Notations

[t is worthwhile to describe the notations before the
detailed study of the Markov chains. is undertaken.
P - transition probability matrix, or the matrix of

one-step probabilities.
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p . .- element of the matrix of one-step
a,b,..,1,]
transition probabilities. It is the conditional
probability of the process being in the state j

at the nth

step given that it was in the states
a,b,...,i at t=0, 1, 2, .., n-1 respectively.

k . .- probability of the process being in the

Pa,b,...,1,]
state. j at the (n-.1+k)th step given that it was in
the states a, b,...,i at t=0, 1, 2,..., n~1
respectively.

[ - Identity matrix.
Model

It may be convenient to think of a Markov chain as a
modeling and analysis technique suitable for a special case
of probability problems. These probability problems may
be analyzed theoretically using the fundamentals of classi-
cal probability theory. |If a process is to be analyzed by
an n-order Markov chain model; the process must have one
step probabilities. -These one-step probabilities consti-
tuting the transition probability matrix characterize the
process during its transition from a given condition to
any other state in one step. The elements of a transition
matrix must satisfy the Markovian properties mentioned in
the beginning of this chapter. Since the transition
matrices of third or higher order Markov chains have more

than three dimensions, it is advisable to consider the



13

transition matrix of a second order Markov chain for dis-
cussion.

Let (X t=0, 1, 2, ...) be a second order Markov

£
chain with the state space S having only twe discrete
points (a, b), then its three dimensjonal transition pro-

bability matrix P in two dimensions will be as given

below:
t=0 t=1 t=2
a b
a Paaa Paab
a
P= b

Paba pabb

a Phaa Pbab

Pbba Pbbb

Each row in P is a probability vector descrfbing the
process exhaustively for the given present state and the
state immediately preceding the present state. Since

each row is a probability vector the sum of the probabi-
lities in each row must be equal to one. The dependency of
the process upon the state immediately preceding the
present state (state at t=0) is shown in Figure 1,in three
dimensions. In Figure 1, there are two 2 x 2 matrices, one
for every possible state at t=0. |f the process does not

depend upon the outcome at time t=0, then these two 2 x 2



a b t=2
1;5///1 phaj>////1 Paab
aj |
[l )
i Wl i
b/ | Poaa L/ |Poab
| -—r—--
1 : i
Vo,
| 7 b}p al
/F_'”'"I__/"i
// | ! // }pbu)
A gl W ) 7 B
LI B |
l// | ! /7
L_ﬂ_¢_7%_q-__
/ L7
s |/
7 ,:’
t=1

Figure 1. The Transition Probability
Matrix P of A Second Order
Markov Chain with the State
Space S=(a,b)

1k
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matrices reduce to a 'single 2:x 2 matrix independent of the

outcome at t=0 and it is-a first order Markov chain.

The one-step probabilities can be used to analyze the
distribution of the process at different steps using the
classical probability theory. An n-dimensional matrix
method is developed as a substitute to the classical pro-
bability theory. Since the discussion about the steady
state and the absorption characteristics of the process
requires the knowledge of n-dimensional matrix algebra, it

is deferred to the next chapter.

Solution of Higher Order Markov Chains and

n-Dimensional Matrix Algebra

Let (Xt ; t=0, 1, 2, ...) be a second order Markov
chain with the state space S= (a, b) and the transition

probability matrix P having the following numerical values:.

rEaaa pa;; F618 O?EW
Paba Pabb 0.6 0.k
P= 1 Phaa Pbabl = {0:° 0.5
Pbba  Pbbb| |03 0.7

P consists of four pr&gébility vectors, V] =(0.8, 0.2),
V, =(0.6, 0.4), V; =(0.5, 0.5), and V), =(0.3, 0.7). The
second stage distribution of the process can be analyzed
eithér by the classical method or by the matrix method.

The classical and matrix methods are both discussed to
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show that they give the same result. However, the matrix

method is computationally superior to the classical method.
Classical Method

Suppose pabaz is the probability of the process being
in the state a time after next (i.e., at time t=3) given
that it was in the state a in the step immediately pre-
ceding the present stage (i.e., at t=0) and is in b now
(i.e., at t=1). This probability can be calculated by
analyzing the possible states that the process may take
during the intermediate stages between the present and the
final stages by letting the first (the stage immediately
preceding the present stage), the second (the present), and
the third (the stage immediately following the present
stage) stages to be 0, 1, and 2

stage t=0 1 2 3

statem=a b a or b a

For the above possible states in the corresponding periods,

2 _
Paba ~ Paba Pbaa ™ Pabb Pbba
The rest of the second-stage probabilities can be

calculated in the same way.

For paba3 the possible states in the corresponding
periods will be:

étage t=0 1 2 3 L

stagem=a b aor b aorb a
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For the above poSsible states
3 . +
Paba Paba Pbaa Paaa Paba Pbab Paba
* Pabb Pbba Pbaa * Pabb Pbbb Pbba. (1)
The rest of the third-stage probabilities can be calculated

in the same way.
Matrix Method

The distribution of higherborder Markov chains at
various stages will be analyzed by the matrix method after
the discussion of the process of higher order matrix
multiplication.

The process of multiplication with matrices of 3 or
more dimensions proceeds in a similar manner to the
muitiplication of two-dimensional matrices. An element in
the product matrix is the result of the product of two
uniquely defined vectors.

Even in a matrix of more than two dimensions, a
vector is still identified by a fixed position in every
dimension but one and it contains all elements in that
dimension which are common to the fixed positions of the
other dimension. For example, in a 2-dimensional matrix,
a row vector is that vecfor in the i]th row which contains
all 12= 1, 2, ... elements in the izth row. Note that an

element is uniquely defined by an i1i2 subscript.
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In a three dimensional matrix, an element is uniquely
identified by three subscripts, perhaps labeled 313233 with
each letter denoting a position in that given dimension,

A vector may be defined by fixing two of these dimensional
variables and while containing all elements in the third
dimension having the fixed subscripts in common. Referring
to Figure 2, element (3,2,2) is the third element in the

i] dimension, the second element in the i2 dimension and
the second element in the ig dimension. A vector might be
labeled as (§]=4, iz=3, i3= 1,2, ...) which says that it
contains all elements having i]=4, i2=3 in common.

To obtain an element in the product matrix, the dot
product of two vectors must be obtained. For example, in
a three-dimensional matrix, element ('i]=2y i2=3, i3z5) is
the dot product of the vectors (i1=2, i2=39 33=1, 2, 3 ...)
and (i1=3, i?=1, 2, 3 ..., i3=g), in terms of notation,
the product element (2,3,5) =kE](aQ3k)(b3k5) for a cubic
matrix of m elements on a side. In 5 dimensions, the

m
product element (2,3,5,4,6) :kEY(aZSSMk)(bBSMké)’ in the
case of n-dimensional matrices of m elements on a side,

the product element (1,2,4,.., m-1,5) is the dot product

=m-1, | =

of the row vector (n]=1, 32=2, u3=h, R | n

1,2,..., m) and the column vector (El=2’ 52=h,,,,, in-?
m-1, iﬂ_1=1,2,..,, m, in=5),

As an example of matrix multiplication, consider the
product of two four-dimensional matrices A and B

AB=C
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Let each matrix contaln two elements along each dimension.

Since It is not possible to display a matrix in the full

L dimensions, a two-dimensional array identified by

subscripts will be used.

ayy11=2
a ==
11211
812113

812217

8711172

35121=!

39911~/

859216

6
6
2

R
biy21=

1211°
=4

=6
6

1221
2111
21217
22117

22213




AB=C=

2
ShinT LB 21k Pk

k
= (2)(6)+(3)(6)=30
2

T a
1 o112k

b

11217 12k1

= (1)(2)+(4)(4)=18

2

c =3 3 b
1211 k=1 121k

21k1

= (3)(6)+(2)(6)=30

2

Cc = 3
12217 |,

2122k P2oki

= (5)(1)+(4)(3)=17

2
Z @01k Priki

k=1

= (2)(6)+(3)(6)=30

2
by
k=1

= (1)(2)+(1)(k4)=6
2

by
k=1

b

q212k P12k1

321k P21ki

- (7)(6)+(5)(6)=72

2
T o a.. b
k=1 222k “22k]

= (6)(1)+(6)(3)=2L

“1112°

€1222°

21127

€2122%

C92127

€9222°

[}
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2
Z @ik Prike

k=1
(2)(1)+(3)(2)=8
2

)
k=1

b

112k P12k2

(D (H)+(4)(1)=38

2

T a b
k=1 121k “21k2

(3)(6)+(2)(3)=24

2
z
k=1

b

@122k P22k2

(5)(4)+(L)(6)=b4 .

2
z

a b
k=1 211k ~11k2

(2)(1)+(3)(2)=8

2

Y a b
k=1 212k “12k2

(D (B)+(1)(1)=5

2
b3

k=1

b

@291k °21k2

(7)(6)+(5)(3)=57

2
z

a b
k=1 222k T22k2

(6)(&)+(6)(6)=60

s



\\'\ .

Figure 2. A Representation of a Three-
Dimensional Matrix Sub-
scripted by (i],iz,iB)

21
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Determination of the Distribution of Higher Order
Markov Chains at Various Stages by the

Process of Matrix Multiplication

Let the first, the second, and the third stage

transition probability matrices be represented by P, P2,

and P3 2

respectively. The transition matrix P” is obtained
by multiplying P by itself.

To find the value of p 2 by the matrix method the

aba
following procedure is followed. Take the probability
vector such that each of its elements has the first n of
the given states as.its first n subscripts in the proper
order. The next step will be to find the column in Pi<"I
such that its first element's first n subscripts are the
same as the last n subscripts of the first element of the
row vector, these n subscripts in both‘the elements must

be in the same order. The same relationship must exist

for the rest of the elements of the row and column vectors.
The n+1 st subscript of all the elements of the column
vector is the state where the process is going to be in the
n-1+k th step, where k=1, 2, 3 ,... After selecting

" the row and column vectors they are dotted with each other

to get the conditional probability. For pabaz’ the row
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and column vectors are (paba’ pabb) and (pbaa respective-
Pbba

ly. Therefore,

2 ""‘f-"‘ﬂi'.') ‘ ‘.:“\

2 _ | | p
Paba = (paba’ pabb)' (Pbaa)
_ ' bba

~ Paba Pbaa * Pabb Pbba

Paaa = (paaa’ paab)' ( aaa)

|

Paba

(paaa paaa + Paab paba)’

The same way as above the values of pbbaz’ pbbbz’-paabz’

pbaaz’ and pbabz are calculated. These values constitute

the second stage transition probability matrix-Pz,‘i.e.

o, 2]
Paaa Paab
' 2 -2
Bg= Paba Pabb {.
2 2
Phaa Pbab
2 2
Pbba Pbbb
For the ~nJ;;rical exaﬁETé, P2 will be:
0,76 0.2k |
p2 = o.42 0.58 |.
0-70 0030
0.36 0.64
L:—B—- —=
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The elements of P2 completely describe the process at the
second stage. Each vector gives the probabillity of the
ﬁrocess for all possible states in the second step for the
present and past states.

To obtain the third stage probablility transition

matrix P3, P is multiplied by P2, .., P3~= P x Pz.
:; 1 T~ 2 7]
aaa ‘paab Paaa paab
2 2
{Paba Pabb Paba Pabb
3 2 o2
P = pbaa Pbab X pbaa Pbab
2 . .2
Poba  Pbbb [Pbba Pbbb
EN 2
Paba = (paba, pabb)’ Pbaa
-2
Pbba
_ 2 2
N (paba Pbaa T Pabb Pbba ).
3 2
Pabb = (Paba’ Pabb)* [Pbab
2
Pbbb
~ 2 2
= (Paba Pbab * Pabb Pbbb )*
3 2
Paag = (paaa’ paab)’ Paaa
2
Paba
2 2

(paaa paaa + Paab paba ).



3.
Pbba =

1

If p2

2
(paaa’ paab)' paab
2
pabb
2 2
(paaa paab + Paab pabb )

2
(pbba’ pbbb)' pbaa
2

Pbba

2 2
(Pbba Phaa * Pbbb Phba )

®
(Pbba’ Pobb?*  [Pbab

2
Phbb
2 2
(Pbba Pbab  * Pbbb Pbbb )
( ) 2
Pbaa’ pbab : paaa
2
paba
2 ' 2
(pbaa paaa + Pbab paba )
( B, ) 2
Pbaa’ Pbab’* [ Paab
2
\ Pabb
2 2
(pbaa paabb + pbab pabb )

appear as given below:

25

is rewritten in terms of its elements it would



The elements of P3

same as those of P3

can be verified for

3

Paba = Paba
From Pz,
2
Pbaa = Pbaa
and
2 .
Phba = Pbba

p
bbb |

obtained by class

the value of Paba

2
Pbaa T Pabb Pbba

paaa + pbab paba

Phaa ¥ Pbbb Pbba.
2

Substituting the values of Phas and

3 P
Paba = aba

Pabb
Paba

Pabb

The same value for p

method (Equation 1)

(pbaa Paaa + pbab

(Pbba Pbaa * Pbbb
pbaa Paaa + paba

Pbba Pbaa ¥ Pabb
3

aba  Was obtained

26

obtained by the matrix method are the

ical method. This

3.

2, (2)

(3)

(L)

2 .
pbba in (2),

paba) +

pbba)
pbab paba +

Pbbb Pbba .

in the classical
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For the numerical examp]e,SP3 would be

0.692  0.308
PP = |o.56L  0.436|.
0.590 0.410
0.462 0.538
In multiplying higher order matrices, care must be
taken to see that Pk = P X Pk'] # Pk"] x P. This can be

proved by considering the above-mentioned second order
Markov chain having the transition probability matrix P

2 x P

and the state space S= (a, b,). |[|f the method of P
is used to determine the third stage transition probabil-

ities, the element paba3 would be as given below:
paba3 = paba2 Phaa + pabb2 Pbba .
Representing pgy .2 and Papp2 in terms of one step

probabilities

paba3 (paba pbaa + Pabb pbba) pbaa + (paba Phab

]

* Pabb Pbbb) Pbba

= paba Phaa pbaa + Pabb pbba Pbaa + paba pbab Pbba

™ Pabb Pbbb Pbba | (6).
Equation (6) is not equal‘to (5). The first and the third
factor in (6) do not follow the logic. The first factor
must give the conditional probability of process being in
a at (t=h) given that it was in a at t=0, is in b, a, and
a at t=1, t=2, and t=3 respectively. The subscripts of the

one step probabilities of the first factor are not
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according to the required states atvvarious steps. The
third factor, in the same way, does not follow the required
distribution of the states at various steps.
Therefore, ph= p x pK-T £ pk-T 4 b,

From the matrix method it is observed that P|< can be

determined from Pk']

and P. In thevc]assical method all
‘the states in between the stages are analyzed exhaustively
to détermine Pk. For higher values of k, the classical
method, therefore, does not have computational superiority

over the matrix method.

Generalization of Matrix Method for

n-0rder Markov chains

Let (Xt; t=0, 1, 2, ...) be an n-order Markov chain
with state space S= (a, b, ¢, ..., m) and the transition

probability matrix P, The k step transition probability

matrix PX is the product of P and pk-1, .

k

In determining
the element of P" the procedure mentioned in the descrip-

tion of the matrix method is followed. For example,
k

Pra,b,..,i,j" | — —
Pp -
k-1
P ..,i,b,]
)
(pa,b,..,i,a,pa,b,..,i,b,..,pa,b,..i,m). ' '
!
k-1
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It is noticed from the equation that the first n subscripts
of all the elements of the row vector of P are the same as

the first n subscripts of pka b and these n sub-~

yeesiy]
‘'scripts have the same order. The last n subscripts of the
elements of the row vector are the same as the:first n
subscripts of the corresponding elements of the column
vector. The (n+1)St subscript of all the elements of
column vector will be the state where the process is

)th

required to be at the (n-1 + k step.

The result of the above equation is

K _ k1
Pa,b,..u,i,i™ Pa,b,..,i,a) (Po, ..,1,a,]) +
k-1
(Pa,b,..,1,6) (Pb, ..,i,b,])

k=1
+a-'.' +(pa’b’..i’m) (pb, --,i’m’j).



CHAPTER 111

STEADY STATE AND ABSORPTION PROPERTIES OF
HIGHER ORDER MARKOV CHAINS

Determination of Steady State Conditions of

Higher Order Ergodic Markov Chéins

.~ The existence of steady state conditions ina higher
order ergodic Markov chain can be demonstrated by:computw
ing Pl< for various values of k. For the example given
in Chapter |1 the probability matrix at the steady state

would be as given below:

.6 b
6 L
Pk = | .
26 b
6 Lk

Because of the tediousness involved in the above
work, a computer program is given on page 31,

Tovdetermine the analytical method for finding
the steady state probabilities recall what was said in
Chapter | regarding the steady state probabilities of first
order Markov chains. As in the case of the first order

Markov chains, steady state probabilities for higher order

30



A FORTRAN IV Program for Determining the Steady State

Probabilities of a Second Order Markov Chain with the
State Space S=(a,b):

1 DIMENSION A(R)P(8),R{8),5(8)
2
10,0,0,04,0,0/

3 READ{Erl!n

4 1 FORMAT(BF4,2)

5 DD21=1.27

6 IF{1.GT.1)GOTD3

7 DO5J=1,8

B 5 PlJI=ALJ)

9 GOTO4

10 I RILIGALLI*PLTIFAL2)%PLS)

11 RIZ)=ALLI*PI(BI+AL2)%P(6)

12 RIZI=A(3)E=P(3)vA(AH)2P(])

13 Ki4)=A13)%P(4)+Al4)*P(2)

14 RIS)=AI5)*P(TI+A(6)*P(5)

15 RIG)I=AL5)%P(B)+A(6)*P ()

16 RITI=ALTI#*P(3hvAlS)*P(L)

17 RIBY=ALTI®P L4l vALBI2P(2)

18 DilbK=1,8

19 6 PLIKI=IRIK)
20 4 WRITELH,T7)P
21l DUBL=1.8
22 8 S(LI=S(L)I+PIL)
23 2 CONTINUE
24 T FORAAT(SX,8IFB.642X))
25 HRITELL,T)S
26 SThe
2 END

$ENTRY

0.600000 0.400000 VJHBO0000 0,200000
0,420000 0,580000 0. 766000  0,240000
D.564000 0436000 0,6922000 0,308000
0.538800 0461200 U, A66400 04333600
DaB16960 Db IU40 W G40LBO  0,399120
N.57T032 0,472 U.628096  0.3(0)90%
0.538494 QCe.4llh%% Uaiblltds 04382110
0.590808 0.,409191 0,0l2006 0,387T994
0.594710 0.405290 U.6077T6o 0,39221313%
0.596184 0.404815% 0.609154 0,394845
0.597T649 0.4024%0 UA03360 0,396639
U.59838% O.40Ll6L4 0,602218 0,397781
0.598971 UL.40L027 0.6001451 0,398547
0,%99309 0.400589  0,50095% 0, 399043
0.59955%3 0.400446 0400826 0,399372
0,599703 0.40029% 0,600411 0,.3995%87
0.599806 0.400192 06.600270 0.399729
Q.5G9872 0,4001217 006000117 0, 399821
0.599916 DecOOKZ  QeuDOLLE 0, 399882
0,599944 0,4000%4 0,L00076 O, 399922
0.599963 0.400035 U,600049 0,399948
0.599975 0.40002¢ 0,600032 0,39%9966
0.599983 0.400014 0.600021 0,3999717
0.599989 0,40000% 0.60001% 0.399984
0.599992 0.40000% 0.600008 0.399989
0,599994%  0,400003 0,AD0000S 0, 399992
0.59999s 0. 400001 O U003 0.399994
FEFPHEERR HHVALVLE  SLEIRREE  GHBEEECS

DATASU LY 2502055030 4504),5(5)+5(6),5(7),518)/0.0,0,04040,0.0,0.0,

0.300000
0, 360000
0,462000

‘0.500400

0.538680
0.557856
0.573175
0.581991
0.%83350
0.592261
0.594958
0.596671
0.597821
0,606556%
0,54%9059
0.599381
0.599593
0.599732
0.599824

0.599884

0.599923
0.599949
0.599966
0.599977
0.5999H5
0.,5949989

0.59999%"

$EPRRE Y

0,40 00?4
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0,700000 0,500000
0,640000 0.700000
0,533000 0,590000
04499600  0,628000
0.461320 . 0.602600
04442144  0.608920
0.426824 0.602564
0,418008 0,603188

C0.411649 0.601407

0.407732 0,601238

0.405041 ' 0,600669 .

0.403327 0.600505
U,402177 0.600301
N.401433 0.600211

10,400939  0,600132

0.40061T 0,66003Y9
0,400405 0.600057

0.400266  0.600038

o, 400174 0.600024
0, 4UQ}IQ 0,600016
9500010'
tﬁﬁﬂﬂﬁa DL600006

10.400031 Q.600003

0.400020 0.6C0002
0,400013 ' 0.6U0001

0,4400008 olgooaoo

0.400005
EREEFERY

0.500000
0.30G0000
0.410000
0.372000
0.387400
0,391080
0+397436

'396811
0.393593
ocﬁqubi
0,399330
0.399494
0.399697
0.499747
0.399866
0.399909
0439994 1
0.399960

04399974,

0,399982
0,399568
0.39999¢
0.399994
9.19999a
1 0,399997
0.399997
0.3%99998
CEREEERE &




32

Markov chains do not depend upon the present and past
states of the process. Because of the complexity involved
in the multiplication of higher order matrices, the
ané]ytica] calculation of steady state probabilities for
higher order Markov chains is much more difficult than in
the case of first order Markov chains. The general pro-
cedure is to reduce the probability transition matrix P
of the higher arder Markov chain to an equivalent first
order matrix. Once a first order matrix is determined,
determination of steady state probabilities becomes easy.
The concept of reducing an nrorder matrix can be demon-
strated with a secohd order matrix. Let P be the trans-
ition probability matrix of a second order Markov chain,

then P would appear as given below:

[ Paaa paég
P= Paba Pabb

Phaa pbab

Pbba EQQEI

P contains two 2 x 2 matrices, one for the state a immedi-
ately preceding the present state and the other for the
state b. |f the process is an ergodic one, these two
matrices must be the same at the steady state independent
of the states immediately preceding the presgent state.
Since this steady state still depends upon the present

state, it is called an intermediate steady state. The
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intermediate steady state probabilities can be determined

by treating the above matrices as first order ones.

k
Pa

then P4

L|m|t p
k = o

ba

ba'

aba

I

1

k-1 k-1
Paba Pbaa T pabb Pbba

k=1 k-
Paba Pbaa * (1- paba) (1- pbbb)

k-1 kel . k-1
Paba Pbaa © (1"Pubb? = Paba * Paba Pbbb

k-1
Paba (Pbaa®™ Pobb = 1) * (1 = Pppp)

Phaa © Pbbb - 1

(1= Pppp)

Zb] (x) +Y

k-2

(paba (X) 4Y) X + Y

k-2

2
Paba (x*)

+ Y(1 + X)

2

(P52 () + ) X2+ ¥ (1 +X)

2

pab3 (X ) + Y (1 + X + X%)

k-1 2
Papa X + Y (1 +X +X°+ ..+ X

Limit (Papg X< 1+ Y (14X + X7+ ..+ X))

k= e



Limit
k => o

paba

Paba

Pabb

Pabb

]

Pabb =

34

Y(1-x)"!

] = p W
bbb '(8).
2-Phaa”Pbbb

k-1 k=1
Paba Pbab * Pabb Pbbb

k-1
(1- pabb) (1-Ppaa) * Pabb Pbbb

k=1

1"Phaa - abb (1- pbaa) * Pabb Pbbb

k-1
Pabb (Pobb * Ppag =1) + (1 = Py )

Pobb * Pbaa 7 !
1 - Pbaa

k=1
Papp X + Y

k-2 '
(pabb X +Y) X +Y

prZx% 4y (1 + %)

Pabb xke1 4y (1 + X + X2 & ...+ kaz) .
Limit (pabb Xk“] +Y (1 + X +X2 +ooe +Xk”2))
k= w

Y (1-X)



and Y

then k
aaa

Limit
k = o

paaa

]"pbaa

2-Pppb " Ppaa

35

1-p
baa (9).

2-Pbaa~Pbbb

k=1 k-1
paaa Paaa + Paab paba

k=1
Paaa Paaa T (]'paaa) (]'pabb)

k-1
Paaa Paaa * (]"pabb) " Paaa (]wpabb)
Paaa (paaa * Papb - 1+ (1"pabb)

Paaa ¥ Pabb ~ ]

k-2

(paaa X +Y) X +Y

+ Y (1 + X)

xk=1 4 Y (1 +X + ooe + Xk”z)

paaa

Limit (p ., k=1 4y (1 + X + vuu + anz))
k = o

Y (1-x)"!



Let

and

paaa

Paab

then Paab

Limit. k

k=>w

Paab

Paab

Paab

I

]

I

Pbba =
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1-p_,

abb (10).
2 - Paaa "~ Pabb
k=1 k=1
paaa Paab Paab pabb

k-1 k 1
(]"paab) (]”paaa) * Paab Pabb
(1- )- (1- ) + p<7]

Paaa aab aaa paab Pabb
k ]
Paab (paaa * Pabb -1) + (]-paaa) ‘
Paaa + pabb -
(]-paaa)
k-1
Pas X +Y
(P22 X +¥) X + Y
pgaé X2 4 ¥ (1 +X)
Limit (paab Xk'] + Y (1 +X + ... + kaz))
kK=o
Y
I = X

'"Paaa (11).

z - Pabb ~ Paaa
k=1 k=1

Poba Pbaa T Pbbb Pbba



Let X
and Y
then ptba
Limit piya
k:}w
k
Pbba
k
Pbba
k.-
Pbbb

1

]

il

Limit (pbba X
k=>e

k-1 |
Pooa Phaa *+ (1Pypa) (1-Pypy)

k-1 -1
Piba Poaa * (17Pppb) = Phpa (1-Ppp)

k-1
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Pbba (Pbaa * Pppb = 1)+ (1 = Pppp)

Pbaa * Pbbb = !

(1-Pbbb)

k=1

pbba.x + Y

(pbba X +Y) X +Y

k-2 2

Poba X ¥ (1 X)

k-2

XU oy (1 +x + .. X578

Pbba

k-1

Y
1 - X

1~Pbbb

- pbaa " Pbbb

k-1 k-1

= Pbba Pbab * Pbbb Pbbb

It

k-1
(1- Pbbb) (1~ pbaa) + pbbb pbbb'

+ Y (1 +X 4+ .o, +X

k=2))

(12).



Limit
k=> o

K
Pbbb
Pbbb

Pbbb

Pbaa

L]
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| k-1
(1-Ppag) - pbbb (1-Puaa) * Pobb Phbb

k-1
Pobb (Pbbb * Phaa =10 + (1-Pyaa) -

Pbbb * Pbaa ~!

]"pbaa

k=1
pbbb X +Y

(pbbb X +Y) X +Y

k=2 2

Popp Xt Y (1 + X)
k-1 k-2
Pbbb X" +Y (1 +x + .. +X ) .
Limit (pbbb xk-1 4 Y (1 +X + ... + kaz))
k= o
Y
I - X
1-p
, = (13)
2 - Ppbb " Ppaa

k=1 k-1
Phaa paaa + pbab paba

Pbaa Paaa * (1- pbaa) (1- pabb)

k
Phaa Paaa ™ (]"pabb) pbaa (1- pabb)



| f X
and Y
then pEaa
Limit ptaa
k = o
k
Pbaa
k
pbaa
k
Pbab

i

I

]
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k-1
Pbaa (Paaa * Papp ~1) + (l-pgp)

Paaa T Pabb -1

(1 - pabb)

1-p.
abb (]Li-).

=

Paaa = Pabb

k-1 k-1
Pbaa Paab ¥ Pbab Pabb

k-1
(1 pbab) (T-Poaa) * Pbab Pabb

k=1

(1-Paaa) - pbab (1-Poaa) * Pbab Pabb

k=1

Phab (Papb *

Paaa -1+ (epygg)
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If X' = Papp * Paaa -1
and Y = (1 - paaa)
k-1
then pll;ab = pbab X + Y
= (i X)X+ Y
= piE XA (1 +%)
= Ppab Xk'] + Y (1 +X + ... + Xk'z) .
Limie ply = Limit (py_ X1 4y (1 +x + .00+ xK72))
k@m k@co
bab 1 - X
pk a I -Paag (15)
bab - » o ]5;".
2 - Pabb " Paaa j
From equations (8) and (12)
1-p
k k bbb
Paba- = Pbba = ‘ u (16).
2 - Ppaa " Pbbb
From equations (9) and (13)
1-p
pgbb.= k ~baa (17).

Pbbb i
| 2 = Ppaa -~ Pbbb

From equations (10) and (14)
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1-p

k  _ k - abb

Paaa = Pbaa 2 - b - , (18).
Paaa Pabb

From equations (11) and (15)

1-p

k - k _ aaa

Paab = Ppab =~ ) — (19).

" Paaa ~ Pabb

It is clear from (16), (17), (18), and (19),that at the
intermediate steady state the effect upon the process by
its state immediately preceding the present state is
eliminated and the two 2 x 2 matrices are equal. They

would appear as given below:

—
(;gaa Pgab
pgba pgbb

P'= plI;aa pll:<>ab

If the results of (16), (17), (18), and (19) are utilized

for P,, it would appear as given below:

"k kT
Paa  Pab
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From the above representation,it is observed that P,
consists of two identically equal 2 x 2 first order
matrices. The steady state probabilities for these first
order matrices can be computed using the same procedure
for the determination of Intermediate ‘steady state
probabilities. At the steady state all the probability
vectors will be the same. This is due to the elimination
of the effect of the process's present state. The steady

state probability matrix P would appear as given below: :

P

0 X

O
I

I

where

k
Pk = TPy | (20)

7 g
2 = Paa ~ Ppb

~

and ‘ '
k - ]_pla<a (2])
Ppb < 2 " K
" Paa ™ Pbb

Suffix a of pg refers to the future outcome of the
process. The future outcome of the process is completely
independent of the process's present and past outcomes.
The intermediate steady state probabilities for the

numerical example having the P as given below can be
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calculated using the -above method.

Paaa

‘paba

Pbaa

Pbba

From equation (16)

k K
Paba Pbba

From equation (17)

k ok
Pabb = Pbbb

EW

paa

Pabb

pbab

Pbbb

pba

Pbb

—8 .7
.6 i
.5 5
'3 .y
M -
) '"Pobp
2 = Phaa " Pbbb
- - .7
2 - 5 "'-7
= 1"Phaa_
2 - Pbaa ~ Phbb
- 1- .5
2 - '05 - 7

0.625
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From equationa (18)

1-p
k  _  k _ k abb
Paaa Phbaa = Paa ~ 9 . _h
Paaa Pbbb
- ] "voh
2 [l 58 - QL"
= (0,75 .
and from equation (19)
1-
k _ k _ k - Paaa
Paab = Ppab Pab = 9 _
" Paaa Pabb
= ol .‘8
2 - 08 - 'LI'
= 0.25

Therefore the intermediate steady stafé*probabiﬂity matrix

would be:
.75 =257
; .375 .625
s L2
.375 .625

Finally, the steady state probabilities can be computed

from equations (20) and (21).

K
K I-Ppp
Pa 2‘_ k _ k
paa pbb
1 - .625

2 ”'075 - 0625
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= 0.6 .
- 1-Paa
b 2 - p:a ) ptb
- .75

= 0.4 .

Therefore, the steady state probability matrix PS wou ld

appear as given below:

"6 L4
- .6 4
P = 2 =3
6 b
6 b

The same value of P, was obtained using the computer. The

computer solution is given on page 31.

Steady State Conditions of Higher

Order Markov Chains

The procedure for finding the steady state probability
distributions of higher order Markov chains can be demon-
strated by using a third order Markov chain. Let
(Xt; t=0,1, 2, ...) be a third order Markov chain de~
fined in the state space S= (a, b) having the transition
probability matrix P, P will have four dimensions for the

third order Markov chain and the number of elements of P



L6

will be 16. After the first reduction the intermediate

steady state probabilities will be as follows:

1-p
k _ .k _k - aabb
Pagaaa = Pbaaa = Paaa © 2 _ _
Paaaa Paabb
1-
k - ok ook Pagaa
Pagab = Pbaab = Paab ~ 2 o - ‘
Pasaa Paabb
k _ ok _ kL 1Pabbb
Paaba ~ Pbaba paba 2“_ -
' Pabaa Pabbb
kK _ ko _ ko "~Pabaa
Paabb = Pbabb T Pabb T T T _
pabaa pabbb,
k _ .k _ ok 1-py..
Pabaa = Pbbaa = Pbaa = ‘ babb
2 - Ppaaa "~ Pbabb
k = nk = ok 1-Phaaa
Pabab =~ Pbbab T Pbab T T ~
Pbaaa pbaaa
K ok ko '~Pbbbb
Pabba = Pbbba Poba = 5 AR '
" Pbbaa ~ Pbbbb
kK ok K ""Pobaa .

H

1

Pabbb Pbbbb = Phbb

" Pbbaa ~ Pbbbb

From the above it is noticed that the process is reduced

to a second order chain after the first reduction. The
process now depends only upon the present state and the
state immediately preceding the present state. Two more
reductions will lead to the steady state depending only up-

on the future outcomes. This has been shown in the second
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-order Markov chain example.

The knowledge of steady state probability distribu-
tions of second and third order Markov chains can be
utilized for developing a generalized procedure to deter-
mine the steady state probability distributions of n-order
Markoy chains. Let (Xt; t=0, 1, 2,...) be an n-order
Markov chain with the state space S= (a, b) and the one-
step transition probability matrix P. P will have n + 1
dimensions. The number of reductions necessary to deter-
mine the steady state condition of this n-order Markov
chain is n. In the first reduction the dependency of the
process upon its past outcomes is reduced from n states to
n-1 states. Let m represent the ordered sequence of the
outcomes of the process from t=1 to t= n-1. Then, pg;ﬂ’a
répresents the probability of the process being in the
state a at the (n+k)th step given that it was in a, and
m. The process has to pass intermediate steady states
to reach the final steady state and each intermediate
steady state will be reached at every k steps. - For de-
termining the intermediate steady state the process fis
considered to be a first order one as far as the state for

which the intermediate steady state is required. Therefore,

k _ k-1 k-1
pa,rr,a - pa,ﬂ,a pTT,a,a +,pa,'rr,b pﬂ,b,a
_ k=1 k=1 B :
h pa,rr,a pw,a,a + (1 pa,n,a) (1 pTT,b,b)
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Let (pw,a,a +é'pw-r,b,b_]) =X
and (]-pTT’b’b) = Y .
k k=1
pa,ﬂ,a - pa,ﬂ,a (x) +Y
_ k-2
= (X Pa,n,a +Y) X +Y
_v2 k-2
_ k=1 2 k=2
= X pa,ﬂ’a + Y (T +X +X°+ ... +X )
Limit pg o g = Y
k2> 1T - X
= ]wpﬁ,b,b ‘ ‘.
2 = Pr,a,a ~ Pr,b,b
Using the above procedure
k T-p
pb,ﬂ,av= m,b,b .
2 - pﬂ,a,a - pﬂ,b,b
Thus
1-p
k _ ok _ ok _ m,b,b .
paaﬂ"a - pb’”sa h p”sa - 2 - .,

prr,a,a pﬂ,b,b

The values of other elements are determined in a similiar
manner. -From the above result it is observed that the

effect of one past state on the process's future outcome
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is eliminated and (n-1) more such reductions will com-
pletely eliminate the effect of all the past states and
the future outcome of the process fs independent of the
‘past outcomes.

The procedure for determining the steady state dis-
‘tribution of higher order Markov chains is applicable only
when the process has two states. A reduction technique
for the case when the process has three or more states is
discussed along with an example. Let a second corder Markov

chain have the transition matrix P as given below.

r‘-‘-ls.aaa paab paaq

A
w
=
W

Paba Pabb Pabe

paca Pacb pacc

12 lx 1|

Pbaa Pbab pbac

w

Phba Pbbb Pbbe

.
ot

Pbca Pbecb Phee

N

pcaa pcab | pcac

Pecba Pebb  Pebe

IS IVSEN NS (VR SV (U IV BN
l

Pcca pccb pccc

e _—

e o lololelolelnl

1=

Since the process is a second order Markov chain, it has
to pass through an intermediate steady state before
reaching final steady state. The intermediate steady

state would be found as given belaow:



@ b
a b
a b
at+b+c=1
d e
d e
d e
d+e+f=1
l[g h
g h
g h
gth+i=1

<] .3
c{ X e 2
c .3
- j
f 2
fl X L4
f 1.6

.
I
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cl(22).

(23).

7
fl(24).
.F

(25)’

il(26).

(27).

From the matrix equations (22) and (23) a,b, and c are

determined.

d,e, and f.

equations (26) and (27).

steady state distribution would be as given below:

Therefore,

Equations (24) and (25) are used to determine
The quantities g,h, and i are determined from

the intermediate
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EE

d e f

g hH 1

a b ¢
P= .

d e f

g h 1

a b ¢

Q e f

s h 1

From the above it is observed that the effect of one past
state is eliminated. Therefore the intermediate steady

state transition matrix PI appears as given below:

b [0.273  0.300  .0.427
P\ e =10.365  0.446 0.189|.
h 0.490  0.362 0.148

P, is equivalent to a first order matrix and the following

I
matrix equations are used to determine the final steady: =«

state.

y z b Y
y ziX e Yy
Y z h Y

X+y+z=1 .
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Therefore, the steady state distribution Po will be

0.341 0.372 ' 0.287

Y
Ps™ Y = |o.341  0.372  0.287].
Yy 0.341 - 0.372 0.287

From the above Ps’ it is observed that the effect of all
past states is eliminated at the ‘steady state. A re-
duction technique for n-order Markov chains will be de-
veloped after presenting an example for third order

Markov chains wifh three states. Let (Xt; t=0,1,2,...) be
a third order Markov chain with the state space S= (a,b,c)
and the transition matrix P. fn interpreting the element
Paaba, for example, of P given be]ow, it is the conditional

probability of the process being in a at t=3, given that

it was in a,a, and b at t=0, 1, and 2 respectively.



acch

TE;EEE Paaab paa;;f
Paaba Paabb Paabc
Egggg Paach Paacc
Pbaaa Pbaab pbaac
Pbaba  Pbabb  Pbabc
EEEEE Pbacb Pbhacc
Egggg Pcaab Pcaac
Egggg Pcabb Peabe
Egggg Pcach Pcacc
Egggg Pabab Pabac
Pabba  Pabbb  Pabbe
Egggg Pabcb Pabce
Pbbaa  Pbbab  Pbbac
Pobba  Pbbbb  Pbbbe
Pobca  Pbbeb  Pbbec
EEEEE Pebab pcb_ac
Pebba Pebbb  Pebbe
nggg Pebeb Pebec
nggg _pacab Pacac
Pacba  Pacbb  Pacbe
Pacca P Paccc

1

0.6 0.3
0.5 0.2
0.4k 0.1
0.7 0.1
0.6 0.2
0.2 0.6
0.5 0.3
0.3 0.3
0.2 0.3
0.5 0.1
0.4 0.3
0.2 0.5
0.1 0.8
0.2 0.6
0.3 0.2
0.k 0.k
0.6 0.2
0.3 0.3
0.7 0.2
0.1 0.7
0.2 0.7
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Pbcba  Pbecbb  Phebe 0.k 0.5 0.1}

Pbeca  Pbceb  Phbece 0.6 0.1 0.3

pcaaa pcaab pcaac 008 ’Oo ] 0. ] '/"/

pcaba Pcabb pcabc 0.7 0.1 0.2

pcaca pcacb pcacc 0.2 0.7 0.2

e PR— - ———

fn P there are 3 submatrices for every step. For all the
3 steps, there are 9 submatrices. At the first inter-
mediate steady state the three submatrices at every step
will give one submatrix. This is because of the reduc-
tion of the effect of one past outcome on the process.
The reduction of the 9 submatrices into 3 submatrices is

as given below:

= —
Paaaa paaab paaac

Paaba paabb paabc

p

Paaca aacb aacc

r—v' —— g— ———ceg
Pbaaa Pbaab Pbaac Paaa paab pgac :53Q .+229 .. 2k

Pbaba  Pbabb Pbabcjey|Paba Pabb Pabe|” 577 .222 .20]

Pbaca Pbach Pbacc| |Paca Pacb Pace| |:329 300 371

Pcaaa pca{ﬂb pcaac

Pcaba Pcabb pcabc

pcaca;}?bétb”%fgagéyﬁg

— QRS




®]

abaa

Pabac

Pabba

pabab

Pabbb

pabbc

pabca

Pabeb

pébcé

Pbbaa

Pbbab

Pbbac

Pbaa

Pbab

pbac‘

1370

.293

55

Pbbba

Pbbbb

Pbhbbc

pbba

Pbbb

pbbc

.205

.538

Pbbca

Pbbce

pbéa

Pcbaa

Pbbcb

pcbab

cbac

Pcbba

Pcbbb

Pebbe

Pcbea

Pebeb

cbcc

Pt

437

Phee

-312
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— .
Pacaa Pacab Pacac
p'acba".b pacbb Pacbe
pac;:a Paceb  Paccc _
Pbcaa Pbcab Pbcac| |Pcaa Pcab Peac .288 .556 .156
Pbcba  Pbcbb pbcbci=¥pcba Pecbb  Pebel = .572 .403 .125
Pbcca Pbech Pocec| |Peca Pecb Pocc| |:7'2 170 -118
pc;caa p;:cab Pccac - T -
Pcecba Pecbb  Peebe
Pecca pcccbl Pecee

The reduced transition matrix Pl after the

is, therefore,

‘——p_ja—,a_a Paab E.aa:
Paba Pabb Pabc
Paca Pacb pacc
Pbaa Pbab Pbac

= | Poba Pbbb Pbbe
Phca Pbcb Pbec
Pcaa pcab_ Peac

Pcba pcbb Pebe

Pcca Pecb Pece

pre——

first reduction

et

7530 .229 .2h4]
577 .222 .20]
.329 .300 .371
370 .293 337

- |.205 538 257
437 312 .25)
288 556 156
472 0h03 L7125
712,170 .118
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In the second reduction the above three submatrices will be

reduced to a single 3 x 3 submatrix as given below:

Poa Pap  Pac | H88  .2k6 266
Pl= pba pbb pr = 0321‘|’ 0395 -281 -
Pea Pep Pec 427 436 137

e

After the second reduction -the process becomes a first
order Markov chain, i.e., its future outcome depends only .
upon its present outcome. In the third reduction the
above matrix will have equal probability vectors. The

final steady state probability matrix would be as givne

below:
Py P, Pe 315 361 .32L
PS= Eﬁ BE EE = .315 .361 .324
Py Pp Pe .315 .361 .324

Interpreting P the future outcome of the process does

s?
not depend upcn its past outcomes.

The knowledge acquired from the above examples can be
used to generalize the procedure for determining the
steady state distribution of an n-order, m-state Markov
chain. . Let (Xt; t=0, 1, 2 ...) be an n-order Markov chain
with the state space S= (a,b, ..., m) and the transition

probability matrix P. P will have n x m submatrices.

This n-order Markov chain will need n reductions to reach
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the steady state. The feduction ratio will bem: 1, i.e.,
if there are m submatrices now, then in the next inter-
mediate steady state there will be only one submatrix.

For all the n reductions the procedure discussed for the

reduction of third order, 3-state Markov chains is used.
Analysis of Higher Order Absorbing Markov Chains

The following information may be obtained from the
analysis of higher order absorbing Markov chains:
1. The expected number of steps the process is in
‘any given non-absorbing state.
2. The probability of absorption by any glven
absorbing state.
The transition probability matrix P is rearranged
into four submatrices as the first step in the analysis.,

After rearranging P, it will appear as indicated below:

The submatrices |, 0, A, and N are interpreted in the same
way as in the first order case. Before attempting to
obtain the above mentioned information about the absorption
properties, the concept of identity matrix for higher

order matrices is developed. An identity matrix for a
second order matrix P for the state space S= (a,b) can

be determined from the matrix conéept Px | =P. 1t must

be remembered that P x | # | x P in the case of higher



order matrices.

{f P and | are represented as:
Paaa paag-
Paba Pabb
P= '
Phaa pbab
Phba Pbbb
Iaaa , .aab
laba !l abb
= '
lbaa Ib_ab
lbba bbb
Px I =P
i.e.,
_5éaa paab {aaa laab
paba pabb Iaba |abb
Phaa  Pbab] |['baa  'bab
Pbba  Pbbb| |'bba  'bbb
= —| PRE —|

?%aa paé;
Paba pabb
Pb@a Pbab
Poba bbb

If the above equations are solved the identity matrix |

is obtained as shown below:

59
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llo 1— lo I—-j
IL~ lo |- Jo l

The above procedure is used for matrices of any size,

The expected number of times the process will be in
a non-absorbing stateSJ is the sum of the following terms:

Expected number of times in-sj.= (1) (probability of
being in Sj at start) + (1) (probability of being in Sj
after one step) + (1) (probability of being in Sj after 2
steps) + ...

= | + N + N2 + e
As k becomes large, Nk approaches zero. [n the case of the
first order chain the quantity | + N % N2 + ..., is a
geometric 'series and is equivalent to (l-N)_]. In the
higher order chains even though Nk approaches zero for
large value of k and the quantity | + N + N2 + ... seems
to be ‘a geometric series and equals to (I—N)’],considerab1e
difficulty is faced in determining the inverse of higher
order matrix. Therefore, a method along with a numerical
example is discussed for solving the series. Let
(Xt; t=0, 1, 2, ...) be a second order Markov chain with
the state space S= (a,b,c) and the transition probability

matrix P with c as the absorbing state as indicated below:
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|

Paba

paca

Pbaa

Pbba

pbca

pcaa

Pcba

pcca

The submatrix N

B

aada

of

aab Paac i;i ;i ;E
Pabb Pabc ;E ;E LE
Pacb Pacc E_ E_ l_
pbab Pbac _;E ;ﬁ Ll
Pobb  Pbbe a2k )
pbéb Pbec E_ E; 1"
Pcab _pcac E_ E; l;
Pebb Pebe E_ E_ i;
p-c;;c:b Pece 8; E_ l_

P will be as given below:

Paba

Pbaa

P

o] [2 7]
Pab 2.2
Pbab ) 5 Wb ’.
S O R

For this N, the expected number of times that the process

being in every nonabsorbing state E is given by the series

E=1+N4+N

+ N3 + e



- ]
1 0 E]p aaa E]paab
n n
z.p z P
0 1 i1 aba P=1 abb
= -+ .
n . _ n ;
= pp, p
1 0 - baa 1-1 bab
n n
< p, Zp
0 1 = bba 121 bbb

[=-] [=-]

: i i o i q
To find Z paaa, z Paab’ = Paba’ z pabb,‘z Phaa’ z Pbab?

i=1 i=1 i=1 =1 i=1 i=1

!§1Pbb , and |Z]pbbb’ the following procedure ‘is used:

Paba ~ 'paba
Paba = Paba Pbaa ¥ Pabb Pbba
3 _ 2 2
Paba = Paba Pbaa * Pabb Pbba
n _ n-1 N~ 1
Paba = Paba Pbaa ™ Pabb Pbba
n .. . n-]z. n-1

i _ i
(iz]paba = Paba lglpbaa *  Pabb iz]pbba *

AsS Neso
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© ° © . @ .
I _ 1 ]
iE]paba = Paba iE]pbaa + ?abb iE]pbba (28) .
Similarly:
ZPabb = Paba Z Pbab * Papb (1*.E Popp) (29)
s ol _ oo oo
iE]paaa = Paaa (1 + iz paaa) + Paab iE]paba (30)
@ i _ 0 i i .} i
;§1p aab  ~ Paaa iE]paab ™ Paab (1 + izlpabb) (31)
-] . [+o] =] .
I — N ‘ _ i
ZPoba = Phba 1+ E Ppag) * Pppp E Pops (32)
[« ,l, _ -~} i -] i
2 Pbbb = Pbba Z.Phab * Pobb (1 % Popp) (33)
i;":1pbaa ~ Phaa (1 + izlpaaa) ™ Ppab |E]paba (34)
and
o ol _ o i 2
ZPbab = Pbaa . Pasb * Phap (! * Z Papp) (35)

i=1 i=1

|

The above eight simultaneous .equations are solved for the

eight unknowns.

- P o i
(28) x Pbba ~ (32) x Paba = Pbba .Z.Paba ~ Paab .E Pbba

i=1 i

]

i

= (Pbba Pabb ~ Paba Pbbb % Pbba

therefore,



6L

[e] i N ) [+2] i
Z.Paba = ((Paba * Phha Pabb = Pabb Phba’/Pbba’ %, Pbba

- .
o= g

(36).

©

(30) X ppap = (3H) X Pogy = Ppap 1Z]péaa'paab z

i
p
i=1 baa

(1+ {2 p;aa)(paaapbab

|=

" Pbaa Paab)

Therefore,

© : _ »
iE]paaa = (Paaa Pbab = Paaa paab?/(pbaa Paab ~ Paaa Pbab

+ pbab) + ((paab)/(pbab * Ppaa Paab

" Paaa Ppab)) izlpbaa (37).

© . ©

= i i
(30) X Ppag = (3%) X Paaa = Ppag fE]paaa " Paaa 7§1pbaa

(pbaa Paab ~ Paas pbab) X

(=Pl ) (38).

=1 aba

Substituting (37) for =z p;aa in (38)

o i
Pbaa (.E pbaa Paab + Paaa pbab - Pbaa paab)/(pbab

i=1

+ P p "'.p. P - P wi =
baa "aab aaa "bab) 838 T Pha,- (Ppaa Paab

o i
~ Paaa pbab) iE]paba (39).
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< .
Substituting (32) for ¢ péba in (28)
=1

P ,
= Paba * (1 + . Pbaal(Paba ~ Paba Pbbb

* Pabb Pbba)/ (1 = Phpp) (ko).

Substituting (40) for = p;ba in (39)

oo
pbaaj gz Pbaa Paab * Paaa Pbab ~ Pbaa paab)/

1

o

. i
(pbab * Phaa Paab ~ Paaa pbab) " Paaa iE]pbaa

_ - _ > i
- (pbaa Paab paaa pbab) (1 + izlpbaa)

(Paba ™ Paba Pbbb * Pabb Pbba’/ (1"Pppp) (1),

0 o

In equation (41), © pgaa is expressed in  terms of one-step
1=

probabilities. Substituting the values of these probabi-

lities for the numerical example in (41)

>
T Paag == 1.100 .

°

i=1

Substituting the values of % péaa,.and the one-step
i=1
probabilities in (32),

iz]pbba == 1,05

pgba in (36)

™8

Substituting the value of
]

°
1

o
;E]paba £ 0,63
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From (37)

©

i -
T Paga= 0.70 .

Similarly, < péab-f_\_- 0.66, T p;bb-_f.s 0.53,
i=1 i

o
i=]pbabgh.0.9h, and izlpbbbgh 0.72

Therefore,
1 o] [0.70 0.66] [1.70 0.66]
o 1| |0.63 0.53| | 0.63 1.53
= 1o |10 o.on| | 2.10 o.om|
o 1| {1.05 0.72| | 1.05  1.72
R I | LD _

A FORTRAN IV program for | + N + N2 + ... was run in
IBM/360, the result obtained (page 73) was the same as the
above result. From E, it is observed that the expected
numbe} of times that the process being in the non-absorbing
state a given that it was ih state a previously and is in
a now, is 1.70. The other elements of E are identified in
the same way.

The above method can be used to formulate a genera-
lized procedure for determining the expected number of
times that an n-order chain will be in the non-absorbing
state before it is absorbed. Let (Xt; t=0, 1, 2, ...) be
an n-order Markov chain with the state space S= (a,b,...,m).

If m is the absorbing state then the non-absorbing
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submatrix N will have (m-1)" elements in it. This will
lead to (m-1)" equations in (m-’l)n unknowns, and these
equations can be solved for the unknowns.

To find the probability of absorption by any given
‘absorbing state, a similar logic is used in the apalysis.
Let Sj signify some given absorbing state; let Si
signify some specified non-absorbing state.

Probability of ending in Sj = (probability of going
from S. to Sj in 1 step) + (probability of going from S.
to Sj in 2 steps) + «.. In the first order Markov chains
this can be obtained from the series A + NA + N2A +...
without difficulty. |In the case of the higher order chains,
care must be taken in determing the factors of the series.
Let (Xt; t=0, 1, ...) be a second order Markov chain'with
S= (a,b,c). If ¢ is the absorbing state then N and A

would be as given below:

Paaa paab
Paba pabb
N=
Pbaa Phab
Poba  Pbbb and
Paac]
pabc
A= L
Pbac
LPbbcd
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In the series A + NA + N2A + ..., the elements NA, N2A,..‘

are obtained by using n-dimensional matrix algebra. |If
the probability of the process ending in Sj can be obtained

2A + ..., then N2A, for example, must give

from A + NA + N
the probability of the process being absorbed in exactly
three steps for various given conditions. - |f the proba-
bility of the process being absorbed in exactly three

steps given that it was in a at t=0 and is in a at t=1 is

3

Paac then, according to NZA this would be equal to

Paaa Paaa Paac + Paab paba paac + paaa paab pabc ~
3

* Paab Pabb Pabe® According to the classical method Plac
will be equal to

Paaa Paaa Paac ™ Paab Paba Pbac ™ Paaa Paab Pabc

* Paab Pabb Pbbe Therefore, in the higher order case,

the series A + NA + N2A + ... will not give the required
absorption probabilities if the above method of deter-
mining the factors of the series.is used;ﬁ According to the
n-diménsional matrix algebra

A + NA + N2A + N3

A+ ... = A+ NA+ N (NA) + N (N(NA) )+, ..
Therefore, to determine N2A, for example, NA is determined
first and then NA is multiplied by N, ie., the order of
multiplication is from right to left. The value of N2A,

determined in this way, can be shown to be the same as

that of the classical method,
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res——— —— e B

2 3
paaa Paab Paac paac

1.2 3
Paba Paba pabc pabc

2
N“A = N(NA) = : X 2 = 3 .

Pbaa pbab Pbac Pbac

o . o 3
Pbba Pbbb Pbbc Pbbc
— —] |= — |

3

From’the~above,paac,

the probability of the process being

absorbed given that it was in a at t=0 and is'in a at t=l,

will be equal to Paaa pgac * Paab bgbc. Substituting for
the values of pgac and p§b¢

3 -

Paac = Paaa paaa paac + paaa Paab pabc + Paab Paba pbac

* Paab Pabb Pbbe”
- One more example will be discussed before generalizing

for n-order Markov chains. Let (X.; t=0, 1, 2, ...) be a
second order Markov chain with the state space

S= (a,b,c,d,e) and the transition matrix P as given below:



— , . .
Paaa Paab Paac Paad Paae| [0¢2 0.2 0.3 0.1 0.2
Paca Pacb pécc Pacd Pace 0.3 0.3 0.1 0.2 0.1

TR
Pada Padb Padé Padd Pade| |© 0 O 1 0
Paca Paeb Paec Paed Paee| [° 0 o 0 L
%bss Pbsb Pbac Pbad Phae| [0-2 0-1 0:3 0.1 0.3
Pbba Phob Phoc Phbd Phbe| |0¢1 O- 0:2 0:2 0.1
Pbca 'pbcb Pbcc pbéd pbcé 0.1 0.3 O?T 0.3 0.2
Pbda Pbdb Pbdc Pbdd Pbde| |© 0 0 1 0O

Phea Pbeb Pbec Pbed Pbee 0 0 0 0 1
Pcaa Pcab pcac pgad Pcae| 0.3 0.1 0.4 0.1 0.1
Pecca Pececb Pecc Peed  Pece O:% 0.2 0.1 0.2 0.1
Peda Pcdb Pede Pedd Pedel |2 0 O 1 O
Pcea Pceb pcec Pced Pcee 0 0 0 0 1
Pdaa Pdab Pdac Pdad Pdae| | ©0 O 1T 0
Pdba Pdbb Pdbc Pdbd Pdbe| [© 0 O 1 0
Pdca Pdcb Pdcc Pded Pdce| (° 0 0 1T 0
Pdda Pddb Pddc Pddd Pdde| |° 0 O V0O
Pdea Pdeb pdec pded pdée 0 o o 1 0
Peaa Peab Peac Pead Peael (0 0 0O O 1




For the above absorbing states d, and e of P, the

Peba Pebb Pebc Pebd Pebe
Peca Pecb Pecc Pecd Pece
Peda Pedb Pedc Pedd Pede
Peea Peeb Peec Peed Peee

o
o

o |
|l o |

| o
| ©

] o
] o

submatrices N and A are as given-be1ow:

0.2 0.2 0.3]
0.k 0.1 0.2
0.3 0.3 0.1
0.2 0.1 0.3
0.1 0.k 0.2
0.1 0.3 0.1
0.3 0.1 0.4
0.1 0.3 0.3
0.4 0.2 0.1
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o
L]
N
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o
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| o
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o
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ﬂ
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“A FORTRAN IV program for A + NA + N (NA) + N (N(NA)) +...

was run in IBM/360 and the result was found to be

(page7h).
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[o-t66  0.533]
0.534 0.465
0.555  0.Lkk

0.413  0.586
0.586 0.413
0.552  0.L4L7

A+ NA + N (NA) + N (N(NA)) +..=

0.515  0..48k
0.482 0.517
0.558  0.L4]

e ] ——

"Each row in the solution matrix of A + NA + N (NA)
+ N (N (NA)) + .. is a probability vector. Therefore,
~theoretically, the elements of each row vector must sum
to one. The difference between the row.sum determined by
the computer and 1 depehds)upon how many terms of the
series A + NA + N (NA) + N (N (NA)) + .. are used by the
computer to compute the row sum. .

From the above two ﬁhmerita]? examples .a procedure
can be developed for determining the absorption probabi-

lities for n-order Markov chains. . Let (X t=0, 1, 2,..)

£
be ‘an n-order Markov chain with the state ‘space

S= (a,b,+., j, J + 1, .. m). For the absorbing states

j+ 1, «.,.m, the submatrix N will have n dimensions and j
number of j x j submatrices and .the submatrix A will have
n dimensions and j number of (m - j) x (m - j) submatrices.

The -absorption probabilities are obtained from the series

A+ NA + N ( NAY + N (N(NA)) +....,



A FORTRAN IV Program for Determining the Expected Number

of Times that a Second Order Markov Chain is

Non-Absorbing State:

Mo

L o= W

1

-~z

DIMENSION A(8),P(B)4RIB),S5(8)

in any

DATAS(L)4S(2)9503)95(4)95(5)45(6),5(7),5(8)/0.0,0.0,0.0,0.0,0.0,

10,04,0,0,0,0/
READ(5,1)A
FORMAT (8F4,2)
pu21=1,217
[FI1.GT41)G0TD3
D05J=1,8
PlJI=ALJ)
GOTO4
RILI=A(L)I*P(T)I+A(2)2R4{5Y
RI2)=A(LI1*P(B) +A(2)%P(6)
RI3)=A13)*P(3)+A(4)%P(])
RU4)I=A13)I*P (&) +AL4)%P(2)
CRUS)=A(S)EP(T)+A(6)*P(5)
RI6I=A(5)*¥P(B)+AL6)*PL6)
RITI=A(TI*PI3)+A(B)*P(L1)
RIBI=A(TI*P(4)+ALA)*P(2)
DO6K=148
P(K)=R(K)
WRITE(A,T)P
NOBL=1,8
S(LI=S(L)+P(L)
CONT INUE
FORMAT(S5X B(F8.642X))
WRITE(6,7)5S
sTOP
END

SENTRY

0.200000
0,180000
0.102000
0.059000
04035740
0,021510
0,012890
0.007732
0,004640
0,002784
0.001670
0,001002
0.000601
0.00036}
0.000216
0.000130
0.000078
0,000047
0.000028
0,000017
0,000010
0.000006
0.000004
0.000002
0,000001
0,000001
0,000000

04630471

0.200000 0,3000600 0,300000
0,120000 0.150000 0,150000
0.086000 0,099000 0,C81000
0.051000 0.060300 0.,050100
0.030100 0.035790 0.030330
0.016106 0.021459 0.018129
0,010380 0,012891 0,010370
0,006526 0,007734 0.006525
0.003915 0,004640 0,003915
0,002349 0,002784 0,002349
0.001409 0,001670 0,001409
0.000846 0.,001C02 0.000846
0.000507 0.,000601 0,000507
0.000304 0.000361 0,000304
0,000184 0.,000216 0,000183
0.,000110 0.000130 O0.000110
0.000066 0.000078 '0.000066
0.000039 0.000047 0.000039
0,000024 0,000028 0,000024
0.,000014 0,000017 0,000014
0,000009 0,000010 0,000009
0.000005 0,000006 0.000005
0.000003 0,000004 . 0,000003 .
0.000002 0.000002 0.000002

0.000001 0.000001 0,000001

0,000001 0,000001 0,000001

0,000000 0,000000 0.000000

0.532398 0.698772 0.65674}

0.400000
0,280000
0,148000
0, 088400

0,053800

0,032260
0.019328
0.011599

0,006960

0,004176

0.002506

0,001503
0.000902
0,000541
0,000325
0.,000195
0.000117
0,000070
0,000042
0,000025
0,000015

0,000009
0.000005.

0,000003
0,000002
0,000001
0,00000}
1.050776

0.200000
0,200000
0,132000
0,075600

- 0.045080

0,027196
0.016321
0.009787
0.005872
0,003524

0.002114 .

0.001268
0.000761
0,000457
0.000274
0,000164
0.000099
0.000059
0.000036
0,000021
04000013
0.,000008

-0.000005

0,000003
0.,000002
0,00000}

. 0.000001

0.720663

0.500000
0,230000
0.147000
0,090300

0.053750.

0,032191
0,019333
0.011601
0.006960
0,004176

0.002506..

0,001503
0.000902

- 0,000541

0.000325
0,000195
0.000LL7
0.000070
0,000042
0.000025
0.0000}5
0.000009

0.000005 .

0.,000003
0,000002
0,000001
0,000001
1.101563

o

0,400000

10,230000

0.123000
0,074900
0.045450
0,027205
0.016307
0.009787

0.005873

0,003524
0.002114
0.001268
0.000761
0.0004517
0.000274
0.000164
0.000099
0,000059
0.000036
0.000021
0.000013
0,000008
0.000005
0.000003
0.000002
0.00000 1
0.000001
0.941329
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A FORTRAN IV Program for the Detefmination of the

Absorption Probabilities~of\a SeCQndTOrder Markov Chain:

Y , sy A.", i
1  DIMENSIONA(27) P (18 ,R{18),5(18) P R S I S .
2  DO3M=1,18 - I . R :
3 3 S(M)=0,0
‘4 READ(5,4)P
5 4 FORMAT(1BF4,2) R
3 READ(Sy10A . S Lo R
T 1 FORMAT{20F4.2) Tl BRI
- 8 D021=1,217 : : B I A
9 LF(14EQ.1)6ITUS T BN
10 RUi)= A(1!t?tl)oA(Z)tptaboAtabtP(S) S, SRR
11 RE2)=A(LI#PL2) +AL2) %P (4) +AL3)¥PLO) .
12, RI3)=AT4I¥PLTI+ALSI*P (I} +ALbI*P(11)
13 . RA4)ZAL4V#PIBI+A(5)%P (10D tALO)*P(12)
14 RUSI=A(TISPL13) +ATB)*PLLS)¢ALIN*P(LTY
15 © O REGI=ALTI4PULA) #ALBI*P(L6) ¢AL91¥P(18)
16 TRETIZACLOISP UL ¢ALLL)*P(3)+AL12)*P(5)
1 REBIZACIOI*PL2) +ALLLI*P (4)+A(12) %P (b))
18 L RAG)I=ALL3I¥P LTI +ALL4)*P (D) +ALL5)I*P (1LY i
19 R(lOl-A(lsl#P(ﬂl0A1l4)*P(lOl0A(15l‘P(lZl‘
20 RELLI=AL16I#PLL3)+ALLTISR(LS)FALLB)*P(LT) 0
21 ROL2)=ALL6)4PL14)+ALLTIEPELE ) +ALLE V%P L18):
22 RUL3V=ACLIV¥P (L) 4AL200%P(3) +AL21)¥P(5)
23 RUL4IZACLIIEP(ZI+AL20)4P (4)+A(21)%P(6)
24 RUL5I=A(22)4P{T)+A(231%P(9)+A(24)%PLL L),
25 CURU16)=A122)%P (81 +A(23)%PL10) +A(24) #P(12)}
26 CURULIISAL25)#P (L3 ) 4AL26) 2P (LS)+ALTI*P(1T) .
21 R(lu)-A(Zb)*Pll4l+A(zol¥P(lé)*A(Z?ltP(lBl E
28 ‘ DUEK=1,18 i
29 L6 PIK)=R(K)
30 ‘5 DOZL=1,18, :
31 2 S(L)=S(L)I+P(L)
32 1 FORMAT(5X,9(F8. 6.zx))
33 CHRITECA,T)S
34 SSTCP: o
35 .. © END

SENTRY. T v ‘
0.466911 . 0, 555057 0,534480 - .0,465693 0. 555460 0, 444501 0. 413464 0, 586508 0. 536344

L413630 0.552322 0.447655- 0,515699 '09464z63'7' 482942 04517033 0. 558136 0.441230 fﬁ"'
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CHAPTER 1V
CONCLUSION

This research was primarily concerned with the
presentation of quantitative information about the
solution of higher order Markov chains. Part one re-
viewed the work done in the first order Markov chains.
Part two developed a model for n-order Markov chains along
with the concept of n-dimensional matrix algebra. Part
three analyzed the steady state and absorption character-
istics of higher order chains. Since the study was broken
into three parts, the summary will follow the same general

plan.

n-Dimensional Matrix Algebra and Solution of

Higher Order Markov Chains

Three dimensional matrices were analyzed with respect
to how they can be multiplied. The .concept of three dimen-
‘sional matrix algebra was extended to n-dimensional
matrices. Second order Markov chains were solved by the
matrix method and its‘compﬁtational superiofityfover the
classical probability theory was proven. When the concept

of n-dimensional matrix algebra was used to solve higher
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order Markov chains, it was observed that PI< = P x Pk_]

FRLULIES
Steady State ‘and Absorptions Characteristics

It was observed that at sufficiently large number of
steps the probability distribution.of higher order
ergodic Markov chains is independent of its past and
present outcomes. A reduction technique was used as an
analytical method in determining .the steady prababilities.
For an n-order Markov chain n reductions were required tb
reach the 'steady state. It was observed that for every
reduction‘the-humber of states the process depends upon
for its future outcomes was reduced by one, a;d at the
‘steady state the process depends only upon its future
outcome.

Difficulty was experienced in determining the inverse
of higher order matrices, and therefore a new method called
the simultaneousbequations.method was developed to analyze
the absorption characteristics. |In determining the
absorption probabilities it was oéserved that the series
A + NA + N2A + ... @d not give the required reéult if
the order of multiplication for every factor of the series
was from left to right. The logical way to determine'fhe 

. N
value of NZA, for example, would be to determine NA first

and then multiply N by NA,.ie.,.NzA = N (NA). According

to the order of multiplication the series A + NA + N2A +

3

N"A + ... would be equal to A + NA + N (NA) + N (N (NA))

+ LI
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