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CHAPTER I 

INTRODUCTION 

Pathogenic bacteria do not survive for extended periods of time in 

the soil. Waksman and Woodruff (1940) suggested that disappearance of 

the pathogens was due to the presence of other soil-inhabiting microbes. 

Using enrichment techniques, a species of Actinomyces was isolated 

from the soil and an ether-soluble fraction of the culture filtrate was 

found to completely inhibit growth of selected organisms. The authors 

designated the compound present in the ether fraction as actinomycin. 

Waksman (1954) characterized actinomycin A as a crystalline, brick-red 

colored compound which melted at approximately 250 C and absorbed light 

strongly at 230, 250 and 450 nm. 

Katz, Pienta and Sivak (1958) determined that the nutritional 

environment of the culture had a marked effect on the synthesis of 

actinomycin produced. Their data clearly demonstrated that D~galactose 

and the nitrogen source were important for actinomycin formation. 

Actinomycin Din crystalline form was isolated by Manaker et al. 

(1955) from cultures of Streptomyces parvullus by either solvent ex­

traction or charcoal adsorption. Analytical values corresponded to 

a molecular formula of c
60

H
76

o
15

N
12

.3 H
2

0. Structural studies revealed 

the actinomycin molecule consisted of a chromophoric quinoid moiety, 

2-aminophenoxazine-3-one, which was linked to two peptides each of 

which contains the amino acids sarcosine, D-valine, L-proline, 

1 
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L-threonine, and N-methylvaline (Figure 1). Different forms of the 

antibiotic (A,B,C,D,I,J, and X) may differ in the relative proportion 

of the amino acids present in the molecule (Bullock and Johnson, 1957). 

The actinomycins are not chromatographically homogenous because of 

their difference in amino acid composition. Vining, Gregory, and 

Waksman (1955) used this characteristic to separate the forms of 

actinomycin by cellulose partition chromatography. 

Robinson and Waksman (1942) studied the toxicity of actinomycin in 

laboratory animals and noted that a dose of 1.0 mg or more of actino­

mycin per kg of body weight was lethal for mice, rats and rabbits. 

The antibiotic was rapidly removed from the blood following intravenous 

injection and was found in various quantities in all organs of the body. 

Robinson and Waksman (1942) observed a shrinkage in spleen size in test 

animals and an impairment of liver and kidney function following daily 

administration of actinomycin. Manaker et al. (1955) observed that the 

antibiotic reduced spleen weight in mice and had a LD50 of 0.67 mg to 

0.74 mg per kg of body weight. 

The anticancer activity of actinomycin C in laboratory animals was 

reported by Pugh, Katz, and Waksman (1956), Farber (1961 1measured the 

activity of actinomycin D against Wilmsis tumor of the kidney and suc­

cessfully treated patients for periods of three years. The treatment 

. was most effective when actinomycin was administered simultaneously with 

radiotherapy. 

Waksman and Woodruff (19if0) observed a pronounced inhibition of 

growth of both gram-positive and gram-negative bacteria by actinomycin. 

They observed that actinomycin was bacteriostatic for pathogenic organ-

isms in vitro. 
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To elucidate the actinomycin inhibition of tumor production and 

bacterial growth, researchers studied the inhibition at the molecular 

level using protein, enzyme and phage systems. Korn, Protass and Leive 

(1965) observed that actinomycin D inhibited T
4 

bacteriophage production 

in Escherichia coli under conditions where there was no detectable 

interference with macromolecular synthesis in the infected cells. 

Korn (1967) subsequently reported that the drug blocked a process or 

processes required for the normal packaging of phage deoxyribonucleic 

acid (DNA) within the head membrane. Electron microscopy has demon­

strated the presence of large numbers of empty phage heads, unattached 

tails and virtually no intact progeny in lysates of actinomycin-treated, 

T
4

-infected cells (Korn, 1967). 

Reich et al. (1961;1962) reported that concentrations of actinomycin, 

which inhibited incorporation of precursors into ribonucleic acid (RNA) 

by more than 90 percent, permitted normal DNA and protein synthesis for 

extended periods of time. Growth of Mengovirus, an RNA virus, was not 

affected under conditions in which host cell DNA and RNA biosynthesis 

was no longer detected. Poliovirus production was also resistant to 

actinomycin. Reich et al. (1962) concluded that actinomycin D inhibited 

the synthesis of all fractions of cellular RNA (nuclear, ribosomal and 

soluble). Data from studies using RNA viruses suggested a develop­

mental process fundamentally different from the biosynthesis of RNA in 

the normal cell. 

Kadowaki, Yamaguchi and Maruo (1966) studied the synthesis of 

a-amylase and found that 0.5 µg per ml of actinomycin inhibited protein 

synthesis but not ribonuclease synthesis. The addition of calf thymus 

DNA to actinomycin-treated cells induced recovery of enzyme synthesis. 
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Pollack (1963) determined that a concentration of the drug which 

produced a 30 percent inhibition of Bacillus subtilis growth almost 

completely inhibited induction of a-glucosidase without affecting 

penicillinase induction. Pollack proposed that these findings supported 

the messenger-RNA (m-RNA) hypothesis as related to enzyme synthesis and 

that the m-RNA for penicillinase formation in ~- cereus may be metabo-. 

lically stable for time periods up to 40 minutes. It is also possible 

that the different effect of actinomycin on enzyme synthesis may be due 

to differences in the binding affinity for different genes. The slow­

de-adaptation of penicillinase synthesis was explained on the basis of 

a long-lived m-RNA molecule. Davies (1969) discovered that de­

adaptation of penicillinase synthesis by washed cells suspended in a 

fresh medium did not indicate removal of the bound inducer from the 

cells and, thus, the slow de-adaptation could be explained without in­

volving long-lived m-RNA. When actinomycin D was used to inhibit 

transcription of the enzyme-forming system, the half-life of the 

penicillinase m-RNA was established to be 4.7 minutes in both induced 

and cells constitutive for penicillinase production. 

Synthesis of gramicidin S in cells of Bacillus brevis (Eikhorn and 

Laland; 1965) was resistant to actinomycin for as long as one hour fol­

lowing addition of the antibiotic to the culture. They studied de nova 

synthesis by measuring incorporation of radioactive amino acids into 

purified gramicidin Sand suggested that the synthesis of gramicidin S 

was independent of RNA synthesis, since RNA synthesis was inhibited but 

antibiotic production was not influenced. Eikhorn and Laland did not 

exclude the possibility that a stable form of RNA was responsible for 

gramicidin S synthesis. 
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Laszlo et al. (1966) noted an inhibition of respiration and 

anaerobic glycolysis in human leukemia leukocytes and determined that 

actinomycin D decreased the adenosine triphosphate (ATP) content of the 

cells. The inhibition of respiration and glycolysis could not be dis­

sociated over a wide range of drug concentrations. Actinomycin D also 

impaired protein synthesis which was explained on the basis that the 

antibiotic decreased the availability of ATP and inhibited m-RNA 

synthesis. 

Leive (1965) investigated the effects of inducer (lactose) on the 

synthesis and utilization of S-galactosidase m-RNA in an actinomycin­

sensitive E.coli. The data supported two postulates: a) the inducer, 

by some mechanism, stimulated formation of a specific m-RNA for 

S-galactosidase production, and b) actinomycin prevented formation of a 

new m-RNA, but did not affect activity of performed m-RNA. One would 

predict from these postulates that addition of actinomycin, after the 

inducer has catalyzed the synthesis of am-RNA molecule, but before the 

molecule was completely formed and released from the DNA, should prevent 

formation of functional m-RNA and thus prevent subsequent synthesis of 

active enzyme. If actinomycin was added after formation of them-RNA 

was complete, some enzyme synthesis would occur prior to degradation of 

them-RNA by the cell and de novo synthesis of m-RNA would be inhibited 

by the antibiotic. 

RNA prepared from cell extracts of actinomycin-treated Bacillus 

megaterium (Kennell; 1964) stimulated peptide synthesis even though 

polypeptide synthesis in the intact cell was inhibited. Kennell (1964) 

concluded that, in the presence of agents which block DNA-dependent RNA 

synthesis, certain fractions of newly synthesized RNA, which would 
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normally remain stable, are probably degraded. Acs, Reich and Valanju 

(1963) in a similar study found that newly-formed RNA of high molecular 

weight was rapidly degraded in~. subtilis cells exposed to actinomycin. 

The degradation process initiated by actinomycin was probably not 

merely an inhibition of RNA synthesis~~' but was a separate, direct 

effect of the antibiotic. Ribosomal RNA was very susceptible to 

actinomycin-induced degradation prior to acquiring the protective 

protein component. However, Levinthal et al. (1963) suggested that the 

decay of RNA in the presence of actinomycin D was due entirely to the 

inhibition of RNA synthesis. Yudkin and Davis (1965) studied RNA as-

sociated with the protoplast membrane of~- megaterium. When cells 

were incubated for 10 minutes with actinomycin, the proportion of 

cellular RNA found in the membrane fraction (approximately one-quarter 

of the total cellular RNA) remained unchanged. When bacteria, pulse­

labeled with 32Pa for five minutes, were incubated with actinomycin an 
4 

additional 10 minutes, the specific activity of the RNA in the cyto-

plasmic fraction did not increase, and actually decreased, indicating 

newly synthesized RNA flowed from the cytoplasm to the membrane during 

treatment with actinomycin. 

In the course of investigating the mechanisms of action of actino-

mycin, evidence was obtained that the antibiotic showed a specific 

interaction with DNA (Kawamata and Imanishi, 1960). Results from 

studies using starch and zone electrophoresis determined that actino-

mycin distribution corresponded to the fraction of DNA. Also, the 

inhibition of bacterial growth was virtually abolished in the presence 

of calf thymus DNA. They proposed that an interaction between DNA and 

actinomycin played an important role in the mechanism of action of the 
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antibiotic. 

Cavalieri and Nemchin (1964) suggested two types of binding sites 

on calf thymus or f. coli DNA, one of which had a binding affinity 

approximately 50 times greater than the other. The binding of actino­

mycin to the strong sites resulted in a "lateral" dimerization of the 

DNA. Upon removal of the drug, the molecular weight of DNA reverted to 

its original value. It was concluded that actinomycin inhibited RNA 

polymerase by competing with it for strong sites on the DNA molecule. 

Reich (1962) proposed that action of the antibiotic presumably 

resulted from actinomycin binding to DNA; and, since normal rates of 

DNA biosynthesis persisted following substantial inhibition of RNA, it 

seemed likely that the enzymes catalyzing DNA and DNA-dependent RNA 

biosyntheses differed significantly in their stereochemical relationship 

to the DNA molecule. 

·Goldberg, Rabinovitz and Reich (1962) suggested that the base 

composition of DNA primers influenced the extent of actinomycin binding 

and thereby the degree of antibiotic inhibition of the different 

reactions catalyzed by RNA polymerase. Guanine residues appeared to be 

indispensible for actinomycin binding to DNA. When deoxyadenine­

deoxythymine primed RNA synthesis was tested, the RNA synthesis was 

totally resistant to actinomycin inhibition. Deoxyguanine-deoxycytosine 

primed RNA synthesis was inhibited by actinomycin but to a lesser extent 

than DNA directed RNA synthesis when the DNA was isolated from 

Micrococcus lysodeikticus. Goldberg, Rabinovitz and Reich (1966) con­

cluded that optimal binding occurred when native helical DNA was present 

and that guanine must be present for binding. Partial sensitivity to 

actinomycin of polyuracil and polyadenine directed RNA synthesis 
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suggested that these regions may contain an occasional binding site of 

low affinity. Gellert et al. (1965) suggested that the binding site of 

actinomycin to DNA either involved more than one base pair, one of which 

was guanine-cytosine (G-C), or else.a~tinomycin D was bound only to 

the G-C pairs. Steric interference between antibiotic molecules pre­

vented saturation of all G-C binding sites within the DNA molecule. 

The structure of actinomycin D (Figure 1) was studied by Hamilton, 

Fuller and Reich (1963) as well as the proposed model for interaction 

with guanine (Figure 2\. The hydrogen bonding is critically dependent 

on the relative positions of the sugar oxygen atom and the guanine 

hydrogen-bonding groups. Additional studies (Reich, Cerami and Ward, 

1967) indicated that only guanine furnished the hydrogen in the DNA 

minor groove for which the quinoidal oxygen of actinomycin served as an 

acceptor. If the hydrogen was removed, the DNA-actinomycin complex 

was not formed. Reich, Cerami and Ward (1967) conducted dissociation 

studies and determined that the binding of actinomycin to guanine did 

not lend sufficient energy to account for the dissociation constant 

value obtained. They postulated that the cyclic peptides of actino­

mycin also interacted with DNA and made a major contribution to the 

stability of the complex. Accumulation of the antibiotic occurred in 

membranes, but only after saturation of the binding sites on DNA. 

Reich (1964) and Goldberg and Reich (1964) proposed that actinomycin 

bound to guanine-containing sites on the helical DNA and directly 

inhibited RNA-polymerase by blocking the surfaces on the DNA-template 

which participated in enzyme activity. Since the quantity of bond 

actinomycin, which almost completely suppressed DNA-dependent RNA 

synthesis, did not affect DNA polymerase activity, it was concluded 



Figure 1 

Actinomycin D. Penta.peptide model, The functional 

groups of the actinomycin molecule are the free 

chromophore amino groups, the unreduced quinoidal 

ring system, and the lac tone rings. 
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Figure 2 

Proposed model for the binding of actinomycin D to 

DNA (Hamilton, Fuller, and Reich, 1963). The 

actinomycin chromophore group binds to guanine via 

three hydrogen bonds. The actinomycin molecule may 

also be stabilized by the bonding of the phosphate 

oxygen atoms of the DNA to the peptide chains of 

the antibiotic. 
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that during DNA replication, the DNA polymerase functioned on surfaces 

of the template which were not obstructed by the antibiotic. Reich 

(1964) proposed that each nucleic acid polymer normally "sees'' the DNA 

base sequence from only one groove. RNA polymerase is displaced from 

DNA by actinomycin. If actinomycin is assumed to lie in the minor 

groove, then this groove was the specific template site for RNA poly-

merase and thus the site of RNA synthesis. DNA replication would then 

be postulated to proceed in the major groove. 

In a recent study, Wells (1969) determined that the ability of a 

synthetically synthesized double-stranded DNA containing 33 percent 

guanine-cytosine (G-C) to bind actinomycin D was negligible and proposed 

that, contrary to previous predictions, the presence of guanine in DNA 

was not a sufficient requisite for binding. He noted that binding of 

the antibiotic required a specific base sequence or DNA configuration, 

and the presence of guanine, in most instances, induced a suitable 

configuration to permit binding of actinomycin • 

. k (1960) d h . · f 1 · "d 14 · Kir reporte tat incorporation o g utamic aci - C into 

the cell wall of Staphylococcus aureus was not affected by antibiotic 

concentrations as high as 20 µg per ml. Kirk further noted that inhi­

bition of the incorporation of 
14

c-labeled metabolites into protein and 

nucleic acid fractions by actinomycin D was alleviated by the addition 

of nucleic acid. Hurwitz et al.(1962) observed actinomycin-induced 

inhibition of RNA synthesis could be reversed by increasing the concen-

tration of DNA present in the medium. Hurwitz et al. (1962) also observed 

that addition of the antibiotic to B. subtilis resulted in the produc-

tion of long 11 snake-like 11 cells. The aberrant cell forms appeared to 
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be related to unbalanced growth resulting from the preferential 

inhibition of RNA synthesis. Holden and Utech (1967) suggested that 

the system for uptake of aminoisobutyric acid and glutamic acid by 

~-treptoc.()c._cus faecalis cells was inhibited by actinomycin D. The 

results indicated that inhibition of the uptake system depended on the 

simultaneous presence of amino acids and antibiotic and it was not 

dependent on blockage of protein synthesis since puromycin did not af­

fect the system. These researchers proposed that actinomycin D 

prevented synthesis of ribonucleotide or polyribonucleotide-dependent 

catalysts required for operation of the uptake systems, caused an 

accumulation of inhibitory nucleotides, or interfered with the utili­

zation of high-energy substances. 

Kersten (1961) noted that DNA, RNA and certain of their degradative 

products counteract the growth inhibition due to actinomycin in 

Neurospora crassa and~. faecalis. Deoxyguanosine and DNA were most 

effective for reversal of the growth inhibition. The observation that 

breakdown products of nucleic acids reversed growth inhibition led 

Foley (1956) to study the ability of additional compounds to alleviate 

actinomycin inhibition. Pantothenate appeared to compete with actino­

mycin and readily reversed actinomycin-induced growth inhibition. 

Prevention of growth inhibition was obtained in different bioassay 

systems using acid hydrolyzed casein . Rauen and Hess (1959) 

reported reversal of actinomycin inhibition with £-aminobenzoic acid, 

tyrosine and phenylalanine in~. crassa. 

Slotnick (1960) tested the ability of several compounds (b-vitamins, 

amino acids of casein hydrolysate, purines, pyrimidines and nucleotides) 

to prevent growth inhibition of B. subtilis by actinomycin D. 
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Immediately after addition of the antibiotic, protein and RNA synthesis 

were completely inhibited, while DNA synthesis proceeded at the normal 

rate. The growth inhibition, caused by actinomycin D, was competitively 

altered by the presence of pantothenic acid in several organisms having 

an exogenous requirement for this vitamin, but not in organisms capable 

of pantothenate-independent growth. Efforts to restore a balanced DNA, 

RNA and protein synthesis by additional of several compounds to the 

system have proven unsuccessful. 

Honig and Rabinovitz (1965) determined that addition of glucose to 

the medium prevented the inhibition of protein synthesis in Sarcoma-37 

ascites cells by actinomycin D and concluded that the inhibition was not 

related to breakdown of template RNA. 

Studies in this laboratory have shown that growth of Pseudomonas 

fluorescens was not inhibited by actinomycin D when cells were incubated 

in a protocatechuate-salts medium (Keudell, 1967). Further studies 

revealed that actinomycin D did not inhibit synthesis of the inducible 

enzyme, protocatechuate oxygenase, nor incorporation of uracil-2-
14c 

into RNA in this organism. The results suggested the follow-

ing: 1) the genetic loci for coding protocatechuate oxygenase m-RNA 

may not contain residues of guanine-cytosine; or 2) the bases may not 

be appropriately arranged within the DNA molecule for actinomycin D 

binding; or 3) actinomycin D may be inactivated under certain physio­

logical conditions. 

This investigation was conducted to describe the synthesis of the 

inducible enzyme, acyltransferase (amidase-E.C. 3.5.1.4.). and to eluci­

date the effect of actinomycin Don synthesis of the enzyme. The second 



phase of this study delineates the ability of protocatechuate (3,4-

dihydroxybenzoic acid) to reverse the inhibition of growth and enzyme 

synthesis by actinomycin D. 

16 



CHAPTER II 

MATERIALS AND METHODS 

Test organisms 

The principal microorganism used during this study was a strain of 

Pseudomonas which was tentatively identified as Pseudomonas fluorescens 

(Montgomery, 1966). A species of Flavobacterium was also used in one 

phase of this investigation. This organism was obtained from the stock 

culture collection of Dr. N. N. Durham. Bacillus subtilis W23 was 

obtained from the stock culture collection of Dr. Franklin Leach, 

Oklahoma State University. All stock cultures were maintained on 

nutrient agar slants and stored at 4 C. 

Media 

The synthetic salts medium used in this study was composed of 0.2 

percent NaCl, 0.2 percent NH
4
cl, 0.32 percent KH

2
Po

4
, 0.42 percent 

K
2

HP0
4

, and 0.2 percent of the desired carbon source (succinate, acetate, 

or glucose). In studies where acetamide was used as a carbon source or 

inducer, a concentration of 0.08 M was used, unless otherwise specified. 

The medium was adjusted to pH 7.0 with KOH, sterilized by autoclaving at 

121 C with.15 lbs. pressure per square inch for 15 minutes, cooled to 

room temperature and 0.1 ml of a sterile mineral salts solution was 

added to each 100 ml of the medium. The mineral salts solution had the 

17 



following composition: 5.0 g. of MgS04·7 H
2

0; 0.1 g. of Mnso
4

; 1.0 g. 

of Fecl3 ; and 0.5 g. of CaC1 3 in 100 ml of distilled water. Agar 

(Difeo) was added to give a final concentration of 2.0 percent when a 

solid medium was desired. In the context of this study, the term 

minimal salts was used to refer to the basal salts medium lacking a 

carbon source. 

Nutrient agar was prepared from the dehydrated medium (Difeo) and 

additional agar (Difeo) was added to give a final concentration of 2.0 

percent. 

Growth of cells 

Nutrient agar or succinate agar slants were inoculated from the 

appropriate stock cultures and incubated for 12-16 hours at 37 C. The 

cells were harvested in sterile distilled water and 250 ml flasks 

containing 39.0 ml of the appropriate medium were inoculated with 1.0 

18 

ml of the cell suspension to give an initial absorbance of 0.1 at 540 

nm. The flasks were incubated at 37 C for 12-16 hours on a reciprocal 

shaker (100 revolutions per minute). The cells were harvested by 

centrifugation, washed twice and suspended in sterile distilled water. 

The washed cells were used as the inoculum for growth studies. Growth 

was determined by measuring the increase in absorbance of the culture 

at 540 nm using a Coleman Junior II spectrophotometer. Growth assays 

were performed either in test tubes (18 mm light path) containing 6.0 ml 

of medium or in 250 ml side-arm flasks containing 40.0 ml of liquid 

medium. 



Inhibitors 

The compounds used as inhibitors were purchased from commercial 

sources. D-chloramphenicol was purchased from Parke, Davis and Com­

pany, Detroit, Michigan, and actinomycin D was obtained from Merck, 

Sharp and Dahme Research Lab., division of Merck and Co., West, Point, 

Pennsylvania. 

Enzyme induction 

19 

Pseudomonas fluorescens cells were grown in succinate-salts medium 

for approximately 12 hours. The cells were harvested by centrifugation 

(10 minutes at 4500 x g), washed once with sterile triple distilled 

water and were used to inoculate the appropriate medium (succinate-salts 

plus acetamide or acetamide-salts). One ml samples were removed at the 

specified time intervals and immediately placed in the freezer (-14C) 

for subsequent enzyme determinations. 

Enzyme assay method 

The assay for the determination of enzyme synthesis was based on 

the reaction of acyl phosphates with hydroxylamine at pH 6.5 to 7.0 

to form hydroxamic acids (Lipmann and Tuttle, 1945). Hydroxamic acids 

react with ferric salts to produce red to violet color complexes which 

may be quantitated by spectrophotometric procedures. 

A. Preparation of the standard curve. 

A hydroxamic acid standard solution was prepared from succinic 

anhydride as follows: One gram of succinic anhydride was dissolved in 
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40.0 ml of freshly neutralized hydroxylamine hydrochloride solution 

(2.0 'M) and diluted to 100 ml with water. One ml of this stock solution 

was diluted to 40.0 ml with water to produce the standard solution. 

One ml of freshly neutralized hydroxylamine reagent was added to 2.0 ml 

of the standard solution. After 10 minutes at room temperature, 3.0 ml 

of ferric chloride reagent (6 percent w/v in 2 percent HCl v/v) were 

added, the color permitted to develop, then read in a Coleman Junior II 

spectrophotometer at 540 nm. The color of the resulting solution was 

equivalent to 4.0 micromoles of acetohydroxamic acid. The solution was 

diluted with water to give varying concentrations of acetohydroxamate, 

the absorbance of each dilution was measured, and a standard curve for 

acetohydroxamate was determined (Figure l). 

B. Determination of cellular enzymatic activity. 

The Brammer and Clarke (1964) modification of the Lipmann and 

Tuttle (1945) method for hydroxamic acid determination was used in this 

study. This modification is based on quantitative determination of 

acetohydroxamate which is the end product of the translocase reaction 

of the amidase enzyme. Kelly and Clarke (1962) measured the hydrolase 

activity of amidase by estimating ammonia production during hydrolysis 

of acetamide. Studies with partially purified enzyme preparations sug­

gested that the amidase enzyme has both hydrolytic activity and acyl­

transferase activity. Kelly and Kornberg (1964) suggested that the 

enzyme should be designated "aliphatic acyltransferase" rather than 

"amidase." Throughout this investigation the term amidase will be used 

to denote the inducible "aliphatic acyltransferase 11 enzyme. The 



Figure 3 

A standard curve for the colorimetric assay of 

acetohydroxamic acid. 
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acyltransferase transfers the acyl group of the substrate amides to 

hydroxylamine to form acylhydroxamates (Kelly, 1961). 

Amidase activities 

1) Hydrolase 

CH
3

CONH
2 + H

2
0 -- + 

2) Transferase 

CH
3

CONH2 + NH20H --
The transferase reaction was used during this study for the enzyme 

assay which was performed as follows: frozen samples were thawed and 

0.25 ml was added to 0.75 ml of the substrate mixture, which was pre-

p~red by mixing equal volumes of 0.4 M acetamide solution, 2.0 M freshly 

neutralized hydroxylamine hydrochloride, and 0.1 M Tris buffer (pH 7.2). 

After incubation at 37 C for 15 minutes, the reaction was stopped by 

adding 2.0 ml of ferric chloride (6 percent w/v in 2 perc~nt HCl v/v). 

The absorbance was read immediately at 540 nm using a coleman Junior II 

spectrophotometer and theacetohydroxamate concentration was calculated 

using the standard curve. The specific activity was measured and one 

unit of amidase is the amount of enzyme that will produce one micromole 

of acetohydroxamate per milligram dry cell weight per 15 minutes. 

Recrystallization of acetamide 

Commercial (Baker Chemical Co.) acetamide was added to 100 ml of a 

70 percent ethanol solution equilibrated to 50 Cina waterbath until a 

saturated solution was obtained. The supernatant solution was filtered 

through a millipore membrane filter (47 mm diameter; 0.25 micron pore 

size). The filtrate was placed in the refrigerator at 4 C to enhance 



24 

further precipitation. The precipitate was collected on a millipore 

filter and dried at 37 Cina dessicator containing CaC1
2 

crystals. 

The precipitate was dissolved in 70 percent ethanol and the recrystal-

lization process repeated. The resultant precipitate was dried at 37 C 

in a dessicator and used in the experiments as indicated. 

Uptake of radioactive substrate 

Pseudomonos fluorescens cells were grown on acetamide-salts (0.08 

M) medium for 9 hours to measure the uptake of acetamide-1-14c (specific 

'··. ·' .: :".) · ... 
activity" '4>.13, µC per mmole) by the cells. The cells were harvested by 

centri,fugation, washed one time and suspended in triple distilled water. 

One ml of the cell suspension (a 1:10 dilution giving an absorbance of 

0.50 at 540 nm) was incubated at 25 C with 0.4 ml of acetamide (0.08 M) 

as carrier, 0.4 ml acetamide-
14c (1.0 µC per ml) and 0.4 ml of a chlor­

amphenicol (CAP) solution (3.7 x l0-
3

M). Four-tenths ml of acetate 

(0.1 M) or succinate (0.1 M) was added to the appropriate tube and dis-

tilled water was used to bring the liquid volume to 4.0 ml in all the 

tubes. One ml samples were withdrawn at 10 and 90 seconds, immediately 

filtered on a Millipore membrane filter (47 mm diameter; 0.45 micron 

pore size) and washed two times with 5.0 ml of distilled water. The 

membrane filter was placed in a counting vial containing 1.0 ml of 3,4-

dioxane. Liquid scintillation counting fluid was prepared by dissolv-

ing 2.0 g of 2,5-diphenyloxazole (PPO) and 25 mg of £-bis-(2-(5-pheny-

loxazolyl))-benzene in 237 ml of 3,4-dioxane. Counting fluid (9.0 ml) 

was added to each vial and the radioactivity was determined using a 

Nuclear Chicago liquid scintillation spectrometer (Model No. 722). The 

counting efficiency for 14c under these conditions was 40 percent. 



Spectrophotometric studies 

The ultraviolet absorption spectra of an aqueous solution of 

protocatechuate (3.8 x 10-4 
M) and actinomycin D (1.03 x 10-5 

M) were 
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determined using a Cary 14 recording spectrophotometer at room tempera-

ture in silicon cuvettes. The absorbance of each compound and a mixture 

of the two compounds was determined between.the wavelengths of 185-320 

nm. 

Spectrophotofluorometric studies 

Fluorescent measurements were conducted using an Aminco-Bowman 

spectrophotofluorometer. An excitation spectrum was determined for 

protocatechuate (8.0 x 10-3 M dissolved in 1.0 x 10-2 M Tris buffer, 

pH 7.0) and the emission spectrum for protocatechuate was determined 

using the wavelength of maximum excitation of the compound. The excita­

tion and emission spectra for actinomycin (8.0 x 10-
5 

M dissolved in 

-2 1.0 x 10 M Tris buffer, pH 7.0) were determined in the same manner. 

A mixture of protocatechuate and actinomycin was made and the emission 

and excitation spectra were determined. 



CHAPTER III 

RESULTS AND DISCUSSIONS 

Inhibition of growth of P. fluorescens E.Y actinomycin D 

Studies were performed to ascertain the concentration of actino-

mycin D that would inhibit growth off. fluorescens in a synthetic 

salts medium with different carbon and energy sources. These experi-

ments were carried out in tubes containing five and a half ml of medium 

with either succinate or acetamide as the carbon source and the inhibi-

tor was added as indicated. Sterile triple distilled water was used to 

bring the volume to 5.9 ml. Controls were prepared of each actinomycin 

concentration to compensate for any color attributable to the antibiotic. 

All of the tubes, except the antibiotic controls, were inoculated with 

0.1 m of a suspension of washed succinate-salts grown cells to give an 

initial absorbance of 0.1 at 540 nm. 

Pseudomonas fluorescens cells growing in succinate-salts medium 

showed a very short lag time (Figure 4) while cells growing in acetamide-

salts required a lag time of approximately 2.5 hours (Figure 5). The 

lag indicates that synthesis of an inducible enzyme was required for 

utilization of acetamide by the organism. Growth of P. fluorescens in 

either medium was inhibited by actinomycin D (Figures 4 and 5) and the in-

hibition was concentration dependent. The rate or total growth of the cells 

was not significantly altered by an antibiotic concentration of 8.0 x 10- 7 but 

concentrations of 4.0 x l0-6M, 8.0 x l0- 6M and 1.04 x 10-S M inhibited 
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Figure 4 

The influence of actinomycin Don P. fluorescens cells 

growing in a succinate-salts medium. 0, succinate-salts 

(contro~; ~' actinomycin D (8.0 x l0-
7
M); D, actinomycin 

6 -6 
D (4.0 x 10- M); •, actinornycin D (8.0 x 10 M); 8, 

actinornycin D (1.04 x l0-5M). 
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Figure 5 

The influence of actinomycin Don P. fluorescens 

cells growing in 0.08 M acetamide-salts medium. 

O, acetamide-salts (control); ~' actinomycin D 

-7 -6 · (8.0 x 10 M); 0, actinomycin D (4.0 x 10 M); 

II, actinomycin D (8.0 x 10-6 M); and~' actinomycin 

-5 D (1.04 x 10 M). 
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both the rate and total growth of the cells (Figures 4 and 5) in the 

succinate and acetamide medium. 

Growth studies were conducted to compare the inhibition of growth 

by actinomycin Din succinate-salts and protocatechuate-salts media. 

Tubes containing either protocatechuate-salts or succinate-salts medium 

were inoculated with succinate-grown f• fluorescens cells and the growth 

was determined. Actinomycin D (8.0 x 10-'6 M) inhibited growth in the 

succinate-salts medium, but did not inhibit cells growing in a proto­

catechuate-salts medium (Figure 6). These results support the obser­

vations of Keudell (1967) who reported that actinomycin D did not 

inhibit P. fluorescens cells growing in a protocatechuate-salts medium. 

He suggested that actinomycin did not inhibit induction of the enzyme 

required for utilization of protocatechuate. 

Prevention and reversal of actinomycin D inhibition EY protocatechuate 

Studies were conducted to determine if protocatechuate could pre­

vent the actinomycin D inhibition off• fluorescens growing in 

succinate-salts medium. Tubes containing succinate-salts medium were 

inoculated with P. fluorescens to an initial absorbance of 0.1 at 540 nm 

and growth was determined in the presence of actinomycin D and actino­

mycin D plus protocatechuate. The concentration of protocatechuate 

used in .this experiment was not sufficient to effect the succinate 

control or provide sufficient carbon for demonstrable growth of the 

cells (Figure 7). Results indicated that protocatechuate (8.0 x 10-4M) 

partially prevented the growth inhibition produced by an actinomycin D 

concentration of 8.0 x 10-6M (Figure 7). Pseudomonas fluorescens cells 

growing in the acetamide-salts medium where acetamide is utilized as 



Figure 6 

The inhibition of growth by actinomycin D of P. fluorescens 

cells growing in either a succinate-salts or protocatechuate-

salts medium. 0, succinate-salts (control);@, succinate­

salts plus actinomycin D (8.0 x 10-6 M); 0, protocatechuate-

salts (control); Iii, protocatechuate-salts plus actinomycin 

-6 
D (8.0 x 10 M). 
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Figure 7 

-4 
The influence of protocatechuate (8.0 x 10 M) on 

actinomycin D-inhibited f. fluorescens cells growing 

in succinate-salts medium. •, succinate-salts (control); 

A, succinate-salts plus protocatechuate; ~' protocatechuate; 

-6 
O, actinomycin D (8.0 x 10 M); and C!I, actinomycin D 

-6 
(8.0 x 10 M) plus protocatechuate. 
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the carbon source showed a growth lag of approximately 2.5 hours which 

was followed by rapid growth (Figure 5). The rate of growth was in­

hibited by the addition of actinomycin D. The addition of protocate­

chuate (8.0 x 10-
4 

M) to the inhibited system partially alleviated 
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the growth inhibition as was shown for cells growing in succinate-salts 

medium. 

Since the results establish that protocatechuate will prevent the 

inhibition, ii added simultaneously with actinomycin D, studies were con­

ducted to determine if protocatechuate could reverse the growth inhibi­

tion produced by actinomycin D. 

Pseudomonas fluorescens cells were inoculated into succinate-salts 

medium containing actinomycin D (8.0 x l0-
6

M). Protocatechuate was ad­

ded to one set of flasks at zero time and a second set of flasks after 

two hours. Actinomycin D inhibited the total growth of the cells. 

Addition of protocatechuate, at either zero time or after the cells were 

incubated for two hours with actinomycin, reversed and prevented the 

growth inhibition by actinomycin D (Figure 8). These results establish~ 

ed that protocatechuate can both prevent and reverse the inhibition of 

growth by actinomycin D. 

Kirk (1960) reported that addition of actinomycin (2.0 x l0- 7M) to 

the gram-positive organism, Staphylococcus aureus, inhibited growth. 

Studies were conducted to ascertain the ability of protocatechuate to 

prevent the actinomycin D inhibition of growth in microorganisms other 

that P. fluorescens. The succinate-salts medium was used for growth of 

the species of Flavobacterium (Figure 9) and glucose salts was used 

for growth of~- subtilis (Figure 10). The results show that the 



Figure 8 

The prevention and reversal by protocatechuate (8.0 x 

l0-
4

M) of actinomycin D inhibition of growth of R· 

fluorescens in succinate-salts medium. ~' succinate-

salts (control); ij~, succinate-salts plus protocatechuate; 

-6 
O, actinomycin D (8.0 x 10 M); D, actinomycin D (8.0 x 

10-6M) plus protocatechuate (added at zero time); and 

6, actinomycin D (8.0 x 10-6M) plus protocatechuate (added 

at the two hour time interval). 
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Figure 9 

-4 
The influence of protocatechuate (8.0 x 10 M) on 

actinomycin D inhibition of growth of B. subtilis. 

The cells were growing in a glucose-salts medium. 

®, glucose-salts (control); 0, glucose-salts plus 

protocatechuate; ~, actinomycin D ( 8. 0 x 10- 8 M); and 

U, actinomycin D (8. 0 x 10-8M) plus protocatechuate. 
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Figure 10 

-4 
The influence of protocatechuate (8.0 x 10 M) on 

actinomycin D inhibition of growth of a species of 

Flavobacterium. The cells were growing in succinate-

salts medium. @, succinate-salts (control); O, 

succinate-salts plus protocatechuate; Ill, actinomycin 

-6 -6 
D (8.0 x 10 M); and D, actinornycinD (8.0 x 10 M) 

plus protocatechuate. 
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gram-positive Ji. subt_ilis_ was more sensitive to actinomycin D than the 

two gram-negative organisms, f. fluorescens and the species of 

Flavobacterium. Bacillus subtilis was sensitive to 8.0 x 10- 8 M 

actinomycin D while the gram-negative organisms were sensitive to 

8 0 10-S M . . D . x actinomycin • The apparent difference in sensitivity to 

actinomycin D between the gram-positive and the gram-negative organisms 

may be due to a difference in the cell wall structure and composition or 

permeability to actinomycin D. Addition of protocatechuate resulted in 

partial alleviation of the growth-inhibition by actinomycin Din all of 

the organisms tested. The prevention of growth inhibition by pro~ 

tocatechuate was more pronounced inf. fluorescens than in either B. 

subtilis or the species of Flavobacterium. These results show that the 

prevention of actinomycin D inhibition by protocatechuate is not limited 

to a single bacterial species but may, in fact, be a general phenomenon. 

Inhibition of growth of P. fluorescens E.Y_ chloramphenicol 

Chloramphenicol (CAP) inhibits growth and protein synthesis and may 

act as a competitive inhibitor of aminoacyl-tRNA (Pestka, 1970). The 

precise reaction affected by CAP may be either the peptidyl-transferase 

reaction or the binding of the aminoacyl-adenyl terminus oft-RNA to the 

ribosome. Studies were conducted to determine if CAP inhibited growth 

of P. fluorescens and if protocatechuate had any effect on the 

inhibition. The results (Figure 11) showed that CAP (5.0 x l0-
5

M) 

inhibited growth of P. fluorescens. Protocatechuate, at the concen­

tration tested (8.0 x 10-4 M), did not affect the inhibition of growth 

by CAP. 



Figure 11 

-4 
The influence of protocatechuate (8.0 x 10 M) on chlor-

amphenicol inhibition of growth off. fluorescens. The 

cells were growing in a succinate-salts medium. @, sue-

cinate-salts (control); O, succinate-salts plus pro~ 

tocatechuate; 
-5 

U, chloramphenicol (5.0 x 10 M); and 0, 

-5 
chloramphenicol (5.0 x 10 M) plus protocatechuate. 



Ti.me (hours) 



46 

Induction of amidase £Y. acetamide 

Actinomycin D and CAP inhibited growth off. fluorescens. Since 

both CAP and actinomycin D inhibit protein synthesis by different 

mechanisms, (Pestka, 1970; Gross, Malkin and Moyer, 1964), the effect 

of these antibiotics on the synthesis of amidase was studied. 

Kelly and Clarke (1962) observed that f. aeurginosa 8602/A pro­

duced an inducible enzyme, amidase, which hydrolyzed acetamide. The 

enzyme could be induced by acetamide or N-methylacetamide, a nonsub­

strate inducer. Experiments were conducted to determine if enzyme 

activity was a linear function with respect to time under the con­

ditions of the assay. Acetamide-salts medium was inoculated with P. 

fluorescens and the cells allowed to grow for 9 hours at 37 C with 

constant shaking. Enz}'ffie assays were conducted using the induced cells 

as described except that the assay reactions were stopped at the 

specified time intervals by addition of ferric chloride solution. 

The results (Figure 12) show that enzyme activity is linear with 

respect to time for at least 30 minutes. This indicates that the 

enzyme present was saturated with substrate during the assay period. 

In all of the subsequent experiments, the enzyme assays were stopped 

after 15 minutes of incubation at 37 C. 

Effect of acetamide concentration on amidase synthesis 

Studies were conducted to determine the optimum concentration of 

acetamide required for maximum induction of amidase. Minimal-salts 

medium was supplemented with varying concentrations of acetamide and 

inoculated with P. fluorescens cells grown on succinate-salts. The 



Figure 12 

The measure of enzyme activity and its relationship 

to time. The cells for this assay were induced to 

acetamide and the reaction was stopped at the indicated 

time intervals. 



75 

~ 50 
•.-1 
i:;j 
::I 

QI 
CJ) 

Cll 
"Cl 
•l"I 

! 

25 

0 

48 

5 10 15 20 25 30 

Time (minutes) 



49 

cells were incubated for six hours during which time enzyme synthesis 

was determined. The results (Figure 13) show that acetamide concen­

trations of 0.08 Mand 0.16 Mare sufficient for maximum induction for 

the duration of this experient. There was no apparent difference 

between the induction patterns obtained with these two concentrations. 

An inducer concentration of 0.08 M was used in all subsequent enzyme 

studies. An. acetamide concentration of 0.04 M was insufficient for 

maximum induction. A diphasic induction pattern of amidase synthesis 

was observed with the optimum inducer concentration in which amidase 

synthesis occurred for a period of time, then plateaued, and was fol­

lowed by a very rapid initiation of enzyme synthesis. Kelly and Korn­

berg (1962) had previously noted a similar induction pattern in 

acetamide-salts medium. They proposed that phase I of the enzyme syn­

thesis, prior to the plateau was due to induction by acetamide and this 

phase was complete when the acetamide content of the medium dropped to 

a low level. Phase II, the rapid initiation of enzyme synthesis fol­

lowing the plateau, was gratuitous and occurred during subsequent 

growth on the acetate that was formed during the hydrolysis of aceta­

mide. 

Induction of amidase using recrystallized acetamide as inducer 

Studies were conducted to determine if the diphasic induction 

pattern, obtained when cells were grown in acetamide-salts, could be 

duplicated using recrystallized acetamide as the inducer. The results 

indicated that recrystallization of the inducer did not influence the 

induction pattern of amidase since the diphasic pattern, similar to the 

induction curve obtained in Figure 13 was obtained. These results 



Figure 13 

Synthesis of amidase in minimal-salts medium supple­

mented with varying concentrations of acetamide. ~. 

0.04 M acetamide; D, 0.08 M acetamide; and A, 0.16 M 

acetamide. 
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suggest that enzyme synthesis during both phase I and phase II are due 

to the original presence of aceta.mide. 

Influence of cell inoculum on induction and synthesis of amidase 

Experiments were conducted to determine if the mass of cells used 

as the inoculum would affect the induction and synthesis of amidase 

(Figure 14). Acetamide-salts medium was inoculated with P. fluorescens 

to an initial absorbance of 0.1 or 0.35 at 540 nm. The results indi­

cated that as the inoculum size was increased, the rate of initial 

enzyme synthesis was increased and the lag period preceeding phase II 

was shortened. Increasing the inoculum size did not eliminate the 

diphasic induction pattern. 

Effect of cell toluenization on amidase activity 

Toluene disrupts the permeability barrier of the cell and has 

been used to facilitate enzyme assays in this organism (Kirkland and 

Durham, 1965). Experiments were conducted to determine if tolueni­

zation of amidase-induced cells increased the measurable enzymatic 

activity, Pseudomonas fluorescens cells were grown on acetamide-salts 

medium. Two (1.0 ml) samples were removed at the selected time inter­

vals and placed in the freezer. Immediately prior to thawing the 

samples, 0.02 ml of toluene was added to one set of the samples and 

0.02 ml of triple distilled water was added to the second set of 

samples. The samples were thawed at 37 C and the enzymatic activity 

was determined. The results showed (Figure 15) that toluenization of 

induced cells did not influence the measurable enzymatic activity. 



Figure 14 

The influence of inoculum size on induction and 

synthesis of amidase. P. fluorescens cells were 

growing in acetamide-salts medium. il!j, initial 

absorbance of O .10 at 540 nm; and ®, initia 1 

absorbance of 0.35 at 540 nm. 
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Figure 15 

The effect of toluenization of on the enzyme activity 

of P. fluorescens cells. 9, water-treated cells; and 

8, toluene-treated cells. 
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Effect of carbon source on amidase synthesis 

Because of the unusual induction pattern obtained in acetamide­

salts medium, experiments were conducted to compare enzyme synthesis in 

different media. Pseudomonos fluorescens cells were grown on 

succinate-salts medium and inoculated into the following media: 

succinate-salts, succinate-salts plus acetamide, and acetamide-salts 

medium. Enzyme synthesis was determined and the results are presented 

in figure 16. The diphasic induction pattern for amidase was observed 

in the acetamide-salts medium. The induction pattern of cells growing 

in succinate-salts plus acetamide did not show the diphasic pattern, 

characteristic of enzyme induction in acetamide-salts. Amidase syn­

thesis did not occur in the succinate-salts medium without inducer. 

Brammar and Clarke (1964) reported induction of amidase synthesis 

by the nonsubstrate inducer N-methylacetamide. Studies were made to 

compare the induction pattern obtained when either acetamide or N­

methylacetamide was used as the inducer. Pseudomanas fluorescens cells, 

grown on succinate-salts, were inoculated into the following media: a) 

acetamide-salts, b) succinate-salts plus acetamide, c) succinate-salts 

plus N-methylacetamide, and d) minimal-salts plus N-methylacetamide. 

The results indicated that enzyme synthesis using N-methylacetamide or 

acetamide as the inducer in a succinate-salts medium gave similar in­

duction patterns (Figure 17), The diphasic induction pattern was ob­

served only in the acetamide-salts medium. Only a small amount of 

enzyme synthesis occurred in the flask containing minimal-salts plus 

N-methylacetamide, since there was no other readily available carbon 

source. Brammar and Clarke (1964) reported that a diphasic induction 



Figure 16 

Amidase synthesis by ~- fluorescens cells growing in 

succinate-salts and acetamide-salts medium. ®, ace­

tamide-salts medium; m, succinate-salts plus acetamide; 

and!, succinate-salts. 
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Figure 17 

A comparison of the amidase induction pattern in~­

fluorescens cells using acetamide or N-methylaceta­

mide as the inducer. ~. acetamide-salts medium; 0, 

succinate-salts plus acetamide; ~' succinate-salts 

plus N-methylacetamide (0.05 M); andCl, minimal-salts 

plus N-methylacetamide (0.05 M). 
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pattern was obtained when acetate plus acetamide was used as the 

growth medium. We have confirmed these results in our laboratory 

(Figure 18). Pseudomonas fluorescens cells growing in a medium in 

which acetate was the sole carbon and energy source did not synthesize 

any enzyme. If the acetate-salts medium was supplemented with 

acetamide, a diphasic induction pattern for amidase synthesis was 

observed. Either acetamide or N-methylacetamide may serve to induce 

the synthesis of amidase. The induction pattern of amidase depends on 

the carbon source of the medium in which the cells are growing. 

Inhibition of amidase synthesis QY_ actinomycin Q and chloramphenicol 

Since results from this study have established that actinomycin D 

and CAP inhibit growth off. fluorescens, the influence of these anti­

biotics on amidase synthesis was studied. A diphasic induction of 

amidase was observed in the absence of the antibiotics (control) 

(Figure 19). CAP inhibited both phase I and phase II of amidase 

synthesis. Actinomycin D did not inhibit phase I of amidase synthesis, 

but did inhibit the synthesis of enzyme during phase II. The results 

obtained with actinomycin D could indicate that a) the antibiotic may 

not be taken into the cell in an adequate concentration to inhibit 

amidase synthesis during phase I which lasted approximately 2 hours, 

orb) if them-RNA which codes for amidase synthesis preexisted within 

the cell, then amidase synthesis would not be inhibited by actinomycin D 

until a new m-RNA molecule was required for coding, such as might be the 

case in phase II. CAP was added to acetamide-salts medium at two dif-. 

ferent times (0 and 4% hours) and results indicated the antibiotic 

inhibited enzyme synthesis whenever added to the system (Figure 20). 



Figure 18 

Induction of amidase in P. fluorescens cells growing 

in acetate-salts medium. m, acetate-salts medium 

and•, acetate-salts medium plus acetamide (0 .08 M). 
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Figure 19 

The effect of chloramphenicol and actinomycin D on ami-

dase synthesis in acetamide-salts medium, ~. acetamide-

salts (control); ffl, acetamide-salts plus actinomycin D 

-6 (8,0 x 10 M); and A, acetamide;,:.salts plus chloramphe-

-5 nicol (5.0 x .0 M). 
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Figure 20 

The effect of chloramphenicol on,amidase synthesis in 

cells growing in an acetamide-salts medium. ~' ace-

tamide-salts (control);&, acetamide-salts plus chlor-

-5 amphenicol (5 .0 x 10 M) (added at zero time); ·n11, ace-

-5) tamide-salts plus chloramphenicol (5.0 x 10 M (added 

at 4\ hours). 
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Since CAP inhibits e.nzyme synthesis by acting as a competitive inhibitor 

of aminoacyl- t-RNA, then it should inhibit amidase synthesis whether the 

m-RNA molecule which codes for amidase preexisted or was newly­

synthesized. 

Experiments were conducted to study the effect of a higher concen­

tration of actinomycin Don amidase synthesis. Actinomycin D (8.0 x 

10-6 M) did not inhibit the synthesis of amidase during phase I, but 

did prevent enzyme synthesis during phase II (Figure 21). An actino­

mycin concentration of 2.4 x 10-5 M partially inhibited phase I and 

phase II of amidase synthesis. The inhibition of phase I of amidase 

synthesis by 2.4 x 10-
5 

M actinomycin D could be explained if an in-

creased cellular concentration of the antibiotic was observed at the 

higher antibiotic concentration. A second explanation may be based 

on the theory of the preexisting m-RNA which codes for phase I of ami­

dase synthesis. If the preformed m-RNA molecule were degraded in the 

presence of increased concentrations of actinomycin, one should ob­

rerve a decrease in amidase synthesis during phase I. Acs, Reich and 

Valanju (1963) reported that newly-formed RNA of high molecular weight 

was rapidly degraded in bacteria exposed to actinomycin. 

Repression of amidase synthesis 

Brammar and Clarke (1964) reported that acetate and some tricar-

boxylic acid intermediates acted as repressors of amidase synthesis. 

If acetate is produced in sufficient concentration during the hydrolysis 

of acetamide to acetate and ammonia, then the plateau observed during 

enzyme synthesis in the acetamide-salts medium could be due to 



Figure 21 

The effect of actinomycin Don amidase synthesis. These 

cells were growing in acetamide-salts medium. ~' aceta-

mide-sa lts (control);!~, acetamide-salts plus actinomycin 

(8.0 x l0-
6
M); and A, acetamide salts plus actinomycin D 

-5 (2 .4 X 10 M). 
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repression of amidase synthesis by acet~te. Studies were conducted to 

elucidate the repression of amidase synthesis by acetate and succinate. 

Pseudomonas fluorescens cells were grown on acetate-salts or succinate­

salts medium. The acetate-grown cells should utilize acetate more 

readily than cells grown on succinate. Therefore, in acetate-grown 

cells there would be faster utilization of acetate and less repression 

of amidase synthesis. The results indicate that acetate-grown cells 

have an increased rate of amidase synthesis as compared to succinate­

grown cells (Figure 22). Initiation of phase II of amidase synthesis 

occurred at approximately the same time in both cultures. Pseudomonas 

fluorescens cells, which were grown on acetate-salts, showed a decreased 

growth lag compared to succinate-grown cells when inoculated into 

acetamide-salts medium (Figure 23). These results did not establish 

the role of acetate as a repressor of amidase synthesis. 

Additional studies were conducted in which succinate grown cells of 

Pseudomonas fluorescens were inoculated into flasks containing acetamide 

salts medium supplemented with 0.01 M acetate or 0.01 M succinate. 

Enzyme synthesis was determined and the results are presented in figure 

24. The results showed that during the initial stages of enzyme syn­

thesis in phase I, succinate and acetate repressed amidase synthesis. 

At equal molar concentrations, succinate was more effective as a 

repression than acetate. 

Additional experiments were conducted to illustrate succinate 

repression during phase I and phase II of amidase synthesis. 

Pseudomonas fluorescens cells were grown in flasks of acetamide-salts 

medium to which succinate (0.01 M) was added to one flask at zero time 

and to a second flask at 4~ hours. The results (Figure 25) indicated 



Figure 22 

A comparison of enzyme synthesis between acetate salts­

grown and succinate salts-grown f. fluorescens cells 

growing in acetamide-salts medium. ;~, acetate-grown 

cells; and®, succinate-grown cells. 
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Figure 23 

A comparison of the rate of growth between acetate salts­

grown and succinate salts-grown.!'._. fluorescens cells grow­

ing in acetamide-salts medium. 0, acetate-grown cells; 

and 8, succinate-grown cells. 
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Figure 24 

Repression by succinate and acetate of amidase synthe­

sis in P. fluorescens. The cells were growing in ace­

tamide salts medium. ~' acetamide-salts (control); 

~' acetamide-salts plus succinate (0.01 M); and A, 

acetamide-salts plus acetate (0.01 M). 
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Figure 25 

Repression of amidase synthesis in P. fluorescens by 

succinate. The cells were growing in acetamide-salts 

medium. 9, acetamide-salts (control); A, acetamide­

salts plus succinate (0.01 M) (added at zero time); 

and 8, acetamide-salts plus succinate (0.01 M) (add­

ed at 4\ hours). 
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that addition of succinate at zero time repressed phase I of amidase 

synthesis while the addition of succinate at 4~ hours partially repres­

sed synthesis during phase IL A pronounced repression was not observed 

when succinate was added after 4\ hours, which may have been due, as 

measured by appropriate growth controls, to the rapid depletion of the 

succinate by the large number of cells present in the flask. 

The metabolite repression observed in the amidase system has been 

noted with other enzymes and referred to by the general term "glucose 

effect" (Monad, 1942). This type of repression has been observed with 

metabolites other than glucose and in recent years the term metabolite 

repression has replaced "glucose effect." According to Spiegelman 

(1955), growth on glucose preempts the cells supply of pools to produce 

glucose degrading enzymes and this presupposes that glucose is a more 

readily utilizable substrate than the inducer. Growth of cells in a 

medium containing two carbon sources at concentrations insufficient to 

support full growth is often diphasic, depending on the specific carbon 

sources supplied. This phenomenon has been termed diauxie (Monad, 1942). 

Our results (Figure 26) showed that when cells are growing in the suc­

cinate-acetamide medium, succinate is utilized during the initial 

growth phase and, following the apparent depletion of succinate, acetamide 

is utilized during the second growth phase. When the succinate was 

present in sufficient concentration to support full growth of the bac­

teria, the diauxie growth pattern was not observed. Similar results 

have been reported with Escherichia coli grown in a glucose-lactose 

medium. The cells utilized glucose exclusively prior to the utilization 

of lactose (Monad, 1942). Neidhart and Magasanik (1956) reported that 

all glucose-sensitive enzymes were capable of converting their 



Figure 26 

Diauxie response of.!'._. fluorescens growing in succi­

nate-acetamide medium. ".), succinate (0.01 M); ~' suc­

cinate (0.01 M) plus acetamide (0.08 M); 0, succinate 

(0.001 M); Ill, succinate (0.001 M) plus acetamide (0.08 

M); and!, acetamide (0.08 M). 
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substrates to metabolites which the cell can also obtain independently 

and more readily by the metabolism of glucose. In this situation, it is 

disadvantageous for a cell to produce enzymes to degrade a compound if 

it can get faster results by degrading glucose. 

Cohn and Monod (1953) proposed that the mechanism of "glucose 

effect" or metabolite repression was possibly an interference by the 

metabolite with the transport mechanism for the inducer. Experiments 

were conducted to determine if succinate and acetate influenced the 

uptake of acetamine-1-
14c by cells of P. fluorescens (Table I). 

TABLE I. 

UPTAKE OF ACETAMIDE-l-
14c BY CELLS OF P. FLUORESCENS 

counts per percent of 
Constituents minute control 

10 sec 90 sec 10 sec 90 sec 

control 90 349 100 100 

control + 
succinate 78 66 86 19 

control + 
acetate 61 119 68 34 

These results show that the presence of either succinate or acetate 

in the system decreased the uptake of radioactive acetamide by the cells. 

These experiments did not unequivocally show whether succinate or 
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14 acetate was the most effective inhibitor of uptake of C-labeled 

acetamide. 

Reversal of actinomycin Q inhibition of enzyme synthesis .£Y. 

protocatechuate 

The results had established that protocatechuate prevented and 

reversed growth inhibition off. fluorescens by actinomycin D. Experi-

ments were conducted to determine if protocatechuate prevented and/or 

reversed the actinomycin D inhibition of amidase synthesis. 

Protocatechuate was added simultaneously with actinomycin in one 

system to determine if protocatechuate could prevent actinomycin D 

· inhibition of amidase synthesis. In a second system, the cells were 

incubated with the antibiotic for two hours to allow an inhibition of 

amidase synthesis to become established and protocatechuate was added 

to test the ability of protocatechuate to reverse the actinomycin D 

inhibition of amidase synthesis. Enzyme studies (Figure 27) indicate 

that protocatechuate could both prevent and reverse the actinomycin D 

inhibition of amidase synthesis. These results also indicate that the 

binding of actinomycin D to DNA could be viewed as reversible since 

protocatechuate was able to reverse the inhibition of amidase synthesis 

after the antibiotic supposedly was bound to the DNA. 

Attempted reversal of CAP inhibition of amidase synthesis with 

protocatechuate 

Protocatechuate did not reverse CAP inhibition of growth off. 

fluorescens (Figure 11), Since amidase synthesis was inhibited by CAP, 



Protocatechuate (8.0 x 

Figure 27 

-4 
10 M) reversal of actinomycin D 

inhibition of amidase synthesis. The cells were growing 

in succinate-salts mecl.ium. 0, succinate-salts (control); 

A, succinate-salts plus protocatechuate; @), actinomycin D 

( 0 -6 ) -1 -6 8. x 10 M ; L, actinomycin D (8.0 x 10 M) plus pro-

tocatechuate (added at zero time); and ll, actinomycin D 

-6 
(8.0 x 10 M) plus protocatechuate (added at 2 hours). 
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studies were made to determine if protocatechuate influenced the CAP 

inhibition of enzyme synthesis. The results (Figure 28) established 

that CAP inhibited the synthesis of amidase and the addition of 

protocatechuate did not affect the inhibition. 
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Prevention of actinomycin Q inhibition of amidase synthesis E.Y. selected 

compounds and analogues of protocatechuate 

The ability of selected compounds and structural analogues of 

protocatechuate to prevent the actinomycin D inhibition of amidase syn­

thesis was studied. The purpose of these experiments was to determine 

if a specific site or functional group of the protocatechuate molecule 

was involved in the reversal phenomenon. The results (Table II) do not 

indicate that a specific site or functional group of protocatechuate 

was involved in the reversal phenomenon. There was no correlation 

between compounds which have the same functional groups located in the 

same or different positions as protocatechuate. Anthraniiic acid, 3,5-

dihydroxybenzoic acid and 2,3-dihydroxybenzoic acid were found, in 

addition to protocatechuate, to prevent actinomycin D inhibition of 

amidase synthesis. 

Studies were conducted to determine if the reversal of actinomycin 

D inhibition was dependent on the ratio of protocatechuate to the anti­

biotic. Varying concentrations of protocatechuate were added to 

actinomycin D-containing flasks and amidase synthesis was determined. 

The results (Figure 29) indicate that the extent of reversal of 

actinomycin D inhibition of amidase synthesis was dependent on the ratio 

of protocatechuate to antibiotic.· As the molar ratio was decreased 



Figure 2 8 

Inhibition of amidase synthesis by chloramphenicol. 

The cells were growing in succinate-salts plus ace-

tamide medium. 0, succinate-sa lts (control); C, 

-4 
succinate-salts plus protocatechuate (8.0 x 10 M); 

-5 ·~ ®, chloramphenicol (5.0 x 10 M); and~. chloramphe-

-5 -4 
nicol (5.0 x 10 M) plus protocatechuate (8.0 x 10 

M). 
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TABLE II 

REVERSAL OF AMIDASE INHIBITION BY ACTINOMYCIN D 
WITH SELECTED COMPOUNDS 

Additive 

succinate + acetamide (control) 
ortho-hydroxybenzoic acid 
meta-hydroxybenzoic acid 
para-hydroxybenzoic acid 
2,3-dihydroxybenzoic acid 
2,4-dihydroxybenzoic acid 
2,5-dihydroxybenzoic acid 
3,4-dihydroxybenzoic acid 

(protocatechuate) 
3,5-dihydroxybenzoic acid 
3,4,5-trihydroxybenzoic acid 
anthranilic acid 
para-aminobenzoic acid 
para-hydroxybenzoic acid 
benzoic acid 
B-alanine 
pantothenate 
glucose 
actinomycin D (control) 

Experiment 1 

100 
0 
5 
0 

74 
20 
31 
82 

37 
0 

0 

91 

Experiment 2 

100 

69 

29 
4 

18 
7 
6 
6 
2 
0 

Cells of P. fluorescens were inoculated into succinate-salts plus 
acetamide medi~m. The concentration of all compounds was 8.0 x 10-4 M 
except glucose which was 2.7 x 10-2 M. The experiment was terminated 
at the 6 hour time interval and the amount of enzyme activity was 
determined. All values are expressed as percent of the acetamide con­
trol which did not contain actinomycin D. 



Figure 29 

The reversal of actinomycin D inhibition of amidase 

synthesis by different concentrations of protocate-

chuate. The cells were growing in succinate-salts 

medium supplemented with acetamide (0.08 M). The 

actinomycin D concentration used in this experiment 

-6 
was 8.0 x 10 M. ®, succinate-salts (control); 0, 

actinomycin D; , actinomycin D plus protocatechuate 

(8.0 x 10-
4

M); ~' actinomycin D plus protocatechuate 

(8.0 x l0-
5

M); 6, actinomycin D plus protocatechuate 

-6 
(8.0 x 10 M); and&, actinomycin D plus protocate-

-7 
chuate (8.0 x 10 M). 
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from 100:1 to 0.1:1, the extent of reversal of the actinomycin D 

inhibition of amidase synthesis was decreased. Since the ability of 

protocatechuate to reverse the inhibition of enzyme synthesis is con­

centration dependent, the results suggest an interaction between 

protocatechuate and actinomycin D. 

94 

Spectrophotometric studies of §:.g interaction between protocatechuate and 

actinomycin D 

Spectrophotometric studies were ferformed using the Cary 14 spec­

trophotometer to determine if an interaction between protocatechuate 

and actinomycin occurred as indicated by a change in their light absorb­

ing properties. The results do not explicitely show an interaction, but 

the possibility was suggested since, when the absorbance of the mixture 

was determined using protocatechuate as a reference, the spectrum for 

actinomycin was different from the spectrum of the actinomycin control 

(Figures 30 and 31). Additional tests for an interaction were conducted 

using the Aminco-Bowman spectrophotofluorometer. This instrument 

measures the fluorescence of a compound at different wavelengths. If a 

fluorescent compound is excited at a particular wavelength, it will emit 

light at another wavelength. These light emissions are then measured. 

The results (Figure 32) indicated that actinomycin D was excited with a 

peak at 325 nm and 360 nm. When actinomycin D was excited at 325 nm and 

the emission spectrum measured, a peak was observed at 500 nm. 

Protocatechuate was excited with a peak at 325 nm. When protocatechuate 

was excited at 325 nm, the emission spectrum showed a peak of 438 nm. 

The excitation and emission spectrum of a mixture of the two compounds 

was determined. The point of maximum excitation of actinomycin Din the 



Figure 30 

The ultraviolet absorption spectrum of a mixture of 

-5 actinomycin D (1.03 x 10 M) and protocatechuate 

-4 -4 
(3.8 x 10 M). Protocatechuate (3.8 x 10 M) was 

used as the blank. 
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Figure 31 

The ultraviolet absorption spectrum of actinomycin D 

(1.03 x 10- 5 M) when water was used as the blank. 



:>-, 
.jJ 

•rl 
Cll 
p 
QJ 

100 

75 

.u 50 p 
H 

25 

O"-~~~ ....... ~~~'--~~~ ...... ~~~.._~~~._..~~~---~~~.._~ 
180 200 220 240 260 280 300 320 

Wavelength (nm) 

98 



Figure 32 

Spectrophotofluorometric studies of protocatechuate and 

actinomycin D. .·, excitation spectrum of actinomycin 

(8.3 X 10'-
5 

M); ·, excitation spectrum of protocatechuate 

(8.0 x 10-J M); ,. , emission spectrum of actinomycin when 

excited at 325 nm; "• emission spectrum of protocatechu-

ate when excited at 325 nm; ' -· ' excitation spectrum of 

actinomycin in the presence of protocatechuate; and a, 

emission spectrum of actinomycin excited at 325 nm in the 

presence of protocatechuate. 
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mixture shifted from 360 nm to 380 nm. The point of maximum emission of 

actinomycin in the mixture shifted from 500 nm to 485 nm. A complete 

quenching of the emission spectrum of protecatechuate in the mixture 

was noted. These results support the proP,osed interaction between 

protocatechuate and actinomycin D and could explain the reversal of 

inhibition of amidase synthesis by protocatechuate. This interaction 

also offers an explanation for the results observed by Keudell (1967) 

that actinomycin D did not inhibit the synthesis of the inducible 

enzyme, protocatechuate oxygenase, in!· fluorescens cells growing 

in a protocatechuate-salts medium. Protocatechuate may combine with 

the antibiotic to retard entry of the antibiotic into the cell or, 

once the antibiotic was in the cell, protocatechuate could prevent the 

attachment of actinomycin D to the genome. 



CHAPTER JV 

SUMMARY AND CONCLUSIONS 

Actinomycin D inhtbited the rate and total growth off. 

fluorescens in an acetamide-salts or succinate-salts medium, The in-

hibition of growth was concentration dependent in both media. Growth 

of P. fluorescens in protocatechuate-salts medium was not inhibi-

ted by actinomycin Data concentration of 8.0 x l0-
6

M. 

Pseudomonas fluorescens cells grown on succinate showed a growth lag of 

approximately 2.5 hours when inoculated into acetamide-salts medium. 

The lag was due to synthesis of an inducible enzyme, acyltrasferase 

(amidaseE.C.3,.5,1.4), which was required for utilization of acetamide 

by the organism. 

The addition of protocatechuate (3,4-dihydroxybenzoic acid) to the 

actinomycin-containing systems at zero time or after a two hour exposure 

of the cells to the antibiotic reversed the inhibition of total growth 

by actinomycin D. Inhibition of growth of B. subtilis was obtained at 

a lower concentration of actinomycin D than was µecessary for inhibi­

tion of two gram-negative organisms, P. fluorescens or a species of 

Flavobacterium. Prevention of growth inhibition by protocatechuate was 

more pronounced inf. fluorescens than in the species of Flavobacterium 

or B. subtilis. The results showed that the prevention of actinomycin 

D inhibition was not limited to a single bacterial species. Chloram­

phenicol inhibition of growth off. fluorescens was not affected by the 

102 
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addition of protocatechuate to the system. 

Acyltrasferase (amidase)synthesis was induced by acetamide or 

N-methylacetamide, a nonsubstrate inducer. A diphasic induction pat-. 

tern was observed in the acetamide-salts medium with an acetamide con-

centration of 0.08 Mor 0.16 M. Kelly and Kornberg (1962) proposed 

that phase I of the enzyme synthesis, the initial synthesis followed by 

the plateau, was due to induction by acetamide and this phase was com­

plete when the acetamide content of the medium dropped to a low level. 

Phase II, the rapid initiation of enzyme synthesis following the 

plateau, was thought to be gratuitous since it occurred during subse­

quent growth on the acetate that was formed through the hydrolysis of 

acetamide. 

Recrystallization of acetamide or an increased cell inoculum did 

not affect the induction pattern of amidase. However, results indi­

cated that a larger initial inoculum increased the rate of amidase syn­

thesis of phase I and shortened the lag of phase II. Studies to deter­

mine the effect of different carbon sources and inducers on amidase 

synthesis showed that the diphasic induction was not demonstrated by 

cells growing in succinate-salts plus acetamide or N-methylacetamide. 

Chloramphenicol inhibited both phase I and phase II of amidase 

synthesis in the acetamide-salts medium while actinomycin D did not 

inhibit synthesis of phase I, but did prevent the synthesis of enzyme 

during phase II. The failure of actinomycin D to inhibit enzyme syn­

thesis during phase I might be due to: a) a sufficient concentration 

of the antibiotic did not accumulate within the cell during the 2 hour 

incubation period to inhibit enzyme synthesis orb) a pre-existing 

m-RNA, coding for phase I of amidase synthesis, was present and, since 



actinomycin D would have little if any effect on preformed m-RNA, an 

inhibition of amidase synthesis during phase I was not observed. 
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Brammar and Clarke (1964) reported that acetate and some tricar­

boxylic acid intermediates repressed amidase synthesis. Acetate and 

succinate repress synthesis of amidase in R_. fluorescens. At equimolar 

concentrations, succinate appeared to be the more effective repressor. 

Growth studies using succinate-grown cells of R_. fluorescens inoculated 

into succinate-acetamide medium showed that succinate was utilized 

initially as a substrate and then acetamide was utilized. Spiegelman 

(1965) proposed that, in a metabolite-sensitive enzyme system, the "glu­

cose effect" or "metabolite repression" resulted when the metabolite 

(glucose) preempted the cells supply of pools to produce metabolite (glu-· 

cose) degrading enzymes. Cohn and Monod (1953) proposed that the mech~ 

anism of the "glucose effect" was a possible interference by the metabo­

lite with the transport of the inducer. Studies measuring the rate of 

substrate uptake using cells of P. fluorescens showed that both acetate 

or succinate interfered with the uptake of radioactive acetamide. 

Both chloramphenicol and actinomycin D inhibited growth and amidase 

synthesis. Protocatechuate not only prevented, but reversed actinomycin 

D inhibition of growth and enzyme synthesis. Addition of proto­

catechuate to the chloramphenicol-inhibited cells had no affect on 

growth or enzyme inhibition. The extent of reversal of the actinomycin 

D inhibition was dependent on the ratio (100:1 to 0.1:1) of proto­

catechuate to actinomycin D. Spectrophotofluorometric studies indicated 

that an interaction occurred between protocatechuate and actinomycin D. 
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Protocatechuate and actinomycin D may form a complex to retard 

entry of the antibiotic into the cell or, once the antibiotic had 

penetrated the permeability barrier, the protocatechuate could inter­

act with the antibiotic to prevent or alleviate actinomycin D attachment 

to the cell genome. 
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