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PREFACE

Thi; disSertationbis concerned with the development of
axnﬁmériééi simulafor‘for the three-dimensional flow of two
i@miScible;‘compressible fluid phases in porous media, in-
vclnding‘tné effects of grévity, capillarity, heterogeneity,
~and hystereéis in rélative]permeability and éapillarity.

Thé ﬁrimary objective:of the‘researéh project was the devel-
" opment of'an évaiuation—prediction tool for gas recovery
.fron”gas’fieids nnder active water drive, cyclic gas move-—

. mentvinvééuifer gas storage and, in particular,_to determine
fhe quantity of residual gas remaining in an aquifer-
reSerVoir domplex af abandonment. The secondary objective

. was tné investigation of the qualitative and quantitative
effects of_figorous representation of hysteretic relative
permeability and capillarity, on the numerically computed
saturation and pressure distributions.

A sef'of two, second-order, non-linear, parabolic
partial differential equations governing two-phase, hyster-
, eticﬁﬂxﬁvwere derived. An analogous system of difference
equations were develnped for numerical solution by an alter-
nating difeqtion implicit iterative method. Semiempirical
relétipnships spanning the:domain of relative permeability
and.capillarity data were derivéd from laboratory data and

statistical—capiilaric models of the porous media.

iii



Parametric sensiti?ity studies of the effects of relative
permeability and capillarity on the numerical calculation of
fluid saturation-pressure distribut%ons were made by simﬁla—
tion of hypothetical systems representing typical prototype
reservoirs.
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CHAPTER I
INTRODUCTION

During the last depade there has been an increased
realization of the need for refined, quantitative answers
conperning the behavior of hydrocarbon reservoirs and their
management. The exploitation of these reservoirs continues
to be accelerated té meet fhe ever growing demand for energy
resources. As the exploitation of the known reservoirs in-
tensifies and the discovery of the significant new reser-—
voirs becomes more difficult;‘the‘technologists and their
management become more interested in the response of the
known reservoirs to advanced recovery techniques, whereas
the initiai concern has been the delineation and exploration
of thesevreservoirs. Due to intense competition, both in
exploration and exploitation, and gradual exhaustion of
hydrocarbons through production, the principal problem con-—
- fronting the reservoir technologists today is one of proper
reservoir management to achieve optimum recovery. Before
these energy resources éan be managed, they musf be quanti—
tatively appraised so that the proposed exploitation tecﬁ—
niques can 5e evaluated.

| Emphasis ié now placed on the quantitative description

" of the geologic, and dynamic fluid properties affecting the



hydrocarbon energy source yielding capacity of wells and
reservoirs. Research is being directed toward developing
and improving analytical and numerical methods of simulating
the response of wells and reservoirs to various exploitation
techniques.

The primary objective of the research which is the
basis of this dissertation has been the development of a
numerical simulator for the three—dimensional flow of two
immiscible, compressible fluid phases in porous media, in-
cluding the effects of gravity, capillarity, and hysteresis
in relative permeability and capillarity. The second objec-
tive was the investigation of the qualitative and quantita-
tive effects of rigorous representation of hysteresis in
capillarity and relative permeability on the model to deter-
mine whether and when such rigor is worthwhile.

One of the'mqst important problems in the design of gas
storage fields is that of determining‘or estimating the in-
dividual and cumulative deliverabilities and injectabilities
of wells as a function of time, gas—-in-place, and injection-
withdrawal patterns. In order to do this, reservoir pres-
sure and saturation distribution must be determined or
predicted as a function of time, which requires the use of a
suitable simulator. The prediction of fluid movement by a
simulator is also important in estimating the most advanta-
geous positions of new wells, explo%tation rates to which
they can be subjected,‘and the posifion of the gas-water

transition zone during periods of high and low reservoir



pressure and gas-—-in-place to avoid gas movement beyond the
"spill point", and watering (or coning) of wells. It must
be pointed out that gas reservoirs naturally developed in
aquifers over a period of geologic time offer just as much
challenge to technologic and economic ingenuity of man as
the gas storage reservoirs, except that the initial drainage
process has been accomplished by mnature and there is usually
no cycling of gas. This dissertation will bé concerned with
the simulation of reservoirs containing two immiscible,
compressible fluids with particular emphasis on technologi-
cally more general, cyclic storage reservoirs.

Such a simulator is also applicable to oil-water sys-—
tems‘in the vicinity and above the bubble-point, and to gas-
0oil systems subject to sufficiently small pressure
gradients.

Analytical and pseudo—-analytical methods have hereto-
fore been applied to relatively uniform reservoir-aquifer
systems with simple geometry only. More complex systems
defy the capabilities of these techniques, or, in some
cases, the computational effort becomes astronomical.

These techniques are well documented in the Society of
Petroleum Engineers (SPE) literature. Farlier referenced
work of the author provides the most recent mathematical
description and field applications (1, 2, 3).

Numerical simulators have emerged in response to the
need for detailed studies, and the failure of convenient

classical methods, such as the separation of variables



techniques or Green's functions, in solving the differential
analogs of the multi—dimensiénal, multi-phase flow systems.
Today, generalized simulators are available to most reser-—
voir technologists and development work continues with ever
increasing tempo: However, the realism and the versatility
of analytical or numerical simulators depend largely upon
the availability of abundant and accurate data. Frequently,
basic data are not sufficient to warrant a rigorous descrip-
tion of a complex system by numerical analogs, and in such
cases simpler, faster and cheaper analytical methods may be
just as useful.

The advantage of a numerical simulator is, at least,
twofold. Firstly, it provides answers where analytical
techniques fail. Secondly, it provides a complete pressure
and saturation information at each point in time and space
which is beyond the capabilities of present analytical
simulators.

Various methods (4 - 7) of simulating the flow of ome
to three fluids within porous media and in one to two
spatial dimensions have been reported. To the author's
knowledge, the only numerical simulator for two-phase,
immiscible, compressible, three-dimensional flow in porous
media, is the one reported by Coates et al. (8). However,
this simulator does not incorporate the effects of capil-
larity and reiative permeability hysteresis. Recent in-
vestigations show that relative permeabilities and capillary

pressures are functions of phase saturations (10-14). Tests



performed by Comer (15) demonstrated that relative permea-
bility and capillary pressure depend upon the number of
drainage—imbibition cycles the porous media are subjected
to, and therefore time (saturation history) also becomes a
factor. The importance of hysteresis in dynamic and static
capillary equilibrium in porous materials was stressed in
recent excellent papers by Melrose (16), and by Morrow and
Harris (17).

A number of gas-water reservoir simulation studies
have been performed in this research to test the accuracy
and validity of the simulator, as well as its sensitivity
to the methods of representiﬁg relative permeability and
capillary pressure data. Specific initial drainage, initial
imbibition, and cyclic gas injection-withdrawal simulations
are presented in this dissertation together with their

appraisals.



CHAPTER IT
LITERATURE SURVEY

In 1856, French hydfologist Henry Darcy (18) demon-
strated the existence of a parameter characterizing the
fluid conductivity of porous materials. The equation which
defined "permeability" as fluid conductivity in porous media
in terms of measurable quantities became known as Darcy's
Law. The unit of permeability was named Darcy in honor of
its originator. Later, Hubbard generalized the Darcy Law
and showed how it could be derived from Navier—Stokes equa-—
tions (19). In general form, Darcy's Law is written as:

7. - L.gs - - L A
v = Bl vVd = By vp + Ispg (1)

where, ©/B is the permeability and it is generally repre-
sented by the letter k. 1I; is a unit vector taken positive
upward. Symbol list for the text is given in Appendix F,
Until early 1930'5 integrals of this law were applied
to hydrocarbon reservoirs assuming single phase flow.
Experimental work in the early 1930's showed that the perme-
ability to each phase was reduced when more than one fluid
phase was present in porous materials (20, 21). In a cele-—
brated publication Muskat and Meres (22) postulated the con-

cept of relative permeability. The corresponding form of



Darcy's Law can be written as:

k

— r, -
vf,:—k—ﬁv 3, (2)

whefe f denotes a particular fluid phase.

Farly drainage experiments showed that the relative
permeabilities depend only on the saturation of fluid
phases within the samples of porous media tested (23, 24).
The product (kkrf) became known as the effective permeabil-
ity to phase f. A multitude of papers have been published
since the introduction of this concept (13, 14, 24, 25,
26). Much work has been done in this area by Comer et al.
(10-15).

Later, it was realized that distinct relative perme-—
abilities versus phase saturation curves were obtained dur-
ing drainage—imbibifion tests, indicating the importance of
the directioh of phase saturation changes (10, 11, 12, 13,
14, 24, 25). Comer's (15) recent work showed that hystere-
sis itself is influenced by the number of drainage-
imbibition cycles imposed on porous media.

The concept of capillary pressure in multi-phase fluid
flow in porous media was introduced by Leverett (27). The
capillary pressure is the difference in pressure across a
fluid-fluid interface, and it is caused by the interfacial
tension. Although the capillary pressure can be calculated

from LaPlace's well-known equation,

P, = ol (1/r;) + (1/rz)] (3)



or from other expressions involving interfacial tension and
contéct angle (measure of wettability), such equations are
not used in macroscopic treatment of porous media. Most of
the elements in these equations are very hard to measure, if
not presently impossible; furthermore, the very complex and
tortuous mnature of porous media in microscopic view, and
variations in wettability froem point-to-point and with time
makes such equations impractical. As in the case of rela-
tive permeability, capillary pressure has successfully been
correlated with phase saturation in the laboratory. Hyster-—
esis phenomenon has been observed in capillary pressure
versﬁs saturation plots, including the effects of cycling
(15). Three excellent papers by Pickell et al. (28) Morrow
and Harris (17), and Melrose (16) on the capillary pressure
hysteresis are referenced.

Buckley and Leverett (29) derived the '"fractional flow
equations'" for the flow of immiscible fluid phases in one-
dimensional media, in 1942. Since their introduction, these
equations, together with the concepts of relative permeabil-
ity and capillary pressure, have been used in one form or
another in numerous analytical and numerical simulators.

Until the advent of digital computers which enhanced
the power and the practicality of numerical methods, simu-
lators were limited to solutions of basic differential equa-
tions govermning fluid flow in porous media for linear and
radial systems.

It appears that the first simulatien work employing



numerical methods and computing machines was done by
Terwillinger et al. (30) in 1951. These investigators ap-
plied fractional flow equations, including capillarity and
gravity effects to the description of one-dimensional, gas-—
water system gravity drainage experiments conducted in the
laboratory, and obtained good agreement between experimental
and computed performance data.

Numerical methods of solving partial differential equa-
tions are not new, However, within the last decade and a
half tremendous strides have been made. Southwell (31)
describes the relaxation methods used before mid 40's. In
1947 Crank and Nicholson developed a practical method of
numerically integrafing partial differential equations of
heat conduction type (32). Researchers like Frankel (33,
34) and DeFort (34) investigated the stability conditiomns
and convergence rétes of numerical treatment of partial dif-
ferential equations (PDE).

From the early 1950's until the present, three research-
ers made greatly significant contributions to the numerical
solﬁtion of parabolic and elliptic PDE.

Starting in 1952, Douglas, Peaceman and Rachford (36-
42) developed various implicit and explicit methods of
solving PDE governing heat conduction, and fluid flow in
one to three spatial dimensions. These investigators, as
well as others, established rigorous stability and conver-
gence criteria for various finite difference methods of

solving PDE. Coates (50, 51, 52, 53) has been the leading
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reservoir technologist in applying and extending the works
of Douglas, Peaceman and Rachford to multi-phase multi-
dimensional fluid flow in porous media.

In 1954 West et al. (43) studied horizontal and linear
systems produced under gas drive, neglecting capillary
phenomena. They used implicit finite difference grid sys-
tems. Others investigated (44, 45) one dimensional flow,
including capillarity and gravity effects, and structural
inclination. Sheldon et al. (46) transformed one-
dimensional two-phase flow eduations to Lagrangian coordi-
nates, where saturation and time are independent variables,
and applied the method of characteristics in obtaining nu-
merical solutions.

In 1953 Peaceman and Rachford (36, 39) proposed the
first alternating—directioh implicit (ADI) technigue of
solving parabolic (or unsteady-state) problems, and itera-—
tive ADI procedure of solving elliptic (or steady-state)
problems. This technique reduced the machine computation
time and provided a 1ift for expanding research on numerical
simulation methods. However, the generalization of this
method to three spatial dimensions ﬁas not stable for large
ratio of time increment to the square of space increment.
Douglas and Rachford (40) proposed a second ADI method,
which, in three dimensions is a perturbation of the backward
difference equation (first order correct in time). Douglas
later proposed a third ADI méthod (47) for three space

variables that is a modification of the Crank-Nicholson
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equation; consequently, it is second order correct in time.

In this author's opinion, the most important single
paper in numerical simulation is one by Douglas, Peaceman,
and Rachford (42), in which classical finite difference
treatment of two-phase, immiscible, incompressible fluid
flow in porous media, in two dimensions was made by using
iterative ADT mefhod.

In 1965 Quan, Dranchuk, and Allada introduced an
"Alternating Direction Explicit" (48, 49) —- abbreviated
"ADE -— process for tWQ dimensional two-phase systems. The
following Year Coates et al.r(50) reported important find-
ings in the cémparison of ADI and ADE applied to various
reservoir problems. Theyvaund ADT superior in accuracy
but slightly‘slower‘than ADE, in contrast with earlier
claims that ADI was much slower fhan ADE (49).

The most recent report on simulating two phase,
immiscible fluid system behavior in porous media is a
SPE paper by Coates et al. (8) where a three-dimensional
model for two-phase, immiscible, compressible flow, in-
cluding capillarity and gravity effects are treated neg-
lecting hysteresis in relative permeability and capillary
pressure. Coates also presented recent papers on the simu-
lation of three-phase flow (52, 53).- Excellent papers by
Irby and Lamoreaux (54), Schwaube and Brand (55), Garrett
(56), and Briggs and Dixon (57) are available in SPE iiter—
-ature on the progress and evaluation of multiphase flow

simulators.



CHAPTER 1171
STATEMENT OF THE PROBLEM

This research project was initiated to develop a per-
formance evaluation-~prediction tool for cyclic gas movement
in aquifer storage and, in particular, estimation of resid-
ual gas remaining in an aquifer-reservoir complex at
abandonment. The ﬁovement of natu;al gas in contact with
underground water is a special case of multi-phase immisci;
ble displacement: in porous media. Hence, the central prob-
lem of this dissertation is the extension of the theory of
immiscible displacement to include multi-cycle drainage-
imbibition proceSseS involving two compressible fluids, and
to develop a mathematical simulator of the flow system.

The theory of immiscible fluid displacement in porous
media is based on the fundamental concepts of relative
permeability, capillarity, Darcy's Law, equation of state,
and material balance. Multi-cycle drainagé—imbibition
processes differ from the non-cyclic displacement in that
dynamic hysteresis exhibited by relative phase permeability
and capillarity must be considered.

In order to save space, the following abbreviations
were used in the reét of this dissertation:

PC = capillary pressure

12
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i

" NWF (and n or g) non~-wetting fluid

WF (and w) = wétting fluid
SNWF | = saturation of the non-wetting
fluid
SWF _ = saturation of the wetting fluid .
RP e = relaﬁive bermeability
RPN ' | = relative permeability to non-wetting
phase |
RPW o = relative permeability to wetting
. phase

In.studies“gf immiscible displacement, it is common
practice to assume that WF saturation is everywhere de-
creasing §r increasing.‘ This permits the classification of
the displacement proéeés as drainage (deséturation) or
imbibition;>everywhere in the rock-fluid s&stem being
considered. Until the experimentél Yerification of the
existence of hysteresis in PC or RP versus phése saturation
relationships,\correlaﬁions based on dréinagevconditions
alone were used in reservoir and well perfqrmance equations.
Today, it is realized that the two types of displacement
mechanisms aré'each associated with sepafate RP and PC
characteristics, and draihage or imbibition data is used
depending on the classification of the process studied. It
is common practice to use imbibition data for secondary,
tertiary, etc., drainage-—-imbibition processes,

The nofmalvprocedure is to obtain PC-saturation and

_RP—saturation data by testing core samples presumably
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representing the reservoir‘rock, or from correlations pub-
lished in theiliferafﬁre for rock-fluid systems of similar
characterisfics (9, 11,_14, 24—28). Tﬁese tésts_expose the
core samples-fo extreﬁes'of phéée saturafioﬁs. A-typical
drainage PC or RP test is conducted until WF séturation is
reduéed to an apparenf'minimum'(residual) level; + Similarly,
imbibitibn’testing.is'started ffom this-WF reéidual $atura—
ktio.n and contin’{;e'd until an apparent minimum ('r'esiduavl) NWF
saturation is reached. This type of testihg establishes
initial drainagé—imbibition curveé Which f&rm hysteresié
loops in PC and RP (9, 11, 24, 27). However, invéyclical
mode of operating two-phase syétems, substantial, if not
all, regions- of ‘the reservoir rock are not subjécted’tovone
vor more phase saturationvextrema, and all régions‘do not
always experience eitﬁer drainage or imbibition simultane-
ously. ‘Hence,-RP and PC Versus WF saturation'corfelations_
based upon initial drainage—imbibition test dafa are inade-
quate for the simulation of cyclic flow. This is espeéially
significant in gas storage reservoir-aquifer systems and in
studying the behavior of Wells subject to water coning.
Cyclic tést methods and equipment need new development
in order to obtain dynamic hysteresis data on porous solid
‘samples. In fact, regulér drainage and imbibition test
methods and equiﬁment are by no means perfect. However, it
seems quite appropriate,; at first, to investigaté the sensi-~
tivity of a numerical simulator to model hysteretic PC'and

RP data. Parametric simulation studies of hypothetical
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systems representing typidal reservdirs can provide valuable
information as to the detail required. With this in mind,
it was decided to conceptualize dynamic hysteresis models
for PC and RP behavior based on available data and intui-
‘tion, and to develop a mathematical simulator incorporating
these systems. -If rigorous represenfation of dynamic hys-
teresis in RP and PC is found to affect significantly the
accuracy of numerically computed pressure and saturation
distributions, extensive laboratory research will be needed
to support, modify, or replaée the models conceptualized and
used in this dissertation.

The convéntion of this dissertation concerning hyster-
etic RP'and PC models is presented in Chapter IV. The
development, and the application of the hysteretic flow

simulator are covered in Chapters V and VI, respectively.



CHAPTER IV

GENERATION OF HYSTERETIC CAPILLARY PRESSURE

AND RELATIVE PERMEABILITY CURVES

In this dissertation gemneralized semi-empirical rela-
tions, based on the theoretical treatment of the fundamental
factors controlling the quantitative features of PC and RP,
were used to generate cyclic drainage-imbibition data.

Since the parametric analysis of the simulator sensitivity
to the hysteresis in RP aﬁd PC was the secondary object of
this work, the only requirement in using generalized rela-
tions is that they must gehéfate curves spanning the usual
ranges of the typical experimental RP and PC data for

porous solids. Furthermore, generalized expressions allow
the employment of rock-fluid properties appearing in them as

parameters for sensitivity analysis.
Hysteretic PC Model

The theory of immiscible fluid displacement in porous
media defines the capillary pressure as:

The pressure difference that occurs between the

mobile interconnected masses of the two fluids

in question, which is associated with the satura-

tion at which occurs, even though the relation

is not altogether permanent.58

This definition leads to a model of capillary behavior

16
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consisting of lines drawn through points representing empir-
ical PC-saturation data from core samples. Various methods
of measuring PC and the bulk phase saturations are described
in the literature (9, 13, 16, 17). These experimental
points are determined at apparent equilibria reached after
the cessation of hydrodynamic flow; that is, after the bulk
WF flow into or out of the porous solid sample has stopped.
This model capi;lary.behaﬁior is based on the following
assumptions: (1) net mass transfer across a phase boundary
is negligible and (2) pellicular moisture does not provide a
path for bulk liquid transfer.

Morrow and Harris (17) used a modified suction poten-
tial technique to study the cyclic relationships between PC
and the moisture content for a porous mass. They proposed a
model of hysteretic capiilary behavior in which the above
two conditions are assumed. Figure 1 shows the general form
of the principal relationships between PC and bulk SWF ob-
tained by Morrow-Harris. Three principal curves can be
named: (1) primary drainage D,, representing the initial
desaturation from the condition of complete initial satura-
tion by the WF; (2) pendular imb%bition I,, delineating
imbibition from the residual SWF;vand (3) secondary drainage
D, portraying desaturation from the residual SNWF. TIn this
dissertation, the curves D, and I, will be called Bounding

Dréinage and Bounding Imbibition Curves for capillarity.

Using consolidated ceraﬁic tiles and unconsolidated

ground glass initially saturéted by boiling in water,
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Morroﬁ ahd“ﬁér;is reproduced saturation cycles of type I,D,
After reéaturation by‘boiling, the curve.DO and subsequent
cycles éould élsovbé‘reproduced. Scanning curves were ob-
tained by these inveétigators when a drainage or imbibition
process was re?ersed before it reached the corresponding
residuallsaturation, as illustrated in Figure 1.

‘Multircycle capillarity tests, patterned after the
Morrow-Harris method, involviﬁg reservoir rock and fluids
havé not‘béen reported in the iiferature. C§her*s (11, 15)
unpublished cyclic PC data on consolidated and unconsoli-
défed feéervoif r§¢k samples is shown in Figures 2 and 3.
Sample.properties are also given. Core samples were taken
from two sandstone formations of Cambrian Period, used as
gas storage reservoirs. Three hysteresis cycles, bounded
by phase saturation extrema, are clearly discerned on
Figures 2 and 3. Within the accuracy of the experiments,
Comer's data support the findings of Morrow-Harris concern-
ing the loci Dy - Iy — D of the empirical PC data. Hence,
Treservoir rock-fluid systems exposed to saturation extrema
can be expected to behave as shown in Figure 1.

Figure 1 also defines the hysteretic capillarity model
used in this dissertation. The loci of the bounding drain-
age and imbibition curves are called "capillary pressure or
capillarity envelope.! Intermediate scanning capillarity
data are represented by scanning drainage or scaﬁning imbi-
bition curves. vOnly one type of intermediate hysteresis

loop is shown in‘Figure 1. The loop ABCEA contains parts
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of the bounding drainage and imbibition curves. A secondary
drainage process can start at any point A on the bounding
imbibition curve I,; it is not restricted to the point where

S, =5

" rp * The extreme situation is ome that produces a
scanning loop that never "touches'" the bounding curves.

The model capillary behavior depicted in Figures 1
through 3 implies complete desaturation of the wetting
phase during the initial drainage process. However, a pri-
mary drainage process can be stopped at any stage before
bulk WF is completely isolated, and imbibition started with
S, > S,,- As a matter of fact, it.is possible to go
through several drainage-imbibition cycles before residual
SWF is reached. Hence, the static capillarity envelope
defined in Figure 1 for a given sample is not unique. In
reality, there are virtually an infinite number of families
of hysteresis loops, each confined within an envelope char-
acterized by the branching point of the bounding imbibitioﬁ
curve from the drainage curve Ds. In order to account for
this behavior a "growing!" or dynamic hysteresis envelope
concept, illustrated in Figure 4, was used in this disserta-
tion. According to this concept, the initial hysteresis
loop ABC forms the capillarity envelope if the SWF for all
subsequent cycles remains higher than the saturation at-
tained at the end of the initial drainage. Otherwise, the
envelope grows in steps as shown in Figure 4,

The concept of the dynamic capillarity envelope in-

cludes a fixed locus for the bounding drainage data AH, a



| CAPILLARY PRESSURE, P

" AB'= FIRST DRAINAGE
| BC = FIRST IMBIBITION
| CDE= SECOND DRAINAGE
 EF = SECOND IMBIBITION
FGH= THIRD DRAINAGE
HI = THIRD IMBIBITION

Figure 4. Gfowth in Capillary Pressure Envelope

23



"24

shiffing locus for the bounding imbibition_dafa (BC fo EF £o
HI), and a relatiénship between the méximﬁm and reéidual_;v
SWF. One cannot compute from firsf.pfihciplés the qﬁantity‘
of NWF which will be 1eft behind an advancing»WF frbnt iﬁ é
given porous solid.‘iﬂowever, severai'papers’have been pub-
lished relating, by experimental results, the initial SNWF
saturation to trapped SNWF (28, 59-63)., Thé model capillary.
behavior of this diSsertation relates the reéidualeNWF td

‘historical maximum SNWF,
Hysteretic RP Model

Naar, Wygal, and Hehderson (64) reported exfensive
experimental work in 1962, which showed that cdnsolidaﬁed_ 
rocks énd,unconsolidated porous media exhibiﬁ'diffefen# |
imbibition‘flow behavior.v Figure 5, reproduced from their
original article, exemplifies their findings. They noted
similaritieé in the static capillary equilibrium curves for
consolidated sands and unconsolidated glass spheres, which‘
- support the findings of the authors (see Figures 2 and 3).
RP testing of the same samples with oilband air, produced
the usual hysteresis in RPN (air) and RPW'(oil) for consoli-
dated samples, shoﬁn in Figure 5a; howeVer, the uheXpectéd.
contrary behavior, shown in Figure 5b, held fof the uncoﬁ—’
solidated samples. These investigators also noted thaf;

A significant difference was also observed when

drainage and imbibition processes were repeated:

(1) when after imbibition a WF is drained and

then imbibed in a consolidated rock, the RP be-

havior retraces the imbibition curves only, (2)
when these processes are applied to an
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unconsolidated sand, the flow behavior retraces in
succession imbibition and drainage RP curves.

These statements are in conflict with authors' cyclic
RP test data on samples A1-5S1 and H1-F3, presented in
Figures 6 and 7. Capillarity data for these samples were
shown in Figures 2 and 3. vSample A1-S1 is an unconsolidated
sandstone whose‘RPN behavior supports the second statement
made by Naar et al., and whose RPW behavior rejects it.
Similarly, the RPN and RPW behaviors of the sample H1-F3
contradict fully the first statement of Naar, et al. As a
matter of fact, aqcording to data presented in Figures 6 and
7, the BP behavior of consolidated and unconsolidated sands
are similar. Extensive unreported cyclic test data on other
samples from consolidated formations, used by the author and
his co-waorkers as storage reservoirs, exhibited the same be-
havior as in Figure 7.

A discussion of the contrasts between the data results
of Comer and Naar, et al., is beyond the scope of this dis-
sertation for it would require rather lengthy descriptions
of experimental environment and techniques underlying the
data. Their findings were briefly covered above in order to
emphasize two key points: (1) if one treats core data like
those shown in Figures 5, 6, and 7, as model data, one is
beset with the absence of agreement on the shapes of the
hysteresis loops, absence of intermediate scanning data, and
different hydrostatic versus hydrodynamic residual satura-
tions, and (2) extensive laboratory research is needed to

isolate true RP behavior from any abnormalities caused by
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specific experimental techniques. For example, RP test pro-
cedures reported in the literature use the same inlet to the
core sample during drainage and imbibition testing. After
drainage testing is completed, the core samples should be
rotated or the inlet-outlet positions switched in order to
better simulate prototype flow conditions.

Various models of porous rock have been proposed to
develop theoretical expressions for RP. These range from
parallel-capillary models to randemly interconnected
capillary models; i.e., Kozeny-Carman (65), Rose (66, 67),
Marshall (68),‘Wyllie—Gardner (69), Naar-Henderson (70),
B61t (71) models. It was found that, with certain modifica-—
tions, the expressions proposed by Wyllie-Gardner (69) for
generating the primary drainage RP, and expressions pro-
posed by Naar-Henderson (70) for pendular imbibition RP
could be generalized to map the usual domain of this data.
The concepts of a dynamic hysteresis envelope consisting of
bounding drainage and bounding imbibitiomn curves, and inter-
mediate scanning curves, were extended to the realm of RP,
It was assumed that imbibition RPN would be smaller than
drainage RPN for a given saturation of the bulk WF. The

converse was assumed for RPW.

Semi~Empirical Relations for Hysteretic

RP and PC

Considering a set [S*] of saturation states consisting

of laboratory measured properties of the rock-two phase
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fluid system, such as saturation extrema (critical and ex-
treme residual saturations), and any saturation milestone in
the saturation history which can be used in semi-empirical

equations describing the loci of hysteretic RP and PC:

S, = current SNWF

Sea = critical SNWF

S.n = residual SNWF

S,y = residual SWF

Sgn = 1-S,, = Upper limit of SNWF

Shsn = SNWF reéched when a given drainage process is
terminated and imbibition started

Syp = maximum S, ., considpring the saturation history
of the system, S;, é_Smn

Si1an = SNWF reached when a given. imbibition process is
terminated and drainage started, > S_,

S;ip = minimum S, ., , z_Srn, considering the saturation

history (4)

and defining transformed saturations,

S -85 S -S S ~-8
S, = Zmp " tn S, = —mwa._ _“n_ S = 2n T Pen
* Smn ’ 2 Smn —Scn, s Shn _Srn
S, . =S S, - S S -S
S = Zho o, S = Zn. ~ Ylan ., S = Zhsn = Y5 (5)
N Shn_srn, ® Shn_’slsn, ° Shsn_srn

and letting:

UNDR = Bounding Drainage RPN
UWDR = Bounding Drainage RPW
PCDR = Bounding Drainage PC
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UNIM = Bounding Imbibition RPN
UWIM = Bounding Imbibition RPW
PCIM = Bounding Imbibition PC

semi—-empirical relations were developed for RP and PC as

follows.

Bounding Drainage Equations

X
__.{Fn(i—sg) s Scn < Sn < Smn

RPN = UNDR = ‘ ,
T0; 0< S, < 8,, ... (6)
RPW = UWDR = F, S, "%; 0 < S, < S, (7)
PC = PCDR = f(S, or S;) (8)
where,

A, = drainage interference exponent for NWF

A, = drainage interference exponent for WF

F, = drainage interference coefficient for NWF

F, = drainage interference coefficient for WF,

Given set [S*], A, and F control the shapes of UNDR and
UWDR. Mutual interference in simultaneous flow of NWF and
WF is responsible for the fact that, at any saturation
S5, > 0, RP's of the two phases do not add up to unity;
hence, the coinage of the labels "interference exponent"
and "interference coefficient." F, and F# were used as
multipliers to shift the RP curveé about the pivotal satura-

tions S,, and S,y , respectively. Figures 8a and 8b show

'UNDR and UNIM generated by Equations (6) and (7), for



RELATIVE PERMEABILITY TO

RELATIVE PERMEABILITY TQ

NON- WETTING PHASE (GAS), K,
° _
»

WETTING - PHASE (WATER), K,

x Al-Si DATA
e HI~F3 DATA

°

w

- °
>

Figure 8.

“0.5' ‘ SO P P
(b)

(a) Bounding Drainage RPN
Curves Generated by
- Equation (6) ,
(b) Bounding Drainage RPW
Curves Generated by
Equation (7)

32



33

various valuesvof ‘A;"Asvki and. X increase, RP Qalues at al
,given'saturationil decline. Hence, hlgher values of X fep—:
resent hlgh order 1nterference. Actual UNDR values from.
core samples A1-S1 and H1 F3 are plotted as dotted llnes on
Figures 8a and 8b for?comparlson. The relatlonshlp between |
PCDR and S (Equatlon 8) was represented in. the numerlcal o
s1mu1ator in tabular form. ‘ ‘ |

Equations (6) and (7) were obtalned by modlfylng and
generalizing Wyllle—Gardner (69) statlstlcal—eaplllarle L

expresslons for RP

S, =8

RV - (5,14 5,0 = 5B (o)
RPN = (1-8,%)(1-8,%°. (i0)

These equations are based on over-simplifying assumptions,
such as linearity of the relationship between 1/T23‘and S;*,
rw

and the condition of RPN=1 for SQ = S,,+ The anthorﬁs:.

experience has always been that'RPN(Sr") < 1.

Pounding lmbibition Equations

The flrst 1mb1b1tlon process may start at any S
larger than‘or_equal to Sr*-q-Therefore, the flrst 1mb1b1—
tion RP and PC eurves constitute the bounding.imbibition -
curves (UNIM;lUWIM,.PCIM),.as,long as subseqnentsdréinééel
processes'areiterminated at er'befere the‘makimﬁm SNWF'f
reached at the end'Ofathe initial drainage. Otherw1se,’the

locivUNIM, UWIM, and PCTM w111 shlft as. sh; value ass001atedb
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with each drainage process increases. The following rela-

tionships were developed for the dynamic UNIM; UWIM; and

PCIM.
UNIM = UNDR - §;%n - 1?,1(1—52))‘1*(53_)uun (11)
UWIM = E, {UWDR+ (1-UNDR) (S, )"}
:Ew'{ngl)‘w(i—s‘,,)‘”" + s, Wy | (12)
PCIM = PCDR - (Sz)% (13)
where
Eé = imbibition intefference coefficient for WF
Wy, = imbibition interference exponent for NWF
w;vz imbibition interference exponent for WF
We = imbibition exponent for PC

when S, = S;,, Equatipns 11, 12, and 13 give the loci of

the limiting UNIM, UWIM, and PCIM. Figure 9 shows how PCIM

values vary as a function of uw, for various values of 5;, .
Equations deveioped for the intermediate drainage and

intermediate imbibition RP‘and PC are given in Appendix A.
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CHAPTER V
DESCRIPTION OF THE NUMERICAL MODEL

The flow of two immiécible, compressible fluids
through porous media, governed by interacting viscous~
capillary-gravitational forces, can be represented by the
following simultaneous set of second-order, non—linear,

partial differential equations:
Ve [ (0, /uB)p (K+&,)] + (g )y =
o[ (~S'/B), (p, .38, /3t - p,, 38,/3t)
+ (1-8)p,, (1/B, ) "38, /3t] | (1ka)
Ve [(k.py/uB), (K 93, )] + (q ﬁw =‘
cp[(s'/ﬁ,,(p,,,a@n/at-p”aéw/at)
+ Sp“,v(Ti/B,;')'BQ,,/at]. (14b)

These equations are derived by combining Darcy's Law for

each phase f = (n,w)
with an equation of continuity for each component,

-V - (p, V), = 93 (p,S), /3t " (16)

36
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where the flow potential &, is defined by,

) Pe d
L By - 1. (17)

i}

.@f

Equations (14a & b) are coupled through the capillary

pressure-saturation relationship:

Pc = Pn —Pw = psnén - pswéw

1l

P, ([s*], [0%1). (18)

A

The formation volume factor B replaces the specific weight
terms, p,, from the continuity equations:

o, (reservoir conditions)

B = p, (standard conditions)

(19)

The differential model stated in Equations (14a & b)

was expressed in implicit finite difference form,

5T 6% + Q = D A, 8 (20)

("o mls T=[ ] n=as mals o= [ar]

1

T

and solvéd simultaneously by the three-dimensional Douglas-
Rachford alte?nating—direction—implicit (ADI) iterative
procedure (40). The difference notation and G1, G2, H1, and
H2 are defined in Appendix B. The potential & on the left-
hand side of Equa£ioﬁ (205 is ﬁndefstood fb;aﬁply at the new

time ty.; . Transmissibilities were defined by:

T;,J k, A(AYAZ/AX); T, = k,A(AXAZ/AY)
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T, = k, A(AXAY/AZ); A = (k,p, /uB),. (21)

2

The application of Douglas—Rachford ADI technique to the
solution of the partial differential equations (1k4a. & b) is
described in Appendix B; hence, it will not be detailed in
this chapter. Further description of the numerical simula-
tor will be limited to cémputational techniques used to
incorporate RP and PC hysteresis into the iterative ADI
procedure. ADIT teéhniques have been initially developed for
heat conduction and single phasé mass flow studies, where
the conductivity or transmissibility is not dependent on
saturation. In multi-phase flow simulation with implicit
difference models, ;t ;s customary to evaluate the trans-
missibilities at the oid time t, and use them for the new
time t ., solution of the phase potentials. The dependency
of the transmissibilities on phase saturations and poten-
tials preclude the use of very large time steps.

Table look-up and interpolation techniques were used to
update potential dependent properties for each potential
iterate. The updating of the saturation derivative (S')
for use in succeeding iterations at a given time step, and
the updating of saturation dependent properties (RPN, RPW,
PC) required a special algorithm since these properties are
functions of the set of saturation states [ S*]. An algo-
rithm, named HYSTRACK, was developed as an integral part of
the numerical simulator to: 1) keep track of the saturation
history of any specified region of the simulated system and

2) select the appropriate RP and PC equations for updating
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these variables for use in the next time step. HYSTRACK and
a simplified version called SEMHYSTRACK are described in
Appendix C.

Boundary conditions for the numerical siﬁulator con-
sisted of: 1) explicit specification of the sink (source)
terms Q, and Q#, or computation from specified values of
terminal flow pressures and dynamic block pressures,vZ)
sealed external boundaries characterized by the vanishing
transmissibilities normal to the boundary, and. 3) open
external boundaries treated in this wprk‘by the well-known
method of Carter-Tracy (72).

The following closure criteria were applied: 1) incre-
mental material balance for each phase less than a specified
tolerance, 2) maximum saturation change in a grid block less
than a specified tolerance. In addition to the closure
criteria,,cumulétivé phase material balances were used to
check the 'correctmnesgs" of the solution, as it marched

through the simulation time domain.

Partial Integration of Equations

of Two-Phase Flow

Various schemes have been proposed to reduce the three-
dimensional problems to lower dimensions. The savings in
memory storage and computer program run time are the princi-
pal motivating forces in using two-~dimensional simulators to
study three~dimensiomal flow‘problems. However, two-

dimensional simulatdrs with pseudo-three-dimensional
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features must be used with great caution. The degree of
vertical continuity of rock properties and the thickness of
the reservoir.rock are the controlling variables in deciding
for or against the dimensional simplification.

For thin reservoirs the dip-normal component of the
viscous force is nearly zero; hence, the dip-normal distri-
bution of the fluid phases in a block depends upon the
degree of vertical segregation. Two limiting céses may
occur. If the rate of phase redistribution toward a
capillary-gravity equilibrium configuratioh within a dip-
normal column of fluid is high as compared to the rate of
areal advance of saturation fronts, vertical equilibrium
obtains. The opposite extreme is characterized by the
absence of any dip-normal saturation gradient.

For thiék reservoirs with‘good vertical continuity of
rock properties, vertical equilibfium, or near equilibrium,
may still obtain, if the flow rates are low and if the
reservoir thickness is small relative to its areal dimen-
sions, Otherwise, dip-normal viscous force gradients cannot
be neglected.

When the capillarity of rock-~fluid system is large, the
NWF to WF transition zones are significanté hence, satura-
tion and relative permeability distributions become uniform
in the dip-normal direction as the reservoir thickness
decreases. For low capillary pressures, usually exhibited
by gas-water systems in high permeability rock, the transi-

tion zones approach sharp interfaces. In the limiting
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case, the pressures near the caprock of the reservoir are
related by the difference in fluid densities, and the verti-
cal distances between the interface and the caprock.

Since the three-dimensional simulator described in
this dissertation is easily reducible to lower dimensions,
the interest in pseudo-three dimensional features is well
justified. The limiting vertical equilibrium (VE) concept
first investigated by Coates (8) is briefly described in
Appendix D. This concept permits the calculation of limit-
ing pseudo~-capillarity and relative permeability curves. In
this dissertation, these pseudo-saturation functions played
a very important role in reducing the scope of sensitivity
studies. A recent paper by J. Martin (73) presents a rigor-
ous method of partial iﬁtegration'of multi-phase flow equa-
tions, together with a theoretical foundation of VE

condition.



CHAPTER VI

APPLICATION OF THE NUMERICAL SIMULATOR:
SENSITIVITY STUDIES OF RP AND PC

IN RESERVOIR MODELING

In order to demonstrate the application of the hystere-
tic flow simulator, a two-dimensional grid network represen-—
tation of a partially gés saturated aquifer, at initial
capillary-gravity equilibrium was used. A constant reser-
voir thickness of 10 feet was assumed so that laboratory
capillarity and relative permeability data could be employed
"without adjustment. Gas was injected for 120 days at an
explicit rate of 1000 MSCF/D/well. Subsequent production
lasted 690 days with the simultaneous flow of gas and water
totaling 1000 MSCF of equivalent gas volume per day per
well. After 810 days, producﬁion was stopped and injection
was resumed at previous rates. Table I shows the satura-
tions of the gas invaded £1ocks at three levels of the
simulation time; 120, 810, and 1,110 days. Table II shows
the corresponding dynamic pressures computed for the injec-
tion and edge blocks. Figure 10 illustrates the grid sys-
tem. Figure 11 depiqts the injection~production schedule
for each well of the example simulation Run Al.

At the simulation time level of 810 days, gas was

4o



TABLE I

SATURATION (S,) MAPS FOR THE
EXAMPLE SIMULATION RUN A1

*Input Well Location

T=3 A 5 6
T = 120 Days
j=1 1.000 1.000 1.000 1.000
2 1.000 1,000 1.000 1.000
3 1.000 1.000 0.971 0.962
4 1.000 0.957 0. 380 0.288
5 0.971 - 0.380 0.200% 0.200
6 0.961 0.288 0.200 0.200
T':>810 Davy s
J=1 1.000 1.000 1.000 1.000
2 1.000 1.000 . 1.000 1.000
3 1.000 1.000 0.944 0.931
4 1.000 0.902 0.666 0.613
5 0.945 0.666 0.511% 0.328
6 0.930 0.613 0.328 0.201
T = 1110‘Days
CJ=1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1,000
3 1.000 1.000 0.931 0.964
4 1.000 0.893 0.644 0.629
5 0.931 0.644 0.466% 0.324
6 0.963 0.628 0.323 0.204




TABLE II

PRESSURE PROFILES FOR EXAMPLE SIMULATION
RUN A1(psi)

'I:5.

120 Days 810 Days 1110 Days
1 975 637 1000
2 990 615 1017
3 1010 585 1035
4 1015 530 1092
5 1020 * L70%* 1135%
6 1022 : 472 1105

* Input-Output Well Location.
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trapped in the gas invaded blocks, with RPN=0, excepting
those identified by I=5, 6, 7 and J=5, 6, 7. In the blocks
containing the active wells, gas saturation was near the
residual level: Ss::0.511 wifh RPN reduced to 0.015, as
compared to Sr;ﬁ:0.4.

In reservoir studies questions arise on the methods of
reconciling laboratory measured relative permeability and
capillary pressure data with prototype reservoir and model
conditions. The purpose of this chapter and Appendix E is
to show, by numerical simulation of hypothetical reservoirs,
how RP and PC data affect the computation of pressure and
saturation distributions, and to shed light into possible
methods of reconciling laboratory data and reservoir
conditions.

Excepting a few special applications, the numerical
simulators are constructed in a Cartesian coordinate system.
The finer is the grid network encompassing a given reservoir
region, the closer is the representation of the fundamental
flow equations by the difference system. Ideally, grid
blocks should be smaller near active wells than farther
away. However, the usual range of reservoir dimensions and
the number of active wells are such that the establishment
of a fine grid network requires a very large number of grid
points, even in two—dimensional studies, thus increasing
computer memory storage requirements and processing time.

Hence, the modelers are forced to use grid networks with

large size blocks in order to proceed with an economically
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feasible simulation study.

Two key points must be realized before embarking on a
sensitivity analysis. First, the number of variables in
reservoir simulation and their ranges of possible values are
such that the application of the classical sensitivity anal-
ysis methods involving most, if not all, the variables is
prohibitive, and beyond the scope of this research. Hence,
base permeability, porosity, fluid properties, number and
location of wells, injection-production schedules, and most
importantly, the grid block size and structural position
were standardized to typical values throughout this work.
Thus, the sensitivity‘of the saturation and pressure distri-
butions to RP and PC data, considered in this paper is rela-
tive to the specified values of the '"frozen" variables.
éecondly, in numerical simulation studies, a transformation
from the rectangular coordinates into a radial system is
made to describe the flow toward (or away from) the well-
‘bore, within a given well block, in accordance with the in-
ternal boundary conditions specified for that block. Since
it is customary to assume steady-state or quasi steady-state
flow conditions within a well block, after the numerical
solution of the difference equations representing the flow
system, at a given time, RP's directly relate the flow rates
and the corresponding pressure difference between the dynam-
ic block pressure and the well-bore pressure; that is, an
n-fold error in a RP value causes an n-fold error in the

terminal flow rate or the difference between the dynamic and
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well-bore pressures, whichever happens to be the dependent
variable. Therefore, the accurate representation of RP in
well blocks is first order important. On the contrary, PC
does not normally enter flow calculations within a well
block. Consequently, the sensitivity studies were limited
to simulation runs concerned with the influence of RP and PC
data on block-to-block material transfer.

Two types of studies were made: The first type in-
volved gas injection into virgin or partially gas saturated
aquifers; and the second type considered gas (and water)
withdrawal from aquifer-reservoir systems in initial
capillary-gravity equilibrium.

Simulation studies were made with 1) curVilinear RP
data characterized by A, =2 and A, = 4, 2) linear RP data
where )\, =Xw:=1, and 3) vertical equilibrium RP data, for a
given critical gas saturation (8). It was decided that RP
datajcould always be assumed to be étraight lines between
the saturation extrema, in the absence of laboratory data,
or in cases where simulator éonditions (i.e. large grid
blocks) did not permit direct use of laboratory data and
criteria for reconciling laboratoay data to simulator condi-
tions were not availéble. Conseqaently, if simulator calcu-
lations were not appreciably affected when )\, was changed
from 2 to 1, and A, from 4 to 1, by convention of this
dissertation, it was concluded that the simulation case in-
volved was insensitivé to laboratory RP data. Three types

of PC versus S relationship were used: 1) curvilinear PC,
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2) linear PC, and 3) vertical equilibrium PC.

The simulation runs for the sensitivity studies were
made on three different two—dimensional grid systems, using
a constant thickness of 10 feet, uniferm permeability of
500 md, and uniform porosity of 20 percent. The reservoir
thickness of 10 feet was selected because laborateory RP and
PC data need practically no adjustment even if vertical
equilibrium conditions prevailed, as shown later in the
Appendix E. Two~dimensional areal (one layer) grid systems
were used to reduce>computation cost. Furthermore, the be-
havior of a three-dimensional system, with approximately 10
feet thick layers, should be the composite of individual
layer performances. It willbe shown that, as the thickness
of a reservoir or thicknesses of the layers of a reserveir
increase, PC and RP data tend towards straight lines between

the adjusted saturation extrema (S_,, S,,, S,,). Hence, the

nn
sensitivity of the pressure and the saturation distributions
to variations in laboratory RP ahd PC data curvature van-
ishes as the reservoir thickness increases.

It is beyond the scope of this dissertation to present
all the simulation runs made duriﬁg the sensitivity studies;
typical hypothetical case studies are covered in the Appen-

dix E to support the conclusions summarized in the next

chapter.



CHAPTER VIIT
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The primary objective of this work was the development
of" a numerical simulator for the three-dimensional flow of
two immiscible, compressible fluid phases in porous media,
including the effects of gravity, and hysteretic relative
permeability and'capillarity. In order to reach this objec-
tive, the set of non-linear partial differential equations
governing this flow process was solved by numerical tech-
niques, and a corresponding computer program was written to
instruct a scientific computer to perform saturation and
phase potential (or pressure) calculations, relative to a
set of specified initial and boundafy conditions. The
successful application of the numericgl simulator to spe-
cific cases of hypothetical reservoir modeling is covered
in Appendix E. Since the development of the simulator for
hysteretic flow in porous media was the primary objective,
detailed accounts of the development process are presented
in the body and appendices of this dissertation.

The secondary objective of this work was the investiga-
tion of the sensitivity of the simulator performance to
rigorous representation of hysteresis in capillarity and

relative permeability. Since the hysteresis phenomena in
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this data are not any more significant than the member

curves defining the hysteresis loops, it was decided to

simply investigate the sensitivity of the simulator to

drainage or imbibition relative permeability and capillarity

data, by simulating semi-hypothetical drainage and imbibi-

tion processes. Numerous conclusions and recommendations

were made on the basis of simulation run evaluations in

Appendix E. The following'is a summary of thesé conclu-

sions and recommendations:

1’-

Computational techniques fOr'figorous repre-—

- sentation of the dynamic hysteresis in rela-

tive permeability and capillarity in the

'numerical simulation of two-phase, immiscible

flow through porous media were introduced.
The applicafion of the hysteretic flow simu-
lafor tb three—dimensibnal problems requires
very long computer processing times, even for .
coarse grid systems. For examplé, the hys-
teretic model simulated the performance of a
cyclic, 11 x 11 x 3, 4-well system for 100
simulation days, while consuming as much
computer (B-5500) time as it took the semi-
hysteretic model to simulate an equivalent

11 x 11 x 1 grid system for 1,600 days. This

' being the case, the consideration of the hys-

teresis in (Srn) and the corresponding shift

in the quasi-linear RP and PC curves appear
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to be the extent of rigor needed in simu-

lating cyclic systems within reasonable

computing times.

As the individual block size increases, the
employment of intermediate scanmning RP-PC
curves become rather academic, since a
large-block grid system coupled with ad-
justed or unadjusted laboratory RP-PC data
from core samples cannot simulate the proto-
type béhavior with accuracy warranting the

use of scanning data.

In simulating the process of initial gas
injection info a thin aquifer, the simulation
fesults are highly sensitive to the critical
gas saturation, S, , drainage interference
exponénts A, and XQ, and drainage interference
and FQ, in that order. As the

coefficients F,

gas saturation grows, the drainage interference

n

vcoefficients, F, and F,, gain importance. The

critical gas saturation for the gas input block
and neighboring blocks are higher than the
values obtained from core samples; they should,

preferably,. be calculated by a fine grid

radial model simulating the saturation distri-
bution abgut a typical input well, within an
area covered by input block and adjoining blocks

of the coarse-grid simulator.
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In simulating the process of initial gas

injection into or production from an aquifer

where the conditions permit the assumption

of dip-normal equilibrium, rock PC and RP data
must be adjusted to reflect thét equilibrium.
For such systems thicker than 10 feet, the
simuiator sharply loses its sensitivity to

all the parameters governing laboratory PC

and RP data, excepting the residual phase

.saturations.

In simulating the process of gas production
from a thin reservoir subject to water
influx, the simulation results are highly

sensitive to initial saturation distribution,

residual gas saturation, the imbibition

interference coefficient E,, and the satura-
tioﬁ ﬁeighting féctors used to ;verage RP's
for two adjacent blocks exhibiting high
saturation contrast. Simulator sensitivity
to interference exponents A, and A, is appre-
ciably smaller in this case.

For systems starting with primary (or first)
drainage,.critical gas saturation, and hys-—
teresis in historical high and residual gas
saturations are of first order importance.

The recommended method is to establish the

relationship between the historical high and



residual saturations by testing core samples
in the laboratory. If this is not possible,
the petroleum technology literature should be

consulted for such data on similar rock-fluid

.systems. It is highly advisable to first use

detailed grid models of reservoir regions in-
fluenced by typical wells in order to estab-
lish model critical gas saturations of regions
covered by the over-all simulator, instead of
using critical saturations measured in the
laboratory. For cyclic gas—water systems of
low capillarity, a single curve (adjusted VE
or rock curve) répresenting the primary drain-
age PC is sufficient, provided that block-to-
block transfer of gas is cut off by zero
relative permeability at the residual gas
saturation. vFér!high,capillarity systems, the
dynamic capillarity hysteresis envelépe, with-
oﬁt scanning curves, is sufficient.
Thébreqﬁirement for rigor in describing the

RP on active well pressures and flow rates
diminishes with distance from the wells, much
the same way as the influence of base permea-
bility on well performance decreases away

from the active wells. Fbr some cyclic system
simulation studies, it may be sufficient to

track the saturation history of well blocks and
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consider hysteresis only in these blecks.
If the reservoir size requires the use of
large dimension blocks and/or if the geome-
try and praperties of the reservoir are not
known well enough to set-up accﬁrate
external-internal boundary conditions,
accuracy in RP and PC data is certainly not
worth the price.

It appears that, unless the limitations on
today's scientific computing machines are
drastically overcome in the near future,

additional applied research efforts should

be directed into the development of methods
for reconciling laboratory data with model
conditions to properly simulate prototype
reservoir behavior; rather than obtaining
more accurate.laboratory data, excepting
saturation extrema. In other words, numerical
simulators of the type used in this study,
which simulate the beha&ior of actual systems
of large dimensions, cannot, in most cases,
use the laboratory data directly without
adjustmént. The development of more adequate
methods for resélving laboratory—model-
prototype reservoir data differences is
highly dependent upon the reconciliation of

the prototype behavior and the model



predictions. This calls for extensive simu-
lation applications to reservoirs with better

known geometry and properties.,
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APPENDIX A

EQUATIONS OF INTERMEDIATE DRAINAGE -

IMBIBITION RP AND PC

Expressions'forﬁIntermediate Drainage Curves
With Branching Points on

Imbibition Curves

RPN = UNIM + (UNDR — UNIM)(Z, Sg)V*
= Fn(1-52)“{(2,,55)\’n + 81 - (2,8:)Vr 1} (A-1)
RPW = UWIM - (UWIM - UWDR)(Z, ss)Vv;»
= F, S, M{(Z,8:)[1-E, +E,8,%]
+ E (1-5,%)} «+ Eéséww[if-(z;s5)vw] (A-2)
where | |

Z, ,Z, = linkage coefficients for NWF and WF
Vg 1Vy = intermediate drainage interference
exponents for NWF and WF.
When Z, =72, =1, intefmediate drainage scanning curves
extend from S,,, to S,,. Since Sy, is the historical maxi-
mum SNWF, for this case, scanning curves merge into the

bounding drainage curves at Sy = Sy, Whenever S;, <5, <.

n

Syn s Scanning curves do not exist. As Z's increase,
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scanning drainage curves merge into bounding drainage

curves at progressively smaller values of:.S5, . If Z, = Z; =
1/Ss ; the intermediate scanning curves become vertical seg—
ments interconnecting the bounding imbibition and drainage

curves. The form of Equation (A-1) is also suitable to

express PC for this case; that is,
PC = PCDR + (PCDR - PCIM)(Z, Sg)Ve (A-3)

where Z, and v, have functions analogous to Z, and v,,

respectively.

Expressions for Intermediate Drainage Curves
With Branching Points on Imbibition

Scanning Curves

RPN = A + (UNDR - A)(Z, Sg)¥ (A-4)
RPW = B - (B - UWDR)(Z, S5 )% (A-5)
PC = C + (PCDR - C)(Z, 55)% (A-6)
where
A - UNDR - (UNDR - UNIM)(Z, Ss)T® (A=7)
B = UWDR - (UWIM - UWDR)(Z, Sz )" (A-8)
C = PCDR — (PCDR - PCIM) (Z, Se )¢ (A-9)
where
T = intermediate imbibition interference exponent.

Equations (A-7 to A-9) describe the loci of RP - PC

i
i
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curves for the imbibition process preceding the current
drainage procéss. Obviously, a drainage curve, which
branches from a point on the preceding imbibition scanning
curve, lies between that imbibition curve and the bounding
drainage curve. Using the relationships given earlier. for .
UNDR, ..., PCIM, Equations (A-4 to A-6) can be expanded.
However, the forms given above are @ore efficient for numer-

ical computation.

Expressions for Intermediate Imbibition Curves
With Branching Points on

Bounding Drainage Curves

RPN = Fn(i-sz)““— (2,8 )™ (1-8,")]

Equation (A-7)
RPW = F,S; M {1- (2,8 ) ™[1-E (1-5%)1}

+ E, (2,55)Tws,

11

Equation (A-8)

Equation (A-9).

fl

PC

Expressions for Intermediate Imbibition Curves
With Branching Points on

Drainage Scanning Curves

RPN

1

D - (D - UNIM) (Z, S; )% (A-10)
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RPW = E + (UWIM-E)(Z, Ss )% (A-11)

PC

]

F — (F-PCIM) (Z, S )% (A-12)

where D, E, and F are given by Equations (A-1, A-2, and A-3),

respectively.



APPENDIX B

FLOW EQUATIONS GOVERNING THE THREE-DIMENSIONAL,
TWO-PHASE, COMPRESSIBLE, IMMISCIBLE,

HYSTERETIC FLOW IN POROUS MEDTA
Differential System

Consider an infinitesimal element of volume in a field
of fluid flow through a porbus medium. Let the element be
of volume V; porosity ®; and saturated with at least two
homogeneous, compressible, and immiscible fluids.

Let S be the closed surface bounding the region V of
the porous medium. Suppose X, y,vz to be the orthogonal
cartesian axes. .Define n to be the normal to the surface
(positive outward); and o, B, { to be the angles the normal
makes with the positive x, y, z, axes respectively.

In the absence of sources or sinks within V, material

balance requires: that:

MASS RATE INTO V - MASS RATE OUT OF V =

MASS RATE ACCUMULATION IN V.

Let u, be a vector in the field of fluid flow repre-
senting the superficial velocity of fluid f, continuous in
the region with continuous partial derivatives. In vector

1

form:

69
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1

g = Wi + Uz, J + uz, Kk

c

(B-1)

n=omai +asbj + avgk. (B-2)

Materiai balance for phase f can now be formulated as

follows:

—-f (ppuy,) *+ mn d
S

n

:fjf _5__(9_3_1;5_:_9;) av. (B=3)

"Divergence Theorem" or "Green's Theorem in Space"

states that,

gf(pfﬁf.) . F as =f!fv o) av (Bt

where V is the vector operator (Del, Nabla) defined by

- BRI _
v =i 5% +J5y ¢t k 37" (B-5)
" From expressions (B-3) and (B-4) it folléws that:
-[ffv-(p,uf)dvzf[[a—(ﬁg—f—tﬂdv. (B-6)
v : v

Assume the porosity @ of V will not change in time.
Then,

[ff - (ppuy) +@MdV=O (B-7)

For this integral’to be zero, the integrand must be

zero at all points inside the boundary of the volume V
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Therefore, the negative divergence of the flow vector u, is
the rate of accumulation of the corresponding fluid:
) - 3(p,u,)
-9 - (ppup) =@ ) - (B-8)
t
Equation (B-8) is the continuity (or material balance)
equation for the fluid f in the volume V,
Assume Darcy's Law, which relates the superficial

velocities to pressure (or potential) gradients, is valid

for each fluidj; then,

T, - K (Eur-) (Yp, + p,gvh) (B=9)
) " £
kk o o
where, K=fo ky; o

is the diagonal base permeability matrix obtained from the
general permeability matrix (expressed in tensor fofm)-by
orienting the coordinate axes (x, vy, z) orthogonal to the
principal axes of the porous body of Volume V.

Define "Reai Flow Potential" by:

A Pe: dp - gh” . :
®, = + . B-10
@f' .éo o, (D) 1hlg, ( )

The real flow potential combines the pressure and grav-
ity gradients into a single variable and also considers the

variations of pressure dependent gas-—law deviation factor.
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The definitions of the real flow potential and the super-

ficial velocity lead to the following relationships:

Vp, + %%ﬁg: Vh = p,v8,. é (B—11)

Thus,
af = __K_: kr/Uf Ps V§f (B-12)
U . kK, o o 38 /3%
= ufi = —_'(k,p/p,)f o k, o 38 /a3y (B-13)
e e o o k, 38 /3=|,

where k;, k,, and k, are the base permeabilities along the

¥

three principal axes of the porous medium.

Define "Formation Volume Factor!" for fluid f by:

(at reservoir conditions) (B—1k)
p, (at standard conditiomns) °

B,

Specific weights appearing in the material balance
équations (B~-3, B~-4, B-5, B-6, B-7, B-8) can now be replaced
by 1/B, to express the material balance at standard condi-
tions. Combination of the continuity equation (B-8) and

Darcy's Law (B-12) yield for fluid f:
g Y] . - )
v { (MBZ (K Véf)} =9 3, (S/B), . (B-15)

One should continue the mathematical formulation of the
problem to include two homogeheous, compressible, and immis-

cible fluids in the porous body such as gas and water.
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Material balance also dictates that gas and water share the

available pore space in V; that is:
S. + 8, =1, (B-16)

where S is the phase saturation (fraction of pore volume
occupied by one of the two fluids).

Define capillary pressure, p,, by:

P, = P, — Py - (B~17)

The displacement;of one fluid by another in the pores
of a porous medium is‘either aided or opposed by the surface
forces of the capillary pressure, which is the difference 'in
pressure across the fluid-fluid interface caused by the
interfacial tension. Two-phase capillary pressure and rela-

tive permeabilities have been successfully correlated with
phase saturation. The empirical correlation functions used

in this work to calculate the capillary pressure, and the

phase relative permeabilities are of the form:

P = P (5%,C%) .
N (B-18)
/s
k, = k,(s*,C*,K)
where,
S* = {Sé, ASg s Sygs Sngs Suses Sls, Siegs Spgr Se,
(B-19)
C* = Set of empirical coefficients and exponents

K = Diagonal base permeability matrix.
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Specific empirical expressions for the explicit calcu-
lation of PC, RPN, and RPW are discussed in detail in the
body of this ‘text. ~Since there are only two fluids satu-

rating V, define:
1 -8 =8,. (B-20)

From the definition of the real flow potential, it follows

that,
Py = Pg% and p, = p,8, (B-21)
ST SN R (B-22)
3; ~ Pe 3, PO, T Pw g, -

where, 5; and p* are mean-value specific weights over the
infinitesimal element of time.
Capillary pressure can now be related to phase poten-

tials by:
P, = Py — Py = P8P - p,%,- (B-23)

Write Equation (B-15) for water and gas:

v - {(%)w (K-v8,)} = o 2 (s/8,) (B-24)

. (k. . o)
v {8 @ove} e (-sim). (Be2s)

Consider the right side of Equation (B-24). The oper-—

ation implies,
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(s/B) 1 38  S3(1/B,) _
Y. [Bw : S ] (B-26)
where,
38 _ 98, dS dp. _
t - at dpc at -
3p,  2p, , 33, 28,
Tl v e ST P 's:"] (B-27)
and,
3(1/B,) d(1/B,) 3p. _ Y 38, _
ER = ~dp, Yol (1/B,) " py, Ey (B-28)
where,

S’

fl

derivative of S with respect to p,

1

<ﬁ£>: 'derivative of % with respect to p,.
\B, < .

Similarly, expand the right side of Equation (B-25):

3(1-5/B, ) 1 3(4-5) 3(1/B,)
) -P-_é:— = Cp E—at— + (1—5) _5:;—1 (B—29)
where,
éi%:§l = —,%§ = —expression (B-27)
t 94
5(1/B )

@

Equations (B-24) and (B-25) can now be written in the

dependent variables @; and @; as follows:
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| -1 -
v - {(%)w (K - v3, )} = cp[(ﬁ%‘) S"<p; _aTs - o %%"‘)

. S pw(ﬁ%Dl %%L}” (B-30a)

. | : 38,
v {(2) @ vep) = o[ (D) 5o 5E - o 52

+ (1—S)§g<£%>’ iig]- (B-30Db)

These eQuatipns form a simultaneous set of second-order
non-linear parfial differential equations in the dependent
variables @; and % .

The real flow potential & is a scalar and differenti-

able function of x, y, z. V¢ implies the operation:

v = i sx T iyt k . (B-31)
The divergence of a vector function F = F(x, v, 2z)

implies the operation,

|O)
[o%
|
[o %
=

(B-32)

o/
"
+
(&)
+
w
Q/
N

where, - denotes dot product.

Remembering that the dot product of two vectors produces a

scalar, the operation V - <%ﬁ$> (K- v &) means



77

a@‘_a%f;) . a@ g—f;) . 'a(g; %)

where T = <5LE K.
_,U-B—'

It must Bg noted that in the Equations (B-30a and

B-30b) all quantities represent average values over infini-
tesimal element of volume V, across an increment of time

Ax = dx (except ® and K are assumed independent of time).
For some of thgse variables,. such as permeability, this is
pure abstraction since they cease to have physical meaﬁings
for infinitesimal samples. However, to seek agreement be-
tween the integrals of these equations and the experimental
observations; one does not compare the differential law to

experiment for verification.
Initial and Boundary Conditions

The initial and boundafy conditions are those state-—
ments which define the limits of connected regions, time,‘
and the position and magnitude of imposed flows or poten-
tials (pressures).

The problem considered in this text is an "initial
value problem"'since the differential system (B-30) has to
be solved in the time region t>0 with given initial values
of the potential (or pressure) functions and possibly their
derivatives. It is also required that the phase potentials

(.

v @;) satisfy not only the differential equations

throughout some domain of their independent variables
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(x, ¥y, z, t), but also some conditions on the boundaries of
that domain. Such a set of requirements consfitute a
“"boundary-value problem'". If the pofential(s) is specified
on the boundary, one has a Dirichlet-type problem. A
Neuman-type problem is one in which the spatial derivative
normal to the boundary is specified. ©Since statements will
be made about both the initial and the‘boundery conditions,
our problem is an "initial and boundary value problem'".

L, be the spatial dimensions of the con-

Let L, , Iw, L,

nected region. If at t = 0, the two-phase system is in
static equilibrium with no external forces imposed, a state-

ment of the initial conditions is simply:

0< x<1L,
$(x,y,2,0) = 8, (x,y,z) for O<y SL (B-34)
0<z<l,

for each fluid, éo; and @ow differ by the static capillary
pressure expressed in potential units.

If at t =0, the two-phase system is not in static
equilibrium, then the derivatives of § as well as 3 are
required.

Every porous body is finite in volume; that is, an
extremity exists in all directions where the permeability
either vanishes (closed physical boundary) or becomes
nearly infinite. If the permeability vanishes at the
extremity of the permeable medium, which impiies the absence

of transverse flow, the component of the flow vector u in
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the direction perpendicular to the confining boundary must
be zero. Since the flow vector u and the potential gradient
at the boundary are related through Darcy's Law, a statement

of the no-flow conditions at the confining boundary b is:

01w

o'lo
i
o

or (B-35)

Vép,¢ = O for completely confining boundary.

If the permeability is infinite at the boundary b, which

implies constant terminal potential, then:
v, = &, (a constant). ’ (B-36)

Sometimes one or more of the actual dimensions of a
porous medium is so large that the potential transients
creatéd by iﬁposed external forces never reach them within
the time span specified to study the transient behavior. In
this case, the condition at the external (infinite) boundary

is:
80,4 = &0 (initial static condition). - (B-37)

At the interior boundaries, the conditions are usually
more complex. Interior boundaries are the producing wells
(sinks), the injection wells (sources), and the combination
wells for cyclic systems.

Let {(x, y, z) define the surface of the wellbore. In

an injection well containing only one fluid, f;, the -
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potential of the injected fluid is continuous on { and
depends only one time; its value is that ﬁecessary to yield
the specific injection rate or it is to be treated as a con-
stant terminal potential. Since the flow of the other
fluid, f5, is zero on |, the component of the f; gradient

normal to ¢ is zero. (= <V§f2> =0 (B-38).

T L tow

At producing wells the conditions are the same as in
the injection wells (excepting the change in the direction
of flow) so long as one fluid enters the wellbore. When
two—-phase flow obcurs, oﬁe of the two fluids in the wellbore
can be‘assumed to be the carrying fluid and its potential on
I or its production‘rate specified. The concept of fluid
distribution according to either static or dynamic capillary
equilibrium‘deterioratés on || or mnearby, becausevét the
wellbore (and nearby) the velocities are very high; that is,

the flow regime is turbulent, and PC can be taken as zero.
Difference System

Equations (B-30a and B-30b) cannot be solved for mnor-
mally encountered initial and boundary conditions in reser-
voirs by analytical means. A numerical solutidn can be
obtained by replacing the spatiél and time derivatives by
finite difference approximations, specifying appropriate
initial and boundary conditions, and defining the magnitude
and the number of time steps for which the solution is to be

obtained.
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Divide the continuum of space and time into discreet
(equal or unequal as the case may be) intervals and consider
the dependent variables at the finite set of lattice points
Xy y&, z,, t, with the intervals chosen small enpugh to
limit the truncation error. In transforming a differential
system to a difference system, it is hoped that the result-
ing approximatibﬁs to the time and space derivatives will
yield systems of algebraic equations, which relate the known
values of dependent variables at a time t;, to unknown values

of the dependent variables at a time t thus permitting

n4g ?
forward progress in time.

Previous work by numerous investigators (38, 39, 40,
41, 42) has shown that at least some of the second-order

distance derivatives must be approximated in terms of un-

Consequently, one could use 3-D

known values at tlme tn+1°

Douglas—Rachford Alternating—Direction—Implicit—Iterative
(ADIP) procedure to develop the difference system. This
selection of a differencing scheme is motivated by the
desirability of unconditional stability, better accuracy,
and simpler algebraic equations to solve. The reader who is
not familiaf with ADIP, is referred to several excellent
technical papers published in the literature (36-42, 50,
51) . a%

Consider the replacement of 3t by a forward difference

scheme. What is needed is,

B(S/B) ~ <B _ ;1->/At (B-39)

n+1
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where n and n+1 indicate the timé levels at which the values

of dependent variables are known and unknown, respectively.

Since,
3(s/B) _ 138 0 (1/B) _
X ~Bat+s S5 (B-40)
it follows that:
Sniy Sa 1. 1
n-.i.~1 Bn 1 (Sn+1 - Sn) S Bn+1 Bn (B 41)
AT T B, AT T P At -

The first undifferenced multiplier is taken at time
level n+1, and the second at n; otherwise the requirements
of the left side of Equation (B-41) are not met. To see
this, expand the right side of Equation (B-41) with any
other combination‘of indexed undifferenced multipliers.

Compare Equation (B-41) to the right side of the

Equation (B-30); it is easily observed that:

En—““—l-—A-;i? s'[pg % ~ oy ?;tw—] (B-42)
<Bn1+1 - é—)/At HOBEE (B-43)
which, in forward difference form becomes:
(Serz = 5.0/ (Pey,) - 0o, ) = S (B-bk)

where, S is a chord of p, versus S curve.

Similarly,
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.

T: s (3" o, CRSELVE (B-45)

B,/ bt

1 _ 1 .@wn' -8,
BB G

Use of Equations (B-42 -~ B-46) in Equations (B-30a and

B-30b) gives:

For gas
N4 q Sa
d3(s, /B, ) < >;- _
P ai g By - ‘n £ f% Bé::l S,[pg<§gn+1 _ §3n> -
pw<§wn+1 - §“n>] + (1—Sn)|:<%>' pg‘<§gn+1 - égn ]}

(B=47a)

For water

d3(s. /B, )
cp W/W N_CL{
3t ~

B %+1 S,LPS<§Sn%; - éﬁy) - p*<§W§¥1 - §“n>].
" s[(%—)' p‘;@““ _ %)J}‘ (B-47b)

By factoring difference approximations to time deriva-

tlves, one obtalns

3 (S, /B, ) '
P s 1)

n
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sl - g suc BT ST

and Equation (38) becomes:

pd (S, /B )

51 : {[ p“( > <B t >S pW\ W pi1 §§n>
* [<Bw:+1 s’ bs<@sn+1 - @gn>]}, (B~48b)

Multiply both sides of Equations (B-48a and B-48b) by

the product of space intervals Ax, Ay, Az and denote:
. PV = ¢ Ax - Ay * A=z. (B-49)

Define:

a1 = At [S <B > 5! <B*:+1 p“] (B-50)

(B-51)

AR
e m
o - B [ () - o ()] o

B+l

Use of Equations (B-49 — B-53) in Equations (B-48a and

B-48b) yield:

3(s,B,) _
QAXAYAZ —7T— ~ G1 448, + H1 A8, . (B=54b)
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3 (s, /B, ) , |
PAxAyAz —=7—— ~ G24,8, + H24,8, (B~54b)

where A; is forward time difference operator. The differ-
ence approximation of the right side of Equations (B-30a
and B-30b) is now complete.

The left sides of the Equations (B-30a and B-30b) are

of the form,

. ‘—__a_l% 2 (1,8 ﬁ.(.ﬂ _
v+ TV = ax~<Txa', t 5y  T;By/ + 57 \ B3/ (B-55)
The application of central difference approximations

replaces each term of Equation (B-55) with terms of the

type,

d 28 | C D
— T ,.— =T : -t T, T, .
ax *9dx xi;i.l/a §1+1 % xi;‘,‘.l/a + X1/ éi +

Tx iZ1/2 §1L;1

(B-56)

All the coefficients T and potentials § in Equation
(B-56) are understood to apply at lattice points (j,l).

Since in a difference system the space coordinates are
defined only at points (x,, vy, z?), the mass of a
"difference element'" is assumed to be concentrated at the
lattice points and mass transfer is permitted between ad-
Joining lattice points along chords, provided that a non-
zero chord and potential gradient exists between any two
points.

The coefficient of ¥3 in Equations (B-30a and B-30b)
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include the diagonal absolute permeability matrix; and phase
specific weight; formation volume factor, viscosity, and
relative permeability. Remembering that the right sides of
Equations (B-48a and B-48b) and therefore (B-30a and B-30b)
were multiplied by AxAyAz, define phase transmissibility T

such that:

(A) AXAYAZ - A AZAZ. Ty - (A) AXAZ;

Tx = Ax? Ax Ay
‘ AxAy |
Tz = (A) —E—Z ; ( ) . . (B-57)

gas or water

In three dimensional space coordinates there are a
total of six chordS'emanating from a lattice point to the
adjoining latfice points (for each phase). Representing gas
by G and water by W the chords (or transmissibilities) lead-

ing to the point (x , Yy s Z) are:

TXG, _ TXG

'1/2,3 ,-11’ 14"1/2.’,5 91

TYG TYG, J1+1/2,1

' ’
1 40~-1/2,1"

Tza 1/72:" TZGy |y 1141/ 2 (B-58)

149 ,1-1

for gas phase, and a corfesﬁondingﬂset for‘ﬁater phase. The
fraction ¥ comes from the type of central difference
approximation used in replacing the first space derivative;
that is,

U Uters = Ui+1/z
Ox Ax )

o/

ne

(B-59)
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The difference analog of the differential system (B-30a

and B-30b) can now be written as follows:

1l

ATG A%, + Q,

. G2A, 8, + H2A,%, (B-60a)

ATW A%, + Q, = G14,8, + H1A,3, (B-60Db)

where,

ATG 88, = TXG,,y, . @gﬂl’d TR ,1>
B CE VR <§‘1,4,1 - §31=13431>

ee e ™ seoe TZ < ‘ ‘ - - >
* * GI ,J ,1""1/2 égi’d ,1+1 'ésvijd"l_

_-TZG,i )1 ,1_1/2 <§sf,'sd;’al - é:-,i',]_—l-'> (B—61)

3

O
|

(pgqs)AxAyAZ, typically MSCF/D (B-62)

£
1

(p,ay )bxAyAz, typically STB/D. (B-63)

Equations (B-30a and B-30b) do not contain any sink

terms. Q and Q;, rates of gas and water input (or input)

g
are added as source (sink) terms to equations (B-60a and
B-60b)., If they are specified explicitly, they become

interior boundary conditions; however, if potentials are
specified on the interior boundary, both Q; and Q; become

" implicit and must be computed.

The difference system can be represented in compact
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matrix form as follows:

8T 8% + Q = B A% (B-64)

S B G F T

If the determinant of matrix B is zero, the difference
system is an analog of the prototype incompressible system,
which implies that the system of Equations (B-60) is

elliptic. To show this, let:

1
- T e 1.
B, Bs
Then,
PV ( 1 ) : ,]
— e —_— S = -
G1 DT [ Bwn*l Py G2

. PV 1 s | PV 1 e
H1=ﬁ'[<“—*13 )Sptj:"Hz:B’_f[(_—_B )Sps]
; 'wn+‘1 . En+1

which means G1 = -G2, H1 = -H2, and B = O (incompressible,
or elliptic system).

Such a system can be directly solved by a number of
methods such as Gaussian elimination, iterative ADI (easier
to solve and faster), SOR (successive over-relaxation).

If the determinant of the matrix B is non-zero, the
system of Equations (B-60) is parabolic; that is, the fluids
are considered comp;essible. A parabolic system can be

solved by non-iterative ADI or SOR. However, iterative ADI
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éllows the use of larger time steps. Furthermore, non-
iterative ADI techniques have been developed for heat trans-
fer and single phase mass flow étudies, where the conduc-
tivity or transmissibility coefficients are not dependent on
saturation. The dependency of the transmissibilities on the
phaée saturations preclude the use of large time steps in
multiphase flow simulation, since these saturation changes

per time step must be kept small,

Solution of the Difference System

by Iterative ADI

Let H; and k denote the iteration parametef and the
iteration index respectively. Rewrite the system of

Equations (B-64) in compact iterative ADI form:

ATGA.@‘; (ﬂ)+Qs —_G‘ZAt@w (n,n )‘_ HZAtég (n,n) = H, ZTGAég (n,k )
k,M = n+1 (B-65a&b)

where TG is the normalizing factor given by:

TG = TXGHL/Q 13,1 +TXG‘1-.=1/2’J J1 e + TZGy |y J1%1/2

+ TZGi 53 ,1_1/2-

Iteration proceeds in three steps: 1) The X-sweep or
implicit in the X direction, 2) The Y-sweep or implicit in

the Y direction, 3) The Z-sweep or implicit in the Z
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direction. This can be shown by expanding the system of

Equations (B-65):"
Dy TXWA, &, % + A TYWA 8, % + A, TZWA, §,% —G18, * ~H1§, * =
H TTW(E, * - 8,%) - G1 §,® —H1%,* - Q, (B-66)
AxTXWAxéw*+AYTYWAy§;f*-kAzTZWAzéwk-G1§w**-H1§g** =
H STW(3, ** - §,%) - G18,® ~ H1§,® - Q, (B-67)
Dy TXWA, &, % + A, TYWA, 8, ** + A, TZWA, 8, %1 — G138, *1 — H1g **1 =
H ZTW(§,*** ~8,%) - G18," -H18_* - Q, .  (B-68)

A corresponding system can be written for the gas phase
with (w, W, G1, and H1) replaced by (g, G, G2, and H2).
gk, §*, 3**, $k¥*! are successive approXimations to the new
time step values of $2*1. The solution of ¢,* from the

Equation (B-66), & ** from the Equation (B-67), & ¥"! from

w
the Equation (B-68); and the solutions of’@é*, @;**, @ék+1
from the equations corresponding to the Equations (B-66 -
B-68) constitute (1) iteration. K iterations constitute
(1) cycle; (1) cycle involves the solution of the Equations
(B-66 - B-68) using parameters H. , He,, ..., Hg. Cycles
are repeated until convergence is obtained within specified
tolerances.

Consider the following increments which are differences

in potentials with respect to the previous iteration:



PX
PY

Pz

RY

RZ
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il
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PX -+
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*
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*
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PY +

3 ** - RY +

@;k+1:=RZ +

5. k*1 _PZ 4+
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éék. (B-69a)

3%  (B-69b)

The use of these newly defined increments gives:

Ay TXW A 8, *
by TYW A 8 **

A, TZWA 8, ¥*1 = A, TZW A;PZ + A, TZWTZ$,

also,

Gl g, *

Gl §,**

Ay TXW A, PX + A, TXW A, 3, %

AyTYW A PY + A TYW A 3 %

Gl PX + G1 §,Fk

G1 PY + G1 &%

GI 8,%*1= G1 PZ + G1 3,%.

(B-70)
(B-71)

(B-72)

(B-73)
(B-74)

(B~75)

Substituting Equations (B-70 - B-75) into Equation (B-66)

yields:

Ay TXW A, PX - G1 PX - H1 RX - H, TTW PX =

~ O TXW A 8% - A, TYWA 8% - A, TZWA 8%
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+ G1 &,%¥ + H1 8,¥ - G1 &, - H1 &, - Q,

1

Gl (3,% - 8,%) + H1(3,* — 8,8) - ATWAS,* - Q,
= — B1X = X direction residual. (B-76)

Substitution of the Equations (B-70 - B-=75) into (B-67)

gives:
Dy TXW A, PX + A, TYW A PY - ¢1 PY - H1 RY - H,XTW PY =
- G1 8" - HL 8 - O TXW _A,‘@;i - A, TYWA, 8% - AZ'TZGAZ'@‘}
+ G1 §,* + H1 §,* - Q. (B-77)

Now, solve Equation (B-76) for A, TXW A,PX and substi-

tute into Equation (B-77). Observing that
~ 0, TXWA,8,% - A, TYWA, 8% - Az TZWA, §,% = - ATWA@;k ,
Equation (B—??) be;omés,'
G1 PX + H1 RX + H, ZTW PX - ATW M‘;k»—% + ‘(.511(@;“ —@Q” |
+HL(3,*¥ —8,8) +:A, TYW A}‘,‘PY-—Gi.PY-Hi RY
 -H,ITW PY = G1(8,% -8,7) + H1(g,* - &™)

~ ATW A3, * - Q,
and rearranging,

AyTYW A,PY - G1 PY - Hi RY - H LTW PY =

- (G1 +HKTTW) PX ~H1 RX = - B1Y = Ydirection residual. (B-78)
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Similarly, substitute Equations (B-70 - B~75) into
Equation (B-68). .AxTXWA,Px'and A, TYWA,PY now appear in the
Equatioﬁb(B—68)‘aftér this'substiﬁution.‘ Solve Equations
(B-76) and (B;78) for'these“terms, respectively, and substi-

tute intd Equation (B-68):
A, TZWA, PZ - G1 PZ - H1 RZ - H,ITW PZ =

- (G1 + HIIW) PY - H1 RY = - B1Z = Z direction residual.

(B-79)

Equétions for the gas phase borrespbﬁding to the resid-
ual equations for the water phase can be dévelopedvby first
writing the ADI‘form'for the gasvphase,‘usihg_thé incfements
definéd by Equéfions (B—69b),'aﬁd performing fhé.same se-
quence of operatidns described abo§e‘for the'waterbphase.

In fact, one only.negds to change phase indicatbrs (w, W) to
(g,bﬁ) and variables (Gi, H1, PX; PY, PZ)'to-(G2,-H2, RX,
RY, RZ), in the sequence of Equations (B-70 - B-79) in order
to develop thé.following residual equationé for thé gas

phase:
Ay TXGA, RX - G2PX - H2RX - H, ¥TG RX

= G2(3,% -8,%) +H2(8,% - §,») - ATGAE,* -Q, - = - B2X

(B-80)
A, TYGA,RY - G2PY - H2RY - H, STGRY

= - G2PX - (H2 + H, LTG)RX - - B2Y  (B-81)



A, TZGA, RZ - G2PZ - H2RZ - H, ¥ TG RY
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= - G2 PY - (H2 +H, 216) RY - - B2Z.  (B-82)

X-SWEEPV,
Let: 'élA =Gl + H ITW : - (B-83)
(H2A= H2 + H, ITG. - (B-84)

1 : '
The fraction -/ appearing in some of the transmissibil-

ities in Equation (53) can be removed by defining base per-

meabilities as:

kx¥

¥

zZ1

'x - direction permeability befween‘blbcks
i and i-1

vy ~ direction perméability betﬁeen blocks
jand j-1 | |

z - direqtion permeability between blocks

1 and 1-1.

Operations indicated by Equations (B-76) and (B-80)

yvield:

TXW, 51 PX;.; - (TXW, . + TXW, + G1A)PX,

+ TXW, Pxi‘__l

TXG, , 1 RX

14y — (TXGyy, + TXG,: + H2A) RX,

- HARX, = - B1X, . (B-85)

+ TXG RX,_, - G2PX, = - B2X, (B-86)

where each TXW, TXG; and PX, RX, Bi1X, B2X carry subscripts



95
J and 1.
Y-SWEEP b

TYW, 41 PY, 1 ~(TYW, 4, +TYW, +G1A) PY, +TYW, PY,_; -H1RY, = - B1Y,
- (B-87)
TYGHIR;cHl:—_(TYGHﬁTmJ+HzA)RYJ+TY_G,RYJ_1—<32PYJ=-;132YJ

(B-88)

where subséripts i and 1 are understood for each T, P, and

B.
Z-SWEEP
TZW) 41 PZ) 41 ~(TZW, 41 +TZW, +G1A)PZ, +TZW, PZ, ., -H1RZ, = ~ B1Z,
| (B-89)

TZGy 41 RZy 43 —(TZGy 4y +TZG, +H2A)RZ,) +TZG, RZ, .1 -G2PZ, = - B2Z,

(B-90)

Solution of Sweep EQuations
Let:
P=PX; R=RX; B =G1A; b=-B1X; o = H1. (B-91)

Consider a Dirichlet-type problem in x direction, with

the values of pressure specified on the boundary:
Pto,n) =485 Prys1,0) =B

where n is the time index, and linear sweep system is
divided into N+1 equal increments, and x=IAx, . Writing

the equation (B-85) with T, P, and R at i=1, 2, ..., N—
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one obtains:

_(Tz +T1 +Bl )Pl ‘+. T2 P2 ) . ’ -0l Rl ::bl —Tl PO ‘_’bl —Tl A

Tg Pl - (Ta +T3 +82 )Pz —az R2 =b2
. -

This system may be writtem in compact matrix form as

follows:
TP+gR = C | - (B-92)
whefe,
(P ] R b1 - TLA T
. . bs
T’- = : H :_R- = * H -6 = *
| Py | | Ry | by o= Tys1 Al
o is the diagonal matrix;:
a3
g__ = .
o

and T is the tri-diagonal matrix:
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(T +To+B1) Ty o o ... -0
Ts - (T, +T5 +B3 ) T, o ... 0
0 T, - (Ty+Ty+Bs) Ty ... 0
0 : 0 . 0 ceo Ty —(T,+Tys1 +B,)

By letting P, R, B, b, and q represent variables corre-
sponding to those indicated by the set of transformations
(B—91) for any other éwéep direction e§uations (B-86. -
B—90); Qné can observe that they can be written in the form
of the Equation (B-92). For fhe gas phase equations, the
positions of the Veqtors P and R are iﬁterchanged; Thus,
'each‘sweep requires the simultaneous solution‘of the follow-

ing bi-tri-diagonal system:

T, P+aq, R=2C, | (B-93a)
IL R + Oy P - Es (B-93b)

where w and g are the usual phase subscripts.

Solution of the Equations (B-93a and B-93b)

Equation (B~93)_may:be solved. by extending an algorithm

developed by Richtmeyer (74) to solve the system
TP =C (B-94)

by Gaussian elimimation. Assume a property ¢;, which is a
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relationship between P,_, and P,. Similarly, assume a
broperty Ei which is a relationship between Riii and R;.
Now, show that if w;-and Ei.are "true", then by the system
of Equations (3), ¢;¥i and £, , are also "true". If it can
now be shown that {p andlaa are '"true'", then by'induction
Vg = Unen and.éé - €n+1 are. all true.

The relations assumed are:

€1, PX, + D1, RX, + E1, (B-95)

1l

Pxi~i,

in;l

1

C2,PX, + D2 RX, + E2,. (B-96)

Substitute PX; , and RX, ., from these equations into

1
Equations (B-85) and (B-86):

TXW,,, PX,41 - [TXW,,, + (1-C1,) TXW, + G1A] PX, -

(H1 - TXW, D1,) RX, = -B1X, - TXW E1, (B-97)
TXG,, RX,u; - [TXGy,, + (1-D2,) TXW, + H2A] RX, -
(G2 - TXG, C2,) PX, = - B2X, - TXG, E2,. (B-98)

Equations (B-97) and (B-98) appear to be of the form:

a; PX, , - by PX, - ¢ RX; = - & (B-99)

a; RX,,, - ¢2 RX; ~ b, PX, = - ds (B-100)
and rearranging:

by PX; + ¢; RX, = a; PXiil + dy (B-101)

by PX; + ¢y RX; = a; RXj4q + da. (B-102)
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Simultaneously SoiVing’for'PX£ and RXi;

a PX“‘_‘1 + dy c by 13’)(,\.;_'11 + d;
o az RX; ., + dg Co b2 ag RX1+1 + dy
.PX; = - R 3 RXy = M
(B-103)
o b1 C1
where, _ M= .
bg 02 .

Performing the indicated operations yields:

a; Cg .. ' ag  Cgp » dy Co -—de C3
PXy = < M ) PXpr - < M ) Bx1+1 + Mo

(B-104)
. . as bl . a . :bz bl da _' bg dl
RX, = < ™ ) R 1 - ’7&'%>,PX1*1 + ™M .
' v(B—105)

The set of equations (B-104) AQd (B-105) are of identi-
cal form to the set of eqﬁations (B-95) and (B-96). It was,
thus, shown that if the relationships (B-95) and (B-96) are
"true" at i, they are also "true'" at i+1l. The coefficients

can be obtained.recursively as follows:

, a1 Cp —ay Cy -a; bg az by
Cliyy == Plivs == 5 C2140 = 5 D24y =5
dl 02 —'da Cl
Ely,, = ] 3 E24,9 =by dz =by d; (B~106)

where,
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by = TXW,,, + (1-C1,) TXW, + G1A; b, = G2 — TXG, C2,

14, +(1-D2;) TXG, +H2A

c1 = H1 - TXW, D1,; c, = TXG
d; = -B1X, - TXW, E1,; d; = -B2X, - TXG, E2,. (B-107)

The starting vaiues of the recursion coefficients at
i=2 are obtained from Equations (B-85) and (B-86) written
at i=1 (bouﬁdéry). The set of equétions (B-106) and
(B—107)'permit’the'calou1a£ion of fhe recursion coefficients

for i’=2’-3ﬂ"’ﬂ’ N+1. The upper boundary conditions give:
'Px,w,-1 = BW ' \ (B-108)
RXy, = BG. , (B-109)
Thus, from Equations (B-95) and (B-96), one dbtainé:

PXy

Clyyiq BW + D1y,; BG+Ely,, (B-110)

RX (B-111)

v = C2y,, BW+D2,,, BG+E2

N+1

and, (PXy_,, RX,_,), (PX RXy_z),y, ..., (PXy, RX;) are

N—2?
back-calculated, in order, from Equations (B-95) and (B-96).
What is meant by a "residual" and how it is used is

perhaps clearer to the reader at this juncture. For in-
stance, B1X and B2X are residuals of X-Sweep equations
(B-76) and (B-80), at any iteration level k; they are indi-

cative of the amount of error in the current approximations

to the correct solution. The observation of the recursion
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coefficients, (B—106), show that'they_ar¢ direct1y'used in
the k+1 level iteration for the determination of the new. PX
and RX values;'vY—Sweep and Z-Sweep residualé have analogous

functions at the same iterationblevelé (k to k+1).
. ItérafionfLOgic

Now it remains'to developisoﬁe themqs‘for‘asqertaining
when the numericél solutioh at aﬁyvtime_le&ei i$~sufficient;
ly close to,the_"cprréctﬁ-sglution of'fhe'anélogéus differ—
ential system; that is, whén_t§ s£Qp itératiné»forlfhé:time
level t, ., solution. 'Fufthermbfe, itéfétion péréﬁeters and
methods of updafing'pressure andvsaturatioﬁ dependent prop-

erties are needed. -

Closure Criteria

If the numerical_solutionwét éxgiven fime step,were
Perfect, the incremental material balanée should be'zero.'
In other words, the su@ of éll chéngés in the system over a
time step should be equal to ﬁaterial added to drAremoved
from the system. 'Due to truncation errér intrOduCed by
finite difference appréximation,'and round;off.efrorg
incremental material balance cannot be perfecf.' For
closure criterié;”anj dombinatioh of the fbllowing can be

used.

a)' Incremental matéfial“balance-1ess'thaﬁ-g_

specified folerance;J
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- GAS BALANCE:

. Z{Gz <§ . @wn + H2 <§'n+i"§;;:&i“

Te
(Be112)

_ WATER BALANCE:

- ‘2{61 (@“Ii,-‘:;fa} +HL (@’iii; ~e,0) -

e
(B-113)

kel

Where §n+1

imblies k+1'itération level approximation to
§ﬂ+l' Definition of incremental material balance error as a
percent>(or‘fraction) of ¥ Q‘ for gas phase and ZnQ;_gor

water phase yields:

: For water:

{Gz @,, T s, ) e (;:;11 -a;;)}- za

" (B;iié)
For gas:
{Gi (ﬁwn 1'5_; >*‘H1 (ét:il.» >} il <€,

- (B-115)

Typical values for €, ahd 6;_can,be taken in the neishbof-v
hoed of 0.001, All values are understood to apply at the
spatlal pos1t10n 1, js 1, and the summation is taken 6ver 

the full ranges of 1,3 1.

[
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b) Maximum saturation'qhange in a grid block, less

than g;specified to1erance;_“

Si,J,l,nfi"Si,J,l,n+1 s-esat.” (1.e;:_ 0‘001)ﬁ

(B-116)

c)¢’The sum giveach'gi the abSolute residuals over

the grid system less thanrgf%pecified-folérance:

k+1

z ‘Bixi,g,l;agi i'GBiX, (i}e,: 0.05) ~ (B-117)
k+1 : : ' ’
L B2X; 4 1 ,ns1| S €poxs (i.e.: 0.05). (B-118)

In this disserfatian“expreséions (3-114), (B-115), and
(B-116) were uSed’as EIOSure criteria. | |

In additiOn to the iteration ¢losure criteria, cumula-
tive material bélance for‘each<phase was used to check the
"correctness" of the solution, as;it maréhes through the
time domain, and to indicate the cumulative‘trﬁncation and
round-off error. This was nécessary because a finite (1-3)

number of cycles with a finite (4~10) number of iterations
: ko1

were employed in an attempt'td force &, . values to the

desired &§,,5 . . If the full range of Spebified cycles were
exhausted, while the applicable closure criteria were not
met, the simulation run was either stopped or the last

phase potential iterates were used as potentials at the new

time level t,,, sy with the hope that at t, ., the clesure

criteria would be satisfied. Thus, the cumulative material

balances weré checked at the end of each time step to make
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sure that the solution did not diverge as time progressed.

d) Cumulative material balance error less than a

specified tolerance:

The amounts of gas and water in the system at any time

t, are given hy:

. NZ NY NX (1s: o
. » - 1
(?lIP:,1 = 2. PV, o] gligh 14 i ) (B-119)
1=1 4=1 4 =1 81,131 ,n
.NZ NY NX g
113,1,11 .
WIP, = ‘ zz PViggjo 50— (B-120)
— ¥145 91 ,n

e

byras

1

[a)
L
1

fa

where NX, NY, and NZ are upper bounds on i,j,l and PV =
(AxAyAz) o© + GIP and WIP denote gas—-in-place and water-in-
place, respectively. |

By convention of this dissertation; injection volumes
are considered positive and withdrawals negative. The dif-
ferences between the gross cumulative injections and with-

‘drawals, of the two fluids, or the net volumes are given hy:

CUMG, = CUMG,_, + & Q At (B-121)

n-—-1

CUMW, = CUMW, , + T Q, At  (B-122)

where the summation is taken over the spatial positions
i,j,1 containing sinks (or wells). The cumulative material

halance requires that:

GIP, - GIP, CUMG,, | (B-123)

WIP, - WIP, = CUMW, . (B-124)
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Hence,

GIP, - GIP,

COMG, < €cymgr (i-e-: o.1)“» (B=125)
WIP, - WIP,

COMH. < €copmy (Eee-: 0.1) (B-126)

were used to decide to continue with the simulation run or

to terminate it.

Updating of Potential (Pressure)

Dependent Properties

After each iteration at a time step, phase potentials
change; therefore, potential dependent properties must be
updated. To satisfy the updating needs, tables of corre-
sponding phase potentials, phase pressures, and phase forma-
tion volume factérs were generated for each simulation case.
Table look-up and interpolation techniques were used to up-
date potential dependent properties for each potential

iterate; that is, for each block i, j,l.

 v.s. P;%

{ Tt TABLES [ 1 11

L@w ,@s}n-’-i = IPW ’PS ,Pc ,']—3';—, -B—:}n_'_l (B—127)
k+1 FROM CiPII(;L./SXRITY k1

,,{Pc}, RELATION {s} (B-128)

“n+1
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k+1

S, ¢ = 8
A+l n k+1
Sk*2 = W ((gzr—— ) + (1-W)S' (B-129)
; Pc+1 - Po ’

n

“

where S’k¥*2 js the value of S’ used over the next iteration.

x+1

? N . .
k+2, since P, employed in calculating S’k*?2
a1

W dampens S
is derived from phase potential iterates of the previous
iteration. W was applied as a function of the iteration
number:

We=—X 0<W< 1. (B-130)
max

In two phase flow exhibiting significant hysteresis in
capillarity, the calculation represented by expression (4k4)
became a painstaking problem; because, for this type of

flow, capillary pressure is not a single valued function of

k+1
phase saturation. The calculation of S,,; corresponding to
x+1
P, . iterate requires a special algorithm to determine
n+l

whether (P::il - P°n> implies tendency to imbibe or to
drain aloﬁg a bounding PC curve or an intermediate scanning
PC curve. Similarly, an algorithm is needed to ascertain
what is implied by the value of (S,,;~- S,) for a given
block. Algorithms named HYSTRACK and SEMHYSTRACK were
developed to keep track of the saturation history of speci-
fied blocks; and select the appropriate subset from the set
of equations given in Chapter IV for RP and PC. These

algorithms are described in Appendix C.
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Updating of Saturation Dependent Properties

When the applicable closure criteria is met for a given

iteration over the time step from t, to t one . obtains:

ngq 9
§k+1 ~ Ck+1 é,» ' +2 ’ ( )
= @ ":@ . = - . b S 1- = S B—-131
¥l Yne1' Bpgy- Bniq B B+l

()]
1l

¢ _- - ‘
141 Sn + Sn+1[ps<‘§gn+1 - §5n> - p'w<§wn+1 - an>:l

I
Sy, + Sp.q, P

11

. , (B-132)

®nyq

Using S, and S saturation dependent variables, RP

n+1l?

and PC, can be updated for use over the time interval t, .,

to t For non-hysteretic flow or when the conditions

n+23 *
permit the replacement of hysteresis envelopes with single
representative curves, both phase RP's and PC's become

single valued functions of phase saturation. In this case,
the updating work is straightforward. For hysteretic flow,

the algorithms deScribed in Appendix C were used to update

saturation dependent properties.

Effect of Heterogeneity on Relative

Permeability-Capillarity

All hydrocarbon reservoirs are more or less heterogene-
ous. Absolute permeability of the typical reservoir rock
varies from point-to-point. Hence, RP also varies from
point-to-point. ‘In multi-phase flow.parallel to bedding

planes, total resistance to flow is aominated by component
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strata of high effective RP, whereas the converse is true
in flow perpendicular to bedding planes.
Semi~empirical relations for RP presented in Chapter IV

1 -S..). 1In

contain constant residual WF saturation (Sr; e

simulating heterogeneous reservoirs, S can either be

mg
treated as a subscripted variable and stored in computer
memofy for each grid block (or layer as the case may be), or
as a function of base permeability if there is laboratory
~data to support the functional relation. The higher the WF
residual saturation, the lower the relative permeability to
NWF appears to be, at this residual saturation. This obser-
vation can be quantified in RP expressions by transforming

interference coefficient F; from a simple multiplier to a

function of residual WF saturation; i.e.

F, = F;(i-Sré) = F,(8,,). (B-133)

If enough samples of heterogeneous reservoir rock with
different RP characteristics are available, Equation (B-137)
can be written as a polynomial fit to the laboratory data.
Such a correlation can also be used in accounting for dif-
ferences in sample capillarity data.

In this dissertation, Leverett's (27) capillarity
retention relation was used to calculate the bounding drain-
age PC values for layers or grid blocks whose Klinkenberg
permeability and porosity differed ffom those of the base

block. Leverett developed the semi-empirical relation:
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. Pc kabs % 2 i E)
J(s.) = <. >‘ - 13.875 (psi) __md_
W o as 9 © /- dynes/cm fractio
| (B-13k4)
which he accepted because it was supported by dimensiomnal
analysis and experimental data. J(S*) is a dimensionless
function of the physical properties of rock-fluid system.
The factor (k/m)% is also encountered in Poiseuille and
Darcy models of flow in porous media, and represents the
"average pore radius'", thus imparting theoretical justifica-
tion in Equation (B-134).

Once the capillary retention trend characterizing a
given type of rock is obtained, PC can be related to J(S;)
which, in turn, is related to S; values. All that need be
known are estimated values for k,;,, 9, and 0. In this
dissertation, Equations (8) and (13) represented the PC of
the base layer (or region) of the prototype reservoir. For
any other layer or region, exhibiting different properties,

a capillarity multiplier, M;, was used. Since,

. Pg : %’ P % ) '
J(s,) = —————§-<5> - Br—f—7§(q§ | , (B-135)
Ca C M Jpase s 7 Jregion R
it follows that:
1
, (c s Q)R (k/cp)base
PcR = P°base (c av 9): 5 (B-136)
base (k/p)f
= M, P, base’ M, = capillarity multiplier.
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Boundary Conditions for the

Numerical Simulator

The initial and boundary conditions are statements
which define the limits of the connected regions, the time,
and the position and magnitude of the imposed flows. A
detailed discussion of the initial and boundary conditions
for the differential system was given eérlier in this appen-
dix. In this section the initial and boundary conditions

actually used in the numerical simulator are described.

External Boundary Conditions

Since every porous body is finite in volume, an extrem-—
ity exists in all directions where the permeability either
vanishes (closed boundary) or becomes nearly infinite
(constant terminal potential condition). In simulating two-
phase systems, it is not necessary to extend the grid net-
work to cover all the boundaries of the prototype system,
provided that their effects are properly accounted for.

When the external faces of any number of grid blocks
coincide with a closed prototype boundary, the transmissi-
bilities TG and TW of these blocks normal to the boundary
are set equal to zero. Otherwise, steady-state or unsteady-
state WF influx-efflux methods should be applied. The
simplest method of treating an open boundary, used in this
work‘wés the "aquifer strength method", whereby the WF move-
ment across the external faces of the edge grid blocks, over

a time interval, was calculated from:
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4. = 4 B, py (8, - &,) (B~137)
where:

q#b = WF movement into (orlout of) the edge block
i,j,1 (typically in STB/D).

go = Aquifer strength beyond the external face
of block i,j,1 (Res. Barrels/D).

b = Subscript designating the boundary.

For simulatioh cases requiring more accurate represen-
tation of the effects of WF movement, outside the area
covered by the grid,von the potential and éaturation distri-
butions within the grid, Carter-Tracy (72) Unsteady-State
Method was utilized.‘ This method circumvents the need for
superposition calculations normally required under unsteady-
state and varying rate conditions by a clever approximation
of Hurst-Van Everdingen solutions (75, 76). ‘Carter~Tracy
approximatebwater influx equation (72) is: |

] L4
BAPy —Wo oy, FD (tD,)

b5 o, ) o o
®a e(n=1) + tDn tD(n;’il) PD(tD )—tD( I)PD(tD )
"a n=a1)- n

B—138)

where:

by = 0.00633 k;:n
© Uy Cp Ty

, dimensionless time.

s}
1

1.1191 cp Ct h I‘ba F
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P/ (ty) = E%E [PD(tD)]
PD(tDn) = Van Everdingen-Hurst dimensionless pressure
drop.

r, = Radius of an imaginary circle encompassing
the prototype reservoir area represented by
the grid system, feet.

F = Correction for limited portion of reservoir
perimeter open to water influx-efflux,
fraction.

C; = Total compressibility for the aqﬁifer; psi~?,

W;n = Cumulative water influx at t,.
AP, = P, - P,.

Equation (B~138) was transformed into a function of

real gas potential on the open boundary as follows. Let:

D =P (t. ) -t P/ (t. ) (B-139)
D' "D, Deo-1) D' "D, 39

AP, = Py - Py + Py - Py (B-140)

Since Equation (B-138) has the dimensions of reservoir
volume of water movement over a cumulative time period, the

term in the brackets becomes:

B(Py, - P,_1) - W P’ (t, ) Bp, (8, -~ 8,
[ ) (P n-1 ® (p-1) D' "D, Pu ‘24, L
L } - D - D
(B-141)
Transposing W, - to the left side of Equation (B-138) and

(n~1)
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dividing both sides by t,=~t(,-;3y yields the mean influx

rate over the nth time interval:

A e, = A+ B 4,8, (B-142)
where:
b = represents the boundary block

. S | , ‘

[B (P — P,y ) — W, (it P D(tDn).‘szDn/tn'
Ay = ) ‘ w(B=143)

o Ew tD /tn .
n

B, = -~ —p5 - (B-14k)

Internal Boundary Conditions
: v LIn

Interior boundaries are the producing wells (sinks),
the injection ﬁells (sources), and the combination wells for
-cyclic systems. Since the difference system used in this
work is not a '"purely implicit'" system, there is a choice
between implicit or exﬁlicit internal boundary conditions.
Furthermore, at least two distinct types of boundary condi-
tibns can be set up at each well over a time interval:
constant terminal rate and constant terminal pressure.

The equations used in this simulator to describe two-
phase flow toward (production) or away from (injection) a
well's bore-hole, within a single block, will be described
first. Various manipulations of these equations yield

boundary conditions at each well of interest.
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Flow Within a Grid Block

When reservoirs are represented by regular or irregular
»grid networks, the dimensions of grid blocks are many times
greatef than the well-bore diameters, and theﬁcalculated
pressure and saturation for lattice point i,j,l are average
properties of the block represented by that point. If a
well is shut-in, the well pressure and the block pressure
are comparable. However; if the well is active, the well
pressure differes markedly from the average block pressure,
also known as dynamic pressure.

If the grid system is set up so that there is at most
6ne well per block, Darcy flow may be assumed within the
well blocks. Pressures in a square or almost square finite
system can be assumed to behave simiiar to those in a finite
radial system (77).

»Since ADI solution of the difference system gives the
block average pressure and saturation over any time inter-
val, each block with an active well is treated as a finite
system for flow within the block.

As before, consider the NWF to be gas and the WF to be
water. Darcy's Law for rédial gas flow in standard condi-

tions is:

_(A)2mrhkpT, dp

q; = U Z TR p, ar (B-145)

where subscripts s and R refer to standard and reservoir

conditions, respectively, and A is the proper unit



conversion constant.

Defining the "real gas potential' as
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- PP
8 =Jg 71p dp (B-146)

and substituting Equation (B-146) into Equation (B-145)

yields:
(A) 2mrhkpT, d&
q, = - m TRps I (B-147)
Hence,
‘ r gy M TRps dr fr ' » ,

/, : - = & - dd (B-148)

-~ (A) 20hkT, r - .
where r, is the wellbore radius.
. . qs’ “’ T ps'
Letting, 4 = R (B-149)

(A ZrhkT,

substituting Equation (B-149) into Equation (B-148) and

~ integrating both sides gives:

'Q*&z<§%>‘= 8, - &(r). | (B-150)

- Consider a £ which is the integrated average potential

bounded by the volume characterized some external radius,

1"02

r‘
o~ f d(r) 21 rdr

§ = Iy - . (B-151)

™ T,
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Solving Equation (B-150) for $(r) and substituting into

Equation (B—151); one obtains:

-]
e
[} rb

s:—g—f. (éb —6‘%&)rdr
: Ty

3, - & n = - 1/2) (B-152)
where,

3, = Potential at the well-bore.

Block thickness in feet.

-
i

k = Block base permeability.

-

k]

Standard temperature (i.e. 520° R).

pP; = Standard pressure (i.e. 14.73 psia).

The selection of r,, in the definition of s by the
Equation (B-151), depends upon the detail in the reservoir
definition. If few, large dimension blocks are used, it is

normally assumed that §, = £, and r, is computed from:

7 Ax/2, for Ax = Ay :
r. = : (B-153)

e -
ﬁégﬁié for Ax #£ Ay.

For detailed computations with numerous blocks, r, may

~

still be obtained from the relationship (B-153) provided
that § in Equation (B-152) is replaced by &, calculated from
the pressures of blocks adjoiqing the well blocks. A simple

method to calculate ¢, is:
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-

(hk/u) (8, - &)

é’i‘ =$i +F1.

(B-154)

[
M ™Mo
=

=

(hk/u),

G

Ji
where $'s are the block average potentials and F is a
weighing factor. As F approaches zero, §, approaches $.

Equation (B-152) is a single phase flow equation. For

two~phase flow, the mobilities of both phases must be con-

sidered. Letting:

M, (k, /u),

gas phase mobility

(B-155)

(kr/ﬁ); = water phase mobility

M,

and expressing reservoir flow rates in reservoir barrels per

day gives:

. 0.00708 M, B, 3; (¢ - 3,) MSCF /D | (B 1565
. 4 . -

a = -
Q/IZ-IT - 1/2
. . | A‘ i
0.00708 M,B hp, (8 -%,) ,
9, = T , STB/D (B-157)
WZ;: - 1/2
where,
B; = gas formation volume factor, MCSF/RB.
B; = water formation volume factor, STB/RB.
A , : C .
Pg = specific weight of gas at reservoir conditions

(Tg and 3), psi/foot.

p, = specific weight of water at reservoir conditions.
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Constant Terminal Raté Condition (Explicit)

In this case, flow rates are explicitly specified for
injection wells, and used directly as q; and g, in the dif-
ferénce system (B-65a & h) and in X-direction residuals
(Equatiohé B-76 and B-80). The\cor?esponding wellbore in-

, @ are calculated from Equations

jection potentials wa’ ]
. ” .

(B—156)vand_(B—157). For production wells, gas (or water as
the case may be) flow rate is specified. If the other phase
is aiso mobile within the block, it can be simply calculated
from (B—156) and (B-157) since the»séecifiéd rate of the
first phase yields (£ - 8y).

In 2-D cross-sectional and 3-D simulation studies, a
well-may be active in more than one block; hence, the total
gas or water rafevmuSt be allocated to each participating
block.

A Simple method of allocation consists of multiplying
the tbtal injection rate into a well by phasé mobilitj frac-

tion; that is, : »
L .

Q| = q MI/Z M (B-158)
1=1 |

where M is M; or N;, and L is the total number of blocks
supplied by the well.
In case of production,'thé block flow rates are calcu-~-

1ated from:

L .
qss' = qss‘ (M;)i/z (M;)l (B-159)
11 ' 1=1
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| (N%)l Bé
qsw‘1 = qss ) ), B, (B-160)

where M;, NQ,’B;, ahd B, are understood to apply at spatial

position i,j,1.

Constant Terminal»Pressure Condition

In this case, &, isvspecified3and the flow rates are
calculated from Equatidns (B-156) and (B-157). This scheme
is explicit: the known value of $ at t, is used to compute
the flow rates over the time interval t;, to t,,;. It is
quite extraordinary to inject both gas and water into a
well; hence, the phase being injected must be specified in
addition to 3. For multi—block wells, allocation schemes
present no special problem; Since 3 is known for each

block and &, specified, Equations (B-156) and (B-157)

directly yield the block flow rates.

Constant Terminal Rate Condition (Implicit)

Implicit techniques approxihate the wellbore conditions
more realistically. To express the sink-source terms in the

difference system (B-65a and B-65b) implicitly, let:

k+1

q = qsg = C, (éﬁnél - §s£) (B-161)
o, (BT~ ) (B-162)
9y = qsw = Ly LA Wy -1

where,



120

(@]
1]

. 0.00708 MEBEhp!/C -r-b——5>

O
1

. 0.00708 M B, h Sw/c d 'fi‘ ‘%)

In this case of a gas well, 8, is assumed and itera-

£y
tions performed until the flow rate calculated from the
Equation (B-161) closes on the desired rate. On each

iteration ¢, is corrected by the relationship,

r

e 1
K q, (on — - ‘2—)
%, =%, ~ 5.06708 M, B, hp, (B-163)

W'herevg;iiD is the désired rate for this boundary condition.
Equation (B-163) also applies to avwater well when subscript
g is replaced by subscript w. If the well is producing, the
flow rate of water moving simultaneouély with gas into the
well-bore is calculated from the relationship (B-160).

For multi-block wells, the method remains essentially
the same, with all subscripted terms involved in summations
over the number of completion blocks for allocation pur-
poses. In other words, ¢, is first assumed and subsequently
iterated on, until the sum of the flow rates, qs;i, of indi-
vidual blocks (1) closes. on the total desired rate.

Equation (B-160) is used to calculate the water flow rate in
each block drained by the well, after closure on total gas

rate for the well.
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Constant Terminal Pressure Condition (Implicit)

-

In this case @sw‘(or g
. g -
fied as the known internal boundary condition in any given

as the case may be) is speci-
w

block excited by an active well, and the relationships
(B-161 and B-162) are directly used in the difference sys-

tem. to replace explicit q; and q, .

The Role of Relative Permeability in Establishing

Internal -Boundary Conditions

The computation of the well-bore flow pressure corre-
sponding to an explicit terminal flow rate condition, or the
calculation of terminal flow rate(s) for a given well-bore
pressure involves relative perméability terms in phase
mobilities M;, M,. After closure of a time level t,, the
simulator computes block average saturation; hence, in simu-
lation runs with fairly large grid biocks, significant
saturation gradients may exist within a block. Furthermore,
a well may be only partially completed in a given block,
across a portion of the block whose saturation differs from
the block average saturation. Iﬁ thesé caseé, relative
permeability versus phase saturationICOrrelations based upon
laboratory data must be transformed to the prototype
reservolir or simulator conditions. Various schemes have
been proposed for such transformations. Those used in this
dissertation ﬁill be discussed briefly in Appendix D.

Once the fluids saturating the prototype reservoir are

specified, phase mobilities are controlled by phase relative
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permeabilities. Assuming steady-state or semi-steady-state
flow within a block, the maximum mobility to the injected
fluid is equal to or less than the mobility of the displaced
fluid. This presents a difficult problem in simulating gas
injection into a virgin aquifer. Possible solution methods

are presented in Appendix E.



APPENDIX C
HYSTRACK "ALGORITHM

When the applicable closure criteria is met for a given

iteration over a time step from t; to t the simulator

m+1 9
yields S(i, j, 1). Using S, and S, ,, values for each block,
séturation dependent variables can be easily updated for
non-hysteretic flow. However, for hysteretic flow the sat-
uration history and the current locations of RP and PC
points on RP-S and PC - S maps generated by the semi-

empirical equations must be considered. Defining a set of

state indicators [ I*]:

IM = mobility indicator
1: only non-wetting phase mobile
2: both phases mobil
3: only wetting phése mobile
ID = displacement process indicator over two

consecutive time steps; t to t, (before),

n—=1" m
t, to t;+i (now)
1: drainage before; drainage now
2: imbibition before; imbibition now

3: imbibition before; drainage now
4: drainage before; imbibition now

IND = drainage RPN selector
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IWD ﬁ'dr&inage RPW selector
INI = imbibition RPN selector
IWTI = imbibition RPW selector
such that,
IND, IWD =
1: RP values on bounding drainage curves
2: RP values on intermediate drainage
scanhing curves branching off the
bounding imbibition curves
3: RP values on intermediate drainage curves
branching off scanning imbibition curves
INT, IWI =
1: RP values on bounding imbibition curves
2: RP values on intermediate imbibition

scanning curves branching
drainage curves

3: RP values on intermediate
scanning curves branching
drainage curves,

the algorithm, named Hystrack (Figure

off bounding

imbibition

off scanning
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12) was developed

to: 1) update the saturation history, and 2) select the set

of appropriate equations yielding time level t,

RP and PC for use at time level tm+2,

1

All indicators are

understood to carry subscripts (i, j, 1).

Since the economy of core storage is important in

digital computers, a universal indicator (IU) was used to

replace the state indicators in the computer program:

values of
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Figure 12. Flow Chart for Hystrack Algorithm
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IU = (IM)10°5 + (ID)10%* + (IND)102
+ (INI)10° + (IWD)10 + (IWI) (B-1)

IM = ¥(IU x 10°%)

ID = ¥(IU x 10"*) - 10¥(IU x 10°%)

IND = ¥(IU x 107%) - 10Y¥(IU x 107*%)

INI = ¥(IU x 1072) - 10¥(IU x 10™23)

IWD = ¥(IU x 10°') - 10Y(IU x 10°2)

IWI = IU - 10¥(IU x 1071)

where ¥ represents the type transfer function ENTIER of the
Extended Algol computer programming language. Figure 13
showé the loci of RPN calculated by HYSTRACK.

Conditions prevailing in the prototype reservoir, or
: lack of appropriate data, or simulation policy, or any com-
‘bination thereof, may permit thé use of hysteresis envelopes
only, without scanning loops. A simplified version of
HYSTRACK algorithm, SEMHYSTRACK waé used for updating the
reduced set [S*] and generating RP and PC loci on the basis
of dynamic hystereéis envelopes without scanning loops,

whenever simulation conditions did not require full rigor.
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Figure 13. Loci of Non-Wetting Phase Relative Pefmeability
Calculated by Hystrack Algorithm



APPENDIX D .

PARTTAL INTEGRATION OF EQUATIONS OF TWO-PHASE

FLOW—-—VERTICAL EQUILIBIUM (VE)

The limiting vertical equilibrium (VE) concept, first
investigated by Coates (8), permits the calculation of lim-
iting pseudo-capillarity and relative permeability curves.
In this disser%ation, thé;; pseudo-saturation functions
played a very important role in reducing the scope of sensi-
tivity studies. A recent paper by J. Martin (73) presents a
rigorous method of partial integration of multi-phase flow
equations, together with a theoretical foundation of VE
condition.

When VE condition obtains in a reservoir flow system,

08, 0¢, o (i)
= = D—-
= O
’ , zZ
. p= _ D-2
ex .y 2 ch”_ cmdrf Ap dz ( )
0
where, ‘ B
Pk = value of capillary pressure at any areal
x,y
point (x,y) on a reference surface.
Ap = p, — Py, difference in specific weights,

psi/ft.

128



129
1 = dip angle.

The z coordinate is oriented in the dip-normal direc-
tion and measures the distance below the reference surface.
For sake of convenience, consider the reference plane to
pass through the midpéints of all dip-normal line segments
crossing the reservoir roék. Given any dip-normal satura-
‘tion gradient S, (z) withinla grid block and laboratory rel-
ative permeability curves, volumetrically averaged (or
pseudo) saturation and effective relative permeabilities,

for flow parallel to the X-Z plane at any areal point on the

reference surface, are obtained from:

h/2 h/2 ’
8, = w(z) S, (z) dz p(z) dz (D=3)
‘[h/2 //th/z
’ h/2 h/2
k, :f_h/2 i, (2) & (2) dz/[h/zkxy(z) dz  (D-4)

A h/2 _ /2
krw :ja kxyw(z) kr*(z) dz// kxv(z) dz
-h/2 -h/2 -
(D-5)
where porosity ¢ and base permeability on the x-y plane vary
with z in stratified reservoirs. The saturation Sé and the

relative permeabilities are indirect functions of z. When

VE condition eccurs, Equation (D-2) yields:
dz = —-dP, /Ap w5 | .

Replacing the variable of integration dz by dP,,
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pseudo-relative permeability and capillary pressure func-

tions are defined as:

rb h/2
éw = C!C v(z)s, 4P v(z)dz (D-6)
~ °/’f—h/2
b h/2 |
k= | ' -
. cj; oy (20, dpc,/f_h/2 Iy (2)dz (D-7)
\ |  ,~h/2
k, = cfb key (2)k, dP, k., (z)dz (D-8)
! a o /f—h/z 7
where
h AF,
a =P - bpaw} 5 =PF - — (D-9)
[ h AL
b = Pf + Ap ¥ 5 = PF + (D-10)
c = 1/0p s {. (D-11)

The above equations represent ﬁrg (5,), k, (é;), and
Pj (éé) curves which reflect the dip-normal stratification
and saturation distribution, under VE configuration.

When the prototype reservoir is homogeneous with con-
stant dip-angle and thickness, and saturated with two
immiscible fluids of negligible compressibility, the pseudo-
relationships (D-6 through D-8) are applicable over the
entire reservoif. Otherwise, with areal variation of
stratification; dip angle, anistropy in x-y plane, thick-

ness, and specific weight differences,; separate
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pseudo-curves are required for each areal grid point repre-
senting a grid block.

lThe treatment of partial penetration of a well into a
given block is fairly straightforward if vertical equilibri-
um can be assumed. In this case, the position of the center
of the completion interval of the well relative to
block height (or thickness) h is specified, and the relative
permeability curves representing the total block adjusted to
represent the completion interval only. Otherwise, the best
approach appears to be the study of typical (or even indi-
vidual wells) with detailed (small block dimensions) numeri-
cal simulators to determine saturation-rate relationships
for well blocks such that gas or water will not move, and to

adjust the RP curves accordingly.



APPENDIX E

PARAMETRIC SENSITIVITY STUDIES OF RP AND PC

IN RESERVOIR MODELING

The following data was used, except, as indicated,

throughout the sensitivity studies:

Pn

1l

il

)\_n = 1—2; )\_w = 1—11';

Wy = w'ﬂ = wc = 2; Smn = 0.8

sen = 0.1 or 0.05 or 0.01
rn:[

Ax

S, when S, <S,,

0.5 S,, when S, >S_,
= Ay = 1000 ft.; Az = 10 ft.
0.2; k5, = 500 md.; T, = 60°F

780-830 psi range at equilibrium

50 MSCF/bbl; p, = 62.4 1bf ft.2.

Case of Gas Injection Into a Thin, Virgin Aquifer

Simulation Runs B1, B2, B3, B4

In this case, the 11x 11x 1 grid system shown in

Figure 10 was employed. The internal boundary conditions
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(or eicitation functions) consisted of the explicit constant
terminal injection rate of 1000 MSCF/D/ well in blocks
(5,5), (7,5), (5,7), (7,7). The aquifer was assumed to be
continuous to infinity, beyond the area spanned by the grid
network; hence, Carter-Tracy type water influx-efflux condi-
tions were used as external boundary conditions. In all
four of the runs, the curvilinear capillarity data shown in
Figure 14 was applied.

Simulation Run Bl was made with X; =2, A, =4, and S;n =
O0.1. Saturation distribution for simulation time level of
763 days is shown in Table III. After 763 days of injec-
tion, block (5,5) water saturation was 0.6780. At this
saturation, the mobility ratio (k,, u,/Kr4Md,) is 65 to 1 in
favor of the gas phase.. This explains the rather high water
saturation remaining in the input biock. With S;n::O.l, gas
cannot move out of one block and enter another, until the
water saturation of the block with higher gas potential is
less than 0.90. At a water phase saturation of 0.85.9 the
mobility ratio is 0.975; hence, at that saturation gas can
move as easily as watef from block-to-block. High water
saturations observed in gas invaded blocks of the grid sys-
tem, at t =763 days, are caused by the high mobility of gas
at lew gas saturations. In this 10 feet thick system con-
tinuously supplied by four wells, the viscous forces domi-
nate the capillary-gravity forces, and coupled with the high
viscosity contrast, sustain an inefficient displacement

process.
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TABLE III

SATURATION (S*) MAP FOR RUN B1 AT THE
SIMULATION TIME LEVEL

OF 763 DAYS

I=J=1

0.99
0.99 0.88
0.92 0.81
1,00 0.97

0.99
0.86
0.80
0.78
0.90

0.99
0.88
0.80
0.77
0.73
0.85

0.92
0.81
0.78
0.73
0.67*
0.80

1.00
0.97
0.90
0.85
0.80
0.95

*Input well location
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Since the gas phase has high mobility even at low gas

saturations, S,, becomes a very important parameter in thin
reservoir studies, The lower is the S;no the higher is the
RPN - hence mobility - to gas at a given saturation. To

show the impact of S;n, simulation runs B2 with S;n::OmOS
and B3 with S;n:=0.01 were made. Figures 15 and 16 display
water saturation versus simulation time relationships of the
key blocks corresponding to three values of S;n::Q.l, 0.05,
and 0.01. In well blocks, higher S, values are obtained
with higher values of S;n, throughout the simulation runs,
as expected from mobility consideratipns. The converse is
true for edge blocks; that is, the lower the S,,, the higher
is the gas satﬁration. This is entirely as expected. The
more mobile is the gas, the farther it will move from the
input blocks, at a given time and fqr a given injection
volume. The volumes of gas injected for Runs B1, B2, and B3
were kept the same for comparison.

Runs B1, B2, B3 demonstrate thatS,, is the most impor-
tant parameter in simulating gas injection_into a virgin
aquifer, Sén is also first order important in hysteretic,,
cyclic flow. For a given volume of gas injected, the higher
is the S,,, the smaller is the size of the gas bubble.
Hence, some blocks containing gas would not have undergone
gas invasion, had S;n been higher than the value used in the
simulation study, and no gas would have been trapped in such
blocks upon imbibition. The reader is reminded that, in

this work, trapped gas saturation of a block is a function
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of the historical peak gas saturation of that block. The
impact of S,, decreases, however, as the viscosity contrast
between the two fluids decreases.

The difference in the saturations of the adjacent
blocks (5,1) and (6,1), caused by well interference (see
Figure 10), is amplified by the rather coarse grid system
applied. For example, at t =763 days and for S,, =0.01,

S, in blocks (5,1) and (6,1) were 0.835 and 0.995, respec—
tively. Furthermore, the S; contrast (0.895 and 1.00) in-
creased as S,, increased. If a more detailed grid network
were used, these differences would have been considerably
smoothened. The simulation technologist should expect
higher saturation "errors'" in frontal development as the
value of S;, and block size increase.

an B4 was made with Xn =\, =1 and S,, =0.1. When the
two interference exponents are equal to unity, RP curves
become straight lines. Water phase saturation versus simu-
lation time relationships of various key blocks are shown iﬁ
Figure 17. Run B1 data is also presented as dotted lines
for comparison. The impact of X on the saturation distribu-
tion is similar to that of S,,; that is, as A decreases, RP
values increases, bofh gas and water become more mobile in
two-phase saturated blocks; hence, the gas '"bubble!" spans a
larger region of the reservoir, for a given injection
volume.

Dynamic pressure versus simulation time relationships

of the gas input blocks and the boundary blocks, obtained
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from the simulation Runs B1 and B4, are presented in Figure
18. Well block pressure increases with the interference
exﬁonent, A becauee, the higher values of )\ produce lower
phase mobilities within the two-phase flow zone. The con-
verse is true for the boundary blocks, as indicated by
Figure 18. Higher input block dynamic pressures, at a
given saturation and simulation time, simply mean that more
gas was stored in the input blocks due to compression;
hence, water efflux rate into the aquifer and the grid
boundary pressure are lower. As the gas front approaches
" the grid boundary, the pressure differences in boundary
blocks, due to A, decrease. Interference coefficients, F#
and F, , are direct multipliers of RP relations. The lower
are F, and F,, the lower are the phase mobilities in direct
proportions, within the two-phase =zone.

To summarize, the saturation and pressure distribution
calculations for the case of initial gas injection into a
thin virgin aquifer are sensitive to the critical gas satu-
ration, the phase interference exponent, and the phase in-
terference coefficient, in that order, as they govern the
mobility of the two fluids. However, the differences in
these distributions, due to A and S,,, may well be within
the computational accuracy desired. This is usually the
case when the geometry of the prototype reservoir is not
well-knewn. For example, dfnamic pressure variation due to
A in well block (5,5) is ébout 3.5%, based on the higher

value.
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For gas-water systems, PC is generally very low, except
neér Sré. Théfefore, it is the slope of the capillary
pressure curve, not the capillary pressure level, that in-
fluences the computations, for S, >S,,. The change in the
saturation distribution with simulation time, for an initial
drainage process, is such that the drainage PC curve,

Figure 14(a), can be replaced with a straight line, Figure
14(b). The effects of the size Qf the grid area and the
size of the grid blocks on saturation-pressure distributions
ﬁere also investigated. The findings are reported in this

Appendix.

Case of Gas Injection Into a Partially Gas
Saturated, Thin Aquifer at Initial

Capillary-Gravity Equilibrium

Simulation Runs B5 and B6

Simulation Runs B5 and B6 were made to investigate the
”éffects of the interference exponentz A, governing phase
mobilify, on saturation and pressure distributions, when an
equilibrium gas bubble was excited by gas injection and
forced to grow iﬁ a thin aquifer. Original gas-water con-
tact was placéd ét 174.feet above the cénter of the refer-
ence block (1,1,1). Grid system and boundary conditioné
used for Runs B1 through B4 were again applied. Run B5 was
made with linear bounding RP curves (A =1). Run B6 employ-
ed curvilinear RP, with ), =2 and 1, = k.

)

Saturation profiles at the beginning and at the end of
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the Runs B5 and B6 are presented in Table IV. The response
to A was the same as the reéponse in Runs B\ through Bi4;
however, the saturation differences produced by A were very
small near the.gés injection poiﬁts where gas saturation was
relatively high. The largest S, variation in response to )
was observed in edge block (5,1); 0.8864 for Run B5 and
0.9695 for Run 6. The preséufe variation in response to A
in well block (5,5) was approximately 2.7%, which is within
the desired accuracy for most applications.

The distributions computed by the simulator for the
case of constant rate gas injection into a thin aquifer,
“with or without initial gas in place, showed that the, maxi-
mum variation dué to relative permeability, were about 8% of
pore volume for saturation and 3.5% for pressure, relative
to thevsimulation conditions for Runs B5 and B6. For thin
reservoir systems wifh higher pressure levels, these per-
centages would be smaller. Conversely, for systems with
loﬁer base permeability the errors due to RP data would be

higher.

Case of Constant Terminal Rate Production From
a Thin Reservoir-Aquifer System,

Initially at Capillary-Gravity Equilibrium

Simulation Runs ci1, C2, C3, D1

In this case, the grid system (see Figure 10) and
rock-fluid properties used in Simulation Run group B were

again applied. .Original gas—water contact was placed at



TABLE IV

SATURATION (Sh',) PROFILES FOR RUNS B5 AND B6
AT THE SIMULATION TIME LEVEL OF 763 DAYS

J(1=5) S, (Initial) s, (B5) s, (B6)
1 1.000 0.886 0.969
2 1.000 0.856 0.832
3 1.000 0.838 0.787
i 1.000 0.722 0.723
5 0.338 0.321 0.337
6 0.236 0.237 0.235

An :)\,; =1 for Run B5

and S‘!n =0.1.

: Ay =2, A, =4 for B6;
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160 feet above the‘center of the reference block (1,1,1).
The internal boundary conditions consisted of the explicit
constant terminal gas withdrawal rate of 1000 MSCF/D/Well
from blocks (5,5), (7ﬂ5), (5,7), (7,7). Water cut was cal-

culated from the relation:

Q = Emk"" Ha By STB/D Well

rw U-n w

where Q, = 1000 MSCF/D.
Runs C1, C2, and C3 were made with the following values

of parameters controlling the shapes of RP and PC curves:

_Run Ay A, Wy @, ¥ Drainage P,;
C1,D1 1 1 2 2 1 curvilinear
ca 2 4 2 2 1 curvilinear
C3 2 4 2 2 1 linear

Imbibition relative permeability to both phases, hence phase
mobility, is higher for lower values of A, with @ held
constant.

Saturation ﬁrofiles for these runs are given in Table
V. A comparison of Run C1 and C2 saturation distributions,
at simuiation time level of 313 days, revealed insignificant
saturation differences. However, pressure comparison
revealed significant sensitivity toyl in blocks with high or
full water saturation%>even though saturation differences
between runs C1 and C2 were negligible. This is entirely as
expected,.since watér relative permeability, hence mobility,
is very sensitive to X;. With A, =1, water phase is consid-

=4 level., Higher

erably more mobile, compared to A,
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mobility to water produces lower pressure gradients.
Pressﬁrés in blocks (5,5) and (5,6) compared very closely,
becauée iﬁ these blocks water saturationlwere near the
residual level Wheré RPW is inqensitive to k;.

Lower values of K; should ;roduce higher water cuts
for a given gas production rate. This is shown to be true
in Figure 19, which is a plot of water cut versus simula-
tion time. In Run C1 the production wells were found to be
incapable of sustaining the explicit gas flow rate of 1000
MSCF/D/Well at and beyond 373vdays, whereas this incapa-—
bility occurred at the time level of 433 days for Run C2.
An examination of saturation distributions, at these
failure times for each ruﬁ, shows that the gas saturation
of the blocks adjoining well blocks were at residual (or
trapped) levélg hence, water phase gushed into well blocks
énd increased the water cut of producing wells (Figure 19).

| , Aﬁ iﬁteresting paradox was observed in the saturation
di‘strbi‘butivon’s of t=373 days and t = 403 days for Runs C1
and CZ,“respectively. How could a well placed in a block,
such as block (5,5), with a éaturatioh of only 22-28%
water, produce such tremendous quantities of water? The
ahswer was very simple. The simulator base transmissi-

bility was taken to be a '"chord'" between the centers of two

adjoining blocks; and it was time independent. However,
effective transmissibilities were saturation, hence, time
dependent. When two adjoining blocks have a very large‘

saturation contrast (such as 0.66 versus 0.28) omne is
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confronted with a dilemma; which saturation should be used
in applying an RP to the base permeability cord joining the
two blocks? In these simulation runs the saturation of the
block with higher potential was used. In this example,; the
key block would be (5,4), where RPW is nearly unity. Now,
the reason why block (5,5) water saturation was still about
0.28 while large quantities of water entered this block, was
that the producing well removed the water almost as fast as
it came into the block.

This paradox can be circumvented by using the satura-
tion of the producing well biock to compute the well's water
output, and the saturations of the two blocks weighed
equally for block-to-block transfer of the two fluids.

However, for any two adjoining block pairs without wells,

the use of the saturation of the higher potential blocks was
found to be quite satisfactory. Another reason for exces-—
sive water production from wells, in Runs C1 and C2, was
that the imbibition RPW curve used in these runs, with EQ::i
was not realistic. The usual range for E; is 0.1 to 0.5.
Since EQ is a direct multiplier of imbibition RPW, block-to-
block water traﬁsfer rate would have been smaller with

Q;< 1. These runs served well to demonstrate that intermnal
boundary conditions and those parameters governing the

shape of imbibition RPW become very important as the gas
bubble '"collapses'" toward the producing wells. Therefore,
the neglect of the hysteresis in RP and S,, could cause sig-

nificant errors in phase mobility and entrapment, at the
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later stages of gas withdrawal from an aquifer-reservoir
complex.

Run C3 was made with linear drainage capillarity data.
(Figure 14b) 1In contrast to the group B injection simula-
tion studies, PC data did influence the pressure and satura-
tion distributions throughout the simulation run by affect-
ing the initial gas-in—place and saturation distribution.
With the initial gas-water contaét and initial reservoir
pressure held constant, the initial distribution is quite
sensitive to PC data if the capillary-gravity equilibrium
prevaiis. In Runs C1 and C2, the calculated gas in place
volume was 1.926 BSCF, whereas Run C3 initial gas volume
was 2.157 BSCF, Water cut of one of the producing wells,;
for Run C3, is also shown in Figure 19. It is much lower
than its counterparts for Runs C1 and C2. The explanation
for the reduced water cut is fairly simple. The difference
in initial gas in‘piace volumes mentioned earlier is 231
MMSCF, which is better than ohé—half of the 403 MMSCF of

produced gas.

Simulation Run D1

Run D1, which is similar to Run C1 in every aspect,
excepting the productioﬁ schedule, was made to investigate
how a well's capability to produce deteriorated as the gas
bubble collapsed toward the producing wells. Explicit
terminal flow rate pef well wés specified to be 1000 MSCF/D

of two-phase misture. Simultaneous gas and water flow
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rates computed by the simulator for Run D1 are plotted in
Figuré 20 and éompared to Run C1 performance. The initial
distributions for Run D1 were the same as those of Run C1.
Phase saturation profiles for Run D1 are shown in Table V.
Thevmost interesting observation on this run was that
the gas flow rate per well declined from 1000 MSCF/D to 38
MSCF/D, over 823 days, as the gas bubble collapsed about the
producing wells. The term collapsing gas bubble implies
vanishing mobility to gas as gas saturation nears the
residual (or trapped) level about the producing wells. Once
again, the paradox described earlier was present in blocks
(5,4) and (5,5); however, it was not as obvious as it was in
Run C1. The main contribution of Run D1 was the demonstra-
tion of the fact that clever and realistic specification of
the internal boundary conditioné, hence the RP's of the
blocks containing wells, are of first order importance in
" production simulation studies and accurate description of

trapped gas volumes.

Case of Gas Injection-Withdrawal Operations in
Multi-Layered or Thick

Aquifer-Reservoir Systems

The sensitivity of saturation and pressure distribu-
tions in simulating multi—iayered aquifer-reservoir systems,
to RP and PC data, is debendent upon the sensitivity of the
individual layers, with strata of high effective permeabil-

ity dominating the over-all sensitivity. When individual

\
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TABLE V
SATURATION (S,) PROFILES FOR RUNS C1, C2, C3
AT SIMULATION TIME OF 313 DAYS
AND RUN D1 AT 823 DAYS
J(1=5) S, (Initial) S, (Cc1) s, (c2) s, (D1) S, (C3)
1 1,000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000
b4 0.380 0.630 0.647 0.690 0.579 (0.2)*
5 0.200 0.203 0.203 0.600 0.203 (0.2)%
6 0,200 0.200 0.200 0.426 0.200 (0.2)*

An =A;:=1 for Runs C1 and D1; A, = 2, 1;::4 for Runs C2 and

C3; linear PC curve for Run C3; all runs with wn::w§:=2,

cn

‘Y:i, S =O.2, Srn =Oz.5, Shn;

denotes initial saturation.
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'layefs are thin and/ér thé dip-normal base permeability is
very low, dip-normal saturatioﬁ gradients become negligible.
In this case, the simulator performance is sensitive to RP
and PC data to the extent presented in the previous sections
of this chapter.

In the case of the single or multi-layered systems
with apbreciable‘thickness, diﬁ—normal base permeability is
of primary importance. Consider laboratory PC versus water
saturation data shown in Figure 21 and the RP data presented
in Figure 22; These figures describe PC, RPN, and RPW
hysteresis enveldpes. Equilibrium PC and RP curves for
various depths of.partial integration in dip-normal direc-
tion were computed by an éuxiliary integration program.
These are also shown in Figures 21 and 22, The comparison
of rock (dotted lines) and dip-normal equilibrium curves
(solid lines) reveals that, if dip-normal equilibrium (or
near equilibrium) prevails, the sensitivity of mddel per-—

formance to PC and RP data declines as the formation thick-

ness increases, excepting the residual saturations. In

other words, as the thickness increases, one has:
A-n*‘) A-w*7 wn*7 ww* - 1’S°n*—) O

where * denotes simulator conditions. As a matter of fact,
equilibrium drainage PC and RP curves can be represented by
straight lines encompassing the residual and full satura-
tions of the wetting phase for thicknesses larger than 10

feet. Similarly, straight lines spanning WF and NWF
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residual saturations can describe the equilibrium imbibition
curves. Thebprimary requifement is that dip-normal equilib-
rium (or near equilibrium) obtains.

If prototype reservoir conditions require the use of
the three-dimensional simulator,‘the VE concept becomes
valuable in reducing the grid spactng in dip-normal direc-
tion. For example,.in‘studying layefed, thick systems, one
or more layerevmay be thicker than 10 feet, with flow condi-
tions favoring dip-normal equilibrium. The saturation and
pressure‘distributions would be in error if rock ecurves are
used Without adjustment. Simulation technologist would then
face two alternatives; one is to set up sub-layers of 10
feet or less in thickness and use rock curves, the other is
to adjust rock curves for dip—ﬁormal equilibrium. This
adjustment, however, must be made with caution; because, the
flow conditions permitting the parttal integration in the
dip—normai direction require‘thatltﬁe Iayer (or reservoir as
the case may be) thickness be small relative to maximum
distance across the reserveoir. The main contribution of
Run D1 was the demonstration of the fact that clever and
realistic specification of the intermnal boundary conditions,
hence the RP's of the blocks containing wells, are of first
order importance in production simulation studies and accu-

(

rate description of trapped gas volumes.
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Effect of Grid Size on Saturation and

Pressure Distributions

Simulation Run E1

The simulation Run E1, similar to Run B1 in every
aspect except the size of the grid area was made to investi-
“gate the effects of additional grid blocks between well
blocks and grid systgﬁ boundary on saturation and pressure
distributions. Five additional blocks, 1000%x 1000 x 10 feet
in size, were placed beyond each boundary block of the first
original grid system, while keeping the dip angle the same,
2018, This expansion amounted to moving the grid boundary
5000 feet intec the infinite aquifer in X and Y directions,
and 287 feet in Z direction'(see Figure 23).

The increase in the effective '"radius" of the grid sys-—
tem from 5500 to 10,500 feet and the lowering of the struc-
tural position of this boundary another 287 feet below the
top of the structure produced block dynamic pressure Vafia—
tions of the same order of magnitude as those attributable .
to RP vériations due to A and S,,; however, the saturation
distribution was only slightly affecteq as shown below:

Cross section I=5

S, P(psi)
J- B1 E1 B1 E1
1 0.925 0.899 1279 1220
2 0.813 0.808 1300 1241
3 0.789 0.780 . 1318 1261
4 0.735 0.736 1344 1277
5

0.678 - 0.678 1344 1292
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Simulation Run F1, F2, F3, F4, F5

These runs were made to investigate the influence of
‘the grid block size on the saturation-pressure distribution
sensitivity to RP—PCvdata. Radial grid-1 well option was
gsed to model initial gas injection into the thin virgin
aquifer described‘earlier for Runs Bl and E1. The grid sys-—
tem for Run F1 was the finest, consisting of 117 rings (50
rings with 20 feet in incremental radius covering a 500-ft.
radius about the well). Runs F2, F4, and F5 employed a
total of 44 blocks (withvtwenty 30 ft. incremental radius
rings covering a radiél area of 500 ft, in radius). Run F3
(see Figure 24) used only 24 blocké (spanning the comparison
area, 500 ft., with only 11 blocks). Table VI illustrates
saturation—pressufe responses of the various runsbto the
injection of gas at a fate of 500 MSCF/D. Figure 25 shows
the saturation distribution about the injectiqp well at
various levels of RunvFB simulation time.,

Runs F1-F3 demonstrated that grid block size can affect
the saturation distribution considerably without disturbing
the pressure distribution (opposite of Run E1 findings).
Runs F4 and F5 supported the results of the group B runs by
displaying the sehsitivity of the phase saturation distribu-
tion to S,, and to the curvature of the RP-S, PC-S.

In studies of initial gas injection into a thin aquifer
with large rectangular—block:grid systems, it is highly

advisable to first use detailed grid (preferably radial)
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TABLE VI

SATURATION-PRESSURE

DATA FROM RUNS F1-F5 AT

SIMULATION TIME LEVEL OF 50 DAYS
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F1

F2

F3 Fl4 F5

Dist. from Inj. Well

to Gas Front, Ft. 4is 455 510 545 900
s, (Front) | 0.867 0.895 0.984 0.930 0.983
S, (Avg. behind the |

Front) 0.755 0.775 0.856 0.840 0.935
S, (Injection Block) 0.420 0.420 0.427 0.432 0.361
Inj. Block pressure,. , o

psi. ' 956 954 956 950 935

with
Aa = 2, A, = 4, S,, = 0.1 for Runs F1-F3
" " S,. = 0.001 for Run Fl

Vertical Equilibrium

PC+~S and RP-S for Run F5
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models for typical wells in order to establish model criti-
cal saturations of regions covered by the well blocks and

adjoining blocks.
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APPENDTIX F
SYMBOL LIST FOR THE TEXT

Area, ft®.

Transmissibility, L®/L-T.

Characteristic constant of pore geometry,
1/12 .,

Formation volume factorg RBBL/STB or
RBBL/MSCF.

dB/dP.

Combined compressibility of formation and

water, psi~?!.

Distribution function for the radii of a

bundle of capiliary tubes.

Imbibitién interference coefficient,
dimensionless.

Drainage interference coefficient,
dimensionless.

Acceleration of gravity, ft/sq-second.
Gravitational conversion constant,

32.2 1b, ~ft/1b, ~sq-second.

 Gas in place; MSCF at standard conditions,

Tteration parameter for the kth jteration.

Reservoir thickness, ft.

167
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ID Displacement process indicater, dimensionless.
1U Universal indicator, dimensionless.

™ Mobility indicator,,dimensionless.

IND Drainage RPN selector, dimensionless.

IWD Drainage RPW selector, dimensionless.

INI Imbibition RPN selector, dimensionless.

IWT Imbibition RPW selector, dimensionless.

J(S) | Leverett's capillary pressure function,:

dimensionless.

K Bese permeability matrix.
k Absolute (base) permeabiiity, millidarcies.
k Iteration counter.
k; Relative permeability, dimensionless,
ﬁr Pseudo-relative permeability, dimensionless.
Ly, Ly, L; Spatiai dimensions of the connected region,
| ft.
M Mobility, (k,/u, cp ')
M, Capillary pressure multiplier, dimensionless.
N, , Ny,ﬁNz Number of grid blocks in x, y, and =z
-directions.
NWF, nwf Identifier for non-wetting phase.
n‘ Time step counter.
P, p Pressure, psi.
Pc, p, Capillary pressure, psi.
P:x,z Pseudo—cepillary pressure at any areal point

(x, ¥y) on the reference plane of the

reservoir, psi.
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PX, PY, PZ

q’ q.g

RP

RPN

RPW

RX, RY, RZ

Iy
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Van-Everdingen-Hurst dimensionless pressure
drop.

dPp/dtp.

Block pore volume, (p Ax Ay Az/5.614, bbl.)
Potential increments, ft.

Gas phase pressure, psi.

Standard pressure, i.e., 14.73 psia.

Water phase pressure, psi.

Terminal rate matrix.

Injection-production rate STB/day or

MSCF/day.

Represents a region of the reservoir.
Rélative permeability, dimensionless.
Relative permeability to non-wetting phase,
dimensionless.

Relati?e permeability to wetting phase,
dimensionless.

Potential increments, ft.

Radius of grid boundary (internal to
aquifer, external to grid) or radius of
boundary internal to grid system (sink-
source radius), ft.

External radius for steady-state flow within
a grid block, ft.

Mean radius of curvature of a two-phase

interface, L.
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Principal radii of curvature of a two-phase
interface, L;

Wetting phase saturation, dimensionless,
Averagé wetting phase saturation through
reservoir thickness.

ds/dp, .

Critical non-wetting phase saturation.
Non-wetting phase saturation reached when a
drainage process is terminated and imbibition
started.

Historical maximum Shsg'

Upper limit of non-wetting phase saturation.
Non-wetting phase saturation reached when an
imbibition process is terminated and drainage
started.

Historical minimum 3, ., .

Residual phase saturation.

Transmissibility matrix.

Reservoir temperature, %R,

Standard temperature, 9R.

0.00633 Ay Az [h(%LBP' J

9
1+1/2,8 51

5.614 Ax

fransmissibility of wetting phase in
x—direction, bbl/ft-day.

Time, days.

Bounding drainage relative permeability to

non-wetting phase, dimensionless.



UNIM

UWDR

TWIM

WF, wf
WIP

Ax, Ay, Az

EXk

@ 3

>

p or p,
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Bounding imbibition relative permeability to
non-wetting phase.

Bounding drainage relative permeability to
wetting phase.

Bounding imbibition relative permeability to
wetting phase.

Daréy velocity, volume/sq. ft-day.
Cﬁmulative Carter-Tracy type water influx,
bbl.

Identifier for wetting phase.

Water in place, bbl.

Grid block dimensions, ft.

Phase linkage coefficients for relative
permeability, dimensionless,

Difference operator.

The difference between true and numerical
solutions, potential units.

Tolerance, dimensionless.

T n+1.

Reservoir dip angle.

Drainage interference exponent for relative
permeability, dimensionless.

Viscosity, centipoise.

Intermediate drainage interference exponent
for relative permeability, dimensionless.
3.1416,

Specific weight, psi/ft, or density Lb, /ft3.
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p Average specific weight over a time interval,
psi/ft.

o) Interfacial tension, dynes/cm.

T Intermediate imbibition interference

exponent for relative permeability,
dimensionless.

() Porosity, fraction.

o* Transformed porosity, @(1"5,;)s fraction.
Flow potential, ft.

W Imbibition interference exponent,

dimensionless.

Denotes‘a vector.

Denotes a matrix.

Special symbols for the formulation of the differential and

difference equations and numerical solution are defined in

the text.

SUBSCRIPTS

f | Phase £,

r, g . Non-wetting phase (gas).

w Wetting phase (water).
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