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Modern technology has made high quality automatic control systems
extremely important.
tion of these ”optimal or near optimal! systems through application of
optimal control theery and the computer.
shortcomings in the theory which must be eliminated before the control

engineer can readily synthesize optimal or quasi-optimal controllers.

CHAPTER 1

INTRODUCTION

These are:

1.

Bagsic results of optimal contrel theory determine the
optimal control (U*? as a function of time (open-loop
form). The control really is needed as a function of
the plant state variables (closed-loop form) for easy
implementation (see Figure 1), Although a digital
computer can be used "on line! in the control system
to solve the optimal control equations and determine
the optimal control, it must do so rapjdly compared
to the system. (For example, the guid;nce computer
used during the recent landing of the lunar module
worked in this manner.) This means the cpmputer

must either be very fast or the plant relatively slow.

Optimal control of this type is always expensive and

for some fast systems impractical.

Great strides have been made toward the realiza-

However, there are two major
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Figure 1. Basic Control System Schematic

2. If the control can be determined as a function of the
state variables (presently possible only in special
cases), it may still be extremely difficult to imple-
ment. The function may be so complicated that it.is
not realizable with hardware less sophisticated than
a digital computer,

Clearly, there is an urgent need‘for new approaches to control
synthesis which can either overcome these difficulties or avoid them.
The intent of the present résearch was twofold: +to propose and examine
a new controller concept = Optimal Discrete Level Control; and to de=
velop a controller synthesis method which avoids the aforementioned

difficulties by use of the Optimal Discrete Level Control concept.
Optimal Discrete Level Control

Controllers can be placed into two major categories according to
the type of signal they provide to the plant; continucus and pulsed.

Although most investigative work has been done with continuous



controllers, a growing number of the pulsed type are being used, The
pulsed controller most commonly used is the relay (bang-bang) type.
Typical control signals which would be produced by several commonly used
types of pulsed controllers (pulse-width, pulse=frequency, and pulse-
amplitude) apé shown in Fiéufe 2. Notice the basic difference between
pulse width.éhd pulse=frequency signals is that the former has constant

amplitude pulses with variable on-off ratios, while the letter does not.

ot

l

4 t f5 te

t)

PULSE WIDTH PULSE FREQUENCY PULSE AMPLITUDE
CONTROLLER CONTROLLER CONTROLLER

Figure 2, Typical Control Signals Produced by
Pulsed Relay Controllers

A proposed new concept for switching controllers is that of optimal
Discrete Level Control (hereafter denoted ODLC)., This control philoso-
phy can be defined by a single statement:

The controller output (plant input) will be constrained to

assume only specified discrete levels of amplitude and must

switch between these levels in a sequence that minimizes a

specified performance index.

Obviously, such a minimizing sequence will be optimal with respect to

the performance index subject to the discreteness constraint. No other



piecewise congtant control can be found which produces a better perform-
ance. Figure 3 illustrates the type of contrel signal an ODLC controle
ler with five specified levels might produce for zome unspecified plant

and performance index,

& §

Figure 3. Typical Five Level ODLC Signal

L

“_ This é@ﬁfrél seguence U (the output of the controller) is the input
{o thé plant or syetem which causes it to behave in the desired optimal
maﬁﬁéro

ObLC9 as a éoncept9 is new, but it should be pointed out that there
are two familiar.types of optimal controllers which could justifiably be
redefined as being special cases of ODLC controllers. They are time=

o . . . 1
optimal and fuel-optimal controllers for linear améd certain other plants.

_ 1These "certain other! plants are those in which the control signal
enters linearly into the system equations, ‘
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These two special cases do not cccur as a result of the control philoso-

phy outlined above, but as a conseqguence of the special nature of their

performance indices. In both special cases,

the performance index it-

self causes the control to assume a piecewise constant nature to achieve

optimal performance.

Time-optimal control, where the measure
needed to drive the system variables to some
that maximal controller effort be exerted af
only the "ifull posgitive" and "full negative"
switching will cccur as needed between these

in Figure %,

Thiz is obviocusly a special cas

of optimality is the time
degired atate, requires
This means that

all times,

levels are used, and

Figure 4.

combination of the time and effort {absolute

Typical Time=Optimal Control

two levels, as illustrated
se of two level ODLC.
& {
Se@uenée

of optimality is a linear

value of U) needed to drive
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the @ystem variables to & desired state requires three levels of con-
trol. These levels are full positive, full negative, and null (off).,
The resulting optimal control typically has the character illustrated by

Figure 5., It also is a special case of ODLC, but of three levels rather

than two,

B f

Figure 5, Typical Fuel-Uptimal
' Control Sequence

The two above examples are ODLC because of their very special pérm
formance indices. Buty, it would be wrong to assume that all or even
many pulsed controllers are ODLC, Th@.very naéure of pulsed control-
lers nommally implies restrictions which meke them no mere than sub-
optimal compared to ODLC. For example, fived-rate sampled data
controllers are inherently limited to constant pulse-width control sig-
nals which make them sub-optimal, PulSezfréquen@y (requiring the pres-

ence of a variable base frequency) snd pulse-smplitude {requiring

restrictions similar to fixed rate sampled-data) systems also cannot be

3

®

classified ag being ODLC because of their respective reguirements just
listed,

ODLC control signals can be shown ﬁo be functionally dependent only



on the system variablesoz This ODLC "control law! can be stated simply
in terms of awitching (hyper) surfaces in state space, Figure 6 is an
example of the switching surface (curve) for time optimal control of a
simple second order system. In Figure 6, the control will always be
"full negative® if the system states are leocated right of the switching
curve, and "full positive" on the left. Similarly, optimal switching
surfaces will exist for all ODLC contrellers, This is an important fact
because it means that ODLC controllers can be operated closed-loop
(functionally dependent only on the current values of the system
sta‘teso)3 Realization of an ODLC controller can, thus, be accomplished
by hardware {(or a computer) which functiénally approximates these switch-
ing (hyper) surfaces.

At this point, several important characteristics of ODLC can be
listed. First, since the ODLC controller is an optimal signal-producing
device, its system controlling properties should be excellent. Second,
in many cases, exact solutions to, or adeguate approximations of ODLC
switching surfaces will be very easy to achieve, Thus, ODLC synthesis
may lead to a simple (and inexpensive) controller which optimally (for
the approximaticns, near-optimally) controls its plant. 4 third impor-
tant property of the Discrete Level Controller is noise immunity.

Because of the guantized nature of the control signal control quality

will be immune to all but extremely large levels of amplitude noise.

2’I‘his functional dependence is shown in detail in Chapter III.

3Contra$t this to an open~loop contrel law where the input is
specified solely as a function of time, and must be recalculated for
each new operating condition encountered by the system,



This makes ODLC very attractive for use in noisy environments,

, | Xy = X2
U=-f X2=U

PERFORMANCE INDEX:

o - [
X, P1I. ald.t

U=+l SWITCHING CONTROL:
= SURFACE Ue (-1, +1)

Figure &, Optimal Switching Curve in State Space

A number of applications where the above would be useful can be
envisioned but one special class of applications deserve special men=
tion., This class is those systems in Which the control servos are in-
herently discrete level, A prominent example of this would be the
maneuvering thrusters on rockets and space vehiclez which must operate
" in an on-off sequence. Clegrly then, ODLC is an attractive type of”

system for space-age applications.
Research Objectives

The thrust of the research was to explore some of the characteris-

tics of the proposed concept for Optimal Discrete Level Controle‘ The



first goal was to establish the validity of using optimal control theory
in finding the ODLC switching surfaces. 7The second goal was to determine
the feasibility of implemeﬁting the optimal switching (hyper) surfaces
or their approximations. Another goal was to develop synthesis methods
suitable for design of systems using optimal discrete level control,

The scope of research was limited to investigation of the optimal

(and near optimal) discrete level control of plants of the type

dX
_é-‘l:: = £(2§,9U9t) ]

where f is an nX 1 vector function of the n component state vector X and
the m control signals U. The functions f are assumed to possess contin=-
uous partial derivatives with respect to X through the first derivative.
Specific research objectives were divided into two categories:
1. Investigation of the characteristics of discrete level )
controllers, Efforts in this area included:
a. derivation of necessary conditions for ODLC
seguences,
b, determination of necessary, restrictions to
performance specifications for ODLC,
c. definition of the types of systems in which
ODLC can be used.
Work in this category was done to establisgh the basic control concepts.
2, Development of analytical metheds for synthesis of
discrete level controllers. There were two areas
of primary concern here:
a. development of computer methods to locate points

on the optimal switching surfaces, {This turned
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into an area of major effort since existing solu-
tion methods were determined to be inapplicable,)
b. investigation of appropriate surface fitting
technigques and methods of selection of functional
forms to be used for approximation of the switch-
ing surfaces.
This second area of study was to develop analytical procedure for the

synthesis of closed-1loop discrete level controllers.
Topical Preview

The organization of this thesis roughly corresponds to the chrono-
logical order of research steps carried out in the investigation.
Chapter II is a review of related work,

In Chapter III, validity of Pontryagin'’s Maximum Principle for
obtaining necessary conditions for ODLC is verified. Special emphasis
is given to determination of the characteristics of switching surfaces
for both autonomous and non-autonomoug systems.

Development of synthesis procedures for determining and approxi-
mating optimal switching (hyper) surfaces is carried out in Chapter IV,
A discussion of gseveral surface fitting methods is included.

Several example problems which illustrate some of the characteris=
tics of ODLC surfaces and closed-loop controllers are detailed in
Chapter V. Both linear and non-linear plants, and autonomous and non-
autonomous systems are considered.

Chapter VI presents a discussion of principal results obtained

from the investigation, particularly that covered in Chapter V,
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Finally, Chapter VII summarizes the research and presents some pertinent

conclusions,



CHAPTER II
LITERATURE SURVEY

Since the concept of Optimal Discrete Level Control as developed
herein is new, there are no references in the literature dealing di-
rectly with the subject. There are, however, several papers which have
dealt with subjects that are closely enough related to merit examination,

In this chapter, the more significant of these are discussed,
General Results on Optimal Pulzed Controllers

Kirk (11) has dealt with the problem of obtaining necessary condi-
tions for optimal pulse-width modulation control, His basic approach is
to view the system as a variable rate sampled data system. Calculus of
variations is used to obtain these conditions. As with standard calculus
of variations methods, he obtains not only algebraic necessary conditions
buf also a new set of differential equations, equal in number to the
original plant eguations, which must be solved simultaneously with the
originals. As usual, the boundary cdnditions are split between initial
and final time. The numerical technique used for solution of the result=
ing optimal control problem is an iterative steépest-descent alébrithmo
The most important aspect of Kirk's work is the implications contained in
the problem definition. While Kirk restricts‘the plant inputs to %1 and
0, he uses a rather general performance index. This means, in actuality,

the systems he terms pulse~width-modulated are‘a special class of three



13

level ODLC., There are several difficulties arising in Kirk's approach
which limit its usefulness for ODLC.

1, The technique is limited to fixed final times = not

free final times. (In all fairness, this shoricoming

should be fairly easy to rectify.)

2. The numerical technique used was developed for three~

level controls of the form #1,0. Because of this

lack of generality, it would be difficult to satis=~

factorily extend the procedure to higher order cases.
Of considerable interest is the fact that the necessary conditions for
the general ODLC problem developed in this paper reduce to those of Kirk
for his special case., Since his problem is a special case of ODLC, this
should occur, which helps verify the correctness of both analytical
treatments.

In their paper, Nardizzi and Bekey (15) develop necessary condi=
tions for optimal, combined pulse-width, pulse~amplitude control. On the
surface, their optimal pulsed=controller work would appear to have direct
bearing on Optimal Discrete Level Control since they also show that
Kirk's pulse=width control is simply a special case of their problem.
However, this is not the case, since they, in general, allow the input
amplitudes to be infinitely variable. The only Discrete Level case to
which their conditions can be applied is this special case of pulse-
width modulation. The computational technigue used by Mardizzi and
Bekey is a gradient method implemented on the digital computer, (A
method of this type was tried for ODLC, but proved to be unsatisfactory.)

Tou (23) deals with the twin preblems of finding the optimum quanti-

zation levels for quantized (Discrete Level) control of sampled-data
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systems, and of implementing the gquantized control through the use of
switching surfaces. Two things distinguish Tou's work from the ODLC
concept being investigated.

1, Tou restricts his systems to sampled-data systems with

constant sample rates. An unfortunate consequence of
this is that his analytical development iz also re-
stricted to constant rate sampled-date systems,

2., Also, as a result of considering only sampled-data
systems, Tou requires a switching map for each gasmple
interval, This means that for a system which will move
to the desired final state in n sample intervals, there
must be n switching maps. Figure 7 illustrates the type
of switching surfaces required by Tou for a simple
seconrd order system.

A pertinent peint discussed by Tou in his determination of optimal
quantization levels is that optimal guantization can be accomplished
only for a single trajectory (or a specific probability distribution
which has been assigned to the peossible initial conditions), Although
optimal quantization was not investigated in this immediate research, it
is certainly a topic for future interest. Further, the concept of estab-
lishing a probabilitf.distribution of initialvconditi@ns would seem to

be the most appropriate method of pursuing the matter,
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PLANT: PERFORMANCE  INDEX:  CONTROL: |
i;;—xfpu RL: 2 [x( xw] Ue[-M,0,+M]
bxa £ Xz
U=-M U=-M

AN

U=+M C U=+M

SWITCH LINES FOR SWITCH LINES FOR
ONE SAMPLE AWAY TWO SAMPLES AWAY
FROM FINAL STATE FROM FINAL STATE

Figure 7. Typical Switching Lines Obtained by Tou
' for a Second Order Plant

Approximation of Switching Surfaces

It is well known that the optimal control obtained by application
of optimal control theory could be expressed simply as a function of the
state variables. However, theré is presently no closed form method of
determining this functional relationship., For implementation of a
closed loop control from optimal control theory, it iz extremely impor=-
tant to have available suitable means of either determining or approxi-
mating this functional relationship., Although this relationship may be
extremely complicated, it can be shown to be displavable as a set of
switching (hyper) surfaces in state space for the case where switching

occurs. Several investigators have developed methods to approximate
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these surfaces with implementable functiens. The resulting equations
express one state variable (thé dependent variable) as a function of the
remaining ones (independent variables).

The simplest method of implemeﬁtation would be to use simple linear
segment functions of the state variables, Frederick and Franklin (9) |
have investigated this case; The proqedure outlined is a heuristic one
in which an itefétive segrch was initiated to discover a best combina-=-
tion of segments to use., Figure 8 shows two possible linear segment
approximétionso Each approximation would be tried and compared to the
other én'the basis of performance. All approximations would be itera-
tively triéd and the best performing épﬁroximétion chosen, The primary
shortcoming of this approach is that, for higher order plants, there is
no meang of accommodating any crOSSemultiplying terms between the inde-
pendent variables which means that none of the approximatioﬁs might be

“very good.

Xy
‘,_b

TRIAL APPROXIMATION NO, |
TRIAL APPROXIMATION NO. 2
‘ —~SWITCH CURVE

Figure 8. Typical Second Order Switehing Curve With Two
: Possible Linear Segment Approximations



Smith (22) approaches the approximation problem from a slightly
different viewpoint which is most attractive from an implementation
standpoint. His procedure is to use a least squares fitting technique
to geometrically obtain the best piecewise linear functional approxima-
tion to the surfacea1 He assumes the approximation functions will
always consist of a number of piecewise linear functions of the state
variables. The assumption of functions of state variable combinations
enables the technique to approximate functions containing cross-products
of (state) variables in a manner analogous to that used in "quarter-
square' multipliers. The greatest benefit realized from the use of
Smith's technique is.the ease of implementation. All the piecewise
linear functions can be implemented by means of simple diode-function
generators, Controller implementation then consists of simply hooking
these function generators togetﬁe;;A

Geometrically, Smith's technique can be interpreted as approxi-
mating the optimal switching surface by planar triangular segments which
are then joined together at their boundaries. The effect is much the
same as approximating a sphere by a multitude of small flat triangular
pieces appropriately cut and glued together.

Another attractive feature of Smith's procedure is that the tech-
nique is almost completely analytical and does not require precise

visualization of the surface to be approximated, This means that the

1Obviously, a "begt" geometric fit does not necessarily give the
best approximation to the actual surface in terms of minimum performance
index values., However, on an intuitive level, it would seem reasonable
to expect better performance from approximations which are geometrically
"close!' than those which are "far!" from the optimal surface.
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technique is easily extended to high order systems where visualization

is impossible, For the numerous reasons cited above, Smith's method was

used as the approximation method in later chapters of this thesis. .  ” s

A

FUNCTION TO BE fily)
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Example of Curve Approximation by Smith's Technique

A different approach to the approximation of the optimal switching

surface has been adopted by Ibragimov (10).

His procedure is to choose

a series of "gimple functions“, (preferably orthogonal), and least

squareSM—‘fit them to the optimal surface. The advantage to be gained

by this technique over that of Smith is that

it is possible to achieve

a better controller than Smith's, without necessarily increasing the

complexity of the controller. However, considerable engineering judge= :

ment would be required to éhoose‘appropriate

”simple functions" which

would both give "good" performance and be easy to implement. This

approach, although it was not utilized in this dissertation, has great
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potential and must be earmarked as a topic suitable for further

investigation.
Computer Techniques

The set of split ﬁoundary—value differential equations which arise
in optimal control theory are extremely difficult to solve. For a
majority of cases, closed-form analytical solutions are not even possi-
ble, Since the advent of the computer, however, powerful numerical
techniques have become available for solution of these problems.
Usually, these procedures are limited to the solution of continuous
equations with continuous inputs -and are not suitable for solution of
the problem posed by Discrete Level Controel. A numerical technique
which is eminently suitable for solution of DLC problems is Discrete
Dynamic Programming. Thisbtechnique, which is simply an optimal search
technique, does not require continuous inputs (or plant equations) and,
in fact, works better if they are not continuous.

Basically, Discrete Dynamic Programming is a numerical implementa-
tion of Bellman's "principle of optimality!'. This principle simply
states that if a control is to be optimal, every segment of that control
must also be optimal. For example, in Figure 10, if the four step con=
trol sequence is considered optimal (solid 1ines), then for Step 3,
there can be no control (dotted lines) which is more optimal in that

segment.
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Figure 10. Illustration of the Optimality'
o Principle s

Aithough:the,basié idéa seems quite gimple, it can be used to build
a tool for“édl;ing extremely difficult problems, This construction is
accomplished by discretizing each state variable domain into a grid and
searching each grid combination for the input(s) which transfer the
states to the next discrete time stép in a besf manner, Appendix II
discusses this procedure in detail. There is one computational diffi-
culty which arises = the curse of dimensionality. To understand this

difficulty, considerithe following example:

The problem to be solved has a fifth (nth) order plant. Also, because
good accuracy is desired, each state variable domain is divided into a
grid of 100 (N) grid points and 100 (M) time increments are used. - The

number of computer storage locations (P) will be

n 12
P = 2M s (Ns) = 2% 1079,

This storage requirement far exceeds the capability of most computers,

since computations must be magde at each location.

Several people have done work in development of techniques which will
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allow reduction of these storage requirements. Two procedures which are
of special interest are those of Davis (6) and Larson (13).

Davis (6) considers an iterative techniqﬁe which reduées the total
storage requirements from 2 Msgi (Ns) to 2581 (Ns) which is a reduction
by a factor of M. (M is the number of time divisions and Ns is the num-
ber of grid divisions for each state variable.,) The computational pro-
cedure for Davis' method is the same as for conventional dynamic
programming except that instead of investigating all points in state
space at M intervals in time, points in state space which are close to
previously investigated points are investigated and the data for these
points is iteratively improved until the optimal contrqls associated
with these points are found. %

!As illustrated in Figure 11, the basic procedure of Davis' tech-
nique is to assign some guessed performance index (and:&nput) value to
each point in state space. Then, starting at the desired final point,
improved values and input values are determined for the:state space -
points, working outward from the final position stepmby«step; By going
through the performance index improvement procedure several times, the
method wili.converge to a solution., Davis has worked a nﬁmbqr of prob-
lems with the techniques and he reports reasonable accuracy. The major
problem with the technique, however, remains the problem of
dimensiionalitya

';F;r the system quoted above, the computer storage requirement
(computation must be carried out at each point at least once!) is still

2')(1010 locations.,



22

4%z
= POINTS COMPUTED
1o /° | IN STEP NO. |
RS Y R L,~POINTS COMPUTED
I | | IN STEPNO.2
! , | I
g e :
L=t o

Figure 11, Iterative Dynamic Programming Technique Used by Davis
(Shown in state space)

Larson (13) has developed a very attractive iterative compﬁtational
procedure which can reduce the storage location requirements drastically,
For the example problem?.it could bossibly require as few as 25,000
‘'storage IOCations; The basi; approach used is to partition state space
into blocks. (see Figure 12). The size of each block is determined by
the number of grid points deemed desirableJior each block. The time-
interval spacinngithin the block is not fixéd,.but is set at the value
such that the fastest changing state variable has changed by one state
increment.,. This feature allows interpolation to be carried on at the
(n=1) state level (rather than at the 2), but adds an interpolation in
time. Performance Index values‘at the trailing edge points of the block
must either be estimated or supplied by computations from a previously
worked block, The iterative process is that the solution is determined
block=by=block until all blocks required for the problem solution have
been worked, The technique is simply a proceduré_whereby the large

problem ‘is divided into some number of simple grid-block sub=problems.
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Only those grid-blocks necessary for solution of the specific problem

being considered are investigated, All other sfate'spabe”is_ignored.Av

, x“) X%Z»

X+ DX A
o . ;;/4 FE

. x 1 >

- [
X ax x{3)
) b
at 20t

Figure 12, One.Dimensional Exaﬁple of Grid Blocks UsegibyULarson =

Some of the more important features claimed for the method are:
1. Ver& large reductions in storage locations required for
problém—éolution are possible,
2, The iterative nature of the technique retains the
generaliﬁy of standard dynamic programming,
3. The large reduction of locations at which the algow
rithm must be applied makes the tebhnique competitive
timeswise with other solution techniqﬁeso
Although Larson's technique was not used in this investigation, it
served aé good background material for the method that was developed and
used.  This new technique which is outlined in Chapter III and geveloped
in detaiL in-Appendix Ii requires storage reguirements similar to

Larsonfs technigue.
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In summary of this chapter on related work, it is appropriate to
state that no direct work on ODLC systems was discovered. However, the
works cited provided the author with background information that was
quite valuable for determining appropriate action which should be under-
taken in the investigation of ODLC. With this background of information,
the development of ODLC theory which is presented in the following

chapter, can be placed in a proper perspective,



CHAPTER III
THEORETICAL CONSIDERATIONS

The objectives of the theoretical work were to determine necessary
conditions for ODLC; to examine the characteristics of this control when
displayed as switching (hyper) surfaces; and to establish(some iimits on
the applicability of this type of controller. The only type of plants

which were considered were those of the type

= £(X, U, t) (3-1)

where X is an n X1 vector, f is an nX 1 vector function, and U is an

mXxX1 vector,1 It is assumed that both

of , azf.
i i .
5% and RS exist.
J ik
i=1,n izlyn
J=1,n J=1;n
k=1,n

The control vector is assumed to be restricted to a certain previously

chosen set of Discrete Levels for each component of the input,

1Unless otherwise;noted,‘§%£hg, etc,, are vectors of the appro-
priate order, 1

25
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Necessary Conditions

Pontryagin's Maximum Principle provides the theoretical basis for
establishing necessary conditions for ODLC..2 It was chosen as the most
suitable}method because no modifications to the basic statement of thé
Principle‘are required to make it valid for ODLC.,3

In summary form, the necessary conditions as specified by the
Maximum éfinciple are:

Given

A plant of the type X = £(X, U, t), ’ (3-2)

and a performance index of the type

ot
PI = I T ax,u,t)at (3-3)
*

with the input components restricted to their respective desired magni-
tude levels. It is necessary that the optimal control (if it exists) will
satisfy the condition that the Hamiltonian defined by H = QE'.§f>, (3-4)

oH

where 2.(_’ = i(_)s',y_,t) = 3:13‘: (3~5)
. . . OH
and P is defined by P=- X/ (3-6)

2A relatively short, heuristic derivation of the Maximum Principle
is given in Appendix I.

3Pon'tryagin et al. (19) include in their definitions of admissible
controls, the class of piecewise-constant controls, This obviously
includes discrete level control,
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must be a maximum with respect to the control HF4 Mathematically

stated:5

H* = Max H. . (3-7)
U €U

Notice that although the statement of necessary conditions.is quite
simple, application of these conditions will require the solution of 2n
simultaneous differential equations. Furthermore, the boundary condi-
tions for the set of equations will be split, This is typical of
optimal-control theory problems. Also, the optimal input can only be
expressed as a function of various state plus adjoint variables or
determined as a function of time (i.e., it is open-loop in character).

Functionally, this can be written
U =L(x’,B,t). (3-8)

The desired functional relationship is the input expressed as a function

of the state variables alone, or, expressed mathematically,
. .
U=1L"(X). (3-9)
== 2 \&

Since Equation (3=9) does not contain the independent variable time (t)

or the intermediate variables (P), it is closed-loop in nature.

4( e ) denotes inner, orpdot produgt. TFor example, where A and B
are n X1 vectors, it implies Ai Bi’ X implies the time derivative of

the vector X, X' denotes that X has had the new component X;,.q =
G(X,U,t) added to it as the n+1 component.

égelfsimply means that U must belong to the set of allowable
inputs U.

6Actua11y, by defining a new state variable X, , o=t, and adding this

to the vector 5} throughout the development of the necessary conditions,
Equation (3-9)"will still be valid for the case where U=L (X,t).
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(Control signals can be generated simply on the basis of the current
values of the system variables.)' The equatidn could be used as the rela-
tionship on which a simple oﬁtimal control could be based. It.is a
relatively easy task to prove that such a relationship does exist, but
there presently is no analytical approach available for determining it
(except for several special cases Eﬁﬂ).7

On an intuitive 1eve1,‘the existence of sgch a relationship is
readily apparent when a switching control is considered.  For example,
consider the familiar instance of the switching surface of a time-

optimal controller for a simple second order plant, as'plotted in state

space,

e PLANT
,?xz .xl X2
) ‘ ) XZ= U
U= -l PI f dt
Ue(|+n
,xi'
U=+ SWITCH
- CURVE

Figure 13. Typical Time-Optimal Switching Surface for a
‘ Linear Secondary-Order Plant

7A proof modeled after ‘that of Rozonoer (20) will be presented later
in this chapter.;
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This switching surface is precisely the functional relationship
required between the input and state variables for optimal control and
implementation of it will result in the desired closed-loop controller,

as illustrated in Figure 14,

| . -

'/Sz

Figure 14, Typical Closed-Loop Time-Optimal
S .. Control System

The problem then becomes: '"Is itbalways possible to define switch-
ing (hyper) surfaces and curves in state space which, when implemented,
will give optimal closed=loop control?" and "If so, what arenfhe charac-
teristics of these surfaces?',

The first step toward answering these questions is verifying that
switching points can be functions of the state variable alone. This is

a fairly easy task and the development presented here follows clesely
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that presented by Rosoener (20).
For the type of systems and performance indices under considera-

tion the Maximum Principle can be used to determine
U= {X,P,t) (3~-10)

with fixed intial conditions.E(To) = Xo there are some corresponding

fixed intial values °f.£(To) = 20 which satisfy the requirements for

boundary conditions of the 2n differential equations and extremize the

performance index. For each fixed set of initial values §O, there is a
1

. . . . 8
single set of values Eo which provides the optimal process. Therefore,

one can define a function

P = E(X,T), | (3-11)
o ==0'"0
and at time T
o
ur X)) = U(X_,E(X_,T ),T ). - (3-12)

However, if the time of operation is not fixed beforehand, this rela-

tionship must alsoc hold true for arbitrary time or
U= U(X,8(X,t),t). } (3-13)

An important exception must be pointed out here. If a portion of two or
more different optimal trajectories is common to them both (or all), on
that portion P is not uniquely determined by X. However, since the

trajectories of all are the same on that portion, U must be the same for

8This will not be necessarily true if X is located on a terminal
trajectory. See the following paragraph of text for a definition of
terminal trajectory and a complete explanation.
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9

all cases and is determined uniquely by X,

Now, if the system equations have only constant coefficients
10
y_ = _1]]_(2(_), (3"14)

This leads directly to the conclusion that, for an optimal trajectory,
each switching event of the input will be associated with a particular
point in state space. Moreover, each collection of like switching
events from a number of optimal trajectories must be associated with a
corresponding set of points in state space. However, it still remains
to be shown that the complete collection of points for each set of input
switching events must form a surface or curve in state space rather than
simply an infinite number of isolated points. Investigation of'the na-
ture of switching points will help shed some light on this problem.
Consider a point X in state space and consider only optimai trajec~
tories in state space. Define X* to be a point such that U* associated
with X* is different from U for all X in some particular direction from

X*, The Hamiltonian for X* will be
H* = H(X*,P*,U*), (3-15)

For a pointlﬁl arbitrarily close to X in the direction mentioned, the

Hamiltonian 1is

9Obvi0usly, these common portions will remain common completely to
the origin. The justification is that two or more optimal paths from a
common point cannot occur except in singular cases. These cammon trajec-
tories will be called terminal trajectories.

joOr they are reduced to an equivalent constant-coefficient form by

defining X i = t and expanding X accordingly.



Hl - H(_)E_’,E',E’,)q
This could be written in terms of X*, P*, and U* as

H' = H(X* + 8X,P* + 8P, U%+ 51,

or expsnding in Taylor series about (X*,P*)

oP
H' = H(X*,P*,U* + SU) + %%gé +%§“’a‘x‘ 8§ X + H.0o
oH ¢ oH °
Now %‘E:?_(. and SE=PBQ

Substitution of these into (3-18) yields
o
kd — -
H' = H(X*,P*,U* + 8U) + (=P +X =) 8% + H.0,

but since,

oH  _OH OHOP
X, X I

- —

L
=+Pg

AR
(oY KoY,
12142

Use of (3-21) causes (3-19) to become

H' = H(X*,P*,U* + §U) + (0)86X +H.O0,
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(3-16)

(3=17)

(3-18)

(3-19)

(3-20)

(3=21)

(3=22)

Now it was assumed that a E} different than U* was required atiz' in the

neighborhood of 5? regardless of how small the neighborhood was chosen

to be. Mathematically, this can be stated as 6X »0 does not imply that

ég_*O because it must remain at some different fixed level.

so, then allowing 8 X0 changes (3-22) to

If this is
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H' = H(X*,P*,U* + 81). (3-23)
X =X* .

But, it has already been stated that

Hy, = H(X*,P*,U%). (3~24)

Obviously,
H(X*,P*,U* + 8U) = H(X*,P*,U%). (3-25)

This means that at any point defined as above, the Hamiltonian will be
indifferent to whether U* or U* + 8U is used.,i1

This constitutes a contradiction to the basic premise that U* was
necessarily different than U for all points arbitrarily close in the
direction of interest. Important conclusions can be drawn from the
above development, First, if a point is to be associated with a
uniquely valued input, it must be tofally surrounded by points which
require the same input for optimality or at least do not require one of
different value. Alsoe, any twe points, hewever close, regquiring inputs
of different value must be sebarated by a point which is indifferent to
the choice between those two values of input assignéd to ite This point
of indifference is called a switching point. The line of reasoning for
this conclusion is to choose a switching point aszfiin the above devel-

opment, ILooking first in the one direction and then the other, it

1 : .. , .
"1The previous development assumes that P is uniquely determined by

- X, This is not true on terminal trajectories, and the development is
not valid for points lying on them. However, all trajectories inter-
cepting a terminal trajectory will require an input switch to remain on
it. Thus, all points on a términal trajectory must be switch points and
the terminal trajectory, a switching surface.
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becomes clear that X* must display this charactefistic of indifference.,
The final conclusjon then is that each point associated with a unique
input value must he totally surfounded by:

1, points associated with the same input value,

2. switching points, or

3. a combination of both.

As a result, it is proper to state that each regign of state space asso~-
ciated with a particular input will be totally surrounded by switching
surfaces (loci of switching points) which completely separate if from
all other regions. (An]exception wouldvbe-where both the region and the
surface extend to infinity. H&ﬁe?ér, the region is still separated from
all other regions by the gwitching surfaces. )

Switching surfaceg éaﬁ be placed into two‘categories depending on
whether they do or do not‘occur along system trajecporiés (or loci of
trajectories). Thé finst type, whi¢h is mare cpmméniy encountered in
present systems, consists of the terminal trajectory $urfaces. The
classic examplé‘df fhislfyp§ Q£ surface occurs in the time-optimal con-

1

trol of a simple seqondﬁorder.plant, as shown in Figure 15.

b, . PLANT;
U=-1 % =X,
N T X2=l
~ . —— s PL [t
: X, Y
U=+l Ug (-1,+1)

- Figure 15. Time-Optimal Swithqing for a Simple
Linear Secand=Order Plant
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In this case, the switching surfaces completely separate the two dis=
tinct regions of state space, and do so by extending te infinity.

For an example of a switching surface which is n@t simply a system
trajectory, consider the case of time-optimal coptrol of a linear

second=order system with imaginary roots.

‘Xg PLANT:
- — U=-1| )'(| = XZ
\ W, \\', N\ ] - «X2= “):|+U

N

Figure 16. Time~-Optimal Switching for Second-Drder System
With Imaginary Roots and No Damping

The switching curve consists of an infinite set of connected semi-
circleé. Only those two semi-circles immediately adjeining the origin
are system trajectories. The others are simply loci of switching
points. - |

Fuélaoptimal control, as shown in Figure 17 illustrates that entire

switching surfaces may be non-trajectory in nature.
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PLANT:
X,: Xz
X5= U‘

RI = [ +hulhdt
t

X, Ve (-1,0,+1)
v ——
NON-TRAJECTORY
 SWITCH-LINE

~SYSTEM TRAJECTORY
- SWITCH-LINE

Figure -17. Fuel-Optimal Switching for a
~ Simple Second-Order Plant

Notice that the one surface is not associated in any way with sys-
fem trajectories and the other lies exactly along the terminal system
trajectory. These simple illustrations will also be typical of the
switching surfaces to be expected from general ODLC problems, although

the switching surfaces will be more numerous and complex.

Controllability

For certain systems, there are regions of state space from which
no allowable input can drive the system to a given desired point in a
finite time, These regions are referred to as regions of uncontrollabil-
ij:yc Conversely, all other regions are ones in which the system is
controllable, Cosniderable work has been carried on in atfemptsvto
.analytically define general conditions under which'a system will be con=
trollable and/or stable. For linear systems with real positive roots,

lack of controllability can be determined by evaluation of effecfs of
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the magnitude of these real positive roots., However, for the general
case, there are no sufficiency tests available to determine controllabil=
ity, although Lyapunov stability tests might provide helpful

information,

A detailed study of controllability was considered to be heyond the
scope of the present research., Indications of regions of uncontrollabil-
ity will be discovered automatically during synthesis since the computer
technique for locating optimal swithcing points will not converge in

these regions.
Non-Autonomous Systems

Implicit in all previous discussion of optimal switching surfaces
is the concept of always driving the system to the origin of state space
from arbitrary initial conditions. Systems which operate in this manner
are commonly feferred to as 'regulators! and will not accept external
reference inputs but must always operate in an autonomous manner. This
is a serious limitation in practical applicatiens., Fortunately, it is a
limitation which is easily removed.

If an external reference input can be viewed as a variable desired
steady=state value for a system state variable~then, subject to two
basic requirements, reference inputs can be used in a controller with
optimal.swithcing surfaces. These requirements are:

i, Reference inputs can only demand changes in those

state variables which are not fixed at specified

values for the steady-state operating point.



Example 3=1, Consider the plant

U(t).

pdo
i
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The steady-state point can be determined by setting the left side of the

equation to zero,

0 = U(t).

A steady-state value of X1 has not been specified so a reference input
o= X, which demands changes in the steady-state value of X1 is

allowable. The state X_, however, must have a value of zero. There~

21

fore, the input r, = X2d would be invalid since it violates this

requirement.

2. The geometry of the switching surfaces must not be alfefed
by the reference inputs. Allowable reference inputs have
been defined as desjred shifts in the location of the
steady-state operating point. It is convenient to main-
tain this steady-state operating point at the origin of
state space., This can be accomplished at any instant of
time by a simple linear transformation of the coordinate
system, If the shapes of the switching surfaces are not
altered by this transformation, then direct implemeﬁtafion
of the surfaces found for the autonomous case can be used

for the non-—autonomous.
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Example 3-2. Consider the plant

pe o
1
p—
<
~
(S
p—

with the performance index

and the input

U € (-1, +17.

This is the same time-optimal contirol problem discussed earlier.
Figure 18 is a plot of the optimal swithcing surfaces for the autonomous

case.

Xj
>

Us+l | SWITCH- LINE
~

Pigure 18. Optimal Switching Curve for
Example 3-=2

Closed loop implementation of this surface yields optimal autonomous



control of the plant., Suppose, however, a reference input is desired,

Obviously, the only valid reference input available is ry = X1d° But,

since this input will shift the switching curve along the X, axis, will

1

the switching curves change shape because of the transformation? Check-
ing this point is quite easy. If a linear coordinate transformgtion in
the direction of interest can be made in the plant equation without
altering the plant structure, then the surfaces are unaffected by the

change., 1In the example being considered, the transformation Y1==X1--X1d

introduced into the plant equations results in

Y =X
Yy =%

X

. U(t).

Obviously, the plant characteristics are net a function of X1 and

r1 = xid is valid and can be used.

Plants with characteristics which change as a function of the value of
the reference input will have switching curves which are altered by
coordinate transformations. These plants are not directly compatible

with non-autonomous controllers of this type,

Example 3=3., Given the plant

2
X2 = -Xi + U(t)

and an arbitrary performance index, the first requirement for non-

autonoemous closed loop control will be satisfied by r, = X

1 1a° However?

the coordinate transformation Y1 = X1 -r will change the plant
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equations to

i(z = -,-Y12+ (-2Y,r ) + (-=rf+ u(t)).

The plant equation now contains the new term (p2Y1r1) which cannot be

lumped into the input term since it contains Y1o Certainly, the shape

of any switching curves for this plant would be a function oflxid.
There is a convenient means of eliminating this difficulty, but it
does increase the dimensionality of the switching surfaces by one. By
defining the reference input as a new state variable with no dynamics,
effects of changes in the reference input can be added into the plant
characteristics. This alteration transforms the coordinate shift of
the surfaces previously required to a ohaﬁge in the value of the new
state variable, Consequently, the new switching surface with its extra
coordinate will always contain the proper optimal switching information
regardless of the input value. An alternate method of viewing this
result is that a unique set of surfaces can be found for each desired
value of the reference input. Since the shape of the surfacés is a
function of the reference input, if it is used as é_new variable, then
all poséibie optimal switching surfaces will be defined in thg expanded

state spaces

Example 3-4, Consider the plant

X, = =x lIx II + v(e),
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the performance index

and an input copstrained to
UE[-1, +1].

Non—autonomous control of the system is not immediately possible because

the plant eguations are sensitive to the transformations in X However,

10

introduction of the new variable X a changes the second-order optimal

1
switching map to one of third order and makes non-—-autonomous control of
the system possible, Figure 19 shows the optimal switching map for the

example. (System coerdinates have been arbitrarily restricted to %1

(in value.)

A

Figure 19, Time=Optimal Switching Surface
for Example 34
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Implemented, the system schematic would be as in Figure 20,

PLANT.

X

2 yz-
'”ggx,

U=+l
Xjg 1 g

Figure 20. Non=-Autonomous Control
System for Example
Ferls

Time=Varying Plants

Another category of systems which are not directly suitable for
closed-loop switching control is that of systems with time-varying
plant parameters. Since the plant itself changes characteristics as a
function of time, any optimal switching suffaces must do likewise, If,
however, time is defined as a new state variable (increasing the optimal
switching surface dimensions by one), the surfaces will contain all
time=dependent information and will no longer ﬁe explicitly time-
dependent. Thus, in a manner analogous to that for the non-=linear
plant, time-varying systems can be made suitable for closed-loop

optimal-switching control,

Example 3=5, Consider the plant



Ll
X, = mm U(t)
2 " m(t)
with allowable inputs of

ve[%2, %1, 0]

and the performance index

t
P.I. zf (14 |ulhat

ty

m(t) is a time-varying mass which is assumed to be measurable. The
resulting switching surfaces, which are shown in Figure 21, are suitable
for implementation for either autonomous or non-autonomous systems,

since the plant is linear.

A Xz

X =3 XM %0 mit)

X, == 3 Xl m(t)

X, == Xl Xall m(1)

Figure 21. Optimal Switching Surfaces for Example 3-5



CHAPTER IV
SYNTHESIS ' TECHNIQUES

Before any confrol concept can be used in the design of actual
hardware, computational techniques which can be used for synthesis must
be developed. This chapter details a synthesis procedure deveioped for
QDLC. In concept, the procedure is simple and straightforward. In
practice, it can become a very difficult task. Basically, the procedure
is comprised of three distinct steps.

First, the problem must be defined. This definition must include
defining the plant equation (and boundary conditions), the performance
index and the desired discrete input levels. Also, depending on the
computational procedures used in step two below, definition of the nec-
essary conditions for optimality (i.e., using the Maximum Principle) may
be required.

Secondly, an adequate number of points on the optimal switching
surfaces must be located to ensure successful descriptioﬁ of these sur-
faces by a chosen approximation technique. For several reasons, this

step is by far the most difficul'tt'askiﬁth’eentiré.synthe'sisproc;edure.1

4

1As"will be demonstrated in a later example, exact analytical

determination of optimal switching surfaces:can sometimes be obtained,
but in general this is not true. 'The availability of such éxact solu-
tions not only demands a linear plant, but is highly dependent on the
chosen performance index. 1In contrast, it will always be possible to
locate any desired number of points on the surfaces. For this reason,
the technique must be capable of synthesis through the use of these
points.

45
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Several different approaches to this task were attempted with varying
degrees of success. These will be discussed later in the chapter, with
emphasis upon a modified dynamic programming technique which was devel-
oped as the most generally applicable approach,

The third and final step is functional approxjmation of the optimal
switching surfaces, During this step, the ODLC may (or may not) become
sub=optimal. If no approximation is needed, the controller will remain
optimal., If it is necessary or desirable to approximate the ODLC sur-
face, sub=optimal control will obviously result, How nearly this sub-
optimal control approaches the optimal will naturally depend on the
quality of the approximation. This statement is made in light of the
intuitive feeling that geometrically '"close" approximations will give
closer to optimal behavior than approximations which are less "close'.
Although it is possible to obtain approximations with any desired degree
of quality, increasingly good approximations will usually require in-
creasingly complicated approximating functions, It will be the task of
the designer to determine a reasonable compromise between the optimality
and the complexity of the contreller, A number of standard approxima=
tion'techniques such as leastwsquares-fitting of polynomials, Fourier
Series, or Chebyshev polynomials are available., An élternate method
proposed by Smith, (see Chapter II, and later in this chapter, is
linear-segment approximation by least squares fitting). This technique
is of primary concern in this thesis.

At this point, a complete three step procedure which canh be used
for synthesis has been outlined, Before any synthesis examples are pre-=
sented, however, it is appropriate to review each step in detail and to

examine both the problems encountered and the methods developed in each.
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Step I -~ Problem Definition

It was always assumed that the plant equations, the performance
index, and the desired input levels were previously specifieq.: The
essence of this step'then is to determine the necessary conditions for
optimality. This was done by use of the Maximum Principle. In working
form, this procedure is as follows:

A. Construct the Hamiltonian function with the performance

index included as a state variable. Thus, where

X, = £, (X,U,t)

n
H
<
[
-,
A

e s e
1]
H
[
[=i
(-'.

n n
X = f _(X,U,t) = = (P.I.) (bo1)
n+1 n+1 =*""? dt
the Hamiltonian can be defined as
H=Pf +Pf,+ .o PE +P f . (k.2)
The adjoint variables (P) are as yet undefined.
However, by using the Canonic Equations of the
Maximum Principle,
OH hd
- T——— e 40
5% = B (4.3)

a suitable definition is obtained. At this point,
there exists a system of ani boundary conditions.
The remaining boundary condition is obtained from the
fact that Pn+1 = «1 (see Appendix I). In practice,

this fact not only provides the additional boundary
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condition, but is used to reduce the system te 2n

differential equations (excluding the P.I.).

Example 4-1, Consider the plant,

X =X
1 2
X =
o U
with. the performance index
tf )
P.I. = J' (1+U%)at
. t
1

and the input

U € [+1, 0, =-1].

¢

It will be assumed that both initial and final boundary conditions are

specified for both state variables. With

2 2
Xn+1 =1+ U

added to the state variables, the Hamiltonian is

2
= P P -
H P1X2 + PZU + 3 + 3U

The adjoint variables, defined by

OH ¢
- £'=.£
are

P =

1 (0]

P = -P
2 1
ﬁ = 0.
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Making use of the fact that P3 = =1,

2
H = P1X2 + P2U -1=-=U"

At this point, these four equations cannot be uniquely solved
because they contain six variables., The necessary additional relation-

ships will be provided by defining the control lawa.

B, Defintion of the Control Law.

The control law, which will be an algebraic relationship

U= §(X,P,t), (Lok)

is determined by requiring that

H = max Ho (4=5)

With continuous centrol signs, (4.5) can be carried out
by equating %% = 0. For the ODLC case, those terms of
H which cont;;;(H, must be inspected to determine the

relationship between U and X, 2; and t which make those

terms maximal.

Example 4,2. Consider the system described in Example 4,1, The

Hamiltonian is H = P1X2 + PUw 1 = U2, and the allowable inputs are

2

U € [=19 0, +1], The terms in the Hamiltonian which involve U are P2U

and Uze Therefore, the problem becomes one of determining U such that

2
P U
2U +

is maximized.

Since U is constrained to (+1, 0, =1), it is easy to verify that for
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llpz l <1 , v=o,

and for

IIPZII > 1, U = signum (P2)°

These two relationships are the required control law for ODLC. Several

important conclusions can already be gleaned from the control law.

Since P2 is constant (P1=:C), P2 must linear in time or a sloped

straight line. This means that U will never switch more than twice and,

further, cannot switch from a control level and then later switch back

to it., Thus, the only possible optimal control sequences would be:

(+1, 0, =1); (0, =1); (1);

(=1, 0, +1); (0, +1); or (+1).

as time progresses from t1 to tfn

Co Evaluation gf the Hamiltonian.
If the performance index has been specified over a fixed
time interval, then there are now enough constraints on
the necessary conditions to solve for the optimal con=
trol as a function of time, For the problems considered
throughout this research, however, only those with free
final times were used, There are several reasons for
this. Not only is this case more difficult to handle
analytically, but it includes most practical system
applications (i.e,,‘optimal regulators)., With free
final time, one extra constraining relationship will be
needed to solve the 2n system of equations. This can be

provided by evaluation of the Hamiltonian. It can be



shown that, for problems with free final time, the
Hamiltonian is identically equal to zero on an

optimal trajectory (20). This relationship,

H=XP) =0,

completes specification of the necessary conditions.

Example 4,3. Again considering the problem in Example 4.1,

s o]
)

But H = O, Therefore,

(o]
1l

12

2

2

‘ P1X2 + PU-1=U",

2

PX +PU=-1-1U".
2
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(4.6)

If it is agreed that the final boundary conditions in the state vari=-

ables are

X
1t
f
X
zt
f
then
O =P U
2 t
tf f
By inspectien, it is obvious that
U
tf

and Ut must either be -1, or +1. From O = P1X2

T

U, = =1, then
tf

o

1=U

+ PU - 1= U7, if
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P2 = =2,
tf
and if
U = 1,
tf
then
P = 2,
2t 2
f

With this information, the choice of possible optimal input sequences

are (+1, 0, -1), (0, =1), and (~1) for P2 = =2, and the negative of

t

these for P = 42, £
2t

An additionalfpiece of information can be gained from the evaluation of

the Hamiltonian:

P =2 whenever X = 0.

2 2
If this is true, then any system which has X2 = 0 must have P2‘ = 2 for
o o
X, approaching O from the positive direction.

1

An additional note about the necessary conditions resulting from
the Maximum Principle should be added. These conditions are ‘riecessary,
but not always sufficient for optimality (8). Switching controls always
involve a signum function of one or more of the state-plus-adjoint
variables. These sighum functions are indeterminate if their argument

becomes null; that is,

Signum (o) = Indeterminate. (&.7)

It cannot be assumed, even for linear plants, that the argument will not

become null and remain there for finite periods of time., If it does so,
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the possibility arises of the existence of singular controls. This
simply means that there may be not one but several optimal control
sequences from a given point in state space, none of which is uniquely
optimal., Notice, however, the Maximum Principle, although it will not
identify sﬁph singular contrels does indicate the possibility of such,
whenever they might occur, This is a final argument in favor of always
including complete development of the necessary conditions during

synthesis.
Step II., Generation of Optimal Switching Points

The essence of this step is to locate enough optimal swifch points
so that approximatiops to the ODLC switching surfaces may be obtained,
This can be accomplished by making a number of solutions for the optimal
control (as a function of time), each for a different set of initial
conditions. Since it has been shown that switching events are functions
of the state variables alone, each switching event on each trajectory
locates a point in state space on its switching surface. Some arbitrary
number of solutions will locate enough points on each surface to proper-
ly define its shape and location. This is graphically illustrated by

Example 4.4,

Exampe 4.4, Consider the fuel-optimal problem of Example 4.,1. The sys=

tem of plant=plus—~adjoint equations are:

X1 = X2
X2=U
P, =

1 0
1.3 = =P



The boundary conditipns and control law are taken as

Xi(o) = X0
X,(0) =0
X, (t.) =0
Xz(tf) =0
Pz(tf) = 2
and
U=o0 for~l(P2 <1
and
U = signum (P,) for l]PZII > 1,

Repeated solution for a number of xiO vields the following:

Initial ‘ Switching Points

Condition . . :
XlO £rom =1/to O from 0/to +1:
0.0 0.0 0,0 0.0 Q.0
1.0 0.8335 -0,577 0. 1667 -0.577
2,0 1,667 -0,816 0.333 -0,816
3.0 2,500 ~1,00 0.500 -1.00
4,0 3.333 -1,155 0.6667 ~1.155
5,0 L, 1667 1,291 0.833 -1.291
6.0 5,00 -1, 414 1,00 ~1.41k
7.0 5.833 1,526 1,167 ~1.526
8.0 6,667 -1,633 1.333 ~-1.633

9.0 7+ 500 =-1.732 1. 500

-1.732




55

Plotted in (Xi, XZ) state space, they form a sufficient number of sample

points to accurately construct the ODLC surfaces.

4 X3
Us -l
SAMPLE TRAJECTORY
[(’ ‘ £ =F JECTO
- . X‘
Us+i e
- SWITCH- LINES

Figure 22, Construction of the Optimal
' Switching Surfaces for
Example Problem 4.k

For this simple example, this solution approach was not really necessary

because analytical solution for the surfaces can be directly made.

(X1 = ;%Xz HXZ]L for U & O/+i;

and
5 2
X, =~ /2%, HXZH, for U € «=1/0).

This solution is accomplished by recognizing the fact that

P2(O) = =2 and Pz(tf) = +2e

fane: g

%y € 0/+1 signifies U changing from O to +1.
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It then necessarily follows (Pz(t) is a straight line) that

t, =t, = 1/21:2

1 3
where
t1 is the time interval during which U = =1,
t2 is the time interval during which U = O,
and t,_, is the time interval during which U = 1.

This relationship allows timevto be eliminated from the equations and
results in the switch curve equations, Direct solution for fhese

i 4
switching equations was possible in this case because of itsléimple
nature, but in general direct solutions are not possible, HoﬁQver, the

L.t
technique of solution for switch points, which is always posé%ple and
provides valid switching information is completely independent of system

complexity. Thus, it can always be used to determine the switching

surfaces.

Repeated solution of the system equations to obtain switching
points is, conceptually, a straightforward process. However,‘%his
class of equations is most difficult to solve. For all caseézhthe prob-
lem involves a set of differential equations with split boundary condi=
tions and additional algebraic relationships to be satisfied. ‘For the
ODLC system, the additional difficulties of unknown switching times are
added. These unknown intermediate switching times actually make the
problem one composed of the sequential solution of a number of split
boundary problems joined together through their interconnecting boundary
conditions at these unknown times. This makes the problem even more

complex,

During the research, four different approaches were attempted. A
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fifth, quasilinearization, was considered, but was defermined to be un~
suitable for the problem; The first two approaches tried were gradient
methods,

The first of these two was to guess all unknown initial boundary
conditions and, using these, to generate a trial solution from which
improved boundary values could be obtained. This was not deemed to be
a particularly suitable method because the equations (and results) were
extremely sensitive to the initial condition values on the adjoint
variables, making convergence very difficult, In fact, six place accu-
racy in these values was essential to get convergence.

Because of the instability of the adjoint equations in forwa?d-
time, a second approach in which these variables were integrated back-
ward in time was tried, The scheme was to guess an initial solution,
then, using this solution, to integrate the adjoint variables backward.
By using these initial solutions, the optimal control law could be used
to generate a new trial optimal control. This trial control Qas then
used to generate a new trial solution, and the procéss was repeated
until, hopefully, convergence was reached; Unfortunately, except for
strictly non~oscillatory cases, convergence coﬁld never be assured. In
fact, for oscillatory cases, the solution woula invariably settle into
an unacceptably large limit-cycle about the true solution. This method
was also discarded,

The third method tried is simplicity itself: backward integration.
This method proved especially suitable for second-=order system;. The
reason for this is that evaluation of the Hamiltonian will provide one
constraining relationship at time tfa In practice, along with the

boundary conditions on the state variables, only one boeundary condition
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value is unconstrainédo Choosing a number of values to be used for this
boundary condition will produce a corresponding number of optimal
trajectories wﬂich is the desired end result. An undesirable character-
istic of the method, however,. is that the choice of bouﬁdary values for
the free variable tends to be blind guessing; that is, it is difficult
to predict how much a given boundary value changé will change the
optimal trajectory. Thus, a uniform search of state space can be

difficult.

Example 4.5, Backward Integration

Consider Example 4.1. The system equations are

X1 = X2
X =
5 U
P =0
4"
and P2 = —P1°

Final boundary conditions are assumed to be

x1(tf) =0
and

0.

i

xz(tf)
It is also known from evaluation of the Hamiltonian that
Pz(tf) = 2.
Now, if a new variable T is defined by

T = (tf—t),

then the system equations, in terms of T are
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X = =X
1 2
T
X U
2’1’
103 = 0
1'1'
P = P -
ZT 1
The boundary conditions are
X (0) =0
1'1'
X, (0) =0
2’1’
pP_ (0) = 2,
2’1’

The control law is

U=0 for HP21’< 1

U = signum (P,) forl’P2”‘> 1,

A series of guessed values for Pj (0) will generate a number of trajec-

T .
tories whose switch points lie exactly on the ODLC surfaces (not neces-

sarily uniformly spaced). From these, a table such as in Example 4.4

can be constructed.

Backward integration becomes only marginal for thirqurdef systems,
The factor responsible is that evaluation of the Hamiltonian can provide
only one additional relationship to the boundary conditions. Thus,
there are now two unconstraihed boundary conditions to be guessed. A
guessing game then ensues with uniform spacing of optimal trajectories
throughout the area of interest in state space being a virtual

impossibility.
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The fourth method used is one which evolved during the research.

It is designed to be easily usable, even for high-order systems., It is
a computer technique, based upon Dynamic Programming, but employs an
iterative feature to reduce computer storage requirements. Although a
complete description of the method, with detailed discussions of program
features and limitations, is given in Appendix II, a brief conceptual
description will be given here,

As a very brief background, Dynamic Programming is an optimal
search technique. In the discrete version, which is utilized here, the
problem can always be expressed in terms of finding the optimal solution
to an n- stage (n increments in time) optimal decision process. Discrete
Dynamic Programming converts this problem to that of finding the optimal
solutions to a much larger-than-n number of single stage optimization
problems, The single n-stage optimal solution will then be contained in
this larger set of simpler solutions. It can be obtained by piecing
together the proper sequence of optimal single stage solutions., This is
called "embedding! and is an extremely powerful techniqﬁe for the solu-
tion of difficult problems.

Practically speaking, Discrete Dynamic Programming is carried out
in two steps. First, all state variables are discretized with the
desired degree of fineness. 1In essence, this creates a grid network in
state space, as éhown in Figure 23.

Now, starting at a first trial final time (nth stage); all possible
input combinations (also discretized) are tried at each possible combi;
nation of state variables ((nuith) stage) to find the best single stage
input which sétisfies final boundary conditiens for each grid peint, A

performance index value is also computed for each grid point at this
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-t . - h h
(n=1 h) stage. This completes the (n--it ) stage. The (n-2" stage
is carried out in the same manner, except that the inputs will drive
the variables to acceptable grid values for the (nf-ith) gtage rather
than to values which satisfy the final boundary conditions, Addition-
ally, the performance index value which is used to determine the best

th, i th C .
(n-2"") stage input from an (n-2"") grid point will now consist of two
parts, The first part will consist of the cost associated with the
(n-2th) stage only. The second, is the cost associated with the

th . . . th .

(n=1"") grid point to which the (n~2") stage input moves the system,

This can best be illustrated by a one-dimensional example.

Xz

“OXo.

lax| |

Figure 23. Division of Second-Order State
Space Into a Grid

Example 4.6. Assume, for simplicity, that the single dependent variable

is divided into a grid of five values, and time is divided into three
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increments, making the problem a three stage process. Pictorally, this

is

STAGE | STAGE 2 STAGE 3

RN
| -

to ty ts ta

N

Further, assume that the final condition on the variable (X) which must

be satisfied at stage three is

Now, from each grid point at stage two, all allowable values of the
input are tried and their corresponding cost values (performance index)
computed. Assuming that there does exist at least one allowable input
from each grid point at stage (2) which moves the system to X=0 at
stage (3), a best input for each point can be selected.

Moving back to the grid at stage (1), all allowable valués of the
input are again tried. This time, the inputs will be used to move the
variable (X) from the stage (1) grid points to stage (2) grid points.
Selection of the best inputs for each stage (1) grid point will this
time involve more than just the qost of moving the variable to a stage
(2) grid point, Already computed and associated with each stage (2)
grid point is the cost included in the stage (2) to stage (3) process.

This cost value associated with the stage (2) grid point must be added

to the stage (1)=to-stage (2) cost function. It is on the basis of this
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total cost that best inputs are selected for stage (1). At this point,
a pattern has evolvéd, and all intermediaste single~stage opérations are
ca?ried out in an identical manner until stage (0) is reached. Notice
that, at stage (0), not only is the total performance cost of the com~
plete optimal process for each initial value of X known, but that, if
complete bookkeeping was maintained, the optimal input sequence is also

known. The problem is solved.

The method developed during the research is designed primarily to
drastically reduce the number of grid points over which the algorithﬁ
must search for the optimal trajectory. It is based upon the concept
that, with a sfarting trial solution given, the search need only be
carried out only in a certain constrained region‘of stage space around
this trial solution. If a new and better solution is contained in this
"tube! of state space surrounding the trial selution, this new solution
will be used as the basis for constructing a new !'tube! to be searched.
This process is repeated until convergence is reached.

Since the iterative process can only move in the direcfion of in-
creasingly.optimal solutions, in concept, the précess will always move
to a local optimum at least. In practice, there are several difficul-
ties which arise to complicate matters;

First, it is ﬁot always possible to guess a trial solution which
will physically satisefy the boundary constraints on the problem., This
means the "tube!" may not contain any solutions which satisfy the boundary
conditions and a search in the tube is meaningless. 7This difficulty was
handled by making the search a two-phase process. The first phase is a
search phase in which a very stiff artificial penalty is imposed for nof‘

satisfying the boundary conditions. Iterations are then made until the
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boundary conditions are satisfied. This normally requires several
iterations. The second phase, then, is the actual iterative searching

of "tubes" for the optimal control.

[ )¢

t%
- toy t; to] t3 | tg i -t
AV

X2

Figure 24, Illustration of the "Tube"
to be Searched by the
Iterative Method

Second, after a satisfactory "tube' is found, interpolations in
time, as well as in the other variables, are necessary. With the system
discretized, unless the time intervals.are taken quite small cqmparedvto
the size of the "tube'", the algorithm may be unagle to recognize the
existence of more than one satisfactory solution in a given tube. Thus,
eithef the time increments must be small or time interpolation must be
carried out, The most straightforward solution would be to decrease the

size of the time increments; but this leads inte difficulty. If the
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time increments are very small compared to the diameter of the '"tube',
then even iarge input changes over this small increment of time will
only slightly affeqt the state variables.

Thus, during the backward=working portion of the process, interpdn
lations between widely spaced grid points to closely clustered groups of
trajectory valﬁes will be necessary. (The n-=k stage integrations for-
ward to the n=-k + 1 stage grid network will form a small cluster in
state space) (see Figure 25), Since accurate inferpolation of values
for points in this small cluster from the widely spaces arid points is
virtually impossible, a scheme of time interpolation for input switches
was incorporated into the algorithm. This interpolation was accom=
plished by recomputing every time an input switch was indicated to deter-

mine the optimal switching time to within a very small time increment.

~GRID POINTS

[STAGE (n-k+D)]

>t

X2

Figure 25. Comparison of "Large Diameter Tube" to
Control Effects for Small Time Increments
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Another difficulty which arose is also related to the size of the
grid "tube' compared to the time increment length., In the algorithm,
all input values which drive the system outside the "tube” are assigned
some arbitrary high penalty. This is a necessary step because, outside
the tube, space is "unexplored" and cost values cannot be accurately
predicted., However, if the tube "diameter' is small compared to the
length of the time increment, then all inputs except the one used to
construct the last trial solution may drive the system out of the tube.
A "small" tube cannot be tolerated. It is, consequently, necessary to
assure the tube sizing will always be correct, A grid-scaling routine
which sizes the tube "diameter" in accordance with the chosen time
interval length and system input sensitivity was accordingly
incorporated.

In light of the reguirement for a starting solution for the itera~-
tive procedure, the algorithm was further modified to provide (if
desired) its own starting solution. It finds this starting solution by
use of regular dynamic programming over a very coarse grid with large
time increments. For a detailed account of other features and pro-

gramning details, refer to Appendix II.
Step ITI. Approximation Techniques

The approximation technique which received primary emphasis during
research was a least-squares linear-segment technique developed by
Smith (9) for guasi-optimal minimum~time controllers. Advantages of
the methed are: it is analytic and does not require visualization of
the surfaces; it does not require functional forms to be assumed; and

it results in the specification of piecewise-linear functions.
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In the technique, surfaces are always assumed to be of the form

n m

C, A A
X, = ) Ex) R (4.8)
=1

J#1
where (X’) is considered to be a vector of all the state variables
except Xi which was chosen to be dependent. (Also n is the number of
state variables contained by the plant, and m is n plus the number of
cross—variables selected.) The fj(xj) are each linear-gegment functions
of a single state variable (Xj) alone. The second term in Equation

m g\
(4.8), (kZ e (Sk) is intended to handle state variable cross-product

effects. As such, each gk is a linear-segment function of a single
variable (Sk) alone, in a manner completely analogous to the %j. How=-
ever, in this case, the independent variable Sk is an artificial vari-
able composed of a linear combination of the independent state variables
(sums, differences, etc.).

The approximation which results from the use of Eguation (4.8) is
a "quarter-square' type of approximation. The term "quarter-square! has
a geometric interpretation which can be nicely illustrated for the
three-dimensional case., Basically, the first term in Equation (4.8)
attempts to approximate the surface with planar squares {or
parallelopipeds) (see Figure 26). Obviously, for surfaces which are
"warped', such an approximation is totally inadequate. This is the rea-
son for the addition of second term in Equation (4.8)., These a(k)
terms effectively divide each 'square" into four planar triangular
pieces (thus, the term "quarter-square').. As Figure 27 illustrates, the
resulting approximation is capable of handling "warped surfaces" very

nicely.
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>

Xji
Figure 26, Linear-Segment Approximation to a Surface Using a
) A O S
Function of the Type X, = & f.(X,)
i =1 d 7
341
& A

Figure 27. Linear-Segment Surface Approximation Using the

A noy, W
Functional Form Xi = % f(X)+ % g
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To facilitate implementation, certain assumptions about the forms of
A A A : A )
fj and g, are made: the fj and 9 are each composed of the weighted sum

of some chosen number of linear-segment non-linear functiomns.

. 4
f. X. = x x aess : l.l'n
J( J) JlJi( )+w32Y (x.) + (4.9)
and
A
gk(Sk) = k1 k1(sk) + szYkz(Sk) F ave o (4.10)

Each linear-segment non=linear function will be of the form shown in

Figure 28,

1.0~---3
(X))
P
Yjé(Xj.) : .
i81 _Xjaz Xia3

Figure 28, Linear-Segment Nonlinearities

'Equation (4.8) can now be written in vector form as
x (x) = }g ‘ (£a11)

" where
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T
Y = [Yll(xl),y ),Y

(X1)’ cony Y21(X2 .

(Xi not included)

12 (xz),‘...]

and

Remember that each ij is an unknown coefficient to be found., It
is also useful here to review the meaning of the vector 3& Each compo-~
nent of Y (for example in(Xj), shown .in Figure 28, has a region of its
independent variable (Xj) over which it has zero value. It also has a
region over which it has a value of one. Between these regions is a
proportional range. If the extremities of this proportional region are

called break points, then

X. = X,
J JBk

X.
IBe g - XjBk

(L,12)

ij(xj) =

the upper., Now the sum of

where Bk s1gn1f1es.the lower value and Bk+1’

the errors squared can be written in terms of these relationships as
P

2 T ¥ o2
E° = T Y W~ X.(X Lo.1
o1 [ g ¥ Xy )] (k.13)

where q is the index of the data points used and P is the total number

*
of data points. Xi(zé) signifies the data value of the dependent state
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variable corresponding to data set q.
In order to minimize the sum of the errors squared for least
squares fitting, the partial derivative of Equation (4.13) with respect

to W is taken and then set equal to zero. That is,

2 P P *
0= _5% vyyw_2% vx ). (b k)
W g=1 Qo =1 2171

Rearranging Equation (4,14) gives the result

P T+-1 B *
w=[% yYyI™" £ yx (x). (4.15)
= g=1 ~¢a g=1 "4 174
This equation is the necessary relationship that determines the unknown
coefficients W, brovided certain fundamental decisions on the part of

the designer have been made. These decisions are:
1. The state variable which will be considered dependent
mﬁst be chosen.
2. The number and composition of the S variables (linear
combinations of the independent state variables) must‘v-
be chosen.,

3. The number and spacing of partial functions (linear-

segment nonlinearities, or Y,

Jk(xj)’ must be chosen.

The extremeties of these are the function break
points.
Example 4.7 illustrates how these three decisions and Equation (4.15)

can be used to approximate an optimal switching surface.

Example 4.7. Linear Segment Approximations. Consider the data points

for the O to +1 surface generated and listed in Example 4,4, They are
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Initial Switch Points
"iICondition

X.0 X1 XZ
0,0 0.0 0.0
1.0 0, 1667 ~0.577
2,0 0,333 -0.816
3,0 0,500 =1,00
4,0 0.667 =1,155
5.0 0.833 . =1,291
6.0 1,00 -l hih
7.0 1.167 =1.526
8.0 1.333 ~1,633
9,0 1,500 =1,732

«/,

Assume that X1 will be selected as the dependent variable, and that

break points will be located at X

2

=O;X2::

~1,00; and X, = -1.732.

There will be no S variables since the relationship has only one inde-

pendent variable. Now,

[—0577]
= Y
-1 0 , -2
'.'"1000
Y :[. :I Y, =
=3 0
"1900
Y ::[ ] y
< Loleg1/.732d, °
-1000

%7 [-,526/q73z],

r |

—9

-=1,00

=s732/4732

9

¥

-1,00

«,155/9732]9

~1,00

=o414/0732J‘,

"'1000

i [=a632/o732Ja

Substituting these into the first expression on the right-hand side of
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Equation (4.15) gives:

T 8,00 3.759
TN Sl
o 3.759~ 2,788

]

o)
] !
HM’U

' ‘ *
Now, substitution of the z& vectors and the Xi(zé) quantities into the

second expression yields

Y X.(xX") =
-—q 1

]

q: 1 “'4& 530 L]

Carrying out the indicated inversion and multiplication operations gives

the result of

- 0428'
W= ]
L -1,09€-,
The two diode~type function generators required to implement the con-

troller have now been completely specified. Their characteristics are

shown below,

Impiementation of these results is very simple and straightforward
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and may be carried out by the most suitable means, whether electrical,
electronic, mechanical, or fluidic., As example, Figure 29 shows diode-
generator type electronic and fluidic linear-segment functions. Imple-
mentation is achieved by the summation of the outputs of a number of
these, It also includes comparison of the actual value of the dependent
variable with this result, and assignment of the active levels
accordingly,

The implementation of Example 4.7 would take the form shown in
Figure 30, if such generators were used. Notice the extreme simplicity

of the system.
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PLANT
X, = X
SIGNUM Aol 102
X7 U -
— . le lt  —
+ . X2
EXTERNAL X5
INPUT b -\
(IF DESIRED) ' X2
X

Figure 30, Implementation of the Linear Approximation
Found in Example 4.7



CHAPTER V
APPLICATIONS

A theoretical base and a synthesis procedure for ODLC have already
been presented in the thesis. The purpose of this chapter is to show
how ODILC can be applied to various types of systems. This will be done
by working several problems. Where possible, the plant equations will
be modeled after some physical system, No attempt is made to exhaus-
tively cover all types of plants and performance indices for which ODLC
is valid. Rather, the few examples presented were chosen because they

best illustrate significant characteristics of ODLC,

Problem 5~1., Roll control of a space vehicle. (P.I. - minimum time
plus effort squared), Space vehicles are a natural application for
ODLC because control effort must be furnished by small maneuvering
thrusters., Normally, these are on-off devices incapable of being
throttled, Thus, the controller must inherently be a pulsed controller.
Let it be assumed that the equations of roll motion can be represented

by the simplified equations,

X1 = X2 |
(5.1)
: 1
X =—1U,
2 IR
where
X, = roll position

1
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X_ = roll velocity

I, = roll inertia
and

U = thruster output force.
Suppose it is desired to construct the controller with more than one
level of effort in eagch roll direction available. This could be pro-
vided by mounting twe thrusters in each direction. Assume that this is
done and control efforts of one and two units will be available in both
directions., Therefore, agsume that the control is to be a five-level

ODLC, That is,
ve [-z, -1, 0, +1, +z] . (5.2)

Assume also that the performance index is

tr

P.I. - g (1 + v9)at . (5.3)
t1
The additional assumption will be made that the roll inertia (IR) is
changing as a function of time. (fuel is being consumed by the control=--

ler), but slowly enough that the dynamics of this process can be

ignored., The arbitrary values

U= *2, *1, 0

were chosen for computational convenience since their values will
affect only the scaling of the problem. The Hamiltonian for the above

system is

H=PX +p2-—-1-U+P +P.U . (5.4%)
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Since P3 = -1, it can immediately be reduced to
1 2
H=P X +P_ -—U+,1-U . (5.ka)
12 ZIR

The adjoint variables are

QH -
“Ex =P =50
1
(5.5)
SH '
-=——=P_ = -P, .
X, 2 1
For optimality, the term
Pz-f:-[-.U-U2
R
must be maximized. It can be determined by inspection that the
relationship
1
U=20 for !l P ——-l‘ <1
: 21
R
. 1
U = signum(P ) for 1< ||p — || <3 (5.6)
2 2 T,
R
. : 1
U= 2 signum(P_) for 3< “ P "“"l
2 - T2 IR

will be the control law for ODLC. Evaluation of the Hamiltonian at

time t_ provides the relationship

£
0 =P, —I-l- v, - 1- Uf . (5.7)
t. "R °f £

f
Substitution of possible input values gives the result

(P -1—) =2 for X, >0 . (5.8)
2 I
RJ t,
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Since I is assumed to be a slowly varying function of time, it will

R

suffice to make a number of solutions for the ODLC with IR "frozen'" at

various values., Let these values be taken as:

L 1
R R R R

Now, switching points on the ODLC surfaces can be located by the use of
. . ' . . 1
backward integration, ' These points are shown in Table I. The results

are plotted in Figure 31,

L
Xﬂ = ”E“Xg“)(a“)(z

Figure 31, Optimal Discrete Level Switching Surfaces for
Problem 5-1

1 . . . . e
Because of the symmetry of the plant eauations, it is sufficient
to deal only with the right half of the state space.



TABLE 1

OPTIMAL SWITCH POINTS FOR PROBLEM 5-~1
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U = A‘Terminal Surface

Xy xé x3 ‘x1, X, _x3 ,Xi X xj'
0.023 =~-0.250 1,330 0.012 +0.250 2,500 1.531 -3.500 4,000
0.09%4 -0.500 1.330 0.050 -0.500 2,500 o.ooé -0.250 3.500
0.375 -1.000 1.330 0.200 -1.,000 2.500 0,036 =-0.500 3.500
1.500 =2.000 1.330 0.450 =-1.500 2.500 0,143 =1.000 3.500
6.000 -L4.,000 1.330 0.800 -2,000 2.500 0.321 -1.500 3.500
0.016 ~0.250 2,000 1,250 -2.,500 2,500 . 0.571 =2,000 3.500
0.063 ~0.500 2.000 1.800 -3.000 2.500 0.893 =2.500 3.500
0.250 -1,000 2,000 2.450 -3.500 2.500 1,286  -3.000 3.500
1,000 =2,0000 2.000 3.200 -4,000 2.500 1,750 ~3,500 3.500
L.,000 -4,000 2.000 0,010 -0.250 3.000 2,286 ~4,000 3.500
0.008 -0.250 4.000 0.042 ~0.500 3.000 0.0 0.0 1.000
0.031  -0,500 4,000 ©0.167 -1,000 3.000 0,031 0.250  1.000
0.125 -1,000 4,000 0.375 =-1.500 3.000 0.125 ~-0.500 1.000
0.500 =-2.000 L.000 0.667 -2.000 3,000 0.500 =-1.000 1.000
2,000 -4,000 4.000 1,042 -2.500 3.000 2,000 -2.000 1.000
0.0 0.0 1.500  1.500 qﬁ.ooo 3.000 8,000 -4.000 1.000
0.0 0,0 2.000 2.042 03.500 3.000 1,125 -1.,500 1.000
0.0 0.0 2.500 2.668 -4.,000 3.000 3.125 -2.500 1.000
0.0 0.0 3.000 0,281 -1.500 4,000 4,500 =-3.000 1.000
0.0 0.0 3.500 0.781 »2.500 4,000 6,125 -3.500 1.000
0.0 0.0 1.125 -3,000 4,000

4.000
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TABLE I (Continued)
U from -1 to O vSwitching surfage
X, X, X, X, X, X, X, X, X,

0.115 -0.250 1.330 0.062 -0.250 2.500 7.656 -3.500 4.000
0.470 -0.500 1.330 0.062 -0.500 2.500 0.71k -0.250 3.500
“1.875 -1,000 1.330 1.000 =-1.000 2.500 0.178 -0.500 3.500
1.500 -3,000 1.330 2.250 -1.500 2.500 0,714 -1.000 3.500
30.000 -4,000 1.330  40.000 -2.000 2.500 1.607 -1.500 3.500
0,078 -0,250 2,000 6.250 -2.500 2,500 2.857 -2.000 v3.500
0.312 =~0.500 2.000 9.000 =~3.000 2,500 L. k65 -2.500 3.500
1,250 ~1,000 2.000 12,250 =3.500 2.500 6.430  3.000 3.500
5.000 -2.000 2.000 16.000 ~4.000 2.500 8.750 =-3.500 3.500
20,00  -4.000 2.000 0.052 -0.250 3.000 11.430 -4,000 3.500
0.039 -0.250 4.000 0.209 =-0.500 3.000 0.0 0.0 1,000
0.156 -0.500 4.000 0.833 -1.000 3.000 0.156 -0.250 1.000
0,625 -1,000 4.000 1.875 -1.500 3.000 0.625 -0.50Q0 1.000
2,500 -2,000 4,000 3.333 -2.000 3.000 2.500 -1.000 1.000
10.000 -4,000 4.000 5.208 -2.500 3.000 10,000 -2.000 1.000
0.0 0,0 1.500 7.500 -3.000 3.000 10,000 -4.000 1.000
0.0 0.0 2,000 10.208 -3.500 3.000 5.625 =1.500 1.000
0.0 0.0  2.500 13.335 -4.000 3.000 15.625 -2.500 1.000
0.0 0.0  2.500 1.406 -1,500 4.000 22,500 =-3.000 1.000
0.0 0.0  3.500 3.906 -2.500 4,000  30.625 -3,500 1.000
0.0 0.0 4.000 5.625 -3.000 4.000
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TABLE I (Continued)

U from -2 to -1 Switching Surface
X, X, X, | X, X, X, X, X, X,
0,115 0.250 1.330 0.062 0.250 2.500 7.656 3;500 4,000
0.470 0,500 1.330 0.250 0.500 . 2.500 0.714  0.250 3.500
1,875 1,000 1,330 1.000  1.000 2.500 0.178  0.500 3.500
7.500 2,000 1,330 2,250 1,500 2.500 0.714  1.000 3.500
30.000 4,000 1.330 4,000 2,000 2,500 1,607 1.500 3.500
0.078  0.250 2.000 6.250 2.500 2.500 2.857 2.000 3.500
0.312 0.500 2.000 9.000 3,000 2.500 L, 465 2,500 3,500
1,250 1,000 2.000 12.250  3.500 2.500 6.430 3.000 3,500
5.000 2,000 2.000 16,000 .4.000 2.500 8.750 3.500 3.500
20.000 4,000 2.000 0.052 0.250 3.000 11.430 4.000 3.000
0.039 0.250 4.000 0.209 0;500 3.000 0.0 0.0 1.000
0.156 0,500 4.000 0.833  1.000 3.000 0.156 0.250 1.000
0.125 1,000 4.000 1.875 1.500 3.000 0.625 0.500 1.000
2,500 2,000 4.000 3.333 2.000 3.000 2,500 1.000 1.000
10.000 - 4,000 4&.000 5,208 2.500 3,000 10.000  2.000 1.000
0.0 0.0 1,500 7500 >3.ooo 3.000 éo.boo 4,000 1.000
0.0 0.0 2.000 10.208  3.500 3.000 5.625  1.500 1.000
0.0 0.0 2.500 13.335 4,000 3.000 15,625 2.500 1.000
0.0 0.0 3.000 1.406  1.500 4.000 22,500 3.000 1.000
0.0 0.0 3.500 3.106  2.500 4,000 30.625 3.500 1.000

0.0 0.0 4,000 5.625 3.000 L.000
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Since the problem is of rather simple form, the equations for the
surfaces can be solved directly. They are included in Figure 31.
Closed loop synthesis of the ODLC using Smith's (22) linear segment
technique will now be carried out.

Application of the technique results in the function-generator
specification shown in Figure 32, Xi was. assumed to be the dependent

variable and the break points along X,y Xp-1, 8, = (-2x2+x3—1), and

3

Sz= (-2X —X3+4) were chosen to be -0.50, -1.0, -2,0, -4.0; 1.0, 2.0,

2
3.0; 2.0, 4.0, 6.0, 8.0, 10.0, 12.0; 2.0, k.0, 6.0, 8.0, 10.0, 12.0.

A schematic of the implementation required by Smith's (22) tech-
nique is shown in Figure 33. Figyres 34 and 35 are comparisons of the
trajectories and control sequences, respectively, between exact imple-
mentation of the ODLC surfaces and the approximation..3 The dotted
lines are a mixed implementation where approximations were used for all
surfaces but the terminal-trajectory one.

Non-autonomous control of these systems could be realized by the
simple additioﬂ of a summing junction to compare the values of the
state variable X1 with the alléwable input. The total non-autonomous
system is shown in Figure 36.

For the example shown the approximation achieves a femarkably

close-to-optimal control. Most of the'system degradation which does

appear shows up as false switching of the control as the system

2Because of the problem symmetry only the function generation for
the right-half space is discussed. Further, only the (U=+1) terminal
surface is shown, since the procedure yielded for the other surfaces
identical results, except for a multiplicative factor of five.

3Simulation of implementations was carried out on the digital
computer. For the simulation in question, initial conditions of

X1 = 3.0, X_ = 0.0, X, = 1.0 were assumed.

2 3
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Figure 33.. Schematic Diagram for Implémentation of the
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Figure 32
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Figure 34. ' Comparison of Trajectories Resulting From
S Exact and Linear Segment Implementation
of ODLC for Problem 51
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Figure 35, Comparison of the Control Resulting

’ From Exact and Linear Segment
Implementation of ODLC for
Problem 5.1
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trajectory moves along the terminal surface. This is to be expected,
since the controller attempts to force the trajectory along the approxi-
mation rather than the true surface., Use of the mixed approximation
with an exact expression used for the terminal surface and approxi-
mations used for the other produces systeﬁ behavior which is nearly
indistinguishable in performance from the completely optimal.

Obviously, terminal surface approximations more critically affect

system performance than do the approximations of other surfaces,

CONTROLLER PLANT
N | FUNCTION | X=X . Y,
- GENERATOR Xp= XzU
+
fxa
x' ? x2

Figure 36. Non-Autonomous Suboptimal DLC for Problem 5-1

[

It is interesting to note that in the example even the optimal
control required multiple firing on the terminal surface, The reason
for this is that the roll inertia is actually a functiom of firing time
and as the roll inertia changes so does the terminal trajectory (see
Figure 31}, Thus the control is repeatedly turned off as the controller
repeatedly re—evaluates the control needed to drive the system to the
origin., Intermittent firings such as this are probably not desirable,

but, in actual system where the roll inertia does not change so rapidly
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and where hysteresis in the control actuators inherently exists (or
could be introduced), such intermittency could be minimized by the
introduction of a terminal-switch dead~band.

In essence, this would change the terminal surface into a terminal
region. Approximation accuracy requirements for the surface can then
be reduced to satisfying the requirement that the approximation will be
entirely contained within this region. Implied is a trade-off between
this terminal region "thickness," which will adversely affect steady-
state accuracy, and approximation accuracy, which will adversely affect
controller implementability. Although it wasrconsidered to be beyond
the scope of this paper, further investigation of this technique tov
synthesize nearly optimal DLC systems with non-critical terminal

surfaces is recommended,

Problem 5-2. Roll cdontrol of a space vehicle (P,I. = minimum time plus
effort and error squared). This prablem will illustrate the effects of
different performance indices on gptimal switching surfaces. This will

be done by using a performance index of the form,

te

RL:% u+€+é+ﬁMt (5.9)
t
o]

in the synthesis of a controller for the system of Problem 5-1.
In review, the system of 5-1 is described by the equations

X1 = X2

]
|»
[

x2 iy . | (5.1)

41R will be assumed to equal a constant value of unity in Problem
5+-2. This is done simply for the sake of clarity. The validity of the
illustration will not be affected by this simplification.,
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Allowable input levels are agreed to be
Ue Ez, -1, 0, +1, +%] . (5.2)

The Hamiltonian for this system with the new P.I. is

2 2 2
- PX -1 - X - - . .
H P1 5 * P2U 1 x2 U (5.10)
Adjoint variables are
P1 = 2X1
. (5.11)
P2 = —Pi + 2X2
Inspection of the Hamiltonian indicates that
2
(P,U -~ U7) (5.12)

must be maximized to achieve optimal control. The resulting optimal

control law is

U=0 for lp, I} <1
U= signum (P,) for 1 <'||p2|| <3 . (5.13)
U = 2 signum (PZ) for 3 < ||P2||

Notice that not only are the system equations the same for both
lProblems 5-1 and 5-2, but that the control laws appear to be the same.
However, the adjoint variables are considerably different. As will be
shown, they seriously affect the surface shapes. .

Since the system is second-order, backward integration from the
final states was used as the preferred method of solution. The final

state conditions are



An additional final condition can be

Hamiltonian at the final states.

(for trajectories in the right half of state space).

Xl(tf)

X, (t;)

i
O

[t}
(@]
°
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(5.14)

obtained by evaluation of the

is that

Pz(tf) = 2

(5.15)

By the use of

these three final boundary conditions and the selection of various

values for the unspecified adjoint variable (Pl)’ the following table

(Table II) was compiled.

TABLE 11

OPTIMAL SWITCH POINTS FOR PROBLEM 5~2

U = +1 U =
Terminal Surface

-1 to O
Terminal Surface

U= -2 to -1
Terminal Surface

0.500
0.667
0.833
1.000
1,167
1.333

1,500

0.0 3.550
-0.577 L. 475
-0.816 3.600

1,000 2.775
-1,155 1.840
-1,211 | 1.286
1,414 0.663
-1,526 0.166
-1.633 8.600
~1,732 12.860

=3.000
~2.500
-2.000
-1.500
-1.000
-0.750
~-0,500
~0. 250
-4,000

-5.,000

9.111
6.204
5.109
4,182
3.238
2,173
1,531
0,786

0,170

-3.870

-2.770

-2.230

-1.,680
-1,140
-0.560
-0, 240
0.090

0,210
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Again, because of system symmetry, only the right half of state
space need be explored. Figure 37 is a plot of the optimal switching
surfaces for this system and>performance index. Only the terminal
trajectory switching surface is unchanged from Problem 5-1,

Because of the close similarity between Problems 5-1 and 5-2,

closed-loop synthesis of 5-2 will not be carried out.  Synthesis steps

would be unchanged.

Figure 37. ODLC Surfaces for Problem 5-2

Problem 5-3. Non-linear dynamical system (non-autonomous control).,
Consider a non-linear dynamical system described by the equations

X1 = X2

=-x x|l +v . (5.16)

pde
|
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This is basically a non-linear spring-mass system with a "square-law!

hardening spring. Assume that the chosen performance index is

P.I. = S (1 + Uz)dt
t
(o)

and the allowable contrel levels are
ve [—2, -1, 0, +1, +g] . (5.17)

The system equations must be modified slightly since non-autonomous

control is desired. The check for allowable external controls,

0 = X2
o=-x|lx Il +v (5.18)
indicates that only r1 = xid can be allowed.

However, introdugtion of this external input by the linear co-

ordinate transformation
Y, = X, - X (5.19)

changes the system equation to

Y1 = X2

P
]

- v+x Hyexallcu (5.20)

Therefore, r = Xid will be carried along as a new pseudo-state variable,
and the switching surfaces will be increased from two to three dimen-

sional., The Hamiltonian for the expanded system 1is

H = P1X2-P2(Y1-+r)\l(Ylﬁ-r)‘l-+P2U—-1-—U2 0 (5.20)
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Adjoint wvariables for the system are

o
I

2P, || (x, + )]
P = -P, . (5.21)

2 1

Final boundary conditions for the problem are

Yl(tf) =0
X,(t,)) =0 . (5.22)
The additional final constraint, obtained from evaluation of the
Hamiltonian is
2
0 = —Pz“r‘!r-szU—=1—~U o (5.,23)

Necessary conditions for optimality specify the optimal control as

U=0 for e ll< 1
U = signum (P2) for 1< ‘]P2|l < 3
U = 2 signum (P2) for 3 < ]‘lel . (5.24)

At this point, enough information has been determined that speci-
fication of values for r and Pl(tf) will allow backward integration to
generate optimal trajectories.

Figure 38 shows the ODLC surfaces for Problem 5-3. These surfaces
are surprisingly complex and possess some rather unusual shapes and
other characteristics., Because of this complexity approximation of the

surfaces by any means would be a challenging task. In fact, although

-
“Because physical limitations dictate that U cannot drive the
system to greater values of ]!Xil‘ than /2 , r was restricted to

(/2 , +/2). '
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Figure 38, ODLC Surfaces for Problem 5.3 Shown are Cross-=Sections
at R=0, R= =1,0, R = =1.4
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it should be feasible to approximate the surfaces throughout a small
region (e.g., ciose to the R-axis), large area approximation would
appear to be so formidable as to be of dubious worth.

Exact determination of surface shapes in certain regions was found
to be extremely difficult., The reason for this is that conjugate
points abound in the state space of this system and the: necessary (but
not sufficient) conditions specified by the Maximum Principle were
inadequate to determine optimality beyond such points. For this reason,
certain of the switching regions shown in Figure 37 are not closed but
simply trail-off into these uncertain regions. It was considered
beyond the scope of the present work to attempt to explore th;m further
than was done in Figure 37.

Before proceeding to the next problem, the résults of Problem 5-3
can be used to illustrate an aspect of functional approximation where
great caution must be used. All functional approkimation techniques
necessarily assume that the variable chosen to be dependent is uniquely
determined by the remaining (indepegdent) variables. As Figure 37
illustrates, several of the surfaces simply do not provide such a
unique relationship (except in sub—regions), but in many cases are at
least double-valued. Thus, the designer must exercise great care in
choosing functional approximations to assure that they provide unique
felationships in the areas of intefest. This could become especially
difficult for systems of higher order, if the hyper-surfaces are very

complex.

Problem 5-4, Third-order plant with two input variables. This third-

order system was chosen because it possesses a vector, rather than a
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scalar input. As such, it serves to illustrate the applicability of
ODLC synthesis to systems with vector inputs.

The plant can be described by the equations

1 2
X = <X

2 3+ U

= -~ . 02
X, U, (5.25)
A performance index of
2 2
P.I.= S (1+U1+U2)dt
t
o

is chosen, and the inputs are constrained to

ue [-2, -1, 0, +1, +2:]

U8 Ez, -1, 0, +1, +%] . (5.26)

Differentiation of the Hamiltonian for the system,

; 2 2
=P X -PX - -1 - U - .2
H=PX, -PX +P,U, -PU uj - U, (5.27)
yvields the adjoint variables
P1=O
= -P
Py
= . .28
P, =P, (5.28)

The optimal control law is obtained by requiring that

. 2 2
(P2U2 - P3U1 - U] - Uz)

be maximized. This law is
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U, =0 for HP3H<_1

U, = -signum (P,) for 1< ”PSH <3

U, = -2 signum (P,) for 3 < HPBH

U, =0 for  |lp || <1

U, = signun (P))  for 1< e 1} <3

U, = 2 signum (P)) for 3 <|lp[] . (5.29)

An additional constraint obtained from evaluation of the Hamiltonian

at the final states is

2 2 , '
P,U, - P3U1-U1-U2-— 1=0 . (5.30)

Because of the added dimensionality of this problem, both backward inte-
gration and the modified dynamic programming described in Chapter IV and
Appendix II, were used to obtain points on the optimal switching surfaces.

The problem is now ready for controller syntﬁesis by approximation
to the ODILC surfaces. Before proceeding with Smith's (22) technique, it
is interesting to point out that direct optimal digital control of the
plant cculd be achieved through a very small 'on-line! computer, with a
sufficient number of switching points stored in its memory to allow
accurate interpolation.

Figures 39 through 44 show the linear-segment non-linear functions
for closed-loop controller implementations resulting from the linear-
segment approximation. In the interest of simplicity, the region of

approximation was limited to -3 _<X2<+3; -1§X3§+1.6 The functional

bX3 was limited to X3>O0 on the right-~half plane, and X3 <0 on the
left, because, for the practical situations where initial conditions
are taken on the (X1, Xg)wplane, the system will always remain in these
regions.,
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approximation for the surface U1 = =3/=1 ig not shown because it was
never reached in the simulations made. Purther, it will not be reached,
in practical applications, from initial conditions reasonably cleose to
the (Xi,xz)wplane°

As an illustration ef the controller, Figure 45 shows the system
trajectory and the inputs for a typical set of initial conditions.
Notice that the gystem becomeg ogclllatory about the origin. The
reason for the "unsteadiness! is the approximation to the surfaces is
net sufficiently accurate in the immedizte vicinlty of this peint.
If this is net acceptable, a finer approximation to the surface will be
necessary, Such investlgations were considered to be beyond the scope

of thig paper.

A '} A
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Figure 45, System‘Trajectbry‘and Inputs for a Typlcal Set of
Tnitial Conditions, Problem -4 Approximated ODLC
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Although it is totally unnecessary for synthesis of fhe controller,
since the system is only gf third order, the ODLC surfaces can be drawn.
They can be seen in Figures 46 and 47.

This problem illustrates the fact that the conditions for opti-
mality are necessary, but not sufficient for a global optimum of

control, For example, examine the point

X, = . 6667
X, = —.
) 500
= 19 .
X3 00

From this point, the control sequences

U1 = -1

UZ = +1
and

U1 =0, -1

U2 = +1, O

are both equally optimal in driving the systems to the origin. The

Maximum Principle hinted at this possibility since, at this point, both

The control law was indeterminate at this point, and obviously, a

singular control could and did exist.



Figure 46, Optimal Switching Surfaces for U2 for Problem 5.4
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Figure 47,

Pptimal Switching Surfaces for U
Problem 5.4
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CHAPTER VT
PRINCIPLE RESULTS

In the preceding chapters, a new control concept, Optimal Discrete
Level Control, has been presented. Not only was a theoretical basis
for ODLC developed, but a synthesis procedure, using ODLC, for design
of closed-loop controllers was outlined. In Chapter V, this synthesis
procedure was applied to several example problems to illustrate the
technique. During development of the synthesis procedure and during
application of the procedure to problems, a number of insights and
results were obtained which merit further discussion. This discussion
is divided into four areas: aspects of problem formulation, design
guidelines, useful characteristics, and the computational algorithm

used.
Aspects of Problem Formulation

In the first category, problem formulation, there are three
primary factors which must be considered: the number of discrete
levels used, the form of the performance index used, and the approxi-
mation used to functionally represent the ODLC surface for synthesis.
Each factor is important and merits discussion.

The number of levels uged is a very problem-oriented factor and is
quite variable in its effect. Generally, it can be stated that the

addition'of extra levels will never deteriorate controller performance,
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but may improve it, For most systems, the use of only a few levels
will provide performance nearly comparable to the use of many levels.
The addition of extra levels would affect the system performance
insignificantly. This is illustrated in Figure 29 where Problem 5-1
is shown reworked with two-level, five-level, nine-level, and con-
tinuous control signals. Since any such comparison will be highly
dependent on the initial location of the system, initial conditions

were taken along both the X, and X_ axis to obtain the results shown.

1 2

Notice that the significant gaing in performance resulted from
increasing the number of.allowable levels from tow to three or from
three to five levels., The gain to be realized over five-level control
by nine or more levels would probably not be worth the extra controller
complexity required for implementation. It would be impossible to
form any general rules for chpoosing the best number of discrete levels
on the basis of the limited amount of investigation carried out in
thig thesis, However, certain trends were noted which can pravide some
guidance. First, only a relatively few levels (e.g., five) will be
sufficient for most applications. The added complexity of implementing
additional levels is unjustifiable from the standpoint of systém per-
formance improvements. Second, an extremely important factor in the
choice of the number of levels to be used is of the actual magnitudes.
This selection of the discrete level magnitudes can profoundly affect
the behavior of an ODLC controller. This influence can Ee illustrated
by an extreme example. Consider the case of a five-level ODLC system
where the level magnitudes are all chosen to he extremely 1argé values.

For this case the controller must use large control effort for -.all

system action, regardless of the magnitude of the action. In so doing,
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it will consume excessive control effort. Conversely, for the same
system, if the five levels are all chosen to be very small in magnitude,
the system will be excessively sluggish in response. Obviously there
must be some intermediate choice of values for the levels which will
provide better control.

In the work carried out to date, sizing of the ODLC magnitudes has
been done on the basis of judgment for choosing reasonable levels.
Also, the levels have been chosen to be evenly-spaced (i.e., 1,2,3,
eeoy €tco), with no attempt made to discover what an optimal spacing
would be. Obviously, an optimal spacing of levels might produce more
improvement in system performance than that produced by increases in
the number of levels for an arbitrarily-gspaced ODLC controller.
Presently, however, comparisons simply cannot be made because optimal -
spacing criteria have not been developed and guidelines are not

available.

Choice of the performance index.is a subtle factor, but it can
have a profound influence on both system performance and controller
complexity. In fact, choosing a performance index is probably the most
important step in the synthesis of any control system. For ODLC
systems, the choice of the Performance Index will affect not only
system behavior, but also the shape of ODLC switching surfaces. (see
Figure 37). This can significantly alter the complexity of controller
implementation since it is accomplished by approximation of the ODLC
surfaces. (In fact, some performance indices may make implementation
impossgible by causing the switching surfaces to be too complex.)

Ideally, performance indices should be chosen on the basis of both

resulting system behavior and resulting controller complexity. However,
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the concept of what actually constitutes the ideal performance index
for a given application is not well understood, even for continuous
systems,

Curve~-fitting affects systém performance by making the controller
sub=optimal if approximations to the optimal switching surfaces are
used., As discussed earlier, these optimal switching surfaces are of
two varieties: terminal trajectory and non-trajectory surfaces.
Moderately accurate approximation techniques such as Smith's (22)
linear segment method are quite suitable for the second type. The
first type, terminal tfajectory surfaces, however, are extremely
critical,

Inaccuraclies of approximation for terminal surfaces usually lends

to multiple false switchings as the controller attempts to force the
syetem along the approximagtion rather than its natural trajectory.

This is a highly undesirable characteristic for a controller to possess.
Thus, terminal trajectory surfaces require the use of special treatment
if controller action is to be acceptable.

Two reasonable methods of handling the approximation of these
special surfaces were discussed in Chapter V, First, extremely good
surface approximations can be used. An alternate approach is to
lessen the criticality of the terminal trajectory surface by definition
of an acceptable target region. Then, instead of a single terminal
trajectory surface, there will exist a region of acceptable terminal
trajectory surfaces. If the approximation is made sufficiently
accurate to lie within this region, then purposely-introduced switching
hysteresis will produce acceptable controllers. Figure 49 illustrates

this technique of reducing terminal trajectory criticality for a single



111

second order plant with time-optimal controla Notice that there is a
rathervdirect trade-off between target size (implying terminal trajec-‘
tory‘region width) and approximation accuracy. The decision of what
constitufes an acéeptable trade~off between the two {target size, and

approximation accuracy) must remain an item for engineering judgment.

.:sz\ ‘

g<;¥TARGET

TERMINAL
TRAJECTORY
~_REGION

—-X,

ACCEPTABLE
APPROXIMATION

Figure 49, Terminal Trajectory Reglons for System Given
Terminal with Target

Design Guidelines

Although the ODLC synthesgis procedure has been dizcussed in some
detail, there are several congiderations which become important during
the actual synthesis. These considerations will be highlighted here.

The syntﬁesis procedure is conceptually a simple process of

finding a quantity of optimal switchiug points; using a curve-fitting
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method on these points to functionally approximate the optimal surfaces;
and translating these functions into hardware. Unfortunately, the pro-
cedure is not so simple and straightforward in practice. Large
portions of engineering judgement (which must always be the result of
trialwanduerrof or experience) are required to make the results
meaningful .

The first area in which engineering judgement crops up is in the
determination of points on the optimal surfaces, Since this step is
computatiohally a difficult (and expensive) one, it would be highly
desirable to locate only enough points to sufficiently define the
surfaces for implementation. Unfortunately, there can be no fermal
rules about the sufficiency of any number of points in defining a
surface. A reasonable rule~of-thumb for third- and lower-order . -
surfaces would be that if enough points have been determined to permit
a sketch of the surface to be made, the number is sufficient. For
higher-order surfaces, the problem becomes much more difficult. For
these higher-order cases an idea of sufficiency of the number of points
can be obtained only from the degree of success in obtaining a good
functional curve-fit which provides close-to-optimal behavior, In
passing, it should be noted that since a number of truly optimal
trajectories have been determined such a comparison of the approximate
controller behavior to optimal behavior is an easy and natural step of
the synthesis.

Another area of concern requiring judgement is determining the
most desirable number and/or magnitude of discrete control levels to be
used. Although the topic has been discussed previqus}y, during actual

synthegis, it must be resolved by trial-and-error, or judgement. The
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most natﬁral point in synthesis to explore the effects of additional
levels is during the determination-of-optimal-points phase. Each
location of a point actually involves making an optimal solution with
the attendant performance index value., Spot checks on the effect of
changing numbers and/or magnitudes of control levels will provide the
designer with some idea of the desirability of using various combi-
nations of numbers and/or magnitudes of discrete levels in the
controller,

A final area (also previously discussed) involving engineering
judgement, is the desired (or necessary) quélity obtained from the
curve-fit procedure. It has already béeﬁ pointed out that terminal-
trajectory surfaces will be more critical than non-terminal surfaces,
During actual synthesis, this information simply means that, if the
designer is to avoid unacceptable limit-cycle behavior about the
desired operating-point, he must take special care to improve or
modify the curve-fit in these critical regions. Several possible
approaches to accomplish this impfoVement/modification have been pro-
posed, but it remains the responsibility of the designer to assure
that a proper technique is carried out.

- To summarize, in spite of the fact that the ODLC synthesis pro-
cedure outlined is primarily analytic in nature, the decisions of the
designer during the process are crucial. .His engineering judgement
will determine whether the system synthesized will or will not perform

satisfactorily.
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Useful Characteristics

ODLC systems have a number of useful characteristics, The most
important of tﬁese characteristics is the feasibility of producing
optimal (discrete level) closed-loop controllers. This is a quite
important characteristic of the switching surface nature of ODLC
contiollers. No other general technique presently exists for producing
éptimal closed~loop controllers. The switching surface nature of ODLC
controllers is also responsible for some other charactéristics which
can be incorporated in the ODLC controller. These characteristics are
basically extensions of the switching surface concept to handle systems
with: non-linear plants, time-varying plants, and/or non-antonomous
inputs. These extensions are all based on the concept of adding new
dimensions to the state space in which the ODLC surface lies. B&
adding the appropriate new dimensions a single, non-moving, non-" ‘ g
changing, set of surfaces will provide the closed-loop ODLC law for the
system. Naturally, the order of the surface will have become greater,
making implementation of the ODLC surface more complex. The above
three characteristics were discussed in some detail in Chapter IV and
will nof be discussed further hgre.

Another characteristic which can be introduced by this ideavof
extension of the state space became obvious during work on Problem 5-4.
This characteristic is that approximately continuous optimal closed-
loop controllers can be designed by use of.ODLC synthesis methods. In
this case, however, the new pseudo-state variables which are added onto
the plant equations are the higher-order fime derivatives of the inputs.

By using this approach, it becomes possible to produce an ODLC type of
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contréller which is capable of providing not just step inputs to the
plant, but also ramp (using only first derivative term), parabolig
(first and second derivatives), and higher-order input types. The
justification for this extension can best be illustrated by reviewing

Problem 5-4, Recall that the plant equation was

X1 = X2
X2 = —X3 + U2
x3 =-U, (6.1)
and the performance index
ty
2 2
P.I. =S (1+ 1%+ Byar (6.2)
t,

was used. Inpuyts were constrained to

ue (-2, -1, 0, +1, +2]

u.e [-2, -1, 0, +1, +2] . (6;3)

Although this system is nominally a third-order system with two inputs,

the input U1 and the state variable X3 bear further investigation.

Consider the fact that

-

= ~U . (6.4)

Since U1 is constrained to be one of five constant amplitude levels,
during the periods of time between switching events Equation (6.%4) can
be integrated with respect to time, The result is that X.3 will be a
ramp function with one of five possible slopes. In light of this fact,

the third-order system (Equation (5.25)) can be written as a
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second-order equivalent system

X, =X,
;<2 = S vt + U, (6,5)
or
;(1 =%
X, - U . (6.6)

The input (Ue) is capable not only of discrete level changes But of
discrete slope changes. Because it is composed not only of step
functions but also of ramp functions, Ue will be capable oflbqth
switching-type and approximately continuous behavior,

This result is important, an optimal controller capable of both
switch-type and nearly continuous behavior has been specified andl
implemented through the use of ODLC techniques. An immediatg extension
which comes to mind is the addition of new higher-order inputs as
pseudo-state variables. With these higher-order terms, plant inputs
would be composed of step, ramp, parabolic, ..., etc., terms "and would
be some sort of optimal control (closed-loop) signal capable of both
smoothly continuous and discontinuous (step-jumps) behavior. Notice
the key words "optimal," "continuous,'" and '"closed-loop,! for it is
precisely this type of controller which can be specified via the

extended ODLC design procedures.
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Computer Algorithm

During the research work, a computer algorithm was developed to
solve the multi-point boundary-value problems which arise as a conse~-
quence of applying optimal control theory to ODLC. Although this
algorithm is not an integral part of ODLC theory, it provides an
essential tool in the synthesis of systems by the use of ODLC methods.
However, the algorithm has applicability to a broad rangs of problems
outside the realm of ODLC. Consequently, the algorithm is listed as a
contribution (secondary) on its own merit. Since it is not witﬁin the
intent or scope of a thesis to become a program-listing document or an
instruction manual, programming details will not be presented. However,
in addition to the discussion of the basic condepts of the algorithm
found in Chapter IV, Appendix II contains a schematic flow chart
defining the logic used in this algori‘thm.,1 The present discussion
will be limited to a discussion of problem types to which the algorithm
is well suited and some basic limitations of the approach.

Because the approach is basically a restricted-—search Dynamic
Programming procedure, the algorithm possesses nearly all the charac-
teristics of straight Dynamic Programming with the following
~differences.

First, because it is a limited-search method it will require less
core storage than conventional Dynamic Programming. As an example,

consider the illustration given in Chapter ITI, namely a fifth-order

1Address all inquiries for further documentation, including
program listings to either Professor H. R, Sebesta, Mechanical Engi-
neering Department, Oklahoma State University, Stillwater, Oklahoma,
or J, D. Engelland, Aerosystems Project Engineer, Dept. 62-7330,
General Dynamics, Fort Worth, Texas.
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system with each state variable domain divided inte 100 grid points {N)
and time divided into 100 (increments (M). The storage location

requirement of the conventional technique is

P=2x 1012 .

In the iterative approach, an equivalent accuracy can be achieved by

Obviously, restricting the space searched reduces the number of storage
allocations drastically.

The second characteristic of the new approach is also a direct
result of limiting the searched space. Because only a tube is searched
on each iteration, the algorithm at any stage will find only the best
solution (if one exists) in this tube. Further, as it iteratively
constructs new tubes ahbout improved solutions, the algorithm may be
converging to a locally optimal solution rather than the global optimal
one, In this respect, since if will not guarantee finding the global
optimal, the new technique is not as powerful as straight dynamic
programming. Thus, reduction of the storage requirements has been
achieved at the cost of guaranteed global optimality. Gained, however,
is the ability to use a Dynamic Programming approach to a wide range
of multiple boundary-value problems.

Apart from these differences the approach retains the important
characteristics of dynamic programming, namely:

(1) Inputs do not need to be continuous.

(2) System equations are not required to be linear or even

continuouse.
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(3) Hard conétraints can be imposed on both the system variables
and inputs.

Theze three characteristics make the approach attractive for use in
ODLC synthesis. Further, they make the approach equally attractive for
highly constrained problems which are not easily solved by any other
method., Examples of these highly constrained problems might be hydrau-
lic systems with system equations which actually change form as a
function of valve displacements; or mechanical systems with hard—stoﬁs;

or systems with pulsed-type control signals.



CHAPTER VII
SUMMARY

The topics investigated are the new concept of Optimal Discrete
Level Control (ODLC) and synthesis of ODLC controllers for dynamical
systems, ODLC controllers are optimal controllers with the added
restraint that the controller outputs (plant inputs) are constrained to
assume only certain magnitude levels. Thus, the ODLC's are always
switching controllers but, unlike many switching controellers, they are
optimal within the constraints placed on them (discrete plant input
levels).

Because the ODLC controller is a switching éontroller, the corres-
ponding ODLC control law can be shown to be simply a switching surface
in state space. Functional implemention of this surface results in
complete specification of a ¢losed-loop ODLC controlleré This is a
very important result; closed~loop optimal controllers of any type are
very difficult to define. A number of applications for which ODLC
should be extremely useful can be envisioned, however, an important
area of application should be for systems where the control effort is
inherently discrete in nature (e.g., the maneuvering thrusters on a
space vehicle). Further, because ODLC possess the characteristics of
rather good noise immunity, and simplicity of closed-loop implementa-
tion, ODIC controllers will also be important where these character-

istics are important.

120
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Investigation was carried out in two primary areas., First, a
theoretical basis for the ODLC concept was described, derived, and
defined., This included verification of the applicability of the
Maximum Principle for sﬁecification of necessary conditions for opti-
mality, examination of the ODLC switching surfaces, and definition of
the limitations placed on the type of plants and control schemes suit-
able for implementation, The ODLC switching surfaces are discussed in
the context of the autonomous systems. Techniques for extending the
ODLLC concept to cover non-autonomous systems are developed.

The second area of investigation was a controller synthesis
technigue which evolved into a three step procedure:

(1) Describing the plant and deriving the conditions necessary

for optimality.

(2) Locating a sufficient number of points on the ODLC surfaces

to adequately define them.

(3) Approximating the ODLC surfaces with an appropriate function

by using these points.

This design procedure not only allows the designer the flexibility
to arbitrarily choose a performance iﬁdex, but also toe choose the dis-
crete input magnitude levels he deems desirable or practical. An
additional inherent characteristic of the procedure, if it is Being
used to design a closed-loop controller by approximation to the optimal
switching surface, is that the true gptimal behavior for a number of
initi;l conditions has been determined. This availability of the
optimum can be used to evaluate the performance of the approximating

contrcller., By having such a comparison available, the designer can
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more intelligently determine a reasonable compromise between the
conflicting attributes of controller optimality and simplicity.

Three example problems have been worked to illustrate typical
characteristics of ODLC. Not only were the ODLC surfaces defined for
these three systems but simulation of implemented closed-loop ODIC
contrellers was carried out and the results analyzed. It is felt that
these results illustrate both the power and utility of system synthesis

using the concept of ODLC.
AREAS RECOMMENDED FOR FURTHER STUDY

Because the scope of research for this thesis was necessarily
‘limited, there are a number of areas in which further research should
be carried on.

(i) New, improved, numerical solution methods for solving the
extremely difficult class of problems which arise during the
synthesis procedure are needed. The iterative dynamic pro-
gramming approach which was developed during the research
presently has several shortcomings which should be eliminated,
although the validity of the basic concept has been estab-
lished. The primary difficulty encountered with the present
formulation of the algorithm is convergence. Tied up in this
problem are such factors as grid size, time step size, the
number of grid points, and terminal constraints. If is felt
that too much juggling of these factors is presently needed
to obtain convergénce. An improved -convergence apptroach
which properly handles these factors is needed for this

dynamic programming method to be made truly useful,
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Optimal quantization of discrete levels should be investi-
gated. In the p;esent work, arbitrary discrete levels were
chosen., Certainly, there exist some set of level values
which provide better control behavior than any other. These
level values are initial-condition-sensitive, so optimum
gquantization likely will involve probability distributions
for these initial conditions.

Investigation should be made of other approximating tech-'
niques which can be used to describe the ODLC surfaces.
There are a number of standard techniques available, but
perhaps some new method can be developed which is superior
for ODLIC.

Studies of the effects of different performance indices on
system behavior and ODLC surface complexity should be made.
Another area of promige is investigation of the closed-loop
ODLC switching surfaces for implementing continuous planf
control. It would appear possible that reasonable approxi-
mations to the optimal continuous control might be obtained
by interpolation of the input values as a functiqn of
position relative to switching surfaces. A most attractive
alternate approach to implementing approximately continuous
control is that discussed in Problem 5-4, This concept which
produées an effective input capable of step, ramp, second-
order, etc., changes by the introduction of higher-order
input terms, should produce extremely good controllers
regardless of whether they are continuous or switching (or

both) in nature. If feasible, these techniques will provide
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a general closed-loop controller synthesis method for
continuous control., Such general capability is presently

lacking.
Contributions

It is believed that several significant contributions ha?e been
made. First, the new concept of optimal discrete level control has ’
been proposed and theoretically verified. ODLC controllers show great
promise for systems where control effort must be discrete in level or
for systems where highrquality, inexpensive closed-loop control is
required, |

Second, since ODLC systems are switching systems, the character-
istics of optimal switching surfaces were examined and defined. This
effort not only clearly detailed ODIC surface characteristics but also
presented switching surfaces in general from a new theoretical
viewpoint.

A third contribution is the development of the concept for a com-
puter algorithm, based on dynamic programming, for solution of highly
constrained multiple point boundary value problems. This algorithm
was developed as a means for determining points on the ODIC switching
surfaces, but is applicable to the broad range of very difficult-to-
solve problems consisting of multiply-split boundary value problems.
Although the actual algorithm needs further improvement, the basic con-
cept has been shown to be a valid approach to solution of these
problems,

Finally, the total concept of the ODLC closed-loop synthesis
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procedure is viewed as a significant contribution which will aid the

designer in his task of building better controls for his machines.
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APPENDIX I

DERIVATION OF PONTRYAGIN'S MAXIMUM PRINCIPLE

The Maximum Principle is a statement of necessary conditions for

the optimality, according to a given performance index, of the be-

havior of a dynamical system., The approach used for the derivation

will be to consider first, a simple class of problems and then to

consider extensions and modifications necessary for more general cases.

The simple case to be considered first will be that of a dynamical

system with fixed final time and no constraints of final time on the

variables,

Assume the system can be defined by the set of equations

xi = fi(ﬁ,ﬂ,t) s (4

Further, assume that the following exist:

of. i
1

=, j

¢ i

. 1 .j

o, X, Kk

1t

Allowable inputs U(t) will be defined to be at

continuous elements of a closed, bounded set U.

1
ooog N} o
OBO? n
9009 n
0009 n
ooy N o
coog T

least piescewise-

1S'tate variable notation and concepts will be used throughout this

derivation.
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Let the performance index to be minimized be
T
¢ ,
P.I. = 5 J(X,U,t)at .

o

If the definition is made that
T

X 4= S J(X,U,t)at
o
then
X 4= J&X0t) .

Finally, let there be defined, a new function of the final time

s = ¢ - X' (T

where C is some constant vector and S is the dot product of E_with_ETTfI
ari expanded state vector containingP,I.:Xh+1 as a component., S is -
called Pontryagin's payoff function. It can be shown that by proper
definition of C, it is always possible to minimize the performance

index by minimization of S. Thus, the optimization can be made in

terms of the minimiiations of this payoff function S. As an example,

for the simple case under consideration, if

o O
iy

and (ﬁ(T Y =1 X

= 000
;)4'500

then

Te

S = S J(X,U,t)at - .

o
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S is the performance index.

Now, assuming that the admissible optimal cdntrol‘has by some mean
means been cbtained, perturbations around this control will be studied.
These perturbations will take the form shown in Figure 50;” The defi-
nition of these perturbations is that during a short interval of time
T-€ <t < T, the control is different from U(t)*o Restrictions on the
perturbation are:

1. U(t) is different from U(t)* in the interval (T-€,T).

2, U{t) is admissible iﬁ the interval of interest.

3. U(t) is constant during this interval .

g
T-€ T

Figure 50. Perturbations of Optimal Control

‘ : A ' # :
Now, since U(t) is different from U(t) in the interval
(T~€‘§ t < T)ﬂ.ﬁ(T) will be different from(ﬁ(f) o This difference can
‘be défined as
r
» *
x(m-x(n" =\ [exubu,m - 2,06, m]at
T8
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To a first approximation, this is

SX (1) = [£(X,U+8U, 7) - £(x*,u*, ] €.,
This relationship provides the necessary initial conditions at the end
of the perturbation at time T to carry out integration to final time.
However, if the perturbed state variables can be assumed to remain
"close™™ to the optimal ones, certain simplifications can be made. If

this is the case, then the perturbed state vector, which is

a(x + 6.X)i (L = 1, o0o n+1)
—_ *
dt = £i(.)£+.§,§;92 st)

(r<tgT)

can be expanded in a Taylor Series., This result is

X+ 805 i ar, (x,0% )
dt = ]:fi(gi,g*.,t) 2 T SX.J,
j=1 i
-1 +1
2,: - Bf (X + E 8X,U*t)
j=1 s=1
i= 1:‘ L Y n+1

where 0 < @f_ 1.

However,

d(X + 8X) . dax, d(8Xx) .
1 1 1

Tt = dt + o 1 = ﬂ].g seey n+1
and
a(x + Sx)i d(éx)i
T@W = fi(i,g*,'t) “+ T i= j{.g eesy n+1.

This results in

af (x U,t)
5 x (t) = }; o= 8X .+ HaOoTe

[A
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Further, since it was assumed that the perturbation effect on the vector

remains "small', the higher order term can be neglected. Thus

- n+l (i =1, cooy n+1)
o A afi(512*9t>
6Xi = Ez oX 6Xj’” (T<t<T)
j=1 J ‘ TEEZ

This is a linear set of differential perturbation equations with initial

conditions at T of
§X (1) = [£{X,U* + 3U,t) = £(X,U*,t) I8t,

Recall that the payoff function is

n+i

S = y CX (T ).
- J 3 s
J=1

The variation of this equation is

5 S c. 8 x.(r),
J N

1

i
e i

Now, since U*(t) was the optimal control, for all U(t) + 8Udiffer-

ent from this

8§ S >0,
or
n+1
Voc. 8 x.(1,) >0,
s J Jof =
j=1

This result is a necessary condition for optimality and could be used
to determine the effect on optimality of any perturbation at time t in

the interval
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T-€<t<T,

by integrating from time T to Tfe This means a complete solution for
§x(t), (1<t < Tf) would be necessary. On the other hand, if a vari-
able vector P(t) could be found such that P(T,) = - C and
Qg(t) . 65;(t)> = constant, then this integration would not be
required.

Now, let P(t) be examined to see what it must be. The total

derivative of the above inner product is

— (P(t)  3X(t))= 0.,

This can be written

n+1 ‘ n%}
P (t) o X, () + ) P.(£)8XK.(¢) =
i1 j=1 Y J
But
n+1
of . (X,U,t)
5. (t) = E oS 9
k=1
Thus,
n+1 n+1 n+1
of . (X,U,t)
OzzP(t)GX(t)+z Zp(t)=-=--==‘----m==-====-Xk BX. -
i=1 j=1 k=1

The inner-change of summation signs in the second part, with replace~

ment of k with i gives

af (x U,t)

E: [P (t) + E: P.(t) -

]sxi(t),



Since 6 Xi(t) = 0 is a trivial solution to the above equation

n+1 .
A . ) afj(ggﬁyﬁt)
0= P,(t) + /7, P_(t) o
_ i . J ox,
J=1 i
Thus,
n+1
. Y of L (X,U,t)
P.(t) == [, P (1) mecidee .
i oX
Jj=1 i

This is recognized as the well-known adjoint system to the original

- system. There also are available the conditioens EﬂTf) = =C,

vide the necessary boundary conditions for solution of the adjoints.
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These pro=-

However,; there are 2n+ 2+ M variables and only 2n + 2 boundary conditions

with 2n + 2 differential equations. M additional algebraic equations are

needed. These can be found in the following manner. Define the func~"

tion H as:
H = {(£(X,U,t) = P(t)),
It was previously stated that

- 838 = (8X(1)° P(T)) <0,

But
5X(T) = [£(X(TY, U(T) + 8U, T) = £{X*(1),U*(7),7)]E,
3s Y
Therefore, -5 = Ex(M,uD + 8y,m - BT

EX(T),U*(T),T) = P(T)) < 0O,

Since this inner product is constant throughout T <t < Tf
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- 88 - {ex(),0(®) + BU,t) * B(t))
or
- {£(x(t),U*(t)) - P(t)) <O,
Therefore, H - H* < 0.
u u =-
H <H .
u=-— u

Thus, for minimum S

H* = max H,
UeEvu
This is the Maximum Principle of Pontryagin and provides the m addi-
tional equations required. The above derived equations can be recast
into a form which are easier to use; namely,
Define:

H = {£(X,U,t) = P(t))

then it can easily be shown that

oH . OH oy
- =F 0t =X
1 1

These are the canonical equations of Pontryagin. Also, there are

H* = max H
UEU

and the boundary conditions,

I}
3
=
1}

Xi(O) 1, seesy n + 1

io

P.(T) = =C
1

RS
]

1, seey n + 1

As a group, this set of relationships define the optimal control problem
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with sufficient restraints to solve the resulting set of differential

equations.,
Extension to More General Cases

The above results can easily be extended in applicability to more
general cases. The first such is the case of free final time with no
constraints on the state variables at final time. This can be handled
very nicely by defining the unknown final time as a new state variable
Xn+2 = Tf = constant, Now, the system of equations will have two new
differential equations, but it will also have two new boundary condi~
tions (Pn+2 (0) = 0, and P oo (Tf) = 0), which occur because Xn+2 is
unconstrained at, both boundaries., Essentially what has been dane by
this re-definition is the non-dimensionalization of time so that the
time period of interest is always from O < T 5 1.

A significant result pan be deduced from this new problem state-

ment. Examination indicates that the new Pn+2 adjoint variable is

= - XI{ + Since both the Hamiltonian (H) and the final time
n+2 R
(Xn+2) are cgonstant with respect to time, P

n+2

nep 20 be directly inte=-

grated. The result is

H
Pn+2(Tf) = - X (Tf)e
n+2
However P (r.)) é 0,
? n+2 £ '
. A
Therefore, either H=0
A
X = Q.
or n+2 0

The conclusion must be that H é 0. Further, since H = X

2 H*, where H*
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is the Hamiltonian for the dimensional case,

A

H* = 0O,

It will always be true that the Hamiltonian will be identically zero for
optimal processes with unfixed final times.

The second case of extension is for the case with algebraic con-
straints on the state variables at final time, This case can be divided
into two classes, according to whether the final c¢onstraints are fixed-
point terminal constraints or terminal surface (or manifold)
constraintsa

The second class shall be reviewed first. Consider the

Pontryagin Payoff function
s = (¢ X(r)).

As was previously discussed, it is necessary that S be minimized for the
performance index to be minimized, However, S is an algebraic function

of the state variable final conditions, Because of this, the problem of
algebraic terminal constraints can be handled by the familiar method of

LaGrange multipliersa1 Using LaGrange multipliers (S) can be redefined

to be

T
s’ = S(X, ) + Vg0,
f
where g(X) is the set of constraints expressed in the form g(zﬂtf) = 0,

and A? is a vector of (m) unknown constants, Notice that M new unknowns

1The concept of LaGrange multipliers faor algebraic minimization is
well known and will not be derived herein.
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(A) have been added to the problem. Now M new relationships are needed.

These can be obtained by requiring that

o1} .
giTz—TW =0 1 = 1, apay n+1.
i

Performing this operation gives

3S agj i= 1, peey n+1
0 = "—'-ax + A. "——"ax
ixe 9 O fxes 3= 1, ese, n+le

This provides the required M new relationships,
Now the first class of terminal constraint problems (fixed final-
point) shall be considered. For this‘class of problems, the use of

dg.
LaGrange multipliers cannot be used because - is indeterminate.

BXi
However, there actually is no need to attempt to discover new relation-
ships, because the final constraints are boundary conditions for the
state variables and these will provide a sufficient number of constraints
to completely specify the problem. Mixtures of the two classes of ter—i
minal constraint problems can occur but there will always be a sufficient
number of constraints to completely specify the problem,

Pontryagin's Maximum Principle has been shown to be applicable to a
rather broad range of problems. There are further extensions which can
be made, but they are considered to be beyond the scope of this paper.
More important, it is obvious from the above derivation that it is valid
to use the Maximum Principle for determining necessary conditions for
ODLC, Additionally, the primary limitations on system type, etc., have

been shown to be:

1, the plant must be of the type X = i(g,y_,t),,
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2, f must be continuous with respect.td 5Ithrough the
first derivative, and
3. U must at least be a piecewise continuous function
(piecewise constant for ODLC) which belongs to some
closed, bounded set () of allowable inputs,
These limitations will be considered to be basic to all derivations and

discussions contained in the text of this paper.



APPENDIX IT
MODIFIED ITERATIVE DYNAMIC PROGRAMMING

Work on the dissertatign topic, Optimal Discrete-Level Control,
revealed a lack of solution algorifhmé for solution of highly-
constrained, multiple~boundary value problems, Since the preceding
problem type is ch%racteristic of ODLC formulations, development of a
modified Dynamic Programming algorithm to solve problems of this type
was deemed necessary. The following is a brief description of that
algorithm.

The Modified Dynamic Programming algorithm mnder discussion differs
from classical Dynamic Programming in one primary respect. It, unlike
the classical approach, searches only in the immediatq vicinity of a
previously specified trial solution, instead of all state space. The
algorithm then uses the best solution found in restricted-space search
to form a new trial solution to iterate upon. Repeated iteration will
find a "best" solution, Unlike the "best" solutian found by classical
dynamic programming, which is always a global optimal (assuming suffi-
cient grid fineness), the iterative algorithm may find only a local
optimal soluticn. This loss of global optimality assurance is the price
exacted for rather phenominal reductions in computer memory requirements

(from as high as 1013 to 104 or 5).

Apart from this restriction of
searched space to the neighborhood of a trnial trajectary, the new algo-

rithm uses the familiar relationships used in classical dynamic

140
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programming. (It is assumed as a prerequisite that the reader has work-
ing knowledge of dynamic programming techniques.)
The equétions used in the algorithm are the discretized nth order

plant equations
X(q+1) = F(X(q), T(q), tlq)],
the discretized performance index

P.I. (q) = J[X(q), T(q), t(q)]

or

a total

P.I. = E J[X(q), T(a), t(q)l,
=1

and the penalty factor

N
Fac(a) = T K1[”X6- Limi“ 1,

where
fk . if X, <X ,
min, i min.
i i
Lim. =< X if X, > X

i max, i max.

i i
X, if X ., < X, <X .
i min, — 1 — max.
\ i i

A penalty factor term is required not only to force the trajectory
to satisfy system constraints, but, for the iterative algorithm, to
force it to remain in the neighborhood of the previous trial trajectory.
Such a constraint is necessary state space away from this neighborhood

has not been properly searched.
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The following flow charts are for the algorithm. As these flow
charts show, the algorithm initializes at final time and searches step-
by-step backward in time until initial time. An important thing to
notice is that a new state space grid to be searched is developed at
each time step.  Each grid is centered around the assumed trial solu-
tion. It is by this means that the algorithm limits its search area.

It would be, and is, possible to cause the algorithm to revert back to
classical Dynamic Programming by sufficiently increasing the size of
each grid and the number of points contained in it.

At the conclusion of the backward-going search, the algorithm uses
the most optimal sequence of inputs to integrate forward in time to ob~-
tain a new trial optimal solution. This new solution is then used as
the basis for the next iterative pass.

Two difficulties, which are natural consequences of the diSéretized
nature of the algorithm arose and deserve mention. These difficulties
are: inabilityto satisfy point final boundary conditions and inability
to define control switching times more precisely than to the nearest
time step. Great care must be used in the first of these two difficul-
ties (fixed-point final boundary-value conditions) to avoid introducing
artificial penalty factors which can actually create artificial local
minima to which the solution will converge. The approach finally chosen
in this algorithm to avoid the difficulty was to use backward integra-
tion for one time-step. The results of this backward integration are
used to establish a pseudo-terminal manifold.

The approach chosen to help minimize the second difficulty (inaccu~
rate switching times), rather than simpiy decreasing time-step was a

time step interpolation scheme. This interpolation scheme will
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N = ORDER OF SYSTEM

M = ORDER OF INPUT VECTOR
TIMEDY = NUMBER OF TIME-STEPS
DESIRED

X(KeN=F [X(K), U(K)]
P L(K)= I[X(K),0(K))
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determine the best switching time to within one-sixteenth of a time
step. This switching time is then retained for use in the next itera~
tion. Accomplishment of the time interpolation is provided by division
of the time step in question into sixteen parts and comparing perform-
ance indexes realized for switching at each of the sixteen time
increments.

The algorithm, as flow chartered, has beenh used and is usable for
obtaining solutions to the previously mentioned very difficult class of
problems. However, convergence problems still exist in the aigérithm.
Present efforts being made to improve convergence of the method are:
improved methods for choosing grid scaling factors and time-step sizes
and elimination of penalty~introduced artificial local minima. Computa-
tion times for the present implementation of the algorithm are compar- '
able to that required for the quasi—linearizafion two~point boundary

value solution of a continuous system of the same order.
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