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PREFACE 

The problems of the intermittent production facility or job 

shop are many and varied. This investigation is in the general area 

of supply for an intermittent production operation. The objective is 

to develop a supply procedure which does not require the assumption 

of independe nee of requirements from one period to another. 

In reaching this stage of the education process, one is assisted 

by so many people, such as early school teachers and professors, 

that it would require an additional dissertation to express gratitude 

to all individually. I would like to thank collectively those people who 

are not mentioned specifically but who have helped me, academically 

or otherwise. 

I first want to thank my wife, Virginia, for her encouragement 

and for cheerfully making the sacrifices which this undertaking has 

required. Although he is just beginning to talk, my young son, Jimmy, 

has also been a source of joy and encouragement in his own way. I 

also want to thank my parents for their part in my education and in my 

life; past, present, and future. 

I am also grateful to my committee of Dr. Wilson Bentley, 

Dr. Earl Ferguson, Dr, G. T. Stevens, Dr. James Jackson, and 
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Dr. William Rambo for their instruction, advice, and assistance on 

numerous occasions. In addition, I wish to thank Dr. Bentley for 

helping me return to school and Drs. Ferguson and Stevens for their 

help with this dissertation. 

My employer, Brown Engineering, provided some financial 

assistance during my class work as well as computer time, typing, 

and printing support for this dissertation. This assistance is_ greatly 

appreciated. 

I am grateful to the National Aeronautics and Space Administration 

for financial assistance during a portion of my graduate study. 

I also appreciate the efforts of Mrs. Linda Johnson in deciphering 

my writing and typing this dissertation. 
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CHAPTER I 

INTRODUCTION 

The research reported in this dissertation is in the general area 

of inventory problems related to the job shop or intermittent produc­

tion systems. In such operations, items are produced to customer 

order and delivery to the customer 1s made after the required produc­

tion time has elapsed. Since there is no established product, neither 

a finished goods inventory nor a raw material inventory is ordinarily 

maintained. The inventory problems of the job shop are primarily 

those of supplying the production process during the length of time 

over which a particular item is to be produced. 

When a job shop accepts an order for the production of a 

particular item the quantity is specified. If the quantity is sufficiently 

large, production of this quantity is scheduled over a series of 

scheduling periods, The.re may be a correlation between requirements 

in one period and some other period. For example, when production 

is begun, the quantity actually produced in a scheduling period may 

be greater or less than was originally scheduled. Since there is to 

be a finite total production, the production of more or less than was 
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anticipated early in the cycle has an effect on the amount of production. 

needed in the latter part of the cycle. If such covariance exists, it 

should be used in making material supply decisions. 

Hypothesis 

The object of this research is to develop a method to determine 

the amount of raw material which should be made available at each 

period of a finite series of scheduling periods, when the demand pro­

cess exhibits a covariance between the requirements in one scheduling 

period and the requirements in other scheduling periods. It is 

hypothesized that such a procedure can be developed. This problem 

is a special case of the inventory problem and is investigated using 

the methodology and terminology of inventory theory. 

A material supply procedure is developed for several cost struc­

tures. The procedure allows for a positive or negative covariance 

between demands in various periods by treating the cumulative de.mand 

as the sum of random variables. An opportunity cost evaluation model 

is developed which allows a tradeoff determination of whether an 

established schedule should be amended when new scheduling informa­

tion becomes available throughout the horizon. 

The significance of the investigation is that it provides managers 

of intermittent production systems with a supply decision model 

which is not restricted to the assumption of independence of demands 

between periods, It also provides a tradeoff analysis which enables 
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the supply decision maker to evaluate new requirement forecasts 

throughout a multi-period horizon for possible supply schedule 

improvements. This analysis is considered unique in that it deals 

with covariance between period requirements, while other studies 

assume independence or assume that the requirements are related to 

the inventory level. It is assumed in this investigation that a pre­

viously specified delivery schedule can be ammended at a cost which 

is less than the cost to negotiate and contract for the original order. 

This feature is considered unique and realistic. The features of 

improved information and reevaluation of decisions were not found in 

any of the research on this subject. This investigation recognizes and 

takes into account some of the information availability problems which 

can occur in attempting to supply future requirements. Completely 

accurate information may not be available at the time a decision must 

be made. The further ahead one tries to forecast a requirement, the 

less accurate that forecast is likely to be. As some scheduling 

periods in a horizon elapse, better information regarding the latter 

portion of the horizon is assumed to become available. 

Background 

The Importance of Inventory Study 

The study of inventory and inventory theory is important for 

several reasons. Approximately one-third of the assets of the average 
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American business is invested in inventory. Inventories help to pro­

vide stable levels of sales, production, and employment. Individually 

for each business enterprise and collectively for the national economy, 

the inventory level serves as an early warning sign of potential eco­

nomic difficulty.1 In addition, many problems can be analyzed in terms 

of inventory theory. Personnel staffing may be considered as an 

inventory of a resource. The optimum number of spare machines and 

the amount of repair capability are other examples of situations which 

are amenable to analysis by inventory theory. 2 

Since inventory represents a sizable commitment of resources 

and is an important segment of the national economy, it is under­

standable why inventory has been and still remains the subject of 

much study. Quantitative investigations are known to have been made 

as early as the first decade of this century .3 Research was conducted 

in inventory operations long before the term II ope rations re search11 

became a recognized term for describing such an activity. Today, 

many investigations and publications pertain to the subject of 

inventory. 

Inventory 

Inventory is the accumulation of an idle resource. With the 

possible exception of the satisfaction of a miserly instinct, the 

accumulation in itself would have little inherent or direct advantage. 
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Inventories exist in order to supply a demand process. If there is no 

demand or anticipated future demand for a resource, then an inventory 

of that resource would offer more burden than benefit. Due to changes 

in demand, inventories can become obsolete resulting in the loss of 

large sums of money. An example of such a situation would be a 

fashion item such as clothing. 

Inventory may be an accumulation of raw material to supply a 

production facility, it may be an in-process inventory to feed succes­

sive steps in production, or it may be a finished goods inventory 

accumulated to supply wholesale or retail consumer demand. The 

ultimate reason for all these inventories is to meet a demand which 

results in a sale and generates the revenue which is essential to the 

survival of the enterprise. If the consumer demanding process 

changes in any way, the amount of resource needed in any of these 

inventories is subject to change. Demand usually cannot be predicted 

exactly. There is risk associated with having an inventory since 

demand may cease or decrease. There is also a risk that the demand 

may increase and the business will be unable to meet it. Thus, the 

inventory decision making process is decision making under risk. 

The inventory level is determined to som.e extent by balancing the 

risk of the inventory level 1s being too low with the risk of the inventory 

level 1 s being too high. 

Even when there is certainty of demand, it may be desirable 

to build up an inventory at certain periods of time to allow the input 
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rate to differ from the rate of demand. Manufacturing in large lots 

reduces the number of setups required and, consequently, the setup 

cost per item produced. For purchased items, purchasing in large 

quantities may result in reduced unit prices charged by the vendor. 

The purchasing of large lots may also result in economies in the 

shipping and receiving of materials. These and perhaps other factors 

may result in the total expected cost of operation being reduced by 

maintaining an inventory during certain periods of time. 

The General Inventory Problem 

Generally, inventory is an accumulation of a re source due to a 

nonsynchronized condition between the input rate and the output rate. 

It may be desirable as a protection from the risk due to the uncertainty 

of the output or demand, or it may be desirable due to economies in 

operation due to increasing the input rate at certain periods of time. 

To attempt to optimize inventory, one must consider both the input 

and output rate together. If the inventory is a finished goods inventory, 

the using or demanding process is not under the control of the decision 

maker. In such a situation the decision maker must analyze the out­

put rate and determine the input rate which optimizes the total relevant 

inventory cost. Since the input rate, i.e., the production rate, 

influences the inventory cost, the production planning and inventory 

control functions are often assigned to the same unit within many 

organizations. 
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If the initial inventory level is represented by I0 , the rate of 

input by B, and the rate of output by E, then for any time, t, the 

inventory level, I, can be represented by 

I (t) = I 0 + s ( B - E) dt 
0 

if the rates are considered as being continuous. This formulation 

applies where the addition and removal of inventory occurs in contin-

uous or nondiscrete units such as liquid measure. In some other 

cases the integral formulation is a sufficient approximation to model 

the actual process even though the units are discrete. In other prob-

lems the input and output occur in discrete units and a summation 

rather than an integration is a better model. Where the solution is 

to be by digital computer, the summation process will be followed. 

The problem can be represented by 

T 

I ( T ) = 1c + ~ ( Bt - Et) 
t= 1 

The inventory problem to which inventory theory has addressed itself 

is equivalent to finding input and output functions which maximize or 

minimize some established measure of effectiveness, subject to 

certain restrictions. 4 

The usual measure of effectiveness is a maximization of profit 

or a minimization of the incremental operating cost relative to the 

inventory policy. If it is assumed that the sales revenue will remain 
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the same regardless of inventory policy, then a minimization of cost 

is equivalent to a maximization of profit. An outline of most of the 

cost factors which would be considered in such an analysis is 

presented in Table I. 

TABLE I 

INVENTORY COST FACTORS 

A. Finance (cost of capital) F. Depreciation and Obsolescence 

B. Handling 1. Inventory Shortages 

1. Receiving Labor 
2. Engineering or Design Changes 
3. Valuation Reduction 

2. Trucking 
4. Deterioration 

3. Stores Labor 
4. Shipping G. Administration (maintaining the 

C. Storage 
system) 

1. Receiving Area 
H. Stockout 

2. Stores Area 1. Cost of Back Order 
3. Shipping Area 2. Lost Sale 

D. Insurance 
3. Lost Customer 

1. Real Estate 
I. Setup and Order Costs 

2. Property J. Item Cost (quantity discounts) 

3. Industrial Compensation K. Opportunity Cost (loss ·of goodwill 

E T or future sales) . axes 

1. Property 
2. Real Estate 



9 

The inventory cost factors illustrated in Table I are not the only 

factors of importance in the analysis of an inventory problem. Non­

cost factors such as lead time, lead time variation, forecasted 

demand, the forecast error, fixed shortage limitations, storage 

capacity, vendor minimums or maximums, and carload requirements 

may also enter into the analysis. 5 The purpose of such an analysis. 

is to arrive at an operating policy. 

An inventory policy usually consists of a set of decision rules 

which recommend two factors: how much to buy, and when to buy. 

When inventory problems become very complex, they may not be 

mathematically tractable. In such a situation, a great number of 

possible alternative policies may exist. The time and cost of 

evaluating such a problem may be greater than the possible savings. 

One restriction which may be placed upon an inventory problem is to 

specify the type of policy which is sought. This restriction reduces 

the number of alternatives to evaluate and usually provides a near 

optimal answer. 

Classification of Inventory Problems 

In addition to restricting the types of policy which may be con­

sidered in analyzing an inventory proble1n, several other restrictive 

assumptions may be made. The type of situation which is assumed 

to exist serves a£ a basis for classifying inventory problems. 
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One of the more general distinctions between inventory problems 

is that of the degree of certainty with which the parameters are known. 

When the parameters are assumed to be fixed or known with certainty, 

the problem is said to be deterministic. If the properties are not 

fixed or can be defined only by a probability distribution, the problem 

is said to be probabilistic. An actual deterministic situation exists 

when one analyzes past data to determine the optimum way a problem 

should have been handled in the past or when a definite plan is to be 

met. In working with consumer demand, the problem is usually 

probabilistic. However, if the demand variance is small or if the 

cost of deviation from the average is small, then deterministic 

analysis can be applied to make the computation and analysis simpler. 

Both input and output may be treated as being 

a. Continuously arriving in time 

b. Arriving at discrete equidistant points in time 

c. Arriving at discrete irregular points in time. 

In most actual situations, condition (c) exists but condition (a) or (b) 

may be a sufficient approximation to provide a near optimal solution 

to the problem. Lead time can be assumed to be either deterministic 

or probabilistic. 

Problems may be treated as being static or dynamic. The static 

problem is one in which the parameters are assumed to remain con­

stant throughout time. This type problem would be a single period 



inventory situation or a multiple cycle inventory problem in which 

each cycle has the same parameters. A dynamic problem is one 

in which the parameters change with time. 

11 

Additional classifications include whether the problem considers 

a single item or multiple items. When a large number of products 

are to be stocked and the aggregate of all independent decisions 

violates some constraint, such as space or investment, modified 

algorithms must be used. Some problems deal with multistation 

situations in which decisions are to be made regarding the amount 

and timing of inventory additions at each step of processing in 

manufacturing an item from raw material into a finished product. 

The objective is to optimize the in-process inventory~ 

Another class of problems which is far from fully investigated 

is the multilocation problem. 7 This area deals with determining 

optimum stocking policies in a group of warehouses. Decisions 

include many interrelationships caused by the possibility of supplying 

a stockout condition at one warehouse fron1 a warehouse in a different 

district or from the factory. Probabilities of stockout in both of these 

warehouses simultaneously must be considered. An example of the 

types of alternatives considered in such a situation might be whether 

to keep moderate levels of an item in each local warehouse or to keep 

a small amount in each local warehouse and a large inventory in one 

central or "hub" warehouse. 
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Common Inventory Policies 

Inventory policies once developed must be implemented to assure 

that consistent actions are taken by the diverse elements and person­

nel in an organization. In order to be implemented, a policy must be 

understandable to the persons who are to use it. The output of an 

inventory model, even though based on mathematical theory, will 

normally provide a collection of rules for how much to add to 

inventory and when to add it. These rules may be enlarged to include 

various actions to be taken depending on the environmental conditions 

which exist at the time of use. 

There are three major types of inventory policy which are com­

monly used. The oldest is the fixed order system. Under such a 

system, the level of inventory of a particular item is monitored at 

each occurrence of a transaction involving that item. Whenever the 

level of inventory reaches a preassigned level, an order is placed for 

a specific amount. This amount is calculated to be the optimal lot 

size or "economic order quantity" (EOQ). 

The second major type of inventory policy is the fixed order 

eye le system. Under such a system, a level, L, is set and an order 

is placed at regular intervals when the order date occurs. The 

quantity ordered is (L-I) which is the amount required to bring the 

inventory level, I, back up to L. The amount ordered depends upon 

the amount used since the last order date. The cycle length between 



order dates is selected so that the amount ordered will be approxi­

mately equal to the economic order quantity. 
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The third type of general inventory policy is a combination of the 

two previous policies. This type is called the (S, s) policy. Two con­

trol levels for the inventory are determined, the upper level being 

represented by S and the lower by s. The inventory is reviewed on 

a fixed cycle and if the inventory level, I, is above s, no order is 

placed, If the inventory level is belows, then an order (S-1) is placed 

for enough to bring the inventory level up to S.8 This system has a 

fixed cycle for review like the fixed cycle system and a reorder level 

like the fixed quantity system. It differs from the fixed cycle system 

in that an order is not necessarily placed every cycle. It differs from 

the fixed order quantity system in that the order size may vary. The 

desired average order size is the economic order size, provided 

that the input rate and the output rate are approximately uniform. 

Limitations of Inventory Policy 

The large number of restrictions and alternatives previously 

mentioned suggests that exact solutions may be hard to achieve in 

actual situations. In seeking a policy to treat a particular situation, 

one must abstract a sufficient amount of detail so the solution is 

relevant to the problem and is near optimal. 



When mathematics is applied to the solution of inventory 
problems, it is necessary to describe mathematically the 
system to be studied. Such a description is often referred 
to as a mathematical model. The procedure is to construct 
a mathematical model of the system of interest and then to 
study the properties of the model. Because it is never 
possible to represent the real world with complete accuracy, 
certain approximations and simplifications must be made 
when constructing a mathematical model. There are many 
reasons for this. One is that it is essentially impossible 
to find out what the real world is really like. Another is 
that a very accurate model of the real world can become 
impossibly difficult to work with mathematically. A final 
reason is that accurate models often cannot be justified 
on economic grounds. Simple approximate ones will yield 
results which are good enough so that the additional improve­
ment obtained from a better model is not sufficient to 
justify its additional co st. 9 
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This quotation well illustrates the mathematical and analytical limita-

tions and compromises. 

Another aspect of compromise 1s well summarized below: 

Efficient inventory-control methods can reduce but not 
eliminate business risk. Risk, in business as elsewhere, 
is essentially a measure of uncertainty concerning the 
future. Inventory planning and control procedures can 
only help the businessman assess the risk and plan a 
strategy, as far as production and purchasing plans are 
concerned, to accept it on the most favorable terms con­
sistent with the basic policies and objectives of the business. 

The power of improved inventory management is limited 
further by the basic nature of the conflict among the 
objectives of a business. Better sales through improved 
service to customers, lower costs through smoother pro­
duction operations, and lower investment needs through 
reduced inventories are all legitimate business aims, but 
they are in fundamental conflict. The best an inventory­
control system can do is make the conflict evident in order 
to force a business decision which balances objectives, and 
then assure that the balance arrived at will be faithfully 
observed in day-to-day operations. But making dee is ions 



more intelligently and making action respond to them does 
not mean that the decisions are necessarily easier, that 
the basic conflicts are eliminated, or that the essential 
risk of the business is reduced. 10 

Here Magee brings out another highly relevant aspect of compromise 

and limitation. In establishing inventory policy, one is attempting 

to optimize several factors. Each of these factors may be under the 

responsibility of different organizational elements. People in each 

responsible area have a personal bias in the way they view the pro-

15 

blem. In attempting to gather facts so that a model can be developed, 

all of the facts may not be learned. Some of the information may be 

distorted or even hidden, either through intent or honest difference 

in orientation. In addition, records may not have been kept of all 

the desired facts or the process may not have been in operation long 

enough to provide a large sample. Many factors exist which can make 

the actual implementation of inventory policy differ from a system 

based purely on theory. 

Literature Related to This Research 

Work on inventory problems has been conducted at many different 

levels. At one extreme, a considerable amount of work is concerned 

strictly with practical applications, while, at the other extreme, work 

has been done on the abstract mathematical properties of inventory 

models without regard to possible practical applications. 11 The former 

area might consist of work relating to organization and staffing, forms 
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design, system implementation case studies, and general managerial 

remarks about production and inventory management. These types of 

remarks are of great practical importance but are not considered 

germane to this research. Other types of studies relate to the con­

ceptual schemes and rationale which can b~ quantified to some extent. 

These types of studies are considered as related to this dissertation; 

however, it is hoped that this work will fall within the category of 

practicality rather than abstract theory. 

A larger number of books are presented in the bibliography, but 

a few are mentioned here to distinguish their orientation. An exten­

sive bibliography is given by Hanssmann ( 1961) who also provides a 

review of progress in the field of production and inventory theory, 

Theoretical books can be classified by the level of mathematical 

sophistication required, Four books which require little mathematical 

sophistication and are intended for practitioners are Bowman and 

Fetter (1961), Brown (1959), Brown (1967), and Magee (1958). 

Brown I s 1959 book provides an extended treatment of forecasting, 

particularly as it relates to inventory control. The book, published 

by Brown in 1967, is an unusual departure from the customary text­

book presentation. It contains some of the elements of a novel such 

as a plot and character studies in the case study presented, This 

treatment might provide great benefits to students by illustrating 

that the same problem, in actuality, is often seen from several 

different points of view. 
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Books which require a moderate degree of mathematics are 

Buchan and Koenigsberg (1963), Hadley and Whitin (1963 ), Hanssmann 

( 1962), and Whitin (1953). Hanssmann' s book provides a very extended 

treatment of multilevel and multi-item problems. The Whitin book is 

an often referenced classic, 

The books with advanced treatment of the mathematical theory 

of inventory are primarily related to the work performed at Stanford 

University or performed by researchers who have studied there. The 

book by Arrow, Karlin, and Scarf (1958) and one edited by Scarf, 

Gilford, and Shelly ( 1963) would be classified in this category. Many 

articles have been published in the area of mathematical theory. An 

excellent review of the works in this field is provided by Inglehart 

( 1967). 

Numerous articles pertaining to inventory appear in periodicals. 

Some of the more common sources of these are mentioned in the 

following sentences. Articles dealing primarily with the theoretical 

and mathematical aspects of inventory may be found in Operations 

Research. Management Science publishes many articles which may 

range from management studies related to inventory to theoretical 

development of inventory models. The American Production and 

Inventory Control Society publishes a Quarterly Bulletin which con­

tains many good inventory articles. The Naval Re search Logistics 

Quarterly also contains a wide variety of inventory related articles 

as does The Journal of Industrial Engineering. 



To place in context the research presented in this dissertation, 

a brief review of the development of related ideas would be in order. 

The first known publications to deal quantitatively with inventory 

problems occurred early in this century. The earliest development 
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of the EOQ model was by Ford Harris of the Westinghouse Corporation 

in 1915. This same formula has been developed, apparently indepen­

dently by many individuals since that date. One such individual was 

R. H. Wilson who sold an inventory scheme including this formula to 

many companies. Today the EOQ formula is sometimes referred to 

as the Wilson formula. F. E. Raymond wrote the first full-length 

book dealing with inventory which was published in 1931. It contained 

many extensions of the simple lot size formula rather than derivations 

of new models. 12 

During World War II, as operations research developed, attention 

was directed toward the stochastic aspects of inventory problems and 

models were developed. Arrow, Harris, and Marschak published in 

1951 an article dealing with the dynamic inventory problem. This 

model took into account the probabilistic aspects of demand but 

assumed that the probability distributions for each period's demand 

were identical and independent from any other period. 13 

The first book in English which dealt in detail with stochastic 

inventory models was published in 1953 by Whitin. Shortly after this 

· time, Bellman developed the concepts of dynamic programming and 
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published his book (1957) on the subject. The following year, Wagner 

and Whitin (1958) applied the dynamic programming concept to develop 

a dynamic deterministic lot size algorithm. 

In 1960, Samuel Karlin published a model for a probabilistic 

situation where the demand distributions do not have to be identical. 

However, one major assumption was that the demands were indepen­

dent from period to period.14 

In 1962, Karlin and Iglehart published a similar study with some 

covariance allowed between the demands. This covariance was 

assumed to be of a Markov chain type,15 so that the demand proba­

bilities are independent of how the system got in its current state. 

The problem treated in this dissertation assumes that the demand 

probabilities depend on the manner in which the preceding demands 

occurred. 
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CHAPTER II 

THE PROBLEM 

This dissertation deals with a problem in the procurement 

of raw materials and components to meet a dynamic demand over 

a finite multiperiod horizon when there is covariance between the 

material requirements in one perfod and the requirements in other 

periods. The particular problem arises in attempting to specify the 

quantity to be delivered on each of a series of equidistant points in 

time when the actual amount needed is subject to change between the 

time when the order is placed and the time the delivery date occurs. 

Many of the factors discussed in the introduction are relevant to the 

proposed problem and inventory theory will be used to develop a 

quantitative solution to such a problem. 

Since the type of inventory problem discussed here differs from 

the ordinary mass production, continuous demand problems usually 

found in textbooks, it will be described in some detail. The frame­

work of a ~ypical situation will be presented in addition to mathemati­

cal terminology. 

22 
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Problem Environment 

Many industries sell in low or moderate volume an established 

line of products which they do not stock in inventory to sell "off-the­

shelf", Such products are typically expensive and have optional con­

figurations which may be specified by the customer at the time of 

order. In such an industry, a finished goods inventory would not be 

desirable. Also, in such an industry, it would be expensive to main­

tain a raw materials inventory for some of the components. Since a 

finished goods inventory (which would serve as a buffer between pro­

duction and demand} is not maintained, the production rate is not con­

tinuous. In addition to the intermittent demand, there is a possibility 

that some components may become obsolete due to design changes. 

Examples of this type industry are the heavy equipment, aircraft, and 

machine tool industries. Perhaps some types of ship building would 

fall in this category also. 

The Schedule 

The inventory management problem begins with the receipt of 

two kinds of information from the production planning department: the 

master schedule and the bill of materials. The bill of materials or 

"mate rial requirement request" shows the number and type of each 

of the component parts in the finished product. The master schedule 

specifies the customer delivery date of the finished items. Usually 
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in the material control department, this information is combined with 

the manufacturing or assembly time to yield calendar dates on which 

the raw material or parts would be needed for production. 1 

The development of a series of raw material requirements, 

called a requirements vector, comes from the scheduling process. 

When an order is received for a quantity of a product this order is 

broken down into the manufacturing processing time it will require 

in each of the work centers which must perform manufacturing 

operations on that product. When production time is available for 

the first operation the manufacturing cycle can begin, if the raw 

material is available. The time that the production is to begin 

establishes the time that there will be a requirement for raw material. 

If several orders which require the same raw material are received, 

they may be scheduled to begin in adjacent scheduling periods, result­

ing in a series of raw material requirements. If the available pro­

duction time _at some operation is not sufficient to process the entire 

order in one scheduling period a larger order will be divided and pro­

cessed in two or more scheduling periods near that scheduling period. 

The first production operation is not the only one which can 

result in a requirement for material. A subassembly component may 

be purchased and attached at any stage in the manufacturing cycle. 

If the same component were required in a series of adjacent schedul­

ing periods it would also result in a multiperiod requirement. 



Figure 1 shows a portion of a master schedule in which there 

is a series of requirements for a raw material item. There are 

requirements for 38, 16, and 20 part ABC raw forgings in months 3, 

4, and 5, respectively. 
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The series of requirements may be represented by a row 

vector R1, R 2 , R3 ... RN where N represents the number of months 

ahead of the present for which requirements are scheduled. The 

value of N depends upon the length of time until delivery dates for 

finished products. 2 When business is good, the scheduled production 

backlog may be long and in other times relatively short. Thus, the 

planning horizon for a particular product varies depending upon the 

amount of business foreseen for that product. 

Similar schedules would exist for other parts required in the 

product line, There may be several thousand parts which fall into 

the category for which management does not wish to maintain an 

inventory. Each part schedule would differ from others depending 

upon the product mix sold, the amount of production to be performed 

on the part, the work load in the work centers at which the part is to 

be processed, and the point in the assembly operation at which the 

processed part is required in order to complete the final assembly 

in time to meet the promised delivery date for the completed product. 
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Figure 1. Part of a Master Schedule 
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Dynamic Nature of Requirements 

Scheduling work through a facility is a complex process. Many 

parts must flow through a different variety of work centers. Several 

criteria may guide the scheduling of the production. Two major 

factors which it is attempted to achieve are the reduction of the time 

until delivery to a customer and the utilization of the available man-

power and productive capacity in a balanced fashion. Uniformity of 

the requirements for raw material and components is not usually 

sought. The row vector of expected raw material requirements or 

"requirements vectortt will usually be a series of unequal numbers. 

Thus the demand or use of the item is expected to be nonuniform. 

A situation in which the parameters change with time is said to be 

d . 3 ynam1c. 

Randomness 

Usually a series of scheduled requirements will not remain con-

stant through time. The actual requirement which exists when the 

material is delivered may differ from the expected value which was 

originally scheduled. Several factors may influence the actual value 

of the requirement for raw materials or components and make it 

differ from the originally scheduled value. Some orders may be can-

celled or customers may establish priorities which preclude the per-

formance of work as originally scheduled. Employee absenteeism 
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may differ from standard and change the number of productive man­

hours available. Machine breakdowns may occur which will interfere 

with the productive use of the manhours which are available. The 

rate of scrap may differ from the scrap allowance which was used in 

calculating the expected requirement. Customers who already own 

the product may order replacement parts for their equipment which 

would be expected to break down on a random basis. All of these 

chance- caused factors and more may occur so that there is a variance 

of the actual requirement about its expected value. When many chance­

caused variables determine a value, it can be called random. 4 

Covariance 

The requirements for raw material and component parts arise as 

a result of the production process. As the production rate increases, 

so will the elements in the requirements vector and vice versa. This 

vector can change between the time that the items must be placed on 

order and the time that they are to be delivered so that the elements 

of the requirements vector can be considered as the expected value 

from a series of demand probability density distributions. The 

accuracy with which the mean demand can be predicted will decrease, 

the further into the future the prediction is carried. The variance of 

the successive distributions should increase. 5 
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The values which occur in each successive stage of the horizon 

will exhibit some form of covariance. The hypothesis of this research 

is that a procedure will be developed to supply requirements which 

have covariance (see page 2). Intuitive reasons may be presented to 

support either positive or negative covariance, To explain a negative 

covariance, one might reason that a company attempts to produce to 

a pre- established schedule. On a particular job, if the production has 

run ahead of schedule for some number of periods, then production 

facilities may be diverted to another job which is not so far ahead of 

schedule. Thus, if the requirement for the raw material had been 

greater than expected for some number of periods, P1, then it might 

be expected to be lower than expected for another number of periods, 

Pz. The numbers P1 and P 2 would be difficult to establish and might 

require many replications in order to determine them by experiment~ 

To explain a positive covariance, one might reason as follows. 

If the average scrap rate has been incorrectly estimated or if busi­

ness is better or worse than usual in one scheduling period, it is 

likely to remain that way for several periods. With a positive 

covariance an actual value higher than the scheduled value will be 

followed by one or more actual requirements which are higher than 

were originally scheduled for that period. This condition might 

be thought of as a short term bias in the forecasting system. If such 

a bias exists, it would be desirable to detect it. 
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Information Availability 

As each period of the production duration passes, new informa­

tion about the remainder of the production cycle and new estimated 

production schedules are developed. These new production schedules 

contain information regarding newly ordered products and revisions 

of the previously developed schedules. The requested deliveries for 

periods beyond the production leadtime can be revised if it is desired. 

Cost Factors 

Some of the cost factors mentioned in the introductory chapter 

of this dissertation are relevant to the problem under investigation. 

These factors are identified in the following sections. 

Item Cost = C ($/unit) 

The co st per item purchased can vary with the total quantity 

purchased, i.e., quantity discounts are possible. The item cost is 

assumed to be independent of the delivery quantities into which the 

total order is divided. 

Order Cost = K ($/order) 

The order cost is considered to be independent of the quantity 

purchased. It consists of the expense required to solicit quotations 



from various vendors, negotiate, and make a purchase specifying a 

delivery schedule for the quantity purchased. 

Delivery Amendment Cost = A ($/amendment) 

It is assumed that a previously established delivery schedule 

can be amended for a cost A, which is less than K. 

Holding Cost = H ($/time-unit) 
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The holding cost pertinent to this problem are all out- of- pocket 

cost which result from holding one unit in inventory for one time 

element, such as a day. Included in this factor are storage cost 

components such as insurance, taxes, security, warehousing cost, 

and the cost of capital for the investment in inventory. 

Shortage Cost = S ($/time-unit) 

The shortage cost pertinent to this problem is considered to be 

all expenses which will result for each time element, such as a day, 

that a unit of raw material is not available to supply a scheduled 

requirement. The shortage cost may be very great since the shortage 

of an item may cause expenses for overtime labor, or delay the ship­

ment of the completed assembly and result in a delay of receiving 

payment for the finished product, a contract penalty, or pas sibly result 

in the closing down of a production operation, The shortage cost is 

considered to be greater than the holding cost and perhaps much 
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greater than the cost of the item. A shortage in this problem is not 

considered to result in a lost sale because the item being manufactured 

is already on order by a customer. 

Receiving Cost = T ($/delivery) 

The cost to receive and inspect a delivery is considered to be 

a fixed quantity. 

Chapter Conclusion 

This description of the problem elements and the relevant cost 

elements provides an understanding of the situation being investigated. 

In the next chapter the problem elements are analyzed to develop a 

method of decision making in establishing a new or amended delivery 

schedule. 
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CHAPTER III 

DETERMINING THE DELIVERY SCHEDULE 

Since the total amount to be ordered is known and since a 

delivery schedule can be amended for less than the cost to place 

separate orders, a minimum cost supply procedure results from 

ordering only once and requesting a delivery schedule which will 

require amending a minimum number of times. In addition, if the 

ordering is from an external supplier, the placing of one large order 

may result in a discount on the cost per item. If the ordering is 

from an intracompany department, the placing of one order will 

facilitate production planning. The original order (and any schedule 

amendments) should request a delivery schedule which is the best one 

possible for the information available at the time it is placed, to 

as sure that it will require amending a minimum number of times. 

Two major questions follow: 

• How is the optimal delivery schedule determined to supply 

a series of probabilistic requirements which have covariance? 

• When should a delivery schedule be amended? 

34 
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This chapter is devoted to developing analytical concepts to answer 

the first question. Models for determining the answer to the second 

question are developed for the discrete and the continuous case in the 

next chapter. 

Throughout the analysis the focus is upon optimizing the single 

product situation. It is assumed that no restrictions (such as shortage 

of storage space or working capital) are present to prevent the imple­

mentation of an optimum delivery schedule for the aggregate of all 

products. This analysis is based on the arrival and usage of discrete 

units, and is extended to the continuous case. 

The objective is to determine an optimal schedule of item 

deliveries which the decision-making organization should request 

from the supplier. To be optimal, the series of deliveries D = 

{D1, Dz, ... DN} must supply a series of forecasted probabilistic 

requirements R = {R1, Rz, •.• RN} in a manner which will minimize 

the total expected cost. The total amount to be purchased is assumed 

to be known, since it is the sum of all the scheduled assembly require­

ments plus an allowance for scrap. If this amount were delivered all 

on the date of the first requirement (Dz, D3, ••• DN = 0), then there 

would be no shortage cost but there would be a large holding cost. 

The material to supply the last requirement would be held until the 

total amount was used. The material for the next-to-last requirement 

would be held one period less, etc. On the other hand, if the deliv­

eries were set equal to the expected requirements (Di = Ri; i = 1 to N), 
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then there would be a significant chance of stockout near the end of 

each scheduling period, but the holding cost wo{ild be reduced, 

Optimum Probability of Meeting Requirements 

It is seldom economical to carry enough inventory to meet any 

possible demand.1 In the situation where inventory is not normally 

carried, it seldom would be advisable to request a delivery large 

enough to cover any possible requirement. In attempting to determine 

the optimum probability of meeting a probabilistic requirement, the 

process is obviously one of making a decision under risk. If the 

receipts of material are set too high, there is a risk of paying exces -

sive holding costs. On the other hand, if the receipts of material 

are too low, there is a risk of cost due to stockout or shortage, 

Consider a forecasted requirement vector for the probabilistic 

problem to which this paper is addressed. When the item procure-

ment leadtime is X., the forecasted requirement vector would be: 

Rx_, Rx_+ 1 , Rx.+z , ... Rh, where his the length of the planning 

horizon. The requirements are probabilistic, so the actual require-

/'\. 
ment Rx_ which occurs X. periods after the estimate Rx_ is not 

necessarily equal to Rx_. It is also true that 'R.x_+i may not equal 

Rx_+ 1, etc. The actual requirements can be considered as observable 

random non-negative values from a distribution of possible require-

ments which could occur in that period. Negative demands are not 

considered since they would constitute a disassembly of a completed 
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or partially completed item and a return of the raw material item to 

inventory. The actual requirement which can occur can be described 

in terms of a probability distribution. Each level of possible require­

ment would have associated with it a probability of occurrence. Know­

ledge of these distributions at each period would aid in determining the 

most desirable level of delivery to request. 

The probability distribution of demands at any period can be 

expressed as a cumulative distribution so that for each level of 

possible demand there is associated a probability of the demand being 

less than or equal to that quantity. This level can also be interpreted 

as a level of delivery allocation, and the cumulative probabilities are 

the probability of the requirement's being less than or equal to the 

delivery allocation. The amount of delivery which should be allocated 

to a period is the level which provides the optimum probability of 

meeting the requirement. The optimum probability of meeting the 

requirement at a period can be determined by incremental analysis. 2 

In its full detail incremental analysis would consist of making a 

whole series of decisions of whether to add one more increment to 

the delivery allocation for a period. When the point is reached at 

which it is no longer profitable to add any more units to a delivery, 

the optimum level has been reached. At this point the expected incre -

mental cost is equal to the expected incremental gain. With this 

knowledge it is not necessary to go through a series of decisions 

because the optimum probability can be found by the calculations 
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presented below. This relationship is developed on the basis of 

monetary value, but it can be considered on the basis of utility as 

is discussed in the final chapter. 

Let 

X* = the optimum level of material to be available 

= the probability that X>:< or fewer will be required 

H = the holding cost in $/time-unit held 

s = the shortage cost in $/time-unit short 

E (IC) = the expected incremental cost, and 

E (IG) = the expected incremental gain, 

Since at the optimal point 

E (IC) = E (IG) 

therefore 

[1 - <l> (X*)] S = <l> (X>:<) H 

and 

S - <l> (x,:<) S = <l> (X>:<) H 

then 

S = <I> (X>:<) H + <I> (X>:<) S 

so that 

S = <I> (X>:<) (H + S) 

resulting in the relationship 

s 
<l> (X*) = -­

H + S 
3 
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This derived formula provides a short- cut method for the com-

putation of the optimum probability of meeting a demand, The short-

cut is valid in all situations where it is true that "if the incremental 

profits of any given unit in the sequence is positive, the incremental 

profits of all earlier units are also positive". 4 An example of a 

situation in which the short-cut method may not hold true is a case 

where each delivery allocation represents a separate purchase at a 

quantity discount. Such a condition does not occur in the problem 

which is dealt with in this paper, however, because the item cost 

is independent of the quantities in a delivery allocation. 

The optimum probability of covering the demand can be found by 

the analysis presented above. This probability of receipts being 

equal to or greater than the demand should be optimal each time one 

must make a tradeoff of selecting a level which will protect sufficiently 

but not overprotect from the cost of shortage. Thus, it is desirable 

to have the same probability of meeting demand at each period or stage 

throughout the horizon, so long as the holding cost and the shortage 

h . s . h cost remain constant or t e ratio H + S remains t e same. 

At each stage in the horizon, i.e., the ith stage, the probability 

of avoiding a shortage penalty is the probability of the ending inven-

tory, Ii• being greater than or equal to zero. Ii will be greater than 

or equal to zero so long as the cumulative deliveries through the ith 

period are greater than or equal to the cumulative requirements 

through the ith period. It is desirable to maintain a probability of 
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<I> (X>:C) of meeting the cumulative requirements at each stage through­

out the horizon.5 In order to make probability statements about the 

cumulative requirements through a series of stages it is necessary to 

have a probability distribution of cumulative demand. The probability 

distribution of cumulative demand is obtained by constructing joint 

distributions for the stages through which the requirements are con­

sidered to accumulate. 

The number of stages over which the requirements are con­

sidered to accumulate does not necessarily have to be the number of 

periods in the procurement leadtime. The procurement leadtime is 

the minimum length of time which it is possible for requirements to 

accumulate before a change in the delivery schedule can be put into 

effect. Joint distributions over more periods will provide the proba­

bility of cumulative demands over a longer period of time. The 

number of units which should be added to the cumulative receipts at 

each stage is equal to increment in the optimal level of cumulative 

receipts through that stage. 

Constructing Joint Distributions 

The Discrete Case 

Joint distributions can be used to determine the probabilities of 

each possible level of cumulative requirements through more than 

one period. The individual stage probability distributions and the 
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relationship between them have an effect on the joint distributions. 

A covariance between period demands has an effect on the probabilities 

at the extreme values or tails of the distributions. 

The tail of the demand distribution is usually the portion which 

is of most interest in inventory problems. The shortage cost is 

normally much greater than the holding cost resulting in a ratio of 

{S/ {H + S), i.e. , the optimum. probability, of 0. 80 or higher. Such 

probability levels mean that the upper tail of the distribution is the 

portion which will be used in determining the level of receipts which 

is optimal for probabilistic requirements .6 It is important that the 

underlying distributions of possible requirements and the relationship 

between these distributions be known so the joint distributions can be 

constructed over several periods. 

As was discussed in the previous chapter, covariance conceivably 

can exist between requirements from one period to another. Examples 

will be used to examine the effect of covariance on the probabilities 

of possible cumulative requirements and to illustrate the calculations 

necessary to develop some of the joint distributions. The first 

example will consider the result of negative covariance between each 

stage and the stage immediately preceding it. A higher than average 

requirement in one stage increases the probability of a lower require­

ment in the following stage and vice versa. This example is simplified 

by assuming that the requirements at any stage are related only to the 

immediately preceding stage and that only three possible requirement 
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levels can occur at each stage. The probabilities for this example are 

given in Table II. 

TABLE II 

PROBABILITIES FOR DISCRETE EXAMPLE 
WITH NEGATIVE COVARIANCE 

Possible Requirements 
at Any Stage (units) 9 10 11 

Probability of Possible Requirement 
at Any Stage 

Requirement 0 1 /3 1 /3 1 /3 
at Immediately 

Preceding 9 1 /5 2/5 2/5 
Stage 

10 1 /3 1 /3 1 /3 

11 2/5 2/5 1 /5 

The maximum cumulative requirements at the second stage 

would be 22 units, 11 in the first period and 11 in the second. The 

probability of 22 units being required through the second period is 

1/3 • 1/5 = 1/15 or 3/45. The second largest requirement would 

be 21 units which could result from a requirement of 11 in the first 

period and 10 in the second or from a requirement of 10 in the first 

period and 11 in the second. The probability of a cumulative demand 
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of 21 through the second stage is (1 /3 . 2/5) + (1 /3 · 1 /3) = 

2/15 + 1/9 = 6/45 + 5/45 = 11/45. 

Continuing this analysis shows that the resulting cumulative 

demands and probabilities at the second and third stages are: 

Stage 2 Stage 3 

Cumulative Cumulative 
Demand Probability Demand Probability 

22 3/45 33 27/2025 

21 11/45 32 189/2025 

20 17/45 31 471/2025 

19 11/ 45 30 651/2025 

18 3/45 29 471/2025 

28 189/2025 

27 27/2025 

To demonstrate the importance of the effect of covariance on the 

probabilities of extreme values, the same numbers can be used in a 

problem with a positive covariance assumed. In this hypothetical 

situation a higher-than-average demand in one period will increase 

the probability of a high demand in the next period and a lower-than-

average demand will increase the probability of a low demand in the 

next stage. The probabilities of such an example are shown in 

Table III. 



TABLE III 

PROBABILITIES FOR DISCRETE EXAMPLE 
WITH POSITIVE COVARIANCE 

Possible Requirements 
at Any Stage (units) 9 10 

44 

11 

Probability of Possible Requirement 
at Any Stage 

Requirement 0 1/3 1 /3 1 /3 
at Immediately 

Preceding 9 2/5 2/5 1 I 5 
Stage 

10 1 /3 1 /3 1 /3 

11 1 /5 2/5 2/5 

The possible cumulative requirements which can occur at the 

second and third stages with the associated probability of occurrences 

are shown below: 

Stage 2 Stage 3 

Cumulative Cumulative 

Demand Probability Demand Probability 

22 1 I 9 33 1/27 

21 2/9 32 3/27 

20 3/9 31 6/27 

19 2/9 30 7/27 

18 1/ 9 29 6/27 

28 3/27 

27 1/27 
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The two preceding examples illustrate the effect that covariance 

can have on probability levels of cumulative requirements. The upper 

tails of the cumulative probability distributions are of particular 

importance, for it is in this region that the optimum probability nor­

mally falls. A comparison of the probability distributions for the 

third stages reveals that the probability of a cumulative requirement 

of 33 is four times as great for the positive covariance example as it 

is for the negative covariance example. In the negative covariance 

example the probability of a cumulative requirement of 32 or 33 is 

(27 + 189)/2025 or 0.106. In the positive covariance example it is 

(108 + 288)/2025 or 0.195, almost twice as great. If covariance 

exists it can be of great importance in establishing the proper amount 

of material to supply for a series of scheduling periods. 

The preceding examples also illustrate another point. Even 

though the individual distributions for each stage are definitely not 

normally distributed, the probability distribution for the cumulative 

requirements over three periods has a bell shape much like a normal 

curve. In an actual situation the underlying distribution at each stage 

would probably be more nearly normal than the simple stage distribu­

tions used in these examples. 

The preceding examples do not illustrate the vast amount of com­

putation which would be required to construct a joint distribution for 

a discrete problem of realistic magnitude. If there were 10 possible 

levels of requirements at each stage, a five stage problem would have 
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105 possible permutations of requirements through the fifth stage. It 

would also be possible to construct joint distributions by simulation. 

A computer simulation model can be used for such a problem. The 

model would require decision rules to select the stage probabilities 

at every stage but the first depending upon the requirements which 

occurred in the preceding stages. Such a model could provide the 

shape of the joint distribution without computing every possible per­

mutation of requirements through the stages. Commonly, large distri­

butions of numbers are represented by specifying the type of distribu­

tion and the statistical parameters of the distribution. 

The Continuous Case 

The normal distributions will be assumed in the following 

analysis of continuous distributions when a particular distribution 

must be used. The normal distribution can also be used to approxi­

mate a discrete distribution, As the number of possible levels of 

requirements increases, the values approach a smooth curve. The 

normal curve can be divided into intervals and the probability of the 

discrete values within an interval considered as the area of the normal 

curve within the interval. 

A situation having many possible levels of requirements at each 

stage would be represented by a probability distribution at each stage. 

The probability distribution for the cumulative requirements which 

can occur through a series of stages can be found by combining the 
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distributions for the stages. In constructing a probability distribution 

of cumulative requirements, the expected cumulative requirement 

level through a series of stages is equal to the sum of the expected 

requirements at each stage •7 If 

,..._, 

Rn = the cumulative expected requirement through the 

nth stage 

and Ri = the expected requirement for the ith stage 

then 

When covariance is present, as is assumed in this research, 

it should be taken into account in constructing the distributions of 

cumulative requirements through a series of stages. The cumulative 

requirements can be treated as the sum of n random variables. The 

variance of the cumulative demand at the nth stage can be found by: 

,-J z 
a-n = 0-11 + 0-12 + 0-13 + + o-m 

+ 0-21 + o-zz + o-z3 + . . . + o-zn 

+ . 

+ o-n1 + O-nz + o-n3 + · , , o-nn 

Since 0-11 = 0-12 ; 0-12 = 0-21 , etc., substitutions can be made so that 

the following equivalent formulation can be developed. 



,-J 2 2 + 2 + 2 + 2 o-n = 0-1 0-2 0-3 ... + o-n + 2 0-12 + 20-13 + 20-14 + + 2o-m 

+ 20-23 + 20-24 + + 20-2n 

+ 20-34 + + 20-3n, 

8 
etc. 

where 

,v 2 
o-n = the variance of the distribution of cumulative require-

ments through the nth stage 

O"·. = lJ the covariance between the ith variable and the jth 

variable. 

This model can be used to determine the variance of the distri-

bution of cumulative demand through each stage so that the optimal 

delivery allocation for each stage can be determined. The solution 

of an N period problem would require the values of N variances and 

N(N - 1)/2 covariances. If the scheduling period were in months, a 

six-month horizon would require six variances and 15 covariance 

factors. The N(N - 1) factor makes the required number of par am-

eters grow rather rapidly as N increases. However, the covariance 

factors may be zero or near zero for many of the relationships 

possible. 

Continuous Case Example 

As an example of the use of this model consider the following 

illustration which will also be used in later portions of this paper. 

An order is received for a number of products which will require 

48 
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190 units of raw material and the available production capacity results 

in a production schedule which will require four months. Assume that 

the probability distributions for the raw material requirements during 

these four periods are normal and that the following information is 

known: 

R2 = 40 R3 = 60 

0-1 = 6 o-2 = 5 0-3 = 10 

p12 = 0. 5 p13 = 0. 3 

where p· · = the coefficient of correlation between the ith variable and lJ 

the jth variable. No statistical analyisis will be necessary for the 

fourth period because the total of the four requirements is known, 

and any material which is not made available by the third stage must 

be made available for the fourth stage. Since 

O" .. 
p .. = 11 

lJ O"i 0-j 

then 

O" .. = P·· o-· o-· lJ lJ 1 J 

therefore 

O" 12 = 0. 5 (5) (6) = 15 

O" 13 = 0.3 (6) (10) = 18 
and 

O" 23 = 0. 4 (10) (5) = 20 

The mean and standard deviation of the cumulative distribution provide 

the parameters necessary to make probability statements about the 

cumulative demand. Assume that the optimum probability of meeting 
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the requirements is 0. 95, so that any stage, n, the optimum cumula-

,.._, ,.J 

tive supply allocation, xn~:<, should be Rn + 1. 65 <r n. The supply 

allocation Ai for the ith period is found by subtracting xf~l from Xi*· 

At the first stage 

A1 = 5 0 + 1. 6 5 ( 6) 

= 59. 90 . 

At the second stage 

'"'-' 
Rz = 50 + 40 = 90, 

and 

: 62 + 52 + 2( 15) = 91 

therefore 

<TZ = V9l = 9. 5 4 • 

The second stage cumulative deliveries should be 

,,, ~ 1 65 ,-..; Xz''' = Rz + • o-z 

= 90 + 1. 65(9. 54) = 105. 74 , 

and therefore 

Az = Xz>:c - X1>:c = 105. 74 - 59. 90 = 45. 84 • 

At the third stage 

,.._; 

R3 i:: 5 0 + 4 0 + 6 0 = 1 5 0 

and 

~3 = 6 2 + 5 z + 1 O 2 + 2 ( 1 5) + 2 ( 1 8) + 2 ( 2 0) = 2 6 7 , 

therefore 

-;;:-3 = "1267 = 16. 34 . 
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The third stage cumulative deliveries should be 

_,, "-' 
X3~- = R3 + 1. 65(16. 34) = 176. 96, 

therefore 

A3 = X3'~ - X2'~ = 176. 96 - 105. 74 = 71. 22 . 

The supply allocations for the first three periods are 59. 90, 45. 84, 

and 71. 22, respectively. The remainder of the total requirements, 

13. 04 units, would be allocated to the final period. 

This example can be used to demonstrate the effect that covariance 

can have on the cumulative requirements at the third stage. If there 

were no covariance (independence of the period requirements) the last 

three terms of the variance equation would be zero and 

~3 
2 = 6 2 + 5 2 + 1 0 2 

:r 1 6 1 . 

For a situation in which the covariance is negative, the covariance 

causes the variance of the cumulative requirements through severai 

stages to be less than it would be in the case of independence. This 

situation can be illustrated with the same numerical quantities which · 

were used previously but with a negative sign before the covariance 

terms. Then 

= 62 + 5 2 + 10 2 + 2(-15) + 2(-18) + 2(-20) 

= 36 + 25 + 100 - 30 - 36 - 40 

= 65 . 

The covariance can be positive, zero, or negative. These three 

conditions have an effect on the range of possible values of require-

ments which can occur and on the level of requirements which has 
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the optimum probability of not being exceeded. The range of values 

rJ -is assumed to be Rn ±3o-n· Table IV summarizes these points for the 

third stage of the preceding example. 

TABLE IV 

EFFECT OF COVARIANCE ON THIRD STAGE 
OF EXAMPLE PROBLEM 

Condition rJ 
Range 0. 95 Probable 0"3 

+ Covariance 16. 34 100. 98 to 199.02 176.96 

0 Covariance 12. 69 111. 9 3 to 188.07 170.94 

- Covariance 8.06 125. 82 to 174, 18 163.30 

The Probabilistic Delivery Date 

In the previous analysis it was assumed that deliveries always 

occurred at the start of a scheduling period. Since the scheduling 

periods are of fixed and known length, this is equivalent to determini-

stic delivery date. Thus, the previous analysis determined the 

amount to have delivered in order to cover a probabilistic demand 

over a deterministic period of time. 
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Deliveries may not always occur on the dates when they were 

scheduled, but may have some probability distribution of their occur­

rence. The uncertainty of delivery date must be taken into account 

if the delivery date variations are great enough to affect the proba­

bility of stockout. In a conventional inventory situation a safety stock 

is maintained to be on hand for protection from stockout during the 

exhaustion of one delivery before the arrival of the next delivery. 

If the delivery date is uncertain the safety stock is increased to 

account for the delivery variation which may occur. In the problem 

under consideration, an inventory is not maintained but material 

is ordered when requirements exist. Since there is no permanent 

inventory a safety stock would not be maintained but would also be 

ordered when it is required. The total amount of material to be 

made available must be that amount which gives the optimum pro­

bability of protection from stockout with both demand rate and 

delivery time variations taken into account. The determination of 

the delivery level which offers the optimum level of protection requires 

a probability distribution which has both requirement variation risk 

and delivery date risk included to give a distribution of requirements 

until the next delivery. 

The construction of a distribution of possible requirement levels 

before the next delivery and the probabilities of such can be constructed 

in at least three possible ways. 



• Data can be collected on past occurrences of requirements 

between deliveries, a frequency distribution constructed 

from these data and a probability distribution developed. 

• A distribution of requirements per time element (units /time) 

and a distribution of the number of time elements between 

deliveries (time/scheduling period) can be used to develop 

a distribution of requirements between deliveries ,9 

• A distribution of the average requirements per time element 

and a distribution of the number of time elements between 

deliveries can be developed. Mathematical analysis can be 

used to construct a distribution of requirements between 

deliveries. 

The following analysis will determine the optimum level of delivery 

for a probabilistic delivery date by the latter method. 
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The variation of the quantity which may be .required before the 

next delivery date arises from the variation of the average usage rate 

per unit of time and the variation of the length of time until the new 

delivery arrives. The material required until the next delivery is 

the product of these two variables, Time is a continuous variable, 

but can be measured in units so that it may be considered as being 

discrete. The amount of material required per unit of time can be 

discrete or continuous. Discrete numbers of units would be used if 

the item were a machined shaft or a bearing. Continuous units might 



be considered if the item were ounces of sulphuric acid, gallons of 

crude oil, or gallons of oil base in a paint blending plant. 
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The product of a continuous variable of time and a continuous 

variable of usage rate is the most conceptually difficult combination 

and is considered here. Let r equal the average usage rate per time 

element and t equal the number of time elements in a variable delivery 

period. Assume that both rand t independent random variables which 

are normally distributed. In a real problem both would have some 

finite range of values in which there is some measurable probability 

of occurrence. The product (r X t) can fall at any point in the sample 

space defined by an r, t coordinate system as illustrated in Figure 2. 

Figure 2 pictures a bivariate normal distribution in which r and 

t are independent variables. The probability of a subarea of the 

sample space would be equal to the volume of the "hill11 under the 

surface pictured. The total volume under the surface must total to 

unity. 

Let a equal the complement of the optimum probability of meeting 

the requirement. The objective of the analysis is to find a delivery 

level, X*, which the demand {r X t) will exceed with a probability 

of a. 

<I> {r X t > X*) = a = 1 - <I> (X*) 

The maximum product occurs when r is at its maximum and t is at its 

maximum, which is the upper right-hand corner of the sample space. 

At any value of r, t can vary and vice versa. Any requirement level 
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Figure 2. A Three- Dimensional View of the Probability Distribution 
of r, t, Pairs 
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can be formed by many combinations of r and t. The solution we seek 

is analogous to finding a surface perpendicular to the r, t plane which 

defines a series of constant (r X t) products and cuts off the upper -

right hand corner of the sample space so that a probability volume of 

a is removed. This value would be the optimum delivery level, X>~. 

At this point r X t = X* or t = X* which is the equation for a hyper­
r 

bola. The problem is to find an X* value which defines a hyperbola 

surface that removes a of the probability volume. 

Since r and t are normally distributed, they have probability 

density functions of 

1 
exp [-t -z J 

f(r) 
(r - r) 

= .J2rr O-r 0- z r 

and 

f(t) 
1 r 1. (t _ ti J = ~ 0-t exp L-2 o-tz . 

The probability density function of r and t simultaneously is given by 

z - z J _ 1 _!_ (r - r) _!_ (t - t) 
f(r, t) -

2 
exp[- 2 2 - 2 z • 

1T o-to-r o-r o-t 

Since 
CD CD 

J f f (r, t) dt dr = 1 , 
-CD -CD 

the values of x,:: can be determined by 

CD CD 

ff f (r, t) dt dr = a 
-cnx>:: 

r 
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These equations are an abstraction of reality. In an actual application 

these would be some finite limits on the integrals so the probability 

will be represented by 

Let 

then 

so 

Since 

then 

therefore 

1 

u = 

exp __ 21 (r - r) 
er 2 [ 

-2 

r 

t - t 

1 (t - t) 2 

2 ert2 

r - r 
and V: -.--

err 

t : Uert + t and r = Verr +r 

dt 
and 

dr 
= ert = err 

du dv 

dt = ert du and dr = err dv 

x,~ 
t - r 

x>:~ 
Uert + t = Verr + r 

x,:c t 
u = (v err + 'r) ert ert 

The previous integrals can now be written as 

rmax - r tmax -t 

err ert 

1 f f [ 1 2 + vz)] du dv -'TT exp -2 (u 
2 

rmin -r X* t 

err ert (v err - r) ert 

= Q/ • 



The answer sought is the value x:::~ which makes the value of the 

double integral equal to a . A computer program was prepared to 

59 

find a solution to such equations. The program computes the maximum 

possible requirement over a delivery time (r + 3. S o-r)(t + 3. S o-t)· 

Twenty contours are constructed through the u, v, sample space, 

each describing u, v, products which would result in a constant 

requirement that is a specified percent of the maximum possible 

product. The probability of r, t pairs to the upper-right-hand side 

of these contours is computed and provided as output. The value of 

X* can be found by interpolating between these contours. 

Suppose, for example, that the problem posed on page 48 had 

a probabilistic delivery date and the level of demand at the second 

stage which would be exceded only S percent of the time was desired. 

Assume that the scheduling period is one month or 21 work days in 

length so that the start of the third period will occur in 42 days with 

a standard deviation of 3 days. The interpolation program was 

run for this example and the data printout is shown in Figure 3. 

These data show 20 levels of possible requirements and the 

probability of exceeding each level. It is necessary to interpolate 

between two of these requirement levels to find the level which 

will be exceeded only S percent of the time. Graphical inter­

polation of the data is illustrated in Figure 4. The O. OS level is 

approximately 109. 75 units. For the deterministic case it was 



PROBABILITY OF NORMAL PRODUCTS 

PROBABILITY PROBABILITY 
PRODUCT INCREMENT OF EXCEEDING 

150166 0,000000 0,000000 

146,00 0,000002 0,000003 

141,34 0,000017 0,000020 

136,68 0,000078 0,000098 

132,02 0,000297 0,000396 

127,36 0,000972 0,001369 

122,70 0,002707 0,004076 

118,04 0,007220 0,011296 

113,38 0,015569 0,026866 

108,72 0,031840 O,OS8712 

104,06 0,059072 0,117785 

99,40 0,090176 0,207962 

94,74 0,127454 0,335416 

90,08 0,150407 0,485824 

85,42 0,157505 0,643329 

80,76 0,138653 0,781983 

76,10 0,101709 0,883692 

71,44 0,063682 0,947374 

66,78 0,033086 0,980461 

62,12 0,013237 o,99369e 

Figure 3. Output From Integration Program 
Giving Probabilities of Products of 

Normally Distributed Variables 
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105. 74 units, showing that more material is required to protect from 

the uncertainty in the delivery date. 

Batching Period Allocations Into Deliveries 

The delivery quantities can be determined after the period alloca­

tions have been found. It is not always desirable to have each period 

allocation delivered at the beginning of the period for which it is 

allocated, It may be more economical to have an allocation delivered 

in some prior period and held until the period in which it is used. 

This process is sometimes referred to as "batching deliveries 11 , 

It is economical to batch two allocations if the one period holding 

cost for the later period allocation is less than the cost of a separate 

delivery for that allocation. It is economical to batch three allocations 

if the one period holding cost for the middle allocation and the two 

period holding cost for the last allocation total to less than the cost 

of a delivery, etc, The only allocation which cannot be moved ahead 

in time is the first allocation. Since the items are not in stock it is 

necessary to have a delivery the first period. Working forward from 

the first delivery reveals the allocations which should be batched with 

the first one. When the point is reached that another delivery is 

economical the same type analysis is repeated to determine the 

allocations which should be batched into that delivery.
10 
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Where the number of time elements in a scheduling period is p, 

the holding cost for any allocation will be equal to H times p times the 

allocation for every scheduling period it is held except the one in which 

it is used. The expected holding cost for the scheduling period in 

which it is used will be equal to (Ai + :i) (H) (p). The holding cost 

for the scheduling period in which it is used will be paid regardless of 

whether it is delivered at the start of that scheduling period or on 

some previous scheduling period. The incremental increase which 

can be eliminated by having a separate delivery in a period is the cost 

of holding it from its delivery until the start of that scheduling period 

in which it is used. These are the costs which must be compared to 

T to determine which period it should be delivered. 

The continuous distribution example on page 48 will be used to 

illustrate the batching of allocations into deliveries. The allocations 

for the four-stage problem were 59. 90, 45. 84, 71. 22, and 13, 04 

units, respectively. Assume a delivery cost, T, of $50. 00 and a 

holding cost, H, of $1. 00 per unit period. A delivery must be 

received in the first period since no stock of the item is maintained 

on hand, therefore, D1 2'.: 59. 90. If Az were received in D1 the 

incremental holding cost would be H(Az) = $1 (45. 84) = 45. 84. 

45. 84 < 50 so D1 ~ 105. 74, Dz = 0 . 

If 6.3 were delivered in D1 , it would be held 2 periods before the 

period in which it is used. The incremental holding cost would be' 
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2(H)(A3) = 2($1)(71. 22) = 142. 44 

142. 44 > 50 so D1 = 105. 74, Dz = 0 . 

A delivery is required in Period 3, D3 ~ 71. 22. If ~ were delivered 

in D3 it would be held one period. The incremental holding cost 

would be 

( H)( ~ 4 ) = 1 ( 1 3. 0 4) = 1 3. 0 4 

13. 04 < 50 as D3 = 84. 2 6, D4 = 0 . 

Two deliveries are optimal for the example problem under the condi­

tions of H = 1; T = $50. One delivery of 105. 74 units the first period 

would supply the first two periods. A second delivery of 84. 26 units 

at the beginning of the third period would supply the requirements 

during the last two periods. 

The Quantity in a Purchase 

In a conventional inventory problem one solves for the EOQ and 

orders that amount each time the reorder point is reached. In the 

problem proposed for this research, it is assum.ed that the amount 

to be purchased is determined at the beginning of a horizon and the 

problem is when it should be delivered to minimize costs. The item 

cost may be dependent upon the total quantity purchased but is asswned 

to be independent of the delivery quantities. The· primary focus of 

the research is on the division of the total requirement into deliveries 

but some discussion of the amount in the total purchase is presented. 
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The policy of what amount to purchase when given a series of 

probabilistic requirements might vary from one item to another 

within an organization. The policy would also be expected to vary 

from one organization to another because it constitutes decision 

making under risk, and different organizations may possess different 

attitudes toward risk. The utility of the potential loss or gain may 

be different for different firms. 

The rationale utilized in reaching the decision of how much to 

buy in a multiperiod procurement will be discussed further. The 

assumption that the cost, K, to negotiate and consummate a purchase 

agreement is greater than the cost, A, to amend the agreement is con­

sidered reasonable. Models exist for placing a purchase each period. 

If the purchase cost were less than the exposure to risk which results 

from not modifying a multiperiod schedule, then it would be preferred 

to make a separate purchase for each period, one leadtime prior to 

the period. 

Since it is assumed that K > A, it is better to be exposed to the 

risk of having to amend a schedule than to incur the certain expense 

of Kin all reasonable item cost structures. Reasonable item cost 

structures are those in which the cost of the materials is K plus a 

linear function of the quantity purchased or K plus a concave function 

of the quantity purchased. An unreasonable item cost structure would 

be one in which the cost of material is K plus some convex increasing 

function of the quantity purchased. Only those situations classified as 



reasonable need to be considered. For such situations and for some 

conceivable subsets of the unreasonable category, the average cost 

per item will decrease as more and more items are purchased. 

Where the average cost per item decreases with the quantity 

purchased, it is desirable to purchase as many items at one time 

as are certain to be needed. It may be wise to purchase more than 
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the certain requirement, depending upon the amount of decrease in 

price per unit and the amount of risk incurred by buying more than is 

certain to be needed. For the situation which is the subject of this 

research, there is no risk involved in purchasing the full amount 

shown on a requirement schedule so long as no scheduled design 

change would require a different raw material or component. These 

items are essentially on order by a customer who has already ordered 

the product in which the material item is used. Normally such a 

customer agrees to pay the cost incurred if he decides to cancel his 

order. 

The risk incurred in purchasing more than the amount on the 

requirement schedule is assessed in a different manner. Nonstock 

items, the category of parts which is the subject of this paper, are 

items not normally carried for inventory purposes. Purchasing more 

than is ordered by customers would constitute purchasing for inventory 

and will not be treated in detail in this paper. However, the logic of 

the quantity decision is generally as follows. 
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The elements of risk due to overbuying must be defined. Some 

of these elements are the probability of receiving no more orders 

for the item, the probability of receiving orders for the item at 

various periods in time, and the probability of a design change at 

various periods in time before the orders are received. The preceding 

items are examples and are not considered exhaustive. The cost of 

each such occurrence would be multiplied by its probability to give 

an expected cost of overbuying per item. The savings per item could 

be compared to this amount on an incremental basis to find the 

optimum amount of overbuy which should be accepted. 

No more than the total of the requirements given in the require­

ment schedule is considered to be purchased. For all reasonable 

price structures it is considered economical to purchase that amount 

so long as there is no scheduled design change which would require 

a different component or raw material. The delivery schedules 

determined to be optimal are at the upper tail of the probability 

distribution of possible demands; yet each expected requirement 

is the SO-percent probability level for an unbiased forecasting scheme 

with no covariance between demands. It follows that enough items 

will not be purchased to provide a high degree of perhaps 90- to 99-

percent protection from shortage in all the periods in the original 

planning horizon. The result of protecting to a 90- to 99-percent 

level in the early stages of the horizon is a shifting of a portion of 

the total purchase quantity to the earlier period deliveries. This 



shifting can be considered as analogous to the accepting of a safety 

stock at the beginning of a series of requirements. The safety stock 

level can vary each period as can the demand level. The concept of 
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a procurement horizon, which is the length of time for which the pur­

chased quantity lasts, is introduced here, The procurement horizon 

may not last so long as the planning horizon or it may last longer, 

depending upon the average of the actual requirements and how it com­

pares to the average of the expected requirements as indicated on the 

requirement schedule at the time the procurement is made. If new 

requirements are forecasted in the periods beyond the procurement 

horizon, a new procurement will be made X. or X. - 1 periods before the 

end of the procurement horizon. The occasion for the beginning of a 

new horizon before the expiration of the old procurement horizon would 

be an overlap situation in which the requirement for the last period 

of the first procurement horizon is greater than the available quantity 

in that period. 

A System for Delivery Scheduling 

The probabilities of cumulative demands through the preceding 

periods determine the probability of stockout for a given receiving 

schedule. The nearest period in which a delivery allocation can be 

specified using the most current information is one leadtime in the 

future, It is necessary to project the joint probability distribution for 

demand over a minimum of X. periods. To place any order, an 
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expense of K must oe incurred A periods before the beginning of the 

series of periods represented by the requirement schedule. If each 

period's delivery allocation were ordered A periods before it occurred, 

there would be a cost of K for each period of the horizon. The total 

procurement related cost would be N • K. If the requirements were 

deterministic, only one order would be required and all N period's 

delivery allocations could be specified for a total cost of K. The 

technique of projecting cumulative requirement distributions makes 

it possible to estimate the optimal delivery allocation for each stage 

and this delivery schedule could be requested with the initial order. 

If the schedule for the remainder of the horizon had to be amended 

each period that it is possible to make an amendment, the total pro­

curement related cost would be at a maximum of K + (N - 1) A. Since 

A < K the procurement related cost would be reduced. The greatest 

potential cost reduction lies in the purchasing of all the delivery 

allocations in one open purchase order which affords an opportunity 

for quantity dis counts. 

The best schedule which can be determined at the time of the 

original order should be requested. If at any stage new information 

which is available indicates that there is an advantage to changing the 

deliveries in a portion of the order A or more periods in the future, 

then the change can be made. The alteration expenses would be some 

amount less than (N - 1) A if the original forecast did not have to be 

changed every period. The number of times the expense A would be 



incurred would depend on the accuracy of the forecasting system and 

its ability to provide accurate predictions of the cumulative demand 

through a number of periods. 
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CHAPTER IV 

MODIFICATION WITH NEW SCHEDULE INFORMATION 

The objective of an inventory management system is to develop 

a tool which is effective in both planning and control. One essential 

element in management by exception is followup to detect deviations 

from the plan and to initiate corrective action. -The previous analysis 

has been directed toward the development of a technique to determine 

the best delivery schedule for a series of future scheduling periods, 

given a specified amount of information. As better information 

regarding the latter portion of a procurement horizon becomes avail­

able with the passage of each scheduling period, the technique can be 

repeated for the remaining periods in the procurement horizon. The 

deliveries requested for periods beyond the procurement leadtime 

can be amended. If the most current information indicates that a 

different delivery schedule is better for these periods, the schedule 

can be changed but will necessitate the expenditure of an amount, 

A. The purpose of this chapter is to develop the type of analysis 

required to determine the conditions under which it is beneficial to 

amend a delivery schedule. 
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One intuitively obvious fact can be surmised from the fact that 

more information becomes available each period. If the first period 

which it is possible to change is already at the optimum level, no 

change should be made for at least one more period. The periods 

which can be improved do not need to be changed at this time and 

advantage should be taken of the improved forecasts which become 

available each period. The schedule should not be amended until 
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one leadtime before a period which can be improved to take advant­

age of the best information possible for determining the new schedule. 

If the first period which is a candidate for amending is not at 

the optimum level, then there is a possible benefit from making a 

change at the present time. The question which logically follows is: 

How much benefit must be offered in order to warrant the expendi­

ture, A, to amend the delivery schedule? In general, if the expected 

benefit is larger than A, a schedule change is economically warranted. 

Some other limit of deviation of expected cost from the optimum 

expected cost may be established by management who may not wish 

to make a change for a very small expected improvement. Theoreti­

cally, in incremental analysis the change should be made if there 

is any reduction in total expected cost. The expected benefit in cost 

can result from improvement in the first changeable period or the 

first plus any other changeable period. As long as the first period 

which is a candidate for a change (the period X. periods in the future) 
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offers any reduction in the total expected cost, then the change is 

warranted if the total expected cost in all the amendable periods is 

beyond the established expected opportunity cost limit, which in this 

study is assumed to be the amount, A. 

Analysis of the reduction in total expected cost in all of the 

amendable periods may require a great deal of computation. It 

may not be necessary to compute the expected benefit for improving 

the deli very quantity in all candidate periods. The expected benefit 

for each candidate period should be accumulated for all candidate 

periods in a delivery schedule only up to the point that the total 

expected benefit exceeds the cost to amend the schedule. If all 

periods are computed and this condition does not exist, then the 

schedule should not be amended. If the schedule of allocations is 

such that it results in the same delivery batches, the delivery schedule 

would not be changed. 

The expected benefit which can accrue as a result of a change in 

the delivery schedule for a period will be called the expected oppor-

tunity cost, EOG. The total present value of the EOCs for all of the 

amendable periods (those remaining in a procurement horizon beyond 

the procurement leadtime) will be called the present opportunity cost, 

POC. 

POC = 

The total expected incremental cost due to the inventory resulting 

from a delivery allocation of X will be called TEC(X). 
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For any level within the range of possible requirements there 

is some chance of the actual requirement's being higher than that 

level and some chance of the actual requirement's being lower than 

that level. For a period allocation within this range there is a 

possibility of shortage and a possibility of having extra material on 

hand to hold. The total expected cost associated with any level of 

allocation or cumulative allocation, XA, will be the total of the 

expected holding cost and the expected shortage cost. Figure 5 (b) 

shows the relationship of these costs. Figure 5 depicts the proba-

bilities and costs for a continuous distribution because this type of 

distribution illustrates the problem better. The same logic applies 

in the discrete case, but the curves would be step functions, 

The Discrete Case 

The expected holding cost is equal to the cost to hold an item, 

H, times the expected number of items which would be held for any 

level of XA. The expected shortage cost is equal to the shortage cost, 

S, times the expected number of items short for any level of XA• 

Then 

XA co 

TEC (XA) = H ~ (XA - X) <I> (X) + S ~ (X - XA) <I> (X) 
1 

o XA+l 

These costs are shown in Figure 5, The level of delivery allotment 

which results in a minimum TEC will be X>:C, This information can 
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Figure 5, Relationship of Requirements, Period Allotments, 
and Costs for a Continuous Distribution 
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be used to determine the EOC for having a delivery allotment which 

is not at X*. Let 

x,:< - the optimum delivery quantity for a period as indicated 

by the latest information 

Xp - the presently scheduled allocation for that period. 

The total expected incremental cost for a period can be found by 

xP 
TEC (Xp) = H I: 

X=O 

co 

(Xp - X) <I> (X) + S ~ (X - Xp) <I> (X) 

X=Xp+ 1 

If x,:< * Xp, then a lesser TEC would result at x,:< which can be 

found by 

x,:< co 
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• 

TEC (X>:<) = H ~ 
X=O 

(X* - X) <I> (X) + S (X - x,:•) <I> (X) • 

X=X>:<+ 1 

The EOC due to having the delivery quantity set at Xp rather than at 

the X>!< indicated by the latest information, is the difference between 

the two preceding equations. 

EOC = TEC (Xp) - TEC (X,:•) 

Xp 

= H ~ (Xp - X) <I> (X) + S 

X=O 

co 

X=Xp+l 

X* co 

(X - Xp) <I> (X) 

- H ~ (X>l< - X) q, (X) - S ~ (X - X*) <I> (X) 
X=O X=X*+l 
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[ Xp Xp x,~ 
EOC = H Xp ~ <j> (X) ~ X • <j> (X) - X* ~ <j> (X) 

0 X=O X=O 

x,~ 
~ (X)] + ~ X• 

X=O 

sf xjp+I 
(X) 

+ X · <j> (X) - Xp ~ <j> (X) 

X=Xp+l 

X • <j> (X) + X* <j> (X)] 
X=X*+ 1 X=X*+l 

The EOC for any period is the total expected cost fo_r the set allocation 

level less the minimum possible expected cost, i.e., TEC(X*). 

Figure 4 (c) shows the EOC for the problem illustrated in the figures 

above it. 

To determine if a schedule should be changed, it is necessary to 

find whether POC > A. This determination can be made by beginning 

with any period which is a candidate for a change, computing EOC, 

and adding the EOC for another candidate period. If all periods are 

added and POC ~ A, the schedule should not be changed. At any 

point that POC > A, the computation can be stopped. To reduce 

the number of periods which would be calculated in the latter situa-

tion, it would be advisable to begin with the period which appears to 

offer the highest EOC. Since the shortage cost, S, is usually much 

greater than the holding cost, H, the period in which Xp is less than 
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x,:~ by the greatest amount should offer the highest EOC. The periods 

should be taken in descending order of the amount (x,:~ - Xp) where 

X* > Xp; then the periods in which Xp > x,:. whould be taken in 

descending order of the quantity (Xp - x~~). This type of logic can 

be performed by an electronic computer or manually for very simple 

problems. 

The amount, A, would be spent at the current time to amend the 

schedule but the expected savings which result from the amendment 

will occur at some future date. If the cost of capical is sufficiently 

high or if the time until an expected savings, i.e., the EOC, is very 

long, the present value of the expected savings may be significantly 

less than the expected savings. The POC, which is the sum of the 

present values of the expected savings, should be compared to the 

amount A to see if the cost to amend a schedule should be spent. If 

POC .::::: A the schedule should not be amended. If POC > A the 

schedule should be amended to request the optimal deliveries for the 

latest requirement information. 

The model for determining the ECO for a discrete distribution 

will be illustrated using the discrete joint distribution developed for 

the positive covariance example in Chapter III. Consider the third 

stage of this example (from page 44) for which the requirements and 

probabilities are repeated in Table V. 
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TABLE V 

PROBABILITIES OF DISC~ETE EXAMPLE FOR EOC 

Requirement 
Probability q, (X) 

Cumulative 
(X) Fractional Decimal Probability !I> (X) 

33 27/2025 0.013 1.000 

32 189/2025 0.093 o. 987 

31 471/2025 0.233 o. 894 

30 651/2025 o. 322 0.661 

29 471/2025 0.233 o. 339 

28 189/2025 0.093 o. 106 

27 27/2025 o.013 0.013 

Assume that this distribution was developed using the most 

recent information and that at some prior time the cumulative 

allocation at this period had been set at 30 = Xp. With H = $5 and 

S = $95. the optimum probability of meeting the requirement is 

!I> (X~-<) = 95/95 + 5 = 0. 95. In order to provide a 0. 95 assurance 

of supplying the cumulative probabilistic requirements through this 

stage the cumulative allocations should be 32 = X>:<. 

The discrete case EOC formula is used to find the expected 

opportunity cost for having the allocation set at 30 when the optimal 

allocation is 32. This amount is discounted to its present value for 

comparison with the cost to amend. 
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Xp = 30 and X* = 32 so 

EOC 
[ 

30 

= H 30 ~ <I> (X) 

30 

X• 

32 32 

cf> (X) - 32 L cf> (X) + L X • 

0 0 0 

+ Ji: X • <I> (X) - 30 i: <I> (X) - i X • <I> (X) + 32 "i:, 4> (X)J 

t3 l 31 33 3 3 

= H [30(0, 661) - 27(0, 013) - 28(0. 093) - 29(0. 233) 

30 (0. 322) - 32(0. 987) + 27(0. 013) + 28(0. 093) 

+ 2 9 ( 0. 2 3 3) + 3 0 ( 0. 3 2 2) + 3 1 ( 0. 2 3 3) + 3 2 ( 0. 0 9 3 )] 

+s [31(0. 233) + 32(0. 093) + 33(0. 013) - 30(0. 339) 

-33(0. 013) + 32(0. 013)] 

= H [19. 830 - 31. 584 + 7. 223 + 2,976] 

+S[7.223 + 2.976 - 10.170 + 0.416] 

= $5 [-1. 555] + $95[0. 445] = -$7. 775 + $42. 275 = $34. 50 

There would be an expected savings of $34. 50 in the third period 

if the cumulative allocations at that period were increased from 30 

units to 32 units. The time of this expected savings is three schedule 

periods in the future. For a schedule period of one month arid a cost 

of capital of 2 percent per month the present value of the expected 
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saving would be 

POC 
1 

= (1. 02)3 ($34. 50) 

$34,50 = 1. 0612 

= $32. 51 

Assuming this period is the only one which can be amended and that 

if the procurement leadtime is 3 months so that it must be amended 

this far ahead if it is to be amended, it is desirable to amend the 

allocation for this period if it can be done for any amount less than 

$32. 51. If savings were offered in other periods, the present value 

of the expected savings in those periods should also be considered in 

making the amendment decision. 

The Continuous Case 

The preceding model for EOC was based on a discrete probability 

distribution for the possible cumulative requirements. The same type 

of analysis can be performed for a continuous distribution. In the 

continuous situation it is still true that 

EOC = TEC (Xp) - TEC (X~~) 

For continuous distributions the TECs would be formulated with 

integrals instead of the summations used previously. 



83 

Then, 

Xp co 

EOC = Hf (Xp - X) $ (X)dX+ Sf (X - Xp) $ (X)dX 

-co Xp 

X* co 

-Hf (X* - X) $ (X) dX - s Jex -X*) $ X dX 

-co x* 

z 

which can be put into the form 

EOC = H r Xi: (X) dX - x:J: (X) 1 
x,:c 

J X$ (X)dX 

xP 

Assume that the requirement distributions are normal. The values of 

all of these integrals except the last can be found in a table of normal 

probabilities. The last term of the equation can be put into a form 

that has one term which can be obtained from the normal table and 

another term which can be integrated. 

Let X>:< 

f [ ex _ x) 2 
] 

X exp - zo-Z dX 

Xp 

which is the last term if a normal probability is used, and let 

let 
X-X 

z="'2o- then 



and 
dX = .Jz o- dz . 

(X + ,Jz o· z) exp (-zz.) ,Jz o-dz 

X>:< - X 
,J"'i O" 

- (H + S)X J z. - ,.Jrr exp ( - z ) dz + 

XP - X 
,Jz O" 

x,:~ - X 
;rz O" 

(H + S)X f z. = ,J;" exp ( - z ) dz + 

Xp - X 

,Jz O" 

X* - X 
,Jz O" 

(H + y}TT ,J"z o- J Z. "";Jrr z exp ( -z ) dz 

Xp - x 
,Jz O" 

X* - X 

t ~
rzo-· 

(H + S),J°z o- 1 ( z.) 
. '- -- exp -z 
'\JTT 2 

·xp - x 
,Jz O" 

Let the second term of the above equation = IB and ;rz = z. Then 

,Jz (x,:~ - x) 
,Jz O" 

(H + S) X J I= .~ '\J2TT 

.Jz (Xp - X) 

,Jz O" 

x,:~ - X 
O" 

= (H + S) X J 
X - X p 

1 

exp (- wzz.) dw + IB 
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The first integral is now the area under a normal probability curve 

fr om Xp to x,:c. 

The total EOC equation for the normally distributed probability 

of requirements can be written as 

EOC = H /xp [N{Xp) - N(-c:o)] - x,:c [N{X*) - N(-c:o)] J 

+ S {x* [N{c:o) - N{X>:c)] - Xp [N(c:o) - N{Xp)] J 

+ H + sf X [N(X*) - N(Xp)J · 

+ ~2 : (exp (- X:fz ;)' _ exp (-X~: f]} 
where N{X) means the cumulative pro.bability under the normal curve 

up to X. 

The above equation can be reduced to 

EOC = H[XpN{Xp) - x,:cN{X>:c)] + S Ix* [1 - N(X>!c)] - Xp [1 - N{Xp)ll 
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+(H + s{x[N(X*)- N(Xp)J + ;fz [-xp (-~-:)-exp t ~:m 
As an example of the use of this model, assume for the continuous 

distribution example introduced on page 48, that the holding cost and 

receiving cost were such that the deliveries were set equal to the 

period allocations of 59. 90, 45, 84, 71. 22, and 13. 04 units, respec-

tively. Let H = $5, S = $95, A = $15, and assume that a first period 

requirement of 57. 50 units has taken place, leaving three periods in 

the procurement horizon. If the procurement leadtime is 1 mo.nth or 

less the last two period allocations can be amended. Since no new 
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orders for the item have been received, the total requirement is still 

190 units. The last period EOC need not be considered because a 

shortage or overage in the next-to-last period will be corrected in the 

last period. The only period for which the EOC must be calculated is 

the second period of the current problem. 

Assume that the latest scheduling information gives the following 

estimates of the requirements for the remaining three periods: 

R2 = 55 R3 = 32. 5 

CTI : 5 0-2 = 7 0-3 = 8 

and the coefficients of correlation between the period requirements 

still remain p 12 = 0. 5, p 
13 

= O. 3, and p 
23 

= 0. 4. Now, 

er·. lJ = PijCcriHo} 

so 

0-12 = 0.5 {5){ 7) = 17. 5 

0-13 = o. 3 {5 ){ 8) = 12 
and 

0"23 = 0.4 {7){ 8) = 22. 4 

For the new information 

r,J 

R2 = 45 + 55 = 100 

~2 
2 = 5 2 + 7 2 + 2 { 1 7. 5) = 109 

0-2 = "1Tif9 = 10. 44 

and 

\P {X*) = -9-/-!-·-5 = O. 95 

so 

X•:< = 100 + 1. 65{10. 44) = 117. 23. 
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The first delivery was 59. 90 units and the first period require-

ment was 57. 50 units, leaving 2. 40 units on hand. The second deliv-

ery of 45, 84 units now arrives making 48. 24 units on hand. If it is 

not amended, the third delivery will be 71, 22 units making the cumula-

tive deliveries at the second stage of the new problem equal to 119. 46 

units, So 

and 

xP = 119. 46 

X>:~ = 11 7. 2 3 

X = 100 

a-= 10.44 

and we wish to find EOC. 

= 19. 46 = 1 86 
ZXp 10.44 • 

and from a table of normal probabilities <I>(Xp) = O. 9686. 

zx>:~ = 1. 65 and <l>(X*) = O. 950 . 

EOC = $5[119.46(0.9686) - 117.23(0.950)] 

+ $95[117. 23(0. 050) - 119. 46(0. 0314)] 

10, 44 ( 1. 86) ( 1. 65) + $100 100(0. 950 - 0. 9686) + ,J 2 TT exp ---;:J"z - exp ----;rz-

= $21. 70 + $200.54 - $186.00 - $17. 91 = $18.33 

The expected savings of $18. 33 will occur one month in the future, If 

the cost of capital is 2 percent per month, the present value of this 

saving is $17. 99. Since A= $15, and 17. 99 > 15 the schedule should 

be amended. The new delivery for the next-to-last period should be 



(117. 23 - 48. 24) or 68. 99 unit,;;, a reduction of 2. 23 units. The 

delivery for the last period should be increased by 2. 23 units to 

15. 27 units. 
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FOOTNOTES 

l C. W. Churchman, R. L. Ackoff, and E. L. Arno££, 
Introduction to Operations Research (New York, 1957), p. 209. 

2 Ibid, p. 212. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

This research is directed primarily toward the development of a. 

procedure for managing the procurement and inventory aspects of 

multi-period materials requirements which may involve covariance 

between the probabilistic requirements in various periods. The parti­

cular problem defined for study involves items which experience inter­

mittent demand and are not normally stocked. The item cost is 

assumed to be independent of the quantity in a delivery. Forecasts 

are available for the multi-period horizon and the accuracy of the 

forecasts decreases as it represents a period more distant into the 

future. It is also assumed that a new forecast is provided each 

scheduling period and that it is possible to amend the portion of a 

delivery schedule which is beyond one procurement leadtime in the 

future. 

Such a situation would probably be found in a moderate volume 

job shop. Many elements of the environment contributing to the 

existence of the problem are presented and analyzed. A rationale is 

developed for determining the optimum probability of covering the 

cumulative requirements at each stage of the horizon. A technique 
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is presented for constructing the probability of various levels of 

cumulative requirements throughout the horizon. The optimum 

receiving policy is found by selecting the level of delivery allocation 

which would provide the optimum probability of meeting the cumula-

tive requirements at each stage and batching these amounts into the 

most economical shipment sizes. 

As a procurement and inventory management tool, this algorithm 

includes provisions for both planning and control. Monitoring of 

changes in the forecasted requirement schedule and the increased 

accuracy of later forecasts allow the recalculation of new optimal 

delivery schedules for a portion of the horizon which can be revised. 

A model is developed for computing the expected opportunity cost 

which would result from not revising the delivery schedule to its new 

optimal values. The schedule should be revised if the expected 

opportunity cost is greater than some established limit of deviation 

such as the cost to revise the delivery schedule. 

The procedure £or normally distributed requirement probabilities 

can be summarized into the following steps: 

1. Determine R, the requirement vector, from the master 

schedule. 

,.., n -
2. Rn = ~ Ri 

i = 1 

3. 
,..;z z z z 
crn = cr1 + crz + ... crn + 2cr1z + 2cr13 + + 2cr1n 

+ 2crz3 + + 2crzn, etc. 



4. 
s ~(x,:<) =--

H + s 
5. Determine zX*• Xr{:< = Rn + zx,:< o-n 

6. An = Xi{:< - X~-1 

7. Batch A's into the delivery vector D. If H Az < T, 

8. 

9. 

etc. Repeat this logic considering each allocation 

which requires a new delivery as the first allocation. 

With new scheduling information repeat steps 1 through 5. 

If X '=I X>:< determine EOC and sum present values p 

for POC. 

10. If POC > A, repeat steps 6 and 7 with new X*'s and 

amend D. 

11. If POC ~ A retain the same delivery schedule. 

It is concluded that a supply procedure can be developed which 

does not require the assumption of independence of requirements 
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from one schedule period to another. To apply the methods developed 

in this study some estimates of the variance and covariance of the 

period requirements are required, The procedure can be applied even 

though there may be insufficient empirical data to construct the 

variance and covariance factors for the item under consideration. 

The probabilistic nature of the analysis results from the uncer-

tainty of the schedules provided by the forecasting and scheduling 

system. Raw material supply decisions for items with insufficient 
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historical data can be determined by using the data from similar items 

which are produced by similar operations and are scheduled by the 

same scheduling system. Such items would be exposed to the same 

type of schedule variations. 

Situations in which there is no similar part would require the 

estimation of the probability distribution of cumulative requirements 

at the various stages or an estimation of the individual period distri­

butions and the covariance relationships between them. This approach 

would be similar to PERT (Program Evaluation and Review Technique). 

in that a knowledgeable person provides probability beliefs for the 

possible events. The use of this procedure would provide the optimum 

delivery schedule for the assumed conditions. 

Future Investigation 

It was assumed in this investigation that variance and covariance 

factors could be obtained. Implicit in this assumption is the avail­

ability of some historical data for developing the factors or estimates 

of these factors. No assumptions were made of the weights assigned 

to historical data. Future research might investigate the feasibility 

of assigning higher weights to more recent data in determining the 

covariance of requirements from one period to another. 

If covariance is present it might be used in predicting future 

requirements in a procurement horizon from actual requirements 

as they occur earlier in the same horizon. 



In this paper the optimum probability of meeting a requirement 

was determined on the basis of expected monetary value. The 

concept of utility has been used in some areas and inventory 

problems represent an area for further research in the application 

of this concept. 

Inventory decisions quite often involve opportunity costs and 

loss of goodwill or the,possible loss of a customer. Businesses 

in various competitive situations have varying utilities for 

customers. A business which has a short term overcapacity 
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will value customer accounts much more highly than a business 

which is working at a stable capacity, even though the amount of 

profit involved may be equal in both cases. Utility adds a dimension 

which measures the individual's or company's attitude toward risk 

and may differ for two companies facing the same situation, Utility 

profiles for companies and people are subject to alteration or 

revision periodically to reflect the changes in attitude which may 

occur in a dynamic business environment. The expected momentary 

value figures do not provide this feature, 

The analysis in this dissertation uses the distribution of cumula­

tive raw material requirements to determine the amount of raw 

material which should be supplied at each stage of a time horizon, 

This analysis can be extended to cumulative requirements for any 

resource over a time horizon where there is a cost associated with 

having too much resource and a cost associated with having too little 



resource at each stage. The funds required for the production of 

large construction projects, the development of a business, or a 

government project may be considered as such a resource. In 

arranging funding over an extended period of time a question arises 

regarding how much money should be obtained each period. If too 

much money is obtained there will be idle funds on which interest 

must be paid. If too little money is obtained there may be costs for 

items such as higher interest for short term loans, loss of trade 

discounts available for early payment, or delay of the project. In 

such a problem the total resources needed for the project may be 

considered as a probabilistic amount rather than a deterministic 

amount, as was assumed in this study. 
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APPENDIX 

ALTERNATE METHOD 

If it is assumed that the relative accuracy of forecasts is the 

same for any size forecasted requirement, an alternate method 

can be used for developing probabilities for the cumulative require­

ments. This method does not re quire the use of the covariance 

factors. If the covariance factors are not required for any other 

purposes or if not enough data are available to develop these factors, 

this alternative method might be used, 

The element that is desired in order to reach a delivery schedule 

decision is the ratio of cumulative expected requirements, which is 

exceeded no more than [1 - ~ (X*)] portion of the times. This infor­

mation at each stage is sufficient to provide a desired delivery at 

each stage. Rather than analyze empirical data to determine correla­

tion coefficients and use these coefficients to construct new cumulative 

demand probability distributions, one could use the following method, 

Historical data are analyzed to determine the ratio of cumulative 

actual requirements to cumulative expected requirements at each 

stage. For each stage a frequency distribution is established and a 

probability distribution constructed. From this it is possible to 
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select the ratio of expected requirements which has been exceeded 

no more than [ 1 - il> (X>:c)] portion of the times. An example computer 

printout of a model incorporating this method is included in this 

appendix. 

The following pages are an example of actual empirical data 

from a source which prefers to remain anonyinous. The part number 

is fictitious. This example illustrates several points related to this 

dissertation. The observations are presented on two bases. The 

simple ratios represent the ratio of the actual requirement which 

occurred to the requirement which was forecasted to occur. The 

cumulative ratios represent the ratio of the total actual requirements 

through the stage to the total requirements which were forecasted 

to occur between the time from one leadtime in the future through the 

subject period. 

The average ratios are all less than 1. 0 which indicates that 

there may be some bias in the forecasting system. The variances 

of the simple ratios increase as the observations represent more 

distant periods of time, as was discussed in this paper. The variances 

of the cumulative ratios decrease as they represent the sum of more 

and more periods, indicating a central limit effect. The 0. 9500 pro­

tection ratio is based on the cumulative average as presented in 

Cha pte r III. 
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CUMULATIVE RATIOS FOR PART NUMBER XYZ-123 

THE DESIRfO LEVEL OF PROTECTION IS .9500 

LEADTIHE IS 2 PERIOOCS) 

HORIZON IS 6 PER JOOS BEYOND LEAOTIHE 

HISTORY MATRIX 

--- ---
n. 80. 72. 12. 72. 72. 40. 68. 

AO. 72. 12. 72. 72. 40. 68. 60. 

72. 42. 64. 64. 32. 60. 56. 56. 

80. 64. 64. 32. 60. 56. 56. 52. 

84. 64. 32. 60. 56. 56. 52. 40. 

81'1. 32. 7 L. 56. 56. 52. 40. 32. 

3?. 71. 30. 56. 52. 40. 32. 30. 

71. :10. 56. 52. 40. 32. 30. 41. 

10. 56. 52. 42. 33. 31. 41. 40. 

56. 41. 42. 33. 31. 41. 40. 44. 

41. 40. 33. 31. 41. 40. 44. 44. 

40. 33. 31. 41. 40. 44. 44. 46. 

55. 34. 41. 40. 44. 44. 46. 50. 

34. 42. 40. 44. 44. 46. 51. 56. 

4 ;>. 40. 44. 44. 46. 51. 56. 62. 

43. 44. 45. 46. 51. 56. 62. 67. 

21 • 46. 46. 51. 56. 62. 67. 70. 

46. .3 1 • 4g. 56. 62. 67. 10. 74. 

:n. 49. 56. 62. 67. 70. 74. 73. 

49. 54. 62. 66. 70. 74. 73. 76. 

53. 60. 66. 70. 74. 73. 76. 75. 

29. 56. 68. 74. 73. 76. 75. 10. 

'5 7. 71. 76. 74. 76. 75. 70. 73. 

71 • 76. 74. 76. 75. 10. 73. 73. 
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STAGf 1 

S IMPL F RATIOS CUMULATIVE RATIOS 

1.0000 1.0000 

1.1111 1.1111 

1.3125 1.3125 

1 • 2 50 () L. 2500~ 

1.0000 1.0000 

1.0000 1.0000 

1.0000 1.0000 

1.0000 1.0000 

n.7885 0.7885 

0 .9 524 0.9524 

1.6667 1.6667 

1.0%8 1. 0968 

1.0?44 1. 0244 

1.0750 L.0750 

0.4773 0. 4 773 

1.0222 1.0222 

0.6B9 o. 6739 

1.0000 1.0000 

0.9464 0.9464 

0. 4677 o. 4677 

0.86~6 o.8636 

l .0441 1. 0441 

SIM AVE 0. 9 897 CUM AVE = 0.9897 

SI 1o1 VAR = 0.0620 CUM VAR = 0.0620 

THF .9500 PROTFCTION RATIO IS l.667 SAMPLE SIZE = 22 
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STAGE 2 

SIMPLE RAT IDS CUM UL AT I VE RAT I OS 

1.1111 1.0556 

1.1667 1.1389 

1.2500 1.2812 

1.0000 1.1667 

1.1833 1. 1196 

0. 5 ,5 7 0.7953 

1.0000 1.0000 

().7885 0.8981 

0. 9524 0.8617 

I • 6 66 7 1.2667 

1.0968 1. 390 6 

1. 0 244 1.0556 

1.0750 1.0494 

0.4 773 0.7619 

I • 045 5 0.7614 

0.6739 0.8462 

0. 9 60 8 0.8247 

0.94f-4 0.9714 

().4677 0.6949 

0.8636 0.6719 

1.0141 0.9412 

SIM AVE = 0.9667 CUM AVE 0.9787 

SIM V/1.R 0.0726 CUM VAR = 0.0385 

THF. • 9"i00 PRnTECTION RAT IO IS 1.391 SAMPLE SIZE = 21 
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ST AGE 3 

SIMPLE RAT IDS CUMULATIVE RATIOS 

1.1667 1.0926 

1.1111 1.1296 

1.0000 1.2250 

1. l A3 3 1.1731 

0.5357 0.8986 

1.0000 0.8579 

0. 71:lB 5 0.9203 

1.0000 0.9257 

J.6M7 1. 0709 

1. 0%8 1.2110 

1.0244 1.2476 

1.0750 1.0625 

0. 4 771 0.8480 

1.0455 0.8594 

o. 673g o. 7313 

o. 9608 o. 8873 

0.9464 'O. 8693 

0.4677 0.7844 

0.8507 o.7514 

l.0143 o.7929 

SIM AVF. 0.9542 CUM AVE 0.9672 

SIM VAR = 0.0122 CUM VAR 0.0210 

THE .9500 PRflTECTION RATIO IS 1.248 SAMPLE SIZE = 20 
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STAGE 4 

SIMPLE RATIOS CUMULATIVE RATIOS 

1.1111 1.0972 

0.8000 1.0781 

1. l83l 1.2136 

0.5357 1.0047 

1. 0000 0.9265 

0.7885 0.8426 

1.0000 0.9382 

1.7187 1.0667 

l.OQ68 1.0759 

1.0244 1.1633 

1.0750 1.2000 

o. 4 773 0.8974 

1.0455 0.8994 

0 .6739 0.8103 

0.9608 0.7946 

n.9464 0.9040 

0.,4677 0.7535 

0.8507 0.8034 

1.0143 0.8235 

SIM AVE 0.9353 CUM AVE = 0.9628 

SIM VAR 0.0785 CUM VAR = 0.0202 

THE .9500 PROTECT ION RATIO IS 1.214 SAMPLE SIZE= 19 
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STAGE 5 

ST MPL E RAT IDS CUMULATIVE RATI ns 

0.8000 1.0610 

1.0441 1. 0710 

o.5357 l.0761 

1.0000 1. 0037 

0.7885 0.8984 

1.onoo 0.8655 

1.7187 1. 0571 

1.1333 1.0762 

1.0?44 1. 0653 

l. 0750 1.1444 

0.4773 1.0317 

1. '.)4c;5 0.9300 

0.6739 0.8512 

0.9608 0.8444 

0.9464 o. 8299 

0.4677 0.8000 

0. 8 '50 7 0. 7766 

l.014~ Cl.8520 

SIM AVE 0.9198 CUM AVE = 0.9575 

SIM VAR = 0.0788 CUM VAR = o. 0132 

THE .9500 PROTECT ION RATIO IS 1.144 SAMPLE SIZE = 18 
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STAGF 6 

S TM rt f RATIUS CUMULATIVE RATIOS 

l. 044 l 1.0581 

n.soo0 0.9818 

1.£)000 1. 0633 

0.788<; 0.9688 

1 .0000 O.Ql22 

1.7187 0.9544 

1. 1333 1.0667 

1. 02'+4 1. 0677 

1.0750 1.0669 

0. 4 773 1.0173 

l .045S 1.0343 

0. 6 719 0.8821 

0.9800 0.8755 

!).g464 0.8648 

0.4677 o. 7558 

0.8S07 0.8104 

1.0143 0 .8239 

SIM AVE = 0.9259 CUM AVE 0 .9 532 

SIM VAR o.oa44 CUM VAR = 0.0100 

THF • q 50 0 PROTfCTION RATIO IS 1.068 SAMPLE SIZf = 17 
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