FREE VIBRATIONS OF FREELY SUPPORTED

OVAL CYLINDRICAL SHELLS

By
LARRY DALE CULBERSON
]

Bachelor of Science
Bradley University
Peoria, Illinois
June, 1966

Master of Science
Oklahoma State University
Stillwater, Oklahoma
May, 1968

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1970



FREE VIBRATIONS OF FREELY SUPPORTED

OVAL CYLINDRICAL SHELLS

Thesis Approved:

Thesis Adgfiser
= _J q,
K ‘Z el \3[2/”%/&’;2”/

Q‘\/Mﬁﬁd’ )

L) Moodo

Dean of the Graduate College

=}
&p)
(O
(D
e

ii



ACKNOWLEDGEMENTS

The autho? Wisheé to express his sincere apprec?ation and indest-'
edness to the‘fbllowing individuals and organizations:

To Dr. Donald E. Boyd, who served as the auther's major adviser
and committee chairman, for his instruction, advi?e, and personal
guidance during . the author's graduate study;

To Doctors R. K. Munshi, R. L. Janes, and A. E. Salama, for
serving on the author's committee;

To the National Aeronautics and Space Administration, for pro-
viding the traineeship which helped to make this graduate study
financially possible; |

To the School of Civil Engineering for its financial support;

To Dr. Walter W, Hu,’Bradley University, who encouraged the author
to attend graduate school;

To Mr. C. P, Rao and R. C. Ikard, for their assistance in the
work on the computer, and to fellow graduate students in the School of
Civil Engineering for their friendship;

To Mr. Eldon Hardy and Mrs. Carl Estes, for their assistance in
the preparation of the final manuscript.

And finally, to the author's wife, Carole, for her undying love,

support, and encouragement during the four years o

graduaten stu

July, 1970 Culberson

Stillwater, Oklahoma

iii



TABLE OF CONTENTS

Chapter
I . INTRODUCTION e o o o o @ . o o o e e o e o -

1ol DisSCUSSION s o o o o o o s o o o &
1.2 BaCkgrOund © o @ e ® o o s s ° o o
1. 3 ApproaCh e & o © o o s e« ® o s ® o

IT. FORMULATION OF THE SOLUTION 4 « o o o o » o

2,1 Shell Vibration Equations . . « o
2.2 Recurrence Formulas (Symmetric
Displacements) o « o« o o o o o «

III. COMPUTER SOLUTION , 4 o o o o o o o o o s @

General . « o« o o o o o o o o o =
Natural Frequencie€s « o« « o o o o
Mode Shapes « o o g o « o« o o o o

3a
3.
3.

W =

IV. NUMERICAL RESULTS . ¢« ¢« o o o o o o o o o o

Lol TIntroduction « « « o o o o o o o o o o

4.2 Comparison of Results with Circular Shells

k.3 Comparison-of“Résults with Noncircular
ShellS e« « o o o o a s = o 8 o o o

L,4 Freely Supported Oval Shells o« o « « »

4,5 Comparison of the Love and Donnell

Equati ons e o o o o o o © e © o

V. SUMMARY AND CONCLUSIONS ¢ « o o o » o o o o

5.1 Summary and Conclusions . ¢ ¢« o o

5.2 Suggestions for Further Work . . .
BIBLIOGRAPHY ® ®© o ®© o @ e o 6 o e © 6 e @ © o o o
APPENDIX A--DERIVATION OF THE RECURRENCE FORMULAS .

APPENDIX B--COMPUTER PROGRAM ¢ s ¢ o o ¢ o o o o &

iv

Page

12
16
16

16
18

19

19
19

26
Ll

65
69

69
71

73
76

87



Table

II.

I1T1.

Iv.

VI.

VII.

VIII.

IX.

XI.

XITI.

LIST OF TABLES

Comparison of Nondimensional Frequencies Obtained by

the Theory of Elasticity, Flﬂgge, Love, and
Donnel l L] L ] - L] - L] L d - . L] - * L] - L] L] L ] L] - - -

Comparison of Amplitude Ratios . o« ¢« o o o« = o o »

Comparison of Klosner's and Culberson's Nondimensional
Frequencies (UJ) e o ®© ® 8 © © ®© ® & @ ° ® ® o ®© o s @

Nondimensional Frequencies () for Symmetric and
Anti-Symmetric Cases (|€] = 0.50) « « & « + .+ o .

Comparison of Natural Frequencies (CPS) Obtained by
Sewall and by Culberson « « « o o o o o o o ¢ o «

Symmetric Nondimensional Frequencies (®) of an Oval
Cylindrical Shell (m = 1) o o o o o o s s s o o

Symmetric Nondimensional Frequencies (®) of an Oval
Cylindrical Shell (m = 2) ¢« « « « .o o o « o s o o

Symmetric Nondimensional Frequencies (®) of an Oval
Cylindrical Shell (m = 3) ¢« v« « o « « o o o s » o

Symmetric Nondimensional Frequencies () of an Oval
Cylindrical Shell (m = 4) o & ¢ ¢ o o o o o « o «

Comparison of the Nondimensional Frequencies ()
Obtained by the Love and Donnell Equations (m = 1)

Comparison of the Nondimensional Frequencies (W)
Obtained by the Love and Donnell Equations (m = 2)

Comparison of the Nondimensional Frequencies (w)
Obtained by the Love and Donnell Equations (m = 3)

Page
20
22

.24
38
Lo
53
54
55
56
66
67

68



Figure
1. Geometry of the Oval Shell .
2.
3. Nondimensional Frequency
(n = 0, m= 1, Klosner
L, Nondimensional Frequency (i)
(n =1, m =1, Klosner
5. Nondimensional Frequency (W)
(n =2, m= 1, Klosner
6. Nondimensional Frequency (i)
(n = 3, m = 1, Klosner
7. Nondimensional Frequency ()
(n = 8, m = 1, Klosner
8. Nondimensional Frequency (W)
(¢ = 0.10, Klosner and
9, Nondimensional Frequency
(e = 0.20, Klosner and
10. Nondimensional Frequency
(e = 0.40, Klosner and
11. Nondimensional Frequency
(e = 0.60, Klosner and
12. Nondimensional Frequency
(e = 1.00, Klosner and
13. Mode Shapes (n = 2, m =
14, Mode Shapes (n = 7, m =
15. Nondimensional Frequency
16, Nondimensional Frequency

LIST OF FIGURES

Nondimensional Circular Frequency () Versus Mode

® o & o o o p e o o

Number n (Klosher and Culberson) o « o o o s o o o o o

() Versus Eccentricity
and Culberson) . « » «

Versus Eccentricity
and Culberson) . « « o

Versus Eccentricity
and Culberson) . . . «

Versus Eccentricity
and Culberson) . « . .

Versus Eccentricity
and Culberson) . . « «

Culberson) e« o o o o o

(B) Versus Mode Number n

Culberson) o« o o o o o

(®)) Versus Mode Number n

Culberson) .« o o o o o

(W) Versus Mode
Culberson) « « « « « o

(8) Versus Mode Number n

Culberson) .« « « o » o
1, Klosner Comparison) .
1, Klosner Comparison) .
() Versus Eccentricity

(®) Versus Eccentricity

vi

Versus Mode Number n

. e 9

Page

25

27

28

29

30

31

32

33

3k

35

36
39
4o
&5
46



Figure

17.

18.

19-

20.

21,

22.

23,

24,

25.
26.
27.
28.

29.

Nondimensional Frequency (i) Versus Eccentricity

(n=10)-....-.............

Nondimensional Frequency () Versus Eccentricity

(n=12)..................-

Symmetric Nondimensional Frequency (W) Versus
Mode Number n (G = 0.00) e ® o o o o o ® o o o

Symmetric Nondimensional Frequency (i) Versus
MOde Numbel" n (e = 0020) - . L) . [ L) - [ ] [ . L)

Symmetric Nondimensional Frequency (W) Versus
MOde Nu.mbel" n (e = 0050) . . e e © e L3 . . e L)

Symmetric Nondimensional Frequency (i) Versus
MOde Number n (e = 1.00) ® - e o o s e . o o

Comparison of Symmetric Nondimensional Frequencies

Obtained With + € e e o ® o © ¢ @ o o ® o o

Mode Shapes (n = l:l:, m = 1) e e © o ¢ © o o o o o

1l

Mode Shapes (n = 3, M = 2) o o o o o o o« o o « «
Mode Shapes (n = 6, m = 3) ® o © o ®o e o ® o o o
Mode Shapes (n = 14, m = &) . ¢ o ¢ o o o o o

1) 4 o o o o o o o o o

Mode Shapes (n = 5, m

n

L

Mode Shapes (n = 5, m

B

vii

Page

k7

48

49

50

51

52

58
59
60
61
62
63

6k



u, v, w

X, S, Z

(x]

NOMENCLATURE

Minor and major axes of shell, respectively

Displacement constants

Axial, circumferential, and shear strain

‘components, respectively
Young's modulus

Shell thickness

" Number of terms in circumferential direction

for convergence

= 1, for Love's equations
= 0, for Dpnnell's equations

Circumferential and longitudinal length of the

shell, respectively
Indices on displacément summation
Radius of curvature

Mean radius of curvature, Ls/2ﬂ
Time

Orthogonal Displacements
Spatial Coordinates

Frequency matrix

1+ W
2

Ls/Lx

1-u
2

Kronecker delta

Eccentricity parameter (lel.f 1)

viii



Nondimensional x-coordinate, x/Lx

Circular frequency of a noncircular cylindri-
cal shell

Poisson's ratio
Nondimensional s-coordinate, s/Ls
Mass Density

Nondimensional frequency of a noncircular
cylindrical shell, 9.9
A

(1 - 42)
[wz = Eﬂzp LS ]

w/2

ix



~GHAPTER I
INTRODUCTION
1.1 Discussion

The purpose of this study is to investigate the free vibrations of
freely supperted noncircular (oval) ;ylindrical shells having the
radius of curvature expressed as a function of the circumferential
coordinate, |

In the past years, cylindrical shells having circular cross-
sections have been studied very theroughly. But many times an engineer
may be called upon to'designbnoncircular cylindrical shells. Cylindri-
cal shells having noncircular cross-sections have been used in many
industrial applications; for example, in submarine and aircraft
‘structures, In addition, shells designed to be circular often deviate
measurably from perfect circularity once they ére fabricated.

This study is important because the out-of-roundness may adversely
affect the natural frequencies and mode shapes. Also, investigations

of the free-vibration characteristiés of the oval shell are necessary

if the forced vibrations of oval cylindrical shells are to be studied.
1.2 Background

For the discussions to follow, reference should be to the geometry
and nomenclature of Figure 1., The quantities appearing in Figure 1

are defined as follows: s, x, and z are the orthogonal coordinates;
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Figure 1. Geometry of the Oval Shell



v, u, and w are the corresponding displacement components; r is the
variable radius of curvature; h is the shell thickness; L# is the
length of the shell in the x~-direction; L (not shown) is the circum-
_ferential arc length of the cylindrical shell measured along the middle
surface in the s-direction; and 2b and 2a are the lengths of the major
and minor axes of the oval cylindrical shell, respectively.

Many frequency studies have been performed on circular cylindrical
shells, Rayleigh (1) derived an expression for the natural frequencies
of simply supported circular cylinders. He assumed the middle surface
would bend but not stretch. In 1948, Arnold and Warburton (2) con-
sidered both bending and stretching of the shell and clarified the
consequences of Rayleigh's inextensional assumption. Using an energy
approach, they calculated natural frequencies and verified the lower
frequencies experimentally. Since the time of theif studies, many
péﬁéfé have been published for circular cylinders with various end
conditions (3~14). These papers deal with both parametric studies and
experiments.

Armenakas (15) studied the accuracy of two frequently employed
shell theories of dynamic analysis, i.e., the Flugge (16) bending
theory and a Donnell-type theory (not to be mistaken as the Donnell (17)
theory). 1In this study he also showed which displacement’components
predominate for the three frequencies obtained for each mode shape.

Marguerre (18)’was probably the first to attempt to solve non-
circﬁlar cylindrical shell prdblems. He expressed the variable cufva—
ture as an infinite Fourier series when studying the stability of
simply supported noncircular cylinders. He expressed the curvature as

follows:
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1 1 [ 2 krrs]

— . —— 1 - 1

— =7 + bk cos T (1.1)
=2

o k ,l_t S

where, in addition to notation introduced earlier,

r

o mean radius of curvature, and

bk = eccentricity constants dependent on k.

Malkina (19), when studying the free vibrations of noncircular

cylindrical shells, assumed the following radius of curvature:

[- -]
1:-1—':14- e 2 b. cos g_k_ﬂ_s] (1.2)
ror, » k S,

k=1

where, in addition to notation introduced earlier,

o
i}

eccentricity constant, and

<]
o

half the arc length of the cross-section,

Herrmann and Mirsky‘(ZO) investigated the longitudinal, torsional,
and flexural vibrations of cylindrical shells having elliptic cross-
sections. It was necessary to restrict the magnitude of the eccentric-
ity in determining the longitudinal modes, and an energy procedure was
used to obtain the axi-symmetric flexural modes, No solution for the
remaining flexural modes or the transverse modes was presented.

Sewall (21) currently is investigating the natural fréquencies
and mode shapes of ellipses both theoretically (with the Rayleigh-Ritz
method) and experimentally.

Kempner (22), when solving the static problem, assumed a simpli-
fied version of Marguerre's expression, Equétion (1.1), for Fhe
curvature. This curvature expression, which represents a doﬁbly

symmetric oval, approximates an ellipse which has the same major to



minor axis ratio as the oval. This expression is given as

E ) (1.3)
r r L .
[o] S

where, in addition to notation introduced earlier,
r = radius of a circle whose circumference Ls is equal to that

of the oval, i.e., LS = 2nro, and

€ = eccentricity constant, |e|_5 1.

Although this expression is limited to a maximum major-minor axis ratio
of 2,06, it includes cross-sections that are of practical importance.
This ratio is limited because of the bounds on the eccentricity €. The
oval is not allowed to have any reverse or negative curvature at any of
its points. When the value of the eccentricity parameter € is negative,
this is equivalent to a 90o rigid body transformation of the noncircu-
lar shell. Referring to Figure 1, when € > 1, then b > a, but when
€ <1, then b <a. The full geometry of the oval is presented in (23).

Klosner (24, 25, 26), assuming the curvature expression given by
Kempner, Equation (1.3), studied the free and forced vibrations of an
infinitely long oval cylindrical shell. He used the Love equations of
motion and assumed a power series in the eccentricity parameter € for
the natural frequencies. This enabled him to uncouple the three
coupled partial differential equations of motion. The expression for
the nondimensional frequency of a noncircular cylindrical shell was
given as

=P, +C,. €+C_. € + ... (1.4)

where

Pil = nondimensional frequency of a circular cylindrical shell of



radius r
o

2 2 2, 2
= 1-v
[pf, =& o) p;, /Bl
Cpil = coefficient;of e’ - term of the nondimensional perturbed

frequency of the ilth mode,

P,y = natural frequency of a circular cylindrical shell of
radius r ,
o
E = Young's modulus,
P = mass density of shell,
v = Poisson's ratio, and
1 = nondimensionalized length of the longitudinal half-wave.

There are some limitations and errors in this perturbation technique

which will be discussed in Chapter 1IV.
1.3 Approach

The equations used herein are those derived by Klosner (25) (the
Love equations) and those derived by Kempner (22, 27) (the Donnell
equations, modified to include the translational inertia terms). In
this research, the displacements (u, v, w) were expanded in a double
Fourier series similar to those used by Arnold and Warburton (2), but
were modified to include the anti-symmetric mode shapes. These dis-
placements satisfy the freely supported boundary conditions on the two
ends. The curvature expression used was that given by Kempner,
Equation (1.3).

When the displacement and curvature expressions were substituted
inte the>field equations, a set of recurrence formulas relating the
coefficients of the displacement series was obtained. From these

formulas, the natural frequencies were found. Once the natural



frequencies were found, the corresponding mode shapes were
calculated.

A comparative study was made with known circular and noncircular
cases and then a parametric study was made to determine the affects of
eccentricity on the natural frequencies and mode shapes of oval
cylindrical shells, Also a comparative study was made of the results

obtained by the Love and Donnell equations.



CHAPTER II

FORMULATION OF THE SOLUTION

2.1 Shell Vibration Equations

The relations given in this part are for a homogeneous, isotropic,
elastic, thin-walled, cylindrical shell, The cross-section is identi-
fied by a convex-outward, closed, plane curve resulting from the inter-
section of the middle surface and a plane normal to the axis of the
cylinder. The sides of the shell ‘are assumed to be at distances
z =+ h/2 from the middle surface, where z is measured along the normal
to this surface and h is the thickness of the shell. The thickness is
considered small in comparison with the longitudinal length Lx and the
radius of curvature r of the middle surface.

The relations are based upon the usual Kirchhoff-Love assumptions
of classical shell theory. The strain-displacement relationships used
for Love's and Donnell's equations correspond to those given by
Reissner (28) and Kempner (22, 27),

. The differential equations of equilibrium, Equations (2.1) and
(2.2), follow from the application of Hamilton's principle (29), For
a freely vibrating cylindrical shell, these equations are (with Love's

assumptions)

(1-W) (1+M) .
uix.+ 2 Ug s * 2 Vks

Ric
=

1
T
=Y

+



(1-4) . . (1+4) u (E) +_11_2_|:(1—-u) vxx Yexs " sss
2 XX ss 2 Xs r 12 2 2 r  r
s r

if ¥ ]

* r\r )

S S

2
(1-47) :

- E PVt =0 (2.1)

3

llt-‘£+'v’ + W :|+DEV4W h—zl:-—vxx A4 ]+_____(1-U2) w,,. =0
rir s Uy 12 T 12 r | r Les E P tt

and (with Donriell's assumptions)

2
(1-u) (1+W) M. (1-W7) _
xx 2 Yss ¥ 2 Vxs * T wx - E Pupe = 0
(1- L (1+u) v (-u?)
2 Vxx * Vss * 2 uxs +(?)s - E pvtt =0
o 2 L2
1w ] ™ L (W) o
= [r + vS + qu + 1o Vw + B p‘wtt =0 . (2.2)

The geometry of the shell is shown in Figure 1. In the preceding
equations the subscripts indicate differentiation and
x, 8, z, t = longitudinal, circumferential, and radial coordinates,

and time, respectively;

u, v, w = displacements in the x, s, and z directions,
respectively;

r = variable radius of curvature;

V) = Poisson's ratio;

p = mass density;

E = Young's modulus; and

h = thickness (constant).
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A summary of the derivation of these equations is given in Appendix A.
For simplicity, beéause the Love and Donnell equations vary only
by a few additiohal terms, only the Love equations will be used in the
discussion of the formulation, ‘Fér thisvparametric study, Equations
(2.1) can be rewritten in nondimensionalized form using the following

dimensionless quantities:

ug
i
= mL_'Im Nr'lx

+
o

]

y = . (2,3)

Equations (2.1) thus rewritten are as follows:

2
1. Y . o . M (1-u7) _ . :
—_——a + u 4 — + - W — — p u = 0 (Z.L.Ea)

L A vt

v . 2
Vt—;t—;+_%v_ + & u +i<lﬂr-->§+h—[-'—'y--—'v -—'—':lz—'w

L 2 L m LsLx T8 Ls r 12 L 2r2 m rL me
s X X X S
Ly __1_(x> ]
rL53 EEE oL 2\F EE
- _
(1-¢ )~
- = ) tt = 0 (2.4b)
2 2 v
1w & Y h™ =4 h 1 m 1 [v
?[?+L+Lun]+1zv "12[L2L(r>§"L3<r)§gg]
x x s ' s
2
+ (1-ﬁu‘) pw,, =0 (2.4c)
where .
b mmm e “eeee
Tw = . W b o—_—222
Lx4 szLsz TMEE L54
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The curvature expression for a doubly-symmetric oval given by

Kempner, Equation (1.3), can be expressed as

L
:? = 21 + € cos(4mE)] (2.5)
in nondimensionalized terms.

For this particular problem, displacements are assumed which
satisfy the freely supported boundary conditions along the two edges

N = 0, 1. These conditions are

un =0
v =0
w =0
v =0 . (2.6)

Utilizing these boundary conditions, the symmetric displacements u, v,
and w (nondimensionalized) may be expressed by the following double

Fourier series:

[ ] [}
u(m,g,t) = E: }E Amn cosm MTTcosnTEcos A t
m=1 n=0,2
- ] =]
v(M,8,t) =Z E B . sinm MM sinnT™E cos A t
m=1 1’1=O,2
[~ -] (-~ .
w(T,E,t) = E: E: Cmn sinm T™MNcosnTE cos A t (2.7)
m=1 n=0,2
where
A ,B , Cmn = unknown constant coefficients dependent upon

m and n, and
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A = circular frequency.
For anti-symmetric displacements the sine and cosine functions in
the E-direction are replaced by the cosine and sine functions,

respectively.

2.2 Recurrence Formulas (Symmetric Displacements)

When the assumed displacements, Equation (2.7), and the radius of
curvature, Equation (2.5), are substituted into Love's equations,
Equation (2.4), three coupled equations result. Making this substi-
tution and simplifying, the three recurrence formulas for each m and n
can be written as follows:

[Bzm2 + Y(2n-—2)2 - wszmn + [—GBm(Zn-—Z)]an

n " n,
+ [-Bume (1+ 63)]cmn_2 + [-Bun(2+eéz)]cmn

+ [-Bume Jcl;-r::;.'z'i:ﬁ (2.8)

2 2
h1 2 n 2,2 2
Amn[-dﬁm(Zn-qz)] + an'411[12L 5 e (1-65) <m By + (2n~6) >]

s

2 2
h™m 2 & n e ) P n
+Bm%2L[ Z{QH—N E(l'%)+3(&H6) (1-2 8%

3L 2k

S

2
+ m282Y<€(1_ 6;) -%: 52> }:] * an{:(zn—z)z * Yszmz

2 2 2
L BT <(2n-z)‘2 (1-¢8%) + == (2n+2)% (1-60)
2 2tk 1

3L .

S

2 2 2

€ 2 272 g e 2
+T(2nr6) +WB(1+—§-—€52—T6§)>—W]+



>

mn=-

+

13

2.2
h 2 € € :n 2 €
an+2 L [‘3—;—2' <(2n—2) ey (1—5 62) + (2n+2) >
s :
2 : 2.2
2.2 € n h™m 2/ 2.2 2
m 87y (G—T 62)>] + an.,.l,; L [12L 5 € <m By + (2n+2) >]
s . i
| 2.2
n h™mo 2 2
c - [(zn-z) € (1+8) + L ok (2n-6)v<5 o (zn-6)2>]
S
.2 2
. ) : n hm € ;n 2 2
+ cmn [(2n-2)(2,+ eéz) + L o 5 (2n-2) (1...5 52) <B m .
s

+

+

5 [:—U,rnﬁe (14 6‘3‘)] + A [:—u.mﬁ(2+ cég)] + A

2_2

(2n—2)2>:l+ c_ l:(gn-,z) e+ LET ¢ (2n+2) <Bzm2

12L 2
8

(2n+2)2)] = 0 (2.9)

mn+2 [-Umﬁé]

2 2 '
s [:G(Zn-G)('l-i-é;) + L‘h——TI—E (1~ 6;1) € (2n-2) <Bzm2

+ Bm
‘ 12Ls
2 2
- (2n-2)2>]+B [(2n-2)(2+€§n') + 12T (on-2) -
mn 2 6L 2
s
€ xn 2.2 2
(1--5 éz) <m B® - (2n-2) >:l + an+2 [€(2n+2)
2 2 '
h 2.2 2 2 n
+ L 5 €(2n-2) <m B” - (2n-~-2) >] + cmn#k l:e (1+ 55)]
12Ls :
o n, 2  2.;n n
+ cmn_‘_2 [e(4+463+e 54)] +.vcmn-[(.4+ze + € 53+Ae 52)
12

+

12

:22 <Bzm2 + (2n—2)2 >2 - w2] + Consn [€(4+ e 52)] +

S
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z} :
* Cmn+4 [e | = 0 (2,10)
where
LS
BT
x
2 2y 2
a (1-u)pLsx
wo = - 5 —
ETT
éi ) 1 i=j
Voo i# <
1 Love's equations
L = i
0 Donnell's equations
A =0
m-n
B = 0 n >0
m-n - :
C =0
m-n

11 2y 3y aes

2
"

n = 1, 2, 3, seoe

For a derivation of these recurrence formulasgsée Appendix A.

Thése three equations, Equations (2.8), (2.9), and (2.10), cannot
be solved explicitly for Amn’ an, and Cmn' Noncircularity has coupled
these equations together in the E-direction. In order to solve these
equations, an infinite number of the equations must be taken. Because
- this is not possible, the humber of equations must then be truncétéd at
some point.. The point selected is that which will insure convergence

for the desired accuracy. Because of the large number of equations



involved, the use of a computer is essential. The next chapter will

explain the calculation of the natural frequencies and mode shapes.

©

15



CHAPTER III
COMPUTER SOLUTION
3.1 General

The computer program developed is sufficiently general to deter4o
mine the symmetric and anti-symmetric modes of vibration and the
corresponding frequencies for a freely supported cylindrical shell
by means of either Love'é or Donnell's equations, Equations (2,1) or
(2.,2). The parameters in the program are the eccentricity (ECC),
 defining the radius of curvature, the LS/Lx ratio (BET), the h/l:s ratio
(HOLS), and Poisson's ratio (PR) for the shell.  The program also
includes the boundary con&itions (infinitely long cylindrical shell) -
employed by Klosner (25), The calculations were made on the Oklahoma
State University IBM Model 360/50 Computer. A listing of the program

is given in Appendix B,

3.2 Natural Frequencies

If the number of n's in the recurrence formulas, Equations (2.8),
(2.9), and (2.10), is taken to be k, then 3k simultaneous equations are
obtained for each value of m. These equations can be written in matrix

form as follows:

16
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— 1 —
Recurrence Formula 2.8 Am1
| | A
Recurrence Formula’ v2.9 Bm1
' . = 0 (3.1)
lJ‘ S Bmk ’
Recurrence Formula 2.10 le
' I ka
A
Cc

Equation (3;1) requires fhat
IIx'] - w?1]] = o (3.2)

where
[x']
(1]

. 2
[x] without the W terms, and

1

1l

identity matrix.
The squares of the nondiﬁensionalized frequencies are those values of
w2 which' satisfy Equation (3.2).

The subroutine called EIGENP (30), with double precision, was used
to calculate the eigenvalues (wz) of Equation (3.2) and the resulting

-1

eigenvectors
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3.3 que Shapes

‘Once the natural frequencies and corresponding vectors were
obtained, the corresponding mode shapes were found. As is the case
for all free vibration pfoblems, only normalized displacements can be
found. All displacements were calculated at the point of maximum
displacement along the axis of the shell.

The number of points around the circumference, at which the dis-
placements were calculated, varied with k. The number of points chosen
was sufficient to insure that all points of sign changes in displace-
ments would be given. Due to symmetry of the cross-section, displace-
ments were calculated for only half the circumferéntial length. The
number of points was taken to be 3k - 2.

In order to determine which frequency corresponded with which
value of n, the number of times that the displacement changed sign in
half the circumferential length was counted, and this was then taken to
be the value of n, or the number of fuli waves. As the eccentricity
became higher, the value of n could be determined in this manner, but
it became meaningless. The value of n was then determined by comparing
the higher ecceﬁtricity mode shapes with the lower eccentricity mode

shapes found in the described manner. This procedure worked quite well.



CHAPTER 1V

NUMERICAL RESULTS

L,1 Introduction

It was decided to substantiate the method of solution described in
the preceding chapters by comparing the results of this study with the
results of others; first, by comparing with known solutions for circu-

lar shells, and second, with those of noncircular shells,

L,2 Comparison of Results with Circular Shells

Theﬂfirst case studied was used to verify the‘applicability of the
solution for obtgining the natural frequencies of circular cylinders.
Armenakas (15) compared the natural frequencies obtained by the Flﬁbge
equations with those obtained on the basis of the theory of elasticity.
The results obtained are given in.Table I (using Afﬁenakas's nondimen-
sionalized frequency ().,  These results are for the first longitudinal
mode (m = 1) and fog‘the two higher frequencies of the three fre-

- quencies obtained fo} each mode shape, The shells had the following

parameters and properties defined:

(1-u2) pLszkz

-2 *
4En2
2 8 h )
O = ( T-q u.)('i,—)z w
S
S g . ) i v,,»;;#ﬁ_‘;“} e o
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TABLE 1

COMPARISON OF NONDIMENSIONAL FREQUENCIES OBTAINED BY THE THEORY OF ELASTICITY
FLUGGE, LOVE, AND DONNELL

SECOND FREQUENCY

h h n =1 n =2 n =4

R L Elasticity Fligge Love Donnell Elasticity Fliigge Love Donnell Elasticity Flugge Love Domell

1 °1 .10689  ,10714 ,10702 10693 212226  .12268  .12247  .12234 »16485 16556 .16506  .16495

T .3 . ,30177  .30224  .30193  .30178 +30698  .30761 .30725 ,30704 232680  ,32792  .32737  .32699
«5 50103 .50244  .50129  .50105 «50411  .50573  .50452  ,50420 51623 .51868 51719  .51657

3 .1 .16484 ,16709 ,16542 .16519 022784  ,23328. ,22831  ,22805 39825  L41471  ,39879  .39866

Y .3 .32109 .32964  ,32527  .32267 236754 38209  .37478  ,37103 «49570  .52804  .50637 ,50301
.«5 51065 .,52861 .51692  .51280 «54009  .56986 455561 54754 «63760 71154 .68022 .66849

THIRD FREQUENCY

_}l _I_l_ n = n =32 . n =4

R L Elasticity Fliigge Love Donnell Elasticity Fliugge Love Donnell Elasticity Fligge Love  Donnell

1 .1 517842 .17853 ,17859  .17857 .20201  ,20226  .20237 ,20233 227561  .27649 27671  .27662

°% .3  ,50648 ,51015 ,51024 ,51023 .51473  ,51861 ,51873 .51872 254638  .55119  .55140  ,55135
o5 82707  .84691  .84707  .84706 .83174  ,85202 .85219  .85219 .85006  .87216 .87240 .87238

3 1 «26027  .26284  ,26380 .26327 .38247  .39092  .39306 .39194 65666  .68488 .68962  ,68752

Y .3 ,53121 ,53487  ,53627  ,53604 .59752  ,60552° .60856 .60763 «79703 - .82759  .83439  .83174
«5 .84138 .86084  ,86268 «87975 ,90500 - .90827 90767 1.00885 1.06365 1.07184 1.06933

«86254



LL = 0.015915494, 0,047746483
S
L
-I:E = 6.2831853, 18.849556, 31.415927
X
4= 0.30

where
() = nondimensional frequency given by Armenakas.

The values of h/L.S and LS/Lx‘correspond to the following values:

==
I

0.10, 0,30

Li 0.10, 0.30, 0.50
x
where
R = radius of the cylinder.
As is evident from Table I, the frequencies obtained by both the

Love and Donnell equations are close to those obtained on the basis of

the theory of elasticity and Flugge's equations for a wide range of

<

shell parameters. Therefore, frequencies obtained by both the Love and
Donnell equations can be used with confidence in studying the free
vibrations of circular cylinders.

Once the natural frequencies had been found, the mode shapes could
be calculated. For this purpose, the shells used to verify the calcu-
lations of the mode shapes were the same shells studied by Arnold and
Warburton (2). Comparisens of the ratios of the maximum displacements
for the low frequency (n = 4, m = 1) are given in Table II.

The results obtained by the Love and Donnell equatiéns are quite
accurate in comparison with»those given by Arnold aﬁd Warburton for

this range of shell parameters. Their frequency equation was based on



TABLE II

COM’PARISON OF AMPLITUDE RATIOS

n =4 oom =1 M o= 0.29 ‘h/L_= 0.,008356
L. /L 7734 3.094 5,414 7,734
s.x A/C B/C AJC B/C A/C B/C A/C B/C
Arnold and . : ' .
Warburton 024 0252 072 .257 .073 50246 .052 .218
Love . .024 «252 072 0257 .073 . 246 .052 217
«245 .051 .216

Donnell 024 252 .072 4256 .072
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Straiﬁ relations given by Timoshenko. With these results, this would
seem to indicate that both sets of equations can be used for determining
the modal characteristics of circular cylindrical shells.

Klosner (26), in his study of infinitely long oval cylinders,
derived a cubic equation for the natural frequencies of a circular
cylinder of infinite length. Making the changes in the recurrence
formulas to his boundary conditions was a simple task. Only a few sign
changes had to be made in Equations (2.8), (2.9), and (2.10). Compari-
son of .the low frequencies (m= 1) are given in Table III. This shell

had the following properties:

L

ii = om = 0.0017356 U= 0.30 »

RN
L
S.

M

The greatest difference in these frequencies was found at n = 8. The
percentage deviation was equal to 0.94%, This deviation was attributed
to the difference in solving for the eigenvalues of a large matrix in -
comparison to solving a cubic equation for the natural frequencies.
The results obtained by Klosner and the author are shown in Figure 2,
For circular shells, the eigenvalue routine (EIGENP) gave accurate
results for large matrices. Therefore this routine can be used with
confidence in studying noncircular shells. For this shell the Love
equations were used in the comparison. The Donnell equations gave al~-
most identical frequencies as the Love equations, the greatest devia-
tion being +0.16%.

The results of.this study substantiated the applicability of the
method of solution (and the related computer program) to the special

case of the freely supported circular cylinder,



TABLE III

COMPARISON OF KLOSNER'S AND CULBERSON'S NONDIMENSIONAL FREQUENCIES ()

h

s/L =2m /L = 1/(21_791.7) W = 0.30
X s -
€ = 0.0 m = 0.10 e =0.20 € = 0,30 : e = 0.40 ¢ = 0.50
Klosner Culberson Klosner Culberson Klosner Culberson Klosner Culberson - Klosner’ Culberson Klosner Culberson
0 0.94969 0.94969 0.95554 0.95855 0.97288 0.98249 1.00110 1.01631 1.03933 1.05571 1,08651 1,09797
1 0.84556 0.84556 0.84940 0.88729 0,86081 0.93179 0.87950 0.97776 0.90502 1.02428 0.93682 1,07067
2 0.65334 0.65337 0.65022 0.64567 0.64076 0,62551 0.62468 0.59902 0.60144 0.57204 0.57018 0,54898
3 0.48403 0.48417 0.48279 0.48323 0.47905 0.48143 0.47276 0.47993 0.46380 0.47964 0.45202 0,48080
4 0.36198 0.36237 0.36141 0.36177 0.35968 0.35974 0.35679 0.35577 0.35270 0.34839 0.34737 0.33789
5 0.28442 0.28524 0.28459 0.28538 0.28513 0.28542 -0.28601 0.28468 0.28725 0.28289 0.28883 0.28024
6 0.24543 0.24685 0.24258 0.24414 0.23380 0.23775 0.21839 0.22927 0.19478 0.21895 0.15936 0.20638
7 0.23967 0.24167 0.23839 0.24005 0.23452 .0.23542 ) 0.22793 0.22828 0.21836 0.21909 0.20541 . 0.20817
8 0.26012 0.26255 0.26243 0.26413 0.26924 0.26706 0.28021 0.26954 0.29490 0.27079 o 0.31277 0.,27003
9 0,29919 0.30188 0.29999 0.30213 0.30235 0,.30298 0.30626 0.30461 0.31164 0.30652 0,31843 0.30965
10 0.35130 0.35413 0.35211 0.35421 0.35452 0.35444 .0.35852 0. 35469 0.36404 0.35553 0.37102 0.35630
11 0.41321 0.41612 0.41415 0.41616 0.41696 0,41626 0.42160 0.41643 0.42802 D.41666 0.43613 0.41696
L h
s/ =2m _ v =Y @ner : . W =0.30
X : s
¢ = 0.60 € = 0.70 €= 0.80 €= 0.90 €=1,0
Klosner Culberson Klosner Culberson Klosner Culberson Klosner Culberson Klosner Culberson

0 1.14153 1.14145 1.20331 1.18515 "1.27087 1.22842 1.34334 - 1.27084 1.41996 1.31209

1 0.97427 1.11641 1.01675 1.16111 1.06366 1.20445 1.11444 1.24618 1.16858 1.28607

2 0.52946 0.53429 0.47689 0.52308 0.40789 0.51971 0.31174 0,.52090 0.14089 0.52535

3 0.43720 0.48357 0.41900 . 0.48789 0.39697 0.49360 0.37043 0.50048 0.33830 0,50836

& 0.34075 0.32551 0.33275 = 0.31493 0.32327 0.30859 0.31218 0.30572 0.29930 0.30485

5 0.29076 0.27707 0.29301 0.27368 0.29560 0.27033 0.29850 0.26723 0.30170 0.26453

6 0.10003 0.19058 - 0.17004 C mea 0.14362 - 0.11232 ' = 0.08093

7 0.18837 0.19581 0.16600 0.18233 . 0.13567 0.16813 0.08966 0.15366 ——- 0.13951

8 0.33331 0.26600 0.35606 0.25750 0.38062 0.25474 0.40667 0.23410 0.43394 0.22489

9 0.32654 0.31255 0.33587 . 0.31550 0.34632 0.31842 0.35780 -0:32131 0.37020 0.32418
10 0.37937 0.35728 0.38901 0.35844 - 0.39985 - 0.35978 0.41178 "0.36130 0.42472 0.36298
11

0.44584 0.41778 0.45705 0.41778 0.46965 0.41830 0.48354 - .. 0.41888 - 0.49861 0.41954

7
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Figure 2. Nondimensional Circular Frequency () Versus Mode
Number n (Klosner and Culberson)
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L.3 Comparison of Results with Noncircular Shells

Having established good results for known circular shells, non-
circular (oval) shells were then studied. Another computer program was
written based on the results given by Klosner (26). Results obtained
from this program and the author's results (Love's equations) are given
in Table III. These results are for the lowest frequency (m = 1) and

the following parameters:

L

h

—_— = 2 -

L m L
s

(<]

= 0.0017356 M= 0,30 o

M

For the accuracy desired, convergence was obtained with k = 21 (i.e.,
with 21 terms in the circumferential direction). As can be readily
seen from Table III, there is quite a discrepancy in the results. As
the eccentricity increases, there is more deviation. Figures 3 through
7 show the variation of the frequency () versus thé eccentricity
parameter (e).~ Figures 8 through 12 show the variation of the fre-
quency versus the mode number n. All of these cases are for modes,
symmetric about the vertical axis (axis 1-1 in Figure 1) and for €>1.

For n = 6 and 7, all the frequencies cannot be calculated by
Klosner's perturbation technique because @2 becomes negative, meaning
the natural frequency ® is imaginary.

There are a few reasons which may be offered to explain these
discrepancies., First, Klosner's equations (recurrence formulas) do not
include the terms involving the Kronecker delta 5§@ The author's
equations are identical with Klosner's equations except for those terms.
Second, there may be the possibility of error in the derivation of the

perturbation method. This was not checked by the author. Third, the
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Figure 3. Nondimensional Frequency (W) Versus Eccentricity (n = 0, m = 1,
Klosner and Culberson)
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(¢ = 0,10, Klosner and Culberson)
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assumed solution for the frequency should include the odd terms of the
series.

Klosner states that the flexural modes are not affected by the
sign of €. Evidently, this is not true. The example case of [el::o.so
was studied to verify this conclusion. The odd numbered frequencies
(iseey n = 1, 3, 5, aee) changed, but the even numbered frequencies
(i.ee, n = 2, &, 6,‘...) remaine& the same. He also states that the
anti-symmetric displacement expressions lead to the identical expres-
sions for the constant (Czil) in the series (Equation (1.4)), and
therefore the same frequency. Evidehtly, this is not trﬁe. The
results are shown in Table IV.

These results show that for +€, n = 2, &, 6, ..., and symmetric
displacement expressions, the same frequencies are obtained for -€,

For +€, n = 2, 4, 6, ..., andrantiwsymmetric displacement expressions,
the same frequencies are obtained for ~€. For +€, n =1, 3, 5, cae,
and symmetric displacement expressions, the same frequéncies are
obtained for -€ and anti-symmetric displacement expressions. For +€,
n=1, 3, 5, ..., and anti-symmetric displacement expressions, the

same frequencies are obtained for ~£ and symmetric displacement ex-
pressions. Displacements are symmetric and anti-symmetric with respect
to the vertical axis in both cases.of +& and -€,.

Because the frequencies of Klosner's were quite different, the
corresponding mode shapes would also be different. Thefefore the mode
shapes were not compared., The mode/shapes obtained by the exact method
are very interesting. The mode shapes vary a great deal as the
eccentricity increases. Figures 13 and 14 show the variation in two

of the symmetric mode shapes as the eccentricity increases. These



TABLE IV .

NONDIMENSIONAL FREQUENCIES () FOR SYMMETRIC AND ANTI-SYMMETRIC GASES ( |€‘ = 0.50).
L. h 1.
S/, =om /L. = o1 m=1
X 5 ~

€ = 0.50 € = =0.50 € = 0,50 € = .0,50

n Symmetric Symmetric: - Anti-Symmetric Anti-Symmetric
-0 "1.,09797 1.09797 1.01268 1,01268
1 1.07067 0.74000 0.74000 1.07067
2 0.54898 0.54898 0.69257 0.69257
3 0.48080 0.,42624 0.42624 0.48080
4 0.33789 0.33789 0.35395 0.35395
5 0.28024 0427569 0.27569 0.28024
6 0.20638 0.20638 0.20810 0.,20810
7 0.20817 0.20655 0,20655 . 0.,20817
8 0.,27003 0.27003 0.27152 0.,27152
9 0.30965 . 0.30899 0.30899 0.30965
10 0.35630 0.35630 0.35735 0.35735
11 0.41696 0.41696 0.41696 0.,41696
12 0.48658 0.48658 0,48658 0.48658
13 0.56371 0.56371 0.56371 0.56371
14 0.64779 0.64779 0.64779 0.64779
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mode shapes are only for the radial displacement.

Results obtained by the use of Donnell's equations are from
0 to 1% highér than those obtained by Love's equations. A comparisen
between Donnell's and Love's equations is studied more thoroughly in
Section 4.5.

The author'é method was further verified because of the differ-
ences encountered in Klosner's and the author's results. Because the
oval approximates an ellipse, an elliptie¢ cross-section was studied.
Sewall (21), presently, is studyipg (both theoretically and expefir
mentally) the natural frequencies of freely supported elliptical

shells, He is studying the following cases:

LS = 75-4" ’

L = 24,0"

X

h = 0.032"

E = 107 psi

U: = 0-30

p = 2.588 10—4 1bswsec2/in4 (6061 A1)
Case 1 | H a = b = - 1a2n
Case IT : a = 12,95"; b = 11,01"
Case III: a = 14.39"; b =

9435" .

With the following transformations (23),

(b/’a-.-Al)/(b/a,+ 1)

3p - 36/35 p3 )

p

kil

€

-t

Sewall's ellipses correspond to ovals with eccentricities of 0.0,
-0.24236, and -0.62706, respectively. The results are shown in

Table V. These frequencies are the natural frequencies A/2T in cycles



COMPARISON OF NATURAL FREQUENCIES (CPS) OBTAINED

TABLE V

BY SEWALL AND BY CULBERSON

42

a=b=1]12"
n Sewall Culberson
3 529.8 529.9
7 162.2 163.5
10 221.3 223.3
4 968.4 968.5
10 325.7 327.1
12 361.0 362.9
a=12,95" b =11.01"
Symmetric Anti-Symmetric
n Sewall Culberson Sewall “Culberson
3 524,1 522.0 524,2 526.3
7 15703 157.8 157.0 157.8
10 221.9 223.9 221.9 223.9
4 956.5 954.8 956,.7 957.9
10 310.6 310.4 310.6 310.4
12 359.4 363.2 359.4 363.2
a = 14,39" b = 9,35"
Symmetric Anti-Symmetric
n Sewall Culberson Sewall Culberson
3 491.2 459,7 492.4 521:5
7 138.5 129.6 138.5 131.3
10 223,9 227.0 223,9 2271
4 886,.1 828.2 893.0 929.4
10 268.1 245,7 268,1 246,.7
328.2 336.1
12 382.3 391.7 328.2 337.8
382.3 393.3
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per second, Love's equations have been used fér”thé author's work.
Por the deéired accuracy, gonvergence wag attained with k = 25;

The question that ﬁay now - arise is "Why for Case III, m = 2, are
there two frequencies for n = 10 in- the symmetric case, and two fre-
quencies for n = 12 in the anti-symmet*ic case?'", By the method of
counting described in Chapter I1II, these gre.the results, This is the
same method used by Sewall, But with the author's additional technique,
the ﬁpper n = 10 frequency, symmgtrig cése,’is‘actually the frequency
fﬁr n = 12 and the frequency at n = 12 is actually the ffequency for
h = 8. For the anti~symmetric case, the upper n = 12 frequency is
actually the frequency for n = 8,

| Comparing the results of the elliptical and oval shells for Case I,
€ = 0.0, the results are seen to Be véry close; the greatest deviation
being 0.9%; For Case II, € = 70.24236, the frequencies obtained for
the oval deviate from ~0,4% to +0,8% from those of the ellipse, These
results are considered accurate;' For Case III, € = 40.62806, the

- frequencies obtained for the oval deviate from ~9.1% to +5,9%. This
error would ingrease as the eccentricity increases because the oval
deviates more from the ellipsé as € increases.‘ But the results aré
still good, considering that Sewéll used an ellipse and an approximate
procedure, and the author used ah oval and an exact procedure in
solving for the natural frequencies. Because the author'é results
have been verified for both circular aqd noncircular shells, the

noncircular (oval) shell will now be studied in more depth.
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LL Freely Supported Oval Shells

A detailed study was ﬁade Of oval shells having the same proper-
ties as those of Sewall's elliptical shells; that is, shells having
the same longitudinal and,circumferenfial lengths and thicknesses,
This study was restricted to a thorough investigation of the symmetric
modes for only positive values of the egcentricity parameter €-~the
rectriction made becéuse of computer time. Love's équationskwere used
in this detailed Study. The eccentficity parameter (e) was varied
from 0.0 - 1;0; the locgitudinal mode m from 1 - 4; and the circum-
ferential mode n from O - 12,16. Values of n varied between 12 and 16
in order to inclﬁde the.lowest frequency énd a few of the ﬁigher
frequencies near this lowest valué of W. vThese are shown in Figures
19 through 22, It was desired to use higher values of m, but, due to
computer space‘and time limitations, m = L was the largest feasible
value, For the éccuracy deSircd,’adequate convergence for m = 1-3 was
attained with k = 25; form = 4, k = 27.

Tables VI through IX give the values of the nondimensional
freqﬁency ® for the values of m = 1 = L, Figures 15 through 18 show
the frequency (@) variation with the eccentricity € and mode number m
for a few selectéd values of n. As the value of m increases, the
frequencies () do not vary monotonically, Figures 17 énd 18 show
that the frequencies (for high values of eccentricity) decrease with
the value of m and subsequently increase.

Figures 19 through 22 show the frequency (@) variation with the
mode nunber n and m for a few selected values of €, As thc value of
eccentricity (;) increases, the curves become more irregular, This

irregularity can be partially attributed to the symmetric forms being
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Figure 19. Symmetric Nondimensional Frequency (@) Versus Mode
Number n (& = 0.00)

&

1.0 T l T l ™ T T T T
A - ‘ f Ls= 754"
Y Lyx= 24.0"
h = 0032"
€ = 00 7
0.8" Q -
L_ -
os} ]
» m=4
Q m'=3
04} m=2 N
m=| M . q
o2} X R o o~ .
: 1 o L : i 1 ! N )
R S S iz

49



50

£

Figure 20. Symmetric Nondimensional Frequency (®) Versus
Mode Number n (€ = 0.20)



&

a Ls =75.4"
Ly = 24.0"
l.2q¢ o h =0032"
€ =050
L
P a
1.0}
v

o
v

0.6} i

I~ -

o4l -

0.2 -
O | 1] L 1 ] i — F 'l 1 i | | 1 1 | R
0 2 4 6 -8 0 12 14 16 18

Figure 21. Symmetric Nondimensional Frequency ()
Versus Mode Number n (€ = 0.50)

51



€1

T ¥ ¥ 1] ¥ T ¥ L) 1] ¥ 1 L} L L] ¥ v T
J A m=4 olsg=754""
ieh 8 .o m=3 Ly = 24.0"
: . D-m=2 h =0.032"
¢ mz| € =10 '
(L ) '
t4F
Q
D
1.2
1O}
4 a
0.8
o o
| v
06}
& A
Q
- o
0o o
041 A A
o ) a a
° o )
u]
v Q o a
0 A
o2} v . . g B
a o) o L gg
‘ s N g
3 N v
v g T.g V. Oa
1 - Q
v iV Q. . a
. - . 'Q.‘;,, 3
0 P PR G SR i Y"n'.': P n P |
0 2 4q ‘6» 8" 10 12 14 16

n

Figure 22, Symmetric Nondimensional
Frequency (w) Versus Mode
Number n (& = 1.00)



SYMMETRIC

NONDIMENSIONAL FREQUENCIES (i) OF AN OVAL CYLINDRICAL

TABLE VI

SHELL (m = 1)

L =
S

7540

L= 24,00
X

h = 0.032"

5.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

©51e0

WoO~NOULPWNFHO

0.92828
0457277
0.32718
0.19391
0.12399
0.08638
0.06697
0.05984
0.06170
0.06970
0.08172
0409651
0.11347

0492913
0459122
0.32532
0.19361
0.12380
0.08630
0.06725
0.05946
0.06114
0.06983
0.08175
0.09653
0.11348

0.,93163
0,60902
0431987
0.19292
0.12318
0.08608
0.06783
0.05839
0,05970
0.07015
0.08185
0.09657
0.11350

0.93570
0.62591
0.31128
0,19210
0.12202
0.08574
0.06836
0.05673
0.05770
0.07051
0,08203
0.09663
0,11352

0.94122
0.64175
0.30024
0.19137
0.12013
0.08533
0.06864
0.05458
0.05526
0.07076
0.08228
0.09672
0.11356

0.94806
0.65646
0.28770
0.19089
0.11728
0.08494
0,06855
0.05197
0.05234
0.07080
0.08260
0.09684
0.11362

0,95610
0.67001
0.27481
0,19078
0.11332
0.08466

" 0.06799
0.04893

0.04879
0.07060
0.08297
0.09699
0.11368

0.96522

0.,68244
0.26284

0.19109
0.10836
0.,08456
0.06681
0.04546
0,04428
0.07007
0.08333
0.09717
0,11375

0.,97538
0.69378
0.25288
0.19187
0.10307
0.08467
0.06489
0.04162
0.03817
0.06937
0.08358
0.09739

0.11384

0.98654
0.70411
0.24571
0.19310
0.09868
0.08497
0.06243
0.03749
0,02972
0.06856
0,08362
0.09764
0.11394

0599869
0471349
0.24164
0.19477
0.09626
0.08544
0.06013
0.03321
0.01909
0.06776
0.08342
0.09794
0.11405

Vel



TABLE VII

SYMMETRIC NONbIMENSIONAL FREQUENCIES (@) OF

AN OVAL CYLINDRICAL SHELL (m = 2)

L =75.4"
S

L = 24.0"
X

h =0.032"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

WoONOULPEWN RO

0.94922
0.84498
0.65220
0.48113
0.35437
0.26582
0.20515
0.16434
0.13833
0.12413
0.11970
0.12320
0.13278
0.14691
0.16446

0.18473.

0.95808
0.88673
0,64447
0.48014
0.35362
0426535
0.20486
0.16421
0.13852
0.12631
0.11847
0.12019
0.13306
0.14703
0.16452
0.18476

0.98202
0.93126
0.62423
0.47818
0.35111
0.26397
0,20397
0.16382
0.13930
0.12795
0.11531
0.11606

0.13315"

0,14740
0.16468
0.18484

1,01584
0.,97725
0.59756

0.47645°

0.34612
0.26173
0.20244
0.16320
0.,14066
0.12851
0.11092
0.11125
0.13227
0.14800
0.16497

0.18499

1.05525

1.02379
0.57024
0.47574
0.33760
0.25883
0.20008
0.16241
0.14209
0.12795
0.10561
0.10575
0.13045
0.14870
0.16537
0.18520

1.09752

-1.07020

0.54665
0.47644
0.32471
0.25562
0.19654
0.16162

0.14313
-0.12632

0,09941
0.09950
0.12780
0.14921
0.15592
0.18548

1.14101
1.11597
0.52943
0.47872
0.30794
0.25253
0.19118
0.16115
0.14342
0.12370
0.09213
0.09237
0.12419

0.14914

0.16657

.0.18582

1.18473
1.16069
0.51922
0.48254
0.29009
0.24999
0.18359
0.16124

0.14247

0.12026
0.08325
0.08422
0.11916
0.14831
0.16722
0.18623

1.22803
1.20406
0.51510
0,48777
0.27513
0.24831
0.17552
0.16187
0.13968
0.11622
0.07139
0.07497
0.,11183
0.14687
0,16719
0.18673

1.27047
1.24581
0.51564

0649423

0.26546
0.24764
0.17240
0.16285
0.13526
0,11193
0.,05400
0.06472
0.10212
0.14518
0.16434
0.18730

1.31174
1.28573
0.51957
0.50172
0.26081
0.24800
0.17300
0.16400
0.13098
0.10782
0.03081
0.05397
0.09307
0.14351
0.16139
0.18795

+C



SYMMETRIC

NONDIMENSIONAL FREQUENCIES (w) OF AN OVAL CYLINDRICAL

TABLE VIII

SHELL (m

= 3)

L
s

= 75.4"

L
X

= 24.0"

h = 0,032"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0‘9

1.0

wodoumpwWMphEHO

0.95208
0.,90723
0.79762
0.66747
0454567
0.44340
0.36207
0.29939
0425240
0.21857
0.19608
0.18357
0.17983
0.,18356
0.19340
0.20813

0.97321
0.95689
0.78049
0.66552
0.54393
0.44236
0.36136
0.29892
0.25213
0.21856
0.19704
0.17826
0.17724
0,18715
0.19359
0.,20842

1.02020
1.01316
0.74669
0.66292
0.53764
0.43929
0.35920
0.29749
0.25131
0.21860
0.19991
0.17166
0.17137
0,18850
0.19217
0,20924

1.07667
1.07292
0.71585
0.66263
0.52406
0.43453
0.35530
0.29506
0.24995
0.21896
0.20269
0.16397
0.16389
0,18748
0,18932
0,21011

1.13685
1.13451
0.69655
0.66579
0.50163
0.42892
0.34887
0.29168
0424797
0,22001
0.20437
0.15523
0.15521
0.18442
0.,18527
0.20997

1.19866
1.19699
0.68975
0.67244
0.47417
0.42358
0.33827
0.28756
0424522
0.22159
0.20447
0.14534
0.14531
0.17969
0.17998
0.,20832

1,26112
1.25982
0.69222
0.68215
0.44963
0.41952
0.32199
0.28331
0.24145
0.22305
0.20255
0.13409
0.13392
0.17349
0.17319
0.,20533

1.32370
1.32260
0.70059
0.69436
0.43368
0.41737
0.30289
0.27973
0.23831
0.22399
0.19756
0.12117
0.12025
0.16596
0.16396
0.20135

1.38606
1.38506
0,71268
0.70851
0.42616
0.41728
0,28869
0.27755
0.23805
0.22431
0.18803
0.10636
0.10221
0.15745
0.15026
0.19680

1.44796
1.44700
0.72718
0.72416
0.42432
0.41909
0.28234
027704
0.23867
0.22415
0.17690
0.08981
0.07561
0.14863
0.13230
0.19216

1.50920
1.50824
0.74333
0.74095
0.42602
0.42253
0.28144
0.27809
0.23937
0.22370
0.16828
0.07261
0.04204
0.14033
0.11674
0,18779

e



SYMMETRIC NONDIMENSIONAL FREQUENCIES (W) OF AN

TABLE IX

OVAL CYLINDRICAL

SHELL (m = &)

L
s

= 75.4"

L_ = 24,0"
X

h = 0,032"

=5 ®

0.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

oo pwhn—~=OoO

0.95331
0.92854
0.86201
0.77128
0.67354
0.58037
0.49767
0.42749
0.36986
0.32402
0.28900
0.26395
0.24813
0.24075
0.24096
0.24774
0.26008

0.98688
0.98301
0.83261
0.76856
0.67024
0.57852
0.49640
0.42660
0.36925
0.32366
0.28896
0.26458
0.24977
0.23583
0.23595
0.24946
0.26103

1.04785
1.04686
0.80241
0.76755
0.65678
0.57322
0.49240
0.42388
0.36740
0.32259
0.28891
0.26627
0.24878
0.22685
0.22690
0.24879
0.26370

1.11506
1.11469
0.78724
0.77266
0.62927
0.56588
0.48463
0.41928
0.36417
0.32081
0.28896
0.26709
0.24460
0.21616
0.21618
0.24474
0.26578

1.18462
1.18444
0.78987
0.78395
0.59626
0.55891
0.47022
0.41302
0.35914
0.31837
0.28893
0.26572
0.23823
0.20403
0.20404
0.23836
0.26548

1.25529
1.25518
0.80272
0.80011
0.57196
0.55442
0.44674
0.40604
0.35098
0.31555
0.28793
0.26219
0.22991
0.19035
0.19034
0.23006
0.26233

1.32649
1.32642
0.82111
0.81983
0.56083
0.55337
0.42089
0.39986
0.33733
0.31310
0.28447
0.25670
0.21929
0.17483
0.17466
0.21989
0.25593

1.39790
1.39785
0.84278
0.84209
0.55895
0.55567
0.40425
0.39583
0.32305
0.31175
0.27640
0.24958
0.20475
0.15701
0.15592
0.20790
0.24430

1.46931
1.46927
0.86657
0.86615
0.56236
0.56079
0.39769
0.39445
0.31987
0.31141
0.26597
0.24160
0.18300
0.13660
0.13108
0.19460
0.22705

1.54058
1.54054
0.89181
0.89152
0.56896
0.56810
0.39686
0.39546
0.32162
0.31155
0.25795
0.23363
0.15748
0.11392
0.09516
0.18107
0.21170

1.61159
1.61156
0.91806
0.91785
0.57764
0.57710
0.39910
0.39838
0.32409
0.31185
0.25190
0.22628
0.13728
0.09108
0.05491
0.16862
0.20024

-~
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studied, If the value of € is less than zero (i.e,, studying forms
‘symmetric about axis 2-2 in Figure 1), most of this irregularity is
erased. This effect is shown in Figure 23. For small n, the odd mode
vnumber frequencies are lower for ~€ than for +€, but converge to the
same value as n increases, Figure 22 also shows the same effect as
described for Figures 17 and 18, These figures show that the fre-
guencies converge to the same value.for different values of m as n
increases. Also, these figures show, about the lowest frequency, a
cupping effect which is not obtained for the circular cylinder. This
effect becomes more apparent as the eccentricity increases.

Because all the mode shapes vary a great deal with changes in
eccentricity €, only a few are shown in Figures 24 through 29. Figures
2k through 27 show how the shapes vary with eccentricity, and Figures
28 and 29 show the variation with eccentricity and m. These mode
shapes are only for the radial displacement w and for 0<E<0.50,
because the mode shapes.are symmetric with respect to the vertical
axis 1-1 in Figure 1. The mode shape n is identified as the number
of full circumferential waves, and m as the number of half longitudinal
waves.,

As the oval shell becomes flatter (i.e., € increases), the shells
tend to bend more in the flatter regions and less in the regions of
higher curvature, therefore causing the irregular shapes,

Because there was no avallable information on the mode shapes of
oval cylindrical shells in the literature, only a subjective analyéis
was made. But, from similar analysis of circular shells, these shapes

appear to be quite reasonable.



Figﬁre 23. Comparison of Szmmetric Nondimensional
Frequencies (W) Obtained with + €
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L,5 Comparison of the Love and Donnell Equations

Love's equations were used for the previous study. In order to
compare the results obtained by Donnell's equations to fhose obtained
by Love'!s equations, frequencies were calculated for various lengths of
shells, iAll variables were kept constant except the ratio Ls/Lx’
because the Donnell equations usually give higher values for langer
shells in the static case (28, pp. 224-227). Frequencies obtained by
both sets of equations for a range from a relatively short shell
(Bi= 3,14) to an extremely long shell (B = 0.10) are given in Tables
X tﬁrough XII. These are converged values for which k = 25,

These tables show that the Love and Donnell equations give almost
identical results for this range of shell parameters. The Donnell
equations give slightly higher frequencies for shorter shells and
slightiy lower frequencies for longer shells.

Because it ig not the specific object of this study to investigate
thoroughly the comparison of the Love and Donnell equations, the ratio
Ls/Lx was the only parameter varied, These results show that the
Donnell equations could be used with confidence in studying the free
vibrations_of freely suypported oval cylindrical shells.

This study also indicated that the predominant displacement mode
for the three frequencies obtained for each mode shape changed with the
value of m and Ls/Lx' Armenakas obtained the result for circular
shells (15, p. 99). A more thorough study should be made of this to

see if his coneclusions can be extended to noncircular shells,



‘COMPARTSON OF THE NONDTMENSIONAL FREQUENCIES (W) OBTAINED BY THE

TABLE X

LOVE -AND DONNELL EQUATIONS (m =1)

m=1 = 1.0 Ls = 75.4" h = 0.032"

B "3.14 1.0 .20 «10
‘1 Love Donnell Love Donnell Love Donnell Love Donnell
0 0.92932 0.92932 0.29581 0.29580 0.05917 0.05916 0.02959 0.02958
1 0.71349 0.71349 0.15256 0.15256 0.00807 0.00804 0.00265 0.00201
2 0.24164 0.24164 0.03747 - 0.03743 0.00280 0.00264 0.00264 0.00246
3 0.19477 0.19477 0.02771 "0.02766 0.00652 0.00627 0.00647 0.00641
4 0.09626 0.09627 0.00876 0.00875 0.01179 0.01167 0.01173 0.01161
5 0.08544 0.08545 0.01553 0.01551 0.01870 0.01864 - 0.01868 0.01862
6 0.06013 0.06013 0.02880 0.0287%6 0.02716. 0.02712 0.02715 0.02711
7 0.03321 0.03322 0.03793 0.03791 0.03716 0.03713 0.03716 0.03712
8 0.01909 0.01909 0.04913 0.04911 0.04871 0.04868 0.04870 0.04868
9 0.06776 - 0.06777 0.06208 0.06207 0.06179 0.06177 0.06178 0.06176
10 0.08342 0.08343 0.07665 0.07664 0.07642 0.07640 0.07641 0.07639
11 0.09794 0.09795 0.09279 0.09278 0.09258 0.09257 0.09257 0.09256
12 0.11405 0.11405 0.11048 0.11047 0.11028 0.11027 0.11028 0.11027
13 0.13254 0.13254 0.12972 0.12971 0.12953 0.12952 0.12952 0.12951
14 0.15290 0.15291 0.15050 0.15049 0.15031 0.15030 0.15031 0.15030
15 0.17498 0.17498 0.17282 0.17282 0.17263 0.17263 0.17263 0.17262




COMPARISON OF THE NONDIMENSIONAL FREQUENCIES (W) OBTAINED BY THE

TABLE XI

LOVE AND DONNELL EQUATIONS (m = 2)

h = 0.032"

m=2 € =1.0 Ls = 75.4"

B 3.14 1.0 0.20 0.10

n Love Donnell Love Donnell Love Donnell Love Donnell
0 1.31174 1.31175 0.59161 0.59161 0.11832 0.11832 0.05917 0.05916
1 1.28573 1.28573 0.41624 0.41623 0.03026 0.03023 0.00807 0.00804
2 0.51957 0.51959 0.12440 0.12440 0.00442 0.00436 0.00280 0.00264
3 0.50172 0.50174 0.09045 0.09044 0.00726 0.00714 0.00652 0.00627
4 0.26081 0.26085 0.04471 0.04470 0.01276 0.01264 0.01179 0.01167
5 0.24800 0.24804 0.02426 0.02425 0.01886 0.01879 0.01870 0.01864
6 0.17300 0.17307 0.01412 0.01412 0.02722 0.02718 4.02716 0.02712
7 0.16400 0.16407 0.04655 0.04654 0.03720 0.03717 0.03716 0.03713
8 0.13098 0.13101 0.05461 0.05460 0.04873 0.04871 0.04871 0.04868
9 0.10782 0.10784 0.06449 0.06448 0.06182 0.06180 0.06179 0.06177
10 0.03081 0.03081 0.07813 0.07812 0.07644 0.07642 0:.07642 0.07640
11 0.05397 0.05398 0.09386 0.09385 0.09260 0.09259 0.09258 0.09257
12 0.09307 0.09308 0.11134 0.11134 0.11031 0.11030 0.11028 0.11027
13 0.14351 0.14354 0.13047 0.13046 0.12955 0.12954 0.12953 0.12952
14 0.16139 0.16143 0.15118 0.15118 0.15033 0.15033 0.15031 0.15030
15 0.18795 0.18800 0.17346 0.17346 0.17266 0.17265 0.17263 0.17263




COMPARISON OF THE NONDIMENSIONAL FREQUENCIES @) OBTAINED BY THE .
LOVE AND DONNELL EQUATIONS (m = 3) '

TABLE XII

m=3 =1.0 Ls = 75,4" h = 0,032"

B 3.14 1.0 0.20 0.10

n Love Donnell Love Donnell Love Donnell Love Donnell
0 1.50920 1.50921 0.88741 0.88741 0.17748 0.17748 0.08874 0.08874
1 1.50824 1.50824 0.67817 0.67817 0.06392 0.06390 0.01749 0.01741
2 0.74333 0.74336 0.22727 0.22727 0.00658 0.00656 0.00338 0.00326
3 0.74095 0.74098 0.18082 0.18083 0.00961 0.00954 0.00674 0.00660
-4 0.42602 0.42607 0.09001 0.09002 0.01696 0.01686 0.01205 0.01193
5 0.42253 0.42259 0.08053 0.08054 0.01958 0.01951 0.01875 0.01871
6 0.28144 0.28154 0.01850 0.01850 0.02742 0.02738 0.02718 0.02714
7 0.27809 0.27820 0.03218 0.03219 10.03729 0.03726 0.03717 0.03714
8 0.23937 0.23946 0.05838 0.05838 0.04880 0.04877 0.04872 0.04869
9 0.22370 0.22378 0.06950 0.06951 0.06186 0.06185 0.06180 0.06178
10 0.16828 0.16830 0.08197 0.08197 0.07648 0.07647 0.07642 0.07641
11 0.07261 0.07262 0.09709 0.09710 0.09264% 0.09263 0.09259 0.09258
12 0.04204 0.04204 0.11355 0.11356 0.11035 0.11034 0.11029 0.11028
13 0.14033 0.14034 0.13218 0.13218 0.12959 0.12958 0.12954 0.12953
14 0.11674 0.11674 0.15261 - 0.15262 0.15037 0.15036 0.15032 0.15031
15 0.18779 0.18782 0.17473 . 0.17474 0.17270 0.17269 0.17264 0.17264




CHAPTER V

SUMMARY AND CONCLUSIONS

p«1 Summary and Conclusions

An exact method has been presented in this study to determine the

natural frequencies and mode shapes of freely supported oval cylindri-

cal shells with the radius of curvature expressed as a cosine function

of the circumferential coordinate s. Cases of circular shells, non-

circular shells, and oval shells were investigated and the following

observations were made. -

4.

Through comparison of the natural frequencies and mode
shapes for pircular cylinders, the Love and Donnell equations
gave closely comparable results.

Comparison of the natural frequencies for oval cylinders
showed that the exact method gave definitely different
results than those obtained by the perturbation technique

of Klagsner for higher values of €.

Because the frequencies did not compare favorably, the mode
shapes obtained by Klosner and the author were not compared.
Mode shapes were presented for the work done by the author
during the comparison of Klosner's and the author's work.
Frequencies obtained for oval cylinders with low eccentrici-
ties compared with results obtained for the corresponding

ellipses., As the eccentricity increased, the results were
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less favorable, For a deviation of no more than 10%, the
maximum allowable value of eccentricity is about 0.65.

As the longitudinal modes (m) were increased, the number

of circumferential terms (k) had to be increased to obtain
accurate frequencies and mode shapes, To obtain a minimum
accuracy of three significant numbers for the normalized
displacements, k was taken to be 25 for values of m_f 3,

and 27 for m = L4,

As the eccentricity and mode number n increased, it was found
that the frequencies for increasing values of m decreased to
a point, then increased,

As the eccentricity increased, curves of frequency.versus n
became highly irregulars This may have been due to the
symmetric forms (axis 1-1 in Figure 1) studied. Frequencies
obtained for symmetric forms about axis 2-2 in Figure 1
erased the greater percentage of this irregularity.

For positive and negative values of eccentricity, different
values of the frequency were obtained for odd numbered values
of n.  As n increased, the two values converged.

As the eccentricity increased, the mode shapes varied a great
deal from those of the circular cases., This was probably

due to more bending in the flatter portions than in the
highly curved portions.

The Love and Donnell equations gave almost identical results
for npncirpular cylinders for the range of shell parameters

studied.
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5.3 Suggestiqns_for Further Work

During this study, many interesting topics were noted which could
be studied. As noted in Section 4,3? the results obtained by Klosner
were definitely different than those obtained by the author. An
accurate method based on the perturbation.technique could be developed
to uncouple the partial differential equations of equilibrium and to
solve for the natural frequencies and mode shapes.

As mentioned in Section 4.5, a study could be undertaken to
determine if the remarks made by Armenakés (15, concerning predominant
displacements) can be extended to nencircular shells.

Another extension of Section 4.5 would be to study other dynamic
equilibrium equations for obtaining the natural frequencies, i.e., the
vFlﬁgge—Lur'e—Byrne equations (29), the Morley equations (31), the
Sanders' equations and others (29),

A study of forced vibrations would be an important extension of
this study, because Klosner's (26) results for forced vibrations are
based upon his free vibration study.

Resﬁlts obtained by the author, which included the in-plane
inertia terms, could be compared to results which neglect the in-plane
inertia terms (32),

Studies of oval shells with different boundary cenditions (13)
could be undertaken and shells with a variable radius eof curvature in
the longitudiﬁal direction, i.e., a“tépéf;d séction, could be
investigated.

‘Ring and stringer stiffened noﬁcircular cylindrical shells could

be studied,
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Variational.ahd approximate methods could be used to solve for the
natural frequencies and mode shapes of an oval shell. Examples of
these methods are: Rayleigh-Ritz, Galerkin, finite difference, and
finite element. Sewall (21), presently, is using the Rayleigh-Rit=z
method to defermine the natural frequencies and mode shapes of an
elliptiqal cylinder, |

In order to verify results obtained.herein, an experimental study

could be undertaken (21),
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APPENDIX A
DERIVATION OF THE RECURRENCE FORMULAS
A.1 Assumptions

The following assumptions were made in this study:

1. The thickness of‘the shell iz small compared with the radius
of curvature of its middle surface,

2. The stress components normal toe the middle surface are small
compared with the other stress components and may be neglected
in the stress—strain relationse.

3. The Kirchhoff=Love assﬁmptions of thin-walled shell theory
are applied; i,e,, the normals of the undeformed middle
surface are deformed into the normals of the deformed middle
surface, and remain straight and unextended,

L4, The displacements are sufficiently small that the equilibfium
conditions for deformed elements are the same as though the
eleﬁents were not deformed,

5., The ratio of 1/(1f-z/f) is equal to unity (i.e., Love's
assumption).

For the Donnell (17) equations, two more simplifying assumptions were
made:

1. The transverse shearing force makes a negligible
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contribution to the equilibrium of forces in the
circumferential direction, 1
2, The circumferential displacements result in negligible

contributions to the changes in curvature and twist,

A2 Strain Displacement Relations

. &

For Love's equations, the following strain-displacement relation-

ships were verified by Reissner (28):

X X XX
W b - V- T
e =V + =+ z[w -(ﬁ—)] (A.1)
s S r 88 r )
» U ls
V..
e =Uu + Vv +z| 2w -
s x xs r

Xs

For Donnelllﬁ/équations, Kempner (22, 27) verified the following

strain-displacement relations:

e = Uu + Z W
x x xx

w
e =V 4=+ z W (A.2)
s s r ss

‘ = + Vv + 22 W
Cxs = Ys x xs”

With the preceding strain-diéplacement relationships, Equations
(Av1 and A.2), and applying Hamilton's principle, Klosner (26) verified
the differential equations of equilibrium, Equation (2.1), and Kempner

(22,- 27) verified the equations of equilibrium, Equation (2,2),

1This assumption improeves in accuracy as the ratio of the radius to
the thickness of the shell increases (29),



78

A.3 Recurrence Formulas (Symmetric Displacements)

Substituting the displacements, Equatien (2.7), into each term of

the equilibrium equations, Equation (2.%4), yields ‘the following:

'é - | : i
-‘:m] 5 -—niz- Z Z 'Amn(mz) cos m T 1 cos n’Trg"cos Xt
=0 )

2
L L~
. ), 2

X X m=1n

Y ) 'YTI2 = - 2 C ‘
T2l T T2 Z z A (n)" cosmmNcosnmEcos it

2
Ls ' L m=1 n=0,2
@V ‘ '
.'L‘L. Z Z (mn) cosmTNcosnTEcos At
m=1 n=0,2

| 2 o = | | |
v v _ n n
o B 'I',H—L_ Z Z (m) [(2+ eéz‘)‘cmn + e(1+ éh)cmn-lk + eCmn+4]
X x s m=1 n=0,2

1o

cosmTNcosnTEcos At &

T

. [}
—~ 2 .
1-u u. M z Amn(Kz) cosmTTNecosnT& cos At
’ m=1 n=0,2

N
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2

ad d
\ T
)5“5_22 z (n) [(2+e6)c +€(148)) € nels

s. m=1 n=0,2

o+ eCmn+4151anTT]s1nnTTE_cos At

v v 4 ®

- 0 2 2
y M hvym EI' E: 2, e _&
T2 2 T T 2. 2 (m) <an[1+ -36 L 64

Lx r 3Lx Ls m=1 n=0,2

n
62]

u>| @,

+ B [e(1 é)-——é]+B +4[e-

' 2
"E_ N n. -
N an-B[ N (1 68) J * an+8

1 sinnTE&cos At

. W,
fil_z 2,1 TE; h” z z <m)[c n(i-gag)
L™ L 6L

X S x —02

+ -25 (n +.4) C

ek —;- (n=4) Cmn-4] sinmmTNsinnmTg

mn-+4

‘ 3 € .n, € 3
z [n (1--2' 62) Cn ™3 (n+4)’ C
=0

2 .
+—(n+4)2]B [—- (n-lk) (1—6)] i

n--—8; '
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. ~'+':~_ (1 5n) ok "' (n—vlt) (1-'— & ):]

mn-4

- - R
P RS 2¢e _,2¢
t T gt (e l)T 3 Té - Bonih

-2 o
+ _%—;— (n+4)2] an+8>!? sianTT]\,sinnTTgcos At

e ‘L%H—" PViy = M" Z Z ()\)2 51anTT]slnn1T§cos At

e
2

r

=

B

e

’ m=1 n'no 2

o * 2 2.n n
-5 Z % [(he2e?e2l + uesl) c

s m=1 n=0,2

n n » n : 2 n
+ g(4+464 4 e56) Cmng-lg + e(4+€252) Cmn+4 + €°(1 + 68) Cmn-8

+320 jsinmﬂ'ﬂcosnTTEcosKt
mn+8 . > o

v 2 L .
— I—-z'- S _(2+e52‘)nmn + e(if%)(n”l‘*) an_4
s m=1 n=0,2
+ .e(n+4)an'+j sinmMTNcosnTEcos A t
2. @ Z > [ n
” (2+g6 )A +e(1+64)A L HEAL
"m=1 n=0, 2 ‘
sin mﬂ'ﬂcesnﬁg cos At
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‘*w.=_E.Jl.E C [Bm +28222+n4:| sin mmTNcosn ™ E
12L

s “m=1 n=0, 2.,

cos At .
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-]

2 € .n
D n[(k‘l-g-é- &)

x s m=1 n=0,2

3
.
nN
o B
N
e
TN
<
o
=
Sr—
' N
(o)}
Sl
I E]
e I
N
N\

+ ';'('1- 52) an._g + g- an+4:] sin m‘rT'T]Vcosn‘rrg cos A\t
2 : | 2 L4 o 0
h (v -h“ Z 3[ € .n
’ — : =-F——'Z:"... ) n- (1-"‘"6 )B
12L3 r)EEE 6L . . 2 72 mn .
s s m=1 n=0,2 o
€ n ' > / e
Y (1« 64) an_l* + 5 an+4:l sinmTNcosnmTEcos At
@ @
(1=up | - p1-p®) BRI -
——"_%-—Ewtt = -E—-—E—'—Z Z C‘mn(i)"sihmﬁﬂlcosnﬂ‘gﬂco's Ate

(A.3)

The follewing idehtifie's are very uSeflil for defe'rmiﬁing the pre~

ceding terms.
cosnTEcoshTE =% cos(n +4)TE + cos(n - 4)mE]

sinnTEcos&TE = %H{sin(n + 4)TE + sin(n ~ 4)TE]

n

cosn g coszl,m’ﬁ

%2 cosnTE + cos(n+8)TE + cos(n~8)TE] (A.k)
sinnTE coszlﬂTE = [2 sin nME:+ sin(n+ 8)TE + sin(n— 8)mTE],

Substituting Equation (A.3) into Equation (2,4a) and multiplying

the entire equation by -LSZ/TI‘2 yields the following:

e e o 2 |
. Z Z {Amn[ 2.2 . w2 . (1‘H ):Ls )\2] + B, [-Bann]

m=1 n=0,2 Em

T Cmnﬂé[t:a-um elL . 52)] *
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+ Cmn[fﬁum(2'+eég)] + Cmn#*[nBume]} cosm TTNcosnTEcos At

- o. (4,5)

Substituting Equation (A.3) into Equation (2.4b) and multiplying the

entire equation by -Lsz/ﬁz yields the following:
2 2 2

Z ‘ {A [-Bamn]+ B 8 [ T (1«- ) ((nq.4)2+m232Y>]

=1 n=0,2

» 2 ‘I'r2 : 2
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+ .
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€ 2 € .n; 2 2.2 h TT
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2 2 - )
(1 + £ e -‘5— 8 + n3(1 -eé?’) + -— (n+4)2(1~5n)
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2 » 2 \
(ew%ég)*’n-—*— (n+4)2---n %:-62>:|

Bin.8 [hz r 2<ZBY+(n+4) >:|+C l*ne(1+6)

S

2.2
LB £ en) (BB s (n-wD] e [n(z+ea“>
2 2 mn 2
6L :
s
2 2
h“m ;, € sn 2 2_2
+ L 2‘n(1-252)(8m + n%) Comstine+ LT £ (n41)
6L 2 2
s 6Ls

<82m2 + (n+4)‘2):]}sin mTN si’n:nﬁ@:c_os At = Oe (A.6)
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Substituting Equation (A.3) into Equation (2.4c) and multiplying the

entire equation by -l-.L'2/1'r'2 yields the following:

Z Z 4-um8e(1+6 )]-a-A [umB(Z+eé )] mn+4~
m=1 n .
2 2
[-umBe] + B_ 4[s(n B (14 8+ L-Z-‘—;—%-E (1= 8 n
2 2
2 2 h™ 1 € .n,,
(8% )] e By[n2re) L B a-g )
T - - 4 s
. , 2,
(Bzm2 - nz)] + [e(n+4) + LZ T; zn (g mz-nz)]

. o 02 . T n- n ; 2
o+ Cmn-8[; (1-+68)] + Cmn_4.€(4-+464,+ 3663 + Cmn[(g-+2€

2 2

, (1=u™) p L

norkes) o BT (8%® 4 0P - —— = 2]
12LS E Lk

T+ e 5

4[9(4+06 :| mn+8[e2]} sinmmTN cosnTTE_coé At=0,
” (A.7)

These equations (Equations A.1, A,2, and A,3) must now be satisfied for
each m and n and can therefore be rewritten without the summations,

In thése equations, it was beneficial for the n's to be coensecutive
(iee., n==1; 2, 3, ;.,). Therefore, the following substitutions were
made:

n=2n-2
wAhn—é = Amn—-2
mn+h Amn+2-

mn—8 = anwlk

A

an+8 ‘Bhnfh
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anq—lt = an-2 (Aa 8)

an+4 an+2
mn-8 ~ Cmn~4
Cmn+8 = Cmn+4

mn=4 Cmn--2

mn-+4 mn+2
o
e
82 = 5
52“*2 - 5
E 5y -

Making these substitutions into Equations (A.5), (A,6), and (A.7),

Equations (2.8), (2.9), and (2.10) were obtained.

A.4 Recurrence Formulas (Anti-Symmetric Displacements)

If the anti~symmetric displacements (Equations (2,7) with the sine
and cosine functions in thevg-direction interchanged) are substituted
into Love's equations (Equatioen (2.4)), the recurrence formulas for the
"ah£1w§§mmet;ic case are obtained. Utilizing the simplificatiéns used in

the symmetric case, the recurrence formulas are as follows:

Amn[szmz + v(2n= 2)2, u)2] + an[aBm(zno 2)] + Cmﬁaz[-s Ume(1~ 6;)]

* Cmn[—sklm(z-;eéz):] " Cmn+2[;Slee] = 0 (4.9)
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nn[ 0 Em(En=2)1+ 2, [I;ZLZ e2(1+ 80)(n28%y + (2n - 6)2>]
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+ ym BT @+ 5+ €68, + 53)>-, :, + 'Bmm_z L[g_ﬁ <(2n_2)2 % :

2
(1 +— 6 ) + (2n+2)2 7+ mZBZY(e +-%?6r21)>:) + an.,.t,

L[hz ° 2<Ym 62 | (2n+2)2>]

Coned [(2n-2)e(1 5
12L

3

o

12L

+

e(2n-l6)<52m2 + (2n- 6)2>:| - Cmn[(gn'- 2)(2-e62)

'22

+Lh
6L

22

l“—h——T—;— e(2n+2) (B%® + (2n+ 2")2>] = 0. (4:10)
12L_ . | -

5 (+5 &) (2n- z)<8-2m2 . (2n-2)2>:) - cmn+2[(2,n-2) c

Amn_z[-um Bed - 6;1)] + Amn["p‘gm B(2=~ eén):l + Amn+2[~um Be;l

2 2

5 (1+ §%)e(2n -~ 2) (8%m

mn=-2 12 L 3

- B [(2na6)(1 83) LB

2
n® (2n-2)(1+% 52y

2 2
6L,

- (2n-2):2>”1- an[(’zn-z)(zéeég) + L
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2.2 2\ |
(m“g =~ (2n-2) >] - an+2[s:(2n+2) + L o1,

h2 2

€(2n=2)

P82 - (2n-2)2) ] + Come € (1- ag)] + cmnﬂz[s(lk-;&a;- es?) ]

_ 2 2
vc, [ead®- e?s) - uegh) + 2T— (8% + (2n-20%? - ]
11 12 Lsz

. cmmz[ew- eé;)] + cmml*[ez]_g 0. | (A.11)
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CARD
0001
0002
0003
0004
0005
0006
0007
0008

0009

0010
0011
0012
0013
0014
0015
0016
0017
0018

0019 -

. 0020
0021
0022
0023
0024
0025
0026
0027

' 0028

© 0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

Y22 Xa X2 XX KaXakaXsXaXaXakaXakakakakaXaksXakakakakaRakakaXakaXaXaXaXsXaXatakaXaXaRaXakakakasXalakaXsXakaXaXal

REFERENCE:

" FREE VIBRATIONS OF FREELV?SUPPORTEU OVAL CYLINDRICAL - SHELLS *

PURPDSE‘

TO COMPUTE THE NATURAL FREQUENCIES OF FREELY SUPPORTED OVAL
CYLINDRICAL SHELLS AND THE Us Vs AND W NORMALIZED DISPLACEMENTS AT.
THE POINT OF MAXIMUM DISPLACEMENT ALONG THE LONGITUDINAL AXIS.

THIS PROGRAM IS DOUBLE PRECISION.

PROGRAMMER:

"LARRY D. CULBERSON

SCHOOL OF CIVIL ENGINEERING
OKLAHOMA STATE UNIVERSITY

STILLWATERy OKLAHOMA

DESCRIPTION OF PARAMETERS: |

H = THICKNESS OF THE SHELL.

LS = CIRCUMFERENTIAL LENGTH

Lx = LONGITUDINAL LENGTH

NUM = NUMBER OF PROBLEMS TO BE COMPUTED

BET = RATIO LS OVER LX :

PR = POISSONS RATIO

HOLS = RATIO H OVER LS

N = NUMBER OF TERMS IN X~DIRECTION {M)

K = NUMBER OF TERMS IN S-DIRECTION (N}

ECC = ECCENTRICITY PARAMETER .

L = +1 FOR LOVES EQUATIONS
= 0 FOR DONNELLS EQUATIONS

KP1 = -1 FOR FREELY SUPPORTED END CONDITIONS- (CULBERSONS HORK):
= +1 FOR KLOSNERS END CONDITIONS

3 = +1 FOR SYMMETRIC MODE SHAPES : S
= =1 FOR ANTI-SYMMETRIC MODE SHAPES

A = FREQUENCY MATRIX

KK = SIZE OF A : 3%K

PI = 3.141592653589793

ALP s(1ePR)J 2.

- GAM =(1=-PR) /2 _

DELL. = KRONECKER DELTA ( N , 1)

DELZ = KRONECKER DELTA (N o 2 )

DEL3 = KRONECKER DELTA ( N 5.3 )

DEL4 = KRONECKER DELTA ( N 4 4 }

DEL5 = KRONECKER DELTA ( N 4 5 ) -

XIl = DIVISIONS OF LS TO DETERMINE DISPLACEMENTS
= (K=-11%6

11 = NUMBER OF POINTS AT WHICH DISPLACEMENTS ARE CALCULATED IN .




CARD
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

0079’

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
D092
0093
0094
0095

0096 -

0097
0098
0099
" 0100
olo01
0102
' 0103
0104
0105
0106
0107
0108
0109
0110

v

[ XaXaXaXsXaksiakakakakakakakakaXsXsXaXakatakakaXaXaRalaRaiakaksiakaiakakeRakaXsXakaka

Ls /7 2

{K=-11%34+1

LONGITUDINAL DISPLACEMENT

CIRCUMFERENTIAL DISPLACEMENT

RADIAL DISPLACEMENT

DUMMY VARTABLE USED 1IN *PLOT®

CIRCUMFERENTIAL COORDINATE XxI .

MATRIX OF REAL EIGENVECTORS. THE COEFFICIENTS OF U ARE
STORED IN THE UPPER PART, THE COEFFICIENTS OF Vv ARE STORED
IN THE MIDDLE PART; AND THE COEFFICIENTS OF W ARE STORED
IN THE LOWER PART.

MATRIX OF IMAGINARY EIGENVECTORS '

VECTOR. OF REAL EIGENVALUESs NONDIMENSIONALIZED NATURAL
FREQUENCIES FROM * EIGENP *, THEN CHANGED TO THE SQUARE ROOT
OF EVR/4. [.Ess EVR = DSQRT(EVR/4.0)

EVI = VECTOR OF IMAGINARY EIGENVALUES

NE<C

Xt
VECR

[ T I B (O |

VECI
EVR

SUBROUTINES REQUIRED:

1. EIGENP
2. PLOT

INPUT FORMAT SPECIFICATIONS:

1

1

1 ST CARD —————NUM:  FORMAT IS5 -5

2 'ND CARD —=—-~———BET: FORMAT F22.10 1-22
PRz FORMAT F5.2 23-27
HOLS: FORMAT F20.10 28-47
M2 FORMAT 12 48-49
K3 FORMAT 12 © 50-51
ECC: FORMAT F10.5. 52-61
L: " FORMAT 11 62
KP1l3 FORMAT 12 | 63-64

Js: FORMAT 12 - 6566

REAL*8 BET,PRyHOLS+ECC+PI+ALP,GAMs EVR,EVI+As VECR,VECIsDELI+DEL2,
DEL3,DEL4,DELS,DSQRT,DFLOAT,DCOSyDSINLXII '

DIMENSION A(814+81)4VECR(BLs81)+VECI(81,81l)EVRIBL)EVI(81),

INDIC(81) e XI(T79)oU(79)4VITI)iW(TI) Z(T79) o

READ (5,107) NUM .

DO 18 JOB=1,NUM .

WRITE (6,105) .

READ(5+100) BETsPRyHOLSMsKsECCoeL+KPLl,J

- KK=3%K

PI=3-14159265358979BDO
ALP=11.0D0+PR)/2.000
GAM=(1.0D0-PR1/2.0D0




CARD.

o111

- 0112

o113
0114
0115
oLl6
0117
0118
0119
0120
0121
0122
o123
0124
0125
0126
0127
‘0128
0129
oL30
0131
0132
0133
0134
0135
0136
0137
0138
0139

0140
.. 014l .
. 0142

0143
0144
0145
0146
0147
0148
0149
0150
. 0151

0152

0153
0154
0155
0156
0157
0158
0159
0160
ol6l
0162
0163
0164
0165

2 X2k

Qo000 0

DO 15 I=xleKK
EVR(I)=0,0D0
15 EVI{I)=0.000
DO 16 I=1.KK
DO 16 II=1+KK.
All,E1)=0.0D0
VECR(1,11)=0.0D0
16 VECI(I,I1)=0.0D0

RECURRENCE . FORMULA 1

DD 2 N=l,K
DEL2=0.0D0
DEL3=0.000
IFIN .EQ. 2) DEL2=1.0D0
IFIN .EQ. -3) DEL3=1.0D0
A(N-N)—DFLOAT(H*H)*BET*BET*GAH‘DFLOAT((Z*N— 1 (22N-2))
A(NK+N)=DFLODAT(KPL)*DFLOAT {M*(2#N~2) ) *ALP*BET*DFLOAT(J)
A(N.Z*Kle—DFLOAT(KPl)‘PR*BET*DFLOAT(H)*(Z ODO+DFLDAT(J)*ECC‘DELZ)
IF(N «LT. 3) GO TO 3
" A(Ny2¥KeN-2)= DFLOAT(KPl!‘PR*BET*DFLOAT(H)*ECC*(1.000+DFLOAT(J)‘DEL
13)
3 IFIN .6T. K=2) GO T0 2
A(Ngy2¥KEN+2)= DFLOAT(KPI)‘PR*BET*DFLOAT(H)*ECC :
2 CONTINVE ) : T

END OF RECURRENCE -FORMULA if

RECURRENCE - FORMULA 2.

DO 4 N=1,K . .
DEL1=0.0D0
DEL2=0.0D0
DEL3=0.0D0 -
DEL4=0.0D0
DEL5=0.0D0 oo
IF(N .EQ. 1) ‘DEL1=1.0D0
IF(N .EQe 2) DEL2=1.0D0 -
IF(N .EQ. 3) DEL3=1.0D0
IF(N .EQs 4) DEL4#=1.0D0
IF(N .EQ. 5) DEL5=1.0D0
A(KfN.N)‘DFLOAT(KPl)*DFLOAT(M*(Z*N—Z))*ALP*BET*DFLOAT(J!
"IF(N .LT. 5) GO TO 40
A(K¢N,KeN-4)=(1(1. ODO-DFLOAT(Jl*DELS)*(HULS‘HOLS*PI*PI*ECC*ECC/IZ 0
1DOl*(DFLOAT(M*H)*BET*BET*GAHGDFLOAT((Z*N—b)tlZ*N—sll))‘DFLOAT(L)
40" IF(N .LT. 3) GO TO 41

A(KtNyKe¢N-2)=( (HOLS*HOLS*PI*PI1/3. ODO)*((DFLOAT(M*M)*BET*BET‘GAH‘EC..'

1C*((1.0DO-DFLOAT{J)*DEL3)-DFLOAT(J)*ECC/4.0DO*DEL4) ) +((ECC/2.0D0}*
2(DFLDAT((2#N-2)*(2%N-2))*(1.0D0-DFLOAT(J)*DEL3) +(DFLOAT({2*N-6)%(2 "
3¢N-6) ) ¥(1.0D0-DFLOAT{J)*ECC/2.000¢DEL4)) ) ) )-) *DFLOATIL)

41 A(K#N,KeN)= GAM*DFLOAT(H#M)*BET*BET*DFLOAT((Z*N—Z)*(Z‘N-Z)DGDFLOAT(
1L) *(HOLS*HOLS*PL*¥P1/3.0D0) * ({ OFLOAT (M¥M} *BET*BET*GAM*( 1. 0D0+ECC*EC
2C/2.0D0~-DFLOAT(J) *ECC*DEL2~DFLOAT (J)*ECC*ECC/4 .0DO*DEL3) ) +DF LOAT U
32¢N-2)%(2%N-2) ) #(1.000-DFLOAT {J)*ECC*DEL2) #+(ECC*ECC/4.0D0) *( DFLOAT ..




fie sro o - - .

CARD " . i
0166 | 4LL2¥N*2)%(2*192) ) $11.000-OFLOATI J+1)#0. 50D04DEL1 }+DFLOAT (2en-61 0L

0167 52%N-61)))
. 0168 IF(N 6T, K-2) GO TO 42.
0169 A(K&N.K*NGZlS((HOLS*HULS*PI*PII3.ODO)*((DFlDATlH'Hl‘BET*BET‘GAH*EC.
0170 © 1C*(1.0D0-DFLOAT{J)*ECC/4.0D0*DEL2) )+ (ECC/2.0D0) *#{ DFLOAT (( 2¢N-2) *( :
0171 ZZtN—Zll*(l.ODO—DFLOAT(Jl*ECCIZ.ODO‘DELZIbeLDAT((2*N*2l'(2*ﬂ42llll
o172 . 3) ) *DFLOATIL)
0173 42 IFIN .GT. K-4) GO TO 43
0174 ALKENy K+N+4)=( (HOLS*HOLS#PI *PISECC*ECC/12.0D0) *(DFLOAT (M*M) *BET*BE
0175 lT‘GAHGDFLOAT((Z*N*Zl'IZ*NOlell*DFLOAT(L)
0176 43 IF(N .LT. 3) GO TO 5
0177 AlKEN 2*KEN-2) = (DFLOAT(Z‘N—Z)‘ECC*(l.ODOGDFLDAT(JI'DEL3I+DFLOAT(L)
0178 1% HOL S*¥HOLS*P I *#PI*ECC*DF LOAT( 2%N-6)/12.0D0) *(BET*BEVSDFLOAT{ M*M) ¢ ~
0179 - 2DFLOAT {{2%N~-6)*{2%N-6)) ) ) *DFLOAT{J)
0180 5 A(K#N2*K+N)=(DFLOAT(2%N—-2)*{2.0D0+DFLOAT{J ) *ECC*DEL2) +DFLOATIL) *{
- o181 LHOLS *HOL S*P I#P [ #{ 1.0D0-DFLOAT (J)*ECC/2.0D0*DEL2) ¥DFLOAT(24N-2) /6.0
o182 2D0) *{ BET*BET*DFLOAT{M*M) #DFLOAT { { 2¢N~2)*( 2¢N-2)) } ) *DFLOAT(J) .
0183 IF(N .GT. K=2) GO TD 4
0184 ALK#N 2*K+N#2 )= (DFLOAT(Z*N—Z)*ECCGDFLOAT(Ll‘(HOLS*HﬂlS'Pl‘Pl‘ECC*D. -
0185 1FLOAT(2#%N42)/12.000) *{ SET*BET*DFLOAT (M¥H) +DFLOAT ({ 2%N+#2) *#( 2¥N+2)))
0186 2)*DFLOAT(J) - .
o187 4 CONTINUE
o188 C
0189 C END OF RECURRENCE FORNULA 2
0190 C
o191 - € .
-o192 . C RECURRENCE FORMULA 3
0193 C ’
0194 DD 1 N leX
0195 DEL2=0.0D0
0196 DEL3=0.0D0
‘0197 DEL4=0.0D0
0198 DEL5x0.0D0 o
0199 : IF(N .EQ. 2) DEL2=1.0D0
0200 IF(N .EQ. 3) DEL3=1.0D0
0201 IF(N .EQ. 4) DEL4=1.0D0 . .
0202 IF(N .EQ. 5) DEL5=1.00D0
0203 IF(N .LT. 3) GO TO 7
0204 Al2%K+NyN-2)= DFLOAT(KPI)*PR‘BET*ECC*DFLDAT(H)‘(I.ODOGDFLOAT(J)*DELJ
0205 13)
0206 T AL2¢K+Ny,N)= DFLOAT(KP]l*PR*BET*DFLDAT(Hl*(Z.ODOGDFLOAT(JJ'ECC*DELZD'
0207 IF(N .GT. K-2) GO TO 8
0208 " AL2%K+N, NfZl‘DFLOAT(KPlI*PR*BET‘ECC*DFLDAT(H)
0209 8 IF(N .LT. 3) GO TO 9
0210 A(2*%K¥ N K¢N-2)={ECC*DFLOAT(2*N-6)*{1. ODOGDFLOAT(J)'DELSl*DFLOAT(L!
0211 © 1#{HOLS*HOLS*PI*PI+*ECC*DFLOAT{2*#N-2)*{1.0D0—-DFLOAT{J)*DEL3)/12.0D0)
0212 2%(BET#BET*DFLOAT(M*M)-DFLOAT( {2*N-2)*(2*¥N-2))) ) *DFLOAT(J)
0213 9 A12%K+NyK+N)={DFLOAT{2%¥N-2) *(2.000+DFLOAT (J) =ECC*DEL2 ) +DFLOAT{L ) *{
0214 1HOLS*HOLS*P I*P I#DFLOAT( 2*N—2) *( 1.000-DFLOAT( J) *ECC /2.0D0*DEL2) /6.0 .
0215 2D0) *( BET*BET*DFLOAT ( N#M) —DFLOAT { (2%N—2)#( 2%N~2)) ) ) *DFLOAT(J) .
0216 IF(N .GT. K-2) GO TO 10
0217 C AL2%K 4N, K¢N42)= (ECC*DFLDAT(Z*NGZDODFLDAT(L)*(HDLS*HOLS*PI‘PI*ECC*D
0218 lFLDAT(Z#N-ZDIIZ-ODOl*(BET‘BET*DFLOAT(H*H)-DFLOAT((Z*N-Zl*(Z'N-Zlll
0219 2)*DFLOAT(J)

0220 - 10 IF(N .LT. 5) 60 T0 }1



[
Cc
c
[
C
[
Cc

(a2 Xal

11

12

13
1

47
46
44
45

48
49

53

A(2EK ¥ N 2¥K¥N-% J=ECCE*ECCE{ 1. 0DO+DFLOAT (I F*DELS?

IFIN .LT. 33 6D TO 12
A(2¥K+N.2¥K*N—Z)*ECC*(4.0DO+DFLOAT(J)*4.0DO*DEL300FLOATIJ)‘ECC#DEL
14)
A(2*K#N.Z*K+N)—Q.ODoboFLOATIJ)*k.0DD*ECC¥DELZ+ECC*ECC‘IZ.ODOODFLOA
1T(J)*DELI ) +HOLS*HOLS*PI*PI/12.000%( (BET*BET*DF LOAT (H*M)+DFLOAT({ 2%
2N-2)*#(2%N-2)) ) ¥*2)

IF{N .GT. K-2) 60 TO 13

A(2%K4+ N2 2#K4N+2)=ECC*( 4. 0DO+DFLOAT(J ) *ECC*DEL2)

IF(N .GT. K=4) GO TO 1 -

Al 2%K+Ny 26K +N+4)=ECC*ECC

CONT INUE

END ‘OF RECURRENCE FORMULA 3

BEGIN CALCULATIONS FOR FREQUENCIES AND NONDIMENS IONALIZED VECTORS
CALL EIGENP {KK¢B1l3A,56.0D0+EVR,EVI.VECR, VECI,INDIC) .
END CALCULATIONS FOR FREQUENCIES AND NONDIMENS IONALIZED VECTORS

WRITE(6+103) BET,PRy,HOLSyMsK,yECC

IF(L «EQe 1 .AND. KP1l .EQ. -1) GO TO 44
IF(L .EQ. I . .AND. KP1l <.EQ. 1) GO TO 46
IF(L -EQ. O . -AND. KP1l .EQ. 1) GD TD 47
WRITE(6,108)

GO TD 45

WRITE(65111)

GD TO 45

WRITE{6+110)

GO TD 45

WRITE(6,109)

IF(J <EQ. —1) GO TO 48

WRITE(65112)

GO TD 49

WRITE(6,113)

WRITE(69102)

DO 6 I=1.KK

EVR(I)=DSQRTIEVR(I)/4.0D00)

WRITE (6+101) EVR(I),EVI(I),INDIC(I)

BEGIN CALCULATION. OF THE MODE SHAPES

XII=DFLOAT{(K-1)%6) .
I1={K-1)*3+1 ' -
JBL=1

DD 32 JJIB=JBL.KK

T JB=KK+JBL-JJB

00 31 I1I=1.11

XIIIn)= DFLOAT(III-I)IXII
U(1I11)=0.0D0
v{111)=0.0D00
W(I11)=0.000

IFtJ .EQ. ~1) GO TO 50

SYMMETRIC HMODE SHAPES



CARD
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301

- 0302

0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325

0326

(2N aK2al

DO 30 JJ=14K
UITIT)=U{ITI)+VECR(JJ»JIBI*DCOS{DFLOAT (2%JJ—2 P*PIFXI(III))
VUITIISVITII)+VECR(K+JJ,y JBIXDSINI{DFLOAT{2%3J-2}%PI*#XI{IEI))

30 H(IIID-H(lll)0VECR(2'K+JJ,JB)*DCUS(DFLOAT(Z*JJ—Z)*PI*XI(Illll
G0 TD 31

" ANTI-SYMMETRIC MODE SHAPES

.50 DO 52 JJ=14K
ULTEII=SULTIT I} +VECR{JJ o JBI*DSIN(OFLOAT(2%JJ~-2)%PL*XIUIII1)}
VOITIISVIITD) +VECRIK+JJ, JB) *DCOS{DFLOAT{ 2% JJ-2 ) *PI*XI{II]})
52 WIIID)=W(III)+VECR{2¥K+JJs JB}*DSIN(DFLOAT(2%JJ-2)*PI*XILIII})

31 CONTINUE
WRITE(6,4105)
WRITE(6,114) EVR(JB)
D0 60 I=1,11"
60 WRITE(6+104) XI{ID4UCI)oVII)oWlI)
CALL PLOT (XI3O0yUp09Z+0,119141+0+2+0,1)"
DO 70 III=1,11
70 XI(IID)=DFLOAT(TII-1}/XI1 - E
CALL PLOT |XI.OQV.O.ZUO!1[111110'210'1) -
DO T1 I1lI=1,I11
Tl XI{III)}=DFLOAT(III-1)}/XI1
CALL PLOT (XI'O'H'OvZ'O'II.lveryZpO'l)
32 CONTINUE
100 FORMAT(F22. 10'F5 24F20.10412¢12,F10.5,11,12,12)
101 FORMAT(10X¢D20.10510XsD20.10410X,15)
102 FORNAT(//,IEX"FREQUENCIES"17X.‘[HAGlNARY VALUES',lZXv'INDIC"//’
103 FORMAT (//+2Xo*RATIO LS OVER LX = %3D15.89/7/+2X+*POISSONS RATIO .=
1%409.29//92Xes"H OVER LS = '1015 B9/ /92Xe*M = *9124//42Xs "N .= 412y
2//7+2X+*ECCENTRICITY RATIO = ?,D12.5¢//)
104 FORMAT{6(1XsD1B8.10)) ~
105 FORMATI1HL)
106 FORMAT(//)
107 FORMAT(IS)
108 FORMATI(2X, *DONNELLS EQUATIUNS ARE BEING USED WITH CULBSERSONS HDRK'
1L +/7/7) -
109 FORMAT(2X.*LOVES EQUATIONS. ARE BEING USED WITH CULBERSONS HORK'!//
1) )
110 FORMATI(2Xs *LOVES EQUATIONS ARE BEING USED WITH KLOSNERS HURK'v//’
111 FORMAT(2X,*DONNELLS EQUATIONS ARE BEING USED WITH KLOSNERS .WORK®,
1L /7
112 FORMAT{2X,*SYMMETRIC MODES AND FREQUENCIES',//)
113 FORMATI[2X, * ANTI-SYMMETRIC MODES ANO FREQUENCIES®,//) oo -
114 FORMATU(///7410Xs " XI* 418Xy U »18Xe 'V, IBX," W' 420X, * FREQUENCY =.%,D18
1 <104/} .
18 CONTINUE
sTOoP
END
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