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CHAPTER I 

INTRODUCTION 

Fixed bed reactors (trickling filters) are artificial beds of 

stone or porous medium over which an organic waste is applied. Micro

organisms present in the organic waste (or supplied from other sources) 

accumulate on the filter medium and~ when they come in contact with the 

waste and air, remove the organics contained in the waste flow for use 

as nutrients for biological metabolism. 

This biological metabolism involves the conversion of the organic 

waste into carbon dioxide, energy, and new cell material. Most of the 

carbon dioxide diffuses into the atmosphere and the newly synthesized 

cells remain attached to the filter medium~ later sloughing off and 

being settled out in the final clarifier. In this manner the soluble 

organics are converted to a bio-mass which can be settled out thus 

removing the pollutant and clarifying the waste stream. 

This process is one of the oldest methods of biological waste 

treatment and yet it is probably the least understood of the treatment 

processes. 

Numerous investigators have worked on trickling filters, gathering 

pertinent data, but in their analysis of this data have only searched 

the most obvious physical aspects and relationships. Consequently, 

they all terminate the search at approximately the same point. We now 

have a wealth of knowledge on the physical aspects but virtually 

1 



nothing has been researched beyond. 

Each investigator has his own manner of data presentation which 

will prove beyond a doubt that his theories and equations are correct. 

2 

The design of trickling filters has been approached by the use of 

numerous empirical formulations. Each of these formulations has 

received its share of criticism with justification in most cases. 

Recently, Baker and Graves (1) made a computer analysis of various 

trickling filter formulations. The National Research Council (NRC) 

formula, the Eckenfelder formula, and the Galler-Gotaas formula were 

compared; It was found that for identical conditions the three formu

lations suggested three different volumes of filter capacity to produce 

the same BOD removal efficiency. 

A most perplexing problem arises from this dilemma, in that the 

consultant or sanitary engineer designing a waste treatment plant has 

no idea which formulation should be used in his design. Most of these 

formulations have been derived from systems utilizing domestic sewage 

as a substrate which contains 100 to 250 mg/1 of 5 day, 20° C BOD. 

This is fine for domestic sewage, but these same formulations are befog 

used to design treatment s.vstems for industrial wastes 111hich contain 5 

to 20 times the amount of BOD present in domestic sewage. Some have met 

with success and others have not. 

The purpose of this investigation was to look at the basic 

mechanisms and kinetics found in the trickling filter process during 

microbial metabolism of a simple substrate. 

The goal was to provide a glimpse into a new direction for research 

on trickling filters" Hopefully, others will begin where this research 



3 

terminates and eventually elucidate a basic understanding of this poorly 

understood process. 



CHAPTER I I 

LITERATURE REVIEW 

To take advantage of an unprecedented opportunity, brought about 

by the expansion of military installations during World War II, the 

Cammi ttee on Sanitary Engineering of the National Research Council 

organized a subcommittee to record operational experiences with differ

ent sewage treatment processes found throughout the United States (2), 

From these various military installations, a myriad of operational 

data was obtained and statistical analysis was performed on applicable 

portions of it in order to detern,ine trickling filter perfonnance, The 

subcommittee reported that the "degree of treatment" attained in any 

treatment process depends on: (a) magnitude of the organic load 

treated per unit of time; (b) amount of b'iologically active growth, 

whether sessile or free floating; (c) adequacy of air-liquid interface; 

(d) time .of contact between organic load and biological growth; 

(e) degree of agitation and turbulence at the interface of growth and 

sewage; and (f) provision made for settling of agglomerated material 

and detached excessive growths" 

After analyzing the operational data on trickling filters, the 

subcommittee concluded that of the two types of loading, organic and 

volumetricj the former has the greater effect on efficiency" The 

following empirical fonnula was derived for the efficiency of a single 

stage filter without recirculation: 

4 
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100 E = ------=--=-
W 0,5 

(1) 

l+C [ V) 

where: 

E"" % BOD removed 

W = organic load applied (lbs BOD/day) 

V ~ volume of filter medium (acre,feet) 

C = constant, equal to 0,0085 for volume in acre,feet or 0,0561 

for volume in thousands of cubic feet, 

The subcommittee reported that the more readily degradable organ

ics are extracted first, leaving the less degradable organics to be 

removed thus causing a definite reduction in the 11 treatability 11 of the 

sewage in a treatment process" 

Velz (3) in 1948 developed a formula based on theoretical princi

ples with empirically derived constants, He proposed that in all 

trickling filters the rate of extraction of organic matter per interval 

of depth is proportional to the remaining concentration of organic 

matter, measured in terms of its removability, This is expressed in a 

differential form as: 

dl 
- dO "' KL 

Integrating$ 

or 

whence 

where: 

L l n O = -KO r-
1og Lo= -0,434KO ~ -kD 

L 
L0 ::c 10-kO 
L 

(2) 

(3) 

(4) 

(5) 



L = total removable fraction of BOD 

Lo~ remaining removable BOD at depth D 

D = depth 

k = the logarithmic rate of extraction 

6 

k and L must be determined expeirimentally for any particular type 

of biological bedc 

The values fork and L for a 460 gal/day/ft2 plant at Englewood, New 

Jersey, were determined to be 0"1505 and 00784, respectively, 

Since increasing the depth of a filter bed is essentially the same 

qs increasing the contact time between the microbial mass and the 

organic waste, Velz 8 s expression is nearly identical to that of Phelps 

(4) which describes basic first-order kinetics of biological oxidation: 

where: 

dl -- dt - Kl 

Lt 
lnr-=-Kt 

Lt 
log L = -OA34Kt "' -kt 

Lt "" quantity of BOD remaining at time to 

L = initial quantity of BOD 

(6) 

( 7) 

(8) 

(9) 

In 1956, Fairall (5) developed an empirical formula from data of 

44 plants in the Upper M·ississippi Valley, The formula is as follows 

for a filter without recirculation: 

Le '"' L 102 ( 'i) -0" 322 - ,q 
L· 1 

(10) 



where: 

Le~ fraction of influent BOD remaining in settled trickling 
~ 

l filter effluent. 

V - volume of filter medium (1000 cu ft) 

Q - plant hydraulic flow rate (mgd) 

7 

Stack (6) in 1957 presented a theoretical formula for trickling 

filter performance based on the assumptions that: ( a) a trickling fi 1-

ter is a self-regenerating absorption tower, (b) each unit depth of the 

filter will remove a constant fraction of the removable BOD applied to 

that unit depth, (c) removable BOD is the fraction of the observed BOD 

which can be removed by bi osorpt't on, and ( d) the quantity of BOD that 

can be absorbed by one unit volume of a filter has a maximum limit. 

For a trickling filter operated with no recirculation, the derived 

equation expressing ·Jts performance is: 

LR= xbS+b(L-xbS) (l+(l-b)+(l-b) 2+(1-b) 3+· · "(1-b)D-x-l) (11) 

where: 

LR= fraction of the removable BOD that is removed 

L - the applied load of removable BOD 

S ~ the load of removable BOD which must be applied to saturate 

one unit of depth with BOD 

b - coefficient of b1osorption 

x ~ the number of unit volumes saturated by a given load of BOD 

D = filter depth 

The values of removable BOD (L), b, and S must be determined 

experimentally. 



In 1959, Ingram (7) published the results of his studies on 

controlled filtration. In his research he utilized a filter composed 

of six sections stacked on top of one another, each having a depth of 

3 feet and a diameter of 12 inches. Air was supplied to the bottom 

8 

of each section at a controlled rate. Settled sewage was the substrate. 

Ingram concluded that Velz's "non removable" BOD can be removed with 

depth. The behavior of the filter through the first section followed 

the theory of Velz reasonably well, but thereafter there were essential 

differences. The filter throughout the investigation gave consistent 

average results better than those predicted by the NRC formula. It 

appeared to Ingram that the BOD loading of a filter is a more important 

parameter than is the hydraulic loading. 

Schulze (8, 9, 10) conducted studies with a trickling filter con-

structed of a series of one-half-inch mesh vertical wire screens serving 

as the filter medium. Sewage and whey were used as the nutrient source. 

The complete equation relating BOD removal to depth, hydraulic 

load, and temperature was found to be: 

Le ·- 10-bK20 D/Qn c-
1 

where: 

Le - final effluent BOD ( mg/1) 

L 
1 

= BOD of fl ow to the filter (mg/1) 

Q = hydraulic load (mgd/acre) 

b ·-· L 035 ( T- 2o) 

T ·- temperature in oc 

K20 - 0.3 

D - filter depth ( ft) 

(12) 
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The exponent n was found to be 2/3 which has been confirmed by Howland 

(11) and in studies performed by Bloodgood, Teletzke, and Pohland (12). 

Schulze proposed that efficiency will follow a function such as 

this which is based primarily on hydraulic loading and will be independ

ent of the organic loading as long as the organic loading remains below 

a certain critical level which is usually not encountered in trickling 

filter operationo 

In 1961 Eckenfelder (13, 14, 15) expanded the work of Schulze and 

otherso He proposed that BOD removal was primarily dependent on the 

contact time between the 11 active mass 11 of the filter slime and the waste 

passing through the filter. The mass of active film is related to the 

surface area of filter slime and to the depth of aerobic activityo The 

time of contact is primarily related to the hydraulic loading. 

The equation expressing the fraction of BOD remaining in the 

effluent as a function of hydraulic ·1oading is: 

where: 

Le= BOD remaining in the filter effluent 

L
0 

= BOD applied to the filter 

D = filter depth 

Q ~ hydraulic load/unit surface area 

(13) 

K - a coefficient incorporating the surface area of active 

film per unit folume 

n "' constant 



10 

Eckenfelder explains that equation (13) presumes that all components of 

the organic waste are removed at the same rateo Eckenfelder claims 

there is considerable evidence concerning sewage and other complex 

wastes that BOD removal decreases with concentration or time, because 

the components that are more easily removed from the waste water are 

removed more rapidly, To account for this, a modified equation is 

required and this is: 

(14) 

From analysis of filter performance data, Eckenfelder gives the values 

of the constants as C = 2.5, (1-m) = 0.67 and n = 0.50 (for Qin mgd/ 

acre and Din feet). 

Galler and Gotaas (16) in 1964 developed a mathematical model for 

trickling filter efficiency by making a multiple regression analysis of 

322 sets of data from existing treatment plants. For BOD in terms of 

concentration (mg/1) the equation for a filter without recirculation is: 

(15) 

where: 

Le - concentration of BOD remaining 

L -- concentration of influent BOD 
0 

Q -· hydraulic loading~ mgd/acre 

D -· depth, feet 

T -· temperature of waste water, oc 

Germain (17) reported in 1966 that BOD removal by plastic medium 

trickling filters would follow the equation proposed by Schulze. 
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In 1968, Kornegay and Andrews (18) utilized a submerged rotating 

drum inside a reactor for approximation of the trickling filter process. 

From Monod 1 s (19) kinetics they arrived at an equation describing the 

re 1 ationshi p of the various parameters acting in the unit: 

where: 

, s1 
F(S

0
-S

1
)"' ~y· (A)(X) (d)(. ~~ 'i 

. Ks+Sl J 

S ~ influent concentration of essential nutrient (M/L3
) 

0 

s1 - effluent concentration of essential nutrient (M/L3) 

~ - specific growth rate (T- 1) 

µ = maximum specific growth rate (T-1) 

F = hydraulic flow rate (L3/T) 

Y "'· yield 

A = area of biological film (L2
) 

(16) 

X - concentration of organisms in the biological film (M/L3) 

d - thickness of the active biological layer (L) 

Ks "' essential nutrfont concentration where µ = 1/2)), (M/L 3) 

M, L, and Tare, respectively, units of mass, length and time. 

Eckenfelder (20, 40) recently modified his trickling filter formli-

lation" The new formula is: 

where: 

Le_ - 0362A 0644 L 05401 n - e 0 

V O Q Lo -

L = BOD remaining in filter effluent e 

L
0 

= BOD applied to the filter 

D ~ filter depth 

(17) 



Q - hydraul'ic flow rate 

n ~ a constant, characteristic of the filter medium used 

Av ,, area. ava'ilab]e for biological growth (sq ft/cu ft) 

There are numerous con fl i c:ti ng ideas afforded by the previous 

investigators and others on the importance of the various parameters 

and the role they play in trickling filter performance. 

12 

Schulze (10), operating a single pass trickling filter using 

domestic sewage and whey as the waste~ found that at a constant hydraul

ic loading, the effiiciency of a t:ric.kling filter remains consta.nt for 

organ'ic loads up to 11 fos BOD/day/cu yd" He claimed that the effi-

ci ency, measured as pel" cent BOD removed, was not decreased by increased 

organic loads~ and therefore~ the hydraulic loading determined the 

degree of treatment achieved. 

Eckenfelder (15) in 1961, investigating tricUing filter perform-

ance, assumed that BOD removal was related primarily to hydraulic load

ing and depth foll owhig a retardant type reaction and offered an equa-

t1on based upon these assumptions. 

Etzel (21) conducted studies at Purdue University with a model 

trickling filter and utilized radioactive glucose as the substrate. On 

the trickling filter studied he concfoded that hydraunc loadfog was the 

parameter found to ·influence the effidency of the filter. He stated 

that there was no reason to use any parameter other than hydraulic load-

' 
ing in predicting per cent efficiency of operation for the experimental 

filter studied. 

Other investigators have theorized that contact time or residence 

time which is related to the hydraulic loading and depth of the trick-

·1ing filter is the controlling parameter in BOD removal efficiency. 



Horton et al. (22) claimed it was evident that the degree of 

purification obtained is largely dependent upon the time of contact 

between the sewage and the gelatfoous film found in the filter bed. 
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Howl and (23) indicated that both theory and experiment support the 

1dea that contact time is a factor determining the removal of BOD in a 

trickling filter. In his paper he formulated a re1atfonship between 

this contact time and the determinable hydraulic factors involved. 

Eckenfelder (15) proposed that BOD removal can be expected to be 

proportional to both the mass of the active filter slime and to the time 

of contact of waste in the filter which is primarily related to the 

hydraulic loading. 

In 1959, Sinkoff (24) et al. joined with others in the belief that 

the degree of purification obtained in a trickling filter is in some 

manner proportional to the length of contact time afforded between the 

waste and the filter slimeo A vast study was initiated to determine 

this relationshipo 

Atkinson et al, (25) utilized film flow in contact with a vertical 

wall to approx·imate the flow of waste through a trickling filter, They 

concluded among other things that contact time or residence time 

analyses of trickling filters are irrelevant and serve only to cloud 

the basic issues. 

Sorrels and Zeller (26), in their pilot plant study using domestic 

sewage, found that soluble BOD removal is more dependent upon the organ

ic loading applied than it is upon the hydraulic rate of application, 

Germain in 1966 (17) theorized that the rate of BOD remova 1 is a 

function of the influent BOD concentration and the adsorption capacity 

of the biological growth, Waste residence time is considered by him to 
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be an indirect parameter, It does not affect the rate of reaction, but 

merely defines how close to completion the reaction can proceed within 

the waste residence time provided. It is interesting to note that from 

identical plots of BOD applied (lb/1000 cu ft/day) versus BOD removed 

(lb/1000 cu ft/day)) Schulze (10) concluded that filter performance was 

independent of organic loading and Germain (17) concluded that BOD 

removal is proportional to the BOD applied at a specific hydraulic load

ing rateo 

Maier (27) utilizing an inclined plane model of a trickling filter 

and starch as the substrate observed in a colloid system that the maxi

mum rate of carbon removal was highest for the higher feed concentra

tions, being almost directly proportional to the feed concentration. 

In earlier studies on the inclined plane model, using glucose as the 

substrate, Maier (28) found that liquid feed rate had a marked effect 

on the rate of glucose utilization at low feed rates, However, at high 

liquid feed rates, glucose removal became independent of feed rate. 

Fairall (5) presenting a statistical correlation of trickling fil

ter loading and performance data found that the strength of the sewage 

in the filter feed is a negligible factor in filter performance when 

performance is evaluated as percentage BOD removal. 

Gal1er and Gotaas (16) state that their results indicate that, of 

the variables studied, the BOD in the applied liquor had the highest 

correlation to the BOD remaining in the filter effluent ahd that 

hydraulic rate was not an important factor. 

In his controlled filtration studies, Ingram (7) found that BOD 

removal depends on the amount of BOD applied, rather than its concen

tration or its hydraulic rate through the filter, He found that BOD 



removal is at about the same efficiency with the same loading regard

less of whether the loading is accomplished by a higher flow rate of 

weaker sewage or a lower flow rate of stronger sewage, 

Kornegay and Andrews (18) observed that the influent BOD concen-

tration did have an effect on the effluent BOD concentration, 

In a few of the studies accomplished on trickling filters, 

researchers have observed a "sa tura ti on phenomenon" or a "l imi ting 

load" beyond which no further treatment is realized or treatment 

declines drastically, 

Velz (3) states: 

Obviously there must be some limit to the quantity of BOD 
which can be assimilated by the biological life of the bed, 
The limiting BOD load, then must be a function of the rate 
of biological oxidation and the storage capacity for 
accumulation of BOD within the bed, If the rate of extrac
tion from the applied load exceeds the rate of assimilation, 
the accumulation will reach a point where bed storage 
capacity of the Zooglea is exceeded and the excess will be 
carried through thereby increasing the residual in the 
effluent. 
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Sorrels and Zeller (29) observed in their pilot plant studies that 

the primary filter demonstrated increasing BOD removal with increased 

loading, to a maximum removal of 32 lb BOD/day/1000 cu ft at a loading 

of 69 lb BOD/day/1000 cu ft and rapidly decreasing removal beyond that 

optimum. 

Stack (6) in 1957 proposed that there was a maximum limit to the 

amount of BOD that could be absorbed by one unit volume of a filter and 

that each unit depth will remove a constant fraction of the removable 

BOD applied to that unit depth, If a loading was of a magnitude that 

does not saturate any portion of the filter with BOD, then almost 100 

per cent of the removable BOD should be removed, 

Using a model filter constructed of wire screens, Schulze (10) 
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concluded that at a constant hydraulic loading, the efficiency of a 

trickling filter remains constant for organic loads up to 11 lb BOD/day/ 

cu yd. He indicated that the efficiency measured as per cent BOD 

removed was not decreased by increased organic loads, 

In studies conducted by Kornegay and Andrews (18) utilizing a 

submerged rotating drum as an approximation of a trickling filter, they 

found that a saturation phenomenon definitely existed in that as the 

substrate concentration was increased, the rate of substrate removal 

approached a constant value. 

Ingram's studies (7) on controlled filtration resulted in his 

conclusion that there was exhibited no upper limiting relationship of 

BOD removal to either organic load or hydraulic load. 



CHAPTER III 

THEORETICAL CONSIDERATIONS 

A. Material Balance 

After a period of time, at a given hydraulic and organic loading, 

steady state conditions should prevail throughout a fixed bed reactor" 

After steady state is reached, a material balance for substrate can be 

written for any point at any depth in the filter where: 

inflow of substrate - outflow of substrate - consumption of 

substrate = 0 

For development of the material balance equation the follow-

ing symbols will be used at the point selected: 

S0 = substrate concentration of limiting nutrient arriving 

at selected point (M/L3) 

s1 = substrate concentration of limiting nutrient leaving 

selected point (M/L3) 

Q = flow rate of limiting nutrient (L3/T) 

x = mass of active biological solids at selected point (M) 

}J = growth rate of bi o 1 ogi cal so 1 ids at selected point (1/T) 

fJm = maximum growth rate of biological solids at selected 

point (1/T) 

Ks = saturation constant at 1/2 Jlm (M/L 3) 

Y = yield of biological solids at selected point 

M, Land Tare, respectively, units of mass, length and time. 

17 
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Consider the point at which the material balance is to be written 

to be a box of infinitesimal size at depth D. 

The material balance for the substrate at steady state wi 11 be: 

Inflow - Outflow - Consumption= 0 

in symbol fonn is: 

from Monad ( 19) , µ = 'Jim ( ~ ) , 
s 

then: 

or~ 

and 
S 1· s1 = S - ~ JJ ( 1 )-

o ' m R +s Q s 1 

The symbol x can be shown to be equal to x = XAd 

where: 

X = concentration of active biological solids at selected 

point (M/L 3) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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A= area of the biological film -.this becomes the area 

afforded by the particular filter medium utilized when the 

feed concentration and fl ow rate a re sufficient to support 

a prolific slime growth covering all the medium (L2) 

d = thickness of the active biological layer (L) 

Substituting equation (23) into equation (20), 

(24) 

one can recognize the resulting equation as the identical equation pro

posed by Kornegay and Andrews (18) to describe the relationship of 

parameters found in their submerged fixed film reactor. 

B. Data Presentation 

There are various methods of data presentation utilized by investi-

gators today. Velz (3) and others plot depth versus log per cent COD 

remaining and derive their equations describing the relationship of the 

parameters acting on the unit. Per cent COD remaining seems like a 

poor design parameter and it appeared to this writer that a better 

design parameter could be utilized such as designing on merely COD 

applied. 

then: 

Consider the three plots shown in Figure 1. 

Determining the slope of each plot: 

Pig. lA: 
-( log54/S

0 
- log5o/S

0
) 

Ka= D = 

-log ( 54/\) 
Ka = D 

s s 
-1 og ( .JLo ) 

5a;5a 
D (25) 

(26) 
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Fig. lB or lC: Kb or Kc= D 

then: 

As can be seen, the slopes for each of the three plots are the 

same,. Solving for s41s
0

: 

log s4/S
0 

= -KO 

or s
4
;s

0 
= 10-KD 

21 

(27) 

(28) 

(29) 

(30) 

one can recognize equation (30) as the same equation proposed by Velz 

in equation (5). Therefore it does not matter which of the three plots 

one chooses for data presentation as all yield the same slope value, 

and consequently, the same equation describing the amount of COD remain

ing at any depth in a fixed bed reactor when the values of S
0 

and Kare 

known. Note also that it matters not whether S
0 

and s4 are expressed 

in mg/1 COD or in gm COD/hr/ft2. 



A. Genera 1 

CHAPTER IV 

MATERIALS AND METHODS 

In order to study the kinetics and mechanisms of a fixed bed 

reactor, an investigator has three possible choices of units on which 

to accomplish the study. Each has its inherent advantages and disad

vantages. 

First; he may choose an existing full scale plant treating an 

industrial or domestic waste. Here, he is limited to the BOD loading 

and fl ow rate that is produced by that industry or muni ci pa 1 i ty. Also, 

the fluctuations of these two parameters throughout the day are great. 

Therefore, the fixed bed reactor is always in a transient state, sel

dom reaching the steady state condition long enough to determine with 

any degree of accuracy what is actually occurring in the fixed bed 

reactor. 

Next, he may desire to build a small scale pilot plant, select a 

synthetic waste and vary its concentration and flow rate to meet the 

conditions he desires. The cost of construction and operation even on 

this small scale becomes excessive for one desiring to operate the unit 

for any extended period of time. 

Another possibility is the construction of a model fixed bed 

reactor utilizing a synthetic waste at the desired concentration and 

flow rates selected. This method was selected as the most feasible 

22 



23 

approach to obtain the needed data for this study. Numerous investi

gators have described and built various trickling filter models for 

research and study. After perusing their models, it was determined 

that none of the existing designs possess the degree of flexibility 

needed to accomplish valid research on fixed bed reactors. Therefore, 

a model fixed bed reactor has been designed and built in this labora

tory to study selected design parameters of fixed bed reactors. The 

general arrangement of the experimental fixed bed reactor is shown in 

Figure 2. Tap water from the city main enters into a constant head 

tank where the flow from this tank is controlled by a rotameter and 

flows into a wet well. The concentrated synthetic waste is pumped into 

the wet well where it is mixed with the tap water to provide the 

concentration of waste desired. If it is desired to study an industrial 

waste in order to gain design data, then the constant head tank could' 

be utilized as the reservoir for the soluble waste. Also, in this case 

the concentrated feed unit would be eliminated. The waste is pumped 

from the wet well to the distribution system. The waste then flows over 

the fixed bed reactor into a collection device. At this point the 

waste water may be wasted or it may be recirculated. 

The fixed bed reactor is composed of 1.0 ft3 units. The individ

ual units are constructed of plexiglas and have dimensions of 1.0 ft x 

1.0 ft x 1.0 ft. The units may be stacked to give any reactor depth 

desired, 'while the horizontal surface area is LO ft2• Figure 3 shows 

an individual unit. This unit is shown with the corrugated fiberglass 

- plates as the reactor medium which was used throughout the duration of 

this research. The fiberglass plates are placed with 1/2 inch spacings. 

Since the fiberglass has 9/16 inch deep corrugations, this provides a 
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Figure 2. Schematic Drawing of the Experimental Fixed Bed 
Reactor. 
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Figure 3" Schematic Drawing of the Individual 
Reactor Uni L 
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1/16 inch overiap and prevents the possibility of a free drop of the 

waste through the reactor. 

One of the excellent features of.this fixed bed reactor is that 

any type of medium desired may be used. Thus, the design engineer or 

researcher may investigate many different types of reactor media. 

Figure 4 shows the individual units in a stacked position. The 
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1 ft3 units are stacked with a three inch spacer between each unit. 

This spacer is provided with sampling ports through which samples may 

be collected for analysis. Sampling is accomplished by utilization of 

a sampling wand which was made from an 18 inch long, 1.5 inch diameter 

plexiglas pipe which has been cut in half along the 18 inch dimension. 

The sampling wand is placed through the sampling port, perpendicular to 

the bottom of the plates being sampled. In this manner a composite 

sample was taken from all 24 fiberglass plates simultaneously and 

collected in a 50 ml beaker. The sample ~as then filtered through a 

45 JJ pore size membrane filter and subsequent analyses were run on the 

filtrate. 

The distribution system for applying the waste stream across the 

1.0 ft2 horizontal surface area of the reactor utilizes an oscillating 

spray nozzle. A sketch of the distribution device is shown in Figure 5. 

The spray nozzle is powered by an electric motor via chain drive and 

approximates a constant linear velocity at any selected speed of 20-54 

ft/min. The spray pattern is a rectangular band 12 inches long by 3.5 

inches wide, whose dimensions may be varied simply by raising or lower-. 

ing the nozzle to the desired height to achieve the desired spray 

pattern dimensions. The flow rate through the nozzl~ may be varied 

from 75 gpd to 800 gpd while maintaining the desired spray pattern 



Figure 4. Schematic Drawing of the Stacked 
Reactor Units. 
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dimensions merely by interchanging the nozzle tips and increasing the 

pump rate. 
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As stated previously, each 1 foot unit of depth possesses a 1 ft2 

horizontal surface area. There were 24 vertical corrugated fiberglass 

plates in each 1 foot of depth which afforded 50 ft2 of surface area on 

which the microorganisms could adhere and flourish. From preliminary 

studies utilizing sucrose as the limiting nutrient, it was found that 

the bulk of organics was removed in the first three feet of thee fixed 

bed reactor. Consequently, four feet was selected as the depth of the 

fixed bed reactor for these studies. 

B. Experimental Protocol 

1. Trickling Filter Studies 

The synthetic waste in all experiments was such that the car

bon sourcet sucrose, was the growth limiting nutrient, Shown in Table I 

is the composition of the synthetic waste for a concentration of 

100 mg/1 s u.crose at a fl ow rate of 100 gpd/sq ft. Note that there was 

no buffering system provided in the waste as pH change with depth was 

one of the parameters to be studied. Sucrose was selected as the 

growth limiting nutrient due to its low cost and degree of purity when 

bought in commercial (technical) grade. Also sucrose, being composed of 

the two sugars glucose and fructose joined by an a.-1,2 linkage, afforded 

an opportunity to observe if sequential removal of these two sugars 

occurred or if they were removed simultaneously in the trickling filter 

process, 

A concentrated synthetic waste was prepared in a twenty liter car

boy and pumped into the wet well at a constant rate of 14 ml/min by a 

Sigmamotor pump. Depending on the concentration or flow rate of the 

waste applied to the filter for a particular experiment, the 



TABLE I 

COMPOSITION OF SYNTHETIC WASTE FOR 100 MG/~ SUCROSE AS THE 
GROWTH LIMITING NUTRIENT AT A FLOW 

RATE OF 100 GPD/SQ FT 

Constituent Concentration 

Sucrose 100 mg/1 

{NH4) 2so4 25 mg/1 

MgS04,7H20 10 mg/1 

K2HP04 6 mg/1 

MnS04-H2o 1 mg/1 

CaC1 2 0.75 mg/1 

FeC1 3·6H20 0.05 n,g/1 
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concentration of the synthetic waste in the twenty liter carboy was 

varied. The concentrated waste was then diluted to the desired concen-

tration in the wet well by tap water from the constant head tank. The 

waste was then pumped from the wet well through the oscillating spray 

nozzle by use of a Milton Roy Co. (model R220A) controlled volume pump. 

This pump is capable of Oto 300 gpd. In studies requiring a flow rate 

greater than 300 gpd, two of these pumps were manifolded together 

realizing a capability of 600 gpd. The Milton Roy pumps were changed 

and chlorinated weekly and the concentrated feed pumps were chlorinated 

every other day to prevent biological growth in the pumps and lines. 

The distribution system (nozzle) was operated at a linear velocity 

of.54 ft/min throughout the study. The spray nozzle screens were 

changed and cleaned daily to prevent biological growth from plugging 

the spray nozzle. 

No method of temperature control was utilized on the system. 

Consequently, the temperature at which the unit operated varied primar

ily with the temperature of the tap water which varied between 13 and 

20° C during the course of the investigation. 

The fixed bed reactor was started up at an initial feed concentra

tion of 200 mg/1 of sucrose and at a flow rate of 200 gpd/ft2. This 

feed rate and concentration was selected as it provided sufficient feed 

at a flow rate allowing all the filter medium to· be .covered with a 

prolific slime growth but not enough growth to cause 11 ponding 11 as seen 

in filters with high feed concentrations and low flow rates. 

Seeding the filter with microorganisms was accomplished with 

settled effluent from the primary clarifier of the Stillwater, Oklahoma, 

treatment plant. For a period of 5 days, settled effluent was dripped 



32 

into the spray of the distribution nozzle to facilitate distribution of 

the microorganisms over the 1.0 ft2 horizontal surface area of the 

fixed bed reactor. After the five day period, it was ascertained by 

visual inspection that a uniformly distributed growth of microorganisms 

had been started throughout the filter. The filter continued to be fed 

at the previously mentioned feed rate and concentration for a period 

of three weeks. By previous investigation on this fixed bed reactor, 

three weeks was deemed sufficient time for the reactor to 11 ripen" or 

allow all the filter medium to become covered with a prolific growth of 

microorganisms. Following the three week ripening period, various 

preliminary tests were run and at the end of the fourth week, the feed 

concentration was changed to 100 mg/1 at a feed rate of 100 gpd/ft2. 

This was the beginning of a series of 22 runs of one or more weeks 1 

duration for the purpose of obtaining needed data. 

The matrix in Table II shows runs made at the various feed concen

trations and flow rates. Each time a run was completed, the feed rate 

and/or feed concentration was changed and a new run begun. Each run 

was of one week's duration consisting of a four day acclimation period 

after a change in flow rate or feed concentration, followed by three 

consecutive days of sampling at each one foot depth of the filter. 

Steady state conditions were ascertained by obtaining nearly 

identical values of pH, COD, and anthrone COD over the three day sam

pling period at each one foot depth. If nearly identical values were 

not obtained in the three day sampling period, the run was continued 

until the desired reproduction of these parameters occurred on three 

consecutive days. 

The results of analyses of the samples obtained over the three day 
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TABLE II 

MATRIX OF EXPERIMENTS CONDUCTED AT VARIOUS FLOW RATES AND ORGANIC 
CONCENTRATIONS INDICATING THE TOTAL AMOUNT OF 

SUCROSE (COD) APPLIED/DAY/SQ FT 

Flow 0 . C t t' /1 Rate ·rgan,c oncen ra 10n mq 

gpd/sq ft 100 200 300 400 500 1000 

37.85 gm 75.6 gm 114 gm 151 gm 189 gm 378 gm 
100 COD COD COD COD COD COD 

.08 lbs .16 lbs .25 lbs . 32 lbs .40 lbs .833 lbs 

56.7 gm 114 gm 226 gm 
150 COD COD COD 

.125 lbs . 25 1 bs . 50 1 bs 

75.6 gm 151 gm 226 gm 378 gm 
200 COD COD COD COD 

. 16 1 bs .32 lbs . 50 1 bs .833 lbs 

94.5 gm 189 91)1 284 gm 378 gm 
250 COD COD COD COD 

.21 lbs .42 lbs .158 lbs .84 lbs 

114 gm 226 gn,i 568 gm 
300 COD coo· COD 

.25 lbs .5p lbs L 25 1 bs 

500 
37S 9'11 

COD 
I' . a4 ·Tbs 

226 gm 
600 COD 

.50 lbs 
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period at each one foot deRth were averaged and recorded as the values 

for that particular parameter for that particular run, Steady state 

conditions with respect to solids could not be ascertained due to the 

irregular occurrence of sloughing of the microorganisms from the filter 

medium. 

2. Growth Studies 

Microorganisms for a growth study were obtained from the 

bottom of a selected unit of depth. By reaching through the sampling 

ports of the spacer with a pair of forceps, small pieces of biological 

growth were removed from 10 randomly selected points and placed in a 

250 ml beaker. These were mixed with 150 ml of water containing all 

the salts that are found in Table I. Mixing was accomplished over a 

one minute period in a two speed Waring Blender set at the low speed. 

A 10 ml volume of the resulting cell mixture was placed into 1000 ml 

growth flasks containing sufficient salts medium and substrate for a 

fi.nal volume of 100 ml. These flasks contained various substrate con

centrations of sucrose from 100 mg/1 to 500 mg/1. The optical density 

of each suspension was read immediately after inoculation and the 

flasks were placed on the shaker apparatus which was oscillating at the 

rate of 90 oscillations per minute. All growth studies were conducted 

at room temperature. Optical density readings were taken on each flask 

on the hour or half hour until no additional change in absorbancy was 

observed. An Eadie plot (30) of S versus S/JJ from which Jlm and Ks were 

determined was made at the termination of the run. 

3. Yield Studies 

In some cases, yield studies were run concurrently with 

growth studies. A 60 ml volume of the cell mixture prepared for growth 
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studies was placed into a 2000 ml flask containing sufficient salts 

medium and substrate for a final volume of 600 ml. This flask con

tained 500 mg/1 of the sucrose substrate. The biological solids con

centration was determined immediately after inoculation by the gravi

metric method and the flask was placed on the shaker apparatus along 

with the growth flasks. Hourly, this flask was sampled for biological 

solids concentration and the filtrate from this determination was 

analyzed for the amount of substrate remaining both by the COD test (31) 

and the anthrone method (32) for anthrone COD. Both biological solids 

growth and COD remaining were plotted versus time of sampling on arith

metic graph paper. The slope of the straight line portion of the 

biological solids plot divided by the slope of the straight line portion 

of the COD removal plot gave the sought-after yield. 

C. Analytical Techniques 

1. Substrate Removal 

Substrate removal was determined by analyzing the membrane 

filtrate for COD both by the method outlined in Standard Methods (31) 

and anthrone COD by the anthrone method (32). 

2. Substrate Utilization 

Nelson 1 s test (32) for reducing sugars was utilizeq to 

determine if any free fructose or glucose was present in the filtrate 

samples obtained at each one foot depth. 

3. Biological Solids 

Gravimetric determination of biological solids was performed 

by filtration through membrane filters (0.45 JJ pore size, Millipore 

Filter Corporation, Bedford, Mass.) as described in Standard Methods 

(31). This type of biological solids determination was utilized when 



yield values were to be calculated from the datao 

4. pH 

The pH of the unfiltered samples obtained at each one foot 

depth of the fixed bed reactor was determined on a Beckman 11 Zeromati c 

!! 11 pH meter following standardization of the pH meter at pH 7.0. 
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CHAPTER V 

RESULTS 

Twenty-two experiments of varying substrate concentrations and 

flow rates were made during the course of this investigation to gather 

data on COD removal characteristics of the fixed bed reactor. The 

results of the COD, anthrone COD and reducing sugar (Nelson's) analyses 

are tabulated in Table III for all experiments at each one foot depth. 

The experimental methods for obtaining these parameter values for each 

experiment were discussed in Chapter IV. 

In all of the following plots involving COD, the COD indicated is 

actually anthrone COD as determined by the anthrone method (32) rather 

than COD as determined in Standard Methods (31). The reason for this 

is threefold. At the low organic loadings when determining COD below 

50 mg/1, dilute di chromate (O.lON) had to be used. According to 

Standard Methods (31) for the COD determination, COD values of around 

10 mg/ 1 a re inaccurate when using di 1 ute di chromate and may be used 

only to indicate an order of magnitttde. When determining anthrone COD, 

duplicate samples were run and a high degree of accuracy was obtained. 

After the first foot, the L'ICOD calculated between the COD va 1 ues and 

the anthrone COD vaTues remains relatively constant throughout the 

remainder of the depths. Consequently, anthrone COD was utilized 

rather than COD to indicate COD values. 
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0 
Feed Flow COD An throne 
cone. rate rng/1 COD 
mall gpd/ft2 mg/1 

100 100 88 94 
100 150 - 97 107 
100 200 107 111 
100 250 110 114 
100 300 - 110 109 
100 600 95 97 

200 100 204 190 
200 150 220 198 
200 200 212 209 
200 250 205 220 
200 300 211 . 212 
200 500 190 200 

300 100 316 308 
300 200 312 307 
300 250 316 306 

~- - -. 

400 100 417 413 
400 150 412 402 
400 250 399 399 

500 100 511 509 
500 200 514 524 
500 300 480 486 

1000 100 986 920 

TABLE II! 

DATA SUMMARY OF COD, ANTHRONE COD AND REDUCING SUGAR CONTENT OF THE WASTE AT EACH UNIT 
OF FILTER DEPTH AT VARIOUS FLOW RATES AND FEED CONCENTRATIONS 

Depth - Feet 

1 2 3 
- Red. COD An throne Red .• COD An throne Red. COD An throne Red. 
- Sugar mg/1 · COD sugar mg/1 COD sugar mg/1 COD sugar 

mg/1 mall ma/1 mall mall mall ma/1 

0 33 26 0 15 12 0 10 6 0 
0 31 28 0 19 15 0 11 8 0 
0 58 48 2 27 18 0 20 12 0 
0 54 51 2 23 21 3 20 16 1 
0 60 46 7 37 30 5 18 il 3 
0 57 57 43 41 28 25 

0 118 75 0 50 23 0 31 9 0 
0 111 81 2 63 39 1 29 18 0 
0 106 85 8 87 46 5 57 24 4 
0 134 128 6 87 89 0 55 45 9 
0 139 122 16 100 83 11 54 39 10 
0 117 107 101 91 62 54 

0 181 140 6 98 65 4 66 36 0 
0 199 159 7 156 117 7 100 68 13 
0 242 207 0 196 154 0 150 112 1 

--- --
0 245 195 11 149 102 13 66 33 5 
0 293 237 24 229 165 16 163 103 31 
0 264 222 .9 244 188 6 160 107 ·10 

0 303 223 25 211 129 18 138 68 15 
0 332 279 41 295 223 28 223 148 26 
0 373 316 2 315 '227 2 255 162 2 

0 834 480 113 810 319 98 720 183 87 

-
4 --

COD An throne Red. 
mg/1 COD sugar 

mall mall 

10 9 0 
14 6 0 
23 7 0 
13 9 0 
18 7 1 
21 16 

27 6 0 
23 11 0 
28 16 3 
34 24 2 
35 22 4 
51 43 

37 15 1 
50 31 5 
91 66 0 

33 13 1 
108 62 0 
127 76 10 

79 30 11 
198 121 21 
207 114 1 

753 165 62 



A. Experiments in Which the Organic Loading.Was Held Constant 
and the Hydraulic Loading Varied 
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In aH of the following figures, each figure set consists of 3 

semilog plots, A, 8 and C. Plot A shows COD remaining (mg/1) versus 

depth in feet. This plot indicates the concentration of the waste 

found at each unit of depth in the filter. Plot 8 shows COD remaining 

(gm/hr/sq ft) versus depth in feet. This plot indicates the total 

amount of organics remaining at each unit of depth in the filter. 

Calculation of this COD remaining involves both the concentration of 

the waste as well as the flow rate of the waste. Plot C shows per cent 

COD remaining versus depth in feet. 

Figures 6A, 68 and 6C are plots made from data obtained at a con

stant feed concentration of 100 mg/1 of sucrose at varying flow rates 

of 100, 150, 200, 250, 300 and 600 gpd/sq ft. In all three plots, at 

the low flow rates, two and sometimes three rates of removal are 

exhibited. This could be due to lack of sufficient food to support the 

rate of substrate removal by the microbial population as seen in the 

first foot of depth. As can be seen at a flow rate of 600 gpd/sq ft, 

one rate of removal is described throughout the depths of the filter. 

Note also that as the flow rate is increased the slope of the line 

describing the COD remaining decreases and approaches a limiting value. 

This may be an indication of filter saturation with COD. 

Figures 7A, 78 and 7C are plots made from data obtained at a con

stant feed concentration of 200 mg/1 of sucrose at varying flow rates 

of 100, 150, 200, 250, 300 and 500 gpd/sq ft. Two rates of removal are 

ascertained at the low flow rates at the various depths and one rate 

of removal is observed at the higher flow rates throughout the depths of 

the filter. 
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Figures BA, BB and BC are from data obtained at an organic loading 

of 300 mg/1 at the various hydraulic loadings of 100, 200 and 250 gpd/ 

sq ft. All three of the removal curves describe a single rate of first 

order organic removal for all depths of the filter. Apparently there 

was sufficient food present to support a thriving microbial population 

at each unit depth of the filter. 

Figures 9A, 98 and 9C show the results of a constant feed concen

tration of 400 mg/1 of sucrose at flow rates of 100, 150 and 250 gpd/sq 

ft. Figures lOA, lOB and lOC show the results of a constant feed con

centration of 500 mg/1 of sucrose at flow rates of 100, 200 and 300 

gpd/sq ft. Both cases show similar results to that shown in figure set 

8 in which all curves exhibit a single rate of first order organic 

removal. 

All of these figure sets show that as the hydraulic loading is 

increased, with the organic loading held constant, the rate of COD 

removal decreases and approaches some limiting rate. 

B. Presentation of Data with Hydraulic Loading Held Constant 
and the Organic Loading Varied 

Utilizing the data obtained in the previous set of experiments, 

the data were regrouped and plotted with the hydraulic loading held 

constant and the organic loading varied. As in the previous plots the 

following figure sets consist of three semilog plots A, Band C. Again 

plot A shows COD remaining {mg/1) versus depth in feet. Plot B shows 

COD remaining {gm/hr/sq ft) versus depth in feet and Plot C shows per 

cent COD remaining versus depth in feet. 

Figures llA, llB and llC show substrate removal with depth at a 

constant flow rate of 100 gpd/sq ft and varying substrate concentrations 
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of 100, 200, 300, 400 and 500 mg/1 o The curves at the lower organic 

loadings show two rates of removal, whereas the curves at the higher 

organic loadings are described by a single rate of removal throughout 

the depths of the filtero Also at the higher feed concentrations, the 

slope of the line describing the COD remaining decreases and approaches 

a limiting value. This too could be considered to be an indication of 

COD filter saturationo 

Figures 12A, 12B and 12C show the results of a constant flow rate 

of 150 gpd/sq ft at feed concentrations of 100, 200 and 400 mg/1. 

Figure sets 13, 14 and 15 show similar results obtained at various feed 

concentrations at the respective flow rates of 200, 250 and 300 gpd/ 

sq ft. In all cases the results obtained were similar to those seen in 

figure set 11 in which the curves at the higher organic concentrations 

are described by a single rate of removal throughout the depths. Again 

at the higher feed concentrations the slope of the line describing the 

COD remaining decreases and approaches some limiting rate, 

C. Presentation of Calculated COD Removal Rates 

In the previous two sections, it was seen from the data that COD 

removal rate decreased as the hydraulic loading was increased with the 

organic loading held at a constant concentration. Also it was observed 

that the COD removal rate decreased as the organic loading was 

increased with the hydraulic loading held at a constant flow rateo In 

both cases the rate of COD removal appeared to approach some limiting 

value. In order to better observe the phenomenon of the COD removal 

rate approaching some limiting value, the COD removal rates were calcu

lated for ~ach COD removal curve from the previously presented data. 

The removal rate was calculated for each curve from each of three 
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different semilog plots A, Band C in each figure set and presented in 

Table IV. For removal curves where more than one removal rate was 

observed, the rate as determined in the first foot of removal was taken 

as the removal rate for that removal curve. As seen in Table IV the 

removal rates, when calculated from plots A, Band C for each removal 

curve, were essentially identical as they should be as pointed out in 

the section on theoretical considerations. 

Figure 16 shows the substrate removal rate of the COD remaining 

curves plotted versus the concentration (mg/1) of COD at the spray. 

nozzle. Curves are drawn connecting the points obtained from the 

slopes of the COD remaining curves at each of the various flow rates 

100, 150, 200, 250 and 300 gpd/sq ft. As can be seen, a family of 

curves develop, each approaching a constant value of removal rate as 

the feed concentration is increased and as the flow rate increases the 

family of curves tend to approach one another exhibiting a saturation 

phenomenon or a limiting load beyond which the removal rate does not 

decrease. 

Figure 17 shows the substrate removal rat.es of the COD remaining 

curves plotted versus the flow rate (gpd/sq ft). Curves are drawn 

connecting the points obtained from the slope of the COD remaining 

curves at each of the various feed concentrations, 100, 200, 300, 400 

and 500 mg/1 sucrose. Again, a family of curves develop, each approach

ing a constant value of removal rate as the flow rate is increased and 

as the substrate concentration increases, the family of curves approach 

one another exhibiting a saturation phenomenon or a limiting load 

beyond w,hich the removal rate does not decrease. 

Figure 18 shows the removal rates of the COD remaining curves 



TABLE IV 

DATA SUMMARY OF pH AT EACH UNIT OF FILTER DEPTH AND SUBSTRATE REMOVAL 
RATES AT VARIOUS FLOW RATES AND FEED CONCENTRATIONS 

Initial Removal Removal Removal 
Depth - Feet feed rate of rate of rate of 

at COD rem. COD rem. COD rem. 
Feed Flow 0 1 2 3 4 nozzle curve curve curve 
cone. rate 

gm/hr/ft2 mg/1 gpd/ft2 pH pH pH pH pH A B C 

100 100 7.8 7.8 7.9 8.1 8.1 1.48 -.545 -.560 -.558 
100 150 7.9 7.7 7.8 8.0 8.1 2.54 -.535 -.577 -.560 
100 200 7.9 7.4 7.7 7.9 8.0 3.49 -.393 -.389 -.395 
100 250 8.0 7.6 7.8 7.9 8.0 4.50 -.341 -.360 -.372 
100 300 8.0 7.6 7.6 7.8 7.9 5.45 -.329 -.325 -.323 
100 600 8.0 7.7 7.6 7.7 7.8 9.14 -.202 -.199 -.204 

200 100 7.9 7.3 7.5 7.7 7.8 3.17 -.416 -.440 -.442 
200 150 8.0 7.4 7.5 7.7 7 .• 9 4.97 -.372 -.358 -.364 
200 200 8.0 7.5 · 7.7 7.8 7.9 6.60 -.339 -.339 -.344 
200 250 8.0 7.6 7.6 7.6 7.7 8.68 -.226 -.230 -.232 
200 300 8.0 7.4 7.3 7.4 7.5 10.03 -.228 -.235 -.226 
200 500 7.8 7.4 7.4 7.5 7.4 15.70 -.200 -.192 -.204 

300 100. 7.9 7.2 7A 7.5 7.6 4.86 -.328 -.326 -.328 
300 200 7.9 7 .2 7.3 7.4 7.4 9.67 -.241 -.237 -.245 
300 250 7.9 7.3 7.3 7.3 7.3 12.07 -.162 -.161 -.167 

400 100 . 7. 7 .7.1 7.2 · 7 .4 7.3 6.50 -.358 -.336 -.360 
400 150 · 7.8 7.1 7.1 -:·-T;f 7.1 9.50 -.204 -.202 -.202 
400 250 ·. 7.9 7.3 7.2 > 7.2 7.2 15.70 -.188 -.186 -.188 
500 .· 100 7.7 7.0 7;1 7.2 7.4 8.00 -.310 -.310 -.310 
500 200 .... 7.8 7.1 .7.0 7.1 7.0 16.50 -.200 -.192 -.192 
500 300 7.7 7.1 7.0 .. 7.1 7.0 23.00 -.163 -.162 -.164 

·. 

1000 . 100 . 7.7 6.0 4.9 4.8 4.7 
..... 
c., 



0.6 .---------.-----....,....__,..:-..,,,,,=-:,="""-d.,.../=ft....,)...-=-----r--------, 

l.1J 
c~, 

a:: 
..J 
<( 
> 
0 
~ 
w 
a:: 
I.LI 

~ 
a:: 

: ~ 

0 ,100 

1:,. 150 

V 200 

D 300 

9 300 

I-en 0.2 1--_:._ ___ -+-_..;. ___ -+__:::""-<::-~-...=-11------~----,.-=~ 

m 
:::> en .. 
~' 

0.1 

0 

Figure 16 o 

100 200 .300 400 

COD AT SPRAY NOZZLE (mg/I) 

Relationship of Substrate Removal Rate (K) with COD at 
Spray Nozzle (mg/1} at v.a ri ous Fl ow Rates, 

500 



0.6 INITIAL FEED CONC. (mg/I) 

!J.J .0 
0 ;100 

~ 1::1 200 

0.5 D 300 a: V 400 

....I • 500 

~· 

0.4 0 .:~. :E 
w 
0:: 

0.3 
w 
I-
<t 
0:: 0.2 tii· 
m 
::> 
U) 0.1 .. 
~ .. 

0 100 200 ·300 400 500 600 

FLOW RATE {gpd/sq.ft.) 

Figure 17" Relationship of Substrate Removal Rate (K) with Flow Rate (gpd/sq ft) at Various 
Organic Concentrationso 

.... 
(J 



0.6 
INITIAL FEED CONC. (m;/i) 

0\ 0 '100 
0 .t::. 200 

uJ 0.5 I\ 
D 300 .... 

~ 
<t V 400 
0:: • 500 

.J 
<{ 0.4 > 0 

~ 
0 

'\;7 
~ 
lJJ Ii,. 

0: 1t 
0.3 

~ I.LJ 
t-
<{ 

~ 0:: ;,. 
t-

0.2 r--- . en ~ .; .;. . 
m 
:::> 
en 

~ 
0.1 

0 2 4 6 8 . 10 12 14 16 

COD AT SPRAY NOZZLE (gm/hr/sq.ft.) 

Figure l8o Relationship of Substrate Removal Rate (K) with COD at Spray Nozzle 
(gm/hr/sq ft) o 

18 



77 

plotted versus the total amount of COD at the spray nozzle expressed as 

gm/hr/sq ft. By this method, both the concentration of the waste as 

wel 1 as the flow rate are taken into account. As can be seen, one 

smooth curve can be drawn through all the points showing that COD 

removal rate decreases and approaches a constant value as the total 

amount of organics applied is increased. 

D. Presentation of Data at Various Flow Rates and Substrate 
Concentrations Having the Same Total Organics Applied at 
the Spray Nozzle 

From the previous presentation of data it is seen that an increase 

in either flow rate or substrate concentration causes a ~ecrease in 

removal rate and the removal rate approaches a constant value both at 

the higher flow rates and at the higher substrate concentrations. Both 

parameters exhibit a definite relationship with substrate removal rate. 

However, the question may be asked, 11 Are these parameters independent 

of one another and does each exert its own influence on organic removal 

rate or is it rather the two in combination exerting the effect on 

removal rate? 11 At a constant hydraulic loading, an increase in sub-

s tra te concentra tipn naturally increases the total amount of organics 

applied to the filter. Also, at a constant substrate concentration, an 

increase in flow rate also increases the total amount of organics 

applied to the filter. In Table II it can be seen that at a total 

organics applied of 114 gm sucrose/day/sq ft, there are three experi

ments of varying substrate concentrations and flow rates. They are: 

100 mg/1 of sucrose at 300 gpd/sq ft; 200 mg/1 of sucrose at 150 gpd/ 

sq ft; and 300 mg/1 of sucrose at 100 gpd/sq ft. These three sets of 

data are plotted in Figure 19 as COD remaining (gm/hr/sq ft) versus 

depth. Again, COD remaining as gm/hr/sq ft was utilized so that both 
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the concentration of the waste as well as the flow rate are combined 

as one parameter. As can be seen from Figure 19 each curve exhibits 

first order decreasing rate removal and there are no discernible 

differences in the plots of the respective COD remaining curves. Fig

ure 20 is a semilog plot of per cent COD remaining versus depth for the 

same data as in Figure 19. Again, there can be seen essentially no 

differences in the plots of the three sets of data. Since there was 

such a small difference in flow rates and substrate concentrations in 

the previous data, it was felt other supporting data at higher total 

organics applied should be presented. 

From Table II at a total organics applied of 226 gm sucrose/day/ 

sq ft there can be found four experiments at this level. They range 

from 100 mg/1 of sucrose at 600 gpd/sq ft to 400 mg/1 sucrose at 150 

gpd/sq ft. These data are presented in Figure 21 as COD remaining 

(gm/hr/sq ft) versus depth. As seen in the previous presentation of 

data, no differences can be ascertained in the plots of the respective 

COD remaining curveso Figure 22 is a semilog plot of the same data as 

per cent COD remaining versus deptho 

Figures 23 and 24 are plots of data as seen in Figures 21 and 22 

except at a higher total organics applied (378 gm sucrose/day/sq ft). 

Note the same results are obtained at the higher total organics applied 

as was seen in Figures 19, 20, 21 and 22. Note also that in all the 

figures COD removal is at the same efficiency with the same total organ

ics applied regardless of whether the total organic loading is accom

plished by a high flow rate at a low waste concentration or a low flow 

rate at a high waste concentration. 
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E. Presentation of Data Showing the Amount of Total Organics 
Removed of the Total Organics Applied at Each Unit of Depth 

85 

In i~~ 16llowing figures (25, 26, 27, and 28) the total COD removed 

for a unit of depth was determined by obtaining the difference between 

the total amount of influent and effluent COD {gm/hr/sq ft) for that 

particular unit of depth. In these values calculated for a given exper-

iment, the effluent from the first foot of depth becomes the influent 

to the second foot of depth and so on through the depths of the filter. 

Figure 25 shows the amount of total COD removed (gm/hr/sq ft) 

plotted versus total COD applied (gm/hr/sq ft) for the first foot of 

filter depth for all of the experiments conducted. Note the curve 

drawn through the points approaches 1 i nea rity. The s 1 ope of this 1 i ne 

is necessarily the efficiency of that unit of filter depth. 

Figures 26, 27 and 28 show the same results as Figure 25 for the 

respective second, third and fourth feet of depth. Consequently, it 

may be seen that, regardless of the amount of total organics applied to 

a particular unit of depth, a nearly constant percentage of the total 

organics applied will be removed by that unit of depth" 

F. Presentation of Data Obtained on the Parameters Involved 
in the Removal Equation 

Q{So-S1) = y >1m 
s1 

) (20) (K+S s 1 

Of the parameters involved in the above equation, Y, x, µm and Ks 

are not readily obtainable. Therefore the task was undertaken to 

determine values for these parameters. 

The parameter xis the mass of active biological solids present in 

a unit of filter depth. Its units are (M). The first method utilized 
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to attempt the detennination of this parameter was to take coupons of 

known weight and surface area made from the filter medium utilized, 

insert them into the unit and allow the microorganisms to grow on the 

coupon. As soon as steady state conditions were reached, (COD removal 

is constant with time and pH is constant at that given depth for a 

given organic and hydraulic loading), the coupon would be removed, 

dried and again weighed. The difference between the initial weight of 

the coupon and its final weight would be calculated and recorded as 

dry weight of microorganisms per surface area of coupon utilized. 

Knowing the surface area afforded by the particular filter medium used 

ar.d assuming all the available surface area of the filter medium to be 

covered with a uniform microbial growth, the mass of total biological 

solids could be determined for that unit of depth. By visual inspec

tion~ it was ascertained that a uniform growth of microorganisms was 

obtained neither on the coupon nor on the filter medium itself. Conse

quently, this method of determining biological solids was abandoned, 

Next, a neutron scattering device was utilized to try to determine the 

mass of active biological solids per unit of depth, Due to the 1/2 

inch spacing between the plates of fiberglass medium, the device could 

not obtain the depth of penetration needed by the fast neutrons to 

allow one to correlate its readings with the amount of biological solids 

present. This device has been used with apparent success in rock 

medium filters (34) for the detennination of biological solids. A 

gamma ray device has been described in the literature (35) which per

mits the determination of biological solids present on the type of 

filter medium utilized in this investigation. However, no such device 

was available to this investigator and its cost prohibited obtaining it 
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for this investigation. Having exhausted all known methods of obtaining 

a value for this parameter, it was decided to abandon further efforts 

on this elusive parameter and turn to the study of the remaining param

eters Y, µm and Ks. 

Kornegay and Andrews (18) determined the yield (Y) of their sub

merged drum, fixed film, completely mixed reactor by measuring the 

amount of biological solids in the effluent of their reactor. They 

indicated that after the film thickness and suspended solids reached 

steady state, the newly fanned microorganisms being washed from the 

wall of the drum represented the mass of microorganisms produced from 

the observed utilization of glucose. Consequently the yield could be 

determined by measuring the suspended solids in the effluent, 

An attempt was made to obtain cell yield values for each unit of 

filter depth in a manner similar to that used by Kornegay and Andrews. 

After the trickling filter reached steady state at a given organic and 

hydraulic loading, 50 ml samples of effluent were collected from each 

unit of filter depth. Each sample was filtered through a tared 45 µ 

pore size membrane filter thus retaining the biological solids on the 

membrane filter, The filters were dried and weighed and the solids 

determination made, Knowing the influent and effluent COD of a partic

ular unit of depth, a yield value could be calculated for that unit of 

filter depth, After a short period of time it became apparent that the 

sloughing of the filter did not occur at a unifQnn rate. Hawkes (36) 

observed the same in a rock medium filter. Therefore, yield values 

obtained by this method during this investigation were erratic and 

could not be used. 

Consequently, it was decided to detennine cell yield values 
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concurrently with growth studies as pointed out in the Materials and 

Methods section, Gaudy and Rao (37) found in a batch activated sludge 

unit that cell yield varies for a single substrate and that a statisti

cal range of yields could be employed. 

Utilizing the method selected for cell yield determination, the 

cells suffered a great change in environment. It was realized that 

yield values obtained in this manner most likely would not be the 

actual cell yield realized with the cells as a fixed film on the filter 

medium. Consequently, only two cell yields were determined at each unit 

of filter depth in order to obtain an idea as to their magnitude. The 

cell yields obtained the first time from the first, second, third and 

fourth foot of filter depths were, respectively: 0.67; 0.33; 0,47; and 

0.50. The second time cell yields were determined, the respective 

values obtained were: 0.42; 0.41; 0.396; and 0.425. The cell yield 

obtained one other time at the one foot depth was 0.29. As can be seen 

there were great variations observed in the cell yields obtained from 

one determination to another. The nearly identical values obtained at 

each unit of depth on the second determinations of cell yields were 

attributed to mere chance. 

Figure 29 is a plot of all the maximum growth rates obtained at 

each unit of depth throughout the investigation versus the depth at 

which the determination was made. Note the general decreasing trend of 

µrn with depth. A line of best fit was determined by the least squares 

method to allow selection of µm values with depth for calculations to be 

carried out later. 

Ks values were also obtained from the data when determining µm. 

For all depths considered, the range of Ks varied between 21 and 50 mg~. 
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Figure 30 shows typical plots of growth rates versus substrate 

concentration at each foot of filter depth. The plots provide evidence 

for the use of the Monad relationship which is a single phase hyperbolic 

relationship between growth rate and substrate concentration in prefer

ence to a linear two phase relationship, This relationship was to be 

expected, as Peil (38) in earlier work acclimated a sewage seed to 

sucrose and determined the relationship between growth rate and sub

strate concentration and concluded that his experimental results pro

vided evidence for application of a single phase hyperbolic relationship 

between growth rate and substrate concentration in preference to a 

linear two phase relationship for heterogeneous populations of sewage 

origin. 

G. Dissolved Oxygen and pH 

The average effluent D. O. (dissolved oxygen) values obtained at 

each depth of the filter were, respectively: spray nozzle, 10.6 mg/1; 

first foot, 7.0 mg/1; second foot, 7.2 mg/1; third foot, 608 mg/1; and 

the fourth foot, 7.1 mg/1. The spray nozzle D. 0. was high, due to the 

fine spray at the nozzle. These levels of D. O. were maintained 

throughout the course of the investigation except for one experiment at 

1000 mg/1 of sucrose at 100 gpd/sq ft. For this experiment, the values 

of the effluent D. 0. at each unit of depth were, respectively:. spray 

nozzle, 11.45 mg/1; first foot, 0.3 mg/1; second foot, 4.65 mg/1; third 

foot, 5.3 mg/1; and the fourth foot, 6.3 mg/1. The pH at each of these 

respective depths as seen in Table IV was: spray nozzle, 7.72; first 

foot, 6.0; second foot, 4.93; third foot, 4.78; and the fourth foots 

4.68. It could be that insufficient dissolved oxygen (in total quantity 

rather than concentration) was present in the waste stream to support 



Figure 30. Relationship of Growth Rateµ (hr-1) with Sucrose Concentration (mg/1) at Each Foot of 

Filter Depth Indicating the Existence of the Monad Relationship at Each Unit of Filter 

Depth. 
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complete aerobic degradation of such a concentrated waste. That is, all 

the oxygen was depleted in the first foot of depth and the microorgan

isms became anaerobic, thus elaborating the end products of anaerobic 

metabolism, namely volatile acids, thus causing a drastic drop in the 

pH. Note in Table III during this experiment (1000 mg/l feed at 100 

gpd/sq ft) there is shown to be a tremendous difference in COD values 

and anthrone COD values at each unit of depth. Also, for the first 

time, an appreciable quantity of reducing sugars are present, possibly 

indicating extracellular cleavage of the a~l,2 bond of sucrose between 

glucose and fructoseo It appears that both D. 0. values and pH values 

observed at various filter depths are a good indication of the degree 

of treatment achieved by that unit. 

Another possibility causing the pH drop with depth could have been 

a tremendous increase in CO2 production due to the higher substrate 

concentrations experienced during the run. The CO2 would combine with 

the water forming carbonic acid which, in turn, due to the system's not 

being buffered, would cause a depression in the pH of the waste. This 

possibility is unlikely in that looking at Table IV at the runs made at 

200 mg/1 x 500 gpd/sq ft and at 500 mg/1 x 200 gpd/sq ft which are the 

identical loadings {gm/hr/sq ft) as 1000 mg/1 x 100 gpd/sq ft, one can 

see no drastic change in pH with depth for either of the runs. 

In all the other experiments, the pH dropped to its lowest value 

in the first foot of depth and then increased through the remainder of 

the depths of the filter. At no time other than in the experiment at 

1000 mg/1 feed at 100 gpd/sq ft did the pH ever decrease more than 0.8 

of a point from the pH determined at the spray nozzle. 



CHAPTER VI 

DISCUSSION 

In the preceding chapters of this report various studies have been 

described, methods of study have been shown and the results of these 

experiments were presentedo In this chapter, the significance of these 

experiments and results will be discussedo 

A, First Order Decreasing Rate Removal of Organics in a 
TricklinR Filte~ 

Velz (3), Eckenfelder (13, 14) and others (2, 8, 39) claim that 

the first order decreasing rate removal of organics in a trickling fil

ter occurs due to the change in treatability of the waste with depth. 

That is, the more easily removable substrates are removed in the upper 

portions of the filter, leaving the organics which are harder to 

metabolize for removal in the lower depths of the filter, Consequently, 

the rate of removal decreases as the more easily assimilable substrates 

are removed with deptho 

As shown in the results section, first order decreasing rate 

removal was observed for the single substrate sucrose, It was noted 

that in most experiments at low total organic loadings (gm/hr/sq ft) 

there was very little difference observed in the COD and anthrone COD 

values at each unit of deptho Therefore, the same type of substrate 

(carbohydrate) was applied to each unit of depth and first order 

decreasing rate removal was observed at all times. From this, it may 
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be reasoned that the first order decreasing rate removal of an organic 

waste must involve a more complicated causation than that proposed by 

the previous investigators. At high total organic loadings (gm/hr/ 

sq ft) after the first foot of filter depth, the tCOD calculated 

between the COD values and the anthrone COD values remains relatively 

constant throughout the remainder of the filter depths. This indicates 

possibly a non-degradable waste fraction produced in the first foot of 

filter depth which is never removed by the filter. It is conceivable 

that this non-degradable waste fraction could affect the organic 

removal rate realized in the lower depths of the filter. 

Another possibility proposed by other investigators (25, 27, 28, 

40) is that the trickling filter process is mass transfer limited. 

That is the concentration of the waste is the driving force for its 

removal. In the upper portions of the filter, where the concentration 

of waste.is the greatest, the greatest removal rate occurs. As the 

concentration of the waste decreases with depth, due to removal by the 

microorganisms in the upper portions, the rate of removal decreases 

thus giving first order decreasing rate removal with depth. Most of 

this work has been accomplished by investigators utilizing inclined 

plane models as an approximation of the trickling filter process. 

To test this hypothesis, equation (22) which was derived previously 

will be used: 

(22) 

This equation holds for any point at steady state in a trickling 

filter. For this illustration, the influent COD concentration will be 

500 mg/1 at 300 gpd/sq ft (47.4 1/hr/sq ft). This high concentration 
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and flow rate was selected since it was observed during the investiga

tion that this was sufficient loading to assure that all levels of the 

filter were covered with a prolific slime growth,. In order to test the 

hypothesis the biological solids must be assumed to be uniform through

out the depths of the filter. It is recognized that in an actual 

trickling filter the solids will not remain uniform throughout the 

depths of the filter but will decrease as the available substrate is 

decreasedo However, if one accepts the theory of mass transfer limita

tion, it is also necessary to accept that the biological solids are 

uniform ~11ith depth in a trickling filtero Therefore, uniform solids 

throughout the filter are being assumed here to illustrate a pointo 

Schulze (41) has used this same assumption when he proposed the theory 

that the trickling filter process is an adsorption process where 

hydraulic 1 oadi ng and depth determine contact time and this in tl.lrn 

determines the level of efficiency with which the process operates. 

This theory has been accepted by many and Schulze's assumption of uni

form solids throughout the trickling filter has not been questione~ by 

other workers in the fieldo Eckenfelder (13) has also accepted the 

idea that in many cases the filter film is uniformly distributed 

throughout the filter and has reported that the filter film was approx

imately uniformly distributed in studies conducted by McDermott in a 23 

foot column of 3 1/2 inch balls and by Schulze on his screen filter. 

Therefore, the assumption in this hypothesis that the biological solids 

remain constant throughout the· filter is not being assumed as a fact, 

but rather as a point to demonstrate that the first order decreasing 

rate removal of organics in a trickling filter is dependent upon a 

change in biological solids with deptho 
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It wi 11 also be assumed that /Jm and Y are constant with depth. 

Therefore the term(~ µm) ! of equation (22) becomes a constant 

throughout the filter at all depths for a given flow rate. From 

Andrews and Kornegay 1 s work (18) it can be calculated that the density 

of biological solids, 70 µ thick (assuming they are all active) is 

616 mg/sq ft. As pointed out previously, each unit of depth of the 

filter in this investigation afforded 50 sq ft of surface area, Conse

quently each unit of depth affords 30,800 mg of active biological 

solids which is the term x. Assume a cell yield of 0.4 and a maximum 

growth rate of 0.2 hr- 1. Substituting these values into the term 

x i1m) fy~ Hs numeri ca"l va 1 ue becomes 325. 

Ks~ as shown previously, varied from 21 to 50 mg/1. The value of 

K5 will be assumed to be 34 mg/1. 

Substituting these values for their respective symbols, equation 

(22) becomes: 

s1 
s l - s O - 325 ( 34+5 ) 

1 
( 31) 

which is now an equation in which s1, the concentration of the effluent 

COD is dependent entirely on the concentration of the influent COD, S0 . 

the amount of solids were fl gured on one unit of depth, so wi 11 the 

effluent COD va 1 ue s1 be figured for each unit of depth over a 4 foot 

depth. Entering the first foot of the filter, the influent COD assumed 

was 500 mg/l, Substituting this into equation (31) and solving for s1, 

the quadratic equation develops where: 

s 2 
1 - 141 s1 - 17000 = o (32) 

and 

sl = 219 mg/1 at the 1st foot of filter depth 
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S1 then becomes the influent COD concentration to the second 

foot of unit depth and 

S2 S2 
s2 = s1 - 325 (34+S ) = 219 - 325 (34+S ) 

2 2 
(33) 

then: S~ + 140 s2 - 7446 ~ 0 (34) 

and s2 - 41 rng/1 at the 2nd foot of filter depth 

s2 then becomes the influent COD concentration to the third foot of 

filter depth and it is found that s3 = 8,5 mg/1 at the 3rd foot of fil

ter depth and s4 = 0.8 mg/1 at the 4th foot of filter depth. 

If the trickling filter process is mass transfer 1 imited, then by 

pfottfog the vahles of COD remaining (mg/l) at each unit of depth versus 

the depth 011 semi log graph paper~ first order decreasing rate remova 1 

should be described by a single straight line connecting all the points. 

In Figure 31~ curve 1, which is a semilog plot of the previously calcu

lated COD concentrations at each depth versus their respective depths, 

such is not the case. Therefore, it appears that according to equation 

(22)s first order decreasing rate removal of COD with depth is not a 

result of the trickling filter process being mass transfer limited. 

In order to determine how Ks would change the amount of COD remain

ing at each foot of depth, the average of all Ks values determined at 

each foot of depth during this investigation was calculated and substi

tuted into equation (22). The values of Ks at each of the respective 

first, second, third and fourth foot of depths were 50 mg/1, 35 mg/1, 

24 mg/1 and 21 mg/1. All other parameters were held constant at the 

values previously mentioned and the amount of COD remaining was calcu-

lated at each foot of depth: s1 = 232.5 mg/1; s2 = 47 mg/1; s3 -

3o7 mg/1; s4 = 0.25 mg/l. 
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These values are shown in Figure 31 plotted as curve 2. As can be 

seen, varying Ks with depth had little effect on the general shape of 

the COD remaining curve. 

In Figure 29, from the line of best fit (by least squares method) 

of the data, values for µm may be se 1 ected at each unit of depth. They 

are: first foot, 0.204 hr- 1; second foot, 0.184 hr- 1; third foot, 

0.163 hr-1; and fourth foot, 0.143 hr- 1. By maintaining all other 

parameters constant, Ks~ 34 mg/1; Q = 47.4 1/hr; Y = 0.4; and x = 

30~800 mg solids; S0 = 500 mg/1 and varying µmat each depth, the COD 

remaining at each unit of depth may be calculated from equation (22). 

The values of COD remaining at each unit depth were: s1 = 208.5 mg/1; 

'"' 41 mgrl; S3 - 5"2 mg/I; and S4 ·"' 0.6 mg/1. These values are shown 

plotted as curve 3 in Figure 31. Again, it can be seen that varying 

this parameter (µm) has little effect on the shape of the COD remaining 

curve. 

As cell yield is generally considered a constant within a statisti

cal range of values it will not be considered further. Therefore, the 

only other parameter left in equation (22) to explore is the biological 

solids x. By varying all the other parameters singly in equation (22) 

it was seen that no one parameter caused a variation in the shape of 

the COD remaining curve. 

Extracting actual data of COD remaining at each unit of depth from 

Table III and holding all other parameters in equation (22) constant, 

the amount of biological solids present at each unit of depth may be 

calculated where: µm = 0.2; Y = 0.4; Ks= 34, and the remainder of the 

parameters are extracted from Table III at various initial concentra-

tions of substrate and various flow rates. Table V shows the values of 
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TABLE V 

BIOLOGICAL SOLIDS, MICROORGANISM SURFACE AREA AND CUMULATIVE MICROORGANISM SURFACE AREA CALCULATED AT EACH UNIT OF 
FILTER DEPTH UTILIZING EQUATION 22 AT VARIOUS FLOW RATES AND FEED CONCENTRATIONS 

Depth ~ Feet 
1 2 3 4 

Flow Solids Solids Curnul at. Solids Solids Cumulat. Solids Solids Cumulat. Sol ids Solids 
rate mg area - area - mg area - area - mg area - area - mg area -

gpd/ft2 sq ft sq ft sq ft sq ft sq ft sq ft sq ft 

300 10609 17.2 17.2 3471 5.64 22.84 7778 12.6 35.44 1947 3.16 

300 9901 16.1 16.1 4727 7.7 23.8 7815 12.7 36.5 4106 6.7 

300 17890 29 29 9696 15.7 44.7 7431 12 56.7 5909 9.6 

200 17422 28.3 28.3 4000 6.5 34.8 5823 9.45 43.25 2183 3.55 

100 10400 ··- -- -- 16.9- - 16.9 3745 6.08 22.9 2887 4.7 27.6 2559 4.16 

Cumulat. 
area -
sq ft 

38.6 
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46.8 
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biological solids obtained at each unit of depth for the various 

organic and hydraulic loadings. Assuming a 70 µ active thickness of 

microorganisms on the filter and a density of 95 mg/cm3 (dry weight) 

(18) for the microorganisms, the surface area of microorganisms present 

in each unit of filter depth was calculated and also presented in 

Table V. By adding together the microorganism surface area available 

at each unit of depth, a cumulative microorganism surface area is 

obtained which may be plotted versus depth as seen in Figures 32 and 

33. Figure 32 shows the cumulative microorganism surface area plotted 

versus depth for a variety of substrate concentrations at a constant 

h,ydraulic loading. As can be seen, an increase in the substrate con

centration causes an increase in the cumulative microorganism surface 

area at each unit of depth. 

Figure 33 shows the cumulative microorganism surface area plotted 

versus depth for a variety of flow rates at a constant substrate con

centration. As can be seen, an increase in flow rate causes an 

increase in the cumulative microorganism surface area at each unit of 

depth. From visual inspection of the model filter during the course of 

this investigation, it was observed that the greatest mass of micro

organisms appeared in the first foot of the filter and decreased there

after. 

In Figure 31 it was seen that varying t'm or Ks in turn with depth, 

in equation (22) did not appreciably change the COD remaining at each 

unit of depth as compared to the calculated COD remaining at each unit 

of depth ,When all parameters were held constant. That is, their effect 

on the shape of the COD remaining curve when considered over the range 

of values selected for each in this presentation is negligible. 



gure 32. Relationship of Cumulative Microorganism Sur

face Area with Depth Calculated from Actual 

Data Utilizing Equation 22 at a Constant 

Flow Rate and Varying Organic Concentra

tions, 
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Fig~re 33, Relationship of Cumulative Microorganism Sur
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Therefore, it must be that the amount of biological solids or the 

amount of microorganism surface area in a filter is the prime factor in 

the removal of organics realized in a trickling filter. Also, the 

biological solids varying with depth must be responsible for the 

characteristic first order removal of organics encountered in trickling 

filters. 

B. The Role of Organic Loading Versus Hydraulic Loading in the 
Removal Rate of Organics in a Trickling Filter 

As previously mentioned, conflicting ideas are afforded by numerous 

investigators on the relative importance of these two parameters on 

trickling filter performance, 

Schulze (10), Eckenfelder (15) and others (21, 5) contend that BOD 

or COD removal is related primarily to the hydraulic loading or flow 

rate. 

Galler and Gotaas (16), Sorrels and Zeller (26), Germain (17) and 

others contend that the concentration of the waste or organic loading is 

the controlling factor in the removal of COD or BOD in a filter. 

From data previously presented in figure sets 6, 7, 8, 9 and 10, 

when the hydraulic loading was increased with the organic concentration 

held constant, the rate of COD removal decreased and approached a 

limiting value. From figure sets 11, 12, 13, 14 and 15 it was observed 

that as the organic loading was increased, with the hydraulic loading 

held constant, the rate of COD removal again decreased and approached a 

limiting value. 

COD removal rates were calculated from the previously mentioned 

figure sets and plotted versus the concentration of the waste (mg/1) at 

the spray nozzle in Figure 16 and versus the flow rate (gpd/sq ft) in 
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Figure 17. In both of these figures a family of curves developed and 

generally approached one another thus exhibiting a saturation phenome

non or a limiting load beyond which the removal rate did not decrease. 

Also there was observed a definite relationship between COD removal 

rate and either of the two parameters, organic loading (mg/1) or 

hydraulic loading (gpd/sq ft). 

Up to this point, it was observed that both organic loading and 

hydraulic loading were related to the removal of organics in a trickling 

filter. However, it could not be ascertained if these two parameters 

were independent of one another, each exerting its own influence on 

organic removal rate or whether they were acting in combination exerting 

their effect on organic removal rate. 

Figure 18 showed the removal rates of the COD remaining curves 

plotted versus the total amount of COD at the spray nozzle expressed as 

gm COD/hr/sq ft. By expressing COD at the spray nozzle in these units, 

the effect of the combination of the concentration of the waste and its 

flow rate could be observed. As was seen, rather than a family of 

curves developing, one continuous relationship was observed indicating 

that it might be well to consider the effect on COD removal rate of the 

two parameters in combination rather than each one separately. Also it 

was seen that the removal rates approached a constant value at the 

higher total organic loadings (gm/hr/sq ft). This indicated that the 

filter was becoming saturated and operating at a constant removal rate 

regardless of the quantity of total organics (gm/hr/sq ft) applied. 

Figures 19 through 24 were plotted to determine whether COD 

removal rate is affected by the two parameters, organic loading (mg/1) 

and hydraulic loading (gpd/sq ft) acting separately or if their effect 
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is actually caused by the two parameters acting in combination 

expressed as total organics applied (gm/hr/sq ft). From these figures 

it was seen that COD removal depends on the amount of total COD applied 

(gm/hr/sq ft) rather than its concentration or its hydraulic rate 

through th~ filter. COD removal is at the same efficiency with the 

same total organics applied regardless as to whether the total organic 

loading is accomplished by a high flow rate at a low waste concentra

tion or a low flow rate at a high waste concentrationo This is in 

absolute agreement with Ingram's (7) conclusions. 

Figures 25 through 28 are plots at each unit of filter depth 

showing the amount of total COD removed (gm/hr/sq ft) plotted versus 

total COD applied (gm/hr/sq ft). In each figure the slope of the curve 

drawn through the points was seen to be the efficiency of that unit of 

filter depth. It was pointed out that regardless of the amount of 

total organics applied (gm/hr/sq ft) to a particular unit of depth, a 

nearly constant percentage of the total organics applied will be removed 

by that unit of filter depth. 

Schulze (8) made two sets of runs at two different hydraulic 

loadings and various concentrations of waste on his vertical screen 

trickling filter. He plotted the data in a manner identical to the 

above mentioned plots (lb BOD removed/day/cu yd versus lb BOD applied/ 

day/cu yd) and concluded that filter efficiency was independent of the 

organic loading up to 10.9 lb BOD/day/cu yd. In order to determine if 

Schulze's conclusions were valid, two flow rates, 100 and 300 gpd/sq ft, 

were selected and the initial feed concentration was varied for each of 

these two flow rates. The influent and effluent concentrations of the 

waste in the 4 foot deep filter were determined and knowing the flow 
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rate, the COD applied (gm/hr/sq ft) was plotted versus the COD removed 

(gm/hr/sq ft) in Figure 34A. The plot is identical to that obtained by 

Schulze except that he shows two lines (one for each of the hydraulic 

flow rates) where actually his data would have fitted one continuous 

curve, rather than the two straight lines. From this Schulze concluded 

that filter efficiency was independent of the organic loading (gm/hr/ 

sq ft). 

For comparison purposes, two feed concentrations 100 and 500 mg/1 

were selected. Each in turn was held constant and the flow rate (gpd/ 

sq ft) varied over a selected range. Again the COD applied (gm/hr/ 

sq ft) was plotted versus the COD removed (gm/hr/sq ft) in Figure 34B. 

The identical relationship was obtained as seen in Figure 34A. Conse

quently, from this we could conclude that filter efficiency is independ

ent of the hydraulic loading. 

Figure 34C shows the data from both Figure 34A and 34B plotted 

together. As can be seen, all the data from both plots A and B can be 

represented by one continuous curve indicating they are related. 

Schulze (8), by not plotting the data as seen in Figure 33B, formed 

an erroneous conclusion. What the data actually show as seen in Fig

ure 34C is that regardless of the amount of total organics applied to a 

filter a slightly decreasing percentage of the total organics applied 

(gm/hr/sq ft) will be removed by that filter. Also the effect on fil

ter performance of the two parameters organic concentration (mg/1) and 

flow rate (gpd/sq ft) is exerted by the two in combination as total 

organics applied rather than the two acting independent of each other. 

C. Discussion of Design Formulations 

Considered in this discussion will be the formulas proposed by the 
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following groups or individuals: Galler-Gotaas. (equation 15); National 

Research Council (equation 1); Eckenfelder (equation 14) and Eckenfelder 

(equation 17). 

Each of these equations was used to calculate the filter effi

ciency expected from a four foot deep filter affording a one square 

foot horizontal surface area. Filter efficiencies were calculated at 

various feed concentrations and flow rates and are presented in Table VI 

for comparison to the actual efficiency achieved in the four foot deep 

model filter utilized during the course of this investigation. 

As can be seen, the Galler-Gotaas equation: 

Le 
1. 3 L

0
.98 Q.12 

(15) :;: 

(l+D) .66 T.15 

consistently predicted the poorest filter efficiencies. The equation 

separates the two parameters, organic concentration and flow rate, and 

indicates that the organic concentration parameter far outweighs flow 

rate in its effect on organic removal. However, based upon the results 

of this investigation it was previously concluded that these two param

eters should not be separated. Their effect on filter performance is 

exerted by their combination as total organics applied (gm/hr/sq ft) 

rather than either of the two acting independently of the other param-

eter. Also there is no indication of any role played by the rpicroorgan-

isms in the removal of organics from the waste. 

The NRC formula: 

E:;: 100 0.5 (1) 

l+C (~) 

yielded credible filter efficiencies as seen in Table VI. It considers 

the two parameters organic concentration and flow rate in combination 



TABLE VI 

FILTER EFFICIENCY CALCULATED AS PERCENT COD REMOVED UTILIZING. VARIOUS DESIGN 
FORMULATIONS AT VARIOUS FLOW RATES AND FEED CONCENTRATIONS 

Flow 100 mg/1 feed 200 mg/1 feed 300 mg/1 feed rate 
gpd/ G N E2 . E1 C G N E2 E1 C G N E2 Ei C G 
SQ ft 

100 56 76 54 75 88 56 69 68 75 87 56 65 75 75 88 57 

150 54 72 44 71 85 54 65 59 71 90 54 60 65 71 55 

200 52 69 38 68 79 52 61 50 68 87 53 56 58 68 84 53 

250 51 67 34 66 88 51 59 45 66 84 51 54 52 66 71 52 

300 50 65 30 64 64 50 56 41 64 83 50 51 48 64 51 

All filter efficiencies are figured an a filter af 4 feet depth with 1 sq ft horizontal surface area. 

G = Galler Gotaas - Equation Na. 15. 

N ., NRG Formula - Equation Na. l.· 

Ez = Eckenfelder's .second formulation - Equation Na. 17. 

E1 = Eckenfelder's first formulation - Equation Na. 14. 

C ~ Cook's results an experimental filter. 

400 mg/1 

N E2 

61 81 

56 71 

53 64 

50 58 

47 54 

feed 

, E1 , C G 

75 92 58 

71 74 55 

68 54 

66 68 52 

64 51 

500 mg/1 

N E2 

59 84 

54 75 

50 68 

47 62 

45 58 

feed 

E1 

75 

71. 

68 

66 

64 

C 

85 

62 

77 

I
I.... 
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expressed as total organics applied to the filter. Efficiency 

decreases as total organics applied increases. However, in comparison 

to the actual efficiencies obtained in the model trickling filter, 

effi ciences as cal cu lated by the NRC formula appear to decrease too 

rapidly with an increase in total organics applied. Again there is no 

indication of any role played by the microorganisms in the removal of 

organics from the wasteo 

Eckenfel der 1 s formula: 

L 
~ _ 100 
Lo - --CD~(-1---'m~) 

1+--
Qn 

(14) 

appeared to give the best results of all the formulations considered 

when compared to the actual efficiencies obtained during this investi

gation. The constant C, Eckenfelder says, is related to the mean 

active filter film per unit of volume throughout the filter depth. 

The exponent n is a characteristic of the filter medium used. The 

deficiency of this equation is that again organic concentration and 

flow rate are considered as two separate parameters rather than as the 

two acting in combination as total organics applied. Also the effi-

ciency of the filter obtained by this formulation is completely inde-

pendent of the concentration of the waste. 

After discussion of this equation by Baker and Graves (1), 

Balakrishnan and Eckenfelder (20) presented the equation: 

(35) 
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where: 

(36) 

then: 

Le_ - 0362 A ·644L · 54o/ n -- e. V O Q 
Lo 

(17) 

In determining Ks= .0362 Av· 644L
0

·
54 , Balakrishnan and Eckenfelder 

Ks 
(20) plotted 4 versus specific surface area, Av(sq ft/cu f)t) on 

L • 5 
0 

full logarithmic graph paper. Observing the scatter in the data, there 

appeared to be no reason for plotting the data on full logarithmic 

graph paper. The same relationship would have existed on semilogarith

mic or arithmetic paper as there appeared to be no relationship between 

the two quantities plotted. On the previously mentioned log-log plot 

of parameters, the scale on the x axis (Av) runs from 10 to 400 units 

of specific surface area. The scale on they axis runs from 0.01 to 
K 

0.10 units of L ~54 , The equation Balakrishnan and Eckenfelder 
0 

determined from this plot is: 

Ks = 0362 A .644 
L .54 . v 

0 

(36) 

where .0362 must be the value of they intercept of the line drawn 

through the data points at x = 1. From the plot, the line drawn 

through the data points has a y intercept of less than 0.02 at x = 10. 

Therefore the value of they intercept at x = 1 must surely be less 

than 0.02 and consequently cannot be 0.0362. The authors must have 

intended to propose 0.00362 as the actual y intercept at x = 1. As 
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this value for the constant was published in two different papers (20, 

42), it could not have been a typographical error.· 

The corrected equation now becomes: 

Le -.00362 A · 644L ·54o; n -=e V O Q 
Lo 

(37) 

By plotting the slopes of the removal curves (removal rates) 

versus the flow rate (mgd/acre) on full logarithmic paper as 

Eckenfelder suggests, the exponent n, which is the slope of this plot 

for the particular medium used, was found to be 0.699. This plot is 

shown in Figure 35. Note all the data available from this investiga

tion were plotted by holding the feed concentration constant, varying 

the flow rate and determining the slope of the resulting removal curve 

to be plotted versus flow rate (mgd/acre). Note also that at the 

higher feed concentrations (300 mg/1, 400 mg/1 and 500 mg/1) the curves 

all fall on one another and are represented by one line, indicating 

saturation. The exponent n appears to approach a constant value for a 

given filter medium. 

By substituting the value obtained for n into equation (37), the 

following equation developed: 

(38) 

This equation was utilized to compute filter efficiencies for com

parison to the actual filter efficiencies obtained in the four foot 

deep model trickling filter. As can be seen in Table VI filter effi-

ciency decreases with increasing flow rate and increases with an 

increase in waste concentration. The latter result is hardly plausible. 
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It is no doubt due to the parameter L
0

•
54 . Eckenfelder never explains 

from where the exponent 0.54 is obtained or why it is utilized. How

ever, he does explain that L
0

•
54 is included in the equation when 

domestic sewage is used because increased flocculation and biosorption 

occur at higher influent organic concentrations due to a large percent

age of the organics in sewage being in suspended or colloidal form, 

After comparison of filter efficiencies obtained by using equation (37) 

it becomes apparent that Eckenfelder 1 s first formulation (equation 14) 

is far superior to his new formula (equation 37). 

In equation (36): Ks= .0362 Av· 644L
0

•
54 

Eckenfelder says Ks can be determined by plotting log per cent COD 

remaining at each unit of depth versus D Ks is the slope of the 
Qn 

resulting plot and is a constant. This is accomplished at one feed 

concentration and three different flow rates. In order to check 

Eckenfelder's values for Ks, the data obtained during this investigation 

were utilized. The exponent n was previously determined to be 0.699 

from the data. The manipulations were carried out at a constant 

organic concentra ti.on and results are shown in Figure 36, As can be 

seen Ks' if ever a constant, is only so for a given organic concentra

tion. Ks decreases from 4o43 and approaches a 1 imi ting value of 2. 1 as 

the organic concentration is increased indicating again some form of 

saturation. Ks is determined by using logarithms to the base e whereas 

n is determined by using logarithms to the base 10. This adds confu~ 

sion to the use of this equation. Ks determined from data during this 

investigation varied from 2.1 to 4.43 whereas Eckenfelder reports a 

value of 0.375. As can be seen, great differences exist. 

The equation Eckenfelder offers (equation 37) is valid only for 
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one organic concentration and as can be seen from Table VI yield~ very 

poor results. 



CHAPTER VII 

CONCLUSIONS 

1. The perfonnance of a fi 1 ter eva 1 uated as COO remova 1 depends 

on the amount of total COO (gm/hr/sq ft) applied to the filter rather 

than its concentration or fl ow rate·. COD removal is at the same effi-

cienc,Yrwith the same total organics applied regardless of whether the 
">, 

total organic loading is accomplished by a high flow rate at a low 

wast~· concentration or a low flow rate at a high waste concentration. 

Since residence time fa a function of flow rate, it is irrelevant to 

the. COD:removal realized in a trickling filter when observed over the 

range ol'.ergani c and hydraulic 1 oadi ngs encountered during this i nves

ti gati on. 

' .. _2. All thfLtrickling filter fonnulations considered in this 

discussion .are. of limited value. The material balance equation: 

{ ·. . ) = ~ l u (· Sl ) 
· So ·~i·sl Y Q "'m K +S . s 1 

is valid at'steady state conditions in a trickling filter. The curves 

of growth rate versus substrate concentration for each foot of filter 

depth have been drawn showing the Monad relationship exists for trick-

1 ing filter biota. 

3. In the previously mentioned equation, the biological solids x 

are the important parameter in determining the amount and type of sub

strate remaining. All other parameters contribute an insignificant 
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effect on substrate remaining when considered over the range of values 

selected for each throughout the duration of this investigation. 

4. The removal of organics in a trickling filter follows first 

order decreasing rate kinetics with depth. This appears to be due to 

the biological solids which decrease with depth in accordance with the 

Monad relationship shown to exist at each unit of depth. 

5. The saturation phenomenon observed in a trickling filter by 

some investigators is a result of the substrate removal rate approach

ing a limiting value at the higher total organic loadings. 



CHAPTER VI I I 

SUGGESTIONS FOR FUTURE STUDY 

As a result of this investigation, the following suggestions are 

made for future study on the kinetics and mechanisms of the fixed bed 

reactors. 

1. Various filter media possessing various available surface 

areas should be placed in the model fixed bed reactor and their effect 

on filter performance noted. This would be essentially a study of 

microorganism surface area or mass which appears to be the controlling 

factor in trickling filter performanceo 

2. The equation (So-S1) = ~ !µm (K:!51 ) should be studied 

further and smaller increments of filter depth utilized (rather than 

one-foot increments) in calculating the COD remaining at a given depth 

when values are assumed for µm, Y, Q, Ks' and varying x with depth. 

This should result in obtaining a removal curve approximating first 

order decreasing rate removal kinetics. 

3. Other substrates should be utilized and combinations of sub

strates (both soluble and colloidal) should be observed as to their 

removal characteristics on the fixed bed reactor, 

4. The effect of recirculation on filter performance should be 

studied in depth utilizing varying flow rates, feed concentrations and 

recirculation ratios. 
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5. Investigations should be carried out to find a feasible means 

of determining the amount of biological solids present at a given 

filter depth, 
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APPENDIX 

LIST OF SYMBOLS 

A = area of biological film 

A = area afforded by a given filter medium for biological growth 
v (sq ft/cu ft) 

b = coefficient of biosorption in equation (11) 

b = temperature correction factor in equation (12) 

C = constant, equal to .0085 for volume (V) in acre feet or .0561 for 
volume (V) in thousands of cubic feet 

D = depth of filter bed 

d = thickness of the active biological film 

E =%BOD removed 

F = hydraulic flow rate 

K = a coefficient incorporating the surface area of active biological 
film per unit volume 

Ks= essential nutrient concentration where~= 1/2 ~m 

K
5 

- a constant in equation (35) 

k = logarithmic rate of BOD extraction 

Lor Li or L
0 

= total removable fraction of BOD or initial quantity of 
BOD 

L = D remaining removable BOD at depth D. 

L = e remaining BOD in effluent 

L = R fraction of the removab 1 e BOD that is removed 

Lt = quantity of BOD remaining at time t 

m = constant, equal to 0.33 (for Qin mgd/acre and Din feet) 
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n = constant, characteristic of the filter medium used 

Q = hydraulic loading or flow rate (hydraulic load/unit surface area) 

R = recirculation ratio 

S = the load of removable BOD which must be applied to saturate one 
unit of filter depth with BOD 

S
0 

= influent concentration of essential nutrient 

s1 = effluent concentration of essential nutrient 

s4 = concentration of essential nutrient at a filter depth of 4 feet 

T = temperature in° C 

µ = specific growth rate of microorganisms 
A 

µ or ~m = maximum specific growth rate of microorganisms 

V = volume of filter medium ~cre·feet or thousands of cubic feet) 

W = organic load applied (lb BOD/day) 

x = number of unit volumes saturated by a given load of BOD in equa
tion (11) 

X = concentration of microorganisms in the biological film 

x = mass of biological solids at a selected point 

Y = yield of microorganisms or biological solids 
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