THREE-DIMENSIONAL INTERFERENCE

BETWEEN TWO TILLAGE TOOLS

By
TOM S. HHISHOLM $^{\mathrm{H}^{2}}$ 11
Bachelor of Science New Mexico State University
Las Cruces, New Mexico
1964
Master of Science
South Dakota State University
Brookings, South Dakota
1967

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1970

THREE-DIMENSIONAL INTERFERENCE between two tillage tools

Thesis Approved:

769814

AGKNOWLEDGMENTS

The research herein reported was partially supported by funds from the Gooperative State Research Service.

Many people at the Oklahome State University Stillwater Campus and at the Oklahoma Cotton Research Station in Chickasha were of aid in the carrying out of this research program. I would like to thank particularly Professor Jay G. Porterfield, adviser and committee chairman; Dr. James E. Garton, Dr. Lawrence O. Roth, Dr. Henry R. Sebesta and Dr. John F. Stone, committee members; Professor Ervin W. Schroeder, Head of the Agricultural Engineering Department; Mr. David G. Batchelder, Associate Professor of Agricultural Engineering; Mr. Galen McLaughlin, Shop Foreman at Chickasha; Mr. Jack I. Fryrear, Head Draftsman at Agricultural Engineering; Glen W. Smith and Michael L. Calavan, undergraduate part-time employees; and Lonnie I. Sumpter, shop worker at the Agricultural Engineering Laboratory in Stillwater.

In addition, I would like to thank my thesis typist, Mrs. Patrick Metz.

Finally, I wish to offer very special thanks to my wife, Virginia, for her support and encouragement.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. REVIEW OF LITERATURE 3
Soil Bins and Artificial Soils 3
Soil Forces on Individual Tillage Tools 6
Interference Between Tillage Tools 11
III. DEVELOPMENT OF EXPERIMENTAL PROGRAM 14
Description of Experimental Program 14
Selection of System Configuration, Variables, and Experimental Design 16
Selection of System Operating Values 28
Specific Objectives of the Investigation 33
IV. EQUIPMENT AND PROCEDURES 35
The Soil Bin 35
The Tillage Tools 48
Procedure for Conducting Factorial Program 50
Procedure for Conducting Each Series 51
Recording of Data 52
V. PRESENTATION AND DISCUSSION OF RESULTS 57
Presentation of Results 57
Discussion of Results 99
VI. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK 113
Summary 113
Conclusions 115
Suggestions for Future Work 116
A SELECTED BIBLIOGRAPHY 118
APPENDIX A - SPECIFICATIONS OF INSTRUMENTS 120
APPENDIX B - ORIGINAL DATA 128

LIST OF TABLES

Table Page
I. Means and Standard Deviations of Dependent Factors 59
II. Analysis of Variance For F_{x} 60
III. Analysis of Variance For F_{y} 61
IV. Analysis of Variance For F_{z} 62
V. Analysis of Variance For F 63
VI. Analysis of Variance For C_{x} 64
VII. Analysis of Variance For C_{y} 65
VIII. Analysis of Variance For C_{z} 66
IX. Analysis of Variance For C 67
X. Analysis of Variance For TX 68
XI. Analysis of Variance For TZ 69
XII. Sum of Squares Partitionings 70
XIII. Development of Prediction Equations 71
XIV. Presentation of Prediction Equations 72

LIST OF FIGURES

Figure Page

1. Tillage System Which was Studied 15
2. Location of Forces on Dynamometer T and Dynamometer Tillage Tool 17
3. Soil Bodies Which Were Formed on Round and Square Bars 20
4. Interference Zones for the Tillage Tools 32
5. Schematic Diagram of Soil Bin 36
6. Soil Bin as Viewed From the South 37
7. Unit for Supplying Hydraulic Oil Under Pressure to the Hydraulic Motor Which is Shown in Figure 8 38
8. East End of the Soil Bin as Viewed From the North 38
9. Density Meter and 8-Channel Recorder 39
10. Central Section of the Soil Bin as Viewed From the Northwest 39
11. Central Section of the Soil Bin as Viewed from the North 40
12. Static Storage Hopper for Storing the Soil When the Soil Bin is Not in Use 41
13. West End of the Soil Bin as Viewed From the North 41
14. Set-Up for Calibration of Density Measurement System 44
15. Compaction Drum Setwup to Place Grid on Soil Surface for Use in Taking Pictures of Tillage Tests 45
16. Tillage Tool Specifications 49
17. Sample of Recorder Chart 53
18. Sample Data Sheet 54
19. High and Low Interference Cases 73
Figure Page
20. Effects of α at IIgh Interference 74
21. Effects of x at High Interference 75
22. Effects of d at High Interference 76
23. High and Low Interference Cases 77
24. Effects of V at High Interference 78
25. Effects of w at High Interference 79
26. High and Low Interference Gases 80
27. Effects of β_{d} at High Interference 81
28. Effects of β_{i} at High Interference 82
29. Reference Condition Without Interference 83
30. Effects of $y=-4 \prime$ at High Interference 84
31. Effects of $y=+4^{\prime \prime}$ at High Interference 85
32. Effects of $y=+8^{\prime \prime}$ at High Interference 86
33. Effects of $y=+15^{\prime \prime}$ at High Interference 87
34. Effects of $V=1$ fps at High Interference 88
35. Effects of $w=2^{\prime \prime}$ at High Interference 89
36. Effects of $\alpha=75^{\circ}$ at High Interference 90
37. Effects of $\beta_{d}=105^{\circ}$ at High Interference 91
38. Effects of $\beta_{i}=75^{\circ}$ at High Interference 92
39. Effects of $z=2.5^{\prime \prime}$ at High Interference 93
40. Effects of $d=4^{\prime \prime}$ at High Interference 94
41. Low Interference Condition 95
42. Interference with Bin Side 96
43. Views of Soil Body Formed on Tillage Tool$\left(\mathrm{V}=3 \mathrm{fps}, \mathrm{w}=2^{\prime \prime}, \alpha=75^{\circ}, \beta_{i}=75^{\circ}, \mathrm{d} \approx 6^{\prime \prime}\right)$97

Figure

Page
44. Soil Body Formed on Tillage Tool

45. Soil Body Formed on Tillage Tool
($\mathrm{V}=3 \mathrm{fps}, \mathrm{W}=3^{\prime \prime}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}, \mathrm{d} \approx 5^{\prime \prime}$) 98

CHAPTER I

INTRODUCTION

Large amounts of energy are used in soil tillage. In 1961, sixty percent of the tractor power that was expended on farms in the United States was used to operate soil loosening or turning tools, and required more than 2 billion gallons of fuel costing 323 million dollars (5). Many of our tillage systems are inefficient and have been improved little over the past tens and even hundreds of years. In this context, an efficient tillage system is one which minimizes the amount of energy required to till the soil, consistent with achieving a desired soil condition. Tillage system improvements, which have been made, were often the result of a slow evolution or were developed through a trial-and-error approach. However, with the aid of analysis and experimental design techniques, tillage systems can be quantitatively characterized and improvements indicated.

The research herein described was related to the general problem of trying to improve tillage system efficiency. A solution to the overall problem was not attempted, but rather a tillage system in* volving interference between simple shape tools was studied ${ }_{2}$ and certain features of its operation were quantitatively characterized. Interference relationships associated with this tillage system give some indications of the ways in which interference can be utilized to improve tillage system efficiency.

When two or more tillage tools are operated sufficiently close together, interference occurs. That is, the operation of at least one of the tools is influenced by the presence of the other tool(s). Interference may affect the amount of energy required to till the soil to a given condition, offer the possibility of creating a different final soil condition than would be obtained without interference, and impose clearance limitations for passage of large clods and trash。

A soil bin study was conducted of three-dimensional interference between two flat plate tillage tools operating in an artificial soil. The general objective of this investigation was to study and characterize selected aspects of interference between tillage tools.

One tool of 3 -inch width (the dynamometer tool) was operated 5 inches deep in soil moving at velocity V. Basic interference conditions wexe specified in texms of the independent variables which gave the threemdimensional position of a second tool (the interfering tool) with respect to the dynamometer tool. Other independent variables were also included in the experimental program so that their roles in interference could be explored. These independent variables were associated with the orientations of the tools, the width of the intexfering tools and the velocity of the soil. The wrench which the soil applied to the dynamometer tool was the dependent variable for interference effects. A wrench consists of a force and a couple in a plane perpendicular to the force.

CHAPTER II

REVIEN OF LITERATURE

In order to provide background informationg the following topics are discussed: soid bins and artificial soils, soil forces on individual tillage tools and interferemge between tillage tools.

Soil Bims and Artificial Soils

In field testing of tillage machires, a researeher often experim ences difficulty in maincainimg the soil in the test field at the desired preotest condition. The soil condition may vary throughout the field, and its cordicion may change with the passage of time In addition, the weather often interferes with testing programs. These problems combine to make field testing of machines difficult and many times, inconclusive。 Uncortrolled changes in soil condition may affect test results more than do changes in design of the machine.

Numerous researehers have found that they can better study soilo machine intexrelationships uncer caxefully controlled conditions using a laboratory soil bin (l, 3, 10) o Soil bin facilities for testing tillage machines generally consist of (a) a soil containex, (b) a dynamometer carxiage and associated instzumentation, and (c) soil prom cessing equipment.

Researchers have published several papers chat deal with soil bin design and instrumentation $(4,7,17)$. Siemens and Weber (17) pointed
out many of the important considerations involved in the development of soil bin facilities. They outlined (a) the advantages and disadm vantages of circular and straight soil containers, (b) factors to consider in choosing between a stationary and moving test carriage axrangements and (c) the impoxtance of szansverse rigidity of the test carriage with respect to the soil.

Researchers badly need a method of selecting the size of soil container in relation the sime tillage machine they plan to test. If the dapth and/or width of the soil container is too small in comparison with the size, shape, and loads on the contact surfaces of the tillage machine, boundary conditions on the sides and bottom of the soil containex will affect the test results. The result is not so serious if the soll container depth and/or width dimensions are much larger than necessary fow eliminating significant boundary effects. The soil container being larger than necessary means simply that a larger amount of sofl must be prepared for each testo The larger amount of soil results in increased time for soil preparation and increased soil processing problems.

Harrison (7) stated that a soid container width to depth ratio of 3:1 gives satisfactozy results and that the container dimensions must be sufficiently large to prevent side and bottom effects. It is unform tunate that researchers have not done mare to determine satisfactory size relationships between the tillage machine and the soil container.

Considerable attention needs to be directed towards the design of soil processing equipmento or many of the potential advantages of soil bin testing may not be realized. This equipment should have the capability of (a) completely destroying the effects of prior soil
deformation and manipulation, (b) placing the soil back in the soil container so that the soil strength properties are uniform throughout the test zone, (c) producing various desired states of soil compaction, and (d) processing soils with a minimum amount of operator attention. Researchers have used both natural and artificial soils in soil bins. Artificial soils are being used to a greater extent due to difficulties in maintaining constant strength properties with natural soils. Soil processing equipment rapidly dries out natural soils. The phenomenon of remolding or weakening of the soil with mechanical working is also present in natural soils, particularly the more com hesive soils.

Hanomoto (6) indicated several characteristics that an artificial soil should have; these are:

1. The strength properties of the soil should not change with time, temperature, or humidity.
2. The soil mix should be capable of representing a wide range of soil types and soil conditions.
3. The soil should have reproducible soil properties.
4. The artificial soil should behave reasonably like a natural soil.

The two most comon artificial soils are the claymsandwoil mix and the claymsandmethylene glycol mix. Both have shortcomings when one considers the above ideal characteristics. Korayem and Reaves (9) used both types of artificial soils in connection with tillage machine tests. They were able to vary the ethylene glycol concen tration and produce changes in the cohesive properties of the mix. However, when they used spindle oil, the cohesive properties did not
change significantly with the concentration. Spindle oil provided excellent long term stability due to the slow evaporation rate of the oil and the fact that losses of oil did not affect the strength prom perties. Ethylene glycol had a serious deficiency as a wetting agent, since it was hygroscopic. Changes in the relative humidity, therefore, affected the properties of the soil due to changes in moisture content of the mix.

Soil Forces on Individual Tillage Tools

A number of researchers have explored the relationships between soil forces on an individual tillage tool and independent factors associated with the soilmtool system.

Rowe and Barnes (16) examined the way in which speed influenced the draft force on a tillage tool. They conducted tests in a soil bin which involved a moving soil box and a stationary dynamometer. Four natural soils were used in their tests: sand, Ida silt loam, Colo silty clay loam $_{9}$ and Luton silty clay. The tillage tool used was a flat plare 2 inches long, 4 inches wide and inclined at 25 degrees to the horizontalg such that the bottom edge of the tool was leading. They found that as the velocity was increased from 0.75 feet per second to 2.75 feet per second, the draft in the sand increased approximately 15 percent, and the draft in the Colo silty clay loam increased approximately 60 percent. When they made analytical calo culations of draft, they found that acceleration of the soil contrim buted only a small paxt of the total draft force. Increase in draft with speed was due mainly to increased shear strength of the soil at a higher rate of shear. It had previously been thought that the draft
increase with speed increase could be reduced by shaping the tool so that the soil would be subjected to lower acceleration. The results of this study indicated that reducing the acceleration of the soil acted on by the tool would only result in a small reduction in the draft increase.

Payne (12) studied a tillage system involving a vertical rectangular flat plate tool operated in several soils at various speeds. He attacked the problem both analytically and experimentally. In the analytical portion of the study, he examined the way in which the soil was behaving in the vicinity of the tool, and then developed analytical equations to characterize the operation of the soilotool system。 He also measured the draft force on the tillage tools. He studied mainly narrow tools with depth/width ratios lying between $25: 1$ and 1:1. He worked with several soil types: sand, sandy loam, and three different clay loams. The tools were operated at speeds ranging between 0.73 and 8.8 feet per second. For this simple tillage system he was able to develop workable analytical relationships. One of the most impore tant aspects of his study involved his examination of the soil behavior near the tillage tool.

Based on his studies, Payne arrived at several important conclum sions:

1. A wedgesshaped block of soil will be isolated on the front of a moving tool by two vertical plane surfaces of slip and an inclined bottom surface which is slightly curved. The inclination of the bottom surface to the hoxizontal will depend upon the soil/metal angle of friction and the soil's angle of internal friction, but will never be less than zero.

The wedge will move forwards as if part of the tool, but at the same time will slide slowly up the tool surface.
2. The wedge will act as a knife splitting the surrounding soil in half and pushing it sideways and upwards to form a passage for itself. The soil so treated will be isolated from the bulk of the soil along an inclined surface of slip which rises from the bottom of the wedge and emerges at ground level to form a crescentwshaped crack surrounding the tool and the wedge.
3. The continuous movement of the tool produces a series of slipøstick compressions and shear failures within the soil.
4. The distance from the tool to the crescent crack is directly proportional to depth of tool operation.
5. Draft force is a function of depth. This function has two important components, one which is proportional to depth, while the other varies as the square of the depth. For agricultural soils and depth/width ratios below 4, the latter component is small. For cohesionless soils such as dry sand the former component is small.
6. For tools wide enough to bring the soil into plastic equilie brium (approximately 2 inches), the distance beyond the side of the tool to which the soil was disturbed was insensitive to tool width.
7. For tools wide enough to bring the soil into plastic equilibrium, one component of draft force is proportional to widths while another is independent of width.
8. For tools wide enough to bring the soil into plastic
equilibrium, the radial dimensions of the limit of upheaval can be predicted from the parameters soil cohesion and angle of internal friction, adhesion and angle of soil/metal friction and the soil bulk density.
9. Draft force varies almost linearly with cohesion, and volume of upheaval is dependent upon angle of internal friction and angle of soil/metal friction.

In a subsequent study, Payne and Tanner (13) examined a similar tillage tool system, except that rather than the tool remaining vertim cal , it was operated at various rake angleso Rectangular flat plate tools covering the range of inclination to the horizontal 20° to 160° and the range of depth/width ratios $1.5: 1$ to $6: 1$ were drawn through various soils in the field and in the laboratory. The results of measurements of the extent to which the soil was disturbed and the magnitudes and directions of the resultant forces on the tools were presented. This investigation was empirical and did not involve analytical development of equations. By way of orientation, a rake angle of less than 90° indicated that the bottom edge of the tool was leading, while a rake angle of 90° indicated a vertical tool.

They found that the pattern of soil cleavage around rectangular flat plate tools which were inclined to their direction of travel was generally similar to that around vertical tools over the range 20° to 160° inclination to the horizontal. The most notable differences were that the crescentwshaped body of disturbed soil surrounding the tool was elongated or foreshortened, depending upon whether the bottom of the tool led or trailed, and the small wedge of soil which, with a 90° inclination rises up the face of the tools remained static for
much of the time at about 100° and was not visible on the surface for greater inclinations. Changes in draft force due to the proportions or angle of inclination of the tool were found to be closely correlated with changes in length of the shear path in the direction of travel. As with a vertical tool, it was found that the distance beyond the sides of the tool to which the soil was disturbed was insensitive to tool width, provided this was greater than 2 inches. The efficiency of the tools measured in terms of the draft force and the width of disturbed soil hardly varied with the proportions of the tool, but was sensitive to rake angle, being approximately 8 times greater at an inclination of 20° than at 160°. One component of draft force was proportional to tool width, while another, which became progressively larger for the more obtuse inclinations, was independent of width. Draft force was relatively insensitive to inclination between 20° and 50°, but thereafter, increased very rapidly. With the tool inclined at less than 45°, the soil provided a component force to assist penew tration, but at greater angles, it opposed penetration. The resultant force on a vertical tool was inclined upwards at about 20° to the horizontal.

Kaburaki and Kisu (8) evaluated the effects which rake angle α and side angle β have on draft force for a flat plate tillage tool. In their studies; a rake angle of less than 90° indicated that the bottom edge of the tool was leading, and a value of 90° indicated that the tool was vertical. A side angle of 90°, at a rake angle of 90°, placed the tool surface perpendicular to the direction of travel. The projected area of the tool in the direction of travel was maintained rectangular and constant for all cases studied, and soil was
moved laterally into an open furrow. Tests were set up in a factorial arrangement so that interactions between α and β could be evaluated. Both angles were varied between 20° and 90°. The draft was influenced to a greater extent by the rake angle than by the side angle. The draft was approximately doubled when the rake angle was increased from 20° to 90°. Increases in the side angle β decreased draft until an angle of approximately 45° was attained. After that point, draft became essentially constant for a given value of α_{0} In no case, did the draft decrease exceed 25 percent as side angle was varied.

Interference Between Tillage Tools

With reference to interference between tillage tools, two types of interference need to be considered. Simultaneous interference occurs when two or more tools are operated sufficiently close together such that the action of each tool is simultaneously influenced by the presence of the other tool(s). Boundary condition interference occurs when the interference between tools is not simultaneous, but rather, the boundary condition created by one tool influences the action of another tool which operates in the same vicinity at another time.

Some work has been done in the area of interference between tilm lage tools, but much remains to be learned regarding interference relationships. An important factor involved with interference, especially simultaneous interference, is that the actions of the tools need to be studied while interference is actually occurring. The actions of two tools cannot be studied separately and then their combined action predicted based upon their separate actions.

Zelenin (18) studied teeth on an experimental dragline scoop.

The scoop had a volume of 0.38 cubic meters and was operated at various angles of inclination to the horizontal. Teeth of width m were placed along the leading edge of the scoop at a spacing h from the side of one tooth to the side of another tooth. The scoop was operated in clay and loam soils. With teeth on the scoop, less force was required to move the scoop through the soil as compared to a scoop with no teeth. Further, it was found that a definite minimum force existed for a h / m value of approximately 2.5 which resulted in an operating force about 40 percent less than the operating force required without teeth. Interference between teeth and cutting blade was clearly demonstrated. Both simultaneous and boundary condition interference were likely involved in this soilmachine system.

Reed and Berry (15) studied interference associated with a doublem cut plow. Their double-cut plow consisted of one plow operated above and offset sideways from the other, such that two layers of soil were plowed, but not mixed with one another. In operation of the doublew cut plow, the lower share moved soil upward into an unconfined area. As a result, the same volume of soil could be tilled in layers with less energy than was required to till it in a single cut. In their study, approximately 25 percent less draft force was required wi.th the doublemcut plow, as compared to the singlemcut plow, when the same volume of soil was being tilled. It can be seen that boundary cono dition interference was the principal type involved in this soilw tillage system.

Rathje (14) conducted studies concexning interference between two vertical straight tools. The draft resistance of the two tools, each with a width of 15 millimeters and a length of 60 millimeters from
front to rear, was found to depend on the ratio of the distance between tools b and the depth of operation t. When the tools were close together, a common compression wedge was formed similar to that in front of a single tool of the same overall width. When the tools were gradually moved apart, the resistance for a given depth increased and reached a maximum for the system when $b=0.043 t$. As the tools were moved further apart, the compression wedge that had bridged over the gap between the two tools was broken through at the bottom ${ }_{2}$ and soil flowed between the two tools. The draft force dropped rapidly with an increase in the spacing between the tools and reached a minimum value at $b=0.34 t$, where it was only 10 percent higher than that of a single tool. As the distance between the tools was increased still further, the draft increased until the point $b=2.5 t$ was reached, and the tools were acting independently. In Rathje's study, simultaneous interference was acting.

CHAPTER III

DEVELOPMENT OF EXPERIMENTAL PROGRAM

A description of the main experimental program is presented first, and then the reasons for selection of this program are discussed. The selection procedure is discussed in two parts: selection of system configuration, variables, and experimental design; and selection of system operating values. Finally, för the system selected, the specific objectives of the investigation are stated.

Description of Experimental Program

By progressively making selections, an experimental program was developed; this program is now presented. Refer to Figure 1, where appropriate, to identify quantities being discussed.

Tool Shape: Flat rectangular plate, 3/4" thick
Experimental Design: Complete factorial
Dependent Factor: Wrench on the dynamometer tool; ω
Independent Factors: (8 factors: $2 V, 2 w, 2 \alpha, 2 \beta_{d}, 2 \beta_{i}, 2 x, 5 y, 2 d$)
A. Soil velocity; $V=1 \mathrm{fps}, 3 \mathrm{fps}$
B. Width of interfering tool; $w=2 ", 4 "$
C. Orientation of tools

$$
\begin{aligned}
\alpha & =75^{\circ}, 105^{\circ} \\
\beta_{\mathrm{d}} & =75^{\circ}, 105^{\circ} \\
\beta_{\mathrm{i}} & =75^{\circ}, 105^{\circ}
\end{aligned}
$$

TOP VIEW OF TOOLS

SIDE VIEW OF TOOLS

Figure I. Tillage System
Which was
Studied
D. Position of interfering tool

$$
\begin{aligned}
& x=2.5^{\prime \prime}, 5.5^{\prime \prime} \\
& y=-15^{\prime \prime},-4^{\prime \prime},+4^{\prime \prime},+8^{\prime \prime},+15^{\prime \prime} \\
& d=4^{\prime \prime}, 6^{\prime \prime}
\end{aligned}
$$

Constants

A. Width of dynamometer tool; $W=3^{\prime \prime}$
B. Depth of dynamometer tool; $D=5^{\prime \prime}$
C. Pre-test condition of soil; uncompacted soil with a density of $79 \mathrm{lb} / \mathrm{ft}^{3}$.

The dependent factor was a wrench ω which the soil applied to the dynamometer tool. The wfench consisted of a force F and a couple C in a plane perpendicular to the force. The force was also considered as components F_{x}, F_{y}, and F_{z}. The couple C was, likewise, also considered as components C_{x}, C_{y}, and C_{z}. Refer to Figure 2 for identification of quantities being discussed. It was also necessary to locate the line of action which was specified by the wrench. The line of action of F was located by its intersection with the dynamometer tool and was given by TX and TZ. This line of action for F represented the true line of action of the soil-tool resultant force, since the couple so specified was the minimum couple which could have placed the system in equilibrium (5).

Selection of System Configuration, Variables, and Experimental Design

Gill and Vanden Berg (5) indicate that the generalized tillage relation can be mathematically represented by the two equations

Notes: 1. Forces are measured in pounds.
2. Couples are measured in inchpounds.
3. Distances are measured in inches.
4. $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}, \mathrm{~F}_{4}, \mathrm{~F}_{5}$, and F_{6} are load cell forces.
5. F_{x}, F_{y}, and F_{z} are the forces that the soil exerts on the tillage tool.
6. $\mathrm{F}=\sqrt{\left(\mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\mathrm{F}_{\mathrm{y}}\right)^{2}+\left(\mathrm{F}_{\mathrm{z}}\right)^{2}}$
7. C_{x}, C_{y}, and C_{z} are the couples that the soil applies to the tillage tool.
8. $c= \pm \sqrt{\left(C_{x}\right)^{2}+\left(c_{y}\right)^{2}+\left(C_{z}\right)^{2}}$, such that C in vector representation is positive when it is in the same direction as F, and negative when it is in the direction opposite to that of F .

FRONT VIEW

SIDE VIEW

Figure 2. Location of Forces on Dynamometer T and Dynamometer Tillage Tool

$$
\begin{aligned}
& R=f\left(T_{s}, T_{m}, S_{i}, I\right) \\
& S_{f}=g\left(T_{s}, T_{m}, S_{i}, I\right)
\end{aligned}
$$

where $R=$ forces on the tool to cause movement

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\text { tool shape } \\
\mathrm{T}_{\mathrm{m}} & =\text { manner of tool movement } \\
\mathrm{S}_{\mathrm{i}} & =\text { initial soil condition } \\
\mathrm{I} & =\text { interference } \\
\mathrm{S}_{\mathrm{f}} & =\text { final soil condition }
\end{aligned}
$$

In considering the generalized tillage equations, it is important to bear in mind that each quantity listed may actually be a collection of quantities.

These generalized equations provide a goal for tillage research. If the functional relationships were known, these equations could be used directly to improve the efficiency of tillage systems. That is, given S_{i}, f, g, and a desired $S_{f} ; T_{S}, T_{m}$, and I could be determined such that R would be minimized. Since f and g are not known, these equations cannot yet be used directly for the design of tillage systems. However, the equations can be used as a guide in planning and interpreting tillage studies.

The experimental program was developed in steps by progressively making selections. At each stage in the development, consideration was given to the various alternatives, and then a selection was made. This selection procedure was aimed at developing an efficient experimental program which would yield the greatest amount of new information for a given expenditure of effort.

The generalized tillage equations indicate that any or all of the independent quantities listed could be incorporated in an experimental program. However, the effects of some independent quantities have been studied to a greater extent than others. It was decided that three-dimensional interference between tillage tools would be studied. There were two reasons for this selection. First, interference is functionally related to R and S_{f}; the literature review indicates that interference can have large effects on R and S_{f}. Second, various forms of interference have been explored to some extent, but the general case of three-dimensional interference between tillage tools had not been studied and characterized.

In order to examine interference between tillage tools, it was necessary to study a tillage system which involved two or more tools. Since this was the first investigation of three-dimensional interference, a tillage system involving two tools was selected for study. Interference could be readily characterized and interpreted for this simplified system. Interference relationships associated with the more complex tillage systems were in need of study, but it was appropriate to first characterize interference in a simplified system.

With respect to shape of tools to study, a variety of shapes were considered, but a rectangular flat plate oriented generally perpendicular to the direction of travel was selected. Preliminary tests indicated that a body of compacted soil would likely form on the leadm ing surfaces of many tool shapes, so that the exact shape of the tool would become somewhat irrelevant. Figure 3 shows soil bodies that formed on square and round bars.

Once the tool shape had been selected, its depth/width

Figure 3. Soil Bodies Which Were Formed on Round and Square Bars
proportions were considered. It was decided that the depth/width ratios associated with the tools would be 1 or greater so that the tools could be classed as narrow tillage tools with reference to Payne's criteria (12). Payne indicated that narrow tillage tools were more representative of agricultural implement components than were wide tillage tools which would have depth/width ratios of 0.5 or less. It would be desirable to operate in either the narrow tool class or in the wide tool class, but not in both classes for a given experiment, since the soil near the tillage tool would behave differently for the two classes.

The development of the experimental program, thus far, can be summarized by indicating that three-dimensional interference between two rectangular flat plate tillage tools has been selected for study. At this point, the pertinent quantities associated with this system can be listed in an expanded form, and then the selection procedure can be continued by deciding which quantities will be variables and which ones will be held constant.

The pertinent quantities for this system are now listed. Refer to Figure 1 for aid in identifying quantities.

1. $w=$ wrench on dynamometer tool
2. $x=$ transverse location of interfering tool with respect to dynamometer tool
3. $y=$ longitudinal location of interfering tool with respect to dynamometer tool
4. $d=$ depth of interfering tool
5. $\beta_{d}=$ side angle of dynamometer tool
6. $\beta_{i}=$ side angle of interfering tool
7. $\alpha_{d}=$ rake angle of dynamometer tool
8. $\alpha_{i}=$ rake angle of interfering tool
9. $w=$ width of interfering tool
10. $V=$ velocity of soil
11. $Y_{d}=$ tilt angle of dynamometer tool (this angle could be associated with rotation of the tool about the y -axis)
12. $\gamma_{i}=$ tilt angle of interfering tool (this angle is defined in the same manner as γ_{d})
13. $W=$ width of dynamometer tool
14. $D=$ depth of dynamometer tool
15. $S_{i}=$ initial soil condition
16. $S_{f}=$ final soil condition
17. $w_{i}=$ wrench on interfering tool

The quantities ω, x, y, and d were selected as a minimum set which could be used to study three-dimensional interference. That is, it might be considered that x would be associated with transverse interference, y would be associated with longitudinal interference, and d would be associated with vertical interference. The dependent quantity ω was selected to assess the effects of interference. In this minimum set, ω could have been replaced by ω_{i} or S_{f}, and d could have been replaced by D. The reasons for not including ω_{i}, S_{f}, or D are discussed later in this section.

Two criteria were used to help decide which additional pertinent quantities would be included in the experimental program. First, it was desired to incorporate additional quantities in the experimental program if they would help characterize interference. Second, it was desired to incorporate additional quantities in the experimental
program if they allowed this simplified tillage system to be more readily related to conventional tillage systems.

Considering Figure 1, it could be visualized that the side angles β_{d} and β_{i} would affect interference, since the varying of the side angles of the tools would influence the flow of soil past the tools. That is, setting a tool at a side angle of other than 90° would result in more soil being directed to one side of the tool than the other. Consequently, if two tools were operated near one another, the side angles could be expected to influence the interference patterns. Furthermore, tillage tools such as the moldboard plow sweep soil sideways and their configurations could, therefore, be associated with side angle. It should be emphasized that the principal reason for including β_{d} in the experimental program was so that its effects on interference could be examined. Other researchers have already studied the main effects of β_{d} on tillage tool forces.

Considering Payne and Tanner's work (13), it could be expected that rake angle would affect interference. If a tool were operated at two different rake angles α, one less than 90° and one greater than 90°, the tool's action and the behavior of the soil in its vicinity would be somewhat different for the two cases. For rake angles less than 90°, the tool would be lifting the soil and allowing it to flow freely around the sides of the tool. While with rake angles greater than 90°, the tool would be applying more of a downward component to the soil, causing the soil to force its way past the tool much less freely. Considering two tools operated near one another, it would be expected that interference patterns would be somewhat different for the two values of rake angle, since soil flow would be more impeded in the
one case. Furthermore, rake angle could be associated with tillage system components such as the chisel. It was decided that the same value of rake angle would be used for both the dynamometer tool and the interfering tool, because this situation would be more frequently found in conventional tillage systems. In addition, operating the tools at separate values of rake angle would complicate the specification of y in an appropriate manner. As with β_{d}, it should be emphasized that the principal interest in α was its effects on interference. The main effects of α_{d} on tillage tool forces have already been studied by other researchers.

At first, it might appear inappropriate to include w as a variable, since Payne (12) found that the distance to which the crescentshaped volume of soil extended beyond the side of a tool was relatively insensitive to tool width. However, in an interference situation, tool width should be considered, since interference occurring at one side of a tool would force more soil to flow around the other side of the tool, and the ease of forcing soil to the opposite side of the tool would be related to the tool width.

In preliminary tests it was observed that soil velocity V influm enced the pattern of soil flow around on individual tool. At a velocity of 3 feet per second, the soil was swept out to the sides of the tool, and a deep open void, extending almost to the bottom of the tool, formed behind the tool. At 1 foot per second, the soil was not swept as far to the sides of the tool, and soil flowed in behind the tool leaving very little void behind the tool. Considering the se observed flow pattern differences caused by soil velocity, it was hypothesized that soil velocity would affect interference patterns,
and therefore, soil velocity was included as a variable in the experimental program. As with β_{d} and α, it should be emphasized that the principal interest in V was its effects on interference. The main effects of V on tillage tool forces have already been studied by other researchers.

Tilt angle of the dynamometer tool γ_{d} was not included as a variable. Considering the infinite plane containing the front surface of the dynamometer tool, α_{d} and β_{d} would be sufficient to specify any orientation of this plane, and therefore, Y_{d} would be somewhat redundant. Since the tool surface was not an infinite plane, γ_{d} could have been included as a variable. However, it was omitted in order to limit the size of the experiment and maintain an efficient experiment. By the same reasoning, tilt angle of the interfering tool Y_{i} was not included as a variable.

The width of the dynamometer tool W was not included as a variable. So long as both tillage tools had the proportions of narrow tillage tools, the varying of the width of one of the tools was sufficient. It might be considered that the effects of the ratio w/w were being examined, and it would, therefore, be unnecessary to vary both tool widths. By the same reasoning, the depth of the dynamometer tool D was not included as a variable. In addition, it was more appropriate to vary w and d, since varying of W and D would have main effects on the dependent wrench which would not be related to interference. However, the main effects of varying w and d would be related to interference. The main effects of W and D on tillage tool forces have already been studied by other researchers.

Gonsideration was then given to the initial soil condition S_{i} and
and final soil condition S_{f}. Initially, it had been hoped that the crossesectional area of soil disturbed by the tillage tools could be identified; however, this was not accomplished. It had been planned that the soil would be compacted before reaching the test area. Then, after the tools had passed through the soil, a cross-sectional area of reduced density soil could be located and identified as the crosssectional area of soil disturbed by the tools. In preliminary work, considerable attention was directed towards compacting the soil in a feasible manner, but with little success. Some compaction of the soil was achieved, but not a sufficient amount to make possible the separation of the disturbed and undisturbed portions of the soil. In view of the results from the preliminary compaction studies, it was decided that an uncompacted soil would be used in the experimental program, and that no attempt would be made to quantitatively identify the crossosectional area of soil which was disturbed by the tools. Therefore, S_{i} and S_{F} were not included as variables in the experimental program.

The wrench on the interfering tool, $\omega_{i,}$ was not included as a dependent variable in the experimental program. It would have been somewhat redundant to include ω_{i} since ω yielded some information about forces on the interfering tool. It might be considered that the roles of the tools would be switched as the interfering tool moved from a negative y value to a positive y value, and therefore, some information would be obtained about forces on the interfering tool. As discussed with reference to widths and depths of tools, it would be more appropriate to measure the dependent wrench on one tool and vary the width and depth of the other tool, rather than having all
three variables associated with the same tool. Therefore, w rather than u_{i} was selected as the dependent variable.

When the system configuration and variables had been selected, it was necessary to organize the variables in an experimental program. A similitude analysis was considered as a possible aid in organization of the experiment. Considering the force component F of the dependent wrench, the following pi terms were developed for this system. Only the dependent pi term and the independent pi terms which would be varied, are presented.

$$
\begin{aligned}
& \pi_{1}=\frac{F}{\rho_{N} e^{2} V_{D D}}, \pi_{2}=\frac{N_{e} v^{2}}{G D}, \pi_{3}=\frac{W}{W}, \pi_{4}=\alpha \\
& \pi_{5}=\beta_{d}, \pi_{6}=\beta_{i} ; \pi_{7}=\frac{x}{W}, \pi_{8}=\frac{y}{W}, \pi_{9}=\frac{d}{D}
\end{aligned}
$$

where: $\rho=$ pre-test density of soil, $1 b_{m /}$ in 3

$$
\begin{aligned}
N_{e} & =\text { Newton"s Second Law Coefficient, } \frac{1 b_{f} \times \sec ^{2}}{l b_{m} \times i n} \\
G & =\text { gravitational constant, }{ }^{l b_{f}} /_{1 b_{m}}
\end{aligned}
$$

Other quantities are as defined previously

There are two principal reasons that similitude analyses are used. First, grouping the pertinent quantities of ten reduces the number of terms which need to be varied in the experimental program. Second using pi terms in the experimental organization may allow the experimental results to be more readily applied to systems other than the specific system which was studied。

Considering the experimental system which has been selected for study, it appeared that little would be gained by using the similitude approach, and perhaps, the analysis would even be complicated. In this system, the same number of terms would need to be dealt with, whether pi terms or the individual quantities were used. With respect to the second purpose of similitude analysis, in this investigation it was not intended that the results would have direct application to other systems, but rather, it was intended that interference relationships associated with this system would give some indications of the ways in which interference could be utilized to improve tillage systems. Therefore, the similitude approach was not used in organization of the experimental program. Instead, a complete factorial arrangement of the independent variables was used. This experimental arrangement allowed the examination of interactions, as well as, main effects.

Selection of System Operating Values

Preliminary tests were conducted to help decide on the size and proportions of tools that would be studied. The tools would need to have depth/width ratios of 1 or greater. The tools would also need to be of large enough size such that variation of the independent factors would produce measurable changes in the interference patterns, but the tools would need to be small enough so that tests could be conducted in the available soil bin test section which was 24 inches wide and had a soil depth of approximately 12 inches. For these tests, the system was operated under the following conditions: $V=2$ fps, $\alpha=90^{\circ}, \beta_{d}=90^{\circ}$, and $\beta_{i}=90^{\circ}$. The values of x and y were varied during the tests. A dynamometer tool 3 inches wide and operated 5
inches deep was found to be satisfactory. The size and proportions of the interfering tool are discussed later in this section.

With respect to the independent variables $V, w, \alpha, \beta_{d}, \beta_{i}$ and d, it was decided that each of these would have values above and below a central value, such that the values above and below would be in the same operating regime (same type of behavioral system) as the central value, but at the same time, it was planned that changing from the lower to the upper values would produce measurable changes in the interference patterns. The selection of the operating values for these variables was made with the aid of preliminary tests, but a certain amount of judgement was still required in selecting the values due to the many possible interactions between variables. In these preliminary tests, each of these factors was varied one at a time, and the effects of this variation on the amount of soil disturbed and the pattern of soil flow around an individual tool was observed. Operating values were selected such that for each factor there was an observable difference in the amount of soil disturbed and/or the soil flow patterns for the two operating values. It was then hypothesized that these operating values would be sufficiently different to cause measurable differences in the interference patterns. At the same time, for each of these factors it was observed that the soil behavior near the tool was not basically altered, and a soil body formed on the tillage tool for both operating values of each factor.

As discussed earlier in this chapter, values of $V=1 \mathrm{fps}$ and $\mathrm{V}=3 \mathrm{fps}$ were found to be sufficiently different so as to cause differences in the soil flow pattern around an individual tool. Therefore, these values of soil velocity were selected as operating
values. The selection of these operating values was somewhat arbitrary; however, they met the needs of the experiment, and these velocities seemed reasonable, considering the operating velocities of conventional tillage tools.

The central value of w was selected as 3 inches so that the effects of having an interfering tool either narrower or wider than the dynamometer tool could be evaluated. Values of $w=2$ inches and $w=4$ inches were found to be sufficiently different to have a considerable affect on the amount of soil disturbed by the tool, and therefore, these were selected as operating values for w. Likewise with d, the central value of 5 inches was selected so that the effects of having an interfering tool operating either shallower or deeper than the dynamometer tool could be evaluated. Values of $d=4$ inches and $d=6$ inches were found to be sufficiently different to affect the amount of soil disturbed by the tool_{2} and therefore, these were selected as operating values for d. With respect to the size and proportions of the interfering tool, it was found that the dynamometer tool and the interfering tool could be satisfactorily operated together in the available soil bin test section with the operating values selected. The central values of α, β_{d}, and β_{i} were established at 90° so that the tools would be perpendicular to the direction of travel in their central positions. With an individual tool, it was found that values of 75° and 105° for α and β were sufficiently different to affect the pattern of soil flow around the tool. With β at 75° or 105°, it was observed that a larger amount of soil was flowing around one side of the tool. Changing α from 75° to 105° produced an obserm vable change in the dimensions of the crescent-shaped volume of soil
in front of the tool. Therefore, operating values of 75° and 105° were selected for α, β_{d}, and β_{i}.

For these preliminary tests in which operating values were being selected for $V, w, \alpha, \beta_{d} \beta_{i}$ and d, the factors other than the one being studied, were held constant at their central values. The central values were $V=2 \mathrm{fps}, \mathrm{w}=3^{\prime \prime}, \alpha=90^{\circ}, \beta=90^{\circ}$, and $\mathrm{d}=5^{\prime \prime}$. Consideration was then given to selection of operating values for x and y. If an interfering tool of approximately the same size as the dynamometer tool were operated in the vicinity of the dynamometer tool, the interference zones would be somewhat as indicated in Figure 4. Consider an interfering tool operating at a positive y of small value and a given value of \mathbf{x} such that its presence would affect the forces on the dynamometer tool. If the value of y was gradually increased, a point would eventually be reached such that changes in y no longer caused changes in the forces on the dynamometer tool. At this point, the interfering tool would be moving from Zone I to Zone II. If a position of the interfering tool was such that its presence did not affect the forces on the dynamometer tool ${ }_{2}$ then the interfering tool would be in Zone III.

The maximum value of $x=5.5^{\prime \prime}$ was selected such that with $V=1$ fps, $w=2^{\prime \prime}, \alpha=75^{\circ}, \beta_{d}=105^{\circ}, \beta_{i}=75^{\circ}$ and $d=4^{\prime \prime}$, there would still be a measurable change in the forces on the dynamometer tool as the y position of the interfering tool was varied from -9" through $+1^{\prime \prime}$. The minimum value of $x=2.5^{\prime \prime}$ was selected so as to be representative of the region between $x=0$ and $x=5.5^{\prime \prime}$ 。 The minimum value of $\mathrm{y}=-15^{\prime \prime}$ was selected so that no interference would occur with conditions set to provide maximum interference

Figure 4. Interference Zones for the Tillage
Tools
with $V=3 \mathrm{fps}, \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}, \beta_{i}=105^{\circ}, x=2.5^{\prime \prime}$ and $\mathrm{d}=6^{\prime \prime}$. The value of $\mathrm{y}=-15^{\prime \prime}$ represented a reference condition in which the interfering tool was not affecting the forces on the dynamometer tool. For this reference condition, the dynamometer tool was operated by itself, without the interfering tool being in the soil. The maximum value of $y=+15^{\prime \prime}$ was selected so that with maximum inter= ference conditions or with minimum interference conditions ($V=1 \mathrm{fps}$, $w=2^{\prime \prime}, \alpha=75^{\circ}, \beta_{d}=105^{\circ}, \beta_{i}=75^{\circ}, x=5.5^{\prime \prime}$ and $d=4^{\prime \prime}$), this value of y would be near the line separating the zones of boundary condition and simultaneous interference. The value of $y=-4^{\prime \prime}$ was selected to provide a large amount of simultaneous interference with the interfering tool behind the dynamometer tool. The value of $y=+4^{\prime \prime}$ was selected to provide a large amount of simultaneous interference with the interfering tool in front of the dynamometer tool. The value of $y=+8^{\prime \prime}$ was selected to be representative of the region between $y=+4^{\prime \prime}$ and $y=+15^{\prime \prime}$.

The values of x and y selected, were representative of the left halves of the zones of interference. The right halves of the zones of interference were accounted for by symmetry.

Specific Objectives of the Investigation

For the system selected, the following were the specific objectives of the investigation:

1. For each dependent quantity $\left(F_{x}, F_{y}, F_{z}, F, C_{x}, C_{y}, C_{z}, C\right.$, $T X$, and $T Z$), determine the percent of the total variation of the dependent quantity that can be attributed to each source of variation ($V, W, \alpha_{p} \beta_{d^{2}} \beta_{i}, x, y, d$ and their interactions)
2. For each dependent quantity, develop a prediction equation which relates the dependent quantity and the independent quantities. Each prediction equation should be fairly simple, yet account for a reasonably large percent of the total variation of the dependent quantity.
3. Display characterization of interference by use of graphic representations.

CHAPTER IV

EQUIPMENT AND PROCEDURES

In this chapter, the following topics are discussed: the soil bin, the tillage tools, the procedure for conducting the factorial program, the procedure for conducting each series, and the recording of data.

The Soil Bin

A soil bin was designed and built for use with this study, as well as, other subsequent studies. Figure 5 is a schematic diagram of this soil bin. Figures 6 thru 13 are photographs of various portions of the soil bin system. In operation, soil flows from the dynamic storage hopper, is carried along the test belt under the leveling blade and the compaction drum, past the density detector and into the test area. After passing the test area, the soil falls from the test belt onto the return belt. The return belt carries the soil over to the lift pulley which deposits the soil back into the dynamic storage hopper. The soil bin can be operated continuously for extended periods of time, thus allowing independent factors to be varied while observing their effects on the dependent factors. The test belt can be operated at speeds ranging between 0 and 8 feet per second. Six load cells are used in conjunction with a tillage dynamometer. The signals from these load cells are recorded on 6 channels

Figure 5. Schematic Diagram of Soil Bin

Figure 6. Soil Bin as Viewed From the South

Figure 7. Unit for Supplying Hydraulic Oil Under Pressure to the Hydraulic Motor Which is Shown in Figure 8。

Figure 8. East End of the Soil Bin as Viewed From the North

Figure 9. Density Meter and 8-Channel Recorder

Figure 10. Central Section of the Soil Bin as Viewed From the Northwest

Figure 11. Central Section of the Soil Bin as Viewed From the North

Figure 12. Static Storage Hopper for Storing the Soil When the Soil Bin is Not in Use

Figure 13. West End of the Soil Bin as Viewed From the North
of an 8 channel recorder. The recorder is shown in Figure 9. The two remaining channels of the recorder are used for recording soil velocity and soil density.

The test belt speed was measured by a tachometer system. A tachometer generator shaft was fitted with a disk which was allowed to roll on the test belt at a location where the test belt extended out beneath the side of the bin. The tachometer generator produced a DC voltage which was directly proportional to speed of the generator shaft. The generator produced a voltage of 7 volts per 1000 rpm of the generator shaft. Knowing the voltage per 1000 rpm and the diameter of the generator disk, the belt speed could be related to the voltage produced by the generator. The tachometer system was checked by painting dots along the test belt spaced 1 foot apart. The test belt was then operated without soil, and its linear speed was measured using a stroboscope. The belt speed as indicated by the voltage output of the generator could thus be checked against the belt speed as indicated by the stroboscope. After completing this check, a tachometer voltmeter and channel 7 of the recorder were set to read directly in feet per second. The technical specifications of the tachometer system and the recorder are given in Appendix A.

The soil density in the test section was measured with a gama radiation instrument. With this device, the radioactive source was positioned on one side of the test bin, and the detector unit was positioned on the opposite side of the test bin. When the density device was operating, the gamna rays traveled from the source, through the soil, to the detector. The soil absorbed part of the radiation, and the portion of the radiation which reached the detector was an
index of the soil density. An electrical signal traveled from the detector, was conditioned and was then available as a direct measure of soil density, once the density measurement system had been calibrated. The conditioned signal was available both on a meter, as well as on channel 8 of the recorder. Before using the density measurement. system, it had to be calibrated in order to produce a signal directly related to soil density. The calibration was accomplished using the setup shown in Figure 14. The soil box could be filled with soil compacted to a particular density and the required readings taken on the density meter. The soil box could then be weighed to determine the density of the soil which it contained. The soil box was 2 feet long, the same as the width of the soil bin, and its ends were $1 / 4$-inch thick steel plate, the same thickness as the sides of the bin in the test section. The readings taken from the density meter could thus be related to the density of the soil as determined by weighing. The technical specifications of the density measurement system are given in Appendix A.

As discussed previously, it had originally been planned that the soil on the test belt wolld be compacted befoxe reaching the test section. The compaction roller intended for this purpose is shown in Figure 11. However, the principal use made of the roller in connection with this experimental program was to form a grid on the soil surface for use in taking pictures of tillage tests. The roller is shown in Figure 15 as it was used for forming the grid on the soil surface. For this application, the rollex was independently driven by a variable speed device. Except when pictures were being taken, the only soil fitting was done by the leveler blade which was mounted approximately

Inside Dimensions Of Soil Box $1^{8} \times 1^{1} \times 2^{d}$
Figure 14. Set-Up for Calibration of Density Measurement System

Figure 15. Compaction Drum Set $=\mathrm{Up}$ to Place Grid on Soil Surface for Use in Taking Pictures of Tillage Tests

2 feet from the hopper door.
The dynamometer utilized strain gage load cells in connection with the recorder. The dynamometer is shown in Figure 10. The recorder output was linear with force applied to the load cells. The calibration and linearity of the load cells were checked by loading the cells individually on a platform scale, while recording the electrical output signal on the recorder. After checking the load cells individually, they were mounted in the dynamometer and were loaded once again using test weights attached to the dynamometer. The cells were loaded together in the dynamometer to verify that the values as indicated by the test weights would be registered on the recorder. The technical specifications of the load cells are given in Appendix A. A Univise was used in connection with mounting the tillage tool on the dynamometer. The Univise allowed the tillage tool to be set at the required α and β_{d} angles. The dynamometer was mounted so that it could be moved up or down and from side to side.

An artificial soil mixture composed of 28.6% Ottawa flint shot white sand, 63.5% milled fire clay, and 7.9% Continental \#11 spindle oil was used in these experiments. The percentages as given here are percent by weight. The artificial soil was mixed in 400 pound batches in a cement mixer. A total of 4 tons of artificial soil was mixed. The soil shear strength was determined with a direct shear device. One soil sample was taken before the start of the factorial prograna and another soil sample was taken after the completion of the factorial program. In the initial sample, cohesion was 0.008 psi ; the adhesion was 0.000 psi ; the angle of soil-soil shear was 35.9°; and the angle of soil-metal shear was 21.5°. In the final sample; cohesion was
0.000 psi; the adhesion was 0.000 psi ; the angle of soil-soil shear was 35.8°; and the angle of soil-metal shear was 22.6°.

When the soil bin was not being used, the soil was stored in the static storage hopper shown in Figure 12. When it was desired to transfer soil from the soil bin to the static storage hopper, the static storage hopper was moved along tracks until the augers extended into the soil bin. A baffle was then positioned near the top auger; the auger was turned on, and as the soil was thrown from the 5 -foot diameter lift pulley, it was directed into the auger trough. The top auger then conveyed the soil to the static storage hopper. When it was desired to transfer soil from the static storage hopper to the soil bin, the bottom auger was started, and soil was deposited onto the return belt.

The return belt was powered at constant speed by a 50 horsepower electric motor. The return belt drive can be seen at the extreme left side of Figure 6. The test belt was driven by a fixed displacement hydraulic motor which can be seen in Figure 8. Hydraulic oil under pressure was supplied to the hydraulic motor by a variable displacement hydraulic pump which was connected to a 60 horsepower electric motor. The electric motor, hydraulic pump, and hydraulic reservoir are shown in Figure 7. The variable displacement feature of the hydraulic pump allowed the test belt to be operated at any speed between 0 and 8 ft/sec.

A device was constructed which allowed the interfering tool to be positioned at various depths and longitudinal locations in the soil bin. This two-dimensional movement allowed the values of y and d to be ob= tained. The required values of x were obtained by moving the
dynamometer sideways. As with the dynamometer tool, a Univise was used in connection with the mounting of the interfering tool so that the required α and β_{i} angles could be set. The device for positioning the interfering tool is shown in Figure 10.

When the soil bin was first placed in operation, difficulty was encountered in operating the test belt with a depth of soil greater than 10 inches, especially if the soil was being compacted with the roller. The problem arose due to high friction between the test belt and the steel slider plate upon which it operated. An air system was devised to meter pressurized air between the belt and the slider plate. The air was supplied through 17, 1/4-inch diameter holes running longitudinally along the center of the slider plate. Thirty cubic feet per minute of air at one pound per square inch of pressure reduced the friction approximately 50 percent.

Preliminary tests were conducted to determine the size of tools that could be operated in the soil bin such that the bin sides and bottom (the belt) would not cause interference with the tools. It was found that a tool 3 inches wide and 5 inches deep could be operated within 4 inches from the bottom of the bin without measurable bottom interference occurring. Interference from the bin sides is discussed in Chapter V.

The Tillage Tools

The tillage tools were manufactured from 3/4minch thick cold finished steel. The tools were milled to the dimensions shown in Figure 16. The front surfaces of the tools were given their final finishes with \#80 sandpaper on an orbital sander. The orbital sander

Figure 16. Tillage Tool Specifications
provided a finish with a somewhat random orientation. One 2-inch wide tool and one 4 -inch wide tool were made. Three 3 -inch wide tools were made. The reason for having three 3 -inch wide tools was to lessen the effects of any tillage tool wear that might occur during the tests. Since the 3 -inch wide tools were used as the dynamometer tool, any wear on them would affect results in a more pronounced manner than would wear on the interfering tool. However, after completion of the tests, no wear was detected on any of the tools. In order to provide structural strength and prevent significant deflection under load, $3 / 4$-inch thick tools were used, The 45° relief on the sides and bottom of the tillage tools was designed to lessen the effects of the tools not being of zero thickness.

Procedure for Conducting Factorial Program

The following procedure was used in connection with the overall factorial experimental program.

1. Conduct 32 series: $(2 v)(2 w)(2 \alpha)\left(2 \beta_{d}\right)\left(2 \beta_{i}\right)=32$. Randomly select order of conducting series. That is, randomly determine which series will be conducted first, second, third, etc.
2. From the pool of three tools, randomly select the dynamometer tool required for a particular series.
3. Conduct 20 tests per series: $(2 x)(5 y)(2 d)=20$. For each series, conduct tests in a random order which has been assigned to that series only.
4. Take two observations for each test.
5. Take a soil sample before starting the factorial program.
6. Before starting program, mount each tool as dymamometer tool
and measure forces.
7. Before starting program, set instrument zero and standardization potentiometers on density meter.
8. Record standardization reading on density meter whenever test bin is empty.
9. After completing factorial program, mount each tool as dynamometer tool and measure forces.
10. Take a soil sample after completing all tests.

Procedure for Conducting Each Series

The following procedure was used in connection with each series.

1. Record instrument zero reading on density meter.
2. Install tools in required orientations.
3. Zero recorder.
4. Bring soil up to required speed. Zero soil depth with respect to interfering tool. Check soil depth in dynamic storage hopper. Position soil depth gage.
5. Zero dynamometer tool and its depth scale.
6. Put dymamometer tool into soil, and do not change depth of dynamometer"tool for entire series.
7. Record at $1 \mathrm{~cm} / \mathrm{sec}$ without interfering tool in soil.
8. For each test, position interfering tool, visually check soil depth, then check-off test and record at $1 \mathrm{~cm} / \mathrm{sec}$. Note; For a test in which $y=-15^{\prime \prime}$ is required, record without interfering tool in soil, since $y=-15^{\prime \prime}$ represents a reference condition in which the interfering tool would be so
far behind the dynamometer tool, that it would not influence the forces on the dynamometer tool.
9. For second observation, look at data sheet to see what position of interfering tool is required, see that tool is correctly positioned, observe that the soil depth has not changed, put a second check on data sheet, and then record at $1 \mathrm{~cm} / \mathrm{sec}$.
10. After completing all tests in the series, record at $1 \mathrm{~cm} / \mathrm{sec}$ without interfering tool in the soil.
11. Position tools at their zero depths, and check for change in soil depth.
12. Check recorder zero.
13. Record instrument zero reading on density meter.

Recording of Data

A recorder chart sample is shown in Figure 17, and a sample data sheet is shown in Figure 18. The values read from the recorder chart were written on the data sheet in the row identified by the arrow (Test 0602). The recorder chart was 8 channels wide (the chart was cut in two for convenience in mounting), and the channels were identified by numbers printed on the chart. In operation of the recorder, the chart moved downard, and the styluses moved only from side to side. The load cell forces were recorded on channels 1 thru 6. The soil velocity was recorded on channel 7, and the soil density was recorded on channel 8. The locations of the load cell forces on the dynamometer T are given in Figure 2. On the chart and on the data sheet, forces had a positive sign when the load cells were in tension and had a negative sign when the load cells were in compression. The data was

Figure 17. Sample of Recorder Chart

an investigation of interference between two flat plate tillage tools

Instrument Zero Reading on Density Meter: Initial - 0.05 , Final 0.00
Figure 18. Sample Data Sheet
also punched on the data cards with this sign convention, but after being read into the computer, the signs were changed to agree with Figure 2 before calculations were made. A computer printout of the original data from the factorial program is contained in Appendix B. Load cell \#1 (F_{1}) had a rated capacity of ± 50 pounds, and the recorder was set to indicate ± 20 pounds full scale on the chart. Load cells \#2, 3, 4, 5, and 6 had rated capacities of ± 100 pounds, ± 200 pounds, ± 200 pounds, ± 100 pounds and ± 50 pounds, respectively. The recorder channels associated with these load cells were set to indicate ± 50 pounds full scale. The soil velocity channel was set to indicate 0 to 10 feet per second. The soil density channel was set to record densities in the range 75 to 85 pounds per cubic foot. The principal reason for recording soil velocity and soil density was to verify that the values of these quantities did not change appreciably from their intended values. On the recorder chart, the circles indicate observation \#1, and the squares indicate observation \#2. Only one observation of soil velocity and soil density was made for each test. When a test was being conducted, the recorder chart was put into operation such that traces at least 1 inch long were obtained. In reading values from the chart, the last major division (5 millimeters) line crossed by any trace was noted. The observation was then taken two major divisions back from this line. The values of the independent quantities and other information pertinent to a series were available on the data sheet. Referring to the data sheet, the zero set traces were recorded on the chart before the dynamometer tool was put into the soil. The zero check traces were recorded on the chart after the dynamometer tool had been removed from the soil. For each of the load cell forces in
the body of the series, an average of the zero set and zero check values was applied as a correction. The initial standard and final standard values were recorded with the dynamometer tool in the soil by itself, without the interfering tool being in the soil. These standard values were intended to help detect unplanned changes which might occur in the system.

CHAPTER V

PRESENTATION AND DISCUSSION OF RESULTS

Presentation of Results

The raw data from the experimental program were the values of the independent variables as listed on the data sheets and the recorder chart traces of the six load cell forces. The values of the load cell forces were read from the charts, recorded on the data sheets, and then punched on data cards along with values of the independent variables. The dependent quantities ($F_{x}, F_{y}, F_{z}, F, C_{x}, C_{y}, C_{z}, C, T X$, and $T Z$) were then calculated from the load cell forces. Some of these dependent quantities could be considered as redundant. However, they were all considered so that the relationships between the independent vaxiables and each of these dependent variables could be studied. The data in terms of the independent and dependent quantities was analyzed by partitioning sum of squares, conducting F tests on mean squares, developing prediction equations using stepwise multiple regression, and by plotting graphs involving selected interference conditions. In addition, photographs were taken of the tillage tools operating in several different interference conditions. These pictures were intended as data, in that they help to characterize interference relationships.

The means and standard deviations of the dependent factors are given in Table I_{0}

The sum of squares partitionings and F tests are presented in Tables II thru XI. A sumary of sum of squares partitionings is given in Table XII.

The prediction equations are shown in Tables XIII and XIV.
Graphs involving selected interference conditions are presentied in Figures 19 thru 28.

Photogräphs of selected tillage tool tests are presented in Figures 29 thru 41.

Photographs of bin side interference tests are shown in Figure 42.

Photographs of soil bodies which formed on tillage tools are shown in Figures 43, 44, and 45.

TABLE I

MEANS AND STANDARD DEVIATIONS OF DEPENDENT FACTORS

Dependent Factor	Mean	Standard Deviation
F_{x}	- 0.123 lbs.	2.940 lbs 。
F_{y}	20.194 lbs .	6.077 lbs .
F_{2}	- 4.107 lbs .	3.995 lbs.
F	21.013 lbs .	6.644 lbs .
C_{x}	- 0.278 in-1b	1.916 inmib
c y	-11.519 in-1b	$6.777 \mathrm{in}-1 \mathrm{~b}$
C_{2}	1.896 in-1b	2.156 in-1b
C	-11.908 in-1b	6.984 in-1b
TX	0.323 in.	0.227 in.
TZ	2.742 in.	0.887 in.

TABLE II
ANALYSIS OF VARIANCE FOR F_{x}

Source of Variation	df	Sum of Squares			MS	F
		Numerical Value	\% of Total	Cum. \% of Total		
β	1	7576.7	68.23	68.23	7576.7	5121.8**
y	4	2615.2	23.55	91.78	653.8	9181.3**
wy	4	169.1	1.52	93.30	42.3	594.0**
dy	4	150.7	1.36	94.66	37.7	529.4**
$\beta_{d y}$	4	112.5	1.01	95.67	28.1	394.6**
α_{y}	4	110.3	0.99	96.66	27.6	387.6**
$\alpha \beta_{d}$	1	30.1	0.27	96.93	30.1	20.4**
Vy	4	24.1	0.22	97.15	6.0	84.3**
α	1	19.3	0.17	97.32	19.3	13.0*
vB_{d}	1	17.1	0.15	97.47	17.1	11.6*
$\beta_{d}{ }^{\text {x }}$	1	14.1	0.13	97.60	14.1	198.0**
$\beta_{d} \mathrm{xy}$	4	12.8	0.12	97.72	3.2	44.9**
wxy	4	11.6	0.10	97.82	2.9	40.7**
wdy	4	11.4	0.10	97.92	2.8	39.3**
V	1	10.2	0.09	98.01	10.2	6.9*
Error \#2	6	8.9	0.08	98.09	1.48	
Error \#4	1094	77.9	0.70	98.79	0.07	
$\begin{aligned} & \text { Sampling } \\ & \text { Error } \end{aligned}$	640	27.0	0.24		0.04	
Total	1279	11,104.8				

Notes: 1. Error \#2 is a pooled error term made up of the 4 and 5 factor interactions which do not contain x, y, or d. Error \#2 is used for significance testing of 1, 2, and 3 factor termis which do not contain x, y, or d.
2. Error \#4 is a pooled error term made up of 4, 5, 6, 7, and 8 factor interactions which do involve x, y, or d and also contains sampling error. Error \#4 is used for significance testing of 1,2 , and 3 factor terms which do involve x, y, or d.
3. Significance of F values at the 1% level indicated by 梀. $^{\text {. }}$ Significance at the 5% level indicated by . $_{\text {. Lack of }}$ significance at the 5% level indicated by N.S.

TABLE III

ANALYSIS OF VARIANCE FOR F F

Sum of Squares

Notes: Refer to Table II for notes.

TABLE IV
ANALYSIS OF VARIANGE FOR F_{z}

Source of Variation	Sum of Squares				
	Numerical Value	\% of Total	Cum. \% of Total	MS	F
$\alpha \quad 1$	16072.0	78.81	78.81	16072.0	2346.5**
$y \quad 4$	1917.1	9.40	88.21	479.3	1993.9**
$\alpha y \quad 4$	831.4	4.07	92.28	207.9	864.8**
dy 4	227.7	1.11	93.39	56.9	236.7\%*
$\beta_{\mathrm{dy}}{ }^{\text {d }}$	152.6	0.74	94.13	38.1	158.5**
wy 4	115.8	0.56	94.69	28.9	120.2**
xy 4	95.4	0.46	95.15	23.9	99.4**
$\alpha \mathrm{dy} \quad 4$	71.7	0.35	95.50	17.9	74.5\%*
d 1	59.9	0.29	95.79	59.9	249.2**
$\alpha \mathrm{xy}$. 4	49.1	0.24	96.03	12.3	51.2\%*
人d 1	43.4	0.21	96.24	43.4	180.5**
$\mathrm{x} \quad 1$	41.6	0.20	96.44	41.6	6.1*
woy 4	41.0	0.20	96.64	10.2	42.4**
$\alpha_{\mathrm{x}} \quad 1$	32.1	0.15	96.79	32.1	133.5**
V 1	23.3	0.11	96.90	23.3	$3.4 \mathrm{~N} . \mathrm{S}$.
Error \#2 6	41.2	0.20	97.10	6.8588	
Error \#4 1094	262.8^{-7}	1.28	98.38	0.24020	
$\begin{aligned} & \text { Sampling } \\ & \text { Error } 640 \end{aligned}$	45.7	0.22		0.071	
Total 1279	20,392.8				,

Notes: Refer to Table II for notes.

TABLE V
ANALYSIS OF VARIANCE FOR F

Source of Variation	Sum of Squares				MS	F
	df	Numerical Value	$\begin{aligned} & \text { \% of } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Cum. \% } \\ & \text { of Total } \end{aligned}$		
y	4	22446.8	39.74	39.74	5611.7	14253.7**
α	1	20272.3	35.89	75.63	20272.3	10136.6**
x	1	2208.3	3.90	79.53	2208.3	5609.1**
xy	4	1761.1	3.11	82.64	440.3	1118.4**
$\alpha \mathrm{y}$	4	1500.4	2.65	85.29	375.1	952.8**
dy	4	1454.9	2.57	87.86	363.7	923.8**
wy	4	1442.2	2.55	90.41	360.5	915.7**
v	1	1287.3	2.27	92.68	1287.3	64.4**
$\beta^{3} \mathrm{y}$	4	858.1	1.51	94.19	214.5	544.8**
d	1	353.7	0.62	94.81	353.7	898.4**
vy	4	249.1	0.44	95.25	62.3	158.2**
wx	1	245.5	0.43	95.68	245.5	623.6**
Vx	1	192.9	0.34	96.02	192.9	490.0**
$\alpha_{\text {d }}{ }^{\text {y }}$	4	150.9	0.26	96.28	37.7	95.8**
w	1	105.4	0.18	96.46	105.4	5.27N.S.
Error \#2	6	122.1	0.22	96.68	20.344	
Error \#4 1	1094	430.6	0.76	97.44	0.39360	
$\begin{aligned} & \text { Sampling } \\ & \text { Error } \end{aligned}$	640	78.0	0.13		0.12	
Total 1	1279	56,480.8				

Notes: Refer to Table II for notes.

TABLE VI
ANALYSIS OF VARIANGE FOR C_{x}

Notes: Refer to Table II for notes.

TABLE VII

ANALYSIS OF VARIANCE FOR c_{y}

Notes: Refer to Table II for notes.

TABLE VIII

ANALYSIS OF VARIANGE FOR C C_{2}

Notes: Refer to Table II for notes.

TABLE IX

ANALYSIS OF VARIANCE FOR C

Notes: Refer to Table II for notes.

TABLE X

ANALYSIS OF VARIANCE FOR TX

Source of Variation df		Sum of Squares			MS	F
		$\begin{aligned} & \text { Numerical } \\ & \text { Value } \end{aligned}$	$\begin{aligned} & \text { \% of } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Cum. \% } \\ & \text { of Total } \end{aligned}$		
y	4	9.752	13.23	13.23	2.438	99.8**
α	1	6.088	8.26	21.49	6.088	
w α	1	2.980	4.04	25.53	2.980	
$v \alpha \beta_{d} \beta_{1}$	1	2.075	2.82	28.35	2.075	
$w \beta_{\mathrm{d}} \beta_{i}$	1	1.928	2.61	30.96	1.928	
V	1	1.905	2.57	33.53	1.905	
$v \beta_{i}$	1	1.847	2.51	36.04	1,847	
$v \beta_{\text {d }}$	1	1.432	1.94	37.98	1.432	
w	1	1.367	1.85	39.83	1.367	
$\alpha \beta_{d} \beta_{i}$	1	1.305	1.77	41.60	1.305	
${ }^{\text {d }}$ y	4	1.161	1.57	43.17	0.290	11.9**
هy	4	1.138	1.54	44.71	0.284	11.6**
Vw ${ }^{\text {d }}$ d	1	1.057	1.42	46.13	1.057	
$\mathrm{Vw}{ }^{1}{ }_{i}$	1	0.978	1.33	47.46	0.978	
dy	4	0.868	1.22	48.68	0.217	8.9**
Error \#4	1094	26.727	36.28	84.96	0.02443	
$\begin{aligned} & \text { Sampling } \\ & \text { Error } \end{aligned}$	640	8.112	11.00		0.013	
Total	1279	73.667				

Notes: Refer to Table II for notes.

TABLE XI

ANALYSIS OF VARIANCE FOR TZ

Source of Variation	Sum of Squares					F
	df	Numerical Value	\% of Total	Cum. \% of Total	MS	
$V W \beta_{d} \beta_{i}$	1	112.81	9.87	9.87	112.81	
	1	77.26	6.76	16.63	77.26	
Vw β_{i}	1	54.70	4.78	21.41	54.70	
$\alpha \beta_{d}$	1	39.20	3.43	24.84	39.20	
$w^{\beta}{ }_{\mathrm{d}}{ }^{\beta}{ }_{i}$	1	28.94	2.53	27.37	28.94	
$w \alpha_{d} \beta_{i}$	1	28.71	2.51	29.88	28.71	
V α	1	22.48	1.96	31.84	22,48	
w	1	21.62	1.89	33.73	21.62	
Y	4	21.32	1.86	35.59	5.33	13.0**
$\beta_{\text {d }}$	1	21.11	1.84	37,43	21.11	
$\beta{ }^{8}{ }_{i}$	1	20.94	1.83	39.26	20.94	
W@p	1	17.81	1.55	40.81	17.81	
wP_{i}	1	16.94	1.48	42.29	16.94	
$\mathrm{Va}^{1} \mathrm{~d}^{1}$	1	16.51	1.44	43.73	16.51	
${ }_{w} \alpha_{i}{ }_{i} \mathrm{dy}$	4	15.42	1.34	45.07	3.85	
Error \#4	1094	449.30	39.33	84.40	0.41070	
$\begin{aligned} & \text { Sampling } \\ & \text { Error } \end{aligned}$	640	135.42	11.85		0.21	
Total	1279	1142.25				

Notes: Refer to Table II for notes.

TABLE XII
SUM OF SQUARES PARTITIONINGS

Source of Variation	F_{x}	F ${ }^{\text {y }}$	F_{2}	F	C_{x}	$C^{\text {y }}$	$\mathrm{C}_{\mathbf{z}}$	C	TX	T2	Average
α	0.17	30.76	78.81	35.89		2.05	43.02		8.26		19.90
Y	23.55	43.38	9.40	39.74	16.86	11.37	10.98	11.87	13.23	1.86	18.22
$\beta_{\text {d }}$	68.23				49.89	8.10	1.25	8.06	1.84		13.74
V	0.09	2.67	0.11	2.27	1.09			1.40	2.57	6.76	1.70
$\alpha \mathrm{y}$	0.99	2.28	4.07	2.65	0.55		3.40		1.54		1.55
$v \beta_{i}$						4.50	0.92	4.47	2.51	\because	1.24
\mathbf{x}		4.66	0.20	3.90		1.81		1.74			1.23
$v 8_{\text {d }}$	0.15					3.72	1.93	3.84	1.94		1.16
${ }_{\sim}$		0.27		0.18	0.47	3.11		3.10	1.85	1.89	1.09
d^{y}	1.36	2.68	1.11	2.55	1.12		0.69		1.22		1.07
$V \mathrm{w} \beta_{\mathrm{d}} \mathrm{E}_{\mathrm{i}}$										9.87	0.99
w ${ }^{\text {a }}$						3.02		2.87	4.04		0.99
xy		3.60	0.46	3.11		\therefore	0.58		1.57		0.93
$w \alpha \beta_{d} \beta_{i}$						2.01		2.02	2.61	2.51	0.92
wy	1.52	2.71	0.56	2.55	1.64						0.90
${ }_{W}^{W}{ }_{\text {d }}$					0.79	2.97	1.43	3.04	- .		0.82
V op ${ }_{\text {d }}$					0.81	1.95	3.13	2.06			0.80
$\beta_{d}{ }^{\text {y }}$	1.01	1.00	0.74	1.51	2.77		0.65				0.77
$00^{0} \mathrm{~d}$	0.27				2.34		1.34			3.43	0.74
V α						2.30		2.24		1.96	0.65
$V \mathrm{VOP}_{\mathrm{d}}$,	3.23		3.17			0.64
Vw_{i}									1.33	4.78	0.61
$\alpha \beta^{\prime}{ }^{\beta}{ }_{i}$						2.15	0.73	2.15			0.50
$v \alpha \beta_{d} \beta_{i}$.						2.82	1.44	0.43
${ }_{\sim}^{W} \mathrm{OP}_{\text {d }}$							1.98			1.55	0.35
					0.92				1.77		0.27
${ }^{W} \mathrm{~B}_{\mathrm{d}} \mathrm{B}_{\mathrm{i}}$										2.53	0.25
$\mathrm{Bd}_{\mathrm{d}}^{\mathrm{i}} \mathrm{d}$										1.83	0.18
Vy	0.22	0.51		0.44							0.12
Vw α.					0.90						0.09
wx		0.51		0.43							0.09
$\alpha d y$		0.20	0.35	0.26							0.08
$\alpha x y$			0.24								0.02
$\boldsymbol{\alpha d}$			0.21								0.02
$\beta_{\text {d }}{ }^{\text {x }}$	0.13										0.01

Note: : Tabular values are percent of total variation.

TABLE XIII
DEVELOPMENT OF PREDICTION EQUATLONS

Dependent Quantity	First Term	Term \%*	Added F**	Second Term	Term Ad $\%$	ded	Third Te Teria	rm Add $\%$: ${ }^{\text {ed }}$	Fourth Term	Term A \%	Added F	Fifth T Term	Tem Add $\%$	ded	Sixth Te Term	min Add $\%$		6 FOT Constant Plus Ten Terms.
F_{X} F_{X}	${ }_{\beta_{1}}^{d_{1}}$	68.4	1378 1378	y wy	73.1 73.5	$\begin{aligned} & 865 \\ & 883 \end{aligned}$	yy^{3}	88.1 88.6	1573					\because	.		.		94.0
F_{y}	α	30.9	285	y	40.6	218	y^{3}	69.4	481				.						
F_{y}	$\boldsymbol{\alpha}$	30.9	285	wy	41.8	229	wy ${ }^{3}$	71.9	542.	v	79.0	596							83.9
F_{z}	α	79.1	2411	y	80.2	1289	y^{3}	86.6	1372										
F_{z}	α	79.1	2411	α_{y}	80.5	1312	$\alpha_{y}{ }^{3}$	88.2	1578		-			,					93.0
F	α	35.9	358	y	44.7	257	y^{3}	71.3	526							:			
F	α	35.9	358	wy	45.7	268	wy ${ }^{3}$	73.4	586	Vx	79.5	616							87.6
C_{x}	${ }^{8}$	52.3	698	y	55.8	401	y^{3}	66.6	422										
c_{x}	${ }^{\beta}{ }_{c_{1}}$	52.3	698	wy	56.4	411	wy ${ }^{3}$	68.4	460	${ }^{\circ \rho_{d_{1}}}$	70.9	386							77.7
$C^{\text {c }}$	y	3.1	20	y^{3}	11.6	42	©	14.0	34						\cdots				
c_{y}^{y}	${ }_{\alpha}^{\boldsymbol{\beta}}{ }_{d}$	9.9	70	wx	15.3	58	Vy	18.8	49	vy ${ }^{3}$	26.1	56	$\beta_{\mathrm{C}_{1}{ }^{1}{ }_{1}}$	27.6	. 48	$\hat{V}_{w} \mathrm{cf}_{\mathrm{d}}$	34.6	36	38.3
C_{z}	α	46.4	553	y	48.4	299	y^{3}	55.9	269										
C_{2}	$\boldsymbol{*}$	46.4	553	α^{\prime}	49.0	305	$\alpha_{y}{ }^{3}$	57.5	287	${ }^{\mathbf{0}} \mathbf{d}$	59.3	232	$\mathrm{VWof}^{\text {d }} \mathrm{d}_{1}$	64.0.	225				66.8
C	y	3.2	21	y^{3}	12.1	44	0	13.5	33										
C	${ }^{B} \mathrm{~d}_{1}$	9.3	65	$V_{w} \alpha_{d_{1}}$	16.6	63	wx	21.8	59	αy	25.5	54	αy^{3}	34.8	68	V	36.5	61	42.5
TX	α	9.3	65	y	11.0	39	y^{3}	19.3	51										
TX	α	9.3	65	V	12.2	44	W	14.2	35	$\mathrm{w}^{\boldsymbol{\alpha}}$	18.8	37	$\boldsymbol{\theta}$	20.9	33	$0 y^{3}$	29.8	45	38.0
TZ	V	7.7	53	Vw ${ }^{8}{ }^{\beta}$	12.7	46													
T2	Vw	8.8	62	$V_{w} \mathcal{B}_{d_{1}} \beta_{i}$	13.8	51	$V_{w} \alpha \delta_{d_{1}}$	22.5	62					-					26.8

Notes: 1. $\%^{*}$ indicates the percent of the total variation which is accounted for by the associated equation.
2. $\mathrm{F}^{* *}$ is the statistical F for the associated equation. These F values are significant at the 1% level for all equations.
3. $\beta_{d_{1}}=\beta_{d}-90^{\circ}$.

TABLE XIV

PRESENTATION OF PREDICTION EQJATIONS

```
\(\mathrm{F}_{\mathrm{x}}=3.328 \times 10^{-1}-1.619 \times 10^{-1} \beta_{\mathrm{c}_{1}}-3.923 \times 10^{-1} \mathrm{y}+1.677 \times 10^{-3} \mathrm{y}^{3}, \% *=88.1, \mathrm{~F} * *=1573\)
\(\mathrm{F}_{\mathrm{x}}=3.105 \times 10^{-1}-1.619 \times 10^{-1}{ }_{\mathrm{E}}^{\mathrm{C}} \mathrm{C}_{1}-1.262 \times 10^{-1} \mathrm{wy}+5.368 \times 10^{-4} \mathrm{wy}{ }^{3}, \%=88.6, \mathrm{~F}=1645\)
\(F_{y}=1.273+2.249 \times 10^{-1} \alpha-1.129 \mathrm{y}+4.797 \times 10^{-3} \mathrm{y}^{3}, \%=69.4, \mathrm{~F}=481\)
\(F_{y}=-1.248+2.249 \times 10^{-1} \alpha-3.702 \times 10^{-1} \mathrm{wy}+1.565 \times 10^{-3} \mathrm{wy}^{3}+3.102 \times 10^{-1} \mathrm{Vx}, \%=79.0, \mathrm{~F}=596\)
\(F_{z}=1.680 \times 10-2.366 \times 10^{-1} \alpha+3.343 \times 10^{-1} \mathrm{y}-1.490 \times 10^{-3} \mathrm{y}^{3}, \%=86.6, \mathrm{~F}=1372\)
\(F_{z}=1.719 \times 10-2.412 \times 10^{-1} \alpha+4.018 \times 10^{-3} \alpha y-1.786 \times 10^{-5} \alpha y^{3}, \%=88.2, F=1578\)
\(\mathrm{F}=-1.477+2.652 \times 10^{-1} \alpha-1.183 \mathrm{y}+5.041 \times 10^{-3} \mathrm{y}, \%=71.3, \mathrm{~F}=526\)
\(\mathrm{F}=-4.024+2.652 \times 10^{-1} \alpha-3.878 \times 10^{-1} \mathrm{wy}+1.644 \times 10^{-3} \mathrm{wy}^{3}+3.131 \times 10^{-1} \mathrm{Vx}, \%=79.5, \mathrm{~F}=616\)
\(C_{x}=5.311 \times 10^{-1}+9.227 \times 10^{-2} \beta_{d_{1}}+2.172 \times 10^{-1} \mathrm{y}-9.266 \times 10^{-4} \mathrm{y}^{3}, \%=66.6, \mathrm{~F}=422\)
\(C_{x}=-5.312 \times 10^{-1}+2.117 \times 10^{-1}{ }^{-1} d_{d_{1}}+7.359 \times 10^{-2} \mathrm{wy}-3.130 \times 10^{-4} \mathrm{wy}^{3}-1.327 \times 10^{-3}{ }_{\alpha \beta}{ }_{d_{1}}, \%=70.9, \mathrm{~F}=386\)
\(c_{y}=-1.857 \times 10+6.878 \times 10^{-1} y-2.904 \times 10^{-3} y^{3}+6.942 \times 10^{-2} \alpha \%=14.0, F=34\)
```



```
\(c_{z}=-6.681+9.789 \times 10^{-2} \alpha-2.004 \times 10^{-1} \mathrm{y}+8.673 \times 10^{-4} \mathrm{y}, \mathrm{m}=55.9, \mathrm{~F}=269\)
\(c_{z}=-6.912+1.684 \times 10^{-1} \alpha-2.365 \times 10^{-3}{ }_{\alpha y}+1.017 \times 10^{-5}{ }_{\alpha y}^{3}-7.53 \times 10^{-4}{ }_{\alpha \beta}{ }_{d}+9.2 \times 10^{-5} V_{w} \alpha \beta_{d_{1}}, \%=64.0, F=225\)
\(\mathrm{C}=-1.765 \times 10+7.249 \times 10^{-1} \mathrm{y}-3.065 \times 10^{-3} \mathrm{y}^{3}+5.437 \times 10^{-2} \alpha, \%=13.5, \mathrm{~F}=33\)
\(\mathrm{c}=-1.149 \times 10+3.333 \times 10^{-1} \beta_{\mathrm{d}_{1}}-3.61 \times 10^{-4} \mathrm{vw}_{\mathrm{w} \alpha \beta_{d_{1}}}-2.596 \times 10^{-1} \mathrm{wx}+8.182 \times 10^{-3}{ }_{\alpha y}-3.438 \times 10^{-5} \alpha{ }^{3}+8.908 \times 10^{-1} \mathrm{v}\),
\(\mathrm{TX}=7.620 \times 10^{-1}-4.600 \times 10^{-3} \alpha-2.185 \times 10^{-2} \mathrm{y}+9.643 \times 10^{-5} \mathrm{y}, \%=19.3, \mathrm{~F}=51\)
\(\mathrm{TX}=-1.366 \times 10^{-1}+5.178 \times 10^{-3} \alpha-3.848 \times 10^{-2} \mathrm{~V}+3.222 \times 10^{-1} \mathrm{w}-3.217 \times 10^{-3} \mathrm{w} \alpha-2.491 \times 10^{-4} \alpha \mathrm{y}+1.089 \times 10^{-6} \alpha \mathrm{y}^{3}\),
                                    \(\%=29.8, F=45\)
```


Notes: 1. \%* indicates the percent of the total variation which is accounted for by the associated equation.
2. $F *$ is the statistical F for the associated equation. These F values are significant at the 1% level for all equations.
3. $\beta_{d_{1}}=\beta_{d}-90^{\circ}$.

Figure 19. High and Low Interference Cases

Figure 21. Effects of x at High Interference

Figure 22. Effects of d at High Interference

Figure 23. High and Low Interference Cases

Figure 24. Effects of V at High Interference

Figure 25. Effects of w at High Interference

Figure 26. High and Low Interference Cases

Figure 27. Effects of β_{d} at High Interference

Figure 28. Effects of β_{i} at High Interference

Figure 29. Reference Condition Without Interference ($V=3 \mathrm{fps}, \alpha=105^{\circ}, \beta_{d}=75^{\circ}$)

DATA BLOCK			
	I	II	III $=11-\mathrm{I}$
Force Component	Reference $\left(y=-15^{\prime \prime}\right)$	$y=-4 \prime$	Change
F_{y}	28.3	42.8	14.5
F_{x}	3.0	9.5	6.5
$-\mathrm{F}_{\mathrm{z}}^{\mathrm{x}}$	8.8	15.8	7.8

Figure 30, Effects of $y=-4^{\prime \prime}$ at High Interference ($V=3 \mathrm{fps}, \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}$, $x=5.5^{\prime \prime}, d=6!$) 。 Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 29, Reference Condition Without Interference ($V=3 \mathrm{fps}_{9} \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}$)。

Figure 31。 Effects of $y=+4^{\prime \prime}$ at High Interference $\left(V=3 \mathrm{fps}, \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}, \beta_{i}=105^{\circ}\right.$, $x=5.5^{\prime \prime}, d=6!$). Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 29, Reference Condition Without Interference ($V=3 \mathrm{fps}_{,} \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}$)。

DATA BLOCK			
	I	II	III $=$ II－I
Force Component	Reference $\left(y=-15^{\prime \prime}\right)$	$y=+8^{\prime \prime}$	Change
F	28.3	19.5	－8．8
F_{x}	3.0	－0．7	－3．7
$-\mathrm{F}_{\mathrm{z}}$	8.8	4.5	－4．3

Figure 32．Effects of $y=+8^{\prime \prime}$ at High Interference $\left(V=3 \mathrm{fps}, w=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}\right.$ ， $x=5.5^{\prime \prime}, d=6!\prime$ ）。 This Setup is the Control Condition for High Interference。 Super imposed．Dashed Lines are Used to Represent the Flow Pattern From Figure 29，Reference Condition Without Interference（ $V=3 \mathrm{fps}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}$ ）。

Force Component	DATA BLOCK		III $=$ II－I
	I	II	
	Reference $\left(y=-15^{\prime \prime}\right)$	$y=+15^{\prime \prime}$	Change
F	28.3	24.0	－4．3
F_{x}	3.0	0.8	－2．2
$-\mathrm{F}_{z}$	8.8	7.8	－1．0

Figure 33。 Effects of $y=+15^{\prime \prime}$ at High Interference（ $V=3 \mathrm{fps}, \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}{ }_{2} \beta_{\mathrm{d}}=75^{\circ}, \beta_{i}=105^{\circ}$ ， $x=5.5^{\prime \prime}, d=6^{\prime \prime}$ ）。 Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 29，Reference Condition Without Interference（ $\mathrm{V}=3 \mathrm{fps}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}$ ）。

Figure 34。 Effects of $V=1$ fps at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32 , Control Condition for High Intexference $\left(V=3 \mathrm{Eps}_{2} \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}, \beta_{\mathrm{i}}=105^{\circ}, \mathrm{x}=5.5^{\prime \prime}, \mathrm{y}=+8^{\prime \prime}, \mathrm{d}=6^{\prime \prime}\right)$ 。

DATA BLOCK			
Force Component	$\begin{gathered} \text { I } \\ \text { Control } \\ \mathrm{w}=4^{\prime \prime} \end{gathered}$	II $\mathrm{w}=2^{\prime \prime}$	III $=$ II-I Change
F	19.5	21.5	+2.0
$\mathrm{F}_{\mathrm{x}}^{\mathrm{y}}$	- 0.7	0.7	+1.4
$-\mathrm{F}_{\mathrm{z}}$	4.5	6.0	+1.5

Figure 35. Effects of $w=2^{\prime \prime}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32, Control Condition for High Interference ($V=3 \mathrm{fps}$, $\mathbf{w}=4^{\prime \prime}$, $\left.\alpha=105^{\circ}, \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}, x=5.5^{\prime \prime}, y=+8^{\prime \prime}, \mathrm{d}=6^{\prime \prime}\right)$ 。

Figure 36. Effects of $\alpha=75^{\circ}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32 , Control Condition for High Interference ($V=3 \mathrm{fps}, \mathrm{w}=4^{\mathrm{n}}=$ $\left.\alpha=105^{\circ}, \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}, x=5.5^{\prime \prime}, y=+8^{\prime \prime}, d=6^{\prime \prime}\right)$ 。

DATA BLOCK			
Force Component	$\begin{gathered} I \\ \text { Control } \\ \beta_{\mathrm{d}}=75^{\circ} \end{gathered}$	$\stackrel{\text { II }}{\substack{=105 \\\left(\mathrm{adj}_{\bullet}\right)}}$	$I I=I I-I$ Change
F_{y}	19.5	22.0	+2.5
F_{x}	-0.7	0.6	+1.3
$\mathrm{-F}_{\mathrm{z}}$	4.5	5.8	+1.3

Figure 37. Effects of $\beta_{d}=105^{\circ}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattexn From Figure 32, Control Condition for High Interference $\left(\mathrm{V}=3 \mathrm{fps}_{2} \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}{ }_{\circ} \beta_{\mathrm{d}}=75^{\circ}{ }_{0} \beta_{i}=105^{\circ}{ }_{2} \mathrm{x}=5.5^{\prime \prime}, \mathrm{y}=+8^{\prime \prime}, \mathrm{d}=6^{\prime \prime}\right)$ 。

Force Component	DATA BLOCK		III $=$ II-I
	I	II	
	$\beta_{i}=105^{\circ}$	$\beta_{i}=75^{\circ}$	Change
F	19.5	17.5	-2.0
$\mathrm{F}_{\mathrm{x}}^{\mathrm{y}}$	-0.7	- 0.4	+0.3
- F_{z}	4.5	4.8	+0.3

Figure 38. Effects of $\beta_{i}=75^{\circ}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32, Control Condition for High Interference $\left(v=3 \mathrm{fps}_{2} w=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}, x=5.5^{\prime \prime}, \mathrm{y}=+8^{\prime \prime}, \mathrm{d}=6^{\prime \prime}\right)$ 。

Figure 39. Effects of $x=2.5^{11}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32, Control Condition for High Interference $\left(V=3 \mathrm{fps}_{0} \mathrm{w}=4^{\prime \prime}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}{ }_{\circ} \beta_{i}=105^{\circ}, x=5.5^{\prime \prime}, \mathrm{y}=+8^{\prime \prime}, \mathrm{d}=6^{\prime \prime}\right)$ 。

DATA BLOCK			
Force Component	Control $d=6^{\prime \prime}$	II $\mathrm{d}=4^{\prime \prime}$	III $=$ II-I Change
F	19.5	23.0	+3.5
$\mathrm{F}_{\mathrm{x}}^{\mathrm{y}}$	- 0.7	0.3	+1.0
$\mathrm{-F}_{\mathrm{z}}$.	4.5	7.0	+2.5

Figure 40。 Effects of $d=4^{\prime \prime}$ at High Interference. The Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 32, Control Condition for High Interference $\left(V=3 f_{p s}, w=4^{\prime \prime}, \alpha=105^{\circ}{ }_{2} \beta_{d}=75^{\circ}, \beta_{i}=105^{\circ}, x=5.5^{\prime \prime}, y=+8^{\prime \prime}, d=6^{\prime \prime}\right)$ 。

DATA BLOCK			
	I	II	$I I I=I I-I$
Force	Reference	Low	
Component	($\mathrm{y}=-15^{\prime \prime}$)	Int。	Change
F_{y}	16.8	15.8	-1.0
F_{x}	- 1.9	- 1.9	0.0
$-\mathrm{F}_{z}$	0.5	1.0	+0.5

Figure 41. Low Interference Condition ($\mathrm{V}=1 \mathrm{fps}, \mathrm{w}=2^{\prime \prime}, \alpha=75^{\circ}, \beta_{\mathrm{d}}=105^{\circ}, \beta_{\mathrm{i}}=75^{\circ}$, $\mathrm{x}=5.5^{\prime \prime}$, $y=+8^{\prime \prime}, d=4^{\circ}$)

Figure 42a. Edge of Tool 7 Inches From Bin Side. Draft Force Affected to the Extent of 0.5 Pounds. No Measurable Effects on Other Tool Forces

Figure 42b. Edge of Tool 5 Inches From Bin Side。 Draft Force Affected to the Extent of 2 Pounds. No Measurable Effects on Other Tool Forces

Figure 42. Interference with Bin Side ($\mathrm{V}=3 \mathrm{fps}, \alpha=105^{\circ}{ }^{\circ} \beta_{\mathrm{d}}=75^{\circ}$)。 Superimposed Dashed Lines are Used to Represent the Flow Pattern From Figure 29, Reference Conditions Without Interference ($\mathrm{V}=3 \mathrm{fps}, \alpha=105^{\circ}, \beta_{\mathrm{d}}=75^{\circ}$)

Figure 43. Views of Soil Body Formed on Tillage Tool
$\left(V=3 \mathrm{fps}, \mathrm{w}=2^{\prime \prime}, \alpha=75^{\circ}, \beta_{i}=75^{\circ}\right.$,
$\mathrm{d} \approx 6^{\prime \prime}$)

Figure 44．Soil Body Formed on Tillage Tool （V $=3 \mathrm{fps}_{9} \mathrm{w}=2^{19}, \quad \alpha=105^{\circ}$ 。 $\left.\beta_{i}=75^{\circ}, d \approx 6^{\circ}\right)$

Figure 45．Soil Body Formed on Tillage Tool （ $\mathrm{V}=3 \mathrm{f} p \mathrm{~s}_{\text {。 }} \mathrm{W}=3^{3 \prime}, ~ \alpha=105^{\circ}$ 。 $\beta_{\mathrm{d}}=75^{\circ}, \mathrm{d} \approx 5^{\circ}$ ）

Discussion of Results

The means and standard deviations of the dependent factors for all tests are given in Table I. This table is self-explanatory, so it will not be discussed.

The sum of squares partitionings and F tests are presented in Tables II thru XI. A summary of the sum of squares partitionings is given in Table XII. The information in these tables was obtained through use of an analysis of variance computer program for a factorial design (2). The total variation associated with each dependent factor was partitioned among 256 sources. These 256 sources consisted of 8 main effects, 247 interactions, and sampling error. Sampling error was associated with variations between observations \#1 and \#2.

The factorial program was organized as 32 series [(2v)(2w)(2 α) $\left.\left(2 \beta_{\mathrm{d}}\right)\left(2 \beta_{i}\right)=32\right]$ with 20 tests $[(2 x)(5 y)(2 d)=20]$ in each series. This arrangement necessitated the use of two error terms: one error term for significance testing of terms involving x, y, or d and one error term for significance testing of terms not involving x, y, or d. Before conducting the experimental program, the Statistical Laboratory at Oklahoma State University was consulted for advice on statistical design of the experiment. Based on this consultation, as well as Natrella (11), the decision was made to pool 4 and 5 factor interactions not containing x, y, or d as Error \#2. Error \#2 would then be used for significance testing of 1,2 , and 3 factor terms which did not contain x, y, or d. Likewise, it was planned to pool sampling error and 4, 5, 6, 7, and 8 factor interactions which did involve x, y, or das Error \#4. Error $\# 4$ would then be used for significance
testing of 1,2 , and 3 factor terms involving x, y, or d. In the planning of factorial experiments, it is frequently assumed that interactions higher than 3 factor will be nonsignificant, and therefore, they can be pooled as error estimates.

After the output from the computer program was obtained, it appeared that Error \#4 could be satisfactorily applied in connection with all the dependent factors. However, Error \#2 appeared to be an unsuitable error term for use in connection with some of the dependent factors. In the cases of $\mathrm{C}_{\mathrm{Y}^{*}} \mathrm{C}, \mathrm{TX}$, and TZ , it appeared that some of the components of Error \#2 might have significant effects on the dependent factor. Consider $V w \alpha \beta_{d}$ associated with C_{y} and $C, V \alpha \beta_{d} \beta_{i}$ associated with $T X$, and $V w \beta_{d} \beta_{i}$ associated with $T Z$. Since Error \#2 was inappropriate for use with $C_{y}, C, T X$, and $T Z$, no error term was available for significance testing of terms not involving x, y, or d for $C_{y}, C, T X$, and $T Z$ 。

In Tables II thru XI, the sources of variation are arranged so that the sum of squares values are in descending order, and only the first 15 sources are listed. In addition, the sources of variation are separated into three groups. The separation into these groups is somewhat arbitrary, but it does, aid in the consideration of these tables. Each source in the first group accounts for a relatively large amount of the total variation of the dependent factor. Each source in the second group accounts for a lesser amount of the total variation, but each source in this group still accounts for a sizable proportion of the variation. Each source in the third group accounts for a relatively small proportion of the total variation. The three groups could each be considered as having two sub-groups where
applicable. The first sub-group would contain sources of primary interest (related to interference), and the second sub-group would contain sources of lesser interest (not related to interference). The arrangement of the Analysis of Variance tables allows one to see where sum of squares concentrations lie, as well as displaying the percent of the total sum of squares which can be accounted for by a relatively few sources. It can be noted that for some dependent factors, over 90 percent of the variation can be accounted for by 3 sources. However, for other dependent factors, 15 sources account for less than half of the total variation. If a large proportion of the total variation of a dependent factor is associated with a relatively few sources, it is indicated that these sources have pronounced effects on the dependent factor. Also, with the presence of these concentrations, it may be possible to develop a simple prediction equation which will account for a large proportion of the total variation of the dependent factor. However, if the total sum of squares is attributed more or less evenly to a large number of sources, then it is indicated that no sources have particularly pronounced effects on the dependent quantity. Also, with widely distributed sums of squares, it will probably not be possible to develop a simple prediction equation that will account for a large proportion of the total variation.

With reference to the total variation associated with a dependent factor, this total variation can be considered in four groups. The first three groups have already been discussed. The fourth group involves experimental error. Experimental error is associated with variation in experimental material and variation due to lack of uni= formity in the physical conduct of the experiment. The sums of squares
associated with sources in the first three groups will have components involving experimental error. However, in at least the first two groups, the treatment components of the sums of squares will be relatively much larger than the experimental error components of the sums of squares. For the dependent factors F_{x}, F_{y}, F_{z}, and F, it can be noted that a relatively small number of sources account for a reasonably large proportion of the total variation. However, considering $C_{X}, C_{z}, C_{y}, C_{2} T X$, and $T Z$, it can be poted that progressively smaller amounts of the total variation ale accounted for by a few sources. With these dependent quantities, variation associated with error terms accounted for progressively larger amounts of the total variation. In the cases of C_{x} and C_{z}, appropriate error terms are available, and these can be used to help separate sources into the groups previously mentioned. However, in the cases of $C_{y}, C, T X$, and TZ, Error \#2 is not an appropriate error term, and therefore, it is difficult to assess the significance of the source effects. The portion of the total variation that is associated with error terms is not available to be attributed to other sources of variation. Therefore, in the cases of $C_{x}, C_{z}, C_{y}, C_{2} T X$, and $T Z$, the amount of variation accounted for by a relatively few sources needs to be considered in this light.

Considering $C_{x}, 75.71$ percent of the total variation is accounted for by the first 7 sources, and 13.42 percent of the total variation is accounted for by Errors \#2 and \#4. If 13.42 were subtracted from the total variation (100 percent) 86.58 percent would remain. Considering the 86.58 percent as being a closer estimate of the amount available for treatment effects, then 75.71 could be divided by 86.58
to give an adjusted value of 87.45 percent. The 87.45 percent value better indicates that 7 sources account for a relatively large percent of the available variation. Likewise with $C_{z}, 6$ sources account for 64.44 percent of the total variation. However, the 64.44 yields an adjusted value of 81.84 percent.

In the cases of $C y, C, T X$, and $T Z$, Error \#2 is not available as a suitable error term. However, an adjustment can be made for Error \#4. For $C_{y}, 40.02$ percent of the total variation is accounted for by 8 sources. The 40.02 yields an adjusted value of 59.61 percent. For c, 40.42 percent is accounted for by 8 sources. The 40.42 yields an adjusted value of 60.58 percent. For TX, 36.04 percent is accounted for by 7 sources. The 36.04 yields an adjusted value of 56.56 percent. For TZ, 29.88 percent is accounted for by 6 sources. The 29.88 yields an adjusted value of 49.25 percent.

The adjusted percentage values for $C_{x}, C_{z}, C_{y}, C, T X$, and $T Z$ indicate that although the amounts of variation accounted for by a few sources may not be as great as with F_{x}, F_{y}, F_{z}, and F; nevertheless, large amounts of the available variation are accounted for by a small number of sources.

Table XII allows comparisons to be readily made between sum of squares partitionings for the various dependent factors. Gonsidering all of the dependent factors together, it can be seen from Table XII that α, y, and β_{d} account for large amounts of the total variation.

Table XIII summarizes the building of the pred ction equations, and Table XIV presents the prediction equations which were developed. The prediction equations were developed through the use of a stepwise fititiple regression computer program (2). With this program, the user
chooses which terms he will make available for the stepwise selection by the program, and then the program builds an equation one term at a time. A maximum of 80 terms can be made available to the program in a single run, and any of these terms can be forced to enter an equation. In each step, the program adds the term which will provide the largest increment in the percent of the total variation accounted for by the equation. All independent factors and two factor interaction terms were made available to the program. All products involving a single independent factor and y^{2}, y^{3}, or y^{4} were made available. In addition, three and four factor interaction terms with large associated sums of squares as indicated by the sum of squares partitionings were also made available. A new variable, $\beta_{d_{1}}=\beta_{d}-90^{\circ}$, and its appropriate combinations with other variables were also made available to the program.

For each dependent factor, two prediction equations were developed. In each case, the first equation was a simplified one in which some terms were forced into the equation. However, with the second equation, no terms were forced into the equation, but rather the program was allowed to develop the equation without external restriction. After the program had built the equations, these were examined and truncated such that fairly simple equations were obtained which, nonetheless, would account for reasonably large proportions of the total variation.

For each of the 20 equations developed, percent of total variation accounted for by the equation can be considered. However, it is important to examine the sum of squares partitionings as one considers these equations. Some of the equations account for quite a small proportion of the total variation, but the associated sum of squares
partitionings, likewise, may lack large sum of squares concentrations. For some of the dependent factors, it can be seen that both the simplified and the more complex equations account for an adequately large proportion of the total variation. While for other dependent factors, there is considerable difference in the proportions of the total variation accounted for by the two equations.

Terms involving y and y^{3} appear frequently in the equations, whereas, terms involving y^{2} and y^{4} do not. Considering the shapes of the graphs in Figures 19 thru 28, this result would not be unexpected. These graphs consider only the dependent quantities F_{x}, F_{y}, and F_{z}, but graphs associated with other dependent quantities are of similar shape。

Graphs involving selected interference conditions are presented in Figures 19 thru 28. Considering the sum of squares partitionings and prediction equations, it can be noted that terms such as y, y^{3}, wy, and αy^{3} appear frequently. Therefore, it was decided that graphs would be presented illustrating the effects which y has on the dependent factors. It was also desired to illustrate the effects of varying the other independent factors one at a time. The dependent factors F_{x}, F_{y} and F_{z} were selected for illustration, but similar treatment could be given to the other dependent factors.

For Figures 19 thru 22, the dependent factor is F_{y}. For Figures 23 thru 25, F_{x} is the dependent factor. For Figures 26 thru 28, F_{z} is the dependent factor. In each of these figures, y values are indicated along the abscissa, and values of the dependent factor are indicated along the ordinate. In all figures, the long dashed lines represent a high interference control condition. The curve in solid
line is plotted for comparison with the control. In some cases, the curve represented in solid line is shifted upward so that interference effects can be more readily observed. Consider Figure 19. At $y=-15^{\prime \prime}$, the high interference and low interference curves indicate different values of draft force. For $y=-15^{\prime \prime}$, the dynamometer tool is operated by itself without the interfering tool being in the soil. The different values indicated by the two curves at $y=-15^{\prime \prime}$ are due to the different values of the independent quantities V and α. These different values at $\mathrm{y}=-15^{\prime \prime}$ are related to single tool effects, rather than interference effects. Therefore, the low interference curve is shifted upward so that interference effects can be more readily observed.

Figure 19 shows the effects of operating at high interference and low interference conditions. Both curves have the same general shape, but interference is much more pronounced in the one case. For the high interference graph, as y varies, the draft force changes very considerably. At $y=-4^{\prime \prime}$, the draft force is 42.8 pounds or 51,3 percent above the reference value of 28.3 pounds. At $y=+8$ ', the draft force is 19.5 pounds or 31.1 percent below the reference value. At $\mathrm{y}=+15^{\prime \prime}$. the curve does not coincide with the reference line. In general, it cannot be expected that the curve would approach the reference line as y became large (for example, $y=+50^{\prime \prime}$), since boundary condition interference would still be occurring. That is, the interfering tool would still be altering the soil surface profile before the soil reached the dynamometer tool.

Figure 20 shows the effects of varying α at high interference. In this figure, the Series \#6 curve was shifted upward. With $\alpha=75^{\circ}$,
there is less of an interference effect as compared to the control curve for $\alpha=105^{\circ}$. A definite αy interaction can be noted between $y=-4^{\prime \prime}$ and $y=+4^{\prime \prime}$. At $y=-4^{\prime \prime}$, an increase in α results in an increase in draft force, whereas, at $y=+4^{\prime \prime}$, an increase in α results in a decrease in draft force.

Figure 21 illustrates the effects of varying x at high interference. At $y=-4^{\prime \prime}$, the $x=2.5^{\prime \prime}$ curve indicates a lesser interference effect than does the $x=5.5^{\prime \prime}$ curve. However, at $y=+4^{\prime \prime}$, the $x=2.5^{\prime \prime}$ curve indicates a greater interference effect. At $y=-44^{\prime \prime}$ the draft force for the $x=2.5^{\prime \prime}$ curve is 36 pounds or 28.6 percent above the reference value of 28 pounds. At $y=+4^{\prime \prime}$, the draft force for the $x=2.5^{\prime \prime}$ curve is 7 pounds or 75 percent below the reference value.

Figure 22 shows the effects of varying d at high interference. The effects are similar to those of varying $\alpha_{\text {. }}$ That is, the lower value of d results in less interference with a pronounced dy interaction between $\mathrm{y}=-4^{\prime \prime}$ and $\mathrm{y}=+4^{\prime \prime}$.

For Figures 23 thru 25, the dependent factor is F_{x} 。 Figure 23 illustrates the effects of high and low interference conditions. These curves are similar in shape to the curves for draft force. Figure 24 shows the effects of V, and Figure 25 shows the effects of w. These independent factors have similar effects on interference. In each case, the lower value of the independent factor results in less inter ference. Howeverg the changing of w produces slightly more pronounced effects than changing V.

In Figures 26 thru 28, F_{z} is the dependent factor. Figure 26 illustrates the effects of high and low interference conditions. Figure 27 shows the effects of β_{d}, and Figure 28 shows the effects of
β_{i}. The independent factors β_{d} and β_{i} have similar effects on interference with the β_{d} effects being more pronounced.

Photographs of selected tillage tool tests are presented in Figures 29 thru 41. These photographs deal with some of the same interference conditions as Figures 19 thru 28 and were designed only to show the types and general magnitudes of effects that resulted as the independent factors were varied one at a time. No attempts were made to gather actual quantitative information from these photographs. For each figure, a front view of the tillage system is shown at the left side of the figure and a rear view at the right side of the figure. The front and rear views were not photographed at the same instant of time, but both were photographed while the soil was movinge The physical effects of interference can be considered in three categories. First, the interfering tool may affect the surface profile of the soil before the soil reaches the dynamometer tool. This effect could take place either with simultaneous or boundary condition interference. Second, the interfering tool may alter the velocity pattern (magnitude and/ox direction) of the soil near the dynamometer tool. This effect would only be associated with simultaneaus interference。 Finally, the interfering tool could alter the physical properties (density, strength, etc.) of the soil before the soil reached the dynamometer tool. This effect could be associated with either simultaneous or boundary condition interference. However, this final effect of interference was generally inoperative for this experimental program, since the soil was uncompacted in its initial condition. In discussion of the photographs, comments will be made about the effects of changing the soil surface profile, rather than about the effects of
changing the velocity of the soil. The velocity effects may be equally as important, but they cannot be as readily observed in these single frames.

Figure 29 shows a reference condition without interference. In this case, the dynamometer tool is operated by itself without the interfering tool being in the soil. Gonsider the curves composed of long dashed lines in Figures 19 thru 28. Figure 29 shows the experimental setup associated with $\mathrm{y}=-15^{\prime \prime}$ for Figures 19 thru 28.

Figures 30 thru 33 show the effects as y assumes values of $-4^{\prime \prime}$ $+4^{\prime \prime},+8^{\prime \prime}$, and $+15^{\prime \prime}$, respectively. Figures 29 thru 33 correspond to moving along the high interference lines from left to right in Figures 19 thru 28. In Figures 30 thru 33, the superimposed dashed lines are used to represent the flow pattern from Figure 29, reference condition without interference. The data blocks associated with the figures show the interference effects on F_{x}, F_{y}, and F_{z}. The sign conventions for F_{x}, F_{y}, and F_{z} are the same as used previously: F_{x} is positive to the left in the front view; F_{y} is positive in the direction of soil velocity V; and F_{z} is positive downward (mF_{z} is positive upward). At $y=-4^{\prime \prime}$, the flow of soil around the dynamometer tool is more impeded as compared to the reference condition. With $y=-4$ ', a larger amount of soil accumulates in front of the dynamometer tool. As would be expected, all the forces are larger with the interfering tool at $y=-4^{\prime \prime}$ as compared to the reference condition.

In Figures 31, 32, and 33 with $\mathrm{y}=+4^{\prime \prime}, \mathrm{y}=+8^{\prime \prime}$, and $\mathrm{y}=+\mathbf{1 5 \prime}^{\prime \prime}$, respectively, the forces are lower as compared to those for the reference condition. This lowering of forces appears to be due, at least partly, to the formation of a trench behind the interfering tool.

This trench allows a less impeded flow of soil around the dynamometer tool.

Figures 34 thru 40 show the effects of varying the independent factors one at a time. In these figures, the superimposed dashed lines are used to represent the flow pattern from Figure 32, control condition for high interference. Figures 34 thru 40 each correspond to the value $y=+8^{\prime \prime}$ for the solid line curves in the appropriate figures. That is, Figure 34 is associated with Figure 24 (Effects of V), Figure 35 is associated with Figure 25 (Effects of w), etc. For Figures 34, 36, and 37, the values in column II of the data blocks were adjusted upward in the same manner as were the curves in Figures 24 and 20.

The data blocks associated with Figures 34, 35, 36, and 40 indicate that for the lower values of V, w, α and d, the forces on the dynamometer tool are generally increased as compared to the values for the control condition. This effect is due, at least in part, to the forming of a smaller trench behind the interfering tool for each of these cases.

In Figure 37, with $\beta_{d}=105^{\circ}$, the dymamometer tool isn't able to as well utilize the trench behind the interfering tool, since at $\beta_{d}=105^{\circ}$ the dynamometer tool is directing more soil away from the trench as compared to the control condition with $\beta_{d}=75^{\circ}$.

In Figure 38, with $\beta_{i}=75^{\circ}$, the trench behind the interfering tool is relatively unchanged, but the interfering tool is directing more soil away from the dynamometer tool as compared to the control condition with $\beta_{i}=105^{\circ}$ 。

In Figure 39, with $\mathrm{x}=2.5$ ", the dynamometer tool is, to a greater extent, operating in the trench behind the interfering tool,

Therefore, for $x=2.5^{\prime \prime}$, the forces on the dynamometer tool are generally decreased as compared to the values for the control condition.

Figure 41 shows a low interference condition. As indicated by the forces in the data block, the interfering tool was having very little effect on the dynamometer tool forces.

Figure 42 shows the effects that bin side interference has on the operation of a tillage tool. In conducting the factorial program, it was found that a certain amount of interference with the bin side nearest the interfering tool did arise, but its extent was limited enough that it did not greatly affect the values of the dependent factors. This bin side interference was a secondary type, since it occurred on the side nearest the interfering tool. If the bin side interference had occurred at the opposite bin side, its effects would have been more pronounced, since it could have had direct effects on the dependent factors. The exact extent to which the bin side interference affected the dependent factors could not be determined with available equipment, but an attempt was made to gain some information about the magnitude of its effectso Figure 42a shows a condition in which bin side interference was just beginning to affect the draft force on the tillage tool. Figure $42 b$ shows a condition in which the bin side is affecting the draft force to an extent of 2 pounds. The bin side interference did not measurably affect the other forces on the tillage tool. The superimposed dashed lines in Figure 42 are used to represent the flow pattern from Figure 29, reference condition without interference. Figure 30 shows one of the most severe bin side interference conditions which occurred in the factorial program.

Figures 43, 44, and 45 show photographs of soil bodies that formed on the tillage tools. These soil bodies were quite fragile when the tools were removed from the soil, and therefore, portions of the soil bodies often broke away. However, from these photographs, differences in soil body size and shape as influenced by α and β can be seen. Soil bodies, as such, were not studied in this experimental program. These photographs were included, however, as general information to give some indications of the sizes and shapes of soil bodies formed for the conditions of this investigation.

CHAPTER VI

SUMMARY, CONGLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

The research undertaken in connection with this thesis was related to the general problem of minimizing the amount of energy required to till the soil, consistent with achieving a desired soil condition. The specific problem chosen, involved a soil bin study of threedimensional interference between two flat plate tillage tools operating in an artificial soil.

The general objective of the investigation was to study and characterize selected aspects of interference between tillage tools.

For the tillage system selected for study, the following were the specific objectives of the investigation:

1. For each dependent quantity $\left(F_{x}, F_{y}, F_{z}, F, C_{x}, C_{y}, C_{z}, C\right.$, TX and TZ), determine the percent of the total variation of the dependent quantity that can be attributed to each source of variation $\left(V, w, \alpha, \beta_{d}, \beta_{i}, x, y, d\right.$, and their interm actions).
2. For each dependent quantity, develop a prediction equation which relates the dependent and the independent quantities. Each prediction equation should be fairly simple, yet account for a reasonably large percent of the total variation of the
dependent quantity.
3. Display characterization of interference by use of graphic representations.

Experiments were organized in a factorial arrangement and were conducted using a continuous linear soil bin. The forces which the soil exerted on the dynamometer tool were measured, while the interfering tool was positioned at various locations in the vicinity of the dynamometer tool. The independent factors were soil velocity V, width of interfering tool w , orientation of tools (α, β_{d}, and β_{i}), and position of interfering tool (x, y, d). The dependent factors were those involved in specifying the wrench which the soil applied to the dynamometer tool $\left(F_{x}, F_{y}, F_{z}, F, C_{x}, C_{y}, C_{z}, C, T X\right.$, and $\left.T Z\right)$.

The data in terms of the values of the independent and dependent variables was analyzed by partitioning sum of squares, conducting F tests on mean squares, developing prediction equations using stepwise multiple regression, and by drawing graphs involving certain variables. In addition, photographs were presented of the tillage tools operating in several different interference conditions.

For some dependent quantities, the associated sum of squares partitionings indicated large concentrations of sums of squares, whereas, for other dependent quantities, the sum of squares were more widely distributed over the sources of variation.

Considering the sums of squares distributions, at least one adequate prediction equation was obtained for each dependent quantity. For some dependent quantities, it was possible to develop a prediction equation of 4 terms which would account for almost 90 percent of the total variation. However, with other dependent quantities; a
prediction equation containing 7 terms accounted for less than 30 percent of the total variation.

The objectives of the research program were fulfilled in that interference between tillage tools for the specified tillage system was studied and characterized. The interference was characterized in a definite quantitative manner by indicating the amounts of variation that could be attributed to the various main effects and interactions, and also by developing prediction equations which define relationships between the independent and dependent quantities. In addition, the types and magnitudes of effects caused by interference were characterized in a general manner through presentation of the graphs and photographs associated with certain tillage tool tests.

Conclusions

For the tillage system studied, the conclusions were:

1. For each dependent quantity, a relatively large proportion of the total variation can be accounted for by a relatively few sources of variation. However, Tables II thru XI indicate that considerably larger proportions of the total variation are accounted for by a relatively few sources for F_{x}, F_{y}, F_{z}, and F, as compared to $C_{x}, C_{z}, C_{y}, C, T X$, and $T Z$.
2. Considering the sums of squares distributions, at least one adequate prediction equation was obtained for each dependent quantity. These prediction equations, given in Table XIV, relate the independent and dependent quantities.
3. Interference can have very large effects on tillage tool forces. For example, consider Figure 21. With $\mathrm{x}=5.5^{\prime \prime}$ and
$y=-4$ ", the draft force on the dynamometer tool was 42.8 pounds or 52.8 percent above the reference value of 28.0 pounds without interference. With $x=2.5^{\prime \prime}$ and $y=+4^{\prime \prime}$, the draft force was 7.0 pounds or 75.0 percent below the reference value.
4. Many of the effects caused by interference can be observed in soil flow pattern differences as indicated in Figures 29 thru 41.

Suggestions for Future Work

In preliminary studies associated with this research, attempts were made to compact the soil before it reached the test area. A soil density increase of only 5 pounds per cubic foot was achieved, and therefore, an uncompacted soil was used in the main experimental program. However, additional attempts should be made to compact the soil in a feasible manner. There are at least two reasons for compacting the soil. First, the soil initial density could be expected to have some effects on the interference patterns between the tillage tools. Second, if a high enough initial soil density could be obtained, it might be possible to determine the volume of soil that was disturbed by the tillage tools. Then, the anount of soil disturbed could be related to the independent factors.

In this study, the independent factors were $V, w, \alpha, \beta_{d}, \beta_{i}, x$, y, and d. D and Were held constant. Additional information could be obtained about interference through concentrated study with x, y, d , and D being the independent factors. The other quantities could be held constant as follows: $V=2 \mathrm{fps}, \mathrm{w}=\mathrm{W}=33^{\prime \prime}, \alpha=90^{\circ}, \beta_{\mathrm{d}}=90^{\circ}$,
$\beta_{i}=90^{\circ}$. As discussed in Chapter III, the roles of the two tools are, in effect, switched as y changes from positive to negative values. By considering positive values of x, positive and negative values of y, and varying d and D, it would be possible to obtain complete information about the forces on both tools, even though only one would be instrumented.
(1) Barnes, K. K., C. W. Bockhop, and H. E. Mcleod. "Similitude in Studies of Tillage Implement Forces." Agricultural Engineering, Vol. 41 (1960), 32-7, 42 .
(2) BMD Biomedical Computer Programs. Edited by W. J. Dixon. Berkeley and Los Angeles: University of California Press, 1968.
(3) Bockhop, C. W., W. G. Lovely, and R. L. Schafer. "Prototype Studies of Tillage Implements." Transactions of the American Society of Agricultural Engineers, Vol. 11 (1968), 661-4.
(4) Gohron, G. T. "Model Testing of Earthmoving Equipment." American Society of Agricultural Engineers, Paper No. 61-113, presented at Ames, Iowa, June, 1961.
(5) Gill, William R. and Glen E. Vanden Berg. Soil Dynamics in Tillage and Traction. Washington, D. G.: U. S. Government Printing Office, 1967.
(6) Hanomoto, B. "Artificial Soils for Laboratory Studies in Land Locomotion." Land Locomotion Laboratory, Report No. 20, Army Tank-Automotive Center, Warren, Michigan, November, 1957.
(7) Harrison, W. La, Jro "Soil Bins and Instrumentation for Research and Engineering Applications." Society of Automotive Engineers, Paper No. 408B, presented at Milwaukee, Wisconsin, September, 1961.
(8) Kaburaki, Ho and M. Kisu。 "Studies on Cutting Characteristics of Plows." Kanto-Tosan Agricultural Experiment Station Journal, Vol. 12 (1959), 90-114. (National Institute of Agricultural Engineering, English Translation 79.)
(9) Korayem, A. Y. and C. A. Reaves. "Artificial Soils - Frictional Properties and Chisel Tests." American Society of Agricultural Engineers, Paper No. 61-652, presented at Chicago, Illinois, December, 1961.
(10) Myers, H. A. and E. L. Wegscheid. "Soil Bin Instrumentation。" Agricultural Engineering, Vol. 48 (1967), 442-45, 463.
(11) Natrella, M. G. Experimental Statistics. Washington, D. C.: U. S. Government Printing Office, 1963.
(12) Payne, P. C. J. "The Relationship Between the Mechanical Properties of Soil and the Performance of Simple Cultivation Implements:" Journal of Agricultural Engineering Research, Vol. 1 (1956), 23-50.
(13) Payne, P. C. J. and D. W. Tanner. "The Relationship Between Rake Angle and the Performance of Simple Cultivation Implements." Journal of Agricultural Engineering Research, Vol. 4 (1959), 312-25.
(14) Rathje, J. "The Cutting of Sand." Engineering, Vol. 134 (1932),
(15) Reed, I. F. and M. O. Berry. "Tests Comparing Plow Bottoms." National Tillage Machinery Laboratory Annual Report, Auburn, Alabama, 1946.
(16) Rowe, R. J. and K. K. Barnes. "Influence of Speed on Elements of Draft of a Tillage Tool." Transactions of the American Society of Agricultural Engineers, Vol. 4 (1961), 55-7.
(17) Siemens, J. C. and J. A. Weber. "Soil Bin for Model Studies on Tillage Tools and Traction Devices." Journal of Terra Mechanics, Vol. 1 (1964).
(18) Zelenin, A. N. Basic Physics of the Theory of Soil Gutting. Moscow, 1950.

APPENDIX A

SPECIFICATIONS OF
INSTRUMENTS

SPECIFICATIONS OF RECORDER

The recorder was purchased from Beckman Instruments, Incorporated, 3900 River Road, Schiller Park, Illinois 60176. The recorder had six type R channels and two type RC channels. The type R channels were used with the load cells. The type RC channels were used with the tachometer system and the density measurement system.

TYPE R SPECIFICATIONS

Sensitivity Range: 1 microvolt per mm to 5 volts per mo. Channel Width: 40 mm .

Input: Input impedance approximately one megohm at highest sensitivity; varies when input attenuator inserted, from minimum of 0.25 meg to maximum of 12.5 meg .

Zero Suppression: More than 500 mm plus and minus; ten-turn Helipot potentiometer available for calibrated zero suppression.

Common Mode: Common mode rejection: Greater than 180 db at DC , with shorted input. Greater than 100 db at 60 cps , with shorted input. Common mode voltage: ± 250 VDC maximum.

Drift: 1 microvolt per hour equivalent input stylus drift at maximum sensitivity under normal ambient conditions.

Frequency Response: Flat within $\pm 1 \mathrm{db}$ from DC to 30 cps at 40 mm deflection; within ± 1 db from DC to 100 cps at 10 mm deflection.

Rise Time: 7 ms for 10% to 90% of 40 mm .4 ms for 10% to 90% of 20 mm 。

Linearity: $\pm 0.5 \%$ for central 40 mm .
Paper Speeds: An 8 speed precision chart drive provides speeds from 1 to $250 \mathrm{~mm} / \mathrm{sec}$. Chart speed accuracy; $\pm 1 \%$.

Paper Width: 16 inches.
Paper Capacity: 500 feet.
Auxiliary Power Available: 15 volts at 1 ampere, regulated for strain gage excitation.

Power Requirements: 115 volts at 60 cps .

TYPE RG SPECIFICATIONS

Sensitivity Range: 1 mv per mm to 5 volts per ma.
Input: Single-ended. Input impedance; 1 megohm minimum at 2 mv per mm and higher, 0.5 megohm minimum at 1 mv per mon.

Zero Suppression: 120 mm , plus and minus; ten-turn Helipot potentiometer available for calibrated suppression.

Drift: With low impedance source, 0.2 mvequivalent input per hour at maximum gain under normal ambient conditions; source resis. tance will increase drift approximately 0.005 mv per thousand ohms.

Frequency Response: F1at within $\pm 1 \mathrm{db}$ from DC to 30 cps at 40 mm deflection; within $\pm 1 \mathrm{db}$ from DC to 100 cps at 10 mm deflection.

Rise Time: 7 ms for 10% to 90% of 40 mm . 4 ms for 10% to 90% of 20 mm .

Linearity: $\pm 0.5 \%$ for central 40 mm .
Calibration: Internal for each channel.

SPECIFICATIONS OF LOAD CELLS

The six load cells were purchased from Transducers, Incorporated, 11971 East Rivera Road, Santa Fe Springs, California 90670. These load cells were of the bonded strain gage type. In each load cell, 4 strain gages formed a full Wheatstone bridge, to produce an electrical output signal which was directly proportional to applied force.

Non-linearity (Terminal Method): 0.20% full scale tension and compression

Hysteresis (Unidirectiona1): 0.10% full scale
Sensitivity: $3 \mathrm{mv} / \mathrm{v}$ at rated capacity
Accuracy of Full Scale Output: $\pm 5 \%$ tension or compression
Zero Balance: $\pm 5 \%$ full scale
Input and Output Resistance (350 ohms standard): $\pm 10 \%$ rolerance Temperature Effect on Zero Balance: less than 0.02% full scale per ${ }^{\circ} \mathrm{F}$ Temperature Effect on Output: less than 0.02% of load per ${ }^{\circ} \mathrm{F}$

Temperature Range (compensated): 15 to $150^{\circ} \mathrm{F}$
Maximum Safe Temperature: $250^{\circ} \mathrm{F}$
Excitation Voltage Recommended: 10 volts, DC or AC
Maximum Excitation Voltage: 18 volts, DC or AC
Maximum Safe Overload: 150% rated capacity
U1timate Overload Rating: 200% rated capacity

Side Load Effect (1° off axis): less than 0.25% full scale Side Load Effect (3° off axis): less than 0.50% full scale Standard Temperature for Specifications: $77^{\circ} \mathrm{F}$

SPECIFICATIONS OF DENSITY MEASUREMENT SYSTEM

Abstract

A density measurement system was used for measuring the soil density shortly before the soil reached the test area. This system consisted of a radioactive source, a radiation detector, a meter, and channel 8 of the 8 -channel recorder. The source, detector, and meter were purchased from Texas Nuclear, P.O. Box 9267, Austin, Texas 78756.

The radioactive source was 2 curies of cesium 137. In operation of the density measurement system, a shutter in the source housing was opened and radiation was allowed to pass through the soil to the detector. The amount of radiation received by the detector was inversely related to the density of the soil. A current was developed in the detector, and this current was directly proportional to the radiation received, The electrical signal from the detector was then conditioned and was available at the meter and on channel 8 of the 8 -channel recorder. Detailed specifications (rise time, drift, etc.) of the source-detector-meter sub-system were not supplied by the manufacturer. The specifications for channel 8 of the recorder are given in the Specifications of the Recorder.

A tachometer system was used to measure the linear speed of the test belt. This system consisted of a DC tachometer generator, a tachometer voltmeter, and channel 7 of the 8 -channel recorder.

The generator and voltmeter were calibrated as a sub-system at, the factory. This sub-system was purchased from Servo-tek Products Company, Incorporated, 1086 Goffle Road, Hawthorne, New Jersey. The sub-system was calibrated so as to have a maximum error of 1% of the full scale reading. The sub-system was temperature compensated and calibrated at $25^{\circ} \mathrm{C}$. The sub-system accuracy was not affected by more than $1 / 2 \%$ of full scale for either an increase or decrease of $50^{\circ} \mathrm{C}$. The full scale meter reading was 1000 rpm , but the generator shaft was fitted with a driving disk of appropriate size so that 1000 rpm of the generator shaft was equal to $10 \mathrm{ft} / \mathrm{sec}$ belt speed. The generator output was 7 volts per 1000 rpm.

The specifications of channel 7 of the recorder are given in the Specifications of the Recorder.

APPENDIX B
ORIGINAL DATA

EXPLANATORY INFORMATION FOR ORIGINAL DATA

The main factorial experimental program was organized as 32 series. The data from each series is presented on a separate page. This original data is identified as Series 1 thru 32.

An explanation of the information presented on each sheet of original data will now be given. First, the series is identified. Next, the specified values of the independent quantities V, w, α, β_{d}, and β_{i} are given. Before the dynamometer tool was lowered into the soil, one observation of load cell forces was taken; this information appears in the first row that is identified by "ZERO". The sign conventions for the load cell forces are as given in Figure 2. The dynamometer tool was then lowered into the soil and observations were made without the interfering tool being in the soil; the information from these observations appears in the first row that is identified by "STANDARD". The measured value of soil density, the measured value of soil velocity, and two observations of laad cell forces were recorded. The next 20 tests were conducted at the various required values of x, y, and d. After these 20 tests had been completed, another standard test and another zero test were carried out.

In order to calculate the dependent quantities $T X$ and $T Z$, it was necessary to specify the location and orientation of the dynamometer tool. This location and orientation were specified with respect to the origin of coordinates given in Figure 2. The location of the center of the front bottom edge of the tool was given by $\mathrm{P}(\mathrm{r}, \mathrm{s}, \mathrm{t})$,
with r being positive to the left when looking in the direction of soil flow, s being positive in the direction of soil flow, and being positive downward. The orientation of the dynamometer tool was specified by the equation of the plane which contained the front surface of the tool.

For $\alpha=75^{\circ}$, the calculated coordinates of P were

$$
(-0.115,-11.083,21.316)
$$

For $\alpha=105^{\circ}$, the calculated coordinates of P were

$$
(-0.115,-1.001,21.316)
$$

For $\alpha=75^{\circ}$ and $\beta_{d}=75^{\circ}$, the equation of the plane was $-0.04955 r-0.18512 s-0.04961 t=1$

For $\alpha=75^{\circ}$ and $\beta_{d}=105^{\circ}$, the equation of the plane was $0.05012 r-0.18726 s-0.05018 t=1$

For $\alpha=105^{\circ}$ and $\beta_{d}=75^{\circ}$, the equation of the plane was $-0.03969 x-0.14828 s+0.03974 t=1$

For $\alpha=105^{\circ}$ and $\beta_{d}=105^{\circ}$, the equation of the plane was $0.04006 r-0.14965 s+0.04010 t=1$

SERIES 1

V SET	W INT	ALPHA	B DYN	B INT
I	2	105	75	105

	ST	\mathbf{x}	Y	- INT	DEN	\checkmark ACT	F 1	Fl	F2	F2	F3	$F 3$	F4	F4	F5	F5	F6	F6
$2 E$							0.0		0.0			0.0		. 0	0.0		0.0	
STANDARD					78.5	1.0	-2.8	-2. 7	23.0	23.0	-23.	-23.5	-24.0	-24.5	7.0	7.5	1.0	1.5
3	1	5. 5	-4.0	4.0	78.5	1.0	-4.0	-4.0	23.0	22.5	-23.5	-23.5	-24.0	-24.0	7.5	8.0	0.5	0.5
3	2	2.5	-15.0	4.0	78.5	1.0	-3.0	-3.0	22.5	22.5	-24.0	-23.5	-24.5	-24.0	7.5	8.0	-0.3	-0.3
3	3	2.5	-4.0	6.0	78.5	1.0	-5.3	-5.3	26.0	26.5	-27.5	-27.0	-28.5	-28.0	12.5	12.5	-2.5	-2. 5
3	4	5.5	8.0	6.0	$78 \cdot 5$	1.0	-1.0	-1.5	18.0	17.5	-18.5	-18.0	-19.5	-19.0	3.0	3.0	-2. 5	-3.0
3	5	5.5	-4.0	6.0	78.5	1.0	-5.0	-5.3	27.0	27.0	-28.0	-28.5	-29.0	-29.5	12.5	12.0	-1.5	-2.0
3	6	2.5	8.0	6.0	78.5	1.0	-1.0	-1.0	17.0	16.5	-17.0	-17.5	-17.5	-18.5	2.0	2.5	3.0	2.5
3	7	2. 5	4.0	4.0	78.5	1.0	-0.5	-0. 5	15.0	15.0	-15.5	-15.0	-16.0	-16.5	0.5	0.5	4.0	4.0
3	8	2.5	-4.0	4.0	78.5	1.0	-4.0	-4.0	24.0	24.0	-25.0	-25.5	-26.0	-26.5	10.0	9.5	-0.5	-0.5
3	9	5. 5	4.0	4.0	78.5	1.0	-1.0	-1.0	19.5	20.0	-20.0	-20.0	-21.0	-21.0	2.5	2.5	3.5	4.0
3	10	2.5	- 15.0	6.0	78.5	1.0	-3.0	-3.0	22.0	22.0	-23.0	-23.0	-24.0	-24.0	7. 5	7.5	0.5	0.5
3	11	2. 5	8.0	4.0	78.3	1.0	-2.0	-2.0	20.0	19.5	-20.5	-20.0	-21.5	-21.0	5.5	5.0	2.5	2.0
3	12	5:5	8.0	4.0	78.5	1.0	-1.8	-1.8	19.5	19.0	-20.5	-20.0	-21.0	-21.0	4.5	4.5	2.5	2.5
3	13	5.5	-15.0	6.0	78.4	1.0	-2.8	-2.9	22.0	21.5	-23.0	-23.0	-23.5	-24.0	7.0	7.0	1.0	1.5
3	14	5.5	4.0	6.0	78.5	1.0	-0.5	-0.5	17.0	17.0	-17.5	-17.5	-18.5	-18.5	0.5	0.5	4.5	4.5
3	15	5.5	-15.0	4.0	78.5	1.0	-2.8	-2. 7	21.5	22.0	-22.5	-22.5	-23.5	-24.0	7.0	7.0	1.0	1.5
3	16	2. 5	4.0	6.0	78.5	1.0	0.0	0.5	10.0	10.0	-10.0	-10.5	-11.0	-11.5	-1.0	-1.5	2.5	3.0
3	17	5.5	15.0	4.0	78.5	1.0	-2.6	-2. 7	21.5	21.0	-22.5	-22.5	-23.0	-23.0	6.5	6.5	1.0	1.5
3	18	2.5	15.0	6.0	78.5	1.0	-2.8	-3.0	21.5	22.0	-22.5	-23.0	-23.0	-23.5	7.5	7.5	1.0	1.0
3	19	5.5	15.0	6.0	78.5	1.0	-2.5	-2.5	21.5	21.5	-22.5	-22.5	-23.0	-23.0	6.0	6.5	1.5	1.0
3	20	2.5	15.0	4.0	78.5	1.0	-3.0	-3.0	22.5	22.5	-23.5	-23.5	-24.0	-24.0	7.5	7.5	0.5	0.5
STANDARD					79.3	1.0	-3.0	-3.0	22.5	22.5	-23.5	-23.0	-24.0	-23.5	7.5	7.5	0.5	0.5
LERO				:			0.0		0.2			0.1		. 0	0.0		0.0	

SERIES 4

V SET	WINT	ALPHA	B DYN	B INT
3	4	75	105	75

SERIES S

V SET	W INT	ALPHA	B DYN	B INT
1	2	75	105	75

SERIES

SERIES 11

V SET	WNT	ALPHA	B DYN	B INT
3	2	105	75	105

V SET	W INT	ALPHA	B DYN	B	INT
1	4	75	75	75	

	EST	x	$\dot{\mathbf{Y}}$	D INT	DEN	v	$A C T$	F 1	F 1	F2	F2	F3	F3	F4	F4	$F 5$	F5	F6	F6
2								0.0		0.5			0.0		. 0	0.0		0.0	
STANDARD					79.0		1.0	-2.6	-2.6	16.5	16.5	-18.5	-18.5	-15.	-15.0	3.5	3.5	-3.0	-3.0
12	1	2.5	-15.0	6.0	78.8		1.0	-2.7	-2.8	16.5	16.5	-18.5	-18.5	-15.0	-15.0	3.5	3.5	-3.0	-3.0
12	2	5.5	-4.0	6.0	78.8		1.0	-5.2	-5.2	21.0	21.0	-25.5	-25.5	-18.5	-18.5	8. 0	8.0	-6.5	-6.5
12	3	5.5	-15.0	6.0	78.8		1.0	-2.5	-2. 5	16.5	16.5	-18.5	-18.5	-15.0	-15.0	3.0	3.0	-3.0	-3.0
12	4	5.5	-15.0	4.0	78.9		1.0	-2.5	-2.5	16.5	16.5	-18.5	-18.5	-15.0	-15.5	3.5	3.5	-3.0	-3.0
12	5	2.5	-4.0	6.0	79.3		1.0	-6.0	-6.0	20.0	20.0	-25.0	-25.0	-16.5	-16.5	10.0	10.0	-8.0	-8.0
12	6	5. 5	4.0	4.0	79.5		1.0	-1.0	-1.0	13.0	13.0	-13.0	-13.0	-13.	-13.5	-0.5	-0.5	0.0	0.0
12	7	5.5	8.0	6.0	79.3		1.0	-0.8	-0.9	11.5	11.5	-11.5	-11.5	-12.	-12.0	0.0	0.0	0.0	0.0
12	8	2. 5	8.0	4.0	79.2		1.0	-1.2	-1.4	11.5	11.5	-12.0	-12.0	-11.	-11.5	1.0	1.0	-1.0	-1.0
12	9	5.5	4.0	6.0	79.2		1.0	-0.2	-0. 2	11.5	11.5	-11.0	-11.0	-12.5	-12.5	-1.5	-1.5	1.0	1.0
12	10	2.5	-15.0	4.0	79.1		1.0	-2.7	-2.8	16.5	16.5	-18.5	-18.0	-15.5	-15.5	3.5	3.5	-3.0	-3.0
12	11	2.5	4.0	4.0	79.0		1.0	-0.2	-0.3	9.0	9.0	-8.5	-8.5	-10.0	-10.0	-1.0	-1.0	1.0	1.0
12	12	2.5	15.0	4.0	79.0		1.0	-2.3	-2.3	15.0	15.0	-16.5	-16.5	-14.0	-14.0	3.0	3.0	-2.0	-2.0
12	13	2.5	8.0	6.0	79.0		1.0	-0.4	-0.3	8.0	8.0	-7.5	-7. 5	-8.5	-9.0	-1.0	-1.0	0.5	0.5
12	14	5.5	-4.0	4.0	79.0		1.0	-4.0	-4.0	19.5	19.5	-23.0	-23.0	-18.0	-18.0	5.5	5.5	-4.0	-4.0
12	15	5.5	15.0	6.0	79.0		1.0	-2. 1	-2.2	14.5	14.5	-16.0	-16.0	-14.0	-14.0	2.5	2.5	-2.0	-2.0
12	16	5.5	15.0	4.0	79.0		1.0	-2. 2	-2.2	15.0	15.0	-16.5	-16.5	-14.	-14.5	2.5	2.5	-2.0	-2.0
12	17	2.5	-4.0	4.0	79.0		1.0	-4.5	-4.5	19.0	19.0	-22.5	-22.5	-16.5	-16.5	7.0	7.0	-5.5	-5.5
12	18	2.5	15.0	6.0	79.1		1.0	-2.0	-2.0	14.0	13.5	-14.5	-15.0	-13.0	-13.0	2.0	2.0	-1.5	-1.5
12	19	5.5	8.0	4.0	78.8		1.0	-1.6	-1.7	13.5	13.5	-14.0	-14.0	-13.	-13.5	1.5	1.5	-1.0	-1.0
12	20	2.5	4.0	6.0	78.8		1.0	C. 1	0.1	5.5	5.5	-4.5	-4.5	-6.0	-6.0	-2.0	-2.0	1.0	1.0
STANDARD					78.8		1.0	-2.7	-2.7	16.5	16.5	-18.5	-18.5	-15.5	-15.5	3.5	3.5	-3.0	-3.0
2E								0.0		0.0		0.0			0.5	0.0		0.0	

V SET	WINT	ALPHA	B DYN	B INT
3	4	75	75	75

	ST	x	Y	0	INT	DEN	V	ACT	F 1	Fl	F 2	F2	F3	F3	$F 4$	F4	F5	F5	F6	F6
2 ER									0.1		0.5			0.5		0.0	0.2		0.0	
STANDARD						78.8		3. 0	-2. 8	-2.8	19.0	19.0	-21	-21.5	-17.	-17.5	5.0	5.0	-4.0	-4.0
13	1	5.5	15.0		6.0	78.9		3.0	-1.3	-1.4	15.5	15.5	-16.5	-16.5	-15.0	-15.0	2.0	2.0	-1. 5	-1. 5
13	2	5. 5	8.0		4.0	78.9		3.0	-1.2	-1.2	15.0	15.0	-16.0	-16.0	-14.5	-14.5	1.5	1.5	-1.0	-1.0
13	3	2. 5	-15.0		6.0	78.8		3.0	-3.0	-3.0	18.5	18.5	-21.0	-21.0	-16.5	-16.5	5.0	5.0	-4.0	-4.0
13	4	5. 5	-4.0		4.0	78.8		3.0	-4.8	-4.7	23.5	23.5	-28.0	-28.0	-20.5	-20.5	8.5	8.5	-6.5	-6.5
13	5	2.5	8.0		4.0	78.7		3.0	-1.0	-1.0	12.0	12.0	-13.0	-13.0	-12.0	-12.0	1.5	1.5	-1.0	-1.0
13	6	2.5	15.0		4.0	78.7		3.0	-1.8	-1.8	15.0	15.0	-16.5	-16.5	-13.5	-13.5	3.5	3.5	-2. 5	-2. 5
13	7	2. 5	4.0		6.0	78.7		3.0	0.5	0.5	6.0	6.0	-5.0	-5.0	-6.0	-6.0	-1.5	-1.5	0.5	0.5
13	8	5.5	-15.0		4.0	78.6		3.0	-2.8	-2.8	19.0	19.0	-21.	-21.5	-17.5	-17.5	5.0	5.0	-4.0	-4.0
13	9	2. 5	4.0		4.0	78.7		3.0	0.0	0.0	9.5	9.5	-9.0	-9.5	-10.0	-10.0	-0.5	-0. 5	0.0	0.0
13	10	2. 5	8.0		6.0	78.8		3.0	0.1	0.1	8.0	8.0	-7. 5	-7.5	-9.0	-9.0	-0.5	-0.5	0.5	0.5
13	11	2.5	-15.0		4.0	79.0		3.0	-3.0	-3.0	18.5	18.5	-21.	-21.5	-17.0	-17.0	5.0	5.0	-4.5	-4.5
13	12	5.5	. 4.0		4.0	79.2		3.0	-0. 5	-0.5	15.0	15.0	-15.	-15.5	-15.5	-15.5	0.5	0.5	-0.5	-0.5
13	13	5.5	15.0		4.0	79.3		3.0	-2.0	-2.0	16.5	16.5	-18.	-18.5	-16.0	-16.0	3.0	3.0	-2. 5	-2.5
13	14	2.5	15.0		6.0	79.2		3.0	-1.4	-1.4	12.5	12.5	-14.0	-14.0	-12.0	-11.5	2.5	2.5	-2.0	-2.0
13	15	5.5	8. ${ }^{\text {C }}$		6.0	79.1		3.0	-0.2	-0.2	14.0	13.5	-13.5	-13.5	-14.0	-14.0	-0.5	-0.5	0.0	0.0
13	16	.5.5	-4.0		6.0	79.1		3.0	-6.6	-6.7	26.0	26.0	-32.5	-32.5	-22.0	-22.0	11.5	11.5	-9.0	-9.0
13	17	2.5	-4.0		6.0	79.1		3.0	-6. 7	-6.8	23.5	23.5	-30.0	-30.0	-19.0	-19.0	12.0	12.0	-9.0	-9.0
13	18	2.5	-4.0		4.0	79.1		3.0	-5.0	-5.0	22.0	22.0	-26.0	-26.5	-19.0	-19.0	8.5	8.5	-7.0	-7.0
13	19	5.5	4.0		6.0	79.0		3.0	0.2	0.3	14.0	14.0	-13.0	-13.0	-14.0	-14.0	-1.5	-1.5	0.0	0.0
13	20	5.5	-15.0		6.0	79.0		3.0	-2.8	-2.8	19.0	19.0	-21.5	-21.5	-17.5	-17.5	5.0	5.0	-4.0	-4.0
ST	ND					79.0		3.0	-2.8	-2.8	19.0	19.0	-22.0	-22.0	-17.5	-17.5	5.0	5.0	-4.0	-4.0
ZER										0				0.0		0.0				0

SERIES 1
V SET W INT ALPHA B DYN B INT
$3 \quad 2 \quad 105105105$

	ST	X	Y	D INT	DEN	V	ACT	F1	F 1	F2	F2	F3	F3	F4	F4	F5	F5	F6	F6
ZER								-0.1		0.3			. 3		0.0	0.0		0.0	
STANDARD					79.4		3.0	3.0	2.6	24.5	24.0	-24.	-24.0	-26. 5	-26.0	-2.0	-2.0	10.5	10.0
14	1	2.5	-4.0	4.0	79.5		3.0	1.8	1.4	26.5	26.0	-26.5	-26.0	-28.5	-28.0	0.0	0.0	9.0	9.0
14	2	2.5	8.0	4.0	79.2		3.0	3.0	3.2	22.0	22.0	-21.0	-21.5	-23.0	-23.0	-3.0	-3.0	12.0	11.0
14		5.5	15.0	$4 \cdot 0$:	79.3		3.0	3.5	3.2	25.5	25.0	-25.0	-27.5	-27.5	-27.5	-2.5	-2.5	11.5	11.0
14		5.5	4.0	6.0	79.3		3.0	5.0	5.5	21.5	22.0	-21.0	-20.5	-23.0	-23.0	-7.0	-7. 5	13.0	13.0
14	5	2.5	15.0	6.0	79.2		3.0	3.3	3.3	23.0	23.5	-22.5	-22.5	-25.0	-24.5	-3.0	-3.0	11.5	12.0
14	6	2.5	-15.0	6.0	79.0		3.0	1.8	2.0	24.0	23.5	-23.0	-23.5	-25.0	-25.0	-2.0	-2.5	10.0	9.5
14		5.5	4.0	4.0	79.0		3.0	5.0	4.6	23.5	23.5	-23.0	-22.5	-25.0	-25.5	-6.5	-6.0	13.5	13.0
14		5.5	8.0	6.0	79.0		3.0	4.2	4.0	21.0	21.5	-20.0	-20.5	-22.0	-22.5	-6.0	-5.5	12.0	12.0
14		5.5	-15.0	4.0	79.0		3.0	3.0	2.5	25.0	25.0	-25.0	-25.0	-27.0	-27.0	-3.0	-2. 5	11. 5	11.0
		2.5	15.0	4.0	79.0		3.0	3.3	3.0	24.0	23.5	-23.0	-23.0	-25.0	-25.0	-2.5	-2. 5	11.0	10.5
14		5.5	-15.0	6.0	78.9		3.0	2.9	3.0	25.5	25.5	-25.0	-24.5	-26.5	-26.5	-3.0	-3.0	10.5	11.0
14		2.5	-4.0.	6.0	79.0		3.0	1.0	0.8	28.0	28.0	-27.5	-27.5	-29.5	-30.0	-2.5	-2.5	6.5	7.0
14		2.5	4.0	6.0	78.9		3.0	5.3	5.2	13.0	13.0	-12.0	-12.5	-13.5	-13.5	-9.0	-9.0	10.5	11.0
14		2.5	4.0	4.0	79.9		3.1	5.0	5.4	17.5	18.0	-16.5	-16.5	-18.0	-18.5	-7.0	-7.0	12.5	12.0
14	15	2.5	-15.0	4.0	78.8		3.0	2.8	2.9	24.5	24.0	-23.5	-23.0	-25.5	-25.0	-2.5	-2.0	9.5	9.5
14	16	2.5	8.8	6.0	78.8		3.0	4.1	4.0	18.0	17.5	-16.5	-16.5	-18.0	-18.0	-5.5	-5.0	10.5	10.0
14	17	5.5	8.0	4.0	78.7		3.0	3.4	3.5	22.0	22.5	-22.0	-22.5	-23.0	-23.5	-4.0	-4.0	11.0	11.0
14		5.5	-4.0	4.0	78.6		3.0	1.8	2.1	28.0	27.5	-27.0	-26.0	-29.0	-28.5	-1.0	-1.0	9.5	9.0
14	19	5.5	-4.0	6.0	78.6		3.0	0.2	0.8	30.0	30.0	-29.5	-29.0	-31.0	-31.5	2.0	1.5	7.5	7.5
14		5.5	15.0	6.0	78.6		3.1	3.7	3.1	24.5	24.5	-23.5	-23.5	-25.5	-25.5	-3.5	-3.5	11.0	10.5
STANDARD					78.7		3.1	3.0	3.5	25.0	25.0	-24.5	-24.0	-26.0	-26.0	-2.5	-2.5	10.0	10.5
ZER								0.3		1.0		0.0		1.0		-0.5		-0.5	

SERIES 15

| V SET | INT | ALPHA | B DYN | B INT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 75 | 105 | 105 |

	ST	x	γ	D INT	DEN	V	ACT	Fl	F. 1	F2	F2	F3 F3	F4 F4	F5	F5	F6	$F 6$
ZER								0.2		0.0		0.5	0.0	-0.5		-0.5	
STANDARD					78.3		1.0	2.4	2.3	16.0	16.0	-13.0-13.0	$-20.0-19.5$	-5.5	-5.5	5.0	5.0
16	1	5.5	4.0	6.0	78.3		1.0	3.7	3.6	15.0	14.5	-10.5-10.0	-19.5-19.0	-7. 5	-7.5	7.0	6.5
16	2	2.5	8.0	4.0	78.3		0.9	2.8	2.9	14.0	14.5	-11.0-11.0	$-18.0-18.0$	-5.5	-5.5	4. 5	5.0
16	3	5.5	-15.0	4.0	78.4		0.9	2.8	3.0	16.0	16.0	-12.5-13.0	$-19.0-19.5$	-5.5	-5.5	4.5	5.0
16	4	5.5	15.0	6.0	78.6		1.0	2.4	2.6	16.0	16.0	-12.5-12.5	$-19.0-19.0$	-5.5	-5.5	4.5	4.5
16	5	2.5	15.0	4.0	78.6		1.0	2.5	2.2	16.0	16.0	-13.0-12.5	$-19.0-19.0$	-5.0	-5.0	4.0	4.5
16	6	5.5	-4.c	4.0	78.5		1.0	2.2	2.2	17.0	17.5	-14.5-14.5	$-21.0-21.0$	-5.0	-5.0	4.0	4.0
16	7	5.5	-15.c	6.0	78.5		1.0	2.3	2.5	16.0	16.0	$-13.0-12.5$	$-19.5-19.5$	-6.0	-5.5	5.0	4.5
16	8	2.5	-15.0	4.0	78.5		1.0	2.2	2.7	16.0	16.0	$-12.5-12.5$	-19.0-19.0	-5.5	-5.5	4.5	4. 5
16	9	5.5	8.6	4.0	78.6		1.0	3.0	2.4	15.0	14.5	-11.5-11.5	$-18.5-18.0$	-6.0	-5.5	4.5	4.5
16	10	2.5	15.0	6.0	78.7		1.0	2.7	2.5	15.5	15.5	-12.5-12.5	-19.0-19.0	-5.0	-5.0	4.5	4.5
16	11	5.5	15.0	4.0	78.6		0.9	2.3	2.5	15.5	16.0	-12.5-12.5	-19.0-19.5	-5.5	-5.5	5.0	5.0
16	12	5.5	-4.0	6.0	78.7		1.0	1.5	2.0	18.0	18.0	-16.0-16.0	-21.0-21.5	-3.5	-4.0	3.5	3.5
16	13	2.5	8.0	6.0	73.6		1.0	3.0	2.6	13.0	13.0	$-9.0-9.0$	$-17.5-17.0$	-7.0	-6.5	6.5	6.0
16	14	5.5	4.0	4.0	78.7		1.0	3.2	3.1	14.5	14.5	-11.0-11.0	-19.0-19.0	-6.5	-6. 5	6.0	6.0
15	15	5.5	8.0	6.0	76.7		1.0	3.0	2.9	14.0	14.0	$-11.0-11.0$	-18.0-17.5	-6.0	-6.0	5.5	5.0
16	16	2.5	4.0	6.0	78.7		1.0	4.0	4.3	10.0	10.0	$-5.5-5.5$	$-14.5-14.5$	-8.5	-8.5	7.0	7.0
16	17	2.5	-4.0	6.0	78.6		1.0	1.2	1.2	17.5	17.0	-16.0-16.0	-20.0-20.0	-2.5	-2. 5	2.5	2. 5
16	18	2.5	-4.0	4.0	78.6		1.0	1.9	1.8	16.5	16.5	-14.5-14.5	$-20.0-20.0$	-4.0	-4.0	4.0	3.5
16	19	2.5	4.0	4.0	78.6		1.0	3.7	3.7	11.5	12.0	$-8.0-8.0$	$-15.5-16.5$	-7.0	-7.0	7.0	7.0
16	20	2.5	-15.0	6.0	73.6		0.9	2.5	2.4	15.5	15.5	$-13.0-13.0$	$-19.5-19.5$	-5.0	-5.0	4.5	4.5
STANDARD					78.5		1.0	2.4	2.6	15.0	15.5	$-13.0-13.0$	-19.0-19.5	-5.0	-5.0	4.5	4.5
ZERO								0.2		0.0		0.0	-0.5	-0.5		0.0	

SERIES 20

V SET	W INT	ALPHA	B DYN	B INT
1	4	75	75	105

		X	Y	D INT	DEN	$\checkmark \triangle C T$	Fl	FI	$F 2$	F2	F3 F3	F4 F4	F5	F5	$F 6$	$F 6$
ZER							0.0		0.0		0.5	0.0	-0.5		-0.5	
STANDARD					79.6	1.0	-2.	-2.3	16.0	16.0	$-18.0-18.0$	-14.5-14.5	3.0	3.0	-3. 5	-3.0
20	1	5.5	4.0	4.0	79.5	1.0	-0.7	-0.5	13.5	13.5	-13.5-13.5	-13.5-13.5	-0.5	-1.0	-0.5	0.0
20	2	5.5	-15.0	4.0	79.3	1.0	-2. 5	-2.7	16.0	16.0	-18.5-18.5	$-14.5-14.5$	3.0	3.0	-3.0	-3.0
20	3	5.5	15.0	6.0	79.2	0.9	-2.6	-2.4	15.5	15.5	-17.0-17.0	$-14.5-14.0$	2.0	2.0	-2.5	-2. 5
20	4	2.5	8.0	6.0	79.4	0.9	-0.2	-0.4	8.5	8.5	$-8.0-8.0$	-8.5-8.5	-1.0	-1.0	0.0	0.0
20	5	2.5	4.0	4.0	79.5	0.9	-0.3	-0.3	8.5	8.5	$-8.0-8.0$	$-8.5-8.5$	-1.5	-1.5	0.5	0.5
20	6	5.5	4.0	6.0	78.9	0.9	-0.1	-0.3	12.5	12.5	$-12.0-12.0$	$-13.5-13.5$	-2.5	-2.0	0.5	0.5
20	7	5.5	-4.0	6.0	79.3	0.9	-6.0	-6.0	21.5	21.0	-27.0-27.0	$-18.0-18.0$	9.0	9.0	-8.0	-8.0
20	8	2.5	15.0	$4 \cdot 0$	79.5	0.9	-1.9	-2.1	15.5	15.5	-17.5-17.0	-14.5-14.0	2.5	2.5	-2.5	-2.5
20	9	5.5	-4.0	4.0	$79 \cdot 6$	1.0	-4.4	-4.2	19.5	19.5	$-24.0-23.5$	$-17.5-17.5$	6.0	6.0	-6.0	-5.5
	10	5.5	15.0	4.0	79.5	0.9	-2.5	-2.7	16.0	16.0	$-18.0-18.0$	$-15.0-15.0$	2.5	2.5	-2. 5	-2. 5
	11	5.5	8.0	4.0	79.5	0.9	-1.6	-1.8	14.0	14.0	-16.0-15.5	$-13.5-13.5$	1.0	1.0	-1.5	-1.5
20	12	5.5	8.0	6.0	79.5	0.9	-1.2	-0.8	12.5	12.5	$-12.5-12.5$	-12.5-12.5	-0.5	-0.5	0.0	0.0
20	13	2.5	8.0	4.0	79.4	0.9	-1.4	-1.4	12.0	12.0	-13.0-13.0	-11.5-11.5	1.0	1.0	-1.5	-1.0
20	14	2.5	-4.0	4.0	79.2	0.9	-4.7	-4.4	18.5	18.5	$-23.0-22.5$	$-16.0-16.0$	6.5	6.0	-6.0	-6.0
20	15	2.5	-15.0	4.0	79.2	0.9	-2.8	-2.8	16.0	16.0	$-18.5-18.5$	-15.0-15.0	3. 5	3.5	-3.5	-3.5
20	16	2. 5	-15.0	6.0	79.1	0.9	-2.6	-3.0	16.0	16.0	$-18.5-18.5$	-14.5-14.5	3.5	3.5	-3. 5	-3.5
20	17	2.5	4.0	6.0	79.2	0.9	-0.1	0.1	5.0	5.0	-4.5-4.5	$-5.5-5.5$	-2.5	-2. 5	0.5	0.5
20	18	2.5	-4.0	6.0	79.2	0.9	-6.0	-6.0	19.5	19.0	-25.0-24.5	-16.0-16.0	9.0	8.5	-7.5	-7.5
2 C	19	5.5	-15.0	6.0	79.3	0.9	-2.7	-2.9	16.0	16.0	-19.0-18.5	$-15.0-15.0$	3.0	3.0	-3.0	-3.0
20	20	2.5	15.0	6.0	79.2	0.9	-2.0	-2.2	13.5	14.0	$-15.0-15.5$	$-13.0-13.0$	2.0	2.0	-1. 5	-2.0
STANDARD					79.2	0.9	-3.0	-2.7	16.0	16.0	$-18.5-18.5$	$-14.5-14.5$	3.5	3.5	-3.5	-3.5
ZE							0.0		0.0		0.0	0.0	-0.5		0.0	

SERIES 24

25

V SET	WINT	ALPHA	B OYN	B INT
1	4	75	105	75

	ST	x	Y	INT	DEN	$\checkmark A C T$	F1	F 1	F 2	F2	F3	F3	F4	F4	$F 5$	F5	F6	F6
ZERO							-0.1		0.3			. 4		0.5	0.0		0.0	
STANDARD					80.0	1.0	1.8	1.5	16.5	16.5	-14.	-14.0	-20.	-20.0	-5.0	-5.0	5.0	5.0
25	1	2.5	4.0	4.0	80.0	1.0	2.5	2.4	10.0	10.0	-7.0	-7.0	-14.	-15.0	-6.5	-6.5	7.5	7. 5
25	2	5.5	-15.0	6.0	79.9	1.0	2.0	1.8	16.5	16.5	-14.0	-14.0	-20.5	-20.5	-5.5	-5.5	6.0	6.0
25	3	5.5	15.0	4.0	79.9	1.0	2.0	1.4	15.0	15.0	-12.	-13.0	-19.0	-19.0	-5.5	-5.0	6.0	6.0
25	4	2.5	15.0	6.0	79.8	1.0	2.0	2.0	14.0	14.0	-12.	-12.0	-18.	-18.0	-5.5	-5.0	6.5	7.0
25	5	5.5	-4.0	4.0	79.7	1.0	1.2	1.0	18.5	19.0	-17.	-17.5	-22.	-23.0	-4.0	-4.0	5.0	5.0
25	6	2.5	8.0	6.0	79.7	1.0	2.0	2.8	9.0	9.0	-6.0	-6.5	-12.	-13.0	-5.5	-6.0	6.0	6.5
25	7	5.5	15.0	6.0	79.6	1.0	1.6	1.6	15.0	15.0	-12.5	-12.5	-19.0	-19.0	-5.0	-5.0	6.5	6. 5
25	8	5.5	4.0	4.0	79.5	1.0	3.0	3.2	14.0	14.0	-11.0	-11.0	-19.0	-19.0	-7.0	-7.0	8.0	8.0
25	9	5.5	-4.0	6.0	79.6	1.0	0.2	0.0	20.0	20.5	-19.	-19.5	-23.5	-23.5	-3.0	-3.0	3.5	3.5
25	10	2.5	8.0	4.0	79.6	1.0	2.6	2.2	12.5	12.5	-9.5	-9.5	-16.	-16.5	-5.5	-5.5	7.0	7.0
25	11	5.5	4.0	6.0	79.4	1.0	3.2	3.2	13.0	13.0	-9.0	-9.0	-18.	-19.0	-8.5	-8. 5	9.0	9.5
25	12	2.5	-4.0	4.0	79.4	1.0	0.6	0.4	18.0	18.5	-17.5	-17.5	-21.0	-21.0	-2.5	-2.5	3.5	3.5
25	13	5.5	-15.0	4.0	79.5	1.0	2.0	1.8	16.0	16.5	-14.0	-14.0	-20.	-20.5	-5.5	-5.5	6.5	6.5
25	14	2.5	-4.0	6.0	79.4	1.0	-0.8	-0.8	18.5	19.0	-19.0	-19.5	-21.0	-21.0	0.0	0.0	3.0	2.5
25	15	2.5	-15.0	4.0	79.3	1.0	1.6	1.8	16.0	16.5	-14.0	-14.0	-20.0	-20.5	-4.5	-5.0	6.0	6.0
25	16	2.5	4.0	6.0	79.3	1.0	2.0	2.4	7.0	7.0	-4.0	-4.0	-10.0	-10.0	-6.5	-6.5	6.0	6.0
25	17	2. 5	-15.0	6.0	79.3	1.0	1.8	1.8	16.0	16.0	-14.0	-14.0	-20.0	-20.0	-5.0	-5.0	6.0	6.0
25	18	2.5	15.0	4.0	79.4	1.0	1.6	1.6	15.0	14.5	-12.5	-12.0	-18.	-18.5	-5.0	-5.0	6.0	6.0
25	10	5.5	8.0	4.0	79.4	1.0	2.2	1.8	14.0	14.0	-11.5	-11.5	-18.0	-18.0	-5.5	-6.0	6.5	6.5
25	20	5.5	8.0	6.0	79.3	1.0	2.6	2.8	12.5	12.5	-9.5	-9.5	-17.0	-17.0	-6.5	-6. 5	7.5	7.5
ST	NOA				79.4	1.0	1.6	2.0	16.5	16.5	-14.0	-13.5	-20.0	-20.0	-5.5	-5.5	6.0	6.0
ZE										5		. 0		. 5		0		

| V SET | WINT | ALPHA | B DYN | B INT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 105 | 105 | 75 |

| V SET | WINT | ALPHA | B DYN | B INT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 105 | 75 | 105 |

VITA
l
Tom Shepherd Chisholm
Candidate for the Degree of
Doctor of Philosophy

Thesis: THREE-DIMENSIONAL INTERFERENGE BETWEEN TWO TILLAGE TOOLS

Major Field: Agricultural Engineering
Biographical:
Personal Data: Born in Boonton, New Jersey, November 28, 1941, the son of Mr. and Mrs. Charles F. Chisholm.

Education: Graduated from Stevens Academy, Hoboken, New Jersey, in 1959; attended Northeastern University, Boston, Massachusetts, from 1959 to 1961; received the Bachelor of Science degree from New Mexico Sṭate University, Las Cruces, New Mexico, in 1964, with a major in Agricultural Engineering; received the Master of Science degree from South Dakota State University, Brookings, South Dakota, in 1967, with a major in Agricultural Engineering; completed requirements for the Doctor of Philosophy degree at Oklahoma State University, Stillwater, Oklahoma, in July, 1970, with a major in Agricultural Engineering.

Professional Experience: Student Trainee (co-op student) at Picatinny Arsenal, Dover, New Jersey, 1959 to 1961; Undergraduate Research Assistant for the Agricultural Engineering Department, New Mexico State University, Las Cruces, New Mexico, 1961 to 1964; Agricultural Engineer for the Bureau of Land Management, St. George, Utah, 1964 to 1965; Graduate Research Assistant for the Agricultural Engineering Department, Oklahoma State University, Stillwater, Oklahoma, 1966 to 1967,1969 to 1970.

Professional and Honorary Societies: Associate Member of the American Society of Agricultural Engineers; Member of Alpha Epsilon; Associate Member of Sigma Xi; Junior Member of the Oklahoma Society of Professional Engineers and the National Society of Professional Engineers.

