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CHAPTER I
INTRODUCTION

In the 1910's and 1920's there was considerable 'intebrest in the.
metrization problem for a topological space.‘ Mathematicians strove
to determine under what conditions a topological Spacé is metrizable.
. A short history of the attempts ofithis period aimed at solving the
metrization problem may be found in Chittenden [6]. This interest led
to a solutioﬁ of this problem byb Alexandroff and Urysohn (Theorem 3.4) |
in 1923. This é;?olutiOn [9] stated thatv a necessary and sufficient condi-
tion that a topblogical épace be metrizable is there exist a sequence

G = {Gi} of open coverings such that (a) G.1 is a refinement of Gi’

+1
(b) for each ‘poiptvp and for each domain D containing p there is an
_integer n such that every element of Gn which contains pis a subset of

D, and (c) the sum ofvea_ch pair of intersecting elements of Gi a

4118
-subset of an el'emeht‘ of G1 Kindred theorems to Alexé.ndroff and
Urysohn's theorem were proved bjr E. W. Chiﬂ:enden [6]in 1927, R. L.
_Moorev[Z_Z] in 1‘935, and C. W. Vickefy‘ [33] in 1940. Later in 1947,
R. H. Bing‘ [3] '-proved a generalization of Alexandquff and Urysohn's
‘theorem in tha.t‘("}li did not have to be an open covering.

The solution of the general metrization problem then led mathe-
maticians to ask, when- is a regulat topological space metrizable? A
partial solution came in 1925 when P. Urysohn [12] proved his well-

known metrization theorem, that is, a regular second countable



topological space is metrizable, Following Urysohn's result little
progress was made <.3n7 this problem for twenty-five years, Then in
-"195’1, two independent, but similar, results were published. One, by
.Nagata and .Smirno-f [1], stated that a regular topological space is
metrizable if and only if it has a ¢-locally finite base (Theorem 3. 30).
Thke other, by R. H. Bing [4], stated that a regular topological space
is metrizable if and only if it is prefectly screenable (Theorem 3.27).
In the early stages of the e_fxploration pf the metrizability of

topolvogical spaces, attempts were also made to generalize metric
spaces. Most of these attempts were done by replacing the triangle
inequality with a more genera.i condition, For examples, see Chitten-
denv[5] ‘and. [6], Niemytzki [24], and Wilson [34]. One such attempt
(which was not a generalization éf the ,tria.ngie iﬁequality) was made by
R. L. Moore [23] in the 192v'0's. The result of this attempt is the now-
familiar Moo‘re space (Definition 2.‘33). This particular space is a
regularbHausg_iorff topolo.gi‘cal space which has defiﬁed on it a develop-
ment. It was ét first speculated that all Moore spaces were metrizable,
but R. L. de.ore ‘himself produc':ed‘ an example which showed that this
was not the case. This ‘discpvery led to the question: Under what
conditions a.ré: Moore SpaceS»met_l;iza-ble? |

 In 1937, F. B. Jones [18] published an answer to this question,
in his theorem which stated that if Zml > Zmo, then every separable
- Moore space is'metric and second countable (Theorem 3. 21). In this
same article,- Joﬁes posed the new queétioﬁ: Is every normal Moore
Spaée metrizable? Jones' theorem has since also raised the question
of whether 257?1 > 29?0 is a necessary part of the hypothesis, These two

questions are of this date unanswered even though progress has been



ma.'dé on the question of the metrizability of Moore spaces.
R. H. Bing [4], in his 1951 paper, stated and proved that a

Moore space is metrizéble if and only if it is perfectly screenable, or
"strongly'screenable, or collectionwise nofmal,‘ or paracompact, or
fully normal. While these results answer the metrizability question,
all of these conditions will be shown (in Chapter II) to be stronger than
normality. . Another approach to Jones! normality question was taken in
1964 by R. W. Heath [14]. Using the idea of a uniform base (Definition
-2.42) Heath proved the following: a regular topological space is a
pointwise paracompact Moore space if and only if it has a uniform base
(Theorem 2.45). In 1956, P. S. Aleksandrov [1] proved that in order
that a regular topological space be metrizable, it is necessary and
sufficient that it have a uniform base and that it satisfy one of the
following conditions: (1) it is pafacompact; (2) it is collectwise normal;
or (3) each point-finite covering of it has a locally finite refinement.
These last two results, when taken together, do not produce any new
evidenée,. sincé one may ask if évery normal topological space which
has a uniform Pase is metrizable, However, these two results do
serve to point out the relationships between the general case apd the
spéc_ific» case of Moore spacesv.» .

| - Results in the 1960's have te‘n&ed to conside;r pfoperties of the
boundari‘esv‘of domains Iin a Moore space rathér than properties of the
Moore space. D; R. Tra'ylor‘[ZB] iﬁ 1962 showed that a Moore space
is metrizable if the ‘boundary of each domain is second countable. A
result by-Grace and Héa}th'\[lll].showed that a Moore space is metrizable
if the boundary of each domain is strongly screenable. Traylor [29]

similarly showed that if the boundary of each domain in a normal Moore



space is screenable then the space is metrizable.

The above discussion constitutes basically the results contained
in Chapter III of this paper, Chapter II gives a discussion of the terms
basic to this paper. Also, the second chapter contains examples
illustrating the ideas of this paper. Chapter IV contains a translation
of the normal Moore %pace conjecture to a non-topological setting.
Chapter IV also contains a discussion of properties of nonmetrizable
normal Moore spaces if, iﬁdeed, there does exist a nonmetrizable

normal Moore space.



CHAPTER 1I
FUNDAMENTAL TOPOLOGICAL CONCEPTS
Introduction

In this chapter, the topological concepts basic to this paper are
presented. It is assumed that the reader is familiar with the defini-
tions and theorems that occur in a first course in elementary point set

topology. In particular, any term appearing in Elementary Topology

| by D. W, Hall and G. L. Spencer [12] will not be devfined in this chapter.
It should be noted that the term ”dorﬁa.in” is used in preference

to the term "open set', The term "topological space' will refer to a

Hausdorff topoblogical space. These two terms are used throughout

this paper, hence the reader is advised to become familiar with them.
Certain definitions in this chapter are of such a nature that

examples are necessary to clarify their stétement. In such a case, an

example will generally follow the definition.

Screenable, Strongly Screenable and

Perfectly Screenable Spaces

In 1951, R. H. Bing introduced the definitions and theorems of
this section in his paper on metrization [4] They are probably the
most im'portaht since théy lead to one of the first satisfactory charac-

terizations of metrizability in a regular topological space.



Definition 2.1: Let H be a collection of sets., A collection of

sets G is a refinement of H if each element of G is a subset of an

element of H.

Definition 2.2: A collection of point sets is discrete if the
closures of these point sets are mutually exclusive and any subcollec-

tion of these closures has a closed sum.

The reader may easily see that any finite collection of disjoint
closed sets in the plane is a discrete collection. However, note that a
finite collection of disjoint domains in the plane may not be a discrete

collection.

Definition 2.3: A topological space is screenable if for each

open covering G of the space, there is a sequence H = {Hl} such that
oo

Hi is a.collection of mutually exclusive domains, \JJ Hi is a refinement
oo i=1

of G, and U Hi is an open covering of the space.
i=1

Definition 2. 4 A topological space is strongly screenable if for

each open covering G of the space there is a sequence H = {Hl} such
o0
that H; is a discrete collection of domains, U H, is a refinement of G,
0 i=1
and U Hi is an open covering of the space.
i=1
Of course, any strongly screenable topological space is a

screenable topological space. The converse of this statement is not

necessarily true as the following example illustrates.

Example 2. 5: A regular screenable topological space which is

non-normal and not strongly screenable.



The points of the space S are all the points of the plane on or
above the x-axis. ‘A basis G for S is as follows: (1) for each point p
above the x-axis, {p} ¢ ‘G; (2) for each point p = (r,0), where r is a
rational numbér, and natural numbér n, D(r,n) = {(r,y):0<y<1l/n} € G
(>a./ vertical line éegment with its lower end point at (r,0)); and (3) for
each point p = (x, 0), where x is an irrational nufnber, and natural
number n, D(x,n) = {(t,y):t=x+17y, O <y< 1/n} € G (a line segment
with slope 1 and end point at (x,0)). By using a geometrié argument
one sees that the spéce S is a regular topological space, Also a
geometric argument shows that each element of the basis is a closed
set.

Let H be an open covering of S. Consider the collection

H, = {{p} |p is above the x-axis} and note that H, is a collection of-

1

mutually exclusive domains. Also we have that H. is a refinement of

1
H which covers the‘portibn of S which lies above the x-axis. Let

R = {(r,0) : r is a rational number}, since G is a basis of S we have
for each (r,0) € R a natural number n »such that D(r,n) C h, for soxhe
‘he¢H. LetH, = {D(r,n)|(r,0) ¢ R and D(r,n) C h for some h e H}.
The definition of G implies thevdomainvs of H, are mutually exclusive,
 The definition of H2 implies that H2 is a refinement of H which covers
R. Upon letting I = {(x,0) fx is an irrational real number} one sees
similavrly that I—_I3 = {D(x,n)|(x,0) €¢I and FD(x,n) C hfor some h ¢ H}
is a collecti‘on of mutually exclusive domains which covers I,and H3 is
refi:pement'of H Now K = {Hl, H2,>H3} is a sequence such thag

H.l (i=1,2,3) .i3s a collection of mutually exclusive domains, ik:Jl H,
covers S, ?.nd UH.l is a refinement of H. Hence by definition, S is

i=1
screenable.



Suppose that S is a normal topological space. It is clearly seen

that the sets R = {(r,0) : r is a rational number} and
I={(x, 0): x is an irrational number}

are disjoint closed subsets of S. Since S is a normal topological space,
there are domains DR and DI such that R DR, 1C DI’ and DI{W Dlz(b
Upon referring to the definition of the base G, one sees that to each

point x = (x,0) € I we can associate a base element D(x,n) such that

D(x,n) C D;. Define the set Irn as follows:
= {xfx =(x,0) e I, D(x,n) C DI’ and m > n}.

Now the definition of the base G implies that

But since I is a.‘set of second category when regarded as a subset of the
real lioe, the closure of some‘Ij, in the sense of the topology of the

real line, must contain an open interval (a,b), as shown in Taylor [26].
Therefore there is an N such that ( y C I Since (a,b)‘ is a subset
of the real line, there is a rational number r such that r e (a,o). Now
consider the interval (a, r). Since (a,r) C E there is a sequence {Xi}

such that X, is irrational, X, ¢ I and {xi} converges to r. Now con-

N’
sider the associated base elements D(xi, n); by definition of IN and
D(xi, n) we ho.ve that the height (using Euclidean geometry) of each
D(x.l‘,n) is greater than or .eqibJ.al to 1/N. Since DRm DI = ¢, there is
a base elemont D(r, M) such that D(r, M) C D Now let | .
8 = min {r-—a, 1/2N} and consider the interval (r-6, r). Since the

sequence {xi} converges to r, there is an xj ¢ (r-8, r). But xj e (r-9,r)

implies by a geometric argument that D(xj, n) intersects D(r, M).



Hence DR M DI # @, which is a contradiction. Therefore, the topolog-
ical space S is not normal. |

Suppose thé.t Sisa strqn‘glylscreenab‘le topological space. Since
S is a regular topological space we have by an argument similar to
Theorem 2.13, of the next section, that S is a normal topological
space. This is a contradiction to the previous paragraph, Hence S is

not a strongly screenable topological space.

The reader may wish to know that when referring to the litera-
ture the sequence H in the definition of strong screenability is some-

times referred to as a o-discrete refinement of G.

Definition 2. 6: A topological space is perfectly screenable if

there exists a sequence G = {Gi} such that G.1 is a discrete collection
of domains and for each domain D and each point p in D there is a

natural number n(p, D) such that G contains a domain which lies

n(p, D)

in D and contains p.

The existence of screenable, strongly screenable, and perfectly
screenable topological spaces can quite easily be shown by considering
any finite set with_ the domains defined in an appropriate way. Also
the topological épa;e E2 with the discrete topology is readily shown to
satisfy the above mentioned properties. The author will also show in
Chapter III that a mgtric space (the topological space Ez_with the usual
topology) is perfectly screenable which, with the theorems of this
section; will sh‘ow that any metric space (in partiéular,EZ) is screen-

able and strongly screenable.
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Theorem 2.7: LetS be a topolopgical space. If S is perfectly

screenable, then S is strongly screenable.

Proof: Let H be an open covering of S. Since S is perfectly
screenable, there exists a sequence G = {Gi} such that G, is a discrete
collection of domains such that for any domain D and for any point p.in

D there is a natural number n(p, D) such that Gn . contains a domain

(p; D)
which lies in D and contains p. Defining H, ={glge Gi and g h for

some h € H}, we find that Hi is a discrete collection of domains since
Gi is a discrete collection. Consider p, an element of S. Since H
covers S there exists some domain D of H which contains p, but S
perfectly screenable implies there exists an integer n(p, D) such that

G

n(p, D) contains a.'d'or_nain g which lies in D and contains p. Therefore,
? . )

. o 0]
g is in H . and p is contained in U H,. Also we see that the
. oo i=1
definition of H, implies ) H; is a refinement of H. Hence S is a
i=1

(p, D)’

strongly screenable sPacé.

In general the converse of this theorem fails as can be seen by

the following example.

~Example 2.8: A vr.egula,r, separable, strongly screenable

topological space that is not perfectly screenable,

Points of our spé.ce are the points of the positive x-axis,
Néighborhoods are closed intervals minus théir righf hand end points,
that is, intervals of the form [a,b). Since our topology is similar to
the topolog& of ith‘e real line; our space is seen to be both regular and
separable. Let H be any open covering of our space, and consider the

point 0. There is an h ¢ H such that 0 € h since H is an open covering
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of our space. Consider the set {y : [0,y) (C h}. This set is non-empty

since h is an open set. Letb = sup {y:[0,y) C h}, and note that

b ¢ {y :'[O;y) C h} for if so there would exist an ¢ > 0 such that

[b -€, b+e) C hby definition of sup. Th.us we would have

[o, b. +e¢)(C h wh‘ich implies b # sup {y : [0,y) C h}, a contradiction.

Since b ¢ {y :[0,y) C h} and H is an open covering of our space, we

know there is an h1 € H such that'b ¢ hl' Now repeating the above

argument we see that we can construct an open covering G of the space

such that G refines H and no two elements of G intersect each other.

Since each g of G contains‘ a rational number, our collection G is

countable. Therefore, we can index the elements of G with the set of

positive integers. Thus, if we let H, = {g.l} we have that H, is a dis-
00 00

crete collection, U H, covers the space, and U H; is a refinement
i=1 i=1 '

of H. Hence our space is strongly screenable.

Let G denote any countable collection of neighborhoods, then
there is a point p that does not belong to the left end of any element of
G because the ree.ls e,re uncountable. Therefore, the set [p, a) is not

the sum of a subcollection of G for every real number a. Thue, our
space is' not second ceuntable._ |

Since our space is separeble but not second countable, if is not
metrizable, asvshown' in Hall and Spencer [12], p. 107. Also a regular
topological space is metrizable if-and only if it is perfectly screenable

: (see Chai)ter II1). Sinvce our space is a'bitegular non-metrizable topolog-

ical space, we have it is not perfectly screenable.
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Normality, Full Normality, and

Collectionwise Normality

This SeCtiOI‘;Of the paper will introduce two generalizations of
ndrmality. The first,‘ collectionwise normality, Bing [4], will be
shown to have a definite relation to the preceding' section in regular
spaces. The second, first introduced by Turkey in 1940, is the concept
of full normality. As will be shown in Chapter III, the concepts of fully
normality and collectionwise normality lead to characterizations of

metrizability in Moore spaces.

Definition 2. 9: A topological space is collectionwise normal

if for each discrete collection X of point sets, there is a cgllection Y
of mutually exculsive domains covering X* such that no element of Y
- intersects two elements of Xv. We use X* to denote the sum of the

elements of X,

Theorem 2.10: Any metric space is a collectionwise normal

topological space.

Proof: Let S be a metric space with metric D and X = {xaloz €N}
.a‘discrete collection of point sets. Since X is a discrete collection we

-have for each o ¢A that Ea and (U x_ ) are closed sets such that

Béa P

x M (U x,)=0.
o B#aﬁ

For each o ¢ A let

r, = D(xa, Bk;!)axﬁ ).

Since xa, U x

pra P

are closed disjoint sets we have that‘ra # 0. For
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each p e x consider the sphere S (p). Let
a v T, /4

Ya,z U Sr (P):
pex, “a /4

then v, is a domain that contains xa. Therefore, the collection
Y = {y|aeA} is a collection of domains such that Y covers X*, If

v, M YB # @ then there exist points p and q; spheres Sy, (p) and
S Td

/4

(q) such that p ¢ S 4('p)ﬂ,

v T /4 () # 6.

(p), q ¢ S'rﬁ /4(q) and S

Srf»/4 Sr;3/4

I'a/

Assume without loss of generality that r, < r, Thus there is a point

B

/4’

and D(x,q) <r Therefore we have

x such that D(p, x) < ra,/4

D(p,q) SD(p,x)'+ D(q, x) iraf/4 * rf—”/‘l. S¥q/2 2"

which is a contradiction, since. D(EQ,E ) > r . Hence the collection Y

[¢3

B

is a mutually exclusive collection of domains. Suppose Y, contains

points from x and x Then there is a point p ¢ x , and a sphere

8
Sra/4(p), a‘nd a pointv q e‘xﬁ such that q Sra

1mp11es‘v D(p,q) < X, /4 <r,. Thus D(xa,x

. No S )
/4(p) oW q ¢ ra/4(P)
) < r which is a contradic-
B a

tion. Hence Y is a colle'ction of mutually exclusive domains such that
Y covers X* and no element of Y contains points of two elements of X,
~ Therefore, by definition, S is a collectionwise normal topological

space.

Hence, in particular, the topological spaces E, and E, with the

1 2

usual topologies are collectionwise normal topological spaces. The
following theorem and example show that collectionwise normality is a
generalization of normality, but that every normal space is not

necessarily collectionwise normal,



14

Theorem 2. 11: Let § be a topological space. IfS is collection-

wise normal, then S is normal.

. Proof: Let A and B be two mutually exclusive closed subsets of
S;'that vis,‘ {A, B} is a discrete collection. The definition of collection-
wise normal implies that there exists a collection Y = {ya]a e A} of
mutually exclusive domains such »tha.t for each a, 1 does not intersect
both A and B, and A UB C Y*. Let C be the class of all y_such that
v, M A # @¢. Similarly let D be the class of all v, such that v, M B #@.
Since the collection Y is a mutually exclusive collection of domains,
the domains C* and D* are disjoint, Since A U B (C Y%, the definitions
of C and D imply A (C C* and B (C D*. Hence S is a normal topological

space. -

Example 2. 12: A normal topological space which is not a

collectionwise normal t'opologica.l space.

Let P be‘an uncountable set,B the class of all subsets of P, and
F={f|f:8-{0,1}}. For each p ¢ P associate the function defined as
follows: £ (B)= 1ifpe Bandf (B)=0ifp¢B, and let Fp - {’fp]p ¢ P).
Now F is topologized as follows: ‘(‘1_.) If‘f' € F~Fp then {f} is 2 neighbor-
hood of f, (2) if fp’ € Fp and R is a finite subclas‘s of B then the & neigh-
bo‘rhocﬁd of fP is defined to be the set of all f ¢ F such that f(B) = fp(B)
whenever B ¢ &£. Let D, be the A neighborhood of fp and DJ the
neighborhood of f such that DN D #0. Letf ¢ Dy D, and

o R

note that if D is the #U » neighborhood of f_ then D is a
CRUS . r PN R UL
-subset of %m 12} . Thus we have a base for a topology of F.

be two disjoint closed subsets of F. Let A1 be

and Fp and let A2 be the set of points

Let H1 and H2

‘the set of points common to H,
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common to H2 and. Fp. Let Ql be the associated subset in P consisting
of all p for which fp belongs to‘-A1 and let Q2 be the associated subset
in P consisting of all p for which fp belongs to A,. Nowif A =0,

1 is a d.omain containing Hl' Thus H1 and

are mutually exclusive domains c,ontaining H1 and H2 respec-

then H, CF- Fp. Hence H

F - H,

tively. Similarly if AZ = @, we have H, and F - H2 are mutually .
exclusive domains containing H2 ahd H1 respectively. Thus assume

that neither A1 nor A2

=0}. Letf e A, thenf (Q
P 1 P

is empty, Now define D,= {f¢ F[f(Q)=1and

£(Q = 1, since p e Q;, and £(Q,) = 0

2)
such that f ¢ F - Fp

2) 1)
since p ¢ QZ' Hence we have A, C D,. If fe D,

then the definition of the base for the topoiogy of F implies f is a
ﬁeighb‘orhood of f such that {f} C D,. If fe D, and f e Fp then f = fp
for some p ¢ Q,. Now consider K = {QI’QZ}’ The definition of the
base for the topology implies théﬁ?neighborhood of fp i‘sv the set

D ={fe F]f(Qi) = fp(Q ) for i = 1,2}. Since fe D implies f(Qi):fp(Qi)

i

i=1,2, we have f(Q.) = 1 and f(QZ) = 0, Thus D 1is contained in D..

1
1 1 Similarly the set D2 of all
f ¢ F such that f(QZ) =1 and f(Ql) = 0 is an open set containing AZ' If

1

Therefore D, is a domain containing A

1

D1 M D2 # @, then there is an f such that f ¢ D1 M DZ’ Now f e D
= 0. This

. implies that f(Ql) = 1 and f(Q,) = 0, but f ¢ D, implies {(Q

2) 2 1)

- contradiction implies that D1 M D2 = . Consider the sets

and (D,- H)) U (H, - A,).

1 1)

p 18
U (H, —Al) is an open set.

Since Hl- A1 C F -.Fp and F - Fp is discrete, we have that H - A

an open set. Therefore, the set (D1~ HZ)

Similarly the set (DZ- Hl) U (HZ— AZ) is an open set.
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Suppose f ¢ H, and { ¢ Hl—vA then f ¢ A,. Now { ¢ A, implies

1 1’ 1 1
fe Dl. Then fe D, - H, and f ¢ (D~ H,) U(Hl- A,). Otherwise
suppose { e H1 and f ¢ Hl- Al; thus f € (Dl- HZ) U (Hl— Al)' There
fore,

H, C (D, - HZ)U (H,- Al).
Similarly

H2 C (DZ- Hl)U (HZ-AZ).
Also we have

[(D,-H,) U E-A)] N [D,-H) U (H,- A,)] =6

Therefore we have (D.-H

- Hy) U (H

- A)) and (D,-H

5 1)U(H-A

1 2™ 82
are mutually exclusive domains containing H1 and H2 respectively.
Thus F is a normal topological space.

Consider the set Fp = {fplp e P}. Let fp be any element in Fp.
For eachf ¢ F -.Fp we have that {f} is a neighborhood of f which does
not intersect {fp} Let fq be any point in Fp different from fp’ that is,
p#q. Theset&h={{q}} is a finite subset of 8. An Hneighborhood of
fq is the set of all { ¢ F such that f({q}) = fq({q}) = 1. Therefore fp is
not an element of the A neighborhood of fq since fp({q}) = 0. Thus {fp}
is a closed set. Hence {f;}ﬂ{l‘;} = § if and only if p # q. Let K be a
subcollection of F_, and consider U k. Iffe F - F_ then {f} is a

P ke K _ ‘ P L

neighborhood which does not intersect U k. If f e F_ such that
iR ' ‘ keK 4 p
v fq ¢ K then by an argument similar to the above we have that there is
an # neighborhood of fq that does not contain any points of K. Thus the
set (UJ ‘E is a closed set. Hence the set Fp is a discrete collection of

keK
points.
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Suppose there is a collection of mutually exclusive neighbor-

hoods {D_} such that D_.is a neighborhood of £ . Let D _be an 4

p p p p p
neighborhood of fp' Since ,@Pp is a finite subset of B and P is uncount-
able there is a natural number n and an uncountable subset W of P such
that ﬂp has exactly n eleménts for every p ¢ W; for otherwise P is
countable.. Let a and b be two elements of W, If }ﬁa ﬁﬁb = @, then
consider a function f such that f(B) = fa.(B) for every B ¢ ﬁa, and

f(B) = £, (B) for every B « ﬁb’ and f(B) = 0 for every B g{ﬁ?a Uﬁb.

Since @a ﬂﬁb = @ the function f is well defined and f ¢ D, M D, we
have a contradiction to the hypothesis that the Dp’s were mutually

exc‘lusive. Thus for every a and b in W we have ,ﬁa mé?b # . Hence

i

1
that B»i belongs to ﬂp for every p in W.; for if not someﬁa would con-

there is an element B, of B and an uncountable subset W

1 of W such

tain an infinite number of elements. Moreover, there is a t, with

1
value 1 or 0 and an uncountable 'W1 of WI’ such that fp(Bl) = t1 for
every p in W,. Using similar reasoning on,é?p - {Bl} for pe W, we

find

fo‘r everyaand b in W Thus there is an element B2 of B, B2 # B.l,

1"
a t2 with value 1 or 0, and an uncountable subset W2 of W1 such that

B, belongs to ’Wp and fp(Bz) =t for every p ¢ W,. Continuing

recursively in.this fashion we get Bk’ btk’ Wk’ fork=1,2,...,n. Let
.ﬁbe the sef consisting of Bl’ BZ’ e Bn and D the set of all f with
f(By) =t, fork=1,2,. ,n}. Then %;: and Dp =D for all pin W,

since each b contains exactly n sets. This contradicts the fact that
the collection Dp was a mutually exclusive collection. Therefore the

space F is not collectionwise normal.
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As we have seen in Example 2.5 there is a regular screenable
topological space that is not a normal topological space. However, if
~we replace screenability by strong screenability we obtain the following

result,

Theorem 2.13: If S is a regular strongly screenable topological

space then S is a collectionwise normal topological space.

Proof: Let {Xa[a ¢ A} be a discrete collection of point sets.
For each o, let Aa denote fa;' then the collection {Aa]a/ e} is a dis-

crete collection of closed point sets. ILet A,, B some element of A, be

B

a set in our collection; since we have a discrete collection we know
that AB and L¥) Aa are closed sets. Therefore for each point p in AB
a¥p ‘

there exists a domain which contains p and does not intersect L;é) Aa .
' ’ : a#p

Since our space is regular there exists a domain V_, which contains p

pp
and whose closure does not intersect A ., Thus {V e A is
, : afgﬁ a { Pvﬁlp B}

a collection of domains that cover A  and whose closures do not

P

intersect L;!) A . Similarly, for each a, there exists a collection
azp

{Vpa Ip ¢ A} of domains which cover A  and whose closures do not

‘intersect U A_. Let
J#a T '

K = U {Vpa;p € Aa}:

a €
then K is an open covering of S by domains such that the closure of no
element of K intersects two elements of the collection {Aa]a e A}.

Since S is strongly screenable, there exists a sequence G = {Hl} such

. . - co .o
that H, is a discrete collection of domains, U H, covers S, and \J H,
| i=1 | i=1

is a refinement of K. Now let Wi be the sum of the elements of I—I.1

B

that inter‘s‘ect A,, wherep e/, and v, be the sum of the elements of

P P
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H, that intersect -Aa, where o # . With this in mind, define

-1

i
o= Mie T ) Vie

C8

D )

-V, U V) U L.

n
=

00
Since U H'i is a refinement of K we have that each element of
i=1 :

00
Ul Hi is a subset of an element of K, Therefore, the closure of each
1= . .
o0 . :
element of Ul H.1 does not intersect two elements of the collection
i= :
{Aaloz e/\}. Hence for eachf, WiB does not intersect two elements of

the collection {Aa[oz ¢/} which implies
| i1

(W, . - 1 VjB

ip ) ‘

J:
for each i, does not intersect two elements of the collection {Aa]oz e A},

Thereforé, no ele.ment of the collection {D, |B ¢ A} intersects two

5|

elements of the collection {Aa]a e},

Consider p an element in U A, then we know p is contained
: ae

S oo -
5’ for some B eA. Since (U Hi is a refinement of K, there exists
i=1

a domain hiin some Hj.that contains p and h does not intersect aéjﬁ Aa.

in A

‘Hence, we have that p is contained in W,

iB

for alli. Since Hi’ for each i, is a discrete collection of domaims

, and p is not contained in
ViB,

we have that p is not contained in \71 , for all i, Therefore, pis

p

contained in DB’ and the collection {DB’ B e/}, covers afkéjl\Aoz' The
is a domain since W,

B .

point set Wi is the sum of domains. Now,

p

since
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is a domain, we have that D, is a domain for eachf.

B

By considering the definitions of D_ and D, ap ¢ /\; if

P

0
6 M Da # @ then there would have to exist a domain h in _LJI Hi which
i=

would intersect both'Ap and Aa' This is impossible by the way we

00

constructed our covering K and the fact that U Hi is a refinement of
i=1

K. Hence the collection {Dﬁlp e/A} is a collection of mutually exclus -

D

ive domains covering U Aa’ such that no element of the collection
ae

{Dﬁlﬁ ¢/\} intersects two elements of the collection {Aa @ e A}. Hence

the space S is a collectionwise normal topological space.
Now Theorems 2.7, 2.11, and 2. 13 imply the following results.

Corollary 2.14: A regular perfectly screenable topological

space is a collectionwise normal topological space.

Corollary 2. 15: A regular strongly screenable topological

space is a normal topological space.

Corollary 2. 16: A regular perfectly screenable topological

space is a normal topological space.

At this point it is worth mentioning that there is a normal
topological si)ace which is not strongly screenable,which may be found
in Hodel [16]. Al‘so a strongly screenable topological space Whiéh is
not normal may be constructed from the example given in Hall and
Spénéer [12], p. 65.

This section will now be concluded with the introduction of full
normality which will be shown to be a generalization of collectionwise

normality as well as normality.
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Definition 2, 17: Let H be an open covering of a topological

space S. The star of a point set A with respect to an open covering H

is the sum of the elements vof H that intersect A. The star of A will be

denoted by star (A).

Definition 2. 18: A topological space is fully normal if for each

‘openicovering H of the space there is an open:covering H., of the space

v 1
such:that'the star of each: point with vr:e'spe'c‘:'t to Hl‘is a subset of an. i

element of H.

One quickly sees that the topological spaces E1 and EZ with the

discrete topology are fully normal topological spaces.

Theorem 2.19: If a topological space S is fully normal then S

is collectionwise normal.

Proof: Let W be a discrete collection of closed sets. Since W
is a discrete collection of closed sets we can construct an open cover-
ing H of S such that no element of H intersects two elements of W.

Since S is fully normal there is an open covering H1 of S such that for

each point p € S the star of p with respect t,ovH1 is a subset of an
element of H.

Let us consider the collection G = {star (W)]w e Wx}. Since H1

covers S and hence W% we have that G covers W¥%. Let Wy and w5 be

two different elements in W%, If star (Wl) M star (WZ) # (?5; then let

p € star (Wl) M star (w The star of p with respect to H, is a subset

2)-

1
of an element of H, but the star of p intersects both Wy and w5 since
p € star (wl).ﬁ star (w,).. FHence an element of H intersects both Wy

and w, which implies a contradiction. Therefore, we have
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R

star (wl), M star (w @. Thus the collection G is a collection of

2)
mutually exclusive domains such that no one of these domains inter-

sects two elements of W. Hence by definition S is a collectionwise

normal topological space.

Corollary 2.20: If S is a fully normal topological space then S

is a normal topological space.

That the converse of Theorem 2. 19 does not hold is shown by

the following example.

Example 2.21: A collectionwise normal topological space which

“is not fully normal,

Let R denote the set of real numbers, and let

Wl': {XI’XZ" NP S .}
be a well ordering of R.  If W1 is a well ordering of R then

W:{xz,x3,...,xa,...;x1}

is a well ordering ofb R. Hence let * be the first element of W such
that * is preceded by an uncountable number of elements of W. Let S
‘be._the set of el,enients of W that precedé *. Let the space S be ciefined |
to be the set S in the interval topology (see Spencer and Hali, p. 160).
Suppose K is an infinite discrete collection of points. in S. Now
K contains an-infinite sequence {ki}. such that k, precedes k, ,. Denote
by p the first elenﬁenf of W which follows this infinite sequence., Let
U be any open set such that p € U. There is an interval of the form

(kn,vp] contaiﬁed in U, for. otherwiée p is not the first element of W

which follows the sequence {k.l}. Thus the point p is a limit point of
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4

this infinite sequence {ki}, Let K, = {s|s ¢ S and s precedes ki} and

00
note that K, is ‘countable for eachi. If p =%, thenS = U K., but this

0 i=1
is impossible since U K. is countable and S is uncountable. There-
i=1 .
. O
fore, p ¢ S and the set K is not a discrete collection because M= k.

i=1 1

is not a closed set. This'contradiction implies there does not exist an
infinite discrete collection of points in 5. At this point note that the
above argument could be used to show that every infinite set of points
of S has a limit point in S.

Let A and B be two disjoint closed sets in S. For each a ¢ A,
consider the set {b|b € B and b precedes a}. This set has an upper
bound in S, namely a; t@us the set {b|/b ¢ B and b preéedes a} has a
least upper bound b_. éince the set B is closed, we have ba. ¢ B. The
interval (ba,a.] is an open set such that a « (ba,’ a] and (ba’ al] VB = 0.
Let |

U = U{(ba,a] la e A},
and note A (C U. Similarly let
vV =U {(a.b,b] |b ¢ B}

and note B C V. If UNV#G4, then some (ba,a] M (EB,E] # 0. Néw'
- without loss of generality we may assume that b precedes a. If b
precedes a, '(ba, a.]‘ M (EB—, bl # @, t_hen’the definition of (ba, al implies
Y (’ba,a]. This contradiction implies U () V = 0. Hence the space S
is noi‘mal.

Let Y be any discrete collection of point éets. Now suppose
that Y = {Yala »eA} is an ’infivni‘te collection. For eacha €A, let

Y, © Ya and cons1d¢r the set Y1 =. {ya fya € Ya}' Since Y is an infinite

collection the set Y is an infinite set. Therefore Yl has a limit point p
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in S. Since Y is a discrete collection p ¢ S - U Ya .  Also since Y is a

discrete collection p ¢ Yd, for each a, because ?acontains only one

point of 'Y This contradiction implies that Y is a finite collection of

1
point sets. Since S is normal there is a collection G of mutually
exclusive domains such that G covers Y* and no element of G intersects
two elements of Y, v Therefore by definition, S is collectionwise normal
Let H Be any collection of open sets such that H covers S. For
each x, € W, consider the star (XZ) with respect to H. If 8 {/ star (x
let y, be the first element of W such that Y, ¢ star (x

2)
,). If

sCZ star (XZ) U star (Yl) let Y, be t,he first element of W such that

Y, { star (XZ) U star (Yl)' Suppose for B < a that y[3 has been chosen.
(). U

1f s star (XZ) U (p<astar (y

such that'y ¢ star (x,) U
. o \ X9,

[3)) then let v, be the first element of W

star (

U e -
([3<a, )). By construction and defini

Ve

tion the domain star (Ya)" for each a, ciont_ains only Y, from the set

{Yl’ Voreon ’Yﬁ' ...} . Therefore if there does not exist a Vg such that
' U

S C star (XZ) U ([3<U star (y‘3

which does not have a.limit point in S. For suppose the contrary, that

)) then S contains an infinite set of points

p is a limit point of {YI’YZ’ e Y[3’ .. } . Then we have p ¢ star (Yﬁ)v-’
for some f; otherwise p would not be a limit point of {yl, Vosenes Yﬁ’ .

" Now by construction the star (y,) contains only y‘3 from our set. Hence

B
st;r (Y[S) is' a domain which contains only y[3 from our set. Therefore
P is not a limit point of {yl, Vor--1 Vg ..} . Thus we have a contra-
diction to the fact that every infinite set of points of S has a limit
point in S. Therefoz;e there is a point p ¢ S such that star (p) with
respect to H contains all the points of S that follow p.

The collection H, = {[XZ’ s)|s € S} is a collection of open sets

such that H1 covers S, and no element of H, contains all the points

1



25

that follow some point in S. Hence there does not exist an open cover-
'1ng_H2 of S such that the star of each point with respect to H2 is a

.subset of an element of Hl' ~‘Thus S is not fully normal.

A Theorem of A. H. Stone and Paracompactnéss

In 1948, A. H, Stone stated and proved that a topological space
is paracompact if and only if it is fully normal [25]._ However, as one
reads the literature and sees that the concept of paracompactness is
preferred over the concept of full normality when speaking of metriza-
bility in Moore spaces. For example, see Jones [19]. Hence this
section Wiill be devoted to showing properties of paracompact topologi-

cal spaces.

Definition 2. 22: A collection G of subsets of a topological space

S is said to be locally finite if and only if every point of S has a neigh-

borhood which meets at most a finite number of elements of G.

Definition 2.23: A topological space S is paracompact if and

only if every open cover H of S has an open refinement H1 such that H1

covers S and H1 is locally finite.

- Example 2.24: The topological space E, is a paracompact

topological space.

Let H be any open covering of the topological space E The ;|

5
set

.an{(x,y),n—15x2+y2_<_n}, n=1,2,...,

is a compact set in E Therefore there is a finite subcollection Kn of

2'.
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H which covers Cn‘ Now the set Sn+1 = {(x,y)]x2 + yz <n+1}isa

domain which contains C . Let M ={k/ S k e Kn} and define

n+1[

H. as follows; each element of M, is an element of H, and if g ¢ Mn

1 1 1
then
n-1
g—- U C.
. i
i=1
is an element of Hl' Tet he Hl’ then there is a natural number n such
that
n-1
h=g- C.
) i
i=1

where g ¢ Mn' Since elements of Mn are contained in Kn and Kn is a
finite subcollection of H we have that h is contained in an element of H.

Thus H1 is a refinement of H. ILiet x € S then there is a natural

number n such that x e Cn and

1 that contains x. Hence H1 is a

covering of S. Now the definition of H1 implies that each element of

Clearly there is an element of H

H1 is a domain, Thus H1 is an open refinement of H. I.et x ¢ S then

there is a natural number n such that x ¢ Cn and

n-1
xd U C..
. i
i=1
Since M , M, and M are finite collections and some element of
n-1 n n+l

Mn contains x we have that H1 is a locally finite open refinement of H.

Hence by the definition the topological space E, is paracompact,

2

A somewhat weaker condition than paracompactness is point-

wise paracompactness.
PEERCRN
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Definition 2.25: A topological space is pointwise paracompact

if for each open covering H there is an open covering H, such that H

1

refines H and no point lies in infinitely many elements of Hl'

1

The t0pologica1 space E, is clearly pointwise paracompact by

2

the following theorem.

Theorem 2.26: Every paracompact topological space is a

peointwise paracompact topological space.

Proof: Let S be a paracompact topological space and H an
open covering of S. Since S is paracompact there is an open refine-
ment H1 of S such that H1 covers S and H1 ]

is a locally finite covering of S there is for each point p ¢ S 2 domain

is locally finite. Since H

-Up such that Up intersects at most a finite number of elements of Hl'
Let H2 = {Up-]p € S}. Then H2 is an open covering of S such that no

element of H2 1

x ¢ S and suppose that x is contained in an infinite number of elements

intersects an infinite number of elements of H Let

of Hl' Since H2 1s an open covering of S there is an h e H, such that
x € h, Thus h intersécts an infinite number of elements of Hl, which is
a contradiction. rI‘h'erefore', ‘no elerﬁent of S‘ lies in.infinitely many
».elern‘ents of Hl' Since the 6pen refinement H.’1 covers S we haQe by

definition that the topological space S is pointwise paracompact.

The converse of the above theorem is false as will be shown by
Fl’)xamplevz. 29. However, first let us show two further properties of

pafacompact topological spaces. -

Theorem 2.27: .Every paracompact topological space is a

regular tgpological space.
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Proof: Let S be a paracompact topological space and D a
domain which contains a point p € S. For each q € S -D there are
domains U_and V_ such thatqe U, pe V, and U M V_=@. The

q - q q q q q s
collection

Gz{Uqlqequ}U {D}

is an open cover of S. Since S is a paracompact'topological space
there is an open cover H such that H refines G and H is locally finite.
Since H is locally finite, there is a domain Up C D such that p e Up

and Up intersects at most a finite number of elements of H. If fpr D

then S is regular by definition. If (_Ip G D then let
K={klkeH, kM Up # 0},

Since ﬁ-p ( D there is at least one member of K not contained in D.

Therefore let kl, k .o kn denote the members of K not contained in

A
D. Since H is a refinement of G there are n points SETL PP I of
S - D such that k, for i= cee, . V=UMNYV c MYy
such t th ; C qu or i 1,‘2, ,n. Let pm qlm M q,

and W the union of all members of G which are not contained in D,
Then V ()Y W = ¢ since

(h M VC'l N L. N Vo) N UL U ) =0
and

V. NU =g

for all'i. Therefore, V (_ S - W is a closed set. By definition of W
we have that S - W (C D. Therefore, V (_ S - W ( D and by definition

the space is regular.
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Theorem 2.28: Every paracompact topological space is a

normal topological space.

Proof: Let S be a paracompact topological space. Then Theo-
rem 2.27 implies that S is a regular topological space. Let A and B be
any two disjoint closed subsets of S. For eachp ¢ A we knowp e S -B
since A and B are disjoint closed sets, Since S ~B is open and S is
. regular, there is a domain-Up such that p « Up and ﬁpC S -B. The
open sets {Up]p € A} together with the open set S -~ A form an open
cover G of S. Since S is paracompact there is an open cover H such
that H refines G and H is locally finite. Now let U denote the union of
all the members of H not contained in S -A., Then U is a domain such
‘that ACF U. Letq e B, then since H is locally finite there is a domain
Vq such that q € Vq.and Vé intersects finitely many members of H. Now

let kl, k e, kn denote the members which are not contained in S-A.

2’
If Vq intersects no member of H not contained in S-A then let Dq = Vq.
Otherwise, since H refines G there are points Pys»Ppse--sPy of A such

that k. C U_ for i=1,2,...,n. Let
17 pi

D =V. NS -UT_ YN (ES-U_)y"... M -0T_).
q q Py P, P

~ Then Dq is‘ a domain such that q € Dq' Suppose U M Dq # 0 and let

xe UM Dq' Now x ¢ U implies there is an h ¢ H such that h is not
contained in S-A and x ¢ h. Since x ¢ Dq () U we have x e Dq’ Hence
X € Vq by the definition of Dq' Since Vq intersects only a finite number
of elements of S-A we have Dq intersects only a finite number of
elements of S-A., Therefore x ¢ ki = h, for some i(l1. <i<mn). But

kiC Up. which implies x ¢ U This is a contradiction since x ¢ D
i

Pi’

implies x ¢ (S - ﬁp-)' Thus we have that U M Dq = @. Since Dq MU=¢
i
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for every q ¢ B, we have U ) V = (§. Hence S is a normal topological

space.

Example 2.29: A pointwise paracompact topological space that

is not a paracompact topological space,

The topological space is the space S of Example 2. 5. Since S
is a non-normal topological space we have by Theorem 2.28 that S is
not paracompact. Let H be any open covering of S. Let x = (x,0) ¢ S
then since H is an open covering of S there is an element h ¢ H such
that x ¢ h. Siﬁce G is a basis for S there is a basis element 8y such
that x e gXC h.‘ For each x = (x,0) ¢ S associate a basis element g,
and consider the collection K = {gX]x = (x,0) ¢ S}. The set K* is a
set suéh that no point of K% lies in two elements of K. (i.e., consider
an arbitrary point (x,y) and use a geometric argument). Now each
point of S-K* is a basis element by definition; hence consider
L= {{p} [p ¢ S-K*}. Then one quickly sees that H, = K U L is an

1

open covering of S such that H, refines H. By our construction of H1

1
we have that no point of S lies in more than two elements of H,. Hence

by definition the topological space S is pointwise paracompact.

The remaining portion of this section will be devoted to two
t‘héorems by A. H. Stoﬁe. Since the first is not an integral part of
this paper (and the proof is‘ quite long) it will be stated without proof,
but is included to clarify relationships between paracompactness and

full normality.

Theorem 2.30: A fully normal topological space is a paracom-

pact topological space.



31

Stone's second theorem which is the converse of the above can

be best shown by use of the following lemma.

Lemma 2.31: Let S be a point\%;vise paracompact topological
space. Then S is normal if and only 1f for each open covering
G = {ga}a e /\} of S there is an open coxgrering H= {ha]af ¢ A} such that

haC g, for each o e A. |
Proof: Suppose S is normal and let W = {gl, s 18y - .} be

a well ordering of G. Since S is a poitftwise paracompact topological

space we may assume that no point of S lies in infinitely many elements

U
“p#18p

~closed set contained in g;- Since S is normal there is a domain h

of G. Since G is an gpen covering of S the set Fl =S is a

1
such that Fy C h1 C hl C g The collectlon

Hy = {h} U {gglp # 1}

is an open covering of S. Suppose, forp <a, that h, and H, have been

_ P P
chosen such that Hﬁ C g{3 and

H_={h < By U >
T { Y!Y B} {gY]Y B}
is an open covering of S. The set

F,=5- U hy) U(U g)]

Y<o Y>> o

is a closed set contained in g, since H, is a covering of S for allf < a.

g
Therefore, there is a domain ha such that FaC haC Ka C g, The

collection '

Ha‘= (b lv<a} U {g lv>a}
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is an open covering of S, since
H, = {h < >

is an open covering of S forf <« é.nd FaC ha. Hence by trans -finite
induction we have defined a collection H = {h,} such that Ea C g, for
each a. Letting x € S we know that there are at most a finite number
of sets of G containing x. Denotev’the'se sets by gal, ga,z, e e ga,n and
let o = sup {al,az, e ,arn}.' By construction we have x ¢ h . There-
fore H is an open covering of S possessing the desired property.

Let A and Bvbe two disjoint closed sets in S. Then {S-A, S-B}
is an open covering of S; hence there is an open covering {U, V} such

that T C S-A and ¥V C S-B. Thus we have that S-U and S-V are open
sets such that A (C 8-Uand B S-V.. Also we have that
(S-U) M (S-V) =8-(UUV)=5-8 =0,

and thus the space S is normal,

At this point, before proving our main result let us point out
that there does exist a Moore space that is not pointwise paracompact.

(See Example 2, 44).

Theorem 2.32: Every paracompact topological space is a fully

normal topological space,

Proof: Let S be a paracompact topological space. Then
Theorems 2. 216 and 2.28 'imply that S is a normal pointwise paracom-
pact topological space. Let H be an open covering of §. Since S is
paracompa‘ct there is an open covering H1v= {Ua ]ar e/\} of S such that

Hl refines H, and H1 is locally finite. By Lemma 2,31 there is an
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of S sﬁch that for each U ¢ H. there exists an X ¢ H,
2 o 1 o 2

such that X_a C Ua/' For each x ¢ S there is a domain U(x) such that

open covering H

-x ¢ U(x), and the domain U(x) intersects only a finite number of ele-

ments of Hl' Now let

A(x) = {aeA|UX) M u,# 0%

B(x) = {ae A(x ler}

and

C(x) = {ae A(x lde}

and note A(x) = B(x) U C(x) since x ¢ Ua or x ¢ Ua. Define W(x) as

follows:

Wi(x) = Ux) N[ ﬁ{Uq;,ae Bx)}H N[N {S-X)lae C)}].

By definition of B(x) and C(x) we have W(x) is a domain containing x.
Define H3 = {W(x),x € 5}; and observe that H, is an open
covering of S. Let y € S, then there is'an XE’ € H2 such that y e X(3

since H, covers S. If y e W(x) then W(x) M X, # #. Since y ¢ W(x),

2 P
we have y e U(x) by definition of W(x). Also W(x) M fﬁ # ¢ implies
U((x) M U[3 7 0, thusp e A(x)., Ifp e C(x )then W(x C S - Xﬁ which
implies: W(x) M X-(S% (3, a contradiction. Thus ﬁ' d C(x), and B € A(x)
which implies § ¢ B (x) sinee A(x)'=:B(x) U C(x). The definition of W(x)
now implies that W(x) C U Thus the star (y) = yéLV{T(}::’)"(X) with |
respect to H3 is_contamed in an element of H1 Since H1 refines H we

have that star (y) with respect to H, is contained in an element of H.

3
Hence by definition we have that S is a fully normal topological space.

Note that the topological space E2 is fully normal by the above

theorem since ‘EZ is a paracompact topological space.. (see Example 2.24)..

o
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Moore Spaces and Uniform Bases

‘Let S be a set such that there is a sequence G = {Gi} which
satisfies the following: (1) for each n, Gn is a collection éovering S

such that each element of Gn is a domain; (2) for eachn, G a

n+l '°
subcollection of Gn; (3) if D is a domain such that x,y € D then there
exists a natural number m such that if g € Gm and x€g then E is a

subset of D and unless y=1x, Edoes not contain y, Moore [23].

Definition 2.33: A Moore space is a set S such that there is a

sequence G which satisfies conditions (1), (2), and (3) of the above.

Hence a Moore space is a regular Hausdorff space with a
sequence G = {Gl} such that for e;ch point p of S, the sequence
H = {star (p, Gl)’ star (p, GZ)’ v. ..} is a countable basis for p, where
star (p, Gi) means the star of ip with respe‘ctvto the covering Gi"

Clearly then the space S of Example 2.5 is a.Moore space with
Gn defined in the obvious way. (i.e., Gn is the ‘collebction of all points
above thevx-axis together with all D(x, m) such that m >n where x is a
point on the x-axis). Another example of a Moore space is the topolog-
ical space E

2

than or equal to 1/n.

with Gn the collection of all spheres with diameter less

. An alternate way of characterizing a Moore space is the follow-
ing theorem which is stated for information only and hence will not be

proved.

Theorem ‘2. 34: A regular Hausdorif topological space S is a

Moore space if and only if (1) for each p € S there is a countable basis

U(p, 1), U(p,2),... of pand (2) for every domain V containing a point



35

q € S there is an integer n(q, V) such that q € U(r,n(q, V)) implies

U(r,vn(q, vy C v, where r e S.

Since, for much of this paper, the condition of regularity is not

needed let us make the following definitions.

Definition 2.35: Let S be a Hausdorff space. A sequence

G = {Gi} such that G, is an open covering of S is called a development

of S if for each point p and each domain containing p there is a natural
number n such that every element (domain) of Gn containing p'is a

subset of D.

Definition 2.36: Let S be a Hausdorff space with development

G = F{Gi}, If G, , refines G, then S is called a developable space.

1

Of course, any Moore space is a developable space but the

converse is not the case as the following examples illustrate.

Example 2.37: A de\?elopable space that is not regular. (See

Hall and Spencer [12], p. 65).

Example 2.38: A regular topological space that is not a develop-

able ‘space.

The space is the topological space S of Example 2.8. As we
have seen the space S is regular, separable and strongly screenable.
Since S is strongly screenable we know that S is screenable. However,
we also noticed that S was not sécond countable. Hence by the followiﬁg

theorem the .spacve S is not developablé,
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Theorem 2.39: A separable screenable developable topological

space S is second countable,

Proof: Let the sequence G = {Gi} be a development of the
topological space S. Since S is a screenable topological space we know
that>for each G., there exists a sequence {H.m} such that Hij is a collec-
tion of mutually exclusive domains and’ji?1 Hij is an open covering that
refines G,. Since S is a separable topéiogical spacé, S does not

contain uncountably many mutually exclusive domains. Thus Hij‘ is a

00
countable collection for each i, and U H.lj is a countable open cover-

j=1 o
ing that refines G.. Therefore, we have that {J (U H.. is a countable
1 i=1 j=1 U

basis for S, which implies that S is a second countable topological

space.

Hence not every screenable topological space is developable as
seen by Examples-2.8 and 2. 38. Also, there is a developable topolog-

ical space that is not screenable.

Example 2.40: A separable Moore space that is not screenable.

The pohints of the topological space S are the points of the plane
and the open sets are given in terms of a development {Gi} defined as
follows: Let {Li} be a sequence of horizontal lines whose sum is dense

in the plane. A set g is in Grl if and only if either g is the interior of
n

a circle with diameter less than 1/n which does not intersect U Li’
i=1

or g = {p} U I, U I,, wherep e'a,.Lj for some j, I, and I, are interiors

of circles of diameter less than 1/2n which are tangent to L. at p on
n
opposite sides of Lj and such that Il U IZ does not intersect S Li“
' i=1
Our development {G.l} satisfies Definition 2.33. (Use a geometric
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argument to show part 3).. Hence S is a Moore space. Since the plane
is separable with the usual topology one quickly sees that our space S
-1s separable.

Let Lj be one of the given lines and let Lj have equation y = j,
where j is a real ﬁumber. Now define J = {(x,j)[ x is an irrational}
and K = {(x,j)|x is a rational}., By our development, there exists an
open covering H of S such that no two points of J U K belong to the
same element of H. Therefore, any opevn covering of S that refines H
contains uncountabiy many eleme‘nts. Since S is separable it does not
contain an uncountable collection of mutually exclusive domains. Hence

S is not a screenable topological space.

In Example 2.40 consider J as a subspace of the topological
space S. - Then one quickly sees that with the relative topology J is a
closed discrete su‘bSpace of S. Since the topological space S is
separable there exists. a dense countable set D such that D is dense in
S. | Since J is an ﬁncountable set and D is countable we have
RT) > Zm(D).

Hence the topological space S of Example 2. 40 is not

normal by the following t‘heoremb.

" Theorem 2.41: Let S be a topological space. If S contains a

(D)

dense set D and a closed discrete subspace K with N (K) > 2 then

S-is not normal.

Proof: Assume that S is a normal topological space. Since K
is a closed discrete subspace of S, every subspace of K is closed in S.
Therefore, for each subset A of K we have A and K - A are mutually

exclusive closed sets, Since S is normal, there exists domains U(A)
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and V(K-A) such that AC U(A), K-A C V(K-A) and U(A) M V(K-A) = ¢.
Therefore the map f:(K) - (D) defined by f(A) = D M U(A) is well
defined. Let A and B be elements of £(K) such that A # B. If A # \B,

. then we have either A - B # § or B - A # ¢§. Without loss of generality,
assume A - B # §. Since A - B # §§, we have that A M (K -B) # ¢,
which implies that U(A) M V(K -B) # ¢, where U(A) and V(K - B) were
defined above, Hence D MJA) M) V(K -B) # @ since D is a dense set.
Also no'te U(A) - U(B) # @ or U(A) # U(B) since U(A) M V(K - B) # @.

- Now D M U(A) M V(K -B) # ¢ and U(A) # U(B) implies that

D M UA) # D M U(B) or f(A) # {(B). Hence our mapping is a one to
one mapping, which implies N(P(K)) < R(P(D)). This is impossible

)

2 (D

since (P (K)) > M(K) > (P (D)) = 2 Hence our space is not

normal.

This séction will now be CO_ncluded with one further condition

for a regular topological space to-be a Moore space.

uniform if every infinite subcollection of B containing an arbitrary

point p ¢ S is a base at the point p € S.
[ ]

Example 2.43: The topological space E, has a uniform base.

A development for E2 is G = {Gn} where Gn is the collection

of all open sPherés of radius less than 1/n. The topological space E2

is pointwise paracompact by Example 2,24 and Theorem 2.26. Hence

for each n there is an open refinement Grl of Gn which covers E., and

2

: (oo}
no point of EZ lies in infinity many elements of Gri. Define B = U Gr;
: , . - n=1
and note that B is a bage of E, since U Gn is a base of EZ' Suppose
: n=1 ;

2
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-B' is an infinite subcollection of B such that each element of B' contains
p, where pe S. LetD be any domain such that p ¢ D. Since G is a
developfnent of E.2 there is a natural number N such that every domain

. of GNthat contains p lies in D. If there is a b' ¢ B' such that b'e Gy

then B' is a base at p. If no element of B' is contained in Gi\I then there

is an m > N such that Gr'n contains an element b' ¢ B' such that p ¢ b’,
since B' is infinite and for each n only a finite number of elements of

Gn contain p. Since Grn refines GN we have b' is contained in an

element of GN. Hence b' is contained in D and B' is a hase at p. Thus

by definition B is a uniform base.

Example 2.44: A Moore space that does not have a uniform

base.

Let S denote the points of the plane on or above the x-axis.
Define a base B for S as follows: (1) If a circle lies entirely above
the x-axis, its interior is a basis element; and (2) if a circle is tangent
to the x-axis (from above) then its interjor plus the point of ta.ngenc‘y

is a basis element. For example,
2 2
C = {6,y [x" +(y-1/2)" <1} U {(0,0)}

is a basis element. A development G = {Gn} is defined as follows:

g ¢ Gn if and only if g € B and the diameter of g is less than or equal
to-1/n. By gs‘ing‘a geometric argument one sees that G = {Gn}
satisfies Definition 2.33. | Hence S is a Moore space.

Suppose that S has a uniform base B, and consider the set

i

X = {(XsY)IOvSX 5,1'and y = 0} on the x-axis. There is an open

covering H of X by elements of B such that no point of X is contained
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in more than one element of H, Since B, is a base there is an open

1

covering Hl of X by elements of Bl such that Hl refines H. Hence

since B is a base there is an open covering H, of X by elements of B

2

such that H, For each x ¢ X let bx denote the element of

2 1’

H2 that contains x. Since X is an uncountable set, there must exist an

refines H

uncountabble number of elements of H, with diameter greater than 1/n

2

for some n. Denote this collection by C Now for each element bx of
C replace bx by an element with diameter equal to 1/n. Denote this
new collection by D. Since D is uncountable and the centers of the
associated circles lie on the line y = 1/2n we have that the set of

centers has a limit point p. Let bp denote the element of Hl that

contains p. Then since H2 refines Hl there is an infinite collection

of elements of H, that contain p. But since no element of H contains

1

more than one point of X we have that no element of Hl contains more

than one point of X, Thus there is an infinite collection of elements

of Hl 1 is'hqt a uniform

base.

such that no element lies in bp' Therefore B

Since Example 2. 44 is a Moore space S which does not have a
‘uniform base the following theorem théﬁifimplies that S is not pointwise

pa rac ompact,

Theorem 2.45: Let S be a regular topological space. The

topological space S has a uniform base if and only if S is a pointwise

paracompact Moore space.

Proof: Let G = {Gn} be a development for S. Now if S is
assumed to be pointwise paracompact, then for each natural number

n, C—n has a refinement Gri which covers S such that no point of S lies
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’ 00

in infinitely many elements of Gr;' Let B = Ul Ghi and suppose B! is
nz

an infinite subcollection of B such that each element of B' contains p,

where p € S. Now if D is any domain such that p € D then there is a

natural number N such that every domain of G, containing p lies in D.

N

Since GIiI is a refinement of GN we know there are only a finite number

of elements of GILI containing p. If no element of GI!\I is an element of

B' then since B' is an infinite subcollection of B there is an m > n such
that Gr;n contains a domain such that g ¢ B' and p ¢ g. Since Gm_refines
GN we have g is contained in some element of G

in D since every element of G

N Hence g is contained
N_which contains p lies in D. Thus B' is

00
a base at the point p which implies that B = Ul Gr; is a uniform base.
n=

Conversely, suppose that the regular topological space has a
uniform base B. Let B = {bl’bZ’ ...,b ,...} be a well-ordering of B.
) 24

The cover G1 is defined as follows: (1) Let b1 € Gl’ (2) each subse-

quént element of G, is the first element of B to contain a point not in

1

any preceding element of Gl' Let pbe an element of S. Since B is a
basis of S, there is an element of B which contains p. Let b be the
first element of B to contain p. By construction of 'Cr1 we have that

b e Gl' Hence G1 covers S,

Now define GZ as follows: Let Bl be the subcollection of B
remaining after removing from B all of the nondegenerate elements of

Gl' The collection B1 # @ because either b1 is degenerate or bl is not

degenerate. If b, is degenerate then b, ¢ B, which implies B, # @. If

1

b1 is not degenerate then there is a ba € B such that boz is properly

contained in bl' Thus we have ba ¢ B, and B1 # 0. Let the first

1

element of GZ be the first term of B (in the well-ordering of B) and

1

each subsequent element of GZ is the first element of B, (in the well-

1
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ordering of B) to contain a point not in any preceding element of GZ’

Let p € S, if {p} is an element of B then {p} ¢ B If b is the first non-

1

degenerate e€lement of B which contains p then there is a ba, ba follows

1

hence B1 covers: S. Therefore since»B1 covers-S we have that G2

covers S by construction. This process may be continued to define a

b, pe ba,. such that ba' is properly contained in b. Thus ba e B, and

sequence G = {Gn} of open covers of S. Note, be certain not to delete

in producing Bi' Now if ge G

the degenerate elements of G. in B.
i i n+l

-1

then g € Bn by definition of G Hence g « Bn since Bn'is a sub-

ntl’ -1

collection of B By construction either g ¢ G_or g C g,,» where

n-1°

g. € G_. Hence G refines G_.
1 no n n

+1
Let p ¢ D and D any domain. Suppose for every natural number
n there is an element g, of Gn such that P € gn and g, ¢ D. By con-
struction the‘:'gn“s'_ are distin'ct‘sets. Thus {gn} is'an infinite collection
of elements‘ of B such that p « g, for eech n and {gn} is not a bése of p.
This contradicts the definition of B; thus there is a natural number n
such that every domain of Gn containing p lies in D. Hence {Gn} is a
development of S. Now by definition S is a developable space. One
v‘quickly sees that since S is a regular topological space that Gr;:kﬁ:jnGk
satisfies the conditions (1), (2), and (3); hence S is a Moore space.
Let H be an open covering of S. Since B is a basis there is a
subcollection Bl of B which refines H and covers S. Let
Bl = {bl’bZ’ e ’ba' ...} be a well-ordering of Bl. An open refine-=

ment B2 of B‘l is defined as follows: (1) b, ¢ BZ, (2) each subsequent

1
element of B2 is the first element of B1 to contain a point not in any

preceding element of Bz. Let p ¢ S and let b-be the first element of

_ B2 containing p, Suppose the collection, B3, of all elements of B2
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3. {b} is an infinite collection

which contaiﬁs p is infinite. Then B
which is not a base at p since no element of B3 - {b} is contained in b.
Hence the collection of all elements of B2 which contains p does not

form a base for p. Therefore by definition of uniform base the collec-

tion of all elements of B2 which contain p is finite, Therefore by

definition, Sisa pointwise paracompact topological space.
Pointwise Paracompact and Screenable Moore Spaces

This chapter will be con¢luded with a relationship that holds in
Moore spaces, but which does not hold in general. That is, if a- Moore
space is screenable then it is pointwise paracompact. The converse is
shown to be false by a counterexample. In connection with these
concepts there avré several una;ns‘wered questions. Is everyvnormal
Moore space screenable? Is every normal Moore space pointwise
‘paracompact? The aﬁswer to these questions would provide an answer
to whether every normal Moore space ‘is metrizable. Also in this
connection is the following question: Is every normal Moore space
colléctionwise normal? The answer to these questions would give a
solution, as shown by theorems of Chapter III. These questions give
one an indirect m_ethbod of attacking the question of whether a normal
Moore spé.ce is metrizable.

Before attacking the theorem that every screenable Moore
space is pointwise paracompact, let us recall that a set is a G6 set if
and only if it is the intersection of at most countably many domains,

Dugundji [7].

Theorem 2.46: Let S be a topological space in which every

closed set'is a Gy set, IfS is a screenable topological space then S
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is a pointwise paracompact topological space.

Proof: Let H be an open covering of S; Since S is screenable,
there is a sequence K = {Ki} such that Ki is a collection of mutually
. . m .
exclusive domains, Ul K, covers S, and @ K. refines H. For each i,
i= i=1

let M;= S -Ki*' Also let R, = {Rij} be a decreasing sequence of domains

(0 0]
such that Mi = f'\ R Let

-1
G, ={eglg=[ N R, 1Nk, keK, i=2,3,...}.
=17 1

Now consider the collection G, U K, =G.
Let p € S and i the smallest natural number such that p ¢ k for

some k ¢ Ki' Now either i'=1ori>1. Ifi> 1, then

‘ i-1
pé¢ | U K.| .
j=1

Thus
i-1 i-1
pe M M.C M R..1
j=1 3 7 =1
Hence

i-1
-~ R..| Mk,
pe L@l RJJN

for some k e'»Ki, which implies pe g ¢ G,. Ifi= 1, then there exists

1°
ke Ki such that p ¢ k ¢ G. In either case, p is contained in an element

of G. Therefore G is an open covering of S. By definition of G, and K

1
we have that G refines H.
Let p ¢ S and i the smallest natural number such that p ¢ k, for

some k ¢ Ki' There is a natural number N such that for j > N we have

P ¢ Rij’ for ot'her_wise D€ ‘Mi’ a contradiction. Hence for j > N and for
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any ke Kj’

because

j-1
M R,
P MY

Since p belongs to at most one element of each of the collections

K p belongs to at most N elements of G. Thus G is an

Kl,KZ"." VK

open covering of S such that G refines H and no point of S lies in infin-
itely many elements of G. Thus by definition, S is a pointwise para-

compact topological space.

Theorem 2.47: Leét S be a developable topological space.

Every closed point set M of S is a Gé set.
Proof: Let G = {Gn} be a development of S. For each n, let
'Hn:{gfge G, gM M # ¢}.

Suppose there is a point p € S such that p ¢ nP:%l Hn* and p ¢ M. Now
p ¢ Mand M a closed set implies there is a domain D such that p € D
and D N M= §. Since G is a development of S there is a natural
number N such that every domain of GN that contains p lies in D.
Thus every domain of GN that contains p does not contain any points
of M. Since pe ?%1 Hn* there is a domain h ¢ HN which contains p.
Hence be definiti;: of HN’ h ™ M+ ¢, which is a contradiction.

' o0 s
Thus M= () Hn which implies M is a G6 set.
n=1 '

Hence by Theorems 2.44 and 2. 45 we have the following

corollary.
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Corollary 2,48: Every screenable Moore space is pointwise

paracompact.

The converse of Corollary 2.48 is false and will be shown with

the aid of the following definition and example.

Definition 2.49: A topological space S is said to be a semni-

metric topological space provided there is a distance function d defined
for S such that (1) d(x,y) > 0 for each x,y ¢ S, (2) d(x,y) = d(y, x) for
each x,y e S, (3)d(x,y) =0 if and only if x = y and (4) the topology of

S is invariant with respect to the distance function d.

Example 2. 50: A regular, connected, locally connected,

separable developable space which is not metrizable, but is semi-

metrizable.

Let X denote the x-axis of EZ' Suppose p and q are distinct
points of S. Define D on S as follows: (1) If p,q ¢ X then D(p, q)=4d(p, q)
where d. is ‘the usual metric for EZ; (2) IfpeX then‘D(p, q) = d(p,q) + ¢
where ¢ is counterclockwise radian measure between a line L1 contain-
ing {p} U {q} and a vertical line L, containing p such that 0< e < /2
(see Figure 1); (3) If D(q, p) is not defined above, then let D(q,p)=D(p,q);
and (4) If p ¢ X then D(p, p) = 0.

Clearly, D satisfies parts 1, 2, and 3 of the definition of a semi-

metric. Consider the topological space S whose topology is induced by

the semi-metric D, Denote

U.(p) = {q ¢ S|D(p,q) <r, and r > 0},

(See Figure 2 for an open set on X).
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€ x)
Figure 1. The Angle o
T
,1""\\\ (O,I)
1/
p: \/\( (0,0} X N
4
\\’,/ (0;"’
2

Figure 2. The set UI(O’ 0)

With the topoiogy, the topolbgical space S becomes a regular,
connected, locally connected, separable semi-metric topological
space. Also the definition of Ul/n(p) implies that S is developable.
LetI = {(x,0)|x is an irrational number}, then Theorem 2.41 implies
that S is not normal, Hence S is not a metrizable topological space.
Now suppose that S is screenable. If S is screenable then Theorem

2.39 implies that S is second countable. Thus S is metrizable by

Urysohn's Metrization theorem which is a contradiction. Therefore
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S is not a screenable topological space.

"For more information on semi-metrizable spaces see McAuley

[21] and Wilson [34].

Example 2. 51: A pointwise paracompact Moore space with a

uniform base which is not screenable, not normal, and not metrizable.

The space S consists of all points on or above the x-axis
(denoted by X) with a basis G defined as follows: (l) for p above X,

{p} € G and (2) for each x € X and each natural number n,

{(t,y):t=x+y or t=x-y, 0<y<l/n}eG

(every "V'' with vertex on X, sides of slope 1 or -1, height 1/n).
Clearly, S with the ‘topology generated by G is a topological space (by
use of ordinary Euclidean distance).

Now suppose S is a screenable topological space. By definition
of G, there is a coveringH_of S by basis elements, each of diameter
less than 1/n (using Euclidean distance), and such that no point of X
belongs to two elements of H. Since S is a screenable topological space
there is' a sequence K = {Gh} such that Gn is a collection of mutually
exclusive dorriains, 8 G_ refines H, and 8 G_ covers S. Hence

: n=1 T ' n=1 ™ =
there is a subsequence K, = {Gni} of K such that Gni is a collection of

[ee)
refines H, and U G, covers X
1=

o0
mutually exclusive domains, Ul Gy,.
1= 1

1

. o0 (e'e]
(x-axis). Since (U G, refines H, we have (1) no element of \J G,
i:l i i: .

1

: 00
contains more than one point of X and (2) each element of U G_ is a
' ' : i=1 1
- basis element of diameter less than 1/n.
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For each g, ¢ Gp.» where {x} = g, M X, let diameter
S 1 - .
tg,) = I/N;{'. Referring to Example 2. 50, let us associate with g_ the

domain U That is, there is a collecgtion

(x).
/N,

Hn. - {UI/NX(X)ng ¢ Gn.}

i i
such that the elements of H , and G, are in a one to one correspon-
i i
dence. For each gy diameter (gx) = l/Nx’ consider the triangle

denoted by Ag, formed in the piane by g and the line y = 1/2NX (see

Figure 3).

(%= s ) | (%t 5wy )

N
L4

N

(x,0)

Figure 3. The Triangle g,

Now consider [A 8, U interior Agx] = Agx. Let g8 and gY be

two elements of G, and consider A gy and Agy. By use of a distance
\ i :

argument, one sees that A gy ™ A gY = @ since elements of G, are
: i

mutually exclusive, The definition of U (x) implies that if q # x,

1/N,

q € S, and the angle between a line containing {g} U {x} and a vertical

line containing x is greater than m/4, then q ¢ Ul/N (x). Thus if
‘ X
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U (x) is constructed at x in the space S then the portion of U (x)
1/Ny 1/Ny

lying above the x-axis lies in A g .- Therefore if Gy

is a collection of
i

mutually exclusive domains in S, then the associated collection H, of
i

Example 2. 50 is a collection of mutually exclusive domains in the space
of Example 2.50. Hence there is a sequence K, = {Hn} in the space of
i

Example 2,50 such that H, is a collection of mutually exclusive
i

o0 ' v 0
domains. Since U G, . covers X we have U H, covers X. Also no
i=1 i i=1 i

element of U H, contains more than one point of X since no element
i=1 i

. o0
of U Gn contains more than one point of X. Since the set of points
on the x-axis is uncountable, there is a natural number nj such that

H, . contains an uncountable number of domains. Thus H, 1is an

uniountable collection of mutually exclusive domains.- This- is a con-
tradiction, since the space of Example 2. 50 is se‘parable. Therefore,
the topological space S is not screenable,

For each natural number n, let Fn be the collection of all basis

elements of diameter 1/n, or 0 (using ordinary Euclidean distance).

m .
Let B = Ul Fn and B' any infinite subcollection of B containing a
n=

s

point x € X. The definition of G and the fact that B' is an infinite
~collection implies that B' is a base at x, Hence, one sees that

o0
B = Ul Fn is a uniform base of S. Now let
n=

D:{(x,y):t:x+'yort=x—y, Oiy_<_1/n},

n fixed, be any basis element containing a point x € X. By definition of

G there is a natural number m > n such that

Dlz{(x,y):t:x;+yor t=x-y, 0<y < 1/m}

is contained in D. For eachy e S, y s(Dl, there is a domain DY such
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that y ‘Dy- and Dy »f'\ D, = § (use ordinary Euclidean distance to con-
struct such a domain). Thus D1 is a dorﬁain such that 51 C D. Noting
that the plane above the x-~axis is a regular topological space, we have
that S is 2 regular topological space. Hence Theorem 2.45 implies
that S is a pointwise paracompact Moore space,

Now assume S is a2 normal topological space. The definition of
G implies that the set I of all irrétional numbers on the x-axis and the
set K of all rational numbers on the x-axis are closed sets, Also the
sets I and K are disjoint sets. Since S is normal there is a cover Q of
I by basis elements such fhat Q—*m K = ¢ and for each x ¢ I, there is a
unique g ¢ Q such that x ¢ q. Define F : R » R as follows: (1) if x ¢ K,
then f(x) = 0; (2) if x ¢ I, then {(x) = dié.meter of the element of Q con-
taining x. Let x ¢ I and suppose the diameter of the element of Q
containing x is 1/n. Since each neig‘hbo‘rhood Né(x), for each 6 > 0,
contains a rational number r, we have |f(r) - f(x)| = 1/n. Thus if ¢ is
a positive real number such that 0 < ¢ < 1/n we have {f(r) - f(x)' > €.
Therefore f is not continuous at each irrational number,

Let x.¢ K and ¢ any positive real number. Now QM K = ¢ and
the definition of the base imply that there is a basis element b and a
natural number N such that x e b, b N Q*=¢, 1/N<e, and the

diameter of b is 1/N. For each

1 v 1
ye(x-m, x)U(x, x+—2—N—), yel,

there is an element q of Q such that q Vb = @ and y ¢ g. Since
g b=, a geometric argument shows that the diameter of q is less
than 1/2N (see Figuré 4). Hence for each

1 1
YG(X-EN’ X+§N),
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we have

[£ty) - £ | = £ ] < 55 < e

Thus the function f is continuous at every rational number x ¢ K.
This is a contradiction since there does not exist a function which is
continuous at each rational point ahd discontinuous at each irrational
point (Gelbaum and Olmsted [10])v. Therefore S is not normal. Since

S is not normal, S is not a metrizable topological space.

T
~N7

, |
| t

|
| !
l |
l |
. |

N

|
(-4.0) (o) (%) (Vo) (o) (F0)

Figure 4. An Example of a Set g



CHAPTER III
ME TRIZATION
Introduction

The goal of Chapter III is ta give a development of the theory of
metrizability in Moore spaces. The development will follow a some-
what historical account of the metrizability of Moore spaces. However,
since some of the later results are closely related to earlier results,
ofder'wili not be strictly chronologiéal.

The second section of this chapter will define a metric space
and include a discussion of attempts to generalize a metric space. The
proof of Alexandroff and Ur*;rsohn's, metrization theorem will be given
in detail. Also, theorems whichvare similar or whose proofs are
based on Alexandroff and Urysohn's theorem will be indluded in this
section.

Section three of this chapter includes the proof of F. B. Jones'
theorem on the metrization of regular developable spaces. Also in
this section is Urysohn's theorem which is stated, but not proved; :

Thé fourth section is devoted fo the proof of R. H. B.ing’s
metrization theorérn for regular topological spaces. After proving
this, the ‘resul‘t is applied to Moore spaces to obtain a series of char-
acterizations of metrizability of Moore‘ spaces. The last section of
this chapter summarizes the results 6btained within ‘the past fifteen

years. These results include generalizations of properties of Moore

=g}
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spaces to properties of boundaries of domains in Moore spaces, Then,
using these properties of boundaries of domains in Moore spaces, a

series of metrization theorems are proved.
Theorem of Alexandroff and Urysohn and Related Results

Before proving the main result of this section let us first define

a metric space.

Definition 3.1: A topological space S is a metric space if and

only if there is a non-negative real valued function D defined on S such

that the following hold for a,b, and ¢ in S:

1

Condition 1: D(a,b) = 0 if and only ifa = b

Condition 2: D(a, b) = D(b, a) |

Condition 3: D(a,c) < D(a,b) + D(b, c)

Condition 4: The function D preserves limit points, that is, p

.is a limit point of M a subset of S if and only if D(p, M) = 0.

In attempts to generalize metric spaces, condition 3 is often
replaced by a condition more generalized than condition 3. The follow~

ing are conditions which often replace condition 3.

Condition 5: If D{a,b) < ¢ and D(c,b) < ¢ then D(a, c) < 2e.
Condition 6: For every e > 0 there exists a number @(e) > 0
such that if D(a, b) < @#(¢) and D(c, b) < @(¢) then D(a,c) < e. This con-

dition is called uniform regularity.

Condition 7: Given a point a and a number ¢ > 0 there exists a
number @ (a,e¢) > 0 such that if D(a,b) < @#(a, ¢) and D(c, b) < @#(a, ¢) then

D(a,c) < e. This condition is referred to as Niemytski's local axiom
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of the triangle.
Condition 8: If D(a,a_) ~ 0 and D(b_,a_) - 0 then D(a,b_) - 0.
———— n : n’ n n
Condition 9: For each point a and each positive number k,
there is a positive number r such that if b is a point for which

D(a,b) > k and ¢ is any point, then D(a,c) + D(b,c) > r.

In this section it will be shown that if a topological space S has
defined upon it a non}negative real valued function D satisfying condi-
tions 1, 2, 4, and 5 then S is a metric space. Frink [9] has shown
that if a topological space S has a non-negative real valued function D
defined upon it satisfying conditions 1, 2, 4, and 6, then S is a metric
space. Niemytski [24] showed that a similar result is true if condition
3 is replaced with either condition 7 or 8. Also W. A. Wilson [34]
showed a similar result for‘condition 9; Hence a topological space S
is' metric if there exists a non-negative real valued function D defined
on S satisfying conditions 1, 2, 4, and any one of the conditions 3, 5,

6, 7, 8, or 9.

Alexandroff and Urysohn's metrizability theorem will now
follow the proof (Lemma 3.2 and Lemma 3. 3) that a topological space
S is a metric space if there exists a non-negative real valued function

D satisfying conditions 1, 2, 4, and 5.

" Lemma 3,2: Ifa,x Hos oo s X, b are points of a topological

1’
| space S and d is a non-negative real valued function satisfying condi-

tions 1, 2, and 5,:th(_‘a_n .

d(a,b) < 2d(a,x)) + 4§(xl,x2) toootddx ux) F2dx,b) (1)
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Proof: Suppose the contrary that the lemma is false. Then

there is a natural number n and a set {a, x N b} such that (1) is

17

false. Let N be the smallest natural number such that

d(a,b) > Zd(a,xl) + 4d(x1,x2) + ... + 4d(xN_1,xN) + Zd(xN,b) 2)

Hence by definition of N we have that (1) is satisfied for all n < N.

Now suppose that N = 1. If any pair of the points a,x,, and b

1‘,

-are identical then clearly we have

d(a,b) > 2d(a,x,) + 2d(x,, b),

1) 1’

which is a contradiction. Hence suppose that all three points a, L3

and b are distinct and that

d(a,b) > 2d(a,x)) + 2d(x,b).

1)

There is a natural number N1 such that

N, [Zd(a,xl) + Zd(xl?b)] > d(a, b).

Hence, we have that

d(a,%,) +d(x,,b) > d(a, b)/2N,.

1

Let € = d(a,b)/ZNl. Now since

d(a,b) > 2d(a, x,) + 2d(x,,b)

1) 1’

we have that

¢ = d(a,b)/2N, > d(a,x)/N| + d(gl,b)/Nl.

Thus we have d(a.,xl)/N1 < e and d(x b)/N1 < ¢. Since d satisfies

1!

condition 5 we have

d(a,b) < 2N ¢ = 2N, d(a,b)/2N = d(a,b)
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This contradiction implies d(a,b) < 2d(a,x.) + Zd(xl,b). Hence we

N
must have N > 1 since (2) is ﬁot sétisfied when N.= 1.

If a,b and X e S then d(a,b) < Zd(a,xr) or d(a,b) < Zd(xr,b).

" This can be shown by assuming the contrary and using the method of
the previous paragraph to arrive at a contradiction, If r = 1 then
d(a, b) < 2d(a, Xr) does not hold because of (2). If r = N then
d(a, b) < Zd(xr,b) does not hold because of (2). Liet k be the largest

value of r for which d(a,b) < Zd(xr,b). Then k < N and
d(a,b) < Zd(xk,b) v (3)

From the definition of k and the above we have

d(a,b) < 2d(a, Xk+1) . (4)
Since (1) holds for all n < N we have
d(xk,b) < Zd(xk, xk+1) + 4d(xk+1,xk+2) + ...+ Zd(xN,b) (5)
and
d(a,xk+1) iZd(a,Xl) + 4d(x1,x2) + ... + 4d(xk-1’xk) + Zd(xk, Xk+1).
| (6)
Adding (5) and (6) we obtain
d(a, Xk+1 )+d(xk, b)<2d(a, x1)+. .. +4d(kal, xk)+4d(xk, xk+1)+. .. +2d(xN, b).

(7)

By (3) and (4) we have a contradiction to (2), This contradiction

implies that (1) holds for the points a,x ’Xn’bf for any natural

preee

nurmber n.

Lemma 3.3: LetvS be a topological space such that there is a

non-negative real valued function d satisfying conditions 1, 2, 4, and 5.
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Then S is a metric space.

Proof: Let a,b ¢ S and define

D(a,b) = inf {d(a,xl) +dlx,xy) + ..+ d(xn,-b;)}

2)

where {Xl’ S SYRERY xn} is a finite subset of S; the points XsXpseier X
are not necessarily distinct from each other or from a and b. One
quickly sees that D satisfies conditions 1, 2, and‘3 of Definition 3. 1.
Now Lemma 3.2 implies d(a, b)/4 < D(a,b). The definition of
D implies D(a,b) < d(a,b). Hence the distance function D leads to the

same definition of limit point as the old distance function d and is

equivalent to it. Thus the space S is a metric space by Definition 3. 1.

Theorem 3.4: A topological spa.c‘e S is metrizable provided

there exists a sequence G = {Gi} such that
(a) for each i, C‘:.1 is a collection of domains covering S,
(‘b) if D is a domain and p ¢ D, there is a natural number n
such that every element of Gﬁ containing p is contained in D, and
(c) each pair of intersecting elements of Gi+ is a subset of

1

sorhe element of Gi'

Proof: Let a,b ¢ S and define d(a,b) as follows: (1) if no
element of Gn’ for each n, contains a and b then d(a,b) =1, (2) if n is
the largest natural number such that a and b are both contained in an
eiement of Gn theAn d(a,b) = ZFn, and (3) d(a,b) = 0 if a = b. Note that
d is a non-negative real valued vfunction‘_.

If a # b there is a domain D such that a ¢ D‘and b ¢ D. Thus
there is a natural number n such that a ¢ D and b ¢ D. Thus there is a

natural number n such that every element of Gn that contains a lies in
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D. Henceé no element of Gn contains a and b, Therefore d(a,b) > 277> 0.
Hence a = b if and only if d(a,b) = 0.

If a and b are such that d(a,b) = 1 then certainly d(b,a) = 1.
Now if d(a,b) = 27" then one sees that d(b,a) = 27", Hence we have
d(a,b) = d(b, a).

. Now suppose that a,-b, c € S such that d(a,b) < ¢ and d{(c,b) < ¢
where ¢ < 1; for otherwise the rvesult follows immediately, The only
case for which it is not easily seen is when a, b', and c are distinct
points. Since d(a,b) < e, thére is a largest natural number N, such

1
that a and b are both contained in an element of GN . Since d(c,b) < €,
1
there is a largest natural number N2 such that ¢ and b are both con-
tained in an element of Gy, . Let N = min {NI,NZ} then N-1 is a
2

natural number such that a and ¢ are both Containéd in an element of

GN-l' - Hence the largest natural number k such that a and ¢ are both
in an element of Gk is certainly greater than or equal 'to N-1. Thus
’\'_‘_Ei(a, c) = Z—k < 2 Nt gince
2" (IN-1) il N 50N o

we have that d{a, c) < 2¢.

Let M be a subset of S, x a limit point of M, and € a positive
real number. There is a natural number N such that Z.N < e. Since
G,. covers S there is a domain g e G

N N

limit point there is an m ¢ M, m # x, such that m ¢ g. Now if K is the

such that x ¢ g. Since xis a

largest natural number such that x and m are both contained in an

K

die,m) = 2% <2 N< ¢, Thus d(x, M) is not bounded from 0.

element of G, then K > N since {x,rri} is a subset of g e GN. Hence

Let x ¢ S such that x is not a limit point of M. Then there is a
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domain D such that x ¢ Dand D M (M - {x}) = §. There is a natural
number N such that every element of GN that contains x lies in D,
Hence no element of GN contains x and a point of M. Therefore

d(x, m) > 2 N5 for every m ¢ M. Thus we have that x is a limit
point.o,f M if and only if d(x, M) is not bounded from 0. That is, d

preserves limit points. Thus d satisfies conditions 1, 2, 4 and 5.

Hence by Lemma 3.3 we have that S is a metric space.

The method of proof of the above theorem is due to Frink [9].
Since a Moore space satisfies the first two parts of the hypothesis of

Theorem 3.4 we have the following corollary.

Corollary 3.5: A Moore space is metrizable if it satisfies the

third condition of Theorem 3. 4.

That not every Moore space satisfies the third condition of
Theorem 3.4 is seen by Example 2.51.

Following the proof of Alexandroff and Urysohn's theorem in
1923, a result due to Chittenden [6] was proved in 1927. Before stating

. this result let us consider the following condition.

Condition 10: There is a positive valued f of a positive variable
such that limit f(e) = 0, and such that for any three points p,q, and r
' €e—~0

of the space if d(p, r) < ¢, and d(q, r) < e, then d(p,q) < f(¢) where d is

a non negative real valued function.

Chittenden [5] was able to prove that if a topological space S
has a non-negative real valued function d defined upon it satisfying

conditions 1, 2, 4 and 10 then S is a metric space. Since the proof of
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this theorem is long, it will be omitted from this paper. Using the

above mentioned result, Chittenden then was able to prove the following.

Theorem 3.6: A topological space S is metrizable provided

there exists a sequence G = {Gi} such that
(a) for each i, C}i is a collection of domains covering S,

(b). for each i, G 'is a subcollection of Gi’

i+1
(c) if D is a domain and p ¢ D there is a natural number n such
that every element of Gn containing p is contained in D, and
(d) for any positive integer m there exists an integer n such

that for any point p there is a g « Gm such that for every h ¢ C}n that

contains p we have h (C g.

Proof: Let Go = {8} and then we have that m = 0,1,2,....
Now from conditién (d) thére exists for each integer n an integer
m = g(n), the greatest value of m for which n is the integer determined
by condition (d).. The function g(n) is unbounded. Suppose the contrary.
Then there exists an integer m' such that g{(n) < m' for all n; But
there is an intege‘r n' determined by m', contrary to the definition of
g(n) as the greatest such integer.

Now define d(p,q) - 1/2™ if m is the largest integer for which
P,q € g where g ¢ Gm. Also define d(p, p) = 0. By the definition of d
it follows thét d(p,q) = d(g, p). Now suppose p # q then there is a
domain D such that pe D and q ¢ D. Therefore there is an integer |

then h C D. Hence

n(p, D) such tha‘t if pe h, he Gn(p, D)

D)

d(p,q) > 1/22(P D) 5 o

Thus d(p,q) = 0 if and only if p = q.



62

Levt n be any integer and p,q, r ¢ S such that d(p, r) < 1/2" and
d(q, r) < l/Zn, If m = g(n) then m is the greatest value of m for which
n is the integer determined by condition (d). This implies that p and
q are elements of some element of Gm. Therefore d(p, q) < 1/2™, 1f
e < 1/2" then set fle) = 1/2™. Since g(n) = m is unbounded we have
fle)» 0as ¢ = 0 anci if d(p,r) <€, d(q, r) < e then d(p,q) < f(e). Hence
d satisfies condition 10.

Let p be a limit point of M a subset of S and 1/2% < e.. Then
‘there exists a g « Gn’ m # p e g such that m,p € g. Therefore
d(p,q) = 1/2k < 1/2"% < e. Hence ]d(p, M) = 0. Now suppo/se p is not a
limit point of M. Then there is al domain D such that p € D and
D M M= 0¢. Thus there is an integer n(p, D) such that every element

of G that contains p lies in D. Therefore no element of G

(p, D)
contains a point of M and p. The;refore d(p, M) > l/zn(P, D) > 0.

n(p, D)

Therefore p is a limit point of M if and only if d(p, M) = 0. Hence we
have that S is' a metric space.

. As one has seén, the' above proof is a direct method of showing
Theorem 3.6. An alternate method would be to show the above
theorem satisfies the hypothesis of Theorem 3.4. This would be
done by defining & new sequence G' = {Gi'} as follows: (1) let GI' = Gl’

- (2) let GZ' = Gn1 where 0y is the integer of condition (d) for the integer

m =1, and (3) Gl' = Gp. where n, is the integer of condition (d) for the
i .

integer m = n, 1.' Clearly conditions (a) and (b) of Theorem 3.4 are

satisfied by G' = {Gi'}. Now let g and h be elements of G, such that

g/ h# @. Then by definition of G; we have that g,h € G . Since

+1 i+1

g h# @thereis a point pe g /) h. Thus by condition (d) and the

such that g U h C g,

definition of G' we have that .there is a g, € G,
1
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But g€ Gi', therefore we have g U h is a subset of an element of Gi’.
Thus the hypothesis of Theorem 3.4 is satisfied and the space is
metrizable, |

As another application of Theorem 3.4 let us consider a result
due to R. L. Moore [22]. This result proved in 1932 will be shown to
satisfy the hypothesis of Alexandroff and Urysohn's theérem. However,
a direct argument similar to either Theorem 3.4 or Theorem 3.6

could also be used to prove this theorem.

Theorem 3.7: Let S be a topological space. Let G = {Gi} be a

sequence such that
(a) for each n, Gn is an open covering of S,

(b) for each n, Gn is a subcollection of Gn’ and

+1

(c}) if D is a domain and x,y ¢ D then there exists a natural

number n such that if h,k ¢ G_ such that h Mk # ¢ and x ¢ h then

h Uk C (D-{ynU {&}

Then the topological space S is metrizable.

Proof: L?Qt GI’ = Gl' Define Gz"to be the collection of domains

g e Gm, m >1, suchthatifhe Gm'andg Mh#¢theng |\ Uhis a
subset of some domain of Gl" Let p € S then since GI’ covers S there
is an element g of Gl' such that g contains p. If g = {p} then since for
each n there is an element h of G_ that contains p, there exists a

natural number N such that if h,k ¢ G, suchthat h\ k# @andpeh

N
then h U k C (g - {p})U {p}. Since p ¢ hand hyUh Clg- p)J{p}
‘we have hy = {p}. Therefore hN (C gand hN € GZl .
S. Now suppose g # {p} and let ¢ # p € g. Since, for eachn, Gn is an

Thus Gz' covers

open covering of S there is an element hn € Gn such that hn contains p.
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Therefore by hypothesis there is an integer m, m > 1, such that if

h M k#0,andk eG_thenh U k C (g - {a}) U {p}. Thus

hm ¢ G, and we have that G, covers S, Hence in either case the

2 2
collection G‘Z‘ covers S.
Let h,k ¢ G, such thath Mk # §. Nowh ¢ GZI implies h ¢ G_,

2
m > 1, such that if g ¢ G_ and h™M g # ® then h U g is a subset of

some domain of G,. Also k ¢ G. implies k ¢ G_, r>1, such that if

1 2

ge G and kM g# @thenkU g is a subset of some domain of Gll.

Without loss of generality assume that m < r. Then since Gr is a sub-~
collection of Gm we have that k ¢ Gm. Since h M k # § we have that
h U k is contained in an element of Gll.

Now define G,

3 to be the collection of domains g ¢ Grn’ m > 2,

such that if h e G, and g M h # @ then g his a subset of some

domain of G'2 By using an argument similar to the one above we have
that G?" covers S and if h, k ¢ G?" such that h Yk # § then h U k is con-~
tained in an element of G.. Continuing our process we have that there

2

exists a sequence G' = {G‘n'.} such that (1) G, = G (2) for each i,

1 1?

G, , .is the collection of all domains g such that for some m > i, ge¢ G

i
i+l
and if h ¢ Gm such that h M g # § thenh{J ¢ is contained in an element

m

of G;, (3) for each i, Gi' covers S, and (4) if g,h ¢ G;_f_ such that

1
h( g+ @ then g U h is contained in an element of G, .
I.et D be any domain and p € D Then by hypothesis there is an
n such that if pe g e Gn éhen gC (D . {x}) U {x} Hence every domain
of Gn containing p lies in D. Consider thé collection Gr'l. Let h e Gr;
such that h con;ains p. Now h e Gr; implies h ¢ Gm* ‘m > n, Since Grn

is a subcollection of Gn we have that g e Gn. Hence g (C D and there-

fore G' is a development for S. Therefore by Theorem 3, 4 the
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topological space S is metrizable.

Interrupting our historical development for the moment let us
prove the following corollaries to Theorem 3.7. Jones [19], in 1966,
proved the following results and referred to them as the weak form and

the strong form, respectively, of Theorem 3. 7.

Corollary 3.8: Let S be a topological space and G = { Gi} a
sequence such that
(a) for each i, Gi is an open covering of S,

(b) for eachi, G is a subcollection of Gi’ and

i+l

(c) if H is a closed set and p € S - H then there is an integer n

such that star (p) (). star (H) = @, where the star is taken with respect
to G_.
n'

Then the space S is metrizable.

Proof: Let D be any domain and x,y € D. The set {y} is a

closed set, hence S - {y} is a domain that contains x. Thus there is an
integer N1 such that star (x) /) star (y) = ¢ with respect to the covering
GNl. Since D ié a domain we have that S - D is a closed set. Also we
have x ¢ D =S - (S - D). Therefore there exists an integer N, sqch
that star (x) () star (S - D) = #, with respect to the covering GNZ.
Letting N = max {NI’NZ} we have star (x) () star (y) = ¢ and

star (x) () star (S - D) = ¢ with respect to the covering Gy Now if

h,ke G suchthatx e hand h/) k# §then h U kC (D - {y}) U {x}

N
since star (x) () star (y) = ¢ and star (x) () star (S - D) = §, Hence by

Theorem 3.7 the space S is metrizable.

Corollary 3,9: LetS be a regular topological space and G= {G.l}

a sequence such that
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(a) for each i, Gi is an open covering of S

(b) for eachi, G is a subcollection of Gi’ and

i+1

(c) if H,K are closed disjoint subsets of S, one of which is
compact, then there exists an integer n such that star (H) M K = @ and
H M star (K) = @.

Then the space S is metrizable.

Proof: Suppose S is not metrizable then for eé.ch n there is a
closed set H and a point p € S - H such that star (p) M star (H) # ¢ by
the previous corollary. For each n let P, denote a point in the inter-
section of star (p) (M star (H). LetK = {pi} and consider the set K.
Since {p} is a closed and compact set the sequence {pi}‘converges to p.
Hence H and K - H are disjoint closed sets and K - H is compact,

Thus there exists an integer n such that star (H) () K - H = § and

H M star (R— H) = §. But for some N we have p; € K - H for i>N.
Now without loss of géneralitf assume N > n and consider PN Now

py ¢ R - H and p'N ¢ star (p) M star (H) implies pye (R “H) N star (H).

This contradiction implies that S is metrizable,

Continuing our development we have in 1940 a result due to
C. W. Vickery [33]. As in previous results one should notice the -
application of Alexandroff and Urysohn's theorem in the proof of this

theorem.

Theorem 3. 10; Let S be a topological space such that

(a) there exists a sequence G = {G.l} such that for each n, Gn
is an open covering of S,
(b) if D is a domain and a and b are points of D then there

exists a natural number n such that if g ¢ G and ae g then g is a
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subset of (D - {b}) U {a}, and

(c) if G is an open covering of S then there exists an open cover-
- ing H of S such that ifh,ké Hand h Mk £ ¢ then h!J k is a subset of
an element of G.

Then the topological space S is metrizable.

Proof: Let us define a new sequence G' = {G.l'} as follows:

1

(1) G':Gl,' (2) g <G,

1
g, ¢ GZ’ and (3) g ¢ G; if and only if g = giﬁ g _

if and only if g = g, M g, where g ¢ G, and

¢ G

where g;._ Q-1

1 1

and g, ¢ G,. Now define G = {G, } by letting

oo :
G, = UG
j=i

By construction Gr: is an open covering of S, for each n, By definition
of G" we have for each n that Gn+1 is a subcollection of Gn”. Now let
D be a domain and . a,b ¢ D. Then by condition (b) there is a natural
number n such that if g ¢ G_and a ¢ g then gC (D - {b}) U {a}. Now
consider Gr: and let g € Gr'll such that a ¢ g. By construction of G' we
have that g is contained in an element of Gn' Hence g is a subset of
(D - {b}) U {a}... Hence by definition S ‘is a Moore space.

Since S is a Moore space, to simplify notation let G = {Gi} be
the sequence of the definition of a Moo‘re space, Now define Gll = Gl'

Let H2 be as in condition (b) for the open covering GZ’ and define

GZ' ={g|g e G, g C h for sorvne‘ h e HZ}' Let g, and g, be elements
of GZl and suppose that g, M g, # ¢. Then g1C h1 and gZC h2 for
some hl’hZ 'e,HZI.. Since glm g, # § we have that hlm h, # @, thus

hIU h, is a subset of an element of G,. Therefore gIU g, s a

subset of an element of GZ' But GZ is a subcollection of G1 thus
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1

g1U g, is a subset of an element of Gll. Also note th_a.t‘G2 is an open

covering of S and that G, is a subcollection of G;. Now let G,' denote

. . 1 .
the collection {g|g ¢ Gy, 8 C g, for some g, ¢ G,}. Then G3" is an

open covering of S. Now let H3 be as in part (b) for the open covering

G;. Let (1}3I = {glg ¢ G3”, g C hfor some he H3}. Let g, and g, be

elements of G.

3
glc hl’ gZC_ h2 for some hl’hZ € H3. Hence hlm h2 # 0 since

such that g, M gz'# . Since g, g, G3', we have

glﬂ g, # . Therefore h1U h2C g where g ¢ G3”. But hlU h2C g
implies by definition of G?;' that hlU h2 is contained in an element of

G.. Hence glU g, is contained in an element of G Also since S is

2
1

a Moore space we have G3 is an open covering of S and G_,: is a sub-

1
2 .

collection of GzI by the definition of G_,l'. Continuing our process we
obtain a sequence G' = {Gi’} such that G.l' is an open covering of S,

! : . ! . !
Gi+1 is a subcollection of Gi and if 81,8, ¢ Q.l such that glﬂ g, 0

then g, U g, is contained in an element of Gi'_ Thus by Theorem 3.4

1

the topological space S is metrizable.

The next generalization of Theorem 3.4 was proved in 1947 by
Eing [3] and is stated and proved below following a lemma which is

similar to LLemma 3.2 and is not proved.

Definition 3.11: A collection G of point sets is coherent pro-

vided that each proper subcollection G' of G contains an element which

intersects an element of G - G'.
Note that a collection G = {g} is a coherent collection.

Lemma 3.12: Suppose that r is a positive integer and H = {Hl}

is a sequence such that H.l is a collection of sets and each pair of points
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that can be covered by a coherent collection of r or fewer elements of

H'1+1 can be covered by an element of Hi' If p and q are two points

whose sum cannot be covered by any element of I—IS but which can be

covered by a coherent collection of sets hl‘ hZ’ cees hn belonging to
Hoz(l)’ Ha(Z)’ e Hoz(n)’ re,Spect:vaely, then
201/x(0) £ 12@) L™y s g ,S (8)

Theorem 3.13: A topological space S is metrizable provided

there exists a sequence H = {Hi}\‘}'such that

(a) for each natural number i, I—Ii is a colleétion of sets cover-
ing the space S,

(b) a point p is a limit point of the set M if and only if for each
natural numBer n, some element of Hn contains p and intersects M - {p},
and

(c) each pair of points that is covered by the sum of a pair of

intersecting elements of Hi+ can be covered by an eiem@nt of Hi'

1

Proof: Let p and q be elements of S. Then define d(p, q) to be
the minimum of 1 and the greatest lower bound of the collection of sums

of the type
17200 4 1722@) 422

where hl’ h .. ,hn are the elements of a coherent collection of sets

2 -
covering p U q and h.1 is an element of Ha(i)'
Let p,q,r ¢ S. If U is a coherent collection of sets covering
{p,r}. Then we have that U U V is a coherent collection of sets
covering {p,q}. Suppose d(p,q) =1 and d(p,r) + d(r,q) <1. Since

d(p, r) + d(r,q) <1 we have d(p, r) <1 and d(r,q) < 1. Thus there exists
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coherent collections U and V such that U is a coherent collection of
sets covering {p,r} and V is a coherenf collection of sets covering
{r,q}. Then we have that U U V is a coherent collection of sets
covering {p,q} which implies thé.t d(p,q) <d(p, r) + d(r,q). This con-
tradiction implies that d(p, r) + d(r,q) > 1 and the triangle inequality is
true.

If Mis a set and x is not a limit point of M then there is an
integer s such that no element of HS contains % and a point of M. Then
Lemma 3. 12 implies that if m ¢ M then d(x, m) > 1/28+1. Thus d(x, M)
is bounded from 0. Now suppose % is a limit point of M and ¢ is a
positive ‘real number. There is a natural number n such that l/Zn‘ <€,
‘There is an element h of H_ containing p and a point of M, Then {h}
is a coherent collectién containing {x, m}. Thus d(x, M) is less than

1/28.

Therefore d preserves limit points,
One quickly sees that d(p,q) = d(q, p) for every p,q € S. Also

we have that d(p,q) = 0 if and only if p = q. Hence S is a metric space.
Theorem of F. B. Jones

Following Alexandroff and Urysohn metrization theorem in
- 1923, Paul Urysohn in 1925 proved the following well known metriza-

tion theorem.

Theorem 3. 14: A regular second countable topological space

is metrizable.

The proof of this theorem is omitted, but the interested reader
will find the proof in Hall and Spencer [12], p. 122. The interested

reader should also note the similarity between this proof and the proof
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of Bing's metrization theorem of the next section.

The above theorem will be applied in this section to give a
result due to Jones [18] in 1937. This was one of the first successful
attempts to give necessary’conditions for a. Moore space to be metriz-
able, However, in providing his theorem Jones questioned whether
the hypothesis of the theorem was too strong. The resulting question
of w,he‘ther every normal Moore space is met;‘izable is still unanswered
at this time. The proof of Jones' theorem will constitute the rest of

this section.

Lemma 3.15: If Siis a separable, completely normal topological

space then every subset of power ¢ contains a limit point of itself.

Proof: Suppose, on the contrary, that M is a subset of power c
and M does not contain a limit point of M. Since S is separable, let Z
denote a countable subset of S such that Z=S. LetJ be a proper subset
of M, then by hypothesis J and M - J) are two mutually separated point
sets. Since S is completely normal there is a domain DJ such that
JCDJandBJm(M-J)=¢. |

Now let L and K be two proper subsets of M such that L. # K.

K L
and ye (M-L)., Ifyisa

IEK CZ L then let y ¢ (K~L). Define D,, and D, as in paragraph one.

If y e Z then Z() Dy # Z () D; sincey e D

L K

limit point of Z, y e Z, then every domain containing y contains a point

ze¢Z. Nowye (M~-L)implies y ¢ D hence there is a domain D such

L!

that y ¢ D and D M EL = @ since S is closed. Since the domain DM Dy

contains y a limit point of Z there is a z ¢ Z such that z ¢ D M DK'

SinéeDﬁ—ﬁ = @, we have that z. ¢ D andthusZﬁDKisz

L K

Therefore, if K and L are two different proper subsets of M then

Lo
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Z M DK and Z M D, are two different subsets of Z. If K 2 L then a
similar argument applies to give the same conclusion.

Thus, there are at least as many subsets of Z as there are
proper subsets of M. However, since M is of power ¢ and Z is only
countable, there are more than ¢ proper subsets of M but at most ¢

subsets of Z. This is a contradiction; hence, the set M contains a

limit point of M.

The above argument, with slight changes, establishes the

following lemma.

Lemma 3.16: IfS is a separable, completely normal topological

T .
space and 257?1 > 270, then every uncountable subset of S contains a

limit point of itself.

. Definition 3.17: A topological space S is said to have the

Lindelof property provided that if G is a collection of domains of S

covering a point set K, then G contains a countable subcollection G’

which covers K.

Lemma 3.18: Let S be a developable topological space. If

every uncounta‘bvle subset M of S has a limit point, then S has the

Lindelof property.

Proof: Let G = {G,} be a development of S. Let H be a collec-
tion of domains covering a subset M of S. If M is countable, then for
each p ¢ M, select one and only one‘hp ¢ H such that p E'hp' The
collection H' = {hp}p ¢ M} is a countable subcollection of H covering
M. If M is uncountable, then let M = {pl, Pps =« Pys .} denote a well-

ordering of M. For each pﬁ ¢ M there is an h,, ¢ H such that pﬁ € hp

Pg 8
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since H covers M. Since G = {Gn} is a development of S there is a
natural number N such that every domain of GN containing pB lies in
hp . Let k denote the smallest natural number such that there is a

p ¢ M and h ¢ H such that every domain of G, that contains p lies in h.

k
Note that since G—n+1 is a refinement of Gn that for all n > k there is a
p € M and h € H such that every domain of Gn that contains p lies in h.

Hence G' = {Gr;} is a develop-

; 1 ! . L.
Define G' = {G_} 28 follows: G _=G__,.

ment of S.

For each natural number n, let Hn denote a subcollection of H
obtained by the following method: let pal denote the first element of M
such that some element hl of H contains every region of Gn' that con-
tains pal. Let paz denote the first element ‘(if any) of M, not contained
in hl’ such that some element h2 of H contains every region of Gt; that

contains P, In general, if B < &, and pa[3 and h, are chosen, then let
2

P
p"‘i} denote the first point (if any) of M not contained in Bgﬂ hB such

that some element h!.3 of H contains every region of th that contains

pag. Then define Hn = {hl’ hz,‘. s hg, ...}

From this construction, the set P = {p_al, paz, ce s paa, ...} has

s . . . ! .
no limit point since no region of Gn contains more than one element of

. . 4 ey s 1 . ! .
P. For consider the possibility that some region g of Gn contains pa[3
and pO‘B of P. Assume <8, then by construction paa g’ hpd . Now

g« G, and p, ,p,_ ¢ g implies that g(C h, . Hencep _¢h which
n B a _ paﬁ ag )

PO,B
is a contradiction. Therefore P is a countable collection of points
since P has no limit point. Thus Hn = {hl’hZ’ ...} is a countable sub-
collection of H.

00
Letting H = U Hn" then H' is a countable subcollection of H.
h=1

Let p ¢ M and suppose p ¢ h for every h « H', and let p be the first
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point of M with this property. Since H covers M there is anh ¢ H

such that p e h. Now G' = {Gr;} is a development of S, hence there is

an integer N such that every domain of GN

containing p lies in h. Since
p¢hfor everyhe H implies'that
p¢ U hi ,
hie I—IN

we have by construction p e h e H This is a contradiction, thus the

N’
collection H' covers M. Hence by definition the space S has the

Lindelof property.

Lemma 3.19: Let S be a developable topological space., If

every uncountable subset of S has a limit point, then S is second

countable.

Proof: Let G = {Gn} be a development of S. For each n,
Lemma 3. 18 implies that the collection Gt;l contains a countable sub-
collection Gr; which covers S. Since G= {Gn}is a basis for S, we have
that G' = {Gr;} is a countable basis for S. Thus by definition S is

second countable.

Lemma 3.20: Let S be a de'velop‘able topological space. If S

is normal, then S is completely normal.

Proof: Let G = {G_} be a development for S, and H and K be
two nonempty subsets of S such that H YK = § and H() K= §. Define
H and K , for each n, as follows:

n n
H ={plpeHandifge G, pe gtheng MK=¢}

and
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K ={plpeKandifge G, pegtheng M H= 0}

and without loss of generality assume Hn and Kn are point sets. Letp
be a limit point of H and g ¢ Gn such that p € g. Thus there is a
qeH , q # p, such that'q e g. Now q « H and q ¢ g implies gMN K= 0.
Therefore, by definition of Hn’ we have p ¢ Hn’ Hence Hn is a closed
set for every n. Similarly, Kn is a closed set for every n,
Since S is normal and H, and K are closed se‘ts‘ such that
H, M K = P, there is a domain DHI such that HIC DHl and
Dy ) K= §. Also Kl and (H U Dyy ) are closed sets such that
1 1
KM (H U Dy

1
thus there is a domain DKl such that K, C DKI and BKP (HT )DHI): @.

)=Psince Ky,CK, KMNH=6¢, and KN Dy = 6;
1

Now let DH2 be a domain such that H, C DHz and BHzm (K U DKl).

The above process may be continued by finite induction. Now define

O

, ' fe'e}
DH = - DH and DK = {J DK ,
n=1 n n=1 n

and note that DH and DK are domains. Since

O QO
HC U HnC U Dy
vn:l n=1 n
and
o) o
K C U D C U Dy
n:l n:l n

we have H C Dy and K C Dy. Suppose DH M Dy # §; then there is a

point p such that p e Dy and meK. IfpeD

H and p « DK thenPe DHh

peD for some n and m. Without loss of generality, assume m > n.

Km

IfpeD then by construction the domain D is a domain such that
: H, Km

K_C DKm and
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EK M (HUDH‘U e U D‘H U ... Dy )
m 1 n m

Hence p ¢ Dk , which is a contradiction. Thus DH M DK =@, and S
m

is éompletely normal,

Theorem 3.21: Let S be a separable normal developable

' 9 7
topological space. If2 “1 >2 0, then S is second countable and

metrizable,

Proof: Lemma 3. 20 implies that S is completely normal.
Lemma 3, 16 implies that every uncountable subset of S contains a
limit point of itself. Thus by L.emma 3.19 we have that § is second
countable. Therefore by Urysohn's theorem, we have that S is metriz-

able.

As we have seen in Example 2.40 and the discussion following

Example 2.40 there does exist a separable Moore space that is not

% the

reader can consult Heath [14] and [15], McAuley [21], and Traylor [29]

ER
metrizable. For efforts to remove the hypothesis that 2 152

and [30]. However, to this date all efforts have failed.
Bing's Metrization Theorem and Related Results

This section will preéent the resulfs of Bing [4] in his major
paper on metrization of topolggical spa‘ce's.‘v First, we will prove
Bing's metrization theorem (Theorem 3.27) for a regular topological
space, then apply this theorem to obtain a series of results which hold
in Moore spaces, These results show that perfect séreenability,
strong screenability, paracompactness, and full ﬁormality are necess -

ary and sufficient conditions for a Moore space to be metrizable. This
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section will then be concluded with a generalization of Bing's metriza-

‘tion theorem (Theorem 3.27).

Lemma 3.22: Every metric space is a developable topological

space,

Proof;: Let S be a metric space with metric d. Define a devel-
opment, G = {Gn}, for S as follows: G, is the collection of all spheres

with radius less than 1/n. Clearly G ., refines G . Now let p ¢ S and

+1

D any domain such that p e D. Since S is a metric space there is a
natural number n such that Ul/n(p) (C D, where Ul/n(p) is the sphere

of radius 1/n about the poiflt p. Consider the co‘llection G4n and let

U1/4n(q) be any element of G, containing p. Letx e U (q),. then

4n 1/4n

d(p, x) _<_d(p,q) +d(q,x) <1/4n + 1/4n < 1/n.

Thus x e Ul/n(p) and U1/4n(q)C Ul/n(p)' Hence every domain of Gy
which contains p lies in D. Therefore the metric space S is a develop-

able topological space.

Lemma 3.23: For each open covering H of a developable topo-

logical space S, there is a sequence {Xl} such that Xi is a discrete
collection of closed sets which is a refinement of both Xi+1 and H while

00
\J X. covers S.
i=1 !

Proof: Let W be a well ordering of H and let {G.l} be a develop-
ment of S. For each h € H, let us define x(h, i) as follows: p e x(h, i)
if and only if (1) p € h, (2) there does not exist an ha in W which pre-
cedes ha and contains p, and (3) for each g in Gi which contains p we

have g contained in h. Noting that we may have some x(h, i) empty let
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us define X, = {x(h, i)]h e« H}.
Since x(h,i)(C h we have that X, is a refinement of‘H. If pe x(h,i)
then for each g in Gi such that p ¢ g we have g(C h. Now Gi-i—l being a

refinement of G.l tells us every‘-'g in Gi+ such that p € g is contained in

1

an element of Gi' Thus every g in Gi-i—i

h. Therefore, x(h,1)( x(h, i+1) and Xi is a refinement of Xi+1' Let

such that p € g is contained in

p € S and h(p) the first element.of W ¢ontaining p. Since {G.l} is a
development of S there exists an integer n(p) such that every domain

of Gn which contains p is contained in h(p). Thus pe x(h(pi),n(p)) and

(p)

00
U Xi covers S.

il

Let g be an element of G, and suppose g M X(ha, i) # @,

g M X(hp, i) # @, and without loss of generality assume h_ precedes

_ P
h‘oz in W. Now by definition of x(h, i) we know that if g M X(ha/’ i) # 0,
then g is contained in hoz' Now let pe g x(ha, i); then p is contained

inh . Sinceg M x(h,,i) # §, we know that g is contained in h ., thus

P B’

p is contained in hﬁ' This is a contradi.c’tion since ha was the first
element of W which contained p. Therefore no element of G.1 intersects
two elements of Xi'

Let x(h,i) ¢ Xi an‘d let p be a limit point of x(h, i). Suppose that
p ¢ x(h,1). Since Gi is a covering of S there is a domain g ¢ Gi such
that p e g. Since pis a limit poiﬁt of )%(h, i) we know that there is a
g e g x(h,i). But since q ¢ x(h, i) we have by definition‘ of x(h, i) that
g C h which implies that p ¢ x(h, i), a contradiction. Hence p € x(h,1i)
and x(h, i) is a closed set,

Let x(ha, i) and x(h be two elements of Xi' Since x(hq, i)

8 i)
and X(hﬁ’ i) are closed sets we have X(ha’ i} = X(hoz’ 1) and X(hﬁ’ i) :X(hﬁ’ i).

Now since no element of G.l intersects two elements of X.l we have that



79

x(ha, i) M x(h,, i) = 0.

P

Let K.1 be any subcollection of X.1 and let |

pd U k= U ki
ke K. keKi

i .

Since Gi is a covering of S there is a g ¢ G—.1 such that p £ g If

gM (U k) #4¢
keKi

then there is a point q € k for some k ¢ Ki’ such that g € g () k. The

definition of k then implies that g (C k and hence

pek C U k
keKi

This contradiction tells us that U k is a closed set. Hence the
kGKl .
cqllection Xi is a discrete collection of closed sets.

Lemma 3.24: Let S be a collectionwise normal topological

space and H an open covering of S. Let Hi be a discrete collection of
closed sets; then there exists a discrete collection of domains Wi such
that Wi covers Hi*, Wi is a refinement of H and each element of Wi

contains just one element of Hi'

Proof: Since 5 is a collectionwise normal topological space
there is a collection Y.1 of mutually exclusive domains such that Y.1
COVETrs Hl and each element of Y.1 intersects just one element of Hi’

For each h ¢ H.1 consider the star (h) with respect to Y The collec-

i
tion Xi = {star (h) ]h € H.l} is a collection of mutually exclusive domains

such that Xi covers Hl” and each element of X, contains just one element
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of Hi' Since each h ¢ H.l is contained in an element g ¢ H and

h( star (h) e Xi we have h(C g star (h)(C g ¢ H.‘ The collection

Z, = {g M star (h)|h ¢ H, and g ¢ H} is a collection of mutually exclus -
ive domains such tﬁat Z.1 covers Hl, Z.1 is a refinement of H, and each

element of Z. contains just one element of H.,. Theorem 2. 11 implies

that S is normal since S is collectionwise normal. The set A = U n
is closed since Hi is a discrete collection of closed sets. Since Z.1
.

is a collection of domains the set B = S - 7z is a closed set, Since

EZl

AMB=0andS is normal, there are domains DA and DB such that

- U :
A’ B - @, The set DAC 27y z since

DAm B = @. Therefore DAm z, for each z « Zi’ is a domain contain-

ACD,, BC Dy, and D, N D

ing an element of Hi' Thus there is a domain w, , for each h ¢ Hi’
such that ‘hC th th DAm z. Let Wi = {wh]h € Hi}" Let Whl and
Wi, be two different elements of W. then ";h M ";h since

2 o1 1 2

wth DAmzl’ wth DAmzz, and zlm 22:0' Let M.lbeasub—
J —
m

. . o . U =
collection of W, and let p be a limit point of m m. Ifp¢ me M;

e M.
i

and p e z for some z ¢ Zi’ then there is a domain D such that p ¢ D,
D( z, and D ﬂ'\-fv-h: @, where h(C z. Since D( z ¢ Z,D m'\;h: )
for every Wy € Wi' Therefore, there is a domain which contains p

which does not contain any points of mkeJM m. Hence p is not a limit
‘ i

point of mkéjM 'm, a contradiction to the fact that p is a limit point of

1

m. Thus if p is a limit point of mU ‘m and p ¢ & _m then

me M. e M; me M;
i

p must be an element of B. Since m( D,, for everym ¢ M, and

m mDB = @, for every m ¢ Mi’ the domain D_ does not contain any

B
o U . s . U —
Pomts of meM; m. Therefore, p is not a limit point of me M, m, a
contradiction to the fact that p is a limit point of mkeJM m. Thus if p is

1

. . U= . U = , .
a limit point of meM, m, then p e meM, m, Therefore Wi is a dlscrete‘
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collection of domains such that W.1 covers H.l*, W.l is a refinement of H,

and each element of W.l contains just one element of Hi'

Lemma 3.25: Let S be a developable topological space, Then

S is a strongly screenable space if and only if S is a perfectly screen-

able topological space.

Proof: Let {Gn} be a development of the topological space S.
If the topological space S is strongly screenable, we have for each Gi

a sequence {H.m} such that Hin is a discrete collection of domains and

00 00

U H._covers the space and U H. 1is a refinement of G.. Consider
n=] in n=] in ' i

the countable collection {Hij :i,j=1,2,...}, and let D be any domain

and p any point in D. Since S is developable with development {Gn} we

know there is an integer n(p, D) such that each domain of Gn(p D) which’

. 1s a refinement of G
n(p, D)j °* “n(p, D)

and covers the space S, there is a j and a domain in H . which
n(p, D)j

and hence is con-~

o0
contains p lies in D. Since U H
j=1

conta';ns P and is contained in a domain ‘of‘ Gn(p,D)’
tained in D. Since the collection {Hij} defines a sequence we have by
definition that S is a perfectly screenable topological space. IfSisa

perfectly screenable topological space, then Theorem 2.7 implies that

S is a strongly screenable topological space.

Lemma 3.26: (Urysohn's Characterization of Normality). The

topological space Y is normal if and only if for each pair of disjoint
noﬁempty closed subsets A and B in Y, there exists a continuous func-
tion £:Y - {x|x € real numbebrs, 0 <x <1}, called a Urysohn function
for A, B suchvtha’tv(a) f(a) = 0 for each a € A and (.b) f(b) = 1 for each

b e B.
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Proof: Let .Y be a topological space which satisfies the condi-
tion. Let A and B be two disjoint nonernpty closed subsets of Y. Slnce
Y satisfies the condltlon there is a continuous function f:Y - [0, 1] for
A and B such that (1) f(a) = 0 for each a ¢ A, and (2) f(b)b = 1 for each
b ¢ B. Since fis a continuous function, the sets D = {y}f(y) <1/2} and

= {y|f(y) > 1/2} are disjoint domains such that AC D and BC G.
Hence the topological space Y is normal.

Let Y be a normal topologicai space and A and B two disjoint
nonempty closed sets, Let R be the set of all rational numbers of the
form k/Zn, 0 Sk/Zn < 1, where k and n are natural numbers, We will
first show that for each r ¢ R we can associate a domain U(r)( Y such
that (a) A(C U(r) and U(r) m, B = ¢, and (b) that if r < r' then

r)C U(r'). We proceed by induction on the exponeﬁt of the dyadic
fracti"on, letting D__ = {Ux/2™)|k=0,1,...,2™}. The set D_ consists

of U(1) = Y -B and a domain U(0) satisfying

A CU) CT(0 CY-B=U1d

which exists since Y is-normal. The set Dl consists of U(0), U(1),

and a domain U(1/2) satisfying

T(0) C v@/z2) C G(1/2) C vl

which exists since Y is normal. Now assume ‘Drn 1 has been con-

structed such that
AC U(0)C ToC va/z®™ YhYc vare™hc ... Ccua)=Y-B.

Note that only U(k/Zm) for odd k requires definition, since if k is even,

the fraction k/2rn can be factored to a number which has already been

defined. For each odd k we have from Drn ] that -
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Uk - 1/2™) C Uk + 1/2™)

since k+1 and k-1 are even. Now define U(k/Zm) to be a domain U

satisfying
Uk -1/2"y C U C TC Uk + 1/2™).
The domain U exists since Y is normal, By construction,

m . m
D_ ={Ux/27)|k=0,1,...,27}

satisfies the induction hypothesis. That is,

A C U0 C T C ur/2™ C ua/2™ C...C u).

Now replace U(1) by Y, and let D = UJf D_. Define f:Y =[0,1]
m=0

as follows: f(y) = inf {rly € U(r)}. The function f is well-defined
since y is always an element of U(l) = Y. Since 0 <r <1 we have

0 <f(y) <1. Furthermore f(A) = 0 since each U(r) contains A for

every r; and f(B) = 1 since Y contains B and U(r)( Y - B for every r.

Let f(yo) =r, and W = - €, r + e€), where ¢ is a positive

0 - (7 0

real number. If g £ 0, r, # 1, then the definition of infimum implies

there exist r, and r, in R such thatr . - e <r. <r. . <r,<r.+ €,

1. 2 0 1 0 2 0
Now the set U(ré) A 'fj—(r—'-l—) is a domain since U(rz) is a domain and
m is a closea set contained in U(rZ). Since r < T there is a
dyadic fraction r! such that r, < rt < Ty Thus by construction we
have U(r,) C U(r Now if y € TJTr—l_) then y, € U(r'); hence by defi-

nition of f we have f(yo) <r', Since f(yo) =1, and r' < r, we have a

contradiction; thus ¢ U(r,). Also the definition of infimum implies
Yo 1 p

Yo € U(rz). Hence wé have Vo ¢ U(rz) - U(x,] ‘Now if ve U(r

1)' _U(rl)

2)

then y € U(rZ) and y ¢ U(r Since vy ¢ U(rz) we have by definition

1)'
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.E’!

————

5" Since y ¢ U(rl) and r < r', where r,r' ¢ R, we have that

U(r)C U(r'). Thus by definition of f we have f(y) > Ty Therefore we

that f(y) <r

‘have f(U(rZ) - U(rl.)) (_ W. Hence the function f is continuous at Yo

If ry = 0 then U(r,) is a domain containing Yo If y € U(r,) then

2)
fly) < r, < T, + ¢ .by definition of the function f. Since f is a non-

negative function we have that f(U(rZ

= 1 then consider the domain Y - U(rl), which contains Yor

)) C W and thus f is continuous
at Yo If Ty |
IfyeY - Uirl) then f(y) > T > ry - ¢ by definition of f, Since we
know that f(y) <1 for every y ¢ Y we have (Y - U(r))) (C W. Therefore

f is continuous at each point of the topological space Y, Hence f is a

continuous function satisfying all the desired properties.

Theorem 3.27: A necessary and sufficient condition that a

regular topological space S be metrizable is that it be perfectly

screenable. -

Proof of necessity: Let S be a metric space ande an open
covering of S. Since S is a metric space we know that S is developable
by Lemma 3.22. By Lemma 3.23 there is a sequence X = {Xl} such

that Xi_is a discrete collection of closed sets, Xi refines Xi+1’ Xi
oo .
refines H, and U X, covers S. Since S is a metric space, Theorem

2.10 implies that S is a collectionwise normal topological space. By
Le,mrn\a 3 24 we know that for each Xi there is a Wi such that Wi is a
disci‘ete collection of domains, Wi covers Xlk , and Wi is a refinement
of H. Let W = {Wi} and observe ‘that if——jl W, covers S since §1 X,
covers S and W. covers X; . Therefore, W = {Wi} is a sequence such
that Wi is a discrete collection of domains, @ Wi covers S, and

0o i=1
Ul Wi is a refinement of H. Hence by definition, S is a strongly
1=
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screenable topological space. Lemma 3.25 now implies S is perfectly

o

screenable.

Proof of sufficiency: Since S is perfectly screenable, there is
a sequence H = {Hl} such that Hi is a discrete collection of domains and
for any domain D and p € D there is a natural number n(p, D) such that
n(p, D) contains a domain which lies in D and contains p. Let h be
any element of Hi and p any point of h. Since S is a regular topological
space, there exists a domain U such that p e U C UC h. Since S is
perfectly screenable there is a natural number j such thatl's-conta'ms a
domain which lies in U and contains p. (Note the closure of this
domain lies in h). Let Kij denote the union of the elements of Hj whose
closures lie in an element of Hi’, for instance, K, is ‘the union of the
Noting that

elements of H, whose closures lie in an element of H

2 1’
KlJ may be empty for some i and j; let C = {Kij 'Kij # ¢} and for the
following assume K.. € C. Let K., = U h,, where h ¢ H., then since
ij S aeh a” ]
Hj is a discrete collection of domains we have Kalj = "Uha' = UKa is a
closed set. Since h C g, for some g ¢ H,, for every @ ¢ A we have
Uh C H’l' . Hence Kij and S - Hi* are disjoint closed subsets of S.
a ' .

The topological space is normal by Corollary 2.16, Therefore by
Urysohn's Lemma (Lemma 3. 26)there is a continuous function
F..:S ~[0,1] such that F,,(x) = 1 if x ¢ K., and F,.(x) = 0 if x ¢ S - HX,

ij » ij . ij ij i
The sequence of functions {Fl_]} leads to a definition of a distance

function for the topological space S. Define D :SxS » R, where R is

the set of real numbers, by

|F..(x) + R..(x, )F.. ()|
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where Rij(x,y) = £1, depending on whether y does not or does belong
to an element of Hi that contains x, Using the above definition of D,
the sPace S is a metric space as will be shown below.
Since the series |
1

i1

zZZ

is a converging series and for each i and j

| Fy5) + By 05, y)F () | .1
51t] = Sitj

2
the function D is well-defined, that is, the series

. P50 + Ry YT () ,i
21+J

converges. Since

{E(x)+r§ii(x,y)Fij(y)! S o
2‘1+j -

for every i and j, we have that D(x,y) > 0 for every x,y ¢ S. Since -

R{J(?‘:Y):le(y‘: %)y-for every:x, y ¢ S; ‘we have D(x; y) =:D{yyx) for.

each:x,y ¢ S. Now consider the following three terms:

(%, V)F.. (7],

[F..(x) + R; i

1]

'Flj(x) + Rij(x’ Z)FIJ(Z) la

and

[Fi5(2) + Ry (2 NF00

ij j(

where x,y, and z are in S. One quickly sees that showing

| Ty (4R, (x, ‘y)Fiij <IF ) +Ry5(x, 2)Fy5(2) | + | Fys(2)4R s (2, y)F.ljml
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is equivalent to showing D(x, y) < D(x, z) + D(z, y), where x,vy, z €S,

The above inequality can be shown by considering the possible cases

that can arise. Listed below are the basic distinct cases that can

happen for x,y,z ¢ S.

1.

2.

10.
11.
12.
13,
14,
15.
16.
17.

18.

X,V,2 € Kij and x,y,z-¢ h, where h ¢ H.1

4

X,y,Z € K.., x,y ¢ h, and z ¢ g, where h, g ¢ Hi

X,V,2 € Kij’ xeh, ye g, and z ¢ k, where h,g,k ¢ Hi

X,V € R-i—j’ Z € Hl, and x,y,z ¢ h, where h ¢ Hi

X,ye'K—.lj, zeH;k, X,y € h, and z ¢ g, whereh,geH.1

X,V € I—(—i}, Z € Hl, x e h, ye g, and z ¢ k, where h,g,keHi
X,V € K_ij’ Z € Hl, x,2z € h, and y e g, where h, g ¢ I-Ii

X € -IZ:J—, V,Z € Hl, and x,v,z € h, where h ¢ I—I.1

xef(—i—j, y,zeI—If, x,y e h, and z ¢ g, wher‘eh,gEH.1
xe—i}, y,zeH’f,xeh,yeg, and z ¢ k, where h, g, ke H,
XER;, y,zerlk,XEh, and v,z € g, whereh,geHi

X,Y,7% € Hl, and x,y,z ¢ h, where h ¢ H,

X,V,2 € Hl, X,vye h, and z € g, where h, g e Hi

X,V,2 € Hl, xeh, yeg, and z ¢ k, where h,g,k ¢ Hi
X,V € H;k, zeS - HFik, and x,y ¢ h, where h e Hi

X,V € I—Il, z ¢S - I—I;.lk, x:€:h, and y ¢ g, where h, g ¢ H,
X € I—Il, v,z €S ~I—Iz'<, and x € h, where h ¢ I—Ii

als
X,V,2 €S - H.l"

One can easily verify the above inequality for the above cases.

Hence, we have D(x,vy) _<_‘D(x, z) + D(z,v) for every x,vy,z € S.

If x = y then we see [Fij(x) + Rij(x’ y)F..

lJ(y)[ = 0 since if

X,y € h e I—Ii then Rij (x,y) = -1; while if x,y ¢ S - Hl' then Fij(x) = F;Ei'j(’x)z

0. If x # y then since S is a Hausdorff topological space there exist
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" domains tjx and UY such that x ¢ Ux’ V€ Uy’ and UX M UY = @, Since

S is perfectly screenable, there is a natural number i and an h ¢ Hi
such fha.tﬁ e hand h C Ux' Hence by regularity we have that there

is a domain D such thatx ¢« D U DC h C U,. Now perfect screen-
ability implies there is a natural number jvand age Hj such that
xeg(Cg(CDCh(C U_.  Therefore, we have g C Kij and by defini-
tion of Fij that Fij(x) = 1. SinceyeS - hand Hi is a discrete collec-
tion of domains we haﬁve that yvdoes not belong to an element of H, that
contains x. Thus' by definition Rij(x’ y) = 1 and ]Fij(x) +Rij(x,y)l*"ij(y)] >].
Therefore,

J(Y)‘ 1
- 2'i*i-_jLI

F..(x) + R..(x,y)F.
s 5 | Fy50 + Ryl T

T >0

2

which implies D(x, y) > 0. Hence x = y if and only if D(x, y) = 0.

Let M be a subset of S and x ¢ S such that D(x, M) = 0. Let D
be any domain such that x ¢ D. Since S is perfectly screenable there
is a‘ naturai number i and a domain h in H, such that xeh(C D. Since
S is a regular topological space there is a domain U such that
xeUCTUCKC D.‘ Therefore by perfect screenability there is a
natural number j and a domain g e”Hj such that x ¢ g ( U. Since- |
TCh we have g ( h; thus the point x is contained in Kij“ Now by
definition of the function Fij we have Fij(x) :»1. Since D(x, M) = 0 we
have for every positive real number‘ € anm ¢ M such that D(x,m) < ¢.

Now if there does not exist m e M such that m ¢ h let

S
21+J+1

Since m ¢ h for every m ¢ M we have by definition R;j(x,m)' =1 for

evéry m € M. Therefore
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D, m) = Z Z - 1t

|V
K

hd ;‘_F]— > €.,
This contradiction implies there is an m ¢ M such that m ¢ h. There-

fore there is an m ¢ M such thatm ¢ D. Hence x is a limit point of M.

Let M be a subset of S and x a limit point of M. Now we wish to
show that D(x, M) = 0, that is, for every positive real number ¢ there

is an m € M such that D(x,m) < ¢. Since

o0 QO ‘ x <
DL Ak LU IR o Y U
21+J > 21-i-J--1 : 22N-3

i=N j=N i=N j=N

we see that

Do m

(60 (0]
Z Z iFij<x)+R?j<.x,y)F‘ij(y)l <

21+J

for every x,y € S. Hence we will show there is an m ¢ M such that
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N N

[ Fyx) + R;;(x, m)F . (m)| _ e

S . 7
i=1 j=1 '

To this end, let i and j be fixed natural numbers and consider the func-

tion Fi" Since x ¢ S, we know that one of the following occurs: (1)

x ¢S -Hf, or 2) x ¢ K5, or (3) x ¢ Hf and x ¢ K;;. IfxeS - H; then

since F.lj is continuous at x implies
F..
1
2i+j

is continuous at x there is a domain gij such that x e gij and

|[Fy00) - ()] . e

—— s
21+J ZNZ

where y ¢ gij’ and e is a given positive real number. Now the defini-

tion of Fij implies Fij(x) = 0; thus

,Fij (y) , S
2i+j ZNZ

where y ¢ gij and ¢ is a given positive real number. Hence we have

trivially that

S j(y)l < ==
itj | ZNZ

lFij(x) Ry (x, V)F,

2

for y ¢ gij" If x e Kij then by definition of Kij there is a domain g ¢ Hi

and a domain h e Hj such that x ¢ h (( g. Note by definition we have

Rij(x,y) = -1 for every y e g. Since the function Fij is a continuous
function at x the function F..
1
itj

2
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is a continuous function at x. Therefore there is a domain D such that

x ¢ D and

where y‘ e D and ¢ is a given positive real number. Letting gij =g D

we have x ¢ gij and

!Fij(x>+Rij(x,y>Fij(y>l o e
2i‘-l-j ‘ 2’

where y e g, since Ry(x,y) = -1 for every y ¢ g;;. Ifxe H, and
x ¢ Kij then there is an h ¢ Hi such that x € h. Since F.lj is continuous

at x the function

T
2i-{-j
is continuous at x. Therefore there is a domain D1 such that x € D1
and
2 2N°
where y ¢ D1 and e is a given positive real number. Letting Gij =h ﬁDl

we have x ¢ gij and

¢ ;0] < e
21-*-3 ZNZ

|75 (x) + Ry, y)F

where y ¢ g‘ij since by definition Rij(x’ y) = -1 for y € h. Thus for each
iand j (i,j=1,2,...,N) we can associate a domain gij such that x ¢ gij

and



92

for v e gij' The point set DZ, =M gij’ where i,j=1,2,...,N is a

domain which contains x. Since x is a limit point of M there is an m

0

such that m, € D2 and
lF.lj(x) + R,lj(.x,.mo)Fii( o)l e
21+3 ZNZ

fori,j=1,2,...,N. Thus we have
N N N N
‘i):‘d Z ]Flj(x) + Rij.(x.’ mO)FlJ(mO)I < A z € . _€ . NZ - _E_,
L 21 Lo a2 NP 2
=1 j=1 i=1 j=1

Therefore; -

and we have D(x, M) = 0.

The above two paragraphs imply that x ié a limit point of M,
where M is a subset of S, if and only if D(x, M) = 0. Thus S is a metric
space by Definition 3. 1.

A result similar to Theorem 3.27 was proved in 1951 by
Nagata and Smirnof [1]. Because the proof of this theorem is similar
to Theorem 3.27 it will not be included in this paper. Since this
theorem is an important theorem from a historical view, it will be

stated below.

Definition 3.28: A collection of sets H is called o-locally

finite if there is a sequence G = {G.l} such that G, is a locally finite
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, foe)
colleiction of sets and H = (UJ Gi'
i=1

Definition 3.29: Let S be a topological space with base B, If B

"is o -locally finite then B is called an NS-base.

Theorem 3.30: (Nagata and Smirnof) A topological space S is

metrizable if and only if it is regular and has an NS-base.

Now with the aid of Theorem 3.27, we will prove a series of

theorems dealing with the metrizability of Moore spaces.

Theorem 3.31: A Moore space is metrizable if and only if it is

perfectly screenable,

Proof: Since a Moore space is regular, Theorem 3,27 gives

the desired conclusions.

‘Theorem 3.32: A Moore space is metrizable if and only if it is

strongly screenable.

Proof: Lemma 3.25 shows that in Moore spaces, strong
screenability is equivalent to perfect screenability. Hence Theorem

3.27 produces the desired conclusions.

Lemma 3,.33: If His a collection‘of mutually exclusive domainé

in a normal developable topological space S then there is a sequence

. , 00
{Hi}such that H; is a discrete collection of domains and J H
i=1

H covers

oo
H* and U H. is a refinement of H, where H% = U h.

i=1 1 v heH

Proof: ILet {Gi}be a development of the space and let W = S - H%

Since H* is a domain, we know for each p € H* there exists an integer
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n(p, H*) such that each element of Gn which contains p lies in H¥*,

(p, H*)
Let Xi = {p[no element of Gi containing p intersects W}, that is, p e X.l
if and only if (1) p e H¥ and (2) if pe g e G, theng "\ W = §. Letp ¢ X,
then there is a domain g in G, such that pe gand g "\ W # ¢, Hence, by
definition of Xi,' we have g M X, = # which implies that X, is a closed
set. Since X, (YW = ¢ and S is a normal space there exists a domain
D; such that X, C D, and D, MW =¢. Nowdefine H, = {h M D, |he H}
and observe that Hi is a collection of mutually exclusive domains such
oo
that U H

i=1
each point of H* is contained in an Xi and hence in a domain Di; thus we

; is a refinement of H. Since S is developable, we have that

oo
have that U Hi covers H¥*,
i=1

For a fixed i, let us consider h M D and hy N D, in H,. If

p
x e (h M D)) m<h[3 M D)), then x « B;. Now the definitions of h_, h

and D, imply that x e 8(ha M D.) and x ¢ 8(Ih

ﬁ’
5 M Di)' Therefore, there

B

containing x. Hence every domain containing x contains a point of h

exists a point y # x ¢ ha M D, and z # x e h, M Di for every domain

p

and a point not in h Thus, x ¢ 9 h, which implies x ¢ W since

B B
;) hBC ‘W. Therefore, x ¢ E_iﬂW which implies 5;ﬂW # 0, which
contradicts the fact that 5;OW = . Thus the sets ha ) D, and

h{3 MDD, are disjoint.
Let Ki be a subcollection of Hi and suppose x ¢ ktJK k. IfxeW
i

then S - Di is a domain containing x which does not intersect ke K k.
i

If x ¢ H* then x ¢ -ha for some . Ifx ¢ ha M D. then by normality
there exists a domain D_such that x e D D and D N(h 1\ D.) = 8.
o @ @ @ o i

Since {Gi} is a development of the space, we know there is an integer

n(x, h ) such that'every domain of G containing x lies in h . Let
o n(x, h ) T

[23
g be such a domain and consider g (M) D, The set g (Y Dé is a domain
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such that x ¢ g M D and g M D, C h, . Since H is a mutually exclu-
sive collection of domains then hoz and Kl are disjoint. Therefore x is

not a limit point of Kl, and thus H, is a discrete collection of domains.

Remembering that x ¢ k%é{ k, let us assume xe¢ ha M Di"
I i
Since h M J k = @, it will be sufficient to showh (Y D.(C h .
a keKi a i o

Suppose there is a y e W such that y ¢ h . Sinceh M D, C h ,
we rhust have y ¢ B(ha ﬁDi), therefore for every domain D containing
y there is a z e (ha('\ Di) which lies in D. Thus every domain contain-
ing y contains a point of ha and hence y e 8ha. Therefore y ¢ W since
3] ha ( W, buty is also in 5; Hence y e WM BZ, a contradiction to
the fact W M _D_i__: ¢. Thus we have ha—(W'D_i is contained in ha, and the

collection I—Ii is a discrete collection.

Lemma 3.34: A screenable normal developable topological

space S is a strongly screenable topological.

Proof: Let H be an open covering of the space S, Since S is

screenable we know there is a sequence G = {Hl} such that Hi is a

00

collection of mutually exclusive domains and () H. covers S and

) i=1

9, Hi is a refinement of H. Now Lemma 3.33 implies that for each

i=1 * '

i, there is a sequence Cri = {Hl} such that I—Iij is a discrete collection
0o ! 3 Q0

of domains and J H.. covers H, and U H
j=1 1] L. J:l

Hence the collection {Gi} defines a sequence such that each element of

i is a refinement of Hi‘

the sequence is a discrete collection of mutually exclusive domains
and the union covers S and is a refinement of H. Thus our space S'is

strongly screenable.

Theorem 3.35: A screenable Moore space is metrizable if it

is normal,
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Proof: Lemmma 3.34 implies that a screenable normal Moore
space is strongly screenable, Hence Theorem 3.32 implies that the

space is metrizable.

Lemma 3.36: A collectionwise normal Moore space S is screen-

able.

Proof: Let H be an open covering of S. Lemma 3.23 implies
that there is a sequence {X.l} such that X.1 is a discrete collection of
closed sets and Xi is a refinement.gf Xi+1 and H and E/ql X.1 covers S.
Since S is a collectionwise normal we have for each i, a collection Y.1
of mutually exclusive domains, such that Y: covers X1 and that no
element of Yi intersects two elements of X.l.

Now for each x ¢ X, we know that x C h for some h ¢ H. Con-
sider K_ = {glg e Y., g M x # ¢} then we know ka is a domain and
x C KX Hence, K}; M h is a domain contained in h. Because of this
reasoning we may assume each element of Y, is contained in an ele-
ment of H. Letting Y = {Yi} and noting that Y* covers S since 8 X.

i=1 *

covers S. We have by definition that S is screenable.

Theorem 3.37: A Moore space is metrizable if and only if it is

a collectionwise normal topological space.

Proof: If S is a metric space then Theorem 2. 10 implies that
S is a collectionwise normal topologiéal space., Now let S be a collec-
tionwise normal Moore space. Lemma 3.35 implies that S is a screen-
able Moore space. Also by Theorem 2, 11 we know that S is a normal

Moore space. Hence S is metrizable by Theorem 3. 35.
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Lemma 3.38: Let S be a collectionwise normal topological

space and H an open covering of S. If K = {Hl} is a sequence such that
each Hi is‘ a discrete collection of closed sets, 'iﬁjl Hi 1s a refinement
of H, and 81,Hi covers S. Then there is an opeh covering G of S such
‘that G is al'r—efinement of H and for each point p € h, where h ¢ Hi’

there is a domain D containing p such that not more than i elements of

G intersect D.

Proof: By Lemma 3.24 we have for each Hi a discrete collec-
tion of domains W.1 such that Wi covers Hl, Wi is a refinement of H,
and each element of w. co‘ntains just one element of H;. Also since S
is a collectionwise normal topological space we have that Theorem 2,11
implies S is a normal topological space,

As S is normal, there is a domain Di containing H; such that
D_.1 C Wl' Define G as follows: each element of W1 ;is an element of

v i _ i _
G and if w ¢ W, , such that WQ:UD.,then vv~L)Dj is an ele-

ment of G. Since Wi is a refinement of H for each i, we have that G
. @

is a refinement of H. Also since Wi covers H1 and Ul H.1 covers S,
i=

we have that G covers S. Let p € h, where h ¢ ‘Hi’ and assume that
Hl' is the first H;F, j=1,2,...,1 such that p e H1 Since Wi covers HI
there is a domain W such that p‘ € W, also note that Wy is the only
element of W, which contains p. Since 'Wj is a discrete collection of
domains, we have for each j at most one ‘wj € Wj such that p ¢ v—vj.
Now for j=1,2,...,i-1, we have either p ¢ w. or p ¢ U %, If

j WEWj
p € v_vj then since Wj is a discrete collection there is a domain Dp such

that w. D and
WJ C P
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U= : :
Ifpd wew. W then there is a domain Dp such that p ¢ Dp and

]
DN U w)=4g.
P weW.
J
Now define
i-1
D= (J?l DpJ) M Wi M Di

and note D is a domain containing p. If g'e G and

. i
g=w - Dk
‘ k=1

and j > ithen DM g= @ since D DiC Ei' Hence be definition of D
and Wi we have that D can intersect at most an i numbei' of elements of

G.

Theorem 3.39: A Moore space is metrizable if and only if it

is paracompact.

Proof: Let S be a paracompact Moore space. Now Theorems
2.32 and 2. 19 imply that S is a collectionwise normal Mooi'e space.
Hénce by Theorem 3.37, S is metrizable. Now let S be a metric
space with metric D and H any open covering of S. Theorem 2.10
and Lemma 3,22 imply that S is developable and collectionwise normal.
Hence by Lemma 3, 23 there is a seqﬁence X = {X.l} such that X, is a
discrete collection of closed sets which is a refinement of both X'1+

1

0o

and H while U X; covers S, Thus Lemma 3.38 implies there is an
i=1 :

open covering G of S such that G is a refinement of H and for each

point p € g, where g ¢ Xi’ there is a domain D containing p such that

not more than i elements of G intersect D. Therefore we have by
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Definition 2.23 that S is a paracompact topological space.

«

Hence by Theorems 3.39, 2.30, and 2. 32 we have the following

theorem.

Theorem 3,40: A Moore space S is metrizable if and'o‘nly if S

is a fully normal Moore space.

This section will now be concluded with a generalization of

Theorem 3.27.

Theorem 3.41: A regular topological space S is metrizable if

there is a sequence G = {G.l} such that

(a) G.l is a collection of domains such that the sum of the
closures of any subcollection of G.l is closed and

(b) if pe S and D is a domain sﬁch that p € D then there is an

integer n(p,D) such that an element of G contains p and every

n(p, D)

element of Gn(p, D) containing p lies in D.

Proof; Let D be any domain such that D (_ S. First, we will
show that D is strongly screenable. Let H = {hl’hZ’ ces ha, ...} bea
well ordered collection of domains which covers D; Let Vari be the
sum of the elements of Gi whose closures lie in ha' Note that some of -

the Vai may be empty. Now if Uozij denotes the sum of the elements of

G. whose closures lie in V . but do not intersect U V.. then let
J ol B<a Pi

w..={U ...Y¥y=1,2,...,a,...}, NowifU ..and U,.. (B <a) are
1 { YL } alj B ij (@ )

elements of Wij’ then by condition (a) we have that L_I;.lj’ is a closed

—

set that lies in Va.l; also U is a closed set that lies in V.. Since

Bij pi

V.. is a closed set by condition (a) we have

Bi
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i ({Sgavﬁl) = @,
and
Ua/lj a U{Sij =0

Also condition (a) implies that the sum of the closures of any sub-
collection of Wij is closed. Hence W.lj is a discrete collection of
domains. One quickly sees by Idefinition that Wij is a refinement of

H. Now let p e D and hB be the first element of H to contain p. Then

but does not belong to V V .. Then for

p belongs to some V a<p ak

Bk

some integer m, p lies in an element of Grn whose closure lies in

. U =
Vﬁk but does not intersect 0 <p Vak'

covers D. Hence D is strongly screenable.

Hence p e U and U U W,
m ij

Bk
For each positive integer k let Xk = {in} be a sequence of
discrete collections of domains such that each in is a refinement of

m 3
G, and U X, . covers Gk That S is perfectly screenable follows

k i=] ki

from the fact that the elements of {in :i,k=1,2,...} may be ordered
in a sequence fulfilling the conditions to be satisfied by the sequence
G = {G.l} mentioned in the definition of a perfectly screenable topologi-

cal space. Hence by Theorem 3.27 S is metrizable.
Some Recent Results

This chapter will be concluded with some results obtained
within the past fifteen years. The first such result is due to P. S,
Aleksandrov [1]. This theorem, proved in 1956, will be shown to

follow other results which have been previously proved in this paper.

Theorem 3.42: In order that a regular topological space be
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metrizable, it is necessary and sufficient that it have a uniform base
and that it satisfy any one of the following conditions:

(a) it is paracompact

(b) it is collectionwise normal

(c) each point-finite covering of it has a locally fiﬁite refine -

ment.

Proof: If S is a metric space then an argument similar to
Example 2.43 implies that S has a uniform base. Since a metric space
is a Moore space we have by Theorems 3,37 and 3. 39 that conditions
(a), (b), and (c) are satisfied. If the regular topological space S has a
uniform base then by Theorem 2.45 it is a pointwise paracompact
Moore space. If (a) is true then Theorem 3.39 implies that S is metri-
zable. If (b) is true then Theorem 3. 37 implies that S is metrizable.

If (c) is true then since S is pointwise paracompact we have that S is

paracompact, and hence metrizable.

In light of Theorems 3.42 and 2. 45 the following collection of
theorems on metrization of pointwise paracompact Moore spaces will
be of interest. The proofs of these theorems will be omitted, but may
be found in Traylor [29], and Heath and Grace [11]. However,‘ before
stating these theorems, all definitiqns needed to read these theorems

will be given.

Definition 3.43: A topological space is locally separable if each

domain D contains a.domain D' which is separable.

Definition 3.44: A topological space S is locally peripherally

separable if for each point p and domain D containing p there is a
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domain D' containing p such that D' is a subset of D and the boundary

of D' is separable.

Definition 3.45: Let S be a topological space and D a domain in

S. If B is the boundary of D then the statement that B is accessible
means that if p is a point of B and R is a region containing p then there
exist points q and q' such that q is in D, q' is in R () B, and there is

an arc with end points q and q' which, except for q', lies wholly in D,

Definition 3.46: A topological space is locally arcwise connec-

ted if each domain D contains a domain D' which is arcwise connected.

Definition 3.47: A topological space S is locally peripherally

connected if p is a point of S and D is a domain of S containing p, there
is a domain D' containing p such that D' is a subset of D and the

boundary of D' is connected.

Following are the theorems dealing with the metrization of

pointwise paracompact Moore spaces.

Theorem 3. 48: A locally separable Moore space is metrizable

if and only if it is pointwise paracompact.

Theorem 3.49: If S is a locally peripherally separable Moore

space such that the boundary of each domain is accessible, then S is

metrizable if and only if it is pointwise paracompact.

Theorem 3. 50: A locally peripherally separable, locally arc-

wise connected Moore space is metrizable if and only if it is pointwise

" paracompact.
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Theorem 3.51: A connected, vlocally connected, locally peri-

pherally separable, pointwise paracompact Moore .space is separable

and hence metrizable.

Theorem 3.52: A connected, locally peripherally connected,

locally peripherally separable, pointwise paracompact Moore space is

separable and hence metrizable.

Theorem 3.53: Suppose that (1) X is a connected pointwise

paracompact Moore space, (2) X has only one cut point p and (3) for all
p,q in X, p # q, and every open set R containing p, there exists a
closed connected separable set N such that N (C R and N separates p

from q in X. Then X is metrizable.

Theorem 3.54: Suppose that X satisfies (1) and (3) of the

'previous theorem and that X has a finite number of cut points. Then

X is metrizable,

Theorem 3.55: Suppose that (1) S is a connected, locally con-
nected, pointwise paracompact Moore space, (2) there is a separable
closed set which separates S, and (3) each non-degenerate separable
closed set which separates S contains two points which are separated
by a separable closed set. Ifs has only a finite number of cut points,

then S is metrizable,

Following Aleksandrov’s metrization theorem in 1956 the next
result was in 1964 by Heath [15]. This result depended upon a general-

ization of pointwise paracompactness and is called property P.

Definition 3. 56: A topological space S has property P provided
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that every open covering G of S has an open refinement H such that H
covers S and no point of S belongs to more than countably many mem-

bers of H.

Definition »3. 57: A topological space Sis glfcomgact provided

every uncountable subset of it has a limit point,

Theorem 3. 58: Every separable topological Spac‘e S having

property P is ml-compact, and hence if S is also a Moore space then

S is metrizable,

Proof: Suppose that S is not ﬂll~cpmpact and let M be an
uncountable subset of S having no limit point. Since S is separable,
let K be a countable dense subset of S .and, for each point x e M, let
R(x) be a domain containing x and no point of M - {x}.

Then; if G is an open covering of S consisti‘ng of S - M and
{R(x)|x ¢ M}, any refinement of G must include a subset Q such that,
for each x and y in M, x # vy, there are members g, h ¢ Q such that
xe g, yeh, and g # h.

Then since every member of Q must contain a point of the
countable set K there 1s a point z in K such that z belongs to uncount-
ably many members of Q contrary to the assumption that $ has property
P.

If S is also a Moore space then Lemmas 3.18 and 3. 19 imply
that S is a second countable topological space, Hence by Ijrysohn?s

Theorem we have that S is metrizable.

Corollary 3.59: A separable pointwise paracompact Moore

space is metrizable.
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This chapter will now be concluded with three theorems which
are generalizations of previous theorems. These theorems deal with
properties of the boundary of each domain rather than with properties
of the space. The first, proved by Traylor [27]in 1964, is stated and

proved below.

Theorem 3.60: A normal Moore space is metrizable if the

boundary of each domain is screenable.

Proof: Suppose that S is a normal Moore space and H is an
open covering of S. By an argument similar to that of Theorem 3.41
there is a collection H' of mutually exclusive domains such that H" is
dense in S and H' refines H. Now H'* is a domain so we have S - H"*
is screenable by hypothesis. Hence there is a sequence K = {Hl} such

0
that Hi is a collection of mutually exclusive domains, U Hi is a re-
. 1=1

0
finement of H, and Ul Hi covers S - H%. Therefore letting H' = HO
1=
we have that K1 = {HO’HI’ H,,.. .} can be ordered in a sequence

satisfying the conditions of the sequence mentioned in the definition of
a screenable topological space. Hence S is a normal screenable
topological spacé. Therefore by Theorem 3.35 the space S is metri-

zable.
The following result is due to Grace and Heath [11].

Theorem 3.61: A Moore space is metrizable if the boundary of

each domain is strongly screenable.

Proof: Let S be a Moore space and H an open covering of S.

Using a construction similar to Theorem 3.41 there is a collection of
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domains G whose closures are mutually exclusive, G¥* is dense in S,
é.nd G is a refinement of H. Then G* is S and G* - G* is strongly
screenable since it is the boundary. of G*. Thus there is a sequence

K = {Hl} such that Hi is-a discrete coliection of domains, 8 Hi refines

i=1

@ .
H, and Ul H, covers G* - G¥*.
i=

Denote by G' the collection to which a domain d belongs if and

only if there is a domain g € G such that

d:‘g—(gﬁUH#*).

Then each point in G's must belong to the closure of some element of
G' since no point of G* - G* is a limit point of G'*, Thus G' is a
discrete collection of domains.

o0 % '
Suppose that M is the boundary of U Hl Then each point of

o . i=1
S belongs to either G'*, M, or U H1 But M is strongly screenable

i=1
since it is the boundary of a domain. Thus there is a sequence K':{H;}
satisfying the notion of strong screenability with respect to H and M.

Clearly, the sequence G',H HligH H.,,... satisfies the notion of

1’ 2’772
strong screenability with respect to H and S. Thus S is strongly

screenable., Hence Theorem 3. 32 implies that S is metrizable.

The final theorem of this chapter deals with still another pro-
perty of the boundary of a domain. This theorem by Traylor [28] will

conclude this chapter.

-Theorem 3. ‘62: I.et S he a Moore space, such that if B is the

boundary of a domain inS and G is a collection of domains covering B,

then some countable subcollection of G covers B. Then S is strongly



107

screenable, and thus metrizable.

Proof: Let H be an open covering of S, K = {x| {x} is a region},
L = {xlx is a limit point of K}, and M = {x]x €S - (KU Lb)}. Then no
point of M is a limit point of L, otherwise that point is a limit point of
K and not in M. Furthermore, K is a domain and L is the boundary of

K. Thus some countable subcollection H1 of H covers L.

- Now suppose there is an uncountable subset T of M such that T
has no limit point. Xach point of T is a limit point of M since T
contains no degenerate region and no point of M is a limit point of
either K or L., So M - T is a domain, and T is an uncountable subset
of the boundary B of M - T. But the boundary B of M - T is second
countable and T is an uncountable subset of B. Hence, T has a limit
point. This contradiction implies that every uncountable subset of M
has a limit point. Therefore by Lemma 3.19 we have that M is second
countable. Denote by H' a countable subcollection of H such that H!
covers M.

Denote by H, the collection to which the region R belongs if and

2

only if the only element of R is a point of (K - Hl*ﬁ K). Clearly, H,

is a discrete collection of mutually exclusive domains. Denote by
Fl’ FZ’ ... a sequence such that each F.1 is a collection whose only
element is some domain of H1 U H' and each domain of Hl U H' is the

only domain of some Fi' Clearly, by the definitions of H1 and H' this

sequence is at most countable. Then the sequence H Fl’ FZ’ ... is a

2’

countable sequence such that H_ and Fi are discrete collections of

2
0o
domains. By definition of H, and F, we have that H, (U F.)is a
o i=1
refinement of H and H, (U F.) covers S. Thus by definition we have
i=1
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that S is strongly screenable. Hence by Theorem 3. 32, the Moore

space S is metrizable.



CHAPTER IV

PROPERTIES OF NONMETRIZABLE

NORMAL MOORE SPACES
Introduction |

The goal of this chapter is to give the reader Qho seeks a
counterexample to the normal Mocre space conjecture some insight
into results which should be of help. This chapter inc‘ludes a transla-
tion of the conjecture into a nontop-ological éetting, which should enable
a greater audience to pursue a solution to this evasive problem. The
paper concludes with a presentation of some of fhe properties of non-

metrizable normal Moore spaces.
A Translation of the Normal Moore Space Conjecture

This section of the paper, Bing [2], will translate the yet un-
solved problem.i’n topology of whether a normal Mooré ‘space is metri-
zable into a nontopological setting. The advantage of this translation is
that it will allow a wider audience to examine the problem,

Let X be, a set and R the c_é.rtesi_an product of X with itself, that
is, R = XXX. Let L denote the diagonal of R, L = {(x,%x)|xeX}. For
a visual aid one could consider X = [0, 1] on the real line. bThen
R = [0, 1] X [0, 1], the unit square in the Euélidean plane, and with
diagonal L from (0, 0) to (1, 1) as shown in Figure 5, However, our

discussion will not insist that X have the cardinality of the continuum.
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A
<
\2

Figure 5. The Sets X, R, and L

Now leé h(x,y) = (v, y) be the horizontal projection of a point in R into
a point on L. Also let v(x,y) = (%, x) be the vertical projection. We
will be concerned with sets W such that h(W) M) v(W) = §. For
example, in Figure 5, W could be {(x,y)[3/4 <x <1 and 0 <y < 1/4},
then we have h(W) = {(y,v)]3/4 <y <1} and v(W) = {(x,x)]0 <x <1/4}.

Let f:(R-L)=~-{0,1,2,...} be a transformation of R - L into
the non-negative integers, The transformation f is not necessarily
continuous. The question to be answered is, do the following possible
properties of f imply each other?

(a) There is a transformation F : X - {0, 1, 2,...} such that
max [F(x), F(y)] > f(x, y) for each (x,y) e R-L.

| (b) For each subset W of R with h(W) M v(W) = @ there is a

transformation F__:X - {0,1,2,...} such that max [F

w
f(x,y) for each (x,y) ¢ W.

WL Fy (0] >

If (a) is true then by _lettiﬁg FW

The question of whether (b) implies (a) is not obvious. Whether or not

= F'| we have that (b) is true,
W

there is such an implication is related to the following conjecture.
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Conjecture 4.1: Each normal Moore space is metrizable.

Asj we have seen by Theorem 3. 36 that if a Moore space is
collectionwise normal then it is metrizable. Thus if there is a counter-
example S to Conjecture 4.1 then S contains a discrete collection of
closéd sets such that S is not collectionwise normal with respect to
the collection. We say that S is a counterexample of Type D if it has
the additional property that it contains a discrete collection of points

with respect to which it is not collectionwise normal,

‘Theorem 4.2: A necessary and sufficient condition that there
be a counterexample of Type D is that there be an X, R, L, {(x,v)

satisfying condition (b) but not condition (a).

The proof of the theorem 1s omitted, but the interested reader

may find this proof in Bing [2].
Properties of Nonmetrizable Normal Moore Spaces

The last section of thbis paper will include some properties of
nonmetrizable normal Moore spaces. Of course, this is based on the
assumption that there does exist a nonmetrizable normal Moore‘space.
The first property, established by D. R. Trayior [32] in 1964, is as

follows:

Theorem 4.3; If there exists a nonmetrizable, normal, separ-

able Moore space then there is a nonmetrizable, ﬁormal, separable,

arcwise connected, locally arcwise connected Moore space.

Another property also established by Traylor [31] in 1966

depends upon the following definition. The reader should refer back
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to the definition of collectionwise normal,

Definition 4.4: The discrete collection G is collectionwise
abnormal if no collection of domains in the space covering G* satisfies

the notion of collectionwise nofmality.
Using this definition Travylor p'rOVed the following property.

Theorem 4. 5: If S is a normal, nonmetri?able Mooi’e épace and

H is an open covering of S then there is an uncountable discrete collec-
tion G of mutually exclusive, closed point sets such that G refines H

and G is collectionwise abnormal.

- Also in 1966, Ben Fitzpatrick and D. R, Traylor [8] proved the

following two results.

Theorem 4.6: If there is a normal Moore space which is not

me'trizable, there is one which is not locally metrizable at any point,
that is, if p is a point of the space then there does not exist a domain

D containing p such that D is metrizable.

Theorem 4. 7: If there is a normal, separable Moore space

which is not metrizable, then there is one which is not locally metri-

zable at any poiht-.



CHAPTER V

SUMMARY

This paper has provided a historical account of the basic
theories concerning the met‘rization of Moore spaces, from their
earliest beginnings to their present status in mathematics, The
author has included such proofs and examples as were deemed neces-
sary for best comprehension.

In preparing the paper, the most recent guides to mathematical
literature wevre consulted; due to the time lapse be'twbeen publication
and inclusion in these indices, any work which may have been done
after 1966 was not included. The bibliographies of the indexed articles
were fully explored; any applicable material from this source has been
included. For these reasons, the author feels that this paper, coupled
with the material now completed but not yet available, would provided
a comprehensive and usable reference tool to any who may wish to
pursue this area of topology in the future.

The material contained in this paper would serve to clarify
many of the questions relating to the meti’izability of Moore spaces;
among those of major consequence woﬁld be: Is every normal point-
wise paracompact Moore space metrizable? Does there exist a Moore
space which is neither screenable nor collectionwise norfnal? Is every
separable normal Moore space metrizable? Can Example 2. 12 be

modified so as to obtain a normal developable topological space which
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is not metrizable? What is a.sufficient condition for a pointwise para-
compact Moore space to be screenabvle? Is every normal topological
space with a uniform base metrizable? |

The author wishes té take the liberty of suggésting the above as
worthwhile areas of investigation to those interested in the metrization

of Moore spaces.
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