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PREFACE 

The principal thrust of this research is toward a better under­

standing of the complex nature of business decision-making behavior, 

especially under conditions of uncertainty and in those situations in 

which "risks" are apparently sought rather than avoided. Most, if not 

all, of the prior research in this area has assumed that decision­

nakers are inherently risk-avoiders. But, it is often observed, and 

particularly in "growth" companies, that executives near the apex of 

the organizational hierarchy do not consistently act in accordance 

with a strict risk-avoidance criterion. Rather, they take seemingly 

irrational risks under some conditions--that is, they sometimes accept 

alternative courses of action that, on the face of it, do not require 

an increased prospective return for increased uncertainty of payoff. 

While such decisions may lead to minor disaster, it seems that just as 

often they lead to major gains for the firm. Why, then, do some 

executives seem to~ risk under certain conditions (perhaps in the 

hope of handsome returns), while at the same time they purchase insur­

ance against loss in other aspects of their business? It is to this 

apparent paradox that this research is addressed, with the principal 

objective of formulating at least one definitive explanation for this 

type of complex decision behavior. 

The genesis of this investigation originally lay in some first­

hand observations of decision-making in a group of small, growing 

corporations. Over a period of more than ten years, I was privileged 
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to participate in--and to observe-·-the making of capital budgeting and 

investment decisions for these companies at a high level in the organi­

zation. As a generalization, the long-range goal of the principal 

executives seemed to be one of risk .£.Q!lVersion--that is, decisions were 

made that would enhance long-range organizational control of the en­

vironmental determinants of outcome, and thereby reduce the inherent 

overall risks taken. But short-run goals often fl.uctuated. In many 

instances, especially when "important money'' was at stake, risky al­

ternatives were avoided. In otrer instances, when the opportunities 

seemed somewhat better or if an appreciable part of the firm's net 

worth were not at stake, then risks were often accepted. And, in all 

instances appropriate insurance against large losses was consistently 

carried at considerable cost. What was happening, apparently, was that 

"growth leverage" was being generated at opportune times by the selec­

tive acceptance of risk opportuniti.es. While such behavior, on the 

surface, seemed to be "irrational," nevertheless, there was an under­

lying thread woven through the decisions that strongly implied a rather 

consistent form of behavior, especially if the riddle could be un­

raveled. The present research is a first step toward such an "un­

raveling." It lays a theoretical base for the complex utility function 

as~ way of explaining, and therefore, predicting simultaneous risk= 

avoidance and risk-seeking. 

To the graduate studen~, the dissertation is somewhat of a pinnacle 

of accomplishment and progress. But no pinnacle can be reached alone; 

rather, such attainment requires cooperative effort. So it is with this 

dissertation. Little could have been accomplished without the assis­

tance, support, aid, comfort, encouragement and actual labor of those 



who helped make it all possible. Chester Barnard once said that the 

weakest link in the chain of cooperative effort is the "will to co­

operate." But, in those who have been so instrumental in the accom­

plishment of this work, there has been no lack of will to cooperate. 

Support for my graduate work and for this research has been provided 

principally by the School of Industrial Engineering and Management of 

Oklahoma State University, and without this assistance the task would 

have been considerably more difficult. 

Yet, from a subjective standpoint, the contributions of the members 

of my Doctoral Committee are valued more highly than organizational 

support. Special remarks of gratitude and appreciation, therefore 9 are 

addressed to those individuals whp have so significantly given of them­

selves in this endeavor. Professor Wilson J. Bentley, the chairman of 

my connnittee, had a great deal to do with this undertaking. It was he 

who first offered the chance to do graduate work, after my having been 

away from academic pursuits for many years, It was also he who con­

sistently displayed imperturbable faith that the work could be done. 

For the "risk" he took several years ago in admitting me to the graduate 

program, and for his confidence, I am most grateful. Likewise 9 Pro­

fessor G. T. Stevens has been a most patient and understanding thesis 

adviser, From the beginning he has offered encouragement, precise 

definition of objectives, and unlimited amounts of time in my behalf, 

Not only am I appreciative of these gifts, but probably more so for his 

fundamental understanding of and empathy for human worth and human work, 

It has been a real and genuine pleasure to work for, and with, Dr. 

Stevens. 

In a similar vein, I owe debts of sincere thanks to the other 
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members of nzy- Doctoral Committee, Professor James E. Shamblin is 

responsible for challenging me, both by his keen sense of humor and his 

superior professional ability, to strive for a standard of excellence 

in the discipline of operations research. For this I am most apprecia­

tive. Professor William W, Rambo, with his incisive empirical bent, 

first made me aware of the potentialities of psychology as a means of 

investigating decision-making behavioral problems. As a result of his 

guidance, the field of social psychology was partially opened to me, 

and this offers a fertile field for future research into decision-making 

behavior in executive groups. This is a major contribution, and I am 

grateful for it. And to Professor Kent Mingo goes a great measure of 

thanks for long hours spent in discussion, for his encouragement, and 

especially for his infectious curiosity about organizational behavior, 

which he has conveyed so well to me. 

But friends and counselors do not necessarily a dissertation make, 

A wife does. I want to share this milestone with nzy- dear wife, 

Virginia; for, in a sense, it is as much hers as it is mine. It is she 

who saw to it that the environment in which I worked was cheerful, and 

it is she who supplied the innumerable cups of coffee on which I sub­

sisted. But, more importantly, it is she who also supplied the en= 

couragement that rendered minor defeats meaningless, and it is she who 

supplied the essential faith that conquered seeming despair at times. 

Quite simply, this work could not have been done without her, For all 

of this, and more, I am deeply grateful. And so am I grateful for the 

continued patience, good hum.or, and encouragement from our children, 

Linda and Lewis. 

While most of these persons have, at one time or another in the 
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stages of preparation of this dissertation, read the manuscript and 

offered valuable suggestions for its improvement, none is responsible 

for any of my errors of omission or commission that may remain. These 

are solely mine. 

Finally, it is my desire that this dissertation bear a dedication. 

While this is an uncommon act, it arises from some uncommon circum­

stances some years ago--circumstances that would have prevented the 

accomplishment of this work had not a special person intervened, There­

fore, it is with deep gratitude and profound thanks that I dedicate 

this work as a memorial to Bernard Alan Cruvant--physician, humanitar­

ian, and great friend-~without whose assistance and labor on my behalf 

and in a time of need this work neither could have been undertaken nor 

completed, 
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CHAPTER I 

INTRODUCTION 

The principal objective of this research is to extend the exist­

ing theory underlying solutions to the probabilistic capital budgeting 

problem, particularly into areas where the decision-maker does not 

necessarily" display risk-avoiding behavior~ In addition, secondary 

objective are (1) to correct a portion of the existing theory from the 

standpoint of correctness of interpretation, (2) to present a rigorous 

formulation of the complete non-sequential capital budgeting problem, 

and (3) to develop a classification scheme by which existing research 

can be placed into perspective, in relation to the complete problem of 

probabilistic capital budgeting. 

Until quite recently, much of the literature (in fact, nearly all 

of it) on the allocation of scarece resources to investment alternatives 

has been concerned with detezministic models. Such models are based 

upon the tenet of assumed certainty concerning all the operational 

parameters of the models. While such an assumption may be warranted in 

some highly specialized situations which are repetitive or do not dis-

play significant variation in costs or incomes, the assumption of 

"certainty" is .!!21 warranted in most situations in which a capital bud­

geting decision is required. Since the capital budgeting problem is 

usually' stated in terms of future costs and cash flows, probably the 

only factor that is certain is the ]!!certainty attached to the 
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parameters of the problem. 

Typically, in making a decision concerning the allocation of 

scarce funds, the decision-maker (or, in a corporate context, the firm) 

must select from a list of "candidate" alternative possibilities a 

subset of projects to which funds will be allocated for ultimate execu­

tion~ In a realistic capital budgeting decision environment, some or 

all of the following factors are presents (1) costs and cash nows are 

not known with certainty, (2) there is a limitation on the amount of 

investment funds available in succeeding fiscal periods for executing 

projects, (3) some or all of the alternative projects may be inter­

related either functionally or fiscally, (4) some or all of the projects 

may display interrelationships within their own cash now streams, and 

(5) the desirability of undertaking project alternatives depends not 

only on the prospective net revenues from the alternatives, but also 

upon the uncertainties associated with the net revenues, and more im­

portantly, upon the attitudes of the decision-maker toward .fil!£h uncer­

tainties. 

Thus, when all of these factors are assumed to be "known'1 with 

"certainty," as they are in the deterministic formulation of the capital 

budgeting problem, virtually all correspondence between the decision 

model and its real-life counterpart is lost. A closer approach to 

reality is attained when these factors are permitted to play their full 

roles and to interact with one another, as they do in the probabilistic 

formulation of the capital budgeting decision models~ In such a formu­

lation, the solution to the problem is based on a joint consideration 

of all of these factors and their interactions. 



The Problem 

Formulations of the probabilistic capital budgeting problem have 

heretofore generally been approached from one of two viewpoints, The 

first is based on the tenet that the capital budgeting problem can be 

"solved" at~ point in time by considering a finite set of alterna­

tive projects or actions, and making the decision by selecting from 

this set a subset of projects for executiono The criterion of selec­

tion is usually some form of benefit to the decision-maker of the finn. 

Formulations of the capital budgeting problem in this fashion are 

3 

termed non-sequential ones~ The second viewpoint is based on the tenet 

that the problem is better solved by a sequence of related decisions 

over a "horizon" of time. Decision models based on this viewpoint use 

a Bayesian approach, in which probabilistic "states of nature" are 

assumed to exist which act as a priori conditions for subsequent de-

cisions. A succession of such states and decisions over several 

periods of time, termed the "planning horizon," comprises the formula-

tion. The optimum decision is that one which maximizes some expected 

"payoff111 to the decision-maker. Such fomula.tions of the capital 

budgeting problem are termed sequential ones. 2 

Both of these viewpoints possess advantages and disadvantages 9 

which will not be discussed here. The two forms of the capital budget-

ing problem are mentioned~ however, to delineate the particular type of 

formulation developed here, The present research is concerned only 

with non-sequential decision-making, and no arguments are advanced here 

for the superiority of this particular viewpoint over the other, al­

though it appears that more research has been reported in the litera-

ture on the non-sequential formulation of the problem. 
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Perhaps without exception, the known non-sequential formulations 

of the probabilistic capital budgeting problem have assumed, either 

taci~ or implicitly, some form of risk-averse behavior on the part of 

the decision-maker. That is, the known models reported in the litera­

ture rest upon an assumption that the decision-maker is averse in his 

attitude toward uncertainty of payoff. This is a peculiar direction 

for capital budgeting research to take. First, it is almost a matter 

of collDllon knowledge that many businesses often succeed because of the 

risks they do take; and second, there is empirical evidence in the 

literature to show that some decision-makers are !!£1 risk-averse, at 

least for some combinations of payoff and uncertainty associated with 

payoff. 

There are at least two reasons that non-sequential probabilistic 

capital budgeting research has followed the risk-aversion patho One is 

that virtually all of the models are based on the pioneering and highly 

imaginative work of Harry Markowitz (42), who used a risk-averse ob­

jective £unction in his model for the selection of optimal portfolios 

of marketed securities. The other reason is that the mathematics used 

in the fo:nnulation of the problem are considerably simpler for the 

risk-averse case. 

Notwithstanding these reasons, the compelling consideration here 

is that not all de.eision-makers are averse to risk~ Many do, indeed, 

~ opportunities with uncertainty attached to payoff, in accordance 

with a belief from time immemorial that greater payoffs are associated 

with situations involving uncertainty of outcome5 While it is no doubt 

true that such situations also involve substantial losses sometimes, 

the risk-seeking decision-maker is not only willing to accept this 
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possibility, but in doing so seems to mentally minimize the probability 

of its occurrence; whereas, the risk-avoiding decision-maker appears to 

be always cognizant of the effect of a probable loss. The risk-averse 

decision-maker always avoids a "fair bet," since he prefers certainty 

to uncertainty. On the other thand, the risk-seeker will often pay a 

premium to obtain a bet, presumably because he mentally visualizes the 

possibility of a larger payoff than for an outcome that is certain. It 

would seem, therefore, that risk-seeking~ at least for some combina­

tions of payoff and uncertainty - it not only an acceptable fonn of 

business decision-making behavior, but is a fairly typical one also~ 

This is particularly true for some types of businesses that operate in 

an entrepreneurial environment, such as petroleum exploration and de­

velopment, where little control can be exercised over the environmental 

detenninants of outcome but where payoffs can be exceptional as well~ 

Therefore, the problem that is of immediate concern in this re­

search is the formulation of a theory of probabilistic capital budget­

ing that will, to some acceptable degree, model and explain the behavior 

of a decision-maker who is .!!9! risk-averse, at least with respect to 

some combinations of payoff and uncertainty. Specifically, the problem 

is one in which all of the factors mentioned earlier are present and 

interacting: (1) project costs and cash flows are not know with cer­

tainty, (2) some or all of the projects may be interrelated function­

ally or financially, (3) some or all of the projects may have inter-­

relationships in their respective cash i'low streams, and (5) lilllita­

tions in succeeding years exist in the amount of investment funds 

available. Additionally, the desirability of undertaking projects is 

assumed to depend not only upon the net revenues of the projects 
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selected, but also upon the uncertainty attached to those net revenues 

and especiall.y upon the risk-seeking attitude of the decision-maker 

toward certain combinations of net revenue and uncertainty .. What is 

sought in this research is a mathematical model of this situation that 

can be used for predictive purposes, not from a normative standpoint of 

what the decision-:ms.ker ought to do, but rather from a descriptive 

standpoint of what he ~ or would ,22 under the given circumstances. 

This type of capital budgeting problem is not an uncommon one in 

growing companies. While it is undoubtedly true that business decisin­

:ms.kers in the long-run are risk-averse in a gross sense -- as is evi­

denced by almost continual attempts to convert uncertain situations into 

certain ones via vertical and horizontal integration or the exercise of 

control over the environmental factors affecting production and market 

instability -- nevertheless, the potential for risk conversion arises 

from the very act of taking risks and finding the opportunities for 

exceptional payoffs during the growth period. It is only by taking 

risk that growing enterprises are able to generate the ca.pacit:y: for 

integrating factors of production and exercising control over their 

markets. But even in growing enterprises, not all risk situations are 

equally attractive. "He who has little to lose will risk much, but he 

who has much to lose will risk litile" is an adage that describes the 

decision behavior of many growth enterprises. If, for example, the 

a.mount of investment risked in a prospective venture is small compared 

to, say, the total net worth of the firm then the prospect of loss (if 

it occurs) is not of great moment. On the other hand, if the amount 

risked is great in comparison to the firm's resources, then the pros­

pect of loss assumes much more importance in the mind of the decision-



maker, This is merely another wa.y of saying that under some circum­

stances decision-makers seek and accept risk as a means of generating 

the leverage necessary for growth, yet under other circumstances (where 

the "stakes" become too "great") the same decision-makers will act as 

risk-avoiders. This type of decision behavior cannot be explained by 

an assumption of overall risk aversion on the part of the decision­

maker, as is done in virtually all probabilistic fomula.tions of the 

capital budgeting problem reported in the literature. 

Thus, while existing fomula.tions of the problem do explain and 

predict decision behavior for decision-makers who are risk-averse -­

and, by implication, this categoey includes firms that have reached the 

"age of ma.turity0 in their growth cycle - they do not explain nor pre­

dict the types of decisions that will be ma.de by growth firms or by 

decision-makers who are not risk-averse, and who are looking for oppor­

tunities for creating growth leverage. It is to the latter problem 

that this research is addressed, 

Review of the Literature 

Ha.:rvey (28) has conceptualized the "capital investment decision 

process" as one which includes the actions of searching for new and 

profitable investment opportunities, investigating the technical and 

financial aspects of potential projects, estimating cash flows, and 

selecting from the set of eligible investment opportunities the subset 

of feasible projects most likely to satisfy the goals of the firm~ 

Three stages of the "decision process" are recognized: (1) the 

analysis of investment opportunities, (2) the specification of the 

firm's requirements and constraints, and (3) the selection of an 

7 
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optimal portfolio of executable projects. While this is an apt descrip-

tion of the decision process as it is actua~ undertaken, it is pos-

sible to combine the second and third stages into what might be called 

the selection problem, and thereby gain a more accurate description of 

how capital budgeting decision models are formulated, 

To explain :f"u.rther, project anal.ysis mode:t,.s genera~ have as · 

their objective the development of a mathematical evaluative descrip-

tion on~ project, whereas the selection model provides the criterion 

for selection among projects. Project analysis models generally do not 

contain, within their mathematical formulation, the criteria by which 

one project may be compared with another or with some external standard. 

Project selection mode2s, on the other hand, exactly specify the selec-

tion criterion by which projects are compared with each other or with 

some extemal standard, In general, project analytic models merely 

formulate the information necessary for use as inputs to the selection 

model, which is then used to specify the firm's requirements and con-

strain ts as well as the criterion by which selection is to be made. 

It is necessary, therefore, to consider brie~ the general fomu. of the 

project selection model before proceeding with a review of the 

literature, so that the latter will appear in the proper contextual 

framework. 

The Basic Selection Model 

The "maximization of net present value" model has been chosen 

here as the basic selection model, since it relates all of the varia-

bles that are of interest in the non-sequential capital budgeting prob­

lem.3 This model can be formulated (at least for descriptive purposes 



if not for computational purposes) as follows. Let Ytj be the~ cash 

inflow from project j (j = 1, 2, .. , , m) at the end of year (period) t 

(t = o, 1, ••• , n). Let i be a discount rate for moneyt assumed in­

variate among periods. Then, the Net Present Value for the jth project 

is 

9 

n Yt. = I: .) 
t=O (l+i)t • 

(1) 

Now, let Bt be the undiscounted capital expenditure limit (the "budget") 

in period t, and ctj be the capital consumption ("cost") .of project j 

in period t. Also, let 0[NPV] be some (as yet, undefined) .function of 

equation (1). Then. the general non-sequential capital budgeting prob-

lem is to 

m n Yt. 
Max I: 0[ I: .) ] X , 

Yj,t j=l t=O (l+i)t J 
(t = O, 1, ••• , n; j = L, ••• , m) 

n m 
subject to1 (a) I: I: ctJ·X . S Bt 

t=O j=l J 

(2) 

(J) 

(b) All x. = 0,1 (4) 
J 

Equations (2), (3) and (4) comprise a ma.thema.tical programming state ... 

ment of the non-sequential capital budgeting model, which in the com­

pletely general case might contain more constraints than equations (3) 

and (4), so as to express dependencies and contingencies among projectso 

However, the foregoing fo:nnulation is sufficient to define the selection 

problem for purposes of reviewing the existing literature, Note that 

the objective function, equation (2), requires the maximization of sums 

of .functions of net present value, and that the constraint of equation 

(4) requires indivisibility of projects (fractional projects cannot be 
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executed). Thus formulated, the non-sequential capital budgeting prob­

lem is solved a.s a. special case (0/1) of the integer programming 

problem or by special branch-and-bound algorithms, which permit a.n 

efficient search among possible combinations of the j projects to find 

the combination which satisfies the objective function a.nd the·con­

straints. With this fo:rm of statement for the selection problem, it is 

possible to compare previous research, as will be outlined briefly 

below. 

Selection Under Assumptions of Certainty 

A capital budgeting decision can be said to be made under con­

ditions of "certainty" when all possible outcomes a.re known for all 

possible alternative actions. Thus, the decision-maker would possess 

perfect information under these circumstances. Seldom are these con­

ditions complied with under actual business conditions, and certainly 

almost never when future contingencies are the basis for judgment. 

However, if these conditions can be approx:illlated without significantly 

altering the decision environment, then a.n assumption of certainty may 

be appropriate. Tha.t is, if the variables tha.t appear in equations 

(2), (3) and (4) can be assumed to be inva.riate, and if it can be 

assumed tha.t a sufficient number of projects, m, are subjected to in­

vestigation so as to approx:illlate all alternative courses of action, 

then one is justified in assuming 11 certainty11 and proceeding as if all 

possible outcomes were known. However, even under these circumstances 

the selection problem is far from trivial, especially if there are a 

large number of projects to be considered, since the number of com­

binations potentially subject to inspection by equation (2) is t°' - 1, 
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if the combination "do nothing" (all xj = 0) is ignored. 

The Winegartner Model. The potentially large number of combina­

tions of projects subject to :maximization, in pa.rt, led Winegartner 

(63) to apply the 0/1 case of integer programming to the selection 

problem. Other (and probably more :important) motivations were to col:'­

rect the rate-of-return ranking solution proposed earlier by Dean (15), 

and to demonstrate the existence of a discrete optimum solution in ans­

wer to the problems proposed by Lorie and Savage (39). 

Winegartner conceived of the non-sequential capital budgeting 

problem as one in which the cash flows and cash outlays of the avail­

able projects are lmown with certainey. Although he recognized that 

such assumptions are not realistic, he justified them on the grounds 

that additional insights into the problem could be obtained from exam­

ining an exact model formulated on a theoretical basis. Thus, he 

formulated a model equivalent to the non-sequential model presented in 

equations (2), (3) and (4), with the objective function in equation (2) 

being the maximization of net present value itself. That is, e[NPV] 

is equal to NPV itself in Winegartner1 s model. 

At the time (1963), this was a considerable advance in capital 

budgeting theory, for Winegartner's formulation disposed of Dean's 

incorrect conclusions in the rate-of-return ranking method, as well as 

solving the Lorie-Savage problems of multiple rates of return and pro­

ject dependencies. However, since that time, it has come to be recog­

nized that an assumption of maximization of net present value itself 

(the deterministic or "certainty' case) :implies the existence of a 

linear utility-of-money function for the decision-maker, which might 

not represent the actual decision function that obtains in a specific 
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instance. This point will be discussed more £ul.zy in Chapter IV. 

Nevertheless, the importance of the Winegartner model lies in its demon­

stration that a discrete optimum solution can be guaranteed for the 

objective function, equation (2), using methods of mathematical pro­

gramming, and that such an optimum is not the one proposed by Dean. 

Further, it disposes of the Lorie-Savage problems of project dependen­

cies and multiple rates of return. 

Selection Under Uncertainty and Risk 

When any of the variables in the selection problem becomes other 

than certain - for example, the increments comprising the cash flow 

stream, the project life, the investment "costs," or the money discount­

ingrate -- then the selection problem immediately becomes one involv­

ing undertainty or risk, since the concept of random variation comes 

into play. Another way of stating this tenet is that when imperfect 

information about the capital budgeting parameters is possessed, then 

the selection problem becomes probabilistic. Whether or not the prob­

lem involves "uncertainty" or "risk" (as differentiable semantic terms) 

is largely a problem in interpretation of the meaning of probability. 

Many authors make a clear-cut distinction between "uncertainty" 

and "risk." Objective probabilists hold that if a decision leads to 

several outcomes, then the decision is made under~ only when all 

of the possible outcomes are known and the likelihoods or probabili­

ties of each of these outcomes are !mown or can be estimated from a 

series of observable events. According to this construction of the 

probability concept, then, a decision under uncertainty is one in 

which either all of the possible outcomes are not !mown or the 
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probabilities cannot be established from objective data. An exa:m.ple of 

a decision under "risk" would be one made by an insurance carrier con-

earning the level of premium to be charged for an insurable event, 

where similar events had occurred in the past a sufficient number of 

times to permit the construction of an actuarial mortality table. 

The capital budgeting decision-maker usually has no such informs.-

tion on which to base an estimate of probabilities. His "events" are 

usually one-of-a-kind, and they lie in the future. That is, "projects 11 

under consideration for possible execution often represent new facili-

ties, new processes, or untried changes in operating policies. At 

best, the decision-maker can adduce only partially complete information 

concerning his alternatives. Thus, under the strict construction of 

the probability concept, his decisions would be characterized as being 

made under "uncertainty. 11 

However, another "school" of probabilists, the subjective probabil-

ists, maintains that if the decision-maker or some other knowledgeable 

person who is an expert in the field can adduce subjective information 

concerning the projects and their associated probabilities, then these 

probabilities can be used in the same manner as objectively determined 

probabilities. Raiffa (49) reports that James Bernouilli, in his 

~ Conjectandi (1713) first fonnulated the subjective alternative to 

objective probabilities. Bernouilli suggested that probability is a 

"degree of confidence" (later writers state degree of "belief") that an 

individual attaches to an uncertain event, and that this degree depends --
upon the individual I s knowledge and can vary from individual to in­

dividual. Later writers include Laplace (37) and De Morgan (17), but 

the fonnal concept of subjective probability as an operational theory 



of action was first formulated by Raltlsey (50), Raiffa reports. In 

Ra.if fa ' s WO rds 1 
4 

To Raltlsey, probability is B2! the expression of a logical, 
rational, or necessary degree of belief, the view held by 
Keynes and Jeffreys, but rather an expression of a subjec­
tive degree of belief interpreted as operationally meaning­
ful in terms of willingness to act or of overt betting be­
havior. 
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Thereafter, Raiffa states, De Finetti (16) was able to assess a person's 

degree of belief by observing his overt bett:i.ng behavior, and by insist-

ing on an assumption that a series of bets be internally consistent, 

was able to demonstrate that a person's degrees of belief - his sub­

jective probability assignments -- obey the usual laws of objective 

;erobability. Even more extensive discussions of the concepts of sub­

jective probabilities can be found in Pratt, Raiffa and Schlaifer (48) 

and in Schlaifer (54). Thus, the subjective probabilist maintains that, 

in the absence of probabilities obtained from objective sources, then 

subjective estimates of the probabilities of events are preferable to 

no estimates at all, and may be used in the same manner as objective 

probabilities. Indeed, Ackof.f, Gupta and Minas ((1) 0 PP• .53-55) main-

tain that the decision-maker possesses~ information regarding the 

decision environment than an assumption of uncertainty would require, 

merely by being able to specify the probable outcomes of a prospective 

action. 

The research in this dissertation is based on the generality and 

legitimacy of subjective probabilities. From a practical and realistic 

point of view, the information necessary for the specification of ob-

jective probabilities is almost n.ever possessed by decision-makers in 

an industrial or business context. If this research is to provide an 
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interpretation of the behavior of decision-makers who are not necessari­

ly risk-averse, then it must do so in terms of the data they are able to 

provide; namely, subjective probability est:imates. For this purpose, 

the terms "risk" and "uncertainty" are considered to be synonymous, 

with "uncertainty" being preferred to describe incompletely known out,. 

comes and their associated subjective probabilities, and "risk" to des­

cribe a belief or attitude on the part of the decision-maker. Thus, a 

"risk-seeker" is a person who seeks opportunities for investment in 

"uncertain" projects (he believes that uncertainty provides an oppor­

tunity for greater payoffs), and a "risk-avoider" is one who avoids 

opportunities for investment in "uncertain" projects or, alternatively, 

requires a premium in the expected payoff to compensate for the assump­

tion of risk. 

Von Neumann .. Morgenstern Utility Measure 

Completely apart from the subjective probabilists, and almost in­

cidental.Jy as an adjunct to their monumental work Theory of Games !!'.E 

Economic Behavior, John von Neumann and Oskar Morgenstern (46) pre­

sented a series of axioms of rational behavior, the object of which is 

to assign a numerical measure (utility) to the worth of monetary pay­

offs. It is not necessary here to go into detail concerning the von 

Neumann-Morgenstern theory (since this will be dealt with in more de­

tail in Chapter IV), but in essence, this theory pe:nnits a numerical 

measure of worth or utility to be attached to monetary payoffs which 

have varying degrees of uncertainty. By a series of alter.native 

"gambles" a utility :function for a particular decision-maker can be 

defined, the effect of which is to specify the subjective preferences 



the decision-maker has for varying degrees of payoff and risk, 

The von Neumann-Morgenstern utility index should be carefully 

distinguished from the concept of cardinal utility enunciated by 

Marshall (43) and the concept of ordinal utility enunciated by Hicks 

and Allen (32). Mao (41) makes this disctinction nicely in these 

wordss 5 

To Marshall and other cardinal utility theorists, utility 
was a psychic quantity measurable and quantifiable just as 
one's body temperature and weight are measurable and 
quantifiableo Thus a person was supposed to be able to 
feel that one banana gave him,2S units of satisfaction and 
each additional banana gave him successively fewer units 
of satisfaction. In fact, Marshall derived the negative 
slope of the consumer demand curve from the law of diminish­
ing marginal utility. This cardinal, hedonistic interpre­
tation of utility gave way to the ordinal behavioristic 
interpretation of utility during the mid-1930' s •· In 1934 
Allen and Hicks constructed a theory of consumer behavior 
without assuming that utility was a measurable quantity. 
They based their theory merely on the assumption that a 
consumer had a scale of preferences on which he ranked the 
desirability of different collections of goods. 

••••••••••••ea,1»ii1e111t,.,,ao• 

The fact that the N-M utility is measurable distinguishes 
it from the ordinal utility of Allen and Hicks. But, al­
though it is measurable, the N-M utility has little in com­
mon with the cardinal utility of Marshall, since whereas 
Marshall's concept is a psychological quantity for measur­
ing pleasure and pain, the N-M concept is a numerical index 
for evaluating risky transactions. 

What is measured by the utility function of von Neumann-Morgenstern, 

then, is simply a preference for or an aversion to risk in connection 

with monetary payoffs. 

Different persons exhibit different risk attitudes, some being 

risk-seeking and many risk-avoiding. Almost none are indifferent to 

risk. The usefulness of the von Neumann-Morgenstern utility function 

lies in its ability to distinguish persons on the basis of their 

16 
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risk attitudes. The utility .function, when evaluated numerically, is 

convex (or, concave upward) for risk-seekers, concave downward for 

risk-avoiders, and linear for risk-indifferents. 

The question arises as to how "risk" is quantified. The answer 

lies in some mathematical manipulations of the utility function and 

its argument, the payoff or net present value of a project. Since, for 

the probabilistic case, net present value is a random variable, then it 

will have a mean and variance (and possibly higher moments also). Con­

sidering these para.meters, it can be shown (Chapter IV) that the 

expected utility of the net present value, E(U(NPV)], is a .function of 

the ~ net present value and its variance (and possibly higher mom­

ents), thus: 

E[U(NPV)] = A(~) ± B(a
2 + .,t) 

if the utility .function is expressible as a quadratic of the form 
2 

U(X) =AX= BX ; or as 

E[ U(NPV)] = A(~ ) ± :a:r2 

if the utility function is expressible as an exponential function of 

the form U(X) = 1 - ef(X); all where 

A, B = constants 

a2 = variance of the NPV distribution 

e = natural logarithm base 

f(X) = -( aX :f: b) , a negative linear function 

of X. 

Further, it can be shown (Chapter IV) that the rate of change of ex­

pected utility with respect to variance, dE[u(NPV)]/acr2, is negative 

(5) 

(6) 
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for risk-avoiders, positive for risk-seekers, and zero for risk-

indifferents. Thus, it is inferred that the net present value variance 

(or, alternatively, the standard deviation) is a measure of risk asso-

ciated with the net present value itself. Projects with large net 

present value variances are said to be "risky," whereas, those with 

small ( or zero) variances are said to be relatively II safe. 11 Obviously, 

if the net present value variance is zero, then the net present value 

itself becomes "assumed certain," and one has the exact equivalent of 

Winegartner1 s certainty model described above. This accounts for the 

earlier statement that Winegartner's model implies the assumption of a 

linear utility function for his decision-maker. 

To sum up 9 subjective probabilities permit the construction of 

net present value functions for projects when all of the possible out-- , 

comes (net present values) are not known and when all that is available 

is expert subjective judgment about cash flows, costs, lives, and the 

other component elements of the cash flow stream. The von Neumann-

Morgenstern utility theory permits a decision-maker's preference for 

or avoidance of risk to be stated in such a manner that his attitude 

toward risk (the variance of the project net present value) can be 

taken into account in the project selection problem. Subjective proba-

bilities are at the heart of the analysis problem, and the utility 

function is at the heart of the selection problem. 

The Markowitz Model of Security Portfolio Selection 

The precursor of all modern models of capital budgeting under 

risk conditions is the security selection model devised by Markowitz 

(42). Markowitz was interested in an explanation for the phenomenon 
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of diversification practiced by investors in securities (stocks, bonds, 

debentures, etc.). Diversification has long been practiced in order 

to lessen the risk of loss, but a satisfactory explanation cannot be 

found if an investor simply maximizes net present value. That is, if 

an :investor were to allocate his funds solely on the basis of ma.:x::i.miza-

tion of net present value, then he would invest all of his funds in the 

security which he expected would grant him the largest return, Quite 

evidently, then, either the practice of diversification to lessen over-

all risk is an irrational one, or the criterion of maximization of net 

present value is erroneous. 

In a tightly reasoned sequence beginning with the von Neumann-

Morgenstern axioms of rational behavior, Markowitz deduced an 11 expecta­

tion-variance" criterion function of the form E[u(R)] = JA - Ba2 

( similar to equation (6)), where E[U(R)] is the expected utility of 

the return from a given portfolio of investments, I" is the mean return 

of the portfolio, a 2 is the variance of the portfolio returns, and A 

is a coefficient called the "coefficient of risk aversion," which 

states the extent to which the decision-maker is averse to the risk as 

measured by the variance. While this form of criterion :f'unction is 

recognized (later) as derivable from the parent utility function of the 

form U(R) = 1 - e-aR, Markowitz was care:f'ul. ~ to specify any particu­

lar form of the utility function and thus avoided the error which 

Farrar (19) committed later.6 When the criterion function is in the 

form of equation (6), it is easy to verify that for any given level of 

variance a portf oliq with large mean return will have greater expected 

utility than one with a smaller mean return, and that for any given 

level of mean return, a portfolio with greater variance (risk) will 



20 

have a lower expected utility than one with lesser variance, if the 

sign in the expression is negative (indicating a risk-avoiding utility 

function), Maximization of the "expectation-variance" function leads 

to the selection of what Ma.rkowi tz calls an "efficient" portfolio which 

has maximum expected return for any given level of variance (risk) or 

min::i.mum variance (risk) for any given level of expected return, Thus, 

an efficient portfolio dominates all others with inferior combinations 

of mean and variance, and by successively solving the ma.x::i.mization 

(selection) problem for various coefficients of risk aversion, A, all 

the feasible sets of efficient portfolios are obtained. 

The Markowitz model is written as a quadratic programming problem, 

thus a 

2 N 
Max l{u(R)] = µ. - Aa = E µ.xJ· 
¥j j=l J 

subject to N 

where 

E x. = 1 
j=l J 

(a) 

(b) Allx. 2:: 0 • (j = 1, 2, •••• N) , 
J 

N = the number of securities to which funds could 

be allocated; 

xj = the proportion of available funds invested in 

the jth security1 

tAj = expected return for the jth security; 

aj,k = covariance between the returns of securities 

j and kif j ~ k; otherwise, the variance a~ 

of security j if j = k, 

(?) 

(8) 

(9) 
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Markowitz solved this quadratic programming model to obtain the feasible 

sets of efficient portfolios, but how he did it is not the important 

point here, since more efficient solution methods ha.ve been devised 

since the publication of his report (19.59). What is important, however, 

is that the Markowitz formulation, using the "expectation-variance" 

selection criterion, ~ able to explain the phenomenon of diversifica-

tion of investments to reduce risk, particularly when the securities 

comprising the portfolio are both negatively and positively correlated 

in their mean returns. Tha.t is, a portfolio of investments, in which 

the expected returns are (particularly) negatively correlated, will 

display~ variance overall tha.n a portfolio otherwise constitutedo 

This can be seen by expressing the portfolio variance in terms of the 

constituent security variances and covariances, 

a2 = N 2 
i:a.x. + 2 

j=l J J 
• (10) 

Thus, when the security covariance, a. k' is negative the overall port­
J, 

folio variance is reduced, and when it is positive the portfolio 

variance is increased. A decision-maker with large coefficient of risk 

aversion, A, therefore, will tend to select portfolios with small irari-

a.nee -- those composed of securities whose mean returns are negatively 

correlated and/or composed of securities with small independent vari-

ances, such as high-grade bonds - and decision-makers with small 

coefficients of risk aversion will tend to pick portfolios with larger 

variances, 

A second conclusion emphasized by Markowitz is tha.t the model is 

112! a nonnative one. It does not specify wha.t a decision-maker ought 



to do in selecting a portfolio of securities; it merely specifies what 

he would do ifz (1) he possesses a risk-a.voiding criterion function 

of the fonn E[U(R)] = f-',- Aa2; (2) he has a fixed coefficient of risk 

a.version, A, and (3) the securities available for investment a.re 

correlated among their returns. 
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While the Markowitz model successfully explains investor behavior 

in terms of risk attitudes and quantified measures of uncertainty, it 

is not directly applicable to the capital budgeting problem. In the 

Markowitz formulation of the investment problem, all, or none, or any 

portion of the available funds may be allocated to a security, in 

accords.nee with equation (8), In the capital budgeting problem, this 

is equivalent to pennitting fractional parts of projects to be executed, 

which is (frequently) an impossibilitye Hence, the Markowitz formula­

tion does not solve the special 0/1 case of the mathematical program­

ming problem that is unique to the capital budgeting formulation~ The 

importance of the Markowitz research, however, lies in the fact that 

it first demonstrated that the maximization of net present value is an 

insufficient criterion for selection when ri~k or uncertainty is a 

factor. 

The Farrar Model 

Subsequent to the Markowitz research, Farrar (19) subjected the 

Markowitz hypotheses (concerning the "expectation-variance" selection 

criterion) to an empirical test, Using data obtained from actual port­

folios of investments held by 23 mutual investment "funds," Farrar 

demonstrated that the "funds" could be distinguished in their risk 

attitudes by the types of risk portfolios that they held, That is, 



on the 'basis of the variances of the portfolio investments, ".funds" 

were determined to be "risk-avoiders" with larger or smaller coeffici-

ents of risk aversion. Since Farrar used as a selection criterion the 

Markowitz expected utility :f"Unction, E[u(R)] = JA- Aa
2, the empirical 

test by Farrar confirmed the Markowitz hypotheses that maximization of 

net present value is not sufficient when risk is a consideration. 
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For the present purposes, however, this is not the important result 

of the Farrar work, The thing about the Farrar research that is import­

ant here is that Farrar assumed the existence of a quadratic utility 

:f"Unction ~ ~ ~ U(R) = AR - BR2, and then errouneously derived a 

form of the expected utility, E[U(R)] = f4 - B:r2, !!:9.!!! g. Now, in and 

of itself, this form of expected utility is not necessarily wrong when 

used as a selection criterion :f"Unction; it is, however, grossly wrong 

IF the assumption is made that it comes from a parent utility :f"Unction 

of the quadratic fonn assumed by Farrar ( this will be demonstrated in 

Chapter IV). Through an unfortunate series of coincidences, the 

Farrar error was not discovered until 1967, six years after Farrar I s 

research was first published in book fonn (19), In the meantime, the 

Farrar report (a Ford Foundation Doctoral Dissertation Award-Winning 

Publication) went out of print, and at least two other research works 

~ ~ field ~ capital budgeting were done, using the erroneous fonn 

of the Farrar derivation as the basis of the works Since these two 

research works (one by Harvey (28) and the other by Watters (62)) P 

however, a second printing of the Farrar dissertation by another pub­

lisher has been made available, in which Farrar corrects, or at least 

notes, the error by footnote. At the present writing, however, both 

the Harvey and the Watters researches remain uncorrected, and the task 
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of correcting these two works will be undertaken in Chapter IV. 

Summary of Chapter I 

The capital budgeting decision is concerned with the allocation of 

scarce resources (funds) by the "firm" (the decision-maker) to alterna­

tive opportunities for productive investment (projects) which, it is 

hoped and planned, will generate a series of armual retur.ns (cash in­

flows) over a finite length of time, such that the total net present 

value to the firm, as measured by the investments, cash flows, and the 

time value of money, will be maximized. This problem has been solved 

for the deterministic case in which all of the input variables are 

assumed to be "known with certainty." 

For the probabilistic case, in which some of the input variables 

are random variables, previous research indicates that the criterion of 

ma.:x:i.mization of net present value is an inadequate one. Prior research 

based on decision-making behavior in the purchase of securities port­

folios indicates that the risk attitudes of the decision-maker must be 

considered as well. A measure of worth (utility) to the decision-maker 

o:f various combinations of' return and risk associated with return can 

be determined by employing the von Neumann-Morgenstern utility theory. 

Based on the von Neumann-Morgenstern utility function thus determined, 

additional selection criteria can be speci:fied. 

Because the elements of the project cash flow streams (income, 

expense, etc.), which generate net present value, a.re fixed only by 

future events when they happen, the values of those elements used f'or 

estimation and project selection are random variables and give rise to 

random variation in net present value. The use of sub.jective 
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probabilities is postulated in order to approximate the distributions 

of project net present values. The generation of a project net present 

value (a random variable) and its distribution, by the use of subjec­

tive probabilities and estimates of the cash flow increments, is termed 

the analysis problem in probabilistic capital budgeting. Selection of 

a feasible subset of projects from a larger set of "candidate" projects, 

such that the decision-maker's expected utility is maximized according 

to come selection criterion function (obtained from the utility function 

and expressed in terms of the para.meters of the net present value dis­

tribution), is termed the selection problem in probabilistic capital 

budgeting, 

Virtually all prior research on this topic has assumed that the 

decision-maker is risk-averse -- that is, a risk-averse form of the 

decision-maker's utility function has been used to obtain the selection 

criterion function. Empirical data and direct observation indicate 

that not all decision-makers are risk-averse, particularly in certain 

types of industry and in "growtli" companies. 

The principal problem attacked by the present research is the one 

presented by the non-risk-averse decision-maker. The objective is to 

provide a theoretical solution to the capital budgeting problem under 

conditions of uncertainty, where the decision-maker is not risk-averse, 

at least for some conib:iJlations of return and uncertaintyo Seconda:ry 

objectives are to correct an interpretational error in prior research 

that has affected solutions to the problem up to the present time, to 

present a rigorous statement of the probabilistic capital budgeting 

problem, and to provide a classification scheme by which prior research 

can be integrated into an overall framework. 



FOOTNOTES 

Lro avoid confusion, the term "payoff'' in this research means 
simpzy some return of value to the decision-maker. It is not to be 
confused with "payback" or "payout," which are terms sometimes used 
to describe certain methods of project selection (e.go, by computing 
the "Payback" period). 

2For a discussion of the formulation of a sequential probabilistic 
capital budgeting model, see Masse (44). 

3The internal rate of return model, if properzy formulated to com­
pute the rates on an incremental basis, could be used with equal 
validity (see, for example, Fleischer (22)). In using the IRR model, 
however, multiple and indetem.inate rates must be detected and pro:eerzy 
handled. Moreover, the NPV model is superior in other respects& {1) 
it is easier to handle computationalzy, (2) when budget or logical 
constraints are "tight," it leads to shorter solutions, and (3) for the 
deterministic case it recognizes explicitly a rational economic goal 
of the firm, namezy, maximization of the net present value of stock­
holders' equity. 

4Raiffa (49), P• 2740 

~o (41), PP• 53-.540 

6see page 23. 
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CHAPTER II 

THE GENERAL NON-~UENTIAL PROBABn.ISTIC 

CAPITAL BtJroETING MODEL 

The selection of a subset of projects from a larger list of possi-

ble al"tternatives must be done in accordance with some selection criter-

ion, For the detenninistic case, Dean (15) advocates that the selection 

procedure be done by computing the internal rate of return for each 

project, where the internal rate of return is that value of i which 

makes the following identity true: 

n Yt. 
I: .1 

t=O (l+i)t 
(11) 

and then rank the possible alternative projects in descending order 

of internal rate of return. Selection, according to Dean, is accom-

plished by selecting projects in order of descending rates of returnP 

stopping the process when the available amounts of capital for invest-

ment (the "budgets") have been exhausted. Dean's criterion, then, is 

one of maximization of internal rates of return of individual projects. 

When Dean published this selection procedure in 1951, the empha-

sis in capital budgeting research was focused on the detenninistic case 

and a normative selection procedure. Thus, Dean was advocating (in 

effect) that the finn should maximize internal rate of return subject 

to funds availability, as a representative method of solving the 
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capital budgeting problem. Thereafter, one of Dean's associates, James 

Lorie, together with L. J. Savage, show that if a firm had as its ob­

jective the maximization of net present value of stockholders' equity 

(a rational economic goal), then a different set of projects will be 

selected than those selected by the Dean ranking procedure (Lorie and 

Savage (39)). Moreover, Lorie and Savage showed that it is possible, 

under certain conditions of cash flow and cost, for a project to have 

more than one internal rate of retum -- what is now known as the 

"multiple rate of retum case" -- which further complicates the inter­

pretation of the Dean ranking procedure. Thus, the battle was joined 

over the proper normative selection criterion to use: the Dean ranking 

method, or the Lorie-Savage maximization of net present value. 

It remained for F1eischer (22) to show that if the ranking pro­

cedure were done on an increm~ntal basis -- that is, where internal 

rates of retum are computed incrementally on additional cash flows and 

additional investments -- then the two procedures result in the selec­

tion of identical projects when capital rationing is involved. It 

also remained for Winegartner (63) to show that the selection problem 

can be solved by mathematical programming, using as an objective func­

tion the maximization of net present value, thus leading to an optimum 

subset of projects. The search for a normative selection criterion 9 in 

the deterministic case, seems to have been won by those who would 

":maximize net present value"; and their case rests upon three well­

founded reasons& (1) this criterion is one which expresses a rational 

economic goal of the firm, (2) it obviates the necessity to resolve the 

multiple rate-of-retum problem, and (3) it permits the selection of a 

discrete and unambiguous optimum subset of projects (by the Winegartner 
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0/1 mathematical programming procedure) that will, in fact, maximize 

the net present value of the projects to the firm. Its weakness, how­

ever, lies in the necessity for one to know in advance what time value 

of money (the discounting rate) will be used to calculate project net 

present values, as the optimum subset of projects will change depending 

upon this rate. 

For the probabilistic capital budgeting problem, the search for a 

normative criterion has not fared so well. In the related securities 

market problem, Markowitz (42) demonstrated that the maximization of 

net present value is not a sufficient criterion; indeed, to ignore the 

uncertainty aspects of net present value is to reduce the problem to 

the deterministic case, which does not satisfactorily explain the 

"hedging" behavior of investors who diversify their investments in order 

to avoid excessive risk. What emerges from the Markowitz research, 

therefore, is not a normative criterion which prescribes what an in­

vestor ought to do, but rather a descriptive criterion which more 

accurately describes what he would do when uncertainty is a factor in 

his decision-making, Thus, according to the Markowitz conceptualiza­

tion, there is no ''best" decision for all finns; merely one that is 

appropriate for a given decision-maker when his risk preferences are 

taken into account. Virtually all of the subsequent research, even in 

applications to the capital budgeting problem where projects are 

assumed to be indivisible, have followed Markowitz' lead in µsing 

descriptive selection criteria, rather than attempting to fonnulate 

normative criteria. Moreover, in the final analysis, it may not be 

conceptually correct to specify a normative criterion for all finns, 
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The present research, therefore, follows (somewhat) the lead of 

prior investigators in specifying descriptive selection criteria rather 

than normative criteria. As will be evident from the development in 

Chapter IV, selection criteria that depend upon the von Neumann-

Morgenstern utility function require a knowledge of the random net 

present value and its distribution for each project and combination of 

projects, from which means, variances, skewnesses and fourth moments 

can be ascertained, Since these statistics all depend upon the random 

variate, net present value, it is required here only that the selection 

criterion be some unspecified function of net present value. With 

these introductory remarks, the project selection model can be fonnu-

lated for descriptive purposes, if not for computational purposes, as 

follows. 

Let Ytj be the ~ cash inflow from project j (j = 1, 2, ••• , m) 

at the end of period t (t = O, 1, ••• , n). Let i be a discount rate 

for money, assumed to be invariate among periods. Then, when Ytj is 

a random variable, the random Net Present Value (NPV) for the jth 

project is 

= 
n Yt. 
E ,J 

t=O (l+i)t 
(12) 

Now, let Bt be the undiscounted capital expenditure ljmit (the "Budget") 

in period t, and ctj be the capital consumption ("cost") of project j 

in period t. Also let 0[NPVj] be some (as yet, undefined) function 

of (12). 

Then, the general non-sequential capital budgeting problem is to 



Max 
Vj 1 t 

subject to1 

(t = 0 11, ••• 1 n; j = 1, ••• 1 m) 

n m 
(a) E E ctjxJ. ::; Bt 

t=O j=l 

(b) ctj c:. 0 

(c) ~i + ~
2 

·I- ... + xka::; 1 (k E j; a::; m-1) 

(d) xk1 - 21c2::; O 

xka - xkm,:::; O 

(e) 21c1 - ~2 = 0 
• • 

• 

(f) 

(g) All xj = 0,1 

(k1, k2, ••• € j) 

( k1 I k2 J o I • e j ) 

(d€j; ee;j; df:e) 
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(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Thus, the problem is one of selection of a subset of projects from all 

candidate projects such that some function of the Net Present Value to 

the firm is maximized, in accordance with (13), but also such that none 

of the feasibility constraints (14) through (20) is violated. Further, 

by constraint (20), indivisibility of projects is requiredo That isu 

only project entities may be selected or rejected; portions of 

candidate projects cannot be executed. 
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Constraints 

The first set of constraints of interest in the selection problem 

is represented by inequality (14), which expresses the limitations of 

capital availability for project development, These are the budget 

constraints for each of the t periods in which capital availability is 

limited. A corollary of the budget limitation is that all project capi-

tal consumptions ("costs"), ctj' be zero or positive by the inequality 

in (1.5), 

The relationships expressed by constraints (16) through (19) are 

termed the "technical" (or "logical'1
) dependency constraints. In­

equality (16), for example, expresses a mutual exclusivity requirement 

among projects included in it. This constraint is written when several 

projects provide alternative ways of accomplishing the same end. As 

an example, suppose (in a series of 2.5 projects) that Projects 9, 16 

and 22 are alternative ways, say, of developing a single tract of land. 

Only one can be done. Therefore, this constraint would be 

x9 + ~ 6 + x22 :S 1, which permits only one of the three xj (j = 9, 16, 

22) to take on a value of one, Note, however, that all three x . may 
- J 

take on a value of zero and still satisfy the constraint. Thus, the 

mutual exclusivity constraint permits at most one, or alternatively 

none, of the constrained projects to enter the optimal solution to the 

problem, 

Inequality (17) expresses a conditional dependency between two 

projects, A project is said to be conditionally dependent on another 

when its execution, although optional in itself, is operationaily or 

functionally dependent on the execution of the other. As an example, 

take two projects numbered 8 and 7. If Project 8 were an optional 
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project (that is, it could or could not be done), but 1f selected it 

could be executed if and only if Project 7 were also executed, then 

Project 8 is said to be conditionally dependent upon Project 7. Such 

dependencies are formulated in the form of (17). For the example given, 

the constraint would be x8 - x
7 
~ O. Thus, if Project 7 were accepted 

(x7 = 1) then Project 8 could either be accepted (43 = 1) or rejected 

(43 = O); however, if Project 7 were rejected (x7 = 0) then Project 8 

also would have to be rejected <xa = 0) in order to satisfy the con-

straint. 

Constraints in the form of equation (18) express strict conjunc-

tional dependencies between projects. Two projects are strictly de-

pendent if the accomplislunent of one also requires the accomplislunent 

of the other. An example would be the situation where one project, if 

executed, would increase the productive capacity of a particular pro-

cess which, in turn, would require the increase in a preceding raw-

:material supply capability at another location. 

Constraints in the form of the two inequalities of (19) are de­

signed to express covariant (or, disjunctional) dependencies. Suppose, 

for example, Project 11d11 can be executed alone 9 or Project 11 e11 can be 

executed alone, or both "d" and 11 e11 can be combined as one project 

with concommitant savings in first cost or increase in profitability. 

Disjunctional projects display covariation in either costs or cash in-

flows; hence, the adjective covariant. The existence of any two such 

projects is recognized by a set of two constraints in the form of (19), 

In effect, a new project "de" is created for the covariant possibility, 

which is then treated simply as a mutually exclusive case along with 

"d" in one constraint and "e" in another. 
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Thus formulated, the non-sequential capital budgeting problem is 

solved as a special case (0/1) of the integer programming problem. For 

simple problems, a manual solution may be possible. For large problems, 

however, the digital computer offers a practical (and perhaps only) 

method of finding the discrete optimum set required by expression (13) 

and the several constraints. 

Deterministic Variant of the Basic Model 

Much of the published literature deals with the formulation and 

solution of the "certainty11 or "expected value" model. While this 

special case is not of major interest here, nevertheless, it is import­

ant to review the assumptions that are made when "certainty" is the 

mode of formulation. Typically, each of the variables in the basic 

model is either tacitly (or perhaps explicitly) assumed to be "known 

with certainty." That is, even though one is working with parameter 

values that all lie in the future (and therefore unknown, or at least 

uncertain), one assumes that these parameter values ~ known. Al­

ternative to "certainty," these values are sometimes assumed to be 

random variables with means, but with zero variances. This is merely 

an exercise is semantics, as the latter view is exactly equivalent to 

the certainty assumption. 

The assumption of certainty is not harmful per ~, if one is care­

ful to delimit the interpretations of the solution resultso What is 

harmful, however, is a practice that has been noted in the literature 

in some instances; namely, to "jump" from a probabilistic formulation 

of the analysis problem to a deterministic forrrrulation of the selection 

problem. Moreover, some of the models that have appeared in the 
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literature are based on assumptions of technical independence among pro-

jects (constraints (16) through (19) are omitted), although the authors 

do~ always~~~ explicit. Budget constraints also are 

sometimes omitted without qualification, thereby considerably simplify-

ing the problem and removing it far from reality. But perhaps the most 

serious error of commission, from the standpoint of uncertainty and 

probabilistic modeling, is the unstated assumption by some authors that 

the objective function to be maximized, e[NPV.], is equal to NPV .• 
J J 

The implications of such an assumption are not immediately obvious. 

When such an assumption is made for probabilistic models, even implicit-

ly, it is tantamount to an assumption of a linear utility function for 

the decision-maker, which may not faithf'ully represent the condition 

being modeled, The burden of this paragraph is essentially a plea for 

consistency and explicit disclosure of assumptions when dealing with 

probabilistic modeling of the capital budgeting problem. 

Therefore, one of the assumptions that must be carried over from 

the certainty case to the probabilistic case is made explicit here. 

This assumption is that the firm's discount rate for money be 11 known. 11 

If the assumed discount rate is approx:ilnately a default-free rate, then 

not much of a problem exists. But if the discount rate is the "cost of 

capital" (as many authors urge), the solution to the project selection 

problem depends upon the value of the cost of capital, and this is 

determined by a solution of the financing problem. However, in the 

probabilistic case, the financing problem is itself dependent upon a 

solution to the project selection problem, and so forth. Thus, the two 

problems are highly interrelated, and the present "state of the art" 

does not permit their simultaneous solution. One must assume, there-
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fore, that the discount rate for money is "known" for the probabilistic 

models that follow. 

Probabilistic Variants 

With the exception of the discounting rate, any of the remaining 

variables in the capital budgeting problem may be looked upon as a ran­

dom variable with a mean, variance, and third and fourth moments. For 

example, the cash flow stream for a project may be assumed to be com­

posed of variables that are randomly valued, such as price, output 

level, fixed costs, depreciation and tax rate. Similarly, the life of 

a project and its capital consumption may be assumed to be random varia­

bles. Assumptions such as these lead to different special cases of 

the general probabilistic capital budgeting model, some of which have 

been reported in the literature. Most of the special cases can be dis­

tinguished on the basis of the dependence-independence assumptions that 

are made. In the selection problemg for example, if projects are 

technically 1!:!dependent then constraints (16) through (19) are not 

applicable. Furthennore, probabilistic assumptions lead to a fonn of 

the selection criterion that takes into account the risk attitudes of 

the decision-maker. For these reasons the formulation of the probabil­

istic capital budgeting problem is considerably more complex and com­

prehensive than the simple deterministic case, but the general fonnu­

lation is still a maximization of some function of the random net 

present values of the projects, subject to the necessary budgetary and 

technical constraints. 

Because the project selection problem embodies a random variable 

criterion function, a question arises when the problem is constrained 
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by detenninistic budget constraints. As Mao ((41), page 290) points 

out, such a procedure may not be consistent, Also, it is not necessari-

ly meaningful. However, this practice is currently followed in proba-

bilistic capital budgeting formulations, simply because the theory of 

chance-constrained programming is still in its infancy, 1 For this 

reason when budget constraints are used or implied in this research, 

they will be assumed to be detenninistic, This assumption permits 

currently available computer optimization techniques to be used to 

solve most of the probabilistic selection problems, 



FOOTNOTE 

1For an example of a theoretical formulation of a chance­
constrained capital budgeting problem, see R. Byrne et al (9). 
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CHAPl'ER III 

PROJECT ANALYSIS MODELS 

WJ:rlJ.e the project selection problem is concerned with the determi­

nation of an optimum subset of projects that will maximize some function 

of the random net present values of the included projects, the project 

analysis problem must be solved before the selection problem can be 

formulated. Recalling that the analysis problem is concerned with the 

formulation of a model for synthesizing data about one project (for 

inclusion as an input to the selection model), then there are additional 

opportunities for dependence-independence relationships other than 

those that may occur among projects. 

The additional opportunities for dependence relationships occur 

within the cash flow stream for a particular project, and may exist 

whether or not there are dependencies (of any kind) between or among 

projects. For example, the cash flow stream for a particular project 

may be a linear combination of independent random cash flow increments, 

in which case the random Net Present Value for the project is a sum 

with simply computed mean and variance. However, if the periodic cash 

flow increments are covariant time-wise (among periods), then the time­

independence assumption must be abandoned even though there may be 

technical independence among projects, wi1ich may be retained, Thus, 

special-case solutions to the analysis problem can be distinguished 

(approximately) by the types of dependence-independence assumptions 

39 
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ma.de within the project cash flow stream, apart from any dependence-

independence assumptions that may exist in the selection problem among 

projects, The probabilistic analysis models that are analyzed below, 

and in some cases extended, are all formulations of special cases of 

the analysis problem, They are inputs to the selection problem and 

thus one need not be concerned at this time with either technical de-

pendencies among projects or budget constraints. This point needs to 

be understood clearly, to guard against incorrect interpretation of the 

project NPV models. Thus, in the analysis problem, one is concerned 

principally with the cash flow stream and the types of dependencies 

that can occur within it, and not with the dependencies that can occur 

between or among projects, 

Cash F1.ow Stream Relationships 

Under this heading, four dependency cases can be identified when 

any of the variables comprising the cash flow stream of ~ -2!: ~ 

projects becomes a random variable. These four cases arise in the fol-

lowing manner, Assume that each periodic cash flow increment, Ytj' is 

composed of several elements (such as price, volume, cost, and so 

forth), which combine in a linear or nonlinear manner to give the 

period cash flow increment. Then, if some of the unlike elements1 

are correlated within a particular period, there is a .functional de-

pendency among the elements which must be accounted for in the NPV 
I 

formulation, Also, if some of the~ elements are correlated among 

periods (across time), then there is a~ (or period) dependency 

that must be accounted for, Thus, the four cases correspond to the 

four combinations of the two types of dependency described. 
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Case I -- Functional Independence, Time Independence 

This is the simplest of the probabilistic analytic models, and was 

originated by Hillier (33, 34). 2 With minor modifications of Hillier's 

notation, the model can be fonrrulated as follows. Let Ytj be the net 

cash flow increment in year t (t = O, 1, •••, n) for project j (j = 1, 

2, •••, m); further, let each Ytj be a random variable with mean Ytj 

and variance a~j. Then, the Net Present Value for project j is also a 

- 2 random variable whose mean and variance are denoted by PV j and aPV., 
J 

respectively, The mean of the project net present value is then 

simply 

E[NPV .] = PV. 
J J 

(21) 

The variance of the project net present value is found as follows. Let 

&2 be a present-time (t = 0) unbiased estimate of the distributed 
Ytj -

cash flow variance in any year t, and let v be the sample size of the 

unbiased estimator. Then, if Ytj and Yij are the discounted values of 

Ytj and Ytj' respectivelya 

- 2 

f 
Yt. Yt. ] 

- 2 E J - J 
~(Ytj - Ytj) -- v (1 + i)t (1 + i)t &2 = - -

ytj V - 1 V - 1 

1 [E(Yt. - yt ./] =---- V .] .] 
(1 ... i)2t V - 1 

1 2 
= -(1-... -i)_2_t a tj (22) 



and, if the Ytj are independent among years, then the variance of the 

project Net Present Value is 
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v[NPV j] = o~v. 
n -2t 2 

= I: (1 + i) at. 
t=O J 

(23) 
J 

Three observations should be made about the use of this model. 

First, Hillier (33) states that, even though NPVj (in the present nota­

tion) is a random variable, if the expected value of the net present 

value is greater than zero "... the investment would be made since this 

would increase the total wealth of the firm•••"• This statement is 

not factually true without further qualification. It is true only if 

the objective function in the selection problem (expression (13)) were 

to maximize expected net present value. If the objective function were 

other than this, then consideration of the project expected net present 

value is not sufficient. For example, suppose that the selection 

criterion in expression (13) were defined to be 0[NPVj] = E(NPVj] -
2 

AaPV., where A is a constant. Then, omission of the variance term 
J 

(as Hillier's statement might imply) would, in effect, convert the 

selection problem into the certainty model, with a concommitant (im­

plicit) assumption of a linear utility function for the decision-makeri 

something not at all implied by E[NPVj] - Aa~j. This is an example of 

"jumping" from a probabilistic analysis problem to a deterministic 

selection problem, More to the point -- and this applies to fil cases 

of non-sequential probabilistic analysis~ the project selection pro­

cedure can be performed~ after~~ of the function e[NPVj] 

ll specified, 
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The second observation concerning Case I problems follows from the 

first. If e[NPVj] is not specified as to fonn, then project j cannot be 

selected or rejected by comparison with any external criterion or with 

,!!1Y other project. The most that can be said is that its net present 

value is a random variable with a mean and variance. From these two 

statistics, however, probability statements can be made concerning the 

project Net Present Value. As Hillier states, if the Ytj are normally 

distributed, then the Net Present Value is also normally distributed, 

thus leading to an ability to make probability statements about values 

of NPVj. Or, if the distribution of the Ytj is not normal, then certain 

weak probability statements can be made by Chebyshev 1s inequality, or 

if the Ytj are known to be unimodal with mode equal to the mean, then 

somewhat stronger statements can be made by the Camp-Meidell inequality. 

The third observation concerns the composition of the periodic 

cash flow increments, Note not only that these increments may be 

synthesized from component elements (price, volume, etc.) such that 

Ytj = ~(Xtjp) -- where Xtjp is the pth element, p = 1, 2 1 ••• ) -­

but also that all Xtjp are required to be statistically 1:,!2dependent 

in both time and across function, in order for the Ytj to be indepen­

dent, as the model requires, 

For a numerical example of Case I, see Problem 1 in Append:L"'s: A, 

Case II - Functional Independence, Time Dependence 

This model also was first proposed by Hiller (33), who considered 

two cases1 (a) one in which the periodic cash flows, Ytj• are perfect-

1:Y correlated among periods, and (b) one in which the cash flows are 

partially correlated among periods, Case (a) is a special case of (b), 



The formulation for (b) is given here, with the understanding that the 

parameters for (a) can be derived directly from the results of (b) by 

setting some of the terms in equations (26) and (30) to zero. In case 

(b), to accomplish the partial correlation the Ytj are separated into 
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[ J [ (1) (2) (p)J two vectors, Xtj and w1 j , w1j , ••• , Wtj , that are, respectively, 

mutually independent and perfectly correlated, The cash f1.ow increment 

for any period tis the random variable1 

(24) 

Omitting the subscript j for clarity but understanding that the fornru-

lation applies to a single project, the expected net present value for 

a project is found by summing present values of the incremental cash 

flows over time and applying the expected value operator: 

xn ••• + + 000 

(l+i)n 

(1) wfl) 
+ WO ·t- (l+i) + 

W(p) w<1) 
2 + + 

(1+i) 2 ••• 

W(p) 
W(p) 1 

+ 0 + (l+i) + 2 + 
(l+i)2 

w<P) 
, , • + n ; (25) 

(l+i)n 

or, 

n E[Xt] 
· E[NPV] = t 

t=O (l+i)t 

n [E E[w<P)J] + ~ p t . 
" t ' t=O (1 + i) 

(26) 

where the first term on the right...hand side of (26) is the expected NPV 

of the independent elements and the second is the expected NPV of the 

perfectly correlated elements. 

The variance, v[NPV], is found as follows, For the independent 

elements, the variance component (by equation (23)) is simply 
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n -2t 2 
v(NPVJ.x = I: (1 + i) at , (27) 

t t=O 

For the perfectly correlated elements, the variance component for the 

p th element is 

a2 a2 
v[NPV1W(p)] - a2 t- Wl + W2 t-

t p::const. - WO · (l+i)2 (l+i)4 · 0 O O + 

+ (J..;i)Cov(WO,Wl) ·t- 2 Cov(WO,W2) + 
(1+1)2 

•t- 2 
3
cov(Wl,W2) + ••• 

(J..t-i) 
(28) 

or, since p = Cov(WO,W0)/aw
0
aw

0 
= 1 for perfect positive correlation, 

then 

a2 a2 
v[NPVIW(p)] 2 W1 W2 

=awo+ + ·t-t p::const. 2 4 (l+i) (l•t-i) 
••• 

(29) 

and hence, the variance of the partially correlated NPV is the sum of 

(27) and (29) 1 

v[NPV .] = E "i\t + f [ E O'Wtpt] 2 
J t=O (J..t-i) . p=l t=O (J..t-i) 

(30) 

Note that case (a), mentioned above, can be derived from equations (26) 

and (30) by setting the first set of sUillillations in each to zero, 



At this point, some comments are in order concerning this model. 

Not only are the expressions for the mean (26) and the variance (JO) 

somewhat difficult to handle computationally, but they also require 

that the cash flow elements be separated into two sets, one that is 
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completely independent and the other that is perfectly correlated. From 

a practical standpoint, one does not find such idealism in real-life 

situations, and it would be difficult indeed to dissociate cash flow 

elements into these dichotomous categories. What is more likely, from 

a realistic standpoint, is that historical data or typical data from a 

similar process or plant would be available, upon which predictive esti­

mates could be based. Given the existence of such data, then it would 

be an easier task to derive a matrix of simple correlation coefficients 

(both positive and negative) directly from the data. 

If such a matrix of correlation coefficients could be obtained0 

then a much simpler analysis of the Case II problem is possible. 

Hillier (33) suggests this procedure, but does not develop it. The 

following development of the Case II problem, using a correlation co-

efficient matrix, is offered as an extension of Hillier 1 s work. 

Dropping the project subscript j for clarity but recognizing that 

the development is for a single project, let Yt be the distributed 

random variable cash flow increment in year t ( t = 0, 1, , •• , n) , with 

mean Yt and variance a~. Let Y be the project net present value (a 

distributed random variable) with mean Y and variance V(Y). Let Y6 

and Ye (6 € t; e et; 6 ~ e) be correlated cash flows in years 6 and 

e, such that Cov(Y6,Ye) = P6ea6ae, where P6e is the simple correla­

tion coefficient (-1 S p S +l). Then, the expected value of the pro­

ject net present value isl 
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Yo y2 
y - y ... ... + 

- o c1+i) c~ .. i)2 
••• + (31) 

or, 

(32) 

The variance, V(Y), is found as follows: 

V(Yn) 
••• + ----- ... 

(l+i)2n 

2 Cov(Y0Y1 ) 2 Cov(Y0Y2) 2 Cov(Y1Y2) 
... ... + + ••• + 

(1 + i) (1 + i)2 (1 + 1)3 

2 Cov(Y0Ye) 
+ (33) 

(1 + i)0• .. 0 

2 
n at n n 

V(Y) = I: 2t ... 2 E I: 
t=O (l· .. i) 6:0 0=0 

o < e 

P6ea-e,<Te 
(1+1)6+0 

(34) 

Thus, the project expected net present value is obtained straight­

forward from equation (32) 9 and the variance can be obtained by equa-

tion (34) in conjunction with a 11known11 or assumed correlation coeffi-

cient matrix [p
60

]o The only substantial amount of work lies in obtain­

ing the correlation coefficient matrix. To do so requires first that 

11 samples" of the random cash flows in each of the years be extracted 

from reliable estimating modelsp and second, that the sample correlation 

coefficients be obtained (e.g., by a matrix inversion procedure). 



48 

Two observations are necessary for this model. First, the use of 

correlation coefficients for the estimation of variance components im­

plies a linear relationship between all Yo and Ye, and f'urther, if the 

sample correlation coefficients (r) are used, then they are normally 

distributed (that is, all Y0 and Ye are random variables from a multi­

variate normal distribution). This follows from the assumptions under­

lying the sampling procedure from which the correlation coefficients 

are obtained. Second, the sample size used to obtain the correlation 

coefficient matrix should be large enough so that sample standard devia­

tions are good estimates of the "population" standard deviations used 

in the model. For a numerical example of this model, see Problem 2 in 

Appendix A. 

Case III - Function Dependence, Time Independence 

In this case, "unlike" elements of each periodic cash flow incre­

ment are correlated within a particular period, but there is complete 

independence between "like" elements in different periods. For example, 

income and variable expense may be correlated in Period 1, and again in 

Period 2, and so forth; but income in the first period is not correlated 

with income in the second period, nor is expense in the first period 

with expense in the second period, and so forth. 

To the author's knowledge, no model of Case III has been reported 

in the literature. The following simple linear fonnulation, therefore, 

is offered as a descriptive model of the Case III problem. 

Consider the following simplified cash flow function for any 

period ti 

(35) 



where Yt = cash flow increment in period t, 

Gt = 11gross11 income in period t, 

Vt= variable costs in period t, 

F = fixed costs per period, 

Dt = depreciation expense in period t, 

T = effective tax rate, and 

Ct= cash outflow (investment) in period t, 

For simplicity, ass\Ulle that fixed costs, depreciation expense and the 

tax rate are rrknown" and constant, Ass\Ulle also that gross income, Gt, 

and variable costs, Vt, are correlated random variables, This is a 

common practical situation, in which income and variable expense exhibit 

covarying behavior, but not necessarily in a directly proportional man-

ner, Also assume that the depreciation expense, Dt, arises from a 

single initial investment, c0, and a salvage value, Sn' in conjunction 

with a straight-line depreciation policy, where n is the project life, 

Further, let c0 and Sn be correlated positively. Then, the depreciation 

expense, Dt' is a random variable and can be expressed in terms of c0 , 

S, and n, as follows1 
n 

(36) 

and the cash flow for any period t becomes 

(37) 

if it is ass\Ulled that there is only one investment, c0, at t=O, 
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Observing that Gt, Vt, c0 , and Sn are linearly related in the cash 

flow equation, and assuming (again for simplicity) that the joint densi­

ty functions f(Gt,Vt) and g(C0,sn) are dependent bivariate normal 

distributions, then the simple correlation coefficients, given by the 

expressions PGv = Cov(Gt,Vt)/aGaV and Pcs = Cov(c0,sn)/acas, can be 

used to define the dependent relationships. 

Under these assumptions, then, the mean cash flow for any year t 

is simply 

and the variance of Yt is 

or, substituting the correlation coefficient equivalents, then 

where 

V(Yt) = [ai ... a~ ... 2 PGv'1G av ](1 - T) 
2 

t t t t 

... [a~ ·r a~ ·r 2 f'csac as ](!)2 ; 
O n O n n 

Gt, Vt = means of gross income and variable costs, 

respectively; 

a5 ,a~ = variances of gross income and variable costs, 
t t 

respectively; 

(38) 

(39) 



c0 , Sn = means o:f initial investment and salvage 

value, respectively; and 

a~ ,a~ = variances of investment and salvage 
0 n 

value, respectively. 

Case III also requires that all Yt be independent among periods; 

thus, this requires that all Gt and Vt be time-independent. In other 

words, the correlation between Gt and Vt in each period must be estim­

ated for each period independently o:f any other period. 

With these assumptions, the expected project net present value is 

and the variance o:f the project net present value is 

n { 2 2 2 v[NPV] = I: [aG + av + 2 PGv°G av ](1 - T) 
t=O t t t t 

[ 2 2 ] T 2} . -2t + ac ·r as + 2 Pc s ac as (-) (1 + i) • 
0 n O n O n n 

(41) 

Because of the no:nnality assumptions for Gt, Vt, c0 and Sn 9 the project 

net present value will be normally distributed also. 

A more complicated model can be constructed from the Horowitz 

model discussed under the Case IV category and in Problem 3 of Appen-

dix A. Such a model would result in a non-normal distribution of net 

present value, and could be developed by assuming different and inde-

pendent forms o:f the dependency generating function (equation (43)) for 

each of the t periods. 
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Further, even more complicated models can be constructed and 

solved by the simulation methods discussed under Case 'IV, the only re­

quirement for their classification as Case III models being that the 

cash flows among periods be statistically independent. However, it 

should be apparent that project analysis models grow complicated quite 

rapidly when the strict independence assumptions in the cash flow stream 

are relaxed, 

Case 'IV - Functional Dependence 2 Time Dependence 

In this case two or more of the elements composing the periodic 

cash flow increments are correlated, not only among 11unlike 11 functional 

elements within a particular period, but also among "like11 elements 

among periods, No rigorous formulation of this case is kno~m to exist, 

at least in discrete periodic form, 

The principal difficulty in the formulation of a general case of 

this model arises from the many dependencies possible, which can be 

intuitively demonstrated as follows, Consider the case of a series of 

cash flows, Yt, that are composed of elements Xt1, Xtz, , , , , Xtk" Then, 

if all elements are correlated in some fashion, the tabular scheme of 

the possible relationships can be represented, as in Table I, where the 

sign ~ implies a correlational relationship, 

Obviously, a solution for the parameters of the net present value 

distribution rests upon the simultaneous solution of all dependencies, 

In this case, a simultaneous solution is not possible unless severely 

restrictive assumptions are made; for example, that all functions of 

the Xtk are linear in form and related by a multivariate normal distri­

bution. Thus, only special cases of this problem have been reported, 



TABLE I 

REPRESENTATION OF CORRELATED DEPENDENCIES 

End of 
Period 

0 

1 

2 

t 

Cash Flow Function 

' . 
t t 1 t 
Yt == otCxt1- xt2...,... '· .-xtk] 
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Canada. and Wadsworth (10) have presented a semi-graphical method of 

formulating a special case of Case IV, in which some of the functional 

cash flow elements may be partially correlated within a period, but 

perfectly correlated as to like elements among periods. In this model, 

the random variables are investment, P, cash flow increment, D, project 

salvage value, S, and project life, T. These variables may be correla­

ted pair-by-pair, or independence may be assumed. Each is a random 

variable. 

A continuous compounding of the discount factor over the life of 

the project is used to permit differentiation of the NPV function, which 

leads to the calculation of variance components. The concept of com­

pounding over the entire life of the project, however, forces the ran­

dom variables P, D, Sand T to remain constant in the integrated dis­

counting function. While correlations are permitted among these speci­

fied variables, they are constant with respect to~ in the net pres­

ent value formulation. This is not particularly damaging insofar as 

initial investment and salvage value are concerned, but a time-invariant 

cash flow stream seems implausible. This seems to be a major disadvan= 

tage of the model. A further limitation is the assumption of only one 

lump investment at the beginning of the project life. 

A considerably different formulation of another special case has 

been reported by Horowitz (35). In this model, the periodic cash flows 

are also perfectly correlated among periods, but the Horowitz model 

differs from the Canada-Wadsworth model in the method of synthesizing 

the cash flow stream from the correlated elements. Horowitz' formula­

tion will not be presented in detail, since it is lengthy, and the 

reader is referred to the original source for a complete description. 



.55 

Briefly, however, Horowitz formulates a project net present value func-

tion in terms of the elements of the cash flow stream, 

where Pr= final product price, 

Qf = quantity of final product produced 

Pm= raw material price, 

~=quantity of raw material used, 

W = total wages pa.id, 

F = fixed costs, 

V' = other variable costs, 

D = depreciation, and 

T = tax rate, 

ann in year t (t = O, 1, ••• , n). 

(42) 

Final product price, Pf, is assumed to be a function of production 

costs and the price elasticity of demand, e. With the exception of 

Pm, F, D and T, the remaining variables are related toe through Qf, 

principally through an elasticity relationship that relates Qf to Pf: 

-e 
Qf = A pf u 

where A is a constant, e is the price elasticity of demand, and u is 

a random error term. Price elasticity of demand is assumed to be 

normally and independently distributed, as is the logarithm of the 

error term, u. Raw material price, Pm, fixed costs, F, deprecia­

tion, D, and tax rate, T, are assumed to be constant from period to 

(43) 

period. Thus, some of the within-period unlike variables are related, 
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but there is complete dependence (perfect correlation) between cash flow 

increments among periods. 

The assumptions of a normally distributed elasticity and a random 

market price force the project NPV to become a random variable, but in 

this model the NPV for the project is not nonnally distributed. This is 

the principal conclusion of the Horowitz model, in contrast to other 

models (for other cases) that either assume nonnalit;y of the NPV varia­

ble outright or indicate that nonnality somehow may be approached as a 

result of the linear additive properties of the cash flow stream. 

Furthermore, Horowitz correctly stresses (in effect) that this model 

cannot be used for selection purposes unless the form of e[NPVj] is 

first specified (see (35), p. 417). 

For a numerical example of the Horowitz formulation, see Problem J 

in Appendix A. 

What is needed in the functionally dependent, time dependent model 

is ~ flexibility together with a rather simple means of formulating 

the problem for computational purposes. Rigorous mathematical formula­

tions do not lend themselves to these conflicting goals. This impa.sse 

suggests the use of computer simulation to develop flexible, yet compu­

tationally efficient Case 'rf models. 

Hess and Quigley (Jl) use a simple Monte Carlo simulation method 

for evaluating a return function in terms of independent variables (de­

mand, price, variable cost, investment, and plant capacity). Hertz 

(29, JO) gives considerable insight into the simulation method of 

fonnulating the NPV distribution. While he indicates that the cash 

flow parameters are not necessarily independentP no specific information 

is provided on the actual formulation of the simulation model to account 
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for dependencies in the cash f1.ow streams. 

Bussey (8), using a computer simulation language, has also formula-

ted a special case of the Case rv problem. In this model, periodic cash 

f1.ows are not perfectly correlated, but are time-related through an 

exponential growth function for nominal plant output ( demand) , The ran­

dom variable actual output (demand) of a plant, Q, in a particular 

period, is related both to the exponential growth function and to an 

independently distributed market price, P, by the relationship 

where Qt is determined by the time-growth curve, and e is the price 

elasticity of demand (assumed to be NID(e, a~)), Market price is 

(44) 

assumed to be an independent random variable, as is project life. Both 

are arbitrarily distributed. Periodic depreciation, however, is a func-

tion of the random project life. Another feature is the truncation of 

the plant output if :market price and elasticity force demand to fall 

below 1oi or exceed 13oi of plant capacity. Annual variable costs are 

related to output, and fixed costs are assumed constant in each dis-

counting period. Discrete end-of-period discounting is used with a 

constant and "known" rate. 

The project net present value distribution is obtained directly 

by repeated synthetic "sampling" of the assumed random variable distri-

butions and their interrelationships. The mean and variance of the 

NPV are found from a histogram tabulation in the computer printout, and 

third and fourth moments of the distribution can be calculated if 

needed. 



For the model described, the NPV distribution is not significantly 

different from a normal distribution, in spite of the many arbitrary 

decisions in the model (such as truncation of demand, adjustment of 

market price, and probabilistic life). This, however, is a purely coin­

cidental result, A Kolmogorov-Smirnov goodness-of-fit test fails at 

n = 0.01 to reject the assumption of a normal distribution. 

For Case IV models, the fundamental advantage is a closer approach 

to "reality" in fonnulating the model. To use this advantage fully, 

the model must be made as f1.exible as possible while at the same time 

retaining computational simplicity. The simulation method makes poss­

ible the attainment of these goals, 

Smmnary of Chapter III 

The probabilistic non-sequential capital budgeting problem is 

fundamentally one of project selection--that is, the selection of an 

optimal subset of projects from a set of candidate projects that will 

maximize some function of net present value to the firm, subject to a 

series of technical dependency and budget constraints, The optimiza­

tion is accomplished by first evaluating the net present value func­

tions for each candidate projecti where it is understood that NPV is a 

random variable with a mean and variance (and possibly higher moments), 

The fonnulation and evaluation of the NPV function for a candidate pro­

ject is tanned the anaJ;ysis problemll 

Several papers on the theory of the analysis problem have con­

tributed to an understanding of the dependence=independence relation­

ships that may occur when project cash f1.ow streams are considered to 

be random variables. It has been shown here that the previous research 
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can be classified according to the dependence-independence relationships 

assumed in the various models, and that "reality" is ~pproached more 

closely when independence assumptions are relaxed and dependency rela­

tionships among the cash fl.ow elements are permitted. It has also been 

shown that model complexity and computational difficulties rapidly re­

sul t when the simplifying assumptions are relaxed. 

A final conclusion is that project modeling--that is, the formula­

tion of the specific probabilistic model for the net present value of 

a project-has meaning only when it is viewed as an input to the selec­

tion problem. A warranted conclusion is that nothing more than proba­

bility statements about a particular project can be made, unless the 

12.!E of the objective function in the selection model is specified, 



FOOTNOTES 

1Elements that are "unlike11 are, for example, price, volume, ex­
pense, and so forth, "Like" elements are Price(l), Price(2), Price(J), 
and so forth, where the subscripts within parentheses denote different 
time periods, 

2ror a simplified version, see Bierman et al (6), PP• 355-3.58, 
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CHAPTER IV 

PROJECT SELECTION UNDER UNCERTAINTY 

Once the probabilistic net present values and their distributions 

have been specified for a set of candidate projects by an appropriate 

solution to the analysis problem, the solution to the non-sequential 

capital budgeting problem then rests upon the choice of a suitable cri-

terion for selection among projects, the specification of the necessary 

technical and logical constraints, and an efficient method for compar-

ing the necessary computations that result from the selection criterion. 

This chapter is concerned with the first of these steps1 the choice of 

a suitable selection criterion. 

The research by Markowitz (42) and Farrar (19) already indicates 

that a simple maximization of net present value is not a sufficient 

criterion for the explanati~n of investor behavior when outcomes are 

uncertain. As many authors have stated, what seems to occur when ___ .. - ·-······· .. . ....... . 

decision-mal50rs are confronted with Ul'lcertainty is ove:r.-t behavior that 
""·•'"'''-

suggests. "t:1::J.e deqision-makers attach differing deg.re.e.s q,fimportance or 

value to differing degrees of uncertainty and payoff. This can be 

illustrated by a simple example, in which the reader can exercise his 

own "preferences" for risk. 

Consider a situation involving two alternative choices, Alterna-

tive I and Alternative II. Each alternative involves the investment of 

some of the reader's own funds, and as a result of the investment the 
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reader is then entitled to select one of the alternative payoffs, 

Alternative I requires the investment of $10 1 which entitles the reader 

to select either Payoff Ia or Payoff Ib, as follows1 

Payoff ~I Receive $11 with certainty; 

OR 

Payoff Iba On the flip of a fair coin, 

receive $100 if the coin comes 

up "heads" or risk a loss of 

the $10 investment if the coin 

comes up "tails," 

Alternative II, however, involves much larger sums of money, Here, the 

reader must "invest" $10,000, which entitles him to select one of the 

following payoffs: 

Payoff ~1 Receive $11,000 with certainty; 

OR 

Payoff ~1 On the flip of a fair coin, 

receive $22i500 if the coin comes 

up "heads" or risk a loss of the 

$10,000 investment if the coin 

comes up "tails." 

All of the investments and payoffs are assumed to occur in "present 

time" so that the time value of money is not involved. 

For Alternative I, which choice of payoff (Ia or Ib) should be 

made? And for Alternative II, would Payoff IIa or IIb be chosen? The 

answer, of course, is an individual one and is based on the personal 

attitudes of the decision-maker toward risk and uncertainty. Most 

people do not mind risking $10 to obtain a payoff of $100 with a 
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probability of 0.5, and v-Jould probably pick Payoff Ib. Horeover, the 

decision is consistent with the criterion of naxi.."nizing expected value, 

since the expectation of Payoff Ibis 0,5($100) - $10 = $40, which 

results in an expected gain of this amount to the decision-maker, 

which is greater than the expected gain of $11 - $10 = $1 for Payoff Ia. 

The decision is Alternative II is a bit more controversial, Most 

people do not have $10,000 with which to gamble in this fashion, since 

this sum of money represents an appreciable portion of their assets. 

Those who are definitely risk-avoiders will, without doubt, choose Pay­

off IIa, the certainty case. Moreover, they will do so in spite of 

the fact that Payoff IIb results in a higher net expected gain to them: 

Expected Net Gain (IIb) = 0.5($22,500) - $10,000 

= $1,250 

Expected Net Gain (IIa) = 1.0($11,000) - $10,000 

= $1,000. 

Thus, the decision-maker's choices are dependent upon the level of the 

investments he is required to make, the payoffs anticipated from the 

investments, and upon the uncertainties connected ... 1i th the payoffs. 

Translated into a business situation, suppose the returns from 

investment opportunities available to the firm can be obtained in one 

of two ways1 

Alternative A: Receive $1,000,000 with certainty; 

OR 

Alternative B: Risk a loss of $2,000,000 ... iith proba­

bility 0, 5, or obtain a payoff of 



$4,000,200 with probability 0.5. 

Suppose also that the firm's financial position and liquidity would be 

materially affected by a loss of $2,000,000 or gains of $1,000,000 or 

$4,000,200. The firm's decision-maker, when faced with these alterna-
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tives, might very likely conclude that the greater risks associated with 

Alternative B do not warrant subjecting the firm to those risks, even 

though the expected return, 0.5($4,000,200) - 0.5($2,000,000) = 
$1,000,100, is greater than the expected return of $1,000 9 000 associated 

with Alternative A. Those decision=makers who choose Alternative A do 

not act in accordance with the criterion of maximization of expected 

net present value. Rather, they attach some value, or utility, to the 

combination of payoff and associated risk in Alternative B that is ~ 

than the value or utility attached to Alternative A. That is, to 

decision-makers who choose Alternative Ai the utility of $1,000 9 000 

certain is greater than the utility of a gamble in which $2,000,000 can 

be lost with a probability of 0.5 or a gain of $4,000,200 can be real-

ized with a probability of 0.5. The question isv then, on what basis 

does a decision-maker ascribe value or utility to uncertain outcomes? 

One answer lies in the von Neumann-Morgenstern utility theory, which 

will be briefly outlined below. 

Von Neumann-Morgenstern Utility Theory 

Von Neumann and Morgenstern (46) have shown that a preference 

ordering among al tematives involving risk qan be .c;:,btained for a 
.,,-,,, ........ ,,.., .. ...._, 

decis;ion-ma.ker who consistently follows certain 11axi?ms_of rational 

behavior. 11 The axioms themselves will not be presented here, nor will 

the method for developing the utility function from them, since these 



are both reported in detail elsewhere. 1 Briefly, however, von Neumann 

and Morgenstern have shown that the rational behavior axioms provide a 

basis for obtaining an interval-scale of utility for monetary returnso 

The utility scale has neither an absolute (true) zero nor a unique unit 

of measure, and can, therefore, be transformed by any linear transforma­

tion (e.g., by nrultiplying or dividing every value by a constant, or by 

adding or subtracting a constant). Stronger measures of utility (for 

example, a proportional scale with rational zero) have been proposed by 

Shuford, Jones and Bock (56) and by Restle (51), but the decision en-

vironment considered here does not require absolute measurement. For 

the capital budgeting problem, all that is required is that one be able 

to determine whether or not one project (or set of projects) has a 

greater utility to the decision-maker than another; it is not necessary 

to know~ much greater. Thus, a proportional (or ratio) scale utility 

with rational zero is a refinement not required by the selection model. 

While the von Neumann-Morgenstern axioms have been subjected to a 

considerable number of attacks and discussion in the literature, 
2 i!: is 

assumed~~ valid interva.l=scale utility functions £!!l Ja.2. obtained 

by the proper application of the rational behavior axioms. This assump­

tion is made in order to provide a basis for the development of project 

selection criteria for both risk-seekers and risk-seeking decision= 

makers in this and succeeding chapters, and to avoid a discussion of 

the validity of the utility function itself, which is considered to be 

beyond the scope of this research. 

With the foregoing assumption, and when the rational behavior 

axioms have been applied properly through the "standard lottery" method 

(with personal inconsistencies resolved), then a utility function for a 
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particular person can be obtained, perhaps similar to the one illus-

trated in Figure 1. That is, from the person's responses to the stand-

ard lotteries posed to him, a set of data points can be obtained, 

through which some form of mathematical function can be fitted which is 

then defined as the person's utility function, 

t 

MONETARY RETURN,X -

Figure 1. Typical Utility Function 
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Empirical Determinations of Utility Functions 

The von Neumann-Morgenstern utility theory has been utilized by 

several investigators as a basis for the empirical determination of 

utility functions of individuals. Mosteller and Nogee (4.5) were the 

first investigators (19.51) to establish utility functions for individ­

uals, using overt betting behavior in a gambling game to gather data for 

the construction of the utility curves. Davidson, Suppes and Siegel 

(14) made additional determinations in 19.57, Grayson (2.5), using the 

standard lottery technique, determined the utility functions of eleven 

principal decision-makers in the petroleum exploration and development 

business, several of which are shown in Figures 2 and J. Green (26) 

reported (1963) the determination of utility functions of 16 middle 

management personnel in a large chemical company, representing the four 

major divisions of the firm (production, sales, finance and research). 

Swalm (59) reported (1966) the empirically determined utility functions 

of lJ executives, 12 of whome were from one company. Several of 

Swalm's functions are illustrated in Figure 4. Cramer and Smith (lJL 

also using the standard lottery method, reported (1964) the detennina= 

tion of the utility functions of 8 executives of a leading U, So corpo­

ration, some of whom were from the research department and others from 

the manufacturing department. 

Now, one purpose in illustrating several types of empirically de= 

termined utility functions is to demonstrate that there is, in general, 

no one form of mathematical function that will "fit" the data exactly. 

To be even more precise, one cannot specify .!!:2!!! theor.y any particular 

mathematical function that is, in general, a utility functiono The best 

that can be done is to assume some form of mathematical function that 
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seems best to fit the data. For those empirical data that indicate a 

concave downward trend, functions of quadratic polynomial or negative 

exponential form have been assumed, Nevertheless, one is never assured 

that a given mathematical expression is theoretically correct, and this 

poses a dilemma, The dilemma arises because the criterion function, 

e[NPV], which is used in the optimization procedure for the selection 

of an optimum subset of projects, is derived from the mathematical ex­

pression of the utility function, Thus, the criterion function in the 

selection problem rests upon the weakness of an assumption as to the 

12.!:!!! of the utility function that seems best to fit the decision-maker's 

responses (data points). 

All of the published research on the empirical determination of 

individual utility functions relies on what amounts to "free-hand" curve 

fitting to fit the data points. This is not an entirely satisfactory 

procedure, If one looks at the individual data points, which are de~ 

rived from the decision-maker's responses to the standard lottery pro­

cedure, as being repeated samples of the individual's behavior 9 then 

a more powerful statistical tool (multiple regression) can be used to 

assist in the definition of the individual's mathematical utility func­

tion, If the standard lotteries posed to the individual are permitted 

to "overlap" with several data points being taken common to several 

lotteries, then it is possible to make independent determinations of 

the experimental (sampling) error, which in turn permits one to perform 

an analysis of variance on the regression and thereby state with some 

degree of confidence whether or not the assumed form of the regression 

equation "fits" the data, The application of multiple regression tech­

niques to the determination of utility functions will be developed more 



72 

fully in Chapter V. While it is somewhat puzzling why the sampling 

nature of the decision-maker 1 s responses has not been recognized before, 

nevertheless, the present concern is with the mathematical form of the 

equation used to fit the data, and with the criterion for project selec-

tion derived from that equation, 

Derivation of Selection Criteria 

From Utility Functions 

There are at least two reasons why the maximization of expected 

money value is an incorrect project selection criterion. The first is 

due to a classical problem, the St, Petersburg paradox, 3 which first 

convinced some eighteenth century scholars that something was incorrect 

about the maxim that the individual maximizes expected monetary returns 

in risk situations. The second reason is due to Markowitz ((42), pages 

207-210), In essence, Markowitz says that if the maxim is true, then 

an investor would never diversify his investments. Instead, he would 

merely choose the project (investment) that has the greatest expected 

return, and invest all his funds in that project, Since empirical 

evidence is to the contrary, namely, that investors do diversify their 

investments, then, if one accepts diversification as a sound principle 

of investment, one must reject the maxim of simply maximizing expected 

return. 

The von Neumann-M~ens~ u~tx,.-iJleQry:, (and the implications 

developed from it) substitute an expected utility rule for the expected ~---------~ .... ---------".,.,,.,H,,,,, ,, .. .-.....,....,.,,. 
return rule. Thus, it is argued, a return of $50 is not necessarily 

twice as good as a $25 return; nor is a loss of $50 necessarily twice 

as bad as one of $25, Perhaps there is some function, such as that in 
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Figure 1, relating the value or utility of a monetary return to the 

return itself, such that a rational man would maximize the expected 

value of~ utility rather than the expected value of the return. 

Thus, if two alternative actions were presented to a decision-maker, he 

would act so as to maximize h1..2 expected utility by choosing the al-

ternative with the higher expected utility of return. 

Now, mathematical expressions for expected utility are derived 

from mathematical expressions for the utility function, the form of 

which (in reality) is unknown. However, one can proceed on that basis, 

if necessary. The method of deriving a criterion function for a non-

complex utility function (as in Figure 5) will be demonstrated below. 

If the "true11 form of the utility function in Figure 5 is not 

known, it can be approximated by a Taylor series expansion if it is 

assumed to be a continuous function and at least twice differentiable. 

Further, it is assumed that the "true" function is a quadratic in X, 

the return. Now, consider some value of return, say X*, and expand 

by a Taylor series about X*& 

) 

U(X* + h) = U(X*) + h au1 . + ,a:~2u1 + ••• (45) 
ax X=X* 21 ~x2 X=X* 

where h is the perturbation away from X*. Now g let h = =X*, so that 

the function U(X* •t- h) will be evaluated at X = O. Then, using the 

first three terms of the expansion to approximate the quadratic (the 

remainder will then be zero), the expansion becomes 

~u, x•2 a2ul U(X*+h) = U(X*-X*) = U(O) = U(X*) - X*-:ry + '1"t~ • 
c, X:X* clX X:X* 

(46) 
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Figure 5, General Quadratic Utility Function 

Now, define U(O) = 0, This forces the function to pass through the 

point [U(O) = O, X = 0] 0 since the values of hand U(O) were chosen to 

accomplish this end, 4 From the foregoing, then 
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() (X) X* -auj ... X*
2

d2u/ 
U O = 0 = U * - d X X::X* 2! ~x2 X:X* 

(47) 

2 
~ow, letting A= ~xul and B = _ 1,d U/ (since a concave 

01 XdC* 2 _,x2 XdC* 
downward function requires a negative second derivative), then both 

A and B become constants and the utility function U(X*) can be found 
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by solving equation (4?) for U(X*)g 

U(X*) = A(X*) ~ B(X*)2 (48) 

To find the expected utility, take expectations of both sides of 

equation (48), thus1 

but 

and 

hence, 

where 

EtX*] = p. 

E[X*
2
] = v[X*] + (E[X* J/ = af" ·r ~2 

p. = the mean of the random variable X* , 

2 OX* = the variance of X*. 

(49) 

Equation (49) is the expression for the expected utility of a-random 

variable X*, ~~utility function is .2f the ..!£E!! of equation (48). 

Note that the expected utility is stated in terms of the mean and the 

variance of the random variable P when the utility function is of quad= 

ra tic form. 

It follows, then 9 that if the random variable X* in equation (49) 

is the distributed net present value of a. project (the NPV), then the 

expected utility of the net present value is merely 

2 2 
E[u(NPV)] = A~pv ~ B(aNPV + ~NPV) (50) 

Equation (50), therefore, is the selection criterion by which the subset 

of candidate projects is chosen from the set of candidate projects in 

accordance with the selection model (equation (13), Chapter II),~ 

.2J: is assumed that the decision-maker possesses a utility function of 
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quadratic form. Note, however, that there is an upper limit to the 

applicability of this criterion. That is, since the utility function 

is a quadratic polynomial, it possesses a relative maximum, U(NPV*), at 

some value of NPV = NPV* , and the utility function is invalid when 

NPV ~ NPV* • This can be shown as follows. 

Since the utility function was assUined to be continuous and at 

least twice differentiable, the necessary and sufficient conditions 

for a relative maximum are obtained, thusz 

- = A - 2B(NPV) = 0 

d2u(NPV) = 
d(NPV)2 

- 2 B 

from which NPV* = A/2B. Now, the marginal utility, U'(NPV) = d~ :;~ 

(51) 

(52) 

is required to be everywhere positive for a valid utility function, and 

this requirement restricts the valid range of the quadratic utility 

function to values of NPV < A/2B. In realistic situations, however, 

this is not a seriously limiting constraint, as the value of A/2B is 

generally greater than the range of applicability of the data. From a 

theoretical standpoint, nevertheless, this is an undesirable limitation 

since marginal utility (from a classical economic standpoint) is 

usually assUined to be everywhere positive up to NPV 5. +oo. 

The expected utility, E[u(NPV)], serves as a basis for making in-

ferences about the risk attitudes of the decision-maker who possesses 

a quadratic utility function 0 as well as acting as a project selection 

criterion. Referring to equation (5o)i if E[U(NPV)] is asSUilled to re= -----

main constant, then the right-hand side of (50) describes a family of 



indifference curves in the parameters tA and a, the shape of which can 

be inf erred by differentiating equation ( 50). Thus, 

0 ~ dJ ~ = A dt,t - 2B7 dp. - 2BJJ, dfA 

or, solving for dJ/dp-: 
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~ = A-2Bp.. 
dpt 2 B a 

(53) 

The expression 2B7 is clearly positive. Since NPV, and therefore 

P.NPV' must be less than A/2B for a valid quadratic utility function, 

then the numerator of equation (53) is positive. Hence, dJ/d"r4- > 0, 

Also, the second derivative of (50) is 

(54) 

where a 1 = dJ / d\A = (A - 2B p.) / 2B7, from equation ( 53) • Since both 

a' and a are positive, then d2a/d~2 < 0 by equation (_54). Thus, 

equations (53) and (54) indicate that the indifference curves, 

E[U(NPV)] = constant, are both upward sloping and downward concave on 

0-JA coordinates, which corresponds to the classical economic interpre-

tation of indifference analysis. Moreover, it should be observed that 

A - 2B J-t = ~E[U(NPV)] > O and ~2.BJ = dl{U(NPV) J < 0 for valid values of 
d~ aa 

NPV and fA, thus indicating that the decision-maker I s expected utility-

varies directly with p. and inversely with risk (a). It can thus be 

inferred that the decision-maker whose utility function is quadratic is 

risk-avoiding for all valid values of ~PV· A typical set of risk~ 

avoiding indifference curves is illustrated in Figure 6. 

The role of the indifference curves and the expected utility as a 

project selection criterion can be illustrared by reference to Figure 6, 
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The me~ns and standard deviations of net present values for three 

hypothetical projects are superimposed on the indifference curves, 

79 

Since the decision=ma.ker 1 s expected utility increases with ~ and de= 

creases with increasing risk, CJ, tr1E,m he prefers J2.l'_<:ijE3cts J.n _t.J:ie ~ollow= 

ing manner, For two projects 9 A and B, that have the same variance (or 

standard deviation) of net present value, he prefers the project, B, 

with the greater expected net present value. For two projects, B and C, 

that have the same expected net present value, he prefers the one with 

the smaller risk (B), since it has greater utility for him. 

If investment :funds were limitedi so that only one project could 

be undertaken, then the decision=maker would choose Project B because 

it has the highest expected utility of the threeo If two projects 

could be undertaken, then he would (rationally) choose Projects B and C9 

since these two projects yield the greatest expected utility. If, 

however 0 there were no capital limitation then the decision=maker might 

still choose only Projects Band C, The rationale for this decision can 

be demonstrated by the method of "certainty equivalents. 11 The cer­

tainty equivalent of an available opportunity is that value of NPV 

which has the~ expected utility as the opportunity, but with zero 

variance. Thus 1 the certainty equiv~lent for Project A is the inter= 

section of the iso-utility curve with the abscissa, or point CA" NowD 

the NPV of 11 cash11 is zero, since an investment of cash into cash pro= 

vides no return, Likewise, the investment of cash into cash is (pre= 

sumably) without risk 9 thus the variance of "cash" is zero, Hence, the 

certainty equivalent of 11 cash" is the point (i,A = O, CJ = OL Because 

the certainty equivalent of Project A, CA, is less than the certainty 

equivalent of cash 0 Project A would not be undertaken, An alternative 



way of demonstrating the same result is to examine equation (50); if 

both f'4 and a are zero-valued, then E[U(NPV)] is zero also. Thus the 

iso-utility curve, E[U(NPV)] = O, passes through the origin on the 
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indifference curve plot, and by inspection Project A has a negative ex-

pected utility. Projects with negative expected utilities are not 

undertaken, Even though such projects may have a positive expected 

net present value, their utility becomes negative because of excessive 

risk to the risk-avoiding decision-maker, or conversely, because of 

insufficient expected net present value to offset the risk inherent in 

the project. This type of risk-avoiding decision-making and project 

selection would be expected from individuals whose utility i'unctions 

are concave downward--for example, the three executives whose utility 

functions are illustrated in Figure 4. 

In summary, the following inferences can be made for the guadra tic 

utility functionz 

(1) The quadratic formulation of a utility function for concave 

downward data points is valid when relevant values of mean project net 

present values, ~NPV' are less than the constant A/213. 

(2) The decision-maker who possesses a quadratic utility i'unction 

is risk-averse. That is, for projects with equal risk 0 he prefers the 

one with the highest expected net present value; and for projects with 

equal expected net present value, he prefers the one with the least 

risk. Furthe:nnore, he will not accept projects with negative expected 

utility, since cash has a greater utility for him. 

(J) Between projects with equal expected utility, the decision= 

maker with a quadratic utility i'unction is indifferent. 

(4) The selection criterion, E[U(NPV)] = Ap- - B(a
2 + p,

2L is 
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the correct function of NPV to use as a selection criterion in the 

selection problem (equation (13)), when the decision-maker possesses a 

concave-downward quadratic utility function. The constants A and Bin 

the expected utility expression may be evaluated from a linear regress-

ion of the decision-maker 1 s responses to the standard lottery method 9 

assuming a utility function of the form U(X) = AX - &2. 

The Risk-Avoidance Criterion Models 

The Freund Model 

In 1956, six years before Farrar attempted (incorrectly) to derive 

the selection criterion just presented above, Freund (24) formulated a 

utility function of the form 

U(X) = 1 -
-BX e (55) 

where X is what Freund calls the "net revenue." While Freund does not 

explicitly include the ti.me value of money in his concept 9 so that X 

would be a net present revenue 9 neither does he exclude it and no 

generality is lost by assuming that X could be a net present value. 

The function in equation (55) is concave downward for positive 

values of B (a constant), and indicates a risk-avoiding decision-maker. 

Then, Freund says, if Xis normally distributed (with mean ~ 9 and 

standard deviation, a), the expected utility is 

E[U(X)] = (56) 

which is the selection function to be maximized in the selection prob,,, 



lem (equation (13)). This fonn of the selection function is somewhat 

intractable, however, and can be simplified as follows.5 

Expanding equation (56) and separating the resulting integrals, 

the problem becomes 

oo -t(X-f:l)2 
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Max E[U(X)] = aJk J e a dX (57) 
2TT -00 

from which one recognizes that the first integral is merely the cumul.a-

tive nonnal distribution which integrates to unity. Now, ma,ke the 

substitution z = X ; H: , and equation (57) becomes 

oo -t(z/ - ~z - BJ-l 
MaxE[U(X)]=l--~ Jae dz 

u.v 2rT -co 

Complete the square in the exponent by adding and subtracting the 

quantity B2a2 / 2, obtaining 

(58) 

00 ~, )2 ~, 2 2) 
Max E(U(X)] = l - _L Jae-Z z + ~ e-2 2Bt-4- - B !:r dz • (59) 

a./zrr=oo 

Now, the second exponential is a constant and can be brought outside 

. X=~ the integral sign, and by back-substituting for zits equivalent a 
one obtains 

Now, the quantity Bt:12 in the exponent of the second exponential is a 

constant, and by defining a new random variable X* = X + ~ 2 
9 one 

obtains dX* = dX, and thus an equivalent statement of the problem is1 
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The second exponential, under the integral in equation (60), is recog-

nized as being merely the cumulative nonnal distribution of the random 

variable X*, which integrates to unity. Hence, the equivalent selection 

problem is to 

Max E[u(X*)] = 1 - e (61) 

which can be done by minimizing the exponential term. This is accom­

plished by ~zing the quantity f(2p.. - B:J2), since B can be factor-

ed and the exponent is negative. Hence, if a new variable 

Y* = f(2 p. - B:J2) is defined, then the equivalent selection problem is 

to 

Max E[u(X*)] ~ Max [Y*] = ~ - ~ a2 , (62) 

which yields the same result (the same set of optimal projects) as if 

equation (56) had been used as the selection criterion. 

Thus -- and this is an :important conclusion -= if the form of the 

selection criterion is that of equation (62), then the precedent 

utility function 1§. ~ exponential (equation (55)) and~ assumption of 

nonnality has been made for project net present values. This is con-

siderably different from Farrar 1 s incorrect derivation, wherein he 

obtained equation (62) from a quadratic utility function (which is 

:impossible). 

While Freund does not carry his analysis past this point, one 

can go on to an indifference curve analysis (as was done for the quad-

ratic utility function) and show that the indifference curves obtained 
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from equation (62) are similar in fonn to those obtained from the quad­

ratic f1.U1ction. Thus, if E[U(X*)], and hence Y* also, is a constant, 

then by differentiation of (62) one obtains 

from which 

and 

cb O = 1-Ba-
dfA 

cb = 1 > 0 
dJ,A BJ 

d2a = - _L < 
dJ,t.2 B2tJ3 

(63) 

0 • (64) 

Thus, the indifference curves on a-µ coordinates will slope upward and 

to the right, and will be concave downward (similar to Figure 6). 

Moreover, since 

dY* 1 
dJA = 

and dY* 
F = - B:1 ' 

the decision-maker's expected utility increases with increasing expect-

ed net present value and decreases with increasing risk, a. Hence 9 the 

decision-maker with an exponential utility .function is also a risk-

avoiding one. The same risk attitudes can be inferred for such a 

person as for one who possesses a risk-avoiding quadratic utility .func-

tion, except in the exponential case, there~ n£ upper limit on the 

applicabi.1:i.ty of the utility function, since the first derivative of 

equation (55) merely approaches zero utility as an asymptote in the 

limit as net present value approaches infinity. 



The Farrar Model 

Adequate mention of the Farrar (19) model, which follows the 

Freund model by six years, has already been ma.de. In recapitulation, 

however, what Farrar did is important in that he put Markowitz' 

hypothesis to an empirical test and substantiated it, thus paving the 

way for subsequent risk-analysis studies along the same lines, 

The Watters 0/1 Capital Budgeting Model 
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All of the models considered heretofore--the Markowitz portfolio 

selection model, the Freund risk model, and the Farrar portfolio selec­

tion model--have been concerned with optimizing a set of alternative 

investments, in which the decision variable is the proportion of avail­

able funds to be invested in each alternative, The decision variable 

in the project selection problem of capital budgeting, on the other 

hand, represents the acceptance or rejection of integral projects. This 

accounts for the requirement in the project selection problem for the 

decision variable, xj, to be integer-valued, 0 or 1. The output of the 

Markowitz, Farrar and Freund models is a set of funds allocations to 

alternative investments, whereas the output of the project selection 

model is a subset of projects which optimizes the objective function 

(equation (13)). 

Watters (62) is the first investigator (1967), to the author's 

knowledge, who attempted a 0/1 optimization of a probabilistic capital 

budgeting model, Using a project selection criterion of the form 

E( U(NPV)] = fA - B o2 (65) 

Watters shows that an indifference curve of the form 
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a2 = J!. - 1 E[U(NPV)] 
B B 

(66) 

can be obtained by holding E[U(NPV)] constant in the same manner as for 

the quadratic utility function in the previous section, Equation (66) 

is linear in µ, and hence is a straight line on a2- µ. coordinates, as 

in Figure 7, The slope of each indifference "curve" is 1/B, the recip-

rocal of the decision-maker's "coefficient of risk aversion, 11 which is 

determined from the utility function, 

Watters then constructs a set of "feasible, efficient, maximum 

expected utility11 (FEMU) portfolios of projects by examining all un­

dominated combinations of projects in relation to equation (66), by 

assuming various values of B, In the same manner as Markovritz, he is 

then able to specify a particular set of FEMU projects for a particular 

decision-maker whose utility function yields a unique value of the 

risk-aversion coefficient, B, 

Watters also investigates a special case of probabilistic capital 

budgeting constraints: one in which total project cost (that is, the 

sum of the costs of the selected projects) is assumed to be normally 

distributed. For this case, additional budget constraints are written 

in which total project cost is required to be less than some specified 

amount, with a specified (normal) probability, However, this constraint 

in and of itself does not prohibit projects being selected that might 

violate the actual funds available (the budget); thus, Watters also 

includes the conventional deterministic budget constraints (equation 

(14)) as well, As a comment, the probabilistic constraint appears to 

be a refinement that might, on occasion, be required; but it appears to 

be not very useful from a practical standpoint, 
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Watters' principal contributions are two1 (1) he applied a risk­

avoidance selection criterion to the capital budgeting (0/1) problem, 

and (2) he developed a computer program for the solution of the 0/1 

selection problem for both independent and dependent projects. At the 

time, both of these were significant contributions. However, as has 

been noted earlier, Watters erred in deriving his selection criterion 

function in the same fashion that Farrar did, apparently because he 

relied on an uncorrected version of Farrar's dissertation. With regard 

to the computer selection program, there was another selection algo­

rithm (the Lawler-Bell (38) algorithm) available at the time that is at 

least as efficient as Watters', although Watters is not to be faulted 

for not being aware of its implications, as it appeared in a completely 

different context and had not been programmed for computer usage in 

1967. 

Other Non-Utilitarian Models 

All of the project selection criteria that have been considered up 

to this point depend upon and are derivable from utility functions that 

are grounded in the von Neumann-Morgenstern utility theory. Utility 

theory, however, is not the only basis for project selection. Two of 

the more important non-utilitarian approaches are based on entirely 

different criteria. One, exemplified by the Roy model (below), is based 

upon a maxim of catastrophe avoidance, where catastrophe is defined to 

be the occurrence of an und~sirable net present value. Another, the 

Harvey model (below), is based on a maxim that the firm's net asset 

value (both financial and capital assets--i.e., financial and physical) 

as of some future time called the "horizon," should be maximized. 
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The idea of catastrophe avoidance as a business decision criterion 

has strong intuitive appeal. As Barnard ((4), p. 16) indicates, it 

may be fear of precipitous loss, not profit gain, that dominates the 

business complex. Certainly, from an empirical standpoint, Swalm's 

research (59) on utility functions and the risk attitudes of middle-

management personnel indicates a pronounced tendency toward avoidance 

of any kind of loss. It is this mode of thinking that prompted Roy to 

fonnulate his "disaster avoidance" model, 

The Roy Model 

In the introduction to the report of his research, Roy (52) 

states& 

In the economic world, disasters may occur if an indi­
vidual makes a net loss as the result of some activity, if 
his resources are eroded by the process of inflation to, say, 
70 percent of their fonner worth, or if his income is less 
than what he would almost certainly obtain in some other 
occupation. For large numbers of people some such idea of 
a disaster exists, and the principle of Safety First asserts 
that it is reasonable, and pro.bable in practice, that an 
individual will seek to reduce as far as is possible the 
chance ·o·:t; such a catastrophe oc,curring ••• 

•101aet11••ot.oooooo-0•1•1•wottoatD 

From a formal standpoint, the minimisation of the chance 
of disaster can be interpreted as maximising expected utility 
if the utility function assumes only two values, e.g., one if 
disaster does not occur, and zero if it does. It would ap­
pear, however, that this formal analogy is scarcely helpful, 
since in the one case an individual is trying to make the 
expected proportion of occurrences of disaster as small as 
possible, while in maximising expected utility he is operat­
ing on a level of satisfaction. Readers, however, are open to 
interpret the principle in this way if they so desire, but the 
purpose of this discussion is not to suggest that individuals 
may possess a utility function of peculiar form but rather to 
find out the implication of a certain mode of behavior, which 
appears both plausible and simple. 



90 

Thus, while the model can be based on a utility function of "peculiar" 

shape, it does not have to be, but rather it requires only an acceptance 

of the "disaster avoidance" maxim of behavior, 

In applying the Safety First principle to the selection of assets, 

it is assumed that one ,is concerned that his gross return (i.e., net 

present value) should not be less than some quantity D, With every 

possible outcome is associated p., the expected (mean) net present 

value. Since the outcome is not certain, there is coupled with r, a 

variance, cr2 , of the possible outcomes, It is assumed that both a2 and 

\A are known, although in practice they may have to be estimated by the 

use of subjective probabilities and a solution to the analysis problem 

(see Chapter III), 

Given the values of ~ and a2 , for all possible combinations of 

projects, there exists a set of efficient combinatio:1s (in the same 

sense that Watters specifies FEMU projects), the envelope of which will 

be denoted f(a, p.) = 0, as in Figure 8. Since it is not possible to 

determine, with this information only 9 the unique probability of the 

final net present value being Dor less for a given combination of 

p. and a2 , the only alternative is to calculate an upper bound of this 

probability, which can be done by Chebyshev' s inequality. 

Let the random variable, X, be the distributed net present value 

with mean ~ and variance a2. Then, by Chebyshev' s inequality 

(D < J,-4-) • (67) 

Now, the Chebyshev inequality expresses a symmetric or "two-tailed" 

probability (that is, P[-(tA- D) ~ l(X -1A)I S +(µ- D)]), but if it 

is assumed that the entire probability of the event is concentrated in 
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the event -(X - p.) , then 

F{-(X - ~ ) 2:. ( µ - D)] = P[x ~ D] ::;; (D < p.) • (68) 

Then, by defining F[x::;; n] = l/k2 (a qonstant), and by assuming the 

worst possible case (a strict equality in equation (68)), the form of 

equation (68) becomes 

P(X::;; D] = 1 
k2 

and the probability of disaster, F{x ~ D], is minimized by ~zing 

the quantity ( t,-t - D) /a. 

By solvirtg equation (69) for a, one obtains 

a = 1 (tA- D) 
k 

which is the equation of a straight line on a-p coordinates, whose 

slope is 1/k and whose intercept on the abscissa (with a= 0) is D. 

(70) 

Thus, in Figure 8 1 the criterion function is the straight line emanating 

from the point D, and the project combination selected by this criterion 

is the subset S(a0, ~0) whose mean is Po and whose \Tariance is a~. 

Although Roy does not develop the model (as above) by assuming that the 

probability of disaster becomes a constant evaluated under the worst 

possible conditions, such an assumption is required for the selection 

criterion to become a straight-line function with maximum slope, 1/k. 

Moreover, as presented here, the constant, k, can be visualized as a 

pseudo-coefficient of risk aversion for the decision maker, in the same 

manner that the constant, B, was thus recognized in the Freund model. 

The selection process is manifested as follows (referring to 

Figure 8). If one desires to avoid a net present value outcome of D 
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or worse, the point d(O,D) is plotted on the ~-axis. A tangent of 

positive slope is then drawn from point d to touch the f(o, lJ-) = 0 

convex set at S(o0 , ~0). Then, if one adopts the course of action 

(selects the projects) that produces the estimated outcome, J-b, he will 

have made the upper bound of the probability of D or worse happening as 

small as possible, given the opportunities (FEMU projects) available, 

As Roy points out, an obvious extension of the model occurs if 

the net present value is normally distributed, in which case normal 

probabilities instead of Chebyshev upper bounds can be used with con­

siderable reduction in the probability of disaster. 

The Harvey 0/1 Planning Horizon Model 

As an alternative to the maxjndzation of net present value model, 

Winegartner (63) formulated a '1basic horizon model" for the determinis­

tic case, in which the net assets of the firm (in lieu of net present 

value) are maxjndzed as of some future time, called the "horizon." 

In this case, the financial transactions of the firm, which include 

cash "throwoffs" of projects initiated between present time (t = 0) and 

the horizon (t = T), borrowings, and lendings, are all converted to 

equivalent assets as of time T, Likewise, cash inflows from projects 

initiated at t ~Tare converted by discount factors to equivalent 

assets at time T, The net assets (i.e., the sum of cash "throwoffs, 11 

borrowings, lendings, and net horizon values of future cash inflows) 

are then maximized at time T by a mathematical programming solution. 

In Winegartnervs formulation, fractional projects were allowed and the 

solution was obtained by a mixed-integer linear progra.:mming formulation. 
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Harvey (28), in 1967, added some variance-covariance terms to 

Winegartner 1s formulation to take ir-to account the uncertainty of net 

horizon values, and also provided for project indivisibility by requir­

ing the decision variable to be integer-valued, 0 or 1. As with the 

original Winegartner formulation, which was adapted from prior work by 

Charnes, Cooper and Miller (11), the basic horizon model has exposition­

al value from an economic theoretic standpoint when assumptions of per­

fect capital markets (known cost of capital) and independent projects 

are abandoned. With (assumed) kno .. m discount rate and independent pro­

jects, however, Winegartner demonstrates that the basic horizon model 

is exactly equivalent to the maximization of net present value model, 

and this presumably carries over to the Harvey model also (i.e., it is 

presumed to be equivalent to the maximization of expected utility 

model). 

Summary of Chapter IV 

The material presented in Chapter IV is concerned fundamentally 

with the choice of a project selection criterion. Based on the von 

Neumann-Morgenstern utility theory, which is assumed here to be prima 

facie valid, it has been demonstrated that several selection criteria 

can be derived. In particular, if a quadratic utility function is the 

precursor, then maximization of expected utility of net present value, 

E[U(NPV) ], of the form E[u(NPV) J = AtJ, = B(a2 + µ2) is the correct 

selection criterion. Such a criterion leads to the stipulation of a 

family of risk-avoiding indifference curves which can be used to specify 

which of a set of candidate projects will be chosen by a risk-avoiding 

decision-maker so as to maximize his expected utility. 
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Likewise, if a negative exponential utility function is the pre­

cursor, then maximization of expected utility of net present value is 

the correct criterion, where l{U(NPV)] = µ- :ea2 is the proper criterion 

to use. Such a utility function leads to a similar set of indifference 

curves and to similar decisions, as for the quadratic utility function. 

In addition, two non-utilitarian risk-avoidance models have been 

examined, to show that risk-avoidance criteria do not necessarily stem 

from_! priori utility functions. This leads to one of the more import­

ant conclusions concerning decision criteria: at the present time, 

there is no single criterion that one can assume that will perforce 

describe all aspects of even risk-avoiding decision behavior. 

In spite of this rather crippling conclusion, the utility function 

models seem to offer the best hope. This is particularly true when one 

considers ~-risk-avoiding behavior--for example, the behavior implied 

by the utility cu.rves of John Beard and Fred Hartman in Figure 2 and 

R. F. Mellon in Figure J. The development of non-risk-avoiding selec­

tion criteria is the subject of the next chapter, 



FOOTNOTES 

1savage (53) gives a detailed discussion of the van Neumann­
Morgenstern utility theory. Implications of the theor;y are discussed 
by Luce and Raiffa (40), Fishburn (21), and Alchian (3). Virtually 
every capital budgeting text published and dissertation undertaken since 
these original works were published contains a presentation of the same 
material, in more or less detail. The subject is overworked. 

2see Savage (53), pp. 101-103 for a discussion of Allais 1 criti­
cisms of the rational behavior axioms, and Alchian (3) for an :impartial 
discussions of the merits and demerits of the N-M utility theory. 

3The St. Petersburg paradox will not be reproduced here, since it 
is already stated in many places in the literature. See Sayage (53), 
page 93. 

4The linear transformation just demonstrated-=namely, choosing 
h = -X* and U(O) = 0--was incorrectly performed by Farrar (19), and 
subsequently was used in its incorrect form by Watters (62). F~rrar's 
error led him frcm a form of the utility function U(X) = AX - BX , to 
an expected utility function of the form E[ U(X) j = Aµ - BJ2• This form 
of the expected utility function cannot be derived from the quadratic 
utility function. Had Farrar correctly made the linear transfom.ation, 
he would have derived the expected utility in substantially the same 
form as equation (49). While both Farrar and Watters formulated their 
maximization models correctly, on the basis of the criteria they used, 
the results obtained by the models do not follow from their basic 
assi.nnption of a quadratic utility function. Farrar1s error was first 
pointed out by Adelson (2) in 1967 9 and corrected by Schaner (55) later 
the same year. In the second printing (the Markham edition) of Farrar's 
dissertation, Farrar credits William F. Sharpe with the detection of 
the error, but apparently Sharpe 1 s notation was privately conveyed to 
Farrar, as it does not appear in the literature. Farrar 1 s second 
(Markham) edition is Reference (20). 

5rreund omits all of the subsequent details for obtaining the 
equivalent selection criterion (equation (62)), particularly the tech­
nique of the trans£ormation to a new variable. He does, however, 
mention the skeleton procedure for deriving the criterion in a foot-. 
note ((24), page 255). 
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CHAPTER V 

PROJECT SELECTION WITH NON RISK-AVOIDmG BEHAVIOR 

Introduction to Non Risk-Avoiding 

Decision Behavior 

Many decision-makers do not always behave strictly in accordance 

with the rational risk-avoiding behavior that is implied by the concave 

downward utility functions examined in Chapter IV. A simple example is 

the business executive who 11gamblestt in prospecting for petroleum and 

simultaneously buys fire and casualty insurance to avoid loss of his 

physical assets. If he were strictly a risk-avoider, he would not 

necessarily engage in a business activity where the uncertainties are 

great (the ratio of ndry holes" to successf'ul wells varies from about 

10Bl to perhaps J01l in "unproven" territory)p and where payoffs, if 

attained, sometimes may be disappointingly SI!l2..ll in relation to the 

sums expended for development. On the other hand, if he were a risk­

seeker, then why would he purchase insurance against a loss (of physi­

cal assets) that could very well result in financial ruin the same as 

if he drilled too many "dry holes" in succession? 

The same sort of question arises when one considers the decisions 

sometimes made by managers of active, growing and aggressive small 

businesses. A typical situation here is one in which the management 

consists of a dedicated nucleus of individuals, probably with diverse 
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talents and capabilities, a financial structure characterized by a small 

equity (probably owned mostly by the management) and as much borrowed 

funds as can be levered, and a market structure th.at is far from cer­

tain. If these men, the owner-managers, were completely risk-averse, 

then they would consistently pass up investment opportunities for pro­

duct or market development th.at did not offer increased expected net 

present value for increased uncertainty. But this is not the modal fonn 

of behavior for business executives in such a situation. Somehow, 

business executives in active and growing businesses are able to "sense" 

and "size up" unusual opportunities for levering growth capability--th.at 

is, they do not strictly require an increased expected net present value 

for an increased risk. Somehow, they are able to "see" how a given risk 

situation can be influenced to the finn 1 s advantage by subsequent 

attempts on their part to control environmental variables th.at affect 

outcome. Perhaps they have an introspective "feel11 for a skewed net 

present value distribution th.at would indicate a higher probability of 

an outcome greater than the expected net present value--or, perhaps 

they somehow perceive th.at they might be able, by controlling the en­

vironmental detenninants, to introduce such a skewness into the distri­

bution even after the project is undertaken. Regardless of the motiva­

tion, however, decisions th.at do not require an increased expected net 

present value in exchange for acceptance of increased uncertainty can­

pot be explained by risk-avoidance project selection criteria. The 

question is, how is such behavior to be analyzed? 

Questions such as this were used by opponents of the von Neumann­

Morgenstern utility theory to discredit the theory shortly after it was 

proposed. Such behavior, the critics said, is "irrational" and shows 



99 

that the theory is sterile and incapable of predicting the choices of 

a decision-maker. To counter these allegations, Friedman and Savage 

(23) demonstrated that a decision-maker with a complex utility func­

tion--that is, one that is concave downward (risk-avoiding) over certain 

ranges of payoff and concave upward (risk-seeking) over others--would 

explain the simultaneous acceptance of an "unfair" gamble and the pur­

chase of insurance to avoid loss in another quarter. To understand how 

such behavior can occur, consider the utility function in Figure 9, 

First, consider a case in which insurance would be purchased by 

the decision-maker in order to avoid a large loss. Suppose, for ex­

ample, that the one-time premium for insurance to insure against a loss 

of $10,000 is $550, and that the actuarial probability of such a loss 

is 0,005, Now, from Figure 9, the utility of a payment of -$550 is 

-3 utiles, and the utility of a loss of -$10,000 is -800 utiles. The 

alternative actions available are (1) purchase the insurance, and (2) 

self-insure ( carry no insurance) • Thus, the expected monetary value 

(EMV) and the expected utility of each of the alternatives ares 

Carr;x: Insurance: 

EMV = .005(-$550) + ,995(-$550) = -$550 

E(U) = ,005(-3) + .995(-3) = - 3 utiles 

Self-Insure& 

EMV = .005(-$10,000) + .995(0) = -$500 

E(U) = ,005(-800) + .995(0) = -4 utiles. 

Thus, if the decision-maker maximized expected utility, he would pur­

chase the insurance, since this alternative has greater utility (-3 

utiles) than the self-insurance alternative (-4 utiles). (Incidentally, 

note that this is the opposite decision that would have been made had 



0 
0 
0 
6 

0 I 

>­
I-
.....J 

I­
::> 

U(A) ---------

+-300 ---------

o A 
0 

g.lNCREMENTAL INCOME -+ 

(NOT TO SCALE) 

-800 

0 

Figure 9. Hypothetical Utility Function 

100 



101 

he maximized expected monetary value. 

Next, consider that the same decision-maker has been offered an 

opportunity to invest in an oil-drilling venture in which the geologist 

has estimated that there is only one chance in 200 (p = 0,005) of 

striking a commercial well and a probability of 0,995 of getting a dry­

hole and losing the investment of $550, If the venture is successful, 

the decision-maker can anticipate a payoff of $10,000. Suppose also 

that the utility of a payoff of $10,000 is +JOO utiles. The alternative 

actions available are (1) invest in the venture, and (2) do not invest. 

The expected monetary value and expected utilities of the alternatives 

area 

Invest in the Venture: 

EMV = .995(-550) + .005(10,000 - 550) = -$500.00 

E(U) = ,995(-J) + .005(300 - J) = 12.0 utiles 

Do Not Invest: 

EMV = .995(0) + .005(0) = $0 

E(U) = .995(0) + ,005(0) = 0 utiles. 

Again, the decision-maker who maximizes expected utility would invest 

in the venture--and note, that his cost of accepting the alternative 

is $550, exactly the same as his cost for the insurance which he also 

purchased. Note also that had he ma:x:imized expected monetary value, he 

would not have invested in the risk-taking venture. 

Markowitz ((42), page 218) also points out that the complex utili­

ty function is consistent with the investor's behavior in diversifying 

his investments, when II important money' is at stake. That is, such an 

investor will insure against large losses, take small bets, and diversi­

fy his portfolio of important money investments. Even on an intuitive 
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basis, such behavior seems more realistic for an entrepreneur than 

complete risk avoidance under all conditions of payoff and uncertainty. 

Even more theoretical evidence for the existence of complex utility 

functions is added by the work of Sidney Siegel (57), from the field of 

psychology. Working from Lewin 1s level of aspiration theory, Siegel 

showed (1957) that, with very little difference in terminology, the 

psychological "level of aspiration" is equivalent to the inflection 

point (A, in Figure 9) of the utility function, and that the individual 

will take risks in order to obtain a return of at least the utility of 

A. Siegel substantiated his derivation by a simple experiment involving 

20 students and their semester grades, in which the levels of aspira­

tion for the "utility'' of a grade were measured and correlated with 

their risk preferences. 

Chernoff and Moses (12) also used, but did not explain nor amplify 

their choice, utility curves of 11sigmoid shape" in explaining insurance 

purchase behavior (1959). Karl Borch (7), in an article on the deriva­

tion of the necessary and sufficient conditions for a quadratic utility 

function, also reported that cubic and fourth-degree utility functions 

ware to be discussed fully in a forthcoming article in Skandinavisk 

Aktua.rietidskrift (Scandinavian Actuarial Journal), but the latter 

article has not bean located.1 Apart from the foregoing references to 

theoretical developments, no other work is known to exist that deals 

with the interpretation of complex decision behavior by higher-degree 

utility functions. However, there is some empirical evidence that such 

functions do exist, aside from Siagel 1 s small experiment, and the 

implications of this evidence will be examined in the next section. 
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Virtually all of the empirical determinations of utility functions 

for individuals, that have appeared in the literature, have been made 

by the investigators named in Chapter IV-Mosteller and Nogee (45), 

Davidson, Suppes and Siegel (14), Green (26), Grayson (25), Cramer and 

Smith (13), and Swalm (59). Of all of these, with the notable exception 

of some reported by Grayson and one reported by Swalm, most are of the 

concave downward (risk-avoiding) type, Only one of Swalm' s is an 

essentially linear utility function. The concern here, however, is 

with those few functions reported by Grayson that indicate non-risk­

avoiding behavior, particularly those of John Beard and Fred Hartman 

(Figure 2) and R. F. Mellon (Figure 3). These men display utility func­

tions th.at are, over some portion of the monetary return scale, concave 

upward and therefore indicate some connate preference for risk on the 

part of these decision-makers. However, this is not the only reason 

why our attention is focused on these curves, particularly Mellon's 

function in Figure 3, 

The thing that stands out most noticeably is the variation that is 

quite apparent in the data at 350, 500 and 750 thousand dollars (in 

Figure 3), and that an essentially "free-handv curve has been fitted to 

the data points elsewhere (in the negative quadrant and in the vicinity 

of the origin) with such precision as to virtually ignore the statis­

tical meaning of the variation present in the data. This is not to 

criticize Dr. Grayson, but merely to question whether or not such pre­

cision in the mapping of the function itself is warranted. Proceeding 
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further, it was reasoned that if inherent variation in the individual's 

responses to the standard lottery~ present, then Mellon's data 

offered an opportunity for a curve of best fit to be determined by 

multiple regression techniques, which could then be analyzed by analysis 

of variance methods for adequacy of fit. Specifically, if the sampling 

error could be estimated (which would require repeated data points, as 

at 350, 500 and 750 thousand dollars), then by analysis of variance one 

could detennine whether or not a linear, quadratic, cubic or highe:i­

order polynomial regression equation fits the data "best," by testing 

the significance of the variance removed by each of the highe:i-ordered 

tenns in the regression !'unction. 

Fortunately, since Dr. Grayson "overlapped" his standard lotteries 

(i.e., made multiple detenninations of response at repeated (constant) 

levels of payoff), it is possible to estimate the inherent sampling 

error for an individual and to perfonn the regression analysis of 

variance. However, since Grayson did not report the actual utilities 

of payoff that he used in plotting his utility i'unctions, his raw data 

are again martipulated here so as to obtain the input information for the 

regression analysis. Essentially the same data manipulations as 

Grayson's are performed here, except that the present assumption is 

that -150 utiles is associated with a loss of $150,000, for the Mellon 

data. This assumption does not affect the shape of the utility !'unc­

tion; merely the scale, since the utility function is by necessity 

assumed to be capable of linear transformation. Then, by using the 

Grayson data ((25), page 300) as raw data, the utilities in Table II 

were calculated by writing the expected utility identity for each data 

point. That is, if Mellon's response to the standard lottery were, 
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TABLE II 

UTIUTY FUNCTION DATA - R. F. MELLON 

Investment Utility of Net Payoff Indifference Utility of 
(thousands) Investment (thousands) Probability 

(I) U(I) (NPV) P(gamble) 

10 - 2.2 20 0.70 
30 .50 
50 .40 
90 .25 

20 - 4.6 20 .90 
30 .90 

100 .60 
150 .40 

50 - 27,5 50 .90 
100 .90 
350 .40 
750 • 20 

75 - 56.2 90 .90 
350 .60 
750 .30 
925 .20 

100 -112.5 250 .90 
350 .80 
500 .75 
900 .60 

150 -150, 150 No 
350 .80 
500 .Bo 
850 .70 

Source (Columns 1, 3 and 4)1 Grayson (25), page 300. The 
data in Column 2 were assumed so that best overlap of individual 
curves resulted. 

Payoff 
U(NPV) 

0.95 
2.2 
3.3 
6.6 

0.5 
0.5 
3.1 
6,9 

3,1 
3.1 

41.3 
110 • 

6.2 
37,5 

131. 
225. 

12.5 
28.1 
37.5 
75,0 

--
37,5 
37.5 
64.3 
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for example, an indifference probability of 0,70 between a net payoff 

of $850,000 and an investment of $150,000 to obtain the gamble, then the 

expected utility of the net gamble is zero and the utility of $850,000 

can be detennined, thus 1 

from which 

E(U) = 0 = 0,70 U(850,000) + 0.30 U(-150,000) 

0 = 0,70 0(850,000) + 0.30 (-150) 

U(850,000) = 64.3 utiles. 

The remaining data points in Table II were obtained in the same manner. 

Using these data, a multiple linear regression was performed, in 

which the regression equation was a,ssumed to be of the form 

" f3zX2 f3:,X3 i;i;.4 ; (71) u = f3o + f31X + ... + 

A 
regressed response variable (utility), where u = the 

f3. = J. 
the regression constants (i = O, ••• , 4) 

I = the independent variable, payoff (NPV) • 

The regression constants were evaluated by a computer-programmed 

abbreviated Doolittle method, yielding a function of least-squares 

approx:imation to the data in Table II. The resulting regression 

estimate is 

A 2 3 4 ( ) U = -17,63 + 48,74 I - 17.967 I + 2,721 I - 0.123 I 9 72 

where X has uni ts of Dollars x 10-5• This equation is exactly analogous 

to a utility function of the same form, namely 

2 3 4 U(X) = K ·t- AX - BX + CX - DX 

where the coefficients K, A, B, C, and D are, for the Mellon data, 
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those of equation (72). 

Now, the question is, how well does equation (72) fit and describe 

the data of Table II? This question can be answered by performing an 

analysis of variance on the regression, which first requires an estimate 

of the experimental (sampling) error. Noting in Table II that there are 

two observations of payoff utility, U(NPV), for each of the payoffs of 

90, 100, 500 and 750, and four observations for the payoff of 350, a 

pooled error variance can be calculated, as in Table III. 

TABLE III 

CALCULATION OF POOLED ERROR VARIANCE 

X: 
90 100 350 500 750 

6.6 3.06 37.5 37.5 131. 
U= 6.2 3.06 28.1 37.5 110. 

37.5 
41.3 

I:u2 = 82.0 19.7 5294. 2812. 29,261. 

~x:u22 = 
N 81.9 19.7 5210. 2812. 29,041. 

<lu2 = 
2 

0.1 0 84. 0 220. ~c\i = 304.1 

d.f. = 1 1 3 1 1 ~d.f. = 7 

1::a../ 
a2 = = 304.1 = 43.5 

e I:d.f. 7 

a = ,./43.5 = 6.6 e 
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In Table III,~ is the mean square deviation, or EU2 - (tu)2/N; 

d.f. is the degrees of freedom per cell; N is the number of observations 

per cell; and a; is the error (sampling) variance. 

The analysis of variance for the quartic utility function, equa-

tion (72), appears in Table IV. 

TABLE IV 

ANALYSIS OF VARIANCE: LINEAR REGRESSION OF 
QUARTIC UTILITY FUNCTION FOR R. F. MELLON 

Source of Sums of Degrees of Mean F Variation Squares Freedom Square calc. 

Total 137189. 28 --- ---
R(flo) 9740. 1 9740. 224. 

R(fl1/flo) 91800. 1 91800. 2100. 

R(fl2ffl1,flo) 1690. 1 1690. 38.8 

R(fl 3/fl2 ,fl1,fl o) 12550. 1 12550. 288. 

R(fl4J'fl 3 ,fl 2'fll'fl o) 2105. 1 2105. 48.4 

Residual 19304. 23 --- ---
Lack of Fit (19000.) (16) ( 1188. ) 27.3 

Error (Sampling) ( 304.) ( 7) ( 43.5) ---

Signifi-
cance 

---
< .01 

< .01 

< .01 

< .01 

< .01 

---
< .01 

---

It is quite evident from the analysis of variance that the varia­

tion removed by each of the terms R(fli), in the quartic function, is 

highly significant. Indeed, from the significance of the 11lack of fit" 
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remainder, it is also evident that the quartic function could be i.m-

proved upon by the assumption of a quintic polynomial or one of higher 

degree, but to do so might be unwarranted because of the relative small-

ness of the sampling error variance. 

Since all of the mean squares corresponding to the coefficients 

~- (i = O, 1, ••• , 4) are highly significant, then all of these coeffic­
J. 

2 
ients are significantly different from zero. The only one that poses 

a theoretical problem is the intercept coefficient, ~O = -17,63. This 

value indicates that R. F. Mellon might have a disutility for any payoff 

less than about $40,000, but this seems hardly plausible. What is more 

probable is that the standard lottery, in this case, did not measure 

Mellon's utility with the indicated small sampling error. Had this 

error been somewhat larger, as would be indicated by the variation in 

the data points near the upper limit of payoff, then the intercept co-

efficient might not be significantly different from zero. The re-

grassed utility function for Mellon is illustrated in Figure 10, to-

gether with the response data from the standard lottery. 

The following conclusions appear to be justified by the regression 

and analysis of variance. Since the hypothesis that Mellon's utility 

function is at least a quartic polyn9mial cannot be rejected, it is 

assumed that such a function (equation (72)) is a valid approximation 

to the true utility function. Certainly, to omit the fourth-degree 

tenn in the regression equation would make :matters worse; this was, in 

fact, attempted and a worse fit (overall) was obtained. It is conclud-

ed, therefore, that there is evidence presented here to show that a 

complex utility function--in this case, a quartic polynomial--does, in 

fact, exist. Furthermore, it is concluded that the intercept coeffici-
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ent, lao, while significantly different from zero, does not pose an in­

surmountable problem in the analysis of the utility function, since it 

disappears in the derivatives of the utility function that are used to 

analyze complex risk attitudes, as will be seen, 

Regression equations have also been fitted to the utility data of 

John Beard and Fred Hartman (Figure 2). The regression equations ob­

tained by least-squares fitting are, for John Beard: 

and for Fred Hartman: 

u = -1.939 -~ 1os.32X - 40.269x2 + 5,.589x3 - o.226X4 • (74) 

While these equations·both seem to indicate that the utility functions 

are quartic polynomials, one cannot say so with any degree of confi­

dence. The sampling error could not be estimated reliably in either 

case, and no meaningful a~ysis of variance could be obtained, Never­

theless, it is apparent from Figure 2 that both Beard's and Hartman's 

utility functions are anything but risk-avoidingi and it is, therefore, 

concluded that these two utility functions are further evidence of 

non-risk-averse behavior, 

Since empirical evidence indicates that non-ri~k-averse behavior 

does occur, the question then is, what is the theory behind the utility 

functions that seem to describe such behavior? Or, what implications 

can be drawn from a theory of non-risk-avoiding behavior? Answers to 

these questions will be sought in the next two sections of this Chapter. 

The first such section is concerned with outright risk-avoiding/risk­

seeking behavior (as implied by a cubic utility function). The second 
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investigates more complex behavior, where the range of risk-seeking is 

limited, The general case, if it exists, is that investigated in the 

second section. 

Theoretic Development of Risk-Seeking 

Decision Criteria 

Here the concern is with the utility function of a decision-maker 

who simultaneously purchases insurance to avoid large losses and, beyond 

a certain level of positive payoff, will seek risks regardless or the 

payoff level. While this is not necessarily a "realistic" form of be-

havior for a real-life decision-maker, the utility function of Fred 

Hartman (Figure 2) indicates that he might actually be this kind of 

decision-maker, The analysis of this kind of utility function also 

serves as an introduction to more complex behavior, and is worthy of 

pursuit for that purpose alone. 

The form of this type of utility function is illustrated in 

Figure 11, and here the general case is assumed (the function U(X) does 

not pass through the origin). The "true" function can be approximated 

by a Taylor series expansion about the point X = 0, U(0) 9 as follows1 

U(O + h) = U(O) + h 2.£1 + 1t J2ul + 1(.d3u' + • • • 
~x X::O 2& dX2 X::O Ji ~xJ X::O 

(75) 

The assumption is now made that the "true" utility function is a third-

degree polynomial. One cannot assume less 9 because to do so would ig-

nore the compound curvature;· and one cannot assume more without commit-

ting himself further as to its shape, Under this assumption the Taylor 

series remainder becomes zero I and the "true" function is fitted exactly 
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by the first four terms of the expansion, Further, define the perturba­

tion, h, as some value of X, say h = x. Because U(X) is an arbitrary 

scale without rational zero point, the value U(O) can be defined to be .. 
zero (although it was taken as a negative value in Figure 11), thus 

causing the expansion to pass through the origin. With h = x, and 

U(O) = O, the expansion becomes 

U(O+x):O+x- +-~ +--. o u I x
2 ~2u, x3 d3ul 

~x X:O 21 c)X2 X:O 31 ~x3 X:O 

Now, let A= i¥1x:O B - .!. ~2u1 . 
-

2 dx2 X:0
1 

thens 

U(x) = Ax + Bx2 + ex3 

Characteristics of the Cubic Utility Function 

Without qualification, equation (77) is not a utility function. 

(76) 

(77) 

In order to qualify it as a utility function, four conditions nmst be 

satisfied simultaneously. These conditions are1 

(1) For all values of x > 0, U(x) > 0; 

(2) F.quation (77) nmst possess at most one positive 

root; 

(3) The marginal utility, U1 (x) = dU/dx., must be 

everywhere positive; and 

(4) The inflection (stationary) point must lie in 

the first quadrant. 

These conditions will now be investigated. 
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Condition 11 U(x) > 0 for All x > O. From the theorem known as the 

"Fundamental Theorem of Algebra" (in the Theory of Equations), it can be 

shown that if the coefficient of x3 is positive and if the highest de­

gree of xis odd, then the function U(x) slopes upward to the right and 

downward to the left when plotted on rectangular coordinates. This con-

dition, in conjunction with the proof of Condition 2, below, will pennit 

the finding that U(x) > 0 for all x > o. 

Condition 2s U(x) Has at Most One Positive Root. Factor eqUqtion 

(77) into the following fonn1 

U(x) = x(Cx2 + Bx+ A) 

= x(x - Ri)(x - R2) (78) 

2 where R1 and R2 are the roots of the quadratic fonn Cx +Bx+ Ai 

R.. R -B :: JB2 - 4AC 
-·.t' 2 = 2C 

Now, let U(x) = O; then the roots of equation (78) are simply x, x - R1 , 

and x - R2• Two of these roots can be made to be :imaginary if the 

discriminant of the quadratic fonn, B2 - 4AC, is made negative, thus 

leaving only one real root, x. Hence, for U(x) = O, then x = O, and 

B2 - 4AC < 0 

or, the equivalent: B2 < L!AC (79) 

Since B2 has already been assumed positive in the Taylor series expan-

sion, then A and C nru.st have ~ signs for inequality (79) to hold. 

When A and Care of like sign, and when B2 < 4AC, then the function U(x) 

has only one real root, x = o. 
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Thus, two of the conditions for equation (77) to be a utility 

function are that ! ~ £ ~ ~ sign, and that ineguali ty iZ.22. ,h212 

among the coefficients A, Band C. If the coefficient C is assumed to 

be positive (as in Condition 1, above), then A must be positive also. 

This requirement, together with inequality (79) and Condition 1, is 

sufficient to show that U(x) > 0 for all x > O. 

Condition 31 The Marginal Utility, U1 (x), is Positive. Let the 

marginal utility of U(x) be defined as 

U' (x) = dU(x) = A ·I- 2Bx + 3Cx2 
~x 

The form of this quadratic polynomial is such that if C is positive, 

(80) 

as has been assumed above (Conditions land 2), then equati0n (80) is a 

concave-upward parabola. From the "Fundamental Theorem of Algebra," 

if the highest degree of the polynomial is~' and if the coefficient, 

3C, of the highest degree term is positive, then the function U1 (x) 

slopes upward to the right and upward to the left when plotted on 

rectangular coordinates. Thus, equation (80) is a concave-upward 

parabola, Such a quadratic will be everywhere positive, that is 

A ·I- 2Bx + 3Cx2 > 0 (81) 

when the roots of the quadratic form are imaginary. The roots of the 

quadratic are 

R R _ -2B ::1: /4B2 - 12AC = 
3' 4 - 6C 

-B :l: ,/p,2 - 3AC 
3c 

and the discriminant of the roots is the quantity, B2 - 3AC. If the 

discriminant is defined to be negative, then the roots are conjugate 

(82) 
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imaginary numbers. This fact, coupled with the assumption of C > O, 

then causes the function U1 (x) to be everywhere positive. Thus 1 a con-

dition for the marginal utility to be everywhere positive is that 

or, the equivalent: 

B2 - 3AC < 0 , 

B2 < 3AC • (83) 

Note that this restriction is of the same form as inequality (79), but 

is "tighter" than (79). Thus, compliance with inequality (83) will 

also cause compliance with (79), and no loss of generality results. 

Condition 4: The Inflection (Stationary) Point of U(x) Lies in 

the First Quadrant. The stationary, or inflection, point of U(x) is 

defined by the second derivative 

U11 (x) = d2u(x) 
c3x2 

= 2B ... 6Cx (84) 

which is also the equation of the tangent of the quadratic in equation 

(80). Having shown that (80), the expression for the marginal utility, 

is a concave upward parabola, then its tangent will be minimum-valued 

when 

U" (x) = 0 = 2B + 6Cx 

or, solving for B s 

B = -6Cx - 2 = =3Cx (85) 

Since it was assumed that C > O, and because xis also a positive 

number in the first quadrant, then, from equation (85) the value .2f ~ 

~always~ negative for the inflection (stationary) point of U(x) 

to lie in the first quadrant, 



Summary of Conditions for the Cubic Utility Function 

For a valid cubic utility function to exist, the following con-

ditions must be met, with respect to the coefficients, 

(1) The value of C must be positive; 

(2) The values of A and C must have like sign; that is, 

positive; 

(J) The coefficients A, B, and C must be related by the 

inequality B2 < JAC; and 

(4) The value of B must be negative. 
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If the coefficients of the cubic polynomial of the fonn of equation (77) 

meet these tests, then the polynomial may serve as a valid representa-

tion of a cubic utility function. 

Shape of the Defined Cubic Utility Function 

The convexity or concavity of the cubic utility function is de­

termined by its second derivative 9 equation (84). If U"(x) < O, then 

the utility function is concave downward 9 and this occurs in the region 

U"(x) = 2B ... 6Cx < 0 

or, when X < (B < 0) • 

Likewise, if U11 (x) > 0 9 then the utility function is convex, which 

occurs in the region x> -B/JC (for B < 0), and the stationary point 

occurs at U''(x) = 0 1 or at x = -B/JC (for B < O). Hence, the fully 

(86) 

defined cubic utility function may now be graphically illustrated, as 

in Figure 12. 



U(µl f 

U(µ.') 

0 

U{µ.) =Aµ.+ Bµ.2 + Cµ. 3 

A,C >O 
8 < 0 

82 < 3AC 

Figure 12. Defined Cubic Utility Function 
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Risk Attitudes From Indifference Curve Analysis 

Let X now be a distributed random variable with mean µ, variance 

a2, and third moment about the mean, m3• Also, define a general form of 

the cubic utility function (.from equation (77)) with the necessary signs 

of the coefficients now explicitly incorporated in the functions 

U(X) = AX - BX2 + cx3 (87) 

Taking expected values 9 

(88) 

But E(X) is simply the mean of the distributed variable X~ or E(X) = ~ c 

Also, from the definition of variance, V(X) = E(X2) - [E(X)]
2

0 one can 

determine that 

E(X2 ) = V(X) + (E(X)]2 = a2 + t4 2 • (89) 

From the definition of the third moment about the mean, one can evaluate 

E(X3) in the following :manner! 

00 

I (X = ~)
3 f(X) dX 

or, 

(90) 
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Ma.king the substitutions of equations (89) and (90), and E(X) = p., into 

equation (88), the expected utility is obtained! 

l{u(X)] = At4 - B(a2 + /) + C(Ja2JA + .,_J + m:,) • (91) 

For any particular distribution of X, the parameters f,4, a2 and ~ are 

independent of each other and, therefore, orthogonal in a system of 

rectangular coordinates, which leads to a three-dimensional system for 

representing expected utility graphically. 

Equation (91) is the expected utility of a random variable whose 

distribution is sufficiently defined to obtain the parameters I"-, a2 

and In:3• If X is now the distll'ibuted ~ present value of a project, 

then equation (91) expresses the expected utility of that net present 

value in tenns of the mean, the variance, and the third moment of the 

distribution. Since this equation was derived from the cubic utility 

function, a decision-maker with such a utility function who maximizes 

expected utility will do so on the basis of equation (91). Thus, if 

two or more projects have the same expected utility by equation (91), 

then the decision-maker is said to be indifferent between the projects. 

In this case, E[U(X)] is a constant 9 and equation (91) describes a 

family of indifference surfaces in the orthogonal parameters fA, 1 o2 

and m3• The behavior of the decision=m.aker can be inferred from the 

shape of such surfaces. 

To investigate these inferences for a constant expected utility 

surface, let E(U(X)] be constant and differentiate equation (91) with 

respect to fA, 1 

O = A - 2Ba~ - 2By. + 6ca)A, ~ + Jca2 + JC i" 2 + C dm3 
d14 di,a dt4 



122 

and solve for c!D / d JJ-1 

2 ~ A - 2B f4 + JC ( if' + flA- ) + C d µ 
= 20(B - JC;;, ) 

(92) 

Now, assume (for the time being) that~ is constant; then ~/df£ = O, 

and hence 

do = A - 2B ti: + JC( cr2 + t:8:2) 
df,l 20(B - JC ~ ) (93) 

Now, the first objective is to show that do/dp.. is either positive 

or negative. To do this, consider the numerator of equation (93). 

Here, it is lmown that A and Care positively valued, and (now) Bis 

also a positively valued constant. Recalling that only projects with 

positive mean net present values are considered for evaluation in the 

capital budgeting problem, then one can assume that µ.> O, and hence 

f.l12 > 0 also. Recalling again t:q.e sign theorem derived from the "Fun­

damental Theorem of Algebra O" if the exponent of µ is eve.n and if 

C > 0, then the numerator of equation ( 93) is a concave-upward parabola 

in terms of a2 and 1-4. Furthermore, the quadratic portion of the 

2 
numerator, A - 2BJA, + JC i-4 , will always be positive if the two 

JJ.-roots are both imaginary. The roots of the quadratic portion are 

and if the discriminant B2 - JAC < 0 0 then ~ and jJ.2 are conjugate 

imaginary roots and the quadratic A - 2B~ + JC pi 
2 is always positive 
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when C > 0, This condition exists when B2 - JAC < 0, which holds for 

all values of f.t > 0 since B2 < JAC is a requirement for the existence 

of the utility function itself. Since o2 > 0 always, then JCa2 > 0, and 

it has thus been shown that the numerator of equation (93) is always 

positive for J.L > 0, 

Now, the denominator of equation (93) will be either positive or 

negative depending upon the sign associated with the factor B - JC "4, 

since a2 > 0 always. Now, when B - JCtA < O, then fA, > B/JC, and when 

B - JC1-4 > O, then fA, < B/JC. By this reasoning, it has been shown that 

the signs associated with the terms of equation (93) take on the fol-

lowing significancess 

+ always + always 
~ 

do _ A - 2B1:4 + 3c µ 2 + 3ca2 
df4 - 20 (B - JC p. ) 

'-v-" 

+ always - if jA > B/JC 
+ if ~ < B/EC 

Hence, it can now be said that 

dOI > 0 
dfi m3 = const, 

and that 

dOI < 0. 
dl4 m

3 
= const. ' 

(p. > 0). 

(~ >_g_) 
JC 

(94) 

(95) 

That is, iri terms of the parameters o and fll. (with m
3 

constant), the 

indifference surface, E[U(X) ], slopes positively (upward) in the region 

JA, < B/JC and negatively (downward) in the region p. > B/JC. This is 

already a radical departure from the risk-avoiding indifference curve, 

where da/ci¥ > 0 everywhere. 
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The next objective logically should be to jnvestigate the second 

derivative of the jndifference function jn order to specify its shape. 

In the first derivative (equation (93)), however, note that as the 

quantity, B - JC~ , jn the denominator approaches zero (as f.l _..,.. B/JC), 

then the derivative itself approaches jnfjnity jn the limit. Thus, 

equation (93) is undefjned when ~ = B/JC and, therefore, is not contlll-

uous for all values of ~ > O. For this reason, the second derivative 

of the jndifference function cannot be taken, and no general statement 

concernjng the concavity or convexity of the jndifference surface can 

be made. The most that can be said is that in the viclllity of p. = B/JC 

the slope dO/d~ becomes ve-ry large. 

Additional information can be adduced, however, by differentiatjng 

equation (91) when E[U(X)] is not constant. When two of the three 

parameters are held constant, then the directional derivative of the 

third is obtallled. Thus, when a and ~ are constant, then 

(96) 

which is always positive, as has been shown on pages 122-123. Moreover, 

the derivative with respect to a is 

~ E[U(X) 11 = - 2BO + 6co !A' 
~a 14,m3 

(97) 

which is negative when f.4 < B/JC and positive when p. > B/JC. Further, 

~ E[U(X)] 
~~ a,~ 

= +C 

which is always positive under the assumed convention of C > O. 

(98) 
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With the information developed in equations (94) through (98), the 

skeleton indifference surface for expected utility can be sketched, as 

is illustrated in Figure 13. 

Risk Attitudes 

From equations (94) through (98), and with the aid of Figure 13, 

the risk attitudes of a rational decision=maker with a cubic utility 

function can now be summarized. Assuming that a is a measure of the 

risk (uncertainty) attached to a particular random net present value, 

the rational decision-maker who maximized expected utility will exhibit 

the following characteristics: 

(1) In the region p. < B/3C 9 he will be a risk-avoider, since he 

attaches greater utility to ~creased uncertainty. That is, for two 

projects with the same expected net present value 1 he attaches greater 

utility to the one with the lesser variance, via equation (97). 

Sjmilarly, for two projects with the same uncertainty, he attaches 

greater utility to the one with the larger expected net present value. 

This behavior corresponds to the portion of the utility function, U(~ ), 

that is concave downward. Thus 9 it is said that a concave-downward 

utility function is a II risk-avoider' s curve. 11 

(2) In the region 1-4 > B/3C 9 the decision-mak:.er attaches greater 

utility to net present values with greater uncertainty. Between two 

projects with the same uncertainty 9 he will still choose the one with 

the greater expected net present value 0 but, contracy to his behavior 

in the risk-avoiding portion of the utility function, he will now choose 

the project with the greater uncertainty if two projects have the same 

expected net present value. Thus, in the region ),l > B/3C, the 
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8/ 
µ.= 3C 

Figure 13. Cubic Expected Utility Indifference Surfaces 
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decision-maker is said to exhibit risk-seeking behavior, and this 

corresponds to the convex (concave upward) portion of the cubic utility 

function, 

(3) While the preceding results were to be expected and come as no 

great surprise, the following conclusion is a most important one. That 

is, in the development of the equation for the indifference surface 

(equation (91)), the derivation forced one to take into account the 

third moment of the net present value distribution, This was not an 

accident; it is required as a result of taking the expected value of 

the utility function, The third moment of a distribution expresses the 

skewness of the distribution about the mean. A symmetrical distribution 

such as the normal has a zero third moment about the mean, and is not 

skewed. A distribution with positive third moment will be skewed 

toward higher values of the random variable--that is, with the right 

"tail" of the density function longer than the left one. 

Statistically, a unimodal distribution with a positive third mom­

ent about the mean will exhibit a greater probability for values of the 

variate greater than the mean, and a lesser probability for values 

smaller than the mean, That is, P(X > jJ- ) > P(X .:5 µ ) , when ~ > 0. 

See Figure 14 for an illustration of this statement,. 

For the decision-maker with a cubic utility function, it can be 

said that he "prefers" (attaches greater utility to) projects that are 

positively skewed (by equation (98)). Furthermore, one can infer that 

his reason might be that he desires a greater probability of obtaining 

net present values greater than the mean, J.l, than could be obtained 

if the distribution were symmetrical. This preference holds, moreover, 

for all values of ~ > O, regardless of his risk-avoidance or risk-
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f 
f (X) 

x--••· 
Figure 14. Skewed Distribution With 

Positive Third Moment 

seeking tendencies, These are the :L-nportant conclusions that were de-

veloped from the indifference function analysis; namely, that the third 

moment of the NPV distribution must be considered for a cubic utility 

function, and that the decision~maker "prefers" projects with positively 

skewed NPV distributions, Equation (9l)i therefore, is the correct 

project selection criterion to use in a solution of the selection prob-

lem, when the precursor utility function is a cubic polynomial, 
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Theoretic Development of Complex Risk 

Behavior Selection Criteria 

Risk-seeking behavior beyond some critical value of net present 

value, as was developed for the cubic utility functionp is not a reason-

able behavior for most decision-makers. While some persons will take 

risks (and seek them) over a portion of the range of expected return 0 

it is not likely that they will seek risks when the returns become very 

great--when "important money' is at stake, To account for this behav-

ior, the quartic utility function is of use, for it describes risk-

avoidance both when losses and important money are at issueu and risk­

seeking over a portion of the expected return range, Thus, the quartic 

utility function is yet one more approximation to an interpretation of 

complex risk behavior. 

The derivation of the conditions under which a fourth-degree 

utility function exists is considerably more difficult than for the 

third-degree case. The utility function itself is a quartic polynomial 

of the form 

U(X) = AX = 
2 

BX + cx3 = 

where A, B, C and Dare constants.3 Thus 9 the marginal utility 0 

(99) 

U1 (X) = d[U(X)]/dX, is a third-degree polynomial and the shape f'unctionu 

U"(X), is a quadratic. Typicallyp the fourth-degree utility function 

and its derivatives can be represented in graphical form 0 as in 

Figure 15. From the sign theorem derived from the "Fundamental Theorem 

of Algebra," the shape of the fourth-degree utility function can be 

hypothesized. That is, for a fourth-degree polynomial, if the coeffici­

ent Dis negative, then the trace of U(X) will be downward and to the 
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right for large values of X, and downward and to the left for large 

negative values of X, For small values of X (i.e., for - ~ < X < +E ) , 

the sign of the term AX will dominate, leading to the hypothesis of a 

positive slope in the vicinity of X = O, for A > O. As will be seen 

below, the two stationary (inflection) points are provided by the co= 

efficients-Band +C. The trace of U(X) passes through the origin since 

there is no term independent of X in equation (99). 

The first derivative of U(X) is the marginal utilityg 

U1 (X) = dU(X) =A= 2BX + 3cx2 - 4DX3 
dX 

(100) 

For the fourth-degree utility function, it is not possible to specify 

that the marginal utility be everywhere positive, as was done for the 

third-degree case, because the marginal utility function here is a cubic 

polynomial which requires that at least one root be real (all three 

roots cannot be imaginary). However, the shape of the marginal utility 

function can be hypothesized from a knowledge of (or assumptions about) 

the coefficients. If A> 0 and D < 0 9 as was hypothesized in equation 

(99), then U1 (X) will intersect the ordinate at a value of U1 (X) = +A, 

and from the sign theorem the trace of U1 (X) will slope downward to the 

right and upward to the left for D < O. Moreover, if B < 0 is assumed 

(as in equations (99) and (100)), then for small values of X the slope 

of the marginal utility function in the vicinity of X = 0 will be 

approximately -2B, since the term -2B in equation (100) dominates the 

other tenns in X when Xis small. If C > O, then the second-derivative 

quadratic, U''(X), will have two positively valued real roots, Xi and ~o 

where the values of the roots in terms of the coefficients ares 



X _ -6C + ./J6c2 - 96BD 
1 - -24D 

-6C - ./J6c2 - 96BD X2 = _____ ___.....,...,..__...._ ___ 
-24D 

= JC - ./9c~ - 24BD 
12D 

= JC + /c;c2 - 24BD 
12D 

provided that JC > J9c2 - 24BD and 9c2 - 24BD ~ o. That is, the 

extreme points of the marginal utility function (100) correspond to 
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the roots of the shape function, lJl'(X), and these roots will be positive 

roots when the discriminant of the quadratic, 9c2 - 24BD ~ O, and when 

JC > ,/9c2 - 24BD. These requirements assure the location of the extreme 

points of U1 (X) in the first quadrant. (If C < 0 had been assumed, then 

both of the extreme points of uu(x) would have been located in the third 

quadrant, which would invalidate U(X) as a utility function). 

Thus, it has been informally demonstrated that the coefficient A 

must be positive and D must be negative for U(X) to take on a generally 

concave downward shap~; further, B must be negative and C positive for 

the marginal utility function to be positive in the first quadrant and 

also have the inflection points of U(X) in the first quadrant (i.e., 

for any X > O). 

Now, under these sign conventions, it will also be apparent that 

the cubic marginal utility function (equation (100)) can have only one 

real root (the other two being imaginary), in order for uv(x) to be 

positive in the range O .:5 X .:5 X*. The conditions under which U8 (X) 

has only one real root can be derived as follows.
4 

Consider the equa-

tion of the marginal utility, uv (X) 9 which has a root at the point 

X = X*; when this is so, then U'(X) = O, or 

U'(X) = 0 = A - 2BX + JCX
2 

- 4DX\ (X = X*). (101) 
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Dividing through by the coefficient -4D, equation (101) can be placed 

in the following fonn1 

X3 - 2£ x2 ·I- .]_ X - ..!.. -- O 4D 2D 4D • (102) 

Now, let b = - ~ 

becomes 

d = - ..!.. and then equation (102) 
4D 

x3 + bX
2 + cX + d = O. (103) 

Equation (103) can be placed in "reduced" fonn by applying the trans-

formation 

b X=Y-3 

where y is a new variable and the coefficient bis that just defined 

above. With this transformation 9 equation (103) in reduced fonn 

is 

2 3 2 
(y3 - b/ + il - !L) + b(y2 - 2by + !L) + c(y - E.) + d = 0 9 

3 27 3 9 3 

which simplifies to 

(104) 

where 

P= 
b2 

C --3 
B 2£:._ 

= 2D - 16D2 
(105) 

3 3 
q = d - .£2 + ~ = - ..!.. + BC - _Q_ (106) 

3 27 4D 8n2 32D3 

Equation (104) is in reduced fonn and is the equivalent of equation 

(102), except that the roots of (102) are related to those of (104) 

by the transformation, X = y - b/3. 
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Now 1 the discriminant of the reduced cubic (equation (104)) is 

the quantity 

3 2 63 = 4p + 27q • 

The reduced cubic has the properties (in terms of its coefficients) that 

if A 3 < 0, then all three roots are real and distinct; if ~ 3 = 0 P 

then all roots are real and two are equal; and if i:::i.3 > O, then one root 

is real and two are imaginary o Thus, for our case in which only one 

root can be real, then it is required that .ll3 > 0, 

It can be shown (see Appendix B) that 6 3 is in fact positive when 

B2 ~ 9AC/4 ~ either D > R1 or D < ~, where Ri and ~ are the roots 

of a quadratic form given by equations (B-6) and (B-7) in Appendix B, 

In other words, when the two conditions above are met, then A3 > 0 

and the reduced cubic equation (104) will have one real root and two 

imaginary roots. This is also the condition for equation (101), the 

marginal utility function, to have only one real root; and hence, the 

marginal utility will be positive up to the value of that root, X = X*. 

It would be desirable to show that the real root of U1 (X) could 

be stated simply in terms of the coefficients, A, B, C and D, so that 

the limit of applicability of the function U(X) (at X = X*) could be 

defined. (That is, since the marginal utility becomes zero at X = X* 

(see Figure 15), the quartic utility function is not valid in the 

range X > X*). Unfortunately, it is not possible to express the real 

root, X*, of equation (101) in simple terms of the literal coefficients, 

since the expression for the real root involves taking the cube roots 

of two literal (non-numerical) expressions that, in turn, require the 

extraction of a square root of a sixth-degree polynomial that is not a 

perfect square, However, for specific instances in which the values 
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of the coefficients A, B, C and D are known, then the real root X = X* 

can be calculated as followsa 

(1) Find the surrogate root, y1 s 

where 

q 
'3=---2 

2 
p=J1.-~ 

2D 16D 

(2) Find the real roots 

C 
X* = Y1 ·t- 4D 

Since the signs are explicitly stated correctly in the quartic utility 

function (99), then the numerical values of the coefficients A, B, C 

and D, to be used in the root extraction relationships above, must all 

be the absolute values. 

To summarize, the necessary and sufficient conditions for the 

existence of a quartic utility function of the form of equation (99) 

area 

(1) The constants A and Care positive and the constants Band D 

are negative, as in equation (99). 

(2) The values of the constants A, B, C and D satisfy the 



following relationships& 

(a) 

(b) 

where 

Ri = (27ABC - 8B3) + /c27ABC - 8B3f - 27A2(27AC3 - 9B2c2) 
9+ A2 

(27ABC - 8B3) - ef<.27ABC - 8B3)
2
- 27A

2
(27AC3 - 9B2c2) 

R2 = 54 AZ 

(c) 

which ~duces to 

(d) 

which reduces to 

JC > J9c2 - 24BD 

BD > 0; 

9c2 - 24BD ~ 0 

c2 ~ 8BD/3, 

Risk Attitudes From Indifference Curve Analysis 

136 

(107) 

(108) 

(109) 

(110) 

Let X be the net present value of a project, which is a distributed 

random variable with mean f.t, variance if' 9 third moment m
3

, and fourth 

moment about the mean, m4 , Taking expected values of the quartic 

utility function, equation (99) becomes 

E[U(X)] = A E(X) - B E(X2) + C E(X3) - D E(X4), (111) 

However, it has already been shown for the cubic utility function that 

E(X) = j,11-

E(X2) = cl- + J/ (112) 

E(x3) = 3021-'" + tJ-3 + m
3 

and one can derive E(X4) from the definition of the fourth moment about 
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the means 

00 

m4 = J (X - µ ) f'(X) dX 
- 00 

or, solving f'or E(X4), one obtains 

(113) 

Substituting equations (112) and (113) into equation (111), one obtains 

the expression for the expected utility of' the net present value in 

terms of the parameters of the NPV distributions 

E[U(X)] = - D ~ 4 + C µ3 - (B + 6Da2) ,-.. 2 + 

For a decision-maker with a quartic utility function who chooses 

among projects on the basis of expected utility, one can draw some 

inferences by examining the directional derivatives of equation (114), 

First, take the partial derivative of (114) with respect to the mean, 

J,A , holding all other parameters constant: 

(ll5) 

Rearrange (115) in the form 

(116) 
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One recognizes the first four terms of (ll6) as being merely the 

marginal utility of the mean, U1 (p.), which follows from evaluating 

equation (100) at X = J,L. Thus, with a2= 0 and m3 = O, it can be said 

that equation (116) is positive wherever equation (100) is positive, and 

this occurs at all values of J,A, = X .$ X*. Hence, the decision-maker 

will assign greater utility to projects with larger mean net present 

values over the entire valid range of the utility function, when a2 = 0 

and m3 = O. 

However, for the more realistic case in which a2 > O, this behavior 

is modified, The term Ja2(c - 4D p.) in equation (116) is positive for 

all values of ~ < C/4D, and negative for all values of f,L > C/4D. The 

transition value, ~ = C/4D, occurs in the convex portion of the 

utility function (see Figure 15), and is well within the valid range 

2 
of the utility function. Thus, when a > 0 and f,A, > C/4D, as would be 

the case for many 11 real11 projects, the rate of change of expected 

utility with respect to f,A- decreases even faster than U1 ( f.A. )--by an 

amount 3a2(c - 4D ~ )--and eventually becomes zero when U1 ( ~) = 

3a2(c - 4D t,l). From this reasoning, one can infer that the decision­

maker "prefers" (attaches greater utility to) projects with greater 

mean net present values up to the point where his marginal utility of 

the mean, U' ( f,4), is equal to the quantity 3a2(c - 4Dt,A). Thereafter, 

when U' ( p.) < Ja2 (c - 4D f-l), his expected utility actually decreases 

with increasing t.l i and he attaches less preference to increasing mean 

net present value. 

The same sort of phenomenon occurs with respect to the skewness, 

m3, of the net present value distribution. For positive values of~, 

the term 4Drn3 is a decrement in equation (116), and for~< O, it is 
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an increment. Thus, the decision-maker "prefers" projects with greater 

mean net present values "up to a point," When~ becomes too great, 

his preference wanes, and eventually becomes zero when U1 ( JJ ) = 4Dm
3

, 

Basically, thenp the equation for the rate of change of expected 

utility with respect to the project~ NPV (equation (116)), is the 

same as the equation for marginal utility (equation (100)), which is 

positive but generally decreasing over a range of valid values of µ. 

However, both project variance, a2, and skewness,~, generally modify 

(and, in most cases, reduce) the range of µ in which expected utility 

increases with respect to ~. At some point where U' ( t4 ) = Jcr2(c - 4D,,_) 

- 4Dzn:3, the expected utility no longer increases with p.; thereafter, 

when U' ( fol ) < 3cr2( C - 4D J.t ) - 4Dzn:3, the expected utility of NPV de­

creases with increasing p. and the decision-maker actually attaches 

greater utility to projects with smaller mean net present values. 

This suggests the possibility of an "optimal" value of E[U(X)], which 

will be investigated (below) after the discussion on directional 

derivatives is completed. 

Now, consider the second directional derivatives 

~E[U(X)] 

d (a2) 

2 
= - 6D f,A. + JC f.l - B 

fA. ,m3,m4 

=fU"(f!) (117) 

which is obtained by differentiating equation (114) while holding tA, 

m3 and m4 constant, and recognizing that -2B + 6Cf,A - 12D t.l 2 = U'1 
( p. ) , 

from Figure 15, Thus, with respect to the variance, a2, of the 

project net present value, the change in expected utility is positive 
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wherever U"(~) is positive, and negative elsewhere. All other factors 

being constant, expected utility bears the same relative relationship 

to the project variance, a2, as the marginal utility (equation (100) and 

Figure 15(b)) bears to the project mean net present value, t"', since the 

first derivative of expected utility, o E[U(X) ]/ a (c2), is one-half the 

second derivative, U''(J,t), of the utility function itself. 

Translated into risk attitudes 9 the foregoing means that the 

decision-maker's expected utility increases with positive variance (of 

NPV) up to some point; thereafter, his preferences tum in the opposite 

direction and as variance continues to increase his expected utility 

decreases for projects that have large variances in the NPV distribu­

tion. The maximum expected utility, E[U(X)], is reached when 

~ E[U(X) ]/ a (a2) = 0, which is the same as U'' ( 14 ) = 0, or at the point 

where µ = x2 in Figure 15( c). Not coincidentally, this maximum occurs 

at the same NPV mean at which the decision-maker's marginal utility is 

a local maximum--Siegel's "level of aspiration." 

The third directional derivative of E[U(X)] provides even more 

information. With f,,i , 0 and m4 constant, take the derivative of equa­

tion (114) with respect to m39 thusa 

aE[Cx)]I = -4DfA+c. 
~~ f.l,o,m4 

(118) 

When -4Dµ + C > O, which is the same as fA > C/4D, then expected 

utility increases as ~ increases; when #A < C/4D, then expected utility 

decreases as ~ becomes greater. At th~ transition point, p = C/4D, 

expected utility is constant with respect to ~ since clE[U(X) J/d~ = O. 

Note that the second derivative, a2E[U(X) ]/~ ~ = O; therefore, E[U(X)] 

does not possess an extreme point at µ = C/4D. 
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Translated into risk attitudes, the decision-maker prefers projects 

whose NPV distributions are positively skewed (In:3 > 0) when the mean, 

p., of the distribution is less than C/4D: on the other hand, when 

µ > C/4D, he prefers negatively skewed project NPV distributions, 

The last directional derivative is simple, For p. 1 a, and m
3 

constant, then 

g E[U(X)] I = - D. 
dm4 µ ,cr ,m3 

(120) 

The interpretation is straightforward, Since m4 ~ 0 for any distribu­

tion, then the decision-maker's expected utility decreases for all 

values of m4 proportional to the value of his risk-aversion coefficient, 

D, which is most effective at large values of m4 • In short, the co­

efficient, D, expresses an overall aversion to risk, which is most 

effective when "important money'' is at stake (for large values of NPV) 

and when large losses are a distinct possibility, 

In the investigation of some of the directional derivatives of 

expected utility, it was suggested that a maximum value of E[U(X)] 

might exist, which would cause the decision-maker to choose projects 

whose parameters ( 1,.4- , a2 
» m

3 
and m

4
) yielded a maximum or near-maximum 

value for E[U(X)]. It can be shown that such a maximum does not exist, 

To demonstrate this fact, take the second partial derivqtives of 

equation (114) with respect to each of the parameters. Now, these 

partials in matrix form define the Hessian of equation (114), which is 

illustrated in Figure 16. 

For E[U(X)] to have an extreme point which can be interpreted as 

a maximum, then H (the Hessian) must be negative definite, However, -
since the determinant of His zero by inspection (one row is zero, or -



~2E = -12Dµ2 + 6c,... - 2(B + 61»2,; :la = -24D }AO ; 
<Yf-l2 r 

~2E d~ 2 ~~ = 0 ~~ 0 c§aop. = -24Dp.a + 6Ca ; - = -12DJA + 6c,..._ - 2B; oo,~ ~Odm4 
= 

d02 

H= 
l'V 

cl2E = -4D ; ~~ = 0 a2E = 0 d 2E 0 
~~ba o~m4 

= ~mjt-l d 2 
~ 

Figure 16. Hessian of Equation (114) 
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alternatively, one column is zero), then H cannot be negative definite • .- ' 

Thus, even though some combination of values of the parameters might be 

found that would satisfy the necessary conditions for a maximum of 

E[U(X)], no such maximum exists, by the above proof that a sufficient 

condition does not exist. 

In summary, the decision-maker with a quartic utility function, 

who maximizes expected utility, will choose among projects on the basis 

of their net present value distributions, as follows1 

(1) For projects that have equal yariances, equal third moments, 

and equal fourth moments, he will choose the project with the highest 

mean NPV up to a point; thereafter, as ;,.t increases, he loses interest. 

He prefers (ascribes greatest utility to) projects with a mean net 

present value which satisfies the equation U1 (p.) = 3a2(c - 4D~ - 4Dm
3

, 

(2) For projects that have equal p. , m3, and m4, he will choose 

the project with the largest variance when x1 .:::; µ ~ x
2

, where Xi and 

x2 are given by equation (101). He tends to max:i.l!lize expected utility 

at IJ. = ~' where his marginal utility is also a maximum. Thus, he 

"seeks" risk in the range x1 ~ f.A. ~ x2 , and if offered the opportunity 

would choose the project whose mean net present value is equal to x2 

and whose variance is largest. 

(3) 2 For projects that have equal µ, a and m4 , he will choose 

those projects that have positively skewed NPV distributions if their 

means, f,.I., are less than C/4D; otherwise, he prefers projects with 

negatively skewed NPV distributions. 

(4) 2 For projects that have equal ~' a 9 and m
3

, he increasingly 

avoids projects with large fourth moments. This expresses an overall 

risk aversion when "important money' or large losses are at stake. 
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Fjnally, when a quartic utility function is implied by the 

decision-maker's responses to the standard lottery method of determinjng 

his utilities for prospective returns, then the proper selection cri­

terion to use jn solvjng the selection problem is the expected utility 

expression jn equation (114), which requires consideration of the first 

four moments of each project net present value distribution. 



FOOTNOTES 

1At the request of this author, the reference librarians of the 
Iowa State University (Ames, Iowa) and the Linda Hall Scientific 
Reference Library (Kansas City, Missouri) made searches in Skandinavisk 
Aktuarietidskrift for the years 1963 1 1964 and 1965. These are the 
years in which the Borch article might have appeared, (This action was 
taken because that journal is not available in the Oklahoma State 
University library). In addition, a search was made covering the same 
and succeeding years to the present, in the Author Indexu an index that 
lists scientific publications by author, No such article as Borch 
reports "forthcoming" could be found in any instance, The presumption, 
therefore, is that the article referred to by Borch was not published, 

2A two-tailed Student "t" test of the hypotheses H03 ~ = 0, 
Ha, ~O 1 O, is equivalent to an F-test on the mean square c9rresponding 
to R(~o), since the two tests are related by the equation 

t 2 = F 
n l 9n 

Similar reasoning applies to the other ~i" 

3That is, the constants are real numbers whose values are, 
respectively, the first derivative, one-half the second derivative, 
one-sixth the third derivativeu and one-twenty fourth the fourth 
derivative of U(X) evaluated at X = O, which follows via the Taylor 
series expansion used to express U(X), as in the third-degree case, 

4see any good text on the Theory of Equations, such as J. V. 
Uspensky (61) o 
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CHAPTER VI 

FORMULATION OF A COMPLEX UTll.ITY 

PROJECT SELECTION PROBLEM 

This Chapter is concerned with specific numerical solutions to the 

selection problem and how they may be obtained. For many of the simpler 

models, solution methods have been developed by prior investigators, 

and these appear in the literature. Appropriate references will be 

given for these cases. But for the more complex cases of the selection 

problem, no compact solution method exists. For these cases, the only 

solution known at present is that of complete enumeration, and a numeri-

cal example will be presented to illustrate the mode of formulation of 

this type of problem and its solution. 

A solution to the project selection problem for the deterministic 

case, in which project net present values are assumed to be lalown and 

constant-valued, is quite simple. By equation (13), the selection cri-

terion is merely that of maximization of net present value 9 subject to 

the required constraints in equations (14) through (20), in Chapter II. 

This results in a simple linear maximization model which can be formu-

lated as 

Max 
Vj 

m 
t 

j=l 
(NPV) .x. 

J J 
(j = 1, 2, ••• , m) (121) 

subject to (at least) all xj = 0,1 •. This problem can be solved by any 

of the 0/1 optimization methods; for example, the integer programming 

146 
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technique reported by Winegartner (63) or by the Lawler-Bell algorithm 

(38). Mao reports a computer method ((4l)p PP• 248-257) based on the 

Lawler-Bell algorithm, which he states is more efficient than the Gomory 

method of cutting planes used by Winegartner. When one or more of the 

technical constraints becomes "tight9" so that the optimal solution de-

pends upon the constraint, then either of these solution methods will 

lead to a discrete optimum in a finite number of steps, whereas some 

other methods (such as Lagrangian multiplier techniques) may not.1 

When considerations of uncertainty must be recognized--that is, 

when net present values are distributed random variables with (at least) 

means and variances--then the form of the selection problem assumes a 

more complicated form due to the greater complexity of the selection 

criterion, which, as has been demonstrated in a previous chapter, de-

pends upon the assumed utility function of the decision-maker. As an 

example, if the decision criterion is E[U(NPV)] = ~ - Aa2/2 (which 

is the selection criterion derived from the negative exponential utility 

function in Chapter IV), then the selection problem for independent 

projects is formulated as a modified quadratic programming model in the 

following forms 

Max 
Vj 

A m 2 
- - E (aNPV) . x. 2 . 1 J J J= 

(j = 1 9 2, ••oP m); (122) 

subject to (at least) all xj = 0,1; where fLNPV and O'iPV are the mean 

and variance, respectively, of the jth project. If all the projects 

are not independent, then they must be made so by constructing pseudo-

projects from the covariant ones and introducing constraints of the form 

of equations (19) in Chapter II, or else the covariant relationship must 
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be recognized in the objective function. In the latter case, and if 

the constraints that bind the problem are linear, then the selection 

problem can be formulated as a strict quadratic progrannning problem 1 

as follows, 

Max 
Vj 

(123) 

subject to (at least) Xjp Xi<= 09lo 

Fu.rther 0 if the budget constraints (equation (14)) involve random 

variation in either the coefficients or the budget limits themselves, 

as Watters has suggested they might 9 then the formulation is no longer 

a strict quadratic programming problem with linear constraintsp but 

rather a hybrid problem, Watters (62) gives a computer solution method 

for both the 0/1 quadratic problem and the 0/1 hybrid problem, and 

Mao (41) gives a modified partial enumeration method, based on the 

Lawle:r-,-Bell algorithm, for solving the 0/1 quadratic problem subject to 

either linear or .llim=linear constraints o 

When the selection criterion in the objective function is one that 

is derived from either a cubic or quartic utility i'unction 9 then matters 

become worse. In either case 9 the formulation of the problem is no 

longer of quadratic form, because not only must linear combinations of 

variances and covariances be consideredp but also linear combinations 

of third and fourth moments about the meanso Linear combinations of 

these moments do not result in a strictly additive form of the moments 

themselves 0 even for independent projects, Since there is no known 

research that deals with the solution of a problem of this kind, even 
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in the literature that investigates the 0/1 multidimensional "knapsack" 

problem, then some form of complete enumeration is the only available 

approach at this time, This severely restricts the number of projects 

that can be considered when a cubic or quartic utility function is the 

basis of optimization, but no doubt this problem will be attacked and 

solved in time. Nevertheless, to illustrate the method of complete 

enumeration when a cubic or quartic utility function is the basis of 

selection, a numerical example will be presented step-by-step below. 

However, before that is done, it will be necessary to investigate and 

specify the manner in which the third and fourth moments of random 

variable distributions combine, which is the subject of the next 

section. 

Third and Fourth Moments of a Linear Combination 

of Distributed Random Variables 

Regardless of the distributions of the component net present value 

random variables, the moments of the resultant~ of two or more pro-

ject net present values can be estimated by a method known as the 

"generation of system moments 9
11 a term used by Hahn and Shapiro (2?). 

2 

This method is equivalent to the methods of "statistical error propa-

gation" and "delta method" used by other authors. Hahn and Shapiro's 

method, which is the basis for the smnmary that follows below, is based 

on original work by Tukey (60). 

Consider a "system" of random variables, xl' x
2

, ••• , xm' which 

combine in some fashion to result in a "system" resultant, z, such that 

z = h(X:i_, :x.z, ooop xm) (124) 

where xj = the component random variable (j = 1, 2, 000 9 m). 
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Let E(x.) denote the mean of the j th component variable, and mk(x.) 
J J 

denote the kth central moment (about the mean) for the jth component. 

Similarly, let E(z) and mk(z) denote the expected value and the kth 

moment about the mean, respectively, for the system response variable. 

The problem is to obtain estimates for E(z) and mk(z), fork= 2, 3, 4; 

based upon (a) the available data concerning E(xj) and mk(xj), and (b) 

knowledge of the system logic, h(x1 , ~, .• ,, ~). 

The method of estimating E(z) and mk(z) consists of expanding 

h(x1 , ~' ,,,,~)about the point [E(x1), E(~), ••• , E(~)] at which 

z (and hence, each of the component variables) takes on its expected 

value, by a multivariable Taylor series. Thus, for uncorrelated compon-

ent variables, the general expression for an estimate of the mean system 

response is 

E(z) = h(E(x:i_), 
m 2 

••• , E(x )] + ! E (-2.Jll ) Var(x.). 
m . l 2 J 

J= ~j xj::E(xj) 
(125) 

For the special case in which h(xj) is a linear combination of varia­

bles, z = x1 + ~ + ••• + ~· the partials ~ z/axj = 1, and the second 

partials ~ 2z/ ~x} = O; thus, for this case the expression 

(126) 

provides an exact result rather than an estimate. 

The Taylor series expansion for the variance of the system re-

sponse, as derived by Hahn and Shapiro, reduces to 

Var (z) (127) 
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where m3(xj) is the third central moment (about the mean) for the jth 

variate. For the linear case, in which z = E(x.) and the x. are 
.. j J J 

~correlated, the first partials are again unity and the second partials 

are zero; hence, for this case 

m 
Var (z) = t Var (xj) • 

j=l 

When the xj are correlated, the system response variance is 

m 
Var(z) = I: Var(xj) 

j=l 

m-1 m 
+ 2 I: I: E [xj - E(xj)][xk - E(~)] 

j=l k::2 
j < k 

m m-1 m 
or simplifyings Var(z) = l! a2 + 2 l: ~ a a 

j=l xj j=l k::2 xj xk 
j<k 

(128) 

(129) 

where aij is the variance and aXjaXk is the covariance of the jth com­

ponent and the jth_kth components, respectively. 

Using the Taylor series expansion in the same manner, expressions 

for the third and fourth system response moments can be obtained. For 

the case in which the component variables are linearly related (as in 

the capital budgeting problem), the third system moments, m3(z) 9 areg 

For Uncorrelated Component Variapless 

m 
In:3(z) = I: ~(x.) 

j=l J 
(130) 

For Correlated Component Variablesa 

(131) 
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where r= j, k, s. 

For a linear combination of component variables, the fourth system 

response moments (as condensed from Hahn and Shapiro's results) area 

For Uncorrelated Component Variables, 

m 
I: m4(x.) + 
. 1 J J= 

m-1 m 2 2 6 E t a a 
j=l k=:2 xj xk 

j < k 

For Correlated Component Variables1 

ITlI}(z) = 
m 
E m4(x.) + 4 Et m

3
(x.) 

j=l J j k J 
j,Jk 

+ 6 E ~ ' a2 + 12 ~ ~ ~ -' a n ~a::x ~ ~ ~ ~a::x, ~vx 
j k. j ~k j k s J ~k s 

j<k j,Jkfi.s 

+ 24 t t I: t [ax. ax. ax ax ] • 
j k S t J K s t 
j<k<s<t 

(132) 

(13'.3) 

With these prelim:inary relationships now defined, the numerical example 

based on a quartic utility function can be presented, which is the 

subject of the next section, 

Fonnulation of Numerical Example 

for Independent Projects 

It is assumed, for illustrative purposes, that the decision-maker 

in this numerical example is R. F. Mellon ( referred to in Chapter V) , 

and that he possesses a quartic utility function determined by 

regression analysis to bes 



153 

~ = -17.63 + 48,74X - 17.967x2 + 2.72ix3 - o.123x4 

where Xis a distributed project net present value in Dollars x 10-5, 

It is also assumed that Mellon, or another person with expert lalowledge 

in whom Mellon has confidence, has evaluated four prospective indepen­

dent projects and has estimated (subjectively, if necessary) each of the 

project ne~ present values and their distributions, as tabulated in 

Table V and illustrated in Figure 17, (These distributions, obviously, 

result from assumed solutions to the analysis problem describ~d in 

Chapter III, and such solutions could result from any of the types of 

formulatio~s described there, For the quartic utility function it is 

required, of course, that all four moments be lalown for each project 

net present value). 

TABLE V 

PARAMETERS OF PROJECT NET PRESENT VALUES 

Project Mean V(NPV) Third Moment Fourth Moment 
Identification NPV About Mean About Mean 

(j) ( J.-l) (a2) (m3) (m4) 

1 2,0 0.25 0 0.1875 

2 4.0 1.00 0 3.00 

3 3.0 3.00 0 27.00 

4 3.0 6.oo 24.15 252.00 



0.9 
PROJECT µ. cr2 m3 m4 

0.8 I 2.0 0.25 0 0.1875 
2 4.0 1.0 0 3.00 

> 0.7 3 3.0 3.0 0 27.00 
a. 
z 4 3.0 6.0 24.15 252.0 -LL. 0.6 

z 
0 0.5 
I-
u 
z 0.4 ::::> 
LL. 

>- 0.3 I-
Cl) 

z 
0.2 w 

0 

-1.0 0 1.0 2 .0 3.0 4.0 5.0 6.0 
. NET PRESENT VALUE (NPV) , DOLLAR x 10-5 

Figure 17. Density Functions of Project Net Present Values 
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When complete enumeration of all possible combinations of projects 

is the mode of solution, there are 2m possible combinations of the net 

present value parameters. One combination is always that of 11 do noth-

ing" or "invest in cash." Either term is acceptable, since either one 

implies retention of available funds without any return. The remaining 

2m - 1 combinations encompass all of the remaining possible combinations 

of m projectsp for each of which the mean and other moments of the sys-

tem response function must be calculated. Thus, for the present case 

of m = 4P the mean, variance, third moment and fourth moment for each 

of the 24 - 1 = 15 combinations of net present value must be calculated. 

For the independent case, equations (126), (128), (130) and (132) are 

used, As an example of a calculation, consider the project combination 

consisting of Projects 1, 2 and 3. For this combination, the mean of 

the resultant net present value distribution would be 

E(z) = X:J_ + ~ + ~ = 2.0 + 4.0 + 3.0 = 9.0 

which follows directJ.y from equation (126). The variance, from equa­

tion (128) , is 

V( ) - 2 - 2 . 2 . 2 - O 25 1 O ':2 O 4 25 z - az - a1 1- a2 1- a3 - • + • + .1• = • 

The third moment about the mean of z 9 from equation (130), is 

The fourth moment about the mean of z, from equation (132), is 

m4(z) = m4(x1) + m4(~) + m4(~) + 6[afa~ + a~) + a~(a~)] 

= 0.1875 + 3.0 + 27.0 + 6[0.25(1.0 + 3.0) + L0(3.0)] 

= 54.1875 • 
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In a sir.rl.lar fashion, the first four moments are calculated for the 

remaining 15 "bundles" of projects 0 the results of which are given in 

Table VI~ 

Now; by means of equations (112) and (113)~ the expected values 

E(z), E(z2), E(z3) and E(z4) can be calculated from the moments, which~ 

for the example project bundle (Projects 1~ 2 and 3), ares 

E(z) = 9,0 

E(z2) = o~ + [E(z)]2 = 4.25 + (9.0)2 = 85.25 

E(z3) = Jo~[E(z)] + [E(x) ]3 + m3(z) 

= 3(4.25)(9.0) + (9.0)3 + (0) = 195.75 

E(z4) = [E(z) ]4 
+ 6:J~[E(z) ]2 + 4 m3(z) E(z) + m4(z) 

= (9.0)4 + 6(4.25)(9.0)2 + 4(0)(9.0) + 54.1875 

Knowing the expected values of these four moments about the origin 9 the 

expected utility of the resultant net present value for the bundle, 

E[U(z)], can be calculated by applying the expected value operator to 

the utility function itself, thus! 

E[U(z)] = -17.63 + 48.74 E(z) = 17.967 E(z2) + 2.721 E(~3) 

- 0.123 E(z4) 

= -17.63 + 48.74(9.0) - 17.967(85.25) 

+ 2.721(195.75) = o.123(8680.6875) 

= +117.46 utiles. 



Project 
Bundle 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TABLE VI 

MOMENTS OF PROJECT BUNDLE NET 
PRESENT VALUE DISTRIBUTIONS 

Component Mean Net Variance 
Project Present of Net 
Numbers Value Pres. Val. 

1 2.00 0.25 

2 4.00 1.00 

3 3.00 3,00 

4 3.00 6.oo 

1,2 6.oo 1.25 

1,3 5.00 3.25 

1,4 5.00 6.25 

2,3 7.00 4.00 

2,4 7.00 7.00 

3,4 6.oo 9.00 

1,2,3 9.00 4.25 

1,2,4 9.00 7,25 

1,3,4 8.00 9.25 

2,3,4 10.00 10.00 

1,2,3,4 12.00 10.25 
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Third Fourth 
Moment Moment 
of NPV of NPV 

0 0.19 

0 3.00 

0 27.00 

24.15 252.00 

0 4.69 

0 31.69 

24.15 261,19 

0 48.00 

24.15 291.00 

24.15 387.00 

0 .54.19 

24.15 30L69 

24.15 400.69 

24.15 1.#+.oo 

24.15 459.19 
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In a similar manner, the expected utility for each of the other combi-

nations of projects can be calculated, the results of which are tabu-

lated in Table VII, 

TABLE VII 

EXPECTED UTILITIES OF BUNDLES 

Project Component Expected 
Bundle Project Utility, 
Number Numbers E[U(NPV)] 

l l 26.61 

2 2 3.5.02 

3 3 26.71 

4 4 28,74 

.5 1,2 61.30 

6 1,3 .50.54 

7 1,4 41.81 

8 2,3 87,29 

9 2,4 48,98 

10 3,4 43,13 

11 1,2,3 117.46 

12 1,2,4 32,96 

13 1,3,4 34,09 

14 2,3,4 - 4.5,02 

1.5 1,2,3,4 -271,39 
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Now, the question is which bundle represents the decision-maker's 

choice. It will be noted that one bundle, consisting of Projects l, 2, 

3, and 4, has a mean net present value of 12.0. For the particular 

utility function assumed here, namely, Mellon's quartic utility func­

tion,~ range of validity is limited to values of mean net present 

value of 10,4988 or less (see Appendix C for the calculation of this 

result and for the validation of Mellon's utility function). That is, 

the intercept of the marginal utility function for Mellon's utility 

function is at f-4-NPV = 10,4988, and the project combinations whose mean 

net present values are greater than this value cannot be evaluated, 

Thus, regardless of whether the calculated utility of such a bundle is 

positive or negative, and regardless of whether or not such an expected 

utility is or may be the max:unum of all bundles, all calculations for 

bundle net present values in excess of the validity limit must be 

ignored, This requirement follows from the discussion in Chapter V 

concerning the valid range of cubic and quartic utility functions. 

With reference to Table VII, then, project Bundle 15 (consisting of 

Projects l, 2, 3 and 4) is eliminated from consideration. In a real 

situation, this would be an unfortunate occurrence, However, it simply 

means that the decision-maker's utility function was not determined 

initially over a wide enough range for the magnitude of the projects 

being considered. The remedy is to redetermine the utility function, 

extending the range of investigation. 

Again referring to Table VII, in the absence of budget constraints, 

the project bundle with maximum expected utility would be chosen, That 

is, Bundle 11 (consisting of Projects l, 2 and 3) gives maximum ex­

pected utility for R, F. Mellon, and if the criterion is maximization 



of expected utility, then only Projects 1, 2 and .3 would be executed, 

The effect of budget constraints can be illustrated by assuming some 

project "costs" for each project. Suppose, for example, that each 

project had an initial cost (in year zero) as followss 

Project 1 - $ 50,000 

Project 2 - 100,000 

Project .3 - 40,000 

Project 4 - 70,000 
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The cost of a project bundle is merely the summation of the costs of 

the component projects, To determine the optimal choice of a bundle, 

the project bundles are ranked by increasing bundle cost until the 

budget is reached (but not exceeded), and then the bundle with the 

maximum expected utility among feasible bundles is the optimum bundle, 

Assuming that the budget is $175,000, the ranking procedure is 

illustrated in Table VIII, from which the optimum bundle is Bundle 8, 

consisting of Projects 2 and .3, with an expected utility of 87.29 

utiles, 

If more than one periodic budget were part of the problem, a 

second ranking by cost, a third, and so on, would be performed; and, 

the optimum bundle would be that one which would be common to all sets 

of rankings within the feasible region of each, which maximizes expect­

ed utility. 

Technical constraints, such as a mutual exclusivity constraint, 

are handled by a notation system in the ranking procedure which rules 

out selection of a project bundle in which the constraint is operative. 

For example, if Projects 2 and .3 were mutually exclusive, then Bundle 8 



TABLE VIII 

PROJECT BUNDLES RANKED BY COST 

Project Component Bundle Expected 
Bundle Project Cost Utility, 
Number Numbers E[U(NPV)] 

3 3 40,000 26,71 

l l 50,000 26.61 

4 4 70p000 28.74 

6 lp3 90,000 50.54 

2 2 100p000 35.02 

10 3p4 110,000 43.13 

7 1,4 120,000 41.81 

8 2o3 140,000 87.29 

5 192 150,000 61.30 

13 1 03 94 160p000 34.09 

9 2p4 170,000 48.98 
.,. - - - - ------- -----ca - - r:s::> CID ,c,g 

11 1P2o3 190,000 117.46 

14 2,3,4 2100000 - 45.02 

12 1,2,4 2201000 32.96 

Notes project Bundles 11, 14 and 12 are in= 
feasible because of budget limitation 
of $175,000. 
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would be lined out, thereby preventing the simultaneous selection of 

Projects 2 and 3, If this were the case, the optimum bundle would be 

Bundle 5, consisting of Projects 1 and 2, with a maximum expected 

utility of 61. 30 utiles, 

Probability Statements 

When the mean and the three central moments (about the mean) of a 

distribution are known, as for any one of the project bundles in 

Table VI, the distribution can often be approximated by an empirical 

distribution such as the Johnson or Pearson distribution. If it is 

assumed, for example, that a Pearson distribution is a satisfactory 

spproximation to the unknown net present value distribution of a pro-

ject bundle, then satisfactory approximations concerning probability 

statements about net present value of the project bundle can often be 

made. Probability approximations are obtained by reference to standard-

ized Pearson or Johnson distribution tables, such as those reported in 

references (36) and (47) for the Pearson family of distributions. 

A numerical example w.iJ.l suffice to demonstrate the methodo 

The required information consists of knowledge of the mean and the 

next three central moments of the unkno,m distribution. For example P 

refer to Table VI 9 and observe that the parameters for Bundle 12 are 

as follows: 

E(NPV) = 9.0 

2 0 NPV = 7.25 

m
3

(NPV) = 24.15 

m4(NPV) = 301.69, 



Now, calculate the two Pearsonian shape parameterss3 

,/ej_ m~ 
= 24,1,2 = 1,238 = (02)1. 5 (7.25)1. 5 

02 
m4 -291-.:.§9 5, 7L~ , = (02)2 ·-

(7.25) 2 = 

These two shape parameters permit entry into tho standardized Pearson 

tables for the detennination of a standardized deviate 

X - E(NPVl 
a 

corresponding to a given probability level, a., from which confidence 

jJ1torva1.s can be detennined, Conversely, a given probability can be 

cst:i.natcd fror.i a knowledge of the actual deviate, X - E(NPV) 1 by re-

versing the process, although interpolation in the tables is more 

difficult, 

For the above eY..arnple, assume that 90% confidence limits on NPV 

are desired. Referring to Table XIV (Appedix D), ·which is a repro-
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duction of the appropriate section of the Pearson tables, for a.= 0,05 

enter the table with Jei = 1.238 and e2 = 5,71.~ 1 and read (by interpola­

tion) the standardized deviate t, 05 = -1.265, Similarly, for a.= 0,95, 

enter the appropriate table with Jei and 02, and interpolate the 

standard deviate t, 95 = 1.886, The confidence limits corresponding to 

a.= 0,05 and a.= 0.95 are then fotmd, thus: 

xa.:::,05 = E(NPV) - t.05 a= 9.0 - 1.265,./7.25 = 5.59 

xa.:::,95 = E(NPV) + t,95 a= 9,0 + 1.886/7.25 = 14.08 
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Thus, 1{$5,59(105) .S NPV .S $14.08(105)] = 0,90, and, if one is willing 

to accept a possible Type I error of le,%, the NPV will fall somewhere 

in the range between $ 559, 000 and $1,408,000, Similarly, the probabili­

ty of a net present value being less than $559,000 is appro:x:imately :;%. 

Now, assuming that one wanted to !mow what the probability of a 

loss is, the standard deviate for this assumption is 

o - 9.o = - 3,34; 
1 

(7.25)2 

and entering the table with Je';_ and e2, it is found that the largest 

negative standard deviate is appro:x:imately .:..2.3 for a= 0, Thus, the 

probability of zero net present value or less is ~ppro:x:imately zero, 

since ta= -3,34 < t 0 = -2,3 • 

This concludes the presentation of a numerical example to illus-

trate project selection by means of the expected utility criterion 

derived from a quartic utility function, By :implication, the same 

procedure can be applied to the cubic utility function, with appropriate 

changos in the estimation of bundle moments and expected utilities. 



FOOTNOTES 

1see, for ex.ample, Winegartner (65). Traditionally, the problem 
has been solved by dynamic programming methods using a Lagrangian 
multiplier technique for merging the several constraints, as originally 
proposed by Bellman (5). However, as has been shown by Everett (18), 
and demonstrated emphatically by Winegartner (65), the Lagrangian may 
NOT exist in some cases, and therefore, the problem solved may not be 
(and often is not) the problem as originally stated for~solution. 
Consequently, the Lagrangian method does not necessarily lead to a 
discrete optimum solution, as the problem requires when xj is restrict­
ed to values of O or 1. 

2The material in this section is based on Hahn and Shapiro (27), 
pages 228-236 and 252-257• Hahn and Shapiro call this method the 
"Generation of System Moments," which, as they point out, is equivalent 
to the terms "Statistical Error Propagation" or 11Delta Method", used 
by other authors. 

3The shape parameter Jej__ expresses the relative skevmess of the 
distribution. When Je'i is zero, the distribution is symmetrical about 
the mean, as a normal distribution is. When ~his positive, the 
distribution is right-skewed (with the "long" ta pointed toward 
higher values of the variate), and when it is negative, the distribu­
tion is left-skewed (with the "long" tail pointed toward lower values 
of the variate). 

The shape parameter 02 expresses the kurtosis, or relative 
peakedness of the distribution. The standard reference value is 02 = 3 
for the normal distribution. If 02 > 3 the distribution is said to 
be leptokurtic, or more peaked than the normal density i'unction. If 
02 < 3 the distribution is said to be platykurtic, or "flatter'' than 
the normal density i'unction, 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The principal problem approached in this research is a theoretical 

analysis of the probabilistic non-sequential capital budgeting problem 

from the standpoint of explainingp or predicting, the behavior of a 

non-risk-averse decision-maker. The objective is to provide a theoreti­

cal basis for a solution to the capital budgeting problem under con­

ditions of uncertainty, especially where the decision-maker displays 

risk-seeking behavior for some combinations of return and uncertainty, 

Secondary problems approached are (1) a rigorous statement of the 

probabilistic non-sequential capital budgeting model, (2) the develop­

ment of a classification scheme by which prior research can be inte­

grated into what is called the analysis problem, and (3) the correction 

of an interpretational error (in the Farrar model) which has affected 

prior studies of the capital budgeting problem under uncertainty. 

The basis for this study lies in the assumption that not all 

decision-makers are risk-averse, at least for certain combinations of 

risk and return. This is contrary to the direction that most (in fact 9 

nearly all) prior research has taken. The rationale for an assumption 

of non-risk-averse behavior originates in both observed behavior of 

decision-ma.king in growth companies and in empirical evidence. While 

business decision-makers may be risk-averse in a gross sense in the 

long run, it is also a fact that they tend to generate "growth lever= 
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age by taking risks in order, ultimately, to reach the risk-aversion 

plateau of entrepreneurial maturity. Stated another way, the ultimate 

goal of the firm seems to be one of II satisifcing" decision behavior (as 

March and Simon call it) in which risk .£2.!lVersion--the control of the 

uncertainties in the environmental determinants of outcome--is an 

accomplished fact; but the intermediate growth process, on the way to 

the ultimate goal, is characterized more by the assumption .2f risks in 

order to generate the capacity for risk conversion. Furthermore, em­

pirical evidence in the form of non-risk-avoiding utility functions 

exists in the published literature. Such utility functions imply, at 

leastp that certain decision-makers are not always risk-averse over all 

ranges of return. For these reasons, the decision behavior of non­

risk-avoiding decision-makers is of importancep and this research ex­

plores the theoretical implications of such behavior. 

Many of the conclusions of this research are presented along with 

the development of the various problems appearing in each chapter. 

However, some of the major conclusions are as followss 

(1) The ma:x:i.mization of net present value, as a project selection 

criterion, is not adequate when the capital budgeting problem involves 

considerations of explicit uncertainty. Some other criterion, based 

at least upon the mean and the variance of the net present value distri= 

bution, is necessary in order for a realistic solution to the capital 

budgeting problem to be obtained. 

(2) The capital budgeting problem consists of two separate 

phases1 (a) the analysis problemp which is characterized by the mathe­

matical formulations necessary to obtain a present value distribution 

for each project; and (b) the selection problem, by which specific 
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projects ( or groups of projects, called "bundles") are selected from 

the set of all candidate projects under consideration. Selection of an 

optimal subset of projects is done in accordance with a selection cri~ 

terion, which is a mathematical formulation derivable from utility 

functions that acts as the objective function in the selection model. 

The solution to the analysis problem becomes an input to the selection 

problem, and .!22. inter-project comparisons can be made in the absence of 

a defined selection criterion. 

(3) The non-sequential capital budgeting problem can be formulat­

ed in the form of a maximization of some function of Net Present Value 

to the firm, where maximum f(NPV) results from an optimal subset of 

projects. For the deterministic case, in which all net present values 

for all projects are assumed to be lmown with certainty, f(NPV) becomes 

simply equal to the net present value itself, and the objective function 

is then to maximize net present value. For probabilistic cases, maxi­

mization of expected utility (of net present value) is a reasonable 

criterion, derivable from the von Neumann-Morgenstern axioms of rational 

behavior. In these cases, the form of f(NPV) depends upon the mathe­

matical form of the utility function assumed for the decision=maker. 

In all cases, the capital budgeting problem may be constrained by one 

or more technical constraints, but is always constrained by the require­

ment that projects be indivisible. 

(4) Many of the probabilistic models appearing in the literature 

can be classified into various forms of the analysis problem, on the 

basis of the dependence-independence assumptions made in the modelVs 

cash fl.ow stream. The classification scheme developed herein permits 

structural integration of nearly all of the published cash flow models. 



(5) A derivation of the expected utility selection criterion is 

given in detail for the case where the assumed utility function is a 

quadratic polynomial. This derivation corrects a prior one by 

Farrar (19), who came to an incorrect conclusion in his derivation. 

This error was perpetuated by Watters (62), the first investigator (in 

1967) to apply an assumption of a quadratic utility function to the 0/1 

capital budgeting problem under uncertainty. Thus, the derivation 

stated herein also corrects Watters' work. 

(6) The derivation of Freund's seleotion criterion from an 

assumed negative exponential utility function is also given in detail. 

While Freund (24) noted how this could be done, and used the result, 

he did not present the derivation step-by-step nor show the necessary 

transformation to obtain the result. 

(7) The case for the existence of a complex utility function, in 

quartic polynomial form, is considerably strengthened by the use of a 

multiple regression technique, The analysis of variance of the regres­

sion for one decision-make, R. F. Mellon (reported by Grayson (25)), 

indicates that terms up to at least the quartic must be retained in the 

regression equation, 

(8) The necessary and sufficient conditions for the existence of 

valid utility functions, from a theoretical stand.point, are rigorously 

derived for utility functions of cubic and quartic polynomial form. 

Such derivations have not been reported in the literature anywhere 

prior to this time. 

(9) Finally, a numerical example of a project selection problem, 

based on a quartic utility function, is formulated and solved by 

complete enumeration ( the only known method of solving such problems). 
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A method of making probability statements about the net present value 

of a project "bundle" is given, based on knowledge of the four principal 

moments of the bundle net present value distribution and an assumption 

that a Pearson distribution approx:i.mates the unknown net present value 

distribution satisfactorily. 

Areas for Further Investigation 

Von Neumann-Morgenstern Utility Function 

One of the principal weaknesses in the use of selection criteria 

derived from utility functions is that an assumption must be made as 

to the mathematical form of the utility function itself, so that "best 

fit" of the decision-maker's response data (to the N-M standard lotter­

ies) can be obtained. The manner in which the standard lotteries are 

presented to the respondent greatJ.y affects the sampling, or experiment­

al, error. Great care must be taken to insure consistent response data 9 

and considerable "overlapping" of standard lotteries must be incorpor­

ated into the examination procedure in order to obtain a valid and 

independent measure of the sampling error. The sampling error magnitude 

is critical in the acceptance or rejection of hypotheses concerning the 

shape and form of the assumed utility function. More investigatiye 

work using multiple regression techniques for utility function valida~ 

tion needs to be done. 

Moreover, the N-M utility function may not actually measure the 

decision-maker's "attitudes" toward risk taking or risk aversion. A 

better method of inferring such attitudes from other than the standard 

lotteries is needed, as, for ex.a.mple 1 overt decision behavior in actual 

viable organizational contexts. 
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A third point is that capital budgeting decisions in the context 

of the "firm" may not be--and, indeed, often are not--made by a single 

individual acting for the firm, but rather by a group of individuals 

who collectively comprise the actual decision-making 11body. 11 While at 

least one attempt has been made by Spetzler(.58) to determine a "utility 

function" for the principal managing officers of an industrial firm, 

the results in this effort are far from conclusive. Indeed, some 

theoretical objections to a "group' utility function must be disposed of, 

or at least modified, in order for such a function to exist; and this 

requires investigation in depth into the decision-making processes of 

a group. While some investigations in the field of social psychology 

show promise in this direction, the problem is by no means solved. 

Complex Negative Exponential Utility Function 

One of the major disadvantages of the cubic and quartic forms of 

the asstn11ed utility function is that the marginal utility (the first 

derivative of the utility function itself) becomes zero at some finite 

value of the return (net present value). These functions, therefore, 

are limited in their validity to ranges of net present value equal to 

or less than the point at which the marginal utility becomes zero. 

Possible relief from this limitation could be obtained if the utility 

function were of modified exponential form. 

Consider, for example, the negative exponential utility function 

proposed by Freund, which is of the form 

U(X) - l -AX e (134) 

where A is a constant. This function is concave doi,mward, and expresses 
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a general aversion to risk over all ranges of X. Now, if this general 

aversion were to be "overcome" by the decision-maker in a certain range 

of X, so that within this range he would accept risks not offset by in-

creased returns, then one would have the basis for complex decision 

behavior. Such an 11 overcoming11 of general risk aversion, for a specific 

range of X, can be modeled mathematically by providing an additive 

term of negative Normal form; that is, by adding to equation (134) the 

following: 

-~U(X) = B e 

2 
-C(X - D) 

(135) 

where B, C and Dare constants, not necessarily the same ones used in 

the quartic polynomial form of the utility function. 

Equation (135) expresses a 11negative11 risk-aversion-that is, a 

positive risk-seeking attitude--over all values of X, but which becomes 

·most pronounced and, in fact, overpowers the general tendency toward 

risk aversion in the vicinity where the deviate X - D becomes zero. 

Thus, the shape of the complex exponential utility function, 

2 
-AX B -C(X - D) U(X) = 1 - e - e , (136) 

would be similar to that of the quartic utility function, in that it 

would possess the necessary concave-upward curvature to indicate risk-

seeking behavior over a portion of the range of X, Moreover, it would 

possess the Siegel "level of aspiration" inflection point, which seems 

to be a necessary ingredient in any description of complex risk be-

havior, 

But the most obvious improvement that equation (136) implies, 

however, is a 122sitive marginal µtility over~ ranges of X, up to 
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and including positive infinity. Such a conclusion can be supported 

by taking the first derivative of equation (136) with respect to Xa 

U1 (X) = dU(X) 
dX 

= +Ae-AX + 2BC(X - D)e-C(X-D/ (137) 

which is the marginal utility of the complex exponential utility func-

tion. By proper choice of the coefficients A, B, C and D, equation 

(137) can be made positive over all values of X, and when the coeffici­

ents are so chosen, then the utility function in equation (136) becomes 

a valid utility function, The intercept at the origin is shifted some-

what by equation (136), but this needs only a minor linear adjustment 

to cause the function to pass through the origin, and this may be 

performed straightforward because of the assumption that a utility 

function is valid up to a linear transformation. 

Obviously, a complex exponential utility function is freed from 

the restriction of a finite operating range, and can be used--even 

extrapolated somewhat beyond its range of investigation--more flexibly 

than can the quartic utility function. More investigation is needed 

about this form of utility function, particularly in the theoretical 

derivation of the necessary and sui'ficient conditions for its existence, 

and in the derivation of a selection criterion from it. This is a 

suggested area for further research, 

These suggested areas for further research are not all of the 

possible ories, nor is this dissertation a complete solution to the 

capital budgeting problem. However, it is believed that the research 

reported here, particularly with reference to the de:dvations for the 

cubic and quartic utility functions and the specification of selection 

criteria from them, adds to the existing knowledge concerning decision-
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making behavior under conditions of uncertainty, Moreover, it is 

believed that, with continued investigation into the whole problem, 

there will result (one day) an understanding of the fundamental 

principles upon which organizational decisions are made, at least with 

respect to the risk-taking and risk-seeking propensities of the prin­

cipal decision-makers in the organization. It is to this overall goal 

that this research has been directed, 
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APPENDIX A 

NUMERICAL EXAMPLES 

Problem 1 

The cash flow stream for a project has been synthesized from 

relevant data, with the following estimates for the random variable 

cash flow incrementsz 

End of 
Period 

0 

1 

2 

3 

4 

5 

Mean Cash Flow 
Increment, Y\_ 
$ -85,000 

+20,000 

+30,000 

+35,000 

+38,000 

+38,000 

Standard Deviation 
of Cash Flow, at--

$ 6,000 

5,000 

2.500 

3,000 

3,500 

4,000 

(a) Assuming the cash flow increments (each a random variable) are 

normally and independently distributed, and that the applicable 

discount rate is 15%, what is the probability that the project 

(if accepted) will have a negative net present value? 

(b) Under the same assumptionsp what is the probability that the net 

present value will be greater than $25,000? 

(c) If no assumption can be m~de concerning the form of the cash flow 

distributions, what is the probability that a negative net 
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present value might result? 

Solution 

The mean (expected value) of the project net present value is 

found from equation (21) :1 

E[NPV] = Y = -85,000 + 20,ooo(PS15-1) + 30,ooo(PS15-2) + , , , + 

+ J8, 000( PS1.5-5) 

182 

= -85,000 + 20,000(08696) + 30,000(.7561) + 35,000(.6575) 

+ 38,000(.5718) + 38,000(.4972) 

The variance of the project net present value is found from equation 

(23), 

v[NPV] = (6000)2 + (5000) 2(PS15-2) + (2500) 2(PS15-4) + • , • + 

+ {4000)2(PS15~10) 

= 106(36(1~0) + 25(. 7561) + 6.25{. 5718) + 9.0{ .4323) + 

+ 12.25( ,3269) + 16.0(.2472)] 

6 = 70.42 X 10 • 

Note, that even though the Period O cash flow is negative {a capital 

consumption, or "cost"), the variance of that increment is added in 

the variance summation. 

Then, the standard deviation of the NPV is 

oPV = Jv(NPV) = 8,400. 

(a) - 2 Since the cash flow increments are NID(Yt, ot)P then the Net 

Present Values is also NID(Y, o~v). The probability of a negative 
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net present value is found from the standardized normal deviate 

in which Y = 0 is the upper bound: 

0 - 18750 - -2.23 
8400 - • • 

From Normal tables, 

a= P[-oo::;;, Y::;;, o] = 0.0129. 

(b) Again, computing the standardized normal deviate for the upper 

bound Y = 25,000 and computing its complementary probability, 

Z - y - y - 25000 - 18750 - ·t-0 745 
1-a - OPV - 8400 - 0 

1 - a= P[-oes Y s 2.5000] = 0,772 

from which a= P[Y > 2.5000] = 1 - 0. 772 = 0.228 , 

( c) If the form of the cash flow increment distributions is not 

lmown, then Chebyshev' s inequality is applicable. Compute the 

same standardized deviate as for the normal distribution. Then, 

if tc = Zn, by Chebyshev1 s inequality 

P[ - oo .SY .S O] ~ 1 - [1 - _L ] = 1
2 

t/ tc 

II S l = 0,201 , 
(-2,2j)2 

If the form of the cash flow increment distributions is known to 

be unimodal, with the mode equal to the mean, then the Camp= 

Meidell inequality is applicable1 
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P[- oo ::; y ::; o] ~ 1 - ( 1 - 1 ) = __ 1_ 
2,25tc2 2,25tc2 

II < 1 = 0, 089 o 

2,25(-2,23)2 

Problem 2 

Using the cash flow stream and other data supplied in Problem 1, 

assume that the cash flow increments are also correlated among periods 

as indicated in Table IX, 

Yo 

yl 

y2 

Y3 

Y4 

Y5 

TABLE IX 

CORRELATION COEFFICIENTS (foe) OF CASH Fl.OW 
INCREMENTS AMONG PERIODS 

Yo Y1 y2 Y3 Y4 

0 0 0 0 

0,100 0,050 0,020 

0,150 0,120 

(Symmetrical) 0,160 

Y5 

0 

0,010 

0,060 

0,140 

-0,070 

Posing the same questions (a), (b), and (c) as in Problem 1, the only 

ne'W information needed is the project NPV variance I i,,1hich can be 
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calculated from equation (34) 1 

V[Y] = 70.42(106) + 2(106)[( ,l00)(25)(6.25)(PS15_3) ·I-

+ (o.05)(25)(9)(PS1.5-4) + (o.02)(25)(12.25)(P5i.5-.9 

+ (O.Ol)(25)(16)(PS15-6) + (,.15)(6.25)(9)(PS15-5) 

·t- ••• + (-o.07)(12.25)(16)(PS15_
9
)], 

6 = 149,8(10) 

from which a'PV = JvITT = 12,220, 

(Note that the negative correlation .coefficient, p45, decreases the 

variance V(Y) while the other positive coefficients increase it over 

the uncorrelated case). 

The probability statements in (a), (b) and (c) for Problem 1 now 

becomes 

( ) 0 - 18750 
a Za = 12220 = -1.533 

a= 0.0626 (from Nonnal tables), 

1 P[-co ~ Y ~ 0] ~ _!_ 
t 2 

C 
= = (-1. 533)2 

(c) P[ -oo ~ Y ~ 0] ~ 1 
= 1 

0,425 

2, 25(-L 533) 2 = 0.189, 

Thus, while the expected Net Present Value remains unchanged, the 

effect of positively correlated cash .flow increments is to increase the 

project variance (and therefore decrease the probability of "success," 

i.e,, it increases the probability of lower net present values), Con-

versely, a negative correlational relationship will decrease project 

variance and increase the probability of a higher project NPV, 
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Problem J 

A simplified version of the Horowitz model for the Case IV problem 

can be formulated and solved as follows. 

Let Q = plant output (demand)i units; 

P = market price, $/unit; 

e = price elasticity of demand (assumed positive), 

normally and independently distributed ( P.e• a;) s 

W = unit cost of production, $/unit. 

Then, according to Horowitz• formulation, the dependent plant output 

in any period tis a result of the independently distributed elasticity 

and the market price in that period, according to the relationship 

(A-1) 

where A is a constant (assumed here to be 106), 

Now, under the assumed economic condition of an elastic market 

(he.re, for convenience, it is assumed that e > +l), and with a goal of 

maximization of profit, the firm should adjust its price until marginal 

costs equal marginal revenue. At this operating point, it can be 

shown that the unit price to be charged is2 

P:W[ e ]~ 
e - 1 

Now, if production costs (W) are assumed to be known and constant, 3 

and if (for simplicity) fixed costs, depreciation and tax rate are 

(A-2) 

ignored, then the "gross income" in any period tis PQ, and the cash 

flow increment is (P - W)Q. Substituting equations (A-1) and (A-2), 
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the cash flow increment is 

(A-J) 

which is a non-linear relationship among two unlike functional constants 

(A, W) and a normally distributed variable, e~ Hence? the cash flow 

increments (and, therefore, the project net present value) will be 

distributed non-normally. Summing overt, the project net present 

value is 

n t{ 1 [ e J 1-e NPV = Yo = :E (1 + i) A e- W e _ 1 -
t=O 

where Ct = any non-variable "cost" ( i. e, , investment) in period t. 

To obtain the expected net present value, it would be ne«essary 

to evaluate the expression 

00 

[ ( e - f-Le/J E[NPV] = J 1 exp -t [NPV(e)] de 
e:l J2iio e a e 

(A-.5) 

where [NPV(e)] is given by equation (A-4). As Horowitz says 9 "the 

potential for the evaluation of this integral would not seem to be very 

great." Accordingly, a numerical integration procedure is used to 

approximate the mean and variance of the net present value, which will 

be demonstrated. 

Let the elasticity, e, be normally and inqependently distributed 

with mean JJe = 1.5 and variance a;= 0.04, Let the constant A= 106• 

Let the unit cost of production W = $10/unit. Now, choose standard­

ized normal deviates, Ze, ranging from approximately -2.5 to +J,O. 
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Calculate the corresponding values of elasticity, e, from the mean 

and standard deviates, 

(A-6) 

and calculate the corresponding values of the cash now increments from 

equation (A-3). These calculations are shown in Table X, 

TABLE X 

CASH FLOW INCREMENTS 

P[e• .::; e] Ze 
e Yt = f(A,W,e) 

(Eqn.. (A-6)) (Eqn, (A-3)) 

0.,0062 -2.50 1.001 990,000 

0,010 -2.'.38 L04 938,000 

0.100 -1.28 1,24 3219000 

0,200 -0.840 1.33 220,000 

0,300 -0,524 L39 175,000 

o .. 400 -0.253 L45 143,500 

0.500 0 L50 121,500 

0~600 +0.253 1.55 1029500 

0.700 +0,524 1.61 85,400 

o.aoo +0.840 l,67 69,600 

0.900 +1.28 1.76 52,400 

0,.950 +L64 1,83 41,500 

0.999 +3,09 2.12 17,400 
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Now, the probability that e 1 is less than some value e is exactly 

equivalent to the probability that Yt is greater than some value Yt 

which was computed from e (see Table X), Thus, 

(A-7) 

which allows the construction of Table XI from Table X,. 

TABLE XI 

CUMULATIVE DISTRIBUTION OF CASH FLOWS 

P[Yt ~ Yt] Yt 

0,9938 990,000 

0.990 938,000 

0,900 321,000 

0,800 220,000 

0,700 17.5,000 

0,600 14),.500 

0,.500 121,.500 

o.40o 102,.500 

O.JOO 8.5,400 

0.200 69,600 

0,100 .52,400 

0,. 0.50 41,.500 

0.001 17,400 
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The objective then is to obtain a probability function from the 

cumulative cash now distribution. This can be done as follows, Know-

ing that the probability, for example, of obtaining a cash now of 

321,000 or less is 0,900, and the probability of obtaining one of 

220,000 or less is 0,800 1 then the cell~ cash now that will lie 

in the p = 0,100 interval can be approximated by the geometric mean 

(Yt)g = j (1a12)(.J21)(.220) = 266,000 , 

and the probability of getting (Yt)g is 0,100, the difference between 

the upper and lower cell boundaries. In a similar fashion, the cell 

mean cash nows can be obtained for the otherirltervals in Table XI. 

The project mean net present value is then found by taking the mat~e­

matical expectation of the series, and the variance by taking moments 

about the project mean (grand mean). These calculations are given 

in Table XII. 

The grand mean of the cash now distribution is 

Ery J _ y ~Expectation_ 16.6b x 104 
6 

4 
L~t - t - tp(Yt] - 0. 9928 = l ,8 X 10 

and the deviations of Yt in Table XII are calculated about this value. 

The standard deviation of the random cash now variable is then 

e.stimated by 

Now, an assumption was tacitly made earlier that equation (A-J) 

was a general expression for the cash flow in any period t. This is 

true. Since equation (A-J) depends solely on the random variable e, 
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TABLE XII 

MEAN AND VARIANCE OF CASH FLOW INCREMENTS 

Cell Mean 
fp = p((Yt)g] Expectation (Yt)g - y fp[CYt)g - Yf (Yt)g 

96,3 X 104 0.00)8 0,366 X 104 79,5xl0 
4 24,0 X 10 8 

,54.6 0.090 4,91 37,8 129.0 

26.6 0.100 2.66 9,8 9.60 

20,2 0.100 2.02 3.4 1,16 

16.3 0.100 1.63 - 0.5 0.02 

13.2 0.100 1.32 - 3,6 1.30 

11.2 0.100 1.12 - 5.6 3,14 

9.20 0.100 0.92 - 7.6 5.78 

7,65 0.100 0.765 - 8.15 6.62 

6.04 0,100 o.604 -10.76 11.60 

4.66 0.050 0,233 -12,14 7.40 

2.69 0.049 0.132 -14.11 9.75 

0.9928 4 209,37 X 108 TOTALS 16,680 X 10 -----
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then each of the cash flow distributions will have the~ parent 

(population) distribution for each of the t periods, which causes the 

Yt to be perfectly correlated among periods, Thus, this model is a 

special case of the Case IV models, 

To complete the problem, assume a "known" project life of three 

years and a discount rate of 1.5%, Then, the project expected NPV is 

found from equation (26), with the right-hand member set to zero (there 

are no 1-Udependent cash flows)a 

E[NPV] = i ([Yt~ = 16.8xJ.0
4 

+ l6,8x10
4 

+ 16.8x10
4 

t=l l.+i (1.15) (1.15)2 (1.1.5)3 

4 = (16.8 x 10 )(P~.5-
3

) = 384,000. 

The variance of the project NPV is found from equation (30), with 

the first right-hand member set to zeros 

v[NPV] = i [ ayt 12 
t=l (1 + i)~ 

42 = (4.36 x 10 ) (PS15-2 + PSl.5-4 + PSl.5-6) 

= (19,0 X 108)(1,7602) = 33,6 X 108 , 

The distribution of the Net Present Value, of course, is non-

nonnal. To get the NPV distribution, consider again the relative 

frequencies (cell probabilities) and cell means in Table XII. If we 

consider that three such "tables" of cash flows will exist for the 

three periods (one for each period), and if we randomly sample from 

these tables and discount tot= O, then the present value expectation 

of a cell mean is: 



= r 1 ... Li ... i 

Since numerically (PV)y
0 

= (PRi-J)(Yt)g, then by analogy f 0 = fp• 

Thus, by analogy all other relative frequencies of cell mean present 
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values will be identtcal to their undiscounted counterparts, and hence 

the .f2r.!!! of the NPV discrete probability function is identical to the 

cash flow function in Table XII. This permits the calculation of the 

NPV probability functiont and from itt the NPV cumulative distribution. 

The cumulative NPV distribution is given in Table XIIIt which permits 

probability statements about the net present value of the project, 
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TABLE XIII 

NET PRESENT VALUE CUMULATIVE DISTRIBUTION 

fo = p(Yb ~ Yo) Yo = PV(Yt) = (Yt) (PRi_5_ 3) 

0,9938 2160, X 103 

0.990 2140. 

0.900 733, 

0.800 503. 

0.700 400. 

0.600 326, 

0.500 277, 

0.400 234, 

0.300 194,5 

0,200 159.0 

0,100 119 .. 7 

0.050 94,9 

0,001 39.7 



FOOTNOTES 

11n the numerical solutions that follow, the notation PSi-t 
indicates the single-sum present worth factor, from t years hence 
at i percent per annum compounded annually, Similarly, the notation 
PRi-t indicates the uniform-series end-of-period present worth factor. 

2see Bierman et al (6), pp, 385-387, In the price equation (A-2), 
our sign differs from Bierma.n•s, which is the result of choosing e as 
a positive number rather than as a negative one, as Bierman does, 

3This differs from Horowitz' assumption somewhat, 
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is 

where 

APPENDIX B 

DERIVATION OF NECESSARY & SUFFICIENT CONDITIONS 

FOR A POSITIVE MA.R:iINAL UTILITY FUNCTION 

The discriminant of the reduced cubic polynomial 

y3 + py + q = O 

AJ = 4p'J + 27q2 

p = ~-E.. 
2D 16n2 

A BC CJ ---~---
4D 8n2 J2DJ · 

q = 

(104) 

(B-1) 

(B-2) 

(B-J) 

Substituting the literal values of p'J and q2 in (B-1), the discrimi-

nant becomes 

(B-4) 

If ~ > 0 1 as it is required to be for the reduced cubic to have one 

real root and two imaginary roots, then the right-hand side of (B-4) 

must be greater than zero, Setting (B-4) > Ot and multiplying by 

64D4, we obtain 

Now, the left-hand side of (B-5) is a quadratic polynomial in D, the 

roots of which area 
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By the factor theorem, a polynomial can be expressed in terms of 

its roots. Thus, inequality (B-5) can be expressed as 

(D - Ri_)(D - Rz) > Os (B-8) 

where R1 and Rz are given by (B-6) and (B-7), Inequality (B-8) is 

true when both 11_ and R2 are real numbers and when either& 

(a) 

OR 

(b) 

For case (a), D - R1 > 0 when D > R1 • Note, however, that if D > R:i_ 

then D > Rz also, since R:i_ > Rz from (B-6) and (B-7), Thus, case (a) 

is satisfied merely if D > 11_, For case (b), D - Rz < 0 if D < Rz· 
But note, that if D < Rz, then D < 11_ also, since Rz < Ri. Thus, the 

second case (b) is satisfied if D < R2• Hence, it can be said that 

(D - Ri)(D - Rz) > O, and thus that the reduced cubic (104) will have 

only one real root if 

(1) R:i_ and Rz are real numbers; and 

(2) D > Ri .2! D < R2• 

Taking these conditions in order, it can be shown that Ri and Rz 
are real numbers if the discriminant of the quadratic root 
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(B-9) 

is zero or positive (assuming, of course 9 that the coefficients A, B9 

C and D a real numbers), The condition for ~ 2: 0 can be obtained by 

setting (B-9) ;.z:. O, expanding and collecting terms< Thusa 

or, restating numerical coefficients as powers of 2 and J: 

(B-10) 

the left-hand side of which can be factored (into a perfect cube root) 

by 4B2 - 9AC, Thus, (B-10) becomes 

or, extracting and sim_plifying, 

(B-11) 

To summarize , if I,. 2 ~ 0, then Ri_ and Ri are real roots ; this 

condition is met by requiring B2 
:.Z:. 9AC/4. If R:i_ and Rz are real roots 

and if D > R:i_ .2.!: D < Rz, then AJ = (D - Ri )(D - Ri) > O 9 which is the 

condition for tI?,e reduced cubic polynomial (104) to have a single real 

root. It follows, then, that if the reduced cubic has~ single real 

root, y1 , then the marginal utility function (equation (102)) will also 

have a single real root, X* = y1 + C/4D,, This final condition is met 

by requiring (1) that B2 ~ 9AC/4, and (2) that D > Ri .2£ D < Rz, 



APPENDIX C 

VALIDATION OF QUARTIC UTILITY FUNCTION 

FOR R, F, MELLON 

The following data are derived from the coefficients of the re­

gression equation of R, F. Mellon's utility function (Chapter V)1 

A= 48.74 

B = 17.967 

C = 2,7209 

D = 0.1234 

The following requirments must be met, with the above values, for 

equation (72) to be a valid utility function: 

(a) B2 
:i!?:. 9AC/4 (from equation (107)); 

(b) D > Jli .2£ D < R2 (from inequality (108)); 

where 

(c) BD > O (inequality (109)); 

(d) c2 ~ 8BD/'J (inequality (110)), 

Quite obviously, BD = (17.967)(0,1234) > O; and condition (c) is 

already met, For condition (a)s 

B2 = (17,967)2 = 322,813089 

and 9AC/4 = 9(48,74)(2"7209)/4 = 298,3874985; 

hence, B2 :2?:. 9AC/4, For condition (d)a 
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c2 = (2.7209)2 = 7.40329681 

8FD/3 = 8(17.967)(0.1234)/3 = 5.9123408; 

hence, c2 ~ 8FD/3, and condition (d) is met. Now, for condition (b) 9 

let 

Thens 

X = 27AIC = 27(48.74)(17.967)(2.7209) = 64333,53823 

Y = (27AIC - 8:s'.3) 2 = [64r333.53823 - 8(17.967)3]2 

= 3.216167374 X 108 

Z = 27A2(27AC3 - 9El2c2) = 27(48.74) 2[27(48,74)(2.7209)3 

- 9(17.967) 2(2.7209) 2] 

= 3,206840947 X 108 

M = .54A2 = ,54(48,74) 2 = 12.82817304 x 104 • 

R2 = X - '[(: - z = 0.1322709145; 
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hence, (D = 0.1234) < (R2 = 0.13227), and condition (b) is met. 

Equation (72), therefore, is a valid quartic utility function, the four 

requirements having been met. 

Now, the upper limit of the range of applicability of this utility 

function is found by solving for the single root of the marginal 

utility function. Let 

Then 

p = _g_ -~ = -18.35844034 
2D 16D2 

A. oc c3 
q = - ..!- + - - ----- = -32.44319461 • 

4D 8D2 32D3 

4p3 = -24,749.55182 and 

The discriminant of the reduced cubic is 

which implies a single, positive 9 real root, 



Now, to find the root, define 

et = - .9. + rx:;- = ·t-22 , O 506 3686 
2 J--roo-

~ = - ~ - J ~68 = ... 10,39255775 

3,/a. = (22,05063686)
113 = 2.804187478 

1/3 = (10,39255775) = 2,182264974 

Then the root, y1 , of the reduced cubic is 

and the real root of the marginal utility function, X*, is 

X* = Y1 + 4~ = 4,,9865 + 4(o~i~~J = +10.4988 ; 
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which is the real root of the cubic marginal utility function, There­

fore, since the marginal utility becomes zero at X* = 10.4988, then 

this value is the upper limit of validity for the quartic utility 

function itself, 



APPENDIX D 

STANDARDIZED DEVIATES FOR PEARSON DISTRIBUTIONS 

Appendix D consists of Table XIV, on the following pages, Table 

XIV is an abridgement of "Table A" in Reference (36), to which the 

reader is referred for the complete table of Pearson standardized 

deviates. 

Table XIV assumes that all values of Je;,_ (= Jr;_ in the Table) are 

positive; that is, the tabular values are for right-skewed distribu-

tions. If deviates are required for a left-skewed distribution, in 

whichJei is negative, then the column headings become (1 - a) instead 

of a in percentage points, For example, if Jei = -1. 2, then for 

a = 0.05 one would look in the Jfj_ = 1.2 table under the column headed 

a= 95,o.', to find the negative standardized deviate. 

For most purposes, linear interpolation in the Table is satisfac= 

tory. However, under certain instances, a second difference interpola~ 

tion may be required; for these conditions, see Ref~rence (36). 
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TABLE XIV 

STANDARDIZED DEVIATES FOR PEARSON DISTRIBUTIONS 

a. 
Pl'.4nt O•O 0•211 0·11 l·O 2·1i /j•O !IHI 2r.-o 50-0 _.., 

p. ;;p, = J,l 

3·6 0·0312 0·0312 0·11311 0,0:110 0·0303 0·11272 0·0140 0·!11114 0·3786 
·8 ),()000 ·0000 •110!17 •1111111 ·111100 •IIH73 ·116113 •11077 •3366 

4·0 1-0727 1·0721 Hl713 l•Ofi02 l•Ollf)7 HH!H IMl!llifl 0·7!11J.I 0·3014 
·l l-160,& 1-14110 l· 14/i!i l•HUO 1·12211 1·0!113 1-02:111 ·7111ifl ·2739 
·4 1·23.&0 1•2274 l-2213 1·2!03 1-IHOI 1·13311 l-lJH8 ·77fill ·2:il5 
·6 1-3276 1·3002 1·2117/j 1·27114 1·2320 Hfl!III l·flfiOII •7fi50 -2:1:10 
·8 1-4320 1-3021 J,3726 1·3433 1•27117 1·2000 1·0723 .7r,37 ·2174 

5•0 l·lir.20 1-4748 1-44r,3 1·4040 1·3216 · 1·22511 1-1,1101, 0·7431 0·2h43 
·l 1•60112 l·lililill l·li147 1·4603 1•3!;!16 1·2-171 1·01172 •73:!2 ·11130 
·4 1-8832 1·0343 l ·r.lW2 I-Iii 20 1·3!113 1·:!fir.3 l·IJ!117 ·7242 ·11133 
·6 2•1430 1-70113 Hi415 l·li6114 1·4201 1·21i07 HJ!14!l ·71611 ·1749 
·8 2•6198 1'711011 HIIIH6 1·6026 1·4'160 1·2!J311 1•0!172 ·70Hl •1674 

6·0 QC) Hl4 II 1·71i2 1-1142 1•411H 1·:IO/i Hlll!I 0·701 0-161 
·l - HIii l·HOI 1-11711 1•4HH 1·31r. l·IIMI .,m:. ·l»!i 
·4 - 1·070 l·H4fl 1-711 l·liOfl 1·32:1 HIMI ·IIH!I • liifl 
·6 - 2·026 l·lltlli 1-741 1-r.22 1,:1:111 l·IOO •IIH3 •Hii 
·8 - 2·077 1'1127 1·71111 1•6:17 1·337 1·100 .f;7H ·Ml 

7·0 - 2·12:, HIii:! 1·7113 1·5r.o 1·3·13 HOO 0·1173 0-137 
·l - 2·170 1-111111 1•11111 l•lill2 l·:HII 1·100 ,ftflll ·133 
·4 - 2·212 2·0:!7 1·11311 l-li73 1·:l!i2 Hlll!I ·Olili ·130 
·6 - 2·:!52 2·0/ill HI/ill l•ak:I 1 ·!lfi(i Hl!l!I ·lllll ·1:!7 
·8 - 2·2110 2·0H:I 1'1176 l·li112 l·!f5U 1·0!111 •658 ·124 

8·0 - 2·324 2·11111 1·8113 HIOO 1·303 1·01111 0·61i4 0-122 
·l - 2·356 2·132 1·00!1 1·008 1•31ili 1 ·0!17 ·6/il · I Ill 
·4 - 2·387 2·164 1·02:! 1·616 1·3611 HJIIII ·6411 ·117 
·6 - :!·410 2·176 1·1137 1·021 1-370 l·OOII ·li45 ·II.; 
·8 - 2·444 2-194 1•900 1'027 1-373 1·11116 •043 ·113 

9·0 - 2"&70 2·212 1·062 1·633 1·376 1·094 0·640 0·112 

;J~. = 1·3 

4·0 0•11173 0·11172 0·11172 0·11171 0·11162 0·!1128 O·H!IH7 0·71147 · 0-37118 
·l -01or, ·117114 ·117112 ·117t16 ·0764 •!llifi8 ·O:IH!) ·71J3-t ·3411 
·4 l·OHO 1'·0444 l•O-t30 1·0416 1·03311 Hllflll ·U7iH ·7875 ·310t 
·6 1-1142 1-1123 1·1101 1-10/H 1·080!1 1-(1017 ·9!1Hfi ·7702 ·:!8ii0 
·8 1-1887 1·1830 1-1781 1·168tl 1·1427 1·1013 l·O:!Oi\ ·7697 ·2639 

5·0 1·2097 1·2r.60 1·24fi0 1·2307 1·1!114 1'1357 l·O:IH8 0·7600 0·2-lli2 
·l 1·3505 1·3302 1'3141i 1·21102 1·2357 1'1053 1·04!)3 ·750{ ·2311 
·4 1-4010 1-40.&0 1·3809 1·3460 1·2ilill l · 1!107 1·0:i89 ·7412 ·21SI 
·6 1·6791 1'4783 1'4449 1-3994 1·3117 1·2125 1'0603 ·7326 ·2069 
·8 1-7222 1'/i602 1·0050 1-4486 1-3438 1·2312 l·Oi20 ·7244 ·11171 

6·0 1•9070 1·0107 1·6037 1·4941 1-3726 1·2473 1·0763 0·7169 O•ISK6 
·l 2-1764 1'6803 1·6180 1'.'>300 1-3981 1·21112 1·07115 ·7099 ·lh09 
·4 2·7630 1'7407 1-6689 l·li746 1-4211 1·2733 1·0820 ·703-l ·17t2 
·6 QC) i-810 1-716 1·6IO 1·442 1·284 1·084 ·607 · lli6 
·8 - 1·867 1'701 1·043 1-460 1·293 1·085 ·602 · lfi3 

7·0 - 1-920 1-802 1·073 1-477 1·301 1·0811 0·687 O·lii!I 
·l - l·OiO 1·840 MOO 1-492 1-308 1'087 ·082 ·l!i3 
·4 - 2·018 1·876 1'726 1-500 1·315 HIRi ·077 • 14!1 
·6 - 2·002 .1·1110 1·750 HilO 1·3:?0 1·087 ·li73 · 14.", 
·8 - 2'104 1·041 1'772 1-630 1·3:?0 Hll<7 ·660 · 1-l:! 

8·0 - 2·144 1-970 1'702 1·541 1-330 l-11117 0·60:, 0·1311 
·l - 2-181 1·998 1·811 1·651 1·334 l·OK7 ·602 · l :11; 
·4 - 2·216 2·023 1·820 1-560 1-3311 1,m;; ·65(1 ,1:13 
·6 - 2·240 2·047 1•845 l·li68 1·341 Ht1'7 ·656 ·131 
·8 - 2·280 2·070 1-860 1·676 1·34,& 1-mm ·053 ·l:!R 

9·0 - 2·310 2·091 1-87» 1•683 1-347 1·086 O·OliO O·t:?ti 

·l - 2·337 2·112 1·11811 1-680 1·350 l-Ot15 ·647 ·1:?4 
•4 - 2·364 2-131 1-901 1·606 1-352 1·085 ·646 ·122 
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TABLE XIV (Continued) 

a., 
75.0 90 .. 0 95~0 97.5 99.0 99.5 99.75 100.0 i'f•n~,~nt 

~ 

'31 J'3, = n-2 

3·6 o,;,:rno l·575f» 2·Utl,i 2·lif,72 2·!1178 :l·OHH 3·21r,2 3·4fi!IO 
·8 .r,3m; Hi;.?11) 2·11133 2·f>!'ill0 3·0027 3·2Hll 3.4:137 4·0000 

4·0 o-r,:141 1·47!13 2·0li:18 2·li·lll2 :1-or.1111 :1·3fi47 3·fil•12 4·fi!l34 
·l •li3:!4 H441l 2·0:!ll7 2-r;:13-t 3·00!itl 3.4r,31 3•7110!1 li·fl/i04 

·~ .r;307 1·4150 l-!1!171) 2·lilr.7 3· I lll2 3.r,201 3·87!10 7·071;7 
·6 ·52!10 1·3017 1·0700 2·4!1!10 3·1341 3·5713 3·07u!I 9·4703 
·8 ·5273 1·3710 1·04ti0 2·4H29 3· 1429 3·11100 4·0/i45 14·4320 

5·0 0·.',250 1•3531 l·!l2/i3 2·4fifi!I 3·1477 3·0412 4· 11 !II 3Hl520 
·2 ,r,2rn 1·3375 },!)Oli3 2 .. rn10 3·14!17 :l•li(i51 4·1727 00 

·<II ·5:!:?:i 1·3:!37 1·118!12 2·43711 :1- J.1!17 3·1l830 4·2174 
·6 ·5:! 11 1·3116 1'1!739 2·4240 3·1-t84 3·6!188 4·2552 
·8 •5107 1·3005 1·8600 2·4124 3·14(11 3·7106 4·21172 

6·0 (l•ul8 1-291 1·1147 2·401 3·143 3·720 4·314 
·l •517 1·21l2 1·1130 2-:mo :1-140 :M27 4·337 
·4 ·510 1·274 1·82r. 2·3110 :I· I :Iii 3·733 4.3r,8 
·6 ·ul5 1·21i0 1·1116 2·:!71 :i-1:13 3·738 4.37r, 
·8 ·614 1·259 1·1107 2·3fi2 3·1211 3·742 4·3!11 

7·0 0•51:1 1·2/i:I 1·7911 2·:154 3· 12,, 3.745 4·404 
·2 •51:! 1·247 l-7111 2·:147 :1-121 3·7411 4·4111 
·4 • .-,11 1·242 1·783 2-:1rn :1-117 3·7411 4·427 
·6 ·i>IO 1·237 1-777 2-:1:1:i :1•114 3·751 4·4!111 
·8 •510 1·232 1·771 2·327 :MIO 3·752 4·445 

8·0 0·50!) 1·2211 1·765 2·321 3· 107 3.7r,3 4·452 
·2 •50H 1·224 1·7/iO 2·31li 3·103 3.7r,3 4·4f>!l .. , •,i!IH 1·220 1·7M 2·310 :1-100 3·763 4·4fi5 
·b .;,07 1·217 1·7411 2·305 :1·0!17 3·7f>4 4·471 
·8 ·I\Uti 1·213 1·745 2·300 3·0114 3·764 4·470 

,.o O·:;Ou 1·210 l-740 2·20r. 3·0!11 3·763 4·480 

./?, = 1·3 

4·0 O·.ill:!4 1·5457 2· l[,f,O 2·1il!l2 3·055;', 3·211fil !H520 3-1"!1114 
·2 ·5057 1-4!1!10 2· 1111 2·0!n!~ :Hl71 3·4112 3·(i4:1r. 4·4851 
·-l .;,077 1·4025 2·0722 2·5015 3· l!itill 3·f>Oti.:, 3·7!1!1!1 5·2828 
·6 ·50S7 · 1·43111 2·0380 :!·f,72ti 3·1820 3·5785 3·!12tl7 6·3!176 
Ii ·.'iOH:! 1·4062 2·0080 2·5;")32 3· 1!173 3·0331 4·0:!!1-t 8·0866 

50 0·,ietH:I l ·31H3 l·!ltllli :hi3-I 3 3·2Hli0 :l·fi74R 4·1130 10·01103 
·2 .;,t~H I 1·3U.'i4 1·95113 :!·51H:I :1-2102 3·70117 4·181/j 17·209(; 
·4 · .. -,11,,s I ·34!10 1·11375 2·4!Hl4 3·2114 3·7315 4·2:180 0·9064 
,(, •,WH:I 1,:1:11;, Hlltl!I 2-4s:1r, 3·2 lllli 3·7W7 4·28:,o CX) 

·8 •• -»O';M l·:1217 1·1102:.! 2·41itl8 3·20113 3·71ir.7 4·32H 

6·0 0-.~,o-;2 1·3J02 1·11871 2,4r,;,1 3·20:iO 3.7774 4•357ti 
·2 •• -,t,ti.) l·:.!!l!l!l l-!1733 2-4-123 3·2011 3·78tiU 4·3K!i8 
·4 .. -,o.-,o 1·2tHJ6 1·81JOII 2•4:104 3· l!lli\l 3·7t1:111 4·4100 
·<> .;,or, l·:!82 1·114!1 2·41!1 3·1!)2 3·7!1tl 4.4:10 
·b ·.JO,j l•:.!i4 1·83!1 2·40!1 3·11111 3·803 4·4·18 

7·0 0·,-,04 1-267 1·8211 2·3!!!1 3·1113 3·H07 4·41i-l 
·2 ·:i03 1·261 1·820 2·3!10 3·178 3·HO!I 4·477 
·4 •.:,0:1 1·255 1-1112 2·3112 3·173 !1-!H I 4·48!1 
·6 .;,td 1·2-IO 1·1104 2·:174 3·16!1 :1•812 4·4!1!1 
·8 .. ;02 1·244 1-797 2·:167 3·16·1 3·1113 4·!i0!1 

8·0 O·.'illl 1·23!1 1-7!10 2·3.i!) 3·11i0 3·1114 4.r,17 
·2 .;,111 1·234 1·7114 2.3r,3 3•11;(1 3·1114 4·Ii:!4 
·4 -::itil) 1·230 1·778 2·3-17 :1·152 :1·814 4·531 
·t, •f,thJ 1·221, 1-772 2·341 3·1-t8 3·1113 4.r,:111 

·8 ·4!1\1 1·222 1-767 2·335 3·144 3·1113 4·642 

9·0 0·4'1\) 1·219 1-702 2·330 3·140 3·813 4·546 
·2 ·4'.I'> 1·210 1·7611 2·325 3·137 3·1112 4·651 
·4 ·4!ih 1·213 1·753 2·320 3·133 3·811 4-lir.4 
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