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CHAPTER . 1
INTRODUCTION
Origin and Objective of this Study

During recent studies at Oklahoma State University on structural
response from sonic booms, the necessity of further study of nonlinear
plate vibrations became apparent. Specifically, the need arose for a
lumped parameter model of a large plate-glass window valid for large
dynamic deflections. Such a model was found in the literature, but the
accuracy and the applicability to the specific problem at hand could
not be determined without further study.

Large deflections of plates are of basic interest in structural
dynamics. A research study in this area should have a broad applica-
tion. A variety of important problems in modern design cannot be
adequately analyzed on the basis of clagsical linear théory. Non-
linear plate theories have been developed to describe the response of
physical systems, but an exact solution of the governing differential
equations is not available. The application of the nonlinear theory
-is confined to only very special cases.

The only solutions known are fundamental mode approximations
which result in a lumped parameter model of the problem. . A more
general method of solving the differential equations is needed, as

well as evaluation and perhaps improvement of the lumped parameter

model,



With the availability of larger, faster digital computers, a
numerical analysis of the.problem is now feasible and practical, . It
appears at this time that an approximafe numerical method may be thez
best possible approaéh fof this problem. The finite-difference method
has very broad applicgtioﬁs and is.suitable here. This method has
been used successfully for the analysis of linear plate vibrations and
a great variety of other problems. . A proper application of the method
to-the problem at hand may be expected to provide solutions sufficiently
accurate to evaluate the lumped-parameter model, as well as to permit
solutions for boundary conditions that would otherwise défy.analysis.

The objective of this study is to develop a numerical method to
determine the large amplitude dynamic respoﬁse of a thin elastic plate
subjected to a pulse-type load, and to investigate the stability,

convergence, accuracy, and application of the method.
Historical Background

The following brief history of the early development of plate
theory was taken from references (6) and (13). The governing
differential equation for the:static deflection of plates by linear
theory, (V4w = q/D), was obtained by Lagrange in 1811. The first to
consider equilibrium of plates with large deflections appears to be
“jCIébsch.in 1862, Kirchoff, in 1883, was apparently the first to
analyze motions of plates with large deflections. A set of membrane
plate equations was obtained by A, Foppl in 1907.  Similar equations
for static deflection by nonlinear theory were obtained by von Karman
in 1910. A numerical solution of the membrane equations by finite-

differences was discussed by H. Hencky in 1921.



There have been two theories developed that probably represent
the most significant efforts for the formulation of a generalvplate
theory. 1In 1955, Herrmann (6) used a variational technique to derive
a large-deflection plate theory. of motion, starting with the general
equations of the three-dimensional nonlinear theory of elasticity. The
theory is valid for an isotropic material obeying Hooke's law, and for
the case of small elongations and shears with moderately large rota-
tions. In 1960, Tadjbakhsh and Saibel (12) considered the problem
from an equilibrium point of view to develop a more general theory.
This system of differential equations contains the equations derived
by Herrmann as a special case. The theories have not been investigated
fully or applied to practical problems because an exact solution of
the differential equations is not known. However, it is significant
to note that each set of equations may be reduced to the well<known
_.static von Kirmén equations, as presented by Timoshenko and
Woinowsky-Krieger (13), by certain simplifying assumptions.

- Several authors have:used a simplified plate theofy of motion to
investigate the influence of large amplitudes on the vibrations of
plates. The theory corresponds to é first-order approximation of the
theory developed by Herrmann. (6), which may be identified as the
dynamic von KArmin theory. 1In.1956, Chu and Herrmann (3) studied the
problem of free vibrations of rectangular plates. . They solved the
differential equations, with boundary. conditions for hinged immovable
edges, by a perturbation.method. They also obtained identical results
by the principle of conservation of energy. They were able to show
the influence of large amplitudes gn\the period of vibration,. the

maximum membrane -stress, and the maximum total stress. In 1961,



Yamaki (15) extended the work of Chu and Herrmann by considering free
and forced vibrations for both rectangular and circular plates . with
various boundary conditions. He used a different approximate method
to solve the differential equations, but the results compare favorably
with those previously obtained. In both of the analysis referred to
above the approximate methods were essentially a lumped-parameter
representation of the problem. For each set of boundary conditions
this lumped-parameter model took the form of a mass on a cubic hardening
spring. In 1968, Bauer (1) used the models previously developed and
presented a method for solving the problem for various types of pulse
loads. There are a limited number of related articles in the litera-
ture, but it appears that the lumped-parameter representation is the
most accurate solution available at this time.

Whitehouse (14) and Seshadri (11), in the study of structural
response to sonic booms, used a lumped-parameter model of glass win-
dows based on. linear plate theory. They demonstrated the validity and
application of the model in analyzing systems with mechanical and
acoustical coupling, and Seshadri established the necessity of using a
nonlinear model. Bowles and Sugarman (2) observed, from.experimental
investigations of glass panels under uniform pressure, a-definite
flattening of the panel at the center as the deformation increased
into the nonlinear range. Freynik (5) concluded that the maximum
principal tensile stress in.a simply supported square windowvmigrates
along a diagonal away from.the center of the panel as the load iﬁ-
creases. This was attributed to the effect of the membrane stress,
but it has not been fully explained.  The nonlinear models that are

available do not consider this flattening at‘the center., .Although



the models may adequately represent some physical systems, their
accuracy and range of validity are not known. This is one example of
the need for a more accurate analysis of large amplitude vibrations of
plates.

The finite-difference method of solving partial differential
equations is adequately described .in most textbooks on numerical
methods. Unlike ordinary differential equations, partial differential
equations cannot be solved by general type computer programs. The
development of specific programs for each set of equations is required.

- The method has been used successfully on many varied problems and
numerous articles are available that provide useful suggestions. A

numerical solution to the problem.at hand could not be found.

Statement of Problem

The basic problem.is to. determine the dynamic response of an
elastic plate. Since several mathematical theories are available that
describe the behavior of plates in terms of their physical properties,
. the first consideration is to determine which .theory is applicable to
the problem at hand. .After a certain theory has been .selected the
problem takes the form of developing a numerical solution for a system
.of differential equations with their associated initial and boundary
~conditions. The problem . is simplified by assumptions and limitations

that restrict the solution to a certain class of plates.

. Plate Theory

A, Differential Equations

The governing differential equations selected as the most suitable

for this study are:



4 2

V'F=E W’xy O W,yy], (1-1)

4
DV w+f)h w,tt = p(t) + h[ "y W,XX +_F,xx w’yy - 2F ’xy W’xy] .

(1-2)
The. subscripts following a comma stand for differentiation. The x
and y are Cartesian coordinates, t represents time, w.is the transverse
deflection, h the plate thickness, P'the mass density, p the load, and
I)EEYh%/&Z (1 - y2) denotes the bending stiffness, where E is Young's
modulus of elasticity and ¥ is Poisson's ratio. - The operator
VA'EEﬁ4§x4 + Zaﬁ/éxz ayz +5%/éy4. F is Airy's stress function defined

byF, =c‘£’ s F, =G—X , and wF,x.

XX v

=Txy , Where crx , 0';’ , and’f—Xy
are mgmbrane stresses. |
These equations were used by Yamaki . (15), Bauer (1), and others

in recent investigations. They have been described as the dynamic
analogue of the von Karman large-deflection plate theory, which is
valid for moderately large amplitudes. The equations may be derived
simply by adding the inertia term to the static von Karman equations
presented by Timoshenko and Woinowsky-Krieger (13). They correspond
to- the first order approximation to the plate equations derived by
.Hermann.(6). . The equations derived by. Tadjbakhsh and Saibel (12) may
.be reduced to these equations by discarding certain terms., This theory
. should adequately.describe the physical system .for deflections within a
certain limit. Sufficient studies have not been made to determine this

limit, The limit for the corresponding linear theory. is generally

considered to be v\/h <_l/2.



B. Assumptions

The derivation of the plate equations will not be presented here,
_but a brief discussion of the basic assumptions and limitations of
the theory is necessary.

- The theory may be developed in .various ways, and consequently the
assumptions are made or developed in various ways. The relationships
between. stresses, strains, and displacements of nonlinear theory of'
elasticity are valid, with the simplifications of plate:theory. The
following list provides a description of the physical system for which
the theory is valid:

1. The material is isotropic and obeys Hooke's law,

2. The planform dimensions are much greater than the thickness,
(a, b > 10 h).

3. Normals to the middle plane of the plate remain normal to the
middle surface after deformation.

4, The normal stresses in the direction transverse to the plate
can be disregarded.

5.  Effects of both longitudinal and rotary inertia are negli-
gible. ‘
6. Nonlinearities are introduced only geometrically.

7. The maximum deflection is moderate, (limit is unknown).

Boundary. Conditions

The dimensions and coordinates of the plate are as shown:



v

x—
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Four different sets of boundary conditions are considered. . The con-
ditions for the displacement w are designated displacement conditions,
and those for the stress function F as stress conditions. The four
cases are:

I. All edges simply supported.

. Displacement
Conditions . II. All edges clamped,
Stress (a) All edges free of membrane stress.
Conditions

(b) All edges immovably constrained.
“This nomenclature will hereafter identify the boundary conditions,
such as case I (a) for simply supported, stress-free edges.

. The boundary conditions may be expreséed as follows:

x =0, a y=0,Db
I: w= Vs e +,Yw,yy =0 w o= W’yy +”VW =0
II: W= W, = 0 w = W,y =0
, (1-3)
(a): ryy = Frgy = O Frgx = Fogy = 0
(b): u = F’xy =0 v = F’xy =0,

where u and v are midplane displacements in the x and y directions,

respéctively. They may be expressed as

2
[F:yy X] = ;é st} dx 9 (1'4)

and 3
- L -
[Foe Ve ] - 5w R ey (1-5)

txif— rx:m—-



Symmetry. Conditions

The only. type of loading considered in this study is that of uni-
- form pressure over the surface of the plate. No restrictions are
placed on the variation of the load with time. Many practical pro-
blems fall into this category.

For the:symmetrical boundary conditions and the uniform pressure
loads, a physical analysis of the problem results in the following

symmetry conditions:

w,x =0 w, .= 0
| 7 (1-6)
F, =20 -F, =0
y
u=20 v.=0 ,

which are valid for each set of boundary conditions.
The restriction of uniform pressure loads is not necessary, for
the numerical method, but it permits a much more efficient and. accur-

ate solution by considering only one quarter of the plate.,

Initial Conditions

'The initial conditions considered are
w = 0 and Wy = Oat t =0, - (1-7)
These conditions are the most common.for this type of problém. How-
ever, the numerical solution may easily be adapted to other types of

initial conditions.



CHAPTER II
NUMERICAL SOLUTION
Finite~Difference Equations

An approximate solution of Equations (1-1) and (1-2) may be ob-
tained by feplacing each derivative by its finite-difference approxi-
mation and solving the resulting algebraic equations. This method is
explained adequately in most books on numerical analysis, (e.g. (4),
(9), and (10) ).

Only the final forms of the finite-difference equations are given.
Each approximation used is a centered-difference formula with an error
of'@&x)z. The formula for each derivative can easily be determined by
examination of the final equations., Only a square grid, (&x = Ay),
is considered. The subscript i denotes the grid-point location, with
M grid-points in the x-direction, (see Figure 1). The subscript j

denotes the time increment.

Y4

oM ¥
" AX

i=l i i+l

i-M

= X

. Figure 1. Numbering of Grid-Points

10
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The finite-difference equations for Equations (1-1) and (1-2)
are, respectively:

F, - 8 F, + 20 F, - 8 F, + F
i-2 i~-1 i

i+l i+2
2 Fier T8 Pt 2 T+ Fipom
F2F oy m8F g h2F 4 Fi-ZM}j (2-1)

e [ i i N 2
e L YieMe1 T Vi-1l T Viemal wi+M+l]

T [Wi-l mZwp Wi+1:| : {Wi-M‘_ 2wy ¥ Wim]}j

. D _ - ’
Bt {Wi-z Bwyi g H 20wy =B w g YV,

2 w1 T 8 Vi P 2 Vi t Yigou

+ 2 Vi M-l T 8 LAY, + 2w i-M+l + LA &%.
+ 2h ,{ - -
@2 Ti,g-1 T2 Vi, Y p () (2-2)

h
et {[Fi_M - 2F +F, +M] : [wi_l - 2w+ Wi+1]
+ '{Fi-l - 2F; + Fi+1] : [wi-.M - 2wyt Wi+M]
- 1T - F - F, +TF
8 [ Fim-1 " Fiaer ~ Fiowr t i+M+1]

[Wi—M-l T Wil T Yiemyr T Wi+M+1]} j
These equations are not the only finite-difference formﬁlas which
may be employed for this problem, Several alternatives may be develop-
ed by using higher-order approximations, implicit formulas, or predic-
tor-corrector techniques, A compaFison of different formulas is a
study in itself, Other possibilities were considered, but Equations
(2-1) and (2-2) appeared to be the most satisfactory. for this study,

primarily because of their simplicity. The results. of this study may
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lead to improvements, (if necessary), in accuracy and efficiency.

The method applied to Equation (2-1) is basically the same as
using the finite-difference method to determine the static displace-
ment of a plate by.linear theory. This is a common method that works
very well, (e.g. see (9) ). When Equation (2-1) is applied tb each
grid-point at any given time-step, a system of linear.algebraic
equations is developed. This system of equations can:be solved for
Fi,j at each .time-step, (assuming Wi,j and sufficient boundary con-
ditions are known).

.If F w, ., and w, are known, the only unknown: term in

1,37 74,] i,j-1

Equation (2-2) is w, . Assuming. sufficient boundaryrand,initial
b

i,j+1

conditions are known, Equation (2-2) can be solved explicitly. for
W, . 4
1,3+l

With these two equations a complete displacement-time, and stress
- function-time, history can be generated. for each grid-point. From
-these a stress history can be determined through the use of the stress

resultant-displacement equations.
Error Analysis

A major concern in using any. finite-difference method is the error
in the solution. A rigorous analysis was not attempted, but only a
sufficient study to insure successful use of the method.

There are at least two types of errors associated with these
equations. The truncation error, (inherent in the finite-difference
approximations), and the round-off error, (due to using finite
arithmetic in the calculations). The truncation error-is of order

(Ax)z° This error, (and generally. the total error), will decrease as
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Ax 1s reduced, until some. point where the round-off error becomes more
significant than the truncation error, .At this point the total error
will increase with a decrease of Ax. This was investigated empirical-
ly for the complete solution.

- The stress function will have an error resulting from the’
approximate displacements that will be used in:the right-hand side of
Equation (2-1). This error was not considered, except in:the empiri-
cal study of the complete solution. -The truncation and round=off
error for Equation. (2-1) was investigated empirically by replacing the
right-hand side with a function for which there was an. exact solution.
This problem was then solved by the finite-difference method and com-
pared with the exact solution. -The results were not expected to be
exactly the same as for Equation (2-1), if there were an exact solu-
tioﬁ,.but they should be'very;similar. ‘This checked the program.and
'gave a good indication of the grid-size necess#ry,for convergence to a
specific accuracy.

Initial value problems are complicated by numerical stability
requirements which result from the round-off error. This error at
one time-step may propagate with increasing magnitude through the re-
mainder of the calculation. The circumstances were investigated under
which the error does not grow with time, but instead dies out and
thus provides an acceptable solution.

Leech (8) successfully used von Neumann's method of stability
analysis for the linear plate vibration problem. . An identical proce-
dure is applied here to Equation (2-2). . This equation is the same
as the formula used by Leech, except. for the additional nonlinear

terms., It is necessary. to assume that the membrane stresses are known
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exactly., This can only be justified empirically.

A double subscript notation is used here to denote grid-points.
k .is used for the grid-point location.in the x-direction and £ for
the y-direction.‘ Subscript j is used for the time~step.

It may be shown that the round-off error §(x,y,t) must satisfy

an equation similar to Equation (2-2).

D _
75N {Sk-z,l -8 8k-,l,!( + 20 Sk,k -8 8k+1,1 * Yi+2, R

+28 - 8§ +28 +3

k-1,R+1 k,R+1 k+1,8+1 k,4+2
+ 2 Sk-l,,Q-l -8 Sk,l—l + 2'8k+1,;1-1 +8k,2-2}- i
Lh_ - (2~
¥ (At)z{gj’l 28, + 8j+§ kR , (2-3)

h
T Bx)? {F yy (51«-1,2 2Ot $k+1,2>
+F vk <5‘k,9-1 - 28k,2'+ Sk,R+1>
TEF, <8k_-1,2-1 l Sk-l,ﬂ+1’ il g1<+1,52»-1 +8k+1,£+§}j =0

Assume that the general term for the error may be expressed in
the form

S(x,y,t) = & 1Px Y (2-4)

or equivalently

gk m ___eo<jAt ei@kAx eiXﬂAy ] (2-5)

If one lets £= e"<At , Equations (2-3) and (2-5) may be combined to
give

£2 - 2a8+1=0, - (2-6)
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where

. 9 79
(2-7)
- (At) cos fAx) + F, %X (‘1 - cos ¥Ay)

- (°(A§<) [ yy

+ F, xy (% - sinﬁAxxsinXAy)]
. It can be shown that the error will not grow with increasing time as

long as the following necessary and sufficient condition.is applied:

S' ;(_ 1 . (2-8)

In terms of A, this requirement becomes

- 154 §+,1.} (2-9)
If the maximum displacemept is_less than one-half the thickness, the
membrane stresseé may- be neglected-and~the stability criterion is
identical to the lineatr analysis by. Leech.
2

@) ¢ eh
(@ax)4 < 16 D (2-10)

For displacements greater than oné-half the thickness, Ehe membrane
- stresses may have a significant influence on the stability of the
method. Sgﬁce the membrane stresses are always positive, the worst
condition for stability will probably be when@ax =8ay =7, Apply-
ing this condition tovKgations (2-7) and (2-9), the limiting

stability requiremeﬁt becomes

2
8 D(At) At
- 2% PR @nyt () - —1— 2 F  +2F  + _F,xy) £ 0 .(2-11)

-The right-hand inequality will always be satisfied. - The left-hand
inequality imposes the-foilowing restriction on At:

2 2 32D 1
@at)“ L 2 5 [eh(Ax)‘* + f(Ax)Z (2 F,yy_ +2F,__+ %,thy)] (2-12)
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By satisfying this condition, a stable solution should be assured.,  The
magnitude of the membrane stresses must be known before this expres-
sion can be simplified,.

. The results of an empirical study of the total error, conver-

gence, and stability are presented in Chapter IIIL.
Grid Numbering System

Only one-quarter of the plate need be considered for the finite-
difference solution because of the‘éymmetryvresulting from: the uniform
pressure loads and the symmetric boundary,conditions. Figures 2 and
3 .illustrate the numbering system for the'two stress conditions. Both
case - I and II are used with each of the stress conditions. The fime-
grid may be considered the third dimension, and the space-grids
illustrated are for any given time-step. -The external, (fictitious),
grid-points are not numbered but will be referred to in a general
sense by the system of Figures 1 and 4.

The advantages of the system for stress condition (a) are obvious,
but unfortunately. the other system.is necessary for stress condifion
(b). The reader is cautioned to be aware of the two systems. For

‘stress condition (a)

ax = = (2-13)

For stress condition (b)

_ a _ b
To2(M-1) 0 2(N-1)

(2-14)
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Figure 4 illustrates the system of identifying the fictitious
and boundary grid-points., The subscript k simply identifies the un-
numbered points in relation to the numbered points, and no grid-point

number should be associated with it,

4 —_——) )
s !
- |
—_ s }
k-IT kI x5 k-3 k=I| k! Tﬂrﬁ?}'
| ' i |
+—- ————+
X=0 X =08/
Y ka
Y=0
. | Koo
a-—_' — '
X aPavi i

Figure 4, Identifying Fictitious Grid-Points
Boundary Conditions

In carrying out the solution of Equations (2-1) and (2-2), each
equation is applied to every interior grid-point at every time-step.
In order to do this some knowledge of the displacements and stress
functions at the fictitious and boundary grid-points must be known.
This knowledge comes from the boundary and symmetry conditions. . The
values at the fictitious points are identified as functions of the
interior points. Basically9 the pr@blem is to develop a system of
equations corresponding to Equation (2-1) with the same number of
equations as unknown Fi j's. Eq@ation (2-2) is solved explicitly for

2

displacements at time-step (j+1).
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The following finite-difference approximations are used in

satisfying the boundary and symmetry conditions:

PR 2 )
W ~ 5 ax) (} Vi1 + wk+b + 0(ax) (2-15)
&~ = (- + + 0¢ )2 2-16 |
Yoo ® 3mny U Ve Wk+M\ sx ( )
1 g 2
o % )2 <wk_1 - 2w+ wafb + 0@ x) (2-17)
1 P + 0@x)’ (2-18)
Yagy ™ ax)? (fk-M Yk Wk+ﬁ> *

PR T | 2
Yoxy *F A aw)2 (Merer ™ emer * Vi Wk-M+D +0@x) (2-19)
The same approximations are used for the stress function F. One

additional formula that is used is the familiar Trapezoidal Rule.

A
/f(x) dx u2X <fl +2f, + 2F

2
4 5 Foeeee k26 L+ fN> +0@x)" (2-20)

3

The combination of these equations and the boundary conditions
yield a relationship between the fictitious points and the numbered
grid-points. The following examples for certain conditions illustrate
the methods. The results for the remaining conditions should be

obvious. The complete results are tabulated in Table I.

From Equation (2-15), E@%;y (} W+ wk+i)£3 O.;

or
Wk_l;tswk+l_at x =0 ., (2-20)
w,y = Q0 aty =20
From Equation (2-16), 5@%;; (} wem T Wk+Mu;3 0,
or

w at y = 0. | (2-21)

k-M 2% Ve
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Yo T V sy = 0and w=0at x =0 .

From Equations (2-17) and (2-18),

L 1
@x)? (Wk-l -0+ Wk+1> + V(—AE)—Q (0) 2.0,

or
wk;l‘ﬁz- Wk+l at x = 0. (2-22)
fo =0atx=a/2,
From. Equation (2-15) L (- F +.F ~=. 0
m- 59 27 2(ax) k-1 7 Tk+1) TV 0
or
Fk+l Q’Fk—l at x =.a/2 . (2-23)
. By a similar formula with double the grid size,
Fk+2 ~F _,at x= aj/2 (2-24)
F,XX_= 0aty =20,
From Equation (2-17),
Fk-l -2 Fk + Fk+1:: 0aty=0. (2-25)

- This formula may be applied to each boundary grid-point along y = 0
to obtain a system of algebraic equations. One additional equation
is obtained from. the symmetry condition at x = a/2 and.y = 0,. (Equa-
tion. (2-23) ). The number of unknowns is one more than the number of
equations, but fortunately the equations may be reduced to

F, , =F =F _ =F _ = ceeeeaty=0. (2-26)

‘A similar result is obtained forrF,yyr= 0 at x.= 0, Therefore, at
any. given time-step, these boundary conditions indicate the value of
F on the boundary is a constant. Since only derivatives of F appear
in the differential equations,. this constant may be set equal to zero

without any.loss of generality.



From Equation (2-19),

F & 0aty=0. (2-27)

k-d-1 " Frep-1 7t Fene T Feemnl
This formula may also be applied to each boundary grid-point along
y = 0-to obtain a system.of equations,

Aty = 0, F, . is unknown, but it can only be a function of x,

Therefore, let

F’y‘= f(x) at y.= 0 ., (2-28)

From Equations (2-16) and (2-28),

- 'Fk-M + Fk-l-M ~2@ax) f(x) at y. =0 ., (2-29)

This formula may also be applied to each grid-point along y = 0. .Com-
bining these equations with the system of equations from Equation
(2-27) results in

B = f " g T B T AEY S0, (2-30)

and

£ =f . =f . =f _ =+ aty=0, (2-31)

From symmetry conditions and an examination of the problem from a
physical nature, Equations (2-30) and (2-31) must also be equal,

.Therefore, f(x) has a constant value at each boundary grid-point along

y =0 . Let
- Fk-M +‘Fk+M Q:Cyrat y=0, (2-32)
By the same procedure for F’Xy‘= Oat x =0,
- Fk-l +.Fk+148 Cx at x =0 ., - (2-33)
. F, =0 at x = 0 and F, = 0 aty. =0,
Xy XX
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A combination of Equations (2-33) and (2-26) results in.qx = 0.
Therefore,

‘kal ggf‘ at x = 0, (2-34)

The boundary conditions for stress condition (a) may now be recog-
nized as identical, (for the approximations used), to the displacement

boundary conditions for a .clamped plate.

u=0at x=0, af2 .

Equation (1-4) is repeated here as

S X

_1 T N
w =1 <?,yy, VFBX;> Yo (2-35)

: By using the boundary conditions the value of the following integral

is , X=?{ o2

U dx = [u] = 0, for y.= constant. . (2-36)
(=0 o

This result may now be applied to the right-hand side.of Equation

(2-35),

xe A

1 ¢{ 2
/ {E (F’yy' -y F,‘x}; % W’x} dx = 0, for y.= constant. (2-37)‘
=0

This integral may be converted, by the Trapezoidal Rule and the
finite-difference approximations, to an algebraic equation in Fi and

W, . After simplification the result is

[(Fk-M -2 F + Fk-ﬂ\ak=il+ 2<Fk_M,- 2 F, + .Fkﬂ’)k_=i+1 + ]

'v[@k-l -2 F + Fk-}-l).k:i +,2<Fk_l -2 F + .Ek+l>k=i+1 + ]

(Z-38)
E 2 2
T8 [(‘ V-1 +-.Wk+D k=i T (’ Vg1 ¥ Wk+D k=itl T :}

This expression may be simplified further by using Equation (2-33)

for F’xy‘= 0 at. x = 0 and Equation (2-23) for F,x = 0 at x = a/2.
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Equation (2-38) now becomes

[(Fk-M'- 2Pt Fe=s ¥ Z(Fk—M S ZE Y Fkﬂ’bk=i+1+""']

E 2 N2 (2-39)
tVE =% [(’ V-1 ¥ .Wk+1) k=i T (' k-1t .Wk+Dk=i+1+ ]

This equation may be applied to each line of grid-points where y is
constant to.obtain a set of N algebraic equations in\Fi, W Ck’ and

C, For example, at .y ='0, (using Equation (2-32)‘and w ='0),. Equa-

'y

tion (2-39) becomes

- 2F -4 Fy -4 F - -4 F L -2F

'3 "M-1 M : (2-40)
+ 2FM+1 +'4FM+2 + 4FM+3 R +‘4F2m-1 +‘2F2m,- 2(M-1) Cy +>'g13x =0
v=0aty=0,b/2.

By the same procedure as above, the following similar equation’

may, be developed:

[(Fk-l_ - 2Fk‘+'Fk+1> k=i +'2<Fk-l "Rt Fk+l> =it ]
] ) (2-41)

2
+y Cy =8 [(— et Yea)k=1 T 2(— Wy T Wk+M>k=i+M Foeeeeen

. This equation. is valid for any line of grid-points where x is constant,

and may be used to obtain a.set of M algebraic equations in Fi’ LI

C_and C .
X y
For stress condition (b) it is convenient to let Cy.= FMN+1 and
Cy =’EMN+2' It is also convenient to set.Fl = 0, which can be done

without any loss of.generality,since only derivatives of F appear in
.the differential equations,

It is now possible to.set up a system of linear algebraic equa-
tions in Fi»for both stress conditions (a). and (b) that may be solved

for Fi at any. time-step j, (assuming LA j are known).
. . 3
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FICTITIOUS GRID-POINTS 'IDENTIFIED AS FUNCTIONS
OF THE INTERIOR GRID-POINTS

Boundary

Conditions x =0 y=0
w.=20 w=20
I W, = - W " ~ .- W,
k-17 k+1 k-m ™ L k4M
w =10 w=20
1I
V-1 ® Vi1 Yk-M ® VM
F.= 0 F.=0.
(a)
% ~d,
Fre-1® Frn Feam ™ Py
Fea1® B 7% Fem® fom + &
(b)
. Equation. (39) - Equation (41)
Symmetry _ a _ b
Conditions . X /2 y /2
W, ~ W, W. N W
For Uniform k+1 k-1 kM k-M
Pressure Loads Wy 4o R Wk-2 Wk-|-2m ~ Vi _ou
and Symmetric -
Boundary Fk+1 ~ Fk-l FK-I-M i Fk-M
Conditions F ~ F F

From ® T oy
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Initial'Conditions

The values of w, ., and W, must be known before w, |, can . be
s j-1 i,j+1
calculated from Equation‘(Z-Z)o These values for starting the solution
may be determined from the initial conditions,

When the finite-difference approximation

1 2
LA ~§(—'A't—) (— Wj'l + wj+l> + 0¢@t) (2-42)

'is applied to w,, =0 at t = 0,. the result is

LA Wj+l at t =0 . | - (2-43)

With equation (2-43), and w = 0 at t = 0, Equation (2-2) becomes
t
Ly kG ) fe} ., (2-44)

which is valid for the first time-step only.
Equation (2-44) may be used to start the solution, after which the
solution may be continued in .a marching sequence with Equations (2-1)

and (2-2)0
Computer - Programming
It is convenient to consider Equations (2-1) and (2-2) in the form

T6.3- 3

Wi,j+l =2 Wi,j'_ Wi,j-l - Cl - Bi + C2 - BBi + C3-- Pj s (2-46)

and

where A is the matrix of the coefficients of the unknown stress func-

tion, F, ,
3 l, >

L

€ = Ll [ 1-M-1 " ViaM-1 T Viewr Yt wi+M+1]

[ -2 W + v, +ﬂ [ 1M -2 W, + w, +M]§

(2-47)
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2
5t)? _ D
Cl = ((D_h) m4 5 (2-48)
2
2)° _h
2 - &2 G - (2049)
at)?
C3 = S('o_h— s . (2-50)
By = %fi-z T8 Wy 20wy - By Y
T2l T 8 Vi T % Vi T Vigom (2-51)
T2 T8 VT2 Vi Tt Wi—ZM} i
BB; = {[?i-M'_ 2E Frﬂﬂ ' [Vi-l mrw Wi+ﬂ
* [Fi-l T AE A Fr+ﬂ ° [Vi-M Tt Wi+M]
L: | (2-52)
"8 [?i-M-l " it Fiown T P

| [Yi-M-l T M-l T Yiewtl T Wi+M+ﬂj’j ’
and Pj is the load at time-step j.
. A stencil for Ci”Bi’ or BBi may easily be made and is very useful

in programming. For example, the stencil for Bi,or V4F, is
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~A, Ci’ Bi’ and BBi are all dependent on the boundary conditions.
For case I (a) there are nine different grid-points, or groups of grid-
points, where the equations for Ci and BBi have a different form be-
cause of the boundary conditioms. »For'Bi there are 25 different equa-
5

tions after the substitutions for boundary conditions have been made.

For example, at the first grid-point Equation (2-47) becomes

1 2
€, = E {16 [W1+M+l] - [' 2w+ Wz] [ 2wy * ‘”1+M]} 5 -(2-33)

The results for the other cases are similar. Of course the fictitious
grid-points could be numbered and only one equation for each term would
be necessary, but the boundary conditions would have to be included in
the program and the storage requirements for the computer would be ‘in-
creased considerably.

Figures 5 and 6 illustrate the system of equations from Equation
(2-45) for the two stress conditions. For stress condition. (a) each
equation results from Equation.(2-1) with boundary conditions incor-
porated in each equation. - For stress condition (b) Equation- (2-1) is
a1s§ used at each. interior grid-point. The boundary conditions of
Equations (2-40) and (2-41), along with Fl = (0, make up the additional
equations required to determine the unknown values of F along the
boundaries and the two additional unknowns of C.X and.Cy, (see page 21).
These equations may. be inecluded at any position-in the matrix, but
they are arranged to facilitate the solution., .The coefficients for
either mafrix may be set up for any value of M and N by a subroutine.

The complete solution is illustrated.in the block diagram of Figure
7. The programs basically follow this diagram but with several varia-
tions to impéove.efficiency. Separate programs must be prepared for

each .set of boundary conditions,



-8
21
-8

-8

1
-8

21 -8 1

1

J
N OO do

-8 22 -8
2 -16 21

i
NN

~ooN

Figure 5.

21 -8
. -8 20
1-8

2 -8

System of Equations Developed from Equation

-8 1
21 -8 1
-8 21 -8

16 4
4 -16 4
4 16

Conditions for Stress Condition (a), (M =

-8
20
-8

21 -8

246 20

[v1)
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
F(8)
F(9)
F(10)
F(11)
F(12)
F(13)
F(14)
F(15)
F(16)
F(17)
F(18)
F(19)
F(20)
F(21)
F(22)
F(23)
F(24)

F(25) §

(2-1) and Boundary

N =

5)

c(D)
Cc(2)
c(3)
C(4)
Cc(5)
c(6)
c@
c(8)
c(9)
c(10)
c(11)
c(12)
£(13)
c(14)
c(15)
c(16)
c(17)
c(18)
€(19)
€(20)
c(21)

C(24)

|c(22) ]
C(23)

C(25)

QY



2

8§ 2 1 -8 22
4. -8 2 -16
4 -2 4 4 4

1 2.8 2
1 2 -8

1 2 2 2 1-2.-4 -4 -4

Figure 6.

1 -8 21 -8 .

2.-4 2

N

. Conditions for Stress Condition (b), (M=N=5).

I
O MM MHMNSNYS Y

System of Equations Developed from Equation (2-1) and

-8 F(2)

~1 F(7)

-1 F(12)

F(1)

F(3)
JF@)
F(5)
F(6)

F(8)
F(9)
F(10)
\Y F(11)
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Read M, N, ax, at and
. Plate:Parameters

!

Calculate“NeceSsary‘Constants

Y

Set Up A-Matrix

Set Up'Initial Conditions
at Time-Step j-1

Start Solution
Eq. (2-44) at Time=Step j

\

Calculate C,.

Eq (2-47) at Time=Step j

'Solvelfpf Fi .
Eq. (2-45)*°3

Calculate B, and BBi
Eq's (2-51). and (2-5&) at Time-Step j

/

'

Calculate Pj

. Calculate Wi 341
- Eq (2-46)

Figure 7. Block Diagram for Soelution of
Fquations (2-1) and (2-2)

j o= jH
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Solution of Simultaneous Equations

Several things should be considered in.the solution of Equation
(2-45). First, the system of equations must be solved at each . time-
step. so an efficient method is essential., Next, the system may. be
quite -large and an accurate solution could be a difficult problem.

- Fortunately, the A-matrix may-be set up so that both an accurate and an
efficient solution may, be obtained. The method is a modified form of
"Gaussian elimination with back substitution." Several other schemes
were considered, but none were successful.

The A-matrix for. stress condition (a) may be arranged .into a
narrow centered band structure as shown:.in Figure 8. This éatrix is
well-conditioned and is not a function of time. . The Gaussian elimina-
tion method will not be described here, except to explain.the particu-

‘lar modifications made, -The Gaussian elimination algorithm is

(kD) | (keD) g (kel)

Wl ik “kk
2 <o (D G (o) (2-54)
e, 8 = o (D L () (D)

The triangular block of zero elements above and below the band will
not be changed by the Gaussian elimination, except by round-off errors.
-Therefore, the algorithm.is only.applied to- the band elements. - This
results in a considerable savings. in computer timé. -Also, there is a
very significant reduction in round-off error, simply because of the
reduced number of arithmetic operations. Since the A-matrix does not
change with time, the elimination scheme on.the A-matrix is only made
one- time for each problem. - However, . the C-Vector'éarieS’wifh time and

.the elimination scheme must be made on the new vector at each time-step.
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In order to do this, the values for mi(k_l)s (Equation (2-54).), must
be retained for repeated use. They are stored in the order they are
used as the vector DC. In the back substitution process only the dia-
gonal elements and the band elements above the diagonal are used. The
zero elements outside the band are never used in the calculation.
 This is a considerable waste of computer storage, but no satisfactory
alternative‘could be found. Figure 10 is a block diagram of the eli-
mination scheme on the A-matrix. This part of the solution is developed
as a separate subroutine. Row-interchange has no value for this
particular matrix., .Figure 11 is a block diagram of the elimination
scheme on the C-vector and the back substitution.  This part of the
complete solution is all that is needed at each time~step and is in-
cluded in the main subroutine.

The structure of the A-matrix for stress condition (b) is shown
in Figure 9. - All elements above the main diagonal must be used. This
increases the computer time, but has very little effect on the accur-
acy. The large triangular block of zeroes in the lower left corner
still permits an accurate solution for large systems. A similar
method as for stress condition (a) is used here, but row-interchange
is necessary.

The significance of the bénd structure of the A-matrix increases
with the number of grid-points. To take full advantage of this M

should be less than or equal to N. -The results of an empirical check

on accuracy. and convergence are included in Chapter.3.



Figure 8., Band Structure of A-matrix for
Stress Condition (a)

Figure 9. Structure of A-matrix for Stress
Condition, (b)
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CHAPTER III
. NUMERICAL RESULTS
Numerical Error.Analysis

The most practical method of checkiﬁg a numerical method and the
program to execute it‘is to select a particﬁlar probiem for which an
exact solution is:known and comparé the reSulfs. For the problems at
hand én‘exact solution is not known. However, special problems may ‘
be devised to check components of the programs. The completfe solution
may. be checked for stability and convergence and compared with other
approximate solutions.

The finite-difference technique and the numerical methods used
have been proven by numerous applications and the methods as such are
noﬁ under investigation here, fhe purpose of this error analysis is.
to verify the particular applications of the methods aﬁd to check the

programs.

" Special Problems

One method of checking the numerical.solution of Equation. (1-1)
is to change the right-hand side of the equation to;sdme'function of x
and 'y for which an exact solution is known. - The simplest procedure
for doing‘this is to assume a solution that satisfies exactly the
boundary. conditions and then determine the differentiai equétion for

which the solution is valid. . The boundary conditions are those stated

36
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for stress conditions (a) and (b) in Equation (1-3). The symmetry
conditions of Equation (1-6) are also valid. It is convenient to let

a=>b-=2,

F = sin x sinz"Zz R C(3-1)
2 2
and the differential equation becomes
4
4
VF = - (4 cos 7'x sinzw - cosx cos#y + sin2 7x cos ’h’}) .
2 2 2
(3-2)
For stress condition. (b)  the assumed solutions are
u,=1rg-1_£i- sin'i)’x.s:'.nzﬁ’éZ s . (3-3)
and »
v =//)'_£__l-£))) sinzﬂ‘Tx sinfry . (3-4)
- The relationship between u, v, and F is taken as
P, === (u, +v (3-5)
*xy T 2(1+M) \y ’x) °

-This expression is similar to the expression relating displacements
and the membrane. shear stress. of classical nonlinear plate theory.
- The stress fgnction may now be determined as

"F =% (1 ~ cos?x cosTy) , (3=6)
-and the differential equation becomes

V4F = - ZﬁA-cosw'x cos?ty . (3-7)

. For both problems stated above the.solutions exactly. satisfy the

differential equations and the boundary conditions; therefore, by the
uniqueness theorem the solutions are complete.  The problems may easily
be solved by the finite-difference method by using appropriate compo-

nents of the programs developed for the solution of Equation (2-1).



38

The results are shown.in Figure 12. - The maximum value of F is plotted,

~which occurs at point (1, 1) for stress condition (a).and at points
(1, 0) and (0, 1) for stress condition (b). . The exact value at each

. point is 1. The percent error may be read directly from the plot.

- The results for each problem.are almost. identical for the same:value
of Ax, (see Equations (2-13) and (2-14) ). -Also, the results for each
grid-point were similar.

For stress condition (b). the system of equations contains two un-
knowns in addition to the unknown values of F at each grid-point, (see
page 21 ). These unknowns are ng at x = 0 and F,y at y.= 0, - They were
calculated by the finife-difference method to be-zero, which agrees
with the exact solution.,

Another check was made on the solution of Equation (1-1), A
fundamental mode shape was assumed for w and used to evaluate the
right-hand side of Equation. (2-1). The results have not been shown
but they appear to be -almost identical, from.a percentage viewpoint,

. to the results shown in Figure 12, .0f course, the exact solutions
were not known.

Part of the numerical solution of Equation (1-2) may be.checked
by neglecting the nonlinear terms. For-linear plate theory, Equation

(1-2) becomes
4
eh w,  +D §w=rp(t), (3-8)
and Equation (l=1) is not applicable.  An exact series solution of

this equation, for a simply. supported square plate subjected to a step

pressure load, may be obtained by classical methods to be
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4 20
w(x,y, t)="Po? > } B ginflX BTV (l-cos W t), (3-9)
70 mn a a nn

mel3 N=i3e
where
B 1
mn mn(m2+n2)2 ) (3-10)
-and
ﬁ2 D 2 2
== = (" +n) . (3-11)

A numerical solution of Equation (3+8) may be obtained by using
‘appropriate components of the programs developed for Equation (2-2).
.Instead of Equation (2-46), the solution takes the form

Vi, i+l T 2 Vi3 T Vi, i1

= Cl - Bi + C3 - Pj . (3-12)
The initial conditions and the starting formula do not change. . The
boundary conditions may. be simply supported or clamped.

The specific problem:to be considered is a glass window with‘

a=b=8 feet, h = .25 inches, ¥ =-157.5 pounds/foot3, Yy = .23, and

10 x.106=psi. The load is a 1 psf step-function.

jea]
i

The éxact solution of yhis problem for simply supported edges is
shown in Figure 13, along with the finite-difference solution for two
values of Ax and At. - Eight terms of the series of Equation (3-9) were
used. The finite-difference solution may be improved with a reduction
of the time-step. The magnitude of the displacement indicates that
linear theory. is not valid forbthis problem; but this does not affect
‘the comparison from a mathematical standpoint. The convergenée of
the finite-difference solution is shown in Figure 14. - The plot is of
the maximum center displacement. The time-step is different for each
grid-size and there is a slight variation in the time of the maximum

displacement. The irregularity of the data is probably due to this
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time factor. The maximum variation of the amplitude determined by
using values of M from 7 through 11 is less than one percent.

The convergence of the finite-difference solution for clamped
edges is shown in Figure 15. For values of M from 8 through 12, the
variation of the maximum amplitude is again less than one percent.  An

exact solution of this problem is not known.

Stability

The necessary conditions for a stable solution of Equation (2-2)
can be determined from Equation (2-12). This equation is plotted in
.Figure 16 for a particular material and for comstant-values of the
membrane: stresses, (assuming F,XX,= F’yy)° The area below. the curve
-is the stable region.

This theory may be checked by attempting a solution for various
. time-steps. The results for case I (a) are shown in Figure 17. -The
physical properties of the plate are the same as in the previous sec-
tion. The load is a .1l psf step-function and the maximum membrane
stress is less than 100 psi. For a At in the unstable region the
magnitude of w and F became obviously unrealistic. Similar checks
were made at various points for the other boundary conditions. Al-
though the results were not identical, there was no significant
deviation,

. Similar stability checks were also made for higher values of the
membrane stresses by increasing the pressure of the step-function
load. Since the maximum stresses only occur periodically, the error
resulting from an unstable condition might require several cycles

before it would grow to a point it could be recognized as such. - The
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solutions appeared to be stable, (for a few cycles), for values of

Ot larger than those predicted necessary by the theory. ‘A complete
check at a higher stress-level would require excessive computer time
and was not attempted, However, sufficient checks were made to deter-
mine that the value of &t necessary for a stable»solutionvalways de~
creased as the membrane. stresses increased. .Although-the validity of
Equation (2-12) has not been proven, sufficient evidence has been

presented to have confidence and to. recommend its use.
Example Problems

Several particular problems have been solved to illustrate to a
certain extent what can be expected from this method. . A comparison is
made with other approximate solutions to thevsame problems, and also
with some experimental observations that have not previously. been
accounted for theoretically. -A complete parameter study. is beyond
the scope of this study and is not intended. The results for various
types of loading, magnitude of response, and plate parameters should
be . similar to:the results presented here for specific problems. How-
ever, a careiess application of the programs presented could lead to
significant errors.

. An approximate solution of Equations (1-1) and (1-2) was obtained
for each set of boundary conditions by Yamaki (15). The method is
essentially a lumped-parameter model of the plate. A fundamental
mode shape for displacement is assumed and the problem is reduced to
one of solving an ordinary differential equation. This equation, with
any. type of forcing,function? may easily be solved by various numerical

integration methods.  The one used in this study was the Hamming
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predictor-corrector method, which is available as subroutine DHPCG
.from the IBM Scientific Subroutine Package,. (7).

Séme specific problems have been solved by using the: lumped-
parameter models, and also by, the finite-difference method. .The re-
‘sults are shown in Figures 18 through 31. The plate:size -and physical
properties are the.same as in the previous section. -The load is
indicated on the figure. The N-Wave loads represent typical overpres-
sures, or sonic booms, that are produced by.supersonic aircraft.

For some cases the agreement between the two. solutions is excel-
lent. For others the higher frequencies in. the response are evident
in the finite~difference:.solutions and result in a significant devia-
tion between the two solutions. As expected, the effect of the higher
frequencies becomes more significant as the amplitude of deflection
increases. There are also displacement. shapes associated with these
higher frequencies. - Since the:lumped parameter model was developed
by assuming a fundamental mode shape, the method is limited to. some
range of deflection where:the effect of the higher frequencies is
negligible., - As mentioned before, the limit of this range has not been
established. The influence of the higher frequencies on the deflected
shape of the plate is shown:in Figures 27 and 28. ‘Notice that the
time when the deflected surface has the greatest deviation from a fun-
damental mode shape corresponds to-the:time on:the response: curves,

. (Figures 22 and 25), when the higher frequencies are evident.  The
deviation from the fundamental mode shape appears to be a flattening
of the center section of the plate. A flattening was observed
experimentally by -Bowles and Sugarman (2) and by F?eynik (5). Also,

_the point of maximum stress was found to migrate along a diagonal
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away from the center as the load increased. A comparison with . their

experimental data has not been made,. but it is believed that the

finite-difference solution is the only one available that will pre-
dict such a behavior of the plate, The shape.of the deflected sur-

" face may be the most serious drawback of the lumped-parameter method.
Even when the center deflection and frequency determined by this
method are reasonably accurate, there may still be a significant error
in determining the stresses. For the examples cited the time respon-
ses by the finite-difference method always have a negative deflection
at the end of the first cyecle. Since the total error in .the finite-
difference method always grows with time, it is natural to suspect
this may be an error in the method. -This was actually the case for
the linear problem and the negative deflection converged to zero as
the grid-size and time-step were reduced,. (see Figure 13). For the
nonlinear analysis this was not generally the case. Only the center
section of the plate deflects into the negative:range, which indicates
that the negative deflections are a result of the higher frequencies.

The convergence of the finite-difference solutions for the same
example problems is illustrated in Figures 26, 30, and 31 and also
in Tables II and III, The values in the tables are for the first
peak of the response and at the center of the plate. The maximum
deviation of any two corresponding values in.the tables is. less than
five percent. -Although the figures show the response for only, two
values of grid-spacing, the problems were solved for several values.

- The general pattern of convergence was excellent. As the grid-spacing
was reduced, the deviation between the results for two:successive

grid-sizes became. less. -For a given grid-size, a reduction of the
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time-step to a value lower than those used did not produce a signifi-
cant difference in the response.  In Figure 29, the deviation in the
response determined by reduced grid-sizes was not sufficient to show
on the curve. Similar convergence checks were made for each set of
boundary conditions and the results were similar. Convergence of the
solution is necessary, but not sufficient, to insure an accurate
solution,

-The effect of the boundary conditions on some of the example
problems is clearly shown by Figures 32 and 33.

The computer used -for all calculations was an IBM 360 Model 50
with 256 K main core and 2361 K large core storage under OSMFT Re-
lease 15/16. The high speed main core with a Fortran-G compiler was
used to obtain the computer times. Exact computer times were not
available and those presented are only rough approximations that are
normally intended for accounting purposes. - The results are shown in
Figure 34, - The particular problem used to obtain this data was a
square plate with a step-fumction load, The times are the same for
displacement conditions I or IL. - The execution times for Subroutines
COEF and AGE range from two seconds for M=3 to twenty seconds for
M=10. The curves may be used to estimate the computer time required

for a particular problem.
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TABLE 1T

CONVERGENCE OF ¥FINITE-DIFFERENCE SOLUTION
FOR CASE I (a)

p. = 1 psf step-function load

fﬁx St t wMax FM&X
feet Seconds Seconds Inches Pounds
.80000 .0014 L0840 .30402 -58,618
.80000 .0010 .0830 30421 ~58,670
.66667 .0010 .0830 .30357 =57 ,447
.66667 .0007 .0833 .30364 =57,478
57143 .0007 .0840 .30394 ~56,755
.57143 .0005 .0840 .30396 ~56,762
. 50000 .0005 .0835 | 30404 ~56,299
50000 0004 .0836 .30406 ~56,302
NANNNA .0004 .0836 30429 - =55,966
VYA =55,968

.0003 - 0837 230427




TABLE III

_ CONVERGENCE OF FINITE-DIFFERENCE SOLUTION
FOR CASE II (b)

p = 10 psf step-function load

AX At t W, F

Feet Seconds Seconds In%izs 'Poﬁzjs
.80000 0014 .0308 .55504 -1,278,300
.80000 .0010 .0300 .55503 -1,280,200
.66667 .00l10 .0300 54120 ~-1,267,300
.66667 .0007 .0301 254111 -1,269,100
»57143 .0007 .0301 .53330 .=1,263,200
.57143 .0005 .0300 .53330 .=1,263,300
.50000 .0005 .0300 .53055 =1,262,400
.50000 .0004 .0300 .53031 =1,262,500
WATIIA .0004 .0296 .52769 =1,262,800

v .0003 .0296 .52778 =1,262,900
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CHAPTER IV
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A pumerical method was developed for determining the nonlinear
dynamic responses of thin elastic rectangular plates subjected to
pulse-type uniform pressure. loads. -The nonlinear plate theory used
may be identified as the dynamic von Karménn theory. The numerical
method was basad on finite=difference.approximations of the differen-
tial equations using central-difference formulas. A special form of
Gaussian elimination was used to sclve the system.of algebraic equa-
tions rasulting from the finite-difference method. A stability cri-
terion for the method was derived and checked numerically, and the
convergence of the method was demonstrated numerically.

Four sets of boundary conditions were considered. Fortran .com-
puter programs were written and are included in the appendix. The
use .of the method was demonstrated by specific example problems, and
the results compared with other approximate solutions.

The following conclusions are made from this study:

1. The numerical method presented provides an accurate and
efficient approximate solution to the problem. The programs should be
useful for design and for. future ressearch studies.

2. The approximate solutions obtained by this method are the
most accurate approximations available, They should be useful as a

check .on other approximate solutions.
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3. - The stability criterion .developed is adequate.

4, The necessary. grid-sizes and time-steps depend on.the par-
ticular problem. - For many cases the method converges rapidly and
rather large grid-sizes and time-steps are adequate.

5. The numerical solutions reveal that the accuracy of the other
approximate solutions is dependent on the problem and/or the amplitude
of the response,

6. - This method may. be extended to other boundary conditions and/
or plate theories. This will involve program changes, but the current
programs should provide a very. useful groundwork to build from.

- The following recommendations are made for further study:

1, The finite-difference method may be improved by:

(a) Using a predictor-corrector technique to permit a larger

time-step.

(b) Using higher order difference approximations to permit a

larger grid-spacing.
Each of these are feasible and should not be too difficult.,  The
boundary conditions and programming could be handled in much the same
way as in this study. - It is possible that both accuracy and efficiency
~could be improved.

2, Finite-difference methods,. in conjunction with the programs
developed here, may be developed to. determine the stress and strain
conditions in the plate. The accuracy will be less than for the dis-
placement, but it may still be the most accurate method available,

3. - The finite-difference method should provide an accurate solu-
tion to the differential equations for any reasonable magnitude of

deflection, but the theory is only valid for moderately large
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deflections, Further research to.determine the limit of the theory
would be valuable.

4, - It appears at this time that the development of plate theories
is more advanced than the mathematics necessary to carry out solu-
tions. - The finite-difference method may be used to solve the differen-
tial equations of more sophisticated plate theories. It may be
possible to compare and evaluate theories and assumptions by this
method when no other method is possible.

5. The ultimate test of both the plate theory and the: solution
is the comparison with actual tests of the physical. system. -The
finite-difference solutions should be checked with experimental data.
It appears that additional experimental work is necessary, for this
purpose.

6. - The approximate:solution resulting in a lumped=parameter
model of the plate is a significant simplification of the problem. An
improvement of these models is needed. . The finite-difference solu-

tions should be useful in developing and evaluating improved models.
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APPENDIX

FORTRAN 'PROGRAMS

This appendix contains sufficient Fortran programs for a solution
to Equations (1-1) and (1-2), for each of the boundary, symmetry, and
initial conditions given by Equations (1-3), (1-6), and (1-7).  The
development of the numerical methods and the flow charts for program-
ming are included in the main body of this thesis.

A study of the thesis should be made before attempting to use
these programs, The programming was made as simple and straight-
forward as possible;, and everything necessary for successful use of
the programs should be obvious once the reader has become familar with
the method and with the additional information given here.

The main program .should generally be tailecred to a specific
problem, The main programs included here are only intended as
samples that may be a useful guide. Basically, the main program
.should set up the parameters of the problem, set up the initial condi-
tions, calculate the starting values, calculate the load at each time-
step, calculate the time, re-identify the time variables after each
.ten time-steps, call the subroutines, and write out the desired data.
The subroutines may. be used without change for any problem with the
boundary and symmetry conditions specified.

As far as possible the variable names in the programs correspond

to the variable names in the text of the thesis. The exceptions are
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identified in Table IV, along with the units for all the parameters.

- The subroutines are set up for particular boundary conditions.,
Subroutine COEFA sets up the coefficient matrix of Equation (2-45) for
stress condition (a), and Subroutine COEFB is for stress condition (b).
Subroutine AGEA performs the Gaussian Elimination.scheme of Figure 10
on the coefficient matrix for stress condition (a), and Subroutine
AGEB is for stress condition (b). These subroutines are needed only
one time for a given problem,  The Gaussian Elimination on. the constant
vector of Equation (2-45), and the back substitution, are included in
the following subroutines. These subroutines all have FD as the first
two characters of their name, and the remaining characters indicate
- the boundary conditions for which the subroutine is valid, such as
FDIA for case I (a). These FD subroutines carry out the solutions of
Equations (2-45) and (2-46) for ten time-steps, and then return to the
main program,

. The dimension statement in.the main program for an M by N grid-
system, (MEN), must include:

W(L, 12), F(L, 12), A(L, L), B(L), C(L) ,
BB(L), DC(LC), DI(LI), P(l2) .

The subroutines have variable dimension statements that are set up’

by the parameter KR in the main program, (KR:= L). For stress condi-

tion (a),

iv

MZ5

L

M+ N

IC=2 M-+ M. (N-1) = M

LI - (DI is not used)



For stress condition (b},

- All of the programs are in double precision,

are included.

Mza4

L

n

M+.N+2

77

LG =3 o (M oM« (2:8-3) +3 « M) =2

LT = M o N + 1

TABLE IV

No error messages

DIMENSIONAL UNITS FOR PROGRAM VARIABLES

Variable Name ‘Units
AX Plate Dimension in x-direction feet
BY Plate Dimension in y-direction feet
H Plate Thickness inches
E Modulus of Elasticity .1bs/sq..inch
PR ‘Poisson's Ratio -
SW Specific Weight lbs/cu. foot
DX Grid-Spacing (DX = ax = Ay) feet
DT Time=-Step seconds
TS Stop-Time seconds
P Load 1bs/sq. foot
T Time seconds
W Transverse Displacement inches
F Stress-Function 1bs,




C MAIN PROUGRAM FUR CASE 1(A) AND AN N-WAVE LUOAD

ldPLICIT REAL®8 (A=-H,0-1)
DIMENSION Wll004,12),F(100412),A(100, 1001,P(100),C(10 ).UB(IOO)
1 ,DCI1800),P(12)
KR=100
100 FORMAT (6D10.,3)
101 FORMAT (215,2015.6)
110 FORMAT {1XsF7.5)
111 FORMAT (1X,10013.5) , ‘ . SR
115 FORMAT (1H1,20X,'CASE I{A), SIMPLY SUPPIRTED, STRESS FREE EDGES?)
120 FORMAT (/95X PAX = Y, F6.24" FTU 06X 3Y = 9,F 0.2y FT',5X, ’
L oYM o= Vo FET b4yt IN'WSXe'E = 8,01043,! PSIYeS5Xy?'PR = V,F5,3,5X%,
2 'SW o= 4 L,FT.2,' PCFY) , o . .
121 FORMAT (/45X dN-WAVE LUAD',SX,'PL = T,F7.,2,' PSF?
1 S5Xe'TAU = *,F7.3,' SECY) , T
122 FOPMAT (//1':))(1'M = '112'5X.'N = '9[2,5‘)().0)( = "Fl().b,"F]‘v.bX..’_,
' 1 BT = ',Fl0.6,' SECY) : : ' ' ~ B
WRITE (6,115)
READ (534100) AXyBY H;E,PR,SW
WRITE(6,120) AX RY ot E ¢ PR4SW
READ (65,1000 TS,PL,TAU
WRITE(64121) PL,TAU
RO=SW/32.2D0
D=FExH*%3/ (12.D0%( 1. D0-PR*%2))
MC=1
1 READ (5,101) M,N,DX,DT
WRITE(6,122) HMyNyOX,DT
T=0.0D0
MN=M=EN
CLl=DT #4240/ (ROFHHD X% %4 )
C2=DTH%2/ (RO¥DXF%4)
C3=DT*%2%144.,D0/(RU*H)
IFIMC EQ.) GO TO 2

-

MC=M

C SET uUP (A} MATRIX
CALL COEFA (AsMsMyKR)
CALL “AGEA (A,DC My NyKR)

2 CONTINUE
C SET UP INITIAL CONDITIONS
DO3T=1,MN
Fi1,1)=0.D0
3 W(I,11=0.00
C CALCULATE LOAD AT FIRST TIME STEP
C  N-WAVE
PL1)=PL
€ STARTING FORMULA
NOSI=1,MN
5 W(1,2)=,500%C3P (1)
6 CONTINUE

C CALCULATE LDAD FOR NEXT ‘10 T[Nt STEPS
C  N-WAVE )
IF(T.GT.TAU) GO TO 8
DOTI=2,11

T=T+DT



c

c

PLIY=PL*{1.D0-2.D0%T/TAU}
IF(T.LE.TAU) GO TO 7
P{J)=0, DO
7 CONTINUE
GO 710 10
8 D0O9J=2,11
T=T+DT
9 pPlJ)=0. DO
10 CONTINUE .
CALCULATE W & F FOR 10 TIME STEPS
CALL FDIA (M NyMNsW,F,A,B,C,BB, DC.? C1,C24 C3 EvKR)
TT=1-10. DO*DT
WRITE(6,110) TT
WRITE(6,111) (WIMN,J)yJd=1,10)
WRITE(6,111) (FIMNsJ)sd=1,10)
WRITE(6,111) (W(I,10),1=M,MN,M)
WRITE(6,1113 (F(I+10)yI=M,MN,M)
DOTLI=14MN.
FIIsL)=F{1,411)
W{Tl,1)=W{T,11)
T wWll,2)=W(1,12}
IFLTT.LTLTS) GO TO 6
GO 10 1
90 sTCP
END

MALN PROGRAM FOR CASE IT(8) AND A STEP LOAD

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 DABS

DIMENSION W(IOZ,IZ),F(IOZ'lZ)yA(lOZ,lO?),B(100),C(102) BH(IOO)»

1 DC(ZbIO),DI(IOl).P(lZ)

KR=102
100 FORMAT (6D10.3)
101 FORMAT {(215,2D015.6)
110 FORMAT (1X,F7.5)
11l FORMAT (1X,10D13.5}

{
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115 FORMAT (1H1,20Xs *CASE [1(B), CLAMPED, IMMOVABLY CONSTRAINED EDGES®)

120 FORMAT - (/15XsPAX = 1 4F6.230 FTH,5X,%BY = ' F6.29' FIT45X,

1 'H = ,F7 Gyt INT,5X,1E = 1,D10.3,! PSI',SX;'PR = 1 F5 .3 45Xy

2 'SW = ¢,FT7.2,' PCF') . o
121 FURMAT . (/,5X,*STEP FUNCTION LOAD',bX,'PL $SETL2 48 PSR,
122 FORMAT  (//35Xs®M = 1,1245XstN = V512,5X,0DX = 9,F10u6st -FT1 45X,

1 'DT = *4F10.64°* SEC')

WRITE (64115)

READ {54100) AX,yBYyHyE4PRySH
WRITE(6,120) AX;BY yHeEsPR9SH
READ {5,100) TS,PL -
WRITE(6,121) PL

RO=SW/32.2 DO



D=E*H¥**3/(12.D0% (1.D0-PR*%2))
MC=1
1 READ (54101) M,N,DX,DT
WRITE(64122) MyN,DX,0DT
T=0.00
MN=M#N
MN2=MN+2
Cl=DT#*2%D/ (RO*H*QX*%4)
C2=DT#%2/ (RO*DX%¥4)
C3=DT*#2%144.D0/ (RO¥H)
IFIMC.FQ.M) GO TO 2
MC=M
SET UP (A} MATRIX
CALL COEFB (AyMsNyPR,KR)
CALL AGEB (A,DC,DI+MyN;KR)
2 CONTINUE
SET UP INITIAL AND BUUNDARY comoxrtoms
DO31=1,MN
FLE,1)=0. DO
D03J=1,12
3 WlE,d)=0. DO
CALCULATE LUOAD AT FIRST TIME STEP
STEP LOAD '
P(L)=PL
FORMULA FOR STARTING SULUTIDN
NL=N-1
DO5K=1,N1
KM=K%M
DOSL=24M
I=KM+L
5 W{1,y2)=,5D0%C3%P(1)
CALCULATE LOAD FOR NEXT 10 TIME STEPS
STEP LOAD
D06J=2411
6 PLJY=PL
10 CONTINUE : ‘
CALCULATE W & F FOR 10 TIME STEPS . f
CALL FDIIB (MyNyMN WoFaA 2By CoBB, DC, DI, P,c1 ce cs c KR)
WRITE(6,110) T
WRITE(6,LLL) (WIMN,J),d=1,10)
WRITE(64111) (F{MNyJ)yd=1,10)
WRITE(64111) (WLI,10),/1=MyMN,M)
WRITE(G,11L) (F{Y,10),I=M,HMNyM)
DO7LI=1yMN : -
FOIyL)=F{L,11)
WlTeli=W(l,s11)
71 W(I42)=W(1412)
T=T+10. DO*DT
IF(T.LT.TS) GO . TO 10
GO T0 1
90 STOP
END -



C  SUREMUTINE COEFA, SETS UP A-MATRIX FOR STIESS FREE FDGES

3

4

6

10

11

SUBROUTINE CCEFA (AyMyN,yKR)
IMPLICIT REAL*®8 (A-H,0-2])
DIMENSTON A(KR411)
MN=MEN

DULI=1sMN
DO1J=14MN
A{T,4)=0.D0
DO2K=1]1 4 MN
A(K,K}=20.D0
All,1)=22.D0
L=M~2

DO3K=2,L1
AlK,KY=21.D0
A{M-1,M-1}=22.D0
A{MyM)=21.00
L=MN=-3%M
DOaK=Mel o M
AK+L4K+13=21.00
KK=K+M-1
A{KKsKK)=21.00
LI=S{N=-2)%M+2
AlL1-1,L1-1)=22.00
L=l 1+M-]
DOSK=L1,L
A{KsK)=21.D0
ALMN=M=1 yMN~-M-1)=22.10
A{MN=-1,MN~11=21.D0
DD6K=2yMN
AlKyK—~1)}=-8.D0
A{K-1,K})=-8.D0
MNM=MN-M
DOTK=M,MNM, M
AlK+1,K})=0.,D0
AlK,K+1}=0,D0
DOBK=3,MN
AlKsK-2)=1.D0
A{K-2,K}=1.D0
DO9K=M, MNM4 M
A(K+1,K=1)=0.00
AlK+2,K)=0.D0
A{K-1,K+1)=0.D0
AlKy4K+2)=0.0D0
DOLOK=MyMN, M
A{KyK-1)=~16.D0
ALK, K=21=2.D0
Ml=M+1
DOL1IK=M],MN
KM=K-M
AlKyKM}=-8.D0
A(KM,K)=-8.D0
AlK~-14sKM}=2.D0
AlKMyK=11=2.D0
MNL=MN=-1

81



DO12ZK=H1, MNL
A(K+L,K=M)=2.D0
12 ALK-M,K¥1}=2.D0
MNL=MN+1
DOL3K=M1, MNL, #
KM=K—M
ALK=1,KM}=0.D0
13 A(KM,K-1)=0.00
M2=2%M
DOL4K=H2 o MNM, M
KM=K~M
ALK+1,KM)=0.00
14 A(KM,K+1}=0.D0
M21=M2+1
POLSK=M21 ,MN
KM2=K=M2
ALK, KM2)=1.D0
15 A(KM2,K)=1.D0
POL16K=M2 4 MN4M
ALK, K=-M-11=4.D0
16 A{K~M,K=1)=4,00
L=MN~M+1
DOLTK=L,MN
K M=K =M
ALK,KM)=~16.D0
ACK,KM+1)=4.D0
ALK, KM=1)=4.00
17 ALK, KM-M}=2.D0
ALL \MN-M2)=0.D0
ACMN, MN~M~1)=8.00
A(MN,L)=0.D0
RE TURN
END

¢ SUBROUTINE COEFB, SETS UP A-MATRIX FOR IMMOVABLY CONSTRAINED EDGES

SUBROUTINE COEFB {A,MyN,PR,KR) .
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AlKR,1)

MN=M*N

MN2=MN+2

M2=2%M

M3=3%M

Ml=M+1

MP2=M¥2

MP3=M+3

MP4=M+4

M21=M2+1

M22=M2+2

M31=M3+1



10

11

12

M32=M3+2
MNM=MN-M
DO1I=1,MN2
DO1J=1,MN2
Al1,J)=0.D0
NO2K=MP2 4 MN
AlK,K}=20.D0
A{MP2,MP2)=22.D0
DO3K=MP3 4 M2
AlK,K)=21.D0

A{M2-1,M2-1)=22.D0

L=MN-M3
DO4K=M2,L oM
A(K+2,K+2)=21.D0
KK=K+M-1
ALKKKK)=21.D0
L1=(N=-2)%M+2
A{L1,L1)=22.00
L=L1+M-3
DOSK=L1,L
AlK+1,K+1}=21.D0
AlL,L)=22.D0
AlL+3,L+3)=21.D0

AUMN=-L4MN-1}=21.D0

A(MP2,M})=-8.D0
DO6K=MP3 4, MN
A(KyK-1}=-8.00
AlK-1,K)}==8,00
DOTK=M2 yMNM M
A(KyK+1)=0.00
A(MP3,M+1)=1.00
DOBK=MP4  MN
A{K,K=-2)=1.D0
AlK-2,K)=1,.D0
DO9K=M2 4 MNM, M
A{K+2,K)=0.0D0
A{K=1,K+1}=0.D0
A(Ky,K+2)=0.D0
DO10K=M2 4y MNy M
A{K,K-1}=~16.00
AlKyK=2)=2.D0
DOL1IK=2yM
KM=K+M .
AlKM,K)=-8.D0
AlKMyK+1)=2.D0
A(KMyK=1)=2.D0
DUL2K=M22 4 MN
KM=K-M :
A{K,KM}=-8.00
A{KMyK}=-8.D0
A(K-1 KM =2.00
A(KMyK=1)}=2.00
A{M22 ¢M1 )} =2.00
MN1=MN-1
DO13K=M224MN1
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13

14

15

16

17

20

21

A(K#L4K-M}=2.D0
ALK=M,K+1)=2.D0
DOL4K=142 ) MNM4 M
A{KysK+M+1)=0.00
A(KyK-M+1)=0.00
A(KyK+M-1)=4.D0
AlKyK=-M-1)=4.D0
NO15K=2,M
A(M2+K,K)=1.D0
DN16K=M32 4 MN

KM 2=K—-M2
AlKyKM2)=1.D0
A{KM2,K)=1.D0
L=MN-M+2
NOL7TK=L,MN
KM=K~M
AlKyKM)=-16.D0
AlKsKM+1)=4.D0
A{K KM-1)=4.00
ALKy yKM-M)=2.00

A{MN,MN-M=1)=8.D0 -

A{ My, MN-M+1)=0.D0
DO201=M2, MNM,M -
NO20J=1,MN
AlI+1,J1=0.D0
All,1)=1.D0
L=N-2
AL2,1)==-2.D0
A(2,2)=2.D0
DO21J=1,L

K=J*M ‘
Al24K+1)=-4.D0
Al2,K+2)=4,DO0

T A(24MNM¥L)=—2.D0

22

24

Al2,MNM+2}=2.D0
DD221=3,M
K=MNM+]
AlT,1-21=1.0D0
AlTyK-2)=1.D0
All,1-1)=-2.D0
A{T4K-1)=-2.D0
ACL,T)=1.D0

Al K)=1.D0
D0231=3,M
NO23J=1,L
K=JxM+]
AlT4K-1)=-4.D0
AlI4K)=2.D0
A(M1yM=1)=2.D0
A(MLyM)==2.00
DO24K=M2 y MNMy M
A{M1,K-1)=64,00
A{M1yK}=-4.D0
AUMLyMN-1)=2.D0
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26

27

28

29

30

31

32

A(ML s MN)=-2.D0
L=M-2
J=1

"A{M21,4J4)=-2.D0

J=J+l
NO25K=1,L
A(M21,J)=-4.D0
J=Jd+l1
AlM21,4)=-2.D0
J=J+1
A(M21,d)=2.D0
J=J+1
DO26K=1,L
A(M21,J)=4.D0
J=J+1
A(M21,4)=2.D0
KK=1

MN1=MN+1"
D0291=M314MN1,M
J=KK '
A{l,4)=1.D0
A{I,0+M2)=1.00
J=J+1
DU2T7K=1,L
All,d)=2.D0O
All,J+M2)=2.D0
J=J+1l
All,J3=1.D0
AlTyJ+M2)=1.D
J=J+1 ‘
AlI,J)==-2.D0
J=J+1
DO28K=1,4L
AlT4d)==4,D0
J=J+l
A{T,4)==-2.D0
KK=KK+M

J=KK
A(MN2,J)=2.00
J=J+1 ‘
DU3OK=1,L
A{MNZ y J)=4,D0
J=d+l
A(MN2,4J)=2.D0
J=J+1
AIMN2,4J)=-2.D0
J=J+1 -
DO31K=1,L
A{MN2 3 J) =~4 .00
Jd=Jd+1
AIMNZ 4 JY==2.D0
DN321=2,M1
A{T+MNL)=PR

A(2,MN2)==2 . DO%{N-1}

DO33[=MP2,M2
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C
C

33 A(I,MN1})=-1.D0
A(MP2 yMN2)=-1.D0
A{M2L,MN1)=-2.D0%(M-1)
DO341=M21 ¢MN1 4 M

o ACTyMN2)=PR

34 A(T+1,MN2)=-1.D0
A{MNZ2 4y MN2 }=PR
RETURN
END

SUBROUTINE AGEA, PERFORMS GAUSSIAN ELIMINATION_GN A-MATRIX-AND- SETS
UP DC-VECTOR FOR USE ON C-VECTOR, STRESS FREE EDGES

SUBROUTINE AGEA (A,DC, My NyKR)
IMPLICIT REAL*8 (A-H,0-7)
DIMENS TON A(KR.l),DC(li
MN=M*N
K=1
KK=0

1 I=K+1]
L=2#M+K
IF(L . GT.MN)L=MN

2 KK=KK+1
DCAKKI=A(T K} /ALK, K)
AlT,K)=0,
J=K+1

3 A(T,J)=ALT 4 J)-DCIKK)#A(K,J)
[F(J-L14,5,30

4 J=J+1
G0OT03

5 [F(I-LY6,7,30

6 I=1+1 '
G0T02

7 IF(K-MN+1}8,30,30

8 K=K+l
GOTOL

30 RETURN
END

SUBRDUTINE AGEB, PERFORMS GAUSSIAN ELlMINATION ON A-MATRIX AND SETS

UP DC~- & DI-VECTORS FOR USE ON C-VECTOR,,

SUBROUTINE AGEB (A,DC,DI,MyN,KR)
IMPLICIT REAL*8 {A-H,0-1)

REAL*8 DABS

DIMENSION A(KR.L)'DC(l)ngll)
MNL=M&N+1

[MMOVABLY CONSTRAINED: CEDGES
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MN2=M%N+2
LL=3%M
KK=0
NO3K=1,MN1
K1=K+1
IF(LL.LT.MN2) Li=LL+1]
L=K
DO11KI=K1,LL

11 ITF(DABS(A(KIWK))}.GT.DABSTAIL,sK))) L=KI
DI(K)=L
IF{L.EQ.K)} GO TQ 2
D012J=K,MN2
D=A(L,J)
AlL,J)=A1K,J)

12 A{K,J}=D

2 DO3I=Kl,LL
KK=KK+1 .
DC(KKI=A{T KI/ALK,K)
D03 J=K4MN2Z

3 AlL,Jd)1=AL1, J)—DC(KK)*A(K’J)
RETURN
END

C  SUBROUTINE FDIA, CALCULATES W AND F FOR TEN TIME STEPS

SUBROUTINE FDIA (MeNyMNyW,FyA,B,C,088,DC,P,L1,C2,C3,E,KR)

IMPLICIT REAL*8 {A-H,0-2}

REAL*8 DABS

DIMENSION N(KRzl)vf(KR.l)vA(Kva)vB(l):f(l)sBB(I)yDC(l)yP(l)
C SET UP CONSTANTS ONE TIME ONLY

1 IF{W{MN,1)-NELO.} GO TO 2

Ml=M+1

M2=2%M

M3=3%M

M4=4%M

MNM=MN-H

LT={N-2)%M+]

LN=N=-2

LM=M=1"

LLN=N=-3

LLM=M=-2

LLT=LT+2

LLS=MNM-2

M21=M2+1

LS={N=-3)%M+]

LST={N~-2) %M

2 CONTINUE

bo070J=2,11
C :
C USE LINEAR TERMS ONLY FOR VERY SMALL W



e NeNe]

laleNe!
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TF(DABS{W(MN,J)}).6T.0.0100) GU TU 1O
DU31=1,MN ’
F(1,J)=0.D0

3 83(1)1=0.D00
GO TO 50

10 CONTINUE

CALCULATE CONSTANT VECTOR FOR A F=C {SS OR C)

C{L)={W(M+2,J1%%2/16.D0-{-2. u0“w(1,J)+w(z,J))*(~a DO*W(I,J)+vT

1 W(M+1,J)))%E
C(MY=(—(2.DOXW(M=1,J1-2. Do*w(M,J))*(W(Mz,J)—z DO=W (My )} )=E
CAMNY={={2.00%WIMN=1,J)=2.D0%u (MN,.J} ) X(2, uo W(MNM.J)~2 DO<W(HN.J)

1 Yi*E L
K=MNM+1 ' ' ' R
CIK)=(~(-2. DO*W(K;J)+W(K+1pJ))*(2.DO‘W(K Myd )= 2. DO W(K.J)))”E‘
DDlll*Z'LM
K=1+M NP R
CUIY=l=W{K=1 yJ)HW LK+, J )Y %52/ 16.D0~ (w(l 1ed)=2.00% w(1,1)+'cr+1;d);

1 VE[=2,DOXW(T, J)+ WKy J) D) RE S

=MNM+1 : ‘
1t C(K)—(—(W(K 1,d)=2.00%W{K, J)+N(K+11J))*(? DO#W (K~ M.J)—Z UutW(K,J)

1 ))*E
DOL2T=ML,LT M
IM=[+M - o
fL=1-M . SR

12 C(I)=((W(IM+1pJ)-W(IL+1,J{)**Z/IA.DO-(—2.DO*W(I{J)+w(X*loJ))*

I (WOILJ)=2.D0%W (T, 31 +W (1M, J)) )I%E
DOL3 I=M2 y MNM, M
IM=T+M ‘
IL=1-M ' e
13 CUI)=(=(2.D0%W(1=14J)-2.00%W(L1,J) (AL TLyJ)=2.005W T, J )+ W{TMJ))
1 )xE ‘ T
DO14K=1,LN
KM=K &M
DOL4L=24LM
T=KMeL
IM=T+M
IL=1-M ’ o
L4 CHII= COHCIL=1y g ) =Wl TM=1s J)rW(IM+ L, 0) = W(IL+1,J))**2/1b DO-(W(I 1,41
L =2.00%W (T #WEI+15 IV 600 (L d) =2, D0%W {1y SV +WL TN, SRRREL '

PERFORM GAUSS ELIMINATION ON C(I)

21 KK=0
L=2%M+1
K=1

22 I=K¢l

23 KK=KK+1
CL11=CI}-DCIKKI*C(K)
IF{I-L}24,25,40

24 I=1+1
GT023

25 IF{LoLT.MN}L=L+1



26 TFIK-UN+1)27931,40
27 K=K#+]
60T022

PERFORM BACK SUBSTITUTIUON FOR F(I}

[aNal

31 LL=A—-M2
L=MN
FlLsJ)=ClL}/A{L,LY} ‘
F=MN-1

32 IF(L.LT.LLIL=L-1
K=1+%1
S=0.00

33 S=SHALTZKIXF(K,yd)
IFIK=L)34,35,40

34 K=K+1
GOTO33

35 FUI,4)=(CLI)-S)/ALI,I)
IF(I-1)40,40,36

-36 1=1-1
GOTN32

40 CONTINUE

CALCULATE NONLINEAR TERMS FOR SS 0OR C

O

L FE2,d) 1R{=2.D0RW Ly JI+WIMEL 4 J) )= (F (M2, J)*W(ME2, J311/8.00
BBAMI=(=2.D0¥F(Myg }+F (M2, S} )2 (2.D0%W (M= 1, J)~2,D0% N(M,J))+(2 LO*
1 FUM=1,J)=2.00%FIMyd) )% (=2.D0%W (M, J)+H(M2,0)) ’
BBIMN} =(2DOXF(MNMyJ)=2.D0FF (MN»J )} ) = (2. 00%WIMN-14J)~2.D0%d{MN, J))+"
1 (2.DO%F{MN-1,J)-2. DO*F(MN,J))*(Z DO#W{MNMJ) 2. DO~w(MN.J)l ‘

K=MNM+1

BB(K)=(2,D0xF{K-M,J)-2. DO*F(K,J))*(—Z Do N(K,J)+W(K+1.J))+ :
1 (=2.D0RF(KyJI+F{K+1,J) )& (2. D0FW(K-My J)=2.D0%W(Kyd)) -
NO41I=2,LM

K=1+M

BBUI)={=2DOXF{I s} +F{KoyJIIFR(W(T-L,J)-2.0D0%W{T, J)+W(I+11J))+
1 {F(I=130)1=2.D0%F{ T4 d)+F{I+1,J))5({~2.00%0 (1, J ) eWiKd))m
2 {-F(K~ 1,J)+F(K+lyJ))*(—w(K 1eyd)+WiK+1,4)1/8,D0
K=MNM+1
41 BBIK)=(2.D0FF(K=MyJ)=2.DO0%F(KyJ Y RUWIK-1,J)=2.D0%W (K, J)+WIK+1,J) )} ¥
1 {F{K-1,J)-2, DO*F(K,J)+F(K+1,J))*(2 DO*WAK~My J D=2 JDO0FWIK, J))
DO42T=ML,LT M \
IM=I+M
IL=1-M )
42 BBLI)={F{IL,J)—2.D0%F (1, J)+F(IM;J))«(-2 DORWIT ) +W{T+1y3) )+
I (=2.D0%F(1yJY+F {14130} 3R (W{TIL ) =-2.D0%WITJ3+W{IM,3) )~
2 (FIIME L, 0)=FUIL+), d) ) # (W (IM+L,J)~W{IL¥1,J))/8,00
DU43I=M2 4 MNM, M
IM=1+M
IL=1-M
43 BBIL)=(F{IL,J)=-2.D0%F (1, J)+F(IM JYYEL2.D0%W (I~ 1,J)—2 DORW( L,y d) )+
1 (2.D0%FlI-1,4)—2. DO*F(I.J))»(w(lL J¥-2,00% N(I,J)+w(}M.J))
DO44K=1,LN
KM=K% M

BE(L)={=2.00%F (L yJ)+F(M+14 )15 (-2,00%W {1y JI+V(2,J) )} (-2, UO“F(I.J){WCq:
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DO44L=2,LM
1=KM+L
1=1+M
[L=1-M
44 BRIV =(F{ILyJ}=2.00%F {1 J)+F(IMpI))E{WlI-1yJ)~2, DG%W(I,J)+W(I+1,J}3
L Y+ {FEI—=1,d)=-2.00%F (1, J)+F{1+1,J))x(WlIL,J)-2. DO*W(I.J)+&(IM,J))w
2 AFUIL=1ad)=FUIM=LyJ)+F(IM+LyJ)-FlIL+1,d))%*
3 (WllL-1, J)—w(lM-l,J)+w(lM+1.J)~d(IL+1 Jry/8.D0
50 CUNTINUE

CALCULATE DEL FOURTH W FOR SIMPLY SUPPORTED

BULI=18.00%W{ L dh=8BaD0%{WI2yJ)+WIML )1 +2.D05W(MI+L,d)+W (3,00¢
I W(M2+1,J)

BU2)=19.D0%H(2,d)=6.D0%(WEL I 4H(3,0) +W(Me2, 00 1¢2, 005 (WML, J)+

I WiM+3, 02 +W 4, J)+W(M2+42,0)

BIML)=19.D0FW (ML) 8. 00%{WIM+2, 00+l M2+, d) +W L, J})+2.00%

L (WIM242, 33 4W 2, ) FW (M3, ) +WIM3E L )
BIM+2)=20.D0%W{M+2, 4} =8.D0%(WIMLyJ) +W(Mt3,J) +dtM2+2,0)4W(290))+
L 2.D0%(WIM2+L o J+W{M243, 00+ W (L J)+ W35} J+W{Mea, ) +{M3I+2,40)
BIM~1)=20.00%W(M=1,4J) =8 DO (W(M=2,J)+u My JI+U(M2-1,d) 142, DO*

1 (W(M2=-2,0)+WEH24 J) )+ WIM=-3,J) +W({M3-1,4J)
BAM)=19.DOSWIM,J)=8.00%(2.D0FWIM=15 J1+W(M2,0) ) +4.D0%n (H2-1, 40+

L 2.D0%WIM-2,J)+WI(M3,J)
BIM2=1)=21.D0%FW(M2-1yJ)-8.00%(W(M2~2, ) +W M2, 00 +WIMI=1,J)¢W(NM=11J)
1 )+2.D0%(WIM3=2 4 ) tWi{MI ) +WIM-29 V4R (M 3) ) +WIM2-3 5 d) #W(MA-1,J)
BIM2)=20.DOxWIM2,J}-8.D0%(2.D0* wtmz LyJdi+wM3, J)+W(F,J))+4 DO*

1 (WIMI= L J )W M= J )} 2. D0W(M2-2,3) +W{ M4, J)

K=LT

BIK)=20.D0%W{KyJ)=B8.DOR(WIK+L, JI+HIKEM, JIHWIK-M9 ) ) +2.D0

1 (WIK+ML J)+W K- LM,J))+W(K+2.J)+N(K M24gJ)

K=K+1
BUK)=2LeDOMWIKsd) =8 DORIWIK=L 3 J)+WIK+ L, )+ W KMy J)+WIK-M4J) ) +2.D0%
1 (WIKHLMyJ)HWEKEML s J) AWK =MLy JIFWIK-LMp J D) R (KF 2 J)+HIK-M24 ) .
K=MNM+1

B(K)=19.D0%W{K,J)-B. Do»(w(K+1,J)+2 DOH*WIK~MyJ b} +&, D08 K~ Lby ) ¢

1 WIK+243J)+2.00%W{K-M243J) .

K=K+1 . o
BIK)I=20.D0%W{KJ) =B D0F(WIK=1 ) +tW{K+1,J)+2 . DO¥W(K-MyJ)) +4.00%

L AWIK=ML g )W (KL My IV I+ WK 424 J) +2. DOXWIK-M24J ) :

K=MNM-1

BIK)I=22.D0%W{(KsJ )-8, 00%(WlIK-1, J)+W(K+1'J)+~(K+M.J)+W(K M, J))+2 DO
T (WKL My JI+WIKEML g S+ {K - Ml.J)+W(K LMy ) +W(K=24 J) +WLK=112,4 J)
K=K+l

BIK)=21.D0%W{K,J)-8. Do*(z DO®W (K- L,J)+w(K+M,J)+W(K Myd))ta,D0o*

1 (WOKHLMp J)FWIK-ML 4 J) ) +2.DORWIK -2, J)+WIK-M24J)

=MN-1

B(K)—Zl DO*W(K,J)—8 DO»(W(K Lyd) W {K+1,4)+2.00%W (K~ M.Jl)+4 Dox

1 (WIK-MLeJI+WIK=LMy J) J+WIK=2, ) 2. DOXWIK=M2,0)
BIMNI=20.DO%WIMN,J)~16. DO*(W(K,J)+W(MNM,J)}+8 Do w(mm ML.J)+

L 2.00%(W{MN-2 4 J)+WIMN=-M2,0)])

DOSLI=3,LLM

B(I11=19.D0%WI I,J)-8.00%(W(I~ 1,J)+W(l+1,J)+W(I+M,J))+2 DO*

L UWETHL My d)+WL MLy S VW T2 S+ (D42, S +0 T T+M2,0)

K=1+H4
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51 BUIKI=20.D008W{ Ky J)I=8.DOX{WIK-1yJ)+WlKEL g JY+FWIKEM J)#U (K~ 0} ) 42,00%
1 [W{KHLMyJIHWIREML y J)HWIK=MLy J) +H{K-LMy JI) W IK- Z,J)+A(K+/ J)+
2 WIKEMZ2,J4)
NOS2I=LLT,LLS .
BIT)=21.00%W(1,4J)=8.00%(W(I=1sd)+W(I+1sJtenwl[+M, J)+4(I—J,J))+2.U0» R
1 T+l My D) +WUT¥MLy D)+ W I =MLy )+ (D=L My J) E+W (T2, 3 oW (142,00
2 WI-M2,3) o c
K=1+M ) e
52 BIK)I=20.D0%W(KsJ)-BeDO*¥{W(K=1,J) +W{K+L,0)+2  DOXW (K~ M,J))+4.DO*
1 (W{K-MlyJ)#W{K-LMyJ))+WIK~ Z.J)*N(K+?.J)+2 Do w(K—”?.l)
NI53I=M2]14LSyM
BOII=19.00%W( I, ) =B D0{WIT+L, )+ {1+My ) +U(I-Myd))+2, 00
1 (WIT+MLI, ) +WwlT=LMyd) beW(T42,8)1+4(T+M2, J)+w(I—M2 4
K=1+1
53 BIK)=20.DO%WIK ¢ JIJ}-800%(W{K-1sd)+d{K+1, J)+w(K*M.J)+w(K M.J))+2 0%
I (WOKELMp S tW (K+MLy J) +WIK~ML ¢y J) W (K= LM.J))+w(k+2,J)+w(K+W2,J)+
2 WIK~-12,4)
0D0541=M3,LST,M
B{I)=20.D0%W(sJ)-3. Do*(z DO*W(l—loJ)fh(!+MyJ)*d(I My J))+4 DO*:
1 (WETHLMa Wl I-ML,,Jd))+ 2. 0050 (I~ ?.J)+W(I+M2.J)+~(I—M?;J)
K=1-1
54 BIK)=21.00%WIKyJ)~8.D0%{WIK-1,J)+d{K+Lyd)+W (K- MyJ)+h(K+M.J))+2 DO~
1 (WIK+LMyd ) +WIK+ML , J) WK~ Ml,J)+le LMad ) P+WIK=-2, J)+H(K+M2y S+
2 WIK=M24d) el
DUSSK=2,LLN
KM=K*M
DO55L=3,LLM
I=KM+L .
55 B{I)=20.D0%W{14J)-8.00%{WlI-1,J)+W(T+1, J)+N(I+M,J)+h(l—~ J1)+2.00% .
1 (w(I+LM.J)+W(I+N1,J)+W(I—M1.J)+A(I—LM.J))+W(I 2aJ)+W{I+2,0)4
2 WI+M2,d)+W{1-M2,4d)

CALCULATE W(l4Jd#l)

laNaNe!

NO60I=1,MN
60 WITeJ#1)=2.D0%WLT,I)-W(I,J-1)-CL*B3(1)+C2%bEIII+CIXP(I)
70 CONTINUE ’ g
) RETURN
END

C SUBRUUTINE FDI1A, CALCULATES W AND F FUR TEN TIME STEPS

SUBROUTINE FDITA (My;NyMNyW,FyA,B,CyBB,0C,P, Cl C2,C3,E,KR)
IMPLICIT REAL*8B {A-H,0-2)
DIMENSION WIKRyL}sFOKR,y 1), AKRY, 1),H(1)1C(1|,BB(1) DC(I),P(I)
C SET UP CONSTANTS ONE TIME ONLY.
1 IF{W(MN,1).NE.O.) GO TO 2
M1=M+1 :
M2=2%M
M3=3%M
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M4=4%M

MNM=MN-M

LT=(N=-2)*M+1

LN=N=-2

LM=M~1

LLN=N-3

LLM=M=2

LLT=LT+2

LLS=MNM=-2

M21=M2+]

LS=(N=3)*M+] .

LST={N-2)%M .
2 CONTINUE

DOT0I=2,411

USE LINEAR TERMS ONLY FOR VERY SHALL - W -

IF(W(MNyJ).GTL0.01) GO TO 10
DO31=1,MN
FtI,4)=0.D0
3 BA(I)=0.DO
GO TO 50
10 CONTINUE

CALCULATE CONSTANT VECTOR FOR A F=C (SS 0OR C)'

CLI=(WIMF2, J)542/16.D0- (=2, DO*HI Ly ) +W( 2 e 2 DOfw(l.J)&...

1 WIMeL,J)) )%E '

CUMY= (=20 DOFW (Mol yd ) =2 DOFW(Myd) )& (W (M25d1-2, DO*H(N;J)))*F c
CIMN)=(—=(2. DO W (MN=1 441 =2 LDOHMN I )5 (2. DOFHEHNM, J) =2, UO*W(MN,J),a”
1 )I%E \ o

K=MNM#1 . ‘ B R E
CAKI = (= (=2 DO¥WIK, J)+W(K+L, J1V R (2 DOFN(K=Myd ) =2, DOFW{Ky I V)V RE. -
DOLLI=2,LM B R

K=T+M " e

ClIV=({-WIK=LyJ)+W{K+Lyd)) %42/ 16, DO—(W(I—l:J)- DO*W(ny)+g(l¢1rJ)*”

1 J#EL=2.DO¥ WL J)+WIKy ) )} *E PRSI R P
K=MNM+1 ‘ R

11 CUK)y=(=(W{K=1, J) 2. UO*H(K.J)*W(K*I.J))*(Z UO*W(K MyJ)t_ DOFW Ky J ]

1 )Y *E T e L
DO121=M1,LT M
IM=]+M
IL=1-M ‘ , : TR

12 CLIY=tlW{IM+L,d)~ W(IL+1.J))**2/16 no-(~2 .DO*N(I,J)+W(1+1,JI)*»‘

1 (WlIL,J)=2.00%W( [, J)+W(1M,J)))*# ‘ : i
DOL3T=M2 4 MNMy M
iM=1{+M
IL=[-M : A T

13 CLIY=(=(2.D0%W{I~1,d)= z.oo*w(x J))*(W(IL.J)—? UO*W(!.J)+W(IM.J)) e

1 )#E [ : v S
DO14K=1,4LN .

KM= % M4
DO14L=24LM
I=KM+L
IM=1+M
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TL=1-1 -
CAIY= (W OIL=1 ) =WlIM=1, ) e IM¥ L, Jd =W (IL+1, Q15827 16,00~ (W 1= Led)
1 =2.00%W(E,J)+W(T+1,J))#(WIEL,J)=2.D05W (T, J)+W (1M, J)) )%E

PERFORM GAUSS EL IMINATIONM ON C(I)

KK=0

L=2%M+1

K=1

d=K+1

KK=KK+1
C{I)=CUI)~-DCIKKI*C(K)
IF{I~L)24,25,40
I=1+]

GOTO23
TF{LLT.MN)L=L+]
IF(K-MN+1)27,31,40
K=K+1

GOT1022

PERFORM BACK SUBSTITUTION FOR F{I)

LL=MN=-M2

L=MN

FlLyJd)=CIlL)/ALL,L)

=MN-1

IF(I.LT.LLIL=L-]

K=I+1

S$S=0

S=S+A{T s KIFF(K,yJ) :

IF(K-L)34,435,40 : P s
K=K+1 :
GUTO33

FILed)=(CLI)=S)/A(I,1)

IF{1-1}40,40,36

I=1-1

GNT032

CONTINUE

CALCULATE NONLINEAR TERMS FOR . SS OR C

RBI1)={~2.00%F( 1y J)+F(M+ 1,3} ) x(-2, DU‘W(I-J)+W(2,J))+(—L.DO*F(1,J)+
L FL23d0 132,000 {1y d) +W vl J) ) =LF(M+2, JYEWIM+2, $) ) /800 :
BR M) =(=2.00%F(MyJI+F (M2 J) )R (2. D0%WIM=-1,d)~2,D0% W(‘I.J))+(._.b()’r
1 F(M- l'J)—Q DO*FF(My ) 1X{=2.00%W (M, ) +w(M2,d))
BREMNY =(2 . D0%FLENMaJ ) =2 D0 =F (MNy J) 1% ( 2, DO*W(MN°1yJ)—,.DOfW(ﬁﬁgJ))+
I {2.DO%FIMN-L,J)=2.00%F (MNyd) ) R{2.D0% (MNM, J)=2.00%3 (Miv,d3)
K=MNM+1
BBAK) =02 DO*F (K=M3J)=2.D0%F (K yJ)I¥ (-2, 0050w K, J)+H{K+1,J) )+
1 (=2.D0XF(KyJY+F(K+1, J) ) *{ 2,005 (K-M,d) -2, DO*W(K;J))
DUO4LI=2,LM
K=1+M
as{l)=(-2. DO*F(I'J)+r(K,J))«(W(I“lyJ)—/ DU“N(I;J)+N(I+1 J)l+
1 (F(I=1,d)=2.00%F (1 yJ)+FLI+1,0))35(~2.00%0( [4JI+WIK, J))-
2 {(-F{K-1, J)+F(K+1 J)) (~W(K~1, J)+w(K+l.J))/8 oo
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K=MNM+1 .
41 BBUK)=(200%FIK-MyJ)—2.D0%F(K,d))* (W {K=1rd)~2, DO*N(K;J)+L(K+1,J))+f
1 (F(K-1+J)-2, DOXFUKyJI+F{K+L 3 d )} )2 (2.D0%W(K=¥, J)—Z DO*HIK,yJd) )
DD42[-M1 LT,M
=T+M
IL=I"M ' Lo o
42 BBUIY=(FIL,yJ)-2.D0%F{ToJd)+F(IMpJ) (-2 DO*W(I;JY*N(I*I{J))¥“”f
1 (-2 DO*F([oJ)+F(I+1,J))*(W([L,J)~? DO*W(IyJ)+w(IH'J))— :
2 (F(EM+], J)~F(IL+1.J))*(W(IM¥1,J)—W(IL+1,J))/8 Do
DO431=M2,MNM, M
IM= I+M ‘
IL=1~- IR ‘
43 BB(ll-(F(IL J)-2.D0% F(I,J)+F(IM.J))*(2 DO4W(I—1,J)—T )O*A(I.J))%
1 (2.D0XFUI-19J)—2.00%F(1yd))a{WlIL, J)—Z DO W(I,J)+N(IM,J))
DO44K=1,LN
KM=K%M
DO44L=24LM
I=KM+L
IM=T+M
IL=1-M : ’ : :
44 BBUL)={FlIL,J)=2.D0%F {1y J)+F (M, J))ﬂ(W(I—L'J)—Z DO*%(!vJ)+w(l+1'J)'
1 YH{F (I =Ly )2 D0%FL L ) +F(1+1,d) )= (WlIL,J)-2 Dth(l,J)+w(JM'J)l—f
2 AF{IL=14Jd)=FlIM=1,d)+tF{IM+LyJ)~F(LL+1yd))% S e
3 W{IL=1sd)=WIIM-1d) 4w {IM+1,d)-ULIL+]1,4))/8.D0
50 CUNTINUE :

CALCULATE DEL FOURTH W FOR. CLAMPED

B(1)=22.D0%W(1,J)-8, DO“(W(Z,J)+N(N1,J))+2 Do«wtvl+1,4)+~(3 Ji+
1 W(M241,J)
8(2)=21.D0%W(2,J})-8. DO*(H(! JY+W(3, J)+w(M+?,J))+2 DO*(H(M[.J)+
1 WIM#3,J))+ula,JV+W(M2+2,4) . o
BIML)=21.00%W (ML, J)=8.D0%[W{M+2, J)+W(wz+1,J)+W(1.J))+2 DO
1 IWIM242 y U3+ (2, ) Y+ WM+, J) +W{M3+1,4) Fedn )
BI{M+2)=20.DO%W{M+2yJ)=8. DO*(W(MlyJ)+N(M+3'J)+W(M2+7.J)+W(?1J))+ .
1 2.D0%(WIM2+) 4 J)+WIM243 30 )+l (L, d +W {331 I +U (M4, J )+ WIM3+2,4) "
BIM=1)=22.00%W{M=L1yJ) =8 DON{W(M=-2,J)+Wd (M, J!+W(M2-1,J))+2;DO$\g :
1 (W{M2=2,J)+W (M2, I )+ W {M=3,d)+W(M3-1,J) o
BIM)=2L.DO*W(M, J)=8.D0%(2.D0%W (M- 1.J)+W(4qu))+4 DO*J(M? 1 J)+"
1 2.D0%WIM=2,J)+W(M3,J) :
BIM2-1)=21L . DORW(M2=1,J)=8.D0%(W{M2=2,d)+W(M2,J)+WI M3~ 11J)+k(H—l,Jl
L 042,005 0WIM3=2, 3D +WIMBJ ) +W IM=2, 1+ UMy J) )+ (2= 3y ) 40 (Ma— 1, 0) "
BIMZ)=20,DOXW(M2 4 J)—B8.D0% (2. D0%WIM2—1,J) +W (M3, J)+w(m,J))+4 DOx "
1 (W(M3- 1,J)+W(M Ly J) V42, 00%W{M2=2,J b +W (M4, )
K=LT
BUKI=22.DOXWIK,J)=BaDO*(WIK+Ly J)+W(K+M )+ (K= M,J))+? 0% -
1 (W K+MLy I +WIK=LMy J) I +W K2, )+ WIK=142,0) B
K K+l ‘ :
BIK)=21,D0%W{KyJ)=8.00%{HIK=1, J)+W(K+1,J)+W(K+M J)+N(K Mad)) €2, DG«
1 (WIK+LM,J)HW (K+MLy J bW (K-M1, J)+W(K-LM,J))+W(K+Z'J)+\(K W"J) '
K=MNM+]
BIK}=21.D0%W{K,J)=-38 DO*(W(K+1,J)+?%DO W(K NvJ))+4 uo W(K LMy dle
1 WIK+2,J)42.D0%W(K=-M2,4d) "
K=K+1 o P
B(K)=20.DO*W(K,J1—8.00*(W(K—lyJ)+NlK+lyJ)+2.DO*W(KfM.J)1+4}DO*‘
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1 (WIK=MLyJI+WIK=LMyd} )+ WIK+F2 I} 42 DORWLIK=-MZ 4d)
=MNM~-1 S R,
ﬂlK),=22.DO*W(KyJ)‘B.DO*(W(K-lyJ)*W(K'*l'J)H\(KH‘~1,J)+W(K-M,J))42.()()-‘::
1 (W(K*LM'J)+W(KfMl,J)+H(K—Ml,J)*W(K—LM;J))+N(K—2,J)+W(K—M2,J)'
K=K+l ;
BIK}=21. DO*%(K,J)-B DOX{ 2.00%w{K-1, J)+4(K+x,J)+W(h— ,J))+4.UO*
I (WIK+LMy ) +W(K=ML 3 J) )42, 00%U{K=2,J)+WIK=F24J)
=MN=-1
BIKI=Z21oD0XW{KyJ)=B8sDOE{WIK=1,J)+WI(K+1yJ)+Z2,D05W(K—=Myd)) +4,00%
1 {WIK=ML 3 JI+WIK-LMyJ) J+WIK=2,4J)+2.00%{K~N2,J) C
B{MN) =20.D0*w{MN, J)‘l%.DO«(w(K,J)+w(NN*yJ))+H.DO N(|h—‘l,J)+
L 2.D0%(WIMN=24J)+W{MN=-M2,J1})
DUS1HI=3,LLH . _
BLI)=21.00%%l1,4)-8.00 *(W(I—lyJ)+1(l+1,J)+V(I+M,q))+2.00*
1 (WETHLM I+ T 4ML YW =2, 00+ {T+2,,0) W {T+M24J)
K=1+M .
51 BIK)=2000%0lK d )-8 D0 {W{IK=-1,4d) 0 (K+1, )+ {KeMyJ) 0 (K=M,yd))+2,.00%.
T (WKL Mp Y +W(KaML g J) +W K =ML s I WK UMy ST AW K=2, )+ (K42, 0 )+
2 WIK+M2,0) :
DOS21=LLT,LLS L
BlI1=21e00%0{ 1 3 J)~8.00%(WTLI=1,yd) #{I+L,d} 4T+, Jl+wll-Myad))+2,00%
T (WOTHL My )+ T +MIy dI+W (1M 3 J)+W(I-L Ay d )+ {I-2 J)+‘(I*?,J)4;
2 W{l-M2,.4)
K=1+M
52 BIKY=20.D0%0(Kyd) =800 {K=1,yJ)+W{K+] 4 J)+2.00%W{K-MyJ) ) #4,D0%
i {AIK=MLy I +H{K-LMe J) )+ E{K=2 3 J ) +W{K+2,4,J) 42, DOFNIK-M24 )
NOB3I=M214LS, M : . ,
BUI1=21.D05W( 1, J)=8.00%{WIT+LyJ)+W{TI+MJ)+w{I-MyJd}3+2,.00%
i (4(I+M1,J)+“(l—LM.J))+W(I+2 Jyew (I +M2,d)+u{1-M2,J)
K=1+1
53 BIKY=20,D0%WIKsJ1=3,00%{WIK-1sJ) +A{K+L3I)+WIKEMa JI A0 (K-NyJ) ) +2,0D%
1 (“(K+LM,J)+M(V+W1,J)+W(K MLy JYHWIK-LMy ) Y e (K42, J)+W K +142 ,J)*
2 WIK=MZ4J)
DOS54T=M3 ,LST, M : o
REEY=20.D0%W( T 3d)=3.00%{2.D0%W(TI-1Jd)P+W{T+M, I+ (I-N,d)) +4,00%
1 (W{THL My J) WML, J) 1+ 2.00%W({I-2yJ)+W {1 +M2,0)+W{[-M2,44)
K=1~-1 Lo
54 BIK)=21.D0%WIK,d)=8.D0%(W(K=1,J) #W(K+Lyd) #W{K=MyJ)+5 (K M5I)) +2,00%
1 {WIK+L My Jy+W K +M1y J) W (K~ b’l.J)h‘HK LMy d) ) #W (K~ ?yJ)*W(K+v‘?.J)+
2 WlK=M2,J} :
DOBBK=2,LLN
KM=K*M
DOSSL=3,LLM
[=KM+L -
55 B{11=20.D0%W{Fed ) =800 {W(I=-1yJd)+W T+, d)+W{[+M,J)+n (T2, ) ) +2.0D0%
T (WL My d Y+ T ML, DI +W T =ML, IV T ~LM, I ) el T-2, ) vl 1 #2500+
2 oWl #pM2y d)+WLTI-M2,J)

CALCULATE W(I,J+1)

NOGOT=1 s MN .
50 WL, J+1)=2.D0FWI T, d)=Wll,yd—1)=CLeBLTI+C2#BBITI+C3%P(J)
70 CONTINUE

HRETURN

END
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SUBRDUTINE FDIBy CALCULATES W AND £ FOR TEN TIME STEPS

SUBROUTINE FDIB (M,NyMN,WsF4A,8,(,838,0C,DI,P,C1, C2, CJ,E KR},

TMPLICIT REAL*B (A-H,0-7)
REAL*8 DABS

96

DIMENSION WIKReL) o F (KR 1) ALKR, 1) 21}, C‘l)IBB‘l’QDC(l’101(1)9p(1)

SET UP CONSTANTS ONE TIME ONLY

T IFIWIMN, L) NELOL) GO TO 2
MN1=MN+1
MNZ2=MN+2
M1 =M+l
M2=2%M
M3=3%M
MP2=M+2
MP3=M+3
M22=M2+2
MNM=MN-H
MNM2=MNM+2
MM1=M-1
MM2=M-2
M2ML=M2-1
M2M2=M2-2
MNM1=MN-1
N1=N-1
N2=N-2
N3=N-3
LY=(N-2)%M+2
LT1=0LT+1
LT2=MNM~2
LS=LT-M
LST=LT-2

2 CONTINUE
DO70J=24+11

USE LINEAR TERMS ONLY FOR VERY SMALL W

TF{OABS{W{MN,J}).GT.0.01) GO TO 10
0031=1,MN
F{I,4}=0. DO
3 88(1)=0. DO
GO TO 50
10 CONTINUE

CALCULATE CONSTANT VECTOR FOR (AIF=C 1(8)

C(1)1=0. DO
C{2}3=0. DO
DO121I=24M
K=1] '
S=2.00%W{ 1 +M,y J)*42
DOIlL=1,N2 .
K=K +# .
11 S=S+{W{KeMyJ)—WIK=MyJ) ) *%2
12 C{I+1)=(£%5/4.D0
C(M2+1)=0. DO~
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K=2
PO14I=M3 4 MN,yM
K=K+M
S=2 . DO%W(K,J)®%2
KK =K
DOL3L=1,MM2
KK=KK+1
13 S=S+{W(KKyJ)-WIKK=2,J))%%2
14 CLI+1)=F%*$/4.00
KK=K+M
S=2.D0%W KK, J)&%2
DOL5L=1,MM2
KK=KK+1
15 S=S+{W{KKsJ)=WI{KK=2yJ)) 5%
CIMNZ)=E%*S/4.D0
NO16K=1,N2
KM=K#*M
DO16L=2,MM]
T=KM+L
iM=1+M
IL=I-M - o o
16 CLI)=Es{ (WlTL—1yd)=WlIM-1,J}+W(IM+1,0) =Wl IL+1, ) 1%%2/16,00% .

L (0T =1yd)=2. D0 WL L, d W (T +1,J) )% (W1 yJI=2.DOKNIT 3040 (IM,J)) )
POLTI=M2,MNM, M C B
IM=I+M
IL=1-M : R R ST

L7 ClT)= —E#(2.D0%0{I=1,J)-2.00%W {1, J} P (W{IL,J)=2.D0% (L, d)+W0IM, U}

DOL1RI=MNM2, MNM1 B ' SN
IL=1-M : :

18 COI)=Ed{=(W{I=1,J)}=2.00%WtI4J)+W(T+1,d))%(2,00%W(TL,J)~2.00%

1 WL, ) | o
CIMN) ZF*{—(2.00%WI{MN=1 ) =2 DOFW(MN yJ) 1 (2. D0%W{MNM,J)=-2.D0% "

1 WIMN,J))) ' ‘

20 CONTINUE

PERFORM GAUSS ELIMINATIGN UN C({I)

21 KK=0
LL=3%M
DO23K=1,MN1
Ki=K+1
TFILLLLT.MN2) LL=LL+1
L=D1(K) .
IF(L.EQ.K) 6O TO 22
D=ClL)
CLLY=C(K)
C(K)=D

22 DD231=Kl,LL
KK=KK+1

23 CUI)=ClTY=DCIKK)*C(K)

PERFORM BACK SUBSTITUTION FOR F(Ith

31 FIMN2,J)=C(MN2)/ATMNZ,MN2)
I=MN2-1
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32 Il=1+1
$=0. DO
DN33K=11,MN2

33 S=S+A(T4KIXF(KJ)
FUL,d)={CLI)=S)/ALL,1)
IF{1.EQ.2) GO TO 34
(=1-1
GO TG 32

34 F(l,J)=0.

CALCULATE NONLINEAR TERMS FOR I OR 11{(B)

D4l K=1,N2
M=K XM
NO&4LL=2,MM1
I=KM+{|
IM=f+M
IL=1-M , ' E
41 BB(II=(F{IL 3 3)=2.DOXF (I, JI+F(IMy )15 {W{l-1:d1=2.00%ut0,d)+WlI+1,d)
T O34 {FII=1d =2 D0%F LT, 0 +F {141,000 % {WlIL, J)=2.00%{ T, 0)+W{IMsd) )
2 ={F{IL—1,J)=F{IM=1od)+F(IMelJ)=FCIL+L,d )
3 WAL=l d)=W{IM=1,J)+W(IM*L,d)~WIIL+1,4)}/8.D0:
DO421=M2 y MNM, M
M= +M
IL=1-M :
42 BBUIY=(F(IL,J)=2D0%F {1y +F(IMyd) )5 (2. D0%WI1=1,J)=2.D0%KH{1,J))+
L (2.D0%F(I~14J)=2.D0%F(1, ) ¥ (WIILyI)-2.D0% N(lyJ)+W(IW Ji
0043! MNMZ MNM1
{L=[-
43 BB(I)=(2.DO*F(ILoJ)—Z.DO*F(I,J))*(w(i“lyJ)—Z.DO*w(I,J)+W(I+1,J))#
1 (FUI=1,d)=2.D0%F {1, J)+F{I+1,d) 3% (2.00%W (1L ,d)-2.D0%W({1,41))
BBIMNI = {2 D0%F{MNMyJ)-2.D0%XF{MN3JID ¥ (2. D00%WIMNML yJ ) =2.D0%WIMNsJ) I+
1 (2 D0%F(MNMLpJ)=2.D0%F(MN,J)IX (2. D050 {MNM,J)=2.D0%W{MN,J 1))
50 CONTINUF

CALCULATE DEL FOURTH W FOR SIMPLY SUPPORTED

B{MP2)=18.D0%W(MP2,J)-8. Dok(d(M’3,J)+w(WP2+M J))*?.DO*W(MP?+M1 J)+

1 WMP2+42,J)14W{M3+2,4)

BIM2M1)=20,D0%W(M2M1 +J)~-8.00% (W {M2~ 2,J)+W(MZ,J)+N(N3 1,J))+

1 2.DOH{W{M3=2,J)+W{M3,J) ) +W(M2-3,d)+UW(HM2ZM]+M24J)

BiM2)=19.00%W{M2 4J)-8.D0%{2.D0%W{M2-1, J)+W(M3.J))+4 UO*U(MB— R R
-1 2.00%W{M2~ 2,J)+N(M3+M'J)

K=LT

BIKY=20.D0%WlKyJ)-8.DORIWIK+LyJ) +W{K+My ) +WIK-M, J) ) +2,D0%

1 (W{K+ML s J)+W (K~ MML,J))+N(K+2pJ)+M(K—MZ,J)

K=K+M

BIK)=19.D0%W(KyJ}—-B.DOX{WIK+1,J)+2.D0%W (K~ M,J))+4 DO%w(K MMHJ)+

1 WIK+2,J)#2.D0¥W{K~M2,J)

K=MNM-1

BIK)=22.00%W(K,J)}-8.D0% (WK~ 1,J)+W(K+1 J)+W(K+M,J)*W(K Mad)) 42, AR

1 (WIK+MMLyJI+WIK#ML y J) #+W (K~ Ml,J)+w(K “MMLy J) VW K=29d) +0{K-M2, Jb

K=K+l ‘

BIKI=21.D0%W(KeJd)=8.00%{ 2, D0%W{(K~1, 1 +W{K+Myd) +W (K= M.J))*é.UO*

1 (A KEMML p J) W LIK=MLyJ )} 42, DO0RWIK-2,J) +W (K=-M2y J) '
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K=MN=1
CBUKI=2L D0 WIK ) =8, DO WIK=1 ) +WIKELsJ)+2.D0O%NW (K -M53d) ) +4 ,00%
1 (WK -MEy JY+WIK=MML 3 J) } 9 IK=2,J 1 42.00%0{K-M2, J)
BIMN)=20.D0%WIMNJ) =10 DOF (WK Sy +d {MNM J) ) +8.D0%d (MN=M1,J) +
1 2.D0%(W{MN-24J)+WIMN=M2,J})
DOSLI=MP3 ,M2M2

51 B(I)=19.00%W{1,3)—8.D0%(W(I~-1, J)+I(I¢L,J)+U(I+W J1Y+2.D0%
1 (A lT+MMLy Y +U T +ML g J) Y eI -2, 00 +W (142, +W(T+M2,J)
DOS2I=LT1,LT2
BUIY=21.00%W{I4d)=8.D0%{WII-1, ) +W(I+1,0) #W{T+M, ) +W{I-M,J))+2.00%
1 (WL EMML )+ Wl T +MLpd )+ W (T =ML, J) ¢ CI-MML, d ) ) +W(T=2,00+W {142,004+
2 W(I-=-M2,J)
K=T+M

52 B{K)=20,00%W(K,J)-8.00% (S(K—I,J)+4(K+1,J)+? DO*U{K Mg d} ) +4.00%
LK =MLy YA (K=MML, J) I +WA{K=2,30) +W (K42, J)+2.D0%WIK=-M2,0)
DO531=M22,LS,M

53 B{I1=19.00%kl1,d)=8.D0%(WI+L,d)+d(T+My,J)+0{I-M,4)1+2.00%
IoOAWCT#ME I3+ W I=MML s d) )+ (142,00 +d {1 #M2, 0 +U{ T-12,J)
DO541=M3,LST,M
BUII=20,00%W{ I 3J)=B.D0%(2,005WI~1,Jd)+W{1+M, d)tW{TI~M,d))+4.00%
T AW{IAMML, J +WlI=ML ) ) #2.D0%A(I=2, J) +W{T1+M2y J)+W{1~12,4J)

K=l~1
54 B(K)=ZL.DO*N(K,J)—8.DO*(W(K—le)*W(K+l JIHWAK-Mye J) W {K+M ) ) +
1 2.D00%(W{K+MML,J)+W K+MLy I+ W IK=MLy J)+RIK=MML ) ) +W(K-2,0) ¢

2 ALK+EM2yJ Y HW{K~M2,d)
DO55K=24N3
KM=KxM
DOSS5L=3,MM2
[=KM+L
55 BLI)=20.D0%W{T4J)-8.00%(W{I-1sd}+W{T+1sd)+W{T+Med)+u({I-11,J))+
1 2.D0K(VI{T+MML y JI+W LT ML, JI+W LTI )W I-MML,J) )+
2 WLT=2, 14U T+2 ) +WT+M24d)+W(1=M2,J)

CALCULATE W(I,Jd+1)

DOBOK=14N1L

KM=K %M

DAKOL=2,M

IT=KM+L
60 WIT o J+13=2.D0%W{T4J)=W({l J-1)}-CLEBLI}+C2FBRETIH+C3%P(J)
70 CONTINUE

RETUKN

END
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C SUBROUTINFE ¥DIIB. CALCULATES W AND I FOR TEN TIME STEPS

SUBROUTINE FDUIB (MyNyMNoWsFsAyByCyBBDCsDTePsClsC2,C03,E4KR)
IMPLICIT REAL*8 (A-H,0-2)
REAL*¥R8 DABS
DIMENSION WIKRyL) yF(KR LI yALKRG L) oBLL),CtL)BBLL),DC{1)y00(1),P{1)
C SET UP CONSTANTS ONE TIME ONLY
1 IF(WIMN, L) NE.OL) GO TO 2
MNI=MN+1
MN2=MN+2
Ml=M+1
M2=2%M
M3=3%M
MP2=M+2
MP3=M+3
M22=M2+2
MNM=MN-M
MNMZ2=MNM+2
MM1l=M-1
M2 =M-2
MZ2M1=M2-1
M2M2=M2~2
MNML=MN=~1
Nl=N-1
N2=N-2
N3=N-3
LT={(N=-2)%M+2
LTl=LT+1 )
LT2=MNM~-2
LS=LT-M
LST=LT-2
2 CONTINUE
DOT704=2,11

USE LINCAR TERMS ONLY FOR VERY SMALL W

[aNeEe

[FIDABS{W(MN,4)).GT.0.01) GO TO 10
DO3I=14MN
F(I,J)=0, DO
3 BB(II=0. DO
GO TO 50
10 CUNTINUE

CALCULATE CONSTANT VECTOR FOR (A)F=C I1(8)

[aNeNel

C{1)=0.00

C(2)=0.00

DOLZ2I=24M

$=0.D00

K=1

DOLLIL=1,N2

K=K+M
11 S=S+(WIK+MyJ)-WIK-MyJ) ) ¥*x2
12 C{I+1)=E*S/4.D0

C{M2+1)=0.,00
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K=2
D141 =M, MN,M
K=K+M
$S=0,00
KK =K
NO13L=1,MM2
KK =KK+1
13 S=S+{WIKKeJI=W{KK=2,4J) ) %%2
14 C(I+1)=E%5/4.00
KK=K+M
S=0.00
DULSL=1,MM2
KiK =KK +1
19 S=Se(W{KK,J)-WIKK~-24J))x%2
CIMN2 ) =E*5/4.,00
DOI6&K=1 ¢y N2
KM=K %M
DOLO6L=2,yMML -
I=KM+ L
IM=]+M
TL=1~-M
16 COIV=E% (WU TL=Led) =W {IM=1yd)eW{ T+l J) =l TL 41 ) )22/ L6D0-
LWl =L ) =2.00%u{ be I+l T+ d )= 0ulILyJ)=2.00%0(1,d)+W(Ti49d)))
DOLTE=M2 ¢ MNI4y M
IM=f+H
[L=1~M ;
L7 Cll)= =FR(2.00%0{ =Ly J)=2.00%d (1o J))F{W0TL,d)=2,0020 01y d)+IM,J))
DOLAI=MHM2 y MNML
: Te=1-i
18 CAI)=F%l~{Wli=1yd)}=2.005%W{1ad) (il ed))R(2.0080 (1L ,Jd)=2.00%
L Wwil, N :
COMNY =002 DOXW{MN= Lo =2 0050 ANy J )% (2 D0%WIMMNM, ) =210
L WiMNyJ} )
20 CONTINUE

PERFOPHM GAUSS ELIMINATION UN C{T)

21 KK=0
LL=3%H1
DO23K=1,1NI
Kl=K+1
TROLL LT oMNZ2) Li=LL+]
L=D1(K)
TFILFaK)Y GO TO 22
b=C(L)
CLL)=C0(K)
CeKy=n
22 D23 L=K1,LL
KK=KK+1
23 CLIV=CLI)-DCIKK)*C LK)

PEPFORM BACK SUBSTITUTION FOR F(T,.0)

3L F(MN2,J)=C IMN2 Y/ ATRNZ 1N 2)
L =HN2-1
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32 Jl=1+1
5=0. DO
DO33IK=11,MN2

33 S=SHALI,K)*FIK,J)
FOlyd)={CL1)-S)/A(L,1)
1IF{I.EQ.2) GO TO 34

I=1-1
GO TO 32
34 F(1,J)=0.
C
C CALCULATE NONLINEAR TERMS FOR 1 QR I1(B)
C
DO41 K=1,N2
KM=K %M
DO41L=2,MM]
I=KM+L
IM=T+M
IL=1-M
41 BBLII=A(F(IL,J)=2.D00%F(IsJ)+F{IMyJ))%(W{[=1,d)=2.D0%W (L J)+W{1+1,J)
1 I+F(I=143)=2.D0%F{T ) +F{I+1,d) )% (d{ILyJ)-2.00%W(I,J)+WlIMyJ))
2 —(F{IL=1,0)~-FUIM-1yJd)+F(IM+1,J)-F(IL+1,J))
3 (WL =1Ji=WlIM-L ) +WlIMEL,J)-WlIL+L,4))/8.D0
DU42T=M2 y MNMy M
IM=T+M
IL=I-M ]
42 BBUIY=AF(TL 3J)=2D0%F (T, J)+F(IMyd) )% (2. DOFWIT=14J)=2.00%W{I,J))+
1 (2.00%F{I-1,J)-2.D0%F{1,3))¥(WIIL,J)-2.00%WlL,d)+W(IM,I))
NA43T=MNM2 , MNM1
IL=1-M
43 BRII)=(2.D0%F{IL s )=-2.D0%F (1, J) ¥ (WII=13J)=2.00%WI 1o d)+W{T1+1,4J})+
L (FUI=14J)=2.D0%F L) +F 0TI+, J) )% (2.00%WETIL,d)-2400%W{I,4))
BBIMN)=(2.D0%F{MNMyJ)}=2.D0%F (IMN, J) ) ¥ (2.DO¥WIMNML 4 J)=2.DOXWIMN,J) )+
I (2.D0%F(MNML pd)~2.D0%FIMNJ ) )E(R2.DO¥WIMNMy ) =2.D00%A(MN,J))
50 CONTINUE
C
C CALCULATE DEL FOURTH W FOR CLAMPED
C

BIMP2)=22,00%W(MP2+J)=8.D0%(WIMP3,J)+RW{MP2+HM,d) )} +2 ,DOXWIMP2+NML,J)+
1 WIMP2+2,J)+WIM3+2,J)
BIM2M11=22.D0%W(M2ML 9 J) =8, DOK (WEM2-2, )+ (M2 J)+W(M3~1,d))+

1 2.00%(WIM3=2,3J) +W (M3 J) b +nW(M2=3,J)+W{HM2M1+M2,])

B{M2)=21D0*W(M2 4 J)=8.00%(2.D0%W{M2-1,yd)+W{M3,J))+4,00%(M3-1,J)+
1 2.00%W(M2-2,J)+W{M3+M,J)

K=LT

BIKI=22.00%WIK yJ}=B8.DOF(W(K+LyJI+W{K+MyJ)+W(K=My J) ) +2.00%

I {WIKEMEp JI+WIK=MML yJ) I +U{KE2, J)+W (K=M2 4 J)

K=K+M =

BIKIZ214D0%W{K sJ)=B DOHF{ WK+ yJ}+2.DOXWIK-MyJ) )+ 4 DOXW(K=MML,J]}+

1 WiK+2,J)+2.D0%WIK=-M2,4)

K=MNM-1 )
BIK)=22,D0%W{KyJ)=8.D0%{WIK=Lsd) +W(K+1,J)+W{K+My JI+WK=M,J) ) +2.00%
I (WCK+AMLy J)+WIKAML g J) +WIK=MLy J)+WIK=MMT y J) J+W(K=2 pJ) +WK=M24J)
K=K+1

BIK)=21DO¥WIKyJ)=8.D0%(2.00%W(K=1,J) tWIK+MsJ)+W(K~-M,J))+4,D0%

I (WK EMML  JI+WAK=ML ¢y J) )+ 2, D0%W(K=2yJ)+WIK=M2, J)}
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K=MN=-1
BIKI=21.D0%WIK,yJ)=8aDOR{W{K=1 ) +W{K+LyJ}+2  DOXWIK~M, I}V +4.00%
T {W(K=MLyJ)+ULIK=MML 3 J) )+ {K=24J) +2,DOHWN{K~M2,4J)
BIMN) =20 D0¥WIMN yJ)=16.00% (WK, ) +H{MNMJ) I +B.DOFW(MN=ML,d}+
1 2.00%( WIMN=2 4 J)+WIMN=-M24J))
DOS1I=MP3 , M2M2
51 B{I)=21.DO0%WlI4J)=8.D03%{WI-1Ji W {T+1,J)4+W{I+M,J))+2.00%
1 (WOTHMML a I AW LTHML )Y+ W T=2, 00+ LI+ 2, J)+U ([ +M2,J)
DOS21=LT1,LT2
BEII=2100%WIT 4d)=8.D0%(W{I-1yd)tW{I+1,J)+W{T+Myd)+W(I-M,Jd))+2.,00%
1 (WITHMMLa ) #WCTHMLy YW =MLyJY+W LT =0ME 034K T=2, 0040 (142,01} +
2 W{I-M2,J) ’ .
K=1+M
52 BIK)=20.DORWIKsJ) =8 DOX{WIK=13J) #+W(K+]1,d)+2.00%{K=M,Jd))+a,00%
1 {WIK-MLyJ)+W{K=MMLyJ ) 1 +A{K=23d I +W{K+2:J}+2.DOXWIK=-M2,4J)
DOS3I=M22,LSyM
53 BUI)=21.00%W( [, J)=8.00%{WII+L,yd)+W{L+idy,d)+W{I-Myd))}+2,D0%
1 (WETHML g YW UTI-MML ) #WLT+2,d )+ W (T +M2, JY+UH{T-M2,4,J)
DOS4I=M3,LST,M
B{I}=20.D03W{ {3J)~B8.00%{ 2., 00%W{I=13J1+W{I+MyJ)+W{TI-M,J))+4,D0%
1 (W{TEMML G VWL T=ML,, 00 ) 42 00%W {12y )+ T+M2,J) W {1~-M2y J)
K=1-1
54 BIK)=21 D0%W{K, )-8, DO {W{K=L,J)+d{K+1yd )+l {K=M,J) +ulK+M,d) )+
1 2.D0%(WIK4MML 3 J)Y+WIKEMLy J)HWLIK-ML y JI+WIK-MML,J) ) HHIK-2,J)+
2 WIK+#M24 J)+W{K-M2,4)
DO55K=2,4 N3
K M=K M
NOS55L =3, MM2
T=KM+{ .
55 BL{1)=20.D0%W(14J)=8.D0%{W{I-1,d)+W{I+1l,J)+W{I+MaJI+HLI-M,J))+
I 2.D0%{W{T+MMLyJ) +W{T+MLyJ)+WlL=M],J) +W{I-MML,J) )+
2 WUI=29 03+ Wl 14230 +W (T +M24J)+WI1-M2,J)

CALCULATE W(I,J+1)

DOLOK=1yN1

KM=K*M

DO6OL=2,M

T=KM+L
60 W(Igd+1)=2.D0%W (1, d)~W{1,J=1)=CL*B 1) +C2%BRLT)+C3*P(J)
70 CONTINUE

RETURN

END
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