APPLICATION OF GROUP CONTRIBUTION THEORY

TO HEATS OF MIXING

Ву

MARK LAURIN SMITH Bachelor of Science University of Wisconsin Madison, Wisconsin

1960

Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1967

>

Thesis 1967 86552

60p,2

OKLAHOMA STATE UNIVERSITY LIBRARY JAN 18 1956 APPLICATION OF GROUP CONTRIBUTION THEORY

TO HEATS OF MIXING

Thesis Approved:

Thesis Adviser 0

of the Graduate College Dean

PREFACE

Chemical engineers and members of other disciplines in science and technology are frequently concerned with the determination of all types of thermodynamic properties. It is generally accepted that these properties must be determined as individual functions of the molecules, or mixtures of molecules, being considered.

This project presents a method by which thermodynamic properties may be evaluated as functions of the groups or radicals composing the molecules. This has the advantage that the group functions, once determined, are valid for all systems containing the same groups. Thus, experimental data for each individual system is no longer necessary.

Details of this theory and results of its application to experimental heat-of-mixing data are presented in this thesis.

I am indebted to Dr. K. C. Chao and Dr. R. L. Robinson, my advisors, for valuable suggestions and guidance in relation to this study. I also wish to express my appreciation to the Air Force Institute of Technology for providing me with the opportunity to pursue graduate studies, and furnishing the financial support for my entire graduate program.

iii

TABLE OF CONTENTS

Chapte	r	Page
Ι.	INTRODUCTION	1
II.	LITERATURE REVIEW	3
	Surface Area Theory	3 4 5 5
III.	THEORY	7
	Group Surface-area Model	7 9 11
	Vaporization	13
IV.	DATA AND CALCULATIONS	15
	Alcohol-hydrocarbon Mixtures	15 15 16 18
٧.	PRESENTATION AND DISCUSSION OF RESULTS	22
VI.	CONCLUSIONS AND RECOMMENDATIONS	37
	Conclusions	37 38
A SELE	CTED BIBLIOGRAPHY	41
APPEND	IX A. CALCULATION OF GROUP SURFACE AREAS	43
APPEND	IX B. COMPUTER PROGRAM	49
APPEND	IX C. NOMENCLATURE	65

LIST OF TABLES

Table		Page
I.	Internal Energies of Vaporization to Ideal Gas for Normal Hydrocarbons	. 17
II.	Heats of Mixing of Alcohol-hydrocarbon Mixtures at 30° C .	. 19
III.	Group Interaction Energies	. 23
IV.	Comparison of Hydrocarbon Data with Calculated Values $\ .$.	. 23
V.	Comparison of Heat-of-mixing Results with Data	. 24
VI.	Heats of Mixing, Methanol Mixtures	. 34
VII.	Exact Model, Butanol-heptane Mixtures	. 34
VIII.	Internal Energies of Vaporization of Alcohols	. 35
IX.	Hydrocarbon Interaction Energies From Simple Model	. 35
Х.	Hydrocarbon Internal Energies, Simple Model	. 35
XI.	Atomic Radii	. 45
XII.	Free Surface Areas of Groups	. 47

v

LIST OF ILLUSTRATIONS

Figure	e	Page
1.	Heat of Mixing, Ethanol-hexane, at 30° C	. 26
2.	Heat of Mixing, Ethanol-nonane, at 30°C	. 27
3.	Heat of Mixing, Propanol-heptane, at 30 ⁰ C	. 28
4.	Heat of Mixing, Butanol-heptane, at 30°C	. 29
5.	Heat of Mixing, Pentanol-hexane, at 30°C	. 30
6.	Heat of Mixing, Octanol-heptane, at 30°C	. 31
7.	Heat of Mixing, Octanol-nonane, at 30 ⁰ C	. 32
8.	Geometry of Bonded Atoms	. 45
9.	Differential Element of Surface on a Sphere	. 45
10.	Surfaces of Bonded Hydrogen and Carbon	. 47

CHAPTER I

INTRODUCTION

Until recently, thermodynamic properties such as heat of vaporization and heat of mixing have been treated as molecular functions. Experiments and theories are normally based on the supposition that the molecule determines the values of thermodynamic functions, and the presentation of data reflects this viewpoint.

Lately, considerable development and refinement have been devoted to the theory that such molecular functions may be reduced to functions of the component groups or radicals comprising the molecule. Once such group functions are evaluated, it follows that it is no longer necessary to experimentally determine values of the thermodynamic functions for all compounds of interest, since the known group functions may be applied to all molecules containing the groups. This has the potential of substantially reducing the experimentation necessary to characterize a given class of compounds.

The following presentation shows the application of a particular type of group contribution theory to heats of mixing. The resultant correlation is shown to give reasonable agreement with experimental data. Thus, one purpose of the development is accomplished by demonstrating that the physical concepts assumed in formulating the correlation are valid. This indicates that the physical model should be applicable not only to heats of mixing, but to other thermodynamic

functions as well.

In fact, the model may prove to have great versatility in liquid theory, just as the lattice theory of solids and the "billiard-ball" theory of gases have demonstrated. The model essentially pictures the liquid molecule and its component groups or radicals as being "bathed" in surrounding liquid, and in constant interaction with these surroundings. It assumes neither the fixed points of a solid lattice nor the necessity for collisions of a gas. It is certainly possible that this might reasonably represent the true physical picture of a liquid system.

There was a second purpose involved in selecting heats of mixing as the thermodynamic function to be tested. The variation of excess free energy with temperature is a simple function of the heat of mixing. Similarly, the variation with temperature of the activity coefficient of a component in solution is a simple function of the partial excess enthalpy of the component. Thus, a correlation for heats of mixing may have great importance in the development of relations for other thermodynamic functions.

CHAPTER II

LITERATURE REVIEW

Surface Area Theory

Langmuir (13), as early as 1916, proposed that certain characteristics of fluids could be expressed in terms of the chemical groups or radicals comprising the molecules. He suggested that interaction forces among molecules were dependent on the exposed surface areas of these groups in the molecule being considered and in the molecules surrounding it.

He applied this theory primarily to two-phase relations, such as surface tension, film adsorption and vapor pressures. Langmuir recognized that such relations would be strongly influenced by preferential orientation of the molecules at phase interfaces.

Others (2, 5, 6, 7, 9, 10, 11, 26, 27) who have expanded on Langmuir's theory have attempted to account for such orientation effects by applying statistics to a quasi-lattice arrangement of the molecules, in which a molecule is free to rotate about a fixed lattice point, subjecting different groups to contact with surrounding molecules. Guggenheim (9, 10, 11) credits Chang (5, 6) with being the first to propose this theory. The model leads to some fairly tedious, but not necessarily difficult, statistical calculations, even for simple fluids.

Barker (2) attempted to relate excess free energy, enthalpy and

entropy by the quasi-lattice model. He considered solutions of alcohols with non-polar (cyclic) molecules only. After considering both onedimensional and three-dimensional arrays, he concluded that the threedimensional array is necessary to represent the data.

Tompa (27) refined Guggenheim's work, and tested his model on the activity coefficients of binary mixtures of linear hydrocarbons. The fit is reasonably good for the three mixtures considered. A similar model was presented by Flory (7) and modified by Tobolsky and Blatz (26), but no tests of the model were presented.

Group Contribution Theory

Redlich, et al. (17, 19) used Langmuir's basic idea of separating the molecule into component groups, but their development differed greatly from previous ones. They assumed a characteristic "crosssection" of the groups, a function of the change effected in molar volume by adding the group to a molecule.

Several simplifying assumptions were made in the development. Groups which did not show a positive contribution to molar volume were assumed to be so deeply imbedded within the molecule that they could not interact with other groups. Isomers were all treated as if they were normal, and interactions between paraffinic groups were assumed negligible compared to interactions with other groups. Finally, the interaction energy of a paraffinic CH_3 group with a group u was assumed to be the same as for an interaction of a paraffinic C, CH, or CH_2 group with the same group u. While these assumptions greatly simplified the calculations by reducing the number of different interactions, the effect of introducing them could be determined only by repeating the

calculations without the assumptions. The model also makes no allowance for the possibility that interactions involving higher energies may be mathematically preferred.

The model was tested by calculation of heats of mixing for various binary mixtures. Agreement with data was good. Entropies of mixing were also determined, but results in this case were very poor. This is probably due, at least in part, to the simplifying assumptions.

Other authors (23, 24) have offered basically similar theories. Scheller (24) attempted to determine activity coefficients from partial excess entropies and partial heats of mixing, for alcohol-water and alcohol-hydrocarbon mixtures. Results were good.

Local Concentration Effect

Wilson (28) proposed that differences in energy of interaction would cause local concentration effects, with a clustering of the molecules having higher interactions. Others have made similar observations, and it was the application of this principle to group theory which led to modifications of the basic model presented in this paper.

Heat-of-mixing Data

A thorough proof of a proposed theory or correlation has in most cases been virtually impossible due to a lack of extensive data on homologous chemical series. Such data has only recently begun to appear in the literature. In the case of heats of mixing, Lundberg (14) has published data on a variety of binary mixtures of hydrocarbons. Van Ness, et al. (16, 21, 22) offer very extensive data on mixtures of alcohols and hydrocarbons, both aliphatic and cyclic. Van Ness has indicated that he intends to publish data on a wide variety of other mixtures as it becomes available. Rose and Storvick (20) also have data on alcohol-hydrocarbon mixtures.

CHAPTER III

THEORY

The following development includes concepts adapted from both the Langmuir and Redlich theories, as well as modifications original to this paper. A model is developed to calculate alcohol-hydrocarbon heats of mixing from group interaction parameters.

Group Surface-area Model

We consider a molecule to be composed of individual groups or radicals, linked together. For example, a straight-chain hydrocarbon is made up of CH₃ groups and CH₂ groups. Each group, i, has a certain area of free surface, S₁, available for contact and interaction with the free surface of other groups. The amount of surface area available is assumed to be dependent not only on the group itself, but on the groups connected to it in the particular molecule. Calculation of the free surface follows closely a method used by Bondi and Simkin (3) involving the van der Waals and covalent radii, and is shown in detail in Appendix A. While this is superficially similar to Redlich's "cross-section", the method used to determine values is entirely different.

It is further assumed that an interaction of any two groups, u and v, always produces the same energy contribution, λ_{uv} , per unit area of contacting surfaces. As a first approximation, the probability of an

interaction of a group i with any group j is assumed to be dependent on only the fraction of the total free surface area of the molecule which is occupied by group j. Thus if λ_{uv} is a contribution to the internal energy of vaporization of a pure compound containing n_{u} groups of type u per molecule, each having a surface area S_{u} , the total energy of interaction of all u groups in one molecule with v groups is

$$\frac{A_{u}A_{v}\lambda_{uv}}{A_{T}}$$
 (1)

where $A_u = n_u S_u$

 A_{T} = total surface area of the molecule. Sum of all group areas. It follows that the total energy contribution of u groups with all other groups will be

$$A_{u} \frac{\Sigma}{j} \begin{pmatrix} A_{j} & \lambda_{uj} \\ A_{T} & uj \end{pmatrix}$$
(2)

and the grand total of all energy contributions for a single molecule is

$$\Delta U_{\rm V} = \frac{1}{2} \frac{\Sigma}{k} \left[A_{\rm k} \frac{\Sigma}{j} \left(\frac{A_{\rm j}}{A_{\rm T}} \lambda_{\rm jk} \right) \right]$$
(3)

Both \sum_{j} and \sum_{k} represent summation over all types of groups. The necessity for division by two is readily apparent from the fact that each interaction is counted twice in the total summation.

Finally, multiplication by Avogadro's number, N, gives the molal internal energy of vaporization

$$\Delta U_{\rm V} = \frac{N}{2} \frac{\Sigma}{k} \left[A_{\rm k} \frac{\Sigma}{j} \begin{pmatrix} A_{\rm i} & \lambda \\ A_{\rm T} & jk \end{pmatrix} \right]. \tag{4}$$

Note that, from the original assumption, $\lambda_{jk} = \lambda_{jk}$.

Using straight-chain hydrocarbons, excluding methane, as a simple example, we have only the CH_2 and CH_3 groups to consider. Assigning

the subscripts 2 and 3, respectively, and recognizing that n_3 equals two in all cases, the equations are

$$A_2 = n_2 S_2 \tag{5}$$

$$A_3 = n_3 S_3 = 2S_3$$
 (6)

$$A_{\rm T} = A_2 + A_3 = n_2 S_2 + 2S_3 \tag{7}$$

$$\Delta U_{\rm V} = \frac{N}{2} \left(\frac{A_2^2}{A_{\rm T}} \lambda_{22} + 2A_2 \frac{A_3}{A_{\rm T}} \lambda_{23} + \frac{A_3^2}{A_{\rm T}} \lambda_{33} \right)$$
(8)

While pair interactions are a necessary consequence of this model, this is based on the fact that, from purely physical limitations, a specific area of surface cannot possibly be in contact with more than one other surface at any given time. However, there is nothing in the model to prevent the possibility of different portions of the surface of a given group interacting with other groups of any type. Thus a specific group may be undergoing several different pair interactions at the same time. The only assumption implied is that the interaction energy of a pair of groups is not affected by any other interaction which may be taking place.

Application to Mixtures

This concept may be extended to mixtures of any number of different molecules, using a pseudo-molecule concept. The total surface area of a particular group in the pseudo-molecule is simply the area in a particular molecule times the mole fraction of that molecule in the mixture, summed over all types of molecules. For example, in a binary mixture of molecules a and b, the area of group k is

$$A_{k} = x_{a} n_{k,a} S_{k,a} + x_{b} n_{k,b} S_{k,b}$$
⁽⁹⁾

where x_{a} = mole fraction of molecule a in the mixture.

 $n_{k,a} = number of k groups in molecule a.$

 $S_{k,a}$ = surface area of group k in molecule a.

This new definition of area simply replaces the other definition in equation (4). The equation remains exactly the same.

It is apparent, however, as noted in the calculation of surface areas in Appendix A, that S_k is not necessarily a constant within a given molecule. In an alcohol, for example, all CH_2 groups except one are linked to two other carbon atoms. The one exception is linked to one carbon and one oxygen atom. Consequently, the free surface area of this group is not the same as the others.

Strictly speaking, the model requires that such a group be treated as a completely different type of group, with an entirely separate set of interactions. However, this approach would appreciably complicate the calculations for all but the simplest molecules. It was decided to simplify the calculations by defining an average group surface area as

$$S_{k,a} = \frac{\sum_{\substack{i \\ k,a}}^{i} S_{k,a}^{i}}{\sum_{\substack{i \\ k,a}}^{n} K_{i,a}}$$
(10)

where $S_{k,a}^{1} = a$ particular area value of group k in molecule a.

 $n_{k,a}^{i}$ = number of k groups in molecule a which have area $S_{k,a}^{i}$. The summation is made to include all k groups in the molecule. Proof of the validity of this assumption would be difficult. However, a check was performed by recalculating values for several data points by the exact method. Results, discussed later, indicate that the assumption is indeed valid.

Local Concentration Effect

Although there is some possibility that such a simple model as has been proposed will give a reasonable fit to experimental data, the experience of others with somewhat similar models indicates that the likelihood is very small. Results presented later bear this out. Some modification seems necessary to account for the probability that there will be a natural preference for those group interactions having higher interaction energies. The method chosen to reflect these preferential interactions is similar to that used by Wilson (28). However, Wilson applied the concept only to molecules. The present model extends the application to groups.

It is proposed that molecular interactions having higher energies will occur in preference to those with lower energy, rather than being strictly proportional to surface area fractions. Extending this to group interactions, it is logical that those pair interactions exhibiting higher interaction energies will be the more probable.

This influence may be expressed as follows. If the area of contact between the surfaces of groups u and v in a single interaction is S_{u-v} , then the surface interaction energy will be

$$E_{S} = S_{u-v} \lambda_{uv}$$
(11)

The thermal energy of a group is kT, where k is the molecular Boltzmann constant and T is the absolute temperature. Then since S_{u-v}/S_u is the fraction of the surface area of group u involved in the interaction, the thermal energy of that portion of the u group which is involved in the interaction is

$$\frac{S_{u-V}}{S_{u}} kT$$
(12)

Similarly, the thermal energy contribution of the v group is

$$\frac{S_{u-v}}{S_v} kT$$
(13)

and the total thermal energy contribution is

$$E_{T} = \frac{S_{u-v}}{S_{u}} kT + \frac{S_{u-v}}{S_{v}} kT$$
(14)

The ratio of surface energy to thermal energy is then

$$\frac{E_{S}}{E_{T}} = \frac{S_{u-v}}{S_{u}} \frac{\lambda}{kT} + \frac{S_{u-v}}{S_{v}} \frac{\lambda}{kT} = \frac{\lambda}{uv} \frac{\lambda}{kT} = \frac{S_{u}S_{v}}{S_{u}} \frac{\lambda}{kT} \frac{uv}{kT}$$
(15)

and the relative contribution of the interaction-energy magnitude to the probability of interaction is assumed to be the exponential function

$$\frac{\frac{S_{u}S_{v}}{S_{u}+S_{v}}}{\frac{S_{u}+S_{v}}{K_{T}}} \frac{\lambda_{uv}}{K_{T}}$$
(16)

where e = base of the natural logarithms. If we define

e

$$S_{uv} = \frac{S_{u}S_{v}}{S_{u} + S_{v}}$$
(17)

then the term for u-v interactions will be

$$A_{u} \frac{A_{v}e^{\sum_{uv} \lambda_{uv}/kT}}{\sum_{i} A_{i}e^{ui} ui/kT}} \lambda_{uv}$$
(18)

where \sum_{i} = summation over all types of groups present. Finally, the molal internal energy of vaporization is

$$\Delta U_{V} = \frac{N}{2} \sum_{k} \left[A_{k} \sum_{j} \left(\frac{A_{j}e^{jk} \lambda_{jk}^{kT}}{\sum_{i A_{j}e^{jk} ki} \lambda_{jk}^{kT}} \lambda_{jk} \right) \right]$$
(19)

This performs a function similar to that of the quasi-lattice theory found in several models cited in Chapter II. Its greatest advantage is that it is free from the assumption of a lattice which actually exists only for crystalline solids.

Heats of Mixing From Internal Energies of Vaporization

If the energies mentioned above are internal energies of vaporization to the ideal gas, then heat of mixing may be determined by the following method. Considering a given mixture, if the components are first mixed in the liquid state at a particular temperature, and the mixture is then vaporized to the ideal gas, the total energy change includes both the internal energy of vaporization and the heat of mixing.

If instead, that amount of each pure component equal to its mole fraction in the mixture is vaporized from the same initial temperature to the ideal gas, and the gases are then mixed, the total energy change is the internal energy of vaporization only, since the heat of mixing of ideal gases is zero. Thus the heat of mixing is the difference between the internal energies of vaporization of the pure components and the internal energy of vaporization of the mixture. In equation form,

$$\Delta H_{M} = \frac{\Sigma}{i} \left(x_{i} \Delta U_{V,i}^{*} \right) - \Delta U_{V,Mixture}^{*}$$
(20)

Then if values of interaction energy, $\frac{\lambda}{ik}$, can be determined for all

group pairs to fit the internal energies of vaporization to the ideal gas, these same λ values may be used to find the heats of mixing for various mixtures.

This is a much more severe test of the method than a simple fit to internal energy of vaporization data would be, since the heat of mixing is of a much smaller order of magnitude. If, as is common, the energy of vaporization is on the order of 100 times the magnitude of the heat of mixing, then an error of 1% in the energy of vaporization value may result in an error of 100% in the heat of mixing value.

CHAPTER IV

DATA AND CALCULATIONS

This section outlines the selection of a set of mixtures on which to test the model, and the development of a computer program to determine the interaction energy values from the data. The exact method of fitting the energy values to the data is explained.

Alcohol-hydrocarbon Mixtures

The basic factors considered in selecting a set of mixtures on which to test the model were twofold. First, sufficient data must be available to provide a reasonably thorough test over a variety of mixtures. Second, for the initial test the molecules involved should be simple, involving only a few different groups. Both these criteria are met by mixtures of normal hydrocarbons and normal alcohols. Van Ness, et al., (21) have produced extensive data on these systems, and only three groups (CH_3 , CH_2 , OH) are involved.

Internal Energy of Vaporization

Data on internal energy of vaporization to the ideal gas may be derived from heat of vaporization data by the relation

$$\Delta U_V^* = \Delta H_V + (H^* - H_V) - (1 - z_L) RT$$
(21)

where $(H^* - H_V)$ = enthalpy difference between ideal and actual gases.

 $z_{T_{i}}$ = compressibility factor of the liquid.

R = the gas constant, or molal Boltzmann constant.

T = absolute temperature.

The second and third terms may be found from generalized correlations by Lydersen, et al. (15).

The determination of ΔU_V^* values for normal hydrocarbons at 25°C is shown in Table I. Values of ΔH_V are from API-44 (1).

Computer Program

Considering the complexity of attempting to simultaneously optimize several different parameters, and the present state of the art in computer programming, it was inevitable that a computer should be used to optimize the λ values. The basic program selected (4) is a non-linear regression developed at California Research Corporation (now Chevron Research Corporation). It has been adjusted and refined to produce a completely general packaged program for the nonlinear fit of data to any equation, within fairly liberal size limitations. A complete list and explanation of the program are given in Appendix B.

The program was used to find values of the three λ parameters which gave the best fit to ΔU_V^{\star} data on hydrocarbons, based on a least-squares criterion. The resultant parameters and the fit they give to the data will be presented later.

ΤA	BL	E	Ι

INTERNAL ENERGIES OF VAPORIZATION TO IDEAL GAS FOR NORMAL HYDROCARBONS

Hydrocarbon	Δн _v , 25°с	^T r	^z L	$\frac{H^*-H_V}{T_C}$	н*-н _V	(1-z _l) RT	Δυ [*] , 25 [°] C
	······································	. <u></u> <u></u>	·		··· ,·· ·		· · · · · · · · · · · · · · · · · · ·
Propane	3605	.806	.029	.77	285	576	3314
n-Butane	5035	.702	.010	.25	106	586	4555
n-Pentane	6316	.635	.005	.09	42	590	5768
n-Hexane	7540	.587	.002	.04	20	591	6969
n-Heptane	8735	.552	.002	.02	11	591	8155
n-Octane	9915				5	592	9328
n-Nonane	11099				2	593	10508
n-Decane	12276				1	593	11684

Units of all the above quantities are cal/g-mole, except for T_r and z_L , which are dimensionless, and $\frac{H^* - H_V}{T_C}$, which has dimensions of cal/g-mole ${}^{O}k$.

.

Heats of Mixing

The next step would logically seem to be to determine the three parameters involving the hydroxyl group, by fitting internal energies of vaporization of alcohols, considering the three previously determined hydrocarbon parameters to be known constants. However, there are two reasons for not doing this. First, data on heats of vaporization of alcohols at 25°C are not readily available. Second, as mentioned before, parameter values calculated to fit heats of vaporization may give a very poor fit to heats of mixing, since we are obtaining small values by addition and subtraction of large values.

Instead, an alternate method was chosen. It was decided to fit the hydroxyl group parameters directly to the heat-of-mixing data. In this way, closer agreement with the heat-of-mixing values should be possible, and ideally the parameter values this yields should be usable to backcalculate the values of the internal energies of vaporization of the alcohols.

The heat-of-mixing values which were used were extracted from the data of Savini, Winterhalter and Van Ness (21). Since data were not available at 25°C, values for 30°C were used. Although this introduces some bias, the effect should be very nearly equal for all data points, and the error introduced should be quite acceptable.

The original source gives smoothed data for seven different mixtures, covering five different alcohols and three hydrocarbons. The data selected for input to the computer program includes nine equispaced points for each mixture, from ten to ninety mole percent alcohol. These are shown in Table II. For this data, the three hydrocarbon parameters were set at the values previously determined to fit the hydro-

TABLE	TT
-------	----

HEATS OF MIXING OF ALCOHOL-HYDROCARBON MIXTURES AT 30° C

Mixture	Mole Fraction Alcohol	ΔH _M , cal/g-mole (21)
an a	0.1	112.3
	0.2	138.0
	0.3	148.0
Ethanol-	0.4	144 0
Hexane	0.6	132 5
	0.7	113.9
	0.8	87.9
	0.9	52.3
*••••	0 1	129 9
	0.2	160.2
	0.3	174.6
Falseral	0.4	178.4
Etnano1-	0.5	174.4
Nonane	0.6	163.4
	0.7	145.0
	0.8	117.4
0. <u> </u>	0.9	74.4
	0.1	126.5
	0.2	1.56.4
	0.3	169.1
Propanol-	0.4	169.2
Hentane	0.5	159.5
rep our	0.6	141.1
	0.7	115.9
	0.8	84.5
	0.9	40.5

:

:

Mixture	Mole Fraction Alcohol	ΔH _M , cal/g-mole
Butanol- Heptane	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	123.0 151.0 164.1 164.0 153.5 133.6 106.9 74.9 38.9
Pentanol- Hexane	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	109.0 131.5 141.0 139.9 129.0 109.5 85.3 58.1 29.2
Octanol- Heptane	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	105.8 122.3 128.5 126.7 118.3 103.2 81.8 56.6 28.4
Octanol- Nonane	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$120.9 \\ 141.5 \\ 149.0 \\ 148.5 \\ 140.4 \\ 122.2 \\ 98.9 \\ 69.6 \\ 35.9$

TABLE II (Continued)

Data on two menthanol-hydrocarbon mixtures were also available from another article (22). These were not included in the computer input since the systems are only partially miscible at 30° C, and the effect of this fact on the model is impossible to predict.

CHAPTER V

PRESENTATION AND DISCUSSION OF RESULTS

This section shows and explains the results which were obtained by fitting the interaction energy parameters to experimental data.

The six values of group interaction energy, the first three as determined by hydrocarbon vaporization data, and the three involving the hydroxyl group as fitted to heat-of-mixing data are shown in Table III. Relative values are within expectations, since interactions involving the hydroxyl group may be expected to involve larger energies than those between hydrocarbon groups and the hydroxyl-hydroxyl interaction, in particular, should be quite large.

Table IV is a comparison of the hydrocarbon data from Table I and the values calculated from the three hydrocarbon-hydrocarbon interactions. The fact that the agreement is very good is not particularly significant since the relationships involved are quite simple, and any reasonable three-parameter correlation may be expected to give good results.

A comparison of the heat-of-mixing data with the values calculated from the model is shown in Table V. To better visualize the fit, data for each of the seven mixtures is plotted separately in Figures 1 through 7. The experimental data are indicated by continuous curves, and the computer-calculated points are shown individually.

TABLE I	1	I
---------	---	---

Interaction	$\lambda \ge 10^9$, cal/cm ²	
CH2-CH2	861.08	
^{CH} 2 ^{-CH} 3	723.71	
сн ₃ -сн ₃	468.64	
OH-OH	3412.50	
OH-CH2	1533.85	
OH-CH ₃	1218.73	

GROUP INTERACTION ENERGIES

TABLE IV

COMPARISON OF HYDROCARBON DATA WITH CALCULATED VALUES

	$\Delta U_{\rm V}^{*}$, ca	al/g mole	
Hydrocarbon	Data (Calculated	Percent Deviation
Propane	3,314	3,313	-0.03
n-butane	4,555	4,557	0.04
n-pentane	5,768	5,769	0.02
n-hexane	6,969	6,966	-0.04
n-heptane	8,155	8,152	-0.04
n-octane	9,328	9,332	0.04
n-nonane	10,508	10,509	0.01
n-decane	11,684	11,683	-0.01

		∆H _M @ 30	^o C, cal/g mole	Percent
Mixture	Mole Fraction Alcohol	Data	Calculated	Deviation
	0.1	112.3	91.9	-18.2
	0.2	138.0	146.9	6.4
	0.3	148.5	172.0	15.8
**. * *	0.4	150.3	173.3	15.3
Ethanol-	0.5	144.0	156.8	8.9
Hexane	0.6	132.5	127.8	- 3.5
	0.7	113.9	92.0	-19.2
	0.8	87.9	54.7	-37.7
	0.9	52.3	21.9	~58.1
	0 1	129 9	92 5	~28.8
	0.2	160 2	156.5	- 2.3
	0.3	174 6	193.6	10.9
	0.4	178 4	206.0	15 4
Ethanol-	0 5	174 4	196 3	12 6
Nonane	0.6	163 4	168 3	3.0
	0.7	145.0	126.6	⊷12.7
	0.8	117 4	77 7	-33 9
	0.9	74.4	30.8	-58.6
	0 1	1.26 5	00.2	
	0.1	156 6	147 6	- 5 6
	0.2	160 1	177 5	- 5.0
	0.5	160 2	194 9	4.7
Propanol-	0.4	150 5	174.0	9.2
Heptane	0.5	1/1 1	1/4.1	. 6.2
	0.0	115 0	116 0	0.2
	0.7	24 5	76.0	~ 9.0
	0.9	46.5	36.8	-20.9
		1.0.0	0 ° 0	20.0
	0.1	123.0	85.9	-30.2
	0.2	151.0	139.9	- 7.3
	0.3	164.1	168.1	2.4
Butanol-	0.4	164.0	1/5.5	/.0
Heptane	0.5	153.5	106.0	8.5
L	0.6	133.6	145.3	8./
	0.7	106.9	115.0	7.5
	0.8	74.9 38 0	/8.8 30.6	5.2
	U.7	7,07	57.0	1/

COMPARISON OF HEAT-OF-MIXING RESULTS WITH DATA

Mixture	Mole Fraction Alcohol	ΔH _M @ 30 [°] C, cal/g mole		Percent
		Data	Galculated	Deviation
Pentanol- Hexane	0.1	109.0	78.2	-28.3
	0.2	131.5	123.4	- 6.1
	0.3	141.0	144.6	2.5
	0.4	139.9	148.0	5.8
	0.5	129.0	138.5	7.4
	0.6	109.5	119.8	9.4
	0,7	85.3	94.6	10.9
	0.8	58.1	65,2	12.2
	0.9	29.2	33.2	13.6
Octanol- Heptane	0.1	105.8	65.6	-38.0
	0.2	122.3	103.7	-15.2
	0.3	128.5	122.0	- 5.0
	0.4	126.7	125.9	- 0.6
	0.5	118.3	119.2	0.8
	0.6	103.2	104.6	1.3
	0.7	81.8	84.0	2.7
	0.8	56.6	59.0	4.3
	0.9	28.4	30.7	8.2
Octanol- Nonane	0 1	120.9	69.7	-42.3
	0.2	147 5	114 6	-19.1
	0.3	149.0	139.2	- 6.6
	0.4	148.5	147.7	- 0.5
	0.5	140.4	143.2	2.0
	0.6	122.2	128.2	4.9
	0.7	98.9	104.7	5.9
	0.8	69.6	74.7	7.3
	0.9	35.9	39.3	9.6

TABLE V (Continued)

Although it is apparent that the overall agreement is not as close as could be desired, the results verify the qualitative validity of the model. A shift of the curve toward the hydrocarbon side is manifest as the length of the alcohol molecule increases. One possible solution to this problem is discussed in Chapter VI.

Several points for the methanol mixtures were also calculated from

Figure 1. Heat of Mixing, Ethanol-hexane, at 30°C

Figure 2. Heat of Mixing, Ethanol-nonane, at 30°C

Figure 3. Heat of Mixing, Propanol-heptane, at 30°C

Figure 4. Heat of Mixing, Butanol-heptane, at 30°C

Figure 5. Heat of Mixing, Pentanol-hexane, at 30°C

Figure 6. Heat of Mixing, Octanol-heptane, at 30°C

 $\frac{\omega}{1}$

Figure 7. Heat of Mixing, Octanol-nonane, at 30°C

the same λ values. These are shown in Table VI. As expected, the agreement is poor, indicating that application of the model to partially miscible systems is doubtful. However, further refinement of the model might possibly give a much better fit to this data.

It was necessary to check the validity of the previously outlined assumption of an average area value, where groups of the same type have different areas within one molecule. This was done by recalculating the heats of mixing for the butanol-heptane system, using an exact model, in which those groups with different cross-sections were treated as having separate interactions, but the same interaction energy. Results are compared with those of the "average area" model in Table VII. The discrepancies are fully explained by the fact that the averaged areas used were rounded to the third decimal place. Thus, the value 1.41×10^9 cm² was used for the CH₂ groups in butanol, while the value should actually be 1.41333... This indicates that the averaging method is valid.

As a final check, values of internal energy of vaporization were calculated for three alcohols from the previously determined λ values. The actual values are determined from heats of vaporization given in the International Critical Tables (12). These are compared in Table VIII. Agreement is not very good. A discussion of possible reasons and remedies is included in Chapter VI.

In order to determine the effect of the local concentration concept (exponential function) on the model, calculation of the six interaction coefficients was repeated, substituting the simple linear model, equation (4), for the more refined model, equation (19). Determination of the hydrocarbon parameters gave good results. The parameter values

are shown in Table IX. The fit to hydrocarbon internal energies of vaporization is shown in Table X.

TABLE VI

			ΔH _M @ 30°C	ΔH _M @ 30°C, cal/g mole		
Mixture	Mole	Fraction Methanol	Data (22)	Calculated	Deviation	
		0.1	102.7	94.6	- 7.9	
		0.2	126.9	150.7	18.8	
Methanol-		0.3	139.6	174.1	24.4	
Hexane		0.8	117.3	22.0	-81.2	
		0.9	80.3	- 4.2	-105.2	
		0.1	108.2	94.4	- 12.8	
Methanol-		0.2	130.5	153.8	17.9	
Heptane		0.9	87.9	-4.0	-104.6	

HEATS OF MIXING, METHANOL MIXTU	, METHANOL MIXTUR	ES
---------------------------------	-------------------	----

TABLE VII

Mole Fraction	∆H _M , cal/g mole			
Butanol	Exact Areas	Averaged Areas	Percent Deviation	
0.1	85.6	85.9	0.3	
0.2	139.3	139.9	0.4	
0.3	167.3	168.1	0.5	
0.4	174.5	175.5	0.6	
0.5	165.6	166.6	0.6	
0.6	144.3	145.3	0.7	
0.7	114.2	115.0	0.7	
0.8	78.2	78.8	0.8	
0.9	39.3	39.6	0.8	

EXACT MODEL, BUTANOL-HEPTANE MIXTURES

$\frac{\Delta U_V^* @ 25^{\circ}C, cal/g mole}{Data Calculated}$		Percent Deviation	
9,500	7,216	-24.0	
10,540	8,367	-20.6	
	B,420 9,500 10,540	Data Calculated 8,420 5,946 9,500 7,216 10,540 8,367	

INTERNAL ENERGIES OF VAPORIZATION OF ALCOHOLS

TABLE IX

HYDROCARBON INTERACTION ENERGIES FROM SIMPLE MODEL

Interaction	$\lambda \ge 10^9$, cal/cm ²	
CH ₂ - CH ₂	856.32	
CH ₂ - CH ₃	732.87	
СН ₃ - СН ₃	474.04	

TABLE X

HYDROCARBON INTERNAL ENERGIES, SIMPLE MODEL

	$\Delta U_V^* @ 25^{\circ}C$, cal/g mole			
Hydrocarbon	Data	Calculated	Percent Deviation	
Propane	3,314	3,314	0.01	
n-Butane	4,555	4,555	0.00	
n-Pentane	5,768	5,769	0.01	
n-Hexane	6,969	6,966	-0.04	
n-Heptane	8,155	8,153	-0.02	
n-Octane	9,328	9,334	0.06	
n-Nonane	10,508	10,509	0.01	
n-Decane	11,684	11,681	-0.02	

However, in attempting to find values of the three hydroxyl group interaction energies to fit heat-of-mixing data, the simplified model failed entirely. The computer made sixty iterations in an attempt to find a convergence. Results indicated that dependence of the calculated heats of mixing on the parameter values is so small for this model that the computer could not find "best" values. The average deviation changed only slightly over wide ranges of parameter values, from very large positive to very large negative values. The smallest root mean square deviation for any iteration was 44.2, compared with a value of 18.8 for the refined model. This indicates that the local concentration concept is not only a valid modification of the simple model, but in fact a practical necessity for all but the simplest calculations.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The results presented in this work are in semi-quantitative agreement with data, for mixtures which are highly non-ideal. This substantiates the validity of the proposed group-interaction model. Thus, the primary purpose of this work has been achieved.

Further refinements to the model, based on sound theory and properly applied, should yield improved results. The more refined model may then be thoroughly evaluated and extended to other thermodynamic functions, including excess free energies and activity coefficients.

One of the primary advantages of this model is that, once a value of λ for any pair interaction has been determined, it is applicable to the same type of interaction in any other system. Thus, by judicious selection of successive systems, values may be determined for a wide range of interactions in a "building-block" fashion, using those values which have been previously determined as known constants.

Also, the model is as valid for multi-component mixtures as it is for binary mixtures. Obviously, a mixture of more than two components will increase the complexity of the calculations and make the work more tedious, but there is nothing at all in the theory to prevent such an application. It is entirely possible to determine values of pair interaction energies from very simple systems, and to then apply these

known values to multi-component systems which, from a molecular viewpoint, are much more complex.

Recommendations

One concept which, at least in theory, might well provide the modification to the present model necessary to bring it into closer agreement with experimental data is that of degrees of freedom of thermal motion. This has not yet been explored, due solely to time limitations. However, since the present model includes thermal energy as a factor, the modification is relatively simple.

From Prigogine (18), the degrees of thermal freedom of a molecule may be expressed as

$$\mathbf{F} = 2\mathbf{r} + 1 \tag{22}$$

where r may be considered to be the number of groups in the molecule. Then, assuming each individual group has the same degrees of freedom, the value per group is

$$f = \frac{F}{r} = \frac{2r+1}{r}$$
 (23)

From the principle of equipartition of energy, each degree of freedom has associated with it an average thermal energy of motion of kT/2. Then the average energy of each group is

$$E_{T} = \frac{kT}{2} \frac{2r+1}{r}$$
 (24)

If we define

$$\alpha = \frac{2r}{2r+1} \tag{25}$$

then

$$E_{\rm T} = kT/\alpha$$
 (26)

The value of α for any molecule can be simply calculated.

Inclusion of this factor in the model gives a new expression for the ratio of surface energy to thermal energy,

$$\frac{\frac{E_{S}}{E_{T}}}{E_{T}} = \frac{\frac{\lambda_{uv}}{uv}}{\frac{kT}{S_{u}\alpha_{u}} + \frac{kT}{S_{v}\alpha_{v}}}$$
(27)

and a modified expression for the interaction probability

e

$$\frac{\lambda}{kT} \left(\frac{1}{S \alpha}_{u u} + \frac{1}{S \alpha}_{v v} \right)$$
(28)

This may be substituted directly for the exponential expression in equation (19). Note, however, that since α is a function of the molecule containing the group, a group in one molecule must now be treated as having separate interactions from the same type of group in another molecule, except in the special case where the value of α is the same for both molecules. The primary assumption, that the interaction energy λ , is always a constant for a given pair interaction, still holds true. Thus, this concept increases the number of possible interactions for a particular case, but does not otherwise complicate the model.

It is recommended that the effect of this concept be thoroughly evaluated.

It is further recommended that, if sufficient data can be obtained on heats of vaporization of alcohols, the hydroxyl interaction parameters should be evaluated by direct fit to internal energies of vaporization of the alcohols. All six parameters could then be refined by using the predetermined values as initial estimates and allowing all six parameters to be refit to the heats of mixing. In this way it should be possible to find values which will best fit both the energy of vaporization data and the heat of mixing data.

Finally, and again presuming the availability of data, the model should be applied to multi-component mixtures. This is an area in which very little theoretical work has been possible to date.

A SELECTED BIBLIOGRAPHY

(1)	American Petroleum Institute, Research Project 44.
(2)	Barker, J. A., <u>J</u> . <u>Chem</u> . <u>Phys</u> ., 20 (1952), 794.
(3)	Bondi, A. and D. J. Simkin, <u>A.I.Ch.E.</u> <u>J</u> ., 6 (1960), 191.
(4)	California Research Corp., <u>Subroutine Gauss</u> , <u>a Fortran Nonlinear</u> <u>Regression Program</u> , File 710.410 (1961).
(5)	Chang, T. S., Proc. Roy. Soc. (London), A169 (1939), 512.
(6)	Chang, T. S., Proc. Camb. Phil. Soc., 35 (1939), 265.
(7)	Flory, P. J., <u>J</u> . <u>Chem</u> . <u>Phys</u> ., 14 (1946), 49.
(8)	Gould, E. S., <u>Mechanism and Structure in Organic Chemistry</u> , New York: Henry Holt and Co. (1959).
(9)	Guggenheim, E. A., Proc. Roy. Soc. (London), A183 (1944), 203.
(10)	Guggenheim, E. A., Proc. Roy. Soc. (London), A183 (1944), 213.
(11)	Guggenheim, E. A., Trans. Faraday Soc., 42B (1946), 45.
(12)	International Critical Tables, New York: McGraw-Hill Book Co (1929).
(13)	Langmuir, I., Colloid Symposium Monograph, 3 (1925), 48.
(14)	Lundberg, G. W., J. Chem. Eng. Data, 9 (1964), 193.
(15)	Lyderson, A. L., R. A. Greenkorn and O. A. Hougen, <u>Generalized</u> <u>Thermodynamic Properties of Pure Fluids</u> , Engineering Experi- ment Station Report No. 4, University of Wisconsin, Madison (1955).
(16)	Mrazek, R. V. and H. C. Van Ness, <u>A.I.Ch.E</u> . <u>J</u> ., 7 (1961), 190.
(17)	Papadopoulos, M. N. and E. L. Derr, <u>J. A. C. S</u> ., 81 (1959), 2285.
(18)	Prigogine, I., <u>The Molecular Theory of Solutions</u> , New York: Interscience Publishers, Inc. (1957).
(19)	Redlich, O., E. L. Derr and G. J. Pierotti, <u>J. A. C. S</u> ., 81 (1959)

- (20) Rose, V. C. and T. S. Storvick, <u>J. Chem. Eng. Data</u>, 11 (1966), 143.
- (21) Savini, C. G., D. R. Winterhalter and H. C. Van Ness, <u>J. Chem.</u> <u>Eng. Data</u>, 10 (1965), 168.
- (22) ibid, 10 (1965), 171.
- (23) Scatchard, G., Chem. Revs., 44 (1949), 7.
- (24) Scheller, W. A., Ind. Eng. Chem. Fund., 4 (1965), 459.
- (26) Tobolsky, A. V. and P. J. Blatz, J. Chem. Phys., 13 (1945), 379.
- (27) Tompa, H., <u>Trans. Faraday Soc</u>., 45 (1949), 101.
- (28) Wilson, G. M., J. A. C. S., 86 (1964), 127.

APPENDIX A

CALCULATION OF GROUP SURFACE AREAS

The following is based on a method outlined by Bondi and Simkin (3). The surface of each atom in a molecule is considered to be a spherical segment whose radius is the van der Waals radius of the atom. The point of intersection of two atoms bonded to each other is a function of the covalent radii. The free surface of an atom is then that portion outside any points of intersection with other surfaces. The free surface of a group is simply the sum of the free surfaces of the component atoms.

A two-dimensional representation of this model is shown in Figure 8. Since there is symmetry about the common centerline, the figure represents any plane surface through the centerline. R_1 and R_2 are the van der Waals radii, and L is the sum of the covalent radii. Note that L_1 and L_2 are not necessarily the individual covalent radii, but may easily be determined by geometry as explained below.

The values of both the van der Waals and covalent radii are known to two or three places for the more common atoms. Values for the atoms of present interest are given in Table XI.

Determination of L_1 and L_2

From Figure 8,

44

$$L_1 + L_2 = L \tag{29}$$

$$R_1^2 - L_1^2 = R_2^2 - L_2^2$$
(30)

Combining (29) and (30),

$$R_{1}^{2} - L_{1}^{2} = R_{2}^{2} - (L - L_{1})^{2} = R_{2}^{2} - L^{2} + 2LL_{1} - L_{1}^{2}$$
(31)

$$L_{1} = \frac{R_{1}^{2} - R_{2}^{2} + L^{2}}{2L}$$
(32)

and

$$L_2 = L - L_1 \tag{33}$$

Surface Area of a Spherical Segment

As indicated in Figure 9, the area of an elemental ring of width d θ on a spherical surface is

$$dS = R \sin \theta (Rd\theta) 2\pi = 2\pi R^{2} \sin \theta d\theta$$
(34)

Then the surface area of a spherical segment subtended by an angle

0 is

$$S = 2\pi R^{2} \int_{0}^{\theta} \sin\theta d\theta = -2\pi R^{2} \cos\theta \begin{vmatrix} \theta \\ \theta \end{vmatrix} = 2\pi R^{2} (1 - \cos\theta)$$
(35)

Free Surface Area of Hydrogen Bonded to Carbon

From equation (32), using the subscripts H for hydrogen and C for carbon,

$$L_{\rm H} = \frac{R_{\rm H}^2 - R_{\rm C}^2 + L^2}{2L} = \frac{(1.20)^2 - (1.70)^2 + (0.77 + 0.28)^2}{2(0.77 + 0.28)} = -0.165 \text{ Å}$$
(36)

The negative value may be surprising at first glance, but it simply indicates a physical structure such that the center of the hydrogen atom

TABLE	XI
-------	----

ATOMIC RADII

Atom	o van der Waal's Radius, A	Covalent Radius, ^O A (8)
С Н О	1.70 (3) 1.20 (3) 1.40 (8)	0.77 0.28 0.74
	R_{1} R_{2} P_{12} P_{21} $-L_{1}$ L_{2}	ç
· · · · · · · · · · · · · · · · · · ·	Figure 8. Geometry of Bon	ded Atoms
	R d0	
	Figure 9. Differential Elemen	t of Surface

lies to the carbon side of the plane of intersection of the two atoms, rather than to the hydrogen side. This is entirely possible and poses no problem. The geometry is shown in Figure 10, which is drawn to scale.

For the carbon, from equation (33),

$$L_{C} = (0.77 + 0.28) - (-0.165) = 1.215 \text{ Å}$$
 (37)

The angle of the plane of intersection in the carbon is

$$\cos\theta_{\rm CH} = \frac{L_{\rm C}}{R_{\rm C}} = \frac{1.215}{1.70} = 0.715$$
 (38)

The angle in the hydrogen is

$$\cos_{\rm HC} = \frac{L_{\rm H}}{R_{\rm H}} = \frac{-0.165}{1.20} = -0.1375$$
 (39)

Then the free surface of the hydrogen is

$$S_{\rm H} = 4\pi R_{\rm H}^2 - 2\pi R_{\rm H}^2 (1 - \cos\theta_{\rm HC}) = 2\pi R_{\rm H}^2 (1 + \cos\theta_{\rm HC})$$
 (40)

Substituting the known values,

$$S_{\rm H} = 2\pi (1.20)^2 (1-0.1375) = 7.80 {\rm \AA}^{0}^2$$
 (41)

Methylene Group Attached to Two Other Carbons

Considering the carbon-carbon bond, since we have two spheres of equal size, the values of L_1 and L_2 are the same and are equal to the covalent radius. Then the angle in the carbon is

$$\cos\theta_{\rm CC} = \frac{0.77}{1.70} = 0.453 \tag{42}$$

and

$$S_{C} = 4\pi R_{C}^{2} - 2 \left[2\pi R_{C}^{2} (1 - \cos \theta_{CC}) \right] - 2 \left[2\pi R_{C}^{2} (1 - \cos \theta_{CH}) \right]$$

= $4\pi R_{C}^{2} (\cos \theta_{CC} + \cos \theta_{CH} - 1)$
= $4\pi (1.70)^{2} (0.453 + 0.715 - 1) = 6.09 \text{ Å}^{2}$ (43)

TABLE XII

FREE SURFACE AREAS OF GROUPS

Group	Bonded to	$S \ge 10^{-9}$, cm ² /mole/group
CH2	two carbons	1.35
^{CH} 2	one carbon, one oxygen	1.54
^{СН} З	carbon	2.13
CH3	oxygen	2.32
OH	carbon	1.30

Then the total free surface area of the methylene group linked to two other carbons is

$$S_{CH_2} = S_C + 2S_H = 6.09 + 2(7.80) = 21.70 \text{ Å}^2/\text{group}$$
 (44)

In molal terms,

$$S_{CH_2} = 21.70 \times 6.02 \times 10^{23} / 10^{16} = 1.35 \times 10^9 \text{ cm}^2 / \text{mole/group}$$
 (45)

Similarly, for a methyl group attached to a carbon,

$$S_{C} = 4\pi R_{C}^{2} - 2\pi R_{C}^{2} (1 - \cos \theta_{CC}) - 3 \left[2\pi R_{C}^{2} (1 - \cos \theta_{CH}) \right]$$
$$= 2\pi R_{C}^{2} (\cos \theta_{CC} + 3 \cos \theta_{CH} - 2)$$
$$= 2\pi (1.70)^{2} (0.453 + 2.145 - 2) = 10.86 \text{ Å}^{2}$$
(46)

The total area of the methyl is

$$S_{CH_3} = S_C + 3S_H = 10.86 + 3(7.80) = 34.26 \text{ Å}^2$$
 (47)

3

In molal terms,

$$S_{CH_3} = 34.26 \times 6.02 \times 10^{23} / 10^{16} = 2.13 \times 10^9 \text{ cm}^2 / \text{mole/group}$$
 (48)

Calculations for the other groups are exactly analogous. Results are summarized in Table XII.

It is apparent from the above examples that the assumption is made throughout that there is no intersection or overlapping of areas except between groups which are bonded together. For instance, the hydrogens on a carbon are assumed to be so situated that they intersect only with that particular carbon.

APPENDIX B

COMPUTER PROGRAM

The basic program, written at Chevron Research Corporation (4), accepts as input the data values to be fitted and initial estimates of the parameter values. Using subroutines outlined below, the parameter estimates are improved until successive estimates give changes in all parameter values which are no greater than a percentage specified by the programmer. The set giving the least-sum-of-squares fit is then taken as a convergence. Printout includes the specified and calculated values of the dependent variable, and the percent deviation, for each data point, as well as the parameter values. Average and maximum deviations are also printed out.

The program is written in FORTRAN IV language, and has been run on both IBM 7040 and 7090 computers. It is fully standardized so that the only additions needed for a particular problem are as follows:

 Data, including initial estimates of parameter values and specifications such as number of data points, number of parameters, etc.

2) The particular equation to be fitted.

Limitations of the program are a maximum of three hundred data points, twelve variables, and twenty parameters.

Subroutine YCOMP

This routine accepts the equation to which the data are to be fitted, and calculates the value of the dependent variable for each data point using successive estimates of the parameters as determined in the main routine.

Subroutine DERIV

In this section, the values of partial derivatives of the correlating equation are estimated by a differencing method. Thus, we avoid the problem of determining and programming partial derivatives which may be very complex. Comparisons of the results obtained by this method with those obtained by use of actual partial derivatives show no appreciable advantage in convergence from mathematically accurate derivatives.

This routine obtains the current parameter values from the main program, and changes each parameter successively by a small percentage, both plus and minus. Subroutine YCOMP is then used to find the dependent variable values for these slightly differing parameter values. The result gives estimates of the partial derivatives, which are used to establish the parameter values for the succeeding iteration.

Subroutine SOLV

The values obtained from the YGOMP and DERIV subroutines are used by the main program to formulate a matrix which is fed to the SOLV subroutine for solution. The results are returned to the main program, which uses them to determine the parameter values for the next iteration. This routine uses the largest available element of each row as a pivotal element, rather than solving on the diagonal. The major advantage of this is that it eliminates the possibility of using a zero element as a pivot unless there is an entire zero row or column in the matrix. This eventuality is also provided for. If it occurs, the program terminates with a printout informing the programmer of the reason.

Parabolic Fit

After each third iteration, the next estimate is made by applying a parabolic fit to the three previous sum-of-squares values. In general, this will materially increase the convergence rate.

Programming of Correlating Equation

The program statement of the equation must have the digit 1 (one) in column 5. This controls a DO loop which cycles through the data points. The dependent variable must be specified as CY(N), where the subscript, N, is the index for the DO loop.

The independent variables are designated as Z (i, N), where the i identifies the particular variable. The parameters are identified as B, subscripted.

For example, the equation

$$W = (A+BX^2) e^{(GX-DY)}$$

where the parameter values to be optimized are A, B, C, and D, and the independent variables are X and Y, can be programmed as 1 CY(N) = (B(1)+B(2)*Z(1,N)**2)* EXP(B(3)*Z(1,N)-B(4)*Z(2,N))This is inserted in subroutine YCOMP after the statement

DO 1 N = 1, NUMBER

Programming of Data

The first data card contains specifications in 1216 format which are listed in the program as subscripted MM. They represent the following:

- MM(1) = number of data points MM(2) = index of dependent variable, or one digit higher than the highest indexed independent variable MM(3) = number of parameters MM(4) = limit on number of iterations. A value of 30 to 60 is usually sufficient for convergence. MM(5), if negative, skips reading of Z(i, N) values from input. MM(6) = -1 gives results of calculations for each iteration. MM(6) = 0 gives final results only. MM(6) = 1 gives results for only the first and last iterations. MM(7) = 1 gives straight fit. MM(7) = 0 gives parabolic fit. Recommended. MM(8) = 1 for input. This value is changed internally during the program run. MM(9) = 1 prints input data as part of output. MM(9) = 0 bypasses this recording. MM(10) = -1 records each matrix. MM(10) = 0 bypasses these. MM(10) = 1 records first matrix only. MM(11) = number of problems in the run. Allows multiple problems on one computer run.
- MM(12) = if negative, nullifies printing of all output except final solution.

The second through fifth data cards are the initial estimates of parameter values in 6F12.12 format. The maximum number of parameters is twenty. The twenty-first through twenty-fourth fields are used as follows:

B(21) = tolerance on convergence. Recommend 0.0001.

B(22) is used internally in DERIV routine. Leave this field blank.

- B(23) = 1 imit on magnitude of iteration changes. Recommend 1.0.
- B(24) is not normally used. May be used to control entry point in YCOMP for multiple program runs or for other purposes.

The program reads 24 values regardless of the number of parameters actually used. Therefore, there must be four data cards in this section, even though one or more may be blank.

The remaining cards contain the Z(i, N) in 6F12.12 format. All variable values for the first data point are listed first, followed by those of the second data point, etc. The dependent variable is the last value listed for each point. There are no unused fields. The first value of one data point must be in the first field following that of the last value of the previous data point.

Program Lists

The following program lists are shown on succeeding pages: List I: The general program excluding YCOMP subroutine. List II: YCOMP subroutine and data for hydrocarbon parameters. List III: YCOMP subroutine and data for heats of mixing, used to determine parameters involving the hydroxyl group. LIST I

C	SIBETC DENAME NODECK	
DIMENSION B124, 2212,300), MM(12) COMMON VCOMAY MM COMMON VCOMAY MM COMMON YCOMAY MM COMMON YCOMAY JJ READ (5,2) (MM(J),J=1,12) PECK0050 1 READ (5,2) (MM(J),J=1,12) DECK0050 2 FORMAT (1216) NDET=MM(2) JJ=MM(3) IF (NUMBER) 4:44,10 4 WRITE (6,5) C ALL EXIT FORMAT (40H0 GAUSS INPUT ZERO, PROGRAM STOP /1H1) DECK0120 10 READ(5:11) (GAUSS INPUT ZERO, PROGRAM STOP /1H1) DECK0120 11 FORMAT (6F12:12) 11 FORMAT (6F12:12) 11 FORMAT (6F12:12) 11 FORMAT (6F12:12) 11 FORMAT (12(J),J)=1:NSET)+N=1:NUMBER) 12 CALL EXIT DECK0120 13 FALC (5:11) (12(J:N),J=1:NSET)+N=1:NUMBER) 14 READ (5:11) (12(J:N),J=1:NSET)+N=1:NUMBER) 15 CALL GAUSS DECK0120 20 WRITE (6:21) 21 FORMAT (4:0H0 GAUSS CONVERGENCE ///) DECK0250 20 WRITE (6:21) 30 WRI(11)-M(11)-1 DECK0220 30 WRI(11)-M(11)-1 DECK0220 31 HFT (MM(11)-1)-1 DECK0220 31 HFT (AM1(11)-1)-1 DECK0220 31 HFT (AM1(11)-1)-1 DECK0220 31 HFT (MM(11)-1)-1 DECK0250 31 DHENSION A(2:0;21):B(2:4):BMIN(2:0):BTART(2:0):C(2:0,1):X(2:0,1): AGUS0050 COMMON /COMA/ MM COMMON /COMA/ MM COMMON /COMA/ MM COMMON /COMA/ JJ COMMON /COMA/ JS COMMON /COMA/ JJ COMMON /COMA/ JS COMMON /	C EMBEDDING PROGRAM FOR GAUSS	DECKOOLO
COMMON /COMA / MM DECK0040 COMMON /COMA / MM DECK0040 COMMON /COMA / JJ DECK0040 2 FORMAT (1216) DECK0050 3 FORMAT (1216) DECK0070 NUMBER.MM(1) DECK0070 1 F (NUMBER) 4:4:10 DECK0070 1 F (NUMBER) 4:4:10 DECK0100 1 F (NUMBER) 4:4:10 DECK0110 1 F (MM(15) 15:14:14 DECK0110 1 F (MM(15) 15:14:14 DECK0110 1 F (MM(15) 15:14:14 DECK0110 1 F (MM(15) 1 S:14:14 DECK0110 1 F (MM(15) 1 S:14:14 DECK0110 1 F (AM(15) 1 S:14:14 DECK0110 1 F (AM(15) 1 S:14:14 DECK0110 1 F (AM(15) 1 DECK0110 2 DECK0110 DECK0110 2 D WALTE (6:21) DECK0110 DECK0210 2 D WALTE (6:21) DECK0210 2 D WALTE (6:20) DECK0210 2 D WALTE (6:20) DECK0210 2 D WAL	DIMENSION B(24) + Z(12,300) + MM(12)	DECK0020
COMMON /COMA/ MM DECK0050 1 READ (5,2) (MM(J),J=1,12) DECK0050 2 FORMAT (1216) DECK0070 NUMBER=MM(1) DECK0070 NUMBER=MM(1) DECK0070 NUMBER=MM(1) DECK0070 NUMBER=MM(1) DECK0070 NUMBER=MM(1) DECK0100 NUMBER=MM(1) DECK0100 VECK0070 DECK0100 NUMBER=MM(1) DECK0100 VECK0100 DECK0110 VECK0110 DECK0100 VECK0110 DECK0200	COMMON NUMBER+B+Z	DECK0030
COMMON /COMB / JJ 1 READ (5-2) (MH(J).j=1.12) 2 FORMAT (1216) NUMBER.MM(1) 0 ECCK0070 0 JJ=MM(3) 0 ECCK0070 0 JJ=MM(3) 1 F (NUMBER) 4.4.10 4 WRITE (6.5) 5 FORMAT (400 GAUSS INPUT ZERO, PROGRAM STOP /1H1) 0 ECCK0120 10 READ(5.11) (0(J).j=1.24) 10 READ(5.11) (0(J).j=1.24) 10 READ(5.11) (0(J).j=1.24) 11 FORMAT (647L2.12) 14 READ (5.11) (1(J).j=1.3L1.NET).N=1.NUMBER) 15 CALL GAUSS 15 CALL GAUSS 15 CALL GAUSS 15 CALL GAUSS 15 CALL GAUSS 15 CALL GAUSS 15 CALL GAUSS 16 CAL GAUSS 17 F(MM(B)=1 18 CALC GAUSS 19 FC (GAUSS 20 WRITE (6.21) 20 WRITE (6.21) 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0230 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0250 20 WRITE (6.21) 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0250 20 WRITE (6.21) 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0250 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0250 21 FORMAT (400 GAUSS CONVERGENCE ///) DECK0250 20 WRITE (6.20).FC (20).HI(2).HI(2).HSTART(20).C(20.1).K(20.1).K(20.1). 4 KAUSO030 DIMENSION A(20.21).HS(24).HBMIN(20).HSTART(20).C(20.1).K(20.1).K(20.1). 4 CAUSO030 COMMON /COMA/ MM COMMON /CO	COMMON /COMA/ MM	DECK0040
1 READ (5,2) (MM(J),J=1+12) DECK0070 2 FORMAT (1216) DECK0070 NUMBER-HM(1) DECK0070 NSET-HM(2) DECK0070 JJ=HM(3) DECK0100 4 WRITE (6:5) DECK0100 CALL EXIT DECK0120 CALL EXIT DECK0120 I F(MM(5)) 15(J),J=1/24) DECK0160 10 READ(5:11) (12(J,N),J=1/NSET)+N=1+NUMBER) DECK0160 15 FGRMAT (40H0 GAUSS CONVERGENCE //) 20 WRITE (6:21) DECK0200 20 MM(1)-HM(1)-1 DECK0200 DECK0200 21 FGRMAT (40H0 GAUSS CONVERGENCE //) DECK0200 20 WRITE (6:21) DECK0200 DECK0200 DECK0200 21 FGRMAT (120+E(2),1), HI20+BMIN(20)+BSTATT(20)+C(20+1)+X(20+1)+ GAUS0060 GAUS0060 21 FGRMAT (12)+E(20)+MMI12)+RECORD(100)+CY(300)+FP(20+300) GAUS0650 GAUS0665 20 NUMER = MM(1) GAUS0665 GAUS0665 GAUS0666 212+300),DEL(2	COMMON /COMB/ JJ	DECKOUSO
2 FORMAT (1216) DECK0070 NUMBER-MM(1) DECK0000 JJ-MM(3) DECK0100 IF (NUMBER) 4,4,10 DECK0100 (A WRITE 16,5) DECK0120 CALL EXIT DECK0120 (ALL EXIT DECK0210 (ALL	1 READ (5+2) (MM(J)+J=1+12)	DECK0060
NUMBER-HMI11 DECK0090 NJ=HMI(3) DECK0090 J=HMI(3) DECK0100 IF (NUMBER) 4,4,410 DECK0120 CALL EXIT DECK0120 CALL EXIT DECK0120 I (F (A)MO GAUSS INPUT ZERO, PROGRAM STOP //IH1) DECK0130 I (F (A) (G (L	2 FORMAT (1216)	DECK0070
NSET=MM(2) DECK0090 JJ=MM(3) DECK0100 IF (NUMBER) 4.4.10 DECK0100 CALL EXIT DECK0120 DECK0120 DECK0120 DECK0200 DECK0200 DECK0200	NUMBER=MM(1)	DECKOO80
JJ=MM(3) DECK0100 IF (NUMBER) 4.4,410 DECK0100 4 WRITE (6:5) DECK0120 CALL EXIT DECK0120 IG READ(5:11) (B(J):J=1+24) DECK0130 1F FORMAT (40H0 GAUSS INPUT ZERG, PROGRAM STOP //H1) DECK0130 1F READ (5:11) (B(J):J=1+24) DECK0160 1F FORMAT (4F12.12) DECK0130 1F READ (5:11) (12(J-N):J=1+NSET)+N=1+NUMBER) DECK0190 15 CALL GAUSS DECK020 20 WRITE (6:21) DECK020 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0220 30 MR(1)=MI(1)-1 DECK0220 1F (MM(1)] I+MI(1)-1 DECK0220 21 FORMAT (40H0 GAUSS CONVERGENCE //) 30 MR(1)=MI(1)=MI(1)-1 DECK0220 30 MR(1)=MI(1)=MI(1) DECK0220 30 MR(1)=MI(1)=MI(1) GAUS0030 1F (MM(1)] H(1)=MI(1) DECK0220 30 MR(1)=MI(1)=MI(1) DECK0220 30 MR(1)=MI(1)=MI(2)+DECK0210(0)+CY(20+1)+X(20+1)+ GAUS0030 DIMENSION A(20-21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0040 COMMON /COME/ K GAUS0620 <td< td=""><td>NSET=MM(2)</td><td>DECK0090</td></td<>	NSET=MM(2)	DECK0090
IF (NUMBER) 4.4.4.10 DECK0110 4 WRITE (6.5) DECK0120 CALL EXIT DECK0120 10 READ(5.11) (8(J).J=1.24) DECK0130 10 READ(5.11) (8(J).J=1.24) DECK0160 11 FORMAT (6F12.12) DECK0160 15 CALL GAUSS DECK0160 15 CALL GAUSS DECK020 20 WRITE (6.21) DECK0180 21 FORMAT (40H0 GAUSS CONVERGENCE ///) 20 WRITE (6.21) DECK0200 20 WRITE (6.21) DECK0200 20 WRITE (6.21) DECK0200 20 WRITE (6.21) DECK0200 21 FORMAT (40H0 GAUSS CONVERGENCE //) 20 WRITE (6.21) DECK0220 30 MM(11)=HM(11)=1 DECK0220 31 FF (MM(11)) 1.1:14 DECK0220 31 FF (GAUSS NODECK GAUS0030 31 SUBROUTINE GAUSS GAUS0030 31 COMMON NUMBER,B.2 GAUS0040 31 COMMON /COMA / MM GAUS0520 31 COMMON /COMA / MM GAUS0550 31 COMMON /COMA / ALC,M GAUS0550 31 COMMON /COMA / ALC,M GAUS0550	(E) MM=LL	DECK0100
4 WRITE (6,5) DECK0120 CALL EXIT DECK0130 5 FORMAT (40H0 GAUSS INPUT ZERO, PROGRAM STOP /1H1) DECK0140 10 REA0[5,11] (B(J),J=1,24) DECK0120 11 FORMAT (6F12,12) DECK0160 14 READ (5,11] (12(J,W),J=1,NSET)+N=1+NUMBER) DECK0160 15 CALL GAUSS DECK0120 16 (M1(8)-2) 30,20,30 DECK0200 20 WRITE (6,21) DECK0200 21 FORMAT (40H0 GAUSS CONVERGENCE //) MI(8)=1 DECK0220 30 M(11)=MM(11)-1 DECK0200 1F (MM(11)) 1+1,14 DECK0250 END DECK0250 \$IBFTC GAUSS NODECK SUBROUTINE GAUSS GAUS0030 DIMENSION A(20,21),B(24),BMIN(20)+BSTART(20)+C(20,1)+X(20,1),GAUS0040 X 2(12,300),DEL(20)+G(20)+GAUS(20)+GAUS00)+FP(20,300) GAUS0060 COMMON /COME/ A-C.WM GAUS0060 COMMON /COME/ A-C.WM GAUS0061 COMMON /COME/ A-C.W GAUS0060 COMMON /COME/ A-C.W GAUS0060 COMMON /COME/ A-C.W GAUS0500 COMMON /COME/ A-C.W GAUS0500 <tr< td=""><td>IF (NUMBER) 4,4,10</td><td>DECK0110</td></tr<>	IF (NUMBER) 4,4,10	DECK0110
CALL EXIT DECK0130 5 FORMAT (40H0 GAUSS INPUT ZERO, PROGRAM STOP /1H1) DECK0140 10 READ(5,11) (8(J),J=1,24) DECK0150 11 FORMAT (6F12,12) DECK0170 14 READ (5,11) ((2(J,N),J=1,NSET),N=1,NUMBER) DECK0170 15 CAL GAUSS DECK0200 16 (MM(18)-2) 30,20,30 DECK0201 20 WRITE (6,21) DECK0200 21 FORMAT (40H0 GAUSS CONVERGENCE ///) DECK0220 30 MM(11)=HM(11)-1 DECK0220 11 F (MM(11)) 1.1:1:4 DECK0220 20 WRITE (6,21) DECK0220 30 MM(11)=HM(11)-1 DECK0220 10 F (MM(11)) 1.1:1:4 DECK0220 11 F (MM(11)) 1.1:1:4 DECK0220 11 F (MM(11) 1.1:1:1:4 DECK0220 10 MENSION A(20,21),B124),BMIN(20)+BSTART(20)+C(20+1)+X(20+1).K(20+1) GAUS0040 COMMON /COMC/ CY GAUS0050 COMMON /COMC/ CY GAUS0050 COMMON /COMC/ CY GAUS0550 COMMON /COMC/ CY GAUS0550 COMMON /COMC/ CY GAUS0550 COMMON /COMC/ CY GAUS0550 CAUS0510 GAUS0550<	4 WRITE (6.5)	DECK0120
5 FORMAT (40H0 GAUSS INPUT ZERO, PROGRAM STOP /1H1) DECK0140 10 READ(5,11) (B(J),=1,=24) DECK0150 11 FORMAT (4F12,12) DECK0160 14 READ (5,11) (12(J,N),=J=1,NSET)+N=1+NUMBER) DECK0170 15 CALL GAUSS DECK0200 16 F(MM(5)-2) 30,20,30 DECK0200 20 WRITE (6,21) DECK0210 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0220 30 MM(11)=MM(11)-1 DECK0230 1F (MM(11)) 1+1,14 DECK0250 END DECK0250 SUBROUTINE GAUSS NODECK SUBROUTINE GAUSS GAUS0030 COMMON NUMBER,B;Z GAUS0040 COMMON /COMA/ MM GAUS0062 COMMON /COMC/ CY GAUS0064 COMMON /COMC/ CY GAUS0050 COMMON /COMC/ CY GAUS0050 JJ = MM(12) MA(12) NJ = MM(11) GAUS0500 COMMON /COMC/ CY GAUS0050 COMMON /COMC/ CY GAUS0500 DUTAERCE (4,x) GAUS0510 NUBER = MM(1) GAUS0510 DUTAERCE (1,x) GAU	CALL EXIT	DECK0130
10 READ(5,11) (B(J),J=1;24) DECK0150 11 FORMAT (6F12,12) DECK0160 14 READ (5,11) ((Z(J,N),J=1,NSET),N=1,NUMBER) DECK0160 15 CALL GAUSS DECK0200 20 WRITE (6:21) DECK0200 20 WRITE (6:21) DECK0200 20 WRITE (6:21) DECK0200 20 WRITE (6:21) DECK0200 30 MM(11)=MM(11)-1 DECK0220 30 MM(11) + INI+14 DECK0240 END DECK0250 SIBFOC GAUSS NODECK GAUS0030 SUBROUTINE GAUSS DECK0210 + BSTART(20)+C(20+1)+X(20+1)+, GAUS0040 GAUS0050 COMMON NUMBER, BR,2 GAUS00100)+C(120)+C(120+1)+X(20+1)+, GAUS0063 GAUS0061 COMMON /COMA / MM GAUS0061 GAUS0063 COMMON /COMA / MM GAUS0065 GAUS0063 COMMON /COMA / MM GAUS0065 GAUS0065 COMMON /COMA / MM GAUS0050 GAUS0050 COMMON /COMA / MM GAUS0500 JJ = MM(3) NUMER = MM(1) GAUS05050 GAUS0510	5 FORMAT (40H0 GAUSS INPUT ZERO, PROGRAM STOP /1H1)	DECK0140
11 FORMAT (4F12.12) DECK0160 14 READ (5,11) ((2(J,N),J=1,NSET)+N=1+NUMBER) DECK0180 15 CALL GAUSS DECK0200 11 F(MH(8)-2) 30,20,30 DECK0200 20 WRITE (6,21) DECK0200 21 FORMAT (4,0HO GAUSS CONVERGENCE //) DECK0220 20 WRITE (6,21) DECK0220 DECK0220 20 MM(11)-MINIT DECK0220 DECK0220 20 MM(11)-Int DECK0220 DECK0220 20 MM(11)-Int DECK0220 DECK0220 20 MM(11)-Int DECK0240 DECK0220 20 MM(11)-Int DECK0240 DECK0240 20 MM(12)-RECORD(100)+C(20+1)+X(20+1)+ GAUS0050 GAUS0050 21 DECK0240 MA(20+2)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0060 21 COMMON ACOMA/ MM GAUS0060 GAUS0060 20 COMMON /COMA/ MM GAUS0620 GAUS0510 20 J = MM(13) GAUS0510 GAUS0510	10 READ(5+11) (B(J)+J=1+24)	DECK0150
IF (MM(15)) 15,14,14 DECK0170 14 READ (5,11) ((2(J,N),J=1,NSET)+N=1+NUMBER) DECK0180 15 CALL GAUSS DECK0190 20 WRITE (6,21) DECK0200 20 WRITE (6,21) DECK0210 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0220 30 MM(11)=MM(11)-1 DECK0220 30 MM(11)=MM(11)-1 DECK0220 30 MM(11)=MM(11)-1 DECK0220 51BFIC GAUSS NODECK SUBROUTINE GAUSS GAUS0030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20,1)+X(20,1)+ GAUS0040 X 2(12,300),DEL(20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20,300) GAUS0050 COMMON /COMA/ MM GAUS0061 COMMON /COMA/ MM GAUS0063 COMMON /COMA/ MM GAUS0065 COMMON /COMA/ MM GAUS0065 COMMON /COMA/ MM GAUS0065 COMMON /COMA/ MM GAUS0065 COMMON /COMA/ FP GAUS0065 COMMON /COMA/ FP GAUS0550 JJ = MM(3) GAUS0550 JJ = MM(1) GAUS0550 JJ = MM(1) GAUS0550	11 FORMAT (6F12.12)	DECK0160
14 READ (5,11) ((2(J,N),J=1,NSET),N=1,NUMBER) DECK0180 15 CALL GAUSS DECK0200 20 WRIFE (6,21) DECK0200 21 FORMAT (40HO GAUSS CONVERGENCE //) DECK0220 MR(8)=1 DECK0220 DECK0220 30 MR(11)=MR(11)=1 DECK0220 IF (MM(11)) 1:1:14 DECK0220 BUBOUTINE GAUSS MDDECK SUBROUTINE GAUSS MAUSON DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1), GAUS0060 COMMON /COMEX AL20,21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1), GAUS0060 COMMON /COMAX MM GAUS0060 COMMON /COMAX MM GAUS00661 COMMON /COMAX MM GAUS00662 COMMON /COMAX MM GAUS00661 COMMON /COMAX ALC,M GAUS00662 COMMON /COMAX ALC,M GAUS00661 COMMON /COMAX ALC,M GAUS00662 COMMON /COMAX ALC,M GAUS0665 COMMON /COMAX ALC,M GAUS0660 DUL = MM(11) GAUS0500 J = MM(12) GAUS0500 J = MM(12) GAUS0500 J = MM(12) GAUS0500	IF (MM(5)) 15,14,14	DECK0170
15 CALL GAUSS DECK0190 1F IF (HM18)-21 30,20,30 DECK0201 20 WRIFE (6,21) DECK0210 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0220 30 MM(11)=HM1(1)-1 DECK0220 30 MM(11)=HM1(1)-1 DECK0220 FM FM DECK0210 FM FM DECK0220 SUBROUTINE GAUSS ODECK2 GAUS0030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0040 X Z(12,300), DEL(20)+FC(20+MM(12)+RECORD(100)+CY(300)+FP(20+300) GAUS0062 COMMON NUMBER,BA2 GAUS0063 COMMON /COMA / MM GAUS0063 COMMON /COMA / MM GAUS0064 COMMON /COMA / AM GAUS0063 COMMON /COMA / FP GAUS0063 COMMON /COMA / FP GAUS0063 COMMON /COMA / FP GAUS0064 COMMON /COMA / AR GAUS0510 LIMIT = MM(1) GAUS0500 JJ = MM131 GAUS0501 LUNL = MM121 GAUS0501 JJ = MM131 GAUS0550 JZ = MM131 GAUS0550	14 READ (5,11) ((Z(J,N),J=1,NSET),N=1,NUMBER)	DECK0180
IF f (MM(8)-2) 30,20,30 DECK0200 20 WRITE (6,21) DECK0210 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0210 21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0210 30 MM(11)=MM(11)-1 DECK0220 DECK0220 30 MI(1)=MM(11)-1 DECK0240 END DECK0250 GAUS0030 51BFTC GAUSS NODECK GAUS0030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART120)+C(20+1)+X(20+1)+ GAUS0040 X 2(12,300)+DEL (20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20+300) GAUS0061 COMMON /COME/ AJJ GAUS0063 COMMON /COME/ AJJ GAUS0066 COMMON /COME/ A,C,M GAUS0064 COMMON /COME/ A,C,M GAUS0065 EQUIVALENCE (Ax) GAUS0500 J = MM(12) GAUS0520 NULL = MM(12) GAUS0550 DLIMIT = MA(2) J = GAUS0550 J = MA(2) J = MA(2) LIMIT =	15 CALL GAUSS	DECK0190
20 WRITE (6:21) DECK0201 21 FORMAT (4:0H) GAUSS CONVERGENCE //) DECK0210 MM(1)==MM(11)=1 DECK0210 30 MM(11)=MM(11)=1 DECK0230 1F (MM(11)].1:1:4 DECK0240 END DECK0250 SUBROUTINE GAUSS GAUS0300 DIMENSION A(20;21)+B(24)+BMIN(20)+BSTART(20)+C(20;1)+X(20;1)+ GAUS0040 X Z(12:300)+DEL(20)+(C(20)+MM(12)+RECORD(100)+CY(300)+FP(20;300) GAUS0061 COMMON NUMBER,B;2 GAUS0063 COMMON /COMA/ MM GAUS0063 COMMON /COMA/ MM GAUS0063 COMMON /COMC/ CY GAUS0063 COMMON /COMD/ FP GAUS0640 COMMON /COMD/ FP GAUS0500 J = MM(1) GAUS0500 NUMBER = MM(1) GAUS0510 NUMBER = MM(1) GAUS0530 NUME = MM(12) GAUS0530 NUL = MM(12) GAUS0530 NUL = MM(12) GAUS0530 NUL = MM(12) GAUS0530 DITC = MM(12) GAUS0530 SCALE 1 = 0.2 GAUS0530 SCALE 2 = 1.0 GAUS050	IF (MM(8)-2) 30,20,30	DECK0200
21 FORMAT (40H0 GAUSS CONVERGENCE //) DECK0210 MM(11)=MM(11)=1 DECK0220 30 MM(11)=MM(11)=1 DECK0220 Ff (MM(11)) 1+1+14 DECK0250 SUBROUTINE GAUSS GAUS0030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0040 X 2(12+300)+DEL(20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20+300) GAUS0050 COMMON /COMA/ MM GAUS0060 COMMON /COMB/ JJ GAUS0063 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ FP GAUS0065 COMMON /COMC/ CY GAUS0050 NUMBER = MM(1) GAUS0500 NUMBER = MM(1) GAUS0500 JJ = MM(3) GAUS0510 LINIT = MM(4) GAUS0520 NULL = MM(12) GAUS0510 MI 12 = MM(12) GAUS0520 NULL = MM(12) GAUS0520 SCALE 2 = 1.0 GAUS0520 SCALE 2 = 1.0 GAUS	20 WRITE (6,21)	DECK0201
MM18)=1 DECK0220 30 MM(11)=MM(11)) 1+14 DECK0230 IF (MM(11)) 1+1+14 DECK0250 \$IBFTC GAUSS GAUS030 DECK0250 \$IBFTC GAUSS GAUS030 GAUS030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20,1)+X(20+1)+ GAUS0040 X Z(12,300)+DEL(20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20,300) GAUS0050 COMMON NUMBER,B+Z GAUS0061 COMMON /COMA/ MM GAUS0062 COMMON /COMA/ MM GAUS0064 COMMON /COMA/ AM GAUS0065 COMMON /COMC/ CY GAUS0064 COMMON /COMC/ CY GAUS0050 NUMBER = MM(1) GAUS0510 NUMBER = MM(1) GAUS0510 J J = MM(2) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) + 1 GAUS0520 NULL = MM(12) + 1 GAUS0520 IDNTFC = MM(12) GAUS0520 SCALE 2 = 1.5 GAUS0520 SCALE 3 = 0 GAUS0520 NORM = 0 GAUS0520 NARK P = 0 GAUS0620 <td>21 FORMAT (40H0 GAUSS CONVERGENCE //)</td> <td>DECK0210</td>	21 FORMAT (40H0 GAUSS CONVERGENCE //)	DECK0210
30 MM(11)=MM(11)-1 DECK0230 IF (MM(11)) 1+1,14 DECK0240 END DECK0250 \$IBFTC GAUSS NODECK GAUS0030 DIMENSION A(20,21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0050 COMMON NUMBER,B+2 GAUS0050 COMMON NUMBER,B+2 GAUS0060 COMMON /COMA/ HM GAUS0062 COMMON /COMA/ JJ GAUS0062 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ CY GAUS0064 COMMON /COMC/ CY GAUS0065 EQUIVALENCE (A*X) GAUS0050 NUMBER = MM(1) GAUS0050 JJ = MM(3) GAUS0550 JJ = MM(3) GAUS0550 JJ = MM(12) + 1 GAUS0550 IDNTFC = MM(12) GAUS0550 TZERO = 1+0 GAUS0550 SCALE 2 = 1+5 GAUS0550 SCALE 2 = 1-5 GAUS0560 NOWN = 0 GAUS0660 NNPARA = 0 GAUS0660 NOWN = 0 GAUS0660 NPATH = 1 GAUS0670 NDACK = -1 GAUS0670	MM(8)=1	DECK0220
IF (MM(11)) 1+1+14 DECK 0240 END DECK 0250 \$IBFTC GAUSS NODECK SUBROUTINE GAUSS GAUSO040 X 2(12:300),DEL(20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20:300) COMMON /COMA/ MM GAUS0061 COMMON /COMA/ JJ GAUS0062 COMMON /COMA/ FP GAUS0063 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ FP GAUS0064 COMMON /COMC/ A+C+M GAUS0063 COMMON /COMC/ A+C+M GAUS0063 COMMON /COMC/ HP GAUS0064 COMMON /COMC/ SP GAUS0065 COMMON /COMC/ FP GAUS0060 COMMON /COMC/ SP GAUS0060 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ FP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ FP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ SP GAUS0063 COMMON /COMC/ SP GAUS0550 JJ = MM(12) GAUS0550 MULL = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 SCALE 2 = 1.5 GAUS0550 SCALE 2 = 1.5 GAUS0550 NDCM = 0 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0640 KKPATH = -1 GAUS0640 KKPATH = 1 GAUS0640 KKPATH = 1 GAUS0640 KKPATH = 1 GAUS0640 KKPATH = 1 GAUS0640 KCPATH =	30 MM(11)=MM(11)-1	DECK0230
END DECK0250 \$IBFTC GAUSS NODECK GAUSO30 DIMENSION A(20,21),B(24),BMIN(20),BSTART(20),C(20,1),X(20,1), GAUS0050 COMMON NUMBER,B,2 COMMON /COMA/ MM GAUS0062 COMMON /COMA/ MM GAUS0062 COMMON /COMC/ CY GAUS0030 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ CY GAUS0064 COMMON /COMC/ A,C,M GAUS0050 EQUIVALENCE (A,X) GAUS0050 JJ = MM(1) GAUS0500 JJ = MM(1) GAUS0510 LIMIT = MM(4) GAUS0510 NULL = MM(12) 1 GAUS0530 MM(12) = MM(12) 41 CAUS0550 SCALE 1 = 0.2 SCALE 2 = 1.5 SCALE 2 = 1.5 SCALE 2 = 1.0 SCALE 3 = 1.0 COM ON COMC A MARK P = 0 MARK	IF (MM(11)) 1+1+14	DECK0240
SIBFIC GAUSS NODECK GAUS030 DIMENSION A(20+21)+B(24)+BMIN(20)+BSTART(20)+C(20+1)+X(20+1)+ GAUS0040 X Z(12+300)+DE(20)+E(20)+MM(12)+RECORD(100)+CY(300)+FP(20+300) GAUS0050 COMMON MUMBER.9L2 GAUS0060 COMMON MUMBER.9L2 GAUS0061 COMMON COMAON MM COMMON COMCO GAUS0061 COMMON COMCO GAUS0061 COMMON COMCO/CY GAUS0060 COMMON COMCO/CY GAUS0061 COMMON COMCO/CY GAUS0061 COMMON COMCO/CY GAUS0070 NUMBER = MM(1) GAUS0510 DJ = MM(3) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.5 GAUS0550 SCALE 3 = 1.0 GAUS05050 TOL = B(21) GAUS05050 X NORM = 0 GAUS0620 <t< td=""><td>END</td><td>DECK0250</td></t<>	END	DECK0250
SUBROUTINE GAUSS GAUS030 DIMENSION A120,21),B124),BMIN(20),BSTART(20),C(20,1),X(20,1), GAUS0040 X 2(12,300),DEL (20),E(20),MM(12),RECORD(100),CY(300),FP(20,300) GAUS0050 COMMON NUMBER,B,Z GAUS0061 COMMON /COMA/ MM GAUS0062 COMMON /COMA/ MM GAUS0062 COMMON /COMZ/ CY GAUS0064 COMMON /COMZ/ CY GAUS0064 COMMON /COMZ / A,C,M GAUS0065 EQUIVALENCE (A,X) GAUS0065 UNMBER = MM(1) GAUS0500 NSET = MM(2) GAUS0500 JJ = MM(3) GAUS0520 NULL = MM(12) + 1 GAUS0530 MM(12) = MM(12) + 1 GAUS0550 IDNFC = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.5 GAUS0500 SCALE 3 = 1.0 GAUS0500 NDWN = 0 GAUS0640 NNPARA = 0 GAUS0640 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNP	\$IBFTC GAUSS NODECK	
DIMENSION A(20,21),B(24),BMIN(20),BSTART(20),C(20,1),X(20,1), X Z(12,300),DEL(20),FC(20),MM(12),RECORD(100),CY(300),FP(20,300) COMMON NUMBER,B,Z COMMON /COMA/ MM GAUS0061 COMMON /COMB/ JJ COMMON /COMC/ CY GAUS0063 COMMON /COMC/ FP GAUS0064 COMMON /COMC/ A,C,M GAUS0070 NUMBER = MM(1) SET = MM(2) JJ = MM(3) LIMIT = MM(4) IDNTFC = MM(12) + 1 GAUS0530 MU(12) = MM(12) + 1 GAUS0540 IDNTFC = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 SCALE 2 = 1.0 SCALE 1 = 0.2 SCALE 3 = 1.0 TOL1 = B(21) X NORM = 0.0 MARK P = 0 MARK	SUBROUTINE GAUSS	GAUS0030
X 2(12,300),DEL(20),E(20),MM(12),RECORD(100),CY(300),FP(20,300) COMMON NUMBER,B,Z GAUS0060 COMMON /COMA/ MM GAUS0061 COMMON /COMB/ JJ GAUS0063 COMMON /COMD/ FP GAUS0064 COMMON /COME/ A.C.M GAUS0070 NUMBER = MM(1) NSET = MM(2) J = MM(12) J = MM(12) LIMIT = MM(4) MU(12) = MM(12) + 1 GAUS0530 MM(12) = MM(12) + 1 GAUS0550 TZERO = 1.0 SCALE 1 = 0.2 SCALE 2 = 1.5 SCALE 2 = 1.5 SCALE 2 = 1.0 GAUS0570 CALE 3 = 1.0 GAUS0570 CALE 4 = 0.2 GAUS0570 CALE 5 = 1.0 GAUS0570 CALE 5 = 1.0 CALE 5 = 0.0 CALE 5 = 0.	DIMENSION A(20,21),B(24),BMIN(20),BSTART(20),C(20,1),X(20,1),	GAUS0040
COMMON NUMBER, B.Z GAUS0061 COMMON /COMA/ JJ GAUS0062 COMMON /COME/ JJ GAUS0063 COMMON /COMC/ CY GAUS0064 COMMON /COME/ A.C.M GAUS0065 EQUIVALENCE (A.X) GAUS0050 NUMBER = MM(1) GAUS0500 NSET = MM(2) GAUS0510 JJ = MM(3) GAUS0520 NULL = MM(12) GAUS0530 NULL = MM(12) + 1 GAUS0540 IDNTFC = MM(12) + 1 GAUS0550 TZERO = 1.0 GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.5 GAUS0560 SCALE 2 = 1.0 GAUS0560 TOL1 = B(21) GAUS0560 X NORM = 0.0 GAUS0650 NDEWN = 0 GAUS0650 NDARK P = 0 GAUS0650 NDARK = 0 GAUS0650 NDARA = 0 GAUS0660 NPARA = 0 GAUS0670	X Z(12,300), DEL(20), E(20), MM(12), RECORD(100), CY(300), FP(20,300)	GAUS0050
COMMON /COMA/ MM GAUS0061 COMMON /COMB/ JJ GAUS0062 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ FP GAUS0064 COMMON /COME/ A.C.M GAUS0070 EQUIVALENCE (A.XX) GAUS0070 NUMBER = MM(1) GAUS0500 JJ = MM(3) GAUS0500 LIMIT = MM(4) GAUS0520 NULL = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.0 GAUS0560 SCALE 3 = 1.0 GAUS0560 TOL = B(21) GAUS0560 X NORM = 0.0 GAUS0650 MRK P = 0 GAUS0650 NDEWN = 0 GAUS0670 NN = 0 GAUS0670 NN = 0 GAUS0670 NN = 0 GAUS0660 NN = 0 GAUS0670 NARK P = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NPARA = 0 GAUS0710	COMMON NUMBER, B,Z	GAUS0060
COMMON /COMG/ JJ GAUS0062 COMMON /COMC/ CY GAUS0063 COMMON /COMC/ A+C+M GAUS0065 EQUIVALENCE (A+X) GAUS0070 NUMBER = MM(1) GAUS0500 JJ = MM(2) GAUS0510 LIMIT = MM(1) GAUS0520 NULL = MM(12) GAUS0510 LIMIT = MM(12) GAUS0530 MM(12) = MM(12) + 1 GAUS0540 IDNTFC = MM(12) + 1 GAUS0570 SCALE 1 = 0-2 GAUS0570 SCALE 2 = 1.0 GAUS0580 SCALE 3 = 1.0 GAUS0620 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDEWN = 0 GAUS0640 NN = 0 <td< td=""><td>COMMON /COMA/ MM</td><td>GAUS0061</td></td<>	COMMON /COMA/ MM	GAUS0061
COMMON /COMC/ CY GAUS0063 COMMON /COMD/ FP GAUS0064 COMMON /COMD/ FP GAUS0065 EQUIVALENCE (A,X) GAUS0070 NUMBER = MM(1) GAUS0500 NSET = MM(2) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) GAUS0520 NULL = MM(12) GAUS0550 IDNTFC = MM(12) GAUS0550 IDNTFC = MM(12) GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.5 GAUS0550 SCALE 3 = 1.0 GAUS0500 TOL 1 = B(21) GAUS0620 MRK P = 0 GAUS0620 MARK P = 0 GAUS0620 MARK P = 0 GAUS0620 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0670 NNPARA = 0 GAUS0670 NT2ERO = -1 GAUS0670 SUMSQ = 0.0 GAUS0720 NDAGUN = 0 GAUS0700 NDOWN = 0 GAUS0700 NDAGUN GAUS0700 <	COMMON /COMB/ JJ	GAUS0062
COMMON /COMD/ FP GAUS0064 COMMON /COME/ A+C,M GAUS0065 EQUIVALENCE (A+X) GAUS0070 NUMBER = MM(1) GAUS0490 NSET = MM(2) GAUS0500 JJ = MM(3) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) + 1 GAUS0540 IDNTFC = MM(12) + 1 GAUS0570 SCALE 1 = 0.2 GAUS0570 SCALE 2 = 1.5 GAUS0580 SCALE 3 = 1.0 GAUS0500 TOL1 = B(21) GAUS0600 X NORM = 0.0 GAUS0600 KKPATH = -1 GAUS0660 NDOWN = 0 GAUS0670 NN = 0 GAUS0670 NPARA = 0 GAUS0670 NPARA = 0 GAUS0670 NPARA = 0 GAUS0670 NPARA = 0 GAUS0700 SUMSQ = 0.0 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0700 SUMSQ = 0.0 GAUS0730 X = 2.0 GAUS0730	COMMON /COMC/ CY	GAUS0063
COMMON /COME/ A+C+M GAUS0065 EQUIVALENCE (A+X) GAUS0070 NUMBER = MM(1) GAUS0500 JJ = MM(3) GAUS0500 LIMIT = MM(4) GAUS0520 NULL = MM(12) GAUS0520 NULL = MM(12) GAUS0550 NULL = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 TZERO = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.5 GAUS0550 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0620 MARK P = 0 GAUS0650 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NPATH = 1 GAUS0660 NPATH = 1 GAUS0670 NPARA = 0 GAUS0670 NPATH = 1 GAUS0670 NPATH = 1 GAUS0670 NT2ERO = -1 GAUS0710 T = 0.0 GAUS0720 X3 = 3	COMMON /COMD/ FP	GAUS0064
EQUIVALENCE (A,X) GAUS0070 NUMBER = MM(1) GAUS05490 NSET = MM(2) GAUS0500 JJ = MM(3) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) + MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 IDNTFC = MM(12) GAUS0550 IZER0 = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0570 SCALE 2 = 1.5 GAUS0580 SCALE 3 = 1.0 GAUS0500 TOL1 = B(21) GAUS0600 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NT2ERO = -1 GAUS0700 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X3 = 3.0 GAUS0730	COMMON /COME/ A.C.M	GAUS0065
NUMBER = MM(1) GAUS05490 NSET = MM(2) GAUS0510 JJ = MM(3) GAUS0520 NULL = MM(12) GAUS0520 NULL = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 IDNTFC = MM(12) + 1 GAUS0550 SCALE 1 = 0.2 GAUS0550 SCALE 2 = 1.0 GAUS0550 SCALE 3 = 1.0 GAUS0560 TOL1 = B(21) GAUS0600 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0650 NDOWN = 0 GAUS0650 NDWN = 0 GAUS0650 NDWN = 0 GAUS0650 NDWN = 0 GAUS0650 NDARA = 0 GAUS0670 NNPARA = 0 GAUS0670 NNPARA = 0 GAUS0710 SUMSQ = 0.0 GAUS0710 X = 2.0 GAUS0730	EQUIVALENCE (A,X)	GAUS0070
NSET = MM(2) GAUS0500 JJ = MM(3) GAUS0510 LIMIT = MM(4) GAUS0520 NULL = MM(12) GAUS0530 MM(12) = MM(12) + 1 GAUS0550 IDNTFC = MM(12) GAUS0550 TZER0 = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0580 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0620 MARK P = GAUS0620 GAUS0620 MARK P = GAUS0640 GAUS0650 NDOWN = GAUS0650 GAUS0650 NDOWN = GAUS0660 NN = NNPARA = GAUS0660 GAUS0670 NNPARA = GAUS0690 NTZERO = -1 GAUS0710 GAUS0710 GAUS0720 X3 = 3.0 GAUS0730 X2 = Z:0 GAUS0730	NUMBER = MM(1)	GAUS0490
JJ = MM(3) GAUS0510 LIMIT = MM(12) GAUS0520 NULL = MM(12) + GAUS0530 MM(12) = MM(12) + GAUS0540 IDNTFC = MM(12) GAUS0550 TZER0 = 1.0 GAUS0550 SCALE 1 = 0.2 GAUS0590 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = GAUS0660 GAUS0660 NDOWN = GAUS0660 GAUS0660 NN = 0 GAUS0660 GAUS0660 NNPARA = GAUS0660 GAUS0660 NPATH = GAUS0670 GAUS0660 NTZERO = -1 GAUS0710 GAUS0720 SUMSQ = 0.0 GAUS0720 GAUS0720 X3 = 3.0 GAUS0720 GAUS0730 X2 = 2.0 GAUS0740 GAUS0740	NSET = MM(2)	GAUSOSOO
LIMIT = MM(4) GAUS0520 NULL = MM(12) GAUS0530 MM(12) = MM(12) + 1 GAUS0540 IDNTFC = MM(12) GAUS0550 TZERO = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0580 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0610 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0650 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0660 NNPARA = 0 GAUS0660 NPATH = 1 GAUS0670 NTZERO = -1 GAUS0670 SUMSQ = 0.0 GAUS0700 X 3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	JJ = MM(3)	GAUSUSIO
NULL = MM(12) GAUS0530 MM(12) = MM(12) + 1 GAUS0540 IDNTFC = MM(12) GAUS0550 TZER0 = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0570 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0650 NN = 0 GAUS0660 NN = 0 GAUS0660 NPARA = 0 GAUS0670 NPATH = 1 GAUS0670 SUMSQ = 0.0 GAUS0710 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X2 = 2.0 GAUS0740	LIMIT = MM(4)	GAUS0520
MM(12) = MM(12) + 1 GAUS0540 IDNTFC = MM(12) GAUS0570 IZERO = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0580 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0650 NDOWN = 0 GAUS0650 NN = 0 GAUS0660 NN = 0 GAUS0650 NN = 0 GAUS0660 NN = 0 GAUS0650 NPARA = 0 GAUS0660 NPATH = 1 GAUS0600 SUMSQ = 0.0 GAUS0710 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X2 = 2.0 GAUS0740	NOLL = MM(12)	GAUSUSSU
IDNTFC = MM(12) GAUS0530 IZERO = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0580 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0650 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NNPARA = 0 GAUS0660 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0690 SUMSQ = 0.0 GAUS0710 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X2 = 2.0 GAUS0740	MM(12) = MM(12) + 1	GAUSU540
I 22R0 = 1.0 GAUS0570 SCALE 1 = 0.2 GAUS0580 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0620 MARK P = 0 GAUS0660 KKPATH = -1 GAUS0660 NDOWN = 0 GAUS0660 NNPARA = 0 GAUS0660 NPATH = 1 GAUS0670 SUMSQ = 0.0 GAUS0700 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X2 = 2.0 GAUS0740	IDNIFC = MM(12)	GAUSO550
SCALE 1 = 0.2 GAUS0590 SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0610 TOL1 = B(21) GAUS0620 MARK P = 0 GAUS0620 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NNPARA = 0 GAUS0660 NPATH = 1 GAUS0670 NTZERO = -1 GAUS0690 SUMSQ = 0.0 GAUS0710 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0720 X2 = 2.0 GAUS0740	12ERO = 1.0	GAUSOSPO
SCALE 2 = 1.5 GAUS0590 SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0620 MARK P = 0 GAUS0620 NDOWN = 0 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NN = 0 GAUS0670 NNPARA = 0 GAUS0670 NTZER0 = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	SCALE $I = 0.2$	GAUSOSOO
SCALE 3 = 1.0 GAUS0600 TOL1 = B(21) GAUS0610 X NORM = 0.0 GAUS0620 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0670 NNPARA = 0 GAUS0670 NPATH = 1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	Scale $Z = 1 \cdot 5$	GAUSOSOD
X NORM = 0.0 GAUS0610 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0650 NN = 0 GAUS0660 NN = 0 GAUS0670 NNPARA = 0 GAUS0680 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	SCALE $3 = 1 \cdot 0$	GAUS0610
A NORM = 0.0 GAUS0610 MARK P = 0 GAUS0640 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NN = 0 GAUS0660 NPARA = 0 GAUS0680 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0710 SUMSQ = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	OLI = B(2I)	GAUS0610
MARK P = 0 GAUS0650 KKPATH = -1 GAUS0650 NDOWN = 0 GAUS0660 NN = 0 GAUS0670 NNPARA = 0 GAUS0680 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740		GAUS0640
NDOWN = 0 GAUS0660 NN = 0 GAUS0660 NNPARA = 0 GAUS0670 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0690 SUMSQ = 0+0 GAUS0710 T = 0+0 GAUS0720 X3 = 3+0 GAUS0730 X2 = 2+0 GAUS0740		GAUS0650
NN = 0 GAUS0670 NN PARA = 0 GAUS0680 NPATH = 1 GAUS0690 NTZER0 = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740		GALLSOAGO
NNPARA = 0 GAUS0680 NPATH = 1 GAUS0690 NTZERO = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740		GAUS0670
NPATH = 1 GAUS0690 NTZER0 = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	NNPARA = 0	GAUS0680
NTZER0 = -1 GAUS0700 SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	NPATH = 1	GAUS0690
SUMSQ = 0.0 GAUS0710 T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	NT2FRO = -1	GAUS0700
T = 0.0 GAUS0720 X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	SUMSO = 0.0	GAUS0710
X3 = 3.0 GAUS0730 X2 = 2.0 GAUS0740	T = 0.0	GAUS0720
X2 = 2.0 GAUS0740	x3 = 3.0	GAUS0730
	X2 = 2.0	GAUS0740

	$Y_2 = 2.0$		GAUS0750
	Y3 = 3.0		GAUS0760
	IF (LIMIT - 100) 2.47.47		GAUS0780
2	IF (TOL1) 420,420,1		GAUS0790
1	DO 4 J=1,JJ		GAUS0810
	BMIN(J) = B(J)		GAUS0820
	BSTART(J) = B(J)		GAUS0830
	X NORM = X NORM + B(J) * 2		GAUS0840
	DEL(J) = 0.05 + ABS (B(J))	1.1.1	GAUS0850
-	IF (DEL(J)) 4,3,4		GAUS0860
3	DEL(J) = 0.05		GAU50870
4	CONTINUE		GAUSO880
-			GAUS0900
2	FORMAT (SINI GAUSSIAN PARAMETER SUBROUTINE	2(12,300)) GAUS0910
	WRITE (0,412) (MM(L), L=1,12)		GAUS0930
	WKITE (0,100) (B(J), J = 1,24)		GAUS0940
4	1F (MM(9) - 1) 7.90.7		GAUSO960
7	IF (B(23)) 8.8.430		GAUSU980
8	JPARA = -1		GAUSIOUO
•	MPATH = -1		GAUS1010
	I = 0.0		GAUS1020
	MM(8) = 2		GAUS1030
	WRITE(6+59)		GAU51050
	DO 9 J=1.JJ		GAUS1060
9	BSTART(J) = B(J)		GAUS1070
10	SQLAST = SUMSQ		GAUS1090
	SUMSQ = 0.0		GAUS1100
	NTZERO = NTZERO + 1		GAUS1110
	NN = NN+1		GAUS1120
	IF (NN - LIMIT) 12,12,11		GAUS1130
11	MM(8) = -2		GAUS1150
	GO TO 80		GAUS1160
12	CALL YCOMP		GAUS1180
	DO 17 N= 1+NUMBER		GAUS1181
	YC = CY(N)		GAUS1190
	DELY = YC - Z(NSET,N)		GAUS1200
	SUMSQ = SUMSQ + DELY**2		GAUS1210
	IF (NULL) 17,13,13		GAUS1220
13	IF (MM(6)) 14,17,14	· · · · · · · · · · · · · · · · · · ·	GAUS1230
14	IF (N-1) 16,15,16		GAUS1240
15			GAUS1250
10	WRITE (0118) NITCIZINSETINIIDELT		GAUS1260
17	MARK P = 1		GAUS1270
11	DECODD (NN) = SUMSO		GAUS1280
1.8	EOPMAT (14+4F18-7)		GAUS1290
10	GO TO 440		GAUS1300
19	IE (NN - 1) 20.22.30		GAUS1330
20	IE (SUMSO-SOMIN) 21.21.27		GAUS1360
21	NDOWN = 1		GAUS1370
22	SOMIN = SUMSO		GAUS1380
	DO 24 J=1+JJ		GAUS1390
24	BMIN(J) = B(J)		GAUS1400
25	1F (MPATH) 301,200,38		GAUS1410
27	IF (NDOWN) 28,28,29		GAUS1430
28	NDOWN = -1		GAUS1440
29	IF (MPATH) 301+200+36		GAUS1450
30	IF (MM(6)) 32,32,31		GAUS1470
31	MM(6) = 0		GAUS1480
32	IF (MM(10)) 20,20,33		GAUS1490
33	NMIERO = 91		GAUS1540
38	DO 39 J=1,JJ		GAUS1560
	B(J) = BMIN(J)	5 ¹	GAUS1570

	DETADTA IN CONTACT IN	
39	BSTART(J) = BMIN(J)	GAUS1580
	Y1 = SQMIN	GAUS1600
	X1 = 0.0	GAUS1610
		CAUSICIO
		GAUS1620
	MPATH = -1	GAUS1630
	GO TO 301	GAUS1640
40	SUM2 = SUM1	GAUS1660
		64051000
	SUMI = SUMSQ	GAUS10/0
	NNPARA = 0	GAUS1680
	IF (SUM1 - SUM2) 19.45.19	GAUS1690
4.5	TTEDO - CONFINTIEDO	CAUC1710
42	IZERO - SCALEI I IZERO	GAUSITIO
	NDOWN = 0	GAUS1720
	T = 0.0	GAUS1730
	GO TO 8	GAUS1740
		GAUS1740
41	LIMIT = 99	GAUS1760
	GO TO 2	GAUS1770
49	T = -0.5*((X1*X1-X2*X2)*(Y1-Y3)-(X1*X1-X3*X3)*(Y1-Y2))/	GAUS1800
×	$(1 \times 1 - \times 3) * (1 - 1 \times 2) - (1 \times 1 - 1 \times 2) * (1 - 1 \times 3)$	GAUSIRIO
^		CAUCIORO
	MPATH = 1	GAUS1830
	JPARA = -1	GAUS1840
	NNPARA = 1	GAUS1850
		GAUS1060
		GAUSIOOU
	GO TO 366	GAUS1870
53	WRITE (6,54)	GAUS1890
54	FORMAT (24HO OVER-UNDERFLOW //)	GAUS1900
		CAUCIOIO
	MM(8) = -1	GAUS1910
	MM(10) = -1	GAUS1920
	GO TO 301	GAUS1930
56	WRITE (6.57)	GAUS1960
50		CAUC1000
51	FORMAT (24HO MATRIX IS SINGULAR //)	GAUS1970
	MM(8) = -1	GAUS1980
	MM(10) = -1	GAUS1990
	MM(10) = -1	GAUS1990
	MM(10) = -1 GO TO 301 GO TO 101	GAUS1990 GAUS2000
59	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020
59 X	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030
59 X	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040
59 X 58	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090
59 X 58 60	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090
59 X 58 60	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100
59 X 58 60	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2110
59 x 58 60	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2110 GAUS2120
59 x 58 60 62	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2120
59 x 58 60 62 63	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2110 GAUS2120 GAUS2120 GAUS2130
59 x 58 60 62 63	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2110 GAUS2120 GAUS2130 GAUS2140
59 x 58 60 62 63	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150
59 x 58 60 62 63	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2150 GAUS2150 GAUS2160
59 x 58 60 62 63 65	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2100 GAUS2110 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2160 GAUS2170
59 x 58 60 62 63 65 65	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2160 GAUS2160 GAUS2170
59 X 58 60 62 63 65 66	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2190
59 x 58 60 62 63 65 66 67	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2170 GAUS2170 GAUS2190 GAUS2200
59 x 58 60 62 63 65 66 67 69	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2190 GAUS2210
59 x 58 60 62 63 65 66 65 66	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200
59 x 58 60 62 63 65 66 67 69	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2170 GAUS2170 GAUS2170 GAUS2200 GAUS2200 GAUS2210
59 x 58 60 62 63 65 66 65 66 67 69 80	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2100 GAUS2200 GAUS2210 GAUS2210 GAUS2220 GAUS2220
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2150 GAUS2150 GAUS2150 GAUS2150 GAUS22100 GAUS2200 GAUS2200 GAUS2220 GAUS2270
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2220 GAUS2220 GAUS2220 GAUS2270 GAUS2270 GAUS2270
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2270 GAUS2280
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS220 GAUS220 GAUS220 GAUS220 GAUS220 GAUS220 GAUS220
59 x 58 60 62 63 65 66 67 69 80 82	MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************	GAUS1990 GAUS2000 *GAUS2020 GAUS2040 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2270 GAUS2280 GAUS2280 GAUS22300
59 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS20100 GAUS2030 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2130 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2160 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2210 GAUS2200 GAUS2210 GAUS2210 GAUS2210 GAUS2210 GAUS2210
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS22300 GAUS2310 GAUS2320
59 x 58 60 62 63 65 66 65 66 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2120 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2270 GAUS2280 GAUS2270 GAUS2280 GAUS22300 GAUS2300 GAUS2310 GAUS2320
59 x 58 60 62 63 65 66 67 69 80 82	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 GAUS2030 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2100 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2210 GAUS2210 GAUS2200 GAUS2210 GAUS2200 GAUS2210 GAUS2200 GAUS2210 GAUS2200 GAUS2200 GAUS2200 GAUS2300 GAUS2300 GAUS2300 GAUS2300
59 x 58 60 62 63 65 66 67 69 80 82 81	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2220 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS22300 GAUS2310 GAUS2310 GAUS2320
59 x 58 60 62 63 65 66 67 69 80 82 81	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2040 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2150 GAUS2150 GAUS2150 GAUS2150 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS22300 GAUS2310 GAUS2310 GAUS2310 GAUS2310 GAUS2310 GAUS2320
59 x 58 60 62 63 65 66 67 69 80 82 81	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 GAUS2030 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2160 GAUS2100 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2210 GAUS2200 GAUS2200 GAUS2230 GAUS2300 GAUS2310 GAUS2350 GAUS2350 GAUS2350
59 x 58 60 62 63 65 66 67 69 80 82 81	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2230 GAUS2310 GAUS2310 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320 GAUS2320
59 x 58 60 62 63 65 66 67 69 80 82 81 90	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2020 GAUS2030 GAUS2040 GAUS2090 GAUS2100 GAUS2120 GAUS2120 GAUS2130 GAUS2150 GAUS2150 GAUS2150 GAUS2150 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2300 GAUS2310 GAUS2320 GAUS2320 GAUS2350 GAUS2350 GAUS2350 GAUS2360 GAUS2370
59 x 58 60 62 63 65 66 67 69 80 82 81 90 91	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 GAUS2030 GAUS2030 GAUS2040 GAUS2100 GAUS2120 GAUS2130 GAUS2130 GAUS2140 GAUS2150 GAUS2150 GAUS2160 GAUS2160 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2230 GAUS2300 GAUS2310 GAUS2350 GAUS2350 GAUS2350 GAUS2350 GAUS2350 GAUS2350
59 x 58 60 62 63 65 66 67 69 80 82 81 90 91	<pre>MM(10) = -1 GO TO 301 FORMAT (114HOCYCLE SUM OF SQUARES ************************************</pre>	GAUS1990 GAUS2000 *GAUS2030 GAUS2030 GAUS2090 GAUS2100 GAUS2120 GAUS2130 GAUS2130 GAUS2150 GAUS2150 GAUS2150 GAUS2160 GAUS2170 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2200 GAUS2230 GAUS2310

93	FORMAT (82HONUMBER Y OF	SERVED Y CALCULATED	GAL152420
X	DELTA Y PCT DEVIATION ///)		GAUS2430
94	CALL YCOMP		GAUS2450
98	YC = CY(N)		GALIS2451
	DELY = YC - Z(NSET,N)		GAUS2460
	RATIO = 100.0 * (DELY / Z(NSET.N)	1	GAUS2470
	ABSRAT = ABS (RATIO)		GALIS 2480
	AV = AV + DELY		GAUS2400
	AV1 = AV1 + RATIO		GAUS2500
	AV2 = AV2 + ABSRAT		GAUS2510
	WRITE (6.95) N.7(NSET.N	ANT ADEL YARATIO	GAUS2510
95	FORMAT (15+E23+5+E17+5+2E19+5)		GAUS2520
	ABSVAL = ABS (DELY)		GAUS2540
	IF (YMAX - ABSVAL) 96,96,97		GAUS2550
96	YMAX = ABSVAL		GAUS2560
	YYMAX = DELY		GAUS2570
	MARK = N		GAUS2580
97	IF (ZMAX-ABSRAT) 971,971,972		GAUS2590
971	ZMAX = ABSRAT		GAUS2600
	ZZMAX = RATIO		GAUS2610
	MARK1 = N		GAUS2620
972	N = N+1		GAUS2630
	IF (N - NUMBER) 98,98,99		GAUS2640
99	D = NUMBER		GAUS2660
	AV = AV/D		GAUS2670
	AVI = AVI/D		GAUS2680
	AV2 = AV2/D		GAUS2690
	RTMNSQ = SQRT (SUMSQ/D)		GAUS2700
	WRITE (6,100)		GAUS2710
100	FORMAT(118H0***********************************	*******	GAUS2720
X	**********	***********************************	GAUS2730
X	(7)		GAUS2740
	WRITE (6,101) AV,AV1,AV	2	GAUS2750
101	FORMAT (30HO AVERAGE DEVIATION	E14.5,	GAUS2760
X	20H AVERAGE PCT DEV	E14.5,	GAUS2770
X	20H AVE ABS PCT DEV	E14.5)	GAUS2780
	WRITE (6,103) YYMAX,MAR		GAUS2790
103	FORMAT (30HO MAXIMUM DEVIATION	E14.5.16)	GAUS2800
	WRITE (6,104) ZMAX,MA	RK1	GAUS2810
104	FORMAT (30HO MAXIMUM PCT DEV	E14.5.16)	GAUS2820
	WRITE (6,105) RTMNSQ		GAUS2830
105	FORMAT (30HU ROOT MEAN SQUARE DE	VIATION E14.5)	GAUS2840
107	FORMAT (21HO AT TIERATION	13, 24H, THE SUM OF SQUARES IS	GAUS2660
X	EIG. // 22HO FOR PARAMETER VALU	ES / IHU// (6E20 • /1)	GAUS2870
108	FORMAT (SF20.5)		GAUS2880
109	FORMAT (177)		GAUS2890
110	HOLTE (4.5)		GAUS2900
	TE (MM(8) + 2) 114-111-114		GAU52910
111	WRITE (4.112)		GAUS2920
112	FORMAT (30HO EXCEEDED ITERATION I	INIT //)	GAUS2930
112	CO TO 999	1P11 ///	GAUS2940
114	15 (MM(8) = 1) 000-8-000		GAUS2930
200	IF (MM(0) - 1) 999909999		GAUS2970
200	T = T + SCALE1		GAUS2000
201	GO TO 203		GAUS3010
202	T = T + SCALF2		GAUS3020
202	MDATH = 0		GAUS3030
203	IDARA = IDARA + 1		GAUS3040
	GO TO 366		GAUS3050
301	MPATH = 0	이렇게 집에 앉아서 것은 깨끗물었던 것이 많아요.	GAUS3070
302	NOOWN5=N01.JJ		GAUSSORO
305	$A(M \bullet N) = 0 \bullet 0$		GAUS3120
303	CALL DERIV		GAUS3170
	THE PRIME AND A CONTRACT AND A CONTR		

	CALL YCOMP
	DO 313 N = 1, NUMBER
	DO 313 K = $1 \cdot JJ$
	C(K+1) = C(K+1) + FP(K+N) * (Z(NSET+N) - CY(N))
	DO 313 $J = K_*JJ$
313	$A(K_{\bullet}J) = A(K_{\bullet}J) + FP(K_{\bullet}N) * FP(J_{\bullet}N)$
	IF (NTZERO) 318.318.317
317	TZERO = 1.0
318	T = T7FRO
310	
214	
310	A(1,j) = A(j,j)
	IF (MM(10)) 319,331,319
319	WRITE (6+320) NN
320	FORMAT (19HO MATRIX, ITERATION 13)
	MMPATH = 0
322	DO 323 I=1+JJ
323	WRITE (6,324) . (A(I,J), J=1,JJ)
324	FORMAT (9E13.5)
	DO 328 I=1+JJ
328	WRITE (6,324) C(1,1)
	IF (MMPATH) 350,331,350
331	DO 340 I=1.JJ
	DENOM = ABS (A(Iol))
	DO 336 J=2 . JJ
	IE (DENOM-ABS (A(1.1))) 335.336.336
335	DENOM = ABS (A(I + 1))
336	CONTINUE
330	
220	
330	A(1)(K) = A(1)(K)/DENOM*SCALE3
340	C(I)I) = C(I)I)/DENOM*SCALES
	MMPATH = 1
	IF (MM(10)) 322,350,322
350	DD = 1.0
	IF (MM(8)) 999,354,354
354	CALL SOLV
	GO TO (351,53,56), M
351	IF (MM(6)) 352,363,352
352	WRITE $(6,353)$ (X(J,1), J=1,JJ)
353	FORMAT (13HO DELTA B(J) /(9E13.5))
363	Y NORM = 0.0
	DO 364 J=1+JJ
364	Y NORM = Y NORM + $X(J,1)**2$
	IF (Y NORM - X NORM) 366,366,365
365	T = 0.5*SQRT (X NORM)/SQRT (Y NORM)
	¥1 = T
366	DO 367 J=1.JJ
367	B(1) = BSTART(1) + T*X(1.1)
371	DO 376 = 1.11
	15 (8(1)) 372,374,372
272	Y = ABS ((B(1) = BSTADT(1))/B(1))
312	AA = ABS ((B(J) - BSTART(J))/B(J))
314	XX = ABS (B(J) - BSIARI(J))
375	IF (XX-TOL1) 376,376,378
376	CONTINUE
	MM(8) = 2
	GO TO 80
378	IF (MM(7)) 60,379,60
379	IF (NDOWN) 10,10,380
380	IF (JPARA) 10,10,49
400	IF (NULL) 6,401,401
401	WRITE (6,100)
	IF (MM(5)) 406,403,403

GAUS3160 GAUS3210 GAUS3220 GAUS3230 GAUS3240 GAUS3250 GAUS3300 GAUS3310 GAU53320 GAUS3340 GAUS3350 GAUS3360 GAUS3370 GAUS3390 GAUS3410 GAUS3420 GAUS3430 GAUS3440 GAUS3450 GAUS3460 GAUS3480 GAUS3490 GAUS3500 GAUS3520 GAUS3530 GAUS3540 GAUS3550 GAUS3560 GAUS3570 GAUS3580 GAUS3590 GAUS3600 GAUS3620 GAUS3630 GAUS3650 GAUS3660 GAUS3670 GAUS3680 GAUS3690 GAUS3700 GAUS3710 GAUS3730 GAUS3740 GAUS3750 GAUS3770 GAUS3780 GAUS3790 GAUS3800 GAUS3810 GAUS3820 GAUS3830 GAUS3840 GAUS3850 GAUS3860 GAUS3870 GAUS3880 GAUS3890 GAUS3000 GAUS3920 GAUS3940 GAUS3960 GAUS3980 GAUS3990 GAUS3991

403	WRITE (6,402)	GAUS4000
402	FORMAT (15H OBSERVATIONS//)	GAUS4010
	DO 404 N=1 NUMBER	GAUSA030
101		GA034030
404	WRITE (69405) N9 (2(J9N)9 J=1912)	GAUS4040
405	FORMAT (14,8E14.5/(E18.5,7E14.5))	GAUS4050
406	WRITE (6.5) IDNTEC	GAUS4060
	60 10 4	CAUSIOZO
		GAU54070
410	FORMAT (60HO DATA Y COMP Y OBS	DIFFEGAUS4080
XI	RENCE)	GAUS4090
411	FORMAT (16+F20-7)	GAUS4100
412		5A054100
412	FORMAT (1216)	GAUS4110
420	TOL1 = 0.0001	GAUS4130
	GO TO 1 .	GAUS4140
430	15 (B(23) - 1-0) 431-8-8	CALLS A 1 CO
400		GA034180
431	1 ZERO = B(23)	GAUS4170
	WRITE (6,433) TZERO	GAUS4180
433	FORMAT (30H0 VECTOR SCALE FACTOR = $B(23)$, $E12.4//$)	GAUS4190
	60 10 8	GAUS/200
		GA034200
440	IF (NULL) 44694419441	GAUS4220
441	N SPIN = N SPIN + 1	GAUS4230
442	IF (MARK D) 444-443-444	GALLSA240
442		64054240
443	IF (N SPIN - 15) 44594449444	GAUS4250
444	N SPIN = 0	GAUS4260
	WRITE (6.59)	GAUS4270
		64064210
440	WRITE (6:58) NN: SUMSU: (B(J): J=1:JJ)	GAUS4280
446	X3 = X2	GAUS4290
	$x_{2} = x_{1}$	GAUS4300
	¥1 - T	GA115/310
		0A034310
	Y3 = Y2	GAUS4320
	$Y_2 = Y_1$	GAUS4330
	Y1 = SUMSO	GA1154340
		CALLEGOEO
1	IF (NNPARA) 40,19,40	GAU34350
999	WRITE (6,991)	GAUS4360
	DO 990 J=1+NN	GAUS4370
000	WRITE (6:405)	GA1154380
,,,,		04054500
991	FORMAT (28HO RECORD OF SUM OF SQUARES //)	GAUS4390
993	FORMAT (24H0 MINIMIZING PARAMETERS //)	GAUS4400
	WRITE (6,993)	GAUS4410
	UPITE (6-108) (PMIN(1), 1-1-11)	GALISAADO
		0A034420
1000	RETURN	GAUS4450
	END	GAUS4460
SIRETC	SOLV NODECK	
PIDIIC		501 1/0010
	SUBROUTINE SOLV	SULVUUIU
	DIMENSION A(20,21), C(20,1), LOC(20), CK(20)	SOLV0020
	COMMON /COMB/ JJ	SOLV0030
	COMMON (COME (A C M	501 10040
	COMMON /COME/ ASCSM	30200040
	M = 1	SOLV0050
	NP = JJ + 1	SOLV0060
	$PO(11) I = 1 \cdot II$	SOI V0070
		SOLVOOTO
	CK(I) = 0	SULVUU80
11	$A(I_{\bullet}NP) = C(I_{\bullet}I)$	SOLV0090
	DO 50 I = 1.JJ	SOLV0100
		COLVOI10
	1P = 1 + 1	SOLVOITO
C	FIND MAX ELEMENT IN I TH COLUMN.	SOLV0120
	AMAX = 0.	SOLV0130
	DO 2 K = 1.11	SOL V0140
		SOLVOIEO
	IF (AMAX - ABS(A(K,I))) 3,2,2	SULVUISU
CIIIII	IS NEW MAX IN ROW PREVIOUSLY USED AS PIVOT	SOLV0160
3	1F (CK(K)) 4.4.2	SOLV0170
		501.001.80
4	LOUTIT = K	501.00180
	AMAX = ABS(A(K,I))	SOLV0190
2	CONTLODEI)	SOLV0200
1	CK(L) = 1	SOLV0240
C	DEPENDENT STIMINATION - I IS DIVOT DOW - ALL IN IS DIVOT SLEMEN	T. SOL V0250
	TELEVISION CONTRACTOR CALCELLA CONTRACTOR ALLEN CONTRACTOR	

	00 50 J = 1, JJ	SOLV0260
	IF (L-J) 6,50,6	SOLV0261
6	F = -A(J,I) / A(L,I)	SOLV0262
	DO 40 K = $IP \cdot NP$	SOLV0270
40	$A(J_{\bullet}K) = A(J_{\bullet}K) + F * A(L_{\bullet}K)$	SOLV0280
50	CONTINUE	SOLV0290
	DO 200 I = 1 + JJ	SOLV0300
	L = LOC(1)	SOLV0310
200	A(I+I) = A(L+NP) / A(L+I)	SOLV0320
	RETURN	SOLV0330
99	M = 3	SOLV0340
	RETURN	SOLV0350
	ËND	SOLV0360
\$IBFTC	DERIV NODECK	
	SUBROUTINE DERIV	DERIVOIO
	DIMENSION B(24),Z(12,300),CY(300),FP(20,300),H(20),Y(300)	DERIV020
	COMMON NUMBER, B,Z	DERIV030
	COMMON /COMB/ JJ	DERIV040
	COMMON /COMC/ CY	DERIV050
	COMMON /COMD/ FP	DERIV060
	IF (B(22)) 20+1+20	DERIV070
1	$B(22) = 1_{\bullet}$	DERIVO80
	DO 7 J = 1, JJ	DERIVO90
	TEST = ABS(B(J))	DERIV100
	IF (TEST - 0.001) 5.6.6	DERIVIIO
5	H(J) = 0.001	DERIV120
	GO TO 7	DERIV130
6	H(J) = 0.0001 * TEST	DERIV140
7	CONTINUE	DERIV150
ن 2	DO 22 J = 1, JJ	DERIV160
	TEMP = B(J)	DERIV170
	B(J) = TEMP + H(J)	DERIV180
	CALL YCOMP	DERIV190
	DO 21 N = 1 ,NUMBER	DERIV200
21	Y(N) = CY(N)	DERIV210
	B(J) = TEMP - H(J)	DERIV220
	CALL YCOMP	DERIV230
	B(J) = TEMP	DERIV240
	DO 22 N = 1 ,NUMBER	DERIV250
22	$FP(J_{N}) = (Y(N) - CY(N))/(2 + H(J))$	DERIV260
	RETURN	DERIV270
	END	DERIV280

LIST II

\$TRETC		<u>.</u>								
+10/ /C	SUBROUTINE YCC	MP.							· YCC	
	DIMENSION B(24	J.Z(12.300).CY(300)	1					YCC	MP020
	COMMON NUMBER	B•Z							YCC	MP030
	COMMON /COMC/	CY							YCC	MP040
	F1 = FXP(0.67)	* B(1) /	592.521							
	$F_2 = F_X P_1 0 \cdot 826$	* B(2) /	592.521			•				
	E3 = EXP(1.069)	* B(3) /	592.521							
	DO = EARTIOUZ	BER		÷					YCC	MPIOO
	E1 = 1.26 + 71						÷			1100
	F1 = 1 + 33 + 20		•							
	$FZ = 1 \cdot 35 + 20$									
	$r_{2} = 4 \cdot 20 + E2$									
	$F4 = 4020 + C_2$									
	$DI \sim FI + FJ$									1
	- UZ - FZ - F4 CV/NI-1,25+7/1.	N1 + E1 / D1 + E	2/1141-264	7/1.11	*E2701	148/2	144.264	+=2/02+		
· · · ·	D(2)+/.24#6//	1240121 1240121 1240121		2119101	~(5/01	1-012	14420	~ 2702*		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
^ .	D(2)74020*F4/L	2-0())							vcr	MP200
									VC/	MP210
* ENTDY	ENU			· · · · ·					, 100	MF 210
	2 2	6 ()	1		1	1	-1	1	1	
041 00	722 71		-1		1	.+		.	-	
001.08	125011	400+04							100 A. A.	
	· · ·	0001	• •		1					
, .	2214	. 2.			2.		674	. P .		٧
1.0	55140	۷ م	49.99		9 •		570			

		.0001		1.	
1.	3314.	2.	4555.	3.	5768.
4.	6969.	5.	8155.	6.	9328.
7.	10508.	8.	11684.		
\$IBSYS					

LIST III

```
SIBFIC YCOMP
               NODECK
       SUBROUTINE YCOMP
                                                                           YCOMP010
       DIMENSION B(24), Z(12,300), CY(300)
                                                                           YCOMP020
       COMMON NUMBER , B , Z
                                                                           YCOMP030
       COMMON /COMC/ CY
                                                                           YCOMP040
       E1 = EXP (0.675 * 861.08 / 592.52)
                                                                           YCOMP050
       E2 = EXP ( 0.826 * 723.71 / 592.52)
                                                                           YCOMPOSO
       E3 = EXP ( 1.065 * 468.64 / 592.52)
                                                                           YCOMP070
       F3 = 4.26 * E2
                                                                           YCOMPOBO
       F4 = 4.26 * E3
                                                                           YCOMPOOD
       E4 = EXP(0.65 * B(1) / 592.52)
                                                                           YCOMP100
       F5 = 1.3 * E4
                                                                           YCOMP110
       DO 1 N = 1,NUMBER
                                                                           YCOMPION
       F1 = 1.35 * Z(2,N) * E1
                                                                           YCOMP130
       F2 = 1.35 * 2(2,N) * E2
                                                                           YCOMP140
       D1 = F1 + F3
                                                                           YCOMP150
                                                                           YCOMP160
       D2 = F2 + F4
       U1=1.35*Z(2.N)*F1/D1*861.08+1.35*Z(2.N)*F3/D1*723.71+4.26*F2/
                                                                           YCOMP170
     X D2*723.71+4.26*F4/D2*468.64
                                                                           YCOMP171
       SO2 = 1.3 * Z(4.N) / (1.3 + Z(4.N))
                                                                           YCOMP180
       S22 = Z(4,N) ** 2 / (2. * Z(4,N))
                                                                           YCOMP190
       S23 = Z(4,N) * Z(5,N) / (Z(4,N) + Z(5,N))
                                                                           YCOMP200
                                                                           YCOMP210
       E6 = EXP (0.807* B(3) / 592.52)
                                                                           YCOMP220
       F9 = F3
       E5 = EXP( SO2 * B(2) / 592.52)
                                                                           YCOMP260
    2
       E7 = EXP ( S22 * 861.08 / 592.52)
                                                                          YCOMP270
       E8 = EXP ( S23 * 723.71 / 592.52)
                                                                           YCOMP280
                                                                           YCOMP290
       F6 = 1.3 * E5
                                                                           YCOMP300
       F7 = 1.3 * E6
       F8 = Z(4,N) * Z(1,N) * E5
                                                                           YCOMP310
       F9 = Z(4,N) * Z(1,N) * E7
                                                                           YCOMP320
                                                                           YCOMP330
       F10 = Z(4,N) * Z(1,N) * E8
                                                                           YCOMP340
       F11 = Z(5,N) * E6
                                                                           YCOMP350
       F12 = Z(5,N) * E8
                                                                           YCOMP360
       F13 = Z(5.N) * E9
       D3 = F5 + F8 + F11
                                                                           YCOMP370
       D4 = F6 + F9 + F12
                                                                           YCOMP380
                                                                           YCOMP390
       D5 = F7 + F10 + F13
       U2=1.3*F5/D3*B(1)+Z(1,N)*Z(4,N)*F6/D4*B(2)+Z(5,N)*F7/D5*B(3)+
                                                                           YCUMP400
     X 1.3*F8/D3*B(2)+Z(1.N)*Z(4.N)*F9/D4*861.08+Z(5.N)*F10/D5*723.71
                                                                           YCOMP401
     X +1.3*F11/D3*B(3)+Z(1.N)*Z(4.N)*F12/D4*723.71+Z(5.N)*F13/D5*468.64YCOMP402
       S2=(Z(3,N)*Z(4,N)*Z(1,N)+(1.-Z(3,N))*Z(2,N)*1.35)/(Z(3,N)*Z(1,N) YCOMP410
     x +(1.-Z(3.N))*Z(2.N))
                                                                           YCOMP411
                                                                           YCOMP420
       53 = 2.13
       SO2 = 1.3 * S2 / (1.3 + S2)
                                                                          YCOMP460
    3
       503 = 1.3 * 53 / (1.3 + 53)
                                                                           YCOMP470
       522 = 52 ** 2 / (2. * 52)
                                                                           YCOMP480
       523 = 52 * 53 / (52 + 53)
                                                                           YCOMP490
                                                                           YCOMP500
       533 = 53 ** 2 / (2. * 53)
                                                                           YCOMP510
       E10 = EXP(S02 * B(2) / 592.52)
       E11 = EXP ( SO3 * B(3) / 592.52)
                                                                          YCOMP520
       E12 = EXP ( S22 * 861.08. / 592.52)
                                                                           YCOMP530
                                                                           YCOMP540
       E13 = EXP ( 523 * 723.71 / 592.52)
       E14 = EXP ( 533 * 468.64 / 592.52)
                                                                           YCOMP550
                                                                           YCOMP560
       F14 = 1.3 * Z(3.N)
                                                                           YCOMP570
       F15 = S2 * (Z(3,N) * Z(1,N) + (1 - Z(3,N)) * Z(2,N))
        F16 = S3 * (2. - Z(3.N))
                                                                          YCOMP580
       D6 = F14 * E4 + F15 * E10 + F16 * E11
                                                                           YCOMP590
                                                                           YCOMP600
       D7 = F14 * E10 + F15 * E12 + F16 * E13
       D8 = F14 * E11 + F15 * E13 + F16 * E14
                                                                           YCOMP610
       U3=F14**2*E4/D6*B(1)+F14*F15*B(2)*E10*(1./D6+1./D7)+F14*F16*
                                                                           YCOMP620
     X B(3)*E11*(1./D6+1./D8)+F15**2*E12/D7*861.08+F15*F16*723.71*E13
                                                                           YCOMP621
```

LIST III (Continued)

09 • 14 44 44 44 44 44 44 44 44 77 77 77 77 77	490.	1142. .0001 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .5 .6 .7 .8 .5 .5 .6 .7 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		1. 2.13	$ \begin{array}{c} 112 \cdot 3\\ 138 \cdot \\ 148 \cdot 5\\ 150 \cdot 3\\ 144 \cdot \\ 132 \cdot 5\\ 113 \cdot 9\\ 87 \cdot 9\\ 52 \cdot 3\\ 129 \cdot 9\\ 160 \cdot 2\\ 174 \cdot 6\\ 178 \cdot 4\\ 163 \cdot 4\\ 145 \cdot \\ 117 \cdot 4\\ 74 \cdot 4\\ 126 \cdot 5\\ 156 \cdot 4\\ 169 \cdot 2\\ 159 \cdot 5\\ 141 \cdot 1\\ \end{array} $	
4. 4. 4. 4. 4. 4. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		.0001 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .5 .6 .7 .8 .5 .6 .7 .8 .5 .5 .6 .7 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		1. 2.13	112.3 138. 148.5 150.3 144. 132.5 113.9 87.9 52.3 129.9 160.2 174.6 178.4 163.4 145. 117.4 163.4 145. 117.4 126.5 156.4 169.1 169.2 159.5 141.1	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		.0001 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .5 .6 .7 .8 .5 .5 .6 .7 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		1. 2.13	$112 \cdot 3$ $138 \cdot 148 \cdot 5$ $150 \cdot 3$ $144 \cdot 132 \cdot 5$ $113 \cdot 9$ $67 \cdot 9$ $52 \cdot 3$ $129 \cdot 9$ $160 \cdot 2$ $174 \cdot 6$ $178 \cdot 4$ $163 \cdot 4$ $145 \cdot 1$ $117 \cdot 4$ $74 \cdot 4$ $126 \cdot 5$ $156 \cdot 4$ $169 \cdot 2$ $159 \cdot 5$ $141 \cdot 1$	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5		.0001 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .6 .7 .8 .9 .1 .2 .3 .6 .7 .8 .9 .1 .2 .3 .6 .7 .8 .9 .1 .2 .3 .6 .6 .7 .8 .9 .1 .2 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .5 .6 .7 .8 .5 .6 .7 .8 .5 .5 .6 .7 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		1. 2.13	112.3 138. 148.5 150.3 144. 132.5 113.9 87.9 52.3 129.9 160.2 174.6 178.4 163.4 145. 117.4 163.4 145. 117.4 126.5 156.4 169.2 159.5 141.1	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9	1.57 1.55 1.55 1.55 1.55 1.55 1.55 1.55		2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	112.3 138. 148.5 150.3 144. 132.5 113.9 87.9 52.3 129.9 160.2 174.6 174.6 174.6 174.4 163.4 145. 117.4 126.5 156.5 169.2 159.5 141.1	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4	1.55 1.54 1.54	• • • • • • • • • • • • • • • • • • •	2 • 13 2 • 13	148 • 5 148 • 5 150 • 3 144 • 132 • 5 113 • 9 87 • 9 52 • 3 129 • 9 160 • 2 174 • 6 174 • 6 174 • 4 163 • 4 145 • 117 • 4 126 • 5 156 • 1 169 • 2 159 • 5 141 • 1	
44 44 44 77 77 77 77 77 77 77 55 55 55 55 55 55		• 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 6 • 6 • 7 • 8 • 9 • 1 • 2 • 7 • 8 • 9 • 1 • 7 • 8 • 9 • 1 • 2 • 8 • 9 • 1 • 8 • 8 • 8 • 8 • 9 • 1 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8	1.55 1.54 1.54		2 • 13 2 • 13	150.3 150.3 150.3 144. 132.5 113.9 87.9 52.3 129.9 160.2 174.6 174.6 174.4 163.4 145. 117.4 126.5 156.5 156.1 169.2 159.5 141.1	
44 44 77 77 77 77 77 77 77 55 55 55 55 55 55		•5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4	1.5/ 1.5/ 1.5/ 1.5/ 1.5/ 1.5/ 1.5/ 1.5/		2 • 13 2 • 13	144+ 132+5 113+9 87+9 52+3 129+9 160+2 174+6 174+6 174+4 163+4 145+ 117+4 126+5 156+4 169+1 169+2 159+5 141+1	
4 4 4 7 7 7 7 7 7 7 7 5 5 5 5 5 5 5 5 5		•6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4	1 • 5 • 1 • 4 · 1 • 6 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1		2 • 13 2 • 13	132 • 5 113 • 9 87 • 9 52 • 3 129 • 9 160 • 2 174 • 6 174 • 6 174 • 4 163 • 4 145 • 117 • 4 74 • 4 126 • 5 156 • 4 169 • 2 159 • 5 141 • 1	
44 44 70 71 71 71 71 71 71 55 55 55 55 55 55 55 55 55 55 55 55 55		•7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8 •7 •8	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	113.9 87.9 52.3 129.9 160.2 174.6 174.6 174.4 163.4 145. 117.4 126.5 156.4 169.1 169.2 159.5 141.1	
44 44 77 77 77 77 77 55 55 55 55 55 55 55 55		·8 ·9 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·6 ·7 ·8	1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55		2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	87.9 52.3 129.9 160.2 174.6 178.4 163.4 145. 117.4 126.5 156.4 169.1 169.2 159.5 141.1	
4		•9 •1 •2 •3 •4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1.57 1.55 1.55 1.55 1.55 1.55 1.55 1.55		2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	52 • 3 129 • 9 160 • 2 17 4 • 6 17 8 • 4 163 • 4 145 • 117 • 4 126 • 5 156 • 4 169 • 1 169 • 2 159 • 5 141 • 1	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 5		• 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 6 • 7 • 8 • 9	1.57 1.55 1.55 1.55 1.55 1.55 1.55 1.55		2 • 13 2 • 13	1299 160-2 174-6 178-4 163-4 145- 117-4 74-4 126-5 156-4 169-1 169-2 159-5 141-1	
77 77 77 77 75 55 55 55 55 55 55 55 55 5		•2 •3 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1.5. 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.44 1.44 1.44 1.44 1.44 1.44 1.44		2 • 13 2 • 13	174-6 174-6 178-4 163-4 145- 117-4 74-4 126-5 156-4 169-1 169-2 159-5 141-1	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 5 - 5 -		•4 •5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1.55 1.55 1.55 1.55 1.55 1.55 1.54 1.54		2 • 13 2 • 13	178.4 174.4 163.4 145. 117.4 74.4 126.5 156.4 169.1 169.2 159.5 141.1	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 5 - 5 - 5 -		•5 •6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1 • 5 • 1 • 4 •	•	2 • 13 2 • 13	174.4 163.4 145. 117.4 74.4 126.5 156.4 169.1 169.2 159.5 141.1	
7 - 7 - 7 - 7 - 7 - 7 - 5 - 5 - 5 - 5 -		•6 •7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1 • 5 • 1 • 5 • 1 • 5 • 1 • 5 • 1 • 4 •		2 • 13 2 • 13	163.4 145. 117.4 74.4 126.5 156.4 169.1 169.2 159.5 141.1	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 5 - 5 - 5 -		•7 •8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1.55 1.55 1.44 1.44 1.44 1.44 1.44 1.44		2 • 13 2 • 13	145. 117.4 74.4 126.5 156.4 169.1 169.2 159.5 141.1	
7 - 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		•8 •9 •1 •2 •3 •4 •5 •6 •7 •8	1 • 5 • 1 • 5 • 1 • 4 •	• • • • • •	2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	117.4 74.4 126.5 156.4 169.1 169.2 159.5 141.1	
7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		•9 •1 •2 •3 •4 •5 •6 •7 •8	1.554 1.44 1.44 1.44 1.44 1.44 1.44 1.44		2 • 13 2 • 13	/4.4 126.5 156.4 169.1 169.2 159.5 141.1	
55 55 55 55 55 55 55		•2 •3 •4 •5 •6 •7 •8	1 • 44 1 • 44 1 • 44 1 • 44 1 • 44 1 • 44 1 • 44		2 • 13 2 • 13 2 • 13 2 • 13 2 • 13 2 • 13 2 • 13	156.4 169.1 169.2 159.5 141.1	
55 55 55 55 55 55		• 3 • 4 • 5 • 6 • 7 • 8	1.44 1.44 1.44 1.44 1.44 1.44	• • • •	2 • 13 2 • 13 2 • 13 2 • 13 2 • 13 2 • 13	169.1 169.2 159.5 141.1	
5 5 5 5 5 5 5 5 5 5 5 5		•4 •5 •6 •7 •8	1 • 44 1 • 44 1 • 44 1 • 44 1 • 44	• • •	2.13 2.13 2.13 2.13 2.13	169•2 159•5 141•1	
5 5 5 5 5 5 5 5	•	•5 •6 •7 •8	1 • 4 4 1 • 4 4 1 • 4 4 1 • 4 4	• • · ·	2.13 2.13 2.13	159.5 141.1	
5 5 5 5 5 5 5		•6 •7 •8	1.44 1.44 1.44	• · ·	2•13 2•13	141.1	
5 5 5 5 5 5	•	•7	1.44	• .	2.13		
5 5 5 5 5	•	•8	1.4			115.9	
5 5 5 5 5	•			ŧ	2.13	84.5	
5 5 5	1	.1	1.4	∳ I	2.12	40.00	
5	•	• 1	1.4		2.13	151.	
5.		• 3	1.4	ŀ	2.13	164.1	
	•	•4	1.4	l	2.13	164.	
5.	•	•5	1.4		2.13	153.5	
5	•	•6	1.4	í i	2.13	133•6	
5	•	•7	1.4	L ·	2.13	106.9	
5	•	•8	1.4		2.13	74.9	
5	•	•9	1.4	L	2.13	38.9	
- 4	•	•1	÷⊥, 40	, ,	2.12	1090	•
	• • • • • •	• 4	1.40	, ,	2.13	141	
40	•	•4	1.40	•)	2.13	139.9	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11
4	•	•5	1.4	-)	2.13	129.	
. 4	•	•6	1.40)	2.13	109+5	
4.	•	•7	1.40)	2.13	85.3	
4	 Post Post Post 	•8	1.40)	2.13	58.1	
4.	•	•9	1.40)	2.13	29.2	
5	•	•1	1.30	5.	2.13	105+8	
5	•	• 2	1.03	5	2.13	122+3	
5	•	• 5	1.3		2.13	126.7	•
5		• • • • •	1.3	- -	2.13	118.3	
5	•	•6	1.3	3	2.13	103.2	
5	•	•7	1.3	3	2.13	81.8	
. 5	•	• 8	1+3	3	2.13	56.6	1. C
5	•	• 9	1.3	3	2.13	28.4	

7.	7.	•1	1.38	2.13	120.9
7.	7.	•2	1.38	2.13	141.5
7.	7•	•3	1.38	2.13	149.
7	7.	• 4	1.38	2.13	148.5
7•``	7.	۰5	1.38	2.13	140.4
7.	7.	•6	1.38	2.13	·~ 122+2
7.	7.	•7	1.38	2.13	98.9
7.	7.	•8•	1.38	2.13	69.6
7.	7.	•9	1.38	2.13	35.9
SIBSYS		•		•	

APPENDIX C

NOMENCLATURE

- A, total free surface area of i groups in one molecule.
- $^{\circ}$ A Angstrom unit, 10⁻⁸ cm.
- B Parameter in computer program.

CY - Dependent variable in computer program.

 E_{S} - group surface energy.

 E_{TT} - group thermal energy.

F - degrees of freedom of a molecule.

f - degrees of freedom of a group.

 ΔH_{M} - heat of mixing.

 H_{V} - enthalpy of a real gas.

 \mathtt{H}_V^{\bigstar} - enthalpy of an ideal gas.

 $\Delta H_{\rm V}$ - heat of vaporization.

k - molecular Boltzmann constant.

L - sum of covalent radii of bonded atoms.

 L_1 - distance from center of atom 1 to plane of intersection of bond.

- MM specification in computer program.
- N Avogadro's number.

n, - number of i groups in a molecule.

R - universal gas constant, or molal Boltzmann constant.

R₁ - van der Waals radius of atom 1.

r - total number of groups in a molecule.
S. - free surface area of group i.

$$S_{ij}$$
 - defined by equation (17).

T - absolute temperature.

T_c - critical temperature.

$$T_r$$
 - reduced temperature, T/T_c .

 ΔU_V^{\star} - internal energy of vaporization to the ideal gas.

 \boldsymbol{x}_A - mole fraction of molecule A in a mixture.

Z - independent variable in computer program.

z_t - liquid compressibility factor.

Greek Letters

Subscripts

2 - CH₂ group.

3 - CH₃ group.

- C carbon atom.
- H hydrogen atom.

VITA

Mark Laurin Smith Candidate for the Degree of

Master of Science

Thesis: APPLICATION OF GROUP CONTRIBUTION THEORY TO HEATS OF MIXING

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Turtle Lake, Wisconsin, March 13, 1938, the son of Ervin L. and Louise Smith.

- Education: Attended grade school in Mobile, Alabama and Eau Claire, Wisconsin; graduated from Regis High School, Eau Claire, in 1954; attended St. John's University, Collegeville, Minnesota, and Wisconsin State College, Eau Claire, Wisconsin; received the Bachelor of Science degree in Chemical Engineering from the University of Wisconsin, Madison, Wisconsin, in January, 1960; completed requirements for the Master of Science degree in Chemical Engineering from Oklahoma State University, Stillwater, Oklahoma in May, 1967.
- Professional Experience: Employed by U. S. Rubber Company, Eau Claire, Wisconsin as a production engineer, 1960 to 1961; entered on active duty with the United States Air Force in 1961 as a commissioned officer; served for four years as an Atlas missile launch officer, Lincoln Air Force Base, Nebraska before attending Oklahoma State University.

Professional Societies: Associate member of the American Institute of Chemical Engineers.

Honors: Member of Omega Chi Epsilon, honorary chemical engineering fraternity.