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GENERAL ALGEBRAS AND THEIR MANIPULATIVE SYNTAXES
INTRODUCTION

It is part of the folklore of algebra that certain systems — groups
in particular — have differing formulations which are essentially
equivalent; the equivalence being shown by informal comparison of proper-
ties. More formally; Post, Sierpinski, Webb, and Los ([ 10,11,13,7 ], 1921~
1950 ) investigated the reduction of operations over abstract sets to
compositions of binary operators, while G. Birkhoff ([ 2 ], 1935 ) pro-
pounded the notions of general algebras and their species. E. Marczewski
appears to have been the first ([ 8 ], 1958 ) te have explicitly used these
notions to identify algebras of different species. In this dissertation,
the above ideas are combined rather differently and for quite different
purposes from those of Marczewski by wedding them with an idea of A. S.
Davis —- that of a Total Transformation Algebra ([ 5 ], 1966 ). The
latter — in the form of a morphology — has been coupled by Davis and
Chance to the mainstream of formal language theory ([ 6,3 ], 1969 ). In
Chapter O following, an extention of a particular kind of Total Trans—

formation Algebra — a Function System — is described in detail. These

morphology~like structures provide the formal framework for the aigebraic
development in chapters I -~ III.
In Chapter I, there is associated with each algeira a formal Syntax
(Manipulative Syntax) in a Function System. Bach such Syntax leads to an
1
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equivalence class of algebras such that congruences are invariant among
members of the class; i.e. a congruence on any algebra in a class is a
congruence on every member of the class (Theorem 1.16). It follows that
all factors of a given 'class by a (particular) congruence are equivalent
(Theorem 1.22). Again, any congruence on an algebra induces a set—
theoretically defined congruence on the Syntax of the algebra (Theorem
1.25) and, in the finitary case (at least), the converse is also true
(Theorem 1.28). The question of the unrestricted converse is open, as is
the question of whether the 1-1 mapping of congruences defined in 1.26
is onto. the congruences of the Syntax.

Chapter II is devoted to the notion of structure~preserving mappings
and the related concept of homomorphism. A fundamental result (Theorem
2.13.2) is that (non-trivial) homomorphisms of Syntaxes generate mappings

(1linguistic morphisms) of their associated finitary algebras. Linguistic

morphisms, while not necessarily homomorphisms, can be thought of as
structure preserving due to their association with their Syntax morphisms.‘
(This idea seems completely new.) Purthermore (Theorem 2.13.1), given a
linguistic morphism (@) between algebras 0l and B, %here exists an algebra
€ such that Q is a homomorphism of 0L into € and € is subsumed by ®
(that is, the Syntax of € is contained in the Syntax of ® ). Another
primary result in Chapter II (Theorem 2.20.2) is that isomorphic algebras
have isomorphic Syntaxes in their isomorphic Function Systems. From this
it follows in particular that epimorphisms are linguistic morphisms
(Theorem 2.22)., A question for future research which is posed by the
results of Chapter II is whether the carriers of Syntaxes constitute a

language~theoretically characterizable class of distinguished languages.
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Chapter III is a view of Universal Algebra as the study of a category
of certain equivalence classes of algebras. Intuitively, elements in a
class generate the same set of equations through composition and concatena-
tion of their operations. Morphisms in the category amount to identifica-
tion of certain sets of equations. The classes are developed by using the
equivalence of Chapter I (Functional Equivalence) in combination with the
isomorphism equivalence in the class of algebras. It is shown that these
relations commute, and the resultant category is distinguished in that the
only isomorphisms that exist are identity maps. Then, the analogue of the
fundamental homomorphism theorem is reduced to triviality. This suggests
that the notions of Isomorphism and Functional Equivalence, taken togethér;
provide as much identification in the class of algebras as is consistent .
with maintaining the lattice gtructure of algebras and their factor
algebras.

It is with apologies that a rather primitivé notation is used. The
reasons for its use are that it shows explicitly the duwality of finitary
expressions expressed informally with those expressed in the Syntax of an
algebra and it also remains the most easily read of the possibilities
encountered. Terms being defined in the text are underlined. If f is a
function, its value at a point x is denoted f(x), and its restriction to
a set B is denoted £ B. Due to the great need for parentheses in the
function~value constructs, symbolic-logic statements use squared paren-
theses [ and ] rather than the usual. Triangular parentheses ( and )

denote either algebras or n-tuples. The end of a proof is denoted'by //°



CHAPTER O
PRELIMINARTES

In[ 5], A. S. Davis introduced the notion of a Total Trans—

formation Algebra over a set in order to obtain an axiomatic treaihent
of the common notions of "“composition'" and *"concatenation" of functions.
In obtaining his axioms, Davis briefly describes the construction of
a particular algebra over a given set, then characterizes this algebra.
This characterization has been adapted by Davis [ 6 ] to the study of
formal languages, and that work has been extended by Chance in her
dissertation [ 3 ] directed by Davis. In the work of this paper, the
particular comstruction of [ 5 ], in the slightly generalized form of a
partial algebra, plays a central role., Because of this fact, a develop-~
ment of the ideas involved is included here.

The following hypotheses and notational conventions are assumed to
hold throughout the paper,

0.1 Let A be a non-empty set.

0.2 Let N be the set of natural numbers (including zero).

Let N =n-{0}.
0.3 Let % be the set of ordinals from § up to and including the

first infinite ordinal. The latter is denoted by w. Let 7Z+= 72 -{ ¢}

0.4 Let I be the set of all integers.
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0.5 Let m€ #t, n€ #. The following notation will be used..

1) g3 A0—=a" irf gea®,
1i) g: A"—A" iff g is a function with domain A" and
range in A",

0.6 Le‘t A% w iL(___'J#Il.ﬂ' y A%% = A UAW , Thus .A** is the set of all
sequences (finite and infinite) to A.

0.7 If n€ %%, denote x € 4" by (11,...)n. Occasionally
intermediate terms will be included, e.g&. (11,...,xk,11é41;.:..)ﬂ. it
n €N, (x.l,“u,xn) will also be used.

0.8 DEFINITION. For each n€ 7Z+,' let n : A¥¥ —-A¥* be the mapping
guch: that; for each m€ %', for each x €A", if n<m, n(x)= (xj-;.:.‘.)n and
££ .0 >m, n(x)= (z.,,...)n, where zj.-x;k when j-k=0 (mod:m), 1 '<'d“<rn,
and 1<k <m,

Definition 0.8 provides a countable infinity of operators for
converting sequences of one length into sequences of other lengthsi
Heuristically, given a finite m=tuple <x1,...,xm) and finite n,

a( (x1,;a;,xm)) can be thought of as being formed mechanically:by:writing
(’x‘."’"’o.ofixﬁ,x1j'ooo'xm,ooc) to form an men~tuple and then:restrioting this
mon~tuple.to-the first n components. This is a wasteful -procedure but
involves:no decision processes, hence can be carried out "oy(a, simple
machine, Note that if m<w, then a_)((x1,...,xm)) is the infinite sequence
aw

(11, 0o0yX X qpe0oyX 1 X pes .), and that W is the identity mapping on

A®, and similarly for any next.
0.9 DEFINITION. Let n€7, m€ Z". Let £:A"—eA". Then
i) IZ£ ng 0, T s A¥*—A¥* ig the mapping fon.
1i) If n=0 (so £ EA™), T : A¥¥F— o A¥* ig tize constant map with

range {f} (i.es F(x) =f for each x EA**), T is the d-extention of £



to A¥¥,

The significance of this construction of f is that f accepts any
sequence as a domain-point; in particular, two d-extentions f and E
always compose., For each n€ %%, for each x € A", the d-extention of ii)
is called n-constant.

0,10 EXAMPLE. Let f:A—»A. Then 3(a;)=(a;,21,a¢), 3(a;,a,)=
(a1,a2,a1), }_(a.],az,a3) = <a1,3.2,a3), and ;(a1,a2,a3,a4) = (a1,a2,a3);
whence ?(a1) =f(a1,a1,a1), —f(a.!,az) =f(a1,a2,a1), ?(a1,a2,a3) =f(a1,a2,a.3),
and ?(avaz,a ,a4)=f(a1,’a2,a3). As usual, f(a1,a2,a3) is written for
£( <a.1, 99' DB

" 0,11 REMARK, Note in particular (ignoring the 1-tuple — element
distinction) that for n#0, if £ A"—=A" then ?lAn=f; thus given an
en;tention and the index n of the domain of f, f can be recovered from £,

Caution! Note that £ Ak f in general. Let f:4a,btX{a,bt—=1a,b
Bat)

be such that f{a,a)=f(b,2)=2a, f{a,b)=rf(b,d)=b. Then §|A1(a,b)=
?lA(.‘l_(a,b)) =f{(a) =a whereas f(a,b)=f(a,b)=1.)
0.12 LEMMA. Let k,n€ %, m€ %" Then £: A%—+a", g: aA%—aa",
and ?‘:E implies
i) n=k implies f=g
ii) O=n<k implies g is m-constant with range {f}
iii) 0<n<k implies f<x1,.,.)n=g<5:1,m,x 1 X qreee) for
all XypeoosX 9, qyeco in A.
Proof: If n=k, then f=F|a" -gIA =g. If O=n<k, then
f<x1gooo,xn>=f<x1'ooo>k=g<x1pooo>k=g<x1’ooo>k for any xqyeco in A
If 0<n<k, then F£(XjjeeesX, Y=fix qresedye But <x1,m> =

_Il(x.’,ooo,x ,xn+1,ooo)k implies f(x1,ooo> =f(x1,.o°,x +1'oao)k=

\
|
J

E<x1goco)k=g<x1,oo.>ko //
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The significant import of Lemma 0.12 is {that when two functions
£ 3 A%—»a™ and g: Alf-—-Am have the same d-extention and n<k, the last
k=-n components of a k-tuple x play no role in determining the value
of g(x).

There is need for the usual notion of projections from a product A®
and the d-extentions of them.

0.13 DEFINITION. For each n€ #* and j €N with j<n, let ;5 e

. n .

the mapping of A~ into A such that 75 <x1gooo>n=xjo

Note explicitly that for all n,m€ 77" and j €N with j<n,m ;
nTrj ==m’":]' °

0.14 DEFINITION. Let TI; =.n1’r'j
Observe that for (x1,“o)k€A**, ﬂ:j<x1’”°>k=xt where t=j if

(for any n€ 7t with j<n).

k=w and t=j (mod k) if k is finite.

A Function System over A can now be constructed. The first step is

specification of the set A, over which operations will be defined.
0.15 DEFINITION.

i) Por each myn 6?7+, let Anm be the set of all functions on A" into A"

ii) For each m€ /7%, let A "=4",

0
iii) Let Ta= ,IEJ,H A" U H;Aw"‘ ; TaTU HAn uag.
v) Let 2= {NGA**XA** s Xis a function and [Ig€T][ X=g ]} 0

vi) Let A:{K:A**XA**: Xis a function and [g€T][ =g ]} o

Specification of the binary operations o (composition) and +
(concatenation) in AXA, the unary operation ' (shift) on A, and the
distinguished element T will complete the formulation.

0.16 DEFINITION of composition. o :AXA-—=A is the mapping such
that, for o, BE 4, Xops A%¥——n.p%%  where for each x € A¥¥, (u-@) (x) =

0((@(1:)), Hereafter, juxtaposition will denote this operation.
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0.17 DEFINITION of Concatenation. + ¢ ﬁX_A_——»é is the mapping such

that for each MG@, Bea, O(+@ ¢ A%¥% —a A¥*% jg the mapping defined by
(00+B) (x) = (21,...)11{_‘-‘_j where O(x) = (Uyyoeoym )y @(x) = (v1,o..)J. '

2z, =u, if 1<i<k, and z, =v, , for all i involved which exceed k. (The

i i
convention is hereby established that sub or superscript arithmetic is
cardinal arithmetic, thus k= implies j+k=w.)

Where convenient, (X+@)(x) will be denoted by «(x),@(x) ).

A lemma is needed to0 support the definition of Shift,.

0.18 LEMMA. Let 6(€A. Then i) [&m € 7*][ range(®) sA™] and
ii) range(X) < i¥ implies [In € 77 ][ n is the least ordinal such that
[HfGAnm][ ®=F 7.

Proof of i): By 0.15.vi, (€A implies [Fg€T][ X=g J. But
g€T implies [En€ X ][dme 7t gGAnm Jo Suppose gEAsto Then
s8>0 implies g is a function and range(g) S:At, whence range () =
range(g) <%, On the other hand, s=0 implies gEAt, whence range(g) =
{g}:Ato In either case, then, i) follows.

Proof of ii). Again (€A implies [dg€T][ X=g ], and [In€7 ]
[ame 2*][ gEAnm], whence for some t € 7%, range(g) cA®, But then
range(X) cab also, i.e. range(X) c4¥Na" and this can occur only if
range(X) =@ or t=k. By construction of A range(X)#@, whence g E'Ask
for some s € /', Let B={n€ nt. [ﬂfGAnk][ =T ]} We have
shown B#@. But then, as a non-empty set of ordinals, B has a least
element which serves as the n of ii.

0.19 DEFINITION of Shift. ' :A—A is the mapping such that, for
OLEA, (¢ 3 A¥%—sA¥* where; if range(n) &A™ and n is the least ordinal

such that [EgGAnm][ M=g ], then i) O=n implies O’ = (X whereas

ii) 0<n<  implies [Vx €a** ][ o' (x) =g{zp5000) 4 ] where (Zgy000),,9®



ne1(x).

0.20 REMARK, 1/ By 0.9.i there is no ambiguity in 0.19 relative

-to the function g.

2/ It is clear that the operations ¢ and ', and the partial opera~
tion + are closed (into g), for given f,g €4, hea, with fGAnm, gGAre,
and h€A ", it follows that Tog=fonogor=fonog while fon-g€A .
Again, h+f =7 where 7=Ce{fon, gor >‘Ama.x(r,n)° ( (fon, gox)is the

function on Am

ax(7y8) jnio A"XAS such that (fen, gor )(x)=
(£(n(x)), g(x(x)) Yand C: A< A% 2™% ig the canonical map of such

2-tuples to m+s=tuples.) This gives 7€ A m+s so h+f €A. Finally,

max(r,n)

o= m .
f =h where h€4 " is defined by h(x1,o°o,xn) =f(x2,ooo,xn,x1) for n
finite, or h(:t'.1,”.,)“,sf(xz,“a)m if m=w, as is shown by the following:

m .
0,21 LEMMA. Let f€A . Let x€A¥*, Then f (x) =f(22,".)n+1

where (z4y000)=nt1(x). In particular, n finite and x €A" implies
.
£ (x) =f<zzv°°°9'znvz1 °

Proof: Let gGAkm with T=g and k minimal (as in 0.18). If k=0,
- . ] - - — —
g is m~constant and f =g =g. This implies [Vy€ax*][ f (y) =g(y) =
g=%(y) ] by 0.12.ii. In particular £(z,,...) 4=g=£'(x) for any
X €EA**, If 0<k<w, then 0,12.iii implies g(z2,ooo>k+1 =
f<z2,oco,zk+1,zk+2,o..>n+1 for any Zk+2,oao €A. Then g(zz,aao)k+1 =

— b
f<22’°°">n+1 where gﬂ(x):(z1,o.n) o It follows that f (x) =

n+1
g(zz,aoo)k+1. This gives the conclusion also. Finally, k=(> implies
n=¢) whence 0,12.i implies f =g and the definition 0.19.ii provides

equality. The conclusion has been shown to follow for any n. For the

second part, note that for n finite, ne1(xyyeceyX )= (Xqyo00sX s%y)0 //

0.22 DEFINITION, i) T= ™ =I;IT’1 for every n€ N (uniformly).
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1i) M = for all mné€ 7t with m<n.

0.23 DEFINITION. The partial algebra { A,W,c,+,' ) is the Function
System over A.

0.24 REMARK. The above formulation provides several conveniences.

Non=-trivial compositions of functions obtain whenever domains and
codomains, whether they overlap or not, are products of the same set. Tﬁe
advantage is evident — there are no fussy domain—range questions in
compositions. In addition, ordinary functions and composition can be
thought of as a sort of "cross-section" (as a plane is a cross-section of
En) of this much more general class of functions with .their special form of
composition.

In concatenation, there is a formalization of oft-used statements
like: "given functions f1,ooo,fm, on E® to the real numbers, let g be
the function on E" to E" such that g(x)::(f1(x),ooo,fm(x))"° In a Function
System, this is captured in letting g=T,+ ..o +'fm.,

Finally, there is a convenient way to introduce constants into state-
ments (formulas) —— especially to restrict functions to constants in
various "slots" in their domains; e.g. suppose f is a function of five
"variables" with domain(f) =A5., If x,y €A, then the function
-f-‘(;:'-i-w2+§+112'_ +‘n’5) has values determined by 3 "slots" in any n-tuple
%o which it is applied. In particular, for any 81180000185 €4,
-i:(;+'ﬂ'2+§+11214-1]'5)(&1,”.,,9,5)=f(x,a2,y,a4,a5)a. ! '

It is noted in passing that it may be productive to re-do this
Function System to allow for functions which are not on entire cartesian
products; i.e. for partial functions, but for the initial work that re—
finement has not been attempted.

In closing this introductory chapter, some results will be established
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Now suppose A contains at least 2 elements. Then [VkGN"']['Wkak'E'k].
Furthermore, k is the least integer j such that [:IgGAj1][1'l'knE Je
This follows since (given two distinct elements) ‘n‘J. is not constant (whence
j#0) and further, if f EAkj-‘l ’ 'ﬂ'k=?, and u,v €A with ufv then a contra-
diction follows from observing that u ===‘i‘t‘k(x1 pooosXy 4 Ju) =—f-(x1 yesos X 4 ,u) =
f(:c1 o009 % 1 ) =—f.(x1 paoosXy 4 gV) = k(x., posesXy g ,VY=v. It is emphasized;
k is minimal.

The theorem can now be completed by induction on n. Let
(x1pooo>j €A**, For k€N, let (z1,ooo)k+1 =l_c;_i-_1.(x,!,,“°)jo

For n=1: 'i\"(x1,oou)j=11'1'(x1,ooo)j = 1’!T1(z2) where (z,l,zz) =
g(x1 poso >jo But 1’77'1 (zz) =z,= 271'2(51, z2) ='ﬁ’2(x1, coo )jo We therefore
have (' .—,'rrzo

Suppose now, ¥k <n that T\’(k) =T\’k+1 o Then 1T(n+1)(x1 gooo )j =

% 9
(,“,(n)) <x19000)j= (T 1) <x1v°°°>j=n+17rn+1<52'°°°'zn+2>=zn+2a

n+21rn+2(g_}:g,(x1go”)j) ='\'E'n+2(x1pooo)ja As previously, (z1,°.o,zn+2‘) ‘is
I_li'g(x1gooo)ju //

0.28 LEMMA, Let g€A " and let jEN' and let Bypesera; €A

Then; i) E(-a—ul"'ooo +;’:j) —"'-E(a.]gocogaj)o

ii) If n=j (so j is finite and g s A%—=A"), then also

2(31 4 000 "';j) =g(a1,oao,aj)o

Proof: Let x € A¥*, Then (5(21 + o000 +;j))(x) =E(§1 ()5 ooo ,-a-j(-x)) =
§<a1goéopaj>' (E(a190ao'vaj>)(x)o For part ii), simply note E(a1,”°,aj)=
8(31§°°°9aj>° //

The next result (Theorem 0.30, due to Davis) shows that the shift
operation on d-extentions of finitary functions can be duplicated by
appropriate composition with a concatenation of projections. A 1en‘1‘ma,vis

needed which is essentially a specialization of theorem 3 of Davis (5 Je
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0.29 LEMMA. [Vn,mé€N][ (mlm) ey’ o wntt) Tf““"” ]

Proof: Pointwise.

0.30 THEOREM, Let XEA with range(o() SA™. Let n€ 7% be the least
ordinal such that [EgEAnm][ ® =g Jo Then, n is finite implies [Vk €N']
[Ot(k) = ((( 1T(k) 4000 +1T(k+n—1)) Jo (By fiat, W(k) 4000 +1T(k+o'1) is
defined to be W .)

Proof: Suppose n is finite_o If n=0; then &(k) a) = LT since &L
is m—~constant, and the conclusion is obtained. The proof proceeds by
induction on k with n#0. Note that for x € A**, (T\'(1) 4 000 +‘n'(n))(x) =
{ 211’2(3,(::)),0”, n+11rn+1(,1;1;l_-_1(x)) Y=(2p500052, 1) Where (zgy0002, 4)=
ntl (x). (This follows by definition of + and the minimality of k giving

-~

" =T per the proof of 0.27 and the fact that for j<n+1, j(nt1(x)) is
n+1(x) restricted to the first j slots, i.e. j(x).

Suppose k=1, Then x € A** implies o' (x) = g{zZpy o0 °1%p.1 )=
Hagyooent, 1 =X(T 4 eos s ) as( (Vs Lol sl 2), wnemce
W =0 'W(1) + oo +’\T(1+n-1)) and the statement follows for k=1, Suppose
now d(j) =6(( Tl'(j) + 0”4»7?(3”'1)) for all j<k. Then ot(k) = ( oc(k"1))' =
(oL ( Tr(k-1) +ooo +Tl'(k+n'2))' by hypothesis. Therefore &(k) =
a TE) o pmlEen=2ly' [ oK), po ot By 1o 605 iy and 0,29, //

The preliminary development is now complete, and the machinery

prepared for the integration of algebreaic concepts with Function Subsysiems

in Chapter I.



CHAPTER I

MANTPULATIVE SYNTAXES AND CONGRUENCES

Representations and Manipulative Syntaxes. Definitions 1.1 and 1.2

are essentially those of Pierce [ 9 ]. They provide reference and help
establish notation and terminology.
1.1 DEFINITION. Let U be a set and & : U—+/] be a mapping. Then

(A,7) is a U,X representation of an Algebraic System iff 7 is a

mepping on U such that [ Yu€U][ &(u)=n implies 7(u) GAAn]o
A is the carrier of (A,7).
The above will be abbreviated to "representation" or; when necessary,
"U,0 representation", Carriers are always assumed to be non-empty.
YRepresentation" is used here in place of the customary "algebra" to
emphasize the equivalence-class nature of algebraic systems ( Definitions
1.8,3.1, and especially 3.6).
1.2 DEFINITION., Let (A,7) and (B,7) be U,& representations.
Let f : A—»B. Then
i) f is a homomorphism of {(A,7) into (B,7) iff [Vu€U]
[Vxm Gypeen gy 45D S(T@NE) ) =7 (I 2xy)yeoe gy T
ii) f is an isomorphism of (4,7) onto (B,7) iff f is a
homomorphism and f is 1=1 on A onto B.
103 REMARK, 1.1 and 1.2, while standard, are not altogether

satisfactory due to their restrictiveness. For example, if v and A are

14
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operations which meke (A, {(1,\/), (2 ,A)}) a lattice, it seems unfor-
tunate to insist that (4, {(a,v), (b ,/\)}) is a "different" lattice
and allow only a gross intuitive comparison of these (under the guise
that their relationship is "evident"). Indeed, by 1.2 and now standard
convention, one cannot even call the identity map on A a homomorphism
between the two, as homomorphisms exist only between systems indexed by
the same set., After a few preliminary steps, there will be set forth
a formal criterion (Definition 1.10) for calling two representations
equivalent when not only the indexing sets may be different, but also
the cardinalities of the sets of indexed operations. In particular,
the two lattices mentioned will be equivalent. Some natural results on
congruences will then follow for the equivalence classes of representa~
tions., The question of "structure preserving" maps will be taken up
later (Chapter II).

1.4 DEFINITION. Let (A,7T) be a U,0 representation. Let M =

(A,W,0,+,') be the Function System over A. Then % is the Manipulative
’ y ¥ Janipuiative

Syntax of (A,7T) in 0 iff % is the subsystem of ([ generated by
{F: reauul}.

The set of 2 will be denoted by [ AUT .

1.5 REMARK., As usual, by " % is the subsystem of {{ generated by
set G ", is meant Z is the intersection of subsystems of ({ whose cé.rriers
contain G. Also; 7[U]= {’f(u) 3 uEU}o T indicates the d-extention of f.
For the purposes of this definition, it is convenient 1o consider the
operations in the Funotion System to be naturally indexed by { 1,2,3,4 }o

1.6 DEFINITION. Let (A,T) be a U, representation. Let (A ,7) be

a V,R representation. Let ({ be the Function System over A. Then (A,T)
?
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is functionally subsumed in {(A,7) iff the Manipulative Syntax of
(4,7) in 0{ is a subsystem of the Manipulative Syntax of (A,7) in
0. Notation: (A,T)fi(A,?’)o

1.7 REMARK, Observe that the class of all representations (algebras)
over A is partially ordered by <, that a maximal representation in this
class is given by (4, IF) where IF is the identity function on the set
of all operations with carrier A, and a (unique) minimum representation
is given by (A, ). An upper bound for {(A,7T) and {(A,7 ) is found in
(4, IU) where I; is the identity map on 7[UJUYV]. A lower bound is
given by (A, In) where I is the identity map on 7 [ulny[v].

1.8 DEFINITION. Let (A, T) be a U, representation. Let {(A4,7)
be a V, @ representation. Then (A,T) is A-Functionally Equivalent with
(B,7) iff (A,7) <(A,7) and (4,7) < (4,7 |

1.9 REMARKo i) It is clear that A~Functional Equivalence relative
to a set A is an equivalence relation on the class of representations
with carrier A. Denote this equivalence by A~FE. ii) Each A-FE class
consists of those representations which -~ through d-exteniions -— form
generating sets for their (unique) Manipulative Syntax. In particular,

- the lattice representations of 1.3 are in the same clgsso iii) given a
ring (R, 4+, * ) with identity, there is now f/'ormél meaning to the statement
that the group (R, + ) and the semi-group (R, s ) are included ("sub-
sumed") in 'tl'le ring. Furthermore, distinguishing the identity %o give
(R,e, +, ) simply provides a representation R-FE to the given one.
Similar statements apply t0 the other familiar systems. iv) If Au{a},
then Tma=f for any operation f¥ @ on a product of A to A; 3hus all
representations on {a} are A-Functionally Equivalent.

(R B v
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The next theorem is standard. It is included for ease of reference
and to establish notation.

1.10 THEOREM. Let 0{ =(A,W,°,+, ') be the Function System
over A. Let MSA and let ([M], W, ,+, ') be the subsystem of O
generated by M. Let My=M. For each k€N, let Mk+1 ={€€é: ’KGMk or
[Hﬁ,J\EMk][ {:3,‘9‘, or ;g=%+)1] or [E{%GMk][ 1g=ca' ] }o Then [M] = L_e_ﬁ' K.

Proof: Let l?J M _=X. M S[M], and by the definition of M,
M <[M] implies M _ ,<[M] so that Xs[M]. X alsoc is carrier for a
subsystem of (( since [Vmy;m, €X][3r,s €N][ m, €M and m, €M implies

and

ax(rys) +17

m,m, eMma.x(r,s)-H 3 if m, +m, is defined then my +m, GMm

my' €M, while m,' €M_ 4 Jo But then the X subsystem contains the [M]
subsystem. //

In the sequel, M will be a set of d-exientions of operations of a
representation (A, 7T ). Where necessary for clarity, this notation will
be expanded to M(T). Each M, for (A,7) will then be denoted by Mk('r Yo

Congruences and Facior Representations. At this point, attention

is focused on a sequence of definitions and lemmas culminating in theorem
1,16, That theorem can be stated roughly as "congruences are invariant
under A~Functional Equivalence". A consequence of this is that A~FE
representations have A/ =—~FE factor representations (theorem 1.22),
Throughout this sequence, it will be assumed that (A ¢T ) is a U, rep-
resentation and that = is a congruence on (4,7 ).

1,11 DEFINITION. Let =S A¥¥>X A¥* guch that <a’1'°°°>n§<b1’°°°)m
iff n=m and for all i involved a; Ebi ; that is, aia’bi for all i where
1€i<n if ngw or 1<i<n if n=W) |

1.12 LEMMA, Let £,8 €7[Ul. Let (agpoeodyy (bypocod) EA¥* with
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(a1,°oo)k_s_(b1,”o)ko Then:
i) §<a1pooo>k§?<b1gooo)k
11) T (agpeee)y 2T (Bypocedy
iii) (-f'-’-'é)(a”ooo)kg(?+E)(b1gooo)k
iv) (?E)(a‘lgooo)kf_(_fg)(b“ou)k
Proof: Suppose feAr1 and gEAs1 with r£0¢s. (If r or s is zero,
touching up of the following gives a proof.) Let ;;_(a..l,”o)k (u1,o°.,)r
and g<b1,ooo>k= <V1,ooo>so Also let 5<a’1’°°°>k”<u1'°°°>s and £<b1'ooo>k=
(v1,no)r . There is no notational ambiguity: Uy represents the same
object wherever it appears; similarly for vj o PFurthermore, u, SV, for all
i involved ( 1<i <max(r,s) if r,s finite; 1 <i<us otherwise). In i):
'f<a1,.,.>k=fo;_<a,,m>k=f(u,,m>rsf(v”m)r=f°£<b1,m>k=§<b1,°.o>k..
In ii): by 0.21, 3 (a1,°”)k=f(z1,uo)r+1 ttahere <z1’°°°)r+1 =r+l{agyo00 )y o
But ;_4_;_1'(9,1,”@)1(5 M(bzgooa)kﬂ (',3(1,“.;)”1 implies <Zzgooo)r+1 =
(y29000>r+1 whence f(z29000>r+1 Ef<y29000>r+1 =F <b1gooo>ko In iii)
merely note that (?+E)<a1pooo)k= « -i:(a1gooo>kg-g-'<a1gooo>k » =
( f°£<a1,ooo>k y gog(a1,ooa)k)€A2 and similarly (?+§)(b19wo)k=
4 f°£(b1'ooo>k ’ gog(b1,°oa)k)€A2., Inspection shows pointwise = con~
gruence, hence the 2-tuples are = equivalent. Finally in iv) g°_n_<a1'ooo>k5
gon(byyooo), implies ?§(31,°oo)ka ?(E(a”ooo)k) =?(g°£(a1gooo)k) o
fom(gom(ayyees )k) = f(m(genlaqycoo )k)) = £(m(gen(bqyooo )k)) =¥E(b1gooo>k o //
1,13 NOTATION. The Manipulative Syntax of (A, 7 ) will hereafter
be denoted MoS. (A, T ) o
1.14 LEMMA. For each ?emos,(A,r), (2g5e00)y B (byseso)y, implies
Flagreee) ZF(yeeedy o | |
Proof: In the notation of theorem 1,10; let MO(T) =_A-U7fl_1jU{‘ﬂ'}
and for each k €N', let Mk+1(7')={§€}_l,= EGMk('r) or [dh,1 em (7)1 g=h+1
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- - - -— =l
or gahl ] or [h GMk(T)][ g=h ] }. The lemma follows by induction on
the statement [ Wn €N][ ?emn(*r) implies -f(a1,ooo)k§?(bi,o..)k 1. Let
n=0. Then f is T, 1-constant, or the d-extention of an operation in
7[U]. If Wor 1-constant, the conclusion follows trivially. If a
d-extention of an operation, the conclusion follows by 1.12.i. Suppose
the hypothesis for n<m. Then ?GMm('f) implies ?GMm-J (1), [:zE,'HeMm_1(-r)]
e - - - — [ —

[ f=g+h or f=gh ], or [EgEMm_1(T)][ f=g ]. We may suppose

.i-‘GMm(T) -¥_, (T) by the induction hypothesis. If gyh € Mm_1('r) and f=g+h,
then -f-‘<a1’°°°>k= << E(a.]gooo)k 9 i(a.lgoco)k >> and ?<b1pooo)k=

K« E(b1,ooo)k ’ E<b1gooo>k » . These are = equivalent by the induction
hypothesis and pointwise comparison. If E,HEMm‘1 (1) and ?:EH, then
3(31,.")k -E_E(b.],aoo)k by the induction hypothesis and therefore also

—— — a— — . |
ghlagyece = gh(byyeoe) + Finally, suppose hEMm_1(T) and f=h . It
may be supposed that h EArs for some r,s € 7t. Then .I_'ﬂ(a.I’ooo)k:

(Z1gooo>r+1 9 -r-:tl<b17°°°)k= <y1gooo>

419 and, z, 2y, for all i involved

implies <229000)r+1;=-_<y2'ooo>r+1 » But then f<a1gooo>k=h(22gooo>r+1:::
K(ya’oac>r+1=?<b1,ooo>ka //

1,15 COROLLARY. If n€ 77", £€A ", and FEM:Se(4A,T), then
[Viaqreced s (bgpoco) €ATIL aypoed S (byreced, implies flagyoen) =
f(b1,,°.,>n e

Proof: (a,1,..o)n'§(b1,na>n implies f(a1,°°°)n=§(a1,°oa)n
?<b1’ooo>nﬂf<b1,eoo>nn //

1,16 THEOREM, Let (A, 7 ) and (A,7 ) be A-Functionally Equivalent

representations. Let = be a congruence on (A,T Yo Then = is also a
congruence on (4,7 ).
Proof. fE[AUT] iff TE€[AUV ] and corollary 1.15 where f=a

for some a €A or else for some n€ 7, fGAn1o //
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1,17 NOTATION. Given U ,X representation (A,7T ) and a congruence =
on it, the quotient set of A by = is denoted by A/E ; for each a €A, the
equivalence class of a is denoted by 8‘/5 s and 7‘/g is the function on U
into operations on A/g such that 'r/g(u) is the operation on the quotient
representation corresponding to 7(u) on (A,7 ). The quotient or factor
representation of (4,7 ) by = will thus be denoted by <A/E , T/E Y.

1.18 DEFINITION, Let f €M.S.{A,7 ). Then
A / %

=

i) -f-/g is the guotient of T (by =) iff ?/E A
is the mapping such that for each (Q1,”o)n€A/_=_**, ?/5<Q1'°°°)n"
(1'1/5,“0)m where .f‘(q“o“)n- (r1,°u)m for some (q1,..°)m€A** with
q; €Q; for every i involved, _

ii) Por £€A ™ with T €M.5.(4,7 ), define the gquotient £
similarly.

1.19 REMARK. By 1.14 and 1.15, the quotients ?/E and f/3 of 1,18
are well-defined functions. It is clear that if T is the distinguished
projection of the Function System over A, then '"'/___: is the distinguished
projection of the Function System over A/:___ o It is also clear that T(u)/E

is the same as 7/_(u) and that if range(f) 4, then f/g<Q1'ooo)n=
f(q‘l""”)n /a for all n€ #*, given that q; €Q; for all i involved.
1.20 LEMMA, Let £,8 €M.S.(A,7 ). Then
1) &%/ -8 T/
- -
9

111) & /_=(8/)

i.e. the mapping -:t.'-——f/g is a homomorphism of M.S.{A,7 ) into

Moﬁso(A/5 9 T/a) where the Syntax operations are taken as indexed by
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{1,2,3,4} as shown.
In 1,23 it will be shown that this mapping is onto M.S.(A/E, T/g) .
Proof of 1.,20: These results are all obtained pointwise., Let

A, *x n . .
(Q1,ooo>ne /E and <p1gooo>ng <q1paoo>neA with pi,qi eQi for each i
involved. Then gf/E<Q1yooo)n=<r1/_39°oo)m. where <r1,ooo>mﬂ! E§<q1,ooo>nn
§(§<q1,ooo>n) so ?iz(E(?(q1,aoo)n))i for all i involved. Now,

% 5 7 : -
8‘/_____5 /g(q1’ooo)n= g/E( /E<Q1gooo)n)ng/5< 81/5,000)1: where f<p1’ooo)n-

<s1,ooo)k; whence g/5( 81/5““)1(:: <t1/apooo)m where (t1,ooo)k=
E(B1gooc>k=-§(?<p1gooo>n) and therefore t, = (-g.(-f‘:(p.'gooo)n))i for all i
involved. But then, using 1.4, £, €M.S.(A,T ) and (p1,“°)n§(q1,on)n
implies -f-<p1’ooo>n5-f<q1gooo>n , which gives E?(p“o“)n_s_g?(qv".}n o
From the latter it follows that Ty =t i for all i involved, whence

(*1/. goos) = <t1/_=. poos)ye The remaining parts are proved similarlys //

1,21 LEMMA. Let f eAn“‘ with £ €M.S.{A,T ). Then f/g.ﬁ/s R

Proof: Pointwise as in 1.20. //

1,22 THEOREM. Let (A,7 ) and {(A,7 ) be A~Functionally Equivalent
representations. Let = be a congruence on either (hence both) of them.
Then the two factor representations (A/E . T/=.=> and (A/E ; 775) are A/5--
Functionally Equivalent.

The proof of 1.22 requires the following lemma. The hypotheses of
1,20 are assumed.  Notation is that of the proof of 1.14 and 1.20.

1,23 LEMMA, For each k €N, let Mk(T)/En{»‘s [EEGMn(T)J[ {B—g)_.] }.
men [Vnen][ 1 (7)) ="a("/_ 1. B

Proof of the lemma: Proceed by iaduction. Supposs {'6 MO(T/E) o Then
geiu T/E[U] or >gu=""'/a o If '{'1‘/5 , then it is in both O~indexed sets
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by definition and Remark 1, 19, If %EA/ there exists Q€ / such that

{ }-range({) and it follows that [ Vaq€q][ CI/ g 1. But then 1.21

implies [dq€Q][ q/a . {J 80 xge o(T)/g . If {e TIu], then = 7 (u)

for some u and by 1,19 'r/ (u) aT(u)/ o But T(u)/gn'f(u)/s gives

>g€MO/g . It follows that M (T/ Ve O(T)/ The opposite inclusion is
clear, so the induction basis is established.

Suppose the statement for all n<mj i.e. [Vn<m][ Mn(’r/g) =Mn(7)/a].

Suppose AKEMm(T)/g o Then there is a EG Mm(T) with ags g/E o, It may be
supposed that P EMm(T ) - Mm=.1 (7) by the induction hypothesis. Now, for

some f,g €M 1(7’) , & is one of fhy f+h, or T, If g=fh, then
:f/a: h/= (T)/.. T/ ) together with fh/__ f/ h/ implies

g/ 3. (T/ ). If g=f+h the argument follows similarly. If g=f for
fen _,(T), then g/ =f/__ f/_) for f/__ 1(T)/_=M 1(T/ )y icee
g/QEMm( T/E) o From these it follows that m(T)/==M (T/ ) . Suppose
JKGM (T/.. ~-M 1(77 ) o Then for some k¥ EM 1(7‘/5) ; 6=}A7Jor{=,t+7’
or Jg ’A If )len/ or )6 /A-I-Z) s the induction hypothesis impiies there

exist g,h €M 1(7') such that /,uag 292 =h/E, -{) g/zh/ gh/
g/ b/ _g+h % (5+%
(xg- [at /o™ /< » respectively) where gh (g+h) €M (7). It

follows that -‘ el (T)/ The caseé ,A follows similarly. //
Proof of Theorem 1.24: Let {)GMQSO A/_ T/__ . Then for some
nGN a6€M (77 )-Mn( )/ , whence there exists f €M ('1‘) such that
}6 / . By A~FE, then £ €M.S.(A,7 ) implies there is an m €N such that
£EM (V). It follows that 16 f/ € (7)/ =M ('{/ ) o This shows
A/s ’ 77! Y <( A/g ’ Y/z Y o The opposite inequality follows by the symmetry
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of the argument; thus the two factor representations are A/E,--F‘unct:'.onaa.lly
Equivalent. //

1.24 REMARK, If G is the epimorphism of M.S.{4,7 ) into
M.S. (A/E ’ T/E) such that G(f) =?/E , then G has a kernel, say (=), which
(since a Manipulative Syntax is an "algebra: in the sense of Universal
M.S.(A, T)/(E)

Algebra) is a congruenéeo But thén is isomorphic with

McSozA/E ’ T/s) and the following diagram is commutative.

msS.(a, 7y — & ms. b/, T

Nat (=)
/ Aorphi sm

M,s°<A,T)/(_)

Theorem 1.22 and Remark 1.24 show that congruences on representations
(or "a._lgebras") are intimately associated with c;ertain congruences on the
corresponding Manipulative Syntaxes. Several questions then naturally
arise:

1/ Is there a precise relationship between congruences on representa—~
tions and congruences on their Syntaxes?

2/ Given a congruence = on {(A,7 ), is there an explicit characteri-
zation of (=) on M.S.(A,7)? |

3/ Since congruences are associated with homomorphisms, are rela-
tionships between representations with different carriers reflected by
relationships of their Syntaxes a.nd/or conversely? In particular; is
there .any relationship between hom({ 4,7 ), (B, 7)) and
hom(M.S. (A, 7), MS. (B, 7)) ?

The. rer:;ainder of this cha,ﬁter deals with the first two of these

questions. Chapter II will deal with the third.
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The next three theorems provide a class of set-theoretically
specified congruences on a Syntax which are in 1-1 correspondence with the
congruences on the algebras generating that Syntax. In particular, 1.25
answers question 2/ above and the first part of 1.27 shows that the
characterization given in 1.25 is indeed what it is claimed to be.

1.25 THEOREM. Let (A, T ) be a representation. Let [ be a
congruence on (A, T). Let E:{(x,y) : x,y €A%* and [@n€ %7][ x,y €A®
and xir'yi for all i involved. ]} o LetEEMS.(A,T) X M.S.{(A,T) such
that (F,8) €5 iff [Wx,y ][ xCy implies f£(x)"g(y) J. Then =
is a congruence on M.S.{(A,T) .

Proof: It is clear that [ is an equivalence on A**, /= is reflexive
by 1.12 and it is evidently symmetric and transitive, thus is an equiva~
lence. Let /u,y,,’:,zOeM,s,(A, T) with <,.,;:),<v,'z>>e =, Then x[y
implies: i) p+2(x)= (p(x),(x) ) and ((,«(x)nJ(X) »0

<<ﬁ(v) vP (y)) vhence ,H-ZI(x) K ﬁ+3(y) ; ii) ,W(x) = r(v (=) [
peG) DROGY = f3r) 5 and () =pw) LRV =f'(y) where 127x=-
(x1,...)n then u= (xa,“o)m_,, and if y= (y.,,o“)n then v= (y2'°°°)n+1 ( s0
that x[y implies ul'v). //

1,26 THEOREM. In the hypotheses of 1.25, let ‘t!l be the mapping of
congruences on (A,T> into congruences on M.S.{A,T ) as defined in 1.25.
Then WII is 1=1.,
| Proof: Suppose = and | are congruences on (A, T ) with \70(5) =
\.ﬁ (M"). Then for all a,b€A; (a,b) €[ implies (a)[ (b), whence
(&%) € Y(") and is also in \p(a) . But then [VWx,y €a**][ x=y implies
(9)-3(::)53(3;) = (b), i.e. a=b ], thus "e=. By symmetry, =< and

‘therefore = = | ', //
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1.27 THEOREM. In hypotheses of theorems 1.25 and 1.26, let
G: M,s.<A,1')——-M,s°(“/E, T/_=,> such that gm-":/E o Then kernel(G) =
w(s) , whence HoSo (AW T >/VJ(E) .is isomorphic with M.S.( A/E, T/E)

Proof: By 1.20 and 1.23, the mapping G is an epimorphism. Let
&,8) € 'W(E) o Then x,y €A%* with x=y implies f(x)=g(y) -
particular then, x=y 1mp11es f(x) 2(x) . But then Definition 1,18
applied straightforward gives / = /E, whence (f ,8‘) €kernel(G) and
’4/(5) ckernel(G) . Let (f,g) €kernel(@) so /E / Then for each
x,y € A¥* with x=y, if x/_ =( 1/5, 200, and y/E = <y1/s,ooo>n 80
x/ y/= , then f/ (x/__ g/_.3(5"/____) o But this is so (Def. 1.18)
only if ¥(x) 'z g(y), i.e. only if (f,8) € Y(=). It follows that
kernel(g) € YI(E) . //

It is natural at this point to wonder if each congruence on a
Syntax similarly induces a congruence on the Syntax—generating represen-—
tations and if the mapping \,b of 1.26 is thereby a 1-1 and onto o;'der
isomorphism. VJ is evidently inclusion preserving, for = & r implies
[Vx,y €a**][ x=y implies x['y ] so for all f,g; if f(x) = &ly),
then f(x) [ g(y) » For finitary representations, the first part of the
question is answered affimatively in 1.28 . The second part of the ques=—
tion remains unanswered at the time of this writing. Theorem 1,31
embodies essentially all that is known.

1.28 THEOREM. Let (4,7 ) be a finitary representation. Let =
be a congruence on MoS.{(A4,T). Let =& AXA such that a=b iff a'=b.
Then = is a congruence on (A,7T ) .

Proof: = is clearly an equivalence on A. Let 7;1 be an operation
of (A,T). Define the equivalence = on A** as in 1,25, Suppose

x,yEdoma.in('r;l) and x2y . By hypothesis, for some finite m, ’fueAm1 o
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Then Tu(x) ‘€A implies m -—’f-u(-i1 $ oo +;m) is 1-constant. Now x=y
implies Ei'.?:i ‘;i for each i involved. Since /= is a congruence it
follows that (;1 + 000 +_:Em) = (}1 +ooo +§m) and therefore '7';(;1 + oo +;m) =

?-u(;‘l + ...+§m) y ioeo Tu(x) = 7;1@) o But then 1:1(::) a ’Tu(y) o Since

’r‘u was arbitrary, = is a congruence relative to all operations of (A, T)
//

. Discoul-‘se at this point will be considerably eased by some
definitions and elementary resul“bs'., In 1.29 and 1.30, let X =
(X,T,°,+,') be a partial algebra satisfying the conditions of theorem
0.25 and such that T#T . Also let x €X.

1,29 DEFINITION. i) O =T and for each m €W, let T 1= k),
ii) dim(x) is the least m€N" such that (Ty+ooc+ ‘Wm)x =x, Or else w.
i1i) deg(x) is the least n €N’ such that ::(’rl'1 4 o0a+ 'ﬂ'n) =x, or else W,
1.30 LEMMA,
1) [WoeX*][ dim(x)=n and m¥m implies (T, + o”-f-Tl‘m)x;(x]o
If _\R is a homomorphism of % into a partial algebra y a {Y,Tyo,+,"),
thens ii) deg(x)=n implies deg(g(x))-(n.
iii) dim(x)=m implies dim(gp(x)) =m,
Proof of i): Suppose dim(x) =n €N’ (otherwise the conclusion follows
immediately), m€N', ngm, and (M +eoe +1Tn)x mxm (T + oo +“‘n‘m)x o
Then ’“'1x+ 0o +1Tnx = T|'1x+oao +'il‘mx » m<n contradicts minimality of n, so
suppose m>n. Since WET' , T, ;l’irn ; whence if T __.x ’“Tm ylet =T
whereas if T x = Tl'm let 2=T o Then TyX+oeo+ Tl’nz+ Z =
WX+ coe+ W x4z and it follows that zm= T\"n+1( Mx+eoo+ T x + Z) =
'ﬂ’n+1(ﬂl:]z+ oot Mx+ 2 )= T,.1%+ & contradiction of the definition of z.

Proof of ii): x(1\'1+ ooo+1rn) =x implies gg(x)(‘ﬂ’1+o“+‘ﬂ'n) =
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g(x) if n eNt'. n=w is evident.

Proof of iii): (W +cee+ T )x=x implies (MWy+.co+W )Q_(x) =
¢(x) and part i) implies this is true for no other né€ nt.

The next result, for finitary (4,7 ), closes this chapter. It
reduces the question of whether ’}b is an onto mapping to the question of
whether the minimal congruence in M.S.{A,T ) generated by {(E,E) :

(a,b) EE} coincides with }b(s) y for the latter is shown to be maximal
relative to that condition. '

1,31 THEOREM. Let (A,7T ) be finitary. Let I’ be a congruence on
M.So{A,T ). Let =SAXA such that asb iff al'b. Let = = {(x,y):
[@ne 21][ x,y €A™ and for all i involved, x; =¥; ]}o Let ’\P be as in
1,28, Then = is a congruence on (A, T) and 'S }b(s) i i.e. )(/(E) is the
unique congruence G on M.S.{A,T ) which is maximal with respect to
inclusion and the condition that a=b iff 3 € b.

Proofs = is a congruence by 1.28;, so = is an equivalence. Further-
more, for each x,y € A¥, “xgy iff x My. (That x=y implies x "y is
clear. Conversely, xI ; implies that for some homomorphism 52 of
M.S.(A,T), Q(E) = gg(}) , 80 there exists mé&N' such that m=dim(x) =
dim(y) by 1.30. But then for all i <m; S'Eif‘ }'i so x; =y, and x=y.)
Suppose (f,g) €l and x,y € A** with x=y. Then, as above, dim(f) =
dim(g) =m for some m ext . In particular, £(x),z(y) €A" . But if x,y € A%,
then for'all i involved, X, [ y; so that T(x; +... +'£J.) M &y +eee +§J.)
for all finite j<n. If n is finite, this gives £(x) u—f(;1 +oo0 +En) r
5(51 +o00 +;n) = g(y) and by the first part of the proof £(x)=g(y) .

If n is infinite and p is the maximum of deg(f) and deg(g); then fop(x) =

?(;1 4 o000 "';p) r' E(-y.‘l 4 oc0o0 +.y-p) ™ Eog(y) o It aga.in follows that
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£(x) = T p(x) = € p(y) = &(¥) //
Purther results on congruences are deferred until Chapter III,
where Functional Equivalence is combined with Isomorphism to provide

congruence transfer between representations with different carriers.



CHAPTER II
STRUCTURE PRESERVING MAPPINGS

The central problem of this chapter can be posed as follows: What
is it about a homomorphism that makes one consider it as strﬁcture
preserving? The underlying premise of what is to follow is that the
answer to this question is that the homomorphism is -~ in some way —-—
related to a transformation of languages which turns equations in one
language into equations in another in some consistent fashion. Indeed, it
is held herein that the language mapping is the crucial component of the
notion. In particular, any A~FE class generates a unique Manipulative
Syntax which in turn can be thought of as associated with a mass of
equations; that is, pairings of strings of concatenations, compositions,
and shifts of generating elements where each string defines the same
function on A**%, 1In the light of these considerations, it seems reasonable
to make the following definitionms.

2.1 DEFINITION. Let (A,T ) and (B,7 ) be representations. A
function _Lg on the Manipulative Syntax of {(A,7 ) into that of (B,7) is a

1/ Comparitor of (A,7T) and (B,7 ) iff i) isa
homomorphism of M.S.{A,T ) into M.S.(B,7 ) and ii) Q[ZU{TI’A}J:EU {’WB}.
2/ Replicator of (A,T ) in (B,7) iff i) Qis a

Comparitor of (A,T) and (B,7) and ii) ggis 1-1,

29
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3/ Simulstor of (A4,7T) with (B,7) iff i) @is a
Comparitor of (A,T ) and (B,7 ), ii) gpis' onto [BUY ], and

1) PLEU {mM }1=Fu{m}.

4/ Complete Identification of (A,T) and (B,7) iff

i) 52 is a Replicator of (A,7 ) in (B,¥ ) and ii) gisa Simulator
of (A,T ) with (B,7 ).

Corresponding to the above will be 1/ (A,T) compares with (B,7 ),
etc.

To simplify notation, T, will hereafter be used in place of T(u) .

2.2 REMARK, It is clear that the identity mapping on the
Manipulative Syntax of two A-FE representations is a Complete Identifi-
cation of them, so A-Functionally Equivalent representations are completely
identified. ii) Again, if (A,T)<(A,7 ), then (A,T ) is replicated
in (4,7 ), the Replicator being the injection mapping of Syntaxes.

All algebraic representations with a given one~element carrier. have
been completely idemtified (Remerk 1.9.iv). In addition, their intrinsic
algebraic character — being very meager — should be reflected in the
algebraic syntax of all other representations. This remark is formalized
in

2,3 THEOREM. Let (A, T ) be a representation with A={ a}a Then,
if (B,7) is a representation, there exists a Replicator of (4,7 ) in
(B,7).

Proof: In earlier notation, observe that MO(T) :={ 111}, and for
n€N, Mn+1(T)9{ mW, : 1<m<n+2 } (where 1MaT, (k+1)T=kT+T).

From this it follows that the Syntax of (A, T ) consists precisely of the

functions nTI'A where n €N. But then the function ¥ defined by



3
gp(mTl"A) =nl, is clearly the required Replicator. //

The proof of 2.3 anticipa.tés the following more general result.

2.4 LEMMA, Let (A,T ) and (B ;7 ) be representations. Let Q be
a Comparitor of (A, T) and {(B,7 ). Then [Fa€A][ Q(-a-:) =1rB] implies
[Vaeall 9(z)=Tp ]-

Proof: Suppose a;,a, €4, Q(;;) =Ty, and gg(';a-) ;”TB » Then for
some b €B, (_9('5;) =b and "6,41rB by 2.1.1.1i and hypothesis. But then it
follows that TBag(E;) = gg(-é:'a_z.) = g(;)g('%) =1ng(§'2') =Tgb = b,

a contradiction, // '

Similar to 2.3, if one has a representa.fion {(B,7 ), identifies all
elements, and thereby refuses to distinguish different functions in any
class ﬁnm, then he is ignoring all algebraic distinctions. What is then
being considered should essentiallj be mimicked completely by a one-
element representation. This is formalized ing

2,5 THEOREM. In hypothesis of 2.3; there exists a Simulator of
(B,7) with (4,7).

Proof: Define 5‘)’(?) =nT, if Fe[BUT] and dim(f) =n . Evidently
then, ?_[EU{‘ITB}]aIs { ’H'A} and gg is onto [AUT]. 3? is a homomorphism,
for if T,g€[BUT], dim(F)=n, and dim(g)=m, then dim(fg)=n (whence
UDYE) = 2 TaT, = ol = §EFE); dim(F Y=n (whence g(’f") = T, =
(nTA)' = g(E)' ), and since dim(f+g) = n#m, etc. //

2,6 LEMMA. Let n€N. Let y €A%, Then (TW;+ oo+ T )(y) =
(g + oo+ ) a(y) = ay) .

Proof:; Suppose n€N and let y= <y1gcoo>m y a(y)= (z,‘,“.)n . The
proof prooeeds by induotion on n. Suppose n=1. Then T, ()=, (A(y)=

T, &yd =5y = 1(y) . Suppose the statement for all j<m. Then
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(Tytooet Ty g+ T @) =Tyt eeet T @) To() D =
(T tooet Tn_1((2:1(Y», 1rn(y) Y « But pointwise comparison shows this
is  (Ty+ooot T _) (YD) T (a(y)N, which is (T)+.00+ W) (nly) .
The left equality is therefore established for n€N. The right hand
equality is now also evident. //

2.7 LEMMA, Let 32 be a homomorphism in the Function System of B.
Suppose ?edomain(g) . Then for each n€N", F( My+ooot 'lTn) =f implies
g(f)an = g?_('f) = Qg(_f)( My dooot T ) o

Proof's Q(?) = g(?)( Ty+ooo+ 1rn) since 9 is a homomorphism. But

then y € B** implies Q(—f‘) 'Bn(y) =Q(?)( My+ooot "lTn) an (y) =
Q(f)( Ty +ooot ‘n’n)(g(y)) = g(?)( My+ooot 'lrn)(y) by 2.6 . The latter is
st 4B . //
2,8 REMARK, It is evident that if f is in the Function System over
A, then range(f)sA™ iff dim(f)=m; and if m is finite,
(M +ooo+ -n'm) (f)=f . This fact will hereafter be used without specific
mention. Note explicitly that f €M.S.{A,T ) implies dim(f) is finite.
2.9 THEOREM., Let 1Qbe a homomorphism in the Function System of A
into the Function System of B. Then for myn €N+, 1<m and f EAmn implies
(g eB," ]l §F) =2 1.
Proof: f GAmn implies f( My+aoot 1rm) =f , whence Q(-f‘) IVBm =Q(-f)
by 2.8 . Furthermore, range(f) = A" implies ( Ty+ooot ‘n’n)g(-f) =Q(-f~) 80
range(sp(f)) cB". Thus Q(?)'BmGan suffices for the required g. //
2,10 REMARK, It is evident at this point that the mapping Q of
2.5 is unique, for the only functions with extentions in [ AUT ] are
regtrictions of concatenations of TFA , whence the only available image in
[ BU7 ] with range a subst of B" is nTy by 2.9
2,11 DEFINITION. Let (A, T ) and (B,7 ) be representations. Let
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Qbe a Comparitor of (A,T ) and (B,7 ). Then Q is trivial iff
gral- {WB} °

2,12 COROLLARY. Let (A, T ) and (B,7 ) be representations. Then
there always exists a trivial Comparitor of (A,7 ) and (3,7 ).

Proof: Define § as in 2.5. //

The next result sharpens the relationship between Comparitors and
homomorphisms.

2,13 THEOREM. Let (A, T ) be a finitary U,n representation (i.e.
[Vuetu][ TueAm1 implies m is finite ]). Let @ be a Comparitor of (A4,T)
and (B,7 ). Thens ‘

| 1/ [@(B,d Y<(B,7 »J[29: A—B][ @is a homomorphism of
(A, T) into (B,8 ). ]
2/ If Q is non-trivial, then ({) and O can be chosen such that
for each a€4, Q_(E) =-(P—(a—) and for each u€U, Q(-’f;) umo
3/ If Q is a Replicator, then { constructed for 1/ and 2/
is 1=1.,
- 4f If 9 is a Simulator, then ‘Pconstructed for 1/ and 2/
is onto.
5/ 1If q) is a Complete Identification, then t? constructed
for 1/ and 2/ is an isomorphism.

2,14 REMARK, From "the proof to follow, observe that if Q is
non-trivial in 2,13, x €A, and u€U, then (?(a.) =Q(E)(x) and (u) =
o] 2,

Proof of 1/ and 2/. Suppose Q is triviel and let b€B be arbitrary
(but fixed). Define {(a)a=b for every a€A. Define § on U by d(u) =
N(u)’fﬁ (on B) 508—(1-13 = 'lTB for each u€U. Then (B,d ) is a U,X rep-
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resentation and (B, )<(B,7). Furthermore, letting m=&(u) gives
(?(Tu<a.1,...)m) =b= T, (b,...)maS(u)(tQ(a1) yeos) ¢ therefore q) is a
homomorphism.

‘Suppose now that { is non-trivia.. This implies |A|>2 and |B|>2
(for |A| =1 implies a=T, and |B| =1 implies Q_(E) =b=Tp). Let u€v
with §/(u) =m. Then neam1 and by 2.9 there is gGBm1 such that Q(‘T';) =g,
80 gz’é[B‘“ag(?;)ln"’ . In addition, this g is unique in '.Bm1 by 0.12.1i.
Define &(u) mg., Then (B, 8 ) is a U, representation (each d(u) has
domain BO((u)) . (B,8)Y<(B,7 ) since Eag(:l";) e[BU7Y] o Since gg is
non-triviai, given a €A, there exists b€B with Q_(E) =D and b is unique.
Define @(a) =b. It remains to show @ to be ‘a homomorphism. Again, let

u€U, (u)=m, and recall m is finite by hypothesis. Then

Q(T (aqseeera ) =b where Q_(Tu(a.l,on,am))=3. But T (8y5e0e98,)=
fl'(z;+ ees +§.;) y hence ﬁn&?_(?‘u(avno,am)) = Q(?;)('Q(;) + o000+ g?_('é,;) )=
S(u)( gg('a_.;)+ cood Q(-e-.;)) = 3(u)(Q(a1) reser P(a))), ice. b=

5,0Q(8,) 4ever Pla))

Proof of 3/. If !P is 1~1 and trivial, then |A}=1 and Q(Z) =My =
9(Tr,) gives am T,
1=1, If Q is 11 and not trivial, x,y €4 and Q(x) =(P(y) implies
Q(;) nQ(S;) whence x=y and x=y.

Proof of 4/. If b€B, bE€[BUT] and therefore there is an a €A

« But then (?conta.ins one. pair exactly and thereby is

with Q(Z) =b by 2.1.1.41 . If Q is trivial, a€A implies Q(E) =Ty
whence Mp=b and|B| = 1. This gives § onto B. 1If Q is not trivial,
b €B implies there is a €A with Q_(E) -3-@ and §(a) =b.’

5/ is immediste from 3/ and 4/.  //

While the above shows that Comparitors induce homomorphisms, it is

not clear at this time whether every homomorphism can be thought of as
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induced by a suitable Comparitor. Even B0, it is natural to consider the
interrelationship between Comparitors and homomorphisms which are related
and to question whether homomorphisms — in their turn ~- induce Compari-
tors. The remainder of this chapter is concerned with these questions.

. 2415 DEFINITION. Let (A, T ) be a U, representation and (B, 7 )
be a representation. Let |A|»2. Let Q be a Comparitor of (A,7T ) and
(B,7). Let §SAXB such that for each a €A, (p[a]ng(-a-)[B] o Then
Q is Descriptive iff (Pis a homomorphism of (A,7T ) into (B, ) where
[Vueu]l 8() =)|s*™ 1.

P will be called the linguistic morphism or l-morphism of geo

2,16 REMARK, i) It is clear that the relation ) is a function
whenever Q_(E) is constant on B. In particular this is true if Q is non-
trivial or if |B]=1. ii) (B,8 ), where d is given in 2.15, is a
U,o representation and (B,d Y<{(B,7 ). |

2,17 LEMMA, Let g be in the Function System over A . Let k=deg(g)
and let k<m. '.I‘her:Tg_'TA-ﬁ-ago |

Proof': -:g:,—;aa-g-'Amog, thus for any y €A%* _Zg:_[_ﬁ (y) = EIAm(z1,“° Y
where m(y) = (Zqyesed, » But <z1,ooo>mEAm then g:'.vres-g_lzﬁl (y) = 2(21,0“)”‘ .
But if k<m, it is clear that for m finite that (1T1+ ooo +1Fk)(z1,°“)m=
(Ti”1 4 oeet ‘n'k)(y) , so?g'l—A"T(y) = g( Ty + oo ‘n‘k)(y) and since k is deg(g)
the conclusion follows. If k=@ =m, then the conclusion follows by the
fact that gow =g . //

2.18 COROLLARY, i) If Q is a Descriptive Comparitor of (A, T)
and (B,7), then for each a€A, §(a)=((5) and S';ag)_('f;) . ii) 1If
(4,T) is finitary, then any Comparitor on (A, 7 ) is Descriptive.

Proof: 2.13 and 2.17. //
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2.19 THEOREM., Let () be a Desoriptive Comparitor of (A,T) and

(B,7). Let I.p be the linguistic morphism of Qo Then for each a €4,

O(Ly() = L3(@(a) end for each ueu, (L (T, )= L5(8,) where §
is as in 2.15 and £ is the appropriate mapping x —-—;; i.e, the

following diagram is commutative.

M.S.(4, r>—ﬁ—-mos,(3 $) S MSo(B,;7)
iy \LB
(4, 7) ‘ ~({B,8) < (B,7)
Proof: Let a€A. Then {( [,(a)) = §(2) and L5(9a) = 9(ay .

But then for y € B, Q(E) (¥) =9(a) =QZa5(y) and the first conclusion

is established. Let u€U. Then LA(Q ) =T, and 8u= g('f;)ln“‘(u) . Let
kadeg(ge_(f;)) and m=0(u) . Then deg(?’;) <m implies k<m, so
TR LR AR S
2.20 THEOREM. Let (A,T ) and (B,7 ) be U,X representations., Let
(P ¢ A—»B be an isomorphism of (A, 7T ) onto (B,7). Let (’P:A**—-—‘-:B**
be defined by (’p(a1,“.)n= (Q(a,') pooo)n for all- ﬁé 2% and a; €A. Thens
1/ Q: A—=B defined by Q(-f-) QQ&'.(?'A is an isomorphism of
the Function System of A onto the Function System of B.
2/ QlMoSg(A,T) is an isomorphism of M.S.{4,T ) onto
M.S.{(B,7 ) (thus Q'MOSO(A , T ) is a Complete Identification of (A,T )
and (B,7) ). |
i.,es Isomorphic representations generate ieomorpﬁic Syntaxes in
their isomorphic Function Systems; thus isomorphic representations are
completely identi:_t:iedo
Proof: Suppose |A|®2. The degenerate case only requires speciali-

zation of what follows. Let lPeA—-B be an isomorphism and let

!
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(P:A*% —mB¥* be ag above. It is evident that @is 1-1 and onto, since
® is. Let Q(?) =@-1_‘.§"1 for every T €A. Since @ is 1=1, @ is a funotion
on A onto B (g€B implies @‘:‘ E.f{) is mapped onto g)o Now, Q is 1=1,
for g(-f) ug(-g—) iff §°?°§_1 =L'?oga¢'j;"1 and therefore only if f=g. It
remains to show Q is a homomorphism. Let f,g €A and x= <x1pooo>n be in
A%, and suppose yn@(x), £(x) = (uqgo00) ¢ and g(x) = (V43000) o Then
T+g is defined implies (_’;_( f+g) =?‘( f+g )@_1 80 Q( f+g)y)=
CPEE)GT D) P B = UE) , B W= P lug ooy Tipese )y =
(P(uy) ,ooo,(?(um) 1@(vy) yoood o On the other hand,
(GEF N+ Qe § N = «§F470) 425 0 » =
CGEGN » QDY = (Q(wy) eees Plu) 1§(v) soeedpy s trus P(F4) =
g_(?) +(¥(E) . The composition case is straightforward. Finally, consider
Q(?') » For notational convenience, suppose n is finite., (For n=w the
proof is essentially unchanged, but auxiliary variables — e.g. Zs9
i=1,2,000 such that W(x)= (z1,“o)w — must be introduced.) Then
‘ Q:L@-‘I (Fgro0es¥y) =§(?' (Xqyo00sx, ) = l? ('f(xz, coosX ;Xq)) =
DED  rpreeerygry W= §oFd Gp0eeesyyd = (G FFH G

Since @‘T&'@_"(y) = G}-TI’A(xﬂu;)n =§(x1) =0(xy) = yq g('ﬂ"A) is
'T\'B and Q is a homomorphism as claimed.

As before, let M(T) = KUF[_I-JjU{ T, } and let ¥ ,(T) ={?°
Fem(r) or [GgBen (ML F=g+E or Fugh ] or [dem ()] Tez 1}
Define Mk(‘r) similarly. Then M.S.(A,7 ) has carrier L_J Mk(T ) and
similarly for M.S.(B,7 ). By construction, the L form ascendlng chains
(ordered by inclusion). It will be shown that 2- QlMOSo( A,7T) is into
and onto M.S.{B,7Y ) by showing that for each m€N, '}Hmm('f) is ::n.nto and

onto Mm('r) o As a restriction of a monomorphism, :}é will then be an
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isomorphism. Projections may be ignored since it is already known that
they map properly. Let ?GMO(T) with T ¢ T, and f eAn1 o If fna€A01 ,
then 3&(;) (?'.5»('}\)-1 = m e-ﬁo If n>0, then observe that &?-%‘3‘1 an
@fn 1lB and thatqt’- ={Pf-@ lB o But fu'f for some u €U

implies th-i} | B = 7, by definition of homomorphism. But then ﬂ#(f) =

q? ft? |B =’)’ GMO(')’) shows ’%Q[ (1)1s¥,(7) . Equality evidently obtains
since each Tu maps onto'):lo Now suppose the induction statement for each
k<mo Let F€M (T). If feM (1), gg('f) €M (7) by hypothesis, so
suppose T €M (T) M 1('r) Then [aE,i'eMm_1(r)][ f=g+h or f=gh or
fu g ]. Since Q is a homomorphism and by the induction hypothesis
Q(-é),,g('ﬁ) €M, r, Q(.f) has a unique image in Mm('}') , and it follows
that Q:Mm('r)]:Mm(Y) . Since any -fEMm(f)’) is in Mm_1('r) or is formed from
elements in M _, (7)  the mapping ‘1llg|Mm('T ) is onto Mm('}’) R //

2,21 COROLLARY, In the hypothesis of 2,20, |A|>2 implies § is
the l-morphism of ¥°

Proof's g is a Comparitor, 30 is a homomorphism, and Q(a) 7—7 o

It remains to show that [Wu€U][ 7 ngg(’r )lB‘x(u) ]. Let w€U. Then

v Al

OT) = §oTef™" o Furthermove, deg(T,) <(u) implies g("'r;)[B“(“-s =

5?(7';) = 96-7?(?-1130((“) o Now () is an isomorphism implies [VxeAu(u) ]

[ Q(T,(x) = 7,@(x) 1 whence [y €3I g(r (975 = 7,(3) 1 Lo
q).'l:;@"[n"‘(“) =Y, . Observe thet (7, )\B"‘(“) x'?""l"'-“'”lnu(“) Let

£ m @-?;c'y"ls"‘(“) . Let y €™ ang 16t xuq Yy), so xeA x(u)

Then 7, (y) = §.7,(x) = (T, (x)) whereas £(y) = ?.1;10(?‘”1 ]Bd(u)(y) = (?""T_u(x) o
But T (x) = Top M(u(x) = 7,(x) and T, (x) €4 implies £(y) = @(Ty(=xN»
whence Q('ﬁ;) ,B&(u) ~E=7, . //

2,22 THEOREM. Let (A,7T) and (B, 7) be U,x representations. Let
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lal>2. Let @: A—=B be an epimorphism of (4,T) omto (B,7).
Then there exists a unique Simulator $ of {A,7 ) with (B, 7 ) such that
(Pis the l-morphism of Qo
Proof: If two Simulators have @ as l-morphism, then they coincide
on Mo('r' ) and it is clear that if they coincide on Mk('r) they also coincide
on M (T) by the homomorphism property, hence are the same function,

To consiruct @; let = be kernel(tp) and consider the following

diagrams
MoSo (A, T)
g
A A
°[A MoSo( /oy T/2) »M.S.{B,7)
(A, T) L(A/E) L,
Nat (=) I
AT ~(B,7)

where G(T) = f/ =
By the fundamental homomorphism theorem, (B, %) is isomorphic with

(A/E, T/E> « But then M.S.(B,7 ) is isomorphic with M,so(A/g, T/E>.

'l‘hi rectangle commutes by 2.21. Let Q=;_og_ . Then Q(?) n_l;(?/s) =
/fof /5.3-1 o« Since G and I are epimorphisms, _(? is also. The trapezoid
commutes by 1.21, so in particular W = g?_(;)and constants map into
constants. This shows Q is a Simulator. For each u€U, Q(T’;) =

AT A= . .
I. u/a°I y and since I is the l-morphism of I by 2.21, ')’u=

— A _— T, AL —
i' 7;1/5-1 L B«(u) . From the proof of 2.21, ‘Kl=$o7:1/5-1 ! , thus Q(Tu) =
’-}—’; o But then by remark 0.11, Q(-'f';)lBu(u) =7, and C[) is the l-morphism

ofgo //

While 2.22 shows that a large class of homomorphisms are linguistic




40

maps, it happens that not all homomorphisms are.

2.23 EXAMPLE, Let A be any set with |A|»2. Suppose x,y £A with
x,(y o Let IB=AU{ Xy ¥y }. Let I, be the identity mapping on A and let
f s B—=B be such that f(a)=a for each a €A while f(x)=y and f(y)=x.
Then (A, {(1,11)}) and (B, {(1,1‘)}) are {1}, {(1,1)} representa~
tions. The injection (P of A into B is a homomorphism. Now _1-1 -TI'A and
TAT pe For any Comparitor gg,‘erﬁ?(-I—") AT, 80 Q cannot be Descriptive

with l-morphism ? .



CHAPTER III
FUNCTIONAL ISOMORPHISM

This chapter is devoted to further investigation of the interplay
of the notions of Functional Equivalence and Isomorphism.1

3,1 DEFINITION. Let (4,7 ) and (B, 7) be representations. Then
(A, T) is Functionally Equivalent with (B,7) iff A=B and (A, 7T) is
A-Functionally Equivelent with (B,7 )«

3.2 REMARK AND NOTATION. i) It is clear that "Functionally Equiva=
lent" is an equivalence relation in the class of all representations
("algebras"). Denote this relation by Zs iee F= { (CA,T) (B, 7))
for some set C;, A=C=B and (A, 7) and (B, 7 ) are C-Functionally
Equivalent }. ii) In the same vein, it is clear that "isomorphic with"
is also an equivalence relation in the class of all representations.
Denote the latter by </ .

3.3 DEFINITION, Let (A,7 ) and (B,7 ) be representations. Then

(A,7) is Functionally Isomorphic with (B,7 ) iff

1'I'he definitions and theorems could be stated in the usual Gédel-
Bernays set context by using "sequences of representations, each of which
is isomorphic or Functionally Equivalent (relative to some set) with the
one just preceeding it". This will not be done. The foundations view-
point taken herein is as in Quine E12:L wherein sets cu. be "virtual'.
In that context, if a virtual set (that is, a symbolic specifier for a
non-existent set) is used in a statement, then the offending statement
can be reduced to logically valid quantified statements about things
which are assumed to exist. The particular use to which this system will
be put is that the term "relation" will be used in what is more usually

41
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(8, TYy (B, 7)) € LI(Ff) wnere (#+)° is the
identity relation; and n€N impliaes ()™ is (#f)? converse.

Denote the Functionally Isomorphic relation by ?7@{7.

The following lemma is essentially the proof of theorem 3.5. It is
included here for notational convenience. If R is a relation, R""1 is R
converse.

3.4 LEMMA, Let R and T be quivalence relations over the same set X.
Let V = [j)(no'r)n where (Ro'I‘)o = A (identity) amnd (ReT)™" = [(ROT)’.‘]'”.
Then V ;:":; equivalence relation over X.

Proof: Let A= (Ro'I')0 o QASYV by hypothesis and V is symmetric
from the definitions of (ReT)™ and V. Transitivity remains to be shown.
(u,v), (v,w) € V implies for some integers m and n, (u,v)€ (R-T)" and
(v,w) € (ReT)®. It will therefore suffice to show

(Re)"s (R-T)" & (RoT)™™ (1)
(1) is clearly true if m or n is zero. Furthermore, if m and n are
both non-positive or both non-negative, (1) follows from the definitions
and an easy induction. (1) will be shown for m >0 and n<0 by induction
on -n. The case m<0 and n$>0 is similar. Let -i=n,s0 i &€N. Then
i=1 implies (R.T)™ (R-T)"1 =[(Rum)’"""1. (R.T)].(T“'1. R"") o But R=R"1,
T==T'1, and associativity of composition gives equality with
(RoT)™ 1o[(R-'1')o(‘I'oR)] » But this is equal to (Rom)m"1o [(ReT)e(TeRA)]

and since AST, this latter is contained in (ReT)™ 1-[(R-T)-(T-R~T)] o

a "class ~— but not set" context and these relations will be treated -
as per Quine — in a "do what comes naturally" fashion. The advantage to
exposition of what follows will be evident. To those unwilling to accept
the proffered approach we extend apologies together with the hope that the
ideas and constructions offered are yet sufficient for them to follow the
train of thought,
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But (ReT)o(TeReT) m (ReTeT)e(ReT) = (ReT)+(ReT) = (ReT)? implies
(ReT)™ (ReT)™" & (ReT)™ o (RoT)2 = (RoT)™, and the induction basis is
established. Suppose (1) holds for all i<k. Then (R-T)™ (R-T)_]‘c =

(R-T)"‘»[(R»T)"’(k“”o (R»T)“”] (since k is at least 2) =

[(@e)™ (o) D1 (o)™ & (Rom)™ (o)™ = (Rom)™ . (Rom) !

T)mﬂk by the basis of the induction. //

The latter is (Re

3.5 THEOREM. ‘f/J is an equivalence over the class of all
representations.

Proof: ¥ and “are such equivalences and 3.4 . //

At this point; the use of "representation" instead of "algebra"
becomes clear. Implicit is the idea that an algebra is "something", and

that one chooses some notationally convenient means to represent "it".

3.6 DEFINITION, An Algebraically Representable System or Algebra

is an ‘f/J equivalence class,

The following example will illustrate the conceptual power of the
above,

3,7 EXAMPLE, In what follows, (A, 7) will be denoted by listing
in order the operations chosen by 7. Let ’g‘l = (A,e,-,”1 ) be a group.
In defining a group in this manner one postulates that the operations
satisfy the conditions i) esa=a.e=a, ii) a.(bec)=(acb)ec, and iii)
a._1- zav.::za.-a,"1 = e (which is essentially a composition rule) for each
2,b,c €EA. Another formulation of the group concept is given by :gz =
(B, /) with postulates i) a/a=1b/b, ii) a/(b/b)=a, and iii)
(a/c)/(v/c) =a.b for all a;b,c €B (cf. Barnes [ 1]). Other forms of
definition can use J3= (C, +,~) with postulates including existence of

a universal (re. C) identity, and :54= (D, *) with postulates including

jdentity and pointwise inverse existence (the classiocal definition).
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For i=1,2,3,4 ; consider the following.

Since (,&i 9 ’ﬁi Y€ ){, anything isomorphic with ’Ji is Functionally
Isomorphic with it, hence represents the same algebra. This fits nicely
with the common viewpoint that isomorphic representations essentially
indicate only a notational change. (That this is a common viewpoint is
supported by the many times it is suggested that one "identify" isomorphic
systems.) |

Similarly, since (; ,+;) €d, anything Functionslly Equivalent
with 1& i is Functionally Isomorphic with it and represents the same
algebra.

1/ Starting with »,, define the represemtation (4, /) by
letting /=7 'AXA where [/ is the function « ( T,+ (:1-11’2)) . Then

(A, /Y < (A, e;e ,"1 Yo Conversely, let a €A be arbitrary (but fixed)

— :T__

and then notice e= [/ (a+a), += [J(T,+ (- ») » and
J(J(a+2)) + m ) so {4, [/ )F.E. 751 o Direct computation shows that

af/b = 2™ and /| is seen to be the division operator associated with
>51 . But then if +J, Ja, /)y, it follows that 7471 Z/d ,32 80 J1
and véz represent the same thing.

2/ (A, y< (4, e, ). Also, e€A implies S€X, s0
(a,s,"VyF.B. g, .o o1 aZf3 i,y then F, TS &, .

Given 1 / and 2/, then also Jz 7{/4 ;53 o Unfortunately, the case
of the olassically defined >é4 is less clear. While it is manifest that
(A, Y<(A," ,-1 Y, there is no apparent way to construct =1 from <.
It is unsettled whether a "group" as in >64 ‘can be shiown to be f /J
wi‘bh J’ or not.

3,8 REMARK, In 2,20 it was observed that isomorphic representations
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generate isomorphic Syntaxes of their isomorphic Function Systems. The
counterpért of this theorem for Functionally Equivalent representations
is evident: PFunctionally Equivalent representations generate Functionally
Equivalent Syntaxes of (in the finitary case) their Functionally Equiva~-
lent Function Systems, for the respective representations are identical.
The next three results show the elegant relationship between 7{ and
J s and that == where convenient =~ the definition of V/J oan be
simplified to #d ord.%.
3.9 THEOREM. Let (B, M) be a representation. Let (4, 7) and
(A, 7) be Functionally Equivalent and let §: A—B be an isomorphism of
(A,7) onto (B ,/M) . Then [4(B, 4 )][ §: A—=B is an isomorphism of
(A, T) onto (B,8) and (B, ) and (B ,/A) are Functionally Equivalent. ]
Diagrammatically:
Given (A,T) L (A,7) , 3(B,8) such that (A,T)

j‘?\’/«‘f" |
(2l p) (838)—L—(3,p) .

Sawe ({7

Proof: Suppose (A,T ) is a U,x representation. For each u€U,
A — A—1
let § =G ¢

and by construction ¢ is a homomorphism (hence isomorphism) of (A4,T)

BOl(u) as in 2,20, Then (B ,5 ) is a U,x representation

and (B,8 ). Tt remains to show that T€[BUS] iff ?G[fUF] .
Suppose ?G[iUF] « Then @'1- ?"’5;:3-1 (f) €[ BUT ] where @ is the
isomorphism of M.S.{4,7 ) onto M.S.(B,)A) as in 2,20, But M.S.{(A,T)=
M.S.{A,7T), 80 $ is also an isomorphism of M.S.(A, T ) onto M.S.(B,8 ).
This gives -fé[iUg] o By symmetry, the opposite inclusion follows also,

hence (B,r) 3{(3;8)0 //

3,10 COROLLARY, Let (A, T) be a representation, Let (B, }« ) and
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(B,§ ) be Functionally Equivalent and let §: A—eB be an isomorphism of
(A, TY onto (B, & ). Then [(A,7 )] @s A—B is an isomorphism of

(A,7) onto (B,/A) and (A, 7T) and (A,7) are Functionally Equivalent].

Diagrammatiocally:
Given (A, T) y W(A,7) such that (A,T) z (A,7)
! I
(B,S)——-?‘--(B,,l) <B,)u) .

Proof: In the hypotheses of 3.9, interchange (A, T ) with (B, r\) ’
(A,7) with (B,5), and @ with (}»‘1. Obtain (A,7) as was {B,8 ) in
3.9. //

3,11 COROLLARY. Y-l =fo¥ . In particular, ¥/ = ool

Proof: (A,T) f/J (B, /L) provides the hypothesés of 3.9, ‘which
gives (A,T) vj')f (B, ,&) o 3.10 provides the alternative. //

The following analogue of 1.22 shows that Functional Isomorphism
is a sufficient condition for a congruence to transfer from one representa-
tion to another.

3.12 THEOREM., Let (A4, T) i(/J (B,7). Let = be a congruence
on (A,T). Then there exists a congruence ' on (B, 7) such that
ar Ty AL By Vo) |

Proof: Suppose (A, T) #J (B,7Y ). Then for some (A,,&) ’

(A, T) J(A, ,L) and there exists (P: A—B which is an isomorphism of
(4, ,l) onto (B,7Y). Now, = is a congruence on (A,}&) by 1.16, and
Pﬂ{( t?(a.) , q(a')) : (a,a')ea} is a congruence on (B, 7). (If
(Bgreeady <b;,...>meB°‘(“) with b, =@(a,) and b} = §(a}) for all i involved,
then 'bir"bi" for all i involved implies 7 (byyeee) = 5’5-’;-{;’13‘1 (Dygeeedy =
‘?(}"u(av“‘)m) -?(ru<8’"|"")m) -'KI(b;....)m ). It is readily seen that
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<A/g’ T/;) f/J <B/|'11 7/\") j for <A/Ev T/;) f(A/Ev )‘/E) by 1.22
while (A/E ' T/E__,) o (B/r. , ’Y/r. ) by standard arguments. //

At this very abstract level, it is possible to define a Factor
Algebra and thereby a category of Algebras., Doing so leads to reduction
of the fundamental "homomorphism” theorem to triviality, suggesting that
7 /J is as large an equivalence in the category of representations as
offers non-trivial results.

3.13 DEFINITION, Let @& and G be algebraically representable

systems. Then @ is a factor system of € iff [3(A,T)€EC]

[Z=cAXA][ = is a congruence on (A, T ) and (A/E, 'r/s YEG J.

3.14 REMARK, 1.16 guarantees there is no ambiguity in 3.13 due to
choice of representations, for in passing to another representation
(B, 7)€ &, the congruence = is carried into a congruence M"&BXB
under some isomorphism of systems with A and B as carriers. 3.12 then
gives (B/r, ’ 7/,-. Y€ G o

3.15 DEFINITION., Let tﬂ be the class of algebraically representable
systems. Let <# be the class of pairs { & s G ) of Algebras such that
G is a factor system of € » For (€, G) and (D, &) in, define
composition by (G, G) (D, &> =(C, &) iff =D .

Since it is clear that £F = ( ﬂ,g,o Y is a category, it is hereby

named the "Category of Algebraic Systems and Abstract Morphisms."

3,16 THEOREM, Let ( @§, € ) be a category isomorphism of & and
€. Then G: €C . That is, the only isomorphisms in this category are
the identity morphisms.

Proof: (@, C ) is an isomorphism in 01 implies ( G, G.) e Y also,
since the identity on G is (G, d_? Yo Then: [T(A,T) EG][HE SAXA]

[ = is a congruence on (A, T) and <A/Ey 775)6(1: ] and similarly
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[@(B,7)€CJ[arsBXB][ is a congruence on (B, 7) and
(*s Ynd€ G 1. This gives the diagram

nat Z/l nat
By 7Y/, T (B 7 Y=L V)

with (&, 7) ¥ (/s 7'/r. Y. Due to the structure of #/f ,the
diagram may be refined to

nat 1

G 3¢A,T) —— /YT
¥ I ¥ I,
G 38,8 sl 4., 5/.7e€ (B,2)e€

\12 / ¥ I, v
na‘a2

B v, -
Gy ) - (B, 7)EC

where (A,§ ), (A/a’ $/E) s (By2),and (B/‘_1 , ,‘/P) are suitable
representations whose existence is assumed in the definition. I1 and 12

are isomorphisms. But then in particular one has

( /_.' ;/...>
I1 ./ = =
(B, 'y /

na.t2
Cloy Ty

Since kernel(I1) = Identity on B&[", by a standard result (cf. Cohn [ 4],
p. 60, Corollary 3.8) this completes uniquely to a commutative diagram.
Let L? be the completion map. Then q?onatzwI1 s Wwhence I;1° (({)onafz) is

the identity on B. But then nat, is a monomorphism, since its inverse

2
I';lq , exists. But then (B/r,, 7/‘-1) ’f/J (B,7); i.e.
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<D/F" "7‘-1 )€ Cnﬁ , from which it follows that € and § must be the
same equivalence class. //
3,17 REMARK. In this context, one obtains the following analogue
of the fundamental homomorphism theorem: Given an abstract morphism

(G,G ), there exists a commutative diagram

(€, @)
€ - G

(€.D) (D,§)
D

if and only if G is a factor of D . If (ﬂ),d; Y is an isomorphism,

thenm =G °
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