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CHAPTER I 

INTRODUCTION 

The group of antibiotics known as the actinomycins were first 

isolated by Waksman and Woodruff in 1940 from a culture of Actino­

m;v:ce_§, (S~to~~ antibioticus (Waksman, 1954). They found that 

actinomycin A is characterized as a crystalline, brick-red colored 

compound which melts at approximately 250 C and absorbs strongly at 

230, 250, and 450 mu. It is very toxic to experimental animals, be­

ing fatal in doses of 0.5 to 1 mg per kilogram body weight. 

Waksman, Ka:tz, and Pugh (1956) characterized the various forms 

of actinomycin as A, B, C. D, I, J, and X. The antibiotic contains 

a chromophoric quinonoid moiety ( an azanthraquinone) which is linked 

to polypeptides containing the amino acids sarcosine, D-valine, L­

proline.9 L-threonine, and N-methylvaline (Figure 1). The forms of 

the antibiotic differ in the relative proportion of the amino acids; 

thus they are not chromatographically homogeneous but they are simi­

lar in their antimicrobial activities. 

The various forms of actinomycin are extracted from different 

species of Streptomyces. Actinomycin D is extracted from ~. parvUlus. 

Actinomycin is highly active against Gram-positive bacteria but less 

active against the Gram=negative bacteria, It is both bacteriostatic 

and bactericidal and also demonstrates cytostatic and anti-tumor 

1 



Figure 1. 

Actinomycin D. Pentapeptide model. The functional groups of 

the actinomycin molecule are the free chromophore amino group, the 

unreduced quinoidal ring system, and the lactone rings. 
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activity. 

Kersten, Kersten, and Rauen (1960) found that the growth inhib-

itory effect of actinomycin Don Neurospora crassa could be reversed 

by deoxyribonucleic acid (DNA), oligonucleotides of DNA, and to a 

much lesser extent with ribonucleic acid (RNA). They suggested that 

actinomycin reacts directly with these compounds in the cell and that 

the reversal of growth inhibition was due to displacement of actino-

mycin from its site of action in the living cell. 

When actinomycin Dis added to an exponentially-growing culture 

of Staphylococcus aureus there is an immediate inhibition in the syn-

4 

thesis of RNA followed rapidly by an inhibition of protein synthesis 

(Kirk, 1960). Goldberg and Rabinovitz (1962) used an RNA-synthesizing 

system from HeLa ceJJa and found that small amounts of actinomycin D 

inhibited the incorporation of_ 32P-labeled u!idine triphosphate into 

RNA. Furthermore, they could reverse this effect by the addition of 

DNA isolated from calf thymus or HeLa cells. This offered further 

support that actinomycin D interferes with DNA-dependent RNA syn-

thesis. 

Hurwitz et al. (1962) used various DNA primers (human bone mar-

row, heated thymus, bacteriophage O Xl74 and Micrococcus lysodeikti-

~) for the RNA polymerase and found that actinomycin D reduced RNA 

synthesis directed by these primers indicating that the DNA-linked 

RNA polymerase was being inhibited. Additional work with an in vivo 

system using Bacillus subtilis showed that actinomycin D (0.2 µM) 

completely blocked growth, inhibited RNA synthesis about 90-95 per 

cent, protein synthesis 50-75 per cent, and DNA synthesis only 



approximately 25 per cento 

Imrestigations by Goldberg, Rabinovitz, and Reich (1962) led to 

the following conclusions: (1) guanine must be present in a polyde­

oxyribonucleotide for actinomycin D to bind to DNA and for the inhi­

bition of RNA synthesis, (2) optimal binding is also favored by the 

native helfoa.l DNA conforma:tion, (3) optimal binding is most likely 

influenced by the nucleotide sequences in the immediate vicinity of 

the guanine residues (possibly in the contralateral strands), and (4) 

the synthesis of polyribonucleotides from both strands is inhibited 

even though actinomycin Dis bound to only one strando 

5 

By using sedimentation analysis and radioisotope techniques it 

was found that messenger-RNA (m-RNA) decays in the presence of actino­

myc:in D and that the m=RNA of £0 :subtilis has a life=time of about 

t,,w minutes before it breaks do1rm to acid soluble, low molecular 

weight material (Lelf'inthal, Keynan,, and Higa, 1962). It was also 

found that amino acid incorporation decreased and 14c-uracil in­

corporated into the RNA char:e.cteristic of ribosomal and soluble RNA 

during prolonged preincubatio:n remained stable upon further incuba= 

tion in the presence o.f actinomycin Do 

:Jata collected by Acs, Reich, and Valanju (1963) led them to be= 

lieve that the breakdown of RNA in the presence of actinomycin D was 

not due merely to the inhibition of RNA synthesis but that actino­

myc:in actually induced the breakdown of the normally stable RNA. 

Levinthal et al. (1963) suggested that the decay of RNA in the pres-

enc:e of actinomycin D was due only to the inhibition of synthesiso 

It is now fairly well established that actinomycin D inhibits 



DNA-dependent RNA synthesis, thus decreasing the uptake of labeled 

uracil into them-RNA fraction and labeled amino acids into protein. 

The formation of alkaline phosphatase and o(-amylase was strong­

ly inhibited by actinomycin D (0.5 µg/ml) in~. subtilis but ribo-

nuclease formation was not affected by the antibiotic; furthermore, 

the incorporation of 32p into RNA and labeled amino acids into pro­

tein was inhibited by actinomycin D (Kadowaki, Hosoda, and Maruo, 
.. - ~ . 

··-

1965). Pollock (1963) showed that actinomycin Data concentration 

of 0.05 µg/ml only slightly inhibited 0<-glucosidase formation in 

both constitutive and inducible strain~ of~. cereus, but the forma­

tion of the enzyme was decreased by 40 per cent at an actinomycin 

concentration of 0.1 µg/ml. Induced cultures of~. cereus formed 

penicillinase in the presence of actinomycin until 40 minutes after 

addition of the antibiotic, at which time an inhibition was observed. 

However, penicillinase was inhibited immediately when actinomycin was 

added simultaneously with penicillin to noninduced cells. For the 

constitutive strain there was no inhibition of penicillinase forma-, 

tion at an actinomycin concentration of 0.05 pg/ml but when the anti-

biotic concentration was increased they observed an inhibition of 

penicillinase formation. In~. subtili~, 0.05 µg/ml of actinomycin D 

almost completely suppressed oc.-glucosidase formation, slightly stim-

ulated penicillinase production, and inhibited ~-galactosidase and 

o< -amylase to about the same exte:nt as growth was inhibited. This 

differential effect might be due to an unusually stable m-RNA or a 

difference in the affinity of DNA sites to bind actinomycin. Pro-

6 

duction of gramicidin Sin~. brevis was not affected by actinomycin D 
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even though normal RNA synthesis and protein synthesis were inhibited. 

These results suggested that gramicidin S synthesis was independent 
. -- -

· of RNA synthesis or that a very stable form of m-RNA was involved in 

the synthesis (Eikhom and Laland, 1964). 

Kennell (1964) prepare~ extracts f~om ~ •.. megaterium cells treated 

with actinomycin D, and isolated RNA that could stimulate peptide syn-

thesis even though there was an inhibition of polypeptide synthesis 

in the intact cell. Yudkin and Davis (1965) found that them-RNA as-

sociated with the membranes of~. megaterium was unusually stable in 

the presence of actinomycin D. Investigation of the amino acid in-

corporation in~. megaterium cells treated with actinomycin D. led 

Yudkin (1965) to suggest that the long-lived m-RNA of the cell mem-
. -

brane synthesizes non-repressible proteins whereas the short-lived 

m-RNA synthesizes repressible proteins. 

The quantitative binding of actinomycin D to DNA increases with 

increasing amounts of guanine in the DNA and is greatest when DNA is 

in the native helical B conformation (Hamilton, Fuller, and Reich, 

1963; Reich, 1964; Gellert et al., 1965). Cavalieri and Nemchin 

(1964) found two binding sites for actinomycin Don the DNA molecule: 

one strong binding site and one weak binding site. 

While RNA synthesis is inhibited by actinomycin D, DNA synthesis 

is only slightly affected; thus, it is possible that actinomycin lies 

in the minor groove of the helical DNA where RNA synthesis takes place 

and DNA synthesis proceeds in the major groove of DNA (Reich, 1964). 

Hamilton, Ful~er, and Reich (1963) proposed a model for actino­

mycin D bonding to DNA (Figure 2). Their work was augmented by 



Figure 2. 

Proposed model for the bonding of actinomycin D to DNA 

(Hamilton, Fuller, and Reich, 1963). The actinomycin chromo­

phore group binds to guanine via three hydrogen bonds. The 

long axis of the actinomycin chromophore is perpendicular 

to the helix axis of the DNA and its plane is inclined ap­

proximately 70 degrees to th~ DNA helix axis. The actino­

mycin molecule may also be stabilized by the bonding of the 

phosphate oxygen atoms of the DNA to the two peptide amino 

groups in each chain of the actinomycin molecule. 
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Gellert et al. (1965) who suggested that the binding site either in­

volved more than one base pair, one of which was guanine-cytosine 

(G-C), or else actinomycin D was bound only to the G-C pairs but.all 

of the G-C sites were not bound because of steric interference be­

tween the actin:omycin D molecules. 

Actinomycin D does not affect the thermal dissociation of nu­

cleic acids having the A-helix conformation. Haselkorn (1964) found 

that the thermal dissociation of a DNA-RNA hybrid was not affected by 

actinomycin D; therefore, the hybrid was probably in the A-helix con­

formation. Jacoli and Zbarsky (1965) treated~. subtilis cells with 

actinomycin D and detected the accumulation of guanine nucleotides 

in the acid-soluble fraction. This could be explained by the degra­

dation of a guanine-rich RNA (not m-RNA) whose resynthesis was block­

ed by actinomycin, or secondly, an inhibition of the incorporation of 

the nucleotides in the acid-soluble pools into RNA. Jurkowitz (1965) 

has evidence to indicate that actinomycin D binds to only one half 

of the DNA site in nucleoprotein. This could mean that the protein 

in nucleoprotein is selectively blocking all the sites on one of the 

DNA strands. 

10 

Escherichia coli is normally insensitive to actinomycin D. Leive 

(1965b) sensitized!• coli cells to actinomycin D by treating the 

cells with ethylenediaminetetraacetic acid (EDTA). The addition of 

actinomycin D to the sensitized cells inhibited m-RNA synthesis for 

2. 5 minutes but after this time the antibiotic had no effect on m-RNA 

synthesis. It was concluded that it takes 2.5 minutes after addition 

of the inducer for synthesis of non-DNA bound m-RNA for B-galactosi-
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dase. Enzyme production occurred during another 1.5 minutes. Studies 

with actinomycin D resistant strains of~. subtilis indicate that re-
. . 

sistance might be due to a modification in the penneability of the 

cell wall (Polsinelli et al., 1964). 

Revel, Hiat, and Revel (1964) observed that actinomycin D de-

creased the protein-synthesizing capacity of rat liver homogenates by 

a mechanism independent of its action on RNA synthesis. There was a 

decrease in amino acid incorporation and polyribosome content for 

liver homogenates, but there was no decrease in amino acid incorpo-

ration and polyribosome content for liver slices. This indicated to 

them that the bulk of m-RNA in liver is a stable RNA. 

Honig and Rabinovitz (1965) observed that addition of glucose to 

the incubation medium prevented the inhibition of protein synthesis 

by actinomycin Din sarcoma-37 cells. A complete recovery from the 

inhibition of protein synthesis was observed when the addition of 

glucose was delayed until the end of the incubation period. This 

suggested that the inhibition was not due to the breakdown of m-RNA. 

This was substantiated by the observation that uridine and adenine 

were incorporated into RNA in the presence of actinomycin D at about 

the same rate as the control. 

Laszlo et al. (1966) observed a significant inhibition of glyco-

lysis and respiration in the presence of actinomycin Din htunan leu-

kemic cells. The cells also showed decreased levels of adenosine tri-

phosphate (ATP), and these authors speculated that actinomycin D may 

also cause an im.painnent of energy metabolism resulting in a decrease 

of ATP available for the formation of active amino acyl transfer-RNA. 
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. Studies in this laboratory have established that the synthesis of 

protocatechuate oxygenase Pseudomonas fluorescens is not affected by 

actinomycin D. This investigation was conducted as an attempt to ex­

plain the apparent resistance of the synthesis of protocatechuate 

oxygenase to actinomycin Din P. fluorescens. 



CHAPTER II 

MATERIALS AND METHODS 

Test organism. 

The microorganism used in this investigation was a laboratory 

strain of Pseudomonas. It is a Gram-negative, motile rod which forms 

smooth, raised, colonies on nutrient agar. The organism gave a neg­

ative reaction for hydrogen sulfide production, indole production, 

nitrate reduction, and gas production in glucose; however, an acid 

reactioP was observed in glucose. Litmus milk was peptonized within 

four days. This organism developed the p:igmentation characteristic 

of both fluoresce:inand pyocyanin when grown on Bacto-Pseudomonas agar 

F and Bacto-Pseudomonas agar P, respectively. The organism has been 

tentatively identified as Pseudomonas fluorescens. 

Stock cultures were maintained on nutrient agar slants and succi­

nate-salts agar slants which were stored at 4 C. 

Media. 

The synthetic salts medium used in this study had the following 

composition: 0.42 per cent K2HP04; 0.32 per cent KH2Po4; 0.2 per 

cent NH4c1; 0.2 per cent NaCl; and 0.2 per cent of the desired carbon 

source except for certain cases in which the concentration of the car­

bon source was varied as indicated in the text. 

13 



The pH of the medium was adjusted to 7.0. Agar (Difeo) was added 

to give a final concentration of 2.0 per cent when a solid medium was 

desired. Sterilization was accomplished by autoclaving at 121 C for 

15 minutes. The synthetic medium was cooled to 50 C and 0.1 ml of a 

sterile mineral salts solution was added to each 100 ml of medium. 

The mineral salts solution was composed of 5.0 g MgS04 •7H2o, 0.1 g 

Mnso4 , 1.0 g Fec13 , and 0.5 g CaC12 in 100 ml of distilled water. 

Glucose was sterilized by filtration through a Millipore membrane 

filter (47 mm diameter; 0.45 u pore size). 

Preparation of substrates and inhibitor. 

Succinic acid, protocatechuic acid, and glucose were prepared 

· fresh for each experiment. The compounds were dissolved in 0.01 M 

2-amino-2-(hydroxymethyl)-1,3-propanediol buffer (Tris) and the pH 

adjusted to 7.0. Actinomycin D was dissolved in distilled water (4 C) 

and stored at 4 c. 

Preparation of cell suspensions. 

The cell suspensions used in manometric, radioisotopic, and growth 

studies were prepared as follows! nutrient agar or succinate agar 
.. 

slants were inoculated from the stock culture and incubated for 16-18 

hours at 37 C. The cells were suspended in sterile 0.01 M Tris buffer 

and 0.5 ml of the suspension was spread over the surface of the appro-

priate agar plates with a sterile glass rod. The plates were incubat­

ed at 37 C for 16-18 hours, the cells harvested, washed twice, and 

suspended in sterile 0.01 M Tris buffer (pH 7.0) so that a 1~10 dilu-

tion gave the desired absorbancy reading at 540 mµ using a Bausch and 

Lomb "Spectronic 20" spectrophotometer. All absorbancy readings were 



made using 18 mm diameter tubes. 

Liquid scintillation counting fluid. 

The counting fluid for uracil-2-14C incorporation into RNA and 

leucine-214c incorporation into protein was prepared by adding 42 ml 

Liquifluor (50 g of 2,5-diphenyloxa.zole and 0.625 g of p-Bis f2,-(5-

phenyloxa.zolyll7 -benzene in 500 ml toluene) to one liter of toluene 

(sulfur-free). 

The counting fluid for actinomycin D-14c incorporation was pre-

pared by adding 42 ml Liquifluor (Nuclear-Chicago) to 400 ml ethanol 

(absolute) and 600 ml toluene. The ethanol-toluene mixture was used 

instead of toluene to eliminate precipitation of the digested cell 

material. 

Growth studies. 

Growth studies were conducted to determine the effect of various 

15 

concentrations of actinomycin Don growth and the influence of select-

ed substrates on the inhibition of growth by actinomycin D. In these 

experiments a total volume of either 6 or 8 ml was used in the Spec-

tronic tubes (150 mm x18nm) and the contents were incubated at 37 C 

on a reciprocal shaker. Constituents are described in the text. Ab-

sorbancy was measured at 540 mµ. 

Experiments requiring the withdrawal of samples at various times 

were performed in 250 ml Erlermeyerflask with side-arms. The flask 

contained a total liquid volume of 40 ml, Constituents are described 

in the text. The flask contents were incubated at 37 Con a recipro-

cal shaker and the absorbancy was read at 540 mµ. 
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Manometric studies. 

Enz;ymic activity was measured by following oxygen uptake in the 

Warburg apparatus at 37 C with air as the gas phase. The carbon di-

oxide liberated during the reaction was absorbed by adding 0.2 ml of 

20 per cent KOH and a strip o.f fluted filter paper to the center well 

of the Warburg flask. 

The cell suspension was placed in the main chamber of the Warburg 

flask and the substrates and inhibitors were placed in the side arms. 

The total liquid volume was adjusted to 2,4 ml by adding 0.01 M Tris 

buffer (pH 7.0). Approximately 10-15 minutes were allowed for tem-

perature equilibration following which the manometers were closed and 

readings were taken at indicated time intervals. 

Radioactive isoto~ procedures. 

The procedure for measuring uracil-2-14c incorporation into the 

RNA off. fluorescens varied according to the type of experiment be­

ing conducted. 

The incorporation of uracil-2-14c was performed in conjunction 

with the manometric investigations. Uracil-2-14c (0.043 uC/ml final 

concentration) was placed in the sidearm of the Warburg flask and ad-

ded to the cells simultaneously with the substrate. At 45, 90, and 

135 minutes, the appropriate flasks were removed from the Warburg ap-

paratus and the contents poured into test tubes. A one ml sample was 

then pipetted into a thick walled centrifuge tube and the sample was 

frozen in an acetone-dry ice bath to prevent further uptake of uracil-

2-14c by the cells. Four ml of cold 5.0 per cent trichloroacetic acid 

(TCA) were added to each frozen sample. The samples were allowed to 
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thaw at 4 C and centrifuged at 12,100 x g for 15 minutes at 4 C to re-

move the cells. The supernatant solutions from the first cold TCA ex= 

traction were poured into counting vials. The cell pellets were then 

suspended in 5 ml of cold 5.0 per cent TCA and permitted to stand for 

10 minutes at 4 C. The samples were centrifuged and the supernatant 

solutions from the second cold TCA extraction were poured into differ= 

ent vials. The pellets were suspended in 5 ml of 5.0 per cent TCA 

and the samples were heated in a 90 C water bath for 30 minutes. The 

samples were cooled, centrifuged at 12,000 x g for 15 minutes, and 

the supernatant solution was poured into counting vials. The contents 

of the vials were dried at 55 C under vacuum in a desiccator contain-

ing anhydrous CaC12 until about 0.1 ml of fluid remained in the vials. 

Ten ml of liquid scintillation counting fluid were added to each vial 

and the samples were counted in a Nuclear Chicago liquid scintillation 

spectrometer. 
-- . 

. . . . . . . . . . . . 14 
Uptake of actinomyci!! D- C. 

-- 14 
The uptake of actinomycin D- C by succinate=grown f. fluores-

~ cells was measured in the presence of succinate, protocatechuic 

acid, and glucose to determine if these substrates influenced the up-

take of the inhibitor. 

Succinate-grown cells were suspended so that a 1:10 dilution 

gave an absorbancy reading of 1.0 at 540 mu. Substrates for the ex-

periment were: 0.2 ml succinate (0.2 per cent), 0.2 ml protocatechuic 

acid (0.2 per cent), 0.2 ml glucose (0.5 per cent), 0.2 ml succinate 

(0.2 per cent) plus 0.05 ml protocatechuic acid (0.8 µmoles/ml final 

concentration), 0.2 ml protocatechuic acid (6.8 µmoles/ml). Each 
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tube also contained 0.1 ml of actinbmycin D (2.5 x 107 cpm/µm.ole), 
-

0.065 ml of actinomycin D (30 µg/ml), and 0.01 M Tris buffer to bring 

the total liquid volume to 0.5 ml. 

The cell suspension (0.15 ml) was added to the substrates in a 

Servall thick-walled centrifuge tube (100 mm x 15 mm), incubated at 

37 C for 75 seconds, and frozen in a cellosolve-dry ice bath. Five 

ml of cold Tris buffer were added to each tube, the pellet thawed at 

4 C, and centrifuged at 12,100 x g for 15 minutes. The cell pellets 

were washed twice by centrifugation. Five-tenths ml of NCS Reagent 

(Nuclear-Chicago) was added to each tube and digestion of the cell 

pellets was carried out overnight at room temperature. The digested 

material was poured into a counting vial and the tube was rinsed with 

9.5 ml counting fluid and placed into the counting vial. Vials were 

then placed in the liquid scintillation counter to determine the a­

mount of actinomycin D-14c uptake. 

Incorporation 2f radioactive amino acid. 

One ml of leucine-2-14c (161,310 cpm/ml) was added to a 250 ml 

Erlenmeyer side-arm flask which contained 0.2 per cent succinate, 0.8 

J.llilOles/ml protocatechuic acid, and/or 30 µg/ml of actinomycin Das 

indicated in the text. 

Each flask was inoculated with 1.0 ml of a succinate-grown cell 

suspension which had been previously adjusted to give an absorbancy 

reading of 1.5 at 540 Ill)l. At the desired time, absorbancy readings 

were taken at 540 mµ and 3 ml samples were removed and frozen in a 

cellosolve-dry ice bath. Two ml of cold 10 per cent TCA were added, 

the samples thawed at 4 C, centrifuged for 10 minutes at 12,100 x g, 
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and the supernatant solution was discarded. The pellets were suspend­

ed in 5 ml of 5.0 per cent cold TCA, incubated at 4 C for 15 minutes, 

centrifuged at 12,100 x g for 15 minutes, and the supernatant solution 

was poured into counting vials. The cells were suspended in 5 ml of 

distilled water and centrifuged at 12,100 x g for 10 minutes. The 

supernatant solution was discarded, the cell pellets were suspended 

in 5 ml of 95 per cent ethyl alcohol, and incubated at room tempera­

ture for 15 minutes. The samples were centrifuged for 20 minutes at 

27,000 x g, the ethyl alcohol was discarded, and the cells washed one 

time with distilled water. The pellets were suspended in 5.0 per cent 

TCA and heated at 90 C for 30 minutes. The samples were cooled, cen­

trifuged at 12,100 x g for 15 minutes, and the supernatant solution 

was placed in counting vials and dried as previously described. Ten 

ml counting fluid was added to each vial and then they were placed in 

the liquid scintillation counter to determine the radioactivity. The 

counting efficiency for 14c was approximately 40 per cent. 



CHAPTER III 

RESULTS AND DISCUSSION 

The effect 2f actinom.ycin Q .Q.E. growth 2f. _E. fluorescens in different 
media. 

Experiments were conducted to determine if actinomycin D influ-.. ·-··'-··· ... ·····-•,. ' ......... . 

enced the growth of P. fluorescens in nutrient broth or synthetic-

salts media with different carbon and energy sources. The concentra-

tions of aotinomycin D used in nutrient broth and L-aspa.ragine-salts 

medium were O, 4, 8, 15, and 25 ug/ml. 

Each tube contained 5 ml of medium plus the appropriate amount 

of inhibitor, and buffer was added to give a total liquid volume of 

6 ml. One-tenth ml of a nutrient agar grown cell suspension, diluted 

so that a 1:10 dilution had an absorbancy of 0.3 at 500 mu, was added 

to each tube. Growth was followed by measuring absorbanoy at the in-

dioated time intervals. 

The growth of E· fluorescens in nutrient broth was not signifi­

cantly influenced by any of the concentrations of actinom.yoin D used 

in the experiment (Figure 3). Waksman et al. (1956) reported that f. 
aeruginosa was not inhibited by 100 ug/ml of actinomycin D when the 

cells were growing on nutrient agar plates; therefore, the data per-

sented here are consistent with these results. Growth of the organism 

in 0.2 per cent L-aspa.ragine-salts medium was inhibited by actinomycin 

20 



Figure 3. 

The influence of actinomycin Don f. fluorescens cells growing in 

nutrient broth. O, control;•, actinomycin D (4 µg/ml); 6 , ac­

tinomycin D (8 µg/ml): ~, actinomycin D (15 µg/ml); and[], ac­

tinomycin D (25 µg/ml). 
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D and the inhibition :increased with an increase in inhibitor concen­

tration (Figure 4). Fifteen and twenty-five ug/rnl of actinomycin D 

produced good inhibition of growth after approximately four hours, 

The ab:sorbancy values·or cells growing in the presence of actinomycin 

D was approximately the same as the control during the first 2-4 

hours of growth indicating that actinomycin D may not readily pene­

trate the permeability barrier of the cell. When actinomycin Dis 

added to a Gram-positive organism (Staph;y:lococcus aureus) growth is 

rapidly inhibited (Kirk, 1960). The apparent difference in sensiti­

vity to actinomycin Din a Gram-positive and a Gram-negative organ­

ism may be due to the difference in cell wall structure and compo­

sition. Four ug/ml only slightly decreased the rate of growth and 

8 ug/ml inhibits by about one-half that of 25 ug/ml. 

Actinomycin D also inhibited growth in succinate (0.2 per cent)o 

Two-tenths ml of succinate-grown cells, having an absorbancy of 0.8 

at 540 mu was inoculated into each tube containing 7 ml medium plus 

buffer and inhibitor to give a total liquid volume of 8 ml. 

The results for cells growing in a succinate-salts medium 

showed that an increase in actinomycin D concentration increased 

the amount of growth inhibition (Figure 5). Thirty ug/ml of actino­

mycin D gave almost complete inhibition. Five and ten ug/ml of 

actinomycin D decreased the rate of growth as compared to the con= 

trol and the cell population never reached that of the controL 

Growth in a protocatechuate-salts medium was very different 

from that observed in a succinate-salts medium (Figure 6). Actino-

23 



Figure 4. 

The influence of actinom.ycin Don f• fluorescens cells grow­

ing in a L-asparagine-salts medium. O, control; e, actinomycin 

D ( 4 µg/ml) ; 6. , actinom.ycin D ( 8 µg/ml) ; A , actinom.ycin D 

(15 J,1g/ml); and O, actinom.ycin D ( 25 µg/ml). 
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Figure 5. 

The influence of actinomycin Don succinate-grown E~ 

fluorescens cells growing in a succinate-salts medium. (), con­

trol; 8, actinomycin D (5 µg/ml); ~, actinomycin D (10 µg/ml); 

/Ji., actinomycin D (30 µg/ml). 



1.0 

0.8 

0.4 

1 0.2 

~ 

.06 

.04 

.02 

0 2 4 

27 

o.-----0--- 0-

.----· --~•-

A-

6 8 10 

T" . lllle ( hours ) 



Figure 6 

The influence of actinomycin Don succinate-grownJ. fluo­

rescens cells growing in a protocatechuate-salts medium. 0, 

control; 9, actinomycin D (5 pg/ml);~, actinomycin D (10 

µg/ml); and ~' actinomycin D (30 µg/ml). 



29 

0.4 

0;----2L_ __ I 4 --:---__J_ --
6 8 10 

Time (hours) 



30 

mycin Din the concentrations used in this experiment did not in-

hibit growth of the cells in protocatechuate-salts medium indicating 

that actinomycin D apparently did not effect induced enzyme synthe-

sis for protocatechuic acid. 

The effect of actinomycin Q .2.!! protocatechuic acid-induced cells 
growing in~ succinate and protocatechuate-salts medium. 

An experiment identical to the one previously described was con-

ducted using protocatechuic acid-induced cells instead of the non-

induced cells. Induced cells growing in a succinate-salts medium in 

the presence of actinomycin D (Figure 7) were inhibited to the same 

extent as the non-induced cells. The absorbancy values for the 

cells in the presence of actinomycin D increased during the first 

four hours. This again illustrates the possibility of a permeability 

barrier. Cells induced to protocatechuic acid and grown in a pro-

tocatechuate-salts medium showed no inhibition of growth with actino-

mycin D (Figure 8). 

Thus, cells using succinate as a sole source of carbon and 

energy are inhibited from growing by actinomycin D (30 µg/ml). In-

hibition in succinate occurred even when the cells had been induced 

to protocatechuic acid. If actinomycin D, at the concentrations used 

in the experiment, had not caused growth inhibition, then it would 

be possible to say that this was entirely due to some type of cell 

permeability barrier; however, this was not the case. Protocate-

chuic acid-induced and non-induced cells did grow in the presence of 

actinomycin D when protocatechuic acid was the sole source of carbon 

and energy. This is in opposition to cells growing in the presence 



Figure 7. 

The influence of actinomycin Don f. fluorescens cells induced 

to protocatechuic acid growing in a succinate-salts medium. (), 

control;~, actinomycin D (5 µg/ml); ~, actinomycin D (10 pg/ 

ml); and ~ , actinomycin D (30 µg/ml) • 
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Figure 8. 

The influence of actinom,ycin Don protocatechuic acid-induced 

P. fluorescens cells growing in a protocatechuate-salts medium. - . 

O, control; fi, actinomycin D (5 µg/ml); /:::., actinom.ycin D (10 µg/ 

ml); and .._ , actinomycin D (30 µg/ml) • 
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of succinate. 

The effect of actinomycin Q Q!! growth in~ glucose-salts medium. 

Glucose was used as the sole source of carbon and energy to de-

termine if actinomycin D inhibits growth of cells in this substrate. 

A synthetic salts solution was prepared, autoclaved, and glu-

cose, sterilized by filtration, was added aseptically. Glucose was 

used in concentrations of 0.2 per cent and 0.5 per cent. Seven ml 

of media were added to each tube and actinomycin D and buffer were 

added to give a total liquid volume of 8 ml. Two-tenths ml of a 

glucose-induced cell suspension, having an absorbancy of 0.5 at 540 

m~, were added to each tube. Absorbancy readings at 540 mµ were 

taken every hour. 

Results (Figure 9) indicated that 5 and 10 µg/ml of actinomy-

cin D did not show a very pronounced inhibition when 0.2 per cent 

glucose was used as the substrate. However, no inhibition was ob-

served for 5 and 10 µg/ml of actinomycin D when 0.5 per cent glucose 

was used as the substrate (Figure 10). Thirty µg/ml of actinornycin 

D did produce inhibition in both concentrations of glucose but only 

from the standpoint that the rate of growth was reduced. This high 

concentration of inhibitor did not produce a growth inhibition 

curve which reached the stationary phase as was typical for actino-

mycin D inhibited cells growing in succinate, at least not in the 

time allowed for this experiment. 

Influence of selected compounds £!!_ the a.ctinomycin Q inhibition of 
!!2!!,-induced cells growing in~ succinate-salts medium. 

Since cells using protocatechuic acid and glucose as the sole 



Figure 9. 

The influence of actinomycin Don E· fluorescens cells grow­

ing in a glucose-salts medium (0.2 per cent glucose). (), control; 

9, actinomycin D ( 5 µg/ml); 6, actinomycin D (10 µg/ml); and A, 

actinomycin D (30 µg/ml). 
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Figure 10. 

The influence of actinomycin Don P. fluorescens cells 

growing in a glucose-salts medium (0.5 per cent glucose). 0, 

control; e, actinomycin D (5 µg/ml); ~' actinomycin D (10 

µg/ml); and At,., actinomycin D (30 µg/ml). 
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source of carbon and energy for growth apparently were not as sensi= 

tive to actinomycin D~ an experiment was conducted to determine if 

these c:ompounds would reverse the inhibition of cell growth when 

succinat.e was used as the priro.ary carbon and energy source. Fructose 

and benzoic acid were also used to determine if they would reverse 

the inhibition by actinomycin D, Rauen and Hess (1959) have re= 

ported on the :reversal of actinomycin C inhibition with p=amino­

benzoic acid, tyrosine, and phenylalanine in some bacterial systems. 

Previous experiments indicate that 30 ug/ml of actinomycin D 

gave almost complete inhibition of growth of cells growing in succi­

nate; therefore, this concentration of antibiotic was used in these 

studies, The procedure for studying reversal of the inhibition by 

protocatechuic acid was as follows: seven ml of a succinate=salts 

medium were added aseptically to each of six tubes; three tubes con= 

tained 30 ug/ml of actinomycin D and three tubes were the controls" 

Two=tenths ml of succinate=grown cells.9 diluted so that a 1:10 dilu­

tion had an absorbancy reading of 0.8 at 540 mu, were inoculated into 

each tube, After 3.5 hours of incubation.S> protocatechuic acid (0.8 

,imoles/ml final concentration) was added to one tube containing ac= 

tinomycin D and to a control tube. One=tenth ml of protocatechuic 

acid (0.4 pmoles/ml final concentration) was added to a second tube 

containing actinomycin D and to a tube for the appropriate control. 

The results (Figure 11) indicated that protocatechuic acid reverses 

the inhibition of growth caused by actinomycin D, and the rate of 

growth of the cells was the same as the controls. The addition 

of protocatechuic acid to the controls did not effect the 



Figure 11. 

Protocatechuic acid (PA) reversal of actinomycin Din-

hibition of succinate-grown f. fluorescens cells growing in 

a succinate-salts medium. Protocatechuic acid was added to 

the cells at 3.5 hours. 0, control; A, actinomycin D (30 
. ' . ' . ' ' ' 

µg/Jl!l); 6, · actinomycin D (30 µ.g/m,1) + PA (0. 8 _µmoles/ml); 

e, actinomycin D (30 µg/ml + PA (0.4 µmoles/ml); D, PA 
~ , - , , 

(0.8 pmoles/ml); and II, PA (0.4 pmoles/ml). 
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growth of the cells in the control tubes. All subsequent experiments 

contain protocatechuic acid in a final concentration of 0.8 µmoles/ml 

when used as a reversing compound. 

Also investigated was the effect of adding protocatechuic acid 

and glucose simultaneously for reversing inhibition. If protocate­

chuic acid and glucose reversal is additive, then it would suggest 

that they reverse by acting on the same site; however, if they are 

not additive, then it would indicate that they act on different sites 

to cause reversal. Succinate-grown cells, protocatechuic acid-grown 

cells, and glucose-grown cells were used as the inocula for these 

growth studies. The cell suspensions were adjusted to have an ab­

sorbancy reading of 1.0 at 540 mµ and 0.2 ml of the suspension was 

inoculated into the appropriate tubes. At the end of 4 hours the fol­

lowing compounds were added to the tubes containing actinomycin D and 

to the control: 0.8 µmoles/ml of protocatechuic acid; 0.8 µmoles/ml 

of protocatechuic acid plus 0.8 µmoles/ml of glucose; 0.8 µmoles/ml 

of glucose. 

The results (Figure 12, 13, and 14) suggested that protocatechuic 

acid reverses the inhibition of growth but glucose in the concentra­

tion used in this study did not reverse this inhibition. The simul­

taneous addition of both protocatechuic acid and glucose did not pro­

duce a more rapid rate (an additive effect) of reversal and this is 

to be expected since glucose alone did not reverse actinomycin D inhi­

bition. Growth occurred at approximately the same rate in all the 

controls. It did not make any difference whether the cells were pre­

viously grown on succinate, protocatechuic acid, or glucose. 



Figure 12. 

The influence of protocatechuic acid and glucose on actino­

mycin D inhibition of succinate-grown !:,, fluorescens cells grow­

ing in a succinate-salts medium. Protocatechuic acid and glu­

cose were added to the cells at 4 hours. 0, control, •, actino= 

mycin D (30 µg/ml); 6, actinomycin D (30 µg/ml) + PA (0.8 

µmoles/ml); .& , actinomycin D (30 µg/ml) + glucose (0.8 pm.oles 

/ml); D, actinomycin D (30 µpjm1) + PA (0. 8 µrnoles/mJ) + glu­

cose (0.8 µmoles/ml); 111 jPA (0,8 pmoles/ml) + glucose (0.8 

pmoles/ml); (), PA (0.8 µmoles/ml) and t), glucose (0.8 

µmoles/ml) • 
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Figure 13. 

The influence of protocatechuic acid and glucose on actino­

mycin D inhibition of protocatechuic acid-induced f. fluorescens 

cells growing in a succinate-salts medium. Protocatechuic acid 

and glucose were added to the cells at 4 hours. (), control;tt, 

actinomycin D (30 µg/ml); ~' actinomycin. D (30 µg/ml) + PA 

(0.8 µmoles/ml); ~, actinomycin D .(30 µg/ml) + glucose (0.8 

µmoles/ml); [), actinomycin D (30 µg/ml) + PA (0.8 µmoles/ml)· 

+ glucose (0.8 µmoles/ml); II, PA (0.8 µmoles.ml)+ glucose 

(0.8 pm.oles/ml); (), PA (0.8 ,am.oles/ml); and 4t, glucose (0.8 

J.lill.oles/ml). 
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Figure 140 

The influence of protocatechuic acid and glucose on actino-

mycin D inhi~ition of glucose-grown E, fluorescens cells growing 

in a succinate-salts medium. Protocatechuic acid and glucose 

were added to the cells at 4 hours. 0, control; e, actinomycin 

D (30 µg/ml); 6, actinomycin D (30 µg/ml) + PA (0.8 ).llilOles/ 

ml); A, actinomycin D (30 µg/mi) ·+ glucos~ (0.8 J.lIII.Oles/ml); 

[], actinomycin D (30 °µg/ml) + PA (0.8 µmoles/ml)+ glucose 

(0.8 µmoles/ml); Ill ,PA (O.s'µmoles/ml) + gluc~se (0.8 pmoles/ 

ml); (),PA (0.8 pm.oles/ml); and (It, glucose (0.8 )llllOles/ml). 
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Fructose, benzoic acid, and another concentration of glucose were 

used to determine if they would reverse actinomycin D inhibition. The 

results (Figure 15) indicated that glucose (27 µmoles/ml; 2.7 µmoles/ 

ml) did not act as a reversing compound. The results from Figure 16 
' -

and 17 indicated that fructose (27 µmoles/ml; 2.7 µmoles/ml) and ben-

zoic acid (1.0 µmoles/ml; 0.5 µmoles/ml) did not act as reversing com-

pounds. 

Effect 2f. actinom.ycin Q and protocatechuic acid .2!! cell viability. 

An experiment was conducted to deter.mine the cell viability of 

actinomycin D inhibited cells. The effect of protocatechuic acid on 

cell viability was also included in the experiment. If actinomycin 

D actually causes death of the cells, then there should be a large de-

crease in the viable cell count during the incubation period. Second-

ly, if protocatechuic acid does cause reversal of inhibition, then an 

increase in the number of viable cells should be observed. These find-

ings should substantiate the results observed for the corresponding 

absorbancy readings. 

Nutrient agar-grown cells were suspended in Tris buffer so that 

a 1:10 dilution had an absorbancy reading of 1,5 to 2.0 at 540 mµ~ 

One ml of this suspension was added. to a 250 nu Erlenmeyer side-ann 

flask. The flask contents were the same as for the amino acid-14c 

incorporation experiment except for the deletion of the amino acid. 

At the indicated times, absorbancy readings (Figure 18) were taken 

at 540 mµ and a 1 ml sample was withdrawn from each flask for serjal 

dilution and plating. The pour plate procedure was used and the cells 

were mixed with nutrient agar that had been cooled to 50 C. The 



Figure 15. 

The influence of glucose on actinomycin D inhibition of sue-

cinate-grown f. fluorescens cells growing in a succinate-salts 

medium. Glucose was added to the cells at 6.5 hours. (), control; 

e, actinomycin D (30 µg/ml); ~, actinomycin D (30 pg/ml)+ glu­

cose (27 pm.oles/ml); ~, glucose (27 )lI!l.Oles/ml); [], actino­

mycin D (30 µg/ml) + glucose (2.7 µmoles/ml); and II, glucose 
.•-

(2. 7 µmoles/ml). 
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Figure 16. 

The influence of fructose on actinomycin D inhibition of 

succinate-grown f. fluorescens cells growing in a succinate­

salts medium. Fructose was added to the cells at 6.5 hours. 

0, control; @, actinomycin D (30 µg/ml); I::,., actinomycin D 

(30 µg/ml) + fructose (27 µmoles/ml); 4'i., fructose (27 µmoles 

/ml); [], actinomycin D (30 µg/ml) + fructose (2.7 µmoles/ 

ml); and • , fructose ( 2. 7 µmoles/ml) • 
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Figure 17. 

The influence of benzoic acid on actinomycin D inhibition of 

succinate-grown !:_. fluorescens cells growing in a succinate-salts 

medium. Benzoic aci'd was added to the cells at 6.5 hours. O, 

control; •, actinomycin D (30 µg./ml); 6, actinomycin D (30 µg 

/ml)+ benzoic acid (1.0 µmoles/m;); JiJ&., benzoic acid (1.0 

µmoles); CJ, actinomycin D (JO µg/ml) + benzoic acid (0.5 

µmoles/ml) + benzoic acid ( 0. 5 JllII.Oles/ml); and • , benzoic 

acid (0.5 }lliloles/ml). 



........ 
it 
0 
..;t 
I.!"\ .._.. 

f>, 
u 
i:: 
Jg 
~ 
0 
U) 

~ 

1.5 

1.0 

0.8 

o.6 

0.4 

.0.2 

0,1 

.08 

.06 

.04 

.02 

0 2 

o­
Add benzoic r~­

acid 

i /J 

!/ 

~: 

56 

4 6 10 

Time (hours) 



Figure 18. 

The influence of protocatechuic acid on cell growth in the 

presence of actinomycin D. The cells were growing in a sue-

cinate-salts medium. The absorbancy readings were taken con-

cu!rently with the data presented in Table I. (), control; ®l, 

actinomycin D (30 µg/ml); ~, actino~cin D (30 µg/ml) + PA 
. -- -

.. -- .·" 

(0.8 µmoles/ml) added at zero time; ~, actinomycin D (30 pg/ 

ml)+ PA (0.8 µmoles/ml) added at 3 hours; and [], PA (0.8 

µmoles/ml). 
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plates were incubated at 37 C for 24 hours and the colonies were 

counted using a Quebec Colony Counter. 

Cell viability counts (TableI)show a steady decrease after ap-

proximately two hours in actinomycin D-inhibited cultures. This is 

good evidence that actinomycin Dis actually killing f. fluorescens 

cells growing in a succinate-salts medium. Microscopic examination 

indicated.that the cells in the presence of actinornycin D increased 

in size. This would explain the observation of an increase in ab-

sorbancy reading, although the viable cell count declined after ap-

proximately two hours of incubation in actinomycin D. Hurwitz et al. 
. . 

(1962) ?bserved an increase in cell size of ,g. subtilis cells growing 

in the presence of actinomycin D. He stated that this was due to un-

balanced growth resulting from the preferential inhibition of RNA 

synthesis. Cell counts for cells growing when actinomycin D and pro-

tocatechuic acid were added simultaneously at time O show that the 

cells grow out to about the same extent as the control. This would 

suggest that protocatechuic acid prevents actinomycin D from inhibit-

ing cell. growth. When protocatechuic acid was added to actinomycin D 

inhibited cells at 3 hours, inhibition ceased at 6 hours and viable 

cell counts began to increase. The small number of viable cells at 

7 hours could be due to the fact that most of the cells were already 

killed from the action of the antibiotic when protocatechuic acid was 

added. The controls show a reasonable increase in cell numbers. 

The influence of actinomycin Q 2B uracil-2-14c incorporation corre­
lated with protocatechuate ox.ygenase synthesis. 

Growth studies suggest that actinomycin D does not inhibit growth 



Table I. Viable cell count of cells growing in!. succinate-§&lts 
medium in the presence and absence of actino.mzcin Q !mi 
frotocatechuic ~. 

6 
Viable cells X 10 

Time Succinate Succinate Succinate Succinate Succinate 
(hours) Act. D * Act. D Act. D PA** 

PA** PA***··· 

0 266 291 245 288 -290 

2 " 348 284 269 278 ··297 

3 790 152 790 157 810 

4 1980 17.2 1430 29.9 1720 

6 2680 4.9 1660 16 2720 

7 2560 2.3 1460 21 1980 

*Actinom,vcin D (Act. D) 30 µg/ml. 

~Protocatechuic acid (PA) 0.8 .pm.oles/ml (added at zero time). 

***Protocatechuic acid (PA) 0.8 )lDlOles/ml (added at 3 hours). 

The :i.nitir:.J. :i n<)culum contained app.:roximately 181 X 108 cells/ 
ml and was diluted 1:40 in the test media. 

6Q 



of cell.s utilizing protocatechuic acid as the sole source of carbon 

and energy. 'rherefore 9 it should be possible to obser1re protocate= 

chuate oxygenase synthesis manometrically and uracil=2=14c incorpo= 

ration into RNA, If actinomycin Dis actually inhibiting protocate­

crn.1.ate oxygenase, then oxygen uptake would not occur in the Warburg 

apparatus and uracil=2=14c should not be incorporated into the acid 

irwoluble TCA fraction, 

Nutrient agar=grown cells were harvested, washed twice with Tris 

buffer and suspended so that a 1:10 dilution gave an absorbancy read­

ing of LO at 540 mu. The cell suspension was placed into the main 

chamber of the Warburg flask and the substrate, inhibitor, and uracil-

2=14C were placed in the side arms. 

Manometric results show that oxygen uptake occurs at approximat­

ely the same rate in the control and in the flask containing 18 ug/ 

ml of actinomycin Do {Figure 19), The cells used were nutrient 

agar-,grown; thereforeJ if act:inomycin D had inhibited DNA dependent 

m-RNA for protocatechuate oxygenase it would have occurred within the 

time it takes for inductble enzyme synthesis by the control cells un­

less more time is required for actinomycin D uptake. This possi­

bility is discussed later on in the text (po 66), Uracil-2-14c in~ 

corporation samples from these flasks show that uracil-2-14C was 

incorporated into the RNA of cells incubated in the presence and ab= 

sence of actinomycin D at approximately the same rate (Figure 20), 

These findings suggest that actinomycin D does not affect the in­

ducible enzyme synthesis of protocatechuate oxygenase. Isotope data 

from cold TCA extracts were inconclusive, Regardless, the uracil-
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Figure 19. 

The influence of actinomycin Don protocatechuate oxygenase 

synthesis of P. fluorescens cells. Samples for uracil-2-14C in-
.. .. . ~ ..... 

corporation were remove~ at 45, 90, and 135 munutes (indicated 

by arrows). The concentration of protocatechuic acid was 4.2 

µmoles/ml per flask. O, control; @, actinomycin D (18 µg/ 

ml); ~' cells with actinomycin D (18 µg/ml) but lacking PA; 

~, cells lacking both actinomycin D and PA; and [], endog-

enous. 
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Figure 20. 

The influence of actinomycin Don uracil-2-14c incorpora­

tion into f. fluorescens cells with protocatechuic acid as the 

substrate. The concentration of protocatechuic acid was 4.2 

µmoles/ml. per flask. O, control;~, actinomycin D (18 µg/ml); 

ll, cells with actinomycin D (18 µg/ml) but lacking PA; ~, 

cells lacking actinomycin D and PA. 
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2-14c incorporation is significant. 

An experiment was conducted to determine if preincubation in 

actinomycin D prior to protocatechuic acid addition would affect pro-

tocatechuate oxygenase synthesis. The cell suspension was prepared 

as described earlier. Actinomycin D was added to the cells and in-

cubated for 60 minutes before the substrate was added. The results 

(Figure 21) indicated that protocatechuate oxygenase synthesis oc-

curred in the presence of actinomycin D and was independent of prior 

incubation in the inhibitor. This would suggest that actinomycin D 

does not require a long period for uptake into the cells. This was 

further substantiated by a similar experiment in which the cells were 

incubated for 160 minutes before the addition of the inducer. Again, 

protocatechuate o.xygenase synthesis occurred in the presence of actino-

mycin D. Thus, enough time was allowed for actinomycin D uptake and 

inhibition of protocatechuate oxygenase synthesis; however, the syn-

thesis of protocatechuate oxygenase is apparently resistant to the 

inhibitor. 

Treatment off. fluorescens cells with disodium ethylenediaminetetra­
acetate. 

Leive (1965a) has shown that treatment of!, coli cells with EDTA 

(lo-3M) permits the uptake of actinomycin D with a subsequent inhibi-

tion of B-galactosidase synthesis. Previous results have indicated 

that actinomycin D enters P. fluorescens cells but did not inhibit 

the synthesis of protocatechuate oxygenase. This was further investi-

gated by treating the cells with EDTA in the presence of actinomycin 

D and observing the synthesis of protocatechuate oxygenase. If 



Figure 21. 

The influence of preincubation off. fl.uorescens cells with 

actinomycin Don protocatechuate oxygenase synthesis. Each flask 

contains 4.2 µmoles/ml of protocatechuic acid. 0, control; e, 
actinomycin D (30 µg/ml); 6 1 actinomycin D (30 µg/ml) in the 

presence of the cells 60 minutes before substrate addition; and 

A., endogenous. 
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actinomycin D was not getting into the cells due to a permeability bar-

rier, then EDTA treatment should eliminate this barrier and the true ef-

feet of actinomycin Don the synthesis of protocatechuate oxygenase 

should be observed. 

Nutrient agar-grown cells were suspended so that a 1:10 dilution 

gave an absorbancy reading of 1.0 at 540 mµ. Twenty ml of the cell sus­

pension were added to a 250 ml Erlenmeyer flask and one ml of EDTA (1 X 

10-4 M final concentration) or Tris buffer was added to the flask. 

Higher EDTA concentrations were not used because they caused cell lysis. 

The contents were incubated for 30 minutes at 37 Con a reciprocal shak-

er. The cells were centrjfuged, washed one t~me with Tris buffer, and 2 

ml of cells were withdrawn for adding to the Warburg flask. Actinomycin 

D, EDTA, protocatechuic acid, and/or Tris buffer were added to the ap-

propriate Warburg flask. 

Manometric results (Figure 22) indicated that protocatechuate oxy-

genase synthesis occurred in the presence of actinomycin Din EDTA-

treated P. ~cens cells. The presence of EDTA appeared to increase 

the amou..r1t of oxygen uptake. The ref ore, the conclusions drawn from 

these results are consistent with the earlier interpretations that the 

inducible enzyme synthesis of protocatechuate oxygenase is resistant to 

actinomycin D. 

Qptake of actinomycirr D-14Q ~ E· fluorescens cells. 

By observing the uptake of actinomycin D-14c into the cells (Table 

II), further proof could be obtained to indicate that actinomycin Dis 

actually entering this Gram-negative organism. 

Three controls were used in the first experiment. The first con-

trol contained all the constituents except the substrate. Actinomycin 
D uptake occurred in these cells, The second control contained all 



Figure 22. 

The influence of EDTA on the protocatechuate oxy~enase syn­

thesis by f. fluorescens cells in the presence of actinomycin D. 

Each flask contained 1.3 µmoles/ml of p:rotocatechuic acid. 0, 

control;~, actinomycin D (30 µg/ml); 6, actinomycin D (30 

µg/ml) + EDTA (1 x 10-~); ·· ... , actinomycin D (30 µg/ml), 
. . 

.... ... . : . =4 , .. 
cells preincubated in EDTA. (1 x 10 M) for 30 minutes; D , 

control + EDTA (1 x l0.:.4i4); 11., control, cells preincubated 

in EDTA (1 J~i io;.;;;4M) for 30 minutes; and O, endogenous. 
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TABLE II. Uptake of radioactive a.ctinomycin Q . ~ . f., . fluorescens. 

Constituents Exp. 1 Exp. 2 
(CPM) (Per cent)* (CPM) · (Per·cent)-i~ 

Succiriate 
Actinomycin D 

PA 
Actinomycin D 

Glucose 
Actinomycin D 

No substrate 
Actinomycin D 

(control) 

Succinat'e 
PA (0.8 J.UilOles/ml) 
Actinomycin D 

Succinate 
No labeled 
Actinomycin D 

(control) 

PA (6.8 µmoles/ml) 
Actinomycin D 

No cells 
Succinate 
Actinomycin D 

(control) 

277 33.7 

198 24.1 

277 33.7 

287 34.9 

265 32.2 

0 0 

Not tested 

0 0 

148 18 

111 13.5 

124 15.1 

Not tested 

122 14.8 

Not tested 

111 13.5 

Not tested 

*Per cent uptake based upon the total count rate for 0.1 ml of 
actinomycin D-14c (821 CPM). 



the constituents except actinornycin D-14c, and the third control con-

tained all the constituents except the cells. As was expected:; the 

last two controls showed no radioactivity. Actinomycin D uptake oc= 

curred in the presence of all the substrates used in the experiment; 

however:; there was a slight decrease in actinomycin D uptake in the 

presence of protocatechuic acid as compared to succinate, but it was 

not enough to state that it caused interference of actinomycin D up-

take. 

These studies suggest that none of the substrates are competing 

with or otherwise influencing the uptake of actinomycin D by the 

cells. Therefore, the growth of the cells in actinomycin D with 

protocatechuic acid as the substrate is not readily explained by the 

substrate competing with the inhibitor for uptake. 

Inc:orpor§itio!'! of amino acid~14c into Er2tein of actinomycin D in­
hibited cells. 

It is known that amino acid incorporation into protein is de-

creased in the presence of actinomycin D (Goldberg et al., 1962; 

Lev-inthal et aL, 1962). An experiment was designed to determine if 

amino acid incorporation into proteins of cells growing in a succin-

ate-·salts medium was influenced by the presence of actinomycin D. 

Since protocatechuic acid reYersed the inhibitjon of growth, the in-

73 

corporation of amino acids into proteins was measured in the presence 

and absence of actinomycin D and protocatechuic acid. 

Thirty=six ml of succinate-salts medium was added to a 250 ml Er­

lenmeyer side arm flask. One ml of leucine ~2= 14 C was added to the 

flask. wnile no information was available on the actual a.mount of 
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leucine present in the leucine-2-14c, definite conclusions can be ob­

tained if the isotope is incorporated into cell proteino Three flasks 

were prepared each containing 1 ml actinomycin D (30 ug/ml). Five­

tenths ml of protocatechuic acid (Oo8 pm.oles/ml) was added to one 

flask containing actinomycin D and to another flask containing no in­

hibitor. After 150 minutes of incubation 0.5 ml of protocatechuic acid 

(0.8 µmoles/ml) was added to the other flask containing actinomycin D. 

Succinate-grown cells were suspended so that a 1:10 dilution had an 

adsorbancy reading of 1.5 at 540 mu, and 1 ml of this suspension was 

inoculated into each flask. Tris buffer was added to bring the total 

volume to 40 ml. A 3 ml sample was withdrawn from each flask at the 

same time that each absorbancy reading was taken. 

Absorbancy readings (Figure 23) show that growth was inhibited in 

the presence of actinomycin D. No inhibition was observed in the pres­

ence of actinomycin D when protocatechuic acid was added at zero time. 

If protocatechuic acid was added after inhibition had begun, then 

this inhibition could be reversed with a resulting increase in growth. 

Leucine-2-14c incorporation (Table III) into protein indicates that 

the presence of actinomycin D decreased the amount of incorporation 

as compared to the control. When protocatechuic acid was added 

simultaneously with actinomycin D at zero time, the rate of amino 

acid incorporation into protein was slightly inhibited for 2.5 hours. 

However, by 4 hours it began to approach the rate of amino acid in­

corporation of the controls. The data suggest that actinomycin D 

does not inhibit formation of protein in the presence of protocate­

chuic acid. Amino acid-14c incorporation increased upon the addition 



Figure 23. 

The influence of protocatechuic acid on cell growth in the 

presence of actinomycin D. The cells were growing in a sue-

cinate-salts medium. The absorbancy readings were taken con-

currently with the data presented in Table III. 0, control; 

8, actinomycin D (30 µg/ml); &, actinomycin D (30 p.g/ml) + 

PA (0.8 µmoles/lill) added at zero time; 6, actinomycin D (30 

µ?/ml) + PA (0.8 )ll'IlOle~) added at 150 minutes; and D, PA 

(0.8 pm.oles/ml). 
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Table III. Incorporation of leucine -2-14c into protein of _E. 
fluorescens cells growing in the presence and absence of 
act!nomycin Q. and pro£ocatechuic aciu. 

Counts per minute corrected for background 

Time Succina.te Succinate Succinate Succinate Succinate 
(hours) Act. D-ll- Act. D Act. D PA** 

PA** PA*** 

0 0 0 0 0 0 

0.5 5 8 7 10 14 

1 24 23 13 18 11 

1.5 42 31 40 27 47 

2.5 132 40 55 36 82 

3.5 191 36 72 45 111 

4 199 44 147 104 205 

*Actinomycin D (Act. D) 30 µg/ml. 

~*Protocatechuic acid (PA) 0.8 µmoles/ml (added at zero time). 

**-l~Protocatechuic acid (PA) 0.8 µmoles/ml (added at 2.5 hours). 
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of protocatechuic acid to actinomycin D inhibited cells, Apparently, 

protocatechuic acid released the actinomycin D inhibition and the 

cells were thus able to synthesis protein. While isotope data on 

cold TCA extracts were again inconclusivej the data showing incor­

poration of leucine=2=14c are significant. 



SUMMARY AND CONCLUSIONS 

Actinomycin Dis a known inhibitor of DNA-dependent RNA syn­

thesis. The antibiotic produces a rapid and pronounced growth in­

hibition in Gram-positive organisms but its effectiveness varies in 

Gram-negative organisms. 

This investigation has shown that growth of E· fluorescens was 

inhibited by actinomycin D when 1-asparagine or succinate was used 

~s the sole source of carbon and energy. Growth was not inhibited 

by the concentrations of actinomycin D used in the experiment when 

the cells were growing in nutrient broth. This could be due to the 

many nutrients present, some of which are probably utilized by con­

stitutive enzymes that are long-lived or by the more stable m-RNA 

enzymes. 

The results show that an increase in the inhibitor concentra­

tion produces an increase in the extent of inhibition. Growth studies 

revealed an increase in the absorbancy readings of actinomycin D­

treated cells during the first 2-4 hours similar to the control sys­

tem. While microscopic examination showed an increase in cell 

size, viable cell counts indicated that an increase in cell numbers 

was not occurring during this time. Therefore, actinomycin D was in­

hibiting the organism but the inhibition was not readily apparent 

using absorbancy measurements. 
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Actinomycin D did not produce a pronounced growth inhibition 

when glucose was used as the sole source of carbon and energy. This 

might possibly be due to the many metabolic pathways (long-lived en­

zymes) in which glucose could enter without encountering enzymes sen­

sitive to actinomycin D. End-products of glucose metabolism may also 

be responsible for inactivation of actinomycin D. However, glucose.:1 

fructose, and benzoic acid failed to reverse the actinomycin Din= 

hibition. Honig and Rabinovitz (1966) found that the inhibition of 

protein synthesis by actinomycin Din sarcoma 37 ascites cells could 

be relieved by the addition of glucose. These authors speculated that 

actinomycin D inhibits protein synthesis by interfering with a product 

of oxidative metabolism and this effect can be overcome under condi­

tions of glycolysis. 

Actinomycin D did not inhibit growth of the cells when proto­

catechuic acid was used as the sole source of carbon and energy. 

Protocatechuic acid induces the synthesis of protocatechuate oxy­

genase; therefore, this offers an example of an inducible enzyme 

that does not appear to be sensitive to actinomycin D. Results from 

manometric and growth experiments have confirmed the apparent re­

sistance of protocatechuate oxygenase synthesis to actinomycin Din­

hibition. 

Protocatechuic acid, in extremely low concentrations, could re­

verse the actinomycin D inhibition of gro11irth when it was added after 

the inhibition became apparent but before the viable cell count had 

sharply declined. When protocatechuic acid and actinomycin D were 

added simultaneously with the inoculum, an inhibition did not occur. 

Actinomycin D inhibited the incorporation of a radioactive amino acid 
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into proteinJ but the incorporation of the amino acid was resumed, at 

least in part, when protocatechuic acid was added to the inhibited 

cells. Thus, the actinomycin D inhibition of protein synthesis was 

apparently reversed by the presence of protocatechuic acid. 

This investigation has established that neither protocatechuate 

oxygenase synthesis nor growth is sensitive to actinomycin D when 

protocatechuic acid is present. 

Guanine must be present in order for cH!tinomycin D to bind to 

DNA (Goldberg et al., 1962). If guanine-cytosine bases were not pre­

sent in the loci coding the m=RNA for protocatechuate oxygenase, then 

actinomycin D would not be able to bind to the specific loci and en­

zyrne synthesis would occur. During the catabolism of protocatechuic 

acid to acetyl-CoA and succinate, succinate metabolism would be in­

hibited but acetyl-CoA might enter into a lipid pathway and other 

cell components without being inhibited by the antibiotic. This of­

fers a plausible explanation for growth in a protocatechuate-salts 

medium when actinomycin Dis present. 

It is possible that actinomyci:n D binds to the regulator gene 

which codes for the repressor for protocatechuate oxygenase. This 

would mean that the :regulator gene contains guanine=cytosine and 

other appropriately arranged bases in the i:rmnediate vicinity which 

would allow for binding of the antibiotic. Since actinomycin D does 

not inhibit protocatechuate oxygenase synthesis, the unaffected 

structural genes may contain guanine-cytosine bases but due to their 

arrangement in the genome or to the presence and sequences of other 

bases in the immediate vicinity may preclude binding of actinomycin 
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Do If actinomycin D acts on the repressor regulating locus, then the 

repressor may not be formed and the operator gene would permit the 

synthesis of protocatechuate oxygenase. Secondly, actinomycin D 

could possibly combine with the repressor (instead of with the regu­

lator gene) which would also permit protocatechuate oxygenase syn= 

thesis. 

Another possible explanation would be that actinomycin D does 

not readily penetrate the cell permeability barrier. For example, 

protocatechuic acid and actinornycin D might compete for a common up­

take mechanism of the cell or the inhibitor simply may not readily 

penetrate the permeability barrier. However, this does not appear 

to be the case since (1) the incorporation of an amino acid into 

protein is inhibited in the presence of actinomycin D, (2) proto­

catechuic acid will reverse the inhibition by actinomycin D, and 

(3) the uptake of actinomycin D by the cells occurs in the presence 

of protocatechuic acid. These findings suggest that permeability is 

not a factor involved in the inhibition. Reversal of a pronounced 

inhibition would suggest the possibility of an inactivation of the 

inhibitor by some cell component. Leive (1965a) found that the in­

hibition of B-glactosidase by actinomycin D ceased after approxi­

mately 50 minutes. 

It is possible that actinomycin D and protocatechuic acid form 

a complex inside the cell or protocatechuic acid may otherwise func­

tion to inactivate the antibiotic. If this is true, then it would 

indicate that actinomycin D may form a reversible complex with DNA 

and when the inhibitor detaches from the DNA it may then complex with 



or otherwise be inactivated by protocatechuic acid. This would also 

offer an explanation for the reversal of actinomycin D inhibition. 

A possibility exists, though it is not very likely, that protocate­

chuate oxygena.se could be coded from a long-lived RNA, thus being 

resistant to actinomycin D inhibition. 

Further investigation is necessary before the exact mechanism 

or mechanisms are known for the resistance of protocatechuate oxy­

genase to actinomycin D and the cause for reversal of actinomycin D 

inhibition by protocatechuic acid. 
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