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CHAPTER I

INTRODUCTION

The purpose of this study is to determine the nature of structural
action in a reinforced concrete beam-column joint in which two beams of
slightly different elevations frame into the column in the same plane.

An unusual situation in most buildings, this junction is common in ramp-
type parking garage structures. In one particular structure the diagonal
cracks which occurred in the column at these joints required an indepen-
dent structural steel shoring system to prevent failure due to the
cracks.

While large quantities of literature have been published regarding
the structural action and failure of individual beam and column elements,
v;ry little research has been done on the failure of the monolithic
joints of these elements. As far as the author could determine, no
studies have been made of the particular joint conditions which occur in
the ramp-type parking structures.

For this investigation preliminary experimental tests of several
typical joints were made using reinforced plaster models, and several
joint variations were then computer analyzed for stresses and displace-
ments using the finite element method.

The plaster model studies, though simple in nature and qualitative



in approach, yielded cracking patterns which corresponded very closely
to those of the particular structure mentioned above. This correspon-
dence is especially significant in view of the different properties of
reinforced concrete and the model materials. Also, it was found that
the joint which had similar beam elevations was capable of supporting
greater loads than were those joints in which the beam elevations were
significantly different,.

One of the main parameters indicated by the model tests was the
relative elevations of the beams framing into the column. The effects

of this parameter on the stresses and displacements in the joint was

investigated by theoretical analyses based on the finite element approach.

The results of these analyses show that much higher stresses result in
joints with a significant difference in the beam elevations. In addi-
tion, high principal tensile stresses were found in the regions of the
column cracks within the models and in the directions consistent with

these cracking patterns.



CHAPTER II
PRELIMINARY REINFORCED PLASTER MODEL INVESTIGATION

In beginning this project, a simple form of preliminary experi-
mental analysis was desired for determining first, the feasibility and
usefulness of a more detailed study and second, the parameters to be
used in case a more quantitative investigation were to be carried out.
Furthermore, it was felt that an experimental study would be helpful in
obtaining a physical understanding of the structural action of the
joints. With these criteria in mind, a reinforced plaster model study
was decided upon for this preliminary phase because of the minimum
amount of time, equipment and expense involved in working with these
materials.

Figure 1 shows the crack pattern of a typical joint in a parking
structure in Atlanta, Georgia. The cracks have been grouted in, but the
pattern is still visible, and the added steel supports of Figure 2
testify to the extent of the damage. The proportions of this joint were
used in determining the model dimensions and the dimensions used in the
theoretical analysis described later. The cracking pattern of this
junction is typical of others found in this structure and was used as a

basis of comparison for the cracking configurations of the model joints.



Figure 1. Crack Pattern of Typical Joint in an
Atlanta, Georgia, Parking Structure
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Isolation of the Joint

The simplest joint isolation which the author could devise was
employed for the model configuration. Figure 5 shows the general con-
figuration of the model. The cantilevered beams permitted direct load-
ing, and their greater depth resulted from the necessity for cracking
in the column to be given the chance to occur before failure in the
beam. A more complete structural framework such as a complete bent
would have entailed greater care and more work in fabrication as well

‘as a more elaborate' loading system.

Selection of Materials

Both James (6) and Kornegay (7) suggest the use of a 0.9 water
to plaster ratio because of its facility for filling the mold, com-
pletely covering the reinforcing and leaving no air pockets. The same
ratio was used in this study for all models and found to be very satis-
factory. An ordinary gypsum plaster was used because of its availability,
although-for exacting studies a more refined material such as a dental
casting plaster may be desired.

After considering several possibilities for reinforcing, including
threaded steel rods and annealed wire, hardware cloth was decided upon
based upon the favorable recommendation of Kornegay (7) concerning the
material's bonding properties, strength and ductility. This material
can be obtained at any hardware store. It is an easily worked material
since it can be cut with ordinary metal shears and readily formed into

reinforcing cages.



Fabrication of Reinforcement

The hardware cloth was cut into strips of a width equal to the
perimeter of the desired cage size. The cages were then bent and tapped
around a wood form of dimensions slightly less than the finished cage
size. After tack soldering in a few spots to hold the cage together,
the wood form was slipped out and the soldering completed. Each cage
element was fabricated in this manner, the finished size being small
enough to allow about 1/4" plaster cover over all reinforcing. The
transverse strands of the hardware cloth served as evenly spaced "stir-
rups" and "ties" for the beams and column. Figure 3 shows the assembled
cage elements' for the reinforcing of a typical model. The attachment of
the beam cage elements to the continuous column cage was accomplished by

soldering-the beam reinforcing strands to the column reinforcing.

Fabrication of Molds

Molds ‘to receive the plaster were made of plywood. One-quarter
inch plywood vertical strips were nailed to a thicker plywood base to
prevent movement ' and warping. A minimum of exact fitting was required
by lapping the vertical strips where feasible. The mold with reinforc-

ing in place ready to be filled with plaster is shown in Figure 4.

Mixing and Pouring the Plaster

A coating of machine o0il was applied to the insides of the forms to

facilitate removal, and after carefully positioning the reinforcing cage



Figure 3. Assembled Cage for a Typical Model
Joint



Figure 4, Plywood Mold With Cage Element in
Place Prior to Pouring of the
Plaster
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in the mold to allow adequate cover on all sides of the reinforcement,
the plaster and water were mixed. The convenient procedure outlined in
reference (6) was used during the mixing operation. Pouring was accom-
plished as quickly as possible so that the plaster was in its mold
before it began setting up. No vibration was required. The thin plaster
mixture covered the reinforcing well, filling the smallest of spaces
between reinforcing without the formation of air pockets. The plaster
was poured until it reached above the top edges of the mold forming a
meniscus. This was done to allow for the gathering of any free water
at the top surface. The excess was scraped off with a wooden screed
after the plaster had achieved its initial set.

The ‘wood forms were removed after about ten to twelve hours. Re-
moving the nails proved difficult, and the use of screws would have
facilitated the form removal. The models were kept in a room of con-
stant temperature for curing. Some investigators have recommended using
as short a curing time as one hour, but it was felt that a longer time
‘would assure a more distinct cracking pattern. Thus a curing time of
four days was planned; however, circumstances prevented testing of the
models until ten days had elapsed. As the results will indicate this

discrepancy seems to have mattered little in the final cracking pattern.

Loading the Models

One of the advantages of the plaster model is the relatively small loads

required to produce failure. This advantage coupled with the informal
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nature of the tests permitted the use of the very simple loading appara-
tus shown in Figure 5. The loading frame was designed to permit direct
vertical loading by use of one pound weight increments hung from the ex-
tended cantilevers of the model. The one pound loads were applied simul-
taneously to each cantilever. However, in some of the models at higher
loads, an unbalanced load condition was necessitated by the imminent
failure of one of the cantilevers. This difference in the cantilever
loadings was significant only for joint D, as can be observed from

Table I. The lengths of steel reinforcing bars used as weights proved
cumbersome and at times difficult to apply, especially when several
weights were already in place. Also the tendency for the weights to
swing into a slight pendulum motion no doubt initiated some dynamic
effects which have been ignored. In spite of these drawbacks, the
device served its purpose well. The apparatus was designed to provide
lateral support to the cantilevers, fixity at the top and bottom of the
column and a clear view of the joint itself during the loading proce-
dure.

The six joints tested are shown in Figure 6. Joint A and joint A-1
are of the same dimensions, the only difference being that joint A was
the first model poured and tested. Joint A-l was poured and tested at
the same time as the other models, B through E. The crack sequence for

joint A-1 is shown in Figure 7.

Results

The final cracking patterns for the various joints tested are remark-



Figure 5.

Model Loading Apparatus Showing Model
Joint in Place With Hung Weights
Applied at the Ends of the Canti-
levers
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Figure 6.

Model Joints Tested in Preliminary
Investigation
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Figure 7. Crack Sequence of Joint A-1
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ably similar as can be seen in Figures 8 through 13. Test joints A and
A-1 showed very close failure patterns even though they were of different
plaster batches and tested at different times. The repetition of this
joint configuration was done to be certain the cracking pattern of joint
A was not an accident. .  The resulting cracking pattern of both joints is
in close agreement to that of the parking garage failure as can be seen
by a comparison of Figures 8 and 9 with Figure 1. Joints B and C were
tested to see if there could be any correlation between the difference

in elevation of the beams and the type of crack resulting or the carrying
capacity of the joint prior to cracking. The crack patterns vary so
slightly that such a correlation cannot be established from them; how-
ever, it is the author's feeling that such a correlation might appear in
a series of tests designed with longer column lengths.

Perhaps the clearest result of the tests can be seen in a comparison
of the cracking pattern and loads of the joint D with the other joints
tested. The reinforcing in this joint was kept as continuous as possible
by threading the column cage through the middle of the continuous beam
reinforcement instead of breaking it off and tying into the column steel
as was necessary in all other joints tested. The magnitude of the total
loads at failure for the "continuous" joint D was roughly one and one-
‘half that of. the other joints. The crack pattern in this joint also
differs from the others as can be seen in Figure 12,

Joint D exhibited no diagonal cracking in the column as did all the

other models. Joint E showed a very similar pattern of cracking to that



Figure 8.

Final Cracking Pattern of Joint A
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Figure 9.

Final Cracking Pattern of Joint A-1
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Figure 10,

Final Cracking Pattern of Joint B
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Figure 11.

Final Cracking Pattern of Joint C
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Figure 12.

Final Cracking Pattern of Joint D
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Figure 13.

Final Cracking Pattern of Joint E
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of the joints A, A-1, B and C in spite of the fact that joint E had

only one beam framing into the column instead of two.

TABLE 1

LOAD ‘VALUES ON THE JOINTS AT CRACK FAILURE WITHIN THE COLUMN

Joint © Load Right (1b). . Load Left (1b)  Total load. (1b).

A 9 7 16
A-1 9 9 18
B 10 10 | 20
c 10 11 21
D 12 23 35
E | 10 10

Model Test Conclusions

The” qualitative nature and limited number of tests made on the
joints prevent any rigid conclusions regarding the beam-column joint
under investigation. However, several qualified conclusions may be put
forth.

First, the similarity of the cracks in the model tests and in the
acﬁual concrete joints in the parking structure indicate that a pnique
conditién‘existS“where a joint has beams or girders framing into the
column at different elevations. This is a situation which could easily
be overlooked in the-design of such a structure. |

Secondly, the unconventional cracks which occurred in both model
and prototype indicate a sfress'distribution which is largely dependent
on the“reiative position of the beams and the manner in which the reiﬁ—

forcing is detailed. The model tests indicated that differences exist



in load capacities of a joint in which the reinforcement of the beams
was truly continuous (i.e. carried from one beam into the other) from
one in which the reinforcement was terminated and tied into the column.
The joint having beams at the 'same elevation carried one and one-half
‘times ‘as great 'a load before falling as that carried by the other joints
tested.

The positive results of the preliminary phase of this paper also
demonstrate the value of the plaster model investigations as a tool for
preliminary qualitative studies of various reinforced concrete situa-
tions. The major advantages of a study of this type are the ease with
which the materials'can be handled, their ready availability, and the
relatively short time expended upon the preparation and fabrication of
the models -as well ‘as the minimum requirements for testing apparatus.
In addition, “the information gained from such a study, though highly
qualitative in nature, allows a rapid means of observing the structural
phenomena ‘in ‘question., This information is of value in planning and
launching further investigations, whethér they be more refined experi-
mental tests-or mathematical analyses. A preliminary study such as
this one canhelp the investigator formulate propositions and theories

which may then be examined by more sophisticated means.



CHAPTER III
THEORETICAL ANALYSIS

There are numerous factors which might enter into the cracking of
the beam-column joint shown in Figure 1. Some of the more important
ones include 1) the total structural action of the monolithic reinforced
concrete frame, 2) the nature of the moving loads, 3) the possibility of
faulty engineering and/or construction, 4) the placement of reinforce-
ment and 5) the relative location of the beams. The positive results of
the model tests described in Chapter II on the isolated fixed column
with loaded cantilevers seems to indicate the relative unimportance of
1),2), and 3) when compared with 4) and 5). Due to the complexity of
the problem, it was decided to limit the theoretical investigation
- mainly to the effects of the location of the beams. The basié set up
for this analysis is very similar fo the model loading conditions. A
column of constant length and cross section is assumed fixed at each end
and the beam positions are taken as the main parameters. The beam
depths are assumed constant. The desired analytical results for each
beam position are as follows:

1) deflected configuration of the joint, and
© 2) determination of the distribution and relative values of

- the principal stresses in the joint.

24
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These results will allow comparisons of the effects of various beam
positions as-well as comparison of the regions of high tensile stress

with the regions of cracking in the model tests.
Finite Element Method of Analysis

The analysis-of framed structures of two and three dimensions has
been greatly simplified by the advent of electronic computers and the
formulation of the well-known methods of matrix structural analysis.

The finite element method of analysis is based on the ordinary struc-
tural methods and their assumptions, ice. that the structural system is
an assemblage of distinct structural elements and that the forces and
displacements-of the structural assembly can be determined once the
~characteristics of the individual members are known. In the application
to framed structures- the elements are often entities in themselves, and
their properties are assumed to be functions of a single variable, the
distance along the axis of the member.

The finite element procedure, however, extends the basic methods to
“the analysis of continuum structures in which the continuum is replaced
by a finite number of two dimensional idealized plate elements joined
only- at  their corners, or nodes, each element having the same material
"property-as the continuum.  The resulting idealized structure can be
treated as-any other structure to be analyzed by matrix methods, once
“the stiffness characteristics of the individual elements have been deter-

mined. 'Naturally both the accuracy and the degree of complexity increase
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with the number of eiements,'for the greater the number of elements, the
more closely the idealized structure approximates the real one.

The first- attempt at idealizing an elastic continuum as an assem-
blage of structural elements was carried out by A. Hrennikoff (5). This
was followed shortly by a similar approach, the "lattice analogy," de-
veloped by McHenry (9). Later improvements in the form of the finite
element ‘idealization-were initiated by aeronautical engineers, led
chiefly by-Argyris (1,2). "R.W. Clough (3) has been mainly responsible
for the application of this method to non-aeroengineering structures.

In this-thesis the beam-column joint is idealized by replacing the
beams by boundary forces. The resulting rectangular shaped joint is
-assumed- to'be an elastic continuum idealized as a series of plate ele-
‘ments  connected’ at the corners or nodes of the adjacent elements. The
‘stiffnesses of the individual plate elements are computed and the dis-
‘placement. method-of "analysis is applied to evaluate the stresses and
deflections of the joint. The investigation is thus a two dimensional
stress analysis to determine the effects of the location of. the beams

~on the stress distribution at the joint.

The finite element method 1s proving to be a very powerful analyti-
cal tool as indicated by the increasing amount of literature appearing
-about.'the method: andits many uses. Because thorough treatises dealing
with the theoretical development of the method are available, only a
‘brief discussion of :the method as applied in this investigation will be

~“included here (1), (11).
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Since the basic idea of the method is‘;hat of assuming the struc-
tural configuration to be a series of nodal connected elements, the
cholce of element geometry and the development of element structural
properties become of prime importance. Any number of element shapes
might be used, but the rectangle and triangle are most commonly employed.
In this investigation the rectangular shape of the joint with its regu-
lar boundaries permitted the use of‘rectangulaf elements which tend to
yield better appfoximétions of stresses and deflections for a given nodal
pattern than do triahgular elements, although triangular elements offer
‘many advantages for‘irregular boundary situations (2).

Having 'selected the element shape the next phase is the determina-
tion of the stiffness of the element. Various approaches to the deter-
mination of the stiffness matrix for a rectangular element have been
‘made by Glough (3) and Mérfin (8), but the most immediately applicable
derivation is made by Argyris (1) on page 251. The results of the deri-
vation are'used in this thesis for the stiffnesé matrix of a typical
rectangular element. The basis of the derivation is as follows: each
of the corners or nodes of the element is assumed to have two degrees
of freedom, one'in the horizontal direction and one in the vertical
direction; the eight degrees of freedom éf the element are represented
“by element"nodal'coordinatés which are used to_refer to forces and dis-
placements at-the node; these coordinates are numbered in sequence as
shown in Figufe 14.

The assumptions mentioned above of the element boundaries deforming
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as straight lines must of course be employed>here. The determination of
the stiffness coefficients is similar to that of a one-dimensional ele-
ment, the main difference being the degree of complexity involved in the
calculations. A unit displacement 1s applied at each coordinate with
the other coordinate-deformations held to zero and the coordinate forces
required to create this deformation form one column of the stiffness
matrix. The displacement used for forming the third column of the ele-
ment stiffness matrix can be seen in Figure 15, Since there are eight
coordinates, the procedure must be repeated eight times, resulting in
an eight by eight matrix.
Virtual ‘work concepts are employed to calculate the coefficients
(11). Referring to figure 15, the assumption of linear element boundary
“deformation means that the displacement of an arbitrary point x,y with-
"in the-element varies from zero at the top boundary, y = 0, to o& at
*the bottom boundary, y = L; o in turn varies linearly from oC = 1 at

x =0, to oC =0 at x =D,

Then:+- oC D - X
5 o= =] - 2{_ s
i D D

“and wix,y) vy .
< L
“Thus wix,y) =y < =y X
Tt L -3)

1
o

-~ and u(x,y) =



u
5 6 X
;—) Gy >
\ Iz
w
L
2’ r-_.-ﬁ K
3% V4
D

Figure 14. Typical Rectangular Element Coordinate System
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Figure 15. Unit Deformation at Coordinate 3 Showing Corresponding
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The strain energy formula for any coefficient of the stiffness

matrix is

D L T
kjh = g S J aaahdxdydt .
0] 0 0

Since £ gy =<§u(x,z). ,

X

6yy =&w(x,x) ,
Jy

and  €yy = Sulx,y) duix,y)
Ay +v ox

the element strains due to a unit displacement at coordinate 3 are:

& = O Y1 Xy =1l X
w3 “5Ga - T{a-H

élxx3

: ' = O o Xy _ -
Exy; = 550 +55G0 - ="15 .

The stresses corresponding to these strains are found from the elastic

relationships:
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Qq
L}

K} .
(e,xx + Veyy)E H

| .
(Eyy + VELIE" 3

Txy = Gexy 3

where E = Modulus of Elasticity,

V = Poisson's Ratio,

E'= E .
2
a-v)
and G = E .
21 + V)
Thus g =

= E' X
yyy T @A-3
VE' X
x,{3 L (1 - -5) ’

and g = =Gy
xyj D °

By applying unit displacements at the remaining éoordinates similar
formulas éan be obtained for each of these conditions. The element
coefficients may then be found by application of the strain energy
formula. For example, applying a unit displacement at element coordin-

ate 7 yields the following:



and <  u(x,y)
5 v

| D - x ’
thus  u(x,y) = (-I-)—-'I;—i) = %(1 - -’-I;-)‘ ,
and wix,y) = 0 ,
Then 6xx = -}'ﬁ >
Eyy ~ °

&

1 X
xy© 1@ - p

and o =-Ex’

xx LD
= ~VE 'z
Tyy LD .

¢
Cxy = T - D)

Applying the strain energy formula for coefficient 3,7 and assuming a

constant element thickness, T,

D L D L
KE =T T,E,dxdy = T
3,7 Jg 37 _L J;

F L

- POVEL L Xy =Y

=Tqg o L Q- p-Gp dxdy
D Gy 1, x

+T o o 5 . T - Pdxdy

-VE'T ¢T .
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Other element coefficients of the stiffness matrix are obtained in the
‘same manner. For convenienée in writing, the final e;ement‘stiffness
matrix is separated into the contributions due to shear strains and

direct strains:

(KE] = ([Ks] + [KD] , where

L n
3D
L L
~ 3D 3D
L L L (syinmetrical)
- 6D ~ 6D 3D
L L L L
= 6D 6D 3D 3D
KS=GT . ,
1 1 1 _1 D
b T4 4 4 3L
1 1 Py 1 D D
b T4 A T4 6L 3L
1 1 1 1 D - D D
T4 4 T4 4 3L 6L 3L
B | 11 D _D D D
T4 4 T4 4 ~ 6L 3L 6L 3L
|



D
3L
D D
6L 3L

_D _D D (symmetrical)
3L 6L 3L ‘

-2 -2 D D
6L 3L 6L 3L

KD=E'T

Y y _¥ _¥ L
4 4 4 4 3D

~J ~-J y y _L L
4 4 4 4 3D 3D
y y _y¥ _X¥ L _L L
4 4 4 4 6D 6D 3D

-Yy _Y y y _i L L L
4 4 4 4 6D 6D 3D 3D

Synthesis of the System Stiffness

The system stiffnesé matrix'establisheéithe reiation;hip between
.the forces acting on the‘system and the disﬁlacements due to these
forces. The determinatidﬁ of the overall system stiffness matrix re-
quires an independent set of coordinates at each nodal point of the
structure which must be related in some manner to the coordinates of
the individual elements. Figure 16 shows the coordinates for a cdérse

mesh system of six elements., The numbering of the system nodal points

is carried out across the shortest dimension of the structure, a pro-

‘cedure which encourages the formation of a well-conditioned system

stiffness matrix.
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The construction of the stiffness matrix for the system proceeds
similarly to that of the individual element stiffness matrix, A unit
displacement is made at the jth coordinate. The coordinate forces neces-
sary to maintain the unit displacement of the node form the jth coiumn
of the stiffness matrix. The resulting coordinate forces can be deter-
mined from the stiffness matrices of the individual elements connected
to the displaced node. For example, in Figure 16 a unit displacement
at coordinate 10 (with all other nodal displacements held to zero) will
‘ require unit displacements at coordinate 8 in element [1,1], at co-
ordinate 7 in element [1,2], at coordinate 6 in element [2,1], and at
coordinate 5 in element [2,2]., The forces resulting from these dis-
placements have already been tabulated in ﬁhe element stiffness matrix
and it is—a simple matter to transfer the appropriate valué of the
“element coefficients to their proper places iﬁ the system stiffness
matrix. Of course this procedure must be répeated for each coordinate

of the system in order to form the complete system stiffness matrix (11).
System Equations

In this investigation the shears and moments of the beams on each
side of the column are replaced by equivalent forces acting at appro-
priate nodal pﬁints of the isolated structural system. The relationship
between“theée'applied forces and the fesulting nodal displacements is

expressed by a set of simultaneous equations which in matrix form become
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[FORCE] = [STF] . [UNODE]
where |
e[FORCE] is the system of forces acting at the coordinates,
[STF] is the system stiffness matrix,
v_[UNOﬁE] is'the column of»hodal displaceﬁents at the coor-

.dinates of the structure.
Solution of the System Equations

Since the forces acting on the system are known and the stiffness
matrix can be determined, the linear simeltaneous equations can'be
sol#ed for the diSplacementsiof the system. . Several methods are avail-

. able for-thié purpose ineluding matrix inversion, iteration, felaxatien;
and subetitution. Iﬁ this paper, the method of substitution will be
‘used as developed for banded symmetric equations by E.L. Wilson (15).
This method utilizesbthe tendency for stiffness matrices to have Fheir
non-zero elements located in a band near the main‘diagonal of the matrix.
‘This quality and the symmetrical nature of the stiffness matrix.are ex-~
ploited to achieve a significant saving in calculation time and required

computer storage.
Determination of Element Stresses

With the determination of the nodal displacements a back substitu-
tion is made into previously established relationships to find the

desired element stresses. This is accomplished as follows: ' the element
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nodal displacements are easily detérmined from the system nodal displace-
ments by a coordinate transformation. The relationships between the
element displacements and element strains outlined earlier have been
developed into a more convenient matri# form for triangular elements by
Rubenstein (11) and Clough (3). ‘Here these relationships are adapted
for use with rectangular elements,

The' displacement functions defining the linear boundary assumption
for the deformed rectangular element are as modified for the coordinate

system used in this paper,

w(ix,y) = a + ax + a + ax
Y 1 2 e "
u(x,y) = a + ax + a + ax
' 5 6 7Y 8 y
where, referring to Figure 15, '"w" and "u'" refer to the displacement of

“a'point  (x,y) within the element in the "y'" and "x" directions respec-

tively. -These functions may be expressed in matrix form as

. wa,y)
S x,y) = ku(x,y) = [A] {g}
in which
[A] =[1 x y xy 0 0 00
Lp 0 00 1 x y xy
and
o]
a =¢alsy
|72




The strains within the element can be found from the appropriate partial

derivatives of the displacement functions:

axx = ag + a8y
6yy = a4 + a,x
exy = a, + Ly + aj; + agx .

The matrix form of these equations 1is

{e)

o {s)

in which

(B] =

[eNeo N
= oo
[of o]
< M O
[eNeoNa]
[Nl
= O o
» o

The displacements in the "w' and "u" directions at the element nodal

points can be expressed in terms of {f} by the equation

W & -
In this equation«-éJd‘ represents the nodal displacement vector
d,
J&
- which-has been previously determined from the system displacements. The

matrix [C] is the result of substituting the element coordinate locations
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into the proper displacement funétion, or more directly by substitution

into [A]

(c]

[}
COOO R !
coooUg oy o
cocoortHoo
oo c>c>g ooo
HHHHOOOO
HDOUOO0OO0OOO
o000 O

loNoNoNoNoNoNe

i
o]
LL-‘

Since ﬁS} and [C] are known, it is convenient to solve for {ﬁ} by matrix

inversion. Thus

{8} = @)

which may be substituted into the matrix strain equation to yield

{ = 1 {a} = 1 e} :

Further, the relationship of stress to strain is expressed by Wang (13)

in matrix formulation as

o) -l -2y ENECE

v T

o<

and therefore

Ao} - s 1 tat {e) .

Thus the desired stresses can be determined by a seriles of matrix opera-

tions-once the element displacements have been found.



42
Analytical Idealization of the Joint

The complex nature of the reinforced concrete material and the con-
figuration of the joint require cértain assumptions in the analytical’
representation of the structure. iAs discussed in Chapter III, the struc-
ture is assumed to be a fixed-end column, the beams having been replaced
with boundary forces of shear and internal force-couples; further, the
loading is assumed to be in-plane so that the analysis is two-dimensional.
The numerous - variables which affect the actual non-linear stress-strain
relationship of concrete have been ignored and the material is assumed
to be elastic., Because of the extreme complications surrounding the
“composite-action of the steel and c§ncrete, the analytical material is
assumed to-be “homogeneous concrete with a Modulus of Elasticity of
3,000,000 pounds per square inch. It is thought that the resulting dis-
placements and stresses based on this assumption will give a general
picture of the“action of the ‘joint though the specific values may be
somewhat in error.

The idealization for each joint condition analyzed may be seen in
part A of Figures 17 through 21, In each case, the column has a cross
section 24 inches by 24 inches and is 100 inches long. The location of
the boundary forces is the only variable in the various joint configura-
tions. “Each beam of the joint is assumed to be replaced by shear forces
based on a linear shear stress distribution and moments created by
simple tension—compreséion force-couples. The values of these forces

‘were approximated from the loading conditions which might exist on a
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parking garage beam with a span of 50 feet,

A 25 by 7 element mesh was used creating a total of 416 system co-
ordinates. Subtracting from this total the 16 coordinates at each end
of the column which do not enter into the system equations due to the
aséumption of fixed column ends gives 384 system,equations which must

" be solved.



CHAPTER IV
COMPUTER PROGRAMS

Due to the large number of elements required for acéeptable accur-'
acy and the subsequently large number of simultaneous equations which
must be solved when' the finite element metp;h is employed, the operations .
described in Chapter III have been programmed for electronic computation.
The computer used; a Burroughsz—SSOO located on the campus of the
Gebrgia Institute of Technology, employs an ALGOL languageyas does the
program of Table II.

The program is limited to the use of a single element size and a
homogeneouS'materiai in the column. The maximum mesh size which can be

employed iS'é'AO‘by 15, although in this thesis a more coarse 25 by 7

mesh proved adequate.
Program Sequence for the Finite Element Analysis

The general progfam sequence is as follows: The required input of
joint geometry, material properties, and nodal forces 1s read into stor-
~age., The system'nodal points are numbered and the system coordinates
- labeled: “The dement stiffness matrix [KE] is then computed and stored.

- ‘Next, the;system coordinates are assigned for each element in the same

sequence' as-the rectangular element coordinates. This step permits the

4



COMMENT

FILr IN

FILe OUY
FILg OUT
INTEGER

INTFGFR

INTFGER

REA)

REA|

REA}

REAj ARRAY
REA] ARRAY
REA) ARRAY
REA} ARRAY
INTFGER AR
LABgL
LABrL
LABFL

LISy

LIsy
LIST

LISy

FORMAT AuUT
FORMAT oUT

FORMAT puT

FORMAT auT

FORMAT nUT
FORMAT nuT
FORMAT nUT

FORMAT nUT
S Xy

FORMAT auT

FORMAT puT
FORMAT nuT

T D!VISTON
»F9.5/,nND
puLpys nr E
1SSANS RAT,

TABLE II

COMPUTER PROGRAM FOR FINITE ELEMENT ANALYSIS

BEGIN

DETERMINATION OF STRESSES AND DISPLACEMFENTS IN RECTe =
ANGULAR ELASTIC CONTINUUM BY THE FINITE ELEMENT METHODS
cDUK (2,10)3
LINE 4(2515)3
PUNCH 0€2510) J %
T5JsKsHyNVERTDIV,NHDRZDIV»SUM,NUMBELEMENTS» 23
HZ »11 3 %
. RH.KK;N.MpRpS}NFURCEVECTINcARDS H 4
SUMSTRESS»DIFSTRESS»SN1»SN2s SNy STRESSMAX» ANGMAX» STRESSMIN
s ANGMIN,PHI2
JTLGTH, JTWIDTH,L»D}
GsToVsE>EPRIMES
STFBPLOtRO0,0%25] 3 X
"FORCECO:800) 3 %
KELEMENT,KD»KST088,018] 3 %
B,BB,PRI013,018], C[OIB.OIBJ:SS[OIS:O!SI:
UELEMENTFO88,0811,STRI[O!3»0%t) 3 %
RAY NODE[O3;40,0:15], CUORD[OIQO-OI15!0!5]:5YSTCO0RDX[0I40 0115
1»SYSTCOORDY[0840,081513
POT»SEED |
FQUSTRESS 3
L9 3
LISTL{CNVERTDIV,NHORZDIVs JTLGTHs JTWIDTH)NCARDS,NFORCEVECT,
ToEsGsV)
LIST2(NVERTDIV,NHDORZDIV,JTLGTH, JTHIDTH,NFORCEVECT»Ts»E»GaV)3
LIST3(FOR R ¢ 1 STEP § UNTIL 8 DD FOR S ¢ {1 STEP { UNTIL 8
N0 KELFMENTIR,»S1) 3 %
L7¢I,J,FNDR R ¢ { STEP { UNTIL 3 DO STRIR,»11»
STRESSMAX» ANGMAXsSTRESSMIN,ANGMIN) 3 } 3
FMT1(8F12.,5/) 3 %

FOUT2("L= ">F5,3/5"D= "»F5,3//) 3 &%

FOUT3CT3,X15"s"s13,3(X35E1245)sX792(E18,115X15F7,32X3)) 3

FOUTACTAa,%»"»X2,E16,9) 3 %

FOUTS(Xxa8»"ELEMENT STIFFNESS MATRIX"//) 3 %
FOUT6("NODALL FORCE MATRIX™//) 3 %
FOUT7("NODAL DISPLACEMENTS®//) 3 %

FOUTB("ELEMENT STRESS X=DIR, STRESS Y=DIR, SHEARSTRES
MAXIMUM STRESS ANGMAX MINIMUM STRESS ANGMIN®//) 3

FOUTOCTA,", ") X2,E18,11) 3 %

FOUT14¢x54,"PROBLEM DATA"//) 3 %
FOUT15 ("NO+JDINT DIVISIONS VERTICALLY 3"»13/2"NCs JOIN

S HORTZONTALLY =", 13/,%JOINT LENGTH = ",F9,5/,"JOINT WIDTH = =
« FORCE SYSTEMS = ",13/,"MATL THICKNESS a3 ",FS5,3,nINCHES"/,"MD
LASTICITY = ",F12, ?n"PSI"/n"SHEAR MODULUS = ",F12,2,"PSIn/,"PQ

10 = " Fa,2) 3
I
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TABLE II (Continued)
FORMAT puT © FOUT19¢//12E10,3//) 3 %

PROFEDURE BANDSOLTNCA,BaNNsMM) 3 %

% THlS PROCEDURF SOLVES SYMMETRIC LINEAR EQUATIONS OF BANDED TYPE BY THE
% MpTHOp OF ELIMINATION, THE EQUATIONS MUST BE IN THE REDUCED MATRIX

X FARM AX = Be A Ig THE COEFICIENT MATRIX (NNXNN)s NN IS THE NUMBER OF
% FQUATYDNS, MM IS THE RAND WIDTH, THE UNKNOWNS ARE FOUND ANp STORED

% BACK ¥IN B, 4
VAL E NN,MM 3 %
INTFPGER NN,MM 1 %
REA| ARRAY AL0»01,Bro) 3 %
BEGYN %
INTFGER IsJsKslsN 3 X
REA}; ARRAY clotMM] 3 %
LABrL CONTINUE,REPEAT,AGAIN,EXIT,CARYON J %
N ¢0O 3} % .
REPFAT: N e N+ 13 %
4 REDUCE N TH EQUATINN
% 1, DIVIDE RIGHT SIDE BY DIAGONAL ELEMENT
] BIN] ¢ B{N]l /7 A[N»1]1 3 X%
4 2. CHECK FDR LAST EQUATION
IF N = NN = 0 THEN GO TO AGAIN J} %
£ 3, DIVIDE N TH EQUATION BY DYAGONAL ELEMENT
} FOR K ¢ 2 STEP 1t UNTIL MM DD %X
BEGIN %
CLKY ¢ AIN,K] 3 %
ALNsK] ¢ ACN K] / AINs11 3 %
END 3 %
4 4. REDUCE REMAINING EQUATIONS
FOR L ¢ 2 STEP 1 UNTIL MM D0 %
BEGIN % :
I ¢N+ L =13 %
IF NN = 1 < 0 THEN GO TO CONTINUE 3 %
J e 0} X
FOR K ¢ L STEP 1 UNTIL MM DO %
BEGIN %
J e J st %
AllsJ] ¢ A[! J} = CILY X ACNs,K] ) %
END 3 %

BLI]1 « Brl) = CILLY x BINY 3 %
CONTYINUESEND ) GO TD REPEAT 3 %
¥  BACK SURSTITUTION 3 %
AGAYN1 NeN=1t 3§
4 1+ CHECK FOR FIRST EQUATION
IF N =0 THEN GO TO EXIT J %

% 2, CALCULATE UNKNOWN BINY § %
FOR K ¢ 2 STEP 1 UNTIL MM DO %
BEGIN ¥
LeN+K=118
IF NN = | < 0 THEN GO TO CARYON } %
_ . . BIN] « BIN) = ALN,K) x BrL1 J %
CARYON: ENDJ GO TD AGAIN 3 %

EXTrs «x
__END BANDSOLTN} X

WRYTECLINEINGID S

READ €CNUK,/,L1ST2))%

HZ ¢ 2 x CNHORZIDIV + 1) J %

7 ¢ HZ x (NVERTDIV + 1 ) 3 8%

KK ¢ Z =2xHZ ) %

_BW ¢ (NHORZDIV + 1) x“g_g_gw),x
WHI; £ TRUE PO READCCD K, /s 1, FORCET T=HZTY FLST )
‘CLOCECCAJIKSRELEASE) 3

WRITECLINE»FOUT18) ) %

WRITECLINE,FOUT15.L18T2) J %

NRITE(LINE:FOUT&) ) %

Lo



TABLE II (Continued)

"FOR T e 1 STEP 1 UNTIL Z Do

COMMENT
COMMENT
BEGIN
BEGIN
END
END
COMMENT
BEGIN
BEGIN
END
END
% COMPUTE TYP
g US, T= FLEM
g TICYITY, KS
} 4 DIRPCT STRA

BEGIN

"END

tF FORGELI) # O THEN
WRITECLINE,FOUT4, 14HZLFORCELT) ) 3 %
COMPUTFE ELEMENT DIMENSIONSS

L ¢ JTLGTH/NVERTDIVS

D ¢ JTWIDTH/NHORZDIV}
WRITECLINE,FOUT25L,D) J %

LABEL SYSTEM NODAL POINTSS

SUM ¢ 0}

FOR ey STEP 1 UNTIL NVERTDIV + t DO
FOR Jeét STEP 1 UNTIL NHORZDIV + 1 DO

NODELT,J) ¢ SUM + 1}

SUM ¢ SUM + 1}

3

5

LABEL SYSTEM COORDINATES, TWD ARRAYSS ONE FOR X AND Y3
FOR T « 1 STEP 1 UNTIL NVERTDIV + 1 DO

FOR J ¢ { STEP 1 UNTIL NHORZODIV + 1 DO

SYSTCONRDXLI1»J) € 2 x NODErI»y)}
SYSTCOORDYL1,J) ¢ SYSTCOORDX[I,J) = 1}
3 .

3 .

1CAL RECTANGULAR ELEMENT STIFFNESS, WHERE G= SHEAR MOpUL=
ENT THICKNESS, Vv = PDISSONS RATID, E = MODULUS OF ELASw

= STIFFNESS DUE TO SHEAR STRAIN» KD‘verFFNESS DUE TO
INS, :

FOR ey STEP 1 UNTIL 4 DD

FOR Jeg STEP 1 UNTIL 4 DO

KSEI,J) € (G x T x L)/¢3 x D)}

KSE2511 ¢ KSL853) ¢ KSr1,1) x(=1)3

KSE3,11 ¢ KS[4,2) ¢ KS[1,1] x ,53

KSE352) ¢ KS[A,1) ¢ KS[1,1] X (*.5)3

FOR 1¢5 STEP 1 UNTIL 8 DO

FOR Jet STEP 1 UNTIL 4 DO

KSLI»JY ¢ G x T x 253

KSE5,2) ¢ KS[5,8) ¢ KS[6,2] ¢ KS[6,4) ¢ KSU7,1] ¢ KS[7,3)
€ KS[B,1) ¢ KS[Bs3) ¢ KS[S5,1] x (=1) J }

FIR 1 ¢ .5 STEP 1 UNTIL 8 DO

FOR J ¢« 5 STEP 1 UNTIL 8 DO

KSEIsJY € (G X T x DI/(3 x L) v
KSC7,51 ¢ KS[B8,6) ¢ KS[5,5] x (=1)}
KSC6s5) ¢ KSEBsT) ¢ KS[5,5) X .55
KS[7,6) ¢ KS[B,5) ¢ KS[5,5) %X (*=,5))
FOR I ¢« 2 STEP t UNTIL 8 Dp

He Il =

FOR J « 1 STEP 1 UNTIL H DO
KSLJs17 ¢ KSLI»ul)

]

EPRIME ¢ E/(1=V#2)}

FOR I e ¢ STEP {1 UNTIL 4 DD
FOR J ¢ { STEP § UNTIL 4 DO

. KDELI,J) ¢ CEPRIME x T x D)/C(L x 3)3
KDL2,17 « KDLB,3) ¢ KDL1s1) X ,5)
KDL3,11 ¢« KDL4,2) ¢ KD[1,1) x (=1))
KDL4,1) ¢ KD£3»2] ¢ KDLi,1) %X (=,5))
FOR I ¢ 5 STEP {1 UNTIL 8 Dp
FOR J ¢ 1

STEP { UNTIL 4 DO
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TABLE II (Continued)

KDLI,J] ¢ EPRIME x T x V x 425}

KDES,3)1 ¢ KD[5s8) ¢ KD[6s1] ¢ KD{7»3) ¢ KD{7s4) ¢ KD[6s2)
¢ KD[B,11 ¢ KDIB,2) ¢ (=1) X KDI5,113

FOR I ¢ 5 STEP 1 UNTIL 8 DO

FOR J ¢ 5 STEP 1 UNTIL 8 Dno
KD{I,J) ¢ CEPRIME x L x T)/(3 x D)}
KDL6,5) ¢ KDIBs7] ¢ KD[555) x (=1)}
KD{75,5) ¢« KD[B,6) ¢ KD{5,5] x ,53
KDELTs6) ¢ KDLBsS) ¢ KD[5,5] x (=,5)3
FOR I ¢ 2 STEP 1 UNTIIL 8 DO

BEGIN
H ¢ I=1}

FOR J ¢ 1 STEP 1 UNTIL H Do

KDTJs1Y « KDt1,J13
END 3
FOR I ¢ t STEP 1 UNTIL 8 DO
FOR J ¢ 1 STEP 1 UNTIL 8 DD
KELEMENTEY5J) ¢ KS{I,J) ¢ KD[I,J33:
WRITECLINF,FOUTS) 3 %
WRITE C(LINEsFMT1,LIST3) 3 % .
X ASSIGN SYSTFM COORDINATES FOR EACH ELEMENT IN SAME SEQUENDE A
4 TYP1CAL ELEMENT COORDINATES,

FOR ! ¢ t STEP 1 UNTIL NVERTDIV DO

BEGIN
FOR J ¢« 1 STEP 1 UNTIL NHORZDIV DO
BEGIN
COORDLY»J»r1] ¢ SYSTCOORDY[1,J1S
COORDL1,J»2) ¢ SYSTCOORDY[I»J+11}
COORNDLI»J»3Y ¢ SYSTCOORDY([I+1,J1}
COORD{YsJs8] ¢ SYSTCOORDY[TI+1,J+113
COORDLTsJY»5]1 ¢ SYSTCOORDX[{I»J13
CODRDCY»Js61 ¢ SYSTCOORDX{TI»J+11)
CODRDIT»JsT7]1 ¢ SYSTCOORDX[I+1,J)}
COORDCY,J»8) ¢ SYSTCOORDX[I+1,J+1)3
END 3
END 3

} 4 DETFRMINE THE SYSTEM STIFFNESS MATRIX BY ADDING THE CONTRIBUTION
1 FROM EACH RECTANGULAR ELEMENT,
FOR I ¢ 1 STEP 1 UNTIL NVERTDIV DO %
FOR J ¢ 1 STEP 1 UNTIL NHORZDIV DO %
BPGIN %
FOR K « { STEP 1 UNTIL 8 DO %
BEGIN %
R ¢ CODRD(IsJsK] 3 %
IF RS H7Z DR R > Z=HZ THEN 60O TO SEED 3 %
FOR N ¢ 1 STEP 1 UNTIL 8 Do %
BEGIN %
S € CONRPIIsJsN] 3 X
T1F S < R THEN GO TO POT %
ELSE IF S = R THEN
BEGIN % .
H ¢« ReHZ 3 %
STFBDLH»11 ¢ STFBD{H»1] + KELEMENT{K,N] } %
END %
ELSE 1F S > R THEN
BEGIN %
H ¢ R*HZ 3 %
STFBDO[H,S="R+1) ¢ STFBDIH,S=R+1) + KELEMENTIK,N) 3 %
ENDS % :
pOTS
END 3
S$EEDS



TABLE II (Continued)

END 3
END
BANDSOLTN(STFBDsFORCEsKKsBW) 3 ¥
WRITECLINESFOUT?) 3 %
FOR I ¢ { STEP ¢ UNTIL KK DO %
BEGIN %
K ¢ 1 + HZ 3 %
NRITE(L!NE-FOUT9;K.FDRCE[IJ) I
END 3 ¥
DETFRMINE THE EILEMENT STRESS VECTORS FOR EACH ELEMENT BY MATRIX
MULTIPLICATION: ELSTRESS = PR x UELEMENTs WHERE PR IS THE MATRIX
PRONUCT SS x B x CCINVERTED)» UELEMENT 1S THE DISPLACEMENT VECTNR
FOR EACH ELEMENT; LRETA x UNODEs SS 1S THE STRESS=STRAIN MATRIX FOR
THE MATFRIALs C Is THE MATRIX WHICH RELATES NODAL DISPLACEMENTS OF
THE FLEMENTS TO THE GENERALIZED COORDINATES, B IS THE MATRIX WHICH
RELATES THE ELEMENT STRAINS TO THE GENERALIZED COURD!NATEs.
FOR I e 1 STEP 1 UNTIL 4 DO
CLIs1] € CLI+455) ¢ { )
CL252) € €[452) ¢ CU656) ¢ C[8s6) ¢ D I
C0353) ¢ BL4,3) « CL757) ¢ CLBsTY ¢ L 3
Cla454) € CL8,8) ¢« D x | 3
INVERT(8,€sSN1»LINE) 3
Rl1s6] ¢« B[2,3) « B[3,2) ¢ B[3,7) ¢ | } %
Bl1s8) ¢ B[3,4]1 ¢ L/2 3 %
Bl{2,4) ¢ B[3,8) ¢ D/2 3 %
$ST1,1) ¢ SS5[252) ¢ EPRIME J
SSE2,1Y ¢ SS[1s2) ¢ V x EPRIME 3
§SC3,3) ¢((1=V)/2)x (EPRIME) 3
MATPROD(3535858S,B,BR)
MATPROD(3,858,BB,C,PR) 3
WRITECLINF,FOUTS) 3
FOR I ¢ 1 STEP 1 UNTIL NVERTDIV DO

SR M W I 2 WM

BEGYN
FOR J ¢ 1 STEP 1 UNTIL NHORZDIV DO
BEGIN
FOR K ¢« 1 STEP 1 UNTIL 8 DD
BEGIN "
11 « COORDPIT,JsK] 3 %
TF CTI<HZ) OR (1I>Z=HZ) THEN UELEMENTIK,1] ¢ 0 %
EI.SE %
UELFMENT[K,1) ¢ FDRCELTI=HZ] J %
END 3
MATPRONDC3,851sPRSUELEMENTSSTRY } %
4 CALCULATE THE PRINCIPAL STRESSES AND THE DIRECTIONS OF THE PLANES ON
4 HHICH THEY aACT,
SUMSTRESS €(STR[1,11 + STR[2,11)/2 3 %
PIFSTRESS ¢(STRE1»1) = STRC2,11)/2 3 %
IF DIFSTRESS = 0 THEN 60 TO EQUSTRESS
SNt ¢ SUMSTRESS + SQRT(DIFSTRESS#*2 + STRI[3,11%*2) } %
SN2 ¢ SUMSTRESS = SQRT(DIFSTRESS*2 + STRI[3,11%2) } ¥
STRESSMAX ¢ SN1J STRESSMIN ¢ SN2 }
PHI2 ¢ ARCTANC((=2) x STRI[3s11)/(DIFSTRESSX2)) 3 %
IF STRr1,1) < STRI2511 AND STRL3,1)] < O THEN
PH12 ¢ PHE2 « 22/7 5 %
IF STRr1,11 < STRI2,11 AND STRL3,1] > O THEN
PHI2 ¢ PHIZ2 = 22/7 3 %
ANGMAX €(PHI2/2)x 57,2950 3 ANGMIN ¢ ANGMAX ¢ 90

EQUETRESSS IF DIFSTRESS = 0 THEN BEGIN STRESSMAX ¢ STRESSMIN
¢ STRI1,11 3 ANGMAX ¢ 0 3 ANGMIN ¢ 90 END 3
WRITECLINESFOUT3,L7)
"END} .
END}

END o
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building of the systeﬁkstiffnesé matrix by adding the contribution from
each of the rectangular elements. Since the resulting matrix is sym-
metrical and of a band form,Aonly the main diagonal and the non-zero
eiements to:the right are retained as a condensed matrix [STFBD] . The

substitution procedure is then uséd to solve the system equations
[FORCE] = [STFBD] [NODE DISPLACEMENTS] |,

fof‘the nodé'dispiacements, Rather than take\up more storage space with
another variable, the valqes of the displacements are stored in the
variable formerly occupied-by the forces [FbRCE] .

‘The stress - strainh matrix [SS] is next formed, aftef which [B] and
‘[C] are constructed aS'discussed earlier in Chapter III. The product
“of these three ﬁatrices [PR] 1is found by a standard matrix multiplica-

‘tion subroutine and stored:
C[PR]" = ([ss] [B] [c] .

‘The displacements of the‘system nodalvcoordinates are transferred to the
corresponding element coordinates resulting in an element displacement'
vectér {UELEMENT] for each of the elements.

The streés vector [STR] for the element is then determiﬁed by the

"matrix multiplication
[STR] = [PR] [UELEMENT] .

These stresses are“then employed in Mohr's equatipﬁs of plane stress to
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determine the principal stresses and their planes of action (12).

The output of the program includes a printout of the input geometry
and loading, the'eiement stiffness matrix, the nodal displécements of the
structure,and the stress vector and principal stress values for each

element.
Results of the Finite Element Analyses

A portion of the printed output for the analysis of joint condition
I can be seen in Tables III, IV, and V, Table III shows the geometry,
material properties and-applied boundary forces. With the exception of
the coordinates at the fixed ends of the column where the displacement
‘~is' zero, "the-displacements for each coordinate in the system are listed
by number as-in Table IV. The stress values for the elements are listed
horizontally one row per element as indicated by the column heédings in
Table V,

The results of the analyses can be seen more graphically in Figures
17 'through 21 where for each joint loading condition, the following are
presented: “a plot of the boundary displacement of the structure to an
exaggerated-scale, the value of the principal tensile stress and its
direction for-each element and principal tensile stress contours in the
joint.

‘The*result”most evident from these figures is that joint IV, in
‘which ‘the-beams 'are at the same elevation, has the least critical defor-

mation and stress condition. The higher stresses within this joint would



TABLE III

PROGRAM DATA PRINTOUT

PRORLEM DATA

ND,JOINT DIVISIONS yERTYCALLY = 25
ND, JOINT DIVISIONS HORYZONTALLY = 7
JOINT LENGTH = 100,40000

JOINT WI
ND, FORC
MATL THI
MORULUS
SHFAR MD
POYSSONS
NOnAL F
111,
112,
127,
143,
189,
175,
101,
103,
194, -
207
209)
223,
224, -
225,
241,
257,
273
239}
305,
Iné,
L= 84,000
D= 3,429

DTH = 24,00000

E SYSTEMS = 1

CKNESS = #*#,%«TNCHES

0F ELASTICIYY = 3000000,00PS
DULUS = 1200000,00PS]

RATID = 0,25

DRCE MATRIX

1,250000000p+03
3,500000000a+05%
1,250000000p+04
1,250000000a+021
1.2500000000+04
1,2500000004+04
1,250000000p+048
1,250000000a+04
3,500000000a+05
1,250000000p+04
1,250000000p+04
1,2500000000+04
3,500000000p+05
1,250000000a+02
1.250000000p+04
1,2500000004+04
1,250000000a+04
1,2500000008+028
1,2500000000+04
3,500000000a+05

1
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TABLE IV

PORTION OF DISPLACEMENT OUTPUT

NODAL DISPLACEMENTS

175, %1,311497310568=03
18s =84,717967629,08=04
19, =8,249611251p08=048
20y =2,171775580r58=n4
21, =3,8028281364808=04
22 =1,026857258468=04
23, 4,794520010498=p5
28, =7,920458774508=p5
25, . 4,517934144408=04
265 =1,2485225444578=04
27, 8,340347972508=pn4
28, =2,327445899n28=04
29, 1,215067194458=p3
30, =~4,151995165r68=p4
31, 1,7431117858868=03
32 -7.48185&249406-04
33, =2,651133790456=03
14, =1,220258829¢38=03
315, =1,7243142167468~p3
36 "m9,771949434600R=04
37, =7,856061151200=04
18, *B8,269886615¢08=p4
19, 1.,113449618760=04
a0, '7.815388412500-0&
41  9,562392440508=04
42 *B8,389512621,5008=p4
a3, 1,747075866738=p3
al, =9,949007766n08=04
a5, 24520945658088=p3
86, =1,248880655p70~03
47, 3,4334608380448=03
48, *1,553618061496=03
A9, =A4,060785187n0@=0n3
50, ®=2,563055146n18=03
51, =2,617876200708=p3
82, ®2,3066642772968=03
53, =1,196156430520=43
854, =2,139100332,40=03
55, 1.738828923,48=04
86, *2,048341343,7@=p3
87, 1,486794864418=03
%8, =2,041998491398=03
859, 2,702640175088=03
60, =2,175170417n78=03
81, 3.,8048072144368=93
£2y =2,806315908408-03
83, 4,8693462387684p3
64, =2,722403052p70=n3
45, *5,500358892708=p3
K65 =4,582113815560=93
4Ts =3,4992708407768=03
68, =4,321020295938=p3
69, =1,612496250438=03
70, =4,113339055728=03
Tis 1.,84817823250R=04
72, =3,910430669928=p3
73 1.94484874944R«03
74, =3,71667185R128=03
75» 3,686403198468=03
76y =3,622204835448=03
77, 5.,127170252456=03
78, =3,838157280k18=03
79, 6+285112045908=93
-
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STRESS X=pIR,

*9,48235a40¢
=6,709498+01
=2,22759%9840
2,867160301
7,823318401
1,197658402
1.,408240407
8,353150400
=6,94185a+00
=2,02457p4+00
8,689858400
1,86225840¢
1,822248401
=7.864T71a+00
2,757558400
1,788154401
3,062950401
3,361022404
1,368878+0
=2,889252400
=7.35818a+00
9,395880400
4,538198401
5,R3710m4+04
1,383138407
1.261160%0>
2,19669840
2,50746p401
1,717378409
8 ,442628409
1,993108402
3,305208,05
4,3847R82+40»
4,076328407
=9,866935401
2,33290040}
1,175778402
2,80897a,49>
5,065988 402
B,117742+402

STRESS Y=DIR,

~8,248786,0>
=3,6874084+02
=1,301968,0>
1.945708,05
5,017448,05
7.983540,02
111444828403
-8,375338,0>
=4,909898+02
~1,28727€,02
2,15115€8,02
5,362130,07
B,366508,0
140A4558403
=8,630168,02
=4,84572p402
=1,228478,05
2,308130,0>
5,60717840>
8.391720,0>
1,055018403
=8 ,680148,0>
-4 ,753158,0>
*1,278348,0>
2.,108748,0>
5.722118407
R,707898,0>
1.033078403
-8,200248,0>
.4,410728,07
=1,434878,0>
1'30117?+O?
N+44954840,
9,581278,0>
1,086466@403
-60761749#0?
=3,481148,07
"1.,315548,02
3,301828,04
2058248407

SHEARSTRESS XY

-1,820230,01
2,9839208+01
4 765648401
4,006490401
1,325278,401

=3,051090,09

=8,209998+01
2.,106530,401
1.988468+01
1,791080401
6£,064950,00
=1,614968,01

-3,726778,01

*1.,106830+401
1,386278401
1,68377p401
1,048628,01
7,738638,00

*6,328198+00

«?,234938,401

=2,024778+01

=2,312728,00

-1,730278401

~2,176248,01
5,650608400
4,928888+0¢
1,318218,09

=2,5743Te4+01

*3,772040,01

-1,035800402

=1,242268,0?

=7 ,254968,04
7.000328+40%
2,586558402

. 9,81772@4+00

=9,810218401

«2,40879@407

=3,1732184072

=3,0646318402

=], 773608402

TABLE V

PORTION OF ELEMENT STRESS OUTPUT

MAXIMUM STRESS

“9,436999501408,04
=6,089014651200401
=4,2841228,7438,00
2,0373891362198,02
5:,021581509568,02
7,997234681508,02
10151092488260403
B,877423400109,00
=6416200459930@+00
4,586303830150=01
24152925998428,02
5.367166141648,02
8,383439275808,0>
1¢084661101828+03
2,979457374668,00
1.84451599847 0,09
3.134268723700,0
2,311158512578,02
5,607903337908+02
8,397654544208,07
1405539581595@403
9.401975249208,00
4,605561667129,01
1.008692112438,02
2.,110827053248,07
5¢77592212570840>
8,704937858908,07
1,033724024720403
1,886979190448,04
1,060361318198,02
2,3959439¢9378,07
3,541173433138,0>
Se91793833389@840>
1,06058800091@,03
1,08673907089@403
3,576712837060,01
2.1986648255126,02
4,5314405980528,02
6,5722479R40208,0>
84598571039208402

ANGMAYX

1,427
=4,226
=20,725
=77,145
=88,244
87,466
*1,426
=2,297
-7,893
=88,354
88,250
87,433
B9,455
=0,917
1,917
=3,891
-87,791
89,372
88,515
88,948
0,151
2,120
5,455
=84 ,806
=33.805
89,145
88,573
2,575
10,720
17,987
17,945
*456¢350
68,525
89,578
7,529
22,962
28,493
28,141
15,148

MINIMUM STRgSS

=8,283313553600402
*3,70988920778@+02
*1,4822735337208,02
1,95025880597@401
7,781875919600,01
1,183954871298,02
1¢337552220318402
=8,380570710408402
=3,91768958530@4+02
=1,312106745078402
8,511811410108400
1,811908960268,01
1,652886892588,401
“7.978838945308+00
=B,632375410408,02
=4,851353439524+02
=1,235604807649@,02
3,330700897708401
1,361545754558+01
=3,08423211431818,00

' =B8,283743022108+00

=B,680202555400402
=0 ,760298225488402
*1,295123538968,02
1,378043399382,02
1¢207383313343+02
2.,176211505598401
2,481755291589401
=8,217200052108,02
=4,606823224239,02
=1,83771588947@,02
1,0661925553258,02
3:716376839898+407
3,051712562398,02
-9,87443736710g401
~5,886121050908,02
=4,500026193672402
=3,036982169539402
-1,176089335550402
1,575611178173+02
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be carried by-the major beam or column reinforcement. The other joints
show high tensile stresses too far aﬁay from the nﬁrmal locations of
major reinforcement to be carried by it. These stresses are of suf-
ficient magnitude to create tensile cracks in concrete and are in direc-
tions consistent with the formatioﬁ of the cracking patterns of the
model tests.

The greatest deformation and the highest generallstress pattern
occur in joint III, followed in order by joiﬁts ITI, I, V and IV. In each
joint the regions of greatest tensile stress occur near the location of
the tensile-boundary forces. The exaggerated dié?lacementS'of the nodes
at which-the large tension and compression forces are applied indicate
that“large‘aqq unrealistic stress concentrations have occurred in these

regions.



CHAPTER V
SUMMARY AND CONCLUSIONS

An investigation of a reinforced concrete beam~column joint, pre-
cipitated by observance of severe cracks in an existing structure, has
been made in two phases. The first phase involved experimental rein-
forced plaster model tests; the second, a theoretical analysis for dis-
placements and stresses by the finite element method. In each phase
the primary parameter was the location of the beams framing into the
column.

The élaster model tests indicated, and the theoretical analysis con-
firmed, that in reinforced concrete beam-column joints in which the beams
frame into the column at different elevations a much more critical con-
dition exists than that in a joint where the beams are at the same
elevation. These results indicate that special attention must be given
by the designer in detailing the reinforcement for such joints if severe

cracks are to be avoided.
Suggestions for Further Study

The plaster model technique was found to be a valuable form of
preliminary study since it provided insight into the nature of the var-

ious joint conditions with a minimum cost in time, materials, and equip-
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ment. Various reinforcement details for these joint conditions could be
investigated by this method.

Since the finite element method is such an extremely powerful tool
for continuum stress analysis, it should be extended to more sophisticated
analyses of these joint :conditions when a computer system of sufficient
speed and storage size is available. 1In particular, the effects of steel
reinforcement ‘on the stress distributions should be studied. A study of
this type would require the development of a computer program capable of

handling the composite nature of reinforced concrete.
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engineer for Bill J. Blair and Associates, Architects,
“Oklahoma City, summers of 1963 and 1964; traveled and
"studied in Western Europe on the Lloyd Warren Fellowship

" in ‘Architecture from August 1964 to August 1965; has been,
since September 1965, Assistant Professor of Architecture,
Georgla Institute of Technology, Atlanta, Georgia; had
part-time experience as architectural designer with Stevens

‘-and Wilkinson, Architects, Atlanta, Georgia, Spring, 1966,

* Member of Sigma Delta Tau at Georgia Tech; American Insti-
‘tute of Architects, Association of Collegiate Schools of
Architecture, and Chi Epsilon.





