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CHAPTER I
INTRODUCTION

The growing trend toward high-rise construction and the
more economical use of construction materials in space ffame
applications have presented today's structural engineef'with
more complicated problems for analysis of these structures.
The use of conventional methods for analysis generally re-
quires the solution of numerous simultaneous equations.
These methods are long and tedious; therefore, new and im-
proved methods are needed for analysis of these complex
structures.

In 1935 a relaxation method was introduced by Southwell
(1). His concept suggested a method for calculating stresses
in complex pin-jointed frameworks which eliminated the
necessity for solving large numbers of simul taneous equations
by using successive approximations.

When the relaxation method was first presented, the
question of convergence was encountered and the first
attempt to show convergence was unsuccessful. With the
focus of attention centered on the problem of convergence,
its close similarity in principle with the "Moment Distri-
bution Method® of Professor Hardy Cross was not immediately

recognized. Although the two methods have similar features,



most engineers seem to prefer to use the "Moment Distri-
bution Method" (1).

This study will consist of two phases. The first is
the investigation of a method for extending the relaxation
theory to obtain a solution for any type of reticulated
structure having prismatic members. The second phase is

the application of this principle to computer solutions.

1«1 The Method

The method selected in this study for the extension of
the relaxation method is the distribution of deformations
to find stresses in the members of reticulated structures.
To apply this method tb any type of reticulated structure
with prismatic members, modification of the general stiff-
ness matrices of the members must be made according to their

end restraints.

1.2 Computer Application

The advent of electronic computers has made it possible
to solve structural problems with many redundants in a very
short time. The use of computers for solutions of structural
problems is a two-part problem. First the problem must be
set up and formulated in a way to ﬁermit an electronic
computer solution. This part of the problem lies within the
structural engineer's work. The second part of the problem
requires the coding, or programming, and setting up the card

system for the actual machine operation. This generally



calls for the service of a trained.operator familiar with
the particular computer being used. This may or may not lie
within the scope of the structural engineer's work.

Toddy, electronic computers have become a part of
everyday engineering procedures, and théir usevis‘certaiﬁ to
increase in the future. Théfefore; it ié esSential for the
~modern structural engineer té have a basic understanding of
procedures used in programming for this equipment.

‘In the second phése‘of this study, a computer program
based on the above described relaxation method is devised.

A variety of reticulated structures having prismatic.members
are analyzed to show the velidity of this method for par='-

ticular solutions of structural problems.



CHAPTER II

THEORY AND METHOD

2.1 Stability and Redundancy

The basic relaxation theory will be extended for solu-
tions to any reticulated structure with prismatic members.
To do this, a modification to the stiffness matrix of the
member is made according. to the type of end. restraints:
used. This theory is valid, provided that the structure is
stable.

For the majority of structures met in practice, the
. question of whether or not they are stable, statically
determinate, or statically indeterminate can be resolved by
routine procedures (2).

Any stable truss may be viewed as an assemblage of
triangles built on one basic triangle by connecting each
joint with a pair of members. In the base triangle there
are three members and three joints. Each added joint re-
quires two members (3): hence, if

m number of members

n = number of joints
we have m - 3 (added members) = 2(n - 3) (twice the added

joints) and



m'= on - 3

() When m = 2n - 3, the structure is stable and
determinate, v

(b) Whem m is less thanbéh - 3, the structure is
.Unstable.- | o

(c) When m is greater than 2n - 3, the structure is
stable and indeterminate.

| For space structure, B

‘m=-6=3(n~4)

m=3n—6'7
One must revise the foregoing equation when the capa-
bilityvbf joint suppOrts dictates. The same rules given in

“(a), (b), and (c) apply.

2.2 BasiC‘Theory

Whén starting the relaxation'procedures, all the joints
of a structuie_are assUméd;to be fiked in all directions so
that the loads on the joints‘are carried entirely by the
vtemporary supporfs and there are no"stfesses in the members
- of the structure. The rea¢fions:ét these.temporary supports
are given the'name "residuals".. Wheﬁ1the relaxation prece~
dure‘begins, the residuals at the joints are the external
loads at the joints.

Steps of procedures: |

1. Beginning in éome iogical»order, each joint\is

freed or relaxed, and allowed to deform one at a
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time.

Stresses are introduced in the members attached
to the deformed joint.

After each relaxation, the joint is assumed to be
fixed in its new position while other joints are
relaxed.

The residuals will change at adjacent joints each
time a joint is allowed to deflect.

This procedure is continued until the residuals
are zero, or until they reach a predetermined
degree of accuracy.

As the residuals decrease, the stresses in the
members of the structure change until the members
are carrying the entire load.

The forces or stresses in the members are a
summation of the increments of force produced in
the members each time the joints are relaxed.

The deflections at each joint are the summation of
the deflections obtained each time the joint is

relaxed.

The above steps of procedure describe the relaxation

method.

To further illustrate the relaxation method, con-

sider the planer truss in Figure 1.

In Figure 1-a, the real restraints are shown by arrows

marked R1, R2, and RB' The temporary restraints or residuals

are represented by arrows marked r, and Toe These tempo-

rary restraints are assumed to be removed and then replaced
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Figure 1. Illustration of the Iterative Process



each time a joint is allowed to deflect.

'The structure is in the X-Z plane and will not deflect
in the Y direction unless loaded in that direction. dJoint A
is fixed in position. Joint B hesvno feal restraints and
will translate and rotate to a balanced condition when the
temporary<restréints are removed. Joint C has a real re-
straint in the Z direction and will translate in the X
direction and rotete about ‘its Y axis when the temporafy
restraints are removed,

In Figure 1-a, the structure ié shown with 511 re—
straints and a load of 10 Kips applied at joimt B in the 2
direction. All members are 200 inches long With &8 Ccross
sectional area of 10.59’square inches. Releasing the
~residuals at joint A would not dffect the structure because
A has real restrdlnts end may be neglected in the relaxation
process.' | |

Remov1ng the temporary restraints at joint B, joint B
w1ll deflect to a new pos1t10n B! (see Figure 1-b). This
vertical deflectlon w1ll‘produce equal compressive forces in
members 1 and 2. Joint B is assumed to be fixed in its new
position BI. | |

Moving to joinf3C and'removiﬁg the fempofary restraints,
joint C wiil defiect to the right because there will be an
unbalanced‘fdrce in the X direction. When joint C deflects
to the right, there will be a tension force produced in
meﬁber 3 and the compressiVe_force,in member 2 is reduced.

Joint C is now assumed to be fixed in its new position C!



(see Figuﬁe 1—0).‘

Returning to joint B, the force in member 1 remains the
same because joint A has real restraints in 2ll directions.
However, there has been a reduction of force in member 2.
Taking a summationvof_forces at joint B will show an un-
balanced force in the positivé X direction and the negative
Z direction. Howéver, the unbalanced Z fdrce'has been
reduced far below the JO Kips originally placedvon the Jjoint
The restraintg are again removed énd*joint B will deflect %o
some new position B" as shown in'Figure 1-d.

This procedure isvcontinued until there are no un-
balanced forces at thé_joints.‘ The three final deformations
are a summatiqn,of the déformatidns obtained each time the
joint is allowed to;felax.‘ The final membér forces/ére a
summation of the forces produced in the members each time
the joints are allowed to relax.

A complete slide rule and computer solution to this
simple pin—connected truss are presented later in this
study. - | ‘ |

In the preceding diécuSsion, a general statement of the
basic}reiaxatidn theory was presented. This was followed
by a physical déSCription of the relaxation principle. The
deformation pfoduced by an unbalanced force is a function of
the totdl resistance of the joint. |

In non~coplaner frames, ﬁsually called spacé‘frames,
members, force and moment vectbrs need to be translated from

the member system to the general system or vice~versa. To
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do this, an understanding of matrix aglgebra facilitates the

applications that are‘necéssary in structural analysis.

2.3 Matrix Algebra and Rotatiqn Matrices _

In this paper, solution of csmplex structures involves
opérations on matrices. However, the matrix operations
involved in this relaxation'methsd_arevnot complicated.

Since the members of a complex structure may be non-
coplaner, three rotation matricss are usedbto rotate and
‘translate vector quantities from the member system to the
general system (see Figure 2); o

Rotation about the Z axis through angle o is called an
Alpha rotation and is_represénted by [wa]; Similarly,"
rotation about the Y axis is a Beta rotation and is repre-
sénted by [wB];'and rotation'abOut the X axis is a Gamma
'rotation and is represented by [wyj (4). Normally two
.rotations_are all that are required to go from the member
»system to thesgeneral.system. | . |

[mw§]'= t@*]fsﬁj[wq]'

[mwg] is used'to_rqtate'VeotdrAquantities from the
general’to the member System. ’The_tranSPOSe of [mng gives
[owg ] which rotates.vector quantities from the member

system to the.general system.

2.4 MNatrices and Structural Analysis

The distribution of deformations is similar to moment

distribution. The author believes it closely resembles.
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Looking down member iJj from Jj to

i shows a y rotation

Figure 2.

[wa] =[cos a sina 0
 J-sin a cos a 0
0 S0 1

ROTATION ABOUT THE Z AXIS

[wB] = cos B 0 | —-sin B
sin B O . -cos B

ROTATION ABOUT THE Y AXIS

[w ] =]1 0 0
Y .

0 cos y sin vy

0 -sin y cos vy

- ROTATION ABOUT THE X AXIS

09" :
["o33 = [v,] [ag] [u]

ROTATION ABOUT THE X, Y, AND Z AXES

Rotates vector gquantities from the general
system to the member system.

Rotation Matrices

Ll
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"Kani Moment Distribution" (5). In moment. distribution, the
stiffnessesrof fhe members of a structure are the primary
concern, but with the distribution of deformations, the
flexibilities of the joints of the structure are used.

With this in mind, the following load-deflection rela-
tion may be given for the general structure,

Y2= a21P1 + a22P2 + o.-;. aszJ + -o: a2nPn

which, in matrix notation, stands for deflection at the n

points of loading.

- N

819 B2 77T A | | Bq] [Ty
By apy ~=- 2on | | P2 = |¥2
_ah1 8po T ann_ _Pl"l- | | 'n |
or
AP = Y ' (1)

The elements aij

 are called fléxibility influence co—
efficients and are defined:

a;j 1is the deflection of point i due ﬁoza unit load at
| point j, all other points being.asgumed unloaded (6)

The calculation of thése Qoeffioients is very lengthy
and complex énd is not used for éomputer solutions. Abetter
and less complicated approach is to solve for P's in terms
of the deflections Y. Then
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P2 = s21Y1:+ 322Y2 + coo s2nYn

Pn = Sn1Y1 + sn2Y2 + seo SnnYn

which is, in matrix notation,

819 Sqp ee= Sy | Y| | Fy

821 Sg2 cer Son| |T2f=| P2

sn1 Spo ...-snn L?q;- Pn

or
P = 8Y (2)
The elements 85 5 are thevstiffness coefficients and are
defined as follows: -
S is the load deveiopedvat point i due to a wnit
deflection at point j, all other points being
assumed fi#édJ(6). | '

Multiplying both sides of Equation (2) by A givés:'

AP = ASY - (3)
" which means B |
AS = 1
or
A=st
- (co 8)

- det S
or, more clearly stated, the inverse of the stiffness matrix

is the flexibility matrix.

2.5 Member Stiffness

Consider the member {j,k) of Figure 3 and assume that
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+Zm "'Zm
t/wm |
: K L ! J I/
o P4 A e
+Ym - (a) :
, SIGN CONVENTION
Ym Ym
!
+EAx 2" Eax GIx _ Sl
j Ky C T i Kt .
3 ~—Xm | : t Xm
(b) Zm (c)
UNIT DEFLECTION UNIT ROTATION
{ x-direction) (about x-axis)
12Elz Ym ' ) :
‘L3 B +’2E31;
.L_//_j__\K’ R
"5 : Xm | 6El
LSl e Sty
E _ 6El; -
Zm L | LZ
: (d) - {e),
UNIT DEFLECTION ) Zm ~ UNIT ROTATION
{y-direction) (about y- axis)
o Ym
6Ely |- . SEL
+—-L-2—¥* : L LZ
P { i K Xm
-/ZEI!
L3
L
7 Af) Zm (g)
m UNIT DEFLECTION UNIT ROTATION
(z-direction) (about z-axis) "

Figure 3, Meiber Stiffnesses and Sign.Convention
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this member is restrained within a structure. For each end
of the member there are six possible deformations (7).

3ince only one Jjoint is considered»at any one time in the
relaxation process, one end 6f the member will be considereds
The member stiffnesses or restraint actions for the six
pbssible deformétions, plus the restraint action of the
other end for fhose same displacements and rotations make up
the stiffness matrix. When'the joint at the k end of the
member is considered, the other end deformatibns will be
evaluated. All stiffness elements are needed‘when‘both ends
of a member are fully fixed to the end Jjoints. ILater in
this study the eight combinetions of end restraints and
their stiffnesses are presentedft

In Figure 3, the six possible end displacements are
shown and the member stiffneSseslfor the near and far ends
are shown (7). These are summarized in Table I.

The matrix shown in Table II is a 6 ﬁ 12, and is a
summary of fhe stiffness elements of a‘member fhat is fixed
to the Jjoints on‘both endsa SN represents the near end
stiffness and SF represents the faf end. When the end
cohditions are not fixed, many of the elements shown in
Table II will be zeroes. |

Under certain conditiohs5 a modification tc the stiff-
ness matrix is necessary due to shear deformation (7). When

! and SN(1S) becomes

this occurs SN(8) becomes 3
L - L
1 > GAy 12EIZ
L + L
GAZ 1281

y



10

11

12

TABLE I
MEMBER STIFFNESS MATRIX

1 2 3 4 5 6
MEa
-35 0 0 0 0 0
12EI ~6ET
0 32 0 0 0 22
L < ) L
12EI BT
0 0 —< 0 —xl 0
L L
GT
0 0 0 —rl 0 0
6ET 4EI
0 0 | ——51 0 —771 0
. e
—-6EI | 4RI
0 22 0 0 0 —735
L
EA_
"EE o 0 0 0 0
1281, ~6EI,
0 — 0 0 0 —=
| -12EI. -6ET
0 0 ——L 0 —L 0
3 2
L L
| GI
0 0 0 —El 0 0
—~6ET. -2EI
0 0 — 0 -7TJ[ 0
) L
-6EI ORT
Z Z
0 . 0 0 0 =

16



TABLE II
GENERAL STIFFNESS MATRIX

Fsw(1)
SN(8) | SW(12)
| SN(15) - SN(17)
~ sn(z2)
SN(27) SN(29)
SN(32) SN(36)
SF(1)
sR(8) | SP(12)
. SF(15) SF(17)
SP(22)
SP(27) .. SF(29)
| SF(32) . | SF(36)

2.6 End Restraints

There ére many variations in end restraints for members
making up a complex structure. The authof will present at
this time‘the éighf conditions that one is most likely to
encounter in Qomplex structures (see Figure 4).

When a member is fixed to the joint, it is fixed
against rotations and deflectionsq If it is slotted, it is
released for translations, but fixed for rotations. And
when it is pinned, it is fixed for translations, but re-

leased for rotations.



CASE I

CASE T
CASE III
CASE TV
CASE V

.CASE VI

CASE VII

CASE VIIT

NEAR_END FAR END
Fixed Fixed
4 kA
4 (a) ¥
Slotted - PFixed
'HQ- ;N
. (b) N
Fixed Slotted
13 k.
’ (c) L
Slotted Pinned
Rs - <
(a)

Pinned Slotted
j k.
.
Pinned Fixed
_%g K £
. T (£) \
Fixed Pinned

h (8)
Pinned Pinned
j k

Figure 4.

End Restraints

18
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2.7 Sample Stiffnesses

Case I was considered‘under the member stiffness and is
listed later with the summation of member stiffnesses under
vérious end conditions. |

For Case II, the member is slotted in the X, Y and Z
directions on the near end for translations, but fixed for
all rotations. On the far end, the member is fixed against
rotations and translations (see Figure 5). There are many
possible combinations of end conditions. For example, the
member could be slotted in the Z direction for translation
and fixed in the X or Y direction for translations. There-
faore, the stiffness matrix of the member must reflect the
correct conditions. The end reétraints will determine the
'modificétions thaf must be made to the member stiffness
matrix. For a computer solution, a code must be devised
“that will modify the stiffness matrix of the member according

%0 end restraints.

Far end . Near end
| o . e
4 _uy
T @ 4“ TS
4 A

CE

Figure 5. Member.Stiffnéss (Case II)
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Using any convenient elastic theory, the effect of
rotations and translations can be computed. Joint trans-
lations have no effecﬁ on the member if the member is
slotted in the directions of the translations. When the

member is fixed to the joint for joint rotation, joint
' GI
rotation about the X axis produces a torsional force —EE in

the member. Joint.rotatidon about the Qmember‘k.ﬁf axis produces.a
EI e ‘ o o
moment M& or »—%—X. Joint rotation about the member Z axis
EI_ ¢ ' '
produces & moment Mz or g Z,

Thus the elements of the stiffness matrix for the member

due to Case II are:

NEAR END - FAR END
| GI | ~ GI
\ - X - X
SN(22) = —¢ SF(22) = —
EI -BI
SN(29).= —L SP(29) = —
EI -EI
SN(36) = —* SF(36) = —¥

Al other elements in the stiffness matrii for the
given céndition are zeroes.

Using any convenient elastic theory, the stiffnesses
for the other six cases are computed using the same method
as shown in the sample calculations for Case II.

The resulting stiffnesses for all eight cases are

summarized in Table IIT. .-



TABLE IIT
SUMMARY OF MEMBER STIFFNESSES

Selected Cases “Case 1 Case 11 Case 111 Case 1V
End Fixed-Fixed Slotted-Fixed Fixed-Slotted Finned-Slotted
Restraints . ’ ‘
— i 4 4 i P

SN(1) AL o o 0

SN(8) 12E1, 0 ° 0
%]

SN(12) <6EI, 0 0 0
L2

SN(15) ' Cl2Eny o ) 0 , )
L3

SN(17) 6£1 o 0 ‘ °o 0
T .

SN(22) , 61, o oI, ar, °
L L L

SN(27) 6EL, ° 0 °
12 '

SN(29) 4El, £l Il °

, — =2 i 4

L L L

SN(32) «8L1, 0 0 0
12

5N(36) 4El, By By 0
L L L

SF(1) AL 0 ° °
L , '

SF(8) 12£1, 0 0 ’ 0
L3

sF(12) -6K1, ) 0 )
12

SF(15) 1281 [ ’ 0 ' 0
13

SFQLT) -6E1, ) 0 , o

SF(22) sty s, Gl 0
L L L

SF(27) -6E1, ' 0 0 . 0

. —

SF(29) -2E1, -Ely K1y 0

. L L L

sr(32) -8EI, S o o °
2

SF(36) 11 . 3] °

|
)
:-L:'. '



TABLE III (Continued)

Selected Cases Case V - CASE VI CASE V11 CASE VIII
End Slotted-Pinned Pinned<Fixed l’fxod-l‘lnned Pinned~Pinned
Restraints ' .
. 2 A
I"———-——-% 3; { 3 * %)————cg
SN(1) 0 . AL AL ALE
‘ L L L
SN(8) 0 121, 12£1, 0
‘ 13 13
SN(12) - 0 0 3EL, (]
| =
SN(15) o . 12, 12£1, 0
3 L3
SN(17) 0 0 -3E1, 0
Lz
SN(22) 0 0 ) 0
SN(27). 0 [ 3£l ) 0
i
SN(29) : Co : -0 . 31, ' 0
L
SN(32) 0 0 3El, 0
2
SN(36) ' 0 0 3E1, o
L
srQ1) o AE Al ﬁ‘:
: T L L
SF(8) o : 1201, 121, 0
1.5 v’
sr(12) 0 0 =3Elg 0
. Lz :
SF(15) : 0 1281, 12e1, ‘ 0
13 %
SP(LT) 0 0 «3E1, 0
2
SF(22) [ ) 0 0 0
0 0
k] )
sFQ27) - o y
( ~
a 0
. . Y
SF(29) 0 _
]
srei2) o ~3f1, o
x,!
]
0 0

SF(36) o



2.8 Code for End Restraints

It has been shown that for a given member of a structure,
there are many possible combinations of end restraints. To
compensate for this in a computer program, some system must
be devised that will produce_the proper stiffness elements
based on the end conditions of the members.

Since there are six possible displacements for each end
of a member, the code system selected for this study in-
cludes six digits for each end of the member. The six digits
are either ones or zeroes based‘én the type of connection
used to secure the members to the joints. The particulér
‘combination of end. code digits determines.the stiffness
elements that applies for both ends of the member.
| - For example, if a member is Tixed rigidly to the joints
‘on both ends, the code for each end is six zeroes. If the
member is pinned at both ends, the code for each end is four
zeroes folldwéd by two ones. Varying the.positions of the
ones and zeroes of each end code, any type of end restraints

can be represented by fhis system.

2.9 Illustrative Problem

A solution to the Planer-Truss presented earlier will
now be illustrated using the relaxation method in matrix

fornm.
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10K

A=10.59 sg.in.
L =200 inches
For All Nembers

Figure. b, Planer Truss

- dJoint A

Has real resiraints and will not deflect,

Joint B
MBR(1)  Cos = -33 = 0.5  Sin = -3:2 = 0.865
lwgd = | .5 .85 ; [wB]T_ = .5 . 865
""¢865 5 : 0865 05
_ A E PN
ST = Stiffness for pin connected members = f = 10"5928{0293{ 19
6

0 0
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[wB]T [57](w,] = [SMGS] ana  S(sMGS][a] = [P]

[sues] = [.5 .865]] 1.586 o 25 865 = 1.5 =~.865
:865 5 O O -‘.865 05 0865 95

7586 1.3Eé] = |.375E6 .65E§}

0 0 «65E6 1.12E6

o

MBR(2) Coé”= -5 Sin = .865

[w,] = [-5 .86 [wB]T:= -5 -.865]ana BT =[1.576
| |-.865 -.5 .865 -.5 0 0

[sues]=[-.5 -.865| [1.586 o] [-.5 .865] <[ .375E6 ~.65E6
865 ~.5 0 0} |-.865=.5 —~,65E6 1612Eg

Total stiffness of joint B = [TSJ] = S[SMGS]

<y

- doint C
_ 200 - 100 _ i =173.2 _
.MBR(Z) Cos = =gy 7’“5 Sin = —%535= = -.865

[smgs]=| .5 .865/|1.586 of}|.5 -.865| =| .375E6 -.65E6
.865 .5 |0 of .865 .5 | |-.6586 1.12E6
MBR(3)  Cos '%99 = 1 Sin = 0 [87] = [1.586 O
| 0 0

[sMGs] = [1.0 O j°5E6, ollh.0 -0} = [1.58E6 ©
\ -0 1.0lo oflo 1.0l o 0

(7s3] =[ .37586 ~.6586] +[1.586 0= [1.87586 -.65EG
-.65E6  1.12E6] |0 0| |-.65E6 1.12E6

il

O



at joint (C) b, =0, o« @ [759] = [1.875E6]

z
[Flex] = inverse of joint stiffness

Joint (B)

[Flex] = [1.322 x 107° | 0
\ 0 446 x 10~°

Joint (C)
[Flex] = [.534 x 10_6]

First Cycle Relaxation

Joint (B)

1.322 x 1070 of o = [0
0 .446 x 1078 -10,000.0 | =-0446

Forces in the members (PM) = 0 initially

- MBR(1) [.76E6 1.3E61]]0 | = |-5800] = [PNCR]
0 0] |-.00446 0

Force in MBR(2) same a&s MRB(1) [PM] = [PM] + [PNCR]

Joint (C)

I:(DB:IT [PM] = —05 “'0865 "5800 o= +2900 = PX
] .865 -5 o | |-s000] |2,

b, =0

>
It

[Flex][?xj = [.534 i 10‘5][2900]‘= [+.00155]



Forces.ig'the members (PM)

i

MBR(2) [PNCR] = {E75E6 -1°3E%}

.00155 1162.0
0 0

o 0
[PM] = [PM] ;'tPNCR] = [~5800] + [1162]:= [4638]
MBR(3) [PNCR] = [1.5E6][.00155] = [2325].

[em] = [Pm] + [PNCR] = [2325]

Secondeycle

Joint (B)

[UBF] P. = 2900 - 2319 = 581%

#

X

Py

il

500 — 10000 + 4020 = -980#

- [1.322 x 107° G][ 581.0 = .000768] [aZ
0 .466 x 107°[|-980.0  -.000437| | a,

Forces in the members

WBR(1) [PNCR] = [-75E6 1.3E6|[ .000768] = [+576.0
- o 0 ||.000437] ~ |-570.0

[PM] = [PM] + [PNCR] = [~5800]

—_.7586 1.3E6 [ .000768] [-576.0
| o o |{~.000437| *|~570.0

B I

MBR(2) [PNCR]

["114600]

[Pu] = [PW] + [PNOR] = [-4638] + [~1146] = [~5784]



Joint (C) B . |
[UBF] =| .5 .865|[-5784]  [1.0 o] [2325
’ | _ S e : = [567]
| -.865 .5 0 0 1.0{] ©
by = [.534 x 10707 [567] = [.000303] |

Forces in the members

WBR(2) [BNCR] = [.7586 -1.386][.000303]
. o, - = [227]

[PM] =v[PM] + [PNCR] = [-5784] + [227] = [-5557]

MBR(3) [PNGR] = [1.586] [.000303] = [458]
[em] = [PMJ.+ [PNCR] = [2325] + [458] = [2783]

Third Cycle

~Joint (B)

[UBF] P, = 2900 - 2778 = 122%

Py

H

~10000 + 5000 + 4820 = -180%

1.322 x 1070 O T Ty .000163
o .446 x 1078 |-180 | |-.000081

PM(1) = PM(2) = -5800%
Joint (C)

[ueF] = [ .5 .865][-5800 1.0. 0
~.865 .5 0 0 1.0

a, = [534 x 107%] [117] = [0.000062]

28

2783
[ } = [117.0]



Forces in the membefs'gPMQ

[PM(2)] = [-5800] + |.75E6 1.3E6 -000062 = [57447
' 1 o ofl o
[PM(3)] = [2783] + [1.586] [62 x 10751 = [2876]

Since MBR(3) is the critical member and the force in
MBR(3) is within one per cenf of actual force, the relax-

ation'prOCess'ends at three cycles.

Number of cycles = 3

Forces in the members
MBR(1) = ~58007

~5784% % _s5800% .
MBR(3) = 2876 ¥ 29007

MBR(2)

Joint Deflections

Joint - Dy ' Ay _ by,
A 0.0 0.0 0.0
B 0.00093 0.0 -0.00498

C 0.001915 0.0 - 0.0

Later in this study a computer solution.is}presented

and the results compared with this solution.



CHAPTER III

COMPUTER APPLICATICN

3.1 Matrix Formulation for Computer Application

The stiffnessvof individual mémbers entering a joint
will vary according to the types of connections used to
secure them to the joint. For simpiicity, consider joint J
in Figure 7 with three members entering the joint‘in a

rigid condition.

P
J 1 / K L M
2
B
N ‘ 0 P Q

 PFigure 7. -Illustration ofiJoint Stiffness

NOW'let_[SM]'repreSént an individual member stiffness

" matrix in the member system.

30



Then : ,
- = T = .. 1 7]
LSM]_E‘;K] &0 0 0 0 0
m m
0 Jd Py 0 0 JJKPZ
m 10
0 0 JJKPZ 0 Jal“py 0
m
0 0 0 ijmx 0
m m
0 0 JJ'Kmy 0 JJKm;Y
m m
0 JijZ 0 0 0 ijmz
For rotation
[m -J [w oy Jw,]
Let
A = Cos a
- B = Sin «
| C = Cos B
D = Sin B
E = Cos v.
P = Sin‘y
Then'
m m . O m T
[w] S CSDRC B I i1 I o(4) w(T)
' w(4) w(5) w(6) ’ Cw(5)  w(8)
w(7) w(8) w(9) w(6) w(9)




tod
AW]

" where

w(1) = Ax3B

w(2) =B xC

w(3) =D

w(4) = (-BxE-AxDxF)
o(5) =AXE-BxDxF
'w(S) =CxE

w(7) = B x F-AxDxE

1w(8)‘= (=A x P -B x D.x‘E)
w(9) =CxF

and

6 x 6
- represent the rbtationvmatrix fdr-rotation of vectors from

the member system to the general system. And

F - | o
| 0 | -mwm
6 x 6

represents the rotation matrix for rotation of vectors in

the member syStem. Therefore,.

[su] [®™] = [SMMS] = the stiffness of the members in
| .the member system.
T : .
And - [SMMS] [me], = [SMGS] = the stiffness of the member in

- the general system.
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Let
[8JG] = Total stiffness of the joint in the general
system.»kAnd'the total stiffness of joint J in
- Pigure 7T is the,totaldstiffness,offall members
entering the joint.
[536] = [sMGS,] + [SMGS,] + [SMGS3]
Let | o

Siomes]™ = [Flex ] = [536]7"
That is, the inverse of‘the joint stiffness will give the
flexibility. | | | ‘
Let PMm’l;k'=;forCe”in,the“mémbers
and 7
Pj’k‘=_externaiuforqe_atljoinﬁ~J{
Taking‘the’summétion of forces ul joint J will give the
unbalanced forces at the joint. Or
S(Le]F L)) *i[Pj;k] = [UBF5]
where ‘ o .
'[UBFJJ,;_unbalancedgforéesion the joint under
o | _considefafioﬁI
Multiplying the unbalanced force$ by the flexibility
gives the deflections of the joint. That is,
[UBF;] [Flex;] = [DJ ]
where '
D35 ] = joint}defiectionsz
then ’
[swis] [ps; . = [P
, .k :

where

m,l;k]
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[Pmm,l5k] = member force increments on the end
' entering joint J
and | |
[DJj,kj; o= total joint :,defle,c'._tiOns

[PM. - ] = final forces:in the membefs.

3.2 Summary of Matrices

Let:

[Py ) = A o [Pjskg"v =[]
Py | P,
Pz P,
VMX : 1 Yx
5l iy |
;Mz_ _Mz;
- fueeg) -] s 35,3 =[x
Py ij
Py AZj
Mx 0 4
M GYJ
_M{ Lezl
: Where: o

. PM = internal forces in the members; m is the member
-number;fl e_J:Of‘Z, indicating small or large

numbered end of‘member;_k varies from 1_tQ 6 where
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1, 2 and 3 are X, ¥ and z forces and 4, 5 and 6
are x, y and z moments.
P = jbint eiternal loadings, J is. .the joint number and
k indicates forces and moments.
UBF = unbalanced forces on the joint.
Dd = defiection}at a - joint in the general system; J is
the joint number; and k varies from 1 to 6, where
1, 2 and 3 are deflections in the x, y and z
directions, and 4, 5 and 6 are rotations of the

joint about the x, y and z axes.

3.3 General Procedures

The following is a bfief déscriptiqn of the computer
program. - | |

Taking advantage 6f,the high speed and large memory
capacity of the IBM 7040 computer, the computer program is
written in Fortran IV (8). There are many advantages in the
use oleortran IV, but the one most advantageous to the.
.relaxation process is‘the use of-subroutines which can be
' ,¢alled ét any poiﬁt in the main program. This will keép the:
main program short-andbeliminates many complications.

- This program is divided into two major parts. In the
first part, all matrices required‘for the second part of the
program are computed and recofded on magnetic tape. In the
second part of the program; forces or loads aré read into
the progfam and.the iterative process takes place.

In the beginning of the program the desired accuracy is
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placed in memary; The computér will éontinue fhe iterative
- process until that accuracy is reached. This ends the
iterative process.

The results are either punched or written out. These

regults include the forces in all the members for both ends,

the deflections and rotations of all the joints, the un-
balanced forces at all joints which allow the programmer
to easily assay the results. Finally, the reactions (real
restraints) are recorded.

In the following pages the techﬁique and sampie calcu~
lations for each step in the computer solution are given.
A flow chart of‘the computer pfogram is shown in‘the 

AvvendiXe

3.4 The Technique

Sfeg I — For éach member entefing a joint, the inter-
related position of the member‘to the rest of the structure
is reiated by joint cartesian co-—-ordi_natés° |

Step II - The general.rotation,matrix for the member
is computed, and this is‘shown'under Rotatidn Matrix [W]
in Table IV,

‘Step III — The transpose of the rotation matrix is
then compubted and is shbwn_under_Rotation Traﬁspose Matrix
[WP] in Table IV.

Step IV — From member properties read intc memory, the

stiffness matrix for the member is computed in the sHiff



RNOTATION
3
-0.65466180F
~0.49996735F
0.56696610F
0.
0.
0.

ROTATION

: 3
~0.65466180F
0.37793627F
‘0.65466182F
0. :
0.
0.

. STIFFNESS

: 3
. 0.20124304F
e
O
0.
0. E
Ne '

-TABLE IV

SAMPLE MATRICES (COMPUTER,SQLUTION)

MATRIX W -

00

00 -0.86604425€ 00

0.37793627E

00

00 -0,32730953F 00

TRANSPOSE

0.
0.
Ne

MATRI X

00 -0.49996735€ 00
00 -0.86604425E 00

00

MATRIX

07

MYAB MATRIX

3

~Ds13174613F

~04 L0741744E
0.2209856 TE
0+
0.188£9798E
0.82398096F

MPY AR’
3
 0.87555779€
-0.50421920F
~0.84578682F
~0.89671134E
~0.16611777E

0.62206525€

o7
04

05

07
05

MATRTX

06
06
06
06
07
c5

0.
Q.
0.
0.

SM

0.
0.21484892E
O. :
Oe

0.

=0.16480696E

SMMS

0.76057043¢
~0.18560686TF
=0.12757503¢

0.
~0.10893534F

" 0.14273012€.

SMGS

~0,50421919¢
0.29323423F
0,48827275E
0.62556427E
0.89671133E
0.10789282¢€

JOINT STIFFNESS

. ’ 3 . .
0.17532640FE 07 - O.

0.

0.

0. . ,
-0,34302442E 07
-0.62412109F 01

FLEX MATRIX
1
0.5778334RE=06

0.

0.

-0. .
0.3817403H4E~08

0.70130212€-13

0.,17531180F

~0.49335938E .

0.34298981E
-0,
-0,

0.

0,57788137E~
0.10922645E~

0.
0.

04

06

06
04
05

o1
06

06
06
06
06
o1}

06

07
02
o7

06
19

0.65466182€E
0.755921§9E
0.
0.
0.

WY

0. 5669661 0E
~0.32730953E

0.75592189E

0.

0.

0.

. 0.

0.
0.38976876F
Q. )
'0.33282057¢
0.

0.13174614E
=0.
04294634 74E

0.
0.25158635E
0. '

~0.B84578682E
0.48827275€
0.884T6373F

~0.12578496F

~0,21788491E
0.

0.
-0.49328125¢

0.26542593F

0.12606250E
0.
" 6.

0.

0,10920964€E~

oo

00

00
00
no

05

o7

07
05

o7

06
06
06
07
a7

02
07
D3

10

0,37675294E-06
-0.38176819€6-08 -0,16362683F-12

0.
0.

0o

0.

0.
-0.65466180€
~0,49996735€

0.56696610E

0e

0.

N
-0.65466180E

0.37793627€

0.65466182E

0.
0.

0. _
0.39279709€
0.

0.

0.
-0.93439957E
~2.16639941E
-0e425714925E
~0.16945076E

 0.95153410F

~0,89671133€
0,62556426E
-0.12578496E
0.90131556E
0.14362767€
0,71760199€

Q.
0.34298981E
0,12606250E
0.51918264F
~0. - .

-0.

-0.

~0.38176819E~
~0,16363807E~

00
00
00

00
00
090

cs

05 .

o7
05
09
07

06
06
07
03
09
07

o7

03’

09

08
12

0.

0.

0.

0.37793627E
-0.86604425E
-0432730953¢€

0.

0.

0.
~0.49996735E
-0.86604425E

0.

0.
0.
0.33282057€

0.33892366E
0.

~“0e .
0.53942887C

~0428823734F (

0.14845226F
-0,29352289¢
~0,54932064F

-0.16611777F
0. 896 TL134E
~0.21788491F
0.14362767T¢
0.25600739EF
~0.41427163E

-0.3430244 26

-0
0.

-0.
0.51922982€
0.41525000€

0.
0.

0,19513253E-08 -0, .
0.19511487E-08
-0.,27285547F-13

0.
-0.

00
00
00

00
00

07

09

07
06
07
09
09
071

07

09
03

0.38174038E-08

37

0.

0.

0.’
0.65466182E
0.
0.75592189E

00

00’

0.

0,

a, '

0.56696610F

~0.32730953E
0.75592189E

00
00
00

0.
-0.16480696E

Q.

0.

0.

0.16732910¢

06

o]

0.
~0.12458119E
Qe
0.25714926E
0,
0.12686569F

06

05

o8

05
06

0.62286525¢F
0.10789282¢F
0.
0.71760199E
-0.41427163€
0.96068898¢E

07
o1
07

~0.5h2402344F

-0,
0.

-0.
0.41512500F
0.28820727€

01

03
08

0.70127189F-13

© 0.

0.

-0. -
~0.27277213€E~-13
0.34697251€E-07
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subroutine. This is seen in Tabié IV underbstiffness Matrix
SH. | |

Step V. — Multlplylng the stiffness matrix by the ro-
tation matrix glves the stlffness of the member in the
member system‘and is shown in Table IV under MYAB Matrix
SMHMS . | :

Step VI — Multiplying the results obtained in Step V
by the transpose matrix gives the stiffnsss of the member in
the general sysfem and is shown in Table IV under MPYAB
- Matrix SMGS. .

Step ViI — The firsf sii steps are repeated for .each
member entering the joint and then the SMGS's are summed up
for the joint which is the total stiffness of the Jjoint and
is shown in Table IV under Joint Stiffness.

‘Step VIII — The»inverse’of the joint stiffness matrix
is the fleXibility of the joinf and is shown under Flex
Matrix of Table IV. | |

bThe above‘steps are repeated for each joint of the
structure and all infofmation ﬁeeded for the iterative
process in the second part of the progfam is then recorded
on magnetié tape. h

A restatement of the reiaxation process .is.not neces- -
sary;ai this”tims,“butxa”cOmplbte'floW‘chart~is given in the

Appendix.

3.5 Load Conditions

The ealoulétion of displacements in a structure by
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meens of‘matrix equations requires that the structure be
subjected to loads.acting only at the joints. 1In general,
the actuagl loads on a structure‘dobnot meet this requirement
Instead, the loads may be divided into two types: loads
acting on the joints, and loads acting on the members.

Loads écting on the members require special treatment,
FPirst, an equivalent joiht lbad may be coﬁputed from the
‘loads}acting Qﬁ’the mémbers. Second, all_poihts.where con-
centrated loads are acting on‘fhe members may be treated as
~additional joints. ‘Finally, the end reactions (moments-and
shears) of éll loaded members may be.computed and applied as
member forces in the member system. The type of load cdn— 
diﬁion will dictate‘which of the above methods to_uée in

any given condition. -



CHAPTER IV
TEST PROBLEMS AND COMPUTED SOLUTIONS

The computer program was used to solve several
structures,‘starting with the planer truss présented earlier
in this sfudy and‘progressing,ﬁo;more complex structures.

A brief‘description of each test solution follows.

A complete solution yields the:siX components of force
in each end of all members in a structure, fhe six joint
deformations, and the unbalanced forces at each interior
joint.'bThe latter allows the programmer to. check the solu-~
tion adéuracy."Finally, the restraints or_reactidns are:
found.

In some of these test problems, the unbalanced forces
at interior joints are'notlincluded'because of the lengthy

solutions.

4.1 Test Problem One — Planer Truss

A computer soluthn to the planer truss is presented S0
the results may be compared w1th the slide rule solution
presented earlier in this study. Results show that the two
sOlﬁtions\doanot»varyimore.than‘O.S per cent. The slide
rule solution is for thrée cycles versus seven>cy¢les for

the computer’solufion. This shows that the rate of conver-

40 .
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gence is very rapid in the early cycles and tapers off to

small convergence in later cycles.

4.2 Test Problem Two — BSmall Space Frames

Before going to structural systems of a more complex
nature, severai tests were made on a tripod with both rigid
and pin-connected joinfs. The results were checked and
fouhd'td be acduraté, Other variations of the pyramid shape
were solved with equal success. It was found that the in-
creagse from a 6-member tripod to a 9-member space frame‘had.

no bearing on the rate of convergence.

4.3 Testhroblem Three — Truss (Pin~Connected Joints)

. This problem and its solution aie presented fdf,two
reasons. First, it will show the results df a coplaner
structure, and the results may be compared with a knoWn
‘ SOLution_(9). The program solves statically indeterminate
as well as determinate. coplaner Structures‘withpin—connected
joints, rigid'connected joints, or é combination of joint
conditions. The solution to this internally indeterminate
truss was found to be identical to the solution found in the

above reference.

4.4 Test Problem Four — Truss (Rigid Connected Joints)

The three examples given in 4.1, 4.2, and 4.3 involve
only’axial‘forces in the members. This example illustrates

the capability of the program for solving secondary forces
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as well as primary forces. Again the results checked with
a known solution (9).

It was found that the rate of convergenée for this
copianer structure was slow comparedvto the structure given
.in 4.3, Sihce the structuie is symmetrical and has a
symmetriéalvload éondition, a teét was made using one half
of. the structure to find the stresses in the members. The
only requiréments for this type of operation are proper
restraints wherevthe‘structure ié cut and an equivalent load
condition. |

A cofrect solution was.obtained'using one half of the
structure, and.the_cdmputer time was cut to 6ne third of the
originai;time required..:This‘methdd is uséd-Successfully in

Example Problem 4.5.

4.5 Test Problem Five -~ Dome (Rigid Connected Joints)

This problem demonstrates the versatility of this
program for solving different types of structures. Taking
full advantége of symmetry, one half of the structure with
a uniform load is analyzed. Thé rate of convergehée for
this type of structure is very rapid.

Forka check on the accuiacy of the solution; a compari-
son was made with a solution dbtained.from a'Fran solution
at the;Engineering Firm of Orr, Bass»and Associates. The

results were found to accurate and complete.
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4.6 Test Problem Six — Space Frame (Rigid Connected Joints)

This problem consists of one bent of a multi-story
frame. It was found that the rate of convergence for this
type of structure is very rapid in the early iterative
‘process. HQweyér, to get within five per cent accurécy
requires extended computér time. For example, two tesf
runs of 20 minutes énd 2% hours were made. It was foﬁnd
that the forces in the members after 20 minutes were within
200 pounds of the forces obfained ffom a 2% hour computer
run. | |
| The solution to this problem was compared with a stress
solution obtainéd from Mr. Hendren of the Department of
Afchitecture, Oklahdma StatevUniversity. The comparison

~shows similar results.

4.7 Test Problem Seven — Space Frame (Pin—Connected.Joihts)

Referring to Figure‘14, this structure is similar to a
Unistrut frame and to other patented diagridé.

This solution islpresented to demonsfraie thecapability‘
‘of thié program to solve large complei structures. From the
results obtained, the number of joints in a structure has
some effect on the cycle tiﬁe, but the controlling factor is
‘the number of members in the structure. If the number of
members are doubled, the iteration time is doubled.
| The reactions for this solution do not equal the applied

load. This is due to the degree of accuracy that was
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predetermined. A smaller aceuracy figure would produce

closer results.

4.8 Computer Solutions

On the following pages, computer solutions are pres
sentéd for each of the test problems selected for this study.
They are listed under Figures 8, 9, 10, 11, 12, 13, and 14.
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-
FLANER TRUSS
Non-Rigid Joints
PROPERTIES OF MEMBERS
Ax = 10,39 sq, in. for all members
Fe20x105 G = 12 x 10%
FORCES IN THE MEMBERS
CM.ONN P(X} PiY) PLZ) MEX) MY) MLz}
11 -5773.55 0.00 0400 0.00 0.00 . 0.00
1 2 -5773,55 | 0,00 0.00 0.00 0.00 ; 0.00
2 1 ~5773.47 0.00 . 0.00 0.00 0.00 - . 0.00
2 3 517347 0.00 © 0.00 0.00 0.00 0.00
3 2 2886, 80 0.00 0,00 0.00 2,00 0.60
3.3 28686.80 0.00 - 0.00 0.00 2.00 ~ 0.00
JOINT DEFLECTIONS
JOINT DEF(X) . DEF(Y) DEF (2} ROT{X) ROT{Y) ROT(Z)
1 0.00093905 0.00000000 -0.00487960  0.00000000 O.00000000 0,00000000
2 ~0.000000C0 0,00000000 0.00000000 ' 0.00000000 0.00000000 0.00000000
3 0.00187820 0.00000000 0.00000000 0.00000000 0.0D030000 - 0.00000000
UNBALANCED FORCES AND MOMENTS ON INTERIOR JOINTS
JOINT PUX) PY) P(L) MEX) MUY MEZ)
1 -0.04 -0.00 0.06 -0.00 -0.00 -0.00
FORCES AND MOMENTS AT REACTIONS .
JOINT PX) PLY) PLZ) MIX) HLY) Mz
2 0.04 -0.00 5000.00 -0,00 0,00 ~0.00
-0.00 4999,94 -0.00 ~0.00 ~0.00

3 -0.00

Figure 8. Computer Soluti'obn of a Planer Truss



STRUCTURES  HaS NON-RIGID JOINTS

PROPERTIES OF MEMBERS
A, = 10,59 sq. in, for all members

£ =29 x 10° G .12 x 10°

LENGTIH OF MEMBERS
MBR 69 ’ L = 282,8 tnches

All other MBRS L =200,0 tnches

NCYCLS

8

FORCES IN THE MEMBERS

M AN PIX) PLY) P2}
11 ~1987.67 0.00 0.00
L2 -3987.67 0400 0.00
2.1 -3083.79 . 0.00 0.00
z 3 ~3083.79 0.00° 0.00
11 -3987.18 0,00 '0.00
3 4 -3987, 14 0.00 0.00

S 41 ~3083.,64 10400 0.00

4 5 ~3083.64 6.00° 0.00

s 2 1541,91 0,00 0.00
5 3 1541.91 0,03 0,00"

6 3 1542,28 . 0,00 0400

6 4 1542.28 . 0400 0.00

7 4 1541484 : 0.00 0.00

T 1541484 - 0.00. 0.00

a2 1541, 84 Q.00 0.00

45 1541, 44 0.00 0.00

9 2 638,24 0.00 0.00

9 4 638,28 0400 0400

JOINT OEFLFCTIONS

SOINT : DEF{X) OFF(Y} DEF(2)
1 0,00000673 0,00040823 -0.00396253
2 0.00000000 0.00000000 ' 0, 60000000
3 «0.00098930 0,00100320 0, 00000000
4 0,00001405 0.00081650 (. 00000000

5.7 0,0010031% ~0.,00018465 0.00000000

M{X}

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 -
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.00
0.00

ROT(X}
0.00000000
0.,00000000
0.00000000
0410000000
0,00000000

U&BALANCED FORCES AND MOMENTS ON {MTERIOR JOINTS

JOINT PiX} PiYH
1 -0.32 -0.l16

P2}
0.02

FORCES -AND MOMENTS AT REACTIONS

JOINT PiX} PLY)
2 0.69 0.61°
3 -0.37 0.00
4 © =0400 -0.45
5 -0.00 ~0.00

P(L}

2819.67
218054
2819.23
2180443

Pigure 9. Computer Solution

M{X}
-0.00

CMIX)

-0.00
-0.00
-0.00
-0.00

of a Small Space Frame

MLY)

0.00
J.00
0.00
0.00
0.00
9.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
J.00
3400
0.00
0.00
0,00

ROT (Y}
0.00000000
0.00000000
0.,00000000
0.00000000
0.00000000

MY}
~0.G0

MLiY)

-0,00
-0.00
-0.00
~0.00

M(2)

0.00
0.00
0.00
0.00
0,00
0,00 -
0.00
0.00
0.00
0,00
0,00
0.00
0.00
2.00
0.00
0.00
0.00
0.00

RATLZ)
4.00000000
0.00000000
0.00000000
0-06000000
0.00000000

M(2)
-0.00

M{Z})

-0.00
-0.00
-0.00
-0.00
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TRUSS HAS NON-RIGID JOINTS 0o e 2 16 130G
PROPERTIES OF MEMBERS
= = 10" 7 s 9 o
Ax = 3,0 5q. in, for all members
T -29x 105 G =~ 12 x 10° [c a D s ol 7
{50k 20K
FORCES IN THE MEMBERS { 3 @ 10'=30
T
M NN PUX) PUYY PL2) MIX) HIY) M(Z)
1 1 -20132.85 0.00 0.00 0.00 0.00 '0.00
1 2 -20132.85 0.00 0.00 0.00 0,00 0.00
2.2 -38702.09 0.00 0.00 0.00 0.00 0.00
23 -38702,09 0.00 0.00 0.00 0.00 0.00
3 3 ~14097.93 0.00 0.00 0.00 0.00 0.00
3 .4 -14097.93 0.00 0.00 0.00 0.00 0.00
4 5 19861.46 0.00 0,00 0.00 0,00 0,00
4 .8 19861446 0.00 0.00 0.00 .00 0.00
5 5 31292.94 0.00 0,00 0400 0.00 0,00
5 6 31292.9 0.00 0,00 0.00 0.00 0.00
6 6 15900,19 0,00 0.00 0.00 0400 0,00
6 7 15900.19 0.00 0.00 0.00 0.00 0.00
T 1 -20133.59 0,00 0.00 0:00 0.00 0400
7 8 -20133.59 0.00 0.00 0.00 0.00 0.00
8 2 21162, 82 0.00 0,00 0.00 0.00 0.00
8 5  21162.82 0.00 0,00 0.00 0.00 0.00
9 3 7197.88 0.00 0,00 0.00 0.00 0.00
9 & 7197.88 0.00 0.00 0.00 4 0400 0.00
10 & =14097,93 0.00 0.00 0.00 0.00 0.00
10 7 - ~14097.93 0.00 0.00 0.00 0.00 0.00
i1 28473.71 0.00 0,00 0.00 0.00 0.00
1L 5 28473.71 0,00 0,00 0.00 0400 0.00
12 2 -1832.45 0,00 0,00 0.00 0.00 0.00
12 6  =1832.45 0.00 0.00 0.00 0.00 0,00
13 3 ~224B6.27 0,00 0,00 0,00 0.00 0.00
13 1 -22486.27 0.00 0.00 0,00 0.00 0.00
14 2. =-28094.80 0.00 0.00 0,00 0.00 0.00
14 8 -28094.80 0,00 0.00 0.00 0.00 0.00
15 3 12308.22 0.00 0.00 0,00 0.00 0.00
15 5 12308.22. 0.00 0.00 0.00 0.00 0.00
16 4 19937.38 0.00 0,00 0.00 .00 0.00
6. 6 19937.38 0.00 0.00 0.00 0.00 - 0.00
JOINT DEFLECTIONS
JOINT OEF(X) DEF(Y) DEF(2) ROT{X) ROTLY) ROT(Z)
1 0.09642466 0.00000000 -0.02684480 0400000000 0,00030000 0.00000000
2 0.06958084 0.00000000 ~0.14450031 0.00000000 0.00000000 0.00000000
3 0.01797802 0.00000000 -0.13139154¢ 0.00000000 0.00000000 0.,00000000
4 -0.00081922 0.00000000 -0.01879723 0.00000000 0500000000 0.00000000
5 0402648196 0.00000000 -0.17271743 0.00000000 0.00030000 0.00000000
6 . 0.06820588 0,00000000 ~0,14098872 0.00000000 0.00000000 0.00000000
7 0.08940615 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
-8 0.00000000 0,00000000 0,00000000 0.00000000 0.00000000 0.00000000
UNBALANCED FORCES AND MOMENTS ON INTERIOR JOINTS .
GINT PUX) 113 MIX) MEY) Miz)
1 ~1.11 -0.00 0.36 ~0.00 ~0.00 -0.00
2 ~1.04 ~0.00 1,05 -0.00 . ~0.00 - -0.00
3 ~0.75 -0.00 D.91 ~0.00 © ~0.00 -0,00
4 -0:07 ~0.00 ~0,07 ~0.00 -0.00 -0.,00
5 -0.7% -0.00 0.00 ~0.00 -D.00 -0.00
6 ~0.86 ~0.00 0.00 -0.00 -0.00 -0.00
FORCES AND MOMENTS AT REACTIONS
JOINT PLX) [117] PLz) MiXD M) M2y
7 -0.00 -0.00  29998.12 -0.00 -0.00 ~0.00
8 4.56 . -0.00  39999.62 =000 -0.00

Figure 10.

-0.00

Computer Solution of a Truss
With Non-Rigid Joints

47



@ S ® I @ 12 10’ '
i \
31 7, 13 i8 16 20 14 21 17 19 5 B
D v |® s ® s 1@ o 9D 4 O 2 \@_X
by ofoy
/Y . 10K |
6 @25 = 150

TRUSS HAS RIGID JOINTS

PROPERTIES OF MEMBERS

MBRS 1 A MERS 1, A
1,2,3,4 747.8 26,34 13,14,15 112,86 24.33
5.6 1074,0 50,22 16,17 70.62 12.20
7.8 2611.5 49,45 18,19 " 802,80 29,28
9,10,11,12 2385.4 43,33 20,21 858,00 32.22
E=-30x10% v Gle 12 x 108

FORCES IN THE MEMBERS

M - NN PEXY PLY} P{Z) M{X) MLY) M(2)
B § 2 4024,80 . =0.00 ~-7.87 0.00 -1076.70 0.00
1 11 4024,80 -0.00 7.87 0.00 1285.26 0.00
2 1 4029.64 ~0.00 ~7.88 0.00 -1077.94 . 0.00
2 12 4029. 64 +0.00 7.88 . 0.00 . 1284.95 0.00
3 2 4027.82 -0.00 -5.16 -0.00 ~539.28 ~0.00
3 5 4027.82 ~0.00 5.16 -0.00 1008.48 0.00
4 1 4031.42 0.00 ~5.17 -0.00 . <-540.74 -0.00
4 9 4031.42 0.00 5.17 -0.00 1009.43 0.00
5 5 12012.91 0.00 81.77 -0.00 8537.70° ~0.00
5 7 12012.91 0.00 -81.77 =-0.00 ~15992.13 -0.00
6 7 12013.72 0.00 . -81.76 -0.00 -15991.73 0.00
6 9 12013.72 0.00 . 8l.76 ~0.00" 6537,32 =0.00
.7 3 ~6415.80 -0.00 3.94 0.00 597.97 0.00
7 11 -6415.80 -0.00 ~3.9 0.00 -128%.26 -0.00
‘8 10 ~b6414.28 -0.00 3.93 0.00 594,26 0.00
8 ‘12 -6414.28 =0.00 ~3.93 0.00 ~1284.95 -0.00
9 3 ~B068.64 0.00 18.61 ~0.00 3475.39 =0.00
9 4 ~B8068, 64 0.00 -18,61 -0.00 -2108.20 U.00
10 8 -8067.79 0.00 -18.59 ~0.00 ~2106.78 0.00
10 10 -8067.79 0.00 18.59 -0.00 3471 .54 ~0.00
11 4 ~8071.95 0.00 . 39.88 -0.00 -1398.39 -0.00
11 6 ~8071.95 0.00 -39.88 -0.00 -13363.52 - 0.00
12 6 ~-8072.24 - 0.00 =39.88 -0,00 ~-13362.34 0.00
12 8 -8072.24 0.00 39.88 =0.00 =1398.46 -0.00
13 2 -13.30 0.00 -2.72 0.0u -537.24 -0.00
13 3 -13.30 0.00 2,72 0.00 473.68 -0.00
14 [ 9836.47 0.00 0.0C 0.00 0.06 -0.00
14 7 9836.47 0.00 -0.00 0.00 -0.07 -0.00
15 1 ~13.21 -0.00 2.72 0.00 537.07 ° 0.00
15 - 10 -13,21 - -0.00 -2.72 - 0.00 -473.51 0.00
16 4 ~21.10 0.00 3.93 0.00 T708.95 -0.00
16 5 ~21.10 0.00 ~3.93 0.00 -151.79 ~0.00
17 a =21.14 -0.00 -3.93 0.00 -708,80 0.00
17 9 -21.14 -0.00 3.93 0.00 - 751.66 0.00
18 3 6415.41 -0.00 -1l.46 -0.00 -2403.13 0.00
18 5 6415.41 -0.00 11.46 -0.00 3071.17 0.00
19 9 6413.80 -0.00 11.46 -0.00 3071.11 0.00
19 10 6413.80 ~-0.00 . -1l.46 -0.00 ~2403.4%4 0.00
20 5 -6273.70 0.00 ~T.69 0.00 -3705.71 -0.00
20 6 -6273.70 0.00 T.69 0.00 -32.72 R 0.00
21 6 -6271.91 0.00 : T.68 0.00 -33.10 -0.00
21 9 -6271.91 0.00 © =7.68 0.00 -3705.24 ~0.00

| Figure, ~11. Computer Solution of a Truss With
- Rigid Joints: . .
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JOINT DEFLECTIONS

49

ROT(2)

-0.00003157 -0.00000000

0.00003157 -0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.00000000

0.00003017 ~0.00000000

-0.00003018 ~0.00000000

JOINT DEF(X) DEF(Y) DEF{2) ROT(X) ROT(Y)
1 0.00938088 0.00000000 -0.01005296 —-0,00000000
2 0.00153034 -0,00000000 -0.01005089 0.00000000
3 0.00918244 -0.00000000 ~0.01005764 0.00000000 0.00002808
4 0.00731902 ~0.00000000 -0.01949590 0.00000000 0.00003094
5 0.00306183 -0,00000000 —0.01947445 0.00000000 0,00003471
6 . 0,00545482 -0.00000000 ~0.02539151 0.00000000 0,00000000 -
7 0.00545485 0.00000000 -0.03039039 0.00000000 0.00000000
8 0.00359056 0.00000000 -0.01949692 -0.00000000 —0.00003094
9 0.00784802 0.00000000 -0,01947543 ~0.00000000 -0,00003470
10 0.00172733 0,00000000 ~0.01005967 -0.00000000 —0.00002808
1n 0.00000000 0.00000000 0.00000000 0.00000000
12 0.01091306 0.00000000 0.00000000 -0.00000000
UNBALANCED FORCES AND MOMENTS ON ENTERIOR JOINTS
JOINT PExX) PLY) PL2) MiX) M{Y)
1. ~0.94 -0.00 0.186 -0.00 0.13
2 -0.30 -0.00 0.27 ~-0.00 -0.18
3 -0.89 0.00 0.30 0400 ~0.61
4 -0.61 -0.00 0417 ~0.00 -0.85
5 ~0.64 -0.30 0.08 0.00 -0.54
6 . =0.84 -0.00 0.69 -0.00 . =0.75
T -0.81 ~0.00 0.00 ~-0.00 -0.33
8 -0.52 0.00 0.14 . ~-0.,00 -0.48
9 -0.01 -0.00 -0.02 0.00 -0.11
10 -0.24 0.00 0.30 -0.00 0.23
FORCES AND MOMENTS AT REACTIONS
JOINT PLX) P{Y) Pi2) MIX) MLY)
11 5.80 0.00 4999.5¢4 ~0.00 -0.00
12 0.00 -0.00 4998.37 " ~0.00 -0.00

Figure 11. (Goncluded)

M(Z)
0.00
~0.00
0. 00
-0.00
~0.00-
-0.00
- =0.00
0.00
-0.00
0.00

M(Z)

-0, 00
=0.00



MBRS
< 157,16,20
28,29,30,31,32

27,33

34,35,36
37,38,39

For all other
~ members

Span « 150,0 Ft,

Figure 12,

DOME

" Rigld Joints

" Loads Live load of 35psf

A

3.3
11,77
5,89

20,00

10,59

Computer Solution of a Dome

PROPERTIES OF MEMBERS

&, - A Iy
2,99 2,31 2495
7.04 4,73 7385

3,52 2.3 +3693
10,43 9,57 1.7187

5.98 4,61 0,4991

Hetght = 108,75 Ft.

: ( Ei)' .

“Structure

223,2
51545
257.8

1814,5

446.3

50



FORCES IN THE MEMBERS

x

DO XX NNITORT S S WWNN -

15
22
17
21
17
20
16
20
16
19
18
19
18
22

Pix}

-10162.16
-10162.16
-20260,73
-20260,73
~20323,72
-20323,72
-20261,179
-20261.179
-20323.72
~-20323.72

~20260.73 °

=20260,73
~10162.16
~10162,16
~35010:23
~35010,23
~35010.44
~35010,44
-35010,33
-35010.33
-35010.33
~35010.33
-35010.44
~35013.44
-35010,23
-35010.23
-20607,08
-20607.08
~41169,00
~41169.00
-41213,20
-41213,20
~41170G.48
~41170,48
~41213.20
-41213.20
-41169,00
-41169,00

© -20607.08

~206017.08
~24452.42
-24452.42
-24452.37
~24452,37
-24452.45
~24452445
-24452,45
=-24452.45
-24452.37
—24452.37
~24452.42
~24452.42
~31716.78
-31716.78
~63428.81
-63428.81
~63433.51
-63433.51
~-63429.12
-63429.12
-63433.51
-63433.51

~63428.11

~63428.81
-31716.78
-31716.78
98407.65
98407.65
98407.60
98407, 60
98407, 60
93407, 60
98407,60
98407, 60
98407, 60
98407.60
98407.65

98407,65

PLY)

0.00
0.00
~0.00
-0.00
-0.09
-0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.09
0.30
-0.10
-0410
0.10
0.19
-0.12
-0.12
0.12
N.12
~G.10

~0.10

0.10
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
~0.00
~0.00
-0.00
-0.00
0,00
Ce00
-0.05
~0.05
0.04
0.04
~0.0%
-U.05
0.0%
0495
~-(0e04
~0.04
Te 05
0.0%
0.00
0,00
0.01
0.01
0.01
Q.01
0.00
0.00
-0.01
-0.01
~-0.01

~0.01

0.00
0.00
-0.07
-0.07
0.07
0.07
~-0.04
-0.08
0.08
0.08
-G.07
~-0.07
0.07
0.07

PLZ)

147.65
-147.65
294.16
~-294,16
295.60
-295.60
294.56
-294,56
295460
-295.60
294,16
-2%4.16
147.65
-147.65

—4.12 .

4el2
-3.49
3.89
-3.40

3,40

-3.40
3.40
-3.89
3.89
~4.12
412
52.13
-52.13
103.61
-103.61
103,89

- ~103,89

103.52
~103.52
103,89
-103.89
103.61
-103.61
52.13
-52.13
=2.49
2.49
-2.35
2.35
-2.36
2.36
-2.36
2436
~2.35
2,35
~2.49
2.49
-135.19
135.19
-272.07
2712.07
-270.31
210.31
-272.18
272.18
~270.31
270431
-2172.07
212.071
-135.19
135,19
-0.87
0.87
-0.80
0.80
-0.38
0.88
~0.88
0.88
~0.80
0.80
~0.87
0.87

(b)

M{X)

0.00
0.00
0.02
-0.02
0.01
-0.01
0.00
~0.00
-0.01
0.01
“0.02
0.02
0.00
0.00
20.97
-20.97
-21.01
21.01
21.03
-21.03
-21.03
21.03
21.01
~21.01
-20.97
20.97
0.00
0.00
0.02
-0.02
0.01
~0.01
-0.00
0.00
-0.01
0.01
~0.02
0.02
0.00
0.00
-30.95
30.95
30.95
~30.95
~33.96
30.96
30.96
-30.96
-30.95%
30.95
30.95
-30.95
0.00

0.00 "

0.01
-0.01
0.01
-0.01
-0.00
0.00
-0.01
0.01
-0.01
0.01
0.00
0.00
-104.94
104.94
104.96
~104.96
-104.98
104.98
104.98
-104.98
-104.96
104.96
1 04.94
-104.94

MY}

31713.27
-19313.42
53385.95
—-33324.34
63525.68
~33554,94
6347T1.71
~33375.78
63525.68
-38654.93
63385.94
-38324,34
31718.27
~19313,43
11808.88
12655.20
11806.56
12493.00
11807.44
124948,29
11807.44
12494.28
11806456
12497.99
11808.87
12655.24
-15094.88
-31913.37
~32413.72
-63843.58
-32297.77
~63305.09
—-32463.31
-~63863,29
~32297.76
-h3805.09
-32413.73
~63843.58
~16094.87
-31713.38
~16605.65
~15762.60
-156604.80
-15819.50
-16616.75
=-15312.36
~16615.74
-15819.37
-16606.,80
~15819.51
-16605.65
-15762.59

1 —35564.33

19255.75
~71547.08

38725.56
-71133.04

38528.21
-71571,178

38744.60
~71133.05

38523.22
-71547.08

38725.56
-35564.33

19255.76
~74411.35
~714006.85
=74411.25
~T4039.72
~74447.80
-14038,.42
~74447.80
~74038.43
-74411.25
~74039.73
-T4411.35
-74006.86

Pigure 12. (Continued)

M2}

0.00
0.00
0.61
083
0.24
0.18
~0.00
-0.00
~0.24
-0.18
~0.061
-0.83
Q.00
0,00
~14T.41
165,23
la7.52
-165.35
~146,09
l66.24
146.09
~166.23
-147.52
165436
147.41
-165.22
0.00
0.00
~0.99
-0.13
-1.04
-0.65
~0.00
-0.00
1.03
0.45
0.99
0.13
0.00
0.00
453.97
-437.97
~452.45
439.67
455,12
~437.35
-455.12
437.35
452.46
~439,66
~453,96
437.97
.00
0.00
~l.34
-0.91
-1.93
~2.11
=000
-0.00
1.93
2.11
1.34
091
0.00
0.00
16,12
15.64
-15.45
~l6e62
19.00
18.31
-19.,00
-18.31
15.45
16.62
-16.12
~15.64



JOINTY DEFLECTIONS

JOINT - DEF(X) DEFLY} DEF{Z) ROT(X) ROTLY) ROT(Z)
1 0.00000000 0.00000000 -0.33425131 -0,00000000 0.00000000 ©,00000000
2 -0.03608853 - 0.00000000 ~0.45079540 ~0.00000000 0.00030942 -0.00000000
3 ~0.01804252 ~0.03122941 ~0.45063359 =0.00026716 0.00015524 ~0.00000017
4 ~0,01804252 0.03122941 -0.45063358 0,00026716 0.00015524 0.00000017
] ~0.03128740 -0.01805439 -0.45055650 —0.00015289 0.00026580 ~0.00000005
6 -0,03128740 0.01805439 -0,45055650 0,00015289 0,00026580 000000005
7 0.00000000 -0.03607477 ~0.45033166 =-0,00030582 0.00000000 0,00000000
8 0.00000000° 0,03607477 -0.45033165 0.00030582 0,00000000 0,00000000
9 ~0.04885195 -0.00000000 ~0,36750456 - 0.00000000 ~0.00087822 -0.00000000
10 -0.02443067 0.04228647 -0.36736131 -0.00076038 -0.00043858 0.00000020
11 -0,02443067 ~0.04228647 ~0.36736132 0.00076038 ~0.00043858 -0.00000020
12 ~0.06225195 0.02438355 —0.36688646 —0.00043930 —-0.00076048 0.00000009
13 ~0.04225195 =0,02438355 ~0.36688648 0.00043930 —0.00076048 —0.00000009
14 0.00000000 0.04871046 ~0.36670825 -0.00087772 0.00000000 0.00000000
15 0.00000000 -0.04871047 -0.36670828 0.00087772 0.00000000 0.00000000
16 .0.14783520  0.00000000 0,00000000 0.00000000 -0.00122862 0.00000000
17 0.07387990 -0.12794884 0.00000000 ~0.00106361 :~0.00061405 0.00000006
18 0.07387990 0,12794886 0.00000000 0.00106361 ~0.00061405 ~-0,00000006
19 0.12769945 0.07370937 0,00000000 0.00061316 ~0.00106197 0.00000008
20 0.12769945 ~0.07370936 0.00000000 -0.00061316 ~0.00106197 -0.00000008
21 0.00000000 ~0.14744831  0,00000000 ~0.00122582 0.00000000 0.00000000
22 0.00000000 . 0.14744833 0.00000000 0.00122582 0.00000000 0.00000000
UNBALANCED FORCES AND MOMENTS ON INTERIOR JOINTS
JOINT PLX) PLY) P(Z) MIX} MLY) M{Z)
1 75255.22 ~0.00 3,44 0.00 =236847.56 -0.01
2 3.43 0.00 0.96 0.00 63.76 -0.00
3 1.89 3.25 0.79 =-55.62 34.83 -0.60
4 1.89 -3.25 0.79 55,61 34.84 0.61
5 -12.73 ~7,35 6.09 16.25 -28.16 -0,01
6 ~12.173 7.35 6409 ~16.25 -28.15 0.01
7 33817.41 -7.50 3.11 16.76  -11867.62 3015.10
8  33817.41 7.50 3.11 -16.76  -11867.59  =3015.08
9 11.04 0.00 ~7.68 0.00 16440 -0.00
10 5.94 -10.22 -8.33 13,70 9.34 0. 70
FORCES AND MOMENTS AT REACTIONS
JOINT PiX} PLYY PLZ) MIX ) MIY) M(Z)
11 5.94 10.22 -8.33 ~13.70 9.34 -0.70
12 ~17.47 10.09 14.89 0.32 0.57 -0.01
13 ~17.47 ~10.09 14.89 -0.32 0.56 0.01
14 23619.54 10.36 7.65 0.30 13505.05 7275.90
15 23619.54 -10.36 7.65 ~0.30 13505.04  -7275.89
16 4.91 -0.00 52528.01 0.00 4.77 0.00
17 2.62 ~4.40  52527.94 3.85 2.73 -0.05
18 2.62 4.40  52527.94 -3.85 2.74 0.05
19 -0.00 0.00  52532.65 0.00 0.00 0.00
20 0.00 . 0.00  52532.65 0.00 0.00 0.00
21 -95054.51 0.00 25792.35 0.00 71457.97 15.64
22, -95054.50 0.00  25792.35 0.00 71457.98 -15.64

(c)

Figure 12. (Concluded)



SPACE -FRAME

RIGID JOINIS

PROPERTIES OF MEMBERS

MRS A I, Iy 1,
1,16 s 0.38 263,0 8.3
2,17 13.26 1.19 583.,0 30.5
6,21,3,35,36 9.2 0.50 373,0 11.6
7,12,22,21 18.23 1.97 1327.0 53.1
11,26 10,59 0.59 4460 22,6
4,5,19,20 16,5 . 3715.0 296,0 " 305.0
9,10,24,25 22,0 500.0 392,0 413,0
16,15,29,30 . 28,0 625,0 466.0 600.0
31,32,33 4.86 0.le 105.3 2.99
37,38,39 16,71 1.% 800.6 37.2
3,18 9,0 128,0 106.0 106.0
8,23 T 176,0 142.0 158.0
13,28 20,0 272.0 205.0 314.0

Ay = A, = Ax(.zi) for all members,
E = 30 x 108 G =12 x 106
Load 700 1bs,/ft,

Loaded members 1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26, & 27

Figure 13. Computer Solution of A Bent.
of & Multi=-Story Frame



FORCES IN THE MEMBERS

x

VLT NNOCNVNPDWWNN -

Z
2z

—
DONDVOOPNIPODVMNSIOCOVMUNDICWUNND = WNN -

PLX)

-2432.74

~2432.74
-6257,93

-6257.93

~4576.,04
-4576.84
~24467.17
=24467.17
-12931,.79
-12931.79
3i8.18
318.18
1473.66
1473.66
=10295.47
-10295.47
~47445,36
=47445,36

~26210.79 .

-26210.179
1463.86
1463,86
3470.56
3470.56

-15278.56

-15278.56

-71234.18

-71234.18

-39414,62

-39414,62

~2432.75
-2432,75
-6257.94
~6257.94
-4576.84
-4576.84
-24467.17

C =24467.17

-12931.79
-12931,79
318,17
318,17

1473.65.
1473465
~10295.45

=10295.45

~47445.33"

~47445,33
-26210.76
-26210,76
1463.85
1463,85
2470.55
3470.55
-15278.53
~15278,53
~71234.06
~71234.06
~39414.52
~39414,52
0.00

0:00

0.01

0.01

0.00

0.00
~0.00

- =0,00
0.01

0,01

0.01

0.01
~0.01
-0.01

. 0401
0401

0.01

0.01

PLY)

~0.00
-0.00
~0.00
-0.00
0.00
0.00
0400
0.00
0.00
0.00
-0.01
-0.01
-0.01
-0.01
0.00
0.00
0.01
0.0l
0.01
0.01
-0.01
-0.01
-0.01

- =0.01

0.00
0.00
0.02
0.02
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00

. 0.00
0.00

0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.02
0.02
0.02
0.02
~0,00
-0400
~0.00
~0.00

-0.00 .

~0.00
~0.01
=0.01
-0.00
-0.00
-0.00

~0.,00 "

=0.02
~0.02
=0.01
-0.01
-0.01
-0.01

PLZ)

4577.01
9414.89
15052.26
12931.62
2376,40
-2376.40
3775.48
-3775,48
~6258,97
6258, 97
5718.81
8273,10
14705,07
13278.81
1997.87
~1997.87
2558.95
-2558,95
-4786,54
4786.54
4983.14
9008.77
14780.08
13203.80
477.42
-477.42
503,45
-503.45
~1316.45
1316.45

4577.01

9414.90
15052.26
12931.62

2376.40

=2376440

3775.48

~3775.48
-6258.,97

6258.97

5718.81

8273.10
14705.07
13278.81

1997.87

© ~1997.87

2558.95
~2558,95
-4786.55
4786455
4983.14
9008.76
14780.08
13203.79
477.42
~477.42
503.46

-503.46

- ~1316.45

1316.45

0.00 .

-0.00
0.00
-0.00
0.00
-0.00

. 0.00°
-0.00
0.01
-0.01
0.01"
-0.01
0,01
~0.01
0.05
~0.05
0.04

~0.04

'

MiX)

-0.00
-0.00
0.00
0.00
~0.17
-0.17
~0.36
-0.36
-0.40
-0.40
~0.00
-0.00
0.00
0.00
~0.05
-0.05
-0.60
-0.60
-0.73
-0.73
-0.00
-0.00
0.00
0.00
-0.00
-0.00
-0.00
~0.00
-0.00
-0.00
~0.00
-0.00
0.00
0.00
0.14
0.14
0.09
0.09
0.09
0.09
~0.00
-0.00
0.00
0.00
0.16
0.16
0.15

. 0415

0.21
0.21
~0.00
-0.00
0.00
0.00
0.00
0.00
-0.00
-0.00
0.00
0.00
-0.00
~0.00
-0.00
~0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
0.00
0.00
0.00
0.00
0.00
0.00

H(Y)
235992.12
816539.09

1201589.48
692639 .48
235959.71

~191793.18
384957.92

-294628.23

~692730.98

" 433882.25
371987.22
16785064416

1183312,86
841013.72
180151.98

-179463.98
210073.46

-250538.92

-407237.71
454341.73
294067.80
T77144.94

1148558.66
770255.30
114580.46

-0.00
120827.54
-0.00
~315948.60
-0.00
235991.99
816539.26

1201589.09
692639.55
235959.57

~191793.01
304957.34

-294627.67

-692731.07
433882,60
371987.07
678504447

1183312.50
841014.16
180151.99

~179463,73
210073.33
~250538.49

-407237.81
454342.39
294068.54
777144.36

-1148559.67

770254.10
114581.45

~0.00 .

120829.56
-0.00
-315946.75
-0.00
0.23
-0.22
0.45
~0.45
0.33
-0.34
0.58
-0.56
1.42
-l.43
1.12
-1.12
l.11
~1.01
5.57
~5.58
4027
=4.31

Pigure 13. (Continued)

M(Z)

0.46
0.21
0.59
0.80

-0.19

-0.20
-0.48
-0.36
-0.36
-0.26

0.82

0446

1.32

1.68
~0.30
-0.35
~1.11
-0.85
-0.91
-0.73

1.82

1.19

1.68

2.07
-0.57

0.00
=4.77

0.00
-3.64

0.00
-0.24
-0.19

0.04
-0.12
-0.22
-0.23
-0.48
-0.36
-0.34
-0.22
-0.43
-0.31
-0.01
~0.30
-0.35
~0.41
-1.10
~0.84
-0.88
-0.68

~0.93

-0.66
-0.13
-0.43
-0.61
0.00
~4.76
0.00
-3.61
0.00
0.22
0.10
0.07
0.06
0.11
0.03
0.98
0.41
0.37
0.27
0.56
0.18
3.08
1.09
le47
0.94
2. 14
0.65



JOINT DEFLECTIONS

JOINT

10
11
12

13

15
16
17
18

19

20 .

21
22
23

24

DEF(X)
-0.08753962
-0.09006716
~0.09753935
-0.01860529
-0.01832557
-0.01703004

0.00566225
0.00676706
0.,00981810
0.00000000
0.00000000
0.00000000
-0.08754188
-0.09006942
-0.09754161
-0.01860792
-0.01832820
-0.01703268
 0.00565964
0.00676444
1 0,00981548
0.00000000
0.00000000

0.00000000

DEFIY}

FORCES ANb MOMENTS AT REACTIONS

JOINT P(Xl‘
10 ~477.65
il ~-503.91
12 1316.01
22 -477.66
23 ~503.92
24 1316.01

DEF(Z) ROT(X) ROT(Y) ROT(Z)
0.00000402 -0. 01410451 =0,00000000 0.00225973 0,00000015
0.00001223 ~0.04218948 —0,00000001 0.00115976 0.00000003
0.00000939 -0.02311222 -~0.90000000 "0:00356122 0.,00000008
0.00000315 —-0.01105326 -0.00000000 0.00100974 0.00000017
0.00001080 -0,03329228 -0900000001 0.00027127 0;00000004
0.00000831 ~0.01840973 ~0.,00000001 ~0.00102115 0.00000010
0.00000228 =0.00611142 —0.00000000 0.00099668 0.00000017
0.00000881 -0.02035263 ~0.0000006l 0.00056521 0.00000006
0.00000672 -0.01126133 ~0.00000001 -0.00136331 0.,00000012
0.00000000 0.00000000 —0.00000001 ~0.00046295 ©0.00000017
0.00000000 0(00000000 -0,00000005 ~-0.0002403t 0.00000006
0.00000000 0.00000000 ~0.00000004 0.00074302 0.00000012
0.00000402 ~0.01410449 —0.00000000 0.00225973 =0.00000001
0.00001222 ~0.04218945 ~0.00000001 0.00115976 0.00000001
0.00000939 —0.02311218 ~0.00000000 —0.00356722 ~0,00000003
0.00000315 ~0.01105324 ~0.00000000 0.00100974 -0.00000003
0.00001080 -0, 03329225 -0.00000001 0.00027127 0.00000001
0.00000830 =0.01840969 -0.00000001 ~0.00102115 -0.00000003
0,00000228 ~0.00611141 —0.00000000 0.00099667 ~0.00000004
0-00000830 -0.02035260 -0,.00000001 0,00056521 0.00000000
0.00000672 ~0.01126130 ~0.00000001 -0.00136331 ~0.00000004
‘0. 00000000 0.00600000 -0+00000001 -0.00046296 —0.00000064
0.,00000000 0.00000000 —6.00000005 ~0.00024033 0.00000000
0.00000000 0.00000000 —-0.00000004 0.00074300 -0.00000004
PIY) PIZ) MEX) MIY) MiZ)
0.00 ~-15278.56 0.00 ~37.48 -0.00
0.02 ~71234.18 0.01 -73.49 -0.,00
0.02 ~39414.62 0.00 -70.98 -0.,00
0.00 ~15278.53 0.00 -37.48 0.00
0.02 ~ ~71234.06 0.0l ~73.50 ~0.00
0.02 ~394164.52 0.00 -70.09 0.00

Figure 13. (Concluded)
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Area of all members = 10,59 sq, im.

Length of all bers = 200 inch
E 29 x 10 G =12 x 10°

Loads: P = 1O0Kips

See blow up below for forces in the members
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Pigure 14. Computer Solution of a Diagrid



JOINT DEFLECTIONS

JOINT

N

v & w

22
23
24
25
24
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

DEF (X}
0.00464838
"0.00466789
0.00269540
0,00068693
0.00068693
0.00488303
0.00489825
0.00289469
0.00091497
0.00091497
© 0.00339716
0.00341768
0.00244264
0.00147038
0.00147038
0.00400405
0.00402930

0.00206947

0.00010206

0.00010206
0.00405767
0.00408361
0.00200359

~0.00010370

. =0.00010370

0.00172335
0400423008
~0.00028518
0.00172792
0.00324487
0.00531097
~0,00081341
0.00129453
0.00290423
0.00502206
0.00050350
0.00347036
0.00594359
~0.00199847
0400000000

0.00655201

DEF(Y)
0.00464838
0.00488302
0.00339716
0.00400405
0.00405767
0.00466789
0400489825
0.00341768
0.00402930
0.00408361
0.00269540

0.00289469

0.00244264

0.00206947

0.00200359.

0.00068693
0.00091497
0.00147038
0.00010206

-0.00010370
0.00068693
0.00091497
0.00147038
0.00010206

-0,00010370

-0,00028518

~0,00081341
0.00172335
0.00172792
0.00129453
0.00050350
0.00423008
0.00324487
0.00290423
0.00347036
0,00531097
0,00502206
0.00594359

0.00655201

0.00000000

-0.00199847

DEF{Z)

0.00657405
-0.00268875
~0.00943567
~0,00269183
0.00843297
-o,bozsaavs
~0. 01450964
~0,01577714
-0.01506741
-0,00335833
-0.00943567
~0.01577714
-0.01854287
-0,01633108
-€.01046271
~0.00269183
~0.01506741
~0.01633108
~0.01529396
~-0.,00309218
' 0.00843297
-0.00335833
-0.01046271

~0.00309218

0..00851523 .

-0.01129938
-0:01143997
~0,01129938
~0.01720483
~0.01747032
-0.01201906
-0.01143997
~0.01747032
~0.01766411
-0401201532
-0,01201906
~0.01201532

0.06000000

0.00000000

0.00000000

0. 00000000

(v)

ROT (X}

2.00000000
0.00000000
0.00000000
0400000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0. 00000000
0,00000000
000000000

0,00000000

'0.00000000.

0.00000000

' 0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0,00000000
0.00000000
0.00000000
0. 00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.00000000

ROT(Y}
0.00000000

0.00000000

.0.00000000

0.00000000
0;00000000
0.00000000
0.00000000
0. 00000000
0.00030000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000Q00
0.00000000
0.00000000
0.00000000
0.00000000

0.00000000

0.00000000

0,00000000

- 000000000

0,00000000
0.00000000
0.00000000
0.00000000
0.00C06000
0.00000000
0.00000000

0.00000000

Figure 14, (Concluded)_

ROT(Z)

10.00000000

0.00000000
0.00000000
0.00000000
0..00000000
0,00000000
0.00000000

0.00000000

0,00000000

0.00000000

0.00000000.

0.00000000
0.00000000
0.00000000
0,00000000
0.00000000
0.00000000
0.00000000
0.00006000
0.00000000
0.00G00000

0.00000000

‘0.00000000

0.00000000

0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
000000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

I



CHAPTER V
- SUMMARY AND CONCLUSIONS

A variety of computer programs for solution of
stfuctural problems are in use today. The majority of these
prdgfams are for a particular solution fo one problem.' As
vstated earlier, this relaxation method cén be used to com—
pute solutions for reticulated structures with prismatic'
members ahd the work simplified with computer aids.
| - The major problem‘encountered in this study was the
selection of a routine to giﬁe the proper inverse for matri-
ces wifh zeroes élohg the diagonal. This presented no
prpblém if the elements of the row and column containing the
common zero element along the diagonal were all zeroes.

When this occurs the matrix is reduced (the COiumns‘and

: rdws containing the zero elements are eliminated)° However,
under certain conditions it waé found that fhe elementsbon.
the diagonal cdntained'zeroes, but the elements of the rows
‘and.colﬁmns'qontaining the zero elemenf along thé diagonal
Were not all zerées.' This presented a special case for
finding the inverse of a matrix with zero elements along the
diagonal, which could not be reduced to a smallerbmatrixa

This problem was solved by a special roufine that re-

arranged_the elements of the matrix according to their
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absolute value, interchenged‘rows and columns, and took the
: inverse»of the matrix. i£ then replaced the rows, columns,
and’elements t0 their proper location. Although the solu-
‘tion is not a true inﬁerse,:it Satisfies the requirements of
this study. »

Wrth the inversion problem solved, meny example
problems were solved and. compared with other knoWn solutions,
By using a variety of structures, the’verSatility ofvthe
‘program was demonstrated.

From the results obtained in this study, it is con-
cluded that the‘relexatioﬁvmethod ie practical for solutions
of any retlculated structure with prlsmatlc members. The
rate -of convergence is very rapld in the early cycles of the
relaxation process. However, it decreases very rapldly as .
the member forces approach thelr true Values°

The major advantage of this method is 1ts addptatlon to
computer solutions, plus the ability to solve a variety of
structural problems using the eame,comﬁuter programq

The author would now 1ike to propose two areas for the
extension of this study. ' The first area projected is an
investigation.for applying this relaxation method fo.obtain
solutions to plate and shell structures. It is also pro-
posed that the use of magnetic tapes in the present computer
program be eliminated by placing computed values that are

used in the second part of the program in core memoryo
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READ:
NUMBER OF JOINTS, NJ
NUMBER OF MEMBERS, NM

NUMBER OF LOAD CONDITIONS

INPUT

NUMBER OF FREE JOINTS
LOAD POINTS FOR
LOAD CONDITIONS

READ:
JOINT NUMBER

JOINT RESTRAINTS /

NUMBER OF MEMBERS

JOINT COORDINATES

REWIND
TAPE
00
J= 1, NJ -
DO’
L=1,36
{ SET JOINT STIFFNESS = 0 |

READ: )
MEMBER NUMBER
NUMBER OF JOINT AT

MEMBER PROPERTIES
END RESTRAINTS

-

[ ENDFILE 1

[EXTERNAL FORCES ON JOINTS = O |

[ NUMB=CONSTANT 1

READ: ‘
NUMBER OF LOADED MEMBERS

/

NO_

YES
DO
KK =1, LMBRS

&
=
@
m
0.

£ 86

FAR END

COMPUTE : _ :
GEOMETRY OF MEMBER, DX, OY, DZ, OL
PROPERTIES ~ FOR - ROTATION MATRIX

K -

TRANSPOSE MATRIX
STIFFNESS ‘MATRIX FAR END

COMPUTE :
ROTATION MATRIX
STIFFNESS MATRIX

[ CHRECK END ResTRAINTS ]

IF

~ o NO_-
RESTRAINTS, g

- [ MODIFY "MEMBER STIFFNESS ] -

Te
SR {
COMPUTE . "
STIFFNESS IN MEMBER SYSTEM
COMPUTE TOTAL JOINT STIFFNESS

] s
[ CHECK JOINT RESTRAINTS ]

: YES - _
[ "™MoDIFY JOINT STIFFNESS | -
e .

- it ] .
[COMPUTE JOINT FLEXIBILITY l

@)

READ:
-\ MEMBER NUMBER

MEMBER LOAD l

iF
NO " LoaDED
JOINT

IYES |

— 20
JA=1,LP(LC)

-

READ: »
JOINT NUMBER

JOINT LOAD l

>
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-0
Lo
N

CHANGE FORCES IN THE
MEMBERS TO A SINGLE SUBSCRIPT

COMPUTE : :
FORCE IN MEMBER IN GENERAL- SYSTEM

COMPUTE :
SUM -OF MEMBER FORCES ON JOINT

: ' OUTPUT
‘ v FORCES (N THE MEMBERS
_ JOINT DEFLECTIONS & ROTATIONS

COMPUTE : .
UNBALANCED ' FORCE ON JOINT}

v

READ
\TAPE

4 COMPUTE:
L JOINT DEFORMATIONS

_ . —
COMPUTE: - N
TOTAL JOINT DEFORMATIONS

»

COMPUTE: - )
FORCE {NCREMENTS ON NEAR
END OF MEMBER

TOTAL FORCE ON NEAR END
OF MEMBER

1
COMPUTE:
FORCE INCREMENTS ON FAR
END OF MEMBER ' . .
TOTAL FORCE ON FAR END | : COMPUTE:
OF MEMBER ) ’ A FORCES tN MEMBERS IN THE

v GENERAL SYSTEM

COMPUTE *~
UNBALANCED FORCES ON INTERIOR JOINTS)
FORCES AND MOMENTS AT REACTIONS

. : M OUTPUT j
| INCREASE NUMBER OF CYCLES]) FORCES ON JOINTS
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