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· CHAPTER I 

INTRODUCTION 

The·physical structure of finetr divided and porous materials is 

of great importance in i;t1,1dieso£ ca.t;:alysis. Investigations dealing 

with the size of the pores in such materials have been carried out ex

tensively in recent years. Brunauer, Emmett, .and Teller1 (BET) and also 

Harkins and, Jura2 have laid the foundations for suchetudies with their 

theories of physical adsorption, which have been proven very: successful 

in determining 1;:he specific surface·areas of adsorbents from gas adsorp-

t i6n da~a. 

These theories, excellent as they are in obtaining surface areas, 

are inadequate in the treatment of some fr(;!.quent ly occurring isotherm 

phenomena. They have been supplemented, in this respect, by the intro-. 

d4ction of the theory of "capillary ci;mdeneation11 which takes place in 

the fine pores of solid adsorbents, mainly due to Cohan3 and Brunauer4. 

The modern theory of adsorption, due to Wheeler5 ,6, combines both the 

BET multimolecular ,;1dsorption and the capillary condensation viewpoints, 

The study of capillary condensation phenomena, which occur at low 

re bt ive pressures, is the primary source. of information about. the size 

of the pores in solid adsorbents.· Multilayer adsorption takee ·place 

simultaneously with condensation in the ca;pillaries, In the calcula

tions of pore.size distributions this type of adsorption is to be left 

out as not arising from the filling of the pores ~o that corrections for 

1. 



it are necessary. 

If a definite pore gepmetry is assumed and if the.Kelvin equation 

is considered applicable to capillaries of a nature· such as· that of po

rous solids then distribution!:! of pc;,re size can be easily evaluated. 

Several methods have been developed to deal with this type of computa

tion. The most important of them will l;>e reviewed in Chapter III. 

2 

It is the purpose of the.present investigation to study the nature 

of the pores in finely divided and porous substances and also to obtain 

pore-size distributions from considerations of capillary condensation. 

The material selected for this study i$ stannic oxide in. the forms .of 

powder 1 ceramic, and gel, Nitl:'ogen adsorption isotherm& together with 

their specific surface areas obtained from the BET method; at 78°K 

( liquid nitrogen), are used to furnish the data necessary for the cal

culations. 

The powder, cer~mic, and gel are expected ~o differ considerably 

in their pore .. size distributions. These differences·will be brought.out 

and discussed in terms of the special shape of the adsorption isotherm 

for each, and cpnclus~ons will be .drawn as to the correlation between 

the type of the isotherm and the manner by which the filling of the 

pores is taking place. The cumulative surface areas which are obtained 

by this method are compared with the values from the BET method. 



CHAPTER 11 

THEORY OF ADSORPTION IN PORES' AND CAPILLARIES 

Modern theories5 ' 6 regard physical adsorption as arising from con-

tributions of both multUc;1.yer adsorption and capillary condensation in 

contrast to the older theories which attributed adsorption either en

tirely to capillary condensation or entirely to multilayer adsorption4. 

Adsorbed films in multilayer adsorption are considered t() arise 

froi;n the interactions between the surface of·the adsorbent and the mo-

lecules of the adso.rbate due to van der Waals forces. Multilayer films 

·are formed on the 11 flat 11 surface of the adsorbent c;ind they increase in 

nuwber as the relative pressure approaches unity, while on the inner 

walls of the capillaries the thickness of these layers would increase 

until such capillaries are filled 7• 

Capillary condensation, on the other hand, is due to the action of 

surface tension at a curved ~eniscus, This surface tension lowers the 

equilibriuw vapor pressure p, at the meniscus, below that of the bulk 

liquid p, according to the Kelvin equation7• 
0 

Pierce and Smith8 have recognized two types of capillaries depen,-

ding on the value of the relative·pressure at which they fill. The 

first type includes capillaries which fill at a low relative pressure 

(below 0.5) while the second type includes those which fill at a rela-

· tive pressure between Q.5 and 1.0. These two types exhibit different 

adsorption isotherms. On desorption the former show no hysteresis, 

3 
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while the latter do~ Figure 1 shows the general nature of the isotherms 

for the two types of capillaries together with the S-shaped isotherm for 

11 nonporous11 solids. The isotherm for the first class of capillaries is 

represented by curve A, and that for the second class by curve B, while 

curve C gives the i!;;otherm for nonporous solids. These isotherms have 

been designated by Brunauer as type I (Langmuir type) without hysteresis 

for A and type II with and without hysteresis for B and C respectively. 

Two ways have been recognized to be responsible for the filling of 

capillaries. The first takes place through condensation of the vapor 

at the menisc;:us which bridges the walls of the pore. The second takes 

place through the building up of a multilayer film until all the space 

of the capillary is filled. A third way is the one that combines both. 

A pore can start filling with a layer on its inner wall and after the 

layers on opposite walls meet and merge it will end up with a meniscus. 

Determination ?S to the effectiveness of these processes during adsorp

tion comes from considerations of both size and shape of the capillaries. 

For very narrow pores, of which each one can be bridged either by 

a single molecule or by a monomolecular film on each wall, condensation 

start~ at the very beginning of adsorption. This type of pores are 

filled at a very low relative pressure and substances which have pores 

such as these exhibit a Brunauer type I adsorption isotherm without 

hysteresis (Figure 1, curve A). The reason for the absence of hystere

sis comes from the fact that adsorption and desorption occur in the same 

manner, from a meniscus. For these highly porous solids, after all 

pores have been filled, the isotherm rises but insignificantly which 

indicates that contributions from any "flat" surface in the· so lid are 

of minor importance. 



Cl 
w 
OJ 
n:: 
0 
(/) 

0 
·~ 

w 
~ 
:::> 
...J 
0 
> 

RELATIVE PRESSURE, Pl p0 

Figure 1. Typic.al Adsorption Isotherms: A, Brunauer' s Type 
I or Langmuir Type; B, ·. Type II with Hysteresis; c, 
Type II Without Hysteresis or S-shapedo 
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For pores which are relatively wide a monomolecular film on each 

wall will not be able to bridge one such pore. In this case adsorption 

takes place as a monomolecular layer on thE\ inner walls of the pore, an 

effect which is the same as that for a flat surface. The isotherms of 

materials having this type of pores are exactly like those of nonporous 

solids at very low relative pressure, When a value of this pressure is 

reached at which the wall films start merging.together, condensation 

begins in the capillaries and the surface diminishes owing to the 

filling of pores. This process continues to take place as the relative 

pressure increases toward unity. As the molecular layers in a single 

pore meet and merge together, the forces acting on the molecules of the 

new combined layer become stronger. The explanation of this effect 

comes from the fact that these molecules are now held on and between two 

walls instead of only one as in the case before merging occurred. They 

are therefore more strongly bound than previously because forces twice 

as strong are acting upon them. Consequently, removal of these mole .. 

cules from the meniscus during desorption takes place at a lower rela

tive pressure than the original adsorption which was building up in the 

form of a single wall film. A result of the above is the hysteresis 

which is observed during desorption as shown by curve B of Figure 1. 

This represents a type II isotherm with hysteresis. 

The absence of pores, as in 11 nonporous 11 solids, gives:rise to an 

S-shaped adsorption isotherm. This corresponds to Brunauer 1 s type II 

isotherm without hysteresis (Figure 1, curve C). The term "nonporous" 

is not entirely correct because in such solids some capillaries may be 

present along with a large 11 flat 11 or 11 free 11 surface. In this case the 

presence of capillaries causes condensation at very low relative: 



pressure and at. the beginning of adsorption the isotherm is not very 

mcuh different, although flatter, than the type I isotherm for highly 

porous materials. For such solids as the size of the pores increases 

the isotherm becomes steeper at higher values of the relative pressure. 

When adsorption on the 11 flat 11 surface takes over the isotherm starts 

getting steeper and become& very steep at high pressure. On desorption 

· no hysteresis is observed because molecules are removed from the 11 flat" 

surface in the same manner and at the same pressure.of the original ad

sorption. 

An S-shaped isotherm therefore is not a conclusive indication that 

a solid is completely nonpo1:ous. Capillaries will be present and they 

can be detected if such an isotherm is compared with isotherms for true 

nonporous so lids. The effect of these capillaries is to lower the iso

therm below the nonporous isotherm. Calculation.s of pore··size distri

butions for materials of this nature and with an S-shaped isotherm will 

show that capillaries are present in varying numbers. 

7 

Fine powders and ceramics, in general, exhibit this type of iso

therm. When the adsorption isotherm of a powder is compared with the 

adsorption isotherm of the corresponding ceramic it is usually found 

that the isotherm of the latter lies below that of the former because 

of the lower porosity of the ceramic. Such an effect is expected from 

the special considerations of the preparation of ceramics. During the 

sintering process, which consists of pressing and firing of the powder, 

pores in the resulting ceramic become smaller and fewer with simultan

eous decrease in the 11 free 11 surface available for adsorption. 



CHAPTER III 

METHODS OF PORE-SIZE DISTRIBUTION CALCULATIONS 

Several methods dealing with the mathematical evaluation of the 

size of pores in finely divided and porous materials have been advanced 

in recent years. These methods, as mentioned previously, are based on 

the theories, of physical adsorption, the most important of which is that 

of Brunauer, Emmett, and Teller1• The theory of Wheeler5 , 6 , which com-

bines both multilayer adsorption and capillary condensation, gives a 

better picture of physical adsorption. Application of this theory to 

the experimental isotherms, with the necessary corrections for multi-

molecular adsorption, constitutes the basis upon which pore-size distri-

butions are evaluated. The experimental isotherms are usually taken to 

be the ones determined by the BET method from nitrogen gas adsorption 

data. 

The starting point for all calculations of this type is the Kelvin 

equation for a cylindrical capillary model in the following form: 

where (P/P0 ) is the relative presure, a is the surface tension of the 

liquid adsorbate, Vm is the molar volume of the liquid adsorbate,! is 

the contact angle between the surface of the adsorbed liquid and the 

wall of the capillary (usually taken as zero), R is the ideal gas con-

stant, Tis the temperature of the liquid, and rk is the Kelvin radius. 

8 
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Methods of calculation corresponding to either cylindrical or slit-

sh.aped pores have been developed by a number of investigators. A re-

. view of the most important of these methods will be presented, first for 

a cyl:i,ndrical and then for a parallel plate model, 

Barrett, Joyner, and Halenda9 using the model proposed by Wheeler 

developecl a method for circular .pores which is :rather complicated and 

time-consuming. Their theory is given by the equation 

(3-2) 

where Vs is the volume of nitrogen gas adsorbed at the saturation pres-

st1re P0 , Vis the volume of gas adsorbed at the equilibrium pressure P, 

L(r)d:r is the total length of pores with radii between rand r + di-, 

r . is the radius of the largest pore filled with liquid nitrogen at·. 
Pn 

any pressure (critical radius), and tis the thickness of the multi~ 

h.yer. 

The above equation is simplified by taking stepwise decrements of 

the relative pressure (P/P0 ) on the desorption isotherm starting at 

P/P0 = 1. The equation becomes 

where VP 
n 

n-1 
V = R V - R t I: cJ.A_j Pn n n n n p j=l 

is the pore volume at any particular pressure, V is the 
n 

(3-3) 

observed volume of gas desorbed, tn is the amount of reduction in the 

thickness of the adsorbed layer, ~j is the area of each pore at any 

particular .pressure pj, and n is the number of relative pressure incre-



ments. ~ and cj are given by the equations 

~ = 

and 

= 

where rpn is the pore radius at presst.ire·p, rk is the Kelvin radius, n . n 

10 

and tr is the thickness of the adsorbed layer at the corresponding value 

The·above·equation for VPn depends only on the two following as

sumptions: (1) the pores are cylindrical and (2) the amount of adsor-

bate in·equ;i.librium with the gas phase is retained by the adsorbent 

either by physical adsorption on the pore walls or by capillary conden-

sation in the inner capillary volume. This method is generally more 

appltcable but there are a. lot of approximations necessary and it is 

also rather time-consuming. 

10 c. G. Shull has applied the Wheeler theory to experimental iso~ 

therm data which he compares· with standard isotherms represented either 

by Maxwellian or by Gaussian distribution functions. The reason for 

this is that the layer thicknesses of.the BET theory become much larger 

than the experimental thicknesses .for flat surfc;1ces in the region of 

high pressure. 

Shull in his method uses the simpl;i.fied equation of the Wheeler 

theory, i.e., 

rr~ 2 
Vs - V =".J (r-t) L(r)dr 

. rp 



where rp is the correc;ted Kelvin radius obtained as a function of the 

relative pressure from the Kelvin equation and from the equation 

11 

(3-4) 

which gives the radius .of: a cylindrical capillary at a particular value· 

of the pressure. The quantity (Vs - V) gives the volume of gas which 

is not yet adsorbed at a press1,1re p. This volume is simply equal to the 

total volume of pores which have not as yet been filled at that same 

pressure P• 

The pore-size distribution function L(r) can be represented by a 

Maxwellian distrubution function, given by: 

L(r) = Ar•exp(-r/r0 ) 0-5) 

with A and r 0 being eonstants. When L(r) is substituted into the Whee-

ler eqµation and the integration is perfori:ned the expression for (V s-V) 

is obtained in the form: 

4 = Ar •M(r ,r0 ) 
. 0 p (3-6) 

where 

M(rp,r0 ) ~ (n/r~)exp(-rp/r0 ) [rp(rp-t) 2 + 6r~ + 2r~(3rp-2t) + 

r0 (3rp-t)(rp-t)J (3-7) 

The above function is evaluated at various values of rp and r 0 and 

a family of curves, known as II standard inverted isotherms11 , is obtained 

when plotting M(rp,r0 ) versue r, 
p 

The function L(r) may also be represented by a Gaussian distribu-
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tio~ function as: 

. L(r) (3-8) 

with A, B, and r 0 being constants. Substitution of L(r) into the Whee-

ler expression for (Vs~V) and integration gives; 

(3 ... 9) 

where 

+ 

(3-10) 

and p and H(x) are given by: 
I 

p = and 
• I (x 2. 

· H(x) = (2/rrr )~e-Y dy 

The parameter a determines the width of the pore-s:i,.ze distribution 

while r 0 determines the average pore size. The. function G lo (rp, r 0 ) is 

is evaluated for various values of the·parameters e' rp, and ro and a 

family of Gaussian "standard inverted isotherms" is obtained when 

GS(rp,r0 ) is plotted versus rp. In this case 13 has a constant value 

while rp and r 0 change; in other words G$(rp,r0 ) is. evalt,iated at certain 

value·s of a with rp and ro changing for every different value of e . 
In order to interpret the experimental data the following procedure 

is used: 'l'he experimental isotherm is plotted as V .. v (using a logarith-s . 

m:i,.c scale) versue r, the corrected Kelvin radius. This is referred to 
p 

as an "inverted isotherm", which in turn is matched with either a 

Maxwellian or a Gaussian II standard inverted isotherm." The pore-size 
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distributiQn L(r) would be known immediately if an acceptable match is 

obtained between the II inverted'' and the II standard inverted" isotherms 

because the parameters of the standard isotherm are known. 

Oulton11 suggested a method for calculating the pore-siie distri-

but ion from a desorption isotherm which considers the thickness of the 

adsorbed film that is attracted to the solid surface by forces greater 

than the interaction forces of the liquid itself. He assumes that the 

thickness of the film is constant and equal to the number of molecular 

layers at the relative pressure at which capillary condensation starts, 

He further assumes that the radius of the smallest pore present is de-

termined at the closing of the hysteresis loop, i.e., at the pressure 

P/P0 where condensation sets in the capillaries. He defines the quan-

tity Nd as being the thickness of the adsorbed film, where N is the num~ 

ber of molecular layers in the film and dis the diameter of a single 

molecule or the thickness of the monolayer. The value of Nd is the de-

termining factor concerning the size of the pores and it is assumed that 

there are very few, if any, pores present with radii less than Nd. The 

calculation of the pore-size distribution therefore starts at the value 

of the lowest relative pressure at which hysteresis starts and pores 

whose radii are less than Nd are neglected completely. 

Anderson12 , with the assumptions of Wheeler and Barrett, and Joyner 

and Halenda, has developed a method of numerical differentiation in ob-

taining differential pore distributions. The volume of pores emptied, 

V, is a function of the volume adsorbed, V d • and the thickness of the as.· 

V = f(V d , t) as. 0-11) 
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The .differential volume of the pores emptied, dV, is then related 

to a differential amount desorbed, dV d , by applying partial differena S• 

tiation on the function of V. This method is developed fully in the 

original paper and it has been used very successfully to compute pore-

size distribution curves on the assumption that pores are cylindrical in 

shape. Surface areas of adsorbents, such as silica gel, porous glass, 

alumina, etc., obtained by this method are in good agreement with the 

BET results with errors in the range of 3 to 10 per cent. 

Methods of calculation of pore-size distributions for "silt-shaped11 

pores (parallel-plate mpdel) were proposed by Innes 13 and De Boer14 and 

c~-workers in a series of articlesl5 , 16 , 17 ~ 

Innes13 regards the capillary system as being equivalent to a sys-

tern of parallel plates with varying distances of wall separation. The 

Kelvin equation is still assumed to be applicable in this case, except 

that now the pore radius is replaced by the·pore ·wall separation. It 

will be shown later that this separation is given by: 

(3-12) 

In hls. metqod Innes assumes that the total ·volume adsorbed, in cm3 

of liquid, denoted by X, is g:i,ven by: 

X = V + At (3-13) 

where V is the. volume Ctn cm3) of the pores that are completely filled 

with liquid nitrogen, and A is the surface area of the incompletely 

filled pores (in·cm2 per gram of adsorbent). 

When very small increments are co~sidered the equation for X can 

. be written in the form 
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AX - AV + A.6 t + tA A 

and 

AV (3-15) 

where the bars denote average values over the ·particular increment under 

consideration. 

Substitution of the equation for b.V. into that for fl X gives 

or 

tix =Av+ AAt - · 2E(tav) 
d 

f:N = _L.(AX .. A6t) 
d-2t 

(3-16) 

The assumption is t'l;lenmade that at the .highest relative pressure, 

(P/P0 ) = 1, all the pores are filled, so that a= 0 and V = X, and the 

pore size distribution can be evaluated by a stepwise·procedure when 

eq1,1al increments ·of P /P0 are chos11m on t;he · desorption isotherm. 

Lippens, Linsen, and De Boer15,l6,17 in their calculations of dis-

tribution curves for several aluminum oxide systems make use of the same 

wall separation term d, proposed by Innes, assuming that the pores in 

such oxides are "slit-shaped:.n The assumption that all the· pores are 

filled at a relative pressure of unity is still valid, and starting at 

that pressure the desorption isotherm is divided into parts correspond= 

ing to equal steps of 2llx, with x used to denote P/P0 (x = P/P0 ). 

At the beginning of the ith step the relative pressure is Xi+ Axs 

the volume adsorbed in cm3 of liquid nitro$en. is X(xi + l!.x), the surface 

area of that pa:rt of pores which are riot filled with liquid nitrogen is 
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pressure is lowered to xi - 6.x then the pores with Kelvin radius between 

rk(xi + 6.x) and rk(xi _ t,x) are emptied. The ave')'.'age Kelvin radius for 

this group of pores at Xi may be taken as (rk)x, if the single increment 
J. 

6.x is very small. The average wall separation or pore width at xi is: 

(3-18) 

where txi is the thickness of the adsorbed layer at xi. The surface 

area of these. pores is [\Sx. and their volume is given by: 
J. 

0-19) 

At a relative pressure of xi - 6.x, which corresponds to the end of 

the ith step, X(xi· _ Av) is the volume of nitrogen adsorbed, S 
u,, (xi - t-.x) 

is the surface area of the pores not completely filled with liquid ni-

trogen, and t(xi _ 6 x) is the layer thickness. 

Therefore 

x . x . 
(xi + l\x) - (xi - 6x) 

where 6Xx. is the volume of nitrogen desorbed during the ith stepo 
J. 

There a:r:e two contributions to t:he volume tiX • The first is the 
xi 

volume due to capillary evaporation from the group of pores at xi and 

from the decrease of the adsorbed layer thickness of the group of pores 

when the relative pressure is lowered Xi to Xi - t:, x. This volume is 
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given by: 

(3-21) 

!he ,second contribution is the vol~me that comes from the decrease 

of the adsorbed layer thickness in the ,pores which are emptied when the 

,pressure xi+ Ax, is lowered to xi - 6x, and it is equal to: 

0-22) 

where s(x. + Ax) is obtained from the sunnnation ·of ,all contributions 
i . 

ASx of the groups of pores that have c:t width-greater than d(xi + Ax) or 

greater than d( A ) since: 
. xi + 1 - uX 

Therefore 

and the equation for 6Xx· becomes: 
. . i 

. AX .. = l. ~- ·. - 2t( .• A :1).. ~ ASx . 

. .. xi, 2 ~1 Xi u~ ·· i 

+ ~( A )-t( . :.1) • k 6 s 
Lxi + ux Xi - u.:J i xi - 1 ' 

(3-23) 

0-24) 

0-25). 

Solving the above for 68 and substituting in equation (3-19) for 
xi 



t:.V 
xi 

AX x. 
]. 

which upan simplification hf;!comes: 

b.V = 
,Ci 

Now lettiri.g 

and 

d • x X, /j, X• 
]. ]. -· 

d - 2t( ) X• X· ., b,x 
]. . ]. 

the simplified'. equation for 'ft.Vx. is obtained in the form: 
]. 

18 

(3-26) 

(3-28) 

When all the eontrib4tions t,,Vx. and AS are-summed up, the cu-
l. xi 

mt1lat:i,ve volume !:AVx, q.nd the cumulat:i,ve surface area l'.:6S are re-
l. Xi 
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spectively obtained •. The quantity E 6Vx· represents the total volume 
. 1 

:while E 6 Xx. represent a the total surface area of the pores which have 
1 

a width greater than dx. 

It is now necesaary to consider the methods of calculation of the 

· basic parameters +p, d, rk, and t. 

Fq:r; pores which are assumed to be cylindrical in shape, the value 

of rp, the radius of the largest pore filled with liquid nitrogen at 

any pr•ssure (Figure 2), i• given by: 

(3-4) 

with rk and t being, as before, the Kelvin radi,us and· the thickness. of·· 

the multilayer,· 'l:!'espectively, · · 

In the case of 11 sl~t-shaped11 pores, for ·which the parallel-plate 

model has been assumed, the value·of d, the maximum c;listance of wall 

separation at which capillary condensation can occur at any given rela-

tive pressure P/P0 , is represented by the following equation: 

d = rk + 2t (3-18) 

· with Figure 3 showing the cross section of the parallel-plate model. 

The r's are evaluated from the Kelvin equation: 
k 

(3-1) 

where the assumption has been made that the contact angle 'f is o0 , and 

so cos 'l.1 eqtJals unity. T'1,is_ equation can be simplified fu1;ther when 



20 

Figure 2. Cross Section of Cyl:i,ndrical Model 

SOLID 

' T ADSORBED LAYER t 

t 
(d_f2t) d rk 

l_ l ' ADSORBED LAYER t. 

f SOLID 

Figure 3. Cross Section of Pa:ra1lel-Plate Model '~l 
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nitrogen gas is the adsorbate and adsorption isotherms are obtained at 

the liquid nitro.gen temperature. In this case the valves of a (80 72 

' ' ' 3 
dynes/cm), Vm (34.68 cm /mole of the l;i.quid), T (78°K), and R (8.316 x 

107 ergs/°K) when substibuted into the Kelvin equation give: 

p 
log-. -

Po 
and 4.14 (3-31) 

log(P /P0 ) 

The layer thickness, t, can be evaluated by either of two methods, 

10 15 16 17 one proposed by Shu.11 , and the other by De Boer and co-workers ' ' • 

Shull has taken the BET thicknesses and plotted the experimental 

values of the numper of adsorbed layers versus the relative pressure. 

The·number·of adsorbed layers i:;, given as the ratio (Vads./Vm), where 

Vads. is the volume adsorbed at any pressure and Vm is the volume cor-

respond:i,ng to.monomolecular coverage of t;:he surface. In this manner an 

average adsorption isotherm :i,s obtained. It is obvious that this method 

does not take into c;1ccount capillary condensation. Using now the aver-

age isotherm the thickness of the adsorbed layer can be calculated as a 

function of the relativepressure if the ass1Jmptfon is made.that the 

thickness of the monolayer must be equal to the diameter of the nitro

o 
gen molecule, taken as 4.3 A. De Boer points out that Shull 1 s calcula-

tion of the t curve is inconsistent because of the fact that when com-

puting the diameter of the nitrogen molecule Shull assumed a closest 

packing of spheres, while on the other hand, he assumed that the succes-

sive layer~ in multilayer adsorption are packed in·such a way that each 

nitrogen molecule of the following layel'." is placed just on tpp of a 

same molecule of the previous layer. 

Lippens, Linsen, and De Boer make the use of a ptatistical thick-
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ness necessary by assuming that both the adsorbed layer ancl the con,

densed liquid have the. same. density, taken as that of the liquid nitro-

g1;m. They have defined t as: 

t = x s . 104 X (3-32) 

or 
M•V v ads. 104 X t = sp 

• 22414 s (3-33) 

where tis the.statistical thickness of :the adsorbed layer, Xis the ad-

3 
sorbed volume in cm of the liqu;i.p. adsorbate, Sh the specific surface 

area in m2/gm of the adsorbent, Mis the molecular weight of the adsor-

bate (28.013 gm/~ole of nitrogen), Vsp is the specific volume of liquid 

3 
nitrogen (1.000/0.808 cm per gram), and Vads. is the adsorbed volume of 

nitrogen gas in cm3 at S.T.P. per gram of adsorbent. The.factor 104 is 

a consequence of the conversion into Angstroms. 

When the values for nitrogen a'.l'.'e·substituted into equation (3-33) 

the result is: 

t = 15.47 vads. 
s 

0 
A 0-34) 

The value of Sis taken from the BET method which also gives the value 

Vm, the volume necessary to cover the surface with a unimolecular layer. 

If the surface area covered by one nitrogen molecule is known then SBET 

can be calculated from Vm• This surface area is evaluated by assuming 

a close-packed structure for the adsorbatel.in the case of liquid nitro

gen it is equal to 16.27 X2• SBET is· then equal to: 



and when substituted intoequation(.3 .. 34) fc:>r t gives: 

t Vads •. Ao - 3.54 • v m 
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(3,..35) 

. (3-36) 

Thus, either e.quation 0-34) or equation (3,-36) may .be used to eva-, 

luate the·multilayer adsorption thickness t from the data of the BET 

·method at various increments of..:the relative prel'!sure. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

Three different forms of stannic. oxide (Sn02) are used i~ this 

study. The methods of preparation of these·materi.als are given by 

Rutledge, Kohnke, and Cunningh~m18 • Their nitrogen adsorption isotherms· 

were obtained by using a ;modified BET adsorption apparatus18. 

The stannic oxide powder is a finely divid~d whi~e substance the 

·particles of which have ,an· average diameter· of about 1.5 microns. Pow

ders such as this are expected to be mainly nonporous and in general 

exhibit an S-shaped isotherm (Brunauer 1 s Type II isotherm). The·expe

rimental data for the powder~ givi,ng the volume.9f the nitrogen gas ad

sorbed with increasing relative pressure, are reprodu¢ed in Table I. 

The corresponding BET nitrogen adsorption-desorption isotherms are re

p;i;esented in Figure 4. The BET equation in its mQdified form when 

applied to the isotherm of the·powder yieldis a specific surface area of 

1.99 m2/$18• 

The.stannic oxide in, the form of a ceramic was prepared from an 

acetone.slurry of the powder19• Specific surface areas of ceramics are 

known to lie below those of their corresponding. powders because, as 

mentioned earlier, the.pores present in the powders become qmaller in 

the ceramics during the sintering process. This is shown to be the case 

for the Sn02 ceramic. The shape·of its isotherm, determined by its pore 

structure, should follow the general S-shaped isotherm of the powder 

24 
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and indeed it does. Table I gives t:he experimental BET adsorption data 

while Figure 5 l"epresents the adsorption-desqrption isotherms of the 

Sn02 ceramic. The value of its specific (BET) surface .area·was found 

to be equal to 0.37 m2/g18. 

The third form of stannic oxide under study is the gel. Several 

methods for the preparation of the gel of various degrees of purity are 

'1 bl 20,21,22,23,24 avai a e · • A method similar to that reported by Goodman 

and Gregg25 was useµ; it is based upon the hydrolysi.s of stannic eth-·· 

oxide. The gel obtained is considered t;o be ion-free. The experimental 

dat;;i and the adsorp~ion-desorption isotherms are given in Table I and 

Figure 6, respect;ively. A :arunauer Type I isotherm is obtained, 

suggesting that this is a highly porous substance. Application of the 

:SET equation yielded a value of 169 m2/g for the specific surface area 

of the gel as compared to the values of 173 m2/g and i72 m2/g reported 

by Rutiedge, Kohnke, and Cunningham18 and by Goodman and G;r:egg25 , re-

spectively. 

In the pre.sent investigation the.data f:i::om the BET nitrogen adsorp-

tion isotherms and the BET surface.areas are-used to compute the·pore-

size distributions of the three forms of stannic oxide. It should be 

pointed out that the adsorption data for the powder and the ceramic were 

taken from Rutledge, Kohnke, and Cunningham18, _which represents previous 

work done by these investigators on the surface areas of:·stannic oxide. 

The adsorption data for the-gel were obtained from a more recent experi-

mental run and they are used in this stuqy since they are in excellent 

agreement·with the corresponding data mentioned above. Also to be noted 

is the fact that the isotherms for all three substances exhibit no hys-

teresis and they do show the,characteristic Type I (Gel) and Type (II) 
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TABLE I 

EXPERIMENT,A.L DATA 

POWDER CERAMIO GEL 

P/P0 '!:ads. P/P0 ~ads. P/P0 v ads. 
-oh _f 

0.0124 0.325 9.0195 Q.034 Q.0124 31.41 
o.ozio 0.344 0.0361 0.049 o. 0181 33.37 
0.0332 0.378 0.0671 0.060 0.0252 35 .11 
0.0466 0.404 o. 1136 0.072 0.0321 36.34 
0.0593 0.422 0.1733 0.087 0.03 73 37.21 
0.0677 0.432 0.2264 0.()98 0.0402 37 .71 
0.0844 0.452 0.2607 0.102 0.0885 43.62 
0.1466 0.532 Q.2956 0.115 0.1121 46.41 
o. 2416 · 0.658 0.3264 0.118 0.1290 47.93 
0.3471 0.790 0.3903 0.127 0.1393 48.91 
0.4425 0.917 0.4735 0.140 0.1446 49.35 
0.5040 1.901 0.5140 0.142 0.1544 50.17 
0.5662 1.093 . 0.5797 0.167 0.1696 · 51.48 
0 .. 6339 1.180 0.6684 0.177 0.1887 53.20 
0. 7110 1.324 0 • .7831 0.206 o. 23 72 56.86 
0.7979 1.529 · o. 9096 0.246 0.3358 63. 75 
0.8176 1.594 0.9885 0,391 0.4350 68.45 
0.8499 1,682 0.9101 0.245 0.5184 70,27 
0.8902 1.855 0.7830 0.197 . 0.5195 70.30 
Q.9235 2.053 0.6695 . 0.166 0.5561 70.66 
0.9595 2.494 0.5801 0.152 0.6980 71.14 
0.9860 3.034 0.5151 0.134 0.7857 71.20 
o. 9560 2.569 0.4710 0.1;33 0.8757 71.27 
0.9207 2.118 0.2792 0.101 0.9969 76.05 
Q.8882 ·1.923 o. 2395 0 •. 092 Q.8760 7l.21 
0.7974 1.573 0.7863 71.09 
0.7684 1.495 0.6975 71.12 
o. 7144 1.359 0.5547 70 .. 93 
0.6144 1.191 0.5173 70.82 
0.4168 o.979. 0.4011 68.58 
0.3951 0.886 0.3663 65.76 
0.3464 0.821 0.2126 55.30 
0.2724 0,719 0.2030 54.70 
0.1892 · 0.612 0.1812 . 52. 90 
0.1149 0.518 0.1470 49~91 
0.0952 0.496 0.1073 46.08 
0.,0460 0 .. 426 0.0694 41.87 
0.0288 0.388 0.0425 38.22 

vads. is exprei;;sed in·cm3 at S.T,P. pe~ 1 ~ of adsorbE:mt. 
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(Powder and ceramic) isotherms of Bn.mauer. 

The·pores in these materials are assumed to be 11 slit.:.shaped" in-

stead of circular, so that the method of C<;ikulation as presented by 

Lippens, Linsen, and De Boer15 for the parallel .. plate model is used and 

their pore .. size distributions are obtained. 

The ac;lsorption .. desorption isotherms were plottec;l on an extended 

scale and then divided into equal inµrementf:i of t.he·relative presi,l,lre. 

The volume of the gas adsorbed corresponding to each of the pressure 

increments was read from the graph and used to calculate t:he values of 

t from equation (3 .. 34). 

The values of the Kelvin radius rk were calculated f:J;".om equation 

(3 .. 31) where P/P0 values are taken as the relative pressure incrementso 

l'o evaluated .at eac;h P/P0 the equation <l = rk± 2t was employed. 

The liquid volumes were computed by multiplying the values of V d. by a s. 

0 0 00155, which is the factor for converting the volume ot gas in cm3 at 

S.T.P. to the volume of liquid in cm3 at its normal boiling point. 

The volume of liquid nitrogen desorbed between two consecutive 

pressure increments is given by llXx.; ~ it is obtained by progressive sub-
1 

traction of each liquid volume :l;rom the succeeding one. 6Xx. represents 
1 

the uncorrected dist:dbution for physiciil adsc;>rption and it is used to 

calculate the correction factors. 

I 
The two correction factors to be evaluated are~- an<i Rx., given 

1 1 

by equations (3-28) c;t.nd (3-29), respectively. 

Computation of the corrected liquid volume 6Vx., the cumulative 
1 

pore volume EA vx., the a:rea of the groups of pores of mean width dx. 
1 1 

l!.Sx., and the cumulative pore area E 6 Sx., must be made from the bottom 
1 .. 1 · 
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to the top, from the :Largest to th~·smallest group of pores. The cumu-

lative .area E6Sxj. .. l of all the pores of mean width largE:r than d(x1.+tix) 

is used to .calcuhte the correction to the voltime ot the next lower 

group of pores of -mean width dxi-l' etc. 

Ev1;1.luation of 6Vxi is made from equation (3-30), For the very 

· last (first from th,e l;>ottom) group of pores which is ·aho the largest 

in size this eq\,lationbecomes: 

and ~sx. is given by: 
]. 

2AV 
,__.,.x_i • 104 

d . 
. :x;i 

(4-1) 

(4-2) 

The ·presen~e of the factor 10'"4 in 6Vx· and 104 in· ASx. ~s accounted 
]. ]. 

for in Appendix A. 

The ·cumulative po:re volume Ef:,.Vx, and the ,curriulftive surface area 
]. 

I:6Sx. are obtained by the pi;-og1;ess:j.ve sunu-ning of AVx· and .6Sx·, res-
1 ]. ]. 

pective ly, from the bot.tom to the top. 

With the Sn02 gel as .an example a sample calcu.lation will be 

carried out in order to,show the method more clearly and p:resent the 

mathematical computations involved. '!'h~i;e calculi:ltions correspond to 

four groups of pores, two from the bottom and two .from the top, with 

the results.given in Table TV. 

The values of P/P0 and V d are taken from the isotherm of Figure a.s. 
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6 for the gel with the increment of the relative pressure b,x being equal 

to 0.005. The upper limit for x; P/P~ is. 0.655, the value of the pres ... 

sure at which the isotherm levels off. 

The starting point is at ~l = 0~010 wi~h ~1 - Ax::;:: 0,005 and 

X1 + /J.x = 0.015. At '.lCl - 6'){. = 0,005, V ads. ;:::;, 26.40 cm3 of nitro~en 

gas, and SBET = 169 ~2./g. 

Therefore: 

tco.oos> = 1s.41 ~::;· I = 1s.41F~6~"' MZ X 

r = • 4.14 ::;:: _ . 4.14 . = 1. 80 j_ 
k(0.005) log~· log(o.oo,5 

. 0 

d(0,005) =. rk(0.005) + 2t(O.OOS) = 1.80.i- 2(t,42) = 6.64 A 

V . co 005) = V d ( 005) ~ (o.ooi55 ) = liq. • . a s • .o. · 

= 26.40 • (0.00155)::;:: 0.04092 3 om 

The same method o~ calculation is applied to all incremental values of 

P /P0 up to O·. 655. After all four parameters have peen evaluated fiXx. 1 s 
1 

at x1, x2, etc., are obtained by successive sµbtraction. At x1 = 0,010 

6X( ) = V ( ) - V ( ) 0.010 liq. 0,015 . liq. 0.005 

= Q.05045 - 0.04092 = 0~00953 cm3 

Also at x1 = 0.010 

= 7,63 - 2.735 
7.63 .. 2(2.42) 
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an~ 

R(o.010) ~ Rco.010) • 50.01s) - tco.oo:;) I = 

= 2.735 ~ (2.42 - 2.97) = 1.504 

I . 
The eveluation of AXxi' Rxi, and Rxi is completed at thE} relative pres.-

sure-of xi equal tQ 0.650. 

In order now to obtain the results given by the . last·· four column$ 

of Ta·ble IV~, calculations must sta-rt from the bottom. Since the.· pres

su:re at x = o.650 gives ~he group of pp-,:-es in the cra.nge ·of ,c = 0.645 to 

x = 0.655, I:!!.S above x = 0.655 is assume:d to be zero. This assumption 

is not entirely valid bE\cause there are some-pores of size larger than 

() .. 
d( 0•655 ) = 35.55 A which contr;i.bute, though sUghtly, t<:> the-over-all 

surhce area. Therefore the correction to the volume LW(o. 6SO) due to 

I:ti,S( 0•660) represented by the· second term qf equation (3 .. 30)., drops· 

out. The corrected volume is: 

6,V (0.650) = R(0.650) • AX(0.650) == 

= 1.589 • 0.0003 = 0.00005 cni3 

and 
. . 

Now 

. . 4 
2 b. v (0.650) .10 

~ = ... ·. = 
co.6,o) dco.~so> 

·= 
2 x 4.8 x 10~5 x 104 2 

35 .t6 . . .. = 0.0270 m /g 
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and 
. . . 2 . 

E6S(0.6SO) = o.ono m /g 

This process is repeated for eve:ry xi up tQ the smaller values at 

the tqp of the Table• Contr:lbutions to the cqrrection of the volume 

from the cumulative pore area become more important as xi decreases. 

The computations are conti;nued until EtiVx, rea9hes t;he ri;teasured volume 
.:\. . 

-of the pores which is given at the bottom of !:!he ·co lume for v1 . • For 
. lq• 

the gel this total liquid volutne is 0.11028 cm3 at the relative pressure 

of 0.655. , -;[t is posaiblf;l to anticipate the step at which t_he volume 

will be exhausted. · $uch a step wil1 give the group containing the 

smaHest pores. In order now to obtain the 'liq\lid volume fo'r this group 

the·preceding valµe of'f.6.V is subtracted from the-measured value.of the 

total volume~ 

In the cases cons~dered h1;1re for the Sn02 powder, ceramic, and gel 

it is evident that the vol',lme of the pores is no~ exhausted even at the 

ve:i;-y smallest pore size:;. It is necessary at this. point to assume that 

the retnfiining volume should beadsol;'qed in pores fl)f si~es larger than 

the.size .of the nitrogen :molecule but.smaller than the si;e of the smal

lest pore contained in the-group immec;iiately·above, I:(: the diameter of 

the nitrc::>gen molecule is taken as 4.3 f then this smallest group of 
0 

pores should ha,ve a mean·separation d between 4 .. 3 A and d(x ... Ax)" 
l . . 

· In tµe case-of the gel (Table IV) 

l,V(0.010) = l,R(0,010) " AX(Q.010)1 · 

. . 

f}.t Xl = 0.010: 

-'h< 0.010) • iA s (0,020) .10-4 I = 

(4-3) 

= (2.735 x 0.00953) - (1.504 x 130.43 x 10-4) = 



::::;:: 0.00644 cm3 

~ .0 .• 09856. + ·0.006.44 = O. 1-0500 cm3 

:::;: 2 x 0.00644 x 104 = 16.90 m2/g 
7.63 

= 130.43 + 16. 90 = 147 .33 m2 /g 
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It is observed that the group of pore• at ~l ~ 0.010 has not ex

hausted the total ligi,d..d volume, The over.-all volume desorbed when the 

relative pressure is reduced t;o 0.005 is 0.10500 cm3 • The volume which 

remains is given by: 

: 0.11028 - 0.10500= 0,00528 3 cm 

0 0 
and it is the volume of the pores having d between 4.3 A and 6.64 A. 

0 
An average separation equal to 5.47 A is used to evaluate .6S(x( .0.005) 

for the group of pores at P/P0 equal to or less than 0.005. 

Thus 

_ 2 x !},.V(·. ( 0 . OOS)·· x 104 
Ll S ( X ( 0. 005 ) - ·. . . . . . . K ·· 0 . . = 

d(~( 0.005) 



E/.nd the c1,.1mulative surface area I:t.S will then be:· 

68 ;,;: 
(x ( O,Q05) 

. 2 
=;: 147.33+19.31:c;; lp(ii.64m/g 

Therefore the total surface area of th~ geL obtained by the methGld of 

pore.size· di~tr:j.bution has the value of 167 rn,2 /g. 

The·same-seq1,1ence of cal~ulations is employed· for t;:he powder and 
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the ceramic forr,.,.s oj: stannic· oxi<ae, EvaluatiQn o.f the pore..;size distl;'i .. 

bution in the-powder was carried out at a relative- pre$sure reaching an 

upper limit. of 0.987, while for the ceramic an upper limit of 0.990 is 

use_d. This h p.ecessary because· of the shape -of their isothe;rms. 

Tables II, Ill, and lV give part af the.re1:1ults of the·pore-size 

distribut;i,on cc!,lC\,llati,;ms for the Sn02 J,!IOWder, ce'l"amic i;tnd gel, respec· 

tively. Table y presents selected· values of· the cumulative p~>re volume 
. . 

E6 V and t.he culilulative surface .areaE AS with the· correi:;ponding values 

of the pore-wall separat:i,on d :f;or all. three substances. Plots· of the 

cumulative pore volume versus dxi are-represented in Figures 7,-8, and 

9, while plots of the cumulative si.rrface area v~r!:fUS dx. are given in 
.i 

Figures 10, 11, and 12. 

_After all computations have been completed, c!-11 the IJ.V 1 s·can be 
xi 

divided by the t.d' s over ·which they were determined. The resulting 

values of !).VI Ad are then l)lot;:ted agl;;linst the ·CQrreljlponding dxi I s in 

order to obtain the d;i.fferential pore-volume d:i,strib1,1t;ion curves : 



TABLE II 

COMPUTATION OF PORE VOLUME AND AREA DISTRIBUTIONS FOR STANNIC OXIDE POWDER 

P/P0 v t rk d v 1 · tsx.x. ~i ~- Av 'f.lN .6Sx. r. ASX. ads. 1q. xi X· 1 1 1 1 1 

5.65 -------- -------- ----- ----- 0.000033 0.004715 0.1170 1. 97-00 
0.010 -0.315 2.45 2.07 6.97 0.000488 -------- ----- ----- -------- -------- ------ ·· ------
0.020 0.362 2.81 2.44 8.06 -------- 0 .. 000120 2.551 1.530 0.000036 0.004682 0.0890 1.8530 
0.030 0.392 3.05 2.72 8.82 0 .. 000608 -------- ----- ----- -------- -------- ------ ------
0.040 0.413 3.21 2.96 9.38 -------- 0.000063 2.860 0.915 0.000023 0.004646 0.0490 1. 7640 
0.050 0.433 3.37 3.18 9.92 0.000671 -------- ----- ----- -------- -------- ------ ------
0.060 0.449 3.49 3.39 10.37 -------- 0.000048 2.857 0.687 0.000022 0.004623 0.0423 1. 7150 
0.070 0.464 3.61 3.58 10.80 0.000719 -------- ----- ----- -------- -------- ------ ------
0.080 0.477 3. 71 3. 77 11.19 -------- 0.000039 2.81-9 0.536 0.000023 0.004601 0.0411 1.6727 
0.090 0.489 3.80 3.96 11;56 0.000758 -------- ----- ----- -------- -------- ------ ------
0.100 o. 5-01 3.89 4.14 11. "92 -------- 0.000036 2. 759 0.497 0.000020 0.004578 -0.-0336 1. 6316 
0.110 0.512 3.98 4.32 12.28 0.000794 -------- ----- ----- -------- -------- ------ ------
0.120 0.523 4.07 4.50 12.64 -------- 0.000037 2.701 0.513 0.000020 0.004558 0.0316 1.5980 
0.130 0.536 4.17 4.67 13.01 0.000831 -------- ----- ----- -------- -0.004538 ------ 1.5664 

• . • 
' . • . . . • • • 

0.945 2.332 1-8. 13 168.30 204.60 O.OOJ615 -------- ----- ----- -------- -------- ------ ------
0.950 2.396 18.63 185.70 223.00 -------- 0.000269 1.194 1.612 0.000313 0.001245 0.0281 0.0801 
0.955 2.506 19.48 207.00 246.00 0.003884 -------- ----- ----- -------- -------- ------ ------
0.960 2.622 20.38 233.90 275.00 -------- 0.0-00301 1.165 1. 759 0.000346 0.0009T2 0.0252 0.0520 
0.965 2.700 20.99 267 .oo 309.00 0.004185 -------- ----- ----- -------- -------- ------ ------
0.970 2.782 21.63 314.00 357.00 -------- 0.000240 1.133 1.360 0.000270 0.000586 0.0151 0.0268 
0.975 2.855 22.19 377 .oo 421.00 0.004425 -------- ----- ----- ----·---- -------- ------ ------
0.977 2.880 22.39 410.00 455.00 -------- 0.000101 1.108 0.565 0.000112 0.000316 0.0049 0.0117 
0.979 2.920 22.70 450.00 495.00 0.004526 -------- ----- ----- -------- -------- ---·--- ------
0.981 2.950 22.93 499.00 545.00 -------- 0.000093 1.091 0.458 0 .000101 0.000204 0.0037 0.0068 
0.983 2.980 23 .12 560.00 606.00 0.004619 -------- ----- ----- -------- -------- ------ ------
0.985 3.010 23.4-0 627 .oo 674.00 -------- 0.000096 1.074 0.569 0.000103 0.000103 0.0031 0.0031 w 
0.987 3.042 23.65 726.00 774.00 0.004715 -------- ----- ------ -------- -------- ------ ------ -..J 



TABLE III 

COMPUTATION OF PORE VOLUME A.ND AREA DISTRIBUTIONS FOR STANNIC OXIDE CERAMIC 

P/P Vads. t rk d V1. 6xx. ~i 
R' /),V r.iv tis r:is 

0 iq. 1 Xi xi xi xi xi 

4.80 -------- -------- ------ ----- 0.000004 0.000605 0.0170 .0.3480 
0.020 -0.034 1.42 2,,44 5.28 0.000053 -------·- ----- ------ -------- --------- ------ -------
0 • .()JO 0.044 1.84 2.72 6.40 --------- 0.000025· 1.798 · 1.204 0.000008 0.000601 0.-0255 0.3310 
0.040 0.050 2.09 2 .. 96 7.14 0.-000078 -------- ----- ------ - ---------- --------- ------ -------
0.050 0.{)54 2.26 3. lB 7.70 --------- 0.000012 2.188 0.744 0.000005 0.-000593 0.0130 0.3055 
0.060 0.058 2.43 3.39 8.25 0.-000090 -------- ----- ------ -- -------- -------- ------- --------
0.070 ·0.061 2.55 3.58 8.68 -------- 0.000010 2.272 0.568 0.000007 0.000588 0.0160 o. 2925 
0 .:080 o.-Ou4 2.68· 3.77 9.13 0.000100 -------- ----- ----- -------- -------- ------ -------
0.090 0 .. 067 2.80 3.96 9.56 -------- 0.000009 2.276 0.569 0.000005 0.000581 0.0113 0.2765 
0.100 0.070 2.93 4.14 10.00 0.000009 -------- ----- ----- -------- --------- ------ ...,.~'-----~ 
0.110 0.073 3.05 4.32 10.42 -------- 0.000007 2.285 0.480 0.000004 0.000576 · 0.0077 0.2652 
0.120 0.075 3 .14 4.50 10. 78 0.000116 -------- ------ ------ -------- --------- ------ ------
0.130 0.077 3.22 4.67 11.11 -------- 0.000000 2.3{)0 0.368 0.000005 0.000572 0.0085 o. 2575 
0.140 0.079 3.30 4.85 11.45 0.000122 ·---· ---- ------ ----- --------- 0.000567 ------ 0.2490 

• 
• . . . . . . . . . . . . -0 

-0. 960 0.308 12.86 234.00 260.00 0.000477 --------- ------ ----- ----·-·--- -------- ------ -----·-
0.965 0.316 13. 22. 267 .oo 294.00 -----·--- 0.000031 1.096 0.931 0.000034 0.000136 0.0023 0.0062 
0.970 0.328 13.71 314.00 341.00 0.000508 -------- ----- --------- -·-------- -------- ------
0.972 0.332 13.88 334.00 364-.00 --------- 0.000014 1.081 0.411 0.000015 0.0001()2 -0. 0008 0.0039 
0.974 0.337 14.09 363.00 391.00 0.000522 -------- ------ ----- --------- --------- ------ ------
0.976 0 .. 342 14.31 391.00 419.00 -------- 0.000016 1.072 0.472 0.000017 0.000087 0.0008 0.0031 
0.978 0.347 14.53 427 .oo 456.00 0.000538 --------- ----- ----- ----~--- --------- ------ -------. 
0.980 0.354 14.80 471.00 500.00 -------- 0.000020 1.062 0.552 0.000021· 0.000070 0.0009 0.0023 
0.982 0.360 15.05 524.00 554.00 0.000558 -------- ----- ----- -------- -------- ------·. -------
0.984 0.367 15.34 591 .. 00 622.00 --------- 0.000025 1.051 0.704 0.000026 0.000049 0.0008 0.0014 
0.986 0.376 15.72 679.00 710.00 0.000583 -------- ------ ----- ---·-------- --------- ---"!"'-- -------
0.988 0.386 16.14 796.00 828.00 -------- 0.000022 1.039 0.613 0.000023 0.000023 0.0006 -0.0006 
0.990 0.390 16.50 94LOO 974.00 0.000605 -------- ----- ----- -------- -------- ------ -------

w 
00 



TABLE IV 

COMPUTATION OF PORE VOLUME AND AREA DISTRIBUTIONS FOR STANNIC OXIDE GEL 

P/P Vads. t rk dx, vliq. 6XX· R ~~ Avx, E6Vx, !JS Eb.Sx. 
0 1 1 xi 1 1 1 xi 1 

5.4] ------- ------- ----- ------ 0.00528 0.11028 19.310 166.640 
0.005 26 .-40 2.420 1.80 6.64 0.04092 ------- ----- ------ ------- ------- ------- -------
o .om 30.30 2.780 2.07 7.63 ------- 0.00953 2.735 1.5041 O.OD644 0.10500 16.900 147.330 
0.015 32.55 2.970 2.27 8.21 0.05045 ------- ------ ------ ------- ------- ------ ---------
0.020 34.00 3.090 2.44 8.62 ------- 0.00410 3. 216 -0.7398 0.00427 0.09856 9.904 130.430 
0.025 35.20 3.200 2.58 8.98 0.05455 ------- ----- ------ ------- ------- ------ ---------
0.030 36.10 3.300 2. 72 9.32 ------- 0.00287 3.192 0.5745 0.00255 0.09429 5~475 120.526 

· 0.035 37.05 3 .. 38-0 2.84 9.60 0.-05742 -------- ----- ------ ------- ------- ------ -------
0.040 37.'90 3.450 2.96 9.86 ------- 0.00249 3.181 0.4771 0.00269 0.09174 5.460 115 .. 051 
0.045 38.65 3.530 3.07 10.13 0.05991 ------- ----- ------ -------- ------- ------- --------
o.oso 39.43 3.600 3 .18 10.38 ------- 0.00217 3.127 0.4064. 0.00253 0.08905 4.875 109.591 
0.055. 40.05 3.660 3.29 10.61 0.06208 ------- ----- ------ ------- ------- ------ -------
0.060 4-0.80 3.720 3.39 10.83 ------- 0.00209 3.085 0.3 703 0.00276 0.08652 5.095 104. 7 lf> 
0.065 41.40 3. 780 3.49 11.05 0.06417 ------- ----- ------- ------- 0.0837'6 ------ 99.621 

• . . • • . . 
• . . • • . • 

0.595 71.03 6.502 18.36 31.36 0.11010 ------- .;...,,.. ___ ------- ------- ------- ------- -------
0.-600 71.04 6.504 18.67 31.68 ------- 0.00003 1.696 0.0034 0.00005 0.00030 0.032 -0.177 
0.605 71.05 6.506 18.97 31.98 0.11013 ------- ----- ------ ------- ------- -------- -------
0.610 71.06 6.507 19.28 32.29 -------- 0.00003 1.675 0.0033 0.00005 0.00025 0.031 0.145 
0.615 71.07 6.508 19.61 32.63 0.11016 ------- ----- ------ ------- ------- ------ -------
0.620 71.08 6 .. 509 19 .. 94 32.96 ------- 0.00003 1.653 0.0033 0.00005 0.00020 0.03-0 0.114 
0.625 71.09 6.510 20.29 J 3 • 3 1 · 0. 11019 ------- ----- -------- ------- ------- ------ -------
0.{>30 71.10 6.511 20.63 33.65 ------- 0.00003 1. 631 0.0033 0.00005 0.00015 0.029 0.084 
0.635 71.11 6.512 20.9-9 34.02 0.11022 ------- ----- ------- ------- ------- ------ -------
0.640 71.12 6.513 21.36 34.39 ------- 0.00003 1.610 0.0032 0.00005 0.00010 0.028 0.055 
0.645 71.13 6.514 21.74 34. 77 0.11025 ------- ------ ------ ------- ------- ------ -------
0.650 71.14 6.515 22.13 35.16 ------- 0.00003 1.589 0.0032 0.00005 0.00005 0.027 0.027 
.Q,,655 71.15 6.516 22.52 35.55 0.11028 ------- ----- ------ ------- ------- ------ -------- l,J 

'° 



TABLE V 

C.UMULATIVE PORE VOLUME AND CUMULATIVE SURFACE AREA · 

POWDER CERAMIC· 

d Ef.V Et.S d Et,V EIJS d 

5.65 0.004715 1.9700 4.80 ·0.000605 0.3480 ·5.47 
8~06 0.004682 1.8530 7 .70 0.000593 0.3055 7.63 

10.37 -0.004623 1.7150 10.42. 0.000576 0.2652 8.62 
12.64 0.004558 1.5980 12~58 0.-000560 0.2372 9.86 

. 15.60 0.004456 1.4504 14.85 0.000539 0.2052 11.26 
18.81 0.004328 1.2980 --17 .. 06 ,0.000518 0.1780 12.08 
22.35 0.004163 1.1340 21.00 0.000493 0.1407' 13 .18 
27.44 0.003925 0.9384 24.52 0.000456 O. li64 · 14 .. 22 
32.33. 0.003716 o. 7950 27 ~ 78 . 0.000433 0.0992 15.24 
40.46 0.-003432 0.6338 .. 31. 73 O.Ob04ll .. 0.08"41 16.19 
50.34 0.003152 0.5065 : 36. 77 0.-000387 0.0693 17.52 
57.61 0.002959 0.432~ 46.43 0 .• 000350 -0.-0508 18.78 
67.29 0.002744 -0.3605 ·. 63.03 · ·0.00031)9 0,.0348 . 20.14 
81.32 0.002494 0.2894 87.62 0.000278 0.0259· 21.69 

103.80 0.002186 0.2177 il5 .82 0.000250 0.0199 22.54 
132.EO 0.001838 0.1545 1-43.84 -0.000226 0.016-0 23.33 

165.30 0.001587 0.1185 164.48 0.000210 0.0138 24.08 
189.30 0.001440 0.1007 192.00. . 0.000189 0.0112 . 24.81 
223 ~00 0.001245 0.0801 232.00 0.000166 0 .. 0088 25.93 
274. 70 0.000932 0.0520 294.00 0.000136 0.0062 28.00 
356.80 0 .. 000586 0.0268 36-4.-00 0.000102 0.0039 30.49 

GEL 

EAV 

-o~ no2B 
0.10500 
.0.09856 
0.09174 
0.09376 
0.07949 
0.07237 
0.06522 
0.05781 
0.05111 . 
0 • .04274 
0.03413 
0.02560 
0.01769 
.0.01241 
0.00698 

. 0.003.26 
0.00186 
0.00136 
0.00086 
0.00040 

EM 

166.640 
147 .330. 
130.430 
115 .051 
99.620 
92.162 
80. 741 
70.159 
59.967 
51.355 
41.325 
31. 757 
22.905 
15 .247 

. 10.440 
5 .665 · 
2.496 
1.341 
0.938 
0.562 
0.245 

+:"' 
0 
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(Appendix :B). In Table VI selected values of 6V/~ d versus dx have 
. . . . i 

been recordedto give :t;'elatively smooth distribution curves for the 

three forms of stc;lnnic oxide, which are represented in :Figures 13, 14, 

and 15 for the ·powder, the ceramic~ and the gel, respectively. These 

curves indicate the location of the pore.;yolume maxima, showing at the 

same time the range of the pore separation in which most of the adsorp-

tion occurs. 

When E6Vx. equals the measured volume of the·pores, thenE6S 
]. ;xi 

should be in .good agreement with the total surface area computed from 

the BEl' method. These two values should check well within an experi .. 

mental error of approximately 5 per cent. 

It .is warth mentioning at this point that pore-size distributions 

for.Sn02 gel were computed on the basis of the me~hod of Barrett, Joy .. 

ner, and lialenda9 for cylindrical pores. Average ·pore :radii rp were 

taken between the _values of 5 .5 i and 24.5 X. Severj:i.l sets of calcula-

tions corresponding to various values of the constant:.c which appears 

in this method were carried .out. Cumulative -.surface area computed in 

this manner were unsatisfactory when compared to the BET surface area. 

The best agreement that could be optained, for the.gel, occurred at 

values of c equal to 0.5 and 0.6 with the·surfa:ce area·having values o:f 

200 m2/g and 206 m2/g, respectively •. When.compared to the BET results 

the.above areas show c1n error of bet;ween 18 and.20 per cent. Thus the 

Barrett, Joyner, and Halenda method of circular pore radii was rejected 

as unsatisfactory because of· the magnitude· of the pe;r ce-nt error. 
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TABLE VI 

DIFFERENTIAL PORE VOLUME DISTRIBUTION 

POWDER CEAAJ:,1IC GEL 

d _(~v /6d)xl0""5 d (AV /Ad)xl0 .. 6 d (AV /lld)xl0-3 

5 .6!:i i •. 24 4.80 4.00 5.47 2.30 
8.06 1.. 95 7.70 4-.50 7.63 4.10 

10.37 2.50 8.68 7.95 8.62 . 5 .so 
11.19 3.03 tl.80 9.09 10.83 6.30 
13.39 3.33 13.34 u;.63 13.18 7.30 
14.86 3.85 16,32 12.00 . 14;22 -1.50 
15.60 4.05 20.13 11.63 14.90 7.50 
18.00 4.38 23 .56 8.25 15.88 7.30 
21.44 5.23 . 26.62 8.11 18.16 7.20 
25.29 4.95 28.99 7.09 18.78 7.00 
27.44 4.55 36.77 sti1 19.80 6.10 
32.33 4.30 41.02 4.22 20. 14 S.80 
33.74 3.79 46.43 3.57 20 • .52 s.so 
35.24 ,3.55 . 49. 71 3.15 20.88 5.40 
38.54 3.30 57.79 2.10 21.69 5.30 
44.82 2.95 63 .03 1.75 22.13 6.80 
57.61 2.s2 69.32 1.40 22.96 · 7 .30 
67.29 2.09 77 .24 1.22 23.33 6.60 
73.52 1.90 87,62 1.08 23. 71 3.50 
81.32 1.74 101.66 0.91 24.08 2.40 

103.80 1.30 128.24 1.13 24.50 1.40 
119. 20 1.03 143.84 0.90 24.81 0.66 
132.80 0.93 164.50 0.90 25.18 0.39 
147.20 0.89. 192.00 0.70 25,93 0.32 
189.30 0.69 232.00 0.60 • 27.12 0.22 
274~70 0.55 294.00 0.42 28.93 0.15 
356.80 0.24 364.00 0.30 29.95 0.10 
455.00 0.15 500,00 0.21 32.29 0.08 
674.00 0.06 828.00 0.09 34,39 0.06 
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CHAP'l'ER V 

CO;NC;LUSlONS 

From theoretical considerations the type of adsotption isotherm 

depends on the presence or absence of pores in solid ad~orbents 7, 8• The 

adsorption properties of the powder and the ceq1mic forms of stannic 

oxide appear to be quite similar since they l?oth exhi'bit the same type 

of isotherm. Therefore pore .. size 9ist:r;ibut ions should also be of a 

similar nature for both. It h fm;::ther e:x!pected that the pores in the 

ceramic should be smaller than those in the .powder. 
. . . 

The ·powde;i;- exhibits an S-shaped · adsorption isotherm which is char-

acteristic of nonporous solids. As Elmphasized earlier, this type of 

isotherm does not.preclude the presence of pores in such, substances en-

tirely and it is-necessary to employ othet' means in order to obtain in-

formation as.to the existence and nature of these pores. Such inform.a-

tion becomes available from the calculations on pore-size distr:i;butions. 

From the differential pore-volume distrib1Jtion curve-of the powder, 

represented in Figure lS, the presence of pores is very much ip evidence. 
0 

Pore-wall separations in the powder start at about 5 A and range all the 
0 

way up to separations of 1000 A and over. Most of tht; pores present 
o· o 

have values of d between, 5 A and 125 A. The.maxiinum-.volume of nitrogen 

is being adsorbed by the group of pores with a wall separation of about 
Q O 

20 A. Pores having sizes larger than 125 A contribute considerably to 

the-overall surface area of thepowd~!·. 
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The· results obtained for the; stannic o~ide e_eramia are, as expected, 

very similar to those of the. powder. Fr<:>m the .. difhrential pore volume 

0 
distribution of ;Figure 14 it is observed that pores of size of 5 A and 

larger are present in the $Olid. · l.fost of the pores appear to be in the 
0 0 

ran,ge of 5 A to, 75 A. with the ppre-vol\lllte ma:x;imum oec::urring at ~bout 15 

Xo These pores are very prominent E!.nd their cont1;ibution to the total 

surface area. is conside.rable. It is obse'J;'ved th;it their size, being 

smaller than that for the· powder, is c:c:msistent with t;he fact that on 

sintering decrease. in the pore-wall separ9 t ;ton.. is e:xpected. 

The· results. for both the powder and the eera:inic are in accordance 

with the c<;>nsiderations det;i.ved from the spapes:of their adsorption 

isotherms. The lack of hysteresis on the s .. shapecl, isotherm indicates 
. . . . .. . . . 

that no appreciable number of pores shoulp be .present at higher rela-

tive pressures. At! lower pressures, on t-he other hand, capillary con-

densation sets in, as shown by the -pore-vol1.1me ma~ima of Figures 13 and 

14, giving evidence of the presence of pores 9bta.ined from .the distri

bution curves. This is in perfect agreelltent.with the af:)sumption that 

the S-shaped isothertll, although chat;acteristic for nonpo:t;'ous substancei;;, 

does not exclude the presence of eapillar:les alqng. with the "flat" or 

II free" SU:t;'face of such solids. 

The,effect of these pores will be shown in terms of their contri-

bution to the total volume adsorbed and to the. total surface area of 

the powder and the ·ceramic~ · When the former :ls considered, appro:xima-

tely 58 per cent of the volume is taken up by pores which have wall 

0 
separations of 125 A or le$S and th.e remaining is attributed to pores 

0 

larger than 125 A. for the latter, ab.out 54 per cent of the volume is 

0 
adsorbed by pores of 75 A or less •.. $\n;:-.f,ace ar~a~ due to these pores 
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. . . 

contribute at highe.r percentages to the tota,l because of their smaller 

size, About 90 pet;' cent of the ar.ea of the·powder·cqmes ft;om the pores 
0 

up to. 125 A, .while about 85 per cent of the i;trea of the ceraJnic is due 
0 

to pores up to 75 A. 

When the total surface.~reas obta,ined from the-present method of 

pore size distributi,on are compared. with those frorp. the BET method, a 

very close and satisfactory agre.ement is observed. The area of the·pow-
. . 2 . 

der from this method has the value of l.97 rn /'lJ,Cl,-as compared to the 

2 18 . 
value of 1.99 m /gm from the BET. ,. with an error. of 1 per cent. For 

the ceramic a surface area ~f 0.3,5.m2/gm from the distribution method 

. 18 · 2 · 
when compared to the .BET v~lue .of 0.37 m· /r,n shows an error· of 5.4 · 

per cent, in good agreement·with the experimental error. 

The BET Type I experimental ads~>l::ption · isotherm of the· stannic 

oxide gel points out t;hat thh. is a highly poJ;"ous substance~ l'he·pore-

'size distribution results are in complete agreement with the theoreti-

cal observations.from the shape of the isotherm.· Figures 9and 12, 

which represent the cumulative pore-volume and cumulative surface·area 

curves, respectively, show a de:l;inite break at a value of about 25 X 
for the average pore wall separation of the·gel. The starting point of 

0 
these curves is located at 5.5 A. As the value of d increases the 

curves level off and·become ~$ymptotii; to.the d .. axis, indicating that 
0 

no significant .amo1,mt · of gas is adsorbed ·by· pores larger than 25 A. 
0 0 

The amount of volume in pores of size between 5,5 A and 25 A makes up 

98.5 per cent. of the total adsorbed volu~, while the.surface area of 
; 

these pores comprises 99 per cent of the total surface area of the gel. 

Thecurve for the differential pore-volume distribution is represented 
Q 

in Figure 15 witli the origin at 5,5 A ~nd th~ sanie definite brec;ik shown 



0 . 0 
to occur at 25 A. Two maxinia_.are observed, the·Urst at 14.-15-A apd 

0 . 

the· second .at· 23 A •. 

If the. va_lue of 167. m.2/g for the total s1..1rface area of the gel is 

compared with the BET resul~ of 169 m2/g a remarkable agieement is ob-

served. The error is on.ly 1.2 per cent. 
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From the t'oregoing discussion, it is concluded that the ·gel is a 

highly porous substance with. _about 99 pet· cent, of the pores hav;Lng shes 
0 0 

between 5.5 A and 25 A • 

. If now .. :the. cumulative ·pQte!"volume, cumula~ive s1.rrface .area, and 

differential pore-volume,distribut;i.on curve11 of the powder and the cera ... 
. . 

. . . 

mic are compared with, those· of the ·.ge 1, it i~ evident that no- de!inite 
. . . . . . 

bre.a-ks a;cur with increasing- values of the: pore. wall separ.ation. These 

curves decrease. exp<mentially and reach the d·a,c:is ~s~ptoticaHy as d 

becomes large,· · for these two s.ubstances,. therefore, no definite pore .. 

size distribution e,c:ists, but their. pot"es ti:mge i1' values from: about 
0 . . . .. 0 . . 

.5 A all the way· up to an.d beyond 1000 A,. with ~m app:t;'eciable number ·of 
0 . O . 0 O 

them being ir;,. the range· o(. -~ A to 125 A for the· ,powder and 5 A to 75 A 

for the ceramic. 

Further work on the st~mnic o:JCide get is pouible .because it is a 

very good adso·rbent and as such it.can beusedin·IR.studies. -It is 

also transpal;'ent: ip the form -of thin ( 1 mmLplates. a:nd tX'ansmits infra

red radiatiO'fl• Such studies areno-wbeing carried .out. They will in-

elude IR absorption spectra .Qf the gel at:.I'loQm temperature .and attn9 .. 

spher,ic preuure ,. at ·rQom temperature .under· vacuum, at liquid hydl!'ogen 

temperature (20.°K) .. under vacuum, and at liquid h1drogen te111perature 

·with certain ga.15es (such as hydrogep gas) Et.dsotbed on· t;he · surhce •. In 

orde'l;' to achieve the· low temperatla:re· of liquid hydro~en a cryostat is 



used and it is designed in such a way as to fit the I,R .. 7 infra-red 

spectrophotometer. 
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APPENDIX A 

JUSTIFICATION OF TH;E FACTOR (104) IN E;QUATIONFOR ASx, 
. l. 

4 . 
The factor ( 10 ) which appears i.n AS h introduced iri the eq1.1a'."' 

~i 

t ion as a conversion factor. This is necessary because AVx. is· given 
l. 

0 
in units of (crri.3 /g) while dx, is given in uq:tts of angstroms (A) as: 

l. 

6Sxi = o~ ·G~ J 
The units of ASx, have to be expressed in (m2/g). Therefore: l. . . 

6Sx. = ~vxJ. C<:l 
l. cxiJ ~- ~ 

. . 

2A V 
xi 

ll=il·. ----= 
d x .. 

i 

-4 2 8 ° . 
10 . ·m x 10 ·A 

X,g 

When. !). V is comput~d the uni.ts on E AS have to be converted 
xi xi-1 

to the original units; therefore I: ASx . is now mµltiplied by a factor 
. i"""l 

-4 . 
of 10 as it appears in equation (4-.3), 

59 



APPENDIX B 

EVALUATION OF DIFFERENTlAL PQRE~VOLUME OlSTRIBUTION 

A sample calc1,1lation wi\1 be carried Ollt for the stannic oxide gel 

in order to exemplify the evalu!ition of AV /Ad shown in '!able VI. 

From Table IV the fo llow:i,.ng data are obtainedi. 

For the smalle!;lt group of pore$ for which f s: 0.005 
0 

and 

0 
d * 5~47 A aver. 

0 
d1 . . ·;:. 4.JQ A 

. . 1m. 

where a1. is the limiting nitrogen molecule diameter. 
1m. 

Also 

At d 
aver I' 

It follows th.at 

0 

d(0.005 ) = 6.64 A 

t::. V ( x ;;_ 0. 005) = o.dos2a 

AV 
(x:S: 0.005) 

3 
cm 

I· 

= 
d( 0.005) -"' dli~. 
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6V = 
6d 

0.00528 = 2.76 x 10~3 c::m~,x 
6.64 .. 4.30 

61 

p 
For the next gro1,1p of pores flt P = 0.010 and o.oost::: L :s: o.01s, p .. 

0 0 

the tollowing data are obtained: 

0 

- . d # 7.63 A aver. 

d(0.005) = 6.64 R 

d(0.015) = 8.21 i 

L\V(Q.010) 0.00644 3 = cm 

Thus 

AV = 0,00644 _ 4.10 x 10-3 cm3 ;% . 
Ad 8 ~ 21·- - . 6 ~ 64 . 

\ 

This type of calculation is continl,ledup to and including the last 

(largest) group of pores. It is carried out in the same manner for the 

powder and the ceramic. 
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