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CHAPTER I 

INTRODUCTION 

Recently, considerable interest has been rai sed in the mechanism 

of the reaction of hydrogen and iodine . Bodenstein1 reported experi-

mental results in 1899 and interpreted these results as evidence of 

second-order reaction of type I, that is, firs t -order with respect to 

both hydrogen and iodine, I n 1928 , Kistiakowsky 2 reported that the 

rate of decomposition of hydrogen i odide was bimolecular. The reaction 

of hydrogen and iodine was quickly adopted as an example of a second-

order reaction, typ e I. 

Many studies have been made on the (H2I 2) system, A photochemical 

experiment was reported by Sullivan3 in 1967. In this experiment, 

Sullivan measured the reaction rate with photochemically produced iodine 

atoms at temperatur es low enough to prevent thermal r eaction interfer-

ence, The Arrhenius parameters of the ph0tochemical r eaction matched 

the Arrhenius parame t ers of the high temp erature data. A termolecular 

mechani sm , that is the reac tion of hydrogen qp.d two iodine atoms , was 

one of two mechanisms proposed by Sullivan. The other was a two - step 

process in which the second step is the rate-determin i ng one. 

IH
2 

+ I ~ 2HI. 

1 
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Difficulties arise in kinetic work when the data is analyzed. It 

is very difficult to determine when iod.ine atoms are present since any 

collision of iodine atoms on a sensor surface yields iodine molecules. 

No experimental work has been able to prove the mechanism of the re-

action. 

Noyes4 has reported on the apparent paradox of the hydrogen iodide 

reaction. Sullivan's wprk has led to the conclusion that the reaction 

is exclusively termolecular. However, the intermediate or activated 

complex in the reaction should be able to be approached by either iodine 

atoms or molecules and through this reasoning, Absolute Reaction Rate 

5 Theory predicts that SulHvan' s rate of term.olecular reaction should . 

be less than the combined reaction rate at high temperature. 

Theoretical techniques, such as absolute rate theory and classical 

trajectory analysis, might be able to shed light on the difficulties 

presented by experimental work. These theories are reviewed in the 

next section. 

Absolute Reaction Rate Theory 

For an atomic or molecular process which requires an activ~tton 

energy, that is, one in which a minimum amount of energy must be s~p-

plied to the reactants in order to cause reaction, the atoms or mole-

cules must approach each other to form an activated complex. The acti-

vated complex may be pictured as sitting atop a barrier between the re-

actants and products. The rate of the reaction is given as the velocity 

of the activated complex travelling over the top of the barrier. In 

this theory, the activated complex is treated as a molecule that is 

stable in all respects except for the normal vibrational frequency in 



the coordinate of decomposition. By making the .assumptions that 1:he 

initial r,eac,tants are always in equilibrium wi·th the activated complex 

and that the ac.tivated complex decomposes .at a .definite r·ate, ,,the fol-

l . . f h f . k b · S ' owing expression or t e r.ate o· reactl.o-n, , , ma;y e wr1.tten;. : 

I 

k=K !L!..-• 
h 

Fr# 

;,:~;-;,~ ·;; 

11./ 

(l) 

3 

In this equation, T is the absolute temperature; R i-s the gas con-

stant; E is the difference in the zero-poin°t vibrational energy of the 
0 

reactants and that of the activated complex; FA' FB' .• •• etc. are the 

partition functions of the reactants A, B, ••• etc. res.pectively; Fr# 

is the pa:r,tit;i.on function of the activated ·complex; .h is planck I s . .con• 

' stant; k is "Boltzmann's constant; and(_,K is the traP,smission coefficient. 

A,nother form of ;the rate equation is: 

In this eq.uat:i.on Kr# is the equilibrium constant expression between the 

activated complex and the reactants. If one makes the usual st,1bs·titu-

5 tions for the equilibrium cop.stant, the rate expression becomes:: 

4 :# 
I ( .d s0 ) /R - ( A If ) I 

k = K .k..1__ e e RT 
h 

, ... 

(3) 

4 
where (A s0 ) 

,# 
is the entropy of activation and (A If) is the enthalpy 

of activation. 

A quantitative calculation cannot be made using equation (3) since 

the entropy of activation of the activated complex.is not attainable. 

···-~· 
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However~ equation (2) may be used providing the equilibrium .constant is 

evaluated. This evaluation is possible if the partition functions of 

the reactants are known and the partition function of the activated com-

plex is calculated from the frequency of the normal modes. of vibration 

and tbe geometry of the activated complex. These quantities are attain-

able if the potential energy surface of the system is known. 

Classical Trajectory Analysis 

A new form of kinetic study has been developed in the last few 

6 
years • This form of analysis, known as Classical Trajectory Analysis, 

involves the assumption that classical mechanics describes the system. 

To begin with, the molecules or atoms are separated at a distance suf-

ficiently large so as to ensure a small interaction potential. The 

equations of motion are then integrated until there has been a reaction 

or all chance of a reaction is past. This procedure is called a tra-

j ectory calculation. For _,a detailed study of a system, many such cal-

culations must be made to allow proper averaging over initial conditions. 

In this manner 9 it is possible to relat_E: the theoretical analysis.with 

experimental work. If, in an actual experimept,. a given set of initial 

conditions could be defined exactly,. an averaging technique would not be 

necessaI"y. 

The equations of motion referred to above may be expressed as: 

Q;i = 
J H 

dl P. and Pi 
1. 

J H 
a Q. 

l. 

where Q. is a generalized coordinate~ H the Hamiltonian and P. a 
1 1 

(4) 

generalized momentum,. conjugate to Q". By expressing the Hamiltonian 
1 



as the sum of the kinetic energy, T, and the potential energy V, the 

equations of motion may be written as: 

and P .. = 
]. 

JV 
d Q. 

]. 

providing V.is a function of particle position only. 

(5) 

Following. th.e assumption that classical mechanics is sufficient 

5 

to describe the system, the kinetic en~rgy term may be obtained analyt-

ically. For a trajectory to becalculated, however, a potential energy 

function is again required. 

Although an exact quantum mechanical formulation of the (Hz1 2) sys­

tem potential is not possible at the present time, several semiempirical 

methods5 ' }-l5 have been employed with varying degrees of success for 

other systems. 



C:aAPTER II 

MULTI-BODY POTENTIAL ENERGY SURFACES 

Eyring•H3 Surface 

One of the earliest attempts to obtain a potential energy surface 

f d b E .. 5 or a system was ma e · y yring • In 1936, Eyring reported. a seµii-

empirical method of analysis of the· H3 system. In this analysis, the 

potential energy function.was taken to be the lowest root of 

E - D + n(W b. + wb + w ) a .. c ac 

+ (1-n)(W 2b + wb2 + w 2 - w b wb a · c a c a . c 

-w w -w w ylii 
ab . ac . be ac ' 

(6) 

where D is the heat of dissociation: of H2 minus the half-quanta· of 

zero-point en~rgy; Wab is the energy of H2 for the internuclear sepa­

ration rab and similarly for ~be and Wac;· and n is the fraction of the 

sum of the binding energy of H2 for the given internuclear distances. 

A potential contour map of this surface .for the linear configura-

tion for H3 shows · that a basin is formed at the saddle point. Such a 

result indicates that as the reactants.follow the reaction coordinate, 

they first pass over a barrier, then. fall into a _potential energy well 

as a metastable. activated complex. Other attempts to generate the H3 sur­

f ace have failed to yield such a basin along the reaction. coordinate. 

6 
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Eyring-Sato H3 Surface 

In 1954,. Sato? reported on his vt.~rk ;ith the H3 system. For the 

pc·tential energy of two· atoms cfo'se tog.ether and the third at·i:n:l;inity, 

Sato used the Heitler-London16 results for the energy of the bonding 

artd the antibo·nding cases. The energy of the bonding caae was given as 

the Morse function: 

E = 1De [· e- 2'p (r-re) ~ 2e-'p(r-re)] 
bond 

(7) 

I 

where Eb dis the energy of the bonding state;. De is the dissociation 
on 

I 
energy of H2; p is a constant; re is the equilibrium bond distance of 

H2; and r is the bond length of H2 • 

For the energy of the antibonding state, Sato proposed the fo1-

lowing expression: 

I 

De [e-2 1P(r-re) + 2.e-'P(r-re)]_ 
•EAnti = 2 (8) 

This fit's the calculated data for. the 

3 
r u state of H2 reasonably well. 

B . . ' '1 t h f L d 17 ' S 7 d .. d h y usJ.ng, a:ssumptJ.ons SJ.ml. ar o t ose o on on. • . ato .. , eri.ve t e 

potential energy equation: 

·E 
1 

1 + k 

+ (o< -o< )2 + (ex -ex. )ii J lJl 
BC CA CA AB j j 

where k corresponds to the square of overlap integral while Q •• and 
:LJ 

o< ij. repr~sent coulotnb :and· exchange integrals respectively· between 

(9) 



centers i and j. The qnly difference between this result and London's 

is the presence of the constant k. In the range of larger, k ap~ 

preaches zero and the two resµlts are the same. 

The potential energy plot obtained by this method differs from 

that of Eyring's attempt in that it does not have a basin, but instead 

the expected react.ion barrier. 

Porter and Karplus H3 Surface 

8 Recently, Pqrt.er and Karplus . have reported results obtained for 

the H3 system. Previous attempts had e:l,.ther neglected overlap or 

treated it as an empirical parameter. In this work,. all overlap and 

multiple-exchange integrals are· included. These· i;ntegrals are esti---

8 

8 mated through various semiempirical procedures .• Agreement is found to 

be quite good for a comparison of the experiment.al activation. energy 

and the activati.on energy calculated using this surface in a Classical 

8 Trajectory Analysis ..• This work also agrees with the prediction of 

thelinear complex as the least energetic. 

Conroy·H3 Surface 

. 9-14 Conroy has recently reported a rigorous solution of the H3 

system. The calculations reported include both synunetric and unsym-

metric linear systems. 

In these calculations, Conroy employed single-centered basis func-

tions constructed so as to produce the correct behavior at the nuclei 

These and as the interelectronic distance, rij' approached zero. 

functions were incorpo·rated into a variance minimization scheme in 

which-integrals were evaluated by Monte Carlo techniques. Final energy 



values were obtained via the variation formula and an extrapolation 

scheme to zero variance. 

By comparing the Conroy surface obtained with the semiempirical 

8 surface of Porter and Karplus , one sees that agreement is very good. 

This agreement lends weight to the validity of the semiempirical meth-

9 

ods used by Porter and Karplus to evaluate the overlap and the multiple 

exchange integrals. 

Karplus,, Pederson and Morokuma H4 Surface 

Work on the H4 system .was reported in 1967 15. An approximate sur­

face was obtained by a semiempirical method of the London-Eyring-Sato 

type. Although the surface obtained by this method was too high ·.at the 

saddle point, it was used in a quasi-classical trajectory study of the 

reaction: 

H2 + D2 ~<---) 2 HD. 



CHAPTER III 

(Hz1 2 ) SEMIEMPIRICAL POTENTIAL SURFACE 

In order to carry. out a theor.etical analysis of the. (H2I 2) system 

by either absolute reaction rate theory or classical trajectory analysis, 

a potential energy surface is required. Although a rigorous treatment 

of the (H2I 2) system is, at the present time, iq1.possible, various sen1ii­

empirical methods are available with which ta ~onstruct a potential 

energy surface. Several of these methods are r~viewed in the previous 

chapter. With such methods, a l:'epresentat·ion of the (H2I 2) surface ha_s 

been formulated, 

By using the London 17 formulation, the potential energy is obtained 

as a function of the .c.oulombic and excl)t!mg.e i.nt:e~l!'ah; of the syst:em.: 

+ o<BC and o<3 = o<AC + cx'BD 0 

Thes~ integrals may be approxi.mated through the use of the Reitler­

. 16 
London expr-ession for -the singlet state and triplet state energies of 

a molecule: 

and (11) 

LO 
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If one neglects the overlap integral of equation (11), then that equa-

tion becomes: 

Q -o< 
AB AB • (12) 

Solving for the coulombic and exchange integrals gives the result: 

3 3 
EAB + EAB EAB - EAB 

QAB. = and o< AB = (13) 2 2 

The singlet state energies for the molecules in question present no 

problem. The potential function proposed by Morse18 is used for the 

singlet state energy. 

I I 

E _ 1 [ - 2 f (r - re) - ~ (r - re) · 
--Ue e - 2e , (14) 

1 . I 
where-Ue is the dissociation energy, pis a constant related to the 

ground state vibrational frequency, and re is the equilibrium bond 

I 

length. The constant ~ is given by: 

= 211 V ~ 
0 ,J~ (15) 

where 'tJ is the ground state vibrational frequency and )' is the reduced 
0 

mass. 

To represent the triplet state, 3E, Porter and Karplus 8 have pro-

posed a modification of the Morse function, 

3De [ e- 2 3 p (r - re) + 2e 3 J3 (r - re)]• (16) 



In this form 3'ne and 3 p are adJustable parattietefts used to fit the 

triplet state energy curve for the system. 

12 

For the H2 system,. Kolas and Roothaan19 have carried out accurate 

quantum calculations to obtain a representation of the lowest triplet 

state for the system. Equation (16) has been shown8 to fit this data 

quite accurately. 

In this work, Equation (16) has been employed to obtain a .repre­

sentation for the triplet state energy of the HI and I 2 systems. How­

ever, since no data for the triplet state energies of HI and r 2 are 

available, it has been necessary to carry out semiempirical calculations 

to obtain approximate values for these energies. 

For the diatomic molecule A~ separated by distance R, a semi­

empirical molecular orbital approach, in which the molecule is treated 

as a two-electron system with nonpolarizable cores, has been employed 

to obtain the triplet state energies. Wave functions were represented 

by a single Slater determinant in which the molecular orbitals were 

constructed from a minimal basis set; that is, one atomic orbital 

centered on each of the two nuclei: 

o/ = 1 ( 17) 

where 

o< is the spin function and ~A(l) is the atomic orbital of electron 1 

centered on atom A. The atomic orbitals used were Slater orbitals. 



For hydrogen, a 1 s orbital was used, for iodine, t:~e 5 pa- orbital was 

employed for the bonding electron and the r~maining 52 electrons were 

treated as part of the nonpolarized core and assumed not to take part 

in the bonding. When equation (17) is expanded, the wave function takes 

the form: 

3 lf' = K [<PA ( 1 ) ~ B ( 2) . - cp A ( 2) ~ B ( 1 ~ (18) 

where K = 
1 

(19) 

where SAB represents the overlap integral, i.e. 

(20) 

Ignoring nuclear repulsion energy and writing the Hamiltonian for 

the AB system in atomic units, one obtains 

1 2 1 2 1 
- - - '\/ 1 - - \/ +-:--- - VA(l) - VA(2) - 2 2 2 r 12 

where VA(l) is the potential seen by electron 1 due to the presence of 

core_~. ,,_ .·' .. ,.--,:./ 

When the wave function and Hamiltonian are substituted into the 

electronic energy equation 

3E e = s 3lj) H 3 lj) d I ' (22) 



,14 

the exp~nded equation is oi the form 

3 1 [ J E = X - X 
e (1 _ s2 ) 1 2 ' 

AB 

( 23) 

where (24) 

and · (2S) 

The integral~ of equations (24) and (25) may be divided into 

various forms by separating the Hamiltonian as follows: 

( 26) 

,where 
1 2 

J,/ = - - '\/ - V (1) 
A 2 1 A ' 

( 27) 

1 2 
H B = - 2 'v 2 - VB( 2), (28) 

and (29) 

Substitution of equations (26)-(29) into equations (24) and (25) 

will yield the following types of integrals: 

< <pA(l) Q)B(2) IH Al cj)A(l) <l>B(2)) 

<cpA(l)~B(2)lr~2 I <l>A(l)q>B(2)) 

(30) 

(31) 

(32) 

(33) 
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(34) 

(35) 

These integrals have been evaluated using various semiempirical 

approximations, The inte~ral of equation (30) is approximated as 

where IA is the ionization potential of atom A. Tfiis procedure in 

essence assumes that ~ A represents an exact eige~'functio·n of H A 

whose associated energy is the experimental ionization potential. A 

similar approximation has been made by Po&i 2° and by Pohl and Raf£ 21 to 

treat the hydrogen halides and interhalogen systems. Integral (33) is 

evaluated in a similar manner. 

, ' 
±he two-electron integrals of equation (31) are evalua.ted with 

·Pople 1s22 approximation: 

where R12 is the distance between nuclei •. 

Integral (32, is also evaluated by :Popl~' s approiimation: 

(38) 

By expansion and us·e of the abciv~ evaluation schemes, :x1 becomes: 

(.39) 
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In addition to the integrals in x1 , x2 includes: 

(40) 

where AA is the electron affinity of atom A. This evaluation is made 

23 24 22 using M'ulliken I s , Par.is er·' s and Pop le I s app:foximations. The first 

of these changes the integral in equation (34). into 

2 

s A4B < ~ 2 ( 1 ) + <I> 2 ( 1 ) I · -~-1 ~ 2 ( 2) + ~ 2 ( 2) ) ( 41 ) A B r 12 A B . 

This yields four integrals that may be evaluated by Pop.J.e I s 22 and 

P , I 24 i "'i aris•r s approx maL ons: i.e. 

(42) 

and (43) 

which are evaluatetl by Pople's point-charge approximation; and 

(44) 

. and (45) 

.which are evaluated by Pariser' s approximations. 
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When Mulliken I s approximation is applied to integral (35), a two-

center, one-electron integral of the form 

. results, as well as a one-cepter, one-electron integral 

< ~ A ( 2) I v A ( 2) I t A ( 2) > 0 

22 
Integral (46).is evaluated by Pople's point charge approximation 

whereas the one-center integral (46a) is evaluated analytically. by 

That is 

(46) 

(46a) 

00 .,,,. 2'11' 

< ~A( 2) IVA( 2)1tA( 2~ = - N2f r f z . 
n* -1· -z I * A n,.._1 

0 0 O 

-z. r/n* 2 e eff r 

r e ef f r n ·-;-r 

dr sin.e de o, (47) 

where 

(2 Z /n* +·l 
.· N2 = ___ e_f_f _____ , 

( 2n*) ! (n*)2n* + 1' 4 

ZA is an adjustable parame.ter; r is the distance of the electron from 

the nucleous; and Zeff and n* are Slater parameters. 

Evaluation of (47) yields 

(48) 

After expansion and evaluation of all the integrals, x2 may then 

be written as: 

. (49) 
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When x1 and i 2 are ~ncorporated, 3Ee is given as: 

(50} 

By writing the electronic energy in this manner, all of the infor-

mation needed may be :f;:ound in tables. The electronic energy given by 

equation (50) represents the difference in energy of two positive ions, 

at the desired bond distance, and that of the neutral molecule at the 

same distance. Thus, to obtain the d;i.ssociation energy o:f;: the triplet 

state, three terms must be added to the electronic energy given py 

equation (50): 

+ 1 f;.- (51) 

(52) 

A+ + B+ ~ A+ + B+ (53) 
'-----'--__... ~ 

o<::i R 

Equations (51) and (52) are s;i.mply producing ions from neutral 

molecules whose associated energies are the ionization potentials of 

A and B. Equation (53) represents the nuclear repulsion energy term 

involved ;i.n mov;i.ng the two ions from infinity to distance R. This is 
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~1 3 
approximated as R12 • With these additions, the total Eis given as: 

(54) 

With the evaluation of 3E, equation (12) then yields th~ coulombic and 

exchange integrals required by equation (10) to formulate the (H2I 2) 

surface .• 



CHAPTER IV 

RESULTS AND DISCUSSION 

Before a potential surface can be constructed, certain constants 

must be evaluated. In the case of the empirical triplet state energy, 

equations (50) and (54), the ionization potentials and electron affin--~-·--- -~----·--.--
ities are required. These quantities may be obtained from literature 

while pH and _µ. I are calculated from Slater's cons.tan ts using equation 

(48). For hydrogen, this yields fa H = - 1. For ioidine·,;< I= - 0.475 Z 

when Slater's Ze~f is taken as 7.6 and n* as 4.~. In 9rder to make the 

potential energy function fit the barrier height estimated from experi-

mental activation energy data, Z is left as. an adjustabie parameter. 

The best fit 1$ fo·,und for Z = 4.0. The required data for the calculation 

are given in Table I. 

TABLE I 

CONSTANTS F()R CALCULATION OF 3E 

Atom I(a.u.) A(a.,u .. ) 

H 0 .. 5000 -0.0276 

1 · o .. 4636 -0.1305 

20 
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A comparison of data. in Table II for H2 by this method using 

19 equation. (54), and the data of Kolos and Roothaan produces the fol-

lowing_result: 

0.38871± .02 (55) 

-3E 3E 
where T represents Kolos and Roothaan data and c represents data 

calculated by the empirical scheme described in Chapter III. The 

corrected 3E results-for HI and I 2 are therefore taken to be: 

(56) 

When equation (56) is applied to the HI and I 2 systems, the data shown 

. in Table III are obtained. Equation (16) can then be fitted by least-

squares techniques to this data. This procedure produces the parameters 

3ne and 3 

These·parameters, along with those for the singlet state of the 

system, are recorded in Table IV. This data, along with equations (13), 

(14), and (16) allow the coulomb and exchange integrals-required by 

equation (10) to be calculated. Substitution of these values into that 

equation then produce the required potential surface. 

The attributes of the surface represented by equation (10) can be 

llustrated through the use of contour maps. Such maps are shown in 

· Figures (1)-(5). 

\. 



TABLE II 

UNCORRECTED. 3E~ · · . FROM .EQ U~T!O?S ~''.( 54) . 
. 2 .:, 

R (s.u.) 3E (e.V.) 

1.00 20.02 

1. 20 17.63 

1.40 14 .48 

1.60 11.59 

1.80 9.22 

2.00 7.31 

2.20 5.79 

2.40 4.60 

2.60 3.63 

3.20 1. 76 

4.00 0.64 

22 
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TABLE III 

CORRECTED 3~ FOR 111 AND I 2 

R (a.u.) 3 (e.V.) R (a.u.) 3E (e.V.) EHI 12 

2.21 5.74 3.16 5. 29 

2.48 5.33 3.68 3 .47 

2.76 4.57 4. 21 3.39 

3.45 2.54 4.74 2.47 

4.14 1.18 5. 26 1.48 

4.83 0.49 5.79 0.79 

5.52 0.19 6.32 0.38 

6.90 0.022 6.84 0.17 

TABLE IV 

.SINGLET AND TRIPLET STATE MORSE PARAMETERS 

Parameter H2 .. •f2i':: ... ):~~ 

1n (e.V.) e 4.7466 1.555 3.194 

I 1.04435 0.9869 0.9468 ~ 
r (a.u.) 1.402 5.040 3.032 e 
3D (e.v.) e 1.9668 0.5741 1.1622 

3~ 1.000122 0 .49 20 0.7335 
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Figure ( 1) represents the regular, planar, trape.zoidal configura­

tion. In this configuration, the H2 bond is parallel to the I 2 bond 

and the four nuclei are coplanar. For the contour maps of Figures (1)­

(4), the I 2 bond distance at all surface points is set equal to the sum 

of the H2 bond distance plus a constant. That constant is taken to be 

the difference between the I 2 equilibrium bond length and the H2 equi­

librium bond length. 'rhe variable coordinates of Figure (1) are the 

distances between the centers-of-mass of the two HI molecules and the 

distance between the centers-of-mass of the H2 and I 2 molecules. By 

requiring that lines connecting these points be perpendicular, a regular 

trapezoid is formed with the r 2 molecule as the base and the H2 molecule 

as the top. 

If the distance between the centers-of-mass of the H2 and 1 2 mole­

cules is large and the distance between the centers-of-mass of the two 

HI molecules is sma 11, the system corresponds to the region at the lower 

right. This region would then represent an (H 2 + I 2) system. If the 

magnitudes of the distances were reversed, the upper left region would 

represent two HI molecules. By traveling from the lower right to the 

lower left and then to the upper left, the reaction coordinate for the 

reaction, H2 + 1 2 -~ 2 HI, may be fol.lowed. The saddle-point for this 

surface occurs when the HI-HI center-of-mass distance and H2-:r 2 center­

of-mass distance equal 5.4 a.u. and 3.0 a.u. respectively. The barrier 

for this reaction is calculated to be 1.83 electron volts. 

A contour map for a distorted trapezoidal configuration is shown 

in Figure ( 2). This surface is formulated in the .same manner as that 

of Figure (1) with one exception: the lines connecting the centers­

of-mass of the two HI molecules and the centers-of-mass of the H2 and 1 2 
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molecules are not perpendicular. For Figure (1), the center-of-mass of 

the H2 molecule lies on the perpendicular bisector of the 1 2 bond axis. 

In Figure (2), the center-of-mass of H2 will be 0.5 atomic units ·Off 

this perpendicular bisector. This has the effect of pushing the top of 

the trapezoid 0.5 atomic units to one side while holding the top and 

bottom parallel. The general form of the contour map in Figure (2) is 

the same as that shown in Figure (1). The barrier height on this con• 

tour map is 53 kcal. The saddle point is reached at the values of 5.6 

a.u. for the HI-HI centerwof-mass distance and 3.1 a.u. for the H2-r 2 

center-of-mass distance. 

Figure (3) illustrates a non-"planar surface in which the configura­

tion represented by Figure (1) is altered by rotating .the 1 2 molecule 

90° out-of-plane. Although the complete reaction coordinate cannot be 

traced out on this surface, a comparison of energy contours for Figures 

(1) and (3) indicates that the expected reaction barrier along the out­

of-plane path should be higher by perhaps as much as l electron volt. 

Figure (4) represents a planar configuration in which the H2 mole= 

cule is pointed directly at the center-of-mass of the 1 2 molecule. This 

configuration is a uuTn formation with 1 2 representing the brace and H2 

lying on the stem. As the molecules move together, the H2 slides up 

the stem until one of the hydrogen atoms has passed between the iodine 

atoms forming a crossed structure. As can be seen~ this surface is 

virtually identical to that shown in Figure (3). 

For a linear configuration corresponding to the reaction of H2 + 

21 - 2 HI through a linear complex, one obtains a surface of the form 

shown in Figure (5). In this figure, the H2 and r 2 .centers-of-mass are 

superimposed with all four nuclei lying along a straight line. Energy 
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contour lines are plotted as a function of the H2 .and r 2 bond distances. 

The reaction coordinate for the above process begins at upper left with 

H2 + 2I, then proceeds down to mid·left at the saddle point located at 

an I 2 bond length. of 10.0 a.u. and an H2 bond l~ngth of.1.5 a.u. At 

this point the barrier height. relative to H2 + I 2 is 2.45 e. V. The 

reaction coordinate then continues to the right at a.45° angle to form 

2 HI. When compared to the regular, planar, trapezoidal surface of 

Figure (1), tl;ie barrier J:i.eigl;it for reaction along a Ii.near cortfiguration 

appears to be about .44 e.V. higher. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Analysis of the five contour maps indicates that the lowest re-

action barrier occurs with the regular trapezoidal configuration. In 

Figure (2), the distorted .trapezoidal configuration raises the barrier ----
slightly, The linear co~iguration shown in Figure (5) raises the 

barrier 0.44 electron volts. For the out-of-plane and perpendicular 

configurations, Figures (3) and (4), the barrier heights are quite high • 
.. 

The complex formed by the out-of-plane and perpendicular configurations 

appears to be too highly energetic to permit reaction to occur along 

that coordinate. The configuration that seems most favored for reaction 

is that of Figure (1), the regular trapezoidal configuration. For the 

reaction to proceed only by the termolecular mechanism would seem un-

likely at this point. The termolecular mechanism appears to be a pos-

sible contributing mechanism but would certainly not appear to be the 
. . . 

predominant one from analysis of the barrier heights of the contour . ..--c 
. 3 

maps. The experimental activation energy is reported as· 1.90 electron 

volts.for the H2 + I 2--+ 2 HI reaction. The barrier height as taken 

from the regular trapezoidal configuration is 1.83 electron volts. This 

3 good agreement is not surpr~sing since the parameter Z in the E calcu-

lations was adjusted to produce agreement of these values. 

The above observations, base~ on barrier heights alone, are in 

apparent disagreement with. experiment in that· Sullivan I s3 results 
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indicate that a termolecular mechanism is responsible for the'·butk:~Eif.· · 

the reaction. This f·act, in conjunction with the present work, would 

seem to indicate that the termolecular reaction path must be other than 

linear. Since a potential function for the (H2I 2) system is available, 

classical trajectory studies of the reaction dynamics could now pe 

carried out. Such calculations might answer some of these questions 

involved with the mechanisms. Although the potential energy surface 

is a semiempirical one, the general form is thought to be reasonable; 

the right diatomic energy limits are obtained and the barrier height is 

in excellent agreement with that reported experimentally. 
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