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CHAPTER I
INTRODUCTION

Recently, considerable interest has been raised in the mechanism
of the reaction of hydrogen and iodine. Bodenstein1 reported experi-
mental results in 1899 and interpreted these results as evidence of
second-order reaction of type I, that is, first-order with respect to
both hydrogen and iodine., In 1928, Kistiakowsky2 reported that the
rate of decomposition of hydrogen iodide was bimolecular. The reaction
of hydrogen and iodine was quickly adopted as an example of a second-
order reaction, type L.

Many studies have been made on the (HZIZ) system, A photochemical
experiment was reported by Sullivan3 in 1967. In this experiment,
Sullivan measured the reaction rate with photochemically produced iodine
atoms at temperatures low enough to prevent thermal reaction interfer-
ence, The Arrhenius parameters of the photochemical reaction matched
the Arrhenius parameters of the high temperature data. A termolecular
mechanism, that is the reaction of hydrogen and two iodine atoms, was
one of two mechanisms proposed by Sullivan., The other wag‘a two=step

process in which the second step is the rate-determining one,

M+I+H2<—> IH2+M

IHZ + 1 =3 2HI,



Difficulties arise in kinetic work when the data is analyzed. It
is very difficult to determine when iodine atoms are present since ahy
collision of iodine atoms on a sensor surface yields iodine molecules.,
No experimental work has been able to prove the mechanism of the re-
action.

Noyes4 has reported on the apparent paradox of the hydrogen iodide
reaction., Sullivan's work has led to the conclusion that the reaction
is exclusively termolecular. However, the intermediate or activated
complex in the reaction should be able to be épproached By either iodiné
atoms or molecules and through this reasoning, Absplute Reaction Rate
Theory5 predicts that Sullivan's rate of termolecular reaction should
be less than the combined reaction rate at high temperature.

Theoretical techniques, such as absolute rate theory and classical
trajectory analysis, might be able to shed light on the difficulties
presented by experimental work. These theories are reviewed in the

next section.
Absolute Reaction Rate Theory

For an atomic or molecular process which requires an activation
energy, that is, one in which a minimum amount of energy must be sup-
plied to the reactants in order to cause reaction, the atoms or mole-
cules must approach each other to form an activated complex. The acti-
vated complex may be pictured as sitting atop a barrier between the re-
actants and products. The rate of the reaction is given as the velocity
of the activated complex travelling over the top of the barrier. In
this theory, the activated complex is treated as a molecule that is

stable in all respects except for the normal vibrational frequency in



the coordinate of decomposition. By making the assumptions that the
initial reactants are always in equilibrium with the activated complex
and ‘that the activated complex decomposes .at a definite rate, .the fol~-

\ . . X 5
lowing expression for the rate of reaction, k, may be written::

KT .  F4 - B /Ry

T @ . (1)
h FpFpeee

#4

In this equation, T is the absolute temperature; R is the gas con-
stant; EO is the difference in the zero-point vibrational energy of the

reactants and that of the activated complex; FA’ F .+« etc. are the

B’
partition functions of the reactants A, B, ... etc. respectively; F#
is the partition function of the activated -complex; h is planck's .con-

stant; k is Boltzmann's constant; and: K is the transmission coefficient.

Another form of the rate equation is:

k= K="—K . , «2)

In this equatioan¥ is the equilibrium constant expression between the
activated complex and the reactants. If one makes the usual substitu-

tions for the equilibrium constant, the rate expression becomes%:

( °)¥ | ( °>¥
’ AS -(AH )
kT o /R e /RT (3)

v .- 4
where (A So) is the entropy of activation and (A Ho) is the enthalpy

of activation.
A quantitative calculation cannot be made using equation (3) since

the entropy of activation of the activated complex is not attainable,



However, equation (2) may be used providing the equilibrium .constant is
evaluated, This evaluation is possible if the partition functions of
the reactants are known and the partition function of the activated com-
"plex is calculated from the frequency of the normal modes . of vibration
and the geometry of the activated complex. These quantities are attain-

able if the potential energy surface of the system is known,
Classical Trajectory Amalysis

A new form of kinetic study has been developed in the last few
years6o This form of analysis, known as Classical Trajectory Analysis,
involves the assumption that classical mechanics describes the system.
To begin with, the molecules or atoms are séparated at a distance suf-
ficiently large so as to ensure a small interactior;;;tentialo The
equationsg of motion are then integrated until there has been a reaction
or all chance of a reaction is past. This procedure is called a tra-
jectory calculation., For a detailed study of a system, many such cal-
culations must be made to allow proper averaging over initial coenditions,
In this manner, it is possible to relate the theoretical analysis with
experimental work. If, in an actual experiment, a given.set of initial
conditions could be defined exactly, an averaging technique would not be

-necessary.,

The equations of moetion referred to above may be expressed as:

(4)

where Qi is a generalized coordinate, H the Hamiltonian and Pi a

generalized momentum, conjugate to Qiu By expressing the Hamiltonian



as the sum of the kinetic energy, T, and the potential energy V, the

equations of motion may be written as:

Q; =55 and P, = - (5)

providing V is a function of particle position: only.,

Following the assumption that classical mechanics is sufficient
to describe the system, the kinetic energy term may be obtained analyt-
ically, For a trajectory to be calculated, however, a potential energy
function is again.required.

Although an exact quantum mechanical formulation of the (H2I2) Sy s~
tem potential is not possible at the: present time, several semiempirical

5, 7-15

methods have been employed with varying degrees . of success for

other systems,



CHAPTER II
MULTI-BODY POTENTIAL ENERGY SURFACES

Eyring H, Surface

3

‘One of the earliest attempts to obtain a potential energy surface
for a system -was made'bvayrings. In. 1936, Eyring reported a semi=~
empirical method of analysis of the-H3 system, In this analysis, the

potential energy function was taken to be the lowest root of

E=D + n(Wab. +F.Wbc + Wac)

e 2 2 2.
+ (1~n)(Wa b + wb c + wa c wab Wbc

: 3
wab wac Wbc wac) ? (6)

where D 1is the heat of dissociation: of H2 minus the half-quanta of
zero-point energy; wab is the energy of Hz for the internuclear sepa-
ration.rabvand similarly for Wbc and Wac;,and n is the fraction of the
sum of the binding energy of H2 for the given internuclear distances,
A potential contour map of this surface for the linear configura-
tion. for H3 shows ‘that a basin is formed at the saddle point. Such a
result indicates that as the reactants follow the reaction coordinate,
they first pass over a barrier, then fall into a potential energy well

as a metastable activated complex. Other attempts to generate the‘H3 sur-

face have failed to yield such a basin along the reaction.coordinate,



Eyring-Sato H3 Surface

1

In 1954, Sato7:reported on his work with the H system. For the

3

potential energy of two atoms close together and the third at-infinity,
16 :

Sato used the Heitler-London  results for the energy of the bonding

and the antibonding cases. The energy of the bonding case was given as

the Morse function:

[] \ B l,
- i [e- 2'B (r-re) _ , - p(r-re)] )

where Ebond is the energy of the bonding state; De is the dissociation

' .
energy of Hz; P is a constant; re is the equilibrium bond distance of

HZ; and r is the bond length of HZ’

For the energy of the antibonding state, Sato proposed the fol-

lowing expression:

! } ! .
By m 2 [S2 PO T BEm0 ] g
3

This fits the calgulated data for the. ) u state of H, reasonably well.

2

By using assumptions similar to those of London}7,fSatoz derived the

potential emergy equation:

R S ~{ . 32
EETE [QAB’+ Qe * Qe {’ [(“A.B B¢’
2 7%
(K pe ") T (s T0) J} (9)

where k corresponds to the square of overlap integral while Qij and

cx_ij‘représent coulomb-and exchange integrals respectively between



centers i and j., The only difference between this result and London's
is the presence of the constant k. In the range of large r, k ap~
proaches zero and the two results are the same.

The potential energy plot obtained by this method differs from
that of Eyr%ng“s attempt in that it does not have a basin, but instead

the expected reaction barrier.
Porter and Karplus H3 Surface

Recently, Porter and Karpluss,have reported results obtained for

the H, system. Previous attempts had either neglected.overlap or

3
treated it as an empirical parameter. In this work, all overlap and
multiple-exchange integrals are:included. These integrals are esti-
mated through varioﬁg semliempirical procedures,s° Agreement is. found to
be quite good for a comparison of the experimental activation energy
and the activation energy calculated using this surface in g Classical

Irajectory Analysis?. This work also agrees with the prediction of

the linear complex as the least energetic,
Conroy-H3 Surface

Conroygﬂ'14 has recently reported a rigorous solution of the H3
system. The calculations reported include both symmetric and unsym-
metric linear systems.

In these calculations, Conroy empioyed single-centered basis func-
tions constructed so as to produce the correct behavior at the nuclel
and as the interelectronic distance, rij“ approached zero. These
functions were incorporated into a variance minimization scheme in

which integrals were evaluated by Monte Carlo techniques.  Final energy



values were obtained via the variation formula and an extrapolation
scheme to zero variance.

By comparing the Conroy surface obtained with the semiempirical
surface of Porter and Karpluss, one sees that agreement is very good.
This agreement lends weight to the validity of the semiempirical meth-
ods used by Porter and Karplus to evaluate the overlap and the multiple

exchange integrals.
Karplus,. Pederson and Morokuma H4 Surface

Work on the H, system was reported in 196715, An approximate sur-

4
face was obtained by a'semiempirical method of the London-Eyring-Sato
type. Although the surface obtained by this method was too high:at the

saddle point, it was used in a quasi-classical trajectory study of the

reaction:

H., + D, «<——> 2 HD.



CHAPTER III
(H,I,) SEMIEMPIRICAL POTENTIAL SURFACE

In order to carry out a theoretical analysis of the.(HZIZ) system
by either absolute reaction rate theory or classical trajectory analysis,
a potential energy surface is required. Although a rigorous treatment
of the (HZIZ) system is, at the present time, impossible, wvarious semi-
empifical methods are available with which to construct a potential
energy surface. Several of these méthods are reviewed in the previous
chapter. With such methods, a representation of the (HZIZ) su£face has
been formulated.

By using the London.17formu1ation, the potential energy is obtained

as a function of the .coulombic and exchange integrals of the system:

%

vhere Q= Qup * Qe+ Qp * Q¢ * Up * Upr ™1 = “as t Topr T2 = Tan.

cx< (4 = X - ¢
+ BC and 3 AC + CXBD.

These integrals may be approximated through the use of the Heitler-
Londoh16 expression for the singlet state and triplet state energies of

a molecule:

X -
g tT%s 3 s " ap
E,, = ————=2 and °E,_ = ——22 L)
AB T, 2 aB T T g2 :
AB AB
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If one neglects the overlap integral of equation (l1), then that equa-

tion becomes:

+ o and 3E

= = —_CX
Exg = Qg T4 A = Qp " - (12)

Solving for the coulombic and exchange integrals gives the result:

3 3
E + “E E - E
- AB AB and o _ AB AB

Us 2 AB 7 . (13)

The singlet state energies for the molecules in question present no
problem. The potential function proposed by Morse18 is used for the

singlet state energy.

E =]De [e-z P(r - re) - Zé—|@(r B re)" (14)

1 . e L
where De is the dissociation energy, f is a constant related to the

ground state vibrational frequenéy, and re is the equilibrium bond

)
length. The constant F is given by:

)

= oM L

P=2TY, V375 (15)

where Vo is the ground state vibrational frequency and M is the reduced
mass.

To represent the triplet state, 3E, Porter and KarplusS.have pro-

posed a modification of the Morse function,

b 3 3
3E-—-?’De [e_z P (r-re)+2e— ﬁ(r-re)]o (16)
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In this form 3De and 3ﬂ are adjustable paraﬁétefé used to fit the
triplet state energy curve for the system,

For the H2 system, Kolos and Roothaanlg‘have carried out accurate
.quantum .calculations to obtain a representation of the lowest triplet
state for the system. Equation (16) has been shown8 to fit‘this data
quite accurately.

In this work, Equation (16) has been employed to.obtain a repre-

sentation for the triplet state energy of the HI and I, systems. . How-

2

ever, since no data for the triplet state energies of HIL and I, are

2
available, it has been necessary to carry out semiempirical calculations
to obtain approximate values for these energies,

For‘the diatomic molecule AB separated by distance R, a semi~
empirical molecular orbital approach, in which the molecule is treated
as a two-electron system with nonpolarizable cores, has been employed
to obtain the triplet state energies. Wave functions were represented
by a single Slater determinant in which the molecular orbitals were

constructed from a minimal basis set; that is, one atomic orbital

centered on each of the two nuclei:

Y2 [ A1) A (2)

<
|

(17)

[

where N 1

[CI¢A € ¢)B]o<

Ny = [CB¢A + CA¢B]O(

< is the spin function and ¢)A(1) is the atomic orbital of electron 1

centered on atom A. The atomic orbitals used were Slater orbitals.
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For hydrogen, a 1 s orbital was used, for iodine, tﬂe 5 po orbital was
employed for the bonding electron and the remaining 52 electrons were

treated as part of the nonpolarized core and assumed not to take part

in the bonding. When equation (17) is expanded, the wave function takes

the form:

-<
|

- K[<1>A<1>¢B<2>‘—¢A<2>¢B<1>] (18)

where K = 1 . 0 (19)

/ 2
2 ZSAB

where SAB represents the overlap integral, i.e.

SAB=<¢A|¢B> ' | (20)

Ignoring nuclear repulsion energy and writing the Hamiltonian for
the AB system in atomic units, one obtains

2. 2

H =‘%V1 =3V, +r1. = V(D) =V (2)

12

= Vg(1) = Vp(2), (21)

where VA(l) is the potential seen by electron 1 due to the presence of
core A, b
When the wave function and Hamiltonian are substituted into the

electronic energy equation

*E_ = 4( 3pp 3y ar (22)
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the expdnded equation is of the form

3 1
E = ————————— X. — X s (23)
: 2 1 2
e (1 - SAB) [ }
where % =0, 2|R | $,1) 52 > (24)
and X, ={ 0, (|| §,(2) by(1) > . (25)

The integrals of equations (24) and (25) may be divided into

various forms by separating the Hamiltonian as follows:

Ho=da+Hyr iy (26)
1 2 v
e fa==370 WO, (27)
1 2
N ;l_ _ _
and HINT = T, A(2) VB(l) ] (29)

Substitution of equations (26)-(29) into equations (24) and (25)

will yield the following types of integrals:

{0, 0502 [# 4| 0,0 6520 (30)
<4>A(1)4>B(2>l;—1—2 ’ b, (1) 65(2) (31)
< 4>A(1) ¢B(2) | VA(Z)I $,(1) ¢B(2)> (32)

<¢A(1)¢B(2)IHA|¢A(2) ¢B(1)> (33)
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<¢A<1)¢B<2>l?11‘2 |¢A<z>¢B<1>> 3)

‘<¢A(1)¢)_B(2)l VA(’Z)I\q)A‘(-Z) ¢'B(1)> (35)

These integrals have been evaluated using various semiempirical

approximations. The integral of equation (30) is approximated as
{0, 0b @] H L]0, by ) = -1, (36)

where IA is the ionization potential of atom A.' Tﬂis“procedure in
essence assumes that ¢ A represents an exact eigeﬁfuﬁction of A
whose associated energy is the experimental ionization potential. A
similar approximation has been made by Poﬁl.zoénd by Pohl and Raff21 to
treat the hydrogen halides and interhalogen systems, Integral (33) is

-evaluated in a similar manner.

!

The two-electron integrals of equation (31) are evaluated with

‘Pople'-s22 approximation:
RO I IREPEREIPIE - (37)

where R12 is the distance between nuclei.

Integral (32) is also evaiuated by Pople's ;pprOXimation:
. . : _ —]
CO D0, [ vD| Wby =5 . (38)

By expansion and use of the abové evaluation schemes, Xl becoines:

- — - Ry | ;
xl- IA I‘B Rlz,, (39)
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In addition to the integrals in X» X, includes:

<¢) Al 4>B-(2)l;1_2“|¢A(2)¢B,(1)> =

2

S
AB | -1
7 [ 2R, +IA+IB+AA+AB] ; (40)

where A, 1s the electron affinity of atom A. This evaluation is made

using Mhlliken'szs, Pariser”s24 and Pople's22 approximations., The first

of these changes the integral in equation (34) into

2
S
% <¢§ (1) +¢§<1> ;t—l ¢§<z) +c|>§<z)> . (4l)

This yields four integrals that may be evaluated by Pople's22 and

Parise;_"sz4 approximations: i.e,

CHCE et HOYEES: 42)
2 : -
and <¢'B(l) “‘—"riz l¢§(2‘)> =R]é (43)

which are evaluated by Pople's point-charge approximation; and

<¢§(1) r—iz ¢§(2)> =1, + A, (44)
and <d>‘2(1) L—1b 2(2)> _= 1' + Ay (45)
B Tio B B

.which are evaluated by Pariser's approximations,
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When Mulliken's approximation is applied to integral (35), a two-

center, one-electron integral of the form
<¢B(2) ! VA(Z)I ¢B(2> (46)

-results, as well as a one-center, one-electron integral

(a | n@| 4, (462)

Integral (46) is evaluated by Pople's22 point charge approximation
whereas the one-center integral (46a) is evaluated analytically by

approximating V, as — Z r. That is

A A
00 M 27 i1
- - n*—l -7 r/n¥* e
<¢)A(2> l A(Z)i¢A(2)> N f ([ eff
/rk
eff 2 ar sin 6 d © 0, (47)
n% +-1
| 2 (22 )"
where 4 » N™ .= oo

4 (2n%)](n%)
ZA is an adjustable parameter; r is the distance of the electron from

the nucleous; and Zeff and n% are Slater parameters.,

Evaluation of (47) yields

<4>A<2:»§ <z>l{>A<z>> 2 Eff =y (48)

After expansion and evaluation of all the integrals, X, may then

2
be written as:
2

| AB 1 2
X = [IMA THy T 2R12] s Sap

: 2 AB -1
IB SAB+ 7 [2312+»1A+ IB+AA+AB]° (49)
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When X, and X, are incorporated, 3Ee is given as:

1 2 ‘
3. [ 1 .. _. _.1 2
Ee'[l‘_sz [ a7 Ry TS, itat I
AB _
2
M M S
A B, —1] _ "AB i
+ = +——-—2+R12} A I, +I,+A, +A
+ 2R (50)
12 .

By writing the electronic energy in this manner, all of the infor-
mation needed may be found in tables. The electronic energy given by
equation (50) represents the difference in energy of two positive ions,
at the desired bond distance,. and that of the neutral molecule at the
same distance, Thus, to obtain the dissociation energy of the triplet
state, three terms must be added to the electronic energy given by

equation (50):

A—s AT 4 1e I, (51)
+ —
B —> B + le Iy (52)
A+ gt 4 st 11 (53)
o0 R

Equations (51) and (52) are simply producing ions from neutral
molecules whose associated energies are the ionization potentials of
A and B. Equation (53) represents the nuclear repulsion energy term

involved in moving the two ions from infinity to distance R. This is



19

approximated as RI;. With these additions, the total 3E is given as:

3. _°3 —1
E = Ee+IA+IB+R12 . (54)

With the evaluation of 3E, equation (12) then yields the coulombic and
exchange integrals required by equation (10) to formulate the (HZIZ)

surface.



CHAPTER IV
RESULTS AND DISCUSSION

Before a potential surface can be constructed, certain constants
must be evaluated. In the case of the empirical triplet state energy,

equations (50) and (54), the ionizat%gn potentials and electron affin-

ities are required. These quantities may be obtained from literafu;e
while‘jiH and My are calculated from Slater's constants using equation
(48). For hydrogen, this yieids,R g= 1. For iovd‘ine',/lI == 0,475 2
when Slater's Zeff is taken as 7.6 and n* as 4.0. In order to make the
potential energy function fit the barrier height estimated from experi-
mental activation energy data, Z is left as an adjustable parameter.
The best fit is:fauﬁd for Z = 4.0, The requi?ed daéa for the qalculation

are given in Table I.

TABLE I

CONSTANTS FOR CALCULATION. OF 3E

Atom I(a.u,) - Aa,u.)
B . 0.5000 - -0.0276
I L " 0.4636 | -0.1305

20
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A comparison of data in Table II for H, by this method using

2
equation. (54), and the data of Kolos and Roothaan19 produces the: fol-

lowing result:

= 0,3887L + .02 (55)

-3 3
where ET represents.- Kolos and Roothaan data. and Ec»represents data

calculated by the empirical scheme described in Chapter III, The

corrected 3E results for HI and I2 are therefore taken to be:

3. .3
E, = 0.38871 “E_ . (56)

When equation (56) is applied to the HI and I, systems, the data shown

2
.in Table III are obtained. Equation (l6) can then be fitted by least-
squares techniques to this data., This procedure produces the parameters
3De and 3 .

These parameters, along with those for the singlet state of the
system, are recorded in Table IV. This data, along with equations (13),
(14), and (16) allow the coulomb and exchange integrals required by
equation (10) to be calculated, Substitution of these values into that
equation then produce the required potential surface.

;fi The attributes of the surface represented by equation (10) can:be

lllustrated through the use of contour maps., Such maps are shown in

{Figures (1)~(5).



TABLE II

UNCORRECTED 3EH2 'FROM EQUATION(54)

R (a.u.) 38 (e.V.)
1,00 20.02
1.20 17.63
1.40 14,48
1.60 11.59
1,80 9.22
2,00 7.31
2.20 5.79
2.40 4,60
2,60 3.63
3,20 1.76

4.00 0.64
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TABLE IIIL
CORRECTED 3E FOR HI AND 12
R (a.u.) B (eV.) R (a.ul) 35 (ev.)
2

2,21 5.74 3.16 5.29
2.48 5.33 3,68 3,47
2.76 4,57 4.21 3.39
3.45 2.54 4.74 2.47
4.14 1.18 5.26 1.48
4.83 0.49 5.79 0.79
5.52 0.19 6.32 0.38
6.90 0.022 6.84 0.17

TABLE IV

SINGLET AND TRIPLET STATE MORSE PARAMETERS

Parameter H 2 12

lDe (e.V.) 4.7466 1.555 3.194

‘@ 1.04435 0.9869 0.9468
r_ (a.u.) 1.402 5.040 3.032

3De (e.V.) 1.9668 0.5741 1.1622
3q 1.000122 0.4920 0.7335
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Figure (1) represents the regular, planar, trapezoidal configura-

tion. In this configuration, the H2 bond is parallel to the 12 bond

and the four nuclei are coplanar. For the contour maps of Figures (1)-
(4), the I2 bond distance at all surface points is set equal to the sum
of the H2 bond distance plus a constant. That constant is taken to be

the difference between the I_ equilibrium bond length and the H

9 equi-

2
librium bond length, The variable coordinates of Figure (l) are the
distances between the centers-of-mass of the two HI molecules and the
distance between the centers~of-mass of the H2 and I2 molecules, By
requiring that lines connecting these points be perpendicular, avregular
trapezoid is formed with the 12 molecule as the base and the H2 molecule
as the top. .

If the distance between the centers-of-mass of the H2 and 12 mole-
cules is large and the distance between the centers-of-mass of the two
HI molecules is small, the system corresponds to the region at the lower
right. This region would then represent an (H2 + Iz) system. If the
magnitudes of the distances were reversed, the upper left region would
represent two HI molecules., By traveling from the lower right te the
lower left and then to the upper left, the reaction coordirate for the
reaction, H2 + 12-_9 2 HI, may be followed. The saddle-point for this

surface occurs when the HI-HI center-of-mass distance and H2~12 center-
of-mass distance equal 5.4 a,u. and 3.0 a.u, respectively., The barrier
for this reaction is calculated to be 1.83 electron velts.

A contour map for a distorted trapezoidal configuration is shown
in Figure (2). This surface is formulated in the same manner as that

of Figure (1) with one exception: the lines connecting the centers-

of-mass of the two HI molecules and the centers~of-mass of the H2 and I2
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molecules atre not perpendicular. For Figure (1), the center-of-mass of

the H, molecule lies . on the perpendicular bisector of the I_ bond axis,

2 2

In Figure (2), the center-of-mass of H2 will be 0,5 atomic units off
this perpendicular bisector. This has the effect of pushing the top of
the trapezoid 0.5 atomic units to one side while holding the top and
bottom parallel. The general form of the contour map in Figure (2) is
 the same as that shown in Figure (1), The barrier height on this con~
tour map is 53 kcal. The saddle point is reached at the values of 5.6
a,iu, for the HI~-HI center-of-mass distance and 3.1 a.u, for the H2~I2
center-of-mass distance.

Figure (3) illustrates a non-planar surface in which the configura-
tion represented by Figure (1) is altered by rotating the 12 molecule
90° out-of-plane. Although the complete reaction coordinate cannot be
traced out on this surface, a comparison of energy contours for Figures
(L) and (3) indicates that the expected reaction barrier along the out-

of-plane path should be higher by perhaps as much as 1 electron: volt.

Figure (4) represents a planar configuration in which the H, mole-

2
cule is pointed directly at the center-of-mass of the 12 molecule, This
configuration is a "T" formation with Iz.representing the brace and H2
lying on the stem. As the molecules move together, the H, slides up

2
the stem until one of the hydrogen atoms has passed between the iodine
atomsg forming a.crossed structure. As can be seen, this surface is
virtually identical to that shown in Figure (3).

For a linear configuration corresponding to the reaction of HZ +
21 — 2 HI through a- linear complex, one obtains a surface of the form
shown in Figure (5). In this figure, the H2 and‘IZ»centers=of~mass are

superimposed with all four nuclei lying along a straight line. Energy
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contour lines are plotted as a function of the H, and I, bond distances.

2 2

The reaction coordinate for the above process begins at upper left with
H2 + 2I, then proceeds down to mid-left at the saddle point located at

an Iz bond length of 10.0 a.u. and an,H2

this point the barrier height relative to H2 + 12 is 2,45 e.V. The

bond length of 1.5 a.u. At

reaction coordinate then continues to the right at a 45° angle to form
2 HI. When compared to the regular, planar, trapezoidal surface of
Figure (1), the barrier height for reaction along a:linear configuration

appears to be about .44 e.V. higher.



CHAPTER V

SUMMARY AND CONCLUSIONS

Analysis of the five contour maps indicates that the lowest re-
action barrier occurs with the regular trapezoidal configuration., In
Figure (2), the distorted trapezoidal configuration_fgises the barrier
slightly. The linear configuration shown in Figure (5) raises the
barrier 0.44 electron volts. For the out-of-plane and perpendicular
configurations, Figures (3) and (4), the barrier heights are quite high.
The complex formedlby the out-of-plane and perpendidular configurations
appears to be»tso highly energétic to permit reactign to occur along
that coordinate. The configuration tﬁatbseems most‘favor;d for reaction
is that oijigure (1), the reéular trépezoidal configurétion, For the
reaction to pfoceed only by the termolecuiaf mechaﬂism would seem un-

'likély at this point. The termolecular mechanism appears to be a pos-

i

sible cbntfibuting mechanisﬁ ﬂut would certainly not apéeér to be the
predominﬁhgnéne from analysis of the barfierfheights of the contour

P
maps., The experimental activation energy is ;:eported3 as 1.90 electron
volts. for the H2.+ 12——9 2 HI reaction., The barrier height as taken
from the regular trapezoidal configuration is 1.83 electron volts. This
good agreement is not surprising since the parameter Z in the 3E calcu-
lations was adjusted to produce agreement of these values.

The .above observations, based on barrier heights alone, are in

apparent disagreement with experiment in that Sullivan’s3 results

32
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indicate that a termolecular mechanism is responsible for the bulk.ef
the reaction., This fact, in conjunction with the present work, would
seem to indicate that the termolecular reaction path must be other than
linear, Since a poténtial function for the (HZIZ) system is available,
classical trajectory studies of the reaction dynamics could now be
carried out. Such calculations might answer some of these questions
involved with the mechanisms. Although the potential energy surface

is a semiempirical one, the general form is thought to be reasonable;
the right diatomic energy limits are obtained and the barrier height is

in excellent agreement with that reported experimentally,
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