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PREFACE 

When I was introduced to this problem by Dr, R. G. Mcintyre, 

I found the cluster integral method most confusing. I have written 

the second chapter in this report in hopes of clarifying this method 

for someone else , The fifth chapter concerning numerical methods 

of triple integration should be of most interest to the mathemati

cian. Although the formulae derived will be useful to the physicist 

when doing problems similar to the one discussed in this report. 

It was not possible for me to attempt this project on my own . 

I am indebted to Dr . R. G. Mcintyre for the introduction to this 

problem and for his patient guidance in the research, to Dr . F. C. 

Todd, the project director, for his continued encouragement, helpful 

suggestions, and the assumption of the chairmanship of my committee, 

and to Dr. Rufus Bruce whose dissertation proposed this problem and 

whose private communications proved very useful , 

On the nonscholastic side, I should like to express my apprecia

tion to my wife, Karen, for her patience, and to her mother, Mrs , 

Jim P. Wilkirson, and her father, Mr . Charles Walters, for their en

couragement and financial aid in finishing my master's degree . 
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CHAPTER I 

INTRODUCTION 

When a small hypervelocity particle strikes a stationary, plane, 

metallic target at normal incidence, several interesting phenomena 

are observed (3). A brief, but very intense, flash of light occurs 

in the first microsecond after impact. A hemispherical crater is 

formed about the center of impact which is many times larger than 

the projectile, and a small curled lip may be present about the cra

ter. Ultra-highspeed photographs during crater formation reveal that 

a fine spray of material emanates from the circumferential region 

of the incipient crater. These phenomena are very different from 

subsonic velocity impact of a projectile which leaves a long, deep 

hole in the target which is only slightly larger than the projectile 

itself. 

Such high speed projectiles occur naturally in the region above 

the earth's atmosphere and are given the name, micrometeroids. 

Project NASr-7 responsible for the support of the research re

ported in this thesis began as an analytical study of micrometeoroid 

impact phenomena with particular interest on aluminum as a target 

material. Various theses have been written on the subject by Lake, 

Sodek, Wang, and Bruce. The particular concern of this report is 

an extension of one part of the work of Bruce (2). 

1 
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There are several ways, involving various approximations, to 

obtain an equation of state during the time that a plasma is produced 

by hypervelocity impact. Bruce (2) discusses and compares different 

methods. One of the methods involves Mayer cluster integrals to cal

culate Helmholtz free energy of the system. From this, the thermo

dynamical properties of the system may be calculated. Bruce (2) used 

only two-body interactions for his work and obtained good results for 

some regions. 

In order to extend his results, the present study was undertaken 

to include the three-body interaction terms to Mayer's cluster inte

gral expansion of the Helmholtz free energy. As a preliminary study 

and to avoid the large number of ion species inherent with aluminum, 

the results for hydrogen were obtained in order to judge the order 

of magnitude of the correction. The values for the Mayer cluster 

integrals, which are associated with the three-body interactions, 

were applied to the calculation of the electron density as carried 

out by Bruce (2). The results are given in Chapter IV. 

The cluster integral method is discussed in a simplified form 

and then generalized. The evaluation of the cluster integrals is 

discussed and the results applied to the calculation of the electron 

density in a hydrogen plasma. A general discussion of methods of 

numerical integration of triple integrals is given. 



CHAPTER II 

MAYER CLUSTER EXPANSION OF FREE ENERGY 

In order to understand the general case better, a development 

of the Mayer cluster expansion of the free energy is developed for 

the case of a nonideal, monatomic gas. This will bring out most' 

of the problems that are encountered in the classical many-body 

problem. The method of arriving at the expression for the free 

energy is from Brout (1). 

Basic Equations 

If one can find the free energy of a system, all thermodynamic 

quantities may then be calculated. The free energy is related to 

the partition function in a classical, canonical ensemble by the 

equation 

F == -kT /0.7 C (2-1) 

where Fis the free energy, k is Boltzmann's constant and Tis the 

absolute temperature. 

i! :: Nj,/v f Jf Jr ExP[- H,p1 'f) /k T] (2-2) 

for an N-particle system, his Plank's constant and H(p, q) is the 

Hamiltonian. In H(p, q), p represents the 3N momenta components and -q the 3N spatial coordinates, ,. .. t) ~ 
I JI,. In equation 2-2, 

3 



and 0 

Assuming that all particles have the same mass, and an ideal gas 

"' ~ H = 2 !1 
i•t 2.m 

i.e., there is no interaction between particles. Then 

I Al P/~ 
z!IO~A-L = /.If J,?"' r dp cJ 1 /:; X l3 [ -1-, ~T J ' 

Carrying out the integration over the 3N spatial coordinates 
~ ~ -r.,r~1···-;rv J 

4 

where fL is the volume of the system. Now the momentum is assumed 

to take on all values from - 00 to + oo 

since the momentum of each particle is independent of the others. 

Now """ 
== -;GirmkT{i,; µxrf-£) dr,,} 

_,al) 

where (,(::: f'x"·/7ml.T 

The integral and the constant in parentheses is the normal distribu-

tion function over its range and, hence, must equal to 1. 

Then 

Let 
Ji I 

;t ::: { ~ 7f f'1I /: T) Yz 

. 11/v' 
z:z»:,,--+-'- = N! ;t ~Al • (2-3) 
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Where ..it is assumed to be of macroscopic dimensions and~ is the 

mean thermal, de Broglie wavelength. 

Assuming that the potential energy, V, does not depend on the 

velocity of the particle, the kinetic energy in the Hamiltonian may 

be separated from the potential energy in (2-2). 

~ I ~ 

Note that .Ji!" is non-negative and f ;;/;,, cl r, d r,_ " • • d l"p :::= / , 

I 
Then, JL~ is a uniform distribution function and g may be expressed 

as an expected value 

(2-4) 

where E denotes the expected value. 

Expansion of Free Energy 

The free energy, ~F, from the interactions between particles 

assumed a particularly simple form 

L1 f = F - FTl)EA,1-

:: - fr ( 1°, ~ - lo!I ~:rDUL) 

= -fr /oJ E{E:1.Pl-(r)) (2-5) 

In this discussion, the principal of supposition is assumed; hence, 

the potential is the sum of pair interactions. If - _.,. v .. == V ( t".• - 11 ) · IJ I oJ ..... 
where r; is the position of the i-th particle, then 
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V :: ;5 .. 11,.j == ± ,2, v/J 
l£.1~J£N 1,f:. J 

(2-6) 

Note that there are N(N-1)/2 terms in this sum. 

The expression 2-5 is related to cumulants in statistical theory. 

(2-7) 

is a moment generating function. In our equation 
I 

t, :=: - k I and 

xis V. The cumulants of a distribution is given by log m(t) and it 

is this expression that is of interest in this discussion. 

By expanding the logarithm by a Taylor series about t = 1 and 

substituting in the series for the moment generating 

following series is derived 
.,,::, 

tn Mn 
/01 [(Exr[txJ) .:::- 2 h I 

h"'-' I 

The coefficients M are called cumulants. The first n 

M, == E or; 

Ma. f(y/--; -(Ecx)) 2 

E (x 3) - 3 Ec.x:i.) [{)CJ f 2(E (X)) 
:2. 

f1 = 3 

f1 ti = flx"J - f Ecx 3 ) f'CxJ ~ 3 c 1= u,-:i > ) 

·f- 12 E ( X 1 ) ( E (x) ) 2 I- {,(EU<.)) 'I 

Equation 2-5 becomes 

I 
= - kT 

o<> 

2 
h=I 

_J_ h 
(- kT) f'1 

n1 n , 

2.. 

function, 

four are 

the 

(2--"8) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

· It would be more convenient to have the above equation in terms 

of the density, p = N/.n. To convert the series, consider first 



M, ::: £ c vJ = :};~ f d -;; d;;_ , "" d "r; ("J.f vu},' (2-14) 
/4.V 

Now each term in the sum gives the same contribution by the assump-

tions about potential energy 

11, ; (f J ~-,, s d r, d ~ • , • d 11 rl/J, 
IJ 

Without loss of generality, let II•• - 1' s:: V(: - ::'I) I J - "12. •, r'fJ. , Since 

v12 is independent of , integration may be 

carried out over these 3(N-2) variables to yielq 

M . (I/) ....L ( d ~ cl -, = ~ ..n.:i. J r, r,,, 

( !:) W-1)~ N2 For large N 1 - .... 2 ~. r 
" 

~ ~ ... 
Let r : r, - r~ 

The Jacobian of this transformation is 

I i:> o i 0 0 

Jc~ R) 
ofoo t O 

o o I 0 0 
.},.. 

J = ::I,. 
;:: 

J <;r )i) ooi = _, 
O C .. 

(!) -, 0 of e 
" 0 _, 0 0 .L 

::,.... 

"'2. 1 ( 4 d r~ JR~ n,; '"i"" _().,a. J vlr) 

~ 

Integ·rating over R 

or 

M; 
I 

M, -Iv' = s/iflr) dr (2-15) 
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Evaluation of M2 

For M2 the procedure is somewhat more complicated, 

M'J... = E ( v 2.) - ( E ( V) ) :2. 

M,, =Z (E.(v.,· , .. ) El r--l ) 
_. ., ,, ,..< l '.J "k.t v;l) c:. Vk.e 

l"-.JJI' 
) 

It is convenient to classify the terms in the above sum as to the 

indices that they have in common, 

I I v ~ 
E(v12V34) E(v12V23) E(v122) 

(a) Unlinked (b) Reducible (c) Irreducible 

Figure 1. Classes contributing to M2. 

Figure 1 gives the cluster graphs of configurations arising in 

the sum for M2 . The dots represent particles and the lines are bonds 

of interactions between particles. 

In Figure l(a), there are no indices in common. This implies - ~ 

that r;,. and '3+ can be varied independently of one another. Hence, 

v ,,. and Vay are, in essence, statistically independent and 

(10). Therefore, considering indices of this type in the sum for M2 

E ( v,1 113" )- El v,2.1 E Lt13 " > = o 

and there is no contribution to M2 by unlinked terms. 
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For the reducible terms, an example is El v,~ v~3 ) Since 

.... 
the medium is homogenous, choose r ~ as the origin and integrate 

over r, and ~ . 

r'" ( u U ) - -1-;, f v. I/ d r~ d r.....,. , , ., J ~, 
r:; "'l'l- vi,\..3 - _a"' 12.. v-,.., 1 ;,... riv 

= _). .v f V,,. v,_ 3 d l, cf ;;_ Jr£ 
Let 

~ 

r,2- = ..., -+ r, - r;J. -t;=r! J 

then f JI =-I• 

£{,&-- ) J_ f d ~ d ..,. d ~ 
. , 1:,. va..3 -= ..12..i v,~ v::a.o r,-:J. r:13 r 2 

;;: :Ji { f Vn. d r,1 ) ( f Y.1.3 J ,!2.J) 

El v,~ v:i.3 ) = El v,,.) El v.,. 3 ) 

This last equation implies that the reducibly linked terms will con-

tribute nothing to the sum of M2 . 

The last case is given by I: ( V11
2 ) 

in this expected value, and 

f1 -:: 2 2.. I I 
f£J 

[ f l llu :).} 
I J 

No reduction is possible 

(2-16) 

If one compares the order of magnitude of the two types of terms in 

;z. 
E ( V,, ) 

It) 

J f 2 -=, 
::::. 7f" V/J d ""'J 0 ( :; 

('f. ( V,· J)) 4 
; ( -* f ~· J d ~ J ) 

2 = 0 ( ; ~ ) 
Hence, in equation 2-16, only the first term need be included. Again 

there are N(N-1)/2 identical contributions. 

IV( Iv-I} _L I !l. 
.2... ...n.. v,'l. 
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Evaluation of M3 

To carry out the analysis of higher order cumulants, it is con-

venient to expand on the graphs already introduced for M2 . The graph 

of the expectation correspO!'l:ding to E(vijvkl v) is construc
yz. 

ted by first drawing a vertex, or point, for each particle listed as 

a subscript and then drawing a bond, or line, between the pairs of 

subscripts. To generaJize the terms that have already been used, an 

unlinked graph is two or more pieces which are not joined by any bond. 

A graph is reducibly linked, if it can be divided into two connected 

pieces by cutting the graph at .one vertex. All remaining graphs are 

said to be irreducible. 

The next term in the series contains 

The various difficulties of higher cumulants mostly occur in 

M3 , hence it is analyzed in detail 

I I I VI 
(a) (b) (c) 

Figure 2. Unlinked Terms in M3 

An example of Figure 2(a) is Since 
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have no indices in common, they are 

statistically independent and 

Accordingly, the sum 

and there is no contribution to the sum for this type of graph. 

An example of Figure 2(b) is Since 

V 45 is independent of the other terms ,fr. 

E ( 0:z. ~3 V~,5 ) = E{v,2 II~.}) E ( V.y5") 

By the same type arrangement as before 
' 

and there will be no contribution to the sum for this type of graph. 

For Figure 2(c), consider 

The term 

does not equal to zero; but, these subscripts can occur in three 

different ways. 

l.'12 v, .,_ v,'I as above, 

Vn_ '1"/ Viz and 

V.1;, V'°/1. ~i. 

considering the total sum of these 

E ( v,: V.,"1-)- 3 J;(~:J E"(V.?J'I) -I- 2. ( E,(~'2-Ja. E{f1'1) t- £'c"":l..v,,, 0a) 
:lo J;.,. :2. 

- 3 El "l:2- "3'1) £(~2 ) -r 1 lE c '12 )) '-<Y~'t) t f (~ 41 V:z) - 3 fl//-," 1/12) Et~~ 
'.2.. 2 

-1-1 (E-lv1~J 1=c1.,J =3 EC~,.) E{~'t) -3( EC~~JEtllg,,.J) 

- t { 1:-c v,-:1 J)?.. E cv..,~) fC, { E (~ 1 )) -:i.£(1'f) 

=o .. 
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Accordingly, there is no contribution for this type of graph. 

N ~ "'11 
(a) (b) (c) 

Figure 3. Reducible graphs of M3 . 

Consider the case for Figure 3(a). 

~ 

The absolute value of the Jacobian is 1. After integrating over r~, 

Similarly, for Figure 3 (c) £ l v','3. v,:i v'f:)) =: El v,'2) t(//3:J £~'1-:J-) , 

Accordingly, there is no contribution to the sum from these terms. 

In Figure 3(b), Ecv,: v~3 J will, upon passing to relative 

coordinates, become E (111;) E(V"J.3 ) By considering, as with 

Figure 2(c), the three possible ways these subscripts arise, the 

contribution will be zero. 

(a) (b) 

Figure 4. Irreducible graphs of M3 . 
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The two remaining possible graphs are illustrated in Figure 4. Again 

by an order of magnitude argument, the terms in the sum, other than 

the first, have at least one more expectation value and, hence, are 

of an order 1/N times the leading term. Thus in the limit, as 

N~ r;t:1 , only the irreducible clusters in the first term give a con-

tribution to M3/N. 

Now there are N(N-1)/2 identical contributions of the type in 

Figure 4(a) and N(N-l)(N-2) of the type Figure 4(b); hence 

~ N-1 ( 3 ~ J ~ (Al-l)lN-2) ( J'"""' -, 
N .::: u ) V (f') r . f _a. :l. J V,-, ~ ..;, t;2 cJ r;_3 

I r11 ~3 -== k I' [v it; d l' f I'~ [v,2 v~ v,, cl;::,_ cl ~3 1 

~.(J.~oQ --

(2-17) 

Ar,/.4. ,,= I' 

To summarize this discussion, the unlinked and reducibly linked 

graphs drop out of the sum for M2 and M3 • The irreducible cluster 

integrals are the only important contributing factors to the sum. 

This may be generalized and, for higher order cumulants, only the 

irreducible clusters considered. This becomes plausible when it is 

realized that graphs of unlinked and irreducibly linked graphs rep-

resent essentially statistically independent variables and that terms, 

other than the leading irreducible terms, are at least an order of 

1/N less (1). 

From these considerations, the contributions to M consist of 
n 

all, irreducibly linked diagrams which contain n bond amongfvertices, 

where 2 ~J/ $ n This combinatorial factor, that gives the number 
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of ways that a given graph appears in sums over the indices, is{~) 

times the number of diagrams which contain these)/ particles in 

a particular topological arrangement. A further discussion of topo-

logical structure of the graph will be given below. 

Expansion of Free Energy in Terms of Density 

In converting equation 2-13 from powers of - 1/kT to density, 

a number of irreducible graphs contribute to M in each term of the n 

sum. An irreducible graph of )/ vertices has a factor of Nv and _y.,., 
all but )/-/ coordinates can be integrated, leaving a factor _n_ • 

In the sum of ~F/N, a graph of)/ vertices has a density dependence 

of 
/V J/-J 

v-1 
12.J/-I ;;:;: r' Examples of this are equation 2-15 and 2-17. 

As a consequence, graphs which are classified according to vertices, 

correspond to powers of density; a classification according to bonds 

corresponds to expansion in terms of (- 1/kT). By summing over all 

graphs that have a given number of vertices, equation 2-13 can be 

converted into a power series in density. Figure 5 will serve to 

clarify these ideas. If the contributions of the graphs of column 1 

are summed, it will give the coefficient of(°; column 2 will give 

the ,o:J.. t ,- erms, etc. This process gives the series 

:::: (2-18) 

as N ~ ~ • The ,notation, to be defined below, is chosen to agree 

with Mayer's definition of, "irreducible cluster integral" ,clm(9) 
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Vertices 

l3onds 2 3 4 5 

1 

2 

:3 

4 0 
5 

Figure 5. Classification of irreducible graphs according to 
bonds and vertices. 

Consider the contribution of the graph in the first column of 

Figure 5 in the equation - :: .:: lo, l , 

The quantity /3, ::: fie -,t9v - I) d if 

is the negative of the second virial coefficient in the expansion 

eV 
NkT 
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In general, the virial coefficient B is related to the irreducible 
n 

cluster integral 4'n-, by 

(I). 

In summing the second column of Figure 5, the combinatorial prob-

lem is more complicated. Let the vertices be labeled 1, 2, 3 and the 

bonds (12), (23), and (31). The problem is to find how many graphs 

contribute to Mn such that there are 112 bonds of type (12), 123 of 

type (23) 'and 131 of type (31). There are ( ~} ways of choosing three 

vertices out of N distinguishable vertices. The possible ordering 

of the factors v.'. In. I a.., J-, 1 

11. v;J v~, which arise in f (II /,a, .,.,,~3 -f-
131 } 

must be taken into consideration. Since 112 + 123 + 131 = n this is 

the number of arrangements of n things into three classes which is 

the multinomial coefficient 

/,1 ! /,;..:, 1 ,,,1 
Consider Equation 2-13 for only those graphs with three vertices 

I jn 
(~'ir M (part from three irreducibly linked vertices) 

n I 11 

(2-19) 
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The last equation defines ;9-:1-.• 

The summation of columns of Figure 5 may be continued. The 

coefficient of in the sum for ~ Al' will be the sum of all 

reducible diagrams with),/ vertices. Now each set of diagrams must 

further be divided into classes in which only certain bond types are 

permitted. To illustrate this, consider the case of four vertices. 

Figure 6 gives six possible arrangements of bonds among four verti-

ces. Figures 6(a) and 6(d) are of the same bond type, the open square. 

Figures 6(b), 6(e), and 6(f) are of the same one diagonal bond type. 

Finally, Figure 6(c) haso both diagonal bonds. The Figures 6(a), 6(b), 

and 6(c) determine the basic topologically distinct subsets of graphs 

for the four-vertex case. 

.D [SJ ·~ 

(a) (b) (c) 

D CSJ [Z] 
(d) (e) (f) 

Figure 6. Various types of four-vertex diagrams. 
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3 
To obtain the coefficient of~ , sum over all possible 

distributions of bonds of a given subset and then over all subsets. 

Let (ij) label a bond type. Then a diagram with V vertices and 1 .. 
1J 

bonds of type ij contribute a factor to M of 
n 

N J/ 11'\.l ,., 
, I E ( 7T V(J' I J) ""J7i iii, I 

• /J. 

where 

I .• 
/ .J - n Y~h 

(2-20) 

If the summation is carried over all diagrams of this subset, it 

becomes 

Bonds in the 
given subset 

d . ...,, d- Jr. r. • • .. r 
I :> .1,,-1 

(2-21) 

by steps similar to those in equation 2-19. 

The next step is to sum over the subsets of a fixed )/ . 

Alp v-1 2 jTT( e 
)// . 

= (2-22) 

where the summation is over all topologically distinct diagrams among 

}/ vertices. The identity defines the irreducible cluster integral 

A It is necessary to include the phrase "topologically 
t p-1 

distinct" because, through the combinatorial factor in equation 2"-20, 

the orderings of have been included but not 



19 

the type of bonds. The final results may be 

expressed as 

(- 1c1r} / i m 
~N-aa 

N :a.= r' 

(2-23) 

Perhaps a further explanation of the subsets of graphs of a par-

ticular set of vertices is in order. Let the graph with only single 

bonds among)./ vertices be defined as a "skeleton" graph. Let every 

bond, v .. , of a skeleton be replaced by 
1.J 

{;; - Ex? ( - ~·J h T - I) I 

(2-24) 

The contribution of an entire subset is the same as that of the skel-

eton of the subset; but, each skeleton can occur in several topolog-

ically distinct ways. As a consequence, the integral representing 

the contribution of a skeleton must be weighed with the number of ways 

that it may occur. To illustrate this, again consider the four-vertex 

case. The graphs of 6(a), 6(b), and 6(c) can occur in 3, 6, and 1 

ways respectively. Hence, ,/3~ is given by 

I -31 • 



·o~ 
··1. 3 

I [SJ~ 
3 .2.. 

'12r 
:2,. J 

Figure 7. Skeleton graphs of four-vertex case with all 
possible different labelling. 

The formal solution of the problem of a dilute, nonideal, 

classical gas is completed by the derivation of the Mayer cluster 

20. 

integral expansion since all thermodynamical quantities may be de-

rived from the expression for the free energy of the system. The 

coefficient of the )/,_, power of density is given by ~ h~I 
where ~..t,, is the irreducible cluster integral. 



CHAPTER III 

ANALYSIS OF CLUSTER INTEGRALS WITH COULOMB INTERACTIONS 

The derivation of an expression for the free energy of a system 

in .terms of cluster integrals and number density for systems of more 

than one ionic type is carried out in detail by Friedman (4). 

Notation and Definitions 

By establishing a rather complex notation for classifying sets 

of ionic types and bonds, the equations assume a simple form which 

is closely related to those that were derived in the previous chapter 

for a monotonic nonideal gas 

where en C n, c n,_ 
- I ::i, 

V - volume 

oO 

Z c n /Jn 
n:'.2 

h,,

ccr 

is the product of number densities of er different species. 

are the number of the /tJJ species in the graph. 

(3-1) 

The !), 
I 

is the cluster integral corresponding to a configuration. The rules 

of writing SK will be given below. 

which the integration is performed. 

21 

K is the configuration graph over 

' For a coulomb potential, 
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Friedman (4) finds that the cluster function of two particles is 

f ,. (fl,,}:::. EXP (-ll,,J~ /;.., - ~ .. A CJ Cr[:) J - I 
l,J /J I J g v 

(3-3) 

where ..:l = 'f rr e <2.,1r 

is the coulomb length. 

.J 1'1 particles is given 

The short range potential between the /.,..~and 

*" by ll/J ) and the distance dependence of 

coulomb potential by ?1T :J ( r;·J ) " 
In order to understand the classification of terms in the sum, 

3-1, it is necessary to repeat some definitions of terms that were 

used by Friedman. A j -bond is a coulomb bond between two particles. 

In a graph, if a vertex lies at the junction of exactly two?" -bonds 

it is called a 7 -bond node. A f -bond chain is a sequence of?" -bond 

nodes connected by f'-bonds. A~ -bond corresponds to a short range 

and a coulomb bond between two particles. A ~-bond is a bond con

necting >n vertices, e.g. , ~ is a surface bounded by a triangle. A 

composition set, n ;:; n 1 1 n,_ 1 • • • ncr , is the number of each 

different species in a system. If brackets enclose the composition 

set, it is the set of coordinates of the species in the composition 

set. 

Terms of the Expansion 

With these definitions, equation 3-1 may be somewhat simplified. 

Let a graph of Yr} vertices be given. The vertices, which are 1-bond 

nodes, correspond to a subset of n of m. Lett,/ be the remainder of 

rn such that m =n t-lf Then equation 3-1 becomes 

(3-4) 
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where 

~ is the sum over all terms corresponding to two vertices con-

nected only by a J -bond, 

~ is the sum over all terms corresponding to simple cycles of 

j -bonds, 

C u 4 0() is the sum over all terms corresponding to graphs in 

which there are U vertices of the assigned composition set, t,/ , 

that are not{} -bond nodes. Note that, previously, the definition 

of the irreducible cluster integral did not depend on the Debye param-

eter )< , but this modified integral does. 
I/ 

The symbol I indicates 

the terms correspon9-ing to U=O and lt=-1 are omitted in the 

summation. 

The contributions to .5L come only from m = 2; hence, from 3-1 

we have 
. 2 

). J/J 

dr 

where [ · / 1 j] / ::- Ct,' but (A = /, /, 
I J 

, J,t:J.; 
.) I .,/ ./ 

or O, 1' 
I .J 

[ ' '] I l1J ,: :2 Hence - ' if I:: J but,::;/ if 

.. ' I=/: J .. Since the system is assumed to be electrically neutral, 

the sum 0 hence 
/ 

S.,1., ::::' o l 
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Friedman evaluates the terms that contribute to S and obtains 
c 

.:)( 3 
Pc = n .. 1r which corresponds to the Debye-Huckel, limiting-law 

expression for the thermodynamic function, S, Hill (6). 

The General Cluster Integral 

The terms in the integrand of 814 { )() correspond to an in-

definite number of expanded graphs of J -bonds, k -bonds, ">:; -bonds, 

. . . bonds on a skeleton of u + n vertices. By considering 

the combinational problem and classifying graphs Friedman (4) reduces 

the problem of constructing the cluter integrals to 

Use the notation, 

t XP l t,(:b /AT 

lab -/ 

c ~ab - I 

The graphs that enter into the integrand, 

are given by the rules 

(3,-5) 

(1) Every vertex of the graphs is connected to every other 

vertex by at least two chains of bonds. 

(2) There are no 9-bond nodes. 
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(3) On a given pair of vertices there are at most one 1 -bond, 

// 
or onefJ bond, but not both. On any m vertices, there may 

be at most one Vm bond. 

(4) In the case of u 2 

""vra,bJ! 

Equation 3-4 now becomes 

where the 

)( 3 

/11T 

// u + Z c 8(1 ()<) 

814 (:.>() terms are determined as stated above. 

Hydrogen Gas Model 

(3-6) 

(3-7) 

The evaluation of the cluster integrals becomes very difficult 

as u increases. The objective of this report is to evaluate the three 

body term in the sum for the case of hydrogen in order to gather some 

idea as to its importance. First, the two-body terms will be worked 

out, briefly. It is discussed in detail for aluminum by Bruce (2). 

The general model that is chosen for a hydrogen plasma in this 

report is a collection of neutral atoms and an equal number of posi-

tively charged protons and negatively charged electrons. The net 

charge of the plasma is always zero. A hard-sphere, short-range po-

tential is postulated 

t> (3-8) 
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It is particularly simplifying if the paramater a is chosen to 

be such that the coulomb potential at r,.; = G{... 

mean thermal energy 

where G is the 

T is the 

2· 
I 

and 2, 
J 

I ~/ ;lJ / e 2. 

a.., 

absolute charge of an electron, 

absolute temperature 
I 

are the charge on the I -,..>, and 

Cluster Integrals for Two Bodies 

is equal to the 

(3-9) 

• -rh 
j particles. 

According to rule 4, above, the cluster integral in the sum for 

the free energy is 

where 

'FTT 
8 , . ( X J = [./,) 1 .' 

I,/ " 

* ¢ II = EXP ( 
{,/,'J 

I I -f-'J/J) kT /J 
",!, - :x,.. 

- l 2-l .a e 

To 

CJ. , 
IJ 

Q • I ::: 
Iv 

simplify the integrals 

l= 
,2 I ~; 1 I 

'f,,.. ) 

r= L -k/", e ;r . 

B,,J ( :XJ 
'+ "lT 

= [/.)}] ! 

~ 17' ,.. 

I +- 'f/J f- .J. r I I 
; 

-:2.- / ,J 

let 

k:::. ){ (L 
I ){ = ..I 

Th.en, 

(3-10) 

q., 
I .J 

(3-11) 

(3-12) 

J2 
.::{. 

(3-13) 
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The second integral can be evalute explicitly by integration by 

parts. 
-/( ,t 

J. e 
)( 

) x~dx 

The part of equation 3~7 that pertains to the two body terms 

may be written as 

i,'J. - c-r :2.. B.,..,_ ;- c.;.c_ 81-- -r c_7.. B-- I- cp c.,. ~ r 

./- c(P (.,_ Bo- f- Ce, 2 ~" (3-15) 

where the subscripts + J - J and tJ stand for positive, negative, 

and neutral particles, respectively. Note, that since electrical 

neutrality is postulated ct- = c _ :::::: c " 

If one, or both, of the particles are neutral then the product 

of charges 

This implies that 

r [ e ({ 
I 

but 

L = o 

CJ == {) 
'1 

c == I 

Q :::: I • 

_!_ 
3 

then 

0 
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The factorial [ # '] I 
I ./J • -0!!!!!==1 or= o/:ifa/-.::-2 

if a neutral and charged or two neutrals particles are considered, 

respectively. 

Since (3 i {)-<) 
I .) 

I ~IT' '.3 
U,JJ! T 4 

-- 'f TT 
'T 

3 
a,, 

Since the cluster integral depends on the product of the two 

charges considered, 13,-.,.. : IJ_ - Doubly ionized hydrogen does 

not exist and electrons are singly charged, but this treatment is 

very necessary to discuss for the general case. With this considera-

tion equation 3-15 becomes 

The integrals Br+ and /J __ cannot be evaluated' in closed form. 

Friedman gives limited tables of these integrals and Bruce (2) extends 

their range. The two body case is straight forward and the integral 

easy to evaluate, numerically. In the three body case, there are a 

number of complications and the number of integrals and cases increase 

considerably. 

Cluster Integrals for Three Bodies 

There are three different bond configurations possible for the 

three body terms of ~ as illustrated in figure 8. 
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¢11''' ¢f;:J,'' A ~ 
'I 11" 

(a) (b) (c) 

Figure 8. Bond configuration for three bodies. 

Considering the diagram in Figure 8(a) first, let 

- "){ r6 c. 
- 2-t, ~ ). e, 

'f Tr 11, c.. 

(3-17) 
·~ ....... 

1 II 
be, : £>< ,P [- * II b'-

kr - 7/)GJ- /- 76~ (3-18) 

I II * l:XP [-
t/a,t:, 

- ? A.,t:,J - I - 7 ""c dl.e, - k, ' 

The cluster integral, according to the rules above, becomes 

/ ( II II 
Ba-be tx) =- 0 J fid.b ~c. 7 Q;&- ct £ a.-1 6,, c 1,. 

V (3-19) 

In order to simplify this integral let 

I / 

The absolute value of the Jacobian of this transformation is one, 

hence 
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-Carrying out the integration over e gives the volume of the space. 

If d ;::" and d iic.. are expressed in spherical coordinates and 

¢ // 1/ 
if it is noted that ~ and 4b .J Pbc ) 1~c are functions of dis-

tance only, then 

2 // r 11£.C.. ra-e, ·t J s.r; v r 
d 8- d ~4 c/ Abe d I/' 

where is the polar angle associated with rbc.. / 

Figure 9. Particle geometry. 

Integrate over Y 1 ~4...c.J and -lbc 

'2. ,<) "'° .,,.. 
. I _ fil!J ff ,Ii II <P_ II Ba.°" (Jt} - U ! 0 0 0 >"4J, bo 7a..c 

to obtain 

by the law of cosines. 

It is not possible to simplify the integral any_further except in 

a few cases. 

By similar transformations and integration the integral corre-

spending to Figure 8(b) may be reduced to 
"'° ,,0 1f 

i3 // ( X) = 8772.fff ,I, I/ ,,J, IJ A. JI r:. ~ r" S.I.ved e dr~, d nbt:-
ti-b (.. l/ I '¥«b ~"" \Pa.a ~ J," -- , L 

• f> I) 0 (3-21) 
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The nature and mathematical model for the r; bond is not clearly 

understood and will be discussed later in this report. 

Since a hard sphere model of hydrogen is being considered, it 

is possible to simplify the integrals. By equation 3-9 

and for hydrogen /2.; J-jl=: I hence 

e-1 
r, - --r r-v- k. 

lf"/Tl::2. 
The Coulomb length is ;l-= P"i'r" where D is the dielectric constant 

of the medium and is unity in the case under discussion. 

Let 

and equation 3-17 assumes the form 

- ~a..?1,, 
{ '/1Tc2) - /<. Xa..b 

&r.. e . 
r 4-b == 't 11' { :; } X aj, 

-kX(/(,1, 
tr,,, ;lb e, 

= x "-'b 

- 2-h ~~ 
-k ¥JJe 

e 
(3-22) 

7 bt; - x bC. 

- ~a, ~c e 
-KX4 c 

'tt11.c = x a." 



32 

where 

which is the reciprocal of the Debye length. 

Since there are three possible states of charge for each of the 

three particles represented in each of the integrals, there are 

twenty-seven possible cases; however, only the products of two 

charges are of interest. There are only eleven different cases for 

these products. Table I lists these possibilities. 

TABLE I 

VARIOUS COMBINATIONS OF ION PRODUCTS FOR HYDROGEN 

Product Number of 
zazb zbzc z z Configurations a c In Group 

1 1 1 2 
1 -1 -1 2 

-1 -1 1 2 
-1 1 -1 2 

0 0 1 2 
0 0 -1 2 
0 1 0 2 
0 -1 0 2 
1 0 0 2 

-1 0 0 2 
0 0 0 7 

Before taking up each of these eleven cases, it might be well 

to write, explicitly, the two cluster integrals with the change of 

variables of equation 3-21. 



;I 

B t.i.,bc (')I J 

where 

X = _ 1 xb1.c a.It, -y 

2 a& =- "l- a, ,§ b· 

;zbC: :; 21::, '2-C, 

Cluster Integrals for Three Bodies 

Case I: 

This is the simplest case, and the inte~ral can be evaluated 

explicitly. 

33 

(3-23) 

(3-24) 
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Since the charge products are a coefficient of the q terms of 

equation 3-22, 

f ab ~ 1.b c - 9 "'-v - t> ' 

In every case that and, hence, 

B,. {J<)::;;: o 
Ot;,c, 

since the 'ft,.,,c.,, term multiplies the integrand. 

Using equation 3-25, equation 3-24 becomes 

fJ // 
(),:, tJ 

Now using the fact 

The integrand is zero if 

,~ 
Now equation 3-25 becomes 

where 

=o 

or 

F lXC!.1:,) == -1 c> < ,,>< d..6 £ 

- 0 /L >< Ctb 

(!)L y Q.,b 6-- / implies that 

I 

O L )t '2-
/1.t: 

f- ){ 2. 
b.c. -::2..xtt.e-X 

be Ce.f.£;,i#- ~/ 

To simplify the notation, let 

(3-25) 
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The integrand is nonzero on the area 

d L. X'"-.-1y2 -2)( )'cos@~ I .. 

To find the expression for the bounding curve let 

)< ':l + y 2- - 2 )( )' Ct) s t> = I (3-28) 

solving for yin terms of x and Q 

)( .... ;;;_ ~ 2. 
2. cos@ ' 7-,-_X' c..os~- ('-IX2-/) 

.1. 

' 

Consider x = O; this implies that y = + 1, since y > O, this implies 

that the+ sign must be used initially; hence 

(3-29) 

The question arises as to whether y becomes negative in the range 

of values. Since the above function for y is continuous, a negative 

value implies that y must have the value zero for some value of x. 

Let y = 0 

0 :::: X c 05 e + 71- x 2 :;z""9 

2 
or x = 1. This implies that x = 1, since x > O. 

This means that for 04 x ~ / 

y.:::: x cos @ + -11- )(...,_ s..r~ 

2 If y = 1, then equation 3-28 becomes x + 1 - 2 x cox Q = 1. 

-1 x This implies that x = O, or Q = cos · (2) 
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Now the integral 3-27 becomes 

I Cl)s-f±) I 

8:;0 {){} - ei;}'-'/f r f )('JJ 2 5rP@JyJ&JX 
"' Oo tJ 

(3-30) 

The integration of the above integral is tedious but straight 

forward and the details will not be reproduced. The result is 
::i ~ II tnr ~ ( 1fr) 

/3 OOt) ( ~ ) ::; - (.,/ f //1/j 

By numerical methods of triple integration which are outlined 

in Chapter 5, the coefficient was found to be .101684. This value 

compares favorably with .104166, that was found above, considering 

the rather crude grid that is used to cover the domain of the 

function. 

The term U! = i! j! k!, where i, j, k, are the number of nega-

tive neutral, and positve particles, respectively, is summarized in 

Table II for this case, 

TABLE II 

VALUES OF U! FOR CASE I 

z zb z U! 
a c 

0 0 0 0!3!0! 6 
0 0 1 0 !2 !l! 2 
0 0 -1 l! 2!1! 2 
0 1 0 O! 2 !l! 2 
0 -1 0 O! 2 !O! 2 
1 0 0 0!2 !l! = 2 

-1 0 0 1!2!0! = 2 
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In case II let This corresponds to 

the cases 2-11,, ,r ~.:: I J' ,{.:: O l'-' ! = 0/7}2,/:: :2 and ~ =:: &b::: -I 1 ~ ;::;..O 

u! ~ '-./ // o/ = 2., Since :Z <t,.:;. :::-0 1 s:hC ()() = 0 

12. 17"[~ "'" -K ~ - k xiL/:I // ~ rr Qj· r r: l.ta.l, 2-~ e ] e ) B a../)c ()I)= ur O () {) l(~yp[- 1<r - XA,b -1 + Z"«.b X,tb 

,I< ~ 

.:: (Exrf-t;."] -1)( FXP[-f:J -I) .xa./X:, s:x11,;J 61 d-tu J~6c • 

Now if or 

the integrand will be zero and equation 3,,-31 becomes 
g'" ,,.,,. 

13 :h~ C )() = ;, a [ [ f f=:. l x( b J 
• l!lo () 

where 
- k ¥.-1::, e. 

F= -) f},H x 
·-o a..b 

The integrand is complicated by the fact that 

(3-31) 

After some investigation, there does not seem to be any profitable 

way to carry out further integrations. The integral was evaluated, 

numerically, for various values of the paramater K. The results are 

recorded in the Appendix. 

In Case III, let zab = -1, Z = Z ac be 0 

This corresponds to z 
a 

-1, Zb = 1, Zc = 0, u! = l!l!l! = 1 and 

za = 1, zb = -1, Z = O, u! 
c 

1!011! = 1. 



This case is very similar to Case II, except Zab = -1. With this 

understanding, equation 3-32 applies for case III. 

For Case IV assume Z = Z = 0 and Zbc = 1. Then ab ac 

z 
a 

O Z = Z = 1, u! = 0!1!2! = 2; or Z 
' b c a 

u! = 2!1!0! = 2. 

Again 
I 

/3 {"){) = 0 since 
a.1:,e, 

z 
a 

-1 
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'*" )'-
( fKp[- :;b ]-/) ( E xpf- :t:J-1} xtl; x; ~J)/i/ d'.l:' J Xa.c-d Ybc " 

If X a..(: 7 J or J he. 7 I) the integrand is zero if 'X ht.. is greater 

than 2, xab must be greater than 1 since xac~ 1, The limits of in-

tegration become: 

II 

B""b" l )< J = 

where ;= =O 

F = -/ ,)( b,:,. 

-k th 

F = Fx?[·~1,c. ~ J -If 
Xoc.. 

In Case V, z = z = 0 and 2bc = -1. ab ac 

u! = 1· or z = 0, zb = -1, z = 1, u! ' a c 

same as equation 3-33 except 2bc is -1. 

z o, zb = 1, z = -1, a c 

= L Obviously this is the 
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For Case VI, Zab = Z = 0 Z = 1 corresponding to Z = Z 1 be ' ac a c 

-1, zb = o, u! = 2. 

In this case B,c,:/ )() is not zero. 

Equation 3-23 becomes 
= .L> n ~ -k..1-'<lG [ [ f [frXPL- ::: j-;){E)(P/:~] -/) (za~: ) 

x ~ x~ 5.;:-fo'&] Je d X.,1,.:: d x.,._" , 

If xbc > 1 or xab > 1 the integral is zero. 

This places the following restriction on x 
ac 

Hence, 

where 
F =- ~ 

_ k X a..c 
:ca.c e 

- 0 

{) .c. J<ab 

I ~ Xa.o 

~ I 

This integral can be evaluated explicitly. Let xac = x and xbc = y. 

For O < x .::_ 1, the same region of integration is required as Case I. 

For 1 < x < 2, the shaded area in Figure 10 is region for which the 

integrand is nonzero. 

Figure 10. Domain of integration 
Case VI 
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This region is defined by the follo~ing inequalities 

o"' e..:. 7T 

Let l =I and x t:/,l) = /., This 

implies ;x ~ ·f- I ;l.. )( Ci) C..cJS G) = I for which 

X ·:=0 
-I ( i) () I" e .=. cos 

hence, Gos_, {. ! ) 

and x c.os@ -/1- x'2 

Equation 3-34 becomes ~/~ 
I, I I Cqs l"2) 

B:,)(; (X} = s;;et, [fr() f- ~~ e 
O O 

- "~ 
A' )' 2 SI.c/0 d t9 J)' d X 

The evaluation of these integrals is straight forward but very long 

and tedious. The result is 

This formula, though explicitly true, is inconvenient to calcu-

late on a computer of the parameter K is less than .3. Since it in-

valves the difference of two large, nearly equal numbers, loss of 

significant digits can occur. In order to alleviate this situation 
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for small K, the exponential was expanded in a Taylor's series about 

zero. After using the first nine terms of the series and carrying 

out the indicated algebraic operations equation 3-35 becomes 

I,, 
I $'/T-:l~ { 1 1 ~ '2. f2 J 8' '/ ) 1i6c, c )') = -~ F 15" - 1 A t ii A - f,>- I< f- St? t. - .. .. 6 (3-36) 

-3 
The error in neglecting higher order terms should be O (10 ), or 

less. At K = .3, four significant figures are obtained with equation 

3-35 when nine significant figures are used. Since this is more sig-

nificant figures than the IBM 7040 digital computer uses, without 

double precision programming, it is considered that for K < .3 equa-

tion 3-36 is better. 

If in the above equation x and xb are interchanged, this is Case ac c 

IV. It is unnecessary to evaluate both cases because of the symmetry 

of the integrand. 

In Case VII, let Zab = Zb = O, Z = -1, then Z c ac a 
o, 

Z = -1, u! = 1, or Z c a -1, zb = 0, Z = 1, u! = 1. 
c ' 

Equations 3-23 and 3-24 become 
o0 ,,,o IT ( r f {(E-)o-"[- :~t )'-/ )( l-KP{- if&]-/) 4 (? t) u/ 
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and 

J-1 f-

These are obviously the same as the previous integrals. The only 

difference is that Z is now -1. The regions of integration will ac 

be the same. The expression for B1b (){) can be integrated and the a c 

result will be equation 3-35 with Z = -1. ac 

In the remaining four cases, it is not possible to limit the 

range of integration to certain values of the variables XacJ Xb, 

and 9. For cases VIII through XI, the following general integrals 

pertain: It is necessary to substitute the proper values of the 

charge products, as listed in Table III, to evaluate the integrand 

for various values of the variables. 

2. " oD "° 7r 

iJ ~be. { :x) = g:1 a. f [ f [ ~ t x'4> J Fa. c tb(,J {-1-~ e -kx4c) 

Xtt..c xb;- S.T,t,9] dedx4.-c. d.x-bc (3-37) 

II l 'fl a.be )() : 

(3-38) 

where 

:: El<? {-

~ - i< X,t,.,. 
4 tto e :;,] _ I 

x "'-h 

e.. -K )(6c. 

F-::i lxbc) =- - I f '2:-•c. Xt,c. 
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f- XP L- -/ 

TABLE III 

CHARGE PARAMETERS AND U! FOR CASES VIII THROUGH XI 

Case 2ab 2bc 
z z zb z U! ac a c 

VIII 1 1 1 1 1 1 6 

or -1 -1 -1 6 ,, 
IX 1 -1 -1 1 1 -1 2 

or -1 -1 1 2 

x -1 -1 1 1 -1 1 2 

or -1 1 -1 2 

XI -1 1 -1 -1 1 1 2 

or 1 -1 -1 2 

To evaluate the above integrals, it is necessary to use numer-

ical analysis. The particular method used is discu~sed in Chapter 

5. A set of tables for each case was constructed for various values 

4 of the parameter, K, ranging from 10- to 10, 

Using the notation of equation 3-15 and equation 3-19, the 

three body terms of equation 3-7 become. 
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$ 3 ~ cl- 3 B-1-+-;,, f-c.; c_ (f3f+r f8+-f f!io-) + ~c-'2 (13+ __ f !J-+-
. 3 1 
}!] __ 1 ) f- c_ iJ... __ fCo C;. {B'ot-1- f-!J +cf- + B ;-+~) 

f- CC) c.J. c_ (61- 0 _ l B + -o f Pc~- f !30 __ +- f 8-c,-; B--+o) 

i C 2. / . . b C_ L 8 __ 
0 

(3-39) 

Since the g-bond of Figure 3-l(a) can appear between any two vertices, 

I 
there are three different integrals contributing to B b ().1) 

I f~fd'l{ II i I .i. :2 · a : 
J, = J ¢"4> {>.be, 1a? .Xa...c. Xbc. 5~/1/B d &- ch'~"' K'bc 

1) 0 () 

Let 

i 

lf)-

and let 

By appropriate transformations the integrals of 3-40 may be re-

duced to a form for integration. There are relations between the 

integrals for different charge product parameters, 

Let 

,.,( jJ 

<p ClC 

(3-41) 

The positive, negative and neutral signs on the nonsubscripted I's, 
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above, refer to the charge products, not the individual charges on 

the particles. Examples are 

:: I,'_ t-~ 

I 
.:: I, 'l-0..f 

~' - :i' 
- .)..' f-- ~- f.l. 

;;..J;_'o--==- I'CJ-0,f,i-

i I I = I =I I 
:1 + - - 3 ff - ; ~ --+-
/ , I 

= r:J. e,-- ::::- I 3 r+-o .;;; ~ --o 

By the use of the above relations, it is found that 

8 +-+- { X) = 8_!!? a(,(£ I 
:2... +--

B-1-0-1- CX) "' 
f 1{1 (, ( -1 

~ Cl i bt-l> 

I ..!11 ) 
t--n-

I I 
-1-I __ -r II - f--

- I 
I 

f j ¢+ f If-oo 

Additional considerations simplify equation 3-39. 

I 

II 

) t-I+--

,, 
+ ~bl ) 

C,1- ~c.- .;- c 
for hydrogen and J: xx O -::: 0 where xis plus, minus or zero. 

The following symmetries have been discussed, also. 

[e 1
0+-

..... r' t,o -

r '' --f = I'!_ +- -
,, II 

[ t:H, f ::::::. .I () +c 

and 
/I I/ 

I oo- ::. I" o-o 

With the above properties and relations and after some algebraic 

manipulations, equation 2-39 becomes 

c:/ '1 '[ 3( I J i I ) 
,-:, 3 ::: 1571 t:t, C It-++ +3( L-1--- f I-:f- +I--+-

' II II f/ ) . .. ,a. ( -' I 1 /I 
I-'§ .t-,.n + I+-- f .2. I--+ "f Co G -J J.(!)of.,.. J.fDo. 

- II II [ I ) { 'l. 3 j ) 1 '' } t 1 J.. ... (!)0 + :2. I oof + "I oo- · -I- 3 Co I- Ca/'- ooo 

The I's in the above relations are, of course, the integrals of 
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Cases I through XI which were discussed above and evaluated by various 

means as a function of a parameter K. 

In the next chapter, a thermodynamic relation is used that in-

volves the partial derivative of S with respect to the ion concentra-

tion c. As a preliminary to the calculation, it is desirable to find 

I 

d C- J 

For hydrogen, 

(3-43) 

Using equation 3-16 for s2 , 

= 'lffa1 {:i. c( j~ +J.J_) i 'le,., (3-44) 

where 

= B-+-

- ..l I . 
- .).Jr! # 

::i ,, 
=n I_ 
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Similar operations on s3 as given in equations 3-42 yield 

(3-45) 

The nature of the ~-bond has not yet been discussed. The poten

tial associated with the Y-3-bond is defined as 

.(,A,,"'·; A ( f ~~ J1 .A}) ::; V-iilk ( L,~ v ~ "-}) - ·~'.J· ( r ~ 11 J 

- a.t'k {£ "~ A J ) - u.,si-'k ( {I /"'~ l ) (3-46) 

where U. "k is the potential of average force between particles i, j, 
1J 

and k and uij' uik' and ujk are the pairwise potentials between the 

appropriate particles. The formulation of potentials of average force 

is discussed by Hill (6). To define UN for a composition set of N 

particles, let {N} be the spatial coordinates of the particles and 

{N.}. be the internal coordinates. Then the probability of a partic-
1 1 

ular configuration is proportional to 
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The probability of a configuration that is specified by the spatial 

coordinates only is proportional to the relation, 

fEKJ>[-TI([JJs/{1,;,·I)4r]J[,i/i1· ;- Ix? [-V([AIJ)~r] !J[J/t,/ 
(3-4 7) 

Equation 3-47 is to be considered as the definition of U ({N}). In 

general, this involves extremely difficult integrals. A special case 

has been considered by Sun (13) for three hydrogen atoms in a straight 

line. He found that the potential of the three atoms differed from 

the approximation that the potential is the sum of the pairwise po-

tentials for distances less than 2.5 angstroms. Since this report 

has assumed a hardshell model with radius a= 4nt2 /kT, a will not 

be less than 2.5 angstroms for temperatures of less than 5 electron 

volts. If the approximation is used that the potential of average 

force is equal to the sum of.the pairwise potentials, then u, 'k of 
lJ 

equation 3-46 is zero. This approximation is called the principle 

of superposition and is widely used as a first approximation. It 

would then appear that as a first approximation that the integral 

associated with the Y3-bond can be neglected in the summation of 

equation 3-7. 

Summary 

To summarize this chapter, an approximation has been found for 

Sin terms of Kand the Mayer cluster integrals for two and three 

body interactions by Coulomb potentials. Equation 3-7 becomes 

2C-$ ;;- 111T f- 5~ f s, 
where s2 is given by equation 3-16 and s3 by equation 3-42. 



CHAPTER IV 

ELECTRON DENSITY OF HYDROGEN PLASMA 

As an application of the theory of Chapter 3 and to judge the 

relative importance of the three-body term, the expression for the 

free energy was applied to the calculation of electron number density 

in a hydrogen plasma. Bruce (2) reported on calculations similar to 

this with Mayer's cluster expansion for two-body terms onlyo The 

detailed plan for calculation was devised by Rouse (ll)o It involves 

the use of Saha's equation and iteration on the electron number den-

sity. The equations and theory will be presented briefly, For a 

morecomplete explanation, the references given should be consulted. 

Theoretical Discussion and Programming Procedure 

The Saha equation, as presented by Landau and Lipshitz (7), is 

derived from consideration of ionization equilibrium which is a spe-

cial case of chemical equilibrium. The equations for the case of 

hydrogen are 

Ct C_ 
P k.,. ( T) 

p 

c_ -::.. c.,.. = c 

/.::: ~ C, f co 
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(4-1) 

(4-2) 



In equation 4-1 

where C0 concentration of neutral atoms 

c concentration of electrons 

concentration of positive ions 

g0 and g+ = statistical weight of ion ground states 

P = total pressure 

P electron pressure 
e 

m electron mass 
e 

I nth ionization potentail of the atom 
n 

T = temperature. 
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(4-3) 

From the gas law in equation 4-1, the following relations are obtained 

Pe ..ve 1. T P==- c :: c If 

Co ,:;;; c~ k T 
c::t 

Then, equation 4-2 becomes 

Since C = N /N, 
e 

where N = number of electrons 
e 

and N = total number of particles 

A/ kT ((? {T) 

It is more convenient to calculate with NH, the number of heavy parti-

cles; hence, 



then 

By the quadratic formula 

- I ± j/ 1-t/l<TKplT)/1111 

;). /.r T /fp (T) 
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(4-4) 

The electron concentration cannot be negative so the positive square 

root must be taken. 

The chemical potential is given by 

JS 
. ./""-e =: <d c.. (4-5) 

according to Friedman (4), and can be calculated from equations 3-44 

and 3-45. This quantity permits the calculation of I in equation 
n 

4-3. 

It is now possible to devise an iteration scheme to calculate 

the electron density of a hydrogen plasma. First, a trial concentra-

tion is assumed, then a chemical potential is calculated from the 

tabulated cluster integrals. Equation 4-3 is evaluated for K (T). 
p 

Finally, by again employing the assumed electron concentration, a 

new concentration is calculated from equation 4-4. This new concen-

tration is used to start the cycle againo The iteration cycle is 

continued until the value for the electron concentration converges. 

The iteration scheme was programmed in FORTRAN IV for the IBM 

7040 digital computer. The methods of interpolation and representa-

tion of functions are discussed in Chapter So 
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Results of Program 

The results of this program are represented as graphs and are 

given in Figures 11 through 13. The graphs for cluster integrals, 

with two-body interactions only, and for ideal gas are also given 

for comparison. 

It will be noted that the three-body interactions tend to de

crease the value calculated for the electron number density in the 

region of lower temperature and higher density, This extends,· 

slightly, the region of applicability for the cluster integral method. 

As reported by Bruce (2), the Ecken and Kroll method appears to give 

as good a value, but these studies were necessary in order to estab

lish the merit of their assumptions. 
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CHAPTER V 

NUMERICAL METHODS 

The first problem to be considered is the evaluation of the 

cluster integrals as a function of the parameter K. This involves 

the triple integration of a rather complicated integrand. There are 

various methods that could be used in the integration; among them are 

the Monte Carlo procedures, special three-dimensional rules, or suc

cessive applications of one-dimensional formulas. These different 

approaches have various advantages. 

Monte Carlo methods find, essentially, a statistical approxima

tion of the true value of the integral, They are very good for a 

quick, rough value of an integral over a finite interval. Since the 

integrals in this report are over a semi-infinite range in two vari

ables, the method is not attractive. 

Special Formulas for Numerical Integration 

Over Three Dimensions 

There are several, special three-dimensional formulas that are 

available. A few of them are derived from consideration of an ap

proximation of the integrand as a polynomial over a finite cube. 

The derivations are based on a work by Tyler (14). 

56 
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Let /,-J+k ~ n 

and consider 

After the integration is performed on the polynomial 

1 /-1-1 j<#-I j~I k1-I ). Jc-1-1 
(a/-,.'-(-a.,) ){tL:,. _(-.ot,..) )(a.3 -{-tt.3 ) 

(lf-1) f:)+1) [k I-/) 

If any subscript is odd in the original sum, the integrated term will 

be equal to zero; and 

Approximate I by 

m 

/.,..,J+k 1;, n 
A-'7J, N e,n:v 

l = 8 a, q~ ~<> Z /("'- r l X-<.., yP(.1 ~.,(_) 
I .., ..l'="I , 

where the ~s are weights to be applied to the function values at the 

appropriate points. 

If 11 - I is considered and the coefficients of Aijk are set 

equal to zero, the following results 

/ J k 
a, I . tl.:J a:.,3 

..:::: (/-1-1){}-ft)[kJ..I} 

=o 

/ 1 ,;~k ev&.v 
.,,i.-;.Jf-k6n 

The above formula gives a set of equations that.must be satis-

fied if the integration formula 11 is to be exact and if F(x,y,z) is 

a polynomial of degree n. 

To derive an integration formula for six points and third degree 

accuracy, consider 
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l, 

L .,f-<. = I 
..{.:/ 

u R,;.. = f ..(::: I 2 ,,. ? 
./ / / 

and the six points of inte-

gration are (± ci1 .1 o 1 ,11) 1 {cJ/ ±a..~1 o) and (o, ~ ~~all of the 

above twenty equations are satisfied. Hence, 

I, : t a, 4-'.}, Cl,J [ L r c ± t!l, / o,, 0 ) f- 2. F ( o., ± tl.:2. ;1 t)) 

+ °2' F ( o,, o) + t[..3 ) ] s 

An idea of the error can be obtained if one considers integrating a 

fourth order polynomial with the above formula and then subtracting 

the results from the true value. The result is 
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An alternate placement of points can be obtained with the eight 

points at each corner and the center of the parallelepiped. 

I 1 ::: ~ a,a.~a.,JJ [I&, FC0Jo1 o) f L F { r ez,1; :1: a...._;± a 3 )] 

with 

This method becomes very tedious as the degree of the polynomial in-

creases. A slightly different approach is possible. If a fifth de-

where 

11 = A o PO 

? ::::: A-If Ot' '<., I # 

If the center of the parallelepiped (O, O, 0) is chosen for one of 

the function values then F(O, 0, O) = Aooo = M. If the six centers 

of the faces are considered, the sum of the function values is 

L f(±a.11 01 0) ·+Lfl.DJ:!:tl::zJO) +ZFZ01 0-1::a3 ) =1(A-:i.ooct/ 

+A '-loo Q/ + Aoz.o Cl,-:>
2 -f A-0<10 Q.,:;,-

4 f A oo2.. Cl./L 
r A-o~·'I a,/) + C, /} ooo 

- 2-Alf2P+'M 



60 

Now consider the points located at the eight corners 

= 8 (H -t-N+P -1-Q), 

If these 15 points are to give the value of the integral, I, the three 

sets above must be properly weighted. Let 

'1611+ lfflv'r 'IP foq = Plf1 +!3(811 +:i J/f2PJ +9>-( /11rtV r?rtl)., 

Equating coefficients 

2/j +- 9 -y, :::. "I 

J.~ f- fl Y' ::: lo 

ri, -f 813 i-fY-'15"'. 

These equations are inconsistent and, hence, it is impossible to ob-

tain a fifth degree accuracy by utilizing the chosen points. 

If one adds the six midpoints of the segments that join the 

center of the parallelepiped to the centers of each face, it is 

possible to get a 21 point formula. 

Consider 

i./ 5 H + Io Al f 1 P + o q = ol/1 -I- /-3 ( ~ 11 f-:1 Iv f p) 

-I- 9"rfntN r P I 6J ) f b { (,, 11 f- i I/ I 1 P) ,, 
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This yields 

<>l l--(.,.l3f-8Y+t,& ==- 15"" 

'-13 + 8Y- +-i ~ = lo 

213 f ; r -1- -; J :;: r 
j v ~s- ~ 

With the s-olution ol-::.-(,2 1 /3::/ 1 y::f.l 

With these values 

where F1 F(O, 0, O); 

EF2 = the sum of the function values at the 6 points midway from 

the center of the parallelepiped to the six faces; 

EF3 = the sum of values of the function at the 6 centers of the 

EF4 = the sum of values of the function at the 8 vertices. 

It should be noted that the general ternary quintic has 56 terms 

that might contribute to error. The above formula provides fifth de-

gree accuracy with only 21 points; hence, it controls polynomial error 

very well. 

Another formula is of interest because all its points lie on 

the surface. It was derived by Sadowsky (12). This 42-point formula 

with fifth degree accuracy is 
I I I 

ff f /4-'(X1 y1 ~)dxdyd:z =~[flL_,ft(,,-12),l'J. 1-11.. 2/"~lfJ ~ 
-J -I -I 
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where Eµ5 denotes the sum of the six values of µ(x, y, z) at the 

centers of the six faces of the cube, 

Eµ12 denotes the sum of the values of µ(x, y, z,) at the mid-

points of the twelve edges of the cube. 

Eµz4 denotes the sum of the values of µ(x, y, z) at the four 

points on the diagonals of each face at a distance of 1/2/s from 

the center of the face, Sadowsky also concludes that 42 is the min-

imum number of points that will give fifth degree accuracy with the 

restriction that all points lie on the surface of the cube. 

Extended Simpson's Rule 

For the present problem, the author felt that the best balance 

between accuracy, speed, ease of programming, and economy was obtained 

with the successive application of Simpson's rule to the integral 

over small cubes. Perhaps Gaussian quandrature would have given bet-

ter accuracy; however, it was desired to be able to use the values of 

the integra~d already evaluated in successively finer grids, The 

simpler trapezoid rule was judged to have too large an error. It 

must be realized that the primary purpose of this investigation was 

to determine the order of magnitude of the three-body terms, With 

this in mind, speed and economy of computation became important and 

evaluation of the integrals to two or three significant figures was 

acceptable. 

If f(x) is evaluated at points x0 , x1 , ... , , xn when 

x. - x. 1 = h for i = 1, 2, .• ,, n, 
1 1-



Simpson's rule for the interval (xi-l xi+l) is 
' Xu-, r ftx;dx 

xf_, 

where 

-= -J- [ f lx,._1) r tt- f (~/) f- fr k,,,,_)] - E 

r lir1J ) 
7 { f 
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This formula and the error term may be derived by various considera-

tions and is discussed in standard texts on numerical analysis, e.g., 

Hildebrand (5). 

To derive a formula for triple integration over a cube, consider 

points with spacing h, 1, and n in the x, y, and z directions, respec-

tively. Let (x., y,,zk) be the center of the cube. Use a notation 
l. J 

similar to above and fcx/1 YJ1 ek) = f. -k. I ,J to obtain 

ZK1-1 Y,/.,.., x;" 

I = f f r f C xi '11 i? 1 dkdyc/2 , 
~/(-/ Yl-, x.1-, 

The successive application of Simpson's rule gives 

+J· f-c, ' -1- f'.. , k ,~1,.;-,,k-1 J,11-,,J-1,k:fl . ,1-1,J.1-11 -, f J,t)-Jl);,,k,,., 

+ 't-[J,,_, 1 )-11k f f.,,'-, 1 .l-1-1-11< -l-f,/-1,J,w-1 1-S, , +f· · k ~-'l ,J 1kf-l ,,,,.,,.;-/.) .,,.., 

f- f '-~ /t11 k-1 + 5,l ,J1-1, k+-1 f, f.,,,~J-11 X-J -f ~'-n ;J 'f-'J k f {'.J-1; /(-! 

. -1- t/1- 11 J1 Jr-1 + f.e'-,.., 1J 1;-,..,] f It,,, [ t,,._,1 J,1< + 5-,i.,J~t-, rJL~J1 1c.,., 

-1- s .eiJ-,, * 1- s~~ Ji-,, k ~ .;-:.,_,, 1> J , , " f"'~;, 1< (5-1) 
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The above formula, though formidable, is relatively easy to program 

in FORTRAN IV. 

The integrals in question were evaluated by dividing the region 

of integration into cells and then applying this formula to each cell. 

The error term becomes 

hJ.n ( " /1ur~ y,~j,:J 't ;i"'f(i~'} ~~ i;) rrt'' )f(J?;; 9;) 'i;J) 
£=-~ fh ;J.X" f-11. ,;).y'f f ~~,;, / 

where p, q, and r.are the number of steps in the x, y, and z, direc-

tions, respectively. 

The integrals extend over a semi-infinite region for two of the 

variables; however, the integrand goes to zero rather rapidly for most 

values of the parameter K. As a consequence, the integrals over the 

semi-infinite range may be truncated with a small error. The actual 

integration was performed by stepping xac and ~c by a unit distance, 

by integrating over the added region, and by adding this result to 

the previous value. Then a comparison was made to determine the 

amount of change, If this change was sufficiently small, the inte-

gration was stopped. In most.of the integrations, this value was 

chosen as .0001. For values of K greater than .05, the integration 

was stopped with x and x. less than 20. All other integrals where 
ac bc 

terminated at x "" x. = 20. The greatest change between 
ac bc 

x x. = 19 and x = x. = 20 was 4%, which is considered accept-
ac be ac be 

able. To extend the integral to xac"" ~c"' 21 would require the 

calculation of 1640 cells, even with rather crude spacing. This be-

comes expensive in terms of machine time. 
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The main calculation of integrals was obtained on an IBM 7094 

at Goddard Space Flight Center in about 66 minutes, Supplemental 

calculations were obtained with the IBM 1620 computer at the Engi-

neering Computing Laboratory. The values of the integrals for vari-

ous cases are tabulating in Table IV" Note that the values do not 

include the coefficient 8n2a 6 • 

Differentiation Formula 

The second numerical problem is to determine the derivation with 

respect to K of the functions that are tabulated above. The spacing 

of the values of Kare not uniform. Most differentiation formulas 

require equal spacing of the variable. To devise a differentiation 

formula, it was decided to pass a parabola through three adjacent 

points and then calculate the derivative at the middle-point. 

Let fi-l' fi and fi+l be the function values at x1_1 , xi, and 

xi+l' respectively. Let 

If 

then 

X= X' L 

X ·::- X;:.,-1 

)(' ! ~ X 1 '-1 

)(th -x, 
g 

A',t'+1 ·- X i,,~1 

-j( x) -

(5-2) 

-· c; 

"" c..:2 

~ (,. J fc-;. = c3j) 

(5-3) 
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(5-4) 

Equations 5-3 and 5-4 can be solved simultaneously for A1 and A2 with 

the results 

and 

If equation 5-2 is differentiated with respect to x, 

I 

:= 2A f {)() ( X= X1 ) +Ai # 

X; )q ~ f 000 -A = :I!, 

At the left end point 

X= X0 
' l =I 

{ 100) - - l.A# C; + A2. 

At the right end point 

X ::::- X/,N { ::;;: n -! 

f; O<n) = 2 C 1a Ao + A J. 

From these formulas it is easy to generate a table of derivatives 

for use in the ionization program. 

Langrangia~ Interpolation 

In the program to use the theory that was discussed in Chapter 

4, it is necessary to calculate a value for Kand then find the value 

of the derivative of the free energy with respect to Kat that point, 

Since it is impractical to evaluate the cluster integrals each time 
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in that program., interpolation between tabulated values is used, 

There are various ways to perform such interpolations and, again, 

the unequal spacing of the values of.K complicates matters. Linear 

interpolation was rejected because large inaccuracies may occur. 

It was decided that a six point, Lagran-gian interpolation 

would be performed. The· polynomial coefficients may be con-

veniently calculated in a computer programo Lagrangian polynomial 

interpolation is discussed in McCormick and Salvadori (8). Briefly, 

the fifth degree polynomial may be passed through six points. 

P; (X) = A; (X-X0 )(}f-X,) • ·~ (:X·-~_,,,J{x-1/1-1)··,{)(-)(5) 

where 
I 

(XJ-'to)(X.; -X,) do" ( }(J-XJ~,)U,.f-XJt1), ~ .. (Jt-Xo) 

which is equal to zero for all x., except i equals j, 
l. 

A· J 

Now consider the linear combination 
5" 

F(s lxJ = f;o .f; P[ ( X} • 

Note that 

D ( X1 ) = f R (Xe)+"*«' ff: P: {)<·) f-·--+£ etx·) U5 t () CJ «. « <1. l tr v0 r, 

;:,. o .- f () f ., ,. ., f ft • I + • • • + f O .. t> 

~ fr p 

Hence, the polynomial P5 (x) passes through the six given points re

gardless of the uneven spacing. 



68 

Approximations 

Throughout the calculations, approximations were employed for .. 

the functions in order.to obtain greater accuracy, or speed. For ex-

ample, the ionization program involves a square root of a.number that 

is sometimes very near 1. Then 1 is subtracted from the results. 

All significance can be lost in some cases. This can be prevented 

by expanding the square root of 1 + o by a Taylor series about o = 0 

so that 

=/ 

If o is less than 10-4 this will give at least eight significant dig-

its; whereas a calculation of I 1 + o - 1 with eight digits in each 

operation will generate a number with three significant figures at 

the most. 

Another case similar to this arises in the evaluation of the 

integrand of the cluster integrals. 
-t 

Consider e - I + $ 
-8 expanding e in a Taylor's series about o = 0 

-~ e I +& = 

-3 For o less than 10 , the retention of the first three terms of this 

expansion will give more than six significant digits. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

An acceptable expression for the Helmholtz Free Energy can be 

very useful in the quanitative analysis of.a plasma. If it is de

sired to work only within the framework of the classical, many-body 

problem, the Mayer, cluster integral expansion of the free energy 

in terms of density is promising. This leads, however, to an in

finite series containing progressively more complicated terms. The 

cluster expansion, using only two-body interactions is relatively 

simple to handle. In some applications, such as in the regions of 

high density and low temperature, this simple approach breaks down. 

In the hope of extending the range of usefulness of the cluster ap

proach and in order to judge the order of magnitude of the next term 

in the series, tQe evaluation of the cluster terms which correspond 

to three-body interactions was carried out for a hydrogen model. 

The resulting expression for the free energy was used to calcu

late the electron number density in a hydrogen plasma. The results 

were compared to previous calculations which used only two body in

teractions. From this comparison, it appears that the three body 

interactions do indeed contribute to the calculation. They do extend 

the Mayer theory by a significant amount in the case of this hydrogen 

model. 
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It is interesting to note that the integrals evaluated and, in 

fact, the expression for the free energy can be applied to ionic solu

tion of single binary solute and solvent. This may be of interest 

to the physical chemist in his quantitative investigation of solutions. 

The primary interest of the NASA project which supported this 

work is, of course, the hyperveolicity impact on a metallic target, 

such as aluminum. In trying to calculate the cluster integrals for 

this case, many problems arise or intensify over the hydrogen case. 

Aluminum can take on 15 different charge states. If all different 

charge products are considered, an enormous number of integrals must 

be evaluated. The actual distribution of ion states should be in-

vestigated to eliminate many of the charge products. For example, 

if the average energy of the system were such that the aluminum atom 

was stripped of all but one, or two, of its electrons it is unlikely 

that one exists with all its electrons. Further study may allow the 

calculation to be performed easily; however, at the present stage, 

the problem appears formidable and relatively expensive in terms of 

computer time. 

The applicability of the principal of· superposition to the case 

of aluminum must receive very careful consideration. This, in turn, 

raises the problem of the Y3-bond that is discussed in Chapter 3, 

If future triple integrations are performed in the evaluation 

of cluster integrals, it is recommended that the six-point integra

tion formula which is derived in Chapter 5, be given very serious 

consideration. The 21 point formula should give better accuracy, 

but would be more cumbersome to employ. 
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APPENDIX 

EXPLANATION OF TABLE 

The values of the cluster integrals, which are discussed in 

Chapter III, are listed in Table 1. Note that the tabulated entries 

must be multiplied by 8n2 a6 to give the true value of the cluster 

integral for the appropriate value of the parameter K. 
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TABLE IV 

VALUES OF CLUSTER INTEGRALS 

K 
Case 

II-2 III-2 IV-2 V-2 VIII-1 VIII-2 IX-1 IX-2 X-1 XI-1 XI-2 

10 .o - .0972 -.105 -.124 -.112 -.00308 -.0601 .00321 -.0738 -.00356 .00329 -.0732 

8.75 -.189 -.215 -.125 -.111 -.00546 -.0548 .00569 -.118 -.00657 .00588 -.114 

7.5 -.116 -.108 -.128 -.109 -.00632 -.0890 .00662 -.120 -.00840 .00697 -.111 

6.25 -.279 -.326 -.131 -.105 -.0106 -.0794 .0115 -.124 -.0152 .0118 -.118 

5.0 -.182 -.222 -.0644 -.0981 -.0111 -.0342 .0131 -.0791 -.0204 .0129 -.0765 

Z.5 -.237 -.369 -.0374 -.125 -.0173 -.00129 .0291 -.0748 -.0907 .0252 -.0699 

1.0 -.238 -.563 .0100 -.165 -.0102 +.0116 .00504 .0227 -.363 -.0180 +.0354 

.75 -.223 -.768 .0243 -.173 -.0126 .0124 -.0298 .0743 -.470 -.0609 .0748 

.5 -.187 -.983 .0423 -.181 -.0342 .0172 -.0964 .145 -.597 -.133 .144 

.25 -.124 -1.21 .0655 -.184 -.185 .0500 -.167 .250 -.760 -.155 .266 

.1 -.413 -1.43 .0829 -.182 -.969 .155 .338 .351 -1.26 .587 .364 

.075 -.0836 -1.65 .0861 -.181 -1.49 · .213 .807 .403 -1. 78 1.16 .410 

.05 +.177 -1.87 .0894 -.180 -2.55 .303 1.84 .493 -2.93 2.35 .5-09 

.025 .271 -2.09 .0928 -.179 -5.168 .494 4.51 .662 -5.95 5.16 . 725 

.01 .368 -2.32 .0949 -.178 -8.81 .742 7.25 . 778 -10.12 9.14 1.00 

.005 .466 -2.54 .0956 -.178 -10. 77 .869 10.42 .904 -12.41 11.29 1.15 

.001 .564 -2.76 .0962 -.178 -12.75 .998 12.54 1.12 -14. 75 13.46 1.30 

.0005 .663 -2.98 .0963 -.178 -13.04 1.02 12.84 1.33 -15.08 13. 77 1.32 

.0001 .761 -3.20 .0963 -.178 -13.27 1.03 13.09 1.55 -15.35 14.02 1.34 
-..J 
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