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CHAPTER I
INTRODUCTION

Much of the mathematical theory describing polymers in solution
stems from the work of Werner Kuhn. Kuhn and his coworkers (1),
assuming that the polymer molecules take the shape of a very loose
coil when dissolved in certain solvents, introduced the concept of a
"statistical chain element" made up of a number of monomer units and
constituting a portion of the chain of end-to-end length b. This length
of the statistical chain element is taken such that when proceeding
along the polymer chain, the orientation of a given statistical chain
element is independent of the orientation of the neighboring statis-
tical segments.. The length of the statistical segment would thus be
different for different polymers, depending on the angle formed by two
successive valence directions along the polymer backbone and the degree
of freedom of each bond. A key point in the Kuhn theory was that the
polymer subchain that forms the statistical segment has a preferred
end-to-end distance that can be found from purely statistical consid-
erations (2, 3). Kuhn proposed that, just as with the case of the
entire polymer, the ends of each statistical segment tend to assume a
random distribution as a consequence of thermal diffusion, with the
result that an effective force of magnitude glf%égiL is exerted on
the segment ends when the segment i1s stretched, where k_ is Boltzmann's

constant, T is the absolute temperature, h\is the end-to-end



distance of the segment or subchain, and b is the rms or "preferred"
segment length, This allows eacli segment to be treated as a Hookean
spring. Kuhn and Kuhn (1) included both internal viscosity to explain
energy losses within the chain, and a variable draining condition,
while Kuhn and Grun (4) used the polarizability of each statistical
segment to explain some birefringence effects.

Other workers used the statistical segment idea of Kuhn to form
models of a real polymer. Kramers (5) examined the ''pearl necklace"
model, in which he replaced the polymer with' a number of beads connected
by massless' linking rods. He assumed that the solvent could exert
forces on the chain only at the beads and also  included interaction
effects between the beads. Hermans (6) also investigated the effect of
hydrodynamic interaction between the beads of the chain,; as did Kirkwood
and Riseman (7).

Rouse1(8>’and'Bueche‘(9) working independently characterized the
polymer as  a number of beads connected by massless Hookean springs whose
force constant is given by-'ghﬁégg » from the Kuhn theory, and where
each of the springs corresponds to one of the Kuhn statistical segments. -
Thus the model has NV identical segments joining'hl+;l identical beads,
with perfect freedom in .each joint, as follows from the independence of
the orientation  of the statistical segments. Both Rouse and Bueche
adopted a coordinate transformation to normal coordinates, which allowed
much of the mathematics to be cast in a simpler matrix form.

Zimm (10, 11), Cerf (12, 13), and Peterlin (14, 15) have done ex~
tensive work based on the model of Rouse and Bueche. 2imm did not
include internal viscosity in his treatment, while Cerf did, although he

did not solve for time dependent effects.



The above work was accompanied with the mathematical assumption
that h/, the number of statistical segments, was quite large. Recent
research by Thurston and Schrag (16) have indicated a direct proportion-
ality between h! and P4 » the molecular weight. Data from oscillatory
flow birefringence experiments have indicated only a finite number of
relaxation times associated with polymer stress, which is to be expected
with a finite value of 'V required by a direct M ,hJ proportionality
for a given polymer.

The work of Thurston and Peterlin (17) used a set of eigenvalues
)\P to predict theoretical curves for intrinsic viscosity and oscilla-
tory flow birefringence. In this work }f*, a segmental hydrodynamic
interaction factor, a;KF » the ratio of the internal viscosity coeffi-
éient to the segmental friction factor, and fV » the number of
statistical segments were used as significant parameters of the theory.
The eigenvalues, however, were computed by a method developed by Pyun
and Fixman (18) which assumed that A/ was. large and F) was small com-
pared to N . This resulted in marked deviation of the theoretical
predictions from experimental values for intrinsic viscosity and bire-
fringence for low molecular weight (i.e., for low N samples (19).

Quite different mathematical models have been proposed by other
workers. The persistent chain theory of Gotlib and Svetlov (20) pre-
dicts the observed molecular weight dependence of intrinsic viscosity
and birefringence for low molecular weights by the use of a persistence
length measured along the polymer chain. On the assumption that the
portion of the solvent contained within the coiled polymer chain should
be practically immobilized and forced to move with the polymer, several

models have been advanced which replace. the polymer coil and its



contained solvent with an equivalent particle. Sadron (21, 22) has pro-
posed the equivalent ellipscid (which approaches a sphere for high
molecular weights) and Flory has proposed an equivalent sphere model
(23), which can be swelled or compressed by placing the polymer in diff-
erent solvents .(24). The major difficulty in the persistent chain
theory and the equivalent particle models, however, is the inability to
predict the plurality of relaxation times observed in oscillatory flow
birefringence. 1In addition, the equivalent particle models yield no
conceptual information about the structure of the polymer itself.

The object of this paper is to compute exact values for the set of
eigenvalues )\P for small values of‘A/ ,» and hence for low molecular
weight polymers and to compare the predicted relation between intrinsic
viscosity and molecular weight with experimental measurements. This is
done following the method described by Thurston (25) in which the ap-
proximate eigenvalues of Pyun and Fixman were used., In addition, the
molecular weight dependence of the terminal (longest) relaxation time of
the chain obtained from intrinsic viscosity measurements under steady
flow conditions is compared with that from independent measurements of .

oscillatory flow birefringence.



CHAPTER II

THEORY

The Forces Acting on the Model

The model to be used to describe a long chain polymer consists of
N statistical segments joining N+1 beads, numbered from ¢ = () to
{=N . The entire model is assumed to be suspended in a viscous sol-
vent of viscosity 725 which can interact with the chain through the
beads only. Following Kuhn, the assumption is made that the beads tend
to assume a random distribution due to thermal motion (diffusion) and
that each statistical segment has a length b which responds to stretch-
ing as if it were a Hookean spring of spring constant 3ﬂ%§¥ , Where k
is Boltzmann's constant, and T is the absolute temperature (l). If now
the position of the 1 —th bead is denoted by (1(‘.) 43‘\)/6/[) , then the
components of the spring force acting on the ! —th bead can be given by

Fx‘j = (— 3RT/b‘>[- Xp, + 2% = 7‘(“]. (II-1)

Following the formalism of Cerf (13), the notation can be consider-

" ably reduced if a matrix form is adopted. Working with % -components

only, introduce the column vectors

%, Fef
[’
[~ 5f
3? = : and F;%F = )x‘ ) (I11-2)
]



3 S
where ’yi is the ¥ ~component of bead } and Faapis the % —component
4
of the spring force acting on bead f . Equation (II-1) can be written

for all the beads as

T )

FsP: - 3}’&2—[‘"\1042"\#‘-’11
o

Y, I J,

FSP - _BKTI‘-_V\ +2'\(—,L _\’L_s"\ (I1-3)
Yo b* oy
sP . _732R _

P, T o [ Y “’LN] :

Apply the boundary conditions that 341 = MVO and ’yw 2.7204'

These are necessary for equation (II-1) to hold for every bead. Using

the vectors f: and X, equation (II-3) can be written as

b -1 0 ---00 Yo
F’SP: _2kT [T 2 - 00 2
S 0o -l 2 00 Yo o ars
O O o raa Y-
O O 0O -1 | AN
or
—
FSP: _ kT A:\zﬁ (T1-5)
K )
. +1 =1 O 0o
where ' . -1 2 - O O
é_) 0 © 2 -
O 0 O -t



A force of internal viscosity is considered to act on each bead
and is given in matrix form as

int

i —
mt v _— ! '
F S = 37(,’% ‘"%_D.>> (I1I-7)
where
e
x = xt
\ (II—B)
\
A
Y
and
Xa,
- ¥
YI‘L_ = \-:L\ (I1-9)
L |
LN
> \
The components of Y are the ‘Y -velocity components of the N+ 4

el
beads and the components of TZIL are the “Y -components of the vel-

ocity of rotation due to the velocity of the fluid. The form of the
internal viscosity is due to Cerf and is also used by Peterlin (26).
The matrix Eyj will be explained in more detail later.

The solvent is assumed to interact with the chain only at the
beads in an expression of the type of Stokes' law. That is, the
component of the force exerted on the i -th bead due to the viscosity
of the solvent is taken to be of the form

F"z‘ = - 7£ ('%5 “‘7%( ) .. (II-10)

where '; is a friction constant. In matrix notation this equation



may be written as

— -
F, = ’“7£ (v ”“yi)) (II-11)

X

where ’3? refers . to the ‘)/-vel'ocities of the individual beads, and '}—2;
refers to the ¥ -components of the solvent velocity at. the location
of each bead if the bead were not present{

In addition to the spring force, and that due to solvent viscos-
ity, an effective force is assumed to act on each bead to account for
Brownian motion. This force of diffusion, denoted in the matrix nota-
tion as the column vector El(" , is a function of the distribution
function '7Dof the system. %(Vo)g.n Ve %N> is a function of
all the coordinates such that 70 is the probability of finding each
bead 2. with position coordinates between ’l[t' and U(o +-0(’il¢- » between Lj[
and ’yJ +G(a(\ , and between 3(~ and 3[ +d‘3¢- « According to the theory

of Brownian motion (10, 27) the ‘¥ -component of the effective diffu-

sion force acting on the ‘i -th bead is

Fl = kT af’:}”.

¢

(I1-12)

In matrix form this can be written for the ,\/""Z beads as

£ kT 7, dut
- — - (11-13)
/—‘st VX AR
where /{ is Boltzmann's constant, T is the absolute temperature, and

V/ is the operator denoted by the column vector

v,

Vy = %'\t, (1I-14)

%x“ ,



Assuming that the solvent viscosity is great enough, the inertial
4
effects may be neglected and the force equation of the } -th bead may

be written inm matrix form as the sum of the forces just described, or

-RLANT =P

-HT-T) - kT ¥ = 0.

(II-15)

4

The excluded volume effect that has been considered by Peterlin
(28) and others (29) has not been included here since it has applica-
tion for polymers of high molecular weight (and thus a large number of
statistical segments), and its effect upon low molecular weight poly-
mers is negligible.

——b

Equation (II-15) can be expanded and partially solved for ¥ .

Then

_— - -1 -
’\'L:'V,L““'p [‘—‘3’-%:]:/}\'74

~ F (V- ) - kT @:/%,ﬂ (11-16)

=T
The determination of ]& , the ¥ -components of the solvent velocity at
the site of each bead if that bead were removed, is complicated by the
fact that the presence of the rest of the chain perturbs the motion of
the solvent at the site of each bead. To account for this hydrodyna-
mic interaction, Kirkwood and Riseman (7) used the quasi-static
velocity perturbation expressions of Oseen as given by Burgers (30) to
—, ey
obtain the perturbation }/' at a point /{i from the locus of applica-

—>
tion of a force /i on the solvent in the form

7’(@)=7T(E)‘Fi ) (1I-17)
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where the matrix ~W— is given in dyadic form by

= {7 . RR
I (R£> = Bu, R, { 1+ J{F{Rf 3 (11-18)
) 2

where ’OS is the solvent viscosity. Since the motion of the solvent

at the site of the 1 -th bead is the sum of the unperturbed velocity

—_—p
.

—
’Kj . and the perturbing velocity \Q/ due to the presence of the other
)L —
beads in the chain, 2%,can be written in matrix form as
{

-r - —
—_— [o] — - — -
v, = ¥ T F, | (11-19)

—>
where F% is the force exerted by the solvent on the bead as given by

(I1-11).

The Hydrodynamic Interaction Tensor

Since the exact locations of the beads are unknown, the space-
average values of the hydrodynamic interaction tensor —n_ are used,
denoted by <73R> . The indices j and kl refer to the indices of the
two beads related by that tensor element. This average value is found
in the following way. Burgers (30), using the quasi-static velocity
perturbation expressions of Oseen, gives the components of the per-
turbing velocity at a point ’%gxfg due to a force ( xﬂ F' Fé)

located at the origin as
3
; —L . 4
vy, = oo | ft %Ry (11-20)
)

where ‘y | = X

=K K=Y, Yy o= Xy (1I-21)
|
L vt o+ '\31 + /%1] /_?‘ (11-22)

When the diffusion equation is solved a bit later, the motion applied

and

to the solvent will be of the type
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-
bc

. = O

It
C

(I1-23)

{ = O

[4

where

&> ad- -

is the velocity gradient in the /é, direction. In general @
may be complex. With the problem stated in this way, a bead of the
chain will move primarily in the ¥ direction and only very slightly
in the /3 direction (due to a small rotation), with the result that
the force exerted on -the solvent by the bead has only an ¥ -component
of significance for this level of treatment. With these assumptions,

the Y -component of equation (II-20) may be written as

| -4 S 2R )
V¥ = ——————87\'7]5&_[ l—y ‘+ Rz ’—')L}

o S/2R
- 81”’257{[ ]+ ﬁ?} Fy . (1I-24)

On the average, the projected value of R on any axis (in this

case the 7Y -axis) is zero. But the average squared value of the pro-

2
jection is R{ (31). That is,

o= = (1I-25)
Then vt Rl

15 ] = [1e 3

_ 4/3 ) (11-26)

Thus, on the average,
_ N R i>
vx _ < 87\_')’)5 R 3 FK
‘ F

_ /L
= o CR) R (11-27)
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Applying this to the effect of the motion of bead R_upon bead j
bead ;{ can be considered as at the origin of the previous discussion
and the magnitude of the vector connecting the two as ﬁak, Then Vy
is the perturbing velocity of the solvent at bead 3 due to bead ‘(

and can be written as

S L\ E
Yy T emoy < Rm> r“»ﬁ R

Since the total perturbing velocity of the solvent at the site of bead
j is the sum of the effects of .all the beads as given by equation

(I1-17), the perturbed solvent velocity at j is given as

’H} T(ﬁ) —I'—?L

Il
(\42
|

Y,
koo (I11-29)

Ty

0
R#4

Then, comparing (II-29) and (II-28), <73n:> can be written as

<Tk> = ("’"’V?s 7—%—-—&> ) (11-30)

J

w
il

where <%€h;>‘is the average value of the reciprocal of the distance
from bead j to bead k{

The determination of the above distances and averages depends upon
the precise interpretation that is made of the nature of the statisti-
cal segments. If one takes all PJ segments to be of fixed length b,
then the problem of. finding the distribution function of E%Ris the
same as the problem of finding the distribution function of the dis-
placement vector after a three~dimensional random walk of-)d—kJ steps,
each step being the same fixed length. If, however, one assumes the

length of the statistical segments to be distributed in a Gaussian
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manner with a root mean square length of b , the problem still reduces
to the previous random walk, but one with steps having a Gaussian dis-

tribution of length. For steps of fixed length b s the probability
—_—

- -—p
WZ ( R) O(.R that the displacement R will be in the interval

—

(R

) K +d R after Z displacements is given by

w, (R) = mory | [ (1A1RL)

. - Z
A"”‘)%’,’OLM ' ’P{ 0“/3{ (11-31)
)]

where V&) is a dummy variable and b is the fixed segment (step)
length (31, 32). This distribution function, due to Rayleigh (33), is
tedious to use in calculations. Another form of this distribution
function is due to Treloar (31) and is easier to use. Treloar's dis-
tribution function is of the form

k
DY = ___‘______”ZZ'?‘ S 2 < -2
W(R) = & bsz(Z_Z)E Dagal ), @
=0

where

©
m= %\( | - Lg]) ) (11-33)

and the upper limit of the summation K is determined by the condition

K ¢ m2z & K+l | (I1-34)

One may note that W(R) automatically goes to zero for R) Zb , since
in that case YV\‘O and k < 0.
In order to illustrate the use of the Treloar distribution func-

tion, the case for Z = 8 will be worked in detail, For Z = 3

s



by equation (II-33)

m = é((w§b>. (1I-35)
Thus
mZ = %:(J _%ﬁ = % - JZ(%) (11-36)

From this the values of K are found to be

k=0 | b< R <«2b,

K=1 . 0<K<b. (11-37)
vor k=0, W(R)1is given by

WR) = o T x(1-5),

or

WR) = 7rpg (36— R) o
for b<’R<?>b

For Kf] , W(ﬁ) is given by

or

— |
\/\/(R\) — Zn e \ (I1I-39)

for () <T{ < kD .
As before, W(ﬁ) = O for R> 2.
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The distribution function needed to calculate the averages in
—
equation (II-30) is not VV(I?_)S however, but VV(T?‘> . These are

related by the expression
W(R)dR = //W(?>G(,R'[€Z/¢WLQ dddy
oY

— 471‘ RQW(Q)O&@. (1I-40)
Thus
W(R) = 4 RZ\/\/(E) (11-41)

Expressions for W (R_) for Z =2 through Z = (p are given below:

£ =2

W (R) “—=§—Bz ) O<R<2b; (1I-42)
Z =3 1
W(RY = &5, 0 <R<¢ b,
. (11-43)
WIRY = 28 -5, b<R <30
Z =4 . ,
WI(R) = Q?Ef - ;if%04 O <R<Zb
. 5 (TI-44)
w@y =& - Zharadn,
Zo R _ R
\/\/(R\:g]l‘(;[?’obs“ es ], O0<R < b,
W(R\:-q—\&[_\o\? ©0O R*

o* o ® (II-45)
- 208 ‘“4—&4] b <R <3,
)
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L 7T125K% _ 758 . \sR? 4
W(R) = 3% oF 5b3 A 55}"’ “&gﬁ;:)

(1I-45)
v 4 R <5 b;
£ =0
= L[ LR 4pd 5
WIR) = o[ L& 4K +5&iw}\ D <R <2
W(R) = ——[ 7:__& " _30R? (11-46)
b’* o
4 5 z
. eRg - \,fb@] 2keRedn,
% 3
W(R)fgla[‘”ﬁ SRR LR

The average values of. l may be calculated from W_(R by
Rk | z

multiplying the distribution function by 7{ and integrating over all
values of R from zero to infinity. That is,
o)
<_.L_‘ > - f_'_ Ns(m@& R . (11-47)
R\‘)R 5 R
These have been computed for Z? = lJ-k’.\ from ] to 5.
Z =1j-k\=1
—1——> = L II-48
<R‘3\Q o ( )
£ = L |
<’€;n> by (11-49)
Z = lj-kl=

_ \
<rgm> - 4/3b 1,333 o (11-50)
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= |j-kl =

< — | (11-51)
Kie 3/2 .500 b )

Z=1j-k\=5: |
l - (1I-52)
l —_ ———— = .
QRQ = Ta b - TGk

When Z is very large (!l\E., l J -—h\>> 1 \) the distribution

function for “/(??) is given by

| - -3 R
W(R)= (22 6/3)™" “up ( 22" > ;o e

and the corresponding function for W(R) is

W (_Q' (I1-54)

- LR -31R|"
) = e (208 )
<?€§‘)AL(:Z bai)@@ EﬂLP 2 Z L
Results calculated using the distribution function given by equation
(IT-32) will be referred to as Treloar results.

If one takes an alternate view of the chain model as having a
Gaussian distribution of segment length, then the distribution func-
tion for the displacement vector for a three dimensional random walk of

= ld-—k\ steps, where the step length has a Gaussian distribution

with a root mean square length of b , .18 given by Chandrasekhar (32) as

= l -BRT
V\/Z(R) = (2 2 bz/3)-°/’“ Vp( 72 bt ) (1‘1—55)

where t) is now interpreted as the mean square length of each step.

This expression is exact for any value of Z . The distribution
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function for ‘Ql is given by

bR -3R"
W= e (75 )

27 b (11-56)

Note this 1s the same as the fixed step length distribution functlon

for the case of Z>>l . Equatilon (II-56) can be used to compute

<ELh>for any value of Z= 'J‘

<O

Jﬁ—m> - j'Tl? Wi (RY AR

©

I’t‘ in the following way.

6 2 3R
T TRZR (2% /R e“F( 22" ) AR
o)

— G )

@ e (3

Ve
— (1%) | Z‘/\mb

Since Z = U—kl » this can be written as

__L.__ - _(_p_ Y \ ]
R3h> o <'TT> [ -k1" b (11-58)

This is the value used by Kirkwood and Riseman (7) for <—R~\—-‘Z>

(II-57)

although they developed the expression by a different process

Values
of <-!?-:!—E> for IJ‘-M =1 to ,)—L’é\ =5 are given below.
} j—K’l= 1 <J?:h> —:.-5—7]-{%“ \ (II-59)

| J-kl=2: é“> T T

. (I1-60)
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V- Rz ; . — ——L«v
[i-kl= 3 Rj!a> T 283b 2 (11-61)

k| =4 N N |
[J <R3w> = TI78L (11-62)

- = ' -—‘._ p—t —""'L"'“—'
lj-RI =3 <T?sh> L Llb b (11-63)

Results calculated using equations (II-56) and (II-58) will be referred
to as Kirkwood-Riseman values.

Using either the fixed or Gaussian distributed segment length
model, the elements of the hydrodynamic interaction tensor are given by

equation (II-30) as

<_’:R> = Z’J}fﬁs <“",%I’h> _ (1I-30)

From the nature of the application of -N— given by equation (II-29),

<TJ> = O Qéjé)\). (11-64)

Then ” can be written as

S VARG W
o= G b <—é\-> o (11-65)

by @&y ol

Thurston and Peterlin (17) have defined the segmental hydrodyna-

*
mic interaction factor LL as the approximate ratio of the hydrodynamic
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radius of the bead to the segment length in the form

wﬁ
#*
[’L e ((ZT?})‘/L,]?S b , (11-66)

where 'F is the friction factor used in equation (II-10), ’WS is the
solvent viscosity, and b is the fixed or root mean square segment

length, depending on the choice of the model version. Since

r N
—L = (1 (11-67)
bmm b £ ( 3> )

_Tr_may be written as
0 &) @)
¥ /2
T = __%(q% . %\ O <"\:€i> (11-68)

Ly &Y O

Ty = LLE(%)% b\<%ﬁ> e

*
The quantity h_ has zero for a lower limit, corresponding to the

or

free draining condition of no hydrodynamic. interaction. That hﬁ'must
have an upper bound is seen from the following simple argument. Con-
sider one bead of the chain to be at the origin of a cartesian
coordinate system and consider another bead of the model at the point
('KO)O)O) . Assume both beads to be immersed in a solvent initially
at rest. Then by Burger's expression in equation (II-24), the pertur-
bation in flow at the point ()&)O)O> due to the motion of the bead at

the origin will be

1 +z§;} L
Vy = ?“WsR 1 =2 F\L \ (I1I-70)
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where ﬁ; is the ¥ -~componeunt of the force exerted on the soclvent by
the motion of the bead at the origin. For simplicity, consider this
bead to be moving in the +¥ direction. At the point (XD)O)()) ) Vy
becomes
e
Y
ﬁa . (I1-71)

Am ng !

The force /; exerted on the bead at G%)qo)by the perturbation velocity

Vy =

of the solvent is given in the form of equation (II-10) as

F _:—"va

_fF
: (11-72)
47 R

Since 'E ‘ cannot exceed ,Ff( , Or

P £ l (11-73)
Fy >

it follows that

{
Z (1I1-74)
dam R~ L.

Consider the particular case where the beads are nearest neighbors on

the chain. Taking the Treloar value for <j%i> for nearest neighbors,

equation (II-73) becomes

21

4o b

(I1-75)

Using the results of equation (II-66), this becomes

G%)'/L el (11-76)

%
- R (g,,;) " (11-77)
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Thus

¥
é’k £ 0,652 (11-78)

for this simple case of nearest neighbors and one dimensional motion.
Although the limits on LL*'by this means of analysis depend upon the
distance <ﬁ%@> and thus upon the particular choice of beads taken for
analysis, the point is still valid that kf—cénnot take on large
values,

Note that _”_ is a symmetric matrix, since <<§%h> is only a func-

tion of {j-—k‘ , by equation (II-47) or (II-57).

The Diffusion Equation and Normal Coordinates

-
Returning to the equation of motion of the chain, °¢ 1s given by
equation. (II-16) as
—

L= 7, « 420 A%

- 3\'( X -—;(’57_) - kT -V:,@m\f] , (11-16)

And, by equation (II-17),

—_ — _
— VG __—ﬂ—- - I1-17
—

Substituting the value of Fi given by equation (II-11) yields

0 — 0 -

X, = Xy o+ i Y_WC("L %, ] . (11-79)

-
Substituting the value ®f 4?(V —¥E> given by equation (II-15) yields
—

v

Vo= = T - AT

B (TT)- KTt . asao
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Substituting this into equation (II-16) gives.

0

= T T3 A% - BT - T hy]
X _p-'[ 3 AN N g %W-?&)‘kTi%ﬂ*])

Vo= T ) T A

“FER) KT AN ] o

where ﬂ is the identity <N+|>X (/\/‘f") matrix. Now, let

H=1T-1. (11-82)

Then, using equation (II-68), the space average values of the elements

of #4 are given- by

Y ( \
= W (BF (D) | =k

)

(II-83)

HSS = 1.

|

Since <&iﬁk is a real multiple of b s, then the elements of ‘k* are
J

dimensionless and real.

Carrying out the multiplication equation in (II-71) yields

=5 - | T 7

. -r-l “—(%\ ' (—'\i’"—{‘;\_) L _(\‘lk‘r"“‘ﬁ;vuw ,\P] . (11-84)

Now still following the formalism of Cerf (13), let

_ kT (1I-85)
D= T o



and let

P ]
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$ 26T
= [V (1I-86)
Then equation (II-84) becomes ‘ '
= - -l :
¥ vy - [&H—\'/A'T + LH 3 @)
+ —
DIHV 4t ] 18
The distribution function Vp must satisfy an equation of continuity
given by
oy T T
Py Wﬂ?b(x Y +§> (11-88)

Using equation (II-87) for ')T’and similar expressions for g’and 95,
yields

o4 =79

>t

A SRR AR
0%

SSH T $"|H37<'{-7(;)]
)

(I1-89)

—p
where the form :&T is used because the bracketed quantity is a col-
umn vector.

The sum indicates the inclusion of analogous quantities
in "J,and %, .

Since the matrices in equation (II-89) are not in general diagon-

al, the matrices are diagonalized by transforming to a set of normal
coordinates according to

—

dQ -1
GQ"
GQ_'

i

g <
i
Ny w)

(I1-90)
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-— —p ool 2
where U , V , and W are the normal coordinates and the columns of

QQ are the eigenvectors of the product IH /A (34). The eigenvalue
equation from which the eigenvectors EQ; and eigenvalues )\P of [H /A

are obtained is
“—l ) A ' a—z.F - >\‘O BZ';O . (II"91)

—
The components of CYP are used to form the f>-th column of QQ and

therefore by equation (II-91)

OCHAQ = M (11-92)

)
where )\ is the diagonal matrix whose diagonal elements are the elgen-
values }\lo of the matrix ”—('I’A . )H has been observed to be symmetric.

and A& is symmetric by equation (II-6). Thus

H= HT |
A= AT,

(11-93)

Using these facts and the algebraic properties of matrices (34), the

following observations can be made.

LT AH = (HA &) = (M &)

&'PT AH = /\F az‘oT. | (11-94)
Then
Ly BHAZ = (T A H) AT,

AT A X, (1I-95)
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But by distributing the above multiplication another way,
AT AH-MTy = T A (MDY &
= Z?FF A )\A E:Q
= A, B?FTJA' @, (1I-96)

Thus

)\P('O—C}T/AE(TQ) = /\Q(a’(‘FT/A 571> (11-97)

These can be identically equal only if. 5'(;%\0—(} = O for r #A .
For f>=,ﬁ the equality follows immediately. Therefore, if all.the

eigenvalues are distinct, A& is diagonalized by the congruent trans-

formation
T
@ A Q = M) (II-98)

where MM\ has nonzero elements /“'k on the diagonal only,
Equation (II-98) provides a method to calculate dph'g Multiply-

~1
ing on the left with ﬂvﬂ yields

MeTAR = M'm = 1,
Right multiplying this by 454 yields
MoTAQG = 1@

M (QT m = CQ_‘ (11-99)

-

This allows the construction of without -the necessity of algebra-

ically invertin . Since turns out to be zero, the first row
y g b
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-1
of Q is indeterminate by this method. Now define a set of N4 |

— et T
vectors /Bf as the column vectors of @ ., From equation (1I-92)

(" HA Q)T = (AT
QTATHTQT = N = A,

0" AH Q" = A (11-100)

—
Thus the vectors ﬁf are the eigenvectors of /A"H with eigenvalues

still given by Ao . By equation (II-98),
v Ap

A Q= Q"TIM (11-101)

Substituting this wvalue into equation (II-92) yields

QCHOT™M = A

)

(D—l "_( (D-uT = A M" = N . (I1-102)

Thus N is diagonal with elements ")‘p given by

— —_—
- T (3 (I1-103)
o= BIHE ,
or, since /A M= N
’Jd" _ ’\P . (I1-104)
e
Again, 1)0 is indeterminate in this expression, since )\0 and/,«,° turn

out to be zero. ‘1)0 is determined from equation (II-103), but this
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—>
requires the inversion of GQ to find the /gﬁ values.

Cerf uses the matrix d? to define the matrix.sﬁ] which was only

stated earlier in equation (II-7) without explanation. Cerf uses the
form

- T -
F=0a ¢ \ (11-105)

where ab is the diagonal matrix of internal viscosity. Now, making

the substitution

R=71"8,

(II1-106)

with diagonal elements /4% only, equation (II-87) can be written as

L]

L =% - [6!%/1\&* + HERE (R-%)
+ “‘l'Dv; S ¥ :J . (II-107)

This can now be put in normal coordinate form by multiplying on the

]
left b and using the transformation relations of equation
y g q

(II-90). Then

0%

f

Q9 - SOMHAT - CHE R G (X -%s)
- QHDV, bt
L - S QUHAQRR'TY -NR (B-T)
- OHEQ DV by
_.—E -SMT —NROX-&T&_\-NDQ‘TﬁM'\P, (1I-108)

am—
————

Since the partial derivatives. transform according to
p) . <7 p
%y = Q@ % i
I1-109
2 - Té/
%t = Q7 Yop |



29

equation (II-108) may be written as

o= - SNMT - NRE- T

- DN Vi Je P (1I-110)
Solving for
lld = (- ZZ:Q_ ), (II-111)

which is the rate of deformation of the normal coordinates, yields
-l —-—> -\ - -l
RN W = RN w - SR M
—( n_)—-D? j/m'\b
or

(Uj - Tf_m) = RN (—U?f W) - $RM vg

-DWR” -\-7:_ dn b, (11-112)

—r
In terms of  the F ~th component of Qd_, this can be written as

Ly - D
-:/ap—u)(, (u!)‘o ) /uF ¢ - o g-(’%’ﬁb

or

Ug ) )
of (of ¢ [ T I
- D-Qf, f— S ¥ :‘ (II-113)
F
But by equation (II-111),

= + 0 (1I-114)
u'lo ud:ﬁ Qe
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Thus :
R

- Y <<§/u¢,uf +D gaf,@w“f’)] )

or

&d)P <l i (ol"i)(’> - [Qjm i CL;‘JIQ

Thus
Ve = - | I - &,o + U
Atk
)F (o‘o‘\)rﬁ" )P JP
P(%’uf”[)? da¥ )] (11-116)
Since the applied motion is j% éiig » this can be transformed

to normal coordinate form by

-l =P

or

—_
* — -3
(’L,Z = G w. (II-117)

o
e = Gw II-118
Similarly,
\.10 = WO = O -
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from equation (II-23). Therefore, for {x? (or)T? ), equation (II-116)

can be written as
Wi = (OF?:‘{ (g/Aow +D3 M\P) + Vg p} (11-120)

The continuity equation, equation. (II-89), can be put in normal

coordinate form by application of equation (II-109) to form.

= -T =
vx = @ W
(11-121)
N v
Vo, = Q@ VY, ;
and, taking the transpose of each side,
—p
T _ q'r T
vx - ( )
_ ( @-.TBT
or
—_—
T — T 4!
vx n v Q (11-122)

Substitution of this value into equation (II-89) yields

G = ZTT@ V(-7 + SHAT

X

WORE (}'_}:L)) + VDHT by ] . (11-123)
Since

ijz Jﬂuf\P =

—_—
Vx \l" ) (11-124)

A
p
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equation (II-123) can be written as

%}f = 2 V) L\Mm@“‘@} s A HAQR ¥
X

QM7 R Q' (X -7, )\>
s OQRAT QT v |

Or,

AL‘4;

Z VT[ (—-b_(:‘j -\—QgNMUf

U,v,wW

+NTR(TL‘-TAL\_)) +DN VU_’\Pl ) (1I-125)

—»

—
since = by equation (II-121). Since by definitien
X q y

_’
f
ps

——, a
vV T (II-126)
W F > P) M(a )

equation (II-125) may be written in terms of the matrix components in

the following way.

5te 202 5,10 .,

u\)m)

P Yl (‘%P)) +U

%}} e

Substituting the value of L“*F given by equation (II-116) into equa-
J

tion (II-127) yields

N -
PR el I

17

- cg/\f,ulg u)f, —\-"3 ;P W\”] (11-128)




where the order of summation has been interchanged

plified by making the following observations

This can be sim-
) 143 By equations (II-118)
and (II-119),
e = G w
4p (i
(VAR =
ﬁ)p O

2,0 - O

= 1
Ljﬂ_ O \ (11-129)
so
’ -l s>
Ve = ® (%:;_) = (11-130)
Therefore the terms —5>\?uf and D —\f
W

The term Lg

P o exist for UL, 'V, and
Up

F}P exists only for WL , and the term

]

exists only for & and W

1) n
/af% CLHJP'HU
Thus equation (II-125) may be written in
the form given by Cerf as
N
2Y

ot f’Z= e(’e+1> GWP a—'f,*ﬁf’ "’< (¥t )

+§— “FWQP)) Z Mu‘*g’\(*‘* > (11-131)

This is the diffusion equation in normal cocordinate form

. By
tance of the chain,

from I0=/ to ‘p=f\/

placing the origin of the coordinate system at the center of resis-

U=\ = w =¢ and the summation can be taken

The equation need not be solved completely, since

33
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the average values that are necessary to calculate the intrinsic vis-
cosity of the solvent-polymer solution may be cbtained from a form of
equation (II-131). Considering the steady state form of equation
(II-131) (i.e., -iP—-cg ), Cerf uses the method of separation of var-

iables and considers the distribution function of UP and Mﬁo denoted

¢ (Up w,,) and defined by
P N
’\’b( uf) VP} WF) = ¢ (UF J WP) ‘9}"0 (—275),32"/“,0 V,:- . (I1-132)

The function: qb must then satisfy the equation

0 = z? e |G 30, v (B, (900 £ (44s)

(I1~-133)
Dl 52+ 28} 0 (03 09) |

By multiplying equation (II-133) successively by uF})LUF}>CLP We >

and integrating over the entire configuration space, the following re-

lations are obtained:

C} <iL¢0 f:> +(%o < _fl_LAP P‘>
D% -8 Uy S = 0, arw

~pp {LLugwy ) +PY% -Shp Cwe) = 0, (11-135)

& o Ve (L Cugt-wl)
»ZSXF(L{PVG{Q = (. (11-136)
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where the symbol < v > indicates the space average of the value en-~

closed over. the configuration space. For example

<upm> = LL‘;L o du, ... d W), (11-137)

)

where the average could equally well be over the function 1# . f2is
the instantaneous velocity of rotation of the molecule about the /2,

- -
axis and thus defines Y and :;SL as

-
T =
(I1-138)
- —p
3__9_ - —-_9_'\4 .

Applying the normal coordinate transformation to these equations yields

ULSL = (D_").?_m ""RQ‘l’—g ﬂw\)

- -l -» =l =

e T Qe - -dlQW - AT
or

(:(‘_Q. -;_Q

——

w

- (I1-139)
W, =oAL U

Equation (II-134) will be derived to illustrate the method fol-
lowed in obtaining such averages. Several preliminary results will
first be calculated using 77& as a dummy variable., The assumption must
be made that both ’yb and QB go to zero as any of.the arguments goes

to infinity more rapidly than any power of the argument. The first

integral needed is
[ aze = [nd] - [éanv]
—D nK — D

= O— 3-l = -J") (I11-140)
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where :y is the Jacobian of the coordinate system defined by

= {

j¢ d“’, ot afwlu = j , (II-141)

)

and

dagv = dm, v dow, (1I-142)

Also,

/ Ny a_;% AaV = [w; CDIO- fzm(%‘;ﬁjda“]

= 0O-2( T‘ \ (II-143)

by equation. (II-140). Thus

Jmy 28 dur = 27 (T1-144)

M,
Finally,

v b -
j ‘ﬁ(w‘a)\/F) UF -a-(zpdu,”
= ['E(Wp,\'pﬁ VL; Cb-L)— [Z-\[mmufy/l‘QCP di’“]

= -2 CFew ) ue ), (11-145)

Since the averages to be formed from II-123 are formed by integrating

over the position coordinates, the relation

[f( ¢)0(f) Vo, Wp ) & 7 j}ﬁ(czﬁ) Up, Vo) A aw (1I-146)

will be used to change the form of equations (II-141), (II-144), and

(11-145). at?tu is the volume element in position coordinate space.
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The equations then take the form

f,n &@ d 7w = -1

k. a%ﬂ >

/’VfL a‘cb At = 2 (11-147)

)

[ < 2T

Multiplying equation (II-133) by LLP and integrating over all space
leaves only those terms of the summation with the index fD » Since MF
and Lﬁk are llnearly independent. Thus equation (II-123) becomes.

{ j G i %%p Ak ey o 'a%,@ 4o o )l?”

— D

'*(’f P
ik i &, ()47 - Dy [ i‘f
Dupfu B = C o (e

_ 5}\00 fu; ﬁ;f (Wffb) arV = o, (11-148)

Using equation (II-138) and the fact that Lep)‘uab and l?oare

orthogonal allows equation (II-148) to be written as
" a —iu _’U
- v D g * 29 2y
va/af, Mf;_a(r —J/\F f“p [uo au,oJ'd’]d"

= 0. (1I-149)
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Or, using equations (II-147),

-26 <W¢9“p>j - ﬁw}@ag(ﬁ D{FWF>T

- 2y D[ 3CUD TDT] =0, o)

G <ugwe>J "o Ve (Rugue) T + Dy,

2 AU T = 0, @

Following Cerf and taking the Jacobian of the system as one,
equation (II-134) follows immediately. Equations (II-135) and (II-136)
are derived in the same way. These three equations constitute three

. . . ° L :
equations in three unknowns: <u.P > s <W'Q> s <Ml° WP> . Solving
for <U‘4WP> yields

DGk
: = 2 T (11~ )
(e = (3T + BEEET (T o) T

which can be written in the form given by Cerf as

<q vu> - D7 G, f (11-153)
A VP Fv e AT

where 1% is given by
| (1I-154)
T, = =%
f 28 Ap

The Application of the Eigenvalues to the Intrinsic Viscosity

Burger's treatment of the intrinsic viscosity of particles in sol-

ution yields the following expression:
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(m] = { Z o Fo ). (11-155)

M“’Is
where N, isbAV@gadro“s number, ™ is the molecular weight, /SLL is
the ?}—coordinate of the Z—th bead of the chain and Fi[ is the
K -component of the force exerted on the S-th bead by the solvent
(13).
In the case of small internal viscosity, the rate of rotation of

the molecule can be given by

_(L - %:' (I1-156)

In this special case Cerf has shown the average in equation (II-155)

to be
N N
< %03-1' Fh> = 'Qgﬂf(/*ﬁ:‘f;’fokév < Yo W/o>, (11-157)

Substituting this value into equation (II-155) and replacing D by &L
yields
Nkl ¥y a6 |
[ ] a ZM»%& = >\P /+(of-.)f (%faf’%)’r; G . (11-158)

In the limiting case of zero velocity gradient, the intrinsic viscosity

becomes

(I1-159)

z
N 6 Mo N5 pe |0 )
since 6-‘-‘ O and é, is given by equation (I1-86) as EhT /bl 'F
Thus the predicted value of the intrinsic viscosity at zero velocity

gradient requires the evaluation of the eigenvalues /KF of the matrix

H- /A
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The Calculation of Relaxation Times from Intrinsic Viscosity Data

The relation times defined by equation (II-154) may be written as

@
T = ——E-JE-—— (11-160)

P é»/e‘r/\f,

by substituting the value of 5 . The longest, or "terminal," relax-
ation time fﬂ , corresponds to the smallest eigenvalue Al’ and is
associated with the stretching or contraction of the entire chain, The
shortest relaxation time T corresponds to the largest eigenvalue )‘N
and is associated with the 180 degrees out of phase motion of adjacent
beads on the chain. As such, 111 should be almost constant for differ-
ent molecular weight samples of the same polymer in solution,.if‘the
number of statistical segments is in direct proportion to the molecular
weight of the polymer.

A value for the terminal relaxation time -7, may be obtained from
knowledge of ['q] and the eigenvalues XP without knowing the values
of 51 and 'p . By equation (II-160),

ro= b f
bRTA,

!

(11-161)

But by equation (II-159)

b f _ M1 M, (11-162)

C N Vhe
o_ Prl )\P

Thus

T, = [_"Yﬂ Mg . (II-163)
RTNa ), zﬁ Ae

Using a form advanced by Thurston (35), this may be written as.

= Couyn) SR e

g
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where

Copp) = [ 2 2]

) ey /\59 . (I1-165)
This value of ’ﬂ , computed from steady flow intrinsic viscosity mea-
surements, can be compared with experimentally determined values of T,
from independent oscillatory flow birefringence measurements on the
same polymer samples.

Some differences should be expected in the two sets of values for
T, » since viscosity measurements are made under dilute solution con-

ditions and the birefringence measurements are made at the higher

concentration value of 3 percent by weight.



CHAPTER III
NUMERICAL EIGENVALUE CALCULATIONS AND RELATED FUNCTIONS

Preliminary Calculations

In order to obtain theoretical values for the intrinsic viscosity
for the special case solution to the linear chain model considered in
the previous chapter (i.e., low internal viscosity and zero velocity
gradient limit), the eigenvalues XF of the matrix “J‘ﬁ\ must be com-
puted satisfying equation (II-91).

For the free-draining case of no hydrodynamic interaction, (i.e.,
k*’=ClO), the free-draining eigenvalues are then simply the eigen-

values of the matrix /A and are exactly given by

—_— v 2 v
— Adree , _
>\l°noree 4 200 +1) (11I-1)

The exact details of this solution are given in chapter three of ref-
f-.
erence (34).

For the case of h*# () , the eigenvalues )\‘D are not so easily

evaluated. The eigenvalue equation to be solved is

(H-A) &’P = /\P X (111-2)
where the 52} are the eigenvectors of A . This can be written as

(H-A) 5?‘0 = )\Fﬁ&_;; , (III-3)
or

(H-A - Xpﬂ§°—2}’a = 0, (I1I-4)

42



This has a nontrivial solution only if

43

dot ( H . A ")\F Iw = 0, (III-5)

Denoting the product of ’H and ﬂ\ by ﬂD s

P= H M

then equation (III-5) may be written in determinant form as.

F%o - >~ Fi\ Fim

(*} F>‘ A F?z

o N\ [Nir

(111-6)
Tou
Py
?zu = O_ (I11~7)

'PW""\

This gives an (M+|)st order polynomial in )\ and thus yields N+1

roots. By the nature of H. A , all the roots )T,are real and non-

negative. Negative or imaginary values of-)\F do not have physical

meaning in the form in which they have been used.

As has been mentioned, “4 and AA are both symmetric matrices,

although-fH‘AA is in general not symmetric. A consequence of the

symmetry of IL‘ and 4& is that

and

Ik # 0N,

(I11-8)
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which forces one of the roots of )\ to be zero. This root is labeled
)\u and is not used further. It corresponds to an infinite value of T
for which the chain moves as a rigid body. The remainder of the calcu-
lated eigenvalues are labeled )\' through )\“ in increasing order.
Thus >\' is the smallest nonzero eigenvalue and corresponds to the
longest or terminal relaxation time Tl .

The solution for )\P becomes quite involved if N is large, so
approximations must generally be used. Pyun and Fixman (18) have de-
veloped an expression for /\P for large. N which, when cast in the

form.of the segmental hydrodynamic interaction factor hi‘) has the form
PN [ X qT ¥. ‘%
o ﬁ—— + -
)\P 4 2(N+I) 4N LIl(P) +I1(P)]> (111-9)

where the function [I‘ (@ +T1(P)3 is as defined by Pyun and

Fixman. For P)ZD the function is approximated by

LT, (p) +I1C|Dﬂ ~ F\ATLQ% - _J;] . (I11-10)

Note that in the case of ﬁo hydrodynamic interaction(ht=01D the expres-
sion in equation (III-9) reduces to equation (III-1) for the free-
draining eigenvalues. The objection to using equation (III-9) is that
it applies only for large l\/ and for p<<U . For small values of |\ s
equation (III-9) gives values for ;\P which are consistently too large
(compare Figures 2, 3, and 4) and therefore do not yield correct
)\P—dependent predictions from the theory. A computer program was
written for the IBM 7040 that calculated values of )Vofor values of
A/ from 1 to 1000 and for any value of k*; using equaticn (III-9).
For the case of small N/ , fortunately, equation (III-7) may be

solved exactly for the values of. /\F' As an example, the eigenvalues
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for M=| and° N=7_ will be calculated.
For the illustrative case of A/= [,.the RKirkwood-Riseman value

for <§Lra> will be used as given by equation (II-38). For lj-l’a‘=1 R
J

b= BF - @, o

Then the matrix 'H is given by equation (II-83) as

1 N

“—l = (I1I-12)

JZh* 1

By equation (II-6),

A = (I11I-13)
- L
Therefore
I=J2 h¥ -l +JZ h*
'H'/A = (I11-14)
- +JTh* = VZ h*| .
The equation for A\ in the form of equation (III-7) is then
- vzh? - X =1+ 7T h¥
= 0 (11I-15)
-+ JT WY ENER'SION
which has roots
Aoy = O
(III-16)

A= 2 (1= W)

This is the same numerical result that is obtained from the Zimm for-

malism (36).
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For the following case of é\/=2,_ the Treloar values of <% >will
)ie

be used, although calculations for both the Kirkwood-Riseman and
Treloar values for N=1 to N=1{3 have been made and are discussed

later. Using the values of <ﬁ£rh> given by equations (II-48) and
J

(I1-49), “‘I is given by
( LoD h* Lo Wt
Loy | OB h*
IF[ = (III-17)
Lozah¥ [ 023 W* ]
Also, for N = 2 \
\ - | ®
A = - | 8 - | (11I-18)
o ""l 1 ’
Thus
1-1023h* -1 4L 023 WY o
“—l/A = |-l +];oz'3}\* 2( (-l\oz’sk*) ~141.0230*
(I11-19)
0 -l +lon kY -0y h*
and the equation for }\ in the form of equation (III-7) is
|- vo23h* =X -l 0B ¥ 0
1+ L0TBWY 2A-L0TBRN) - —llodnt | = O
(II1-20)
0 -1+ 102 h¥ =10
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The roots of this equation are

AQ:Q

A

- Loy WY (I11-21)

A, = 2 (1= Lo23 h?*)

Eigenvalue Calculations

The above solutions are useful in that they provide a closed form
solution for ;\, and 'XZ in terms of ;l*. For A/= 3 and larger,
however, thig method becomes prohibitively cumbersome and numerical
methodé are used.

A program was written for an IBM 7040 computing system to compute
values of ‘KP for given values of hJ and h* using both the Treloar
and Kirkwood-Riseman expressions for <fe_'j_h> Several programs are
available from program libraries to compute eigenvalues of a real ma-
trix. In computing the values for AP using the Treloar approximation
to <ﬁ§g>, the Treloar values for <§%ﬁ> were actually used only from
(J\hl:,\ to ]J—hF;S . Beyond this value of )j'—k* the Kirkwood-
Riseman resﬁlts were used to approximate the Treloar values since in
this range the difference between the two occurs in the second and
third decimal places. The convergence of the two values of <ii%;£
is illustrated by the following comparison of the first five terms of

each series.
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TABLE I
L >

COMPARISON OF KIRKWOOD-RISEMAN AND TRELOAR VALUES FOR < ®
’ ik

l 5 _’2* Kirkwood-Riseman Treloar
0. 124 b b
|
L
2 1.02x b b
3 ' ‘
1,253 b 1.332 b
N — \
\\446b l.SOOb
5 \ |

In the series of computer runs using the Kirkwood-Riseman. approx-

imations, the Kirkwood-Riseman values for <F%k were, of course, used

exclusively. Tables II - IV list the computer calculated eigenvalues

for values of\AJ from I to |15 . Ina few cases, eigenvalues were
obtained for /\/'—‘- /@ as well. These are included in the tables
also. Table II lists eigenvalues for the free~draining case (i.e.,
}1*:CXCD which are calculated using equation (III-1). From equation
(III-1) the free-draining eigenvalues are located between the limits
of 0.0 and 4.0. For every value of N , there are N nonzero eigen-

values, listed in order in the table from /k' to AAJO Tables III and

IV list the eigenvalues calculated using the Treloar and Kirkwood-



TABLE II
FREE-DRAINING EIGENVALUES

EIGENVALUES FOR FREE-DRAINING CASE (HSTAR = 0,00)

N =1
240000
N =2
1.0000 3,0000
N =13
045858 2,0000 344142
N =4
043820 143820 246180 3.6180
N=5 :
042679 1.0000 2.0000 3,0000 347321
N =6 : ‘ :
041981 047530 145550 244450 342470 21,8019
N=7
041522 045858 142346 2.0000 247654 104142
N =8 : _ :
041206 044679 1.0000 146527 243473 340000
N=9 _ ‘
‘040979 043820 0.8244 13820 240000 206180
3.9021
N = 10 .
040810 . 043175 006903 141692 1.7154  2.2846
. 346825 349190
N = 11 '
0.0681 042679 045858 10000 1.4824 20000
344142 3,7321 349319
N = 12 _
0.0581 042291 Ce5030 048639 1.29C8 17589
3.1361 3,4970 3,7709 349419
N =13
0.0501 0.1981 0e4363 ~ 04753 101322 145550
2.8678 342470 345637 3.8019 349499
N = 14
040437 041729 043820 0e6617 1.0000 143820
246180 3,0000 343383 346180 3.8271 149563
N = 15 ‘ :
0.0384 0s1522 043371 0.5858 048889 102346

243902 2+7654 341111 3e4142 346629 348478

348478
345321

341756
248308

25176

242411

240000

1.7909

1.6098
349616

49

348794

. 36180

343097

340000

247092

244450

242091

2.0000



EIGENVALUES FROM TRELOAR DISTRIBUTION

HSTAR = 0.01

N =1
l.98C

0.198

N= Y
04153

N=28
0,121

0.099
3.869

N = 10
0.082
3.647

N =11
0.069
34378

N =12
0.0589
3.1007

N =13
0+0509
2.8337

N = 14
00445
245859

N = 15
0.0391

243601

2.969

1977

le367

0.990

0,747

0.582

04466

0.381

0.317
3.886

0.268
34697

0.2295
344609

D.1987
3.2111

041737
2.9651

001530
2.7319

34381
24588
1le976
}-537
le221
0.990

0.818

0.685

04582
3.899

C.5007
347359

0.43467
35275

Ce3811
3.3021

03365
3.9754

3.584

24967 .

2416

1976

14633

1-366

1.157

0.990

08565
3.9C91

CeT473
3.7673

J+6573
35821

J.£823
363777

3.698

36212

2733

24319

1.975

1.695

1465

12767

1.12C7
35173

0.9905
3.7927

D.8811
346269

2. 768

3379

2966

2586

20256 .

1975

1.7373

15365

13663

39227

1.2213
2.8134

TABLE III

TRELOAR EIGENVALUES

3.814

34960

3a2140

2797

2487

2.2131

19749

17687

15903
249290

34846

3.582

3.274

2,965

2.6765

244147

2.1813

1.9747

N=7
0e155

N =28
0.126

N=9-
04104
34569

N =10
0.088
3.328

N =11
0.075
3.052

N = 12
0s0655
2.7807

N =13
0«057%
2.5267

N = 14
0.0510
242960

N = 15
0.0455
2.0898

N = 16
0+0499
le9C72

24693

1.770

1.230

0.903

04692

"0e548

04,445

04370

0.312
3.588

0.267
3.380

0.2321
3.1345

0e2035
2.8867

0.1800
246498

0.1604
2.4304

Celta2
22306

3.078

2.315

i:760

le374

14162

Ge904

0.755

0640

0550
3.602

0.4785
344211

04199
3.2015

0e3718
249750

63315
247546

Je2978
25469

3.276
24664
24151
1.755
1le455

le225
1,047
0e904

0.7897
3.6135

Ce6955
34545

06174
3.2570

Ge5517
3.0494.

044963
2.8444

3.390
24897
2.43?
2.058

le752
1.506
1309
l.1481

1.C155
3.6227

0+90480
3.4820C

0.8113
3.3032

0.7316
341127

30462
3059
2656

24301
24000
14750
125419
103691
142240

346302

141010
325046

09958
Je3424

" 3.510

3175

24822

24495

2.207

1.9595

le7481

1e5682

le4143

346461

1.,2825
3.5238

36544

3,262

20951

20652

243809

201403

19300

1.7469

1.5880
3¢6412

0s



EIGENVALUES FROM TRELOAR DISTRIBUTION

HSTAR =

N =1
l.3862

N =28
0135

N=29
0e116
2.904

N = 10
06101
24620

N =11
0.089
24330

N =12
0.0798
240702

N = 13
040718
1.8444

N o= 14
00650
1.6516

N = 15
0.0593
ls4886

Ce3

240793

1.309

0,924

0,707

0,569

04473

0.400

0e345

0.3C1
24926

04266
24676

0.2374
2.56108

0.2136
241666

041935
1.9497

2.1765
1.76C5

1.7C9

14279

1.011

0.835

0.710

0516

04541

Ve480
24943

Gat292
247224

Ce3870
244780

De3R117

2+2491

03205
2.C419

1263

1.058

0.911

Je.800C

04713

Ceb41C
2+9574

0«5804&
247606

045285
245356

Cet838
23206

24707

2.198

1787

1.48C

14253

0.960

Ce8618

O«7816
2.96E8

Ca7142
27925

Ceb561
25849

24783

2349

1+969

14666

l1e430

le247

11064

09958

0.9067

29776

0.833
248195

- TABLE III
2.836
2,462 2.875
2.115 24551
14824 .. 24233
1.586 10957
1.3954  1.7240
1.2430 1.5302
1.1208 1.3705
1.6222 142397
2.9856

(continued)

061219
28714

N =10
Ce1077
202673

N =11
0.09613
1.9692

N =12
Ce08657

17154

N =13
0.07856
1.503¢

M= 14
0407177
1.3296

N =15
0.06592
1.1879

17724

1.0792

Cet346
043777

2.3321

0.2951
245953

0.2648
23256

042395
20490

C.2181
1.807C

3.1999

1.6001

Cal842
- let258

240698

l.4058

13270

C.8281

C.732¢

Ge6131

Se5551

Det911

Jetstityy
246143

De4045
242729

0.37013
241170

Je3406
1.8868

Ce3l4g
16861

242519
1.6588
le26%2
1.0162
0.8578

0.7524

046765

0+.6168

0.5666
246295

0.5229
2.4143

0841
21756

Cett08
l1.9%58

23667

1.8499

le4617

0.8752

047849

07177

Ceb641
2.6415

0.6187
204485

0.5785
2.22€4

264444

1e9951

16263

13489

lels4d

09953

08874

0+8079

0a7472

246520

Ne 6984
74776

244997

21072

147619

1.4885

142757

1.1129

0,9895

08962

0.8250
246605

265405

21960
1.8748
146100
1.3957
1.2251
1.0906

049853

I3



TABLE IV .

KIRKWOOD-RISEMAN EIGENVALUES

ETGENVALUES FROM XIRKWOOD-RISEMAN APPROXIMATION

HSTAR = (.01 HSTAR = 0.1l

N =1 N =1

1.9717 le7171

N=2 . N=2

0.9899 249534 08999 245343

N = 3 N="3

0.5822 1.9740 343589 0+5499 167402 208613
N =3 . N =4

0,3809 1.3675 245799 3.5583 0.3721 1.2380 242375
N=5 N =5

0.2681 0.9920 19745, 249540 3+6697 02699 0.9206 le7457
N=6 . T oN=s

0,1988 0.7488 1.?380 2.4108 341956 37380 002055 = 047108 1.3855
N =7 N=7

0a.1532 0,5838 l1e2255 19748 247245 303592 3.7828 0el1624 0.5660 1.1220
N =8 N=238

0.,1217 0,4673 0.9925 1.6342 243153 209542 3.4744 3.8137 0.1319 064620 0,9258
N=29 N=29

0.0990 0.3822 0.8196 le3684 19750 25805 3.1259 3.5584 0.1096 0.3848 0.7768
3.8359 : 32406

N = 10 N =10

0.0821 0.3183 0.6873 11593 1.6959 242540 2.7887 3.2571 0.0927 0e2260 0e6614
3'6?14 3.8524 3.0719 342535

N =11 N =11

0.0693 0.2691 0.5842 0.9928 1.4672 19752 2.4823 2.9543 0.0796 0.2801 045702
343593 3,6698 3.8650 . 2e8652 3.1101 342634
N =12 N =12

0.0592 0.2305 05023 0.8588 14279C 1.7388 2.2115 2.6698 0.0692 002435 0,4970
3.0874 344402 3.7078 3.8748 246497 249293 3.1399
N =13 'N = 13

0.,0512 0.1996 0.4364 07495 1e1231 1+5386 1.97%2 204113 De 0608 0.2140 0e6374
28250 3.1958 3.5053 3.7381 348826 24401 207361 2.9807
N = 14 N = 14 °

0« 0447 0.1746 0.3826 0.6594 09930 143687 1.7703 241892 0.0539 041897 0.2882
245806 249543 3.2851 345584 3.7627 348888 242443 25438 28070
N = 15 N = 15

0.0394 0.1539 0.3380 Ce5844 0+8835 1.2239 1.592¢% 1.9753 0.0482 0.1694 Ca3471
2.3576 2.7248 3.0630 3.3593 36023 3.7828 3.894C 2.0647 243603 206306
N = 16 N = 16

0.0350 0.1368 0.3008 0e5214 Ce7908 10999 1.4383 1.7%4 Os 0434 Cal1524 0e3124
241562 245116 248482 3.1551 3.4217 326389 3:7996 3.8983 H 1.9016 2.1890 2.4592

3.0207

245402

201036

17489

le4685

12470

1.0707

0.9288

0.8133
302711

0.7182
3.1638

046391
30226

045726
2.8659

0e5161
27040

341093

207338

243576

200277

le7507

l.5212

13312

1,1735

le0416
342773

Ce93C5

3.1832

0.8362
3.0570

0.7556
249152

3e1634

2eB642

25622

202627

19791

17520

18578

13919

12500

32822

1e1282
261991

10230
30858

3.1987

2.9557

26796

2,4105

241643

le9454

le7529

145845

144375

32862

13050
3.2123

30,2231

320222

2,7841

205432

2,3156

201076

149206

l1e7536

16050
32896

(49



TABLE IV (continued)

EIGENVALUES FROM KIRKWOCD-RISEMAN APPROXIMATION

HSTAR = C.3 HSTAR = Jas4
N =1 N =1
1.1515 0«86B6
N =2 ’ CON=2
0.7000 1.6029 06000 1.1372
N =3 N=3
0.4774 142207 1.7563 0e4397 0.96C9 1.2081
N = & N ==&
0.3514 394599 144778 1.8267 0.3393 0.5047 1.0996 ls22C7
N =5 N =5
062724 0.7610 1e2381 1e6215 148642 0.2719 Ce6795 049851 1.1628 12425
NE= 6 N = 6
062192 0.6255 1e0474 14217 1.7083 18866 0.2244 0.5809 Ce8782 1.0820 1.1971 l1e2488
N =7 - N=T
001813 045252 08970 le2477 le5431 17648 1.9009 0.1894 0.5C28 0.7839 049977 lel37¢ le2164 12525
N e B8 N=28
041533 0.44B9 0e7775 1.1008 13894 146276 1.8034 1.9107 Calb27 0e4404 0,7023 0.9170 ls0714 11716 1.2283 le256G
N =29 ’ N=29
0.1318 0.3892 0.6814 0.9774" 12531 144930 1.6883 1.8309 0.1418 Je3896 0.6326 Ce8423 140049 11194 14193% le2362
149177 1.2565
N = 10 N = 10
0.1149 043417 0e6032 0.8739 lel236 13690 15706 17334 01251 Q3478 0.5728 0e7748 0.9400 10645 1.1519 1.2093
leB5a4 1.9228 le2415 1.2577
N = 11 N o= 11
0.1014 0.3031 0.5385 0e7865 1.0295 142569 1.4585 16304 Je1114 0.,3130 0e5214 Ce7145 0.8786 140098 11067 1e1751
1.7678 leB8664% 1.9267 1.,2201 l.2452 le2586
N = 12 N = 12
0.0904 042712 OetB4ub 0.7121 0.9392 161561 13548 15250 0.1001 0+2B36 0e4770 0.6605 0.8218 0e9554 1.0604 l.1368
1.6773 1.7943 1.8782 1.9298 1.1921 1.7278 142480 142593 .
N =13 N o= 13
0.0812 Oe2446 044390 0.6484 0.8605 10664 142594 le4336 0.09069 Ce2585. 0+4385 Ceb124 0e7694 049036 1.0121 1.0976
1.5855 1.7148 1.8152 1.8878 l.9322 ls1592 1.2051 l.2324 12502 142598
N = 14 N = 14
00735 0.2220 Je4001 Ge5934 0.7916 0.9866 1.1723 l+3443 D.08265 Ce2369 004048 05695 07215 0«8547 0e9665 1.0569
1.4977 1.6318 le7450 1.8320 18955 149341 le1255 1a2767 1.2149 1.2375 12520 le2602
14
N = 15 N = 18
00670 042020 0366 0s5458 Ce731 069158 1.0936 le2616 007573 0.2182 043751 0.5313 0e67746 0.80%90 0e9214 1.0158
le40 le%4 1.63 1.72 1.80 187 l.% 1.0992 1e14792 1.1905% 12225 1.24C¢ 12535 1.2605

(%9
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Riseman approximations respectively. In each case, sets of eigenvalues
are given using values of L{*= 0.01, 0.1, 0.3, and 0.4 as parameters.

As an ald in comparing the different sets of eigenvalues, Figures
1 through 4 show graphs of A‘gversus /V for the free-draining case
and for the Pyun-Fixman, Treloar, and Kirkwood-Riseman cases, using -
‘PL* = 0.1 as 'the parameter. All eigenvalues are shown from Aj:-{ to
N =15 and on the free-draining and Pyun-Fixman plots every tenth

eigenvalue (i.e., }\,D) ’\7.0) A ) is shown through N =100 .

3oy o0
The approach of the )\N values to 4.0 in the free-draining case is
matched by similar asymptotic conditions in the other three figures.
The upper bounds are not the same for each case, however, since the
Pyun-Fixman asymptote is about 6.0, the Treloar value is about 3.7,

and the Kirkwood-Riseman value is about 3.4, Since the Pyun-Fixman
eigenvalues are developed using the assumption that N is large and
using the Kirkwood-Riseman approximation of equation (II-58) (18), the
plots of the Kirkwood-Riseman eigenvalues should be expected to ap-
proach the Pyun-Fixman values for large values of IV , but a
comparison of the two plots by superposition indicates that the conver-
gence is very slow, if it indeed exists., Convergence of the two

values of )\P for values of- ’o near N is not to be expected, even
for large A/ , because the Pyun-Fixman expression 1s good only for
values of‘0<<h). Although the curves are only shown for one value of
h#', the envelopé of the curves shifts downward along the '\P axis

as K* is increased. The shift is only a general one, however, and is
not so simple as to allow a simple empirical expression to be developed.

giving )\f, as a function of N and ¥ .



Figure 1. )\ Versus N for the Free-draining Case,

¢
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Figure 2., Pyun and Fixman Values of. >\f,Versus N
for h*=0.1.
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Figure 3. Treloar Values of /\P Versus N for h* =0.1.
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Figure 4. Kirkwood-Riseman Values of >\\o Versus N
for h*= O\‘ .
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Calculation of Eigenvalue Dependent Functions

In order to examine the dependence of L‘Q] s the intrinsic vis-
cosity, upon M , the molecular weight, Thurston (19) has cast the
expression for [’Q] given by equation (II-159) in the form

L,n‘] - ¢/\/'/17\_/bj. ' (I1I-22)
aMg
where b 1s the segment length, /Va_ is Avogadro's number, and 'ms is
the segment mass. From the expression for lL* glven in equation

(II-66),

£ = wTh*b (T—‘é) V") (III-23)

CD’Y]S
where - ‘)[‘ is the segmental friction factor and ')75 is the solvent vis-

cosity. Also Mg and M are related by

M= N{(Na ‘ms\) (I11-24)

Using equations (II-159), (III-23), and (III-24), can be written as
3
b NwTTA h¥ \ 4 ] A
= () v d e
Na'Wls —5 L NVL P't! ~ )
which is of the form.of equation (III-22) where
) N
¢ - Nao 7(/“ h* Z £ ‘ (III-26)
IA N S5 A

The function ¢N%is thus useful to compare agalnst values of . [’Y)-_I s
since they differ only by the factor b—VNa'MS , which is constant for
different molecular weight samples of the same polymer in the same sol-
vent, assuming that I\/ is directly proportional to M according to
equation (ITI-24). Plots of ¢/\/% versus /\/ should thus exhibit

the same character as ["1] versus M plots. Figures 5 through 7 show
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d}\]’{plotted against N for h,* values of 0.01, 0.1, 0.3, and 0.4.
The values for il*== 0.05, 0.15; and 0.2 on Figure 6 were not calcula-
ted, but were geometrically interpolated from the curves for other
values.

The deciding factor on.whether to use the Treloar or the Kirkwood-
Riseman eigenvalues 1is their ability to predict the character of the
observed Pn] ’ Fﬂ dependence for low molecular weights. The upward
turn of the plot of_Pd] versus F1 for polystyrene in Aroclor 1248 for
low molecular weilghts shown in Figure 10 is typical of the results ob-
served with other polymers. Several examples of this effect are
gliven in the next chapter, The plots of ¢N'Aversus N calculated
from the Treloar eigenvalues do not have thils character, but the QbM£4
versus A/ plots from the Kirkwood~Riseman elgenvalues do. For this
reason, only the Kirkwood-Riseman results will be used to compare with
intrinsic viscosity measurements in the next chapter.

The problem‘of the convergence of the Pyun-Fixman and Kirkwood-
Riseman ¢/\/%versus N plots reappears at this point. Overlaying
the two plots to obtain comparisons, the Pyun~Fixman and the Kirkwood-
Riseman curves are almost identical for low values of /L* , but for
values of }L*=:0.3 and 0.4, the convergence, if it occurs, must be for
values of N on the order of /04 .« A set of extrapolated values for
the Kirkwood-Riseman curves which approach the Pyun-Fixman curves for
large values of A/ can be used 1n comparing neasured EQJ versus ﬁ4
curves with theoretical plots of <$A}yQ versus MV by superposition,
The inaccuracy, ho&ever, of the Pyun-Fixman values of '\P for values
of . F near N may mean that such an extrapolation is invalid and

that convergence does not occur,



Figure 5, CbN&Versus N Using Treloar Eigenvalues.
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Figure 6, (bIUV‘— Versus A/ Using Kirkwood-Riseman
Eigenvalues.



1025

\

h'=0.4
03

0.2
0.15
0.1

005

0.01

10
N.

10

68



Figure 7. él\l'/‘- Versus N/ Using Pyun and Fixman
Eigenvalues.
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Figure 8. C(N) W) Versus N Using Kirkwood-Riseman
Eigenvalues,
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Figure 9. Comparison of _C(N) ;L*) Versus N Calculated
From Kirkwood-Riseman and Pyun and Fixman
Eigenvalues.
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The C(N) h*) function used to derive terminal relaxation times from
intrinsic viscosity measurements and given by equation (II-165) is
shown plotted against ﬁd in Figure 8, using the Kirkwood-Riseman eigen-
values only. The curves for ;L¥ values of 0.01, 0.1, 0.3, and 0.4 are
calculated, but the curves for "L¥= 0.15 and I’L* = 0.2 are interpola~
ted geometrically. The use of the figure is explained in detail in the
calculations of the following chapter. The problem of the convergencé
of the values of,theCYﬂahf) function calculated from the Kirkwood-
Riseman eigenvalues with those calculated from the Pyun-Fixman
eigenvalues is illustrated in Figure 9. The Kirkwood-Riseman eigen-
values are used for AJ=-1 to N=15 and the Pyun-Fixman eigenvalues
are used from N= 20 to N=1000. Again, the higher values of. h*
produce curves ﬁhich do not appear to converge for large values of N .
The general problem of convergence as discussed in this chapter will
be partially resolved with more extensive calculations of exact eigen-

values for values of N higher than 15.



CHAPTER IV

COMPARISON WITH MEASUREMENTS

Polystyrene in Aroclor 1248

The predicted behavior of the intrinsic viscosity of low molecular
welght polymers in solution can be compared with actual data by compar=~
/
ing.the plots of QDAJ’{versus N/ with experimental plots of [371]

versus M . Since

1

)

[n] = &N* -
S

where

_ NaTw * pL¥- N 4
¢ = : 2

2 1 N7 f=0 Np ) (1v-2)

values of [’y)] can be obtained from CbNy'L by specifying values for Wt ,
b ; and My « This procedure may be carried out in reverse by making
a best fit of the be\)yzversus N curves with the experimental [’V\]
versus Pﬂ curves, Figure 10 shows a plot of intrinsic viscosity ver-
sus molecular weight obtained by Thurston and Schrag (19) for dilute
solutions of polystyrene in Aroclor 1248 over a wide range of molecular
welghts. The measurements were made at a‘.‘ temperature of 25°C, at
which the viscosity of. the Aroclor 1248 was 2,23 poilges.

The dashed line through the data points shows.clearly the charac-
teristic upward curvature of the plot for low molecular weights. This

characteristic of the curve shapes is also evident in the polystyrene
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plots of Figure 13 and in the three polymers presented in Figure l4.

As has been previously mentioned, the plots of ¢N'/;- versus N/ have
this characteristic shape for low N (and therefore, low ™ ) only

if the eigenvalues derived from the Kirkwood-Riseman expression of
equation (II-58) are used to calculate the function quJ9Q. The plots'
of CﬁA}gQ-using the Treloar eigenvalues appear to approach the same
values for high values of A/ that the Kirkwood-Riseman derived CbA}”i
approach, but they do not have the proper character for low values of
/\/ . For the value of h*—_—O,?} , the line even possesses a down-
ward curvature for low \/ , in contrast to the upward turn of the
experimental [’Q] versus ™M curves. The plots of ¢I\)V'- calculated
from the Pyun and Fixman eigenvalues also lack the character exhibited
by the experimental [’n] versus ™M plots.for low molecular weights.
The convergence of the 4$AJy£curves frﬁm the Pyun and Fixman and from
the Kirkwood-Riseman eigenvalues is slow, if indeed there is to be con-
vergence for high /\/ values, as discussed in chapter three. For these
reasons, only the results from the Kirkwood-Riseman sets of eigenvalues
are used in the remaining calculations of this section.

The solid line of Figure 10 is the theoretical curve of CDAinver—
sus hJ for an ‘l*'value of 0.15 and for a superposition of the
theoretical and experimental curves such that N=1 at M =3200and
(p/\)h::lozq'at [M1=43 0——%‘? . The theoreticél curve for h*=0./5 was in-
terpolated from a plot of (;b/\/%versus N for h* values of 0,01, 0.1,
0.3 and 0.4.

Using the expressions

-M
Ms = N No.

(Iv=-3)
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" l/?)
b = L3 N‘LW‘S} (IV-4)
)

¢ N

and
-F-= (I‘Z\'r\"”)'/‘ s b ¥ (1V-5)

the following values are calculated:

- L= (1V-6)

Mg = 531 x10 g ’ v
b = &l ¥ 1~ cm (1v-7)
f = 333« IO-(p@-sec". (1v-8)

Since the molecular weight of the styrene monomer is 104.14, this value
of Mg places about 32 monomer units in a statistical segment.
These values may be used to find terminal relaxation times for

polymer chains of different molecular weight using the expression

T, = C (N, h¥) Eﬁ%%‘" (1v-9)

where N hﬂ is given by equation (II-165) as
)

-1

Cov i) = ]2 5T -0

These relaxation times may in turn be compared with those derived for
the same set of polystyrene samples using oscillatory flow birefrin-
gence data.

As an example of the use of equation (IV~9), the case for N=3 is

worked in detail, For the particular curve match under discussicn,

M = 7 X 3200 - 9600 (1v-11)
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for /\/-.: 3 segments. The value of.C_(/\/) h#> for /i* = 0,15 and N = 3
is interpolated from the plot of CCN) h") versus /\/ for h+ values of

0.01, 0.1, 0.3, and 0.4 (Figure 6) and is found to be

C(3,015)= 0,650, (1v-12)

Using the 7 ¢ value of 2.23 poises at a temperature of 2_5°C R 7‘, is

directly calculated from equation (IV-9) and is found to be

- @
T = 6,74 xi0 ac. (1v-13)

The terminal relaxaction times T; y are computed in the above way for
the remaining values of N from 1 to 15 and are shown in Figure 11.
The times increase for larger values of M (and. \V ), which seems
correct, since the time ‘77 is associated with the fundamental mode qf
relaxation of the polymer chain, Thus, longer chains (larger values of
Pq ) would have longer terminal relaxation times.

A comparison set of relaxation times for polystyrene in Aroclor‘
1248 may be determined from oscillatory flow birefringence measute=
ments. By comparing theoretical single relaxation time response curves
to the low frequency ends of the experimentally measured response.
curves for the birefringence magnitude and phase angle for each of the
polystyrene sampleslshown in Figure 10, a set of concentration-depen=-
dent relaxation times T’CC) can be determined. Following the method
.of Thurston (37), the values for 1ﬁ’(6) are assumed to be related to
the times ’r,/for dilute solutions by the relation

/
q—" = T (C) (IV-14)
Kcc)
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where RYC) is a concentration factor relating the measured and intrin-
sic viscosities for each molecular weight sample. Both the times
and are shown in Figure 12.

A set of relaxation times 77 can be derived from the 77/ values

by the expression

/ = | (7200 )\
T ’ﬂ ( + Iq / X':-,Pfee) N (Iv-15)

where q0 is the coefficient of internal viscosity used by Cerf and

Thurston (38). In order to evaluate L. léLL the relation be-

N )\I,pree
tween P4 and A/ (i.e., 7n5 ) and the value of h* must be known.
Working with the particular samples of polystyrene under discussion,
Thurston has found the approximate value of qacﬁ to be 2.0 (19). A
best fit for frequency response curves was.obtained for }1*? 0.3 and
for a segment molecular weight of 1000, This corresponds to about 10
monomer‘dnits per segment. Using these values, the times ’T' in equa-
tion (IV-15) may be calculated using the appropriate values of Al for
the AJ value corresponding to a given value of M and for Ll*= 0.3
and 0.0 (i.e., the free-draining case). As an example of the nature of
the calculations, the case for M= 6000 is worked in detail. 1In this
case, M= 6000 for N= 6. The values of )\‘ and /\,)#& are found

from the computed values of )\\(A“ k*) using the Kirkwood-Riseman ex-

pression in equation (II-58). Thus,

A6, 0.0) = A = 01981, (1V-16)

AN(G o = 0 2192, (Iv-17)
) )
Using the value of fﬁ’ for this wvalue of f\ﬂ as read from Figure 12 and
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solving equation (IV-15) for T, vields
T = 2.02 ¢ 0 “sec, (1v-18)
T, = Z.21 X 10"%sec. (1v-19)
Values for T}Vfor other values of N from 1 to 15 are found in the
same way and are also shown in Figure 12 by a solid line,

These relaxation times can now be compared with those of Figure 11
derived from intrinsic viscqsity measurements, which for convenience
are also shown in Figure 12 by the dashed line. The values.  of the two
different sets of relaxation times are of the same order of magnitude,
differing by a factor of less than two at M=4000 and by about 50 per-
cent at M= 15,000. Both the curves have the same character and appear
to approach common values for high molecular weights. Comparison of
the two sets is made less revealing by the fact that the times derived
from intrinsic viscosity measurements use an estimate of N=1 at
M = 3200, while the times from oscillatory flow birefringence data,
which, unlike [ﬁq] measurements, are made at a finite weight concentra-
tion of 3 percent, use an estimate of N =1 at M= 1000. WM., h*,
and CQ/# must all be known in order to calculate relaxation times from
birefringence measurements, but the variations of these quantities with
concentration and molecular weight are unknown. Although the value of
qyp= 2.0 is chosen to fit experimental data, it may be incorrect by
X+ 50 percent. Also, the treatment of 'ﬁ'(()and ’ﬁ' as being simply
related by the factor K(C) in the same way as the measured and intrin-
sic viscosities has not been rigorously justified. For these reasons,

¥
the times for L1=CL3 in Figure 12 are not expected to follow those de-

rived from Enﬂ measurements ény closer than they do.



Figure 10. [’n—_l Versus (\/] For Polystyrene in
Aroclor 1248,
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Figure 11. ’l", Versus M Calculated From Intrinsic
Viscosity.
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Figure 12. Curves for T,«), ’T./CC)/K(C) , and T, Versus M
From Oscillatory Flow Birefringence Measure-—
ments. -T; Versus MM\ From Intrinmsic
Viscosity Measurements.
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Other Intrinsic Viscosity Measurements and Conclusions

Figure 13 presents lqu versus M data for polystyrene in several
solvents taken by Meyerhoff (39)and by Berry (40). In each instance
the upward turm of the curve for low molecular weight samples is evi-
-dent, and has a similar character as the (ﬁhJ%-versus N curves
derived from the eigenvalues using the Kirkwood-Riseman expression.

The theoretical curves may be matched against the data and yield dif-
ferent values of ll* for each data series, along with different values
for 7”5 and b . At the present time no work exists which simply re-
lates the effect of different solvents upon the parameters }L¥, ‘7n5 .
and £>. One approach to such a theory is a modification of Flory's
theory (41) of solvent effects on his equivalent sphere model.

Flory's explanation of swelling or compressing the polymer chain coil
by placing it in different solvents at different temperatures can be
explained within the framework of the Gaussian chain model as a change
in the number of monomer units required to make up (on the average) one
independently oriented statistical chain element. Placing the polymer
in a "good" solvent, i.e., one which tends to increase the end-to-end .
length of the chain (41, 42), would bevaccompanied by an increase in
M, and b for the particular polymer, while placing the polymer in a
"bad" solvent would have the opposite effect. Recent work by Flory and
others (43, 44) on the mathematical treatment of polymer chain config-
urations in terms of the number and size of monomer units in the chain
appears to be one starting point to develop a theory to predict changes
of b and ?ns , if not Af , from changes in solvent properties,

Figure 14 shows results of Dhlversus M measurements for poly-

Y -benzyl- L -glutamate in dichloracetic acid made by Mitchell,



Figure 13. [’Y)] Versus ™M for Polystyrene Solutions
in Benzene (39), Decalin, Dioctylphthalate,
and Toluene (40).
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Figure 14. [TD Versus ™M\ for Poly- V¥ -benzyl- L -
glutamate (45), Poly & -Methylstyrene (46),
and Polyoxyethyleneglycol (47).
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Woodward, and Doty (45), fér poly ¢ -methylstyreme in toluene made by
Cottam, Cowie and Bywater (46) and for polyoxyethyleneglycol in water
and benzine by Sadron and Rempp (47). Again the characteristic upward
turn of the curves for low molecular weight ranges is evident, and is
similar to the character of the QﬁA/%'versus N/ curves for low N
using the Kirkwood-Riseman eigenvalues. No calculations for segment
mass or length are presented for the polymers shown in Figures 13 and
14, although the curve matching is done in the same manner just de-
scribed, since there is no extensive data available from.oscillatory
flow birefringence measurements on the same polymers. This points up
the need for sets of good data for intrinsic viscosity and oscillatory
flow birefringence over wide ranges of molecular weight for several
polymers in different solutions. Without these data sets, there is no
independent check of the wvalidity of the values of ™M s b , /1* and
4? predicted by the present theory, or of the effects of polymer con-
centration or solvent characteristics upon these parameters.

Within the limitations of the present data, however, the eigen-
values calculated exactly using the Kirkwood-Riseman expression of
equation (II-58) are more successful. in predicting the behavior of in-
trinsic viscosity for low molecular weights than are the previously
used eigenvalues using the expression due to Pyun and Fixman, which was
developed for a model containing a large number of segments. The in-
clusion of the assumptions that [\ is proportional to M and that Pl*
is a constant value for a given polymer-solvent series is successful in
predicting the observed character of the molecular weight dependence of
the intrinsic viscosity for low molecular weights. The fact that the

Kirkwood-Riseman eigenvalues are more successful than the Treloar



94

eigenvalues in predicting the abserved [ﬂfj . Fﬂ dependence for low
M1 indicates that the distributed segment length concept is to be
favored over a fixed segment length. The present theory is the only
one currently available which can predict the multiple relaxation times
observed -in frequency response measurements of both oscillatory in-

trinsic viscosity and flow birefringence experiments.,
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